-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathprepare_data.py
34 lines (27 loc) · 1.04 KB
/
prepare_data.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
import cv2
import numpy as np
import matplotlib.pyplot as plt
from PIL import Image
import os
def get_face_class(direct):
imgs = list()
for i in os.listdir(direct):
imgs.append(cv2.imread(direct+"\\" + i))
return imgs
def aggr_dataset(direct,train_set):
x, y = list(), list()
extens = "val"
# print(os.listdir(direct))
for i in os.listdir(direct):
if (os.path.isdir(direct + "\\" + i)):
if(train_set):
extens = "train"
faces = get_face_class(direct + "\\" + i + "\\" + extens)
labels = [i for _ in range(len(faces))]
print("Loaded %d images for class %s" % (len(faces), labels[0]))
x.extend(faces)
y.extend(labels)
return np.asarray(x), np.asarray(y)
trainX,trainY = aggr_dataset("F:\OpenProjects\ImageOrganizer\\training_data", train_set = True)
testX,testY = aggr_dataset("F:\OpenProjects\ImageOrganizer\\training_data", train_set = False)
np.savez_compressed('boys-faces-dataset.npz' , trainX, trainY, testX, testY)