-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathxception.py
130 lines (99 loc) · 5.6 KB
/
xception.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
import keras
from keras.models import Model
from keras.layers import Input, BatchNormalization, Conv2D, SeparableConv2D, MaxPooling2D
from keras.layers import GlobalAveragePooling2D, Dense, Activation, Dropout
from keras import layers
from keras.utils.data_utils import get_file
TF_WEIGHTS_PATH_NO_TOP = 'https://github.com/fchollet/deep-learning-models/releases/download/v0.4/xception_weights_tf_dim_ordering_tf_kernels_notop.h5'
def preprocess_input(x):
x /= 255.0
x -= 0.5
x *= 2.0
return x
def Xception(weight_decay=1e-4, classes=256, input_shape=(299, 299, 3)):
img_input = Input(shape=input_shape)
x = Conv2D(32, (3, 3), strides=(2, 2), use_bias=False, name='block1_conv1')(img_input)
x = BatchNormalization(name='block1_conv1_bn')(x)
x = Activation('relu', name='block1_conv1_act')(x)
x = Conv2D(64, (3, 3), use_bias=False, name='block1_conv2')(x)
x = BatchNormalization(name='block1_conv2_bn')(x)
x = Activation('relu', name='block1_conv2_act')(x)
residual = Conv2D(128, (1, 1), strides=(2, 2), padding='same', use_bias=False)(x)
residual = BatchNormalization()(residual)
x = SeparableConv2D(128, (3, 3), padding='same', use_bias=False, name='block2_sepconv1')(x)
x = BatchNormalization(name='block2_sepconv1_bn')(x)
x = Activation('relu', name='block2_sepconv2_act')(x)
x = SeparableConv2D(128, (3, 3), padding='same', use_bias=False, name='block2_sepconv2')(x)
x = BatchNormalization(name='block2_sepconv2_bn')(x)
x = MaxPooling2D((3, 3), strides=(2, 2), padding='same', name='block2_pool')(x)
x = layers.add([x, residual])
residual = Conv2D(256, (1, 1), strides=(2, 2), padding='same', use_bias=False)(x)
residual = BatchNormalization()(residual)
x = Activation('relu', name='block3_sepconv1_act')(x)
x = SeparableConv2D(256, (3, 3), padding='same', use_bias=False, name='block3_sepconv1')(x)
x = BatchNormalization(name='block3_sepconv1_bn')(x)
x = Activation('relu', name='block3_sepconv2_act')(x)
x = SeparableConv2D(256, (3, 3), padding='same', use_bias=False, name='block3_sepconv2')(x)
x = BatchNormalization(name='block3_sepconv2_bn')(x)
x = MaxPooling2D((3, 3), strides=(2, 2), padding='same', name='block3_pool')(x)
x = layers.add([x, residual])
residual = Conv2D(728, (1, 1), strides=(2, 2), padding='same', use_bias=False)(x)
residual = BatchNormalization()(residual)
x = Activation('relu', name='block4_sepconv1_act')(x)
x = SeparableConv2D(728, (3, 3), padding='same', use_bias=False, name='block4_sepconv1')(x)
x = BatchNormalization(name='block4_sepconv1_bn')(x)
x = Activation('relu', name='block4_sepconv2_act')(x)
x = SeparableConv2D(728, (3, 3), padding='same', use_bias=False, name='block4_sepconv2')(x)
x = BatchNormalization(name='block4_sepconv2_bn')(x)
x = MaxPooling2D((3, 3), strides=(2, 2), padding='same', name='block4_pool')(x)
x = layers.add([x, residual])
for i in range(8):
residual = x
prefix = 'block' + str(i + 5)
x = Activation('relu', name=prefix + '_sepconv1_act')(x)
x = SeparableConv2D(728, (3, 3), padding='same', use_bias=False, name=prefix + '_sepconv1')(x)
x = BatchNormalization(name=prefix + '_sepconv1_bn')(x)
x = Activation('relu', name=prefix + '_sepconv2_act')(x)
x = SeparableConv2D(728, (3, 3), padding='same', use_bias=False, name=prefix + '_sepconv2')(x)
x = BatchNormalization(name=prefix + '_sepconv2_bn')(x)
x = Activation('relu', name=prefix + '_sepconv3_act')(x)
x = SeparableConv2D(728, (3, 3), padding='same', use_bias=False, name=prefix + '_sepconv3')(x)
x = BatchNormalization(name=prefix + '_sepconv3_bn')(x)
x = layers.add([x, residual])
residual = Conv2D(1024, (1, 1), strides=(2, 2), padding='same', use_bias=False)(x)
residual = BatchNormalization()(residual)
x = Activation('relu', name='block13_sepconv1_act')(x)
x = SeparableConv2D(728, (3, 3), padding='same', use_bias=False, name='block13_sepconv1')(x)
x = BatchNormalization(name='block13_sepconv1_bn')(x)
x = Activation('relu', name='block13_sepconv2_act')(x)
x = SeparableConv2D(1024, (3, 3), padding='same', use_bias=False, name='block13_sepconv2')(x)
x = BatchNormalization(name='block13_sepconv2_bn')(x)
x = MaxPooling2D((3, 3), strides=(2, 2), padding='same', name='block13_pool')(x)
x = layers.add([x, residual])
x = SeparableConv2D(1536, (3, 3), padding='same', use_bias=False, name='block14_sepconv1')(x)
x = BatchNormalization(name='block14_sepconv1_bn')(x)
x = Activation('relu', name='block14_sepconv1_act')(x)
x = SeparableConv2D(
2048, (3, 3), padding='same',
use_bias=False, name='block14_sepconv2',
depthwise_regularizer=keras.regularizers.l2(weight_decay),
pointwise_regularizer=keras.regularizers.l2(weight_decay)
)(x)
x = BatchNormalization(name='block14_sepconv2_bn')(x)
x = Activation('relu', name='block14_sepconv2_act')(x)
x = GlobalAveragePooling2D(name='avg_pool')(x)
model = Model(img_input, x, name='xception')
# load weights
weights_path = get_file(
'xception_weights_tf_dim_ordering_tf_kernels_notop.h5',
TF_WEIGHTS_PATH_NO_TOP, cache_subdir='models'
)
model.load_weights(weights_path)
x = model.output
x = Dropout(0.5)(x)
logits = Dense(classes, kernel_regularizer=keras.regularizers.l2(weight_decay))(x)
probabilities = Activation('softmax')(logits)
model = Model(model.input, probabilities, name='xception')
for layer in model.layers[:-7]:
layer.trainable = False
return model