-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathfeaure_extractor.py
58 lines (44 loc) · 1.86 KB
/
feaure_extractor.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
# -*- coding: utf-8 -*-
import os
from config import *
from utils import *
from torch.autograd import Variable
from data import Fashion_attr_prediction, Fashion_inshop
from net import f_model, c_model, p_model
main_model = f_model(model_path=DUMPED_MODEL).cuda(GPU_ID)
color_model = c_model().cuda(GPU_ID)
pooling_model = p_model().cuda(GPU_ID)
extractor = FeatureExtractor(main_model, color_model, pooling_model)
def dump_dataset(loader, deep_feats, color_feats, labels):
for batch_idx, (data, data_path) in enumerate(loader):
data = Variable(data).cuda(GPU_ID)
deep_feat, color_feat = extractor(data)
for i in range(len(data_path)):
path = data_path[i]
feature_n = deep_feat[i].squeeze()
color_feature_n = color_feat[i]
# dump_feature(feature, path)
deep_feats.append(feature_n)
color_feats.append(color_feature_n)
labels.append(path)
if batch_idx % LOG_INTERVAL == 0:
print("{} / {}".format(batch_idx * EXTRACT_BATCH_SIZE, len(loader.dataset)))
def dump():
all_loader = torch.utils.data.DataLoader(
Fashion_attr_prediction(type="all", transform=data_transform_test),
batch_size=EXTRACT_BATCH_SIZE, num_workers=NUM_WORKERS, pin_memory=True
)
deep_feats = []
color_feats = []
labels = []
dump_dataset(all_loader, deep_feats, color_feats, labels)
feat_all = os.path.join(DATASET_BASE, 'all_feat.npy')
color_feat_all = os.path.join(DATASET_BASE, 'all_color_feat.npy')
feat_list = os.path.join(DATASET_BASE, 'all_feat.list')
with open(feat_list, "w") as fw:
fw.write("\n".join(labels))
np.save(feat_all, np.vstack(deep_feats))
np.save(color_feat_all, np.vstack(color_feats))
print("Dumped to all_feat.npy, all_color_feat.npy and all_feat.list.")
if __name__ == "__main__":
dump()