-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathapp.py
30 lines (24 loc) · 1.26 KB
/
app.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
from flask import Flask, flash, redirect, render_template, request, session, abort
import pandas as pd
import numpy as np
from werkzeug.utils import secure_filename
app = Flask(__name__)
app.config['UPLOAD_FOLDER'] = r'C:\Users\DEBJYOTI BANERJEE\Documents\My Machine Learning Tool\uploaded files'
# @app.route("/")
# def hello():
# return render_template('Home_page.html')
@app.route('/upload', methods=['GET', 'POST'])
def upload():
if request.method == 'POST':
data = pd.read_csv(request.files.get('file'))
df = pd.DataFrame(data)
df2 = pd.DataFrame(df.describe(include = 'all'))
df3 = pd.DataFrame(df.dtypes)
df4 = pd.DataFrame(df.isnull().sum())
# df3.columns = ['Column names', 'data_types']
return render_template('upload.html', shape=df.shape, tables = [df.to_html(classes = 'data', header = "true")], titles = df.columns.values,
describe_table = [df2.to_html(classes = 'data', header = "true")], titles2 = df2.columns.values, dtypes_table = [df3.to_html(classes = 'data', header = "true")],
title3 = ['Column names', 'data_types'], null_table = [df4.to_html(classes = 'data', header = "true")])
return render_template('upload.html')
if __name__ == "__main__":
app.run(debug = True)