-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathangle_charmm.cpp
308 lines (237 loc) · 8.49 KB
/
angle_charmm.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
/* ----------------------------------------------------------------------
LAMMPS - Large-scale Atomic/Molecular Massively Parallel Simulator
http://lammps.sandia.gov, Sandia National Laboratories
Steve Plimpton, [email protected]
Copyright (2003) Sandia Corporation. Under the terms of Contract
DE-AC04-94AL85000 with Sandia Corporation, the U.S. Government retains
certain rights in this software. This software is distributed under
the GNU General Public License.
See the README file in the top-level LAMMPS directory.
------------------------------------------------------------------------- */
/* ----------------------------------------------------------------------
Contributing author: Paul Crozier (SNL)
------------------------------------------------------------------------- */
#include <math.h>
#include <stdlib.h>
#include "angle_charmm.h"
#include "atom.h"
#include "neighbor.h"
#include "domain.h"
#include "comm.h"
#include "force.h"
#include "math_const.h"
#include "memory.h"
#include "error.h"
using namespace LAMMPS_NS;
using namespace MathConst;
#define SMALL 0.001
/* ---------------------------------------------------------------------- */
AngleCharmm::AngleCharmm(LAMMPS *lmp) : Angle(lmp) {}
/* ---------------------------------------------------------------------- */
AngleCharmm::~AngleCharmm()
{
if (allocated && !copymode) {
memory->destroy(setflag);
memory->destroy(k);
memory->destroy(theta0);
memory->destroy(k_ub);
memory->destroy(r_ub);
}
}
/* ---------------------------------------------------------------------- */
void AngleCharmm::compute(int eflag, int vflag)
{
int i1,i2,i3,n,type;
double delx1,dely1,delz1,delx2,dely2,delz2;
double eangle,f1[3],f3[3];
double dtheta,tk;
double rsq1,rsq2,r1,r2,c,s,a,a11,a12,a22;
double delxUB,delyUB,delzUB,rsqUB,rUB,dr,rk,forceUB;
eangle = 0.0;
if (eflag || vflag) ev_setup(eflag,vflag);
else evflag = 0;
double **x = atom->x;
double **f = atom->f;
int **anglelist = neighbor->anglelist;
int nanglelist = neighbor->nanglelist;
int nlocal = atom->nlocal;
int newton_bond = force->newton_bond;
for (n = 0; n < nanglelist; n++) {
i1 = anglelist[n][0];
i2 = anglelist[n][1];
i3 = anglelist[n][2];
type = anglelist[n][3];
// 1st bond
delx1 = x[i1][0] - x[i2][0];
dely1 = x[i1][1] - x[i2][1];
delz1 = x[i1][2] - x[i2][2];
rsq1 = delx1*delx1 + dely1*dely1 + delz1*delz1;
r1 = sqrt(rsq1);
// 2nd bond
delx2 = x[i3][0] - x[i2][0];
dely2 = x[i3][1] - x[i2][1];
delz2 = x[i3][2] - x[i2][2];
rsq2 = delx2*delx2 + dely2*dely2 + delz2*delz2;
r2 = sqrt(rsq2);
// Urey-Bradley bond
delxUB = x[i3][0] - x[i1][0];
delyUB = x[i3][1] - x[i1][1];
delzUB = x[i3][2] - x[i1][2];
rsqUB = delxUB*delxUB + delyUB*delyUB + delzUB*delzUB;
rUB = sqrt(rsqUB);
// Urey-Bradley force & energy
dr = rUB - r_ub[type];
rk = k_ub[type] * dr;
if (rUB > 0.0) forceUB = -2.0*rk/rUB;
else forceUB = 0.0;
if (eflag) eangle = rk*dr;
// angle (cos and sin)
c = delx1*delx2 + dely1*dely2 + delz1*delz2;
c /= r1*r2;
if (c > 1.0) c = 1.0;
if (c < -1.0) c = -1.0;
s = sqrt(1.0 - c*c);
if (s < SMALL) s = SMALL;
s = 1.0/s;
// harmonic force & energy
dtheta = acos(c) - theta0[type];
tk = k[type] * dtheta;
if (eflag) eangle += tk*dtheta;
a = -2.0 * tk * s;
a11 = a*c / rsq1;
a12 = -a / (r1*r2);
a22 = a*c / rsq2;
f1[0] = a11*delx1 + a12*delx2 - delxUB*forceUB;
f1[1] = a11*dely1 + a12*dely2 - delyUB*forceUB;
f1[2] = a11*delz1 + a12*delz2 - delzUB*forceUB;
f3[0] = a22*delx2 + a12*delx1 + delxUB*forceUB;
f3[1] = a22*dely2 + a12*dely1 + delyUB*forceUB;
f3[2] = a22*delz2 + a12*delz1 + delzUB*forceUB;
// apply force to each of 3 atoms
if (newton_bond || i1 < nlocal) {
f[i1][0] += f1[0];
f[i1][1] += f1[1];
f[i1][2] += f1[2];
}
if (newton_bond || i2 < nlocal) {
f[i2][0] -= f1[0] + f3[0];
f[i2][1] -= f1[1] + f3[1];
f[i2][2] -= f1[2] + f3[2];
}
if (newton_bond || i3 < nlocal) {
f[i3][0] += f3[0];
f[i3][1] += f3[1];
f[i3][2] += f3[2];
}
if (evflag) ev_tally(i1,i2,i3,nlocal,newton_bond,eangle,f1,f3,
delx1,dely1,delz1,delx2,dely2,delz2);
}
}
/* ---------------------------------------------------------------------- */
void AngleCharmm::allocate()
{
allocated = 1;
int n = atom->nangletypes;
memory->create(k,n+1,"angle:k");
memory->create(theta0,n+1,"angle:theta0");
memory->create(k_ub,n+1,"angle:k_ub");
memory->create(r_ub,n+1,"angle:r_ub");
memory->create(setflag,n+1,"angle:setflag");
for (int i = 1; i <= n; i++) setflag[i] = 0;
}
/* ----------------------------------------------------------------------
set coeffs for one type
------------------------------------------------------------------------- */
void AngleCharmm::coeff(int narg, char **arg)
{
if (narg != 5) error->all(FLERR,"Incorrect args for angle coefficients");
if (!allocated) allocate();
int ilo,ihi;
force->bounds(FLERR,arg[0],atom->nangletypes,ilo,ihi);
double k_one = force->numeric(FLERR,arg[1]);
double theta0_one = force->numeric(FLERR,arg[2]);
double k_ub_one = force->numeric(FLERR,arg[3]);
double r_ub_one = force->numeric(FLERR,arg[4]);
// convert theta0 from degrees to radians
int count = 0;
for (int i = ilo; i <= ihi; i++) {
k[i] = k_one;
theta0[i] = theta0_one/180.0 * MY_PI;
k_ub[i] = k_ub_one;
r_ub[i] = r_ub_one;
setflag[i] = 1;
count++;
}
if (count == 0) error->all(FLERR,"Incorrect args for angle coefficients");
}
/* ---------------------------------------------------------------------- */
double AngleCharmm::equilibrium_angle(int i)
{
return theta0[i];
}
/* ----------------------------------------------------------------------
proc 0 writes out coeffs to restart file
------------------------------------------------------------------------- */
void AngleCharmm::write_restart(FILE *fp)
{
fwrite(&k[1],sizeof(double),atom->nangletypes,fp);
fwrite(&theta0[1],sizeof(double),atom->nangletypes,fp);
fwrite(&k_ub[1],sizeof(double),atom->nangletypes,fp);
fwrite(&r_ub[1],sizeof(double),atom->nangletypes,fp);
}
/* ----------------------------------------------------------------------
proc 0 reads coeffs from restart file, bcasts them
------------------------------------------------------------------------- */
void AngleCharmm::read_restart(FILE *fp)
{
allocate();
if (comm->me == 0) {
fread(&k[1],sizeof(double),atom->nangletypes,fp);
fread(&theta0[1],sizeof(double),atom->nangletypes,fp);
fread(&k_ub[1],sizeof(double),atom->nangletypes,fp);
fread(&r_ub[1],sizeof(double),atom->nangletypes,fp);
}
MPI_Bcast(&k[1],atom->nangletypes,MPI_DOUBLE,0,world);
MPI_Bcast(&theta0[1],atom->nangletypes,MPI_DOUBLE,0,world);
MPI_Bcast(&k_ub[1],atom->nangletypes,MPI_DOUBLE,0,world);
MPI_Bcast(&r_ub[1],atom->nangletypes,MPI_DOUBLE,0,world);
for (int i = 1; i <= atom->nangletypes; i++) setflag[i] = 1;
}
/* ----------------------------------------------------------------------
proc 0 writes to data file
------------------------------------------------------------------------- */
void AngleCharmm::write_data(FILE *fp)
{
for (int i = 1; i <= atom->nangletypes; i++)
fprintf(fp,"%d %g %g %g %g\n",
i,k[i],theta0[i]/MY_PI*180.0,k_ub[i],r_ub[i]);
}
/* ---------------------------------------------------------------------- */
double AngleCharmm::single(int type, int i1, int i2, int i3)
{
double **x = atom->x;
double delx1 = x[i1][0] - x[i2][0];
double dely1 = x[i1][1] - x[i2][1];
double delz1 = x[i1][2] - x[i2][2];
domain->minimum_image(delx1,dely1,delz1);
double r1 = sqrt(delx1*delx1 + dely1*dely1 + delz1*delz1);
double delx2 = x[i3][0] - x[i2][0];
double dely2 = x[i3][1] - x[i2][1];
double delz2 = x[i3][2] - x[i2][2];
domain->minimum_image(delx2,dely2,delz2);
double r2 = sqrt(delx2*delx2 + dely2*dely2 + delz2*delz2);
double delxUB = x[i3][0] - x[i1][0];
double delyUB = x[i3][1] - x[i1][1];
double delzUB = x[i3][2] - x[i1][2];
domain->minimum_image(delxUB,delyUB,delzUB);
double rUB = sqrt(delxUB*delxUB + delyUB*delyUB + delzUB*delzUB);
double c = delx1*delx2 + dely1*dely2 + delz1*delz2;
c /= r1*r2;
if (c > 1.0) c = 1.0;
if (c < -1.0) c = -1.0;
double dtheta = acos(c) - theta0[type];
double tk = k[type] * dtheta;
double dr = rUB - r_ub[type];
double rk = k_ub[type] * dr;
return (tk*dtheta + rk*dr);
}