From b08dfdcea04b26ed7916a82ffa9b2dc644548ab3 Mon Sep 17 00:00:00 2001 From: Quentin Pradet Date: Wed, 6 Nov 2024 20:44:34 +0400 Subject: [PATCH 1/2] Support Python 3.13 (#1938) * Support Python 3.13 * Explicitly ask for Python 3.13 in lint * Revert to 3.12 for Read the Docs It does not support Python 3.13. * Restore 3.12 Nox Python version --- .github/workflows/ci.yml | 12 ++++-------- noxfile.py | 5 +++-- setup.py | 1 + 3 files changed, 8 insertions(+), 10 deletions(-) diff --git a/.github/workflows/ci.yml b/.github/workflows/ci.yml index 495e89ca..025387ec 100644 --- a/.github/workflows/ci.yml +++ b/.github/workflows/ci.yml @@ -32,7 +32,7 @@ jobs: - name: Set up Python uses: actions/setup-python@v4 with: - python-version: "3.12" + python-version: "3.13" - name: Install dependencies run: | python3 -m pip install nox @@ -62,7 +62,7 @@ jobs: - name: Set up Python uses: actions/setup-python@v4 with: - python-version: "3.12" + python-version: "3.x" - name: Install dependencies run: | python3 -m pip install nox @@ -81,8 +81,9 @@ jobs: "3.10", "3.11", "3.12", + "3.13", ] - es-version: [8.0.0, 8.13.0] + es-version: [8.0.0, 8.15.0] steps: - name: Remove irrelevant software to free up disk space @@ -104,11 +105,6 @@ jobs: uses: actions/setup-python@v4 with: python-version: ${{ matrix.python-version }} - - name: Set up Python for Nox - if: matrix.python-version != '3.12' - uses: actions/setup-python@v4 - with: - python-version: 3 - name: Install dependencies run: | python3 -m pip install nox diff --git a/noxfile.py b/noxfile.py index 98f8263f..b585b422 100644 --- a/noxfile.py +++ b/noxfile.py @@ -35,6 +35,7 @@ "3.10", "3.11", "3.12", + "3.13", ] ) def test(session): @@ -55,7 +56,7 @@ def test(session): session.run("pytest", *argv) -@nox.session(python="3.12") +@nox.session(python="3.13") def format(session): session.install("black~=24.0", "isort", "unasync", "setuptools", ".[develop]") session.run("python", "utils/run-unasync.py") @@ -67,7 +68,7 @@ def format(session): lint(session) -@nox.session(python="3.12") +@nox.session(python="3.13") def lint(session): session.install("flake8", "black~=24.0", "isort", "unasync", "setuptools") session.run("black", "--check", "--target-version=py38", *SOURCE_FILES) diff --git a/setup.py b/setup.py index 5e36e6c7..d1444331 100644 --- a/setup.py +++ b/setup.py @@ -88,6 +88,7 @@ "Programming Language :: Python :: 3.10", "Programming Language :: Python :: 3.11", "Programming Language :: Python :: 3.12", + "Programming Language :: Python :: 3.13", "Programming Language :: Python :: Implementation :: CPython", "Programming Language :: Python :: Implementation :: PyPy", ], From 601bea72651572a818567d72000ffb4ee484445d Mon Sep 17 00:00:00 2001 From: Miguel Grinberg Date: Wed, 6 Nov 2024 17:14:18 +0000 Subject: [PATCH 2/2] Autogenerate aggregation responses and hits (#1932) * typing of aggregation responses * buckets_as_dict property * typing of the `meta` attribute of hits * more minor adjustments to response types --- elasticsearch_dsl/response/__init__.py | 98 +- elasticsearch_dsl/types.py | 2311 +++++++++++++++++----- elasticsearch_dsl/utils.py | 12 +- examples/async/composite_agg.py | 17 +- examples/async/parent_child.py | 6 +- examples/async/sparse_vectors.py | 2 +- examples/async/vectors.py | 2 +- examples/composite_agg.py | 17 +- examples/parent_child.py | 6 +- examples/sparse_vectors.py | 2 +- examples/vectors.py | 2 +- utils/generator.py | 148 +- utils/templates/response.__init__.py.tpl | 16 +- utils/templates/types.py.tpl | 16 +- 14 files changed, 2084 insertions(+), 571 deletions(-) diff --git a/elasticsearch_dsl/response/__init__.py b/elasticsearch_dsl/response/__init__.py index 51c24ff9..eea1b87f 100644 --- a/elasticsearch_dsl/response/__init__.py +++ b/elasticsearch_dsl/response/__init__.py @@ -40,11 +40,18 @@ from ..search_base import Request, SearchBase from ..update_by_query_base import UpdateByQueryBase -__all__ = ["Response", "AggResponse", "UpdateByQueryResponse", "Hit", "HitMeta"] +__all__ = [ + "Response", + "AggResponse", + "UpdateByQueryResponse", + "Hit", + "HitMeta", + "AggregateResponseType", +] class Response(AttrDict[Any], Generic[_R]): - """An Elasticsearch response. + """An Elasticsearch search response. :arg took: (required) :arg timed_out: (required) @@ -195,21 +202,100 @@ def search_after(self) -> "SearchBase[_R]": return self._search.extra(search_after=self.hits[-1].meta.sort) # type: ignore +AggregateResponseType = Union[ + "types.CardinalityAggregate", + "types.HdrPercentilesAggregate", + "types.HdrPercentileRanksAggregate", + "types.TDigestPercentilesAggregate", + "types.TDigestPercentileRanksAggregate", + "types.PercentilesBucketAggregate", + "types.MedianAbsoluteDeviationAggregate", + "types.MinAggregate", + "types.MaxAggregate", + "types.SumAggregate", + "types.AvgAggregate", + "types.WeightedAvgAggregate", + "types.ValueCountAggregate", + "types.SimpleValueAggregate", + "types.DerivativeAggregate", + "types.BucketMetricValueAggregate", + "types.StatsAggregate", + "types.StatsBucketAggregate", + "types.ExtendedStatsAggregate", + "types.ExtendedStatsBucketAggregate", + "types.GeoBoundsAggregate", + "types.GeoCentroidAggregate", + "types.HistogramAggregate", + "types.DateHistogramAggregate", + "types.AutoDateHistogramAggregate", + "types.VariableWidthHistogramAggregate", + "types.StringTermsAggregate", + "types.LongTermsAggregate", + "types.DoubleTermsAggregate", + "types.UnmappedTermsAggregate", + "types.LongRareTermsAggregate", + "types.StringRareTermsAggregate", + "types.UnmappedRareTermsAggregate", + "types.MultiTermsAggregate", + "types.MissingAggregate", + "types.NestedAggregate", + "types.ReverseNestedAggregate", + "types.GlobalAggregate", + "types.FilterAggregate", + "types.ChildrenAggregate", + "types.ParentAggregate", + "types.SamplerAggregate", + "types.UnmappedSamplerAggregate", + "types.GeoHashGridAggregate", + "types.GeoTileGridAggregate", + "types.GeoHexGridAggregate", + "types.RangeAggregate", + "types.DateRangeAggregate", + "types.GeoDistanceAggregate", + "types.IpRangeAggregate", + "types.IpPrefixAggregate", + "types.FiltersAggregate", + "types.AdjacencyMatrixAggregate", + "types.SignificantLongTermsAggregate", + "types.SignificantStringTermsAggregate", + "types.UnmappedSignificantTermsAggregate", + "types.CompositeAggregate", + "types.FrequentItemSetsAggregate", + "types.TimeSeriesAggregate", + "types.ScriptedMetricAggregate", + "types.TopHitsAggregate", + "types.InferenceAggregate", + "types.StringStatsAggregate", + "types.BoxPlotAggregate", + "types.TopMetricsAggregate", + "types.TTestAggregate", + "types.RateAggregate", + "types.CumulativeCardinalityAggregate", + "types.MatrixStatsAggregate", + "types.GeoLineAggregate", +] + + class AggResponse(AttrDict[Any], Generic[_R]): + """An Elasticsearch aggregation response.""" + _meta: Dict[str, Any] def __init__(self, aggs: "Agg[_R]", search: "Request[_R]", data: Dict[str, Any]): super(AttrDict, self).__setattr__("_meta", {"search": search, "aggs": aggs}) super().__init__(data) - def __getitem__(self, attr_name: str) -> Any: + def __getitem__(self, attr_name: str) -> AggregateResponseType: if attr_name in self._meta["aggs"]: # don't do self._meta['aggs'][attr_name] to avoid copying agg = self._meta["aggs"].aggs[attr_name] - return agg.result(self._meta["search"], self._d_[attr_name]) - return super().__getitem__(attr_name) + return cast( + AggregateResponseType, + agg.result(self._meta["search"], self._d_[attr_name]), + ) + return super().__getitem__(attr_name) # type: ignore - def __iter__(self) -> Iterator["Agg"]: # type: ignore[override] + def __iter__(self) -> Iterator[AggregateResponseType]: # type: ignore[override] for name in self._meta["aggs"]: yield self[name] diff --git a/elasticsearch_dsl/types.py b/elasticsearch_dsl/types.py index 64918ce3..a08c4c7f 100644 --- a/elasticsearch_dsl/types.py +++ b/elasticsearch_dsl/types.py @@ -26,10 +26,6 @@ PipeSeparatedFlags = str -class Aggregation(AttrDict[Any]): - pass - - class AggregationRange(AttrDict[Any]): """ :arg from: Start of the range (inclusive). @@ -147,27 +143,6 @@ def __init__( super().__init__(kwargs) -class BucketPathAggregation(Aggregation): - """ - :arg buckets_path: Path to the buckets that contain one set of values - to correlate. - """ - - buckets_path: Union[str, Sequence[str], Mapping[str, str], DefaultType] - - def __init__( - self, - *, - buckets_path: Union[ - str, Sequence[str], Mapping[str, str], DefaultType - ] = DEFAULT, - **kwargs: Any, - ): - if buckets_path is not DEFAULT: - kwargs["buckets_path"] = buckets_path - super().__init__(**kwargs) - - class ChiSquareHeuristic(AttrDict[Any]): """ :arg background_is_superset: (required) Set to `false` if you defined @@ -241,34 +216,7 @@ def __init__( super().__init__(kwargs) -class QueryBase(AttrDict[Any]): - """ - :arg boost: Floating point number used to decrease or increase the - relevance scores of the query. Boost values are relative to the - default value of 1.0. A boost value between 0 and 1.0 decreases - the relevance score. A value greater than 1.0 increases the - relevance score. Defaults to `1` if omitted. - :arg _name: - """ - - boost: Union[float, DefaultType] - _name: Union[str, DefaultType] - - def __init__( - self, - *, - boost: Union[float, DefaultType] = DEFAULT, - _name: Union[str, DefaultType] = DEFAULT, - **kwargs: Any, - ): - if boost is not DEFAULT: - kwargs["boost"] = boost - if _name is not DEFAULT: - kwargs["_name"] = _name - super().__init__(kwargs) - - -class CommonTermsQuery(QueryBase): +class CommonTermsQuery(AttrDict[Any]): """ :arg query: (required) :arg analyzer: @@ -322,7 +270,7 @@ def __init__( kwargs["boost"] = boost if _name is not DEFAULT: kwargs["_name"] = _name - super().__init__(**kwargs) + super().__init__(kwargs) class CoordsGeoBounds(AttrDict[Any]): @@ -415,7 +363,12 @@ def __init__( class EmptyObject(AttrDict[Any]): - pass + """ + For empty Class assignments + """ + + def __init__(self, **kwargs: Any): + super().__init__(kwargs) class EwmaModelSettings(AttrDict[Any]): @@ -450,6 +403,9 @@ def __init__(self, *, max: Any = DEFAULT, min: Any = DEFAULT, **kwargs: Any): class FieldAndFormat(AttrDict[Any]): """ + A reference to a field with formatting instructions on how to return + the value + :arg field: (required) Wildcard pattern. The request returns values for field names matching this pattern. :arg format: Format in which the values are returned. @@ -800,7 +756,7 @@ def __init__( super().__init__(kwargs) -class FuzzyQuery(QueryBase): +class FuzzyQuery(AttrDict[Any]): """ :arg value: (required) Term you wish to find in the provided field. :arg max_expansions: Maximum number of variations created. Defaults to @@ -859,7 +815,7 @@ def __init__( kwargs["boost"] = boost if _name is not DEFAULT: kwargs["_name"] = _name - super().__init__(**kwargs) + super().__init__(kwargs) class GeoDistanceSort(AttrDict[Any]): @@ -1084,171 +1040,7 @@ def __init__( super().__init__(kwargs) -class HighlightBase(AttrDict[Any]): - """ - :arg type: - :arg boundary_chars: A string that contains each boundary character. - Defaults to `.,!? \t\n` if omitted. - :arg boundary_max_scan: How far to scan for boundary characters. - Defaults to `20` if omitted. - :arg boundary_scanner: Specifies how to break the highlighted - fragments: chars, sentence, or word. Only valid for the unified - and fvh highlighters. Defaults to `sentence` for the `unified` - highlighter. Defaults to `chars` for the `fvh` highlighter. - :arg boundary_scanner_locale: Controls which locale is used to search - for sentence and word boundaries. This parameter takes a form of a - language tag, for example: `"en-US"`, `"fr-FR"`, `"ja-JP"`. - Defaults to `Locale.ROOT` if omitted. - :arg force_source: - :arg fragmenter: Specifies how text should be broken up in highlight - snippets: `simple` or `span`. Only valid for the `plain` - highlighter. Defaults to `span` if omitted. - :arg fragment_size: The size of the highlighted fragment in - characters. Defaults to `100` if omitted. - :arg highlight_filter: - :arg highlight_query: Highlight matches for a query other than the - search query. This is especially useful if you use a rescore query - because those are not taken into account by highlighting by - default. - :arg max_fragment_length: - :arg max_analyzed_offset: If set to a non-negative value, highlighting - stops at this defined maximum limit. The rest of the text is not - processed, thus not highlighted and no error is returned The - `max_analyzed_offset` query setting does not override the - `index.highlight.max_analyzed_offset` setting, which prevails when - it’s set to lower value than the query setting. - :arg no_match_size: The amount of text you want to return from the - beginning of the field if there are no matching fragments to - highlight. - :arg number_of_fragments: The maximum number of fragments to return. - If the number of fragments is set to `0`, no fragments are - returned. Instead, the entire field contents are highlighted and - returned. This can be handy when you need to highlight short texts - such as a title or address, but fragmentation is not required. If - `number_of_fragments` is `0`, `fragment_size` is ignored. Defaults - to `5` if omitted. - :arg options: - :arg order: Sorts highlighted fragments by score when set to `score`. - By default, fragments will be output in the order they appear in - the field (order: `none`). Setting this option to `score` will - output the most relevant fragments first. Each highlighter applies - its own logic to compute relevancy scores. Defaults to `none` if - omitted. - :arg phrase_limit: Controls the number of matching phrases in a - document that are considered. Prevents the `fvh` highlighter from - analyzing too many phrases and consuming too much memory. When - using `matched_fields`, `phrase_limit` phrases per matched field - are considered. Raising the limit increases query time and - consumes more memory. Only supported by the `fvh` highlighter. - Defaults to `256` if omitted. - :arg post_tags: Use in conjunction with `pre_tags` to define the HTML - tags to use for the highlighted text. By default, highlighted text - is wrapped in `` and `` tags. - :arg pre_tags: Use in conjunction with `post_tags` to define the HTML - tags to use for the highlighted text. By default, highlighted text - is wrapped in `` and `` tags. - :arg require_field_match: By default, only fields that contains a - query match are highlighted. Set to `false` to highlight all - fields. Defaults to `True` if omitted. - :arg tags_schema: Set to `styled` to use the built-in tag schema. - """ - - type: Union[Literal["plain", "fvh", "unified"], DefaultType] - boundary_chars: Union[str, DefaultType] - boundary_max_scan: Union[int, DefaultType] - boundary_scanner: Union[Literal["chars", "sentence", "word"], DefaultType] - boundary_scanner_locale: Union[str, DefaultType] - force_source: Union[bool, DefaultType] - fragmenter: Union[Literal["simple", "span"], DefaultType] - fragment_size: Union[int, DefaultType] - highlight_filter: Union[bool, DefaultType] - highlight_query: Union[Query, DefaultType] - max_fragment_length: Union[int, DefaultType] - max_analyzed_offset: Union[int, DefaultType] - no_match_size: Union[int, DefaultType] - number_of_fragments: Union[int, DefaultType] - options: Union[Mapping[str, Any], DefaultType] - order: Union[Literal["score"], DefaultType] - phrase_limit: Union[int, DefaultType] - post_tags: Union[Sequence[str], DefaultType] - pre_tags: Union[Sequence[str], DefaultType] - require_field_match: Union[bool, DefaultType] - tags_schema: Union[Literal["styled"], DefaultType] - - def __init__( - self, - *, - type: Union[Literal["plain", "fvh", "unified"], DefaultType] = DEFAULT, - boundary_chars: Union[str, DefaultType] = DEFAULT, - boundary_max_scan: Union[int, DefaultType] = DEFAULT, - boundary_scanner: Union[ - Literal["chars", "sentence", "word"], DefaultType - ] = DEFAULT, - boundary_scanner_locale: Union[str, DefaultType] = DEFAULT, - force_source: Union[bool, DefaultType] = DEFAULT, - fragmenter: Union[Literal["simple", "span"], DefaultType] = DEFAULT, - fragment_size: Union[int, DefaultType] = DEFAULT, - highlight_filter: Union[bool, DefaultType] = DEFAULT, - highlight_query: Union[Query, DefaultType] = DEFAULT, - max_fragment_length: Union[int, DefaultType] = DEFAULT, - max_analyzed_offset: Union[int, DefaultType] = DEFAULT, - no_match_size: Union[int, DefaultType] = DEFAULT, - number_of_fragments: Union[int, DefaultType] = DEFAULT, - options: Union[Mapping[str, Any], DefaultType] = DEFAULT, - order: Union[Literal["score"], DefaultType] = DEFAULT, - phrase_limit: Union[int, DefaultType] = DEFAULT, - post_tags: Union[Sequence[str], DefaultType] = DEFAULT, - pre_tags: Union[Sequence[str], DefaultType] = DEFAULT, - require_field_match: Union[bool, DefaultType] = DEFAULT, - tags_schema: Union[Literal["styled"], DefaultType] = DEFAULT, - **kwargs: Any, - ): - if type is not DEFAULT: - kwargs["type"] = type - if boundary_chars is not DEFAULT: - kwargs["boundary_chars"] = boundary_chars - if boundary_max_scan is not DEFAULT: - kwargs["boundary_max_scan"] = boundary_max_scan - if boundary_scanner is not DEFAULT: - kwargs["boundary_scanner"] = boundary_scanner - if boundary_scanner_locale is not DEFAULT: - kwargs["boundary_scanner_locale"] = boundary_scanner_locale - if force_source is not DEFAULT: - kwargs["force_source"] = force_source - if fragmenter is not DEFAULT: - kwargs["fragmenter"] = fragmenter - if fragment_size is not DEFAULT: - kwargs["fragment_size"] = fragment_size - if highlight_filter is not DEFAULT: - kwargs["highlight_filter"] = highlight_filter - if highlight_query is not DEFAULT: - kwargs["highlight_query"] = highlight_query - if max_fragment_length is not DEFAULT: - kwargs["max_fragment_length"] = max_fragment_length - if max_analyzed_offset is not DEFAULT: - kwargs["max_analyzed_offset"] = max_analyzed_offset - if no_match_size is not DEFAULT: - kwargs["no_match_size"] = no_match_size - if number_of_fragments is not DEFAULT: - kwargs["number_of_fragments"] = number_of_fragments - if options is not DEFAULT: - kwargs["options"] = options - if order is not DEFAULT: - kwargs["order"] = order - if phrase_limit is not DEFAULT: - kwargs["phrase_limit"] = phrase_limit - if post_tags is not DEFAULT: - kwargs["post_tags"] = post_tags - if pre_tags is not DEFAULT: - kwargs["pre_tags"] = pre_tags - if require_field_match is not DEFAULT: - kwargs["require_field_match"] = require_field_match - if tags_schema is not DEFAULT: - kwargs["tags_schema"] = tags_schema - super().__init__(kwargs) - - -class Highlight(HighlightBase): +class Highlight(AttrDict[Any]): """ :arg fields: (required) :arg encoder: @@ -1427,10 +1219,10 @@ def __init__( kwargs["require_field_match"] = require_field_match if tags_schema is not DEFAULT: kwargs["tags_schema"] = tags_schema - super().__init__(**kwargs) + super().__init__(kwargs) -class HighlightField(HighlightBase): +class HighlightField(AttrDict[Any]): """ :arg fragment_offset: :arg matched_fields: @@ -1614,7 +1406,7 @@ def __init__( kwargs["require_field_match"] = require_field_match if tags_schema is not DEFAULT: kwargs["tags_schema"] = tags_schema - super().__init__(**kwargs) + super().__init__(kwargs) class HoltLinearModelSettings(AttrDict[Any]): @@ -2164,7 +1956,7 @@ def __init__( super().__init__(kwargs) -class IntervalsQuery(QueryBase): +class IntervalsQuery(AttrDict[Any]): """ :arg all_of: Returns matches that span a combination of other rules. :arg any_of: Returns intervals produced by any of its sub-rules. @@ -2220,7 +2012,7 @@ def __init__( kwargs["boost"] = boost if _name is not DEFAULT: kwargs["_name"] = _name - super().__init__(**kwargs) + super().__init__(kwargs) class IntervalsWildcard(AttrDict[Any]): @@ -2365,7 +2157,7 @@ def __init__( super().__init__(kwargs) -class MatchBoolPrefixQuery(QueryBase): +class MatchBoolPrefixQuery(AttrDict[Any]): """ :arg query: (required) Terms you wish to find in the provided field. The last term is used in a prefix query. @@ -2451,10 +2243,10 @@ def __init__( kwargs["boost"] = boost if _name is not DEFAULT: kwargs["_name"] = _name - super().__init__(**kwargs) + super().__init__(kwargs) -class MatchPhrasePrefixQuery(QueryBase): +class MatchPhrasePrefixQuery(AttrDict[Any]): """ :arg query: (required) Text you wish to find in the provided field. :arg analyzer: Analyzer used to convert text in the query value into @@ -2509,10 +2301,10 @@ def __init__( kwargs["boost"] = boost if _name is not DEFAULT: kwargs["_name"] = _name - super().__init__(**kwargs) + super().__init__(kwargs) -class MatchPhraseQuery(QueryBase): +class MatchPhraseQuery(AttrDict[Any]): """ :arg query: (required) Query terms that are analyzed and turned into a phrase query. @@ -2561,10 +2353,10 @@ def __init__( kwargs["boost"] = boost if _name is not DEFAULT: kwargs["_name"] = _name - super().__init__(**kwargs) + super().__init__(kwargs) -class MatchQuery(QueryBase): +class MatchQuery(AttrDict[Any]): """ :arg query: (required) Text, number, boolean value or date you wish to find in the provided field. @@ -2668,94 +2460,7 @@ def __init__( kwargs["boost"] = boost if _name is not DEFAULT: kwargs["_name"] = _name - super().__init__(**kwargs) - - -class PipelineAggregationBase(BucketPathAggregation): - """ - :arg format: `DecimalFormat` pattern for the output value. If - specified, the formatted value is returned in the aggregation’s - `value_as_string` property. - :arg gap_policy: Policy to apply when gaps are found in the data. - Defaults to `skip` if omitted. - :arg buckets_path: Path to the buckets that contain one set of values - to correlate. - """ - - format: Union[str, DefaultType] - gap_policy: Union[Literal["skip", "insert_zeros", "keep_values"], DefaultType] - buckets_path: Union[str, Sequence[str], Mapping[str, str], DefaultType] - - def __init__( - self, - *, - format: Union[str, DefaultType] = DEFAULT, - gap_policy: Union[ - Literal["skip", "insert_zeros", "keep_values"], DefaultType - ] = DEFAULT, - buckets_path: Union[ - str, Sequence[str], Mapping[str, str], DefaultType - ] = DEFAULT, - **kwargs: Any, - ): - if format is not DEFAULT: - kwargs["format"] = format - if gap_policy is not DEFAULT: - kwargs["gap_policy"] = gap_policy - if buckets_path is not DEFAULT: - kwargs["buckets_path"] = buckets_path - super().__init__(**kwargs) - - -class MovingAverageAggregationBase(PipelineAggregationBase): - """ - :arg minimize: - :arg predict: - :arg window: - :arg format: `DecimalFormat` pattern for the output value. If - specified, the formatted value is returned in the aggregation’s - `value_as_string` property. - :arg gap_policy: Policy to apply when gaps are found in the data. - Defaults to `skip` if omitted. - :arg buckets_path: Path to the buckets that contain one set of values - to correlate. - """ - - minimize: Union[bool, DefaultType] - predict: Union[int, DefaultType] - window: Union[int, DefaultType] - format: Union[str, DefaultType] - gap_policy: Union[Literal["skip", "insert_zeros", "keep_values"], DefaultType] - buckets_path: Union[str, Sequence[str], Mapping[str, str], DefaultType] - - def __init__( - self, - *, - minimize: Union[bool, DefaultType] = DEFAULT, - predict: Union[int, DefaultType] = DEFAULT, - window: Union[int, DefaultType] = DEFAULT, - format: Union[str, DefaultType] = DEFAULT, - gap_policy: Union[ - Literal["skip", "insert_zeros", "keep_values"], DefaultType - ] = DEFAULT, - buckets_path: Union[ - str, Sequence[str], Mapping[str, str], DefaultType - ] = DEFAULT, - **kwargs: Any, - ): - if minimize is not DEFAULT: - kwargs["minimize"] = minimize - if predict is not DEFAULT: - kwargs["predict"] = predict - if window is not DEFAULT: - kwargs["window"] = window - if format is not DEFAULT: - kwargs["format"] = format - if gap_policy is not DEFAULT: - kwargs["gap_policy"] = gap_policy - if buckets_path is not DEFAULT: - kwargs["buckets_path"] = buckets_path - super().__init__(**kwargs) + super().__init__(kwargs) class MultiTermLookup(AttrDict[Any]): @@ -2869,7 +2574,7 @@ def __init__( super().__init__(kwargs) -class PrefixQuery(QueryBase): +class PrefixQuery(AttrDict[Any]): """ :arg value: (required) Beginning characters of terms you wish to find in the provided field. @@ -2912,7 +2617,7 @@ def __init__( kwargs["boost"] = boost if _name is not DEFAULT: kwargs["_name"] = _name - super().__init__(**kwargs) + super().__init__(kwargs) class QueryVectorBuilder(AttrDict[Any]): @@ -2933,15 +2638,11 @@ def __init__( super().__init__(kwargs) -class RankFeatureFunction(AttrDict[Any]): - pass - - -class RankFeatureFunctionLinear(RankFeatureFunction): +class RankFeatureFunctionLinear(AttrDict[Any]): pass -class RankFeatureFunctionLogarithm(RankFeatureFunction): +class RankFeatureFunctionLogarithm(AttrDict[Any]): """ :arg scaling_factor: (required) Configurable scaling factor. """ @@ -2953,10 +2654,10 @@ def __init__( ): if scaling_factor is not DEFAULT: kwargs["scaling_factor"] = scaling_factor - super().__init__(**kwargs) + super().__init__(kwargs) -class RankFeatureFunctionSaturation(RankFeatureFunction): +class RankFeatureFunctionSaturation(AttrDict[Any]): """ :arg pivot: Configurable pivot value so that the result will be less than 0.5. @@ -2967,10 +2668,10 @@ class RankFeatureFunctionSaturation(RankFeatureFunction): def __init__(self, *, pivot: Union[float, DefaultType] = DEFAULT, **kwargs: Any): if pivot is not DEFAULT: kwargs["pivot"] = pivot - super().__init__(**kwargs) + super().__init__(kwargs) -class RankFeatureFunctionSigmoid(RankFeatureFunction): +class RankFeatureFunctionSigmoid(AttrDict[Any]): """ :arg pivot: (required) Configurable pivot value so that the result will be less than 0.5. @@ -2991,10 +2692,10 @@ def __init__( kwargs["pivot"] = pivot if exponent is not DEFAULT: kwargs["exponent"] = exponent - super().__init__(**kwargs) + super().__init__(kwargs) -class RegexpQuery(QueryBase): +class RegexpQuery(AttrDict[Any]): """ :arg value: (required) Regular expression for terms you wish to find in the provided field. @@ -3048,7 +2749,7 @@ def __init__( kwargs["boost"] = boost if _name is not DEFAULT: kwargs["_name"] = _name - super().__init__(**kwargs) + super().__init__(kwargs) class RegressionInferenceOptions(AttrDict[Any]): @@ -3334,7 +3035,7 @@ def __init__( super().__init__(kwargs) -class SpanContainingQuery(QueryBase): +class SpanContainingQuery(AttrDict[Any]): """ :arg big: (required) Can be any span query. Matching spans from `big` that contain matches from `little` are returned. @@ -3370,10 +3071,10 @@ def __init__( kwargs["boost"] = boost if _name is not DEFAULT: kwargs["_name"] = _name - super().__init__(**kwargs) + super().__init__(kwargs) -class SpanFieldMaskingQuery(QueryBase): +class SpanFieldMaskingQuery(AttrDict[Any]): """ :arg field: (required) :arg query: (required) @@ -3407,10 +3108,10 @@ def __init__( kwargs["boost"] = boost if _name is not DEFAULT: kwargs["_name"] = _name - super().__init__(**kwargs) + super().__init__(kwargs) -class SpanFirstQuery(QueryBase): +class SpanFirstQuery(AttrDict[Any]): """ :arg end: (required) Controls the maximum end position permitted in a match. @@ -3445,10 +3146,10 @@ def __init__( kwargs["boost"] = boost if _name is not DEFAULT: kwargs["_name"] = _name - super().__init__(**kwargs) + super().__init__(kwargs) -class SpanMultiTermQuery(QueryBase): +class SpanMultiTermQuery(AttrDict[Any]): """ :arg match: (required) Should be a multi term query (one of `wildcard`, `fuzzy`, `prefix`, `range`, or `regexp` query). @@ -3478,10 +3179,10 @@ def __init__( kwargs["boost"] = boost if _name is not DEFAULT: kwargs["_name"] = _name - super().__init__(**kwargs) + super().__init__(kwargs) -class SpanNearQuery(QueryBase): +class SpanNearQuery(AttrDict[Any]): """ :arg clauses: (required) Array of one or more other span type queries. :arg in_order: Controls whether matches are required to be in-order. @@ -3523,10 +3224,10 @@ def __init__( kwargs["boost"] = boost if _name is not DEFAULT: kwargs["_name"] = _name - super().__init__(**kwargs) + super().__init__(kwargs) -class SpanNotQuery(QueryBase): +class SpanNotQuery(AttrDict[Any]): """ :arg exclude: (required) Span query whose matches must not overlap those returned. @@ -3580,10 +3281,10 @@ def __init__( kwargs["boost"] = boost if _name is not DEFAULT: kwargs["_name"] = _name - super().__init__(**kwargs) + super().__init__(kwargs) -class SpanOrQuery(QueryBase): +class SpanOrQuery(AttrDict[Any]): """ :arg clauses: (required) Array of one or more other span type queries. :arg boost: Floating point number used to decrease or increase the @@ -3614,7 +3315,7 @@ def __init__( kwargs["boost"] = boost if _name is not DEFAULT: kwargs["_name"] = _name - super().__init__(**kwargs) + super().__init__(kwargs) class SpanQuery(AttrDict[Any]): @@ -3705,7 +3406,7 @@ def __init__( super().__init__(kwargs) -class SpanTermQuery(QueryBase): +class SpanTermQuery(AttrDict[Any]): """ :arg value: (required) :arg boost: Floating point number used to decrease or increase the @@ -3734,10 +3435,10 @@ def __init__( kwargs["boost"] = boost if _name is not DEFAULT: kwargs["_name"] = _name - super().__init__(**kwargs) + super().__init__(kwargs) -class SpanWithinQuery(QueryBase): +class SpanWithinQuery(AttrDict[Any]): """ :arg big: (required) Can be any span query. Matching spans from `little` that are enclosed within `big` are returned. @@ -3773,7 +3474,7 @@ def __init__( kwargs["boost"] = boost if _name is not DEFAULT: kwargs["_name"] = _name - super().__init__(**kwargs) + super().__init__(kwargs) class TDigest(AttrDict[Any]): @@ -3793,7 +3494,7 @@ def __init__( super().__init__(kwargs) -class TermQuery(QueryBase): +class TermQuery(AttrDict[Any]): """ :arg value: (required) Term you wish to find in the provided field. :arg case_insensitive: Allows ASCII case insensitive matching of the @@ -3830,7 +3531,7 @@ def __init__( kwargs["boost"] = boost if _name is not DEFAULT: kwargs["_name"] = _name - super().__init__(**kwargs) + super().__init__(kwargs) class TermsLookup(AttrDict[Any]): @@ -3889,7 +3590,7 @@ def __init__( super().__init__(kwargs) -class TermsSetQuery(QueryBase): +class TermsSetQuery(AttrDict[Any]): """ :arg terms: (required) Array of terms you wish to find in the provided field. @@ -3941,7 +3642,7 @@ def __init__( kwargs["boost"] = boost if _name is not DEFAULT: kwargs["_name"] = _name - super().__init__(**kwargs) + super().__init__(kwargs) class TestPopulation(AttrDict[Any]): @@ -3996,7 +3697,7 @@ def __init__( super().__init__(kwargs) -class TextExpansionQuery(QueryBase): +class TextExpansionQuery(AttrDict[Any]): """ :arg model_id: (required) The text expansion NLP model to use :arg model_text: (required) The query text @@ -4037,7 +3738,7 @@ def __init__( kwargs["boost"] = boost if _name is not DEFAULT: kwargs["_name"] = _name - super().__init__(**kwargs) + super().__init__(kwargs) class TokenPruningConfig(AttrDict[Any]): @@ -4222,7 +3923,7 @@ def __init__( super().__init__(kwargs) -class WeightedTokensQuery(QueryBase): +class WeightedTokensQuery(AttrDict[Any]): """ :arg tokens: (required) The tokens representing this query :arg pruning_config: Token pruning configurations @@ -4258,10 +3959,10 @@ def __init__( kwargs["boost"] = boost if _name is not DEFAULT: kwargs["_name"] = _name - super().__init__(**kwargs) + super().__init__(kwargs) -class WildcardQuery(QueryBase): +class WildcardQuery(AttrDict[Any]): """ :arg case_insensitive: Allows case insensitive matching of the pattern with the indexed field values when set to true. Default is false @@ -4310,7 +4011,7 @@ def __init__( kwargs["boost"] = boost if _name is not DEFAULT: kwargs["_name"] = _name - super().__init__(**kwargs) + super().__init__(kwargs) class WktGeoBounds(AttrDict[Any]): @@ -4326,6 +4027,30 @@ def __init__(self, *, wkt: Union[str, DefaultType] = DEFAULT, **kwargs: Any): super().__init__(kwargs) +class AdjacencyMatrixAggregate(AttrDict[Any]): + """ + :arg buckets: (required) the aggregation buckets as a list + :arg meta: + """ + + buckets: Sequence["AdjacencyMatrixBucket"] + meta: Mapping[str, Any] + + @property + def buckets_as_dict(self) -> Mapping[str, "AdjacencyMatrixBucket"]: + return self.buckets # type: ignore + + +class AdjacencyMatrixBucket(AttrDict[Any]): + """ + :arg key: (required) + :arg doc_count: (required) + """ + + key: str + doc_count: int + + class AggregationBreakdown(AttrDict[Any]): """ :arg build_aggregation: (required) @@ -4458,6 +4183,100 @@ class AggregationProfileDelegateDebugFilter(AttrDict[Any]): segments_counted_in_constant_time: int +class ArrayPercentilesItem(AttrDict[Any]): + """ + :arg key: (required) + :arg value: (required) + :arg value_as_string: + """ + + key: str + value: Union[float, None] + value_as_string: str + + +class AutoDateHistogramAggregate(AttrDict[Any]): + """ + :arg interval: (required) + :arg buckets: (required) the aggregation buckets as a list + :arg meta: + """ + + interval: str + buckets: Sequence["DateHistogramBucket"] + meta: Mapping[str, Any] + + @property + def buckets_as_dict(self) -> Mapping[str, "DateHistogramBucket"]: + return self.buckets # type: ignore + + +class AvgAggregate(AttrDict[Any]): + """ + :arg value: (required) The metric value. A missing value generally + means that there was no data to aggregate, unless specified + otherwise. + :arg value_as_string: + :arg meta: + """ + + value: Union[float, None] + value_as_string: str + meta: Mapping[str, Any] + + +class BoxPlotAggregate(AttrDict[Any]): + """ + :arg min: (required) + :arg max: (required) + :arg q1: (required) + :arg q2: (required) + :arg q3: (required) + :arg lower: (required) + :arg upper: (required) + :arg min_as_string: + :arg max_as_string: + :arg q1_as_string: + :arg q2_as_string: + :arg q3_as_string: + :arg lower_as_string: + :arg upper_as_string: + :arg meta: + """ + + min: float + max: float + q1: float + q2: float + q3: float + lower: float + upper: float + min_as_string: str + max_as_string: str + q1_as_string: str + q2_as_string: str + q3_as_string: str + lower_as_string: str + upper_as_string: str + meta: Mapping[str, Any] + + +class BucketMetricValueAggregate(AttrDict[Any]): + """ + :arg keys: (required) + :arg value: (required) The metric value. A missing value generally + means that there was no data to aggregate, unless specified + otherwise. + :arg value_as_string: + :arg meta: + """ + + keys: Sequence[str] # type: ignore[assignment] + value: Union[float, None] + value_as_string: str + meta: Mapping[str, Any] + + class BulkIndexByScrollFailure(AttrDict[Any]): """ :arg cause: (required) @@ -4474,6 +4293,26 @@ class BulkIndexByScrollFailure(AttrDict[Any]): type: str +class CardinalityAggregate(AttrDict[Any]): + """ + :arg value: (required) + :arg meta: + """ + + value: int + meta: Mapping[str, Any] + + +class ChildrenAggregate(AttrDict[Any]): + """ + :arg doc_count: (required) + :arg meta: + """ + + doc_count: int + meta: Mapping[str, Any] + + class ClusterDetails(AttrDict[Any]): """ :arg status: (required) @@ -4526,19 +4365,7 @@ class Collector(AttrDict[Any]): children: Sequence["Collector"] -class SuggestBase(AttrDict[Any]): - """ - :arg length: (required) - :arg offset: (required) - :arg text: (required) - """ - - length: int - offset: int - text: str - - -class CompletionSuggest(SuggestBase): +class CompletionSuggest(AttrDict[Any]): """ :arg options: (required) :arg length: (required) @@ -4585,6 +4412,108 @@ class CompletionSuggestOption(AttrDict[Any]): score: float +class CompositeAggregate(AttrDict[Any]): + """ + :arg after_key: + :arg buckets: (required) the aggregation buckets as a list + :arg meta: + """ + + after_key: Mapping[str, Union[int, float, str, bool, None, Any]] + buckets: Sequence["CompositeBucket"] + meta: Mapping[str, Any] + + @property + def buckets_as_dict(self) -> Mapping[str, "CompositeBucket"]: + return self.buckets # type: ignore + + +class CompositeBucket(AttrDict[Any]): + """ + :arg key: (required) + :arg doc_count: (required) + """ + + key: Mapping[str, Union[int, float, str, bool, None, Any]] + doc_count: int + + +class CumulativeCardinalityAggregate(AttrDict[Any]): + """ + Result of the `cumulative_cardinality` aggregation + + :arg value: (required) + :arg value_as_string: + :arg meta: + """ + + value: int + value_as_string: str + meta: Mapping[str, Any] + + +class DateHistogramAggregate(AttrDict[Any]): + """ + :arg buckets: (required) the aggregation buckets as a list + :arg meta: + """ + + buckets: Sequence["DateHistogramBucket"] + meta: Mapping[str, Any] + + @property + def buckets_as_dict(self) -> Mapping[str, "DateHistogramBucket"]: + return self.buckets # type: ignore + + +class DateHistogramBucket(AttrDict[Any]): + """ + :arg key: (required) + :arg doc_count: (required) + :arg key_as_string: + """ + + key: Any + doc_count: int + key_as_string: str + + +class DateRangeAggregate(AttrDict[Any]): + """ + Result of a `date_range` aggregation. Same format as a for a `range` + aggregation: `from` and `to` in `buckets` are milliseconds since the + Epoch, represented as a floating point number. + + :arg buckets: (required) the aggregation buckets as a list + :arg meta: + """ + + buckets: Sequence["RangeBucket"] + meta: Mapping[str, Any] + + @property + def buckets_as_dict(self) -> Mapping[str, "RangeBucket"]: + return self.buckets # type: ignore + + +class DerivativeAggregate(AttrDict[Any]): + """ + :arg value: (required) The metric value. A missing value generally + means that there was no data to aggregate, unless specified + otherwise. + :arg normalized_value: + :arg normalized_value_as_string: + :arg value_as_string: + :arg meta: + """ + + value: Union[float, None] + normalized_value: float + normalized_value_as_string: str + value_as_string: str + meta: Mapping[str, Any] + + class DfsKnnProfile(AttrDict[Any]): """ :arg query: (required) @@ -4651,8 +4580,47 @@ class DfsStatisticsProfile(AttrDict[Any]): children: Sequence["DfsStatisticsProfile"] +class DoubleTermsAggregate(AttrDict[Any]): + """ + Result of a `terms` aggregation when the field is some kind of decimal + number like a float, double, or distance. + + :arg doc_count_error_upper_bound: + :arg sum_other_doc_count: + :arg buckets: (required) the aggregation buckets as a list + :arg meta: + """ + + doc_count_error_upper_bound: int + sum_other_doc_count: int + buckets: Sequence["DoubleTermsBucket"] + meta: Mapping[str, Any] + + @property + def buckets_as_dict(self) -> Mapping[str, "DoubleTermsBucket"]: + return self.buckets # type: ignore + + +class DoubleTermsBucket(AttrDict[Any]): + """ + :arg key: (required) + :arg doc_count: (required) + :arg key_as_string: + :arg doc_count_error_upper_bound: + """ + + key: float + doc_count: int + key_as_string: str + doc_count_error_upper_bound: int + + class ErrorCause(AttrDict[Any]): """ + Cause and details about a request failure. This class defines the + properties common to all error types. Additional details are also + provided, that depend on the error type. + :arg type: (required) The type of error :arg reason: A human-readable explanation of the error, in english :arg stack_trace: The server stack trace. Present only if the @@ -4670,6 +4638,138 @@ class ErrorCause(AttrDict[Any]): suppressed: Sequence["ErrorCause"] +class Explanation(AttrDict[Any]): + """ + :arg description: (required) + :arg details: (required) + :arg value: (required) + """ + + description: str + details: Sequence["ExplanationDetail"] + value: float + + +class ExplanationDetail(AttrDict[Any]): + """ + :arg description: (required) + :arg value: (required) + :arg details: + """ + + description: str + value: float + details: Sequence["ExplanationDetail"] + + +class ExtendedStatsAggregate(AttrDict[Any]): + """ + :arg sum_of_squares: (required) + :arg variance: (required) + :arg variance_population: (required) + :arg variance_sampling: (required) + :arg std_deviation: (required) + :arg std_deviation_population: (required) + :arg std_deviation_sampling: (required) + :arg count: (required) + :arg min: (required) + :arg max: (required) + :arg avg: (required) + :arg sum: (required) + :arg std_deviation_bounds: + :arg sum_of_squares_as_string: + :arg variance_as_string: + :arg variance_population_as_string: + :arg variance_sampling_as_string: + :arg std_deviation_as_string: + :arg std_deviation_bounds_as_string: + :arg min_as_string: + :arg max_as_string: + :arg avg_as_string: + :arg sum_as_string: + :arg meta: + """ + + sum_of_squares: Union[float, None] + variance: Union[float, None] + variance_population: Union[float, None] + variance_sampling: Union[float, None] + std_deviation: Union[float, None] + std_deviation_population: Union[float, None] + std_deviation_sampling: Union[float, None] + count: int + min: Union[float, None] + max: Union[float, None] + avg: Union[float, None] + sum: float + std_deviation_bounds: "StandardDeviationBounds" + sum_of_squares_as_string: str + variance_as_string: str + variance_population_as_string: str + variance_sampling_as_string: str + std_deviation_as_string: str + std_deviation_bounds_as_string: "StandardDeviationBoundsAsString" + min_as_string: str + max_as_string: str + avg_as_string: str + sum_as_string: str + meta: Mapping[str, Any] + + +class ExtendedStatsBucketAggregate(AttrDict[Any]): + """ + :arg sum_of_squares: (required) + :arg variance: (required) + :arg variance_population: (required) + :arg variance_sampling: (required) + :arg std_deviation: (required) + :arg std_deviation_population: (required) + :arg std_deviation_sampling: (required) + :arg count: (required) + :arg min: (required) + :arg max: (required) + :arg avg: (required) + :arg sum: (required) + :arg std_deviation_bounds: + :arg sum_of_squares_as_string: + :arg variance_as_string: + :arg variance_population_as_string: + :arg variance_sampling_as_string: + :arg std_deviation_as_string: + :arg std_deviation_bounds_as_string: + :arg min_as_string: + :arg max_as_string: + :arg avg_as_string: + :arg sum_as_string: + :arg meta: + """ + + sum_of_squares: Union[float, None] + variance: Union[float, None] + variance_population: Union[float, None] + variance_sampling: Union[float, None] + std_deviation: Union[float, None] + std_deviation_population: Union[float, None] + std_deviation_sampling: Union[float, None] + count: int + min: Union[float, None] + max: Union[float, None] + avg: Union[float, None] + sum: float + std_deviation_bounds: "StandardDeviationBounds" + sum_of_squares_as_string: str + variance_as_string: str + variance_population_as_string: str + variance_sampling_as_string: str + std_deviation_as_string: str + std_deviation_bounds_as_string: "StandardDeviationBoundsAsString" + min_as_string: str + max_as_string: str + avg_as_string: str + sum_as_string: str + meta: Mapping[str, Any] + + class FetchProfile(AttrDict[Any]): """ :arg type: (required) @@ -4720,146 +4820,803 @@ class FetchProfileDebug(AttrDict[Any]): fast_path: int -class KnnCollectorResult(AttrDict[Any]): +class FilterAggregate(AttrDict[Any]): """ - :arg name: (required) - :arg reason: (required) - :arg time_in_nanos: (required) - :arg time: - :arg children: + :arg doc_count: (required) + :arg meta: """ - name: str - reason: str - time_in_nanos: Any - time: Any - children: Sequence["KnnCollectorResult"] + doc_count: int + meta: Mapping[str, Any] -class KnnQueryProfileBreakdown(AttrDict[Any]): +class FiltersAggregate(AttrDict[Any]): """ - :arg advance: (required) - :arg advance_count: (required) - :arg build_scorer: (required) - :arg build_scorer_count: (required) - :arg compute_max_score: (required) - :arg compute_max_score_count: (required) - :arg count_weight: (required) - :arg count_weight_count: (required) - :arg create_weight: (required) - :arg create_weight_count: (required) - :arg match: (required) - :arg match_count: (required) - :arg next_doc: (required) - :arg next_doc_count: (required) - :arg score: (required) - :arg score_count: (required) - :arg set_min_competitive_score: (required) - :arg set_min_competitive_score_count: (required) - :arg shallow_advance: (required) - :arg shallow_advance_count: (required) + :arg buckets: (required) the aggregation buckets as a list + :arg meta: """ - advance: int - advance_count: int - build_scorer: int - build_scorer_count: int - compute_max_score: int - compute_max_score_count: int - count_weight: int - count_weight_count: int - create_weight: int - create_weight_count: int - match: int - match_count: int - next_doc: int - next_doc_count: int - score: int - score_count: int - set_min_competitive_score: int - set_min_competitive_score_count: int - shallow_advance: int - shallow_advance_count: int + buckets: Sequence["FiltersBucket"] + meta: Mapping[str, Any] + @property + def buckets_as_dict(self) -> Mapping[str, "FiltersBucket"]: + return self.buckets # type: ignore -class KnnQueryProfileResult(AttrDict[Any]): + +class FiltersBucket(AttrDict[Any]): """ - :arg type: (required) - :arg description: (required) - :arg time_in_nanos: (required) - :arg breakdown: (required) - :arg time: - :arg debug: - :arg children: + :arg doc_count: (required) """ - type: str - description: str - time_in_nanos: Any - breakdown: "KnnQueryProfileBreakdown" - time: Any - debug: Mapping[str, Any] - children: Sequence["KnnQueryProfileResult"] + doc_count: int -class PhraseSuggest(SuggestBase): +class FrequentItemSetsAggregate(AttrDict[Any]): """ - :arg options: (required) - :arg length: (required) - :arg offset: (required) - :arg text: (required) + :arg buckets: (required) the aggregation buckets as a list + :arg meta: """ - options: Sequence["PhraseSuggestOption"] - length: int - offset: int - text: str + buckets: Sequence["FrequentItemSetsBucket"] + meta: Mapping[str, Any] + @property + def buckets_as_dict(self) -> Mapping[str, "FrequentItemSetsBucket"]: + return self.buckets # type: ignore -class PhraseSuggestOption(AttrDict[Any]): + +class FrequentItemSetsBucket(AttrDict[Any]): """ - :arg text: (required) - :arg score: (required) - :arg highlighted: - :arg collate_match: + :arg key: (required) + :arg support: (required) + :arg doc_count: (required) """ - text: str - score: float - highlighted: str - collate_match: bool + key: Mapping[str, Sequence[str]] + support: float + doc_count: int -class Profile(AttrDict[Any]): +class GeoBoundsAggregate(AttrDict[Any]): """ - :arg shards: (required) + :arg bounds: + :arg meta: """ - shards: Sequence["ShardProfile"] + bounds: Union[ + "CoordsGeoBounds", + "TopLeftBottomRightGeoBounds", + "TopRightBottomLeftGeoBounds", + "WktGeoBounds", + ] + meta: Mapping[str, Any] -class QueryBreakdown(AttrDict[Any]): +class GeoCentroidAggregate(AttrDict[Any]): """ - :arg advance: (required) - :arg advance_count: (required) - :arg build_scorer: (required) - :arg build_scorer_count: (required) - :arg create_weight: (required) - :arg create_weight_count: (required) - :arg match: (required) - :arg match_count: (required) - :arg shallow_advance: (required) - :arg shallow_advance_count: (required) - :arg next_doc: (required) - :arg next_doc_count: (required) - :arg score: (required) - :arg score_count: (required) - :arg compute_max_score: (required) - :arg compute_max_score_count: (required) - :arg count_weight: (required) - :arg count_weight_count: (required) - :arg set_min_competitive_score: (required) - :arg set_min_competitive_score_count: (required) + :arg count: (required) + :arg location: + :arg meta: + """ + + count: int + location: Union["LatLonGeoLocation", "GeoHashLocation", Sequence[float], str] + meta: Mapping[str, Any] + + +class GeoDistanceAggregate(AttrDict[Any]): + """ + Result of a `geo_distance` aggregation. The unit for `from` and `to` + is meters by default. + + :arg buckets: (required) the aggregation buckets as a list + :arg meta: + """ + + buckets: Sequence["RangeBucket"] + meta: Mapping[str, Any] + + @property + def buckets_as_dict(self) -> Mapping[str, "RangeBucket"]: + return self.buckets # type: ignore + + +class GeoHashGridAggregate(AttrDict[Any]): + """ + :arg buckets: (required) the aggregation buckets as a list + :arg meta: + """ + + buckets: Sequence["GeoHashGridBucket"] + meta: Mapping[str, Any] + + @property + def buckets_as_dict(self) -> Mapping[str, "GeoHashGridBucket"]: + return self.buckets # type: ignore + + +class GeoHashGridBucket(AttrDict[Any]): + """ + :arg key: (required) + :arg doc_count: (required) + """ + + key: str + doc_count: int + + +class GeoHexGridAggregate(AttrDict[Any]): + """ + :arg buckets: (required) the aggregation buckets as a list + :arg meta: + """ + + buckets: Sequence["GeoHexGridBucket"] + meta: Mapping[str, Any] + + @property + def buckets_as_dict(self) -> Mapping[str, "GeoHexGridBucket"]: + return self.buckets # type: ignore + + +class GeoHexGridBucket(AttrDict[Any]): + """ + :arg key: (required) + :arg doc_count: (required) + """ + + key: str + doc_count: int + + +class GeoLine(AttrDict[Any]): + """ + A GeoJson GeoLine. + + :arg type: (required) Always `"LineString"` + :arg coordinates: (required) Array of `[lon, lat]` coordinates + """ + + type: str + coordinates: Sequence[Sequence[float]] + + +class GeoLineAggregate(AttrDict[Any]): + """ + :arg type: (required) + :arg geometry: (required) + :arg properties: (required) + :arg meta: + """ + + type: str + geometry: "GeoLine" + properties: Any + meta: Mapping[str, Any] + + +class GeoTileGridAggregate(AttrDict[Any]): + """ + :arg buckets: (required) the aggregation buckets as a list + :arg meta: + """ + + buckets: Sequence["GeoTileGridBucket"] + meta: Mapping[str, Any] + + @property + def buckets_as_dict(self) -> Mapping[str, "GeoTileGridBucket"]: + return self.buckets # type: ignore + + +class GeoTileGridBucket(AttrDict[Any]): + """ + :arg key: (required) + :arg doc_count: (required) + """ + + key: str + doc_count: int + + +class GlobalAggregate(AttrDict[Any]): + """ + :arg doc_count: (required) + :arg meta: + """ + + doc_count: int + meta: Mapping[str, Any] + + +class HdrPercentileRanksAggregate(AttrDict[Any]): + """ + :arg values: (required) + :arg meta: + """ + + values: Union[Mapping[str, Union[str, int, None]], Sequence["ArrayPercentilesItem"]] + meta: Mapping[str, Any] + + +class HdrPercentilesAggregate(AttrDict[Any]): + """ + :arg values: (required) + :arg meta: + """ + + values: Union[Mapping[str, Union[str, int, None]], Sequence["ArrayPercentilesItem"]] + meta: Mapping[str, Any] + + +class HistogramAggregate(AttrDict[Any]): + """ + :arg buckets: (required) the aggregation buckets as a list + :arg meta: + """ + + buckets: Sequence["HistogramBucket"] + meta: Mapping[str, Any] + + @property + def buckets_as_dict(self) -> Mapping[str, "HistogramBucket"]: + return self.buckets # type: ignore + + +class HistogramBucket(AttrDict[Any]): + """ + :arg key: (required) + :arg doc_count: (required) + :arg key_as_string: + """ + + key: float + doc_count: int + key_as_string: str + + +class Hit(AttrDict[Any]): + """ + :arg index: (required) + :arg id: + :arg score: + :arg explanation: + :arg fields: + :arg highlight: + :arg inner_hits: + :arg matched_queries: + :arg nested: + :arg ignored: + :arg ignored_field_values: + :arg shard: + :arg node: + :arg routing: + :arg source: + :arg rank: + :arg seq_no: + :arg primary_term: + :arg version: + :arg sort: + """ + + index: str + id: str + score: Union[float, None] + explanation: "Explanation" + fields: Mapping[str, Any] + highlight: Mapping[str, Sequence[str]] + inner_hits: Mapping[str, "InnerHitsResult"] + matched_queries: Union[Sequence[str], Mapping[str, float]] + nested: "NestedIdentity" + ignored: Sequence[str] + ignored_field_values: Mapping[ + str, Sequence[Union[int, float, str, bool, None, Any]] + ] + shard: str + node: str + routing: str + source: Any + rank: int + seq_no: int + primary_term: int + version: int + sort: Sequence[Union[int, float, str, bool, None, Any]] + + +class HitsMetadata(AttrDict[Any]): + """ + :arg hits: (required) + :arg total: Total hit count information, present only if + `track_total_hits` wasn't `false` in the search request. + :arg max_score: + """ + + hits: Sequence["Hit"] + total: Union["TotalHits", int] + max_score: Union[float, None] + + +class InferenceAggregate(AttrDict[Any]): + """ + :arg value: + :arg feature_importance: + :arg top_classes: + :arg warning: + :arg meta: + """ + + value: Union[int, float, str, bool, None, Any] + feature_importance: Sequence["InferenceFeatureImportance"] + top_classes: Sequence["InferenceTopClassEntry"] + warning: str + meta: Mapping[str, Any] + + +class InferenceClassImportance(AttrDict[Any]): + """ + :arg class_name: (required) + :arg importance: (required) + """ + + class_name: str + importance: float + + +class InferenceFeatureImportance(AttrDict[Any]): + """ + :arg feature_name: (required) + :arg importance: + :arg classes: + """ + + feature_name: str + importance: float + classes: Sequence["InferenceClassImportance"] + + +class InferenceTopClassEntry(AttrDict[Any]): + """ + :arg class_name: (required) + :arg class_probability: (required) + :arg class_score: (required) + """ + + class_name: Union[int, float, str, bool, None, Any] + class_probability: float + class_score: float + + +class InnerHitsResult(AttrDict[Any]): + """ + :arg hits: (required) + """ + + hits: "HitsMetadata" + + +class IpPrefixAggregate(AttrDict[Any]): + """ + :arg buckets: (required) the aggregation buckets as a list + :arg meta: + """ + + buckets: Sequence["IpPrefixBucket"] + meta: Mapping[str, Any] + + @property + def buckets_as_dict(self) -> Mapping[str, "IpPrefixBucket"]: + return self.buckets # type: ignore + + +class IpPrefixBucket(AttrDict[Any]): + """ + :arg is_ipv6: (required) + :arg key: (required) + :arg prefix_length: (required) + :arg doc_count: (required) + :arg netmask: + """ + + is_ipv6: bool + key: str + prefix_length: int + doc_count: int + netmask: str + + +class IpRangeAggregate(AttrDict[Any]): + """ + :arg buckets: (required) the aggregation buckets as a list + :arg meta: + """ + + buckets: Sequence["IpRangeBucket"] + meta: Mapping[str, Any] + + @property + def buckets_as_dict(self) -> Mapping[str, "IpRangeBucket"]: + return self.buckets # type: ignore + + +class IpRangeBucket(AttrDict[Any]): + """ + :arg doc_count: (required) + :arg key: + :arg from: + :arg to: + """ + + doc_count: int + key: str + from_: str + to: str + + +class KnnCollectorResult(AttrDict[Any]): + """ + :arg name: (required) + :arg reason: (required) + :arg time_in_nanos: (required) + :arg time: + :arg children: + """ + + name: str + reason: str + time_in_nanos: Any + time: Any + children: Sequence["KnnCollectorResult"] + + +class KnnQueryProfileBreakdown(AttrDict[Any]): + """ + :arg advance: (required) + :arg advance_count: (required) + :arg build_scorer: (required) + :arg build_scorer_count: (required) + :arg compute_max_score: (required) + :arg compute_max_score_count: (required) + :arg count_weight: (required) + :arg count_weight_count: (required) + :arg create_weight: (required) + :arg create_weight_count: (required) + :arg match: (required) + :arg match_count: (required) + :arg next_doc: (required) + :arg next_doc_count: (required) + :arg score: (required) + :arg score_count: (required) + :arg set_min_competitive_score: (required) + :arg set_min_competitive_score_count: (required) + :arg shallow_advance: (required) + :arg shallow_advance_count: (required) + """ + + advance: int + advance_count: int + build_scorer: int + build_scorer_count: int + compute_max_score: int + compute_max_score_count: int + count_weight: int + count_weight_count: int + create_weight: int + create_weight_count: int + match: int + match_count: int + next_doc: int + next_doc_count: int + score: int + score_count: int + set_min_competitive_score: int + set_min_competitive_score_count: int + shallow_advance: int + shallow_advance_count: int + + +class KnnQueryProfileResult(AttrDict[Any]): + """ + :arg type: (required) + :arg description: (required) + :arg time_in_nanos: (required) + :arg breakdown: (required) + :arg time: + :arg debug: + :arg children: + """ + + type: str + description: str + time_in_nanos: Any + breakdown: "KnnQueryProfileBreakdown" + time: Any + debug: Mapping[str, Any] + children: Sequence["KnnQueryProfileResult"] + + +class LongRareTermsAggregate(AttrDict[Any]): + """ + Result of the `rare_terms` aggregation when the field is some kind of + whole number like a integer, long, or a date. + + :arg buckets: (required) the aggregation buckets as a list + :arg meta: + """ + + buckets: Sequence["LongRareTermsBucket"] + meta: Mapping[str, Any] + + @property + def buckets_as_dict(self) -> Mapping[str, "LongRareTermsBucket"]: + return self.buckets # type: ignore + + +class LongRareTermsBucket(AttrDict[Any]): + """ + :arg key: (required) + :arg doc_count: (required) + :arg key_as_string: + """ + + key: int + doc_count: int + key_as_string: str + + +class LongTermsAggregate(AttrDict[Any]): + """ + Result of a `terms` aggregation when the field is some kind of whole + number like a integer, long, or a date. + + :arg doc_count_error_upper_bound: + :arg sum_other_doc_count: + :arg buckets: (required) the aggregation buckets as a list + :arg meta: + """ + + doc_count_error_upper_bound: int + sum_other_doc_count: int + buckets: Sequence["LongTermsBucket"] + meta: Mapping[str, Any] + + @property + def buckets_as_dict(self) -> Mapping[str, "LongTermsBucket"]: + return self.buckets # type: ignore + + +class LongTermsBucket(AttrDict[Any]): + """ + :arg key: (required) + :arg doc_count: (required) + :arg key_as_string: + :arg doc_count_error_upper_bound: + """ + + key: int + doc_count: int + key_as_string: str + doc_count_error_upper_bound: int + + +class MatrixStatsAggregate(AttrDict[Any]): + """ + :arg doc_count: (required) + :arg fields: + :arg meta: + """ + + doc_count: int + fields: Sequence["MatrixStatsFields"] + meta: Mapping[str, Any] + + +class MatrixStatsFields(AttrDict[Any]): + """ + :arg name: (required) + :arg count: (required) + :arg mean: (required) + :arg variance: (required) + :arg skewness: (required) + :arg kurtosis: (required) + :arg covariance: (required) + :arg correlation: (required) + """ + + name: str + count: int + mean: float + variance: float + skewness: float + kurtosis: float + covariance: Mapping[str, float] + correlation: Mapping[str, float] + + +class MaxAggregate(AttrDict[Any]): + """ + :arg value: (required) The metric value. A missing value generally + means that there was no data to aggregate, unless specified + otherwise. + :arg value_as_string: + :arg meta: + """ + + value: Union[float, None] + value_as_string: str + meta: Mapping[str, Any] + + +class MedianAbsoluteDeviationAggregate(AttrDict[Any]): + """ + :arg value: (required) The metric value. A missing value generally + means that there was no data to aggregate, unless specified + otherwise. + :arg value_as_string: + :arg meta: + """ + + value: Union[float, None] + value_as_string: str + meta: Mapping[str, Any] + + +class MinAggregate(AttrDict[Any]): + """ + :arg value: (required) The metric value. A missing value generally + means that there was no data to aggregate, unless specified + otherwise. + :arg value_as_string: + :arg meta: + """ + + value: Union[float, None] + value_as_string: str + meta: Mapping[str, Any] + + +class MissingAggregate(AttrDict[Any]): + """ + :arg doc_count: (required) + :arg meta: + """ + + doc_count: int + meta: Mapping[str, Any] + + +class MultiTermsAggregate(AttrDict[Any]): + """ + :arg doc_count_error_upper_bound: + :arg sum_other_doc_count: + :arg buckets: (required) the aggregation buckets as a list + :arg meta: + """ + + doc_count_error_upper_bound: int + sum_other_doc_count: int + buckets: Sequence["MultiTermsBucket"] + meta: Mapping[str, Any] + + @property + def buckets_as_dict(self) -> Mapping[str, "MultiTermsBucket"]: + return self.buckets # type: ignore + + +class MultiTermsBucket(AttrDict[Any]): + """ + :arg key: (required) + :arg doc_count: (required) + :arg key_as_string: + :arg doc_count_error_upper_bound: + """ + + key: Sequence[Union[int, float, str, bool, None, Any]] + doc_count: int + key_as_string: str + doc_count_error_upper_bound: int + + +class NestedAggregate(AttrDict[Any]): + """ + :arg doc_count: (required) + :arg meta: + """ + + doc_count: int + meta: Mapping[str, Any] + + +class NestedIdentity(AttrDict[Any]): + """ + :arg field: (required) + :arg offset: (required) + :arg _nested: + """ + + field: str + offset: int + _nested: "NestedIdentity" + + +class ParentAggregate(AttrDict[Any]): + """ + :arg doc_count: (required) + :arg meta: + """ + + doc_count: int + meta: Mapping[str, Any] + + +class PercentilesBucketAggregate(AttrDict[Any]): + """ + :arg values: (required) + :arg meta: + """ + + values: Union[Mapping[str, Union[str, int, None]], Sequence["ArrayPercentilesItem"]] + meta: Mapping[str, Any] + + +class PhraseSuggest(AttrDict[Any]): + """ + :arg options: (required) + :arg length: (required) + :arg offset: (required) + :arg text: (required) + """ + + options: Sequence["PhraseSuggestOption"] + length: int + offset: int + text: str + + +class PhraseSuggestOption(AttrDict[Any]): + """ + :arg text: (required) + :arg score: (required) + :arg highlighted: + :arg collate_match: + """ + + text: str + score: float + highlighted: str + collate_match: bool + + +class Profile(AttrDict[Any]): + """ + :arg shards: (required) + """ + + shards: Sequence["ShardProfile"] + + +class QueryBreakdown(AttrDict[Any]): + """ + :arg advance: (required) + :arg advance_count: (required) + :arg build_scorer: (required) + :arg build_scorer_count: (required) + :arg create_weight: (required) + :arg create_weight_count: (required) + :arg match: (required) + :arg match_count: (required) + :arg shallow_advance: (required) + :arg shallow_advance_count: (required) + :arg next_doc: (required) + :arg next_doc_count: (required) + :arg score: (required) + :arg score_count: (required) + :arg compute_max_score: (required) + :arg compute_max_score_count: (required) + :arg count_weight: (required) + :arg count_weight_count: (required) + :arg set_min_competitive_score: (required) + :arg set_min_competitive_score_count: (required) """ advance: int @@ -4900,6 +5657,50 @@ class QueryProfile(AttrDict[Any]): children: Sequence["QueryProfile"] +class RangeAggregate(AttrDict[Any]): + """ + :arg buckets: (required) the aggregation buckets as a list + :arg meta: + """ + + buckets: Sequence["RangeBucket"] + meta: Mapping[str, Any] + + @property + def buckets_as_dict(self) -> Mapping[str, "RangeBucket"]: + return self.buckets # type: ignore + + +class RangeBucket(AttrDict[Any]): + """ + :arg doc_count: (required) + :arg from: + :arg to: + :arg from_as_string: + :arg to_as_string: + :arg key: The bucket key. Present if the aggregation is _not_ keyed + """ + + doc_count: int + from_: float + to: float + from_as_string: str + to_as_string: str + key: str + + +class RateAggregate(AttrDict[Any]): + """ + :arg value: (required) + :arg value_as_string: + :arg meta: + """ + + value: float + value_as_string: str + meta: Mapping[str, Any] + + class Retries(AttrDict[Any]): """ :arg bulk: (required) @@ -4910,6 +5711,36 @@ class Retries(AttrDict[Any]): search: int +class ReverseNestedAggregate(AttrDict[Any]): + """ + :arg doc_count: (required) + :arg meta: + """ + + doc_count: int + meta: Mapping[str, Any] + + +class SamplerAggregate(AttrDict[Any]): + """ + :arg doc_count: (required) + :arg meta: + """ + + doc_count: int + meta: Mapping[str, Any] + + +class ScriptedMetricAggregate(AttrDict[Any]): + """ + :arg value: (required) + :arg meta: + """ + + value: Any + meta: Mapping[str, Any] + + class SearchProfile(AttrDict[Any]): """ :arg collector: (required) @@ -4980,7 +5811,311 @@ class ShardStatistics(AttrDict[Any]): skipped: int -class TermSuggest(SuggestBase): +class SignificantLongTermsAggregate(AttrDict[Any]): + """ + :arg bg_count: + :arg doc_count: + :arg buckets: (required) the aggregation buckets as a list + :arg meta: + """ + + bg_count: int + doc_count: int + buckets: Sequence["SignificantLongTermsBucket"] + meta: Mapping[str, Any] + + @property + def buckets_as_dict(self) -> Mapping[str, "SignificantLongTermsBucket"]: + return self.buckets # type: ignore + + +class SignificantLongTermsBucket(AttrDict[Any]): + """ + :arg key: (required) + :arg score: (required) + :arg bg_count: (required) + :arg doc_count: (required) + :arg key_as_string: + """ + + key: int + score: float + bg_count: int + doc_count: int + key_as_string: str + + +class SignificantStringTermsAggregate(AttrDict[Any]): + """ + :arg bg_count: + :arg doc_count: + :arg buckets: (required) the aggregation buckets as a list + :arg meta: + """ + + bg_count: int + doc_count: int + buckets: Sequence["SignificantStringTermsBucket"] + meta: Mapping[str, Any] + + @property + def buckets_as_dict(self) -> Mapping[str, "SignificantStringTermsBucket"]: + return self.buckets # type: ignore + + +class SignificantStringTermsBucket(AttrDict[Any]): + """ + :arg key: (required) + :arg score: (required) + :arg bg_count: (required) + :arg doc_count: (required) + """ + + key: str + score: float + bg_count: int + doc_count: int + + +class SimpleValueAggregate(AttrDict[Any]): + """ + :arg value: (required) The metric value. A missing value generally + means that there was no data to aggregate, unless specified + otherwise. + :arg value_as_string: + :arg meta: + """ + + value: Union[float, None] + value_as_string: str + meta: Mapping[str, Any] + + +class StandardDeviationBounds(AttrDict[Any]): + """ + :arg upper: (required) + :arg lower: (required) + :arg upper_population: (required) + :arg lower_population: (required) + :arg upper_sampling: (required) + :arg lower_sampling: (required) + """ + + upper: Union[float, None] + lower: Union[float, None] + upper_population: Union[float, None] + lower_population: Union[float, None] + upper_sampling: Union[float, None] + lower_sampling: Union[float, None] + + +class StandardDeviationBoundsAsString(AttrDict[Any]): + """ + :arg upper: (required) + :arg lower: (required) + :arg upper_population: (required) + :arg lower_population: (required) + :arg upper_sampling: (required) + :arg lower_sampling: (required) + """ + + upper: str + lower: str + upper_population: str + lower_population: str + upper_sampling: str + lower_sampling: str + + +class StatsAggregate(AttrDict[Any]): + """ + Statistics aggregation result. `min`, `max` and `avg` are missing if + there were no values to process (`count` is zero). + + :arg count: (required) + :arg min: (required) + :arg max: (required) + :arg avg: (required) + :arg sum: (required) + :arg min_as_string: + :arg max_as_string: + :arg avg_as_string: + :arg sum_as_string: + :arg meta: + """ + + count: int + min: Union[float, None] + max: Union[float, None] + avg: Union[float, None] + sum: float + min_as_string: str + max_as_string: str + avg_as_string: str + sum_as_string: str + meta: Mapping[str, Any] + + +class StatsBucketAggregate(AttrDict[Any]): + """ + :arg count: (required) + :arg min: (required) + :arg max: (required) + :arg avg: (required) + :arg sum: (required) + :arg min_as_string: + :arg max_as_string: + :arg avg_as_string: + :arg sum_as_string: + :arg meta: + """ + + count: int + min: Union[float, None] + max: Union[float, None] + avg: Union[float, None] + sum: float + min_as_string: str + max_as_string: str + avg_as_string: str + sum_as_string: str + meta: Mapping[str, Any] + + +class StringRareTermsAggregate(AttrDict[Any]): + """ + Result of the `rare_terms` aggregation when the field is a string. + + :arg buckets: (required) the aggregation buckets as a list + :arg meta: + """ + + buckets: Sequence["StringRareTermsBucket"] + meta: Mapping[str, Any] + + @property + def buckets_as_dict(self) -> Mapping[str, "StringRareTermsBucket"]: + return self.buckets # type: ignore + + +class StringRareTermsBucket(AttrDict[Any]): + """ + :arg key: (required) + :arg doc_count: (required) + """ + + key: str + doc_count: int + + +class StringStatsAggregate(AttrDict[Any]): + """ + :arg count: (required) + :arg min_length: (required) + :arg max_length: (required) + :arg avg_length: (required) + :arg entropy: (required) + :arg distribution: + :arg min_length_as_string: + :arg max_length_as_string: + :arg avg_length_as_string: + :arg meta: + """ + + count: int + min_length: Union[int, None] + max_length: Union[int, None] + avg_length: Union[float, None] + entropy: Union[float, None] + distribution: Union[Mapping[str, float], None] + min_length_as_string: str + max_length_as_string: str + avg_length_as_string: str + meta: Mapping[str, Any] + + +class StringTermsAggregate(AttrDict[Any]): + """ + Result of a `terms` aggregation when the field is a string. + + :arg doc_count_error_upper_bound: + :arg sum_other_doc_count: + :arg buckets: (required) the aggregation buckets as a list + :arg meta: + """ + + doc_count_error_upper_bound: int + sum_other_doc_count: int + buckets: Sequence["StringTermsBucket"] + meta: Mapping[str, Any] + + @property + def buckets_as_dict(self) -> Mapping[str, "StringTermsBucket"]: + return self.buckets # type: ignore + + +class StringTermsBucket(AttrDict[Any]): + """ + :arg key: (required) + :arg doc_count: (required) + :arg doc_count_error_upper_bound: + """ + + key: Union[int, float, str, bool, None, Any] + doc_count: int + doc_count_error_upper_bound: int + + +class SumAggregate(AttrDict[Any]): + """ + Sum aggregation result. `value` is always present and is zero if there + were no values to process. + + :arg value: (required) The metric value. A missing value generally + means that there was no data to aggregate, unless specified + otherwise. + :arg value_as_string: + :arg meta: + """ + + value: Union[float, None] + value_as_string: str + meta: Mapping[str, Any] + + +class TDigestPercentileRanksAggregate(AttrDict[Any]): + """ + :arg values: (required) + :arg meta: + """ + + values: Union[Mapping[str, Union[str, int, None]], Sequence["ArrayPercentilesItem"]] + meta: Mapping[str, Any] + + +class TDigestPercentilesAggregate(AttrDict[Any]): + """ + :arg values: (required) + :arg meta: + """ + + values: Union[Mapping[str, Union[str, int, None]], Sequence["ArrayPercentilesItem"]] + meta: Mapping[str, Any] + + +class TTestAggregate(AttrDict[Any]): + """ + :arg value: (required) + :arg value_as_string: + :arg meta: + """ + + value: Union[float, None] + value_as_string: str + meta: Mapping[str, Any] + + +class TermSuggest(AttrDict[Any]): """ :arg options: (required) :arg length: (required) @@ -5008,3 +6143,203 @@ class TermSuggestOption(AttrDict[Any]): freq: int highlighted: str collate_match: bool + + +class TimeSeriesAggregate(AttrDict[Any]): + """ + :arg buckets: (required) the aggregation buckets as a list + :arg meta: + """ + + buckets: Sequence["TimeSeriesBucket"] + meta: Mapping[str, Any] + + @property + def buckets_as_dict(self) -> Mapping[str, "TimeSeriesBucket"]: + return self.buckets # type: ignore + + +class TimeSeriesBucket(AttrDict[Any]): + """ + :arg key: (required) + :arg doc_count: (required) + """ + + key: Mapping[str, Union[int, float, str, bool, None, Any]] + doc_count: int + + +class TopHitsAggregate(AttrDict[Any]): + """ + :arg hits: (required) + :arg meta: + """ + + hits: "HitsMetadata" + meta: Mapping[str, Any] + + +class TopMetrics(AttrDict[Any]): + """ + :arg sort: (required) + :arg metrics: (required) + """ + + sort: Sequence[Union[Union[int, float, str, bool, None, Any], None]] + metrics: Mapping[str, Union[Union[int, float, str, bool, None, Any], None]] + + +class TopMetricsAggregate(AttrDict[Any]): + """ + :arg top: (required) + :arg meta: + """ + + top: Sequence["TopMetrics"] + meta: Mapping[str, Any] + + +class TotalHits(AttrDict[Any]): + """ + :arg relation: (required) + :arg value: (required) + """ + + relation: Literal["eq", "gte"] + value: int + + +class UnmappedRareTermsAggregate(AttrDict[Any]): + """ + Result of a `rare_terms` aggregation when the field is unmapped. + `buckets` is always empty. + + :arg buckets: (required) the aggregation buckets as a list + :arg meta: + """ + + buckets: Sequence[Any] + meta: Mapping[str, Any] + + @property + def buckets_as_dict(self) -> Mapping[str, Any]: + return self.buckets # type: ignore + + +class UnmappedSamplerAggregate(AttrDict[Any]): + """ + :arg doc_count: (required) + :arg meta: + """ + + doc_count: int + meta: Mapping[str, Any] + + +class UnmappedSignificantTermsAggregate(AttrDict[Any]): + """ + Result of the `significant_terms` aggregation on an unmapped field. + `buckets` is always empty. + + :arg bg_count: + :arg doc_count: + :arg buckets: (required) the aggregation buckets as a list + :arg meta: + """ + + bg_count: int + doc_count: int + buckets: Sequence[Any] + meta: Mapping[str, Any] + + @property + def buckets_as_dict(self) -> Mapping[str, Any]: + return self.buckets # type: ignore + + +class UnmappedTermsAggregate(AttrDict[Any]): + """ + Result of a `terms` aggregation when the field is unmapped. `buckets` + is always empty. + + :arg doc_count_error_upper_bound: + :arg sum_other_doc_count: + :arg buckets: (required) the aggregation buckets as a list + :arg meta: + """ + + doc_count_error_upper_bound: int + sum_other_doc_count: int + buckets: Sequence[Any] + meta: Mapping[str, Any] + + @property + def buckets_as_dict(self) -> Mapping[str, Any]: + return self.buckets # type: ignore + + +class ValueCountAggregate(AttrDict[Any]): + """ + Value count aggregation result. `value` is always present. + + :arg value: (required) The metric value. A missing value generally + means that there was no data to aggregate, unless specified + otherwise. + :arg value_as_string: + :arg meta: + """ + + value: Union[float, None] + value_as_string: str + meta: Mapping[str, Any] + + +class VariableWidthHistogramAggregate(AttrDict[Any]): + """ + :arg buckets: (required) the aggregation buckets as a list + :arg meta: + """ + + buckets: Sequence["VariableWidthHistogramBucket"] + meta: Mapping[str, Any] + + @property + def buckets_as_dict(self) -> Mapping[str, "VariableWidthHistogramBucket"]: + return self.buckets # type: ignore + + +class VariableWidthHistogramBucket(AttrDict[Any]): + """ + :arg min: (required) + :arg key: (required) + :arg max: (required) + :arg doc_count: (required) + :arg min_as_string: + :arg key_as_string: + :arg max_as_string: + """ + + min: float + key: float + max: float + doc_count: int + min_as_string: str + key_as_string: str + max_as_string: str + + +class WeightedAvgAggregate(AttrDict[Any]): + """ + Weighted average aggregation result. `value` is missing if the weight + was set to zero. + + :arg value: (required) The metric value. A missing value generally + means that there was no data to aggregate, unless specified + otherwise. + :arg value_as_string: + :arg meta: + """ + + value: Union[float, None] + value_as_string: str + meta: Mapping[str, Any] diff --git a/elasticsearch_dsl/utils.py b/elasticsearch_dsl/utils.py index e85a17e0..476778f8 100644 --- a/elasticsearch_dsl/utils.py +++ b/elasticsearch_dsl/utils.py @@ -28,6 +28,7 @@ Iterable, Iterator, List, + Mapping, Optional, Tuple, Type, @@ -48,6 +49,7 @@ from .field import Field from .index_base import IndexBase from .response import Hit # noqa: F401 + from .types import Hit as HitBaseType UsingType: TypeAlias = Union[str, "Elasticsearch"] AsyncUsingType: TypeAlias = Union[str, "AsyncElasticsearch"] @@ -468,7 +470,15 @@ def _clone(self) -> Self: return c -class HitMeta(AttrDict[Any]): +if TYPE_CHECKING: + HitMetaBase = HitBaseType +else: + HitMetaBase = AttrDict[Any] + + +class HitMeta(HitMetaBase): + inner_hits: Mapping[str, Any] + def __init__( self, document: Dict[str, Any], diff --git a/examples/async/composite_agg.py b/examples/async/composite_agg.py index 5188ce4c..37c7bfcb 100644 --- a/examples/async/composite_agg.py +++ b/examples/async/composite_agg.py @@ -17,11 +17,12 @@ import asyncio import os -from typing import Any, AsyncIterator, Dict, Mapping, Sequence +from typing import Any, AsyncIterator, Dict, Mapping, Sequence, cast from elasticsearch.helpers import async_bulk from elasticsearch_dsl import Agg, AsyncSearch, Response, aggs, async_connections +from elasticsearch_dsl.types import CompositeAggregate from tests.test_integration.test_data import DATA, GIT_INDEX @@ -30,7 +31,7 @@ async def scan_aggs( source_aggs: Sequence[Mapping[str, Agg]], inner_aggs: Dict[str, Agg] = {}, size: int = 10, -) -> AsyncIterator[Response]: +) -> AsyncIterator[CompositeAggregate]: """ Helper function used to iterate over all possible bucket combinations of ``source_aggs``, returning results of ``inner_aggs`` for each. Uses the @@ -52,13 +53,13 @@ async def run_search(**kwargs: Any) -> Response: return await s.execute() response = await run_search() - while response.aggregations.comp.buckets: - for b in response.aggregations.comp.buckets: - yield b - if "after_key" in response.aggregations.comp: - after = response.aggregations.comp.after_key + while response.aggregations["comp"].buckets: + for b in response.aggregations["comp"].buckets: + yield cast(CompositeAggregate, b) + if "after_key" in response.aggregations["comp"]: + after = response.aggregations["comp"].after_key else: - after = response.aggregations.comp.buckets[-1].key + after = response.aggregations["comp"].buckets[-1].key response = await run_search(after=after) diff --git a/examples/async/parent_child.py b/examples/async/parent_child.py index 2a74d2d4..6668a77c 100644 --- a/examples/async/parent_child.py +++ b/examples/async/parent_child.py @@ -46,7 +46,6 @@ from elasticsearch_dsl import ( AsyncDocument, - AsyncIndex, AsyncSearch, Date, InnerDoc, @@ -92,7 +91,6 @@ class Post(AsyncDocument): # definitions here help type checkers understand additional arguments # that are allowed in the constructor _routing: str = mapped_field(default=None) - _index: AsyncIndex = mapped_field(default=None) _id: Optional[int] = mapped_field(default=None) created: Optional[datetime] = mapped_field(default=None) @@ -161,8 +159,6 @@ async def add_answer( answer = Answer( # required make sure the answer is stored in the same shard _routing=self.meta.id, - # since we don't have explicit index, ensure same index as self - _index=self.meta.index, # set up the parent/child mapping question_answer={"name": "answer", "parent": self.meta.id}, # pass in the field values @@ -190,7 +186,7 @@ async def get_answers(self) -> List[Any]: elasticsearch. """ if "inner_hits" in self.meta and "answer" in self.meta.inner_hits: - return cast(List[Any], self.meta.inner_hits.answer.hits) + return cast(List[Any], self.meta.inner_hits["answer"].hits) return [a async for a in self.search_answers()] async def save(self, **kwargs: Any) -> None: # type: ignore[override] diff --git a/examples/async/sparse_vectors.py b/examples/async/sparse_vectors.py index 458798a3..962ecda8 100644 --- a/examples/async/sparse_vectors.py +++ b/examples/async/sparse_vectors.py @@ -186,7 +186,7 @@ async def main() -> None: ) print(f"Summary: {hit.summary}") if args.show_inner_hits: - for passage in hit.meta.inner_hits.passages: + for passage in hit.meta.inner_hits["passages"]: print(f" - [Score: {passage.meta.score}] {passage.content!r}") print("") diff --git a/examples/async/vectors.py b/examples/async/vectors.py index b58c184e..e17cbf3e 100644 --- a/examples/async/vectors.py +++ b/examples/async/vectors.py @@ -175,7 +175,7 @@ async def main() -> None: ) print(f"Summary: {hit.summary}") if args.show_inner_hits: - for passage in hit.meta.inner_hits.passages: + for passage in hit.meta.inner_hits["passages"]: print(f" - [Score: {passage.meta.score}] {passage.content!r}") print("") diff --git a/examples/composite_agg.py b/examples/composite_agg.py index f93560ec..755c0a8c 100644 --- a/examples/composite_agg.py +++ b/examples/composite_agg.py @@ -16,11 +16,12 @@ # under the License. import os -from typing import Any, Dict, Iterator, Mapping, Sequence +from typing import Any, Dict, Iterator, Mapping, Sequence, cast from elasticsearch.helpers import bulk from elasticsearch_dsl import Agg, Response, Search, aggs, connections +from elasticsearch_dsl.types import CompositeAggregate from tests.test_integration.test_data import DATA, GIT_INDEX @@ -29,7 +30,7 @@ def scan_aggs( source_aggs: Sequence[Mapping[str, Agg]], inner_aggs: Dict[str, Agg] = {}, size: int = 10, -) -> Iterator[Response]: +) -> Iterator[CompositeAggregate]: """ Helper function used to iterate over all possible bucket combinations of ``source_aggs``, returning results of ``inner_aggs`` for each. Uses the @@ -51,13 +52,13 @@ def run_search(**kwargs: Any) -> Response: return s.execute() response = run_search() - while response.aggregations.comp.buckets: - for b in response.aggregations.comp.buckets: - yield b - if "after_key" in response.aggregations.comp: - after = response.aggregations.comp.after_key + while response.aggregations["comp"].buckets: + for b in response.aggregations["comp"].buckets: + yield cast(CompositeAggregate, b) + if "after_key" in response.aggregations["comp"]: + after = response.aggregations["comp"].after_key else: - after = response.aggregations.comp.buckets[-1].key + after = response.aggregations["comp"].buckets[-1].key response = run_search(after=after) diff --git a/examples/parent_child.py b/examples/parent_child.py index 6d20dde2..5acbbd72 100644 --- a/examples/parent_child.py +++ b/examples/parent_child.py @@ -46,7 +46,6 @@ from elasticsearch_dsl import ( Date, Document, - Index, InnerDoc, Join, Keyword, @@ -91,7 +90,6 @@ class Post(Document): # definitions here help type checkers understand additional arguments # that are allowed in the constructor _routing: str = mapped_field(default=None) - _index: Index = mapped_field(default=None) _id: Optional[int] = mapped_field(default=None) created: Optional[datetime] = mapped_field(default=None) @@ -160,8 +158,6 @@ def add_answer( answer = Answer( # required make sure the answer is stored in the same shard _routing=self.meta.id, - # since we don't have explicit index, ensure same index as self - _index=self.meta.index, # set up the parent/child mapping question_answer={"name": "answer", "parent": self.meta.id}, # pass in the field values @@ -189,7 +185,7 @@ def get_answers(self) -> List[Any]: elasticsearch. """ if "inner_hits" in self.meta and "answer" in self.meta.inner_hits: - return cast(List[Any], self.meta.inner_hits.answer.hits) + return cast(List[Any], self.meta.inner_hits["answer"].hits) return [a for a in self.search_answers()] def save(self, **kwargs: Any) -> None: # type: ignore[override] diff --git a/examples/sparse_vectors.py b/examples/sparse_vectors.py index ba853e8c..408e0df8 100644 --- a/examples/sparse_vectors.py +++ b/examples/sparse_vectors.py @@ -185,7 +185,7 @@ def main() -> None: ) print(f"Summary: {hit.summary}") if args.show_inner_hits: - for passage in hit.meta.inner_hits.passages: + for passage in hit.meta.inner_hits["passages"]: print(f" - [Score: {passage.meta.score}] {passage.content!r}") print("") diff --git a/examples/vectors.py b/examples/vectors.py index ef1342ee..d6ecd6e2 100644 --- a/examples/vectors.py +++ b/examples/vectors.py @@ -174,7 +174,7 @@ def main() -> None: ) print(f"Summary: {hit.summary}") if args.show_inner_hits: - for passage in hit.meta.inner_hits.passages: + for passage in hit.meta.inner_hits["passages"]: print(f" - [Score: {passage.meta.score}] {passage.content!r}") print("") diff --git a/utils/generator.py b/utils/generator.py index 39a3eaaf..653f943b 100644 --- a/utils/generator.py +++ b/utils/generator.py @@ -82,7 +82,7 @@ def add_dict_type(type_): def add_seq_dict_type(type_): - """Add List[Dict[str, Any]] to a Python type hint.""" + """Add Sequence[Dict[str, Any]] to a Python type hint.""" if type_.startswith("Union["): type_ = f"{type_[:-1]}, Sequence[Dict[str, Any]]]" else: @@ -99,6 +99,18 @@ def add_not_set(type_): return type_ +def type_for_types_py(type_): + """Converts a type rendered in a generic way to the format needed in the + types.py module. + """ + type_ = type_.replace('"DefaultType"', "DefaultType") + type_ = type_.replace('"InstrumentedField"', "InstrumentedField") + type_ = re.sub(r'"(function\.[a-zA-Z0-9_]+)"', r"\1", type_) + type_ = re.sub(r'"types\.([a-zA-Z0-9_]+)"', r'"\1"', type_) + type_ = re.sub(r'"(wrappers\.[a-zA-Z0-9_]+)"', r"\1", type_) + return type_ + + class ElasticsearchSchema: """Operations related to the Elasticsearch schema.""" @@ -172,7 +184,10 @@ def get_python_type(self, schema_type, for_response=False): elif type_name["name"] == "null": return "None", None elif type_name["name"] == "Field": - return 'Union[str, "InstrumentedField"]', None + if for_response: + return "str", None + else: + return 'Union[str, "InstrumentedField"]', None else: # not an instance of a native type, so we get the type and try again return self.get_python_type( @@ -189,7 +204,10 @@ def get_python_type(self, schema_type, for_response=False): type_name["namespace"] == "_types.aggregations" and type_name["name"] == "Buckets" ): - return "Dict[str, Query]", {"type": "query", "hash": True} + if for_response: + return "Union[Sequence[Any], Dict[str, Any]]", None + else: + return "Dict[str, Query]", {"type": "query", "hash": True} elif ( type_name["namespace"] == "_types.aggregations" and type_name["name"] == "CompositeAggregationSource" @@ -343,9 +361,7 @@ def add_attribute(self, k, arg, for_types_py=False, for_response=False): attributes. """ try: - type_, param = schema.get_python_type( - arg["type"], for_response=for_response - ) + type_, param = self.get_python_type(arg["type"], for_response=for_response) except RuntimeError: type_ = "Any" param = None @@ -357,11 +373,7 @@ def add_attribute(self, k, arg, for_types_py=False, for_response=False): type_ = add_dict_type(type_) # interfaces can be given as dicts type_ = add_not_set(type_) if for_types_py: - type_ = type_.replace('"DefaultType"', "DefaultType") - type_ = type_.replace('"InstrumentedField"', "InstrumentedField") - type_ = re.sub(r'"(function\.[a-zA-Z0-9_]+)"', r"\1", type_) - type_ = re.sub(r'"types\.([a-zA-Z0-9_]+)"', r'"\1"', type_) - type_ = re.sub(r'"(wrappers\.[a-zA-Z0-9_]+)"', r"\1", type_) + type_ = type_for_types_py(type_) required = "(required) " if arg["required"] else "" server_default = ( f" Defaults to `{arg['serverDefault']}` if omitted." @@ -409,11 +421,11 @@ class representation. ): # we do not support this behavior, so we ignore it continue - key_type, _ = schema.get_python_type( + key_type, _ = self.get_python_type( behavior["generics"][0], for_response=for_response ) if "InstrumentedField" in key_type: - value_type, _ = schema.get_python_type( + value_type, _ = self.get_python_type( behavior["generics"][1], for_response=for_response ) if for_types_py: @@ -502,7 +514,7 @@ def property_to_python_class(self, p): "properties": [p], } else: - type_ = schema.find_type(name, namespace) + type_ = self.find_type(name, namespace) if p["name"] in AGG_TYPES: k["parent"] = AGG_TYPES[p["name"]] @@ -525,7 +537,7 @@ def property_to_python_class(self, p): for arg in type_["properties"]: self.add_attribute(k, arg) if "inherits" in type_ and "type" in type_["inherits"]: - type_ = schema.find_type( + type_ = self.find_type( type_["inherits"]["type"]["name"], type_["inherits"]["type"]["namespace"], ) @@ -538,6 +550,7 @@ def property_to_python_class(self, p): for other in type_["type"]["items"]: other_class = self.interface_to_python_class( other["type"]["name"], + other["type"]["namespace"], for_types_py=False, ) other_class["parent"] = k["name"] @@ -553,9 +566,9 @@ def property_to_python_class(self, p): ) elif kind == "dictionary_of": - key_type, _ = schema.get_python_type(p["type"]["key"]) + key_type, _ = self.get_python_type(p["type"]["key"]) if "InstrumentedField" in key_type: - value_type, _ = schema.get_python_type(p["type"]["value"]) + value_type, _ = self.get_python_type(p["type"]["value"]) if p["type"]["singleKey"]: # special handling for single-key dicts with field key k["args"] = [ @@ -625,6 +638,9 @@ def interface_to_python_class( "required": bool, "positional": bool, ], + "buckets_as_dict": "type" # optional, only present in aggregation response + # classes that have buckets that can have a list + # or dict representation } ``` """ @@ -636,43 +652,107 @@ def interface_to_python_class( # but the location of the properties is different type_ = type_["body"] k = {"name": interface, "for_response": for_response, "args": []} + k["docstring"] = wrapped_doc(type_.get("description") or "") self.add_behaviors( type_, k, for_types_py=for_types_py, for_response=for_response ) + generics = [] while True: for arg in type_["properties"]: if interface == "ResponseBody" and arg["name"] == "hits": k["args"].append( { "name": "hits", - "type": "List[_R]", + "type": "Sequence[_R]", "doc": [":arg hits: search results"], "required": arg["required"], } ) elif interface == "ResponseBody" and arg["name"] == "aggregations": + # Aggregations are tricky because the DSL client uses a + # flexible representation that is difficult to generate + # from the schema. + # To handle this we let the generator do its work by calling + # `add_attribute()`, but then we save the generated attribute + # apart and replace it with the DSL's `AggResponse` class. + # The generated type is then used in type hints in variables + # and methods of this class. + self.add_attribute( + k, arg, for_types_py=for_types_py, for_response=for_response + ) + k["aggregate_type"] = ( + k["args"][-1]["type"] + .split("Mapping[str, ")[1] + .rsplit("]", 1)[0] + ) + k["args"][-1] = { + "name": "aggregations", + "type": '"AggResponse[_R]"', + "doc": [":arg aggregations: aggregation results"], + "required": arg["required"], + } + elif ( + "name" in type_ + and type_["name"]["name"] == "MultiBucketAggregateBase" + and arg["name"] == "buckets" + ): + # Also during aggregation response generation, the "buckets" + # attribute that many aggregation responses have is very + # complex, supporting over a dozen different aggregation + # types via generics, each in array or object configurations. + # Typing this attribute proved very difficult. A solution + # that worked with mypy and pyright is to type "buckets" + # for the list form, and create a `buckets_as_dict` + # property that is typed appropriately for accessing the + # buckets in dictionary form. + # The generic type is assumed to be the first in the list, + # which is a simplification that should be improved when a + # more complete implementation of generics is added. + if generics[0]["type"]["name"] == "Void": + generic_type = "Any" + else: + _g = self.find_type( + generics[0]["type"]["name"], + generics[0]["type"]["namespace"], + ) + generic_type, _ = self.get_python_type( + _g, for_response=for_response + ) + generic_type = type_for_types_py(generic_type) k["args"].append( { - "name": "aggregations", - "type": '"AggResponse[_R]"', - "doc": [":arg aggregations: aggregation results"], - "required": arg["required"], + "name": arg["name"], + # for the type we only include the array form, since + # this client does not request the dict form + "type": f"Sequence[{generic_type}]", + "doc": [ + ":arg buckets: (required) the aggregation buckets as a list" + ], + "required": True, } ) + k["buckets_as_dict"] = generic_type else: - schema.add_attribute( + if interface == "Hit" and arg["name"].startswith("_"): + # Python DSL removes the undersore prefix from all the + # properties of the hit, so we do the same + arg["name"] = arg["name"][1:] + + self.add_attribute( k, arg, for_types_py=for_types_py, for_response=for_response ) if "inherits" not in type_ or "type" not in type_["inherits"]: break - if "parent" not in k: - k["parent"] = type_["inherits"]["type"]["name"] - if type_["inherits"]["type"]["name"] not in self.interfaces: - self.interfaces.append(type_["inherits"]["type"]["name"]) - if for_response: - self.response_interfaces.append(type_["inherits"]["type"]["name"]) + if "generics" in type_["inherits"]: + # Generics are only supported for certain specific cases at this + # time. Here we just save them so that they can be recalled later + # while traversing over to parent classes to find inherited + # attributes. + for generic_type in type_["inherits"]["generics"]: + generics.append(generic_type) + type_ = self.find_type( type_["inherits"]["type"]["name"], type_["inherits"]["type"]["namespace"], @@ -755,16 +835,6 @@ def generate_types_py(schema, filename): if k in classes_list: continue classes_list.append(k) - parent = k.get("parent") - parent_index = len(classes_list) - 1 - while parent: - try: - classes_list.index(classes[parent]) - break - except ValueError: - pass - classes_list.insert(parent_index, classes[parent]) - parent = classes[parent].get("parent") with open(filename, "wt") as f: f.write(types_py.render(classes=classes_list)) diff --git a/utils/templates/response.__init__.py.tpl b/utils/templates/response.__init__.py.tpl index 5d5d7bac..f9ae5c4e 100644 --- a/utils/templates/response.__init__.py.tpl +++ b/utils/templates/response.__init__.py.tpl @@ -40,11 +40,11 @@ if TYPE_CHECKING: from ..update_by_query_base import UpdateByQueryBase from .. import types -__all__ = ["Response", "AggResponse", "UpdateByQueryResponse", "Hit", "HitMeta"] +__all__ = ["Response", "AggResponse", "UpdateByQueryResponse", "Hit", "HitMeta", "AggregateResponseType"] class Response(AttrDict[Any], Generic[_R]): - """An Elasticsearch _search response. + """An Elasticsearch search response. {% for arg in response.args %} {% for line in arg.doc %} @@ -173,21 +173,25 @@ class Response(AttrDict[Any], Generic[_R]): return self._search.extra(search_after=self.hits[-1].meta.sort) # type: ignore +AggregateResponseType = {{ response["aggregate_type"] }} + + class AggResponse(AttrDict[Any], Generic[_R]): + """An Elasticsearch aggregation response.""" _meta: Dict[str, Any] def __init__(self, aggs: "Agg[_R]", search: "Request[_R]", data: Dict[str, Any]): super(AttrDict, self).__setattr__("_meta", {"search": search, "aggs": aggs}) super().__init__(data) - def __getitem__(self, attr_name: str) -> Any: + def __getitem__(self, attr_name: str) -> AggregateResponseType: if attr_name in self._meta["aggs"]: # don't do self._meta['aggs'][attr_name] to avoid copying agg = self._meta["aggs"].aggs[attr_name] - return agg.result(self._meta["search"], self._d_[attr_name]) - return super().__getitem__(attr_name) + return cast(AggregateResponseType, agg.result(self._meta["search"], self._d_[attr_name])) + return super().__getitem__(attr_name) # type: ignore - def __iter__(self) -> Iterator["Agg"]: # type: ignore[override] + def __iter__(self) -> Iterator[AggregateResponseType]: # type: ignore[override] for name in self._meta["aggs"]: yield self[name] diff --git a/utils/templates/types.py.tpl b/utils/templates/types.py.tpl index 49617f5f..0571e068 100644 --- a/utils/templates/types.py.tpl +++ b/utils/templates/types.py.tpl @@ -28,8 +28,16 @@ PipeSeparatedFlags = str {% for k in classes %} class {{ k.name }}({{ k.parent if k.parent else "AttrDict[Any]" }}): - {% if k.args %} + {% if k.docstring or k.args %} """ + {% for line in k.docstring %} + {{ line }} + {% endfor %} + {% if k.args %} + {% if k.docstring %} + + {% endif %} + {% endif %} {% for arg in k.args %} {% for line in arg.doc %} {{ line }} @@ -86,6 +94,12 @@ class {{ k.name }}({{ k.parent if k.parent else "AttrDict[Any]" }}): super().__init__(kwargs) {% endif %} {% endif %} + {% if k.buckets_as_dict %} + + @property + def buckets_as_dict(self) -> Mapping[str, {{ k.buckets_as_dict }}]: + return self.buckets # type: ignore + {% endif %} {% else %} pass {% endif %}