-
Notifications
You must be signed in to change notification settings - Fork 8
/
Copy pathnpg.py
115 lines (88 loc) · 3.48 KB
/
npg.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
import numpy as np
from utils import *
from hparams import HyperParams as hp
def get_returns(rewards, masks):
rewards = torch.Tensor(rewards)
masks = torch.Tensor(masks)
returns = torch.zeros_like(rewards)
running_returns = 0
for t in reversed(range(0, len(rewards))):
running_returns = rewards[t] + hp.gamma * running_returns * masks[t]
returns[t] = running_returns
returns = (returns - returns.mean()) / returns.std()
return returns
def get_loss(actor, returns, states, actions):
mu, std, logstd = actor(torch.Tensor(states))
log_policy = log_density(torch.Tensor(actions), mu, std, logstd)
returns = returns.unsqueeze(1)
objective = returns * log_policy
objective = objective.mean()
return objective
def train_critic(critic, states, returns, critic_optim):
criterion = torch.nn.MSELoss()
n = len(states)
arr = np.arange(n)
for epoch in range(5):
np.random.shuffle(arr)
for i in range(n // hp.batch_size):
batch_index = arr[hp.batch_size * i: hp.batch_size * (i + 1)]
batch_index = torch.LongTensor(batch_index)
inputs = torch.Tensor(states)[batch_index]
target = returns.unsqueeze(1)[batch_index]
values = critic(inputs)
loss = criterion(values, target)
critic_optim.zero_grad()
loss.backward()
critic_optim.step()
def fisher_vector_product(actor, states, p):
p.detach()
kl = kl_divergence(new_actor=actor, old_actor=actor, states=states)
kl = kl.mean()
kl_grad = torch.autograd.grad(kl, actor.parameters(), create_graph=True)
kl_grad = flat_grad(kl_grad) # check kl_grad == 0
kl_grad_p = (kl_grad * p).sum()
kl_hessian_p = torch.autograd.grad(kl_grad_p, actor.parameters())
kl_hessian_p = flat_hessian(kl_hessian_p)
return kl_hessian_p + 0.1 * p
# from openai baseline code
# https://github.com/openai/baselines/blob/master/baselines/common/cg.py
def conjugate_gradient(actor, states, b, nsteps, residual_tol=1e-10):
x = torch.zeros(b.size())
r = b.clone()
p = b.clone()
rdotr = torch.dot(r, r)
for i in range(nsteps):
_Avp = fisher_vector_product(actor, states, p)
alpha = rdotr / torch.dot(p, _Avp)
x += alpha * p
r -= alpha * _Avp
new_rdotr = torch.dot(r, r)
betta = new_rdotr / rdotr
p = r + betta * p
rdotr = new_rdotr
if rdotr < residual_tol:
break
return x
def train_model(actor, critic, memory, actor_optim, critic_optim):
memory = np.array(memory)
states = np.vstack(memory[:, 0])
actions = list(memory[:, 1])
rewards = list(memory[:, 2])
masks = list(memory[:, 3])
# ----------------------------
# step 1: get returns
returns = get_returns(rewards, masks)
# ----------------------------
# step 2: train critic several steps with respect to returns
train_critic(critic, states, returns, critic_optim)
# ----------------------------
# step 3: get gradient of loss and hessian of kl
loss = get_loss(actor, returns, states, actions)
loss_grad = torch.autograd.grad(loss, actor.parameters())
loss_grad = flat_grad(loss_grad)
step_dir = conjugate_gradient(actor, states, loss_grad.data, nsteps=10)
# ----------------------------
# step 4: get step direction and step size and update actor
params = flat_params(actor)
new_params = params + 0.5 * step_dir
update_model(actor, new_params)