-
Notifications
You must be signed in to change notification settings - Fork 11
/
Copy pathtestanalyze.R
65 lines (45 loc) · 3.35 KB
/
testanalyze.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
library(jsonlite)
library(tidyverse)
library(gam)
item <- read_json("testdata.json")
pingitem <- read_json("pingtest.json");
pinseqtime <- sapply(1:length(pingitem),function(x){return(pingitem[[x]]$time[[1]])})
pinseqms <- sapply(1:length(pingitem),function(x){return(pingitem[[x]]$ping[[1]])})
pingdat <- tibble(t=pinseqtime,ms=pinseqms)
lenitem <- length(item)
wanIface=8
lanIface=2
cpucount = length(item[[1]]$cpu)-1
tvals <- sapply(1:lenitem,function(i) return(item[[i]]$time))
bytes <- as.numeric(sapply(1:lenitem,function(i) return(item[[i]]$interfaces[[wanIface]][2][[1]]+item[[i]]$interfaces[[wanIface]][10][[1]]+0.0)))
cpuidle <- as.numeric(sapply(1:lenitem,function(i) return(item[[i]]$cpu[[1]][5])))
cpusoftirq <- as.numeric(sapply(1:lenitem,function(i) return(item[[i]]$cpu[[1]][8])))
cpusys <- as.numeric(sapply(1:lenitem,function(i) return(item[[i]]$cpu[[1]][4])))
cpuusr <- as.numeric(sapply(1:lenitem,function(i) return(item[[i]]$cpu[[1]][2])))
dat <- as_tibble(data.frame(t=(tvals-min(tvals)),xfer=bytes*8/1e6,
cpusirq=cpusoftirq/100.0,cpuidle=cpuidle/100.0,cpusys=cpusys/100.0,
cpuusr=cpuusr/100.0))
ggplot(dat) + geom_point(aes(t,xfer))
ggplot(dat) + geom_point(aes(t,cpuidle))
ggplot(dat) + geom_point(aes(t,cpusirq))
ggplot(dat) + geom_point(aes(t,cpusys))
## do some smoothing using GAM and predict sirq/xfer at 1 second intervals
smoothdat <- data.frame(t=seq(0,max(dat$t)),xfer=predict(gam(xfer ~ s(t,df=100),data=dat),data.frame(t=seq(0,max(dat$t)))),
cpusirq=predict(gam(cpusirq ~ s(t,df=100),data=dat),data.frame(t=seq(0,max(dat$t)))),
cpuidle=predict(gam(cpuidle ~ s(t,df=100),data=dat),data.frame(t=seq(0,max(dat$t)))),
cpusys=predict(gam(cpusys ~ s(t,df=100),data=dat),data.frame(t=seq(0,max(dat$t)))),
cpuusr=predict(gam(cpuusr ~ s(t,df=100),data=dat),data.frame(t=seq(0,max(dat$t)))))
pingplot <- ggplot(pingdat,aes(t,ms))+geom_point()+labs(x="t",y="Ping (ms)",title="Ping vs Time")
bwplot <- ggplot(smoothdat,aes(t,c(0,diff(xfer))))+geom_point()+labs(x="t",y="Bandwidth (Mbps)",title="Bandwidth vs Time")
idleplot <- ggplot(smoothdat,aes(t,c(0,diff(cpuidle/cpucount))))+geom_point()+labs(x="t",y="CPU fraction idle",title="Idle vs Time")
grid.arrange(pingplot,bwplot,idleplot)
ggplot(smoothdat) + geom_point(aes(t,c(0,diff(xfer))))+coord_cartesian(ylim=c(0,1000))
ggplot(smoothdat) + geom_point(aes(t,c(0,diff(cpuidle/cpucount))))
ggplot(smoothdat) + geom_point(aes(t,c(0,diff(cpusirq/cpucount))))
ggplot(smoothdat) + geom_point(aes(t,c(0,diff(cpusys/cpucount))))
ggplot(smoothdat) + geom_point(aes(t,c(0,diff(cpuusr/cpucount))))
ggplot(smoothdat,aes(c(0,diff(xfer)),c(0,diff(cpusirq/cpucount)))) + geom_point()+coord_cartesian(xlim=c(0,1500),ylim=c(0,1))+geom_smooth()+labs(x="Smoothed Transfer Estimate: Mbit/s",y="CPU SIRQ fraction")
ggsave("ExampPlot2.png")
ggplot(smoothdat,aes(c(0,diff(xfer)),c(1,diff(cpuidle/cpucount)))) + geom_point()+coord_cartesian(xlim=c(0,1500),ylim=c(0,1))+geom_smooth(method="lm")+labs(x="Smoothed Transfer Estimate: Mbit/s",y="CPU Idle fraction")
ggsave("ExampPlotIdle.png")
ggplot(smoothdat,aes(c(0,diff(xfer)),c(0,diff(cpuusr/cpucount)))) + geom_point()+coord_cartesian(xlim=c(0,1500),ylim=c(0,1))+geom_smooth(method="lm")+labs(x="Smoothed Transfer Estimate: Mbit/s",y="CPU Usr fraction")