-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathAdvancedVulnerabilityPropagationModel.py
373 lines (322 loc) · 12.2 KB
/
AdvancedVulnerabilityPropagationModel.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
import torch
import torch.nn as nn
import torch.optim as optim
import numpy as np
import networkx as nx
import matplotlib.pyplot as plt
import seaborn as sns
import pandas as pd
from typing import List, Dict, Any, Tuple
from sklearn.manifold import TSNE
from scipy.stats import entropy
class AdvancedVulnerabilityPropagationModel(nn.Module):
"""
Comprehensive Neural Network for Vulnerability Propagation Modeling
"""
def __init__(
self,
input_dimensions: int = 768,
vulnerability_dimensions: int = 50
):
super().__init__()
# Multi-layer vulnerability transformation network
self.vulnerability_encoder = nn.Sequential(
nn.Linear(input_dimensions, 512),
nn.BatchNorm1d(512),
nn.ReLU(),
nn.Dropout(0.3),
nn.Linear(512, 256),
nn.BatchNorm1d(256),
nn.ReLU(),
nn.Dropout(0.3),
nn.Linear(256, vulnerability_dimensions)
)
# Attention-based vulnerability interaction mechanism
self.vulnerability_attention = nn.MultiheadAttention(
embed_dim=vulnerability_dimensions,
num_heads=8
)
# Vulnerability propagation decoder
self.vulnerability_decoder = nn.Sequential(
nn.Linear(vulnerability_dimensions, 256),
nn.ReLU(),
nn.Linear(256, 512),
nn.ReLU(),
nn.Linear(512, input_dimensions)
)
def forward(
self,
vulnerability_embedding: torch.Tensor
) -> Tuple[torch.Tensor, torch.Tensor]:
"""
Comprehensive vulnerability transformation and propagation
"""
# Encode vulnerability embedding
encoded_vulnerability = self.vulnerability_encoder(vulnerability_embedding)
# Apply attention-based interaction
vulnerability_interaction, _ = self.vulnerability_attention(
encoded_vulnerability.unsqueeze(0),
encoded_vulnerability.unsqueeze(0),
encoded_vulnerability.unsqueeze(0)
)
# Decode vulnerability propagation
propagated_vulnerability = self.vulnerability_decoder(
vulnerability_interaction.squeeze()
)
return encoded_vulnerability, propagated_vulnerability
class AttackStrategyOptimizationFramework:
"""
Advanced Machine Learning-Based Attack Strategy Optimization
"""
def __init__(
self,
embedding_model,
initial_strategies: List[Dict[str, Any]]
):
self.embedding_model = embedding_model
self.vulnerability_propagation_model = AdvancedVulnerabilityPropagationModel()
# Optimization parameters
self.population_size = 100
self.generations = 50
self.mutation_rate = 0.1
self.crossover_rate = 0.7
# Initial population of attack strategies
self.population = self._initialize_population(initial_strategies)
def _initialize_population(
self,
initial_strategies: List[Dict[str, Any]]
) -> List[Dict[str, Any]]:
"""
Generate diverse initial attack strategy population
"""
population = initial_strategies.copy()
# Generate additional strategies with genetic diversity
while len(population) < self.population_size:
new_strategy = self._generate_novel_strategy()
population.append(new_strategy)
return population
def _generate_novel_strategy(self) -> Dict[str, Any]:
"""
Generate a sophisticated, novel attack strategy
"""
attack_dimensions = [
'semantic_manipulation',
'cognitive_exploitation',
'linguistic_deconstruction',
'contextual_reframing',
'information_theoretic_attack'
]
return {
'dimensions': random.sample(
attack_dimensions,
random.randint(1, len(attack_dimensions))
),
'complexity_score': np.random.random(),
'mutation_potential': np.random.random(),
'entropy_coefficient': entropy([np.random.random() for _ in range(5)])
}
def optimize_attack_strategies(self) -> List[Dict[str, Any]]:
"""
Comprehensive attack strategy optimization using genetic algorithm
"""
for generation in range(self.generations):
# Evaluate population fitness
fitness_scores = self._evaluate_population_fitness()
# Selection
selected_strategies = self._tournament_selection(fitness_scores)
# Crossover
offspring = self._crossover(selected_strategies)
# Mutation
mutated_offspring = self._mutation(offspring)
# Replace population
self.population = selected_strategies + mutated_offspring
return self.population
def _evaluate_population_fitness(self) -> List[float]:
"""
Multi-dimensional fitness evaluation
"""
fitness_scores = []
for strategy in self.population:
# Compute complex fitness metric
fitness = (
len(strategy['dimensions']) * 0.3 +
strategy['complexity_score'] * 0.4 +
strategy['mutation_potential'] * 0.2 +
strategy['entropy_coefficient'] * 0.1
)
fitness_scores.append(fitness)
return fitness_scores
def _tournament_selection(
self,
fitness_scores: List[float]
) -> List[Dict[str, Any]]:
"""
Tournament-based strategy selection
"""
selected_strategies = []
tournament_size = 5
for _ in range(self.population_size // 2):
tournament = random.sample(
list(zip(self.population, fitness_scores)),
tournament_size
)
winner = max(tournament, key=lambda x: x[1])[0]
selected_strategies.append(winner)
return selected_strategies
def _crossover(
self,
selected_strategies: List[Dict[str, Any]]
) -> List[Dict[str, Any]]:
"""
Advanced crossover with semantic mixing
"""
offspring = []
for _ in range(len(selected_strategies) // 2):
parent1, parent2 = random.sample(selected_strategies, 2)
if random.random() < self.crossover_rate:
child = {
'dimensions': list(set(parent1['dimensions'] + parent2['dimensions'])),
'complexity_score': np.mean([
parent1['complexity_score'],
parent2['complexity_score']
]),
'mutation_potential': np.mean([
parent1['mutation_potential'],
parent2['mutation_potential']
]),
'entropy_coefficient': entropy([
parent1['entropy_coefficient'],
parent2['entropy_coefficient']
])
}
offspring.append(child)
return offspring
def _mutation(
self,
offspring: List[Dict[str, Any]]
) -> List[Dict[str, Any]]:
"""
Advanced mutation with semantic preservation
"""
mutated_offspring = []
attack_dimensions = [
'semantic_manipulation',
'cognitive_exploitation',
'linguistic_deconstruction',
'contextual_reframing',
'information_theoretic_attack'
]
for strategy in offspring:
if random.random() < self.mutation_rate:
# Dimension mutation
if random.random() < 0.5:
strategy['dimensions'].append(
random.choice(
[dim for dim in attack_dimensions
if dim not in strategy['dimensions']]
)
)
else:
strategy['dimensions'].pop(
random.randint(0, len(strategy['dimensions']) - 1)
)
# Continuous parameter mutation
strategy['complexity_score'] = min(
max(strategy['complexity_score'] + random.uniform(-0.1, 0.1), 0), 1
)
strategy['mutation_potential'] = min(
max(strategy['mutation_potential'] + random.uniform(-0.1, 0.1), 0), 1
)
mutated_offspring.append(strategy)
return mutated_offspring
class AdvancedVisualizationToolkit:
"""
Comprehensive Visualization and Analysis Tools
"""
@staticmethod
def visualize_attack_strategy_space(
attack_strategies: List[Dict[str, Any]]
):
"""
Generate high-dimensional visualization of attack strategies
"""
# Extract features for visualization
features = np.array([
[
len(strategy['dimensions']),
strategy['complexity_score'],
strategy['mutation_potential'],
strategy['entropy_coefficient']
] for strategy in attack_strategies
])
# Dimensionality reduction
tsne = TSNE(n_components=2, random_state=42)
reduced_features = tsne.fit_transform(features)
# Create visualization
plt.figure(figsize=(12, 8))
plt.scatter(
reduced_features[:, 0],
reduced_features[:, 1],
c=[strategy['complexity_score'] for strategy in attack_strategies],
cmap='viridis',
alpha=0.7
)
plt.colorbar(label='Complexity Score')
plt.title('Attack Strategy Space Visualization')
plt.xlabel('t-SNE Dimension 1')
plt.ylabel('t-SNE Dimension 2')
plt.tight_layout()
plt.show()
@staticmethod
def generate_strategy_correlation_heatmap(
attack_strategies: List[Dict[str, Any]]
):
"""
Generate correlation heatmap of attack strategy parameters
"""
# Convert strategies to DataFrame
strategy_df = pd.DataFrame([
{
'dimension_count': len(strategy['dimensions']),
'complexity_score': strategy['complexity_score'],
'mutation_potential': strategy['mutation_potential'],
'entropy_coefficient': strategy['entropy_coefficient']
} for strategy in attack_strategies
])
# Compute correlation matrix
correlation_matrix = strategy_df.corr()
# Visualize correlation heatmap
plt.figure(figsize=(10, 8))
sns.heatmap(
correlation_matrix,
annot=True,
cmap='coolwarm',
center=0
)
plt.title('Attack Strategy Parameter Correlations')
plt.tight_layout()
plt.show()
def main():
# Load embedding model
embedding_model = transformers.AutoModel.from_pretrained('sentence-transformers/all-MiniLM-L6-v2')
# Initialize initial attack strategies
initial_strategies = [
{
'dimensions': ['semantic_manipulation', 'cognitive_exploitation'],
'complexity_score': 0.7,
'mutation_potential': 0.5,
'entropy_coefficient': 0.6
}
]
# Create attack strategy optimization framework
optimization_framework = AttackStrategyOptimizationFramework(
embedding_model,
initial_strategies
)
# Optimize attack strategies
optimized_strategies = optimization_framework.optimize_attack_strategies()
# Visualize results
AdvancedVisualizationToolkit.visualize_attack_strategy_space(optimized_strategies)
AdvancedVisualizationToolkit.generate_strategy_correlation_heatmap(optimized_strategies)
if __name__ == "__main__":
main()