-
Notifications
You must be signed in to change notification settings - Fork 10
/
Copy pathimage_processing.py
133 lines (109 loc) · 4.82 KB
/
image_processing.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
# Copyright 2016 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Helper functions for image preprocessing."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import tensorflow as tf
def distort_image(image, thread_id):
"""Perform random distortions on an image.
Args:
image: A float32 Tensor of shape [height, width, 3] with values in [0, 1).
thread_id: Preprocessing thread id used to select the ordering of color
distortions. There should be a multiple of 2 preprocessing threads.
Returns:
distorted_image: A float32 Tensor of shape [height, width, 3] with values in
[0, 1].
"""
# Randomly flip horizontally.
with tf.name_scope("flip_horizontal", values=[image]):
image = tf.image.random_flip_left_right(image)
# Randomly distort the colors based on thread id.
color_ordering = thread_id % 2
with tf.name_scope("distort_color", values=[image]):
if color_ordering == 0:
image = tf.image.random_brightness(image, max_delta=32. / 255.)
image = tf.image.random_saturation(image, lower=0.5, upper=1.5)
image = tf.image.random_hue(image, max_delta=0.032)
image = tf.image.random_contrast(image, lower=0.5, upper=1.5)
elif color_ordering == 1:
image = tf.image.random_brightness(image, max_delta=32. / 255.)
image = tf.image.random_contrast(image, lower=0.5, upper=1.5)
image = tf.image.random_saturation(image, lower=0.5, upper=1.5)
image = tf.image.random_hue(image, max_delta=0.032)
# The random_* ops do not necessarily clamp.
image = tf.clip_by_value(image, 0.0, 1.0)
return image
def process_image(encoded_image,
is_training,
height,
width,
resize_height=346,
resize_width=346,
thread_id=0,
image_format="jpeg"):
"""Decode an image, resize and apply random distortions.
In training, images are distorted slightly differently depending on thread_id.
Args:
encoded_image: String Tensor containing the image.
is_training: Boolean; whether preprocessing for training or eval.
height: Height of the output image.
width: Width of the output image.
resize_height: If > 0, resize height before crop to final dimensions.
resize_width: If > 0, resize width before crop to final dimensions.
thread_id: Preprocessing thread id used to select the ordering of color
distortions. There should be a multiple of 2 preprocessing threads.
image_format: "jpeg" or "png".
Returns:
A float32 Tensor of shape [height, width, 3] with values in [-1, 1].
Raises:
ValueError: If image_format is invalid.
"""
# Helper function to log an image summary to the visualizer. Summaries are
# only logged in thread 0.
def image_summary(name, image):
if not thread_id:
tf.summary.image(name, tf.expand_dims(image, 0))
# Decode image into a float32 Tensor of shape [?, ?, 3] with values in [0, 1).
with tf.name_scope("decode", values=[encoded_image]):
if image_format == "jpeg":
image = tf.image.decode_jpeg(encoded_image, channels=3)
elif image_format == "png":
image = tf.image.decode_png(encoded_image, channels=3)
else:
raise ValueError("Invalid image format: %s" % image_format)
image = tf.image.convert_image_dtype(image, dtype=tf.float32)
image_summary("original_image", image)
# Resize image.
assert (resize_height > 0) == (resize_width > 0)
if resize_height:
image = tf.image.resize_images(image,
size=[resize_height, resize_width],
method=tf.image.ResizeMethod.BILINEAR)
# Crop to final dimensions.
if is_training:
image = tf.random_crop(image, [height, width, 3])
else:
# Central crop, assuming resize_height > height, resize_width > width.
image = tf.image.resize_image_with_crop_or_pad(image, height, width)
image_summary("resized_image", image)
# Randomly distort the image.
if is_training:
image = distort_image(image, thread_id)
image_summary("final_image", image)
# Rescale to [-1,1] instead of [0, 1]
image = tf.subtract(image, 0.5)
image = tf.multiply(image, 2.0)
return image