forked from torch/nn
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathSpatialSubSampling.lua
54 lines (45 loc) · 1.38 KB
/
SpatialSubSampling.lua
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
local SpatialSubSampling, parent = torch.class('nn.SpatialSubSampling', 'nn.Module')
function SpatialSubSampling:__init(nInputPlane, kW, kH, dW, dH)
parent.__init(self)
dW = dW or 1
dH = dH or 1
self.nInputPlane = nInputPlane
self.kW = kW
self.kH = kH
self.dW = dW
self.dH = dH
self.weight = torch.Tensor(nInputPlane)
self.bias = torch.Tensor(nInputPlane)
self.gradWeight = torch.Tensor(nInputPlane)
self.gradBias = torch.Tensor(nInputPlane)
self:reset()
end
function SpatialSubSampling:reset(stdv)
if stdv then
stdv = stdv * math.sqrt(3)
else
stdv = 1/math.sqrt(self.kW*self.kH)
end
if nn.oldSeed then
self.weight:apply(function()
return torch.uniform(-stdv, stdv)
end)
self.bias:apply(function()
return torch.uniform(-stdv, stdv)
end)
else
self.weight:uniform(-stdv, stdv)
self.bias:uniform(-stdv, stdv)
end
end
function SpatialSubSampling:updateOutput(input)
return input.nn.SpatialSubSampling_updateOutput(self, input)
end
function SpatialSubSampling:updateGradInput(input, gradOutput)
if self.gradInput then
return input.nn.SpatialSubSampling_updateGradInput(self, input, gradOutput)
end
end
function SpatialSubSampling:accGradParameters(input, gradOutput, scale)
return input.nn.SpatialSubSampling_accGradParameters(self, input, gradOutput, scale)
end