-
Notifications
You must be signed in to change notification settings - Fork 159
/
Copy pathword2vec.py
388 lines (320 loc) · 14.2 KB
/
word2vec.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
import argparse
import math
import struct
import sys
import time
import warnings
import numpy as np
from multiprocessing import Pool, Value, Array
class VocabItem:
def __init__(self, word):
self.word = word
self.count = 0
self.path = None # Path (list of indices) from the root to the word (leaf)
self.code = None # Huffman encoding
class Vocab:
def __init__(self, fi, min_count):
vocab_items = []
vocab_hash = {}
word_count = 0
fi = open(fi, 'r')
# Add special tokens <bol> (beginning of line) and <eol> (end of line)
for token in ['<bol>', '<eol>']:
vocab_hash[token] = len(vocab_items)
vocab_items.append(VocabItem(token))
for line in fi:
tokens = line.split()
for token in tokens:
if token not in vocab_hash:
vocab_hash[token] = len(vocab_items)
vocab_items.append(VocabItem(token))
#assert vocab_items[vocab_hash[token]].word == token, 'Wrong vocab_hash index'
vocab_items[vocab_hash[token]].count += 1
word_count += 1
if word_count % 10000 == 0:
sys.stdout.write("\rReading word %d" % word_count)
sys.stdout.flush()
# Add special tokens <bol> (beginning of line) and <eol> (end of line)
vocab_items[vocab_hash['<bol>']].count += 1
vocab_items[vocab_hash['<eol>']].count += 1
word_count += 2
self.bytes = fi.tell()
self.vocab_items = vocab_items # List of VocabItem objects
self.vocab_hash = vocab_hash # Mapping from each token to its index in vocab
self.word_count = word_count # Total number of words in train file
# Add special token <unk> (unknown),
# merge words occurring less than min_count into <unk>, and
# sort vocab in descending order by frequency in train file
self.__sort(min_count)
#assert self.word_count == sum([t.count for t in self.vocab_items]), 'word_count and sum of t.count do not agree'
print 'Total words in training file: %d' % self.word_count
print 'Total bytes in training file: %d' % self.bytes
print 'Vocab size: %d' % len(self)
def __getitem__(self, i):
return self.vocab_items[i]
def __len__(self):
return len(self.vocab_items)
def __iter__(self):
return iter(self.vocab_items)
def __contains__(self, key):
return key in self.vocab_hash
def __sort(self, min_count):
tmp = []
tmp.append(VocabItem('<unk>'))
unk_hash = 0
count_unk = 0
for token in self.vocab_items:
if token.count < min_count:
count_unk += 1
tmp[unk_hash].count += token.count
else:
tmp.append(token)
tmp.sort(key=lambda token : token.count, reverse=True)
# Update vocab_hash
vocab_hash = {}
for i, token in enumerate(tmp):
vocab_hash[token.word] = i
self.vocab_items = tmp
self.vocab_hash = vocab_hash
print
print 'Unknown vocab size:', count_unk
def indices(self, tokens):
return [self.vocab_hash[token] if token in self else self.vocab_hash['<unk>'] for token in tokens]
def encode_huffman(self):
# Build a Huffman tree
vocab_size = len(self)
count = [t.count for t in self] + [1e15] * (vocab_size - 1)
parent = [0] * (2 * vocab_size - 2)
binary = [0] * (2 * vocab_size - 2)
pos1 = vocab_size - 1
pos2 = vocab_size
for i in xrange(vocab_size - 1):
# Find min1
if pos1 >= 0:
if count[pos1] < count[pos2]:
min1 = pos1
pos1 -= 1
else:
min1 = pos2
pos2 += 1
else:
min1 = pos2
pos2 += 1
# Find min2
if pos1 >= 0:
if count[pos1] < count[pos2]:
min2 = pos1
pos1 -= 1
else:
min2 = pos2
pos2 += 1
else:
min2 = pos2
pos2 += 1
count[vocab_size + i] = count[min1] + count[min2]
parent[min1] = vocab_size + i
parent[min2] = vocab_size + i
binary[min2] = 1
# Assign binary code and path pointers to each vocab word
root_idx = 2 * vocab_size - 2
for i, token in enumerate(self):
path = [] # List of indices from the leaf to the root
code = [] # Binary Huffman encoding from the leaf to the root
node_idx = i
while node_idx < root_idx:
if node_idx >= vocab_size: path.append(node_idx)
code.append(binary[node_idx])
node_idx = parent[node_idx]
path.append(root_idx)
# These are path and code from the root to the leaf
token.path = [j - vocab_size for j in path[::-1]]
token.code = code[::-1]
class UnigramTable:
"""
A list of indices of tokens in the vocab following a power law distribution,
used to draw negative samples.
"""
def __init__(self, vocab):
vocab_size = len(vocab)
power = 0.75
norm = sum([math.pow(t.count, power) for t in vocab]) # Normalizing constant
table_size = 1e8 # Length of the unigram table
table = np.zeros(table_size, dtype=np.uint32)
print 'Filling unigram table'
p = 0 # Cumulative probability
i = 0
for j, unigram in enumerate(vocab):
p += float(math.pow(unigram.count, power))/norm
while i < table_size and float(i) / table_size < p:
table[i] = j
i += 1
self.table = table
def sample(self, count):
indices = np.random.randint(low=0, high=len(self.table), size=count)
return [self.table[i] for i in indices]
def sigmoid(z):
if z > 6:
return 1.0
elif z < -6:
return 0.0
else:
return 1 / (1 + math.exp(-z))
def init_net(dim, vocab_size):
# Init syn0 with random numbers from a uniform distribution on the interval [-0.5, 0.5]/dim
tmp = np.random.uniform(low=-0.5/dim, high=0.5/dim, size=(vocab_size, dim))
syn0 = np.ctypeslib.as_ctypes(tmp)
syn0 = Array(syn0._type_, syn0, lock=False)
# Init syn1 with zeros
tmp = np.zeros(shape=(vocab_size, dim))
syn1 = np.ctypeslib.as_ctypes(tmp)
syn1 = Array(syn1._type_, syn1, lock=False)
return (syn0, syn1)
def train_process(pid):
# Set fi to point to the right chunk of training file
start = vocab.bytes / num_processes * pid
end = vocab.bytes if pid == num_processes - 1 else vocab.bytes / num_processes * (pid + 1)
fi.seek(start)
#print 'Worker %d beginning training at %d, ending at %d' % (pid, start, end)
alpha = starting_alpha
word_count = 0
last_word_count = 0
while fi.tell() < end:
line = fi.readline().strip()
# Skip blank lines
if not line:
continue
# Init sent, a list of indices of words in line
sent = vocab.indices(['<bol>'] + line.split() + ['<eol>'])
for sent_pos, token in enumerate(sent):
if word_count % 10000 == 0:
global_word_count.value += (word_count - last_word_count)
last_word_count = word_count
# Recalculate alpha
alpha = starting_alpha * (1 - float(global_word_count.value) / vocab.word_count)
if alpha < starting_alpha * 0.0001: alpha = starting_alpha * 0.0001
# Print progress info
sys.stdout.write("\rAlpha: %f Progress: %d of %d (%.2f%%)" %
(alpha, global_word_count.value, vocab.word_count,
float(global_word_count.value) / vocab.word_count * 100))
sys.stdout.flush()
# Randomize window size, where win is the max window size
current_win = np.random.randint(low=1, high=win+1)
context_start = max(sent_pos - current_win, 0)
context_end = min(sent_pos + current_win + 1, len(sent))
context = sent[context_start:sent_pos] + sent[sent_pos+1:context_end] # Turn into an iterator?
# CBOW
if cbow:
# Compute neu1
neu1 = np.mean(np.array([syn0[c] for c in context]), axis=0)
assert len(neu1) == dim, 'neu1 and dim do not agree'
# Init neu1e with zeros
neu1e = np.zeros(dim)
# Compute neu1e and update syn1
if neg > 0:
classifiers = [(token, 1)] + [(target, 0) for target in table.sample(neg)]
else:
classifiers = zip(vocab[token].path, vocab[token].code)
for target, label in classifiers:
z = np.dot(neu1, syn1[target])
p = sigmoid(z)
g = alpha * (label - p)
neu1e += g * syn1[target] # Error to backpropagate to syn0
syn1[target] += g * neu1 # Update syn1
# Update syn0
for context_word in context:
syn0[context_word] += neu1e
# Skip-gram
else:
for context_word in context:
# Init neu1e with zeros
neu1e = np.zeros(dim)
# Compute neu1e and update syn1
if neg > 0:
classifiers = [(token, 1)] + [(target, 0) for target in table.sample(neg)]
else:
classifiers = zip(vocab[token].path, vocab[token].code)
for target, label in classifiers:
z = np.dot(syn0[context_word], syn1[target])
p = sigmoid(z)
g = alpha * (label - p)
neu1e += g * syn1[target] # Error to backpropagate to syn0
syn1[target] += g * syn0[context_word] # Update syn1
# Update syn0
syn0[context_word] += neu1e
word_count += 1
# Print progress info
global_word_count.value += (word_count - last_word_count)
sys.stdout.write("\rAlpha: %f Progress: %d of %d (%.2f%%)" %
(alpha, global_word_count.value, vocab.word_count,
float(global_word_count.value)/vocab.word_count * 100))
sys.stdout.flush()
fi.close()
def save(vocab, syn0, fo, binary):
print 'Saving model to', fo
dim = len(syn0[0])
if binary:
fo = open(fo, 'wb')
fo.write('%d %d\n' % (len(syn0), dim))
fo.write('\n')
for token, vector in zip(vocab, syn0):
fo.write('%s ' % token.word)
for s in vector:
fo.write(struct.pack('f', s))
fo.write('\n')
else:
fo = open(fo, 'w')
fo.write('%d %d\n' % (len(syn0), dim))
for token, vector in zip(vocab, syn0):
word = token.word
vector_str = ' '.join([str(s) for s in vector])
fo.write('%s %s\n' % (word, vector_str))
fo.close()
def __init_process(*args):
global vocab, syn0, syn1, table, cbow, neg, dim, starting_alpha
global win, num_processes, global_word_count, fi
vocab, syn0_tmp, syn1_tmp, table, cbow, neg, dim, starting_alpha, win, num_processes, global_word_count = args[:-1]
fi = open(args[-1], 'r')
with warnings.catch_warnings():
warnings.simplefilter('ignore', RuntimeWarning)
syn0 = np.ctypeslib.as_array(syn0_tmp)
syn1 = np.ctypeslib.as_array(syn1_tmp)
def train(fi, fo, cbow, neg, dim, alpha, win, min_count, num_processes, binary):
# Read train file to init vocab
vocab = Vocab(fi, min_count)
# Init net
syn0, syn1 = init_net(dim, len(vocab))
global_word_count = Value('i', 0)
table = None
if neg > 0:
print 'Initializing unigram table'
table = UnigramTable(vocab)
else:
print 'Initializing Huffman tree'
vocab.encode_huffman()
# Begin training using num_processes workers
t0 = time.time()
pool = Pool(processes=num_processes, initializer=__init_process,
initargs=(vocab, syn0, syn1, table, cbow, neg, dim, alpha,
win, num_processes, global_word_count, fi))
pool.map(train_process, range(num_processes))
t1 = time.time()
print
print 'Completed training. Training took', (t1 - t0) / 60, 'minutes'
# Save model to file
save(vocab, syn0, fo, binary)
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('-train', help='Training file', dest='fi', required=True)
parser.add_argument('-model', help='Output model file', dest='fo', required=True)
parser.add_argument('-cbow', help='1 for CBOW, 0 for skip-gram', dest='cbow', default=1, type=int)
parser.add_argument('-negative', help='Number of negative examples (>0) for negative sampling, 0 for hierarchical softmax', dest='neg', default=5, type=int)
parser.add_argument('-dim', help='Dimensionality of word embeddings', dest='dim', default=100, type=int)
parser.add_argument('-alpha', help='Starting alpha', dest='alpha', default=0.025, type=float)
parser.add_argument('-window', help='Max window length', dest='win', default=5, type=int)
parser.add_argument('-min-count', help='Min count for words used to learn <unk>', dest='min_count', default=5, type=int)
parser.add_argument('-processes', help='Number of processes', dest='num_processes', default=1, type=int)
parser.add_argument('-binary', help='1 for output model in binary format, 0 otherwise', dest='binary', default=0, type=int)
#TO DO: parser.add_argument('-epoch', help='Number of training epochs', dest='epoch', default=1, type=int)
args = parser.parse_args()
train(args.fi, args.fo, bool(args.cbow), args.neg, args.dim, args.alpha, args.win,
args.min_count, args.num_processes, bool(args.binary))