6
6
from optuna .visualization import plot_parallel_coordinate , plot_contour , plot_edf , plot_optimization_history
7
7
import os
8
8
9
-
10
9
def objective (trial , model , dataset , loss ):
10
+
11
11
parser = argparse .ArgumentParser (add_help = False )
12
12
13
13
dataset = dataset
14
14
model = model
15
15
16
16
num_epochs = 1
17
17
18
- embedding_dim = 32 # trial.suggest_categorical("embedding_dim", [32, 64])
19
- optimizer = "Adam" # trial.suggest_categorical("optimizer", ["Adam", "Adopt"])
20
- batch_size = 1024 # trial.suggest_categorical("batch_size", [512, 1024])
18
+ embedding_dim = 32 # trial.suggest_categorical("embedding_dim", [32, 64])
19
+ optimizer = "Adam" # trial.suggest_categorical("optimizer", ["Adam", "Adopt"])
20
+ batch_size = 1024 # trial.suggest_categorical("batch_size", [512, 1024])
21
21
learning_rate = trial .suggest_float ("learning_rate" , 0.01 , 0.1 )
22
22
23
- label_relaxation_alpha = trial .suggest_float ("label_relaxation_alpha" , 0.01 , 0.1 , ) if loss == "LRLoss" else 0.0
24
- label_smoothing_rate = trial .suggest_float ("label_smoothing_rate" , 0.01 , 0.1 ) if loss == "LS" else 0.0
23
+ label_relaxation_alpha = trial .suggest_float ("label_relaxation_alpha" , 0.01 , 0.1 ,) if loss == "LRLoss" else 0.0
24
+ label_smoothing_rate = trial .suggest_float ("label_smoothing_rate" , 0.01 , 0.1 ) if loss == "LS" else 0.0
25
25
26
26
parser .add_argument ('--loss_fn' , type = str , default = loss )
27
27
parser .add_argument ("--label_smoothing_rate" , type = float , default = label_smoothing_rate )
@@ -69,7 +69,6 @@ def objective(trial, model, dataset, loss):
69
69
70
70
return result ["Test" ]["MRR" ]
71
71
72
-
73
72
# set according to your environment TODO: make it as a parameter
74
73
main_math = "../../../KGs/Datasets_Perturbed/"
75
74
report_folder_name = "./bo_outputs/"
@@ -93,17 +92,15 @@ def objective(trial, model, dataset, loss):
93
92
94
93
best_trial = study .best_trial
95
94
96
- """
97
95
fig1 = plot_parallel_coordinate (study )
98
- fig1.write_image(report_folder_name + f"parallel_coordinate-{dataset}-{model}-{loss}" + ".png")
96
+ fig1 .write_image (report_folder_name + f"parallel_coordinate-{ dataset } -{ model } -{ loss } " + ".png" )
99
97
100
98
fig3 = plot_edf (study )
101
99
fig3 .write_image (report_folder_name + f"plot_edf-{ dataset } -{ model } -{ loss } " + ".png" )
102
100
103
101
fig4 = plot_optimization_history (study )
104
102
fig4 .write_image (report_folder_name + f"plot_optimization_history-{ dataset } -{ model } -{ loss } " + ".png" )
105
- """
106
-
103
+
107
104
if loss == "LRLoss" :
108
105
fig2 = plot_contour (study , params = ["label_relaxation_alpha" , "learning_rate" ])
109
106
fig2 .write_image (report_folder_name + f"contour-{ dataset } -{ model } -{ loss } " + ".png" )
@@ -112,8 +109,10 @@ def objective(trial, model, dataset, loss):
112
109
fig2 = plot_contour (study , params = ["label_smoothing_rate" , "learning_rate" ])
113
110
fig2 .write_image (report_folder_name + f"contour-{ dataset } -{ model } -{ loss } " + ".png" )
114
111
112
+
115
113
os .makedirs (os .path .dirname (report_folder_name ), exist_ok = True )
116
114
with open (report_folder_name + report_file_name , "a" ) as file :
117
- file .write (
118
- f"Value: { best_trial . value } , Params: { best_trial . params } , Dataset: { dataset } , Model: { model } , Loss: { loss } \n " )
115
+ file .write (f"Value: { best_trial . value } , Params: { best_trial . params } , Dataset: { dataset } , Model: { model } , Loss: { loss } \n " )
116
+
119
117
118
+ 0
0 commit comments