forked from NVIDIA/cuda-samples
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathderivativesKernel.cuh
144 lines (124 loc) · 5.74 KB
/
derivativesKernel.cuh
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
/* Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* * Neither the name of NVIDIA CORPORATION nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS ``AS IS'' AND ANY
* EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
* CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
* EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
* PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
* OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include "common.h"
///////////////////////////////////////////////////////////////////////////////
/// \brief compute image derivatives
///
/// CUDA kernel, relies heavily on texture unit
/// \param[in] width image width
/// \param[in] height image height
/// \param[in] stride image stride
/// \param[out] Ix x derivative
/// \param[out] Iy y derivative
/// \param[out] Iz temporal derivative
///////////////////////////////////////////////////////////////////////////////
__global__ void ComputeDerivativesKernel(int width, int height, int stride,
float *Ix, float *Iy, float *Iz,
cudaTextureObject_t texSource,
cudaTextureObject_t texTarget) {
const int ix = threadIdx.x + blockIdx.x * blockDim.x;
const int iy = threadIdx.y + blockIdx.y * blockDim.y;
const int pos = ix + iy * stride;
if (ix >= width || iy >= height) return;
float dx = 1.0f / (float)width;
float dy = 1.0f / (float)height;
float x = ((float)ix + 0.5f) * dx;
float y = ((float)iy + 0.5f) * dy;
float t0, t1;
// x derivative
t0 = tex2D<float>(texSource, x - 2.0f * dx, y);
t0 -= tex2D<float>(texSource, x - 1.0f * dx, y) * 8.0f;
t0 += tex2D<float>(texSource, x + 1.0f * dx, y) * 8.0f;
t0 -= tex2D<float>(texSource, x + 2.0f * dx, y);
t0 /= 12.0f;
t1 = tex2D<float>(texTarget, x - 2.0f * dx, y);
t1 -= tex2D<float>(texTarget, x - 1.0f * dx, y) * 8.0f;
t1 += tex2D<float>(texTarget, x + 1.0f * dx, y) * 8.0f;
t1 -= tex2D<float>(texTarget, x + 2.0f * dx, y);
t1 /= 12.0f;
Ix[pos] = (t0 + t1) * 0.5f;
// t derivative
Iz[pos] = tex2D<float>(texTarget, x, y) - tex2D<float>(texSource, x, y);
// y derivative
t0 = tex2D<float>(texSource, x, y - 2.0f * dy);
t0 -= tex2D<float>(texSource, x, y - 1.0f * dy) * 8.0f;
t0 += tex2D<float>(texSource, x, y + 1.0f * dy) * 8.0f;
t0 -= tex2D<float>(texSource, x, y + 2.0f * dy);
t0 /= 12.0f;
t1 = tex2D<float>(texTarget, x, y - 2.0f * dy);
t1 -= tex2D<float>(texTarget, x, y - 1.0f * dy) * 8.0f;
t1 += tex2D<float>(texTarget, x, y + 1.0f * dy) * 8.0f;
t1 -= tex2D<float>(texTarget, x, y + 2.0f * dy);
t1 /= 12.0f;
Iy[pos] = (t0 + t1) * 0.5f;
}
///////////////////////////////////////////////////////////////////////////////
/// \brief compute image derivatives
///
/// \param[in] I0 source image
/// \param[in] I1 tracked image
/// \param[in] w image width
/// \param[in] h image height
/// \param[in] s image stride
/// \param[out] Ix x derivative
/// \param[out] Iy y derivative
/// \param[out] Iz temporal derivative
///////////////////////////////////////////////////////////////////////////////
static void ComputeDerivatives(const float *I0, const float *I1, int w, int h,
int s, float *Ix, float *Iy, float *Iz) {
dim3 threads(32, 6);
dim3 blocks(iDivUp(w, threads.x), iDivUp(h, threads.y));
cudaTextureObject_t texSource, texTarget;
cudaResourceDesc texRes;
memset(&texRes, 0, sizeof(cudaResourceDesc));
texRes.resType = cudaResourceTypePitch2D;
texRes.res.pitch2D.devPtr = (void *)I0;
texRes.res.pitch2D.desc = cudaCreateChannelDesc<float>();
texRes.res.pitch2D.width = w;
texRes.res.pitch2D.height = h;
texRes.res.pitch2D.pitchInBytes = s * sizeof(float);
cudaTextureDesc texDescr;
memset(&texDescr, 0, sizeof(cudaTextureDesc));
texDescr.normalizedCoords = true;
texDescr.filterMode = cudaFilterModeLinear;
texDescr.addressMode[0] = cudaAddressModeMirror;
texDescr.addressMode[1] = cudaAddressModeMirror;
texDescr.readMode = cudaReadModeElementType;
checkCudaErrors(
cudaCreateTextureObject(&texSource, &texRes, &texDescr, NULL));
memset(&texRes, 0, sizeof(cudaResourceDesc));
texRes.resType = cudaResourceTypePitch2D;
texRes.res.pitch2D.devPtr = (void *)I1;
texRes.res.pitch2D.desc = cudaCreateChannelDesc<float>();
texRes.res.pitch2D.width = w;
texRes.res.pitch2D.height = h;
texRes.res.pitch2D.pitchInBytes = s * sizeof(float);
checkCudaErrors(
cudaCreateTextureObject(&texTarget, &texRes, &texDescr, NULL));
ComputeDerivativesKernel<<<blocks, threads>>>(w, h, s, Ix, Iy, Iz, texSource,
texTarget);
}