-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathangle_cosine_delta.cpp
180 lines (135 loc) · 4.84 KB
/
angle_cosine_delta.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
/* ----------------------------------------------------------------------
LAMMPS - Large-scale Atomic/Molecular Massively Parallel Simulator
http://lammps.sandia.gov, Sandia National Laboratories
Steve Plimpton, [email protected]
Copyright (2003) Sandia Corporation. Under the terms of Contract
DE-AC04-94AL85000 with Sandia Corporation, the U.S. Government retains
certain rights in this software. This software is distributed under
the GNU General Public License.
See the README file in the top-level LAMMPS directory.
------------------------------------------------------------------------- */
/* ----------------------------------------------------------------------
Contributing author: Axel Kohlmeyer (Temple U), akohlmey at gmail.com
------------------------------------------------------------------------- */
#include <math.h>
#include <stdlib.h>
#include "angle_cosine_delta.h"
#include "atom.h"
#include "neighbor.h"
#include "domain.h"
#include "comm.h"
#include "force.h"
#include "memory.h"
#include "error.h"
using namespace LAMMPS_NS;
#define SMALL 0.001
/* ---------------------------------------------------------------------- */
AngleCosineDelta::AngleCosineDelta(LAMMPS *lmp) : AngleCosineSquared(lmp) {}
/* ---------------------------------------------------------------------- */
void AngleCosineDelta::compute(int eflag, int vflag)
{
int i1,i2,i3,n,type;
double delx1,dely1,delz1,delx2,dely2,delz2,theta,dtheta,dcostheta,tk;
double eangle,f1[3],f3[3];
double rsq1,rsq2,r1,r2,c,a,cot,a11,a12,a22,b11,b12,b22,c0,s0,s;
eangle = 0.0;
if (eflag || vflag) ev_setup(eflag,vflag);
else evflag = 0;
double **x = atom->x;
double **f = atom->f;
int **anglelist = neighbor->anglelist;
int nanglelist = neighbor->nanglelist;
int nlocal = atom->nlocal;
int newton_bond = force->newton_bond;
for (n = 0; n < nanglelist; n++) {
i1 = anglelist[n][0];
i2 = anglelist[n][1];
i3 = anglelist[n][2];
type = anglelist[n][3];
// 1st bond
delx1 = x[i1][0] - x[i2][0];
dely1 = x[i1][1] - x[i2][1];
delz1 = x[i1][2] - x[i2][2];
rsq1 = delx1*delx1 + dely1*dely1 + delz1*delz1;
r1 = sqrt(rsq1);
// 2nd bond
delx2 = x[i3][0] - x[i2][0];
dely2 = x[i3][1] - x[i2][1];
delz2 = x[i3][2] - x[i2][2];
rsq2 = delx2*delx2 + dely2*dely2 + delz2*delz2;
r2 = sqrt(rsq2);
// angle (cos and sin)
c = delx1*delx2 + dely1*dely2 + delz1*delz2;
c /= r1*r2;
if (c > 1.0) c = 1.0;
if (c < -1.0) c = -1.0;
theta = acos(c);
s = sqrt(1.0 - c*c);
if (s < SMALL) s = SMALL;
s = 1.0/s;
cot = c/s;
// force & energy
dtheta = theta - theta0[type];
dcostheta = cos(dtheta);
tk = k[type] * (1.0-dcostheta);
if (eflag) eangle = tk;
a = -k[type];
// expand dtheta for cos and sin contribution to force
a11 = a*c / rsq1;
a12 = -a / (r1*r2);
a22 = a*c / rsq2;
b11 = -a*c*cot / rsq1;
b12 = a*cot / (r1*r2);
b22 = -a*c*cot / rsq2;
c0 = cos(theta0[type]);
s0 = sin(theta0[type]);
f1[0] = (a11*delx1 + a12*delx2)*c0 + (b11*delx1 + b12*delx2)*s0;
f1[1] = (a11*dely1 + a12*dely2)*c0 + (b11*dely1 + b12*dely2)*s0;
f1[2] = (a11*delz1 + a12*delz2)*c0 + (b11*delz1 + b12*delz2)*s0;
f3[0] = (a22*delx2 + a12*delx1)*c0 + (b22*delx2 + b12*delx1)*s0;
f3[1] = (a22*dely2 + a12*dely1)*c0 + (b22*dely2 + b12*dely1)*s0;
f3[2] = (a22*delz2 + a12*delz1)*c0 + (b22*delz2 + b12*delz1)*s0;
// apply force to each of 3 atoms
if (newton_bond || i1 < nlocal) {
f[i1][0] += f1[0];
f[i1][1] += f1[1];
f[i1][2] += f1[2];
}
if (newton_bond || i2 < nlocal) {
f[i2][0] -= f1[0] + f3[0];
f[i2][1] -= f1[1] + f3[1];
f[i2][2] -= f1[2] + f3[2];
}
if (newton_bond || i3 < nlocal) {
f[i3][0] += f3[0];
f[i3][1] += f3[1];
f[i3][2] += f3[2];
}
if (evflag) ev_tally(i1,i2,i3,nlocal,newton_bond,eangle,f1,f3,
delx1,dely1,delz1,delx2,dely2,delz2);
}
}
/* ---------------------------------------------------------------------- */
double AngleCosineDelta::single(int type, int i1, int i2, int i3)
{
double **x = atom->x;
double delx1 = x[i1][0] - x[i2][0];
double dely1 = x[i1][1] - x[i2][1];
double delz1 = x[i1][2] - x[i2][2];
domain->minimum_image(delx1,dely1,delz1);
double r1 = sqrt(delx1*delx1 + dely1*dely1 + delz1*delz1);
double delx2 = x[i3][0] - x[i2][0];
double dely2 = x[i3][1] - x[i2][1];
double delz2 = x[i3][2] - x[i2][2];
domain->minimum_image(delx2,dely2,delz2);
double r2 = sqrt(delx2*delx2 + dely2*dely2 + delz2*delz2);
double c = delx1*delx2 + dely1*dely2 + delz1*delz2;
c /= r1*r2;
if (c > 1.0) c = 1.0;
if (c < -1.0) c = -1.0;
double theta = acos(c);
double dtheta = theta - theta0[type];
double dcostheta = cos(dtheta);
double tk = k[type] * (1.0-dcostheta);
return tk;
}