-
Notifications
You must be signed in to change notification settings - Fork 2
/
io_rutines.cpp
134 lines (115 loc) · 3 KB
/
io_rutines.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
/*
* FOTOMATON. Detector de rostros de la plataforma SWAD
*
* Copyright (C) 2008 Daniel J. Calandria Hernández &
* Antonio Cañas Vargas
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include <fstream>
#include "common.h"
#include "haar_feature.h"
#include "haar_classifier.h"
#include "boosting.h"
#include "cascade.h"
void HaarFeature::load (std::istream& f)
{
f >> type;
f >> size.width;
f >> size.height;
f >> total_size;
for (int i = 0; i < type; ++i)
{
f >> weights[i];
f >> points[i*4] >> points[i*4+1] >> points[i*4+2] >> points[i*4+3];
}
}
void HaarFeature::save (std::ostream& f) const
{
f << "\t\t" << type << " " << size.width << " " << size.height << " " << total_size << std::endl;
for (int i = 0; i < type; ++i)
{
f << "\t\t\t" << weights[i] << " ";
f << points[i*4] << " " << points[i*4+1]
<< " " << points[i*4+2] << " " << points[i*4+3] << std::endl;
}
}
void HaarClassifier::load (std::istream& f)
{
(f >> th) >> d;
feature.load (f);
}
void HaarClassifier::save ( std::ostream& f) const
{
f.precision(10);
f << '\t' << th << " " << d << std::endl;
feature.save (f);
}
void BoostClassifier::load ( std::istream& f)
{
unsigned size;
f >> size;
f >> th;
f >> d;
weak.resize (size);
alpha.resize (size);
for (unsigned i = 0; i < size; ++i)
{
f >> alpha[i];
weak[i].load (f);
}
}
void BoostClassifier::save ( std::ostream& f) const
{
f.precision(10);
f << weak.size() << " " << th << " " << d << std::endl;
for (unsigned i = 0; i < weak.size(); i++)
{
f << alpha[i] << std::endl;
weak[i].save (f);
f << std::endl;
}
}
bool CascadeClassifier::load (const char *file_name)
{
unsigned size;
std::ifstream f (file_name);
if (f.fail())
return false;
f >> size;
level.resize (size);
f >> mean_max;
f >> mean_min;
f >> std_min;
//f >> std_max;
for (unsigned i = 0; i < size; ++i)
level[i].load (f);
f.close();
return true;
}
bool CascadeClassifier::save (const char *file_name) const
{
std::ofstream f (file_name);
if (f.fail())
return false;
f.precision(10);
f << level.size() << " " << mean_max << " " << mean_min << " " << std_min << " " /*<< std_max*/ << std::endl;
for (unsigned i = 0; i < level.size(); i++)
{
level[i].save (f);
f << std::endl;
}
f.close();
return true;
}