-
Notifications
You must be signed in to change notification settings - Fork 15
/
Copy pathlaunch_tb.py
49 lines (37 loc) · 1.35 KB
/
launch_tb.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
#!/usr/bin/env python
# script to launch tensorboard job for a single run
import argparse
import json
import os
import sys
import time
import aws_backend
import util as u
parser = argparse.ArgumentParser(description='Launch CIFAR training')
# TODO: rename to gradient instance type
parser.add_argument('--instance-type', type=str, default='t2.large',
help='instance type to use')
parser.add_argument('--zone', type=str, default='us-east-1c',
help='which availability zone to use')
parser.add_argument('--name', type=str, default='cifar00',
help="name of the current run")
args = parser.parse_args()
# Amazon Ubuntu Deep Learning AMI
generic_ami_dict = {
"us-west-2": "ami-3b6bce43",
"us-east-1": "ami-9ba7c4e1",
}
def main():
backend = aws_backend
region = os.environ.get("AWS_DEFAULT_REGION")
ami = generic_ami_dict[region]
run = backend.make_run(args.name, ami=ami, availability_zone=args.zone)
job = run.make_job('tb', 1, instance_type=args.instance_type)
job.wait_until_ready()
job.run("source activate tensorflow_p36 # env with cuda 8")
# Launch tensorboard visualizer.
tb_cmd = "tensorboard --logdir={logdir} --port=6006".format(logdir=run.logdir)
job.run(tb_cmd, sync=False)
print("See tensorboard at http://%s:%s"%(job.public_ip, 6006))
if __name__=='__main__':
main()