-
Notifications
You must be signed in to change notification settings - Fork 0
/
AdvancedAttackStrategyIntegrationFramework.py
305 lines (268 loc) · 10.9 KB
/
AdvancedAttackStrategyIntegrationFramework.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
import torch
import torch.nn as nn
import torch.optim as optim
import numpy as np
import pandas as pd
import networkx as nx
import matplotlib.pyplot as plt
import seaborn as sns
import plotly.express as px
import plotly.graph_objects as go
from typing import List, Dict, Any, Tuple
from sklearn.preprocessing import StandardScaler
from scipy.stats import mutual_info_score
class AdvancedAttackStrategyIntegrationFramework:
"""
Comprehensive Attack Strategy Integration and Analysis System
"""
class AttackStrategyKnowledgeGraph:
"""
Advanced Knowledge Representation for Attack Strategies
"""
def __init__(self):
self.graph = nx.MultiDiGraph()
def add_attack_strategy_knowledge(
self,
strategy: Dict[str, Any],
performance_metrics: Dict[str, float]
):
"""
Integrate attack strategy knowledge into multi-dimensional graph
"""
# Generate unique strategy node
strategy_node = f"strategy_{hash(frozenset(strategy.items()))}"
# Add strategy node with comprehensive metadata
self.graph.add_node(
strategy_node,
dimensions=strategy['dimensions'],
complexity_score=strategy['complexity_score'],
mutation_potential=strategy['mutation_potential'],
performance_metrics=performance_metrics
)
# Create interdimensional relationship edges
for dim1 in strategy['dimensions']:
for dim2 in strategy['dimensions']:
if dim1 != dim2:
self.graph.add_edge(
dim1,
dim2,
weight=performance_metrics.get('cross_dimensional_synergy', 0)
)
def analyze_strategy_relationships(self) -> Dict[str, Any]:
"""
Comprehensive analysis of strategy interdimensional relationships
"""
analysis_results = {
'centrality_metrics': {},
'community_structures': {},
'dimensional_interactions': {}
}
# Compute centrality metrics
analysis_results['centrality_metrics'] = {
'degree_centrality': nx.degree_centrality(self.graph),
'betweenness_centrality': nx.betweenness_centrality(self.graph),
'eigenvector_centrality': nx.eigenvector_centrality(self.graph)
}
# Detect community structures
try:
communities = list(nx.community.louvain_communities(
self.graph.to_undirected()
))
analysis_results['community_structures'] = {
f'community_{i}': list(community)
for i, community in enumerate(communities)
}
except Exception:
pass
return analysis_results
class AdvancedFitnessEvaluator:
"""
Sophisticated Multi-Dimensional Fitness Evaluation
"""
def __init__(self):
self.scaler = StandardScaler()
def compute_comprehensive_fitness(
self,
strategy: Dict[str, Any],
attack_results: List[Dict[str, Any]]
) -> Dict[str, float]:
"""
Advanced fitness evaluation with multiple complexity metrics
"""
# Extract performance metrics
performance_metrics = self._extract_performance_metrics(attack_results)
# Compute multi-dimensional fitness score
fitness_components = {
'dimensional_diversity': len(strategy['dimensions']) / 5.0,
'complexity_utilization': strategy['complexity_score'],
'mutation_adaptability': strategy['mutation_potential'],
'attack_success_rate': performance_metrics.get('success_rate', 0),
'information_gain': self._compute_information_gain(attack_results),
'strategy_entropy': self._compute_strategy_entropy(strategy)
}
# Normalize and weight fitness components
normalized_components = self.scaler.fit_transform(
np.array(list(fitness_components.values())).reshape(1, -1)
)[0]
# Weighted fitness computation
weights = [0.2, 0.15, 0.15, 0.2, 0.15, 0.15]
comprehensive_fitness = np.dot(normalized_components, weights)
return {
'comprehensive_fitness': comprehensive_fitness,
'fitness_components': dict(zip(fitness_components.keys(), normalized_components))
}
def _extract_performance_metrics(
self,
attack_results: List[Dict[str, Any]]
) -> Dict[str, float]:
"""
Extract nuanced performance metrics from attack results
"""
if not attack_results:
return {}
success_vulnerabilities = [
result['vulnerability_score']
for result in attack_results
if result['vulnerability_score'] > 0.5
]
return {
'success_rate': len(success_vulnerabilities) / len(attack_results),
'average_vulnerability': np.mean(
[result['vulnerability_score'] for result in attack_results]
),
'max_vulnerability': np.max(
[result['vulnerability_score'] for result in attack_results]
)
}
def _compute_information_gain(
self,
attack_results: List[Dict[str, Any]]
) -> float:
"""
Compute information theoretic metrics of attack results
"""
vulnerability_scores = [
result['vulnerability_score']
for result in attack_results
]
# Compute mutual information
return mutual_info_score(
vulnerability_scores,
np.random.permutation(vulnerability_scores)
)
def _compute_strategy_entropy(
self,
strategy: Dict[str, Any]
) -> float:
"""
Compute entropy of attack strategy configuration
"""
strategy_vector = [
len(strategy['dimensions']),
strategy['complexity_score'],
strategy['mutation_potential']
]
return entropy(strategy_vector)
class InteractiveVisualizationEngine:
"""
Advanced Interactive Visualization Tools
"""
@staticmethod
def create_interactive_strategy_explorer(
attack_strategies: List[Dict[str, Any]]
):
"""
Create interactive Plotly-based strategy exploration dashboard
"""
# Extract strategy features
strategy_df = pd.DataFrame([
{
'Dimensions': len(strategy['dimensions']),
'Complexity': strategy['complexity_score'],
'Mutation Potential': strategy['mutation_potential'],
'Entropy Coefficient': strategy['entropy_coefficient']
} for strategy in attack_strategies
])
# Create interactive scatter plot
fig = px.scatter_matrix(
strategy_df,
dimensions=strategy_df.columns,
color_continuous_scale=px.colors.sequential.Viridis
)
fig.update_layout(
title='Interactive Attack Strategy Explorer',
height=1000,
width=1000
)
fig.show()
@staticmethod
def generate_3d_strategy_visualization(
attack_strategies: List[Dict[str, Any]]
):
"""
Create 3D visualization of attack strategy space
"""
# Extract features
dimensions = [len(strategy['dimensions']) for strategy in attack_strategies]
complexity = [strategy['complexity_score'] for strategy in attack_strategies]
mutation_potential = [strategy['mutation_potential'] for strategy in attack_strategies]
# Create 3D scatter plot
fig = go.Figure(data=[go.Scatter3d(
x=dimensions,
y=complexity,
z=mutation_potential,
mode='markers',
marker=dict(
size=5,
color=complexity,
colorscale='Viridis',
opacity=0.8
)
)])
fig.update_layout(
title='3D Attack Strategy Space Visualization',
scene=dict(
xaxis_title='Dimensional Diversity',
yaxis_title='Complexity Score',
zaxis_title='Mutation Potential'
)
)
fig.show()
def main():
# Create framework components
knowledge_graph = AdvancedAttackStrategyIntegrationFramework.AttackStrategyKnowledgeGraph()
fitness_evaluator = AdvancedAttackStrategyIntegrationFramework.AdvancedFitnessEvaluator()
visualization_engine = AdvancedAttackStrategyIntegrationFramework.InteractiveVisualizationEngine()
# Sample attack strategies
attack_strategies = [
{
'dimensions': ['semantic_manipulation', 'cognitive_exploitation'],
'complexity_score': 0.7,
'mutation_potential': 0.5,
'entropy_coefficient': 0.6
},
# Add more strategies...
]
# Simulate attack results
simulated_attack_results = [
{'vulnerability_score': np.random.random()} for _ in range(10)
]
# Evaluate fitness of strategies
fitness_results = {}
for strategy in attack_strategies:
fitness_results[str(strategy)] = fitness_evaluator.compute_comprehensive_fitness(
strategy,
simulated_attack_results
)
# Add to knowledge graph
knowledge_graph.add_attack_strategy_knowledge(
strategy,
fitness_results[str(strategy)]
)
# Analyze strategy relationships
strategy_analysis = knowledge_graph.analyze_strategy_relationships()
# Interactive visualizations
visualization_engine.create_interactive_strategy_explorer(attack_strategies)
visualization_engine.generate_3d_strategy_visualization(attack_strategies)
if __name__ == "__main__":
main()