-
Notifications
You must be signed in to change notification settings - Fork 23
/
3_2_ST-posterior.tex
1169 lines (634 loc) · 26.2 KB
/
3_2_ST-posterior.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
%\documentclass[mathserif]{beamer}
\documentclass[handout]{beamer}
%\usetheme{Goettingen}
\usetheme{Warsaw}
%\usetheme{Singapore}
%\usetheme{Frankfurt}
%\usetheme{Copenhagen}
%\usetheme{Szeged}
%\usetheme{Montpellier}
%\usetheme{CambridgeUS}
%\usecolortheme{}
%\setbeamercovered{transparent}
\usepackage[english, activeacute]{babel}
\usepackage[utf8]{inputenc}
\usepackage{amsmath, amssymb}
\usepackage{dsfont}
\usepackage{graphics}
\usepackage{cases}
\usepackage{graphicx}
\usepackage{pgf}
\usepackage{epsfig}
\usepackage{amssymb}
\usepackage{multirow}
\usepackage{amstext}
\usepackage[ruled,vlined,lined]{algorithm2e}
\usepackage{amsmath}
\usepackage{epic}
\usepackage{epsfig}
\usepackage{fontenc}
\usepackage{framed,color}
\usepackage{palatino, url, multicol}
\usepackage{listings}
%\algsetup{indent=2em}
\vspace{-0.5cm}
\title{Summarizing the Posterior}
\vspace{-0.5cm}
\author[Felipe Bravo Márquez]{\footnotesize
%\author{\footnotesize
\textcolor[rgb]{0.00,0.00,1.00}{Felipe José Bravo Márquez}}
\date{ \today }
\begin{document}
\begin{frame}
\titlepage
\end{frame}
%%%%%%%%%%%%%%%%%%%%%%%%%%%
\begin{frame}{Summarizing the Posterior}
\scriptsize{
\begin{itemize}
\item Once our Bayesian model produces a posterior distribution, it is necessary to summarize and interpret it.
\item However, a posterior distribution is (usually) a high dimensional object that is hard to visualize and work with \cite{pml1Book}.
\item In this class we will learn how to draw estimates (e.g., point estimates, intervals, predictions) to summarize and interpret a posterior distribution.
\item Exactly how it is summarized depends upon our purpose.
\item Common questions include:
\begin{itemize}
\begin{scriptsize}
\item How much posterior probability lies below some parameter value?
\item How much posterior probability lies between two parameter values?
\item Which parameter value marks the lower 5\% of the posterior probability?
\item Which range of parameter values contains 90\% of the posterior probability?
\item Which parameter value has highest posterior probability?
\end{scriptsize}
\end{itemize}
\end{itemize}
}
\end{frame}
\begin{frame}{Sampling to summarize}
\scriptsize{
\begin{itemize}
\item These questions can be usefully divided into questions about:
\begin{itemize}
\scriptsize{
\item intervals of defined boundaries
\item intervals of defined probability area
\item point estimates
}
\end{itemize}
\item In the theoretical world (when the posterior has a closed mathematical form), answering these questions implies calculating complicated integrals to cancel out (or average) different variables.
\item In the practical world, however, the same results can be approximated using \textbf{samples} from the posterior.
\item In this class we will approach the above questions using samples from the posterior.
\item Another reason to learn to work with posterior samples is that methods like MCMC produce nothing but samples from the posterior.
\item This class is based on Chapter 3 of \cite{mcelreath2020statistical}.
\end{itemize}
}
\end{frame}
\begin{frame}[fragile]{Sampling from a grid-approximate posterior}
\scriptsize{
\begin{itemize}
\item Before beginning to work with samples, we need to generate them.
\item Here’s a reminder for how to compute the posterior for the globe tossing model, using grid approximation:
\begin{verbatim}
p_grid <- seq( from=0 , to=1 , length.out=1000 )
prior <- rep( 1 , 1000 )
likelihood <- dbinom( 6 , size=9 , prob=p_grid )
posterior <- likelihood * prior
posterior <- posterior / sum(posterior)
\end{verbatim}
\item Now we wish to draw 10,000 samples from this posterior.
\item Imagine the posterior is a bucket full of parameter values, numbers such as 0.1, 0.7, 0.5, 1, etc.
\item Within the bucket, each value exists in proportion to its posterior probability, such that values near the peak are much more common than those in the tails.
\end{itemize}
}
\end{frame}
\begin{frame}[fragile]{Sampling from a grid-approximate posterior}
\scriptsize{
\begin{itemize}
\item We can visualize this bucket by plotting the posterior probabilities against the grid of parameter values.
\begin{verbatim}
plot(posterior~p_grid)
\end{verbatim}
\begin{figure}[h!]
\centering
\includegraphics[scale=0.85]{pics/post_grid.pdf}
\end{figure}
\end{itemize}
}
\end{frame}
\begin{frame}[fragile]{Sampling from a grid-approximate posterior}
\scriptsize{
\begin{itemize}
\item We’re going to scoop out 10,000 values from the bucket.
\item Provided the bucket is well mixed, the resulting samples will have the same proportions as the exact posterior density.
\item Therefore the individual values of $p$ will appear in our samples in proportion to the posterior plausibility of each value.
\item Here’s how you can do this in R, with one line of code:
\begin{verbatim}
samples <- sample( p_grid , prob=posterior , size=1e4 ,
replace=TRUE )
\end{verbatim}
\item We are randomly pulling values from the grid of parameter values where the probability of each value is given by the posterior.
\end{itemize}
}
\end{frame}
\begin{frame}[fragile]{Sampling from a grid-approximate posterior}
\scriptsize{
\begin{itemize}
\item We can visualize a density plot of our posterior sample as follows:
\begin{verbatim}
library(rethinking)
dens(samples)
\end{verbatim}
\begin{figure}[h!]
\centering
\includegraphics[scale=0.7]{pics/posteriorTossGrid.pdf}
\end{figure}
\item We can see that the estimated density is very similar to to ideal posterior we computed via grid approximation in previous class.
\end{itemize}
}
\end{frame}
\begin{frame}[fragile]{Sampling from the theoretical posterior}
\scriptsize{
\begin{itemize}
\item We could get very similar results by sampling from the theoretical posterior using the beta distribution:
\begin{verbatim}
teo.samples<-rbeta(1e4,7,4)
dens(teo.samples)
\end{verbatim}
\begin{figure}[h!]
\centering
\includegraphics[scale=0.6]{pics/posteriorTossBeta.pdf}
\end{figure}
\item We can see that the samples of the grid-approximated posterior and the theoretical posterior are indistinguishable.
\item However, we should keep in mind that for complex models we will not have access to the posterior closed form.
\end{itemize}
}
\end{frame}
\begin{frame}[fragile]{Intervals of defined boundaries}
\scriptsize{
\begin{itemize}
\item Suppose we are asked for the posterior probability that the proportion of water is less than 0.5.
\item We could calculate this from the theoretical posterior's CDF:
\begin{verbatim}
> pbeta(0.5,7,4)
[1] 0.171875
\end{verbatim}
\item Or alternatively we could calculate it from the grid-approximate posterior by adding up all of the probabilities where the corresponding parameter value is less than 0.5.
\begin{verbatim}
> sum( posterior[ p_grid < 0.5 ] )
[1] 0.1718746
\end{verbatim}
\item So about 17\% of the posterior probability is below 0.5.
\end{itemize}
}
\end{frame}
\begin{frame}{Intervals of defined boundaries}
\scriptsize{
\begin{figure}[h!]
\centering
\includegraphics[scale=0.45]{pics/interval1.png}
\end{figure}
}
\end{frame}
\begin{frame}[fragile]{Intervals of defined boundaries}
\scriptsize{
\begin{itemize}
\item Now, let's perform the same calculation, using samples from the posterior.
\item Recall than in more complex models neither a grid-approximation nor a closed-form posterior will be available.
\item All we have to do is add up all samples less than 0.5 and divide the resulting count by the total number of samples.
\begin{verbatim}
> sum( samples < 0.5 ) / 1e4
[1] 0.1752
\end{verbatim}
\item In R, the condition \verb+samples < 0.5+ returns a logical vector, so since R treats TRUE values as 1, \verb+sum+ will count all the samples satisfying the condition.
\end{itemize}
}
\end{frame}
\begin{frame}[fragile]{Intervals of defined boundaries}
\scriptsize{
\begin{itemize}
\item Now, we can ask our sample how much posterior probability lies between 0.5 and 0.75.
\begin{verbatim}
> sum( samples > 0.5 & samples < 0.75 ) / 1e4
[1] 0.6043
\end{verbatim}
\item So about 61\% of the posterior probability lies between 0.5 and 0.75.
\item Let's validate this result using the exact posterior:
\begin{verbatim}
> pbeta(0.75,7,4)-pbeta(0.5,7,4)
[1] 0.6040001
\end{verbatim}
\end{itemize}
}
\end{frame}
\begin{frame}{Intervals of defined boundaries}
\scriptsize{
\begin{figure}[h!]
\centering
\includegraphics[scale=0.45]{pics/interval2.png}
\end{figure}
}
\end{frame}
\begin{frame}[fragile]{Intervals of defined probability}
\scriptsize{
\begin{itemize}
\item Suppose we want to know the boundaries of the lower 80\% posterior probability.
\item We can answer this by obtaining the 80-th percentile of the posterior sample:
\begin{verbatim}
> quantile( samples , 0.8 )
80%
0.7577578
\end{verbatim}
\item Or alternatively, using the quantile function of the beta distribution (the distribution of the exact posterior):
\begin{verbatim}
> qbeta(0.8,7,4 )
[1] 0.7605588
\end{verbatim}
\end{itemize}
}
\end{frame}
\begin{frame}{Intervals of defined probability}
\scriptsize{
\begin{figure}[h!]
\centering
\includegraphics[scale=0.45]{pics/interval3.png}
\end{figure}
}
\end{frame}
\begin{frame}[fragile]{Intervals of defined probability}
\scriptsize{
\begin{itemize}
\item Similarly, we can calculate the middle 80\% interval that lies between the 10th percentile and the 90th percentile:
\begin{verbatim}
> quantile( samples , c( 0.1 , 0.9 ) )
10% 90%
0.4504505 0.8148148
\end{verbatim}
\item The ``rethinking'' package provides the function \verb+PI+ (from percentile interval) to calculate this type of interval:
\begin{verbatim}
> PI( samples , prob=0.8 )
10% 90%
0.4504505 0.8148148
\end{verbatim}
\item Notice that we are assigning $(1-0.8)/2=0.1$ of probability above and below the interval.
\item We can also obtain the exact interval from the exact posterior:
\begin{verbatim}
> c("10%"=qbeta(0.1,7,4 ),"90%"=qbeta(0.9,7,4 ))
10% 90%
0.4482692 0.8124377
\end{verbatim}
\end{itemize}
}
\end{frame}
\begin{frame}{Intervals of defined probability}
\scriptsize{
\begin{figure}[h!]
\centering
\includegraphics[scale=0.45]{pics/interval4.png}
\end{figure}
}
\end{frame}
\begin{frame}[fragile]{Credible Intervals}
\scriptsize{
\begin{itemize}
\item The intervals of posterior probability that assign equal probability to each tail are called \textbf{credible intervals}.
\item These posterior intervals report two parameter values that contain between them a specified amount of posterior probability.
\item What the interval indicates is a range of parameter values compatible with the model and data.
\item Credible intervals resemble very much the confidence intervals seen in previous lectures on frequentist inference.
\item The interpretations are very different though.
\item A confidence interval is a region\footnote{Notice that the region will vary from one experiment to another.} that after infinitely repeating the data sampling experiment will contain the true parameter with a certain frequency.
\item In contrast, a credible interval is a range of values that we believe our parameter can take with a certain probability according to both our prior beliefs and the evidence given by the data.
\end{itemize}
}
\end{frame}
\begin{frame}[fragile]{Credible Intervals}
\scriptsize{
\begin{itemize}
\item Equal-tailed credible intervals do a good job of communicating the shape of a distribution, as long as the distribution isn't too asymmetrical.
\item Suppose that in our globe tossing experiment we had observed 3 W and 0 L.
\item If we again consider a flat prior, we will get a highly skewed posterior distribution with its maximum value at the boundary, $p = 1$.
\begin{verbatim}
p_grid.a <- seq( from=0 , to=1 , length.out=1000 )
prior.a <- rep(1,1000)
likelihood.a <- dbinom( 3 , size=3 , prob=p_grid.a )
posterior.a <- likelihood.a * prior.a
posterior.a <- posterior.a / sum(posterior.a)
samples.a <- sample( p_grid.a , size=1e4 ,
replace=TRUE , prob=posterior.a )
dens(samples.a,xlim=c(0,0.935))
\end{verbatim}
\item Alternatively we could sample from the exact posterior $Beta(\alpha + W , \beta + L)$ = $Beta(1 + 3 , 1 + 0)$ = $Beta(4,1)$:
\begin{verbatim}
teo.samples.a<-rbeta(1e4,4,1)
dens(teo.samples.a,xlim=c(0,0.935))
\end{verbatim}
\end{itemize}
}
\end{frame}
\begin{frame}{Credible Intervals}
\scriptsize{
\begin{figure}[h!]
\centering
\includegraphics[scale=0.91]{pics/post_asy.pdf}
\end{figure}
}
\end{frame}
\begin{frame}[fragile]{Credible Intervals}
\scriptsize{
\begin{itemize}
\item Let's compute a 50\% equal-tailed credible interval for this posterior:
\begin{verbatim}
> PI( samples.a , prob=0.5 )
25% 75%
0.7037037 0.9309309
\end{verbatim}
\item This interval assigns 25\% of the probability area above and below the interval.
\item So it provides the central 50\% probability.
\item But in this example, it ends up excluding the most probable parameter values, near $p = 1$.
\item So, in terms of describing the shape of the posterior distribution it can be misleading.
\end{itemize}
}
\end{frame}
\begin{frame}{Credible Intervals}
\scriptsize{
\begin{figure}[h!]
\centering
\includegraphics[scale=0.45]{pics/interval5.png}
\end{figure}
}
\end{frame}
\begin{frame}[fragile]{Highest Posterior Density Intervals}
\scriptsize{
\begin{itemize}
\item An alternative type of credible interval is the Highest Posterior Density Interval (HPDI).
\item If we relax the restriction of assigning equal probability to each tail, we obtain an infinite number of intervals containing the specified probability area.
\item The HPDI is the narrowest of those possible interval.
\item It can be calculated from posterior samples using the HPDI function from the rethinking package.
\begin{verbatim}
> HPDI( samples.a , prob=0.5 )
|0.5 0.5|
0.8368368 1.0000000
\end{verbatim}
\item This interval captures the parameters with highest posterior probability, as well as being noticeably narrower: 0.16 in width rather than 0.23 for the equal-tailed credible interval.
\end{itemize}
}
\end{frame}
\begin{frame}{Highest Posterior Density Intervals}
\scriptsize{
\begin{figure}[h!]
\centering
\includegraphics[scale=0.4]{pics/interval6.png}
\end{figure}
}
\end{frame}
\begin{frame}[fragile]{Highest Posterior Density Intervals}
\scriptsize{
\begin{itemize}
\item A disadvantage of the HPDI, is that it is more computationally intensive than the equal-tailed credible interval.
\item Apart from the cases when the posterior distribution is highly skewed, these two types of intervals are similar.
\item For example, let's calculate an 80\% HPDI for the the original posterior with 6 W and 3 L:
\begin{verbatim}
> HPDI( samples , prob=0.8 )
|0.8 0.8|
0.4694695 0.8298298
\end{verbatim}
\item This interval is very similar to the equal-tailed credible interval calculated before.
\end{itemize}
}
\end{frame}
\begin{frame}{Point Estimates}
\scriptsize{
\begin{itemize}
\item The idea of point estimation in a Bayesian setting is to summarize the posterior with a single value.
\item The three most common options here:
\begin{itemize}
\scriptsize{
\item The mode, which is the value with highest posterior probability, also known as the maximum a posteriori (MAP) estimate.
\item The mean
\item The median
}
\end{itemize}
\item Let's calculate them for the globe tossing experiment in which we observe 3 waters out of 3 tosses.
\end{itemize}
}
\end{frame}
\begin{frame}[fragile]{Point Estimates}
\scriptsize{
\begin{itemize}
\item We can compute the MAP from the grid approximation of the posterior as follows:
\begin{verbatim}
> p_grid[ which.max(posterior.a) ]
[1] 1
\end{verbatim}
\item Or we can approximate it using posterior samples:
\begin{verbatim}
> dd <- density(samples.a,adj=0.01)
> dd$x[which.max(dd$y)]
[1] 0.9971593
\end{verbatim}
\item The same procedure can be done more easily using the chainmode function from the rethinking package:
\begin{verbatim}
> chainmode( samples.a , adj=0.01 )
[1] 0.9971593
\end{verbatim}
\end{itemize}
}
\end{frame}
\begin{frame}[fragile]{Point Estimates}
\scriptsize{
\begin{itemize}
\item Now the posterior mean:
\begin{verbatim}
> mean(samples.a)
[1] 0.7988011
\end{verbatim}
\item and the median:
\begin{verbatim}
> median(samples.a)
[1] 0.8408408
\end{verbatim}
\item Which of these values should we report?
\item Recall that our ultimate goal is to report the shape of the posterior.
\item Hence, it is better to communicate as much as we can about it.
\item This can include: density plots, HPDI, MAP estimates, mean, mode, etc..
\end{itemize}
}
\end{frame}
\begin{frame}{Point Estimates}
\scriptsize{
\begin{figure}[h!]
\centering
\includegraphics[scale=0.45]{pics/posterior_points.png}
\end{figure}
}
\end{frame}
\begin{frame}{Sampling to Simulate Prediction}
\scriptsize{
\begin{itemize}
\item Another useful thing we can do with the posterior, is to use it to simulate new data predictions.
\item This can be particularly useful for evaluating our model in an empirical way.
\item The idea is to contrast the simulated data with the expected behavior.
\item These simulated predictions can also be used to forecast future observations.
\item But, we must recall that the posterior is a distribution of the parameter given the data $f(\theta|d)$, so how can we use it to generate new unseen observations $\tilde{d}$?
\item To understand this, we need to learn about the \textbf{posterior predictive distribution}.
\item But before introducing this complex new concept, we will learn how to generate simulated predictions using the likelihood function of the model.
\end{itemize}
}
\end{frame}
\begin{frame}[fragile]{Sampling to Simulate Prediction}
\scriptsize{
\begin{itemize}
\item In our original globe tossing experiment, the MAP estimate (the value of $p$ that maximizes the posterior) was $0.67$.
\item We can use the likelihood function (a Binomial in this case) with $p=0.67$ to generate new observations of waters $\tilde{d}$ with 9 new tosses.
\begin{verbatim}
> rbinom( 1, size=9 , prob=0.67)
[1] 6
\end{verbatim}
\item In this new data, we obtained 6 W out of 9 tosses, which is an expected behavior considering that the original data also had 6 W (out of 9).
\item Now, we can repeat this process 100,000 times and observe a sampling distribution for the number of waters obtained:
\begin{verbatim}
> new_w <- rbinom( 1e5 , size=9 , prob=0.67 )
> simplehist( new_w , xlab="new water predictions")
\end{verbatim}
\end{itemize}
}
\end{frame}
\begin{frame}{Sampling to Simulate Prediction}
\scriptsize{
\begin{figure}[h!]
\centering
\includegraphics{pics/w_predictions.pdf}
\end{figure}
}
\end{frame}
\begin{frame}{Sampling to Simulate Prediction}
\scriptsize{
\begin{itemize}
\item We can see that even 6 W is the most frequent case, 7 and 5 are also very likely to occur in our sampling distribution.
\item These predictions embody the observation uncertainty: for a given value of $p$ the number of W may vary according to our likelihood function (unless $p=0$ or $p=1$) .
\item But there is an additional source of uncertainty that our current predictions are not taking into account: the uncertainty about $p$.
\item The posterior distribution over $p$ embodies this uncertainty.
\item And since there is uncertainty about $p$, there is uncertainty about everything that depends upon $p$.
\item We loss this information when we pluck out a single parameter value (e.g., the MAP estimate) and then perform calculations with it.
\end{itemize}
}
\end{frame}
\begin{frame}{Posterior Predictive Distribution}
\scriptsize{
\begin{itemize}
\item This loss of information leads to overconfidence.
\item We'd like to propagate the parameter uncertainty as we evaluate the
implied predictions.
\item All that is required is averaging over the posterior density for $p$, while computing the predictions.
\item For each possible value of the parameter $p$, there is an implied
distribution of outcomes.
\item So if you were to compute the sampling distribution of outcomes at each value of $p$, then you could average all of these prediction distributions together, using the posterior probabilities of each value of $p$, to get a \textbf{posterior predictive distribution}.
\end{itemize}
}
\end{frame}
\begin{frame}{Posterior Predictive Distribution}
\begin{figure}[h!]
\centering
\includegraphics[scale=0.31]{pics/posterior_predictive.png}
\end{figure}
\end{frame}
\begin{frame}{Posterior Predictive Distribution}
\scriptsize{
\begin{itemize}
\item The figure above illustrates this averaging.
\item At the top, the posterior distribution is shown, with 10 unique parameter values highlighted by the vertical lines.
\item The implied distribution of observations specific to each of these parameter values is shown in the middle row of plots.
\item Observations are never certain for any value of $p$, but they do shift around in response to it.
\item Finally, at the bottom, the sampling distributions for all values of p are combined, using the posterior probabilities to compute the weighted average frequency of each possible observation, zero to nine water samples.
\item The resulting distribution is for predictions, but it incorporates all of the uncertainty embodied in the posterior distribution for the parameter $p$.
\item As a result, it is more honest than the distribution of predictions computed with the MAP estimate.
\end{itemize}
}
\end{frame}
\begin{frame}[fragile]{Posterior Predictive Distribution}
\scriptsize{