-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtrain.py
435 lines (354 loc) · 20.7 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
import argparse
import numpy as np
import tensorflow as tf
import socket
import importlib
import os
import sys
from tqdm import tqdm
from timeit import default_timer as timer
import utils.tfrecord_utils as tfrecord_utils
from tensorflow.python.client import timeline
def log_string(out_str):
#LOG_FOUT.write(out_str + '\n')
#LOG_FOUT.flush()
print(out_str)
def get_learning_rate(batch, batch_size,
base_learning_rate, learning_rate_decay_rate, learning_rate_decay_step):
learning_rate = tf.train.exponential_decay(base_learning_rate, # Base learning rate.
batch * batch_size, # Current index into the dataset.
learning_rate_decay_step, # Decay step.
learning_rate_decay_rate, # Decay rate.
staircase=True)
learning_rate = tf.maximum(learning_rate, 0.00001) # CLIP THE LEARNING RATE!
return learning_rate
def get_bn_decay(batch, batch_size,
bn_init_decay, bn_decay_decay_rate,
bn_decay_decay_step, bn_decay_clip):
bn_momentum = tf.train.exponential_decay(bn_init_decay, batch * batch_size, bn_decay_decay_step,
bn_decay_decay_rate, staircase=True)
bn_decay = tf.minimum(bn_decay_clip, 1 - bn_momentum)
return bn_decay
def train(tfrecords_path,
model_name,
batch_size=16, base_learning_rate=0.001, learning_rate_decay_rate=0.8,
gpu_index=0, optimizer_name='adam', log_dir='log', epochs=100,
bn_init_decay=0.5, bn_decay_decay_rate=0.5, bn_decay_decay_step=200000, bn_decay_clip=0.99,
pretrained_weights_file_path=None):
"""
Args:
tfrecords_path (str): Top level input path where are train/test dirs with tfrecords.
batch_size (int): Batch Size during training [default: 32].
base_learning_rate (float): Initial learning rate [default: 0.001].
gpu_index (int): GPU index to use [default: GPU 0].
"""
# TFRecords paths
NUM_CLASSES = 51
TFRECORDS_TRAIN_DIRPATH = os.path.join(tfrecords_path, 'train')
TFRECORDS_TEST_DIRPATH = os.path.join(tfrecords_path, 'test')
# Import model module
BASE_DIR = os.path.dirname(os.path.abspath(__file__))
sys.path.append(BASE_DIR)
sys.path.append(os.path.join(BASE_DIR, 'models', model_name))
MODEL = importlib.import_module(model_name)
# Log dir
if not os.path.exists(log_dir):
os.mkdir(log_dir)
os.mkdir(os.path.join(log_dir, 'timeline'))
with tf.Graph().as_default():
#######################################################################
# TFRecords
#######################################################################
# Train filenames
tfrecord_filenames_train = [f for f in os.listdir(TFRECORDS_TRAIN_DIRPATH) if '.tfrecord' in f]
tfrecord_filenames_train.sort()
tfrecord_filepaths_train = [os.path.join(TFRECORDS_TRAIN_DIRPATH, f) for f in tfrecord_filenames_train]
# Train filenames
tfrecord_filenames_test = [f for f in os.listdir(TFRECORDS_TEST_DIRPATH) if '.tfrecord' in f]
tfrecord_filenames_test.sort()
tfrecord_filepaths_test = [os.path.join(TFRECORDS_TEST_DIRPATH, f) for f in tfrecord_filenames_test]
# TFdataset
tfrecord_filepaths_placeholder = tf.placeholder(tf.string, [None])
tfdataset = tf.data.TFRecordDataset(tfrecord_filepaths_placeholder)
tfdataset = tfdataset.shuffle(buffer_size=batch_size*10) # Only one tfrecord file -> no action
tfdataset = tfdataset.map(tfrecord_utils.tfexample_to_depth_image, num_parallel_calls=4)
#######################################################################
# Unorganized point cloud
#######################################################################
# # Load
# tfdataset = tfdataset.map(lambda a, b: tf.py_func(tfrecord_utils.load_depth_and_create_point_cloud_data_rnd,
# [a['pcd_path'], a['img_path'], a['loc_path'], b['name'],
# b['int'], NUM_POINT],
# [tf.float32, tf.string, tf.string, tf.string, tf.int64]))
# # Augment
# tfdataset = tfdataset.map(lambda a, b, c, d, e:
# tf.py_func(tfrecord_utils.augment_point_cloud, [a, b, c, d, e, True, True, False],
# [tf.float32, tf.string, tf.string, tf.string, tf.int64]))
#######################################################################
# Organized point cloud
#######################################################################
# Settings
data_channels = 3
data_height = 224
data_width = 224
zero_mean = True
unit_ball = True
# # Load data
# tfdataset = tfdataset.map(lambda a, b: tf.py_func(tfrecord_utils.load_depth_and_create_organized_point_cloud,
# [a['pcd_path'], a['img_path'], a['loc_path'], b['name'],
# b['int'], data_height, zero_mean, unit_ball],
# [tf.float32, tf.string, tf.string, tf.string, tf.int64]),
# num_parallel_calls=4)
# Load data
tfdataset = tfdataset.map(lambda a, b: tf.py_func(tfrecord_utils.create_organized_point_cloud,
[a['depth-image'], a['depth-image-loc'], b['name'], b['int'],
data_height, zero_mean, unit_ball], [tf.float32, tf.int64,
tf.string, tf.int64]),
num_parallel_calls=4)
#######################################################################
# Depth image
#######################################################################
# # Load data
# data_channels = 1
# data_height = 299
# data_width = 299
# data_scale = 1.0 # max depth from kinect is 10m, so 0.1 gives us range of 0-1
# # data_mean = 775.6092 # None if zero, sample specific if below zero, given value otherwise
# # data_std = 499.1676 # None if zero, sample specific if below zero, given value otherwise
# data_mean = 775.6092 - 499.1676 # To be in the range of 0-1
# data_std = 499.1676 * 2 # To be in the range of 0-1
# tfdataset = tfdataset.map(lambda a, b: tf.py_func(tfrecord_utils.load_depth,
# [a['pcd_path'], a['img_path'], a['loc_path'], b['name'],
# b['int'], data_height, data_scale, data_mean, data_std],
# [tf.float32, tf.string, tf.string, tf.string, tf.int64]),
# num_parallel_calls=4)
# # Tile
# if data_channels == 3:
# tfdataset = tfdataset.map(lambda a, b, c, d, e:
# tf.py_func(tfrecord_utils.tile_depth_image, [a, b, c, d, e],
# [tf.float32, tf.string, tf.string, tf.string, tf.int64]))
# # Augment
# tfdataset = tfdataset.map(lambda a, b, c, d, e:
# tf.py_func(tfrecord_utils.augment_depth_image, [a, b, c, d, e],
# [tf.float32, tf.string, tf.string, tf.string, tf.int64]))
# Transformations
tfdataset = tfdataset.shuffle(buffer_size=batch_size * 2)
tfdataset = tfdataset.batch(batch_size=batch_size, drop_remainder=True)
tfdataset = tfdataset.prefetch(10)
# Iterator
data_iterator = tfdataset.make_initializable_iterator()
data_pcd, _, _, data_y_int = data_iterator.get_next()
data_pcd = tf.reshape(data_pcd, (batch_size, data_height, data_width, data_channels))
#######################################################################
# Network architecture
#######################################################################
with tf.device('/gpu:' + str(gpu_index)):
is_training_pl = tf.Variable(True, trainable=False, dtype=tf.bool)
# Note the global_step=batch parameter to minimize.
# That tells the optimizer to helpfully increment the 'batch' parameter for you every time it trains.
batch = tf.Variable(0, trainable=False)
bn_decay = get_bn_decay(batch, batch_size=batch_size,
bn_init_decay=bn_init_decay, bn_decay_decay_rate=bn_decay_decay_rate,
bn_decay_decay_step=bn_decay_decay_step, bn_decay_clip=bn_decay_clip)
tf.summary.scalar('bn_decay', bn_decay)
# Get model and loss
pred, end_points = MODEL.get_model(data_pcd, is_training_pl, num_classes=NUM_CLASSES,
bn_decay=bn_decay, with_bn=False)
loss = MODEL.get_loss(pred, data_y_int, end_points, num_classes=NUM_CLASSES)
# # Number of trainable weights
# trainable_weights_no = np.sum([np.prod(v.get_shape().as_list()) for v in tf.trainable_variables()])
# print('trainable_weights_no: {}'.format(trainable_weights_no))
# exit(0)
tf.summary.scalar('loss', loss)
correct = tf.equal(tf.argmax(pred, 1), tf.to_int64(data_y_int))
accuracy = tf.reduce_sum(tf.cast(correct, tf.float32)) / float(batch_size)
tf.summary.scalar('accuracy', accuracy)
# Get learning rate
learning_rate = get_learning_rate(batch, batch_size=batch_size,
base_learning_rate=base_learning_rate,
learning_rate_decay_rate=learning_rate_decay_rate,
learning_rate_decay_step=bn_decay_decay_step)
tf.summary.scalar('learning_rate', learning_rate)
# OPTIMIZATION - Also updates batchnorm operations automatically
with tf.variable_scope('opt') as scope:
if optimizer_name == 'momentum':
optimizer = tf.train.MomentumOptimizer(learning_rate, momentum=MOMENTUM)
elif optimizer_name == 'adam':
optimizer = tf.train.AdamOptimizer(learning_rate)
update_ops = tf.get_collection(tf.GraphKeys.UPDATE_OPS) # for batchnorm
with tf.control_dependencies(update_ops):
train_op = optimizer.minimize(loss, global_step=batch)
# Load weghts from checkpoint
if model_name == 'inception_v3' and pretrained_weights_file_path is not None:
# Lists of scopes of weights to include/exclude from pretrained snapshot
pretrained_include = ["InceptionV3"]
pretrained_exclude = ["InceptionV3/AuxLogits", "InceptionV3/Logits"]
# PRETRAINED SAVER - For loading pretrained weights on the first run
pretrained_vars = tf.contrib.framework.get_variables_to_restore(include=pretrained_include,
exclude=pretrained_exclude)
tf_pretrained_saver = tf.train.Saver(pretrained_vars, name="pretrained_saver")
# Add ops to save and restore all the variables.
saver = tf.train.Saver()
#######################################################################
# Create session
#######################################################################
# Create a session
config = tf.ConfigProto()
config.gpu_options.allow_growth = True
config.allow_soft_placement = True
config.log_device_placement = False
sess = tf.Session(config=config)
# Add summary writers
merged = tf.summary.merge_all()
train_writer = tf.summary.FileWriter(os.path.join(log_dir, 'train'), sess.graph)
test_writer = tf.summary.FileWriter(os.path.join(log_dir, 'test'))
# Init variables
sess.run(tf.global_variables_initializer())
# Profiling
sess_options = tf.RunOptions(trace_level=tf.RunOptions.FULL_TRACE)
sess_metadata = tf.RunMetadata()
# print('VARS NO: {}'.format(np.sum([np.prod(v.get_shape().as_list()) for v in tf.trainable_variables()])))
# exit()
# Restore?
# saver.restore(sess, tf.train.latest_checkpoint('log'))
if model_name == 'inception_v3' and pretrained_weights_file_path is not None:
sess.run(tf.global_variables_initializer())
tf_pretrained_saver.restore(sess, pretrained_weights_file_path)
ops = {'is_training_pl': is_training_pl, 'pred': pred,
'loss': loss, 'train_op': train_op, 'merged': merged, 'step': batch,
# 'pointclouds_pl': pointclouds_pl, 'labels_pl': labels_pl,
'data_y_int': data_y_int, 'data_pcd': data_pcd,
'batch_size': batch_size, 'num_classes': NUM_CLASSES,
'sess_options': sess_options, 'sess_metadata': sess_metadata,
'log_dir': log_dir,
}
for epoch in range(epochs):
log_string('**** EPOCH %03d ****' % epoch)
sys.stdout.flush()
train_one_epoch(sess, ops, train_writer, data_iterator, tfrecord_filepaths_train,
tfrecord_filepaths_placeholder)
eval_one_epoch(sess, ops, test_writer, data_iterator, tfrecord_filepaths_test,
tfrecord_filepaths_placeholder)
# Save the variables to disk.
save_path = saver.save(sess, os.path.join(log_dir, "model.ckpt"))
log_string("Model saved in file: %s" % save_path)
def train_one_epoch(sess, ops, train_writer, data_iterator, tfrecord_filepaths_train,
tfrecord_filepaths_placeholder):
""" ops: dict mapping from string to tf ops """
# Iterate over the all datapoints
total_correct = 0.
total_seen = 0.
loss_sum = 0.
# Reset train data
sess.run(data_iterator.initializer, feed_dict={tfrecord_filepaths_placeholder: tfrecord_filepaths_train})
# Set trainable weights
sess.run(ops['is_training_pl'].assign(True))
pbar = tqdm(desc='', unit='tick')
try:
while True:
# Train it
batch_train_start = timer()
summary, step, _, loss_val, pred_val, current_label = sess.run(
[ops['merged'], ops['step'], ops['train_op'], ops['loss'], ops['pred'], ops['data_y_int']],
options=ops['sess_options'], run_metadata=ops['sess_metadata'])
batch_train_end = timer()
# Profiling
fetched_timeline = timeline.Timeline(ops['sess_metadata'].step_stats)
chrome_trace = fetched_timeline.generate_chrome_trace_format()
with open(os.path.join(ops['log_dir'], 'timeline', 'timeline_02_step_%d.json' % step), 'w') as f:
f.write(chrome_trace)
# Print predited value and label
# print('pred_val: {} curr_lab: {}'.format(pred_val[0], current_label[0]))
# Some acc calulation
train_writer.add_summary(summary, step)
pred_val = np.argmax(pred_val, 1)
correct = np.sum(pred_val == current_label)
total_correct += correct
total_seen += ops['batch_size']
loss_sum += loss_val
# Log info
desc = 'Mean train accuracy: {:.4f} loss: {:.4f} batch train accuracy: {:.4f} batch time: {:.4f}'
pbar.set_description(desc.format(total_correct / float(total_seen), loss_val, correct / float(ops['batch_size']),
batch_train_end - batch_train_start))
pbar.update(1)
pbar.refresh()
except tf.errors.OutOfRangeError:
pass
pbar.close()
log_string('Mean train accuracy: {:.4f}'.format(total_correct / float(total_seen)))
def eval_one_epoch(sess, ops, test_writer, data_iterator, tfrecord_filepaths_test, tfrecord_filepaths_placeholder):
""" ops: dict mapping from string to tf ops """
total_correct = 0.
total_seen = 0.
loss_sum = 0.
total_seen_class = [0. for _ in range(ops['num_classes'])]
total_correct_class = [0. for _ in range(ops['num_classes'])]
# Reset train data
sess.run(data_iterator.initializer, feed_dict={tfrecord_filepaths_placeholder: tfrecord_filepaths_test})
# Unset trainable weights
sess.run(ops['is_training_pl'].assign(False))
pbar = tqdm(desc='', unit='tick')
try:
while True:
# Train it
summary, step, loss_val, pred_val, current_label = sess.run(
[ops['merged'], ops['step'], ops['loss'], ops['pred'], ops['data_y_int']])
# print('pred_val: {} curr_lab: {}'.format(pred_val[0], current_label[0]))
# Some acc calulation
pred_val = np.argmax(pred_val, 1)
correct = np.sum(pred_val == current_label)
total_correct += correct
total_seen += ops['batch_size']
loss_sum += (loss_val * ops['batch_size'])
for i in range(len(current_label)):
current_class = current_label[i]
total_seen_class[current_class] += 1
total_correct_class[current_class] += (pred_val[i] == current_class)
# Log info
pbar.set_description('Mean test accuracy: {:.4f} class_accuracy: {:.4f}, and loss {:.4f}'.format(
total_correct / float(total_seen),
np.mean(np.array(total_correct_class) / np.array(total_seen_class, dtype=np.float)),
loss_sum / float(total_seen)))
pbar.update(1)
pbar.refresh()
except tf.errors.OutOfRangeError:
pass
pbar.close()
log_string('Mean test accuracy: {:.4f}'.format(total_correct / float(total_seen)))
# Log test accuracy
summary_log = tf.Summary()
summary_log.value.add(tag="%stest_accuracy" % "", simple_value=np.sum(total_correct / float(total_seen)))
test_writer.add_summary(summary_log, step)
if __name__ == "__main__":
###########################################################################
# Argparse
###########################################################################
parser = argparse.ArgumentParser()
parser.add_argument('--gpu', type=int, default=0, help='GPU to use [default: GPU 0]')
parser.add_argument('--model', help='Model name', required=True)
parser.add_argument('--log_dir', default='log', help='Log dir [default: log]')
parser.add_argument('--num_point', type=int, default=1024, help='Point Number [256/512/1024/2048] [default: 1024]')
parser.add_argument('--max_epoch', type=int, default=100, help='Epoch to run [default: 100]')
parser.add_argument('--batch_size', type=int, default=32, help='Batch Size during training [default: 32]')
parser.add_argument('--learning_rate', type=float, default=0.001, help='Initial learning rate [default: 0.001]')
parser.add_argument('--momentum', type=float, default=0.9, help='Initial learning rate [default: 0.9]')
parser.add_argument('--optimizer', default='adam', help='adam or momentum [default: adam]')
parser.add_argument('--decay_step', type=int, default=200000, help='Decay step for lr decay [default: 200000]')
parser.add_argument('--decay_rate', type=float, default=0.8, help='Decay rate for lr decay [default: 0.8]')
parser.add_argument('--tfrecords_path', type=str,
help='top level input path where are train/test dirs with tfrecords',
required=True)
parser.add_argument('--pretrained_weights', type=str, help='pretrained weights file for inception_v3',
required=False)
args = parser.parse_args()
###########################################################################
# Argparse
###########################################################################
train(tfrecords_path=args.tfrecords_path,
model_name=args.model,
batch_size=args.batch_size, base_learning_rate=args.learning_rate,
gpu_index=args.gpu,
bn_decay_decay_step=args.decay_step,
optimizer_name=args.optimizer,
log_dir=args.log_dir, epochs=args.max_epoch,
pretrained_weights_file_path=args.pretrained_weights)