forked from hunkim/DeepLearningZeroToAll
-
Notifications
You must be signed in to change notification settings - Fork 0
/
lab-12-4-rnn_long_char.py
100 lines (75 loc) · 3.15 KB
/
lab-12-4-rnn_long_char.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
from __future__ import print_function
import tensorflow as tf
import numpy as np
from tensorflow.contrib import rnn
tf.set_random_seed(777) # reproducibility
sentence = ("if you want to build a ship, don't drum up people together to "
"collect wood and don't assign them tasks and work, but rather "
"teach them to long for the endless immensity of the sea.")
char_set = list(set(sentence))
char_dic = {w: i for i, w in enumerate(char_set)}
data_dim = len(char_set)
hidden_size = len(char_set)
num_classes = len(char_set)
sequence_length = 10 # Any arbitrary number
learning_rate = 0.1
dataX = []
dataY = []
for i in range(0, len(sentence) - sequence_length):
x_str = sentence[i:i + sequence_length]
y_str = sentence[i + 1: i + sequence_length + 1]
print(i, x_str, '->', y_str)
x = [char_dic[c] for c in x_str] # x str to index
y = [char_dic[c] for c in y_str] # y str to index
dataX.append(x)
dataY.append(y)
batch_size = len(dataX)
X = tf.placeholder(tf.int32, [None, sequence_length])
Y = tf.placeholder(tf.int32, [None, sequence_length])
# One-hot encoding
X_one_hot = tf.one_hot(X, num_classes)
print(X_one_hot) # check out the shape
# Make a lstm cell with hidden_size (each unit output vector size)
def lstm_cell():
cell = rnn.BasicLSTMCell(hidden_size, state_is_tuple=True)
return cell
multi_cells = rnn.MultiRNNCell([lstm_cell() for _ in range(2)], state_is_tuple=True)
# outputs: unfolding size x hidden size, state = hidden size
outputs, _states = tf.nn.dynamic_rnn(multi_cells, X_one_hot, dtype=tf.float32)
# FC layer
X_for_fc = tf.reshape(outputs, [-1, hidden_size])
outputs = tf.contrib.layers.fully_connected(X_for_fc, num_classes, activation_fn=None)
# reshape out for sequence_loss
outputs = tf.reshape(outputs, [batch_size, sequence_length, num_classes])
# All weights are 1 (equal weights)
weights = tf.ones([batch_size, sequence_length])
sequence_loss = tf.contrib.seq2seq.sequence_loss(
logits=outputs, targets=Y, weights=weights)
mean_loss = tf.reduce_mean(sequence_loss)
train_op = tf.train.AdamOptimizer(learning_rate=learning_rate).minimize(mean_loss)
sess = tf.Session()
sess.run(tf.global_variables_initializer())
for i in range(500):
_, l, results = sess.run(
[train_op, mean_loss, outputs], feed_dict={X: dataX, Y: dataY})
for j, result in enumerate(results):
index = np.argmax(result, axis=1)
print(i, j, ''.join([char_set[t] for t in index]), l)
# Let's print the last char of each result to check it works
results = sess.run(outputs, feed_dict={X: dataX})
for j, result in enumerate(results):
index = np.argmax(result, axis=1)
if j is 0: # print all for the first result to make a sentence
print(''.join([char_set[t] for t in index]), end='')
else:
print(char_set[index[-1]], end='')
'''
0 167 tttttttttt 3.23111
0 168 tttttttttt 3.23111
0 169 tttttttttt 3.23111
…
499 167 of the se 0.229616
499 168 tf the sea 0.229616
499 169 the sea. 0.229616
g you want to build a ship, don't drum up people together to collect wood and don't assign them tasks and work, but rather teach them to long for the endless immensity of the sea.
'''