-
Notifications
You must be signed in to change notification settings - Fork 5
/
manifest.bioimage.io.yaml
275 lines (260 loc) · 11.2 KB
/
manifest.bioimage.io.yaml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
format_version: 0.2.2
type: collection
name: deepImageJ Collection
tags: [deepimagej, bioimage.io]
description: "Resources for BioImgage.IO curated by the deepImageJ team."
authors: []
documentation: https://deepimagej.github.io/deepimagej/
maintainers: []
cite:
- text: 'E. Gómez-de-Mariscal, C. García-López-de-Haro, W. Ouyang, L. Donati, E. Lundberg, M. Unser, A. Muñoz-Barrutia, D. Sage, "DeepImageJ: A user-friendly environment to run deep learning models in ImageJ", Nat Methods 18, 1192–1195 (2021).'
doi: 10.1038/s41592-021-01262-9
id: deepimagej
config:
id: deepimagej
name: DeepImageJ
tags:
- deepimagej
logo: https://raw.githubusercontent.com/deepimagej/models/master/logos/logo.png
icon: https://raw.githubusercontent.com/deepimagej/models/master/logos/icon.png
splash_title: deepImageJ
splash_subtitle: "A user-friendly plugin to run deep learning models in ImageJ"
splash_feature_list:
explore_button_text: "Start Exploring"
background_image: "static/img/zoo-background.svg"
resource_types:
- model
- notebook
- application
url_root: https://raw.githubusercontent.com/deepimagej/models/master
docs: https://github.com/deepimagej/deepimagej-plugin/wiki
contact:
- name: Arrate Muñoz Barrutia
email: [email protected]
github: arratemunoz
affiliation:
- name: UC3M
url: https://www.uc3m.es/home
- name: Daniel Sage
email: [email protected]
github: dasv74
affiliation:
- name: EPFL
url: https://www.epfl.ch/en/
collection:
# ==================applications====================
- id: deepimagej
name: deepImageJ
description: "DeepImageJ is a user-friendly plugin that enables the use of pre-trained deep learning models in ImageJ and Fiji."
type: application
cite:
- text: "Gómez-de-Mariscal, E., García-López-de-Haro, C., Ouyang, W., Donati, L., Lundberg E., Unser, M., Muñoz-Barrutia, A. and Sage, D. DeepImageJ: A user-friendly plugin to run deep learning models in ImageJ, BioRxiv, 2019"
doi: https://doi.org/10.1101/799270
authors:
- name: DeepImageJ
affiliation: EPFL, UC3M
source: https://raw.githubusercontent.com/deepimagej/models/master/src/deepimagej-app.imjoy.html
tags: [software, bioengine, deepimagej]
icon: https://raw.githubusercontent.com/deepimagej/models/master/logos/icon.png
documentation: https://deepimagej.github.io/
git_repo: https://github.com/deepimagej/deepimagej-plugin
config:
supported_weight_formats: ["tensorflow_saved_model_bundle", "torchscript"]
- id: unet-pancreaticcellsegmentation
type: application
name: 2D U-Net for binary segmentation
description: Easy example to define a 2D U-Net for segmentation with Keras and import it into DeepImageJ format
cite:
- text: "Falk, T., Mai, D., Bensch, R. et al. U-Net: deep learning for cell counting, detection, and morphometry. Nat Methods 16, 67–70 (2019)."
doi: https://doi.org/10.1038/s41592-018-0261-2
authors:
- name: Ignacio Arganda-Carreras
affiliation: EPFL, UC3M
- name: DeepImageJ
affiliation: EPFL, UC3M
covers:
- https://raw.githubusercontent.com/deepimagej/models/master/u-net_pancreatic_segmentation/notebook_intro.png
- https://raw.githubusercontent.com/deepimagej/models/master/u-net_pancreatic_segmentation/usecase.png
badges:
- label: Open in Colab
icon: https://colab.research.google.com/assets/colab-badge.svg
url: https://colab.research.google.com/github/deepimagej/models/blob/master/u-net_pancreatic_segmentation/U_Net_PhC_C2DL_PSC_segmentation.ipynb
documentation: https://github.com/miura/NEUBIAS_AnalystSchool2020/tree/master/Ignacio
tags:
- unet
- segmentation
- deepimagej
- notebook
- training
- cell-segmentation
source: https://raw.githubusercontent.com/deepimagej/models/master/u-net_pancreatic_segmentation/U_Net_PhC_C2DL_PSC_segmentation.ipynb
links:
- UNet2DPancreaticSegmentation
- id: smlm-deepimagej
type: application
name: SMLM-superresolution
description: Single molecule localization microscopy (SMLM) processing using deepImageJ and ThunderSTORM in an ImageJ macro.
covers:
- https://raw.githubusercontent.com/deepimagej/models/master/workflows/smlm_deepstorm/cover.png
download_url: https://raw.githubusercontent.com/deepimagej/imagej-macros/master/DeepSTORM4stacksThunderSTORM.ijm
source: https://raw.githubusercontent.com/deepimagej/imagej-macros/master/DeepSTORM4stacksThunderSTORM.ijm
cite:
- text: Lucas von Chamier et al., Nature Communications 2021
doi: https://doi.org/10.1038/s41467-021-22518-0
- text: Gómez de Mariscal et al. bioRxiv 2019
doi: https://doi.org/10.1101/799270
- text: M. Ovesný, et al., Bioinformatics 2014
doi: https://doi.org/10.1093/bioinformatics/btu202
authors:
- name: DeepImageJ
affiliation: EPFL, UC3M
icon: https://raw.githubusercontent.com/deepimagej/models/master/logos/icon.png
documentation: https://raw.githubusercontent.com/deepimagej/models/master/workflows/smlm_deepstorm/README.md
tags:
- deepimagej
- smlm
- macro
- deepstorm
- thunderstorm
- workflow
- pipeline
- superresolution
- id: EVsTEMsegmentationFRUNet
type: application
name: Small extracellular vesicle instance segmentation (FRU-Net)
description: Ready to use notebook for the segmentation of small extrcaellular vesicles in transmission electron microscopy (TEM) images. The notebook is optimized to use it in Google Colaboratory. It will download the original code and dataset, and make the inference connecting with Google's GPU.
cite:
- text: "Gómez-de-Mariscal, E. et al., Deep-Learning-Based Segmentation of SmallExtracellular Vesicles in Transmission Electron Microscopy Images Scientific Reports, (2019)"
doi: https://doi.org/10.1038/s41598-019-49431-3
authors:
- name: Estibaliz Gómez-de-Mariscal
affiliation: Universidad Carlos III de Madrid
- name: Martin Maška
affiliation: Masaryk University
- name: Anna Kotrbová
affiliation: Masaryk University
- name: Vendula Pospíchalová
affiliation: Masaryk University
- name: Pavel Matula
affiliation: Masaryk University
- name: Arrate Muñoz-Barrutia
affiliation: Universidad Carlos III de Madrid
covers:
- https://media.springernature.com/m685/springer-static/image/art%3A10.1038%2Fs41598-019-49431-3/MediaObjects/41598_2019_49431_Fig1_HTML.png
- https://raw.githubusercontent.com/deepimagej/models/master/fru-net_sev_segmentation/frunet_sev.jpg
badges:
- label: Open in Colab
icon: https://colab.research.google.com/assets/colab-badge.svg
url: https://colab.research.google.com/github/BIIG-UC3M/FRU-Net-TEM-segmentation/blob/main/FRUnet_TEM_Exosomes_sEV.ipynb
documentation: https://raw.githubusercontent.com/deepimagej/models/master/fru-net_sev_segmentation/README.md
tags:
- extracellular-vesicles
- segmentation
- TEM
- notebook
- model-inference
- google-colab
- workflow
- pipeline
source: https://raw.githubusercontent.com/BIIG-UC3M/FRU-Net-TEM-segmentation/master/FRUnet_TEM_Exosomes_sEV.ipynb
links:
- FRUNet2DsEVSegmentation
# ==================datasets====================
- id: MoNuSeg_digital_pathology_miccai2018
type: dataset
name: Multi-Organ Nucleus Segmentation Challenge - MICCAI 2018
description: Labelled images for instance segmentation of cell nuclei in digital pathology datasets (MoNuSeg 2018 Challenge).
cite:
- text: "Neeraj Kumar et al. Transactions on medical imaging 2020"
doi: https://doi.org/10.1109/TMI.2019.2947628
authors:
- name: DeepImageJ
affiliation: EPFL, UC3M
documentation: https://monuseg.grand-challenge.org/
tags:
[
StarDist,
segmentation,
pathology,
H&E,
histology,
2D,
nuclei segmentation,
digital pathology,
]
source: https://monuseg.grand-challenge.org/Data/
covers:
- https://raw.githubusercontent.com/deepimagej/models/master/datasets/MoNuSeg1.jpg
- https://raw.githubusercontent.com/deepimagej/models/master/datasets/MoNuSeg2.jpg
- https://raw.githubusercontent.com/deepimagej/models/master/datasets/MoNuSeg3.jpg
# ==================models====================
# - id: UNet2DHeLaSegmentation
# type: model
# rdf_source: u-net_hela_segmentation/model.yaml
# links:
# - deepimagej
# - imjoy/BioImageIO-Packager
# download_url: https://zenodo.org/record/6827059/files/deepimagej_hela_unet_segmentation.zip
# - id: UNet2DGlioblastomaSegmentation
# type: model
# rdf_source: u-net_glioblastoma_segmentation/model.yaml
# download_url: https://zenodo.org/record/4155785/files/deepimagej_u-net_glioblastoma_segmentation.zip
# links:
# - deepimagej
# - imjoy/BioImageIO-Packager
# - id: SMLMDensityMapEstimationDEFCoN
# type: model
# rdf_source: defcon_density_map_estimation/model.yaml
# download_url: https://zenodo.org/record/4608442/files/SMLM_Density%20Map_Estimation_%28DEFCoN%29.bioimage.io.model.zip
# links:
# - deepimagej
# - imjoy/BioImageIO-Packager
# - id: DeepSTORMZeroCostDL4Mic
# type: model
# rdf_source: deepstorm_zerocostdl4mic/model.yaml
# download_url: https://sandbox.zenodo.org/record/907832/files/bioimage.io.model.zip
# links:
# - zero/Notebook_Deep-STORM_2D_ZeroCostDL4Mic_DeepImageJ
# - deepimagej
# - imjoy/BioImageIO-Packager
# - id: MU-Lux_CTC_PhC-C2DL-PSC
# type: model
# rdf_source: mu-lux_ctc_phc-c2dl-psc/model.yaml
# download_url: https://sandbox.zenodo.org/record/914413/files/mu-lux_ctc_phc-c2dl-psc.zip
# links:
# - deepimagej
# - imjoy/BioImageIO-Packager
# - id: WidefieldTxredSuperResolution
# type: model
# rdf_source: widefield_txred_super-resolution/model.yaml
# download_url: https://sandbox.zenodo.org/record/913992/files/widefield_txred_super-resolution.zip
# links:
# - deepimagej
# - imjoy/BioImageIO-Packager
# - id: WidefieldDapiSuperResolution
# type: model
# rdf_source: widefield_dapi_super-resolution/model.yaml
# download_url: https://sandbox.zenodo.org/record/914422/files/widefield_dapi_super-resolution.zip
# links:
# - deepimagej
# - imjoy/BioImageIO-Packager
# - id: WidefieldFitcSuperResolution
# type: model
# rdf_source: widefield_fitc_super-resolution/model.yaml
# download_url: https://sandbox.zenodo.org/record/914425/files/widefield_fitc_super-resolution.zip
# links:
# - deepimagej
# - imjoy/BioImageIO-Packager
# - id: Mt3VirtualStaining
# type: model
# rdf_source: mt3_virtual_staining/model.yaml
# download_url: https://sandbox.zenodo.org/record/906805/files/bioimage.io.model.zip
# links:
# - deepimagej
# - imjoy/BioImageIO-Packager
# - id: SkinLesionClassification
# type: model
# rdf_source: skin_lesion_classification/model.yaml
# download_url: https://sandbox.zenodo.org/record/906807/files/bioimage.io.model.zip
# links:
# - deepimagej