-
Notifications
You must be signed in to change notification settings - Fork 0
/
keras_gym_env_2wins.py
301 lines (244 loc) · 10.2 KB
/
keras_gym_env_2wins.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
# File Source: https://keras-gym.readthedocs.io/en/stable/_modules/keras_gym/envs/self_play.html#ConnectFourEnv
# just adapted a little bit
# This env lets you only win when you have two horizontal next to each other
from gym import Env
from gym.spaces import Discrete, MultiDiscrete
import numpy as np
#from ..base.errors import UnavailableActionError, EpisodeDoneError
# next three classes source: https://github.com/KristianHolsheimer/keras-gym/blob/12d83ec9de644cd25b0a7ed4fe250850f6b998ea/keras_gym/base/errors.py
class KerasGymError(Exception):
pass
class EpisodeDoneError(KerasGymError):
pass
class UnavailableActionError(KerasGymError):
pass
__all__ = (
'ConnectFourEnv2Wins',
)
class ConnectFourEnv2Wins(Env):
"""
An adversarial environment for playing the `Connect-Four game
<https://en.wikipedia.org/wiki/Connect_Four>`_.
Attributes
----------
action_space : gym.spaces.Discrete(7)
The action space.
observation_space : MultiDiscrete(nvec)
The state observation space, representing the position of the current
player's tokens (``s[1:,:,0]``) and the other player's tokens
(``s[1:,:,1]``) as well as a mask over the space of actions, indicating
which actions are available to the current player (``s[0,:,0]``) or the
other player (``s[0,:,1]``).
**Note:** The "current" player is relative to whose turn it is, which
means that the entries ``s[:,:,0]`` and ``s[:,:,1]`` swap between
turns.
max_time_steps : int
Maximum number of timesteps within each episode.
available_actions : array of int
Array of available actions. This list shrinks when columns saturate.
win_reward : 1.0
The reward associated with a win.
loss_reward : -1.0
The reward associated with a loss.
draw_reward : 0.0
The reward associated with a draw.
""" # noqa: E501
# class attributes
num_rows = 6
num_cols = 7
num_players = 2
win_reward = 1.0
loss_reward = -win_reward
draw_reward = 0.0
move_reward = 0.
wrong_move_reward = -0.5
action_space = Discrete(num_cols)
observation_space = MultiDiscrete(
nvec=np.full((num_rows + 1, num_cols, num_players), 2, dtype='uint8'))
max_time_steps = int(num_rows * num_cols)
filters = np.array([
[[1, 1],
[0, 0]],
[[0, 0],
[1, 1]]
], dtype='uint8')
def __init__(self):
self._init_state()
def reset(self):
"""
Reset the environment to the starting position.
Returns
-------
s : 3d-array, shape: [num_rows + 1, num_cols, num_players]
A state observation, representing the position of the current
player's tokens (``s[1:,:,0]``) and the other player's tokens
(``s[1:,:,1]``) as well as a mask over the space of actions,
indicating which actions are available to the current player
(``s[0,:,0]``) or the other player (``s[0,:,1]``).
**Note:** The "current" player is relative to whose turn it is,
which means that the entries ``s[:,:,0]`` and ``s[:,:,1]`` swap
between turns.
"""
self._init_state()
return self.state
def step(self, a, return_wrong : bool = False):
"""
Take one step in the MDP, following the single-player convention from
gym.
Parameters
----------
a : int, options: {0, 1, 2, 3, 4, 5, 6}
The action to be taken. The action is the zero-based count of the
possible insertion slots, starting from the left of the board.
Returns
-------
s_next : array, shape [6, 7, 2]
A next-state observation, representing the position of the current
player's tokens (``s[1:,:,0]``) and the other player's tokens
(``s[1:,:,1]``) as well as a mask over the space of actions,
indicating which actions are available to the current player
(``s[0,:,0]``) or the other player (``s[0,:,1]``).
**Note:** The "current" player is relative to whose turn it is,
which means that the entries ``s[:,:,0]`` and ``s[:,:,1]`` swap
between turns.
r : float
Reward associated with the transition
:math:`(s, a)\\to s_\\text{next}`.
**Note:** Since "current" player is relative to whose turn it is,
you need to be careful about aligning the rewards with the correct
state or state-action pair. In particular, this reward :math:`r` is
the one associated with the :math:`s` and :math:`a`, i.e. *not*
aligned with :math:`s_\\text{next}`.
done : bool
Whether the episode is done.
info : dict or None
A dict with some extra information (or None).
"""
if self.done:
raise EpisodeDoneError("please reset env to start new episode")
if not self.action_space.contains(a):
raise ValueError("invalid action")
if a not in self.available_actions:
if return_wrong:
# the last return value now is the wrong bool
return self.state, self.wrong_move_reward, self.done , True #, {'state_id': self.state_id}
else:
raise UnavailableActionError("action is not available")
# swap players
self._players = np.roll(self._players, -1)
# update state
self._state[self._levels[a], a] = self._players[0]
self._prev_action = a
# run logic
self.done, reward = self._done_reward(a)
return (self.state, reward, self.done, False) if return_wrong else (self.state, reward, self.done)
def render(self, *args, **kwargs):
"""
Render the current state of the environment.
"""
# lookup for symbols
symbol = {
1: u'\u25CF', # player 1 token (agent)
2: u'\u25CB', # player 2 token (adversary)
-1: u'\u25BD', # indicator for player 1's last action
-2: u'\u25BC', # indicator for player 2's last action
}
# render board
hrule = '+---' * self.num_cols + '+\n'
board = " "
board += " ".join(
# symbol.get(-(a == self._prev_action) * self._players[1], " ")
symbol.get( not (a == self._prev_action) * self._players[1], " ")
for a in range(self.num_cols))
board += " \n"
board += hrule
for i in range(self.num_rows):
board += "| "
board += " | ".join(
symbol.get(self._state[i, j], " ")
for j in range(self.num_cols))
board += " |\n"
board += hrule
board += " 0 1 2 3 4 5 6 \n" # actions
print(board)
@property
def state(self):
stacked_layers = np.stack((
(self._state == self._players[0]).astype('uint8'),
(self._state == self._players[1]).astype('uint8'),
), axis=-1) # shape: [num_rows, num_cols, num_players]
available_actions_mask = np.zeros(
(1, self.num_cols, self.num_players), dtype='uint8')
available_actions_mask[0, self.available_actions, :] = 1
return np.concatenate((available_actions_mask, stacked_layers), axis=0)
@property
def state_id(self):
p = str(self._players[0])
d = '1' if self.done else '0'
if self._prev_action is None:
a = str(self.num_cols)
else:
a = str(self._prev_action)
s = ''.join(self._state.ravel().astype('str')) # base-3 string
s = '{:017x}'.format(int(s, 3)) # 17-char hex string
return p + d + a + s # 20-char hex string
def set_state(self, state_id):
# decode state id
p = int(state_id[0], 16)
d = int(state_id[1], 16)
a = int(state_id[2], 16)
assert p in (1, 2)
assert d in (0, 1)
assert self.action_space.contains(a) or a == self.num_cols
self._players[0] = p # 1 or 2
self._players[1] = 3 - p # 2 or 1
self.done = d == 1
self._prev_action = None if a == self.num_cols else a
s = np.base_repr(int(state_id[3:], 16), 3)
z = np.zeros(self.num_rows * self.num_cols, dtype='uint8')
z[-len(s):] = np.array(list(s), dtype='uint8')
self._state = z.reshape((self.num_rows, self.num_cols))
self._levels = np.full(self.num_cols, self.num_rows - 1, dtype='uint8')
for j in range(self.num_cols):
for i in self._state[::-1, j]:
if i == 0:
break
self._levels[j] -= 1
@property
def available_actions(self):
actions = np.argwhere(
(self._levels >= 0) & (self._levels < self.num_rows)).ravel()
assert actions.size <= self.num_cols
return actions
@property
def available_actions_mask(self):
mask = np.zeros(self.num_cols, dtype='bool')
mask[self.available_actions] = True
return mask
def _init_state(self):
self._prev_action = None
self._players = np.array([1, 2], dtype='uint8')
self._state = np.zeros((self.num_rows, self.num_cols), dtype='uint8')
self._levels = np.full(self.num_cols, self.num_rows - 1, dtype='uint8')
self.done = False
def _done_reward(self, a):
"""
Check whether the last action `a` by the current player resulted in a
win or draw for player 1 (the agent). This contains the main logic and
implements the rules of the game.
"""
assert self.action_space.contains(a)
# update filling levels
self._levels[a] -= 1
s = self._state == self._players[0]
for i0 in range(4, -1, -1):
i1 = i0 + 2
for j0 in range(6):
j1 = j0 + 2
if np.any(np.tensordot(self.filters, s[i0:i1, j0:j1]) == 2):
return True, self.win_reward
# check for a draw
if len(self.available_actions) == 0:
return True, self.draw_reward
# this is what's returned throughout the episode
return False, self.move_reward