-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathREADME.txt
73 lines (62 loc) · 2.6 KB
/
README.txt
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
User Manual
## Follow the given procedure to Setup and installation of required libraries
**STEP 1:** Create an environment using the below commands
**Setup the pip package manager**
```
$ pip install -U pip
```
* **Install the virtualenv package**\
The virtualenv package is required to create virtual environments. You can install it with pip:
```
$ pip install virtualenv
```
**Create the virtual environment**\
To create a virtual environment, you must specify a path. For example to create one in the local directory called ‘mypython’, type the following:
```
$ virtualenv mypython
```
**Activate the virtual environment**\
You can activate the python environment by running the following command:
```
$ source mypython/bin/activate
```
**STEP 2:** Install Python (We've used Python3.7) using the command
```
$ sudo apt install python3.7
```
**STEP 3:** Install Jupyter Nodebook using the command
```
$ pip install notebook
```
**STEP 4:** Install The following required libraries
**Install 'OpenCV' using the command**
```
$ pip install opencv-python
```
**Install 'Numpy' using the command**
```
$ pip install numpy
```
> * **Install 'Pandas' using the command**
```
$ pip install pandas
```
**Install 'Scipy' using the command**
```
$ pip install scipy
```
> * **Install 'Dlib', after installing few prerequisites using the command**
```
$ sudo apt-get install build-essential cmake
$ sudo apt-get install libgtk-3-dev
$ sudo apt-get install libboost-all-dev
$ pip install scikit-image
$ pip install dlib
```
**STEP 4:** After above installations
***Option 1:*** Either clone the repository using the below command, and move to directory **".../Smart_Monitoring_System/Code"** and open **'classroom monitor.ipynb'** in Jupyter Notebook. And pass the directory of **'shape_predictor_68_face_landmarks.dat'** file, where it is required in the code.
```
https://github.com/dheeraj-2000/Smart_Monitoring_System.git
```
***Option 2:*** Or, After Unzipping this folder, move to **".../Smart_Monitoring_System/Code"** and open **'classroom monitor.ipynb'** in Jupyter Notebook. And pass the directory of **'shape_predictor_68_face_landmarks.dat'** file, where it is required in the code.
Note: Results folder contains Videos for various Testcases with their correspinding plots.