Skip to content

Tracking deprecated features. #3986

@trivialfis

Description

@trivialfis
Feature PR(or time) Replacement Removed
GPU Objectives. #3643 Now all objectives having GPU port will use GPU by default. #4690
grow_fast_histmaker #3836 Renamed to grow_quantile_histmaker.
Some of R parameters documented in R/xgb.importance.R. #1964 ?? ??
num_pbuffer_deprecated ?? ??
python/training.py: train::learning_rates #1797 Now use use callback API. #5155
python/sklearn.py: seed ?? Now use random_state. #4929
python/sklearn.py: nthread ?? Now use n_jobs. #4929
XGDMatrixCreateFromCSC #1600 XGDMatrixCreateFromCSCEx
XGDMatrixCreateFromCSR #1600 XGDMatrixCreateFromCSR_omp
silent #3982 Now use verbosity #5476
gpu_exact #4527 Users are encouraged to use hist or approx on GPU. #4742
n_gpus #4749 Use distributed frameworks like dask or spark #6821
reg:linear #4267 Renamed to reg:squarederror #4267
XGDMatrixSetGroup #4864 Use XGDMatrixSetUIntInfo instead.
TreeParam.max_depth #5101 This variable is never used (TrainParam.max_depth is still supported) #5101
Old Python callback functions #6199 A new callback interface is designed. #7280
Label encoder in XGBClassifier (use_label_encoder) #6269 User should perform label encoding manually. #7357
ntree_limit in Python #6668 Use iteration_range or model slicing instead. #8345 (2.0.0)
positional arguments in Python package #6365 Use keyword arguments instead.
use_gpu in PySpark #9390 (2.0.0) Use device instead. #11554 (3.1.0)
gpu_hist tree method #9385 (2.0.0) Use device instead. #11549 (3.1.0)
gpu_coord_descent updater #9507 (2.0.0) Use device instead. #11395 (3.1.0)
predictor (cpu_predictor, gpu_predictor) #9129 (2.0.0) Use device instead. #9129 (2.0.0)
gpu_id #9385 (2.0.0) Use device instead. #11543 (3.1.0)
fit parameters in the sklearn interface #6751 (1.6.0) Use set_params instead. #9986 (2.1.0)
Command line interface #9485 (2.1.0) Use other language bindings instead #11720 (3.2.0)
Reading files from URLs like S3 #9504 (2.1.0) Use third-party libraries instead. #9504 (2.1.0)
MPI support in RABIT #9525 (2.1.0) Use RABIT or NCCL instead (along with grpc for federated) #9525 (2.1.0)
XGDMatrixSetDenseInfo #10139 (2.1.0) Use XGDMatrixSetInfoFromInterface
manylinux2014 Python wheels #10475 (2.1.0) Use a recent Linux distribution and manylinux2_28 wheels instead #11673 (3.1.0)
feature_weights in the sklearn fit method #9506 (3.0.0) Use set_params instead.
Dask scheduler_address #10983 (3.0.0) Use the Config instead.
Text file inputs. #11590 (3.1.0) Use third-party data structures like numpy.

Metadata

Metadata

Assignees

No one assigned

    Type

    No type

    Projects

    No projects

    Milestone

    No milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions