-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathconvert_findfirstchar.go
1142 lines (1006 loc) · 43.8 KB
/
convert_findfirstchar.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
package main
import (
"bytes"
"fmt"
"math"
"unicode"
"github.com/dlclark/regexp2/syntax"
)
func (c *converter) emitFindFirstChar(rm *regexpData) {
c.writeLineFmt("func (%s_Engine) FindFirstChar(r *regexp2.Runner) bool {", rm.GeneratedName)
//c.writeLine(`fmt.Println("FindFirstChar")`)
defer func() {
c.writeLine("}\n")
}()
rtl := rm.Options&syntax.RightToLeft != 0
root := rm.Tree.Root.Children[0]
if root.T == syntax.NtEmpty {
// we always match the current char since we match the empty string
c.writeLine("return true")
return
}
if root.T == syntax.NtNothing {
// this never matches anything
c.writeLine("return false")
return
}
needPosVar := true
oldOut := c.buf
buf := &bytes.Buffer{}
c.buf = buf
defer func() {
// lets clean this up at the end
c.buf = oldOut
if needPosVar {
c.writeLine("pos := r.Runtextpos")
}
// write additionalDeclarations
for _, l := range rm.additionalDeclarations {
c.writeLine(l)
}
//reset
rm.additionalDeclarations = []string{}
// then write our temp out buffer into our saved buffer
c.buf.Write(buf.Bytes())
}()
// Generate length check. If the input isn't long enough to possibly match, fail quickly.
// It's rare for min required length to be 0, so we don't bother special-casing the check,
// especially since we want the "return false" code regardless.
minRequiredLength := rm.Tree.FindOptimizations.MinRequiredLength
endBlock := ""
if minRequiredLength > 0 {
if minRequiredLength == 1 {
c.writeLine("// Empty matches aren't possible")
if !rtl {
c.writeLine("if pos < len(r.Runtext) {")
} else {
c.writeLine("if pos > 1 {")
}
} else {
c.writeLineFmt("// Any possible match is at least %v characters", minRequiredLength)
if !rtl {
c.writeLineFmt("if pos <= len(r.Runtext) - %v {", minRequiredLength)
} else {
c.writeLineFmt("if pos >= %v {", minRequiredLength)
}
}
endBlock = "}"
}
const NoMatchFound = "NoMatchFound"
if !c.emitAnchors(rm) {
// Either anchors weren't specified, or they don't completely root all matches to a specific location.
// Emit the code for whatever find mode has been determined.
switch rm.Tree.FindOptimizations.FindMode {
case syntax.LeadingString_LeftToRight, syntax.LeadingString_OrdinalIgnoreCase_LeftToRight, syntax.FixedDistanceString_LeftToRight:
c.emitIndexOfString_LeftToRight(rm)
case syntax.LeadingString_RightToLeft:
c.emitIndexOfString_RightToLeft(rm)
case syntax.LeadingStrings_LeftToRight, syntax.LeadingStrings_OrdinalIgnoreCase_LeftToRight:
c.emitIndexOfStrings_LeftToRight(rm)
case syntax.LeadingSet_LeftToRight, syntax.FixedDistanceSets_LeftToRight:
c.emitFixedSet_LeftToRight(rm)
case syntax.LeadingSet_RightToLeft:
c.emitFixedSet_RightToLeft(rm)
case syntax.LiteralAfterLoop_LeftToRight:
c.emitLiteralAfterAtomicLoop(rm)
default:
//there's a special case here where we haven't written anything
// and we don't want to declare the "pos" var
needPosVar = buf.Len() > 0
c.writeLine("return true")
rm.findEndsInAlwaysReturningTrue = true
}
}
if endBlock != "" {
c.writeLine(endBlock)
}
// If the main path is guaranteed to end in a "return true;" and nothing is going to
// jump past it, we don't need a "return false;" path.
if minRequiredLength > 0 || !rm.findEndsInAlwaysReturningTrue || rm.noMatchFoundLabelNeeded {
c.writeLine("\n// No match found")
if rm.noMatchFoundLabelNeeded {
c.emitLabel(NoMatchFound)
}
var setPos string
if !rtl {
setPos = "len(r.Runtext)"
} else {
setPos = "0"
}
c.writeLineFmt("r.Runtextpos = %v", setPos)
c.writeLine("return false")
}
}
func (c *converter) emitAnchors(rm *regexpData) bool {
regexTree := rm.Tree
// Anchors that fully implement TryFindNextPossibleStartingPosition, with a check that leads to immediate success or failure determination.
switch regexTree.FindOptimizations.FindMode {
case syntax.LeadingAnchor_LeftToRight_Beginning:
c.writeLine("// The pattern leads with a beginning (\\A) anchor.")
// If we're at the beginning, we're at a possible match location. Otherwise,
// we'll never be, so fail immediately.
c.writeLine(`if pos == 0 {
return true
}`)
return true
case syntax.LeadingAnchor_LeftToRight_Start:
case syntax.LeadingAnchor_RightToLeft_Start:
c.write("// The pattern leads with a start (\\G) anchor")
if regexTree.FindOptimizations.FindMode == syntax.LeadingAnchor_RightToLeft_Start {
c.write(" when processed right to left")
}
// For both left-to-right and right-to-left, if we're currently at the start,
// we're at a possible match location. Otherwise, because we've already moved
// beyond it, we'll never be, so fail immediately.
c.writeLine(`
if (pos == r.Runtextstart) {
return true
}
`)
return true
case syntax.LeadingAnchor_LeftToRight_EndZ:
// If we're not currently at the end (or a newline just before it), skip ahead
// since nothing until then can possibly match.
c.writeLine(`// The pattern leads with an end (\Z) anchor.
if pos < len(r.Runtext) - 1 {
r.Runtextpos = len(r.Runtext) - 1
}
return true
`)
rm.findEndsInAlwaysReturningTrue = true
return true
case syntax.LeadingAnchor_LeftToRight_End:
// If we're not currently at the end (or a newline just before it), skip ahead
// since nothing until then can possibly match.
c.writeLine(`// The pattern leads with an end (\z) anchor.
if pos < len(r.Runtext) {
r.Runtextpos = len(r.Runtext)
}
return true
`)
rm.findEndsInAlwaysReturningTrue = true
return true
case syntax.LeadingAnchor_RightToLeft_Beginning:
c.writeLine(`// The pattern leads with a beginning (\A) anchor when processed right to left.
if pos != 0 {
r.Runtextpos = 0
}
return true
`)
rm.findEndsInAlwaysReturningTrue = true
return true
case syntax.LeadingAnchor_RightToLeft_EndZ:
// If we're currently at the end, we're at a valid position to try. Otherwise,
// we'll never be (we're iterating from end to beginning), so fail immediately.
c.writeLine(`// The pattern leads with an end (\Z) anchor when processed right to left.
if pos >= len(r.Runtext) - 1 && (pos >= len(r.Runtext) || r.Runtext[pos] == '\n') {
return true
}
`)
return true
case syntax.LeadingAnchor_RightToLeft_End:
// If we're currently at the end, we're at a valid position to try. Otherwise,
// we'll never be (we're iterating from end to beginning), so fail immediately.
c.writeLine(`// The pattern leads with an end (\z) anchor when processed right to left.
if pos >= len(r.Runtext) {
return true
}
`)
return true
case syntax.TrailingAnchor_FixedLength_LeftToRight_EndZ:
// Jump to the end, minus the min required length, which in this case is actually the fixed length, minus 1 (for a possible ending \n).
c.writeLineFmt(`// The pattern has a trailing end (\Z) anchor, and any possible match is exactly %v characters.
if pos < len(r.Runtext) - %v {
r.Runtextpos = len(r.Runtext) - %[2]v
}
return true
`, regexTree.FindOptimizations.MinRequiredLength, regexTree.FindOptimizations.MinRequiredLength+1)
rm.findEndsInAlwaysReturningTrue = true
return true
case syntax.TrailingAnchor_FixedLength_LeftToRight_End:
// Jump to the end, minus the min required length, which in this case is actually the fixed length.
c.writeLineFmt(`// The pattern has a trailing end (\z) anchor, and any possible match is exactly %v characters.
if pos < len(r.Runtext) - %[1]v {
r.Runtextpos = len(r.Runtext) - %[1]v
}
return true
`, regexTree.FindOptimizations.MinRequiredLength)
rm.findEndsInAlwaysReturningTrue = true
return true
}
// Now handle anchors that boost the position but may not determine immediate success or failure.
if regexTree.FindOptimizations.LeadingAnchor == syntax.NtBol {
str1 := ">"
str2 := fmt.Sprint(" - ", regexTree.FindOptimizations.MinRequiredLength)
if regexTree.FindOptimizations.MinRequiredLength == 0 {
str2 = ""
} else if regexTree.FindOptimizations.MinRequiredLength == 1 {
str1 = ">="
str2 = ""
}
// Optimize the handling of a Beginning-Of-Line (BOL) anchor. BOL is special, in that unlike
// other anchors like Beginning, there are potentially multiple places a BOL can match. So unlike
// the other anchors, which all skip all subsequent processing if found, with BOL we just use it
// to boost our position to the next line, and then continue normally with any searches.
c.writeLineFmt(`// The pattern has a leading beginning-of-line anchor.
if pos > 0 && r.Runtext[pos-1] != '\n' {
newlinePos := helpers.IndexOfAny1(r.Runtext[pos:], '\n')
if newlinePos > len(r.Runtext) - pos - 1 {
goto NoMatchFound
}
pos += newlinePos + 1
if pos %v len(r.Runtext)%v {
goto NoMatchFound
}
}
`, str1, str2)
rm.noMatchFoundLabelNeeded = true
}
// if we have a max len
if regexTree.FindOptimizations.MaxPossibleLength > -1 {
if regexTree.FindOptimizations.TrailingAnchor == syntax.NtEnd {
c.writeLineFmt(`// The pattern has a trailing end (\z) anchor, and any possible match is no more than %v characters.
if pos < len(r.Runtext) - %[1]v {
pos = len(r.Runtext) - %[1]v
}
`, regexTree.FindOptimizations.MaxPossibleLength)
} else if regexTree.FindOptimizations.TrailingAnchor == syntax.NtEndZ {
c.writeLineFmt(`// The pattern has a trailing end (\Z) anchor, and any possible match is no more than %v characters.
if pos < len(r.Runtext) - %[1]v {
pos = len(r.Runtext) - %[1]v
}
`, regexTree.FindOptimizations.MaxPossibleLength+1)
}
}
return false
}
// Emits a case-sensitive left-to-right search for a substring.
func (c *converter) emitIndexOfString_LeftToRight(rm *regexpData) {
opts := rm.Tree.FindOptimizations
substring, stringComparison, offset, offsetDescription := "", "", "", ""
//ignoreCase := false
switch opts.FindMode {
case syntax.LeadingString_LeftToRight:
substring = opts.LeadingPrefix
offsetDescription = "at the beginning of the pattern"
case syntax.LeadingString_OrdinalIgnoreCase_LeftToRight:
substring = opts.LeadingPrefix
stringComparison = "IgnoreCase"
offsetDescription = " case-insensitive at the beginning of the pattern"
//ignoreCase = true
case syntax.FixedDistanceString_LeftToRight:
substring = opts.FixedDistanceLiteral.S
if opts.FixedDistanceLiteral.Distance > 0 {
offset = fmt.Sprint(" + ", opts.FixedDistanceLiteral.Distance)
offsetDescription = fmt.Sprint(" at index ", opts.FixedDistanceLiteral.Distance, " in the pattern")
}
}
/*
TODO: is this needed? not sure a stringsearch is going to add value here
substringAndComparison := fmt.Sprint(substring, stringComparison)
fieldName := "sv"
if isValidInFieldName(substring) {
fieldName += substringAndComparison
} else {
fieldName += getSHA256FieldName(substringAndComparison)
}
if _, ok := c.requiredHelpers[fieldName]; !ok {
c.requiredHelpers[fieldName] = fmt.Sprintf(`// Supports searching for the string %#[1]v
var %[2]v = helpers.NewStringSearchValues(%#[1]v, %#[3]v)`,
[]rune(substring), fieldName, ignoreCase)
}*/
c.writeLineFmt(`// The pattern has the literal %#v %v. Find the next occurrence.
// If it can't be found, there's no match
if i := helpers.IndexOf%v(r.Runtext[pos%v:], %s); i >= 0 {
r.Runtextpos = pos + i
return true
}`, substring, offsetDescription, stringComparison, offset, getRuneSliceLiteral(substring))
}
// Emits a case-sensitive right-to-left search for a substring.
func (c *converter) emitIndexOfString_RightToLeft(rm *regexpData) {
prefix := rm.Tree.FindOptimizations.LeadingPrefix
c.writeLineFmt(`// The pattern begins with a literal %#[1]v. Find the next occurrence right-to-left.
// If it can't be found, there's no match.
pos = r.LastIndexOf(r.Runtext, pos, []rune(%#[1]v))
if pos >= 0 {
r.Runtextpos = pos + %[2]v
return true
}
`, prefix, len(prefix))
}
func getRuneSliceSliceLiteral(vals []string) string {
buf := &bytes.Buffer{}
buf.WriteString("[][]rune{")
sep := ""
for i := 0; i < len(vals); i++ {
buf.WriteString(sep)
buf.WriteString(getRuneSliceLiteral(vals[i]))
sep = ", "
}
buf.WriteString("}")
return buf.String()
}
// Emits a case-sensitive left-to-right search for any one of multiple leading prefixes.
func (c *converter) emitIndexOfStrings_LeftToRight(rm *regexpData) {
opts := rm.Tree.FindOptimizations
prefixes := getRuneSliceSliceLiteral(opts.LeadingPrefixes)
stringComparison := ""
ignoreCase := false
if opts.FindMode == syntax.LeadingStrings_OrdinalIgnoreCase_LeftToRight {
stringComparison = "_IgnoreCase"
ignoreCase = true
}
fieldName := fmt.Sprint("indexOfAnyStrings", stringComparison, "_", getSHA256FieldName(prefixes))
if _, ok := c.requiredHelpers[fieldName]; !ok {
// explicitly using an array in case prefixes is large
c.requiredHelpers[fieldName] = fmt.Sprintf(`// Supports searching for the specified strings
var %v = helpers.NewStringSearchValues(%s, %v)`,
fieldName, prefixes, ignoreCase)
}
c.writeLineFmt(`// The pattern has multiple strings that could begin the match. Search for any of them.
// If none can be found, there's no match
if i := %v.IndexOfAny(r.Runtext[pos:]); i >= 0 {
r.Runtextpos = pos + i
return true
}`, fieldName)
}
func (c *converter) emitSetDefinition(set *syntax.CharSet) string {
hash := set.Hash()
vals := string(hash)
fieldName := fmt.Sprint("set_", getSHA256FieldName(vals))
if _, ok := c.requiredHelpers[fieldName]; !ok {
// explicitly using an array in case prefixes is large
c.requiredHelpers[fieldName] = fmt.Sprintf(`// The set %v
var %v = syntax.NewCharSetRuntime(%#v)`,
set.String(), fieldName, vals)
}
return fieldName
}
// Emits a search for a set at a fixed position from the start of the pattern,
// and potentially other sets at other fixed positions in the pattern.
func (c *converter) emitFixedSet_LeftToRight(rm *regexpData) {
sets := rm.Tree.FindOptimizations.FixedDistanceSets
primarySet := sets[0]
const MaxSets = 4
setsToUse := len(sets)
if setsToUse > MaxSets {
setsToUse = MaxSets
}
if primarySet.Distance == 0 {
c.writeLineFmt(`// The pattern begins with %v`, primarySet.Set)
} else {
c.writeLineFmt(`// The pattern matches %v at index %v`, primarySet.Set, primarySet.Distance)
}
c.writeLine("// Find the next occurrence. If it can't be found, there's no match.")
// Use IndexOf{Any} to accelerate the skip loop via vectorization to match the first prefix.
// But we avoid using it for the relatively common case of the starting set being '.', aka anything other than
// a newline, as it's very rare to have long, uninterrupted sequences of newlines. And we avoid using it
// for the case of the starting set being anything (e.g. '.' with SingleLine), as in that case it'll always match
// the first char.
setIndex := 0
canUseIndexOf := !primarySet.Set.Equals(syntax.NotNewLineClass()) && !primarySet.Set.IsAnything()
needLoop := !canUseIndexOf || setsToUse > 1
endBlock := ""
if needLoop {
c.writeLine("span := r.Runtext[pos:]")
upperBound := "len(span)"
if setsToUse > 1 || primarySet.Distance != 0 {
upperBound = fmt.Sprint(upperBound, " - ", rm.Tree.FindOptimizations.MinRequiredLength-1)
}
c.writeLineFmt(`for i := 0; i < %v; i++ {`, upperBound)
endBlock = "}"
}
if canUseIndexOf {
var span string
if needLoop {
if primarySet.Distance == 0 {
span = "span[i:]"
} else {
span = fmt.Sprint("span[i+", primarySet.Distance, ":]")
}
} else {
if primarySet.Distance == 0 {
span = "r.Runtext[pos:]"
} else {
span = fmt.Sprint("r.Runtext[pos+", primarySet.Distance, ":]")
}
}
// Get the IndexOf* expression to use to perform the search.
var indexOf string
if len(primarySet.Chars) > 0 {
indexOf = c.emitIndexOfChars(primarySet.Chars, primarySet.Negated, span)
} else if primarySet.Range != nil {
// We have a range, so we can use IndexOfAny{Except}InRange to search for it. In the corner case,
// where we end up with a set of a single char, we can use IndexOf instead.
if primarySet.Range.First == primarySet.Range.Last {
if primarySet.Negated {
indexOf = fmt.Sprintf("helpers.IndexOfAnyExcept(%v, %q)", span, primarySet.Range.First)
} else {
indexOf = fmt.Sprintf("helpers.IndexOfAny1(%v, %q)", span, primarySet.Range.First)
}
} else {
if primarySet.Negated {
indexOf = fmt.Sprintf("helpers.IndexOfAnyExceptInRange(%v, %q, %q)", span, primarySet.Range.First, primarySet.Range.Last)
} else {
indexOf = fmt.Sprintf("helpers.IndexOfAnyInRange(%v, %q, %q)", span, primarySet.Range.First, primarySet.Range.Last)
}
}
} else if isSmall, setChars, negated, desc := primarySet.Set.IsUnicodeCategoryOfSmallCharCount(); isSmall {
// We have a known set of characters, and we can use the supplied IndexOfAny{Except}(...).
fName := "IndexOfAny"
if negated {
fName = "IndexOfAnyExcept"
}
if len(desc) > 0 {
desc = "rsvSet" + desc
}
indexOf = fmt.Sprintf("%v.%v(%v)", c.emitSearchValues(setChars, desc), fName, span)
} else {
// We have an arbitrary set of characters that's really large or otherwise not enumerable.
// We use a custom IndexOfAny helper that will perform the search as efficiently as possible.
indexOf = c.emitIndexOfAnyCustomHelper(rm, primarySet.Set, negated, span)
}
if needLoop {
c.writeLineFmt(`indexOfPos := %v
if indexOfPos < 0 {
goto NoMatchFound
}
i += indexOfPos
`, indexOf)
rm.noMatchFoundLabelNeeded = true
if setsToUse > 1 {
// Of the remaining sets we're going to check, find the maximum distance of any of them.
// If it's further than the primary set we checked, we need a bounds check.
maxDistance := sets[1].Distance
for i := 2; i < setsToUse; i++ {
if sets[i].Distance > maxDistance {
maxDistance = sets[i].Distance
}
if maxDistance > primarySet.Distance {
numRemainingSets := setsToUse - 1
c.writeLineFmt(`// The primary set being searched for was found. %v more set(s) will be checked so as
// to minimize the number of places TryMatchAtCurrentPosition is run unnecessarily.
// Make sure everything fits in the remainder of the input.
if i+%v >= len(span) {
goto NoMatchFound
}
`, numRemainingSets, maxDistance)
rm.noMatchFoundLabelNeeded = true
}
}
}
} else {
c.writeLineFmt(`i := %v
if i >= 0 {
r.Runtextpos = pos + i
return true
}
`, indexOf)
}
setIndex = 1
}
if needLoop {
endBlock2 := ""
if setIndex < setsToUse {
// if (CharInClass(textSpan[i + charClassIndex], prefix[0], "...") &&
// ...)
start := setIndex
for ; setIndex < setsToUse; setIndex++ {
addOn := ""
if sets[setIndex].Distance > 0 {
addOn = fmt.Sprintf(" + %v", sets[setIndex].Distance)
}
spanIndex := fmt.Sprintf("span[i%v]", addOn)
charInClassExpr := c.emitMatchCharacterClass(rm, sets[setIndex].Set, false, spanIndex)
if setIndex == start {
c.write("if ")
c.write(charInClassExpr)
} else {
c.writeLine(" &&")
c.write(" ")
c.write(charInClassExpr)
}
}
c.writeLine(` {`)
endBlock2 = "}"
}
c.writeLine(`r.Runtextpos = pos + i
return true`)
c.writeLine(endBlock2)
}
c.writeLine(endBlock)
}
// Emits a right-to-left search for a set at a fixed position from the start of the pattern.
// (Currently that position will always be a distance of 0, meaning the start of the pattern itself.)
func (c *converter) emitFixedSet_RightToLeft(rm *regexpData) {
set := rm.Tree.FindOptimizations.FixedDistanceSets[0]
c.writeLineFmt(`// The pattern begins with %v
// Find the next occurrence. If it can't be found, there's no match.`, set.Set.String())
if len(set.Chars) == 1 {
c.writeLineFmt(`pos = r.LastIndexOfRune(0, pos, %q)
if pos >= 0 {
r.Runtextpos = pos + 1
return true
}`, set.Chars[0])
} else {
c.writeLineFmt(`for pos--; pos < len(r.Runtext); pos-- {
if %v {
r.Runtextpos = pos + 1
return true
}
}`, c.emitMatchCharacterClass(rm, set.Set, false, "r.Runtext[pos]"))
}
}
// Emits a search for a literal following a leading atomic single-character loop.
func (c *converter) emitLiteralAfterAtomicLoop(rm *regexpData) {
target := rm.Tree.FindOptimizations.LiteralAfterLoop
targetComment := ""
if len(target.String) > 0 {
stringComparisonComment := ""
if target.StringIgnoreCase {
stringComparisonComment = "case-insensitive "
}
targetComment = "the " + stringComparisonComment + "string " + target.String
} else if len(target.Chars) > 0 {
targetComment = fmt.Sprintf("one of the characters %#v", string(target.Chars))
} else {
targetComment = fmt.Sprintf("the character %q", target.Char)
}
c.writeLineFmt(`// The pattern begins with an atomic loop for %v {DescribeSet(target.LoopNode.Str!)}, followed by %v
// Search for the literal, and then walk backwards to the beginning of the loop.`,
target.LoopNode.Set.String(), targetComment)
endBlock := ""
if target.LoopNode.M > 0 {
// If there's no lower bound on the loop, then once we find the literal, we know we have a valid starting position to try.
// If there is a lower bound, then we need a loop, as we could find the literal but it might not be prefixed with enough
// appropriate characters to satisfy the minimum bound.
c.writeLine("for {")
endBlock = "}"
}
c.writeLine("slice := r.Runtext[pos:]\n")
// Find the literal. If we can't find it, we're done searching.
if len(target.String) > 0 {
// find string
c.writeLineFmt("i := helpers.IndexOf(slice, %s)", getRuneSliceLiteral(target.String))
} else if len(target.Chars) > 0 {
// find char any
c.writeLineFmt("i := %v", c.emitIndexOfChars(target.Chars, false, "slice"))
} else {
// find char any
c.writeLineFmt("i := %v", c.emitIndexOfChars([]rune{target.Char}, false, "slice"))
}
endBlock2 := ""
if target.LoopNode.M > 0 {
c.writeLine(`if i < 0 {
break
}
`)
} else {
c.writeLine(`if i >= 0 {`)
endBlock2 = "}"
}
// We found the literal. Walk backwards from it finding as many matches as we can against the loop.
c.writeLineFmt(`prev := i - 1
for uint(prev) < uint(len(slice)) && %v {
prev--
}
`, c.emitMatchCharacterClass(rm, target.LoopNode.Set, false, "slice[prev]"))
if target.LoopNode.M > 0 {
// If we found fewer than needed, loop around to try again. The loop doesn't overlap with the literal,
// so we can start from after the last place the literal matched.
c.writeLineFmt(`if (i - prev - 1) < %v {
pos += i + 1
continue
}
`, target.LoopNode.M)
}
// We have a winner. The starting position is just after the last position that failed to match the loop.
// We also store the position after the loop into runtrackpos (an extra, unused field on RegexRunner) in order
// to communicate this position to the match algorithm such that it can skip the loop.
c.writeLine(`r.Runtextpos = pos + prev + 1
r.Runtrackpos = pos + i
return true`)
c.writeLine(endBlock2)
c.writeLine(endBlock)
}
func getFuncCallIfEqual(set *syntax.CharSet, negate bool, setB *syntax.CharSet, negSetB *syntax.CharSet, funcName string, chExpr string) (string, bool) {
// example
// if set is a DigitClass, but it's negated then we need to match
// NotDigit and we need to write !isDigit() code
//
// if set is a NotDigitClass, but it's negated then we need to match
// Digit and write isDigit() code
eq := false
if set.Equals(setB) {
eq = true
} else if set.Equals(negSetB) {
eq = true
negate = !negate
}
if !eq {
return "", false
}
if negate {
return fmt.Sprint("!", funcName, "(", chExpr, ")"), true
}
return fmt.Sprint(funcName, "(", chExpr, ")"), true
}
// Determines whether the 'a' and 'b' values differ by only a single bit, setting that bit in 'mask'.
func differByOneBit(a, b rune) (rune, bool) {
mask := a ^ b
if mask == 0 {
return 0, false
}
return mask, mask&(mask-1) == 0
}
func (c *converter) emitMatchCharacterClass(rm *regexpData, set *syntax.CharSet, negate bool, chExpr string) string {
//this is in-line and produces an expression that resolves to a bool,
//so anything that requires a new var must call a function
// We need to perform the equivalent of calling RegexRunner.CharInClass(ch, charClass),
// but that call is relatively expensive. Before we fall back to it, we try to optimize
// some common cases for which we can do much better, such as known character classes
// for which we can call a dedicated method, or a fast-path for ASCII using a lookup table.
// In some cases, multiple optimizations are possible for a given character class: the checks
// in this method are generally ordered from fastest / simplest to slowest / most complex so
// that we get the best optimization for a given char class.
// First, see if the char class is a built-in one for which there's a better function
// we can just call directly.
if set.IsAnything() {
// This assumes chExpr never has side effects.
if negate {
return "false"
}
return "true"
}
if val, eq := getFuncCallIfEqual(set, negate, syntax.DigitClass(), syntax.NotDigitClass(), "unicode.IsDigit", chExpr); eq {
return val
}
if val, eq := getFuncCallIfEqual(set, negate, syntax.SpaceClass(), syntax.NotSpaceClass(), "unicode.IsSpace", chExpr); eq {
return val
}
if val, eq := getFuncCallIfEqual(set, negate, syntax.WordClass(), syntax.NotWordClass(), "helpers.IsWordChar", chExpr); eq {
return val
}
/*
TODO: Lots more classes here we don't have right now
if val, eq := getFuncCallIfEqual(set, negate, syntax.ControlClass(), syntax.NotControlClass(), "unicode.IsControl", chExpr); eq {
return val
}
if val, eq := getFuncCallIfEqual(set, negate, syntax.LetterClass(), syntax.NotLetterClass(), "unicode.IsLetter", chExpr); eq {
return val
}
if val, eq := getFuncCallIfEqual(set, negate, syntax.LetterOrDigitClass(), syntax.NotLetterOrDigitClass(), "syntax.IsLetterOrDigit", chExpr); eq {
return val
}
case RegexCharClass.LowerClass:
case RegexCharClass.NotLowerClass:
negate ^= charClass == RegexCharClass.NotLowerClass;
return $"{(negate ? "!" : "")}char.IsLower({chExpr})";
case RegexCharClass.UpperClass:
case RegexCharClass.NotUpperClass:
negate ^= charClass == RegexCharClass.NotUpperClass;
return $"{(negate ? "!" : "")}char.IsUpper({chExpr})";
case RegexCharClass.NumberClass:
case RegexCharClass.NotNumberClass:
negate ^= charClass == RegexCharClass.NotNumberClass;
return $"{(negate ? "!" : "")}char.IsNumber({chExpr})";
case RegexCharClass.PunctuationClass:
case RegexCharClass.NotPunctuationClass:
negate ^= charClass == RegexCharClass.NotPunctuationClass;
return $"{(negate ? "!" : "")}char.IsPunctuation({chExpr})";
case RegexCharClass.SeparatorClass:
case RegexCharClass.NotSeparatorClass:
negate ^= charClass == RegexCharClass.NotSeparatorClass;
return $"{(negate ? "!" : "")}char.IsSeparator({chExpr})";
case RegexCharClass.SymbolClass:
case RegexCharClass.NotSymbolClass:
negate ^= charClass == RegexCharClass.NotSymbolClass;
return $"{(negate ? "!" : "")}char.IsSymbol({chExpr})";
case RegexCharClass.AsciiLetterClass:
case RegexCharClass.NotAsciiLetterClass:
negate ^= charClass == RegexCharClass.NotAsciiLetterClass;
return $"{(negate ? "!" : "")}char.IsAsciiLetter({chExpr})";
case RegexCharClass.AsciiLetterOrDigitClass:
case RegexCharClass.NotAsciiLetterOrDigitClass:
negate ^= charClass == RegexCharClass.NotAsciiLetterOrDigitClass;
return $"{(negate ? "!" : "")}char.IsAsciiLetterOrDigit({chExpr})";
case RegexCharClass.HexDigitClass:
case RegexCharClass.NotHexDigitClass:
negate ^= charClass == RegexCharClass.NotHexDigitClass;
return $"{(negate ? "!" : "")}char.IsAsciiHexDigit({chExpr})";
case RegexCharClass.HexDigitLowerClass:
case RegexCharClass.NotHexDigitLowerClass:
negate ^= charClass == RegexCharClass.NotHexDigitLowerClass;
return $"{(negate ? "!" : "")}char.IsAsciiHexDigitLower({chExpr})";
case RegexCharClass.HexDigitUpperClass:
case RegexCharClass.NotHexDigitUpperClass:
negate ^= charClass == RegexCharClass.NotHexDigitUpperClass;
return $"{(negate ? "!" : "")}char.IsAsciiHexDigitUpper({chExpr})";
}*/
// Next, handle simple sets of one range, e.g. [A-Z], [0-9], etc. This includes some built-in classes, like ECMADigitClass.
if rs := set.GetIfNRanges(1); len(rs) == 1 {
r := rs[0]
negate = (negate != set.IsNegated())
if r.First == r.Last {
// single char
if negate {
return fmt.Sprintf("(%v != %q)", chExpr, r.First)
}
return fmt.Sprintf("(%v == %q)", chExpr, r.First)
}
if negate {
return fmt.Sprintf("!helpers.IsBetween(%s, %q, %q)", chExpr, r.First, r.Last)
}
return fmt.Sprintf("helpers.IsBetween(%s, %q, %q)", chExpr, r.First, r.Last)
}
// Next, if the character class contains nothing but Unicode categories, we can call char.GetUnicodeCategory and
// compare against it. It has a fast-lookup path for ASCII, so is as good or better than any lookup we'd generate (plus
// we get smaller code), and it's what we'd do for the fallback (which we get to avoid generating) as part of CharInClass,
// but without the optimizations the C# compiler will provide for switches.
cats, neg := set.GetIfOnlyUnicodeCategories()
if len(cats) > 0 {
negate = (negate != neg)
// convert cats to strings
sb := &bytes.Buffer{}
if negate {
sb.WriteString("!")
}
sb.WriteString("unicode.In(")
sb.WriteString(chExpr)
for _, cat := range cats {
sb.WriteString(", unicode.")
sb.WriteString(cat.Cat)
}
sb.WriteString(")")
return sb.String()
}
// Next, if there's only 2 or 3 chars in the set (fairly common due to the sets we create for prefixes),
// it may be cheaper and smaller to compare against each than it is to use a lookup table. We can also special-case
// the very common case with case insensitivity of two characters next to each other being the upper and lowercase
// ASCII variants of each other, in which case we can use bit manipulation to avoid a comparison.
//setChars := make([]rune, 0, 3)
setChars := set.GetSetChars(3)
if len(setChars) == 2 {
negate = (negate != set.IsNegated())
eqStr := "=="
bitJoin := "||"
if negate {
eqStr = "!="
bitJoin = "&&"
}
if mask, ok := differByOneBit(setChars[0], setChars[1]); ok {
return fmt.Sprintf("(%s|0x%x %v %q)", chExpr, mask, eqStr, setChars[1]|mask)
}
return fmt.Sprintf("(%s %s %q %s %[1]s %[2]s %[5]q)", chExpr, eqStr, setChars[0], bitJoin, setChars[1])
} else if len(setChars) == 3 {
negate = (negate != set.IsNegated())
eqStr := "=="
bitJoin := "||"
if negate {
eqStr = "!="
bitJoin = "&&"
}
if mask, ok := differByOneBit(setChars[0], setChars[1]); ok {
return fmt.Sprintf("((%s|0x%x %v %q) %s (%[1]s %[3]s %[6]q))", chExpr, mask, eqStr, setChars[1]|mask, bitJoin, setChars[2])
}
return fmt.Sprintf("(%s %s %q %s %[1]s %[2]s %[5]q %[4]s %[1]s %[2]s %[6]q)", chExpr, eqStr, setChars[0], bitJoin, setChars[1], setChars[2])
}
// Next, handle simple sets of two ASCII letter ranges that are cased versions of each other, e.g. [A-Za-z].
// This can be implemented as if it were a single range, with an additional bitwise operation.
// TODO: the original C# code assumed an order of ranges coming back
// based on char order -- can we assume that here too? does [A-Za-z] and [a-zA-Z] work the same?
if ranges := set.GetIfNRanges(2); len(ranges) == 2 {
if ranges[1].First <= unicode.MaxASCII &&
ranges[1].Last <= unicode.MaxASCII &&
ranges[0].First|0x20 == ranges[1].First &&
ranges[0].Last|0x20 == ranges[1].Last {
negate = (negate != set.IsNegated())
op := "<="
if negate {
op = ">"
}
return fmt.Sprintf("(uint(%s|0x20 - %q) %s uint(%q - %q))", chExpr, ranges[1].First, op, ranges[1].Last, ranges[1].First)
}
}
// Analyze the character set more to determine what code to generate.
analysis := set.Analyze()
// Next, handle sets where the high - low + 1 range is <= 32. In that case, we can emit
// a branchless lookup in a uint that does not rely on loading any objects (e.g. the string-based
// lookup we use later). This nicely handles common sets like [\t\r\n ].
if analysis.OnlyRanges && (analysis.UpperBoundExclusiveIfOnlyRanges-analysis.LowerBoundInclusiveIfOnlyRanges) <= 32 {
// Create the 32-bit value with 1s at indices corresponding to every character in the set,
// where the bit is computed to be the char value minus the lower bound starting from
// most significant bit downwards.
negatedClass := set.IsNegated()
bitmap := uint32(0)
for i := analysis.LowerBoundInclusiveIfOnlyRanges; i < analysis.UpperBoundExclusiveIfOnlyRanges; i++ {
if set.CharIn(i) != negatedClass {
bitmap |= 1 << (31 - (i - analysis.LowerBoundInclusiveIfOnlyRanges))
}
}
// To determine whether a character is in the set, we subtract the lowest char; this subtraction happens before the result is
// zero-extended to uint, meaning that `charMinusLowUInt32` will always have upper 16 bits equal to 0.
// We then left shift the constant with this offset, and apply a bitmask that has the highest
// bit set (the sign bit) if and only if `chExpr` is in the [low, low + 32) range.
// Then we only need to check whether this final result is less than 0: this will only be
// the case if both `charMinusLowUInt32` was in fact the index of a set bit in the constant, and also
// `chExpr` was in the allowed range (this ensures that false positive bit shifts are ignored).
negate = (negate != negatedClass)
negStr := ""
if negate {
negStr = "!"
}
return fmt.Sprintf("%shelpers.IsInMask32(%s-%q, 0x%x)", negStr, chExpr, analysis.LowerBoundInclusiveIfOnlyRanges, bitmap)
}
// Next, handle sets where the high - low + 1 range is <= 64. As with the 32-bit case above, we can emit
// a branchless lookup in a ulong that does not rely on loading any objects (e.g. the string-based lookup
// we use later). Note that unlike RegexCompiler, the source generator doesn't know whether the code is going
// to be run in a 32-bit or 64-bit process: in a 64-bit process, this is an optimization, but in a 32-bit process,
// it's a deoptimization. In general we optimize for 64-bit perf, so this code remains; it complicates the code
// too much to try to include both this and a fallback for the check. This, however, is why we do the 32-bit
// version and check first, as that variant performs equally well on both 32-bit and 64-bit systems.
if analysis.OnlyRanges && (analysis.UpperBoundExclusiveIfOnlyRanges-analysis.LowerBoundInclusiveIfOnlyRanges) <= 64 {
// Create the 64-bit value with 1s at indices corresponding to every character in the set,
// where the bit is computed to be the char value minus the lower bound starting from
// most significant bit downwards.
negatedClass := set.IsNegated()
bitmap := uint64(0)
for i := analysis.LowerBoundInclusiveIfOnlyRanges; i < analysis.UpperBoundExclusiveIfOnlyRanges; i++ {
if set.CharIn(i) != negatedClass {
bitmap |= 1 << (63 - (i - analysis.LowerBoundInclusiveIfOnlyRanges))
}
}
// To determine whether a character is in the set, we subtract the lowest char; this subtraction happens before
// the result is zero-extended to uint, meaning that `charMinusLowUInt64` will always have upper 32 bits equal to 0.
// We then left shift the constant with this offset, and apply a bitmask that has the highest bit set (the sign bit)
// if and only if `chExpr` is in the [low, low + 64) range. Then we only need to check whether this final result is
// less than 0: this will only be the case if both `charMinusLowUInt64` was in fact the index of a set bit in the constant,
// and also `chExpr` was in the allowed range (this ensures that false positive bit shifts are ignored).
negate = (negate != negatedClass)
negStr := ""
if negate {
negStr = "!"
}
return fmt.Sprintf("%shelpers.IsInMask64(%s-%q, 0x%x)", negStr, chExpr, analysis.LowerBoundInclusiveIfOnlyRanges, bitmap)
}
// All options after this point require a ch local.
// in the C# version this requires assignment statements, which Go doesn't have
// so we just repeat chExpr and let the compiler handle temp var
//rm.addLocalDec("var ch rune")
// Next, handle simple sets of two ranges, e.g. [\p{IsGreek}\p{IsGreekExtended}].
if ranges := set.GetIfNRanges(2); len(ranges) == 2 {
negate = (negate != set.IsNegated())
op := "||"
if negate {
op = "&&"
}
return fmt.Sprintf("%s %s %s",
getRangeCheckClause(chExpr, ranges[0], negate),
op,
getRangeCheckClause(chExpr, ranges[1], negate))
}