forked from malay95/Parking-Spot-Prediction
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathutility_functions.py
67 lines (56 loc) · 2.38 KB
/
utility_functions.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
# coding: utf-8
# In[5]:
import pandas as pd
from math import sqrt
from sklearn.metrics import mean_squared_error
import numpy as np
#actual = actual values of y data
#predicted - predicted values of the test set
#y_test set which comprises of 100 values
actual_ = [82, 94, 94, 99, 114, 118, 129, 137, 142, 151, 161, 161, 161, 161, 161, 161, 161, 161, 130, 97, 78, 66, 64, 70, 74, 82, 94, 115, 136, 151, 160, 161, 161, 161, 161, 161, 161, 161, 161, 161, 161, 161, 126, 74, 47, 39, 31, 30, 38, 47, 61, 89, 122, 145, 161, 161, 161, 161, 161, 161, 161, 161, 161, 161, 161, 159, 123, 100, 69, 45, 38, 44, 41, 51, 63, 92, 128, 139, 156, 160, 160, 161, 161, 161, 161, 161, 161, 161, 161, 159, 138, 85, 51, 34, 36, 40, 44, 49, 58, 100]
def rms(predicted,actual=actual_):
return sqrt(mean_squared_error(actual, predicted))
def r2(predicted,actual=actual_):
mean_actual = np.mean(actual)
actual = np.array(actual)
predicted = np.array(predicted)
rss = np.sum((actual-predicted)**2)
tss = np.sum((actual-mean_actual)**2)
final = 1 - (rss/tss)
return final
def accuracy_tolerance(pred_set,act_set=actual_, tolerance=10.0):
if len(pred_set) != len(act_set):
raise ValueError('prediction and actual set lengths dont match')
n = len(pred_set)
count = 0
for i in range(n):
if abs(pred_set[i] - act_set[i]) <= tolerance: count += 1
acc = float(count) / float(n)
return acc
def calculate_accuracy(predicted,model_name='No Name',actual=actual_):
#call this function to get all accuracies as a dictionary
d = {}
d['name'] = model_name
d['r2'] = r2(actual,predicted)
d['tol'] = accuracy_tolerance(actual,predicted)
d['rms'] = rms(actual,predicted)
return d
def plot_graph(y_pred, y_act=actual_):
# y_pred : 1D array predicted values
# y_act : 1D array actual values
if (len(y_act)!=100):
raise ValueError('Test set should contain 100 values only')
if (len(y_pred) != len(y_act)):
raise ValueError('actual and predicted values dont have the same lengths')
x = [i for i in range(len(y_pred))]
plt.figure(figsize=(8, 4))
plt.plot(x, y_pred, 'r-', label='Predicted')
plt.plot(x, y_act, 'b-', label='Actual')
axes = plt.gca()
axes.set_ylim([0, 200])
plt.ylabel('available spots')
plt.xlabel('time')
plt.legend(loc='best')
# plt.xticks(x)
plt.legend()
plt.show()