|
34 | 34 | " self.name = 'generator'\n",
|
35 | 35 | " self.model = self.load_model(device, path)\n",
|
36 | 36 | " self.device = device\n",
|
37 |
| - " if device == 'cpu':\n", |
38 |
| - " self.force_32 = True\n", |
39 |
| - " else:\n", |
40 |
| - " self.force_32 = False\n", |
| 37 | + " self.force_32 = False\n", |
41 | 38 | " \n",
|
42 | 39 | " def load_model(self, device, path):\n",
|
43 | 40 | " with dnnlib.util.open_url(path) as f:\n",
|
44 | 41 | " network= legacy.load_network_pkl(f)\n",
|
45 | 42 | " self.G_ema = network['G_ema'].to(device)\n",
|
46 | 43 | " self.D = network['D'].to(device)\n",
|
47 | 44 | "# self.G = network['G'].to(device)\n",
|
48 |
| - " if device == 'cpu':\n", |
49 |
| - " self.G_ema = self.G_ema.float()\n", |
50 | 45 | " return self.G_ema\n",
|
51 | 46 | " \n",
|
52 | 47 | " def generate(self, z, c, fts, noise_mode='const', return_styles=True):\n",
|
|
76 | 71 | "source": [
|
77 | 72 | "with torch.no_grad():\n",
|
78 | 73 | "\n",
|
79 |
| - " device = 'cuda:0'\n", |
| 74 | + " device = 'cuda:0' # please use GPU, do not use CPU\n", |
80 | 75 | " path = './some_pre-trained_models.pkl' # pre-trained model\n",
|
81 | 76 | " generator = Generator(device=device, path=path)\n",
|
82 | 77 | " clip_model, _ = clip.load(\"ViT-B/32\", device=device)\n",
|
|
0 commit comments