-
Notifications
You must be signed in to change notification settings - Fork 1
/
summary_graph.py
434 lines (356 loc) · 13.2 KB
/
summary_graph.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
from models.deebert.src.berthighway import BertHighway
import collections
import onnx
import networkx as nx
import torch
import torch.nn as nn
import torchvision
import argparse
from torch.onnx import TrainingMode
import pprint
import models
from decimal import Decimal
import os
import sys
import pickle
import utils
sys.path.insert(1, os.path.join(os.getcwd(), 'profiling'))
from profiler import TIDSProfiler
def map_torch_to_onnx(op_type):
""" Map PyTorch operator to ONNX operator
Args:
op_type (str): PyTorch nn module type
Returns:
str: ONNX operator type
"""
if "Linear" in op_type:
return "Gemm"
elif "Conv" in op_type:
return "Conv"
elif "BatchNorm" in op_type:
return "BatchNormalization"
elif "AdaptiveAvgPool2d" in op_type:
return "GlobalAveragePool"
elif "MaxPool" in op_type:
return "MaxPool"
elif "AvgPool" in op_type:
return "AveragePool"
elif "ReLU" in op_type:
return "Relu"
elif "Sigmoid" in op_type:
return "Sigmoid"
elif "Tanh" in op_type:
return "Tanh"
elif "Dropout" in op_type:
return "Dropout"
elif "Embedding" in op_type:
return "Gather"
else:
return None
# raise NotImplementedError("Operator {} not implemented".format(op_type))
def nested_children(m: torch.nn.Module):
children = dict(m.named_children())
output = {}
if children == {}:
# if module has no children; m is last child! :O
return m
else:
# look for children from children... to the last child!
for name, child in children.items():
try:
output[name] = nested_children(child)
except TypeError:
output[name] = nested_children(child)
return output
def get_op_type(op_type, node_name):
temp_op = op_type
if node_name:
for annotation in set(['key', 'value', 'query']):
if annotation in node_name:
temp_op = temp_op+'_'+annotation
return temp_op
def get_tensor_shapes(model_graph):
node_shapes = dict()
num_of_trainable_tensors = 0
if model_graph.initializer:
for init in model_graph.initializer:
if '.weight' in init.name:
num_of_trainable_tensors += 1
# print(init.name, init.dims)
node_shapes[init.name] = tuple(init.dims)
else:
for node in model_graph.input:
node_shapes[node.name] = tuple(
[p.dim_value for p in node.type.tensor_type.shape.dim])
return node_shapes, num_of_trainable_tensors
def split_inputs(in_list):
# input list may contain trainable weights
input_nodes = []
layer_name = None
for _input in in_list:
# tensor nodes are numeric by default
# if _input.isnumeric():
input_nodes.append(_input)
# in onnx model, weight comes ahead of other trainable weights
# in some cases, bias itself may be a tensor
if '.weight' in _input:
layer_name = _input
# break
elif layer_name is None and '.bias' in _input:
layer_name = _input
# break
return input_nodes, layer_name
def onnx_layer_to_torch_layer(outputs):
"""
output_nodes: a list of output nodes
"""
assert len(outputs) == 1, "Node has more than one output"
l = outputs[0].split('/')[1:-1]
if len(l) == 0:
return None
res = [l[0]]
if len(l) == 1:
return res[0]
for i in range(1, len(l)):
if res[-1] in l[i]:
res[-1] = l[i]
else:
res.append(l[i])
layer_name = '.'.join(res)
return layer_name
def load_model_meta(meta_file='sample__accuracy.onnx'):
"""
meta_file: input files are onnx. return the weight meta graph of this model
"""
# meta file is rather small
onnx_model = onnx.load(meta_file)
model_graph = onnx_model.graph
# record the shape of each weighted nodes
node_shapes, num_of_trainable_tensors = get_tensor_shapes(model_graph)
# construct the computation graph and align their attribution
nodes = [
n for n in onnx_model.graph.node
if n.op_type != 'Constant' and n.op_type != 'Identity']
graph = nx.DiGraph(
name=meta_file,
num_tensors=num_of_trainable_tensors,
num_nodes=len(nodes))
edge_source = collections.defaultdict(list)
opt_dir = collections.defaultdict(int)
input_nodes_list = []
for idx, node in enumerate(nodes):
input_nodes, trainable_weights = split_inputs(node.input)
opt_dir[node.op_type] += 1
layer_name = onnx_layer_to_torch_layer(node.output)
attr = {
'dims': [] if not trainable_weights else node_shapes[trainable_weights],
'op_type': get_op_type(node.op_type, layer_name),
'name': node.name,
'layer_name': layer_name,
'path_weight': Decimal(0.0)
}
graph.add_node(idx, attr=attr)
# register node
for out_node in node.output:
edge_source[out_node].append(idx)
input_nodes_list.append(input_nodes)
for idx, node in enumerate(nodes):
input_nodes = input_nodes_list[idx]
# add edges
for input_node in input_nodes:
for s in edge_source[input_node]:
graph.add_edge(s, idx)
return graph, onnx_model
def dfs_iterative(start_vertex, graph, ret=[], in_degrees=None):
stack = [start_vertex]
while stack:
vertex = stack.pop()
ret.append(vertex)
temp_out = []
for edge in graph.out_edges(vertex):
if in_degrees[edge[1]] == 1:
temp_out.append(edge[1])
del in_degrees[edge[1]]
else:
in_degrees[edge[1]] -= 1
stack += temp_out
def topological_sorting(graph):
"""DFS based topological sort to maximize length of each chain"""
ret = []
in_degrees = {n: graph.in_degree(n)
for n in graph.nodes if graph.in_degree(n) > 0}
[dfs_iterative(node, graph, ret, in_degrees)
for node in graph.nodes() if graph.in_degree(node) == 0]
assert len(ret) == graph.number_of_nodes()
return ret
def get_bottleneck_nodes(graph):
topo_order = topological_sorting(graph)
root = graph.nodes[0]
root['attr']['path_weight'] = Decimal(1)
queue = topo_order
while queue:
node = queue.pop(0)
for out_edge in graph.out_edges(node):
child = out_edge[1]
graph.nodes[child]['attr']['path_weight'] += \
graph.nodes[node]['attr']['path_weight'] / \
Decimal(len(graph.out_edges(node)))
res = []
for idx in graph.nodes():
if float(graph.nodes[idx]['attr']['path_weight']) == 1.0 \
and graph.in_degree(idx) == 1:
if idx < 5 or abs(idx - len(graph.nodes())) < 7:
print("Too early or too late to add a ramp at node",
idx, graph.nodes[idx]['attr'])
else:
res.append(idx)
return res
def get_profile_node_list(profile):
"""
get the list of profile node
Args
profile (class Profiler): the profile of the model
Returns
node_list (list): the list of profile node
"""
nodes = []
def _get_leaf_nodes(node, res):
if node is not None:
if len(node.children) == 0:
res.append(node)
for n in node.children:
_get_leaf_nodes(n, res)
_get_leaf_nodes(profile, nodes)
# for n in nodes:
# print(n.full_name, n.type, n.output_shape)
return nodes
def find_node_by_child(profile, child_info, ordered_node_list):
"""
find the node name by its child node info
Args
profile (class Profiler): the profile of the model
child_info (list): [child_name, child_op_type] both are from ONNX model
ordered_node_list (list): the list of profile node ordered by the forward order
Returns
node: the profile node that contains the child node
"""
if child_info[0] != None:
for i, node in enumerate(ordered_node_list):
if node.full_name == child_info[0]:
return ordered_node_list[i-1]
else:
for i, node in enumerate(ordered_node_list):
# print(node.type, map_torch_to_onnx(node.type), child_info[1], map_torch_to_onnx(node.type) == child_info[1])
if map_torch_to_onnx(node.type) == child_info[1]:
# and \
# map_torch_to_onnx(ordered_node_list[i-1].type) == child_info[1]:
return ordered_node_list[i-1]
return None
def generate_exit_ramps(insert_ramp_nodes, num_classes=3):
"""
generate the exit ramp for each node in the insert_ramp_nodes list
Args
insert_ramp_nodes (list): ['layer_name', 'op_type (pytorch)', output_shape]
Returns
exit_ramps (list): the list of nn Sequential that contains the exit ramp
"""
all_possible_ramps = []
for node_info in insert_ramp_nodes:
all_possible_ramps += [
(
node_info[0],
nn.Sequential(
# nn.Conv2d(node_info[2][1], 64, kernel_size=3,
# stride=1, padding=1, bias=True),
# nn.ReLU(),
nn.AdaptiveAvgPool2d((1, 1)),
nn.Flatten(),
nn.Linear(node_info[2][1], num_classes)
)
)
]
return all_possible_ramps
def get_output_shape(profile, node_names):
"""
get the output shape of the model
Args
profile (class Profiler): the profile of the model
node_names (list): the list of node names
Returns
output_shape (list): the output shape of the model
"""
res = {}
nodes = [profile]
while nodes:
node = nodes.pop(0)
if node.full_name in node_names:
res[node.full_name] = node.output_shape
if len(node.children) == 0:
continue
else:
for child in node.children:
nodes.append(child)
return res
def get_exits_def(model, arch, ids, model_profile_path, num_classes=3, bert_config=None, module_name_prefix=None, dataset='video'):
"""
get the exit ramp definition for given ramp ids
Args
model (nn.Module): the model to be profiled
arch (str): the name of the model
ids (list): the list of ramp ids
model_profile_path (str): the path to the model profile
bert_config (transformers.{BertConfig,RobertaConfig,DistilBertConfig}):
config required for initializing bert ramps
module_name_prefix (str): the nn.module name prefix of the ramps
Returns
list of nn.Sequential: the list of exit ramps
"""
if arch in utils.all_cv_models or dataset == 'video': # CV
dummy_input = torch.randn(1, 3, 224, 224)
export_path = arch+".onnx"
# if not os.path.exists(export_path):
torch.onnx.export(model, dummy_input, export_path,
export_params=True, verbose=0, do_constant_folding=False)
graph, _ = load_model_meta(export_path)
bottleneck_nodes = get_bottleneck_nodes(graph)
with open(model_profile_path, "rb") as f:
profile = pickle.load(f)
insert_ramp_nodes = []
node_names = [graph.nodes[bottleneck_node]['attr']['layer_name'] for bottleneck_node in bottleneck_nodes]
output_shape_map = get_output_shape(profile, node_names)
for bottleneck_node in bottleneck_nodes:
layer_name = graph.nodes[bottleneck_node]['attr']['layer_name']
insert_ramp_nodes.append([layer_name, \
graph.nodes[bottleneck_node]['attr']['op_type'], \
output_shape_map[layer_name]]
)
exit_ramps = generate_exit_ramps(insert_ramp_nodes, num_classes)
print('number of exit ramps:', len(exit_ramps))
elif arch in utils.all_nlp_models: # NLP
exit_ramps = []
if hasattr(bert_config, "num_hidden_layers"): # bert
num_encoders = bert_config.num_hidden_layers
elif hasattr(bert_config, "n_layers"): # distilbert
num_encoders = bert_config.n_layers
else:
raise NotImplementedError
for ramp_id in range(num_encoders):
module_name = f"{module_name_prefix}.{ramp_id}"
branch_net = BertHighway(bert_config)
exit_ramps.append((module_name, branch_net,))
else:
raise NotImplementedError
if ids[0] == -1:
return exit_ramps
else:
return [exit_ramps[i] for i in ids]
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('--export_path', type=str, default='resnet18.onnx')
args = parser.parse_args()
dummy_input = torch.randn(1, 3, 224, 224)
# model = torchvision.models.resnet50(pretrained=True)
# model = models.waymo.resnet18_waymo(pretrained=True)
model = models.urban.resnet18_urban(pretrained=True)
get_exits_def(model, "resnet18_urban", [
8], "./profile_pickles/resnet18_urban_profile.pickle")