-
Notifications
You must be signed in to change notification settings - Fork 23
/
Copy pathdetectron2_proposal_maxnms.py
225 lines (180 loc) · 8.12 KB
/
detectron2_proposal_maxnms.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
# coding=utf-8
# Copyleft 2019 Project LXRT
import os
import numpy as np
import torch
import h5py
from torchvision.ops import nms
from tqdm import tqdm
import detectron2
from detectron2.structures import Boxes, Instances
from detectron2.data import MetadataCatalog
from detectron2.modeling.roi_heads.fast_rcnn import FastRCNNOutputLayers, FastRCNNOutputs
from detectron2.modeling.postprocessing import detector_postprocess
from detectron2.config import get_cfg
from detectron2.engine import DefaultPredictor
D2_ROOT = os.path.dirname(os.path.dirname(detectron2.__file__)) # Root of detectron2
# DATA_ROOT = os.getenv('COCO_IMG_ROOT', '/ssd-playpen/data/mscoco/images/')
MIN_BOXES = 36
MAX_BOXES = 36
NUM_OBJECTS = 36
DIM = 2048
# Load VG Classes
data_path = 'demo/data/genome/1600-400-20'
vg_classes = []
with open(os.path.join(D2_ROOT, data_path, 'objects_vocab.txt')) as f:
for object in f.readlines():
vg_classes.append(object.split(',')[0].lower().strip())
vg_attrs = []
with open(os.path.join(D2_ROOT, data_path, 'attributes_vocab.txt')) as f:
for object in f.readlines():
vg_attrs.append(object.split(',')[0].lower().strip())
MetadataCatalog.get("vg").thing_classes = vg_classes
MetadataCatalog.get("vg").attr_classes = vg_attrs
def fast_rcnn_inference_single_image(
boxes, scores, image_shape, score_thresh, nms_thresh, topk_per_image
):
scores = scores[:, :-1]
num_bbox_reg_classes = boxes.shape[1] // 4
# Convert to Boxes to use the `clip` function ...
boxes = Boxes(boxes.reshape(-1, 4))
boxes.clip(image_shape)
boxes = boxes.tensor.view(-1, num_bbox_reg_classes, 4) # R x C x 4
# Select max scores
max_scores, max_classes = scores.max(1) # R x C --> R
num_objs = boxes.size(0)
boxes = boxes.view(-1, 4)
idxs = torch.arange(num_objs).cuda() * num_bbox_reg_classes + max_classes
max_boxes = boxes[idxs] # Select max boxes according to the max scores.
# Apply NMS
keep = nms(max_boxes, max_scores, nms_thresh)
if topk_per_image >= 0:
keep = keep[:topk_per_image]
boxes, scores = max_boxes[keep], max_scores[keep]
result = Instances(image_shape)
result.pred_boxes = Boxes(boxes)
result.scores = scores
result.pred_classes = max_classes[keep]
return result, keep
def doit(raw_image, predictor):
with torch.no_grad():
raw_height, raw_width = raw_image.shape[:2]
# print("Original image size: ", (raw_height, raw_width))
# Preprocessing
image = predictor.transform_gen.get_transform(
raw_image).apply_image(raw_image)
# print("Transformed image size: ", image.shape[:2])
image = torch.as_tensor(image.astype("float32").transpose(2, 0, 1))
inputs = [{"image": image, "height": raw_height, "width": raw_width}]
images = predictor.model.preprocess_image(inputs)
# Run Backbone Res1-Res4
features = predictor.model.backbone(images.tensor)
# Generate proposals with RPN
proposals, _ = predictor.model.proposal_generator(
images, features, None)
proposal = proposals[0]
# print('Proposal Boxes size:', proposal.proposal_boxes.tensor.shape)
# Run RoI head for each proposal (RoI Pooling + Res5)
proposal_boxes = [x.proposal_boxes for x in proposals]
features = [features[f] for f in predictor.model.roi_heads.in_features]
box_features = predictor.model.roi_heads._shared_roi_transform(
features, proposal_boxes
)
feature_pooled = box_features.mean(dim=[2, 3]) # pooled to 1x1
# print('Pooled features size:', feature_pooled.shape)
# Predict classes and boxes for each proposal.
pred_class_logits, pred_attr_logits, pred_proposal_deltas = predictor.model.roi_heads.box_predictor(
feature_pooled)
outputs = FastRCNNOutputs(
predictor.model.roi_heads.box2box_transform,
pred_class_logits,
pred_proposal_deltas,
proposals,
predictor.model.roi_heads.smooth_l1_beta,
)
probs = outputs.predict_probs()[0]
boxes = outputs.predict_boxes()[0]
attr_prob = pred_attr_logits[..., :-1].softmax(-1)
max_attr_prob, max_attr_label = attr_prob.max(-1)
# Note: BUTD uses raw RoI predictions,
# we use the predicted boxes instead.
# boxes = proposal_boxes[0].tensor
# NMS
for nms_thresh in np.arange(0.5, 1.0, 0.1):
instances, ids = fast_rcnn_inference_single_image(
boxes, probs, image.shape[1:],
score_thresh=0.2, nms_thresh=nms_thresh, topk_per_image=NUM_OBJECTS
)
if len(ids) == NUM_OBJECTS:
break
instances = detector_postprocess(instances, raw_height, raw_width)
roi_features = feature_pooled[ids].detach()
max_attr_prob = max_attr_prob[ids].detach()
max_attr_label = max_attr_label[ids].detach()
instances.attr_scores = max_attr_prob
instances.attr_classes = max_attr_label
# print(instances)
return instances, roi_features
def build_model():
cfg = get_cfg() # Renew the cfg file
cfg.merge_from_file(os.path.join(
D2_ROOT, "configs/VG-Detection/faster_rcnn_R_101_C4_attr_caffemaxpool.yaml"))
cfg.MODEL.RPN.POST_NMS_TOPK_TEST = 300
cfg.MODEL.ROI_HEADS.NMS_THRESH_TEST = 0.6
cfg.MODEL.ROI_HEADS.SCORE_THRESH_TEST = 0.2
# cfg.INPUT.MIN_SIZE_TEST = 600
# cfg.INPUT.MAX_SIZE_TEST = 1000
# cfg.MODEL.RPN.NMS_THRESH = 0.7
# Find a model from detectron2's model zoo. You can either use the https://dl.fbaipublicfiles.... url, or use the following shorthand
# cfg.MODEL.WEIGHTS = "http://nlp.cs.unc.edu/models/faster_rcnn_from_caffe.pkl"
# cfg.MODEL.WEIGHTS = "http://nlp.cs.unc.edu/models/faster_rcnn_from_caffe_attr.pkl"
# cfg.MODEL.WEIGHTS = "~/.torch/fvcore_cache/models/faster_rcnn_from_caffe_attr.pkl"
# Path.home().joinpath('.torch/fvcore_cache/models/faster_rcnn_from_caffe_attr.pkl').exists()
from pathlib import Path
cfg.MODEL.WEIGHTS = str(Path.home().joinpath('.torch/fvcore_cache/models/faster_rcnn_from_caffe_attr.pkl'))
detector = DefaultPredictor(cfg)
return detector
def collate_fn(batch):
img_ids = []
imgs = []
for i, entry in enumerate(batch):
img_ids.append(entry['img_id'])
imgs.append(entry['img'])
batch_out = {}
batch_out['img_ids'] = img_ids
batch_out['imgs'] = imgs
return batch_out
def extract(output_fname, dataloader, desc):
detector = build_model()
with h5py.File(output_fname, 'w') as f:
with torch.no_grad():
for i, batch in tqdm(enumerate(dataloader),
desc=desc,
ncols=150,
total=len(dataloader)):
img_ids = batch['img_ids']
# feat_list, info_list = feature_extractor.get_detectron_features(batch)
imgs = batch['imgs']
assert len(imgs) == 1
img = imgs[0]
img_id = img_ids[0]
try:
instances, features = doit(img, detector)
instances = instances.to('cpu')
features = features.to('cpu')
num_objects = len(instances)
assert num_objects == NUM_OBJECTS, (num_objects, img_id)
assert features.shape == (NUM_OBJECTS, DIM)
grp = f.create_group(img_id)
grp['features'] = features.numpy() # [num_features, 2048]
grp['obj_id'] = instances.pred_classes.numpy()
grp['obj_conf'] = instances.scores.numpy()
grp['attr_id'] = instances.attr_classes.numpy()
grp['attr_conf'] = instances.attr_scores.numpy()
grp['boxes'] = instances.pred_boxes.tensor.numpy()
grp['img_w'] = img.shape[1]
grp['img_h'] = img.shape[0]
except Exception as e:
print(batch)
print(e)
continue