-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathPrime Factorization.py
53 lines (49 loc) · 1.61 KB
/
Prime Factorization.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
from fractions import gcd
import random
def brent(N):
if N%2==0:
return 2
y,c,m = random.randint(1, N-1),random.randint(1, N-1),random.randint(1, N-1)
g,r,q = 1,1,1
while g==1:
x = y
for i in range(r):
y = ((y*y)%N+c)%N
k = 0
while (k<r and g==1):
ys = y
for i in range(min(m,r-k)):
y = ((y*y)%N+c)%N
q = q*(abs(x-y))%N
g = gcd(q,N)
k = k + m
r = r*2
if g==N:
while True:
ys = ((ys*ys)%N+c)%N
g = gcd(abs(x-ys),N)
if g>1:
break
return g
def factorize(num): #valid for all num<10^18
factors = [[1,1]]
for i in xrange(2,1000000):
if num%i == 0:
count = 0
while num%i == 0:
num/= i
count += 1
factors.append([i,count])
if num == 1:
return factors
i = brent(num)
if num%i == 0:
count = 0
while num%i == 0:
num/= i
count += 1
factors.append([i,count])
if num != 1:
factors.append([i,count])
return factors
print factorize(123456789987654321)