diff --git a/.gitignore b/.gitignore index 99c0f9693..8ae62ea94 100644 --- a/.gitignore +++ b/.gitignore @@ -92,3 +92,10 @@ ENV/ # PyCharm project setting .idea +.DS_Store +debug/ + +.mypy_cache +.vscode +.vscode/settings.json +notebooks/models/* diff --git a/.travis.yml b/.travis.yml index 0f853c496..0d5a83cd4 100644 --- a/.travis.yml +++ b/.travis.yml @@ -1,17 +1,13 @@ language: python sudo: required python: - - "2.7" - - "3.5" -# command to install dependencies + - '3.6' install: -# numpy not using wheel to avoid problem described in -# https://github.com/tensorflow/tensorflow/issues/6968 - pip install --no-binary numpy --upgrade numpy - pip install -r requirements.txt -# command to run tests script: - - export PYTHONPATH=./src:./src/models:./src/align + - >- + export + PYTHONPATH=./facenet_sandberg:./facenet_sandberg/models:./facenet_sandberg/align - python -m unittest discover -s test --pattern=*.py 1>&2 dist: trusty - diff --git a/MANIFEST.in b/MANIFEST.in new file mode 100644 index 000000000..c4336d672 --- /dev/null +++ b/MANIFEST.in @@ -0,0 +1 @@ +include facenet_sandberg/align/*.npy \ No newline at end of file diff --git a/README.md b/README.md index 9220d20e4..7b4a7f7e7 100644 --- a/README.md +++ b/README.md @@ -1,55 +1,101 @@ -# Face Recognition using Tensorflow [![Build Status][travis-image]][travis] +# Facial Recognition and Alignment +## What's this? -[travis-image]: http://travis-ci.org/davidsandberg/facenet.svg?branch=master -[travis]: http://travis-ci.org/davidsandberg/facenet +This repository contains a refactored implementation of David Sandberg's [FaceNet](https://github.com/davidsandberg/facenet) and [InsightFace](https://github.com/deepinsight/insightface) for facial recognition. It also contains an implementation of [MTCNN](https://github.com/ipazc/mtcnn) and [Faceboxes](https://github.com/TropComplique/FaceBoxes-tensorflow) for face cropping and alignment. What is in the refactor: -This is a TensorFlow implementation of the face recognizer described in the paper -["FaceNet: A Unified Embedding for Face Recognition and Clustering"](http://arxiv.org/abs/1503.03832). The project also uses ideas from the paper ["Deep Face Recognition"](http://www.robots.ox.ac.uk/~vgg/publications/2015/Parkhi15/parkhi15.pdf) from the [Visual Geometry Group](http://www.robots.ox.ac.uk/~vgg/) at Oxford. +- Made algorithms easily and efficiently usable with [convenience classes](https://github.com/armanrahman22/facenet/tree/master/facenet_sandberg/inference). +- Added much more efficient methods of batch processing face recognition and alignment +- Added true face alignment (with affine transformation) to align face to bottom-center of image: [code](https://github.com/armanrahman22/facenet/blob/f6cb32a193925002da41fb491c52bb85384bee55/facenet_sandberg/utils.py#L187) +- Added proportional margin to alignment as per this [issue](https://github.com/davidsandberg/facenet/issues/283) +- Ability to easily switch between [insightface](https://github.com/armanrahman22/facenet/blob/master/facenet_sandberg/inference/insightface_encoder.py) and [facenet](https://github.com/armanrahman22/facenet/blob/master/facenet_sandberg/inference/facenet_encoder.py) at [inference time](https://github.com/armanrahman22/facenet/blob/master/facenet_sandberg/inference/identifier.py) -## Compatibility -The code is tested using Tensorflow r1.7 under Ubuntu 14.04 with Python 2.7 and Python 3.5. The test cases can be found [here](https://github.com/davidsandberg/facenet/tree/master/test) and the results can be found [here](http://travis-ci.org/davidsandberg/facenet). +More information on customizing and implementing new face detection algorithms can be found [here](./algorithms/README.md). -## News -| Date | Update | -|----------|--------| -| 2018-04-10 | Added new models trained on Casia-WebFace and VGGFace2 (see below). Note that the models uses fixed image standardization (see [wiki](https://github.com/davidsandberg/facenet/wiki/Training-using-the-VGGFace2-dataset)). | -| 2018-03-31 | Added a new, more flexible input pipeline as well as a bunch of minor updates. | -| 2017-05-13 | Removed a bunch of older non-slim models. Moved the last bottleneck layer into the respective models. Corrected normalization of Center Loss. | -| 2017-05-06 | Added code to [train a classifier on your own images](https://github.com/davidsandberg/facenet/wiki/Train-a-classifier-on-own-images). Renamed facenet_train.py to train_tripletloss.py and facenet_train_classifier.py to train_softmax.py. | -| 2017-03-02 | Added pretrained models that generate 128-dimensional embeddings.| -| 2017-02-22 | Updated to Tensorflow r1.0. Added Continuous Integration using Travis-CI.| -| 2017-02-03 | Added models where only trainable variables has been stored in the checkpoint. These are therefore significantly smaller. | -| 2017-01-27 | Added a model trained on a subset of the MS-Celeb-1M dataset. The LFW accuracy of this model is around 0.994. | -| 2017‑01‑02 | Updated to run with Tensorflow r0.12. Not sure if it runs with older versions of Tensorflow though. | +## Installation +To use in other projects, this implementation can be pip installed as follows: +``` +pip install facenet_sandberg +``` -## Pre-trained models -| Model name | LFW accuracy | Training dataset | Architecture | -|-----------------|--------------|------------------|-------------| -| [20180408-102900](https://drive.google.com/open?id=1R77HmFADxe87GmoLwzfgMu_HY0IhcyBz) | 0.9905 | CASIA-WebFace | [Inception ResNet v1](https://github.com/davidsandberg/facenet/blob/master/src/models/inception_resnet_v1.py) | -| [20180402-114759](https://drive.google.com/open?id=1EXPBSXwTaqrSC0OhUdXNmKSh9qJUQ55-) | 0.9965 | VGGFace2 | [Inception ResNet v1](https://github.com/davidsandberg/facenet/blob/master/src/models/inception_resnet_v1.py) | +To use locally: +1. Clone repo +2. cd to base directory with setup.py +3. run: +``` +pip install -e . +``` +^(installs package in [development mode](https://setuptools.readthedocs.io/en/latest/setuptools.html#development-mode)) -NOTE: If you use any of the models, please do not forget to give proper credit to those providing the training dataset as well. +## Important Requirements +1. Python 3.5 +2. Tensorflow==1.7 +3. Tensorlayer==1.7 +The rest is specified in [requirements.txt](https://github.com/armanrahman22/facenet/blob/master/requirements.txt) -## Inspiration -The code is heavily inspired by the [OpenFace](https://github.com/cmusatyalab/openface) implementation. +## Models +Links to pretrained models: -## Training data -The [CASIA-WebFace](http://www.cbsr.ia.ac.cn/english/CASIA-WebFace-Database.html) dataset has been used for training. This training set consists of total of 453 453 images over 10 575 identities after face detection. Some performance improvement has been seen if the dataset has been filtered before training. Some more information about how this was done will come later. -The best performing model has been trained on the [VGGFace2](https://www.robots.ox.ac.uk/~vgg/data/vgg_face2/) dataset consisting of ~3.3M faces and ~9000 classes. +- [Facenet](https://redcrossstorage.blob.core.windows.net/images/facenet_model.pb) + - Uses RGB images of size 160x160 +- [Insightface.zip](https://redcrossstorage.blob.core.windows.net/images/insightface_ckpt.zip) + - Uses BGR images of size 112x112 -## Pre-processing +## Datasets +Links to download training datasets (!big files!): -### Face alignment using MTCNN -One problem with the above approach seems to be that the Dlib face detector misses some of the hard examples (partial occlusion, silhouettes, etc). This makes the training set too "easy" which causes the model to perform worse on other benchmarks. -To solve this, other face landmark detectors has been tested. One face landmark detector that has proven to work very well in this setting is the -[Multi-task CNN](https://kpzhang93.github.io/MTCNN_face_detection_alignment/index.html). A Matlab/Caffe implementation can be found [here](https://github.com/kpzhang93/MTCNN_face_detection_alignment) and this has been used for face alignment with very good results. A Python/Tensorflow implementation of MTCNN can be found [here](https://github.com/davidsandberg/facenet/tree/master/src/align). This implementation does not give identical results to the Matlab/Caffe implementation but the performance is very similar. +- [Emore](https://redcrossstorage.blob.core.windows.net/datasets/faces_emore.zip) +- [MSM_refined_112x112](https://redcrossstorage.blob.core.windows.net/datasets/faces_ms1m-refine-v2_112x112.zip) +- [VGG2_112x112](https://redcrossstorage.blob.core.windows.net/datasets/faces_vgg2_112x112.zip) -## Running training -Currently, the best results are achieved by training the model using softmax loss. Details on how to train a model using softmax loss on the CASIA-WebFace dataset can be found on the page [Classifier training of Inception-ResNet-v1](https://github.com/davidsandberg/facenet/wiki/Classifier-training-of-inception-resnet-v1) and . +## Image directory structure +This repo assumes images are in [LFW format](http://vis-www.cs.umass.edu/lfw/README.txt): +``` +-/base_images_folder + -/person_1 + -person_1_0001.jpg + -person_1_0002.jpg + -person_1_0003.jpg + -/person_2 + -person_2_0001.jpg + -person_2_0002.jpg + ... +``` + +If your dataset is not like this you can use [lfw.py](https://github.com/armanrahman22/facenet/blob/master/facenet_sandberg/lfw.py) to put your images into the right format like so (from facenet_sandberg/facenet_sandberg): +``` +python lfw.py --image_directory PATH_TO_YOUR_BASE_IMAGE_DIRECTORY +``` + +## Alignment +Alignment is done with a combination of Faceboxes and MTCNN. While Faceboxes is more accurate and works with more images than MTCNN, it does not return [facial landmarks](https://raw.githubusercontent.com/ipazc/mtcnn/master/result.jpg). Whichever algorithm returns more results is used. + +Use the [align_dataset.py](https://github.com/armanrahman22/facenet/blob/master/facenet_sandberg/align_dataset.py) script to align an entire image directory: +``` +python align_dataset.py --input_dir PATH_TO_YOUR_BASE_IMAGE_DIRECTORY \ + --output_dir PATH_TO_OUTPUT_ALIGNED_IMAGES \ + --facenet_model_checkpoint PATH_TO_PRETRAINED_FACENET_MODEL \ + --image_height DESIRED_IMAGE_HEIGHT \ + --image_width DESIRED_IMAGE_WIDTH \ + --margin DESIRED_PROPORTIONAL_MARGIN \ + --scale_factor DESIRED_SCALE_FACTOR \ + --steps_threshold DESIRED_STEPS \ + --detect_multiple_faces \ + --use_faceboxes \ + --use_affine \ + --num_processes NUM_PROCESSES_TO_USE +``` +* Default values for most arguments are provided [here](https://github.com/armanrahman22/facenet/blob/f6cb32a193925002da41fb491c52bb85384bee55/facenet_sandberg/align_dataset.py#L262) + +## Generate Pairs.txt +A pairs.txt file is used in training and testing. It follows this [format](http://vis-www.cs.umass.edu/lfw/README.txt). In order to generate your own pairs.txt run: +``` +python align_dataset.py --image_dir PATH_TO_YOUR_BASE_IMAGE_DIRECTORY \ + --pairs_file_name OUTPUT_NAME_OF_PAIRS_FILE \ + --num_folds NUMBER_OF_FOLDS_FOR_CROSS_VALIDATION \ + --num_matches_mismatches NUMBER_OF_MATCHES_AND_MISMATCHES +``` + +## Copyright +MIT License from original repo https://github.com/davidsandberg/facenet/blob/master/LICENSE.md -## Pre-trained models -### Inception-ResNet-v1 model -A couple of pretrained models are provided. They are trained using softmax loss with the Inception-Resnet-v1 model. The datasets has been aligned using [MTCNN](https://github.com/davidsandberg/facenet/tree/master/src/align). -## Performance -The accuracy on LFW for the model [20180402-114759](https://drive.google.com/open?id=1EXPBSXwTaqrSC0OhUdXNmKSh9qJUQ55-) is 0.99650+-0.00252. A description of how to run the test can be found on the page [Validate on LFW](https://github.com/davidsandberg/facenet/wiki/Validate-on-lfw). Note that the input images to the model need to be standardized using fixed image standardization (use the option `--use_fixed_image_standardization` when running e.g. `validate_on_lfw.py`). diff --git a/facenet_sandberg/__init__.py b/facenet_sandberg/__init__.py new file mode 100644 index 000000000..752dcbb2b --- /dev/null +++ b/facenet_sandberg/__init__.py @@ -0,0 +1,5 @@ +from .align_dataset import align_dataset +from .common_types import * +from .generate_pairs import generate_pairs +from .inference import * +from .utils import * diff --git a/facenet_sandberg/align_dataset.py b/facenet_sandberg/align_dataset.py new file mode 100644 index 000000000..8d14386d5 --- /dev/null +++ b/facenet_sandberg/align_dataset.py @@ -0,0 +1,217 @@ +"""Performs face alignment and stores face thumbnails in the output directory.""" +import argparse +import os +import sys +import warnings +from ctypes import c_int +from multiprocessing import Lock, Value +from typing import List, Optional, Tuple, cast + +import cv2 +import progressbar as pb +import tensorflow as tf +from pathos.multiprocessing import ProcessPool + +from facenet_sandberg.common_types import Face, FacesGenerator, PersonClass +from facenet_sandberg.inference import align, facenet_encoder +from facenet_sandberg.utils import (get_dataset, get_image_from_path_rgb, + transform_to_lfw_format) + +# pylint: disable=no-member +from .config import AlignConfig + +# pylint: disable=no-member + + +warnings.filterwarnings("ignore", message="numpy.dtype size changed") +warnings.filterwarnings("ignore", message="numpy.ufunc size changed") +os.environ['TF_CPP_MIN_LOG_LEVEL'] = '3' +tf.logging.set_verbosity(tf.logging.ERROR) + +WIDGETS = ['Aligning Dataset: ', pb.Percentage(), ' ', + pb.Bar(), ' ', pb.ETA()] +TIMER = pb.ProgressBar(widgets=WIDGETS) +NUM_SUCESSFUL = Value(c_int) # defaults to 0 +NUM_SUCESSFUL_LOCK = Lock() +NUM_UNSECESSFUL = Value(c_int) +NUM_UNSUCESSFUL_LOCK = Lock() +NUM_IMAGES_TOTAL = Value(c_int) +NUM_IMAGES_TOTAL_LOCK = Lock() + + +def align_dataset(config_file: str): + """Aligns an image dataset + """ + config = AlignConfig(config_file) + output_dir = os.path.expanduser(config.output_dir) + os.makedirs(output_dir, exist_ok=True) + + dataset = get_dataset(config.input_dir) + + num_images = sum(len(i) for i in dataset) + TIMER.max_value = num_images + TIMER.start() + + num_processes = cast(int, min(config.num_processes, os.cpu_count())) + if num_processes == -1: + num_processes = os.cpu_count() + if num_processes > 1: + process_pool = ProcessPool(num_processes) + process_pool.imap( + align_person, zip( + dataset, [config] * len(dataset))) + process_pool.close() + process_pool.join() + else: + for person in dataset: + align_person((person, config)) + + transform_to_lfw_format(output_dir, num_processes) + + TIMER.finish() + print('Total number of images: %d' % int(NUM_IMAGES_TOTAL.value)) + print('Number of faces found and aligned: %d' % + int(NUM_SUCESSFUL.value)) + print('Number of unsuccessful: %d' % + int(NUM_UNSECESSFUL.value)) + + +def align_person(data: Tuple[PersonClass, AlignConfig]) -> None: + person, config = data + output_class_dir = os.path.join(config.output_dir, person.name) + if already_done(person, output_class_dir): + increment_total(len(person.image_paths)) + TIMER.update(int(NUM_IMAGES_TOTAL.value)) + return None + detector = align.Detector( + face_crop_height=config.face_crop_height, + face_crop_width=config.face_crop_width, + face_crop_margin=config.face_crop_margin, + scale_factor=config.scale_factor, + steps_threshold=config.scale_factor, + detect_multiple_faces=config.detect_multiple_faces, + use_affine=config.use_affine, + use_faceboxes=config.use_faceboxes) + + if not os.path.exists(output_class_dir): + os.makedirs(output_class_dir) + + all_faces = gen_all_faces(person, output_class_dir, detector) + if config.detect_multiple_faces and config.facenet_model_checkpoint and all_faces: + encoder = None + anchor = get_anchor(person, output_class_dir, detector) + if anchor: + for faces in all_faces: + if not faces: + pass + elif len(faces) > 1: + if not encoder: + encoder = facenet_encoder.Facenet( + model_path=config.facenet_model_checkpoint) + best_face = encoder.get_best_match(anchor, faces) + if best_face: + cv2.imwrite( + best_face.name, cv2.cvtColor( + best_face.image, cv2.COLOR_RGB2BGR)) + elif len(faces) == 1: + cv2.imwrite( + faces[0].name, cv2.cvtColor( + faces[0].image, cv2.COLOR_RGB2BGR)) + if encoder: + encoder.tear_down() + del encoder + else: + for faces in all_faces: + if faces: + for face in faces: + cv2.imwrite( + face.name, cv2.cvtColor( + face.image, cv2.COLOR_RGB2BGR)) + del detector + TIMER.update(int(NUM_IMAGES_TOTAL.value)) + + +def gen_all_faces(person: PersonClass, output_class_dir: str, + detector: align.Detector) -> FacesGenerator: + for image_path in person.image_paths: + increment_total() + output_filename = get_file_name(image_path, output_class_dir) + if not os.path.exists(output_filename): + faces = process_image(detector, image_path, output_filename) + if faces: + yield faces + + +def already_done(person: PersonClass, output_class_dir: str): + total = sum(os.path.exists(get_file_name(image_path, output_class_dir)) + for image_path in person.image_paths) + return total == len(person.image_paths) + + +def get_anchor(person: PersonClass, output_class_dir: str, + detector: align.Detector) -> Optional[Face]: + first_face = None + for image_path in person.image_paths: + output_filename = get_file_name(image_path, output_class_dir) + faces = process_image(detector, image_path, output_filename) + if faces and not first_face: + first_face = faces[0] + if len(faces) == 1: + return faces[0] + return first_face + + +def process_image(detector: align.Detector, + image_path: str, output_filename: str) -> List[Face]: + image = get_image_from_path_rgb(image_path) + if image is not None: + faces = detector.find_faces(image) + if not faces: + increment_unsucessful() + for person in faces: + increment_sucessful() + filename_base, file_extension = os.path.splitext( + output_filename) + output_filename_n = "{}{}".format( + filename_base, file_extension) + person.name = output_filename_n + return faces + return [] + + +def increment_sucessful(add_amount: int=1): + with NUM_SUCESSFUL_LOCK: + NUM_SUCESSFUL.value += add_amount + + +def increment_unsucessful(add_amount: int=1): + with NUM_UNSUCESSFUL_LOCK: + NUM_UNSECESSFUL.value += add_amount + + +def increment_total(add_amount: int=1): + with NUM_IMAGES_TOTAL_LOCK: + NUM_IMAGES_TOTAL.value += add_amount + + +def get_file_name(image_path: str, output_class_dir: str) -> str: + filename = os.path.splitext(os.path.split(image_path)[1])[0] + output_filename = os.path.join( + output_class_dir, filename + '.png') + return output_filename + + +def parse_arguments(argv): + parser = argparse.ArgumentParser() + parser.add_argument( + '--config_file', + type=str, + help='Path to align config file', + default='facenet_config.json') + return parser.parse_args(argv) + + +if __name__ == '__main__': + ARGS = parse_arguments(sys.argv[1:]) + if ARGS: + align_dataset(ARGS.config_file) diff --git a/src/calculate_filtering_metrics.py b/facenet_sandberg/calculate_filtering_metrics.py similarity index 70% rename from src/calculate_filtering_metrics.py rename to facenet_sandberg/calculate_filtering_metrics.py index f60b9ae4d..34e0e0fe2 100644 --- a/src/calculate_filtering_metrics.py +++ b/facenet_sandberg/calculate_filtering_metrics.py @@ -1,19 +1,19 @@ """Calculate filtering metrics for a dataset and store in a .hdf file. """ # MIT License -# +# # Copyright (c) 2016 David Sandberg -# +# # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: -# +# # The above copyright notice and this permission notice shall be included in all # copies or substantial portions of the Software. -# +# # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE @@ -22,58 +22,58 @@ # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE # SOFTWARE. -from __future__ import absolute_import -from __future__ import division -from __future__ import print_function +from __future__ import absolute_import, division, print_function -import tensorflow as tf -import numpy as np import argparse -import facenet +import math import os import sys import time + import h5py -import math -from tensorflow.python.platform import gfile +import numpy as np +import tensorflow as tf +from facenet_sandberg import facenet from six import iteritems +from tensorflow.python.platform import gfile + def main(args): dataset = facenet.get_dataset(args.dataset_dir) - + with tf.Graph().as_default(): - + # Get a list of image paths and their labels image_list, label_list = facenet.get_image_paths_and_labels(dataset) nrof_images = len(image_list) image_indices = range(nrof_images) image_batch, label_batch = facenet.read_and_augment_data(image_list, - image_indices, args.image_size, args.batch_size, None, - False, False, False, nrof_preprocess_threads=4, shuffle=False) - + image_indices, args.image_size, args.batch_size, None, + False, False, False, nrof_preprocess_threads=4, shuffle=False) + model_exp = os.path.expanduser(args.model_file) - with gfile.FastGFile(model_exp,'rb') as f: + with gfile.FastGFile(model_exp, 'rb') as f: graph_def = tf.GraphDef() graph_def.ParseFromString(f.read()) - input_map={'input':image_batch, 'phase_train':False} + input_map = {'input': image_batch, 'phase_train': False} tf.import_graph_def(graph_def, input_map=input_map, name='net') - + embeddings = tf.get_default_graph().get_tensor_by_name("net/embeddings:0") with tf.Session() as sess: tf.train.start_queue_runners(sess=sess) - + embedding_size = int(embeddings.get_shape()[1]) nrof_batches = int(math.ceil(nrof_images / args.batch_size)) nrof_classes = len(dataset) label_array = np.array(label_list) class_names = [cls.name for cls in dataset] - nrof_examples_per_class = [ len(cls.image_paths) for cls in dataset ] + nrof_examples_per_class = [len(cls.image_paths) for cls in dataset] class_variance = np.zeros((nrof_classes,)) - class_center = np.zeros((nrof_classes,embedding_size)) - distance_to_center = np.ones((len(label_list),))*np.NaN - emb_array = np.zeros((0,embedding_size)) + class_center = np.zeros((nrof_classes, embedding_size)) + distance_to_center = np.ones((len(label_list),)) * np.NaN + emb_array = np.zeros((0, embedding_size)) idx_array = np.zeros((0,), dtype=np.int32) lab_array = np.zeros((0,), dtype=np.int32) index_arr = np.append(0, np.cumsum(nrof_examples_per_class)) @@ -84,45 +84,60 @@ def main(args): idx_array = np.append(idx_array, idx, axis=0) lab_array = np.append(lab_array, label_array[idx], axis=0) for cls in set(lab_array): - cls_idx = np.where(lab_array==cls)[0] - if cls_idx.shape[0]==nrof_examples_per_class[cls]: + cls_idx = np.where(lab_array == cls)[0] + if cls_idx.shape[0] == nrof_examples_per_class[cls]: # We have calculated all the embeddings for this class i2 = np.argsort(idx_array[cls_idx]) - emb_class = emb_array[cls_idx,:] - emb_sort = emb_class[i2,:] + emb_class = emb_array[cls_idx, :] + emb_sort = emb_class[i2, :] center = np.mean(emb_sort, axis=0) diffs = emb_sort - center dists_sqr = np.sum(np.square(diffs), axis=1) class_variance[cls] = np.mean(dists_sqr) - class_center[cls,:] = center - distance_to_center[index_arr[cls]:index_arr[cls+1]] = np.sqrt(dists_sqr) + class_center[cls, :] = center + distance_to_center[index_arr[cls] + : index_arr[cls + 1]] = np.sqrt(dists_sqr) emb_array = np.delete(emb_array, cls_idx, axis=0) idx_array = np.delete(idx_array, cls_idx, axis=0) lab_array = np.delete(lab_array, cls_idx, axis=0) - - print('Batch %d in %.3f seconds' % (i, time.time()-t)) - + print('Batch %d in %.3f seconds' % (i, time.time() - t)) + print('Writing filtering data to %s' % args.data_file_name) - mdict = {'class_names':class_names, 'image_list':image_list, 'label_list':label_list, 'distance_to_center':distance_to_center } + mdict = { + 'class_names': class_names, + 'image_list': image_list, + 'label_list': label_list, + 'distance_to_center': distance_to_center} with h5py.File(args.data_file_name, 'w') as f: for key, value in iteritems(mdict): f.create_dataset(key, data=value) - + + def parse_arguments(argv): parser = argparse.ArgumentParser() - - parser.add_argument('dataset_dir', type=str, + + parser.add_argument( + 'dataset_dir', + type=str, help='Path to the directory containing aligned dataset.') - parser.add_argument('model_file', type=str, + parser.add_argument( + 'model_file', + type=str, help='File containing the frozen model in protobuf (.pb) format to use for feature extraction.') - parser.add_argument('data_file_name', type=str, + parser.add_argument( + 'data_file_name', + type=str, help='The name of the file to store filtering data in.') parser.add_argument('--image_size', type=int, - help='Image size.', default=160) - parser.add_argument('--batch_size', type=int, - help='Number of images to process in a batch.', default=90) + help='Image size.', default=160) + parser.add_argument( + '--batch_size', + type=int, + help='Number of images to process in a batch.', + default=90) return parser.parse_args(argv) + if __name__ == '__main__': main(parse_arguments(sys.argv[1:])) diff --git a/facenet_sandberg/common_types.py b/facenet_sandberg/common_types.py new file mode 100644 index 000000000..8b6d2e19a --- /dev/null +++ b/facenet_sandberg/common_types.py @@ -0,0 +1,119 @@ +from enum import Enum +from typing import Dict, Generator, List, Tuple, Union + +import numpy as np + +Landmarks = Dict[str, Tuple[int, int]] + + +class DistanceMetric(Enum): + ANGULAR_DISTANCE = 1 + EUCLIDEAN_SQUARED = 0 + + @staticmethod + def from_str(label: str): + if label == 'ANGULAR_DISTANCE': + return DistanceMetric.ANGULAR_DISTANCE + elif label == 'EUCLIDEAN_SQUARED': + return DistanceMetric.EUCLIDEAN_SQUARED + else: + raise NotImplementedError( + "Distance metric must be either ANGULAR_DISTANCE or EUCLIDEAN_SQUARED") + + +class ThresholdMetric(Enum): + ACCURACY = 0 + PRECISION = 1 + RECALL = 2 + + @staticmethod + def from_str(label: str): + if label == 'ACCURACY': + return ThresholdMetric.ACCURACY + elif label == 'PRECISION': + return ThresholdMetric.PRECISION + elif label == 'RECALL': + return ThresholdMetric.RECALL + else: + raise NotImplementedError( + "Threshold metric must be either ACCURACY or PRECISION or RECALL") + + +class ImageExtensions(Enum): + PNG = 'png' + JPG = 'jpg' + JPEG = 'jpeg' + + +class PersonClass: + "Stores the paths to images for a given person" + + def __init__(self, name: str, image_paths: List[str]) -> None: + self.name = name + self.image_paths = image_paths + + def __str__(self): + return self.name + ', ' + str(len(self.image_paths)) + ' images' + + def __len__(self): + return len(self.image_paths) + + +class AlignResult: + def __init__( + self, bounding_box: List[int], landmarks: Landmarks=None) -> None: + # Bounding Box: [x1, y2, x2, y2] + self.bounding_box = bounding_box + self.landmarks = landmarks + + +class Face: + """Class representing a single face + + Attributes: + name {str} -- Name of person + bounding_box {Float[]} -- box around their face in container_image + image {Image} -- Image cropped around face + container_image {Image} -- Original image + embedding {Float} -- Face embedding + matches {Matches[]} -- List of matches to the face + url {str} -- Url where image came from + """ + + def __init__(self): + self.name = None + self.bounding_box = None + self.image = None + self.container_image = None + self.embedding = None + self.matches = [] + self.url = None + + +class Match: + """Class representing a match between two faces + + Attributes: + face_1 {Face} -- Face object for person 1 + face_2 {Face} -- Face object for person 2 + score {Float} -- Distance between two face embeddings + is_match {bool} -- whether is match between faces + """ + + def __init__(self): + self.face_1 = Face() + self.face_2 = Face() + self.score = float("inf") + self.is_match = False + + +Image = np.ndarray +Embedding = np.ndarray +EmbeddingsGenerator = Generator[List[np.ndarray], None, None] +ImageGenerator = Generator[np.ndarray, None, None] +FaceGenerator = Generator[Face, None, None] +FacesGenerator = Generator[List[Face], None, None] +Match = Tuple[str, int, int] +Mismatch = Tuple[str, int, str, int] +Pair = Union[Match, Mismatch] +Label = bool diff --git a/facenet_sandberg/config.py b/facenet_sandberg/config.py new file mode 100644 index 000000000..8625e5458 --- /dev/null +++ b/facenet_sandberg/config.py @@ -0,0 +1,61 @@ +import json + +from facenet_sandberg.common_types import DistanceMetric, ThresholdMetric + + +def get_config(config_file: str): + with open(config_file, 'r') as json_file: + config = json.load(json_file) + return config + + +class AlignConfig: + def __init__(self, config_file: str): + self.config = get_config(config_file) + self.is_rgb = self.config['IS_RGB'] + self.face_crop_height = self.config['FACE_CROP_HEIGHT'] + self.face_crop_width = self.config['FACE_CROP_WIDTH'] + self.face_crop_margin = self.config['FACE_CROP_MARGIN'] + self.scale_factor = self.config['SCALE_FACTOR'] + self.steps_threshold = self.config['STEPS_THRESHOLD'] + self.detect_multiple_faces = self.config['DETECT_MULTIPLE_FACES'] + self.use_affine = self.config['USE_AFFINE'] + self.use_faceboxes = self.config['USE_FACEBOXES'] + self.num_processes = self.config['NUM_PROCESSES'] + self.facenet_model_checkpoint = self.config['FACENET_MODEL_CHECKPOINT'] + self.input_dir = self.config['INPUT_DIR'] + self.output_dir = self.config['OUTPUT_DIR'] + + +class ValidateConfig: + def __init__(self, config_file: str): + self.config = get_config(config_file) + # Path to the image directory + self.image_dir = self.config['IMAGE_DIR'] + # Filename of pairs.txt + self.pairs_file_name = self.config['PAIRS_FILE_NAME'] + # Number of cross validation folds + self.num_folds = self.config['NUM_FOLDS'] + # Distance metric for face verification + self.distance_metric = DistanceMetric.from_str( + self.config['DISTANCE_METRIC']) + # Start value for distance threshold. + self.threshold_start = self.config['THRESHOLD_START'] + # End value for distance threshold + self.threshold_end = self.config['THRESHOLD_END'] + # Step size for iterating in cross validation search + self.threshold_step = self.config['THRESHOLD_STEP'] + # metric for calculating threshold automatically + self.threshold_metric = ThresholdMetric.from_str( + self.config['THRESHOLD_METRIC']) + # Size of face vectors + self.embedding_size = self.config['EMBEDDING_SIZE'] + # Instead of a default encoding for images where faces are not + # detected, remove them + self.remove_empty_embeddings = self.config['REMOVE_EMPTY_EMBEDDINGS'] + # Subtract mean of embeddings before distance calculation. + self.subtract_mean = self.config['SUBTRACT_MEAN'] + # Divide embeddings by stddev before distance calculation. + self.divide_stddev = self.config['DIVIDE_STDDEV'] + # Specify if the images have already been aligned. + self.prealigned = self.config['PREALIGNED'] diff --git a/data/images/Anthony_Hopkins_0001.jpg b/facenet_sandberg/data/images/Anthony_Hopkins_0001.jpg similarity index 100% rename from data/images/Anthony_Hopkins_0001.jpg rename to facenet_sandberg/data/images/Anthony_Hopkins_0001.jpg diff --git a/data/images/Anthony_Hopkins_0002.jpg b/facenet_sandberg/data/images/Anthony_Hopkins_0002.jpg similarity index 100% rename from data/images/Anthony_Hopkins_0002.jpg rename to facenet_sandberg/data/images/Anthony_Hopkins_0002.jpg diff --git a/data/learning_rate_retrain_tripletloss.txt b/facenet_sandberg/data/learning_rate_retrain_tripletloss.txt similarity index 100% rename from data/learning_rate_retrain_tripletloss.txt rename to facenet_sandberg/data/learning_rate_retrain_tripletloss.txt diff --git a/data/learning_rate_schedule_classifier_casia.txt b/facenet_sandberg/data/learning_rate_schedule_classifier_casia.txt similarity index 100% rename from data/learning_rate_schedule_classifier_casia.txt rename to facenet_sandberg/data/learning_rate_schedule_classifier_casia.txt diff --git a/data/learning_rate_schedule_classifier_msceleb.txt b/facenet_sandberg/data/learning_rate_schedule_classifier_msceleb.txt similarity index 100% rename from data/learning_rate_schedule_classifier_msceleb.txt rename to facenet_sandberg/data/learning_rate_schedule_classifier_msceleb.txt diff --git a/data/learning_rate_schedule_classifier_vggface2.txt b/facenet_sandberg/data/learning_rate_schedule_classifier_vggface2.txt similarity index 100% rename from data/learning_rate_schedule_classifier_vggface2.txt rename to facenet_sandberg/data/learning_rate_schedule_classifier_vggface2.txt diff --git a/data/pairs.txt b/facenet_sandberg/data/pairs.txt similarity index 100% rename from data/pairs.txt rename to facenet_sandberg/data/pairs.txt diff --git a/src/decode_msceleb_dataset.py b/facenet_sandberg/decode_msceleb_dataset.py similarity index 69% rename from src/decode_msceleb_dataset.py rename to facenet_sandberg/decode_msceleb_dataset.py index 4556bfa6c..188f18bd5 100644 --- a/src/decode_msceleb_dataset.py +++ b/facenet_sandberg/decode_msceleb_dataset.py @@ -2,19 +2,19 @@ https://www.microsoft.com/en-us/research/project/ms-celeb-1m-challenge-recognizing-one-million-celebrities-real-world/ """ # MIT License -# +# # Copyright (c) 2016 David Sandberg -# +# # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: -# +# # The above copyright notice and this permission notice shall be included in all # copies or substantial portions of the Software. -# +# # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE @@ -23,19 +23,17 @@ # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE # SOFTWARE. -from __future__ import absolute_import -from __future__ import division -from __future__ import print_function +from __future__ import absolute_import, division, print_function -from scipy import misc -import numpy as np +import argparse import base64 -import sys import os -import cv2 -import argparse -import facenet +import sys +import cv2 +import numpy as np +from facenet_sandberg import facenet +from scipy import misc # File format: text files, each line is an image record containing 6 columns, delimited by TAB. # Column1: Freebase MID @@ -45,16 +43,17 @@ # Column5: PageURL # Column6: ImageData_Base64Encoded + def main(args): output_dir = os.path.expanduser(args.output_dir) - + if not os.path.exists(output_dir): os.mkdir(output_dir) - + # Store some git revision info in a text file in the output directory - src_path,_ = os.path.split(os.path.realpath(__file__)) + src_path, _ = os.path.split(os.path.realpath(__file__)) facenet.store_revision_info(src_path, output_dir, ' '.join(sys.argv)) - + i = 0 for f in args.tsv_files: for line in f: @@ -64,24 +63,45 @@ def main(args): img_string = fields[5] img_dec_string = base64.b64decode(img_string) img_data = np.fromstring(img_dec_string, dtype=np.uint8) - img = cv2.imdecode(img_data, cv2.IMREAD_COLOR) #pylint: disable=maybe-no-member + img = cv2.imdecode( + img_data, cv2.IMREAD_COLOR) # pylint: disable=maybe-no-member if args.size: - img = misc.imresize(img, (args.size, args.size), interp='bilinear') + img = misc.imresize( + img, (args.size, args.size), interp='bilinear') full_class_dir = os.path.join(output_dir, class_dir) if not os.path.exists(full_class_dir): os.mkdir(full_class_dir) - full_path = os.path.join(full_class_dir, img_name.replace('/','_')) - cv2.imwrite(full_path, img) #pylint: disable=maybe-no-member + full_path = os.path.join( + full_class_dir, img_name.replace( + '/', '_')) + cv2.imwrite(full_path, img) # pylint: disable=maybe-no-member print('%8d: %s' % (i, full_path)) i += 1 - + + if __name__ == '__main__': parser = argparse.ArgumentParser() - parser.add_argument('output_dir', type=str, help='Output base directory for the image dataset') - parser.add_argument('tsv_files', type=argparse.FileType('r'), nargs='+', help='Input TSV file name(s)') - parser.add_argument('--size', type=int, help='Images are resized to the given size') - parser.add_argument('--output_format', type=str, help='Format of the output images', default='png', choices=['png', 'jpg']) + parser.add_argument( + 'output_dir', + type=str, + help='Output base directory for the image dataset') + parser.add_argument( + 'tsv_files', + type=argparse.FileType('r'), + nargs='+', + help='Input TSV file name(s)') + parser.add_argument( + '--size', + type=int, + help='Images are resized to the given size') + parser.add_argument( + '--output_format', + type=str, + help='Format of the output images', + default='png', + choices=[ + 'png', + 'jpg']) main(parser.parse_args()) - diff --git a/src/classifier.py b/facenet_sandberg/examples/classifier.py similarity index 58% rename from src/classifier.py rename to facenet_sandberg/examples/classifier.py index 749db4d6b..076856cbb 100644 --- a/src/classifier.py +++ b/facenet_sandberg/examples/classifier.py @@ -1,19 +1,19 @@ """An example of how to use your own dataset to train a classifier that recognizes people. """ # MIT License -# +# # Copyright (c) 2016 David Sandberg -# +# # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: -# +# # The above copyright notice and this permission notice shall be included in all # copies or substantial portions of the Software. -# +# # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE @@ -22,149 +22,196 @@ # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE # SOFTWARE. -from __future__ import absolute_import -from __future__ import division -from __future__ import print_function +from __future__ import absolute_import, division, print_function -import tensorflow as tf -import numpy as np import argparse -import facenet -import os -import sys import math +import os import pickle +import sys + +import numpy as np +import tensorflow as tf +from facenet_sandberg import facenet from sklearn.svm import SVC + def main(args): - + with tf.Graph().as_default(): - + with tf.Session() as sess: - + np.random.seed(seed=args.seed) - + if args.use_split_dataset: dataset_tmp = facenet.get_dataset(args.data_dir) - train_set, test_set = split_dataset(dataset_tmp, args.min_nrof_images_per_class, args.nrof_train_images_per_class) - if (args.mode=='TRAIN'): + train_set, test_set = split_dataset( + dataset_tmp, args.min_nrof_images_per_class, args.nrof_train_images_per_class) + if (args.mode == 'TRAIN'): dataset = train_set - elif (args.mode=='CLASSIFY'): + elif (args.mode == 'CLASSIFY'): dataset = test_set else: dataset = facenet.get_dataset(args.data_dir) # Check that there are at least one training image per class for cls in dataset: - assert(len(cls.image_paths)>0, 'There must be at least one image for each class in the dataset') + assert(len(cls.image_paths) > 0, + 'There must be at least one image for each class in the dataset') - paths, labels = facenet.get_image_paths_and_labels(dataset) - + print('Number of classes: %d' % len(dataset)) print('Number of images: %d' % len(paths)) - + # Load the model print('Loading feature extraction model') facenet.load_model(args.model) - + # Get input and output tensors images_placeholder = tf.get_default_graph().get_tensor_by_name("input:0") embeddings = tf.get_default_graph().get_tensor_by_name("embeddings:0") phase_train_placeholder = tf.get_default_graph().get_tensor_by_name("phase_train:0") embedding_size = embeddings.get_shape()[1] - + # Run forward pass to calculate embeddings print('Calculating features for images') nrof_images = len(paths) - nrof_batches_per_epoch = int(math.ceil(1.0*nrof_images / args.batch_size)) + nrof_batches_per_epoch = int( + math.ceil(1.0 * nrof_images / args.batch_size)) emb_array = np.zeros((nrof_images, embedding_size)) for i in range(nrof_batches_per_epoch): - start_index = i*args.batch_size - end_index = min((i+1)*args.batch_size, nrof_images) + start_index = i * args.batch_size + end_index = min((i + 1) * args.batch_size, nrof_images) paths_batch = paths[start_index:end_index] - images = facenet.load_data(paths_batch, False, False, args.image_size) - feed_dict = { images_placeholder:images, phase_train_placeholder:False } - emb_array[start_index:end_index,:] = sess.run(embeddings, feed_dict=feed_dict) - - classifier_filename_exp = os.path.expanduser(args.classifier_filename) + images = facenet.load_data( + paths_batch, False, False, args.image_size) + feed_dict = { + images_placeholder: images, + phase_train_placeholder: False} + emb_array[start_index:end_index, :] = sess.run( + embeddings, feed_dict=feed_dict) + + classifier_filename_exp = os.path.expanduser( + args.classifier_filename) - if (args.mode=='TRAIN'): + if (args.mode == 'TRAIN'): # Train classifier print('Training classifier') model = SVC(kernel='linear', probability=True) model.fit(emb_array, labels) - + # Create a list of class names - class_names = [ cls.name.replace('_', ' ') for cls in dataset] + class_names = [cls.name.replace('_', ' ') for cls in dataset] # Saving classifier model with open(classifier_filename_exp, 'wb') as outfile: pickle.dump((model, class_names), outfile) - print('Saved classifier model to file "%s"' % classifier_filename_exp) - - elif (args.mode=='CLASSIFY'): + print( + 'Saved classifier model to file "%s"' % + classifier_filename_exp) + + elif (args.mode == 'CLASSIFY'): # Classify images print('Testing classifier') with open(classifier_filename_exp, 'rb') as infile: (model, class_names) = pickle.load(infile) - print('Loaded classifier model from file "%s"' % classifier_filename_exp) + print( + 'Loaded classifier model from file "%s"' % + classifier_filename_exp) predictions = model.predict_proba(emb_array) best_class_indices = np.argmax(predictions, axis=1) - best_class_probabilities = predictions[np.arange(len(best_class_indices)), best_class_indices] - + best_class_probabilities = predictions[np.arange( + len(best_class_indices)), best_class_indices] + for i in range(len(best_class_indices)): - print('%4d %s: %.3f' % (i, class_names[best_class_indices[i]], best_class_probabilities[i])) - + print('%4d %s: %.3f' % (i, + class_names[best_class_indices[i]], + best_class_probabilities[i])) + accuracy = np.mean(np.equal(best_class_indices, labels)) print('Accuracy: %.3f' % accuracy) - - -def split_dataset(dataset, min_nrof_images_per_class, nrof_train_images_per_class): + + +def split_dataset( + dataset, + min_nrof_images_per_class, + nrof_train_images_per_class): train_set = [] test_set = [] for cls in dataset: paths = cls.image_paths # Remove classes with less than min_nrof_images_per_class - if len(paths)>=min_nrof_images_per_class: + if len(paths) >= min_nrof_images_per_class: np.random.shuffle(paths) - train_set.append(facenet.ImageClass(cls.name, paths[:nrof_train_images_per_class])) - test_set.append(facenet.ImageClass(cls.name, paths[nrof_train_images_per_class:])) + train_set.append(facenet.PersonClass( + cls.name, paths[:nrof_train_images_per_class])) + test_set.append(facenet.PersonClass( + cls.name, paths[nrof_train_images_per_class:])) return train_set, test_set - + def parse_arguments(argv): parser = argparse.ArgumentParser() - - parser.add_argument('mode', type=str, choices=['TRAIN', 'CLASSIFY'], - help='Indicates if a new classifier should be trained or a classification ' + - 'model should be used for classification', default='CLASSIFY') - parser.add_argument('data_dir', type=str, + + parser.add_argument( + 'mode', + type=str, + choices=[ + 'TRAIN', + 'CLASSIFY'], + help='Indicates if a new classifier should be trained or a classification ' + + 'model should be used for classification', + default='CLASSIFY') + parser.add_argument( + 'data_dir', + type=str, help='Path to the data directory containing aligned LFW face patches.') - parser.add_argument('model', type=str, + parser.add_argument( + 'model', + type=str, help='Could be either a directory containing the meta_file and ckpt_file or a model protobuf (.pb) file') - parser.add_argument('classifier_filename', - help='Classifier model file name as a pickle (.pkl) file. ' + + parser.add_argument( + 'classifier_filename', + help='Classifier model file name as a pickle (.pkl) file. ' + 'For training this is the output and for classification this is an input.') - parser.add_argument('--use_split_dataset', - help='Indicates that the dataset specified by data_dir should be split into a training and test set. ' + - 'Otherwise a separate test set can be specified using the test_data_dir option.', action='store_true') - parser.add_argument('--test_data_dir', type=str, + parser.add_argument( + '--use_split_dataset', + help='Indicates that the dataset specified by data_dir should be split into a training and test set. ' + + 'Otherwise a separate test set can be specified using the test_data_dir option.', + action='store_true') + parser.add_argument( + '--test_data_dir', + type=str, help='Path to the test data directory containing aligned images used for testing.') - parser.add_argument('--batch_size', type=int, - help='Number of images to process in a batch.', default=90) - parser.add_argument('--image_size', type=int, - help='Image size (height, width) in pixels.', default=160) + parser.add_argument( + '--batch_size', + type=int, + help='Number of images to process in a batch.', + default=90) + parser.add_argument( + '--image_size', + type=int, + help='Image size (height, width) in pixels.', + default=160) parser.add_argument('--seed', type=int, - help='Random seed.', default=666) - parser.add_argument('--min_nrof_images_per_class', type=int, - help='Only include classes with at least this number of images in the dataset', default=20) - parser.add_argument('--nrof_train_images_per_class', type=int, - help='Use this number of images from each class for training and the rest for testing', default=10) - + help='Random seed.', default=666) + parser.add_argument( + '--min_nrof_images_per_class', + type=int, + help='Only include classes with at least this number of images in the dataset', + default=20) + parser.add_argument( + '--nrof_train_images_per_class', + type=int, + help='Use this number of images from each class for training and the rest for testing', + default=10) + return parser.parse_args(argv) + if __name__ == '__main__': main(parse_arguments(sys.argv[1:])) diff --git a/facenet_sandberg/faceboxes/Dockerfile b/facenet_sandberg/faceboxes/Dockerfile new file mode 100644 index 000000000..32768553e --- /dev/null +++ b/facenet_sandberg/faceboxes/Dockerfile @@ -0,0 +1,11 @@ +FROM tensorflow/tensorflow:1.10.1-py3 + +WORKDIR /app + +COPY requirements.txt . +RUN pip3 install --no-cache-dir -r requirements.txt + +COPY align.py . +COPY model.pb . + +ENTRYPOINT ["python3", "align.py"] \ No newline at end of file diff --git a/facenet_sandberg/faceboxes/align.py b/facenet_sandberg/faceboxes/align.py new file mode 100644 index 000000000..0bc30eca6 --- /dev/null +++ b/facenet_sandberg/faceboxes/align.py @@ -0,0 +1,116 @@ +import argparse +import json +import sys +from typing import Any, List, Tuple, cast + +import numpy as np +import tensorflow as tf +from PIL import Image + + +class FaceDetector: + def __init__(self, model_path: str, gpu_memory_fraction: float=0.25, + visible_device_list: str='0') -> None: + """ + Arguments: + model_path: a string, path to a pb file. + gpu_memory_fraction: a float number. + visible_device_list: a string. + """ + with tf.gfile.GFile(model_path, 'rb') as f: + graph_def = tf.GraphDef() + graph_def.ParseFromString(f.read()) + + graph = tf.Graph() + with graph.as_default(): + tf.import_graph_def(graph_def, name='import') + + self.input_image = graph.get_tensor_by_name('import/image_tensor:0') + self.output_ops = [ + graph.get_tensor_by_name('import/boxes:0'), + graph.get_tensor_by_name('import/scores:0'), + graph.get_tensor_by_name('import/num_boxes:0'), + ] + + gpu_options = tf.GPUOptions( + per_process_gpu_memory_fraction=gpu_memory_fraction, + visible_device_list=visible_device_list + ) + config_proto = tf.ConfigProto( + gpu_options=gpu_options, + log_device_placement=False) + self.sess = tf.Session(graph=graph, config=config_proto) + + def __call__(self, + image: np.ndarray, + ratio: float=1.0, + score_threshold: float=0.5) -> Tuple[List[List[int]], + List[float]]: + """Detect faces. + + Arguments: + image: a numpy uint8 array with shape [height, width, 3], + that represents a RGB image. + score_threshold: a float number. + Returns: + boxes: a float numpy array of shape [num_faces, 4]. + scores: a float numpy array of shape [num_faces]. + + Note that box coordinates are in the order: ymin, xmin, ymax, xmax! + """ + h, w, _ = image.shape + image = np.expand_dims(image, 0) + + boxes, scores, num_boxes = self.sess.run( + self.output_ops, feed_dict={self.input_image: image} + ) + num_boxes = num_boxes[0] + boxes = boxes[0][:num_boxes] + scores = scores[0][:num_boxes] + + to_keep = scores > score_threshold + boxes = boxes[to_keep] + scores = scores[to_keep] + + scaler = np.array([h, w, h, w], dtype='float32') + boxes = boxes * scaler + box_list = cast(List[List[int]], []) + for box in boxes: + box /= ratio + box = box.astype(int) + box_list.append(box.tolist()) + return box_list, scores.tolist() + + +def main(image: Any, threshold: float=0.5, + desired_size: int=768) -> None: + face_detector = FaceDetector('model.pb') + old_size = image.size + ratio = float(desired_size) / max(old_size) + new_size = tuple([int(x * ratio) for x in old_size]) + image = image.resize(new_size, Image.ANTIALIAS) + image = np.array(image) + boxes, scores = face_detector( + image, ratio=ratio, score_threshold=threshold) + print(json.dumps({'boxes': boxes, 'scores': scores})) + + +def parse_arguments(argv): + parser = argparse.ArgumentParser() + parser.add_argument( + '--image_path', + type=str, + help='Image path') + parser.add_argument( + '--threshold', + type=float, + help='Threshold for finding faces', + default=0.5) + return parser.parse_args(argv) + + +if __name__ == '__main__': + args = parse_arguments(sys.argv[1:]) + if args: + image = Image.open(args.image_path) + main(image, args.threshold) diff --git a/facenet_sandberg/faceboxes/model.pb b/facenet_sandberg/faceboxes/model.pb new file mode 100644 index 000000000..f577b924c Binary files /dev/null and b/facenet_sandberg/faceboxes/model.pb differ diff --git a/facenet_sandberg/faceboxes/requirements.txt b/facenet_sandberg/faceboxes/requirements.txt new file mode 100644 index 000000000..e06245bc5 --- /dev/null +++ b/facenet_sandberg/faceboxes/requirements.txt @@ -0,0 +1,2 @@ +Pillow +numpy \ No newline at end of file diff --git a/src/facenet.py b/facenet_sandberg/facenet.py similarity index 54% rename from src/facenet.py rename to facenet_sandberg/facenet.py index 0e056765a..9697cb8d1 100644 --- a/src/facenet.py +++ b/facenet_sandberg/facenet.py @@ -1,19 +1,19 @@ """Functions for building the face recognition network. """ # MIT License -# +# # Copyright (c) 2016 David Sandberg -# +# # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: -# +# # The above copyright notice and this permission notice shall be included in all # copies or substantial portions of the Software. -# +# # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE @@ -23,51 +23,57 @@ # SOFTWARE. # pylint: disable=missing-docstring -from __future__ import absolute_import -from __future__ import division -from __future__ import print_function +from __future__ import absolute_import, division, print_function +import math import os -from subprocess import Popen, PIPE -import tensorflow as tf -import numpy as np -from scipy import misc -from sklearn.model_selection import KFold -from scipy import interpolate -from tensorflow.python.training import training import random import re -from tensorflow.python.platform import gfile -import math +from subprocess import PIPE, Popen + +import numpy as np +import tensorflow as tf +from scipy import interpolate, misc from six import iteritems +from sklearn.model_selection import KFold +from tensorflow.python.platform import gfile +from tensorflow.python.training import training + +from facenet_sandberg.utils import * + def triplet_loss(anchor, positive, negative, alpha): """Calculate the triplet loss according to the FaceNet paper - + Args: anchor: the embeddings for the anchor images. positive: the embeddings for the positive images. negative: the embeddings for the negative images. - + Returns: the triplet loss according to the FaceNet paper as a float tensor. """ with tf.variable_scope('triplet_loss'): pos_dist = tf.reduce_sum(tf.square(tf.subtract(anchor, positive)), 1) neg_dist = tf.reduce_sum(tf.square(tf.subtract(anchor, negative)), 1) - - basic_loss = tf.add(tf.subtract(pos_dist,neg_dist), alpha) + + basic_loss = tf.add(tf.subtract(pos_dist, neg_dist), alpha) loss = tf.reduce_mean(tf.maximum(basic_loss, 0.0), 0) - + return loss - + + def center_loss(features, label, alfa, nrof_classes): """Center loss based on the paper "A Discriminative Feature Learning Approach for Deep Face Recognition" (http://ydwen.github.io/papers/WenECCV16.pdf) """ nrof_features = features.get_shape()[1] - centers = tf.get_variable('centers', [nrof_classes, nrof_features], dtype=tf.float32, - initializer=tf.constant_initializer(0), trainable=False) + centers = tf.get_variable('centers', + [nrof_classes, + nrof_features], + dtype=tf.float32, + initializer=tf.constant_initializer(0), + trainable=False) label = tf.reshape(label, [-1]) centers_batch = tf.gather(centers, label) diff = (1 - alfa) * (centers_batch - features) @@ -76,6 +82,7 @@ def center_loss(features, label, alfa, nrof_classes): loss = tf.reduce_mean(tf.square(features - centers_batch)) return loss, centers + def get_image_paths_and_labels(dataset): image_paths_flat = [] labels_flat = [] @@ -84,67 +91,90 @@ def get_image_paths_and_labels(dataset): labels_flat += [i] * len(dataset[i].image_paths) return image_paths_flat, labels_flat + def shuffle_examples(image_paths, labels): shuffle_list = list(zip(image_paths, labels)) random.shuffle(shuffle_list) image_paths_shuff, labels_shuff = zip(*shuffle_list) return image_paths_shuff, labels_shuff + def random_rotate_image(image): angle = np.random.uniform(low=-10.0, high=10.0) return misc.imrotate(image, angle, 'bicubic') - -# 1: Random rotate 2: Random crop 4: Random flip 8: Fixed image standardization 16: Flip + + +# 1: Random rotate 2: Random crop 4: Random flip 8: Fixed image +# standardization 16: Flip RANDOM_ROTATE = 1 RANDOM_CROP = 2 RANDOM_FLIP = 4 FIXED_STANDARDIZATION = 8 FLIP = 16 -def create_input_pipeline(input_queue, image_size, nrof_preprocess_threads, batch_size_placeholder): + + +def create_input_pipeline( + input_queue, + image_size, + nrof_preprocess_threads, + batch_size_placeholder): images_and_labels_list = [] for _ in range(nrof_preprocess_threads): filenames, label, control = input_queue.dequeue() + is_rotate = get_control_flag(control[0], RANDOM_ROTATE) + is_crop = get_control_flag(control[0], RANDOM_CROP) + is_random_flip = get_control_flag(control[0], RANDOM_FLIP) + is_flip = get_control_flag(control[0], FLIP) + is_standard = get_control_flag(control[0], FIXED_STANDARDIZATION) images = [] for filename in tf.unstack(filenames): file_contents = tf.read_file(filename) image = tf.image.decode_image(file_contents, 3) - image = tf.cond(get_control_flag(control[0], RANDOM_ROTATE), - lambda:tf.py_func(random_rotate_image, [image], tf.uint8), - lambda:tf.identity(image)) - image = tf.cond(get_control_flag(control[0], RANDOM_CROP), - lambda:tf.random_crop(image, image_size + (3,)), - lambda:tf.image.resize_image_with_crop_or_pad(image, image_size[0], image_size[1])) - image = tf.cond(get_control_flag(control[0], RANDOM_FLIP), - lambda:tf.image.random_flip_left_right(image), - lambda:tf.identity(image)) - image = tf.cond(get_control_flag(control[0], FIXED_STANDARDIZATION), - lambda:(tf.cast(image, tf.float32) - 127.5)/128.0, - lambda:tf.image.per_image_standardization(image)) - image = tf.cond(get_control_flag(control[0], FLIP), - lambda:tf.image.flip_left_right(image), - lambda:tf.identity(image)) - #pylint: disable=no-member + image = tf.cond(is_rotate, + lambda: tf.py_func( + random_rotate_image, + [image], + tf.uint8), + lambda: tf.identity(image)) + image = tf.cond(is_crop, + lambda: tf.random_crop(image, image_size + (3,)), + lambda: tf.image.resize_image_with_crop_or_pad( + image, image_size[0], image_size[1])) + image = tf.cond(is_random_flip, + lambda: tf.image.random_flip_left_right(image), + lambda: tf.identity(image)) + image = tf.cond(is_standard, + lambda: ( + tf.cast( + image, + tf.float32) - 127.5) / 128.0, + lambda: tf.image.per_image_standardization(image)) + image = tf.cond(is_flip, + lambda: tf.image.flip_left_right(image), + lambda: tf.identity(image)) image.set_shape(image_size + (3,)) images.append(image) images_and_labels_list.append([images, label]) image_batch, label_batch = tf.train.batch_join( - images_and_labels_list, batch_size=batch_size_placeholder, + images_and_labels_list, batch_size=batch_size_placeholder, shapes=[image_size + (3,), ()], enqueue_many=True, capacity=4 * nrof_preprocess_threads * 100, allow_smaller_final_batch=True) - + return image_batch, label_batch + def get_control_flag(control, field): return tf.equal(tf.mod(tf.floor_div(control, field), 2), 1) - + + def _add_loss_summaries(total_loss): """Add summaries for losses. - + Generates moving average for all losses and associated summaries for visualizing the performance of the network. - + Args: total_loss: Total loss from loss(). Returns: @@ -154,93 +184,109 @@ def _add_loss_summaries(total_loss): loss_averages = tf.train.ExponentialMovingAverage(0.9, name='avg') losses = tf.get_collection('losses') loss_averages_op = loss_averages.apply(losses + [total_loss]) - + # Attach a scalar summmary to all individual losses and the total loss; do the # same for the averaged version of the losses. for l in losses + [total_loss]: # Name each loss as '(raw)' and name the moving average version of the loss # as the original loss name. - tf.summary.scalar(l.op.name +' (raw)', l) + tf.summary.scalar(l.op.name + ' (raw)', l) tf.summary.scalar(l.op.name, loss_averages.average(l)) - + return loss_averages_op -def train(total_loss, global_step, optimizer, learning_rate, moving_average_decay, update_gradient_vars, log_histograms=True): + +def train( + total_loss, + global_step, + optimizer, + learning_rate, + moving_average_decay, + update_gradient_vars, + log_histograms=True): # Generate moving averages of all losses and associated summaries. loss_averages_op = _add_loss_summaries(total_loss) # Compute gradients. with tf.control_dependencies([loss_averages_op]): - if optimizer=='ADAGRAD': + if optimizer == 'ADAGRAD': opt = tf.train.AdagradOptimizer(learning_rate) - elif optimizer=='ADADELTA': - opt = tf.train.AdadeltaOptimizer(learning_rate, rho=0.9, epsilon=1e-6) - elif optimizer=='ADAM': - opt = tf.train.AdamOptimizer(learning_rate, beta1=0.9, beta2=0.999, epsilon=0.1) - elif optimizer=='RMSPROP': - opt = tf.train.RMSPropOptimizer(learning_rate, decay=0.9, momentum=0.9, epsilon=1.0) - elif optimizer=='MOM': - opt = tf.train.MomentumOptimizer(learning_rate, 0.9, use_nesterov=True) + elif optimizer == 'ADADELTA': + opt = tf.train.AdadeltaOptimizer( + learning_rate, rho=0.9, epsilon=1e-6) + elif optimizer == 'ADAM': + opt = tf.train.AdamOptimizer( + learning_rate, beta1=0.9, beta2=0.999, epsilon=0.1) + elif optimizer == 'RMSPROP': + opt = tf.train.RMSPropOptimizer( + learning_rate, decay=0.9, momentum=0.9, epsilon=1.0) + elif optimizer == 'MOM': + opt = tf.train.MomentumOptimizer( + learning_rate, 0.9, use_nesterov=True) else: raise ValueError('Invalid optimization algorithm') - + grads = opt.compute_gradients(total_loss, update_gradient_vars) - + # Apply gradients. apply_gradient_op = opt.apply_gradients(grads, global_step=global_step) - + # Add histograms for trainable variables. if log_histograms: for var in tf.trainable_variables(): tf.summary.histogram(var.op.name, var) - + # Add histograms for gradients. if log_histograms: for grad, var in grads: if grad is not None: tf.summary.histogram(var.op.name + '/gradients', grad) - + # Track the moving averages of all trainable variables. variable_averages = tf.train.ExponentialMovingAverage( moving_average_decay, global_step) variables_averages_op = variable_averages.apply(tf.trainable_variables()) - + with tf.control_dependencies([apply_gradient_op, variables_averages_op]): train_op = tf.no_op(name='train') - + return train_op -def prewhiten(x): - mean = np.mean(x) - std = np.std(x) - std_adj = np.maximum(std, 1.0/np.sqrt(x.size)) - y = np.multiply(np.subtract(x, mean), 1/std_adj) - return y def crop(image, random_crop, image_size): - if image.shape[1]>image_size: - sz1 = int(image.shape[1]//2) - sz2 = int(image_size//2) + if image.shape[1] > image_size: + sz1 = int(image.shape[1] // 2) + sz2 = int(image_size // 2) if random_crop: - diff = sz1-sz2 - (h, v) = (np.random.randint(-diff, diff+1), np.random.randint(-diff, diff+1)) + diff = sz1 - sz2 + (h, v) = (np.random.randint(-diff, diff + 1), + np.random.randint(-diff, diff + 1)) else: - (h, v) = (0,0) - image = image[(sz1-sz2+v):(sz1+sz2+v),(sz1-sz2+h):(sz1+sz2+h),:] + (h, v) = (0, 0) + image = image[(sz1 - sz2 + v):(sz1 + sz2 + v), + (sz1 - sz2 + h):(sz1 + sz2 + h), :] return image - + + def flip(image, random_flip): if random_flip and np.random.choice([True, False]): image = np.fliplr(image) return image + def to_rgb(img): w, h = img.shape ret = np.empty((w, h, 3), dtype=np.uint8) ret[:, :, 0] = ret[:, :, 1] = ret[:, :, 2] = img return ret - -def load_data(image_paths, do_random_crop, do_random_flip, image_size, do_prewhiten=True): + + +def load_data( + image_paths, + do_random_crop, + do_random_flip, + image_size, + do_prewhiten=True): nrof_samples = len(image_paths) images = np.zeros((nrof_samples, image_size, image_size, 3)) for i in range(nrof_samples): @@ -248,44 +294,48 @@ def load_data(image_paths, do_random_crop, do_random_flip, image_size, do_prewhi if img.ndim == 2: img = to_rgb(img) if do_prewhiten: - img = prewhiten(img) + img = utils.normalize_image(img) img = crop(img, do_random_crop, image_size) img = flip(img, do_random_flip) - images[i,:,:,:] = img + images[i, :, :, :] = img return images + def get_label_batch(label_data, batch_size, batch_index): nrof_examples = np.size(label_data, 0) - j = batch_index*batch_size % nrof_examples - if j+batch_size<=nrof_examples: - batch = label_data[j:j+batch_size] + j = batch_index * batch_size % nrof_examples + if j + batch_size <= nrof_examples: + batch = label_data[j:j + batch_size] else: x1 = label_data[j:nrof_examples] - x2 = label_data[0:nrof_examples-j] - batch = np.vstack([x1,x2]) + x2 = label_data[0:nrof_examples - j] + batch = np.vstack([x1, x2]) batch_int = batch.astype(np.int64) return batch_int + def get_batch(image_data, batch_size, batch_index): nrof_examples = np.size(image_data, 0) - j = batch_index*batch_size % nrof_examples - if j+batch_size<=nrof_examples: - batch = image_data[j:j+batch_size,:,:,:] + j = batch_index * batch_size % nrof_examples + if j + batch_size <= nrof_examples: + batch = image_data[j:j + batch_size, :, :, :] else: - x1 = image_data[j:nrof_examples,:,:,:] - x2 = image_data[0:nrof_examples-j,:,:,:] - batch = np.vstack([x1,x2]) + x1 = image_data[j:nrof_examples, :, :, :] + x2 = image_data[0:nrof_examples - j, :, :, :] + batch = np.vstack([x1, x2]) batch_float = batch.astype(np.float32) return batch_float + def get_triplet_batch(triplets, batch_index, batch_size): ax, px, nx = triplets - a = get_batch(ax, int(batch_size/3), batch_index) - p = get_batch(px, int(batch_size/3), batch_index) - n = get_batch(nx, int(batch_size/3), batch_index) + a = get_batch(ax, int(batch_size / 3), batch_index) + p = get_batch(px, int(batch_size / 3), batch_index) + n = get_batch(nx, int(batch_size / 3), batch_index) batch = np.vstack([a, p, n]) return batch + def get_learning_rate_from_file(filename, epoch): with open(filename, 'r') as f: for line in f.readlines(): @@ -293,7 +343,7 @@ def get_learning_rate_from_file(filename, epoch): if line: par = line.strip().split(':') e = int(par[0]) - if par[1]=='-': + if par[1] == '-': lr = -1 else: lr = float(par[1]) @@ -302,92 +352,39 @@ def get_learning_rate_from_file(filename, epoch): else: return learning_rate -class ImageClass(): - "Stores the paths to images for a given class" - def __init__(self, name, image_paths): - self.name = name - self.image_paths = image_paths - - def __str__(self): - return self.name + ', ' + str(len(self.image_paths)) + ' images' - - def __len__(self): - return len(self.image_paths) - -def get_dataset(path, has_class_directories=True): - dataset = [] - path_exp = os.path.expanduser(path) - classes = [path for path in os.listdir(path_exp) \ - if os.path.isdir(os.path.join(path_exp, path))] - classes.sort() - nrof_classes = len(classes) - for i in range(nrof_classes): - class_name = classes[i] - facedir = os.path.join(path_exp, class_name) - image_paths = get_image_paths(facedir) - dataset.append(ImageClass(class_name, image_paths)) - - return dataset - -def get_image_paths(facedir): - image_paths = [] - if os.path.isdir(facedir): - images = os.listdir(facedir) - image_paths = [os.path.join(facedir,img) for img in images] - return image_paths - -def split_dataset(dataset, split_ratio, min_nrof_images_per_class, mode): - if mode=='SPLIT_CLASSES': - nrof_classes = len(dataset) - class_indices = np.arange(nrof_classes) - np.random.shuffle(class_indices) - split = int(round(nrof_classes*(1-split_ratio))) - train_set = [dataset[i] for i in class_indices[0:split]] - test_set = [dataset[i] for i in class_indices[split:-1]] - elif mode=='SPLIT_IMAGES': - train_set = [] - test_set = [] - for cls in dataset: - paths = cls.image_paths - np.random.shuffle(paths) - nrof_images_in_class = len(paths) - split = int(math.floor(nrof_images_in_class*(1-split_ratio))) - if split==nrof_images_in_class: - split = nrof_images_in_class-1 - if split>=min_nrof_images_per_class and nrof_images_in_class-split>=1: - train_set.append(ImageClass(cls.name, paths[:split])) - test_set.append(ImageClass(cls.name, paths[split:])) - else: - raise ValueError('Invalid train/test split mode "%s"' % mode) - return train_set, test_set def load_model(model, input_map=None): # Check if the model is a model directory (containing a metagraph and a checkpoint file) # or if it is a protobuf file with a frozen graph model_exp = os.path.expanduser(model) if (os.path.isfile(model_exp)): - print('Model filename: %s' % model_exp) - with gfile.FastGFile(model_exp,'rb') as f: + with gfile.FastGFile(model_exp, 'rb') as f: graph_def = tf.GraphDef() graph_def.ParseFromString(f.read()) tf.import_graph_def(graph_def, input_map=input_map, name='') else: - print('Model directory: %s' % model_exp) meta_file, ckpt_file = get_model_filenames(model_exp) - - print('Metagraph file: %s' % meta_file) - print('Checkpoint file: %s' % ckpt_file) - - saver = tf.train.import_meta_graph(os.path.join(model_exp, meta_file), input_map=input_map) - saver.restore(tf.get_default_session(), os.path.join(model_exp, ckpt_file)) - + + saver = tf.train.import_meta_graph(os.path.join( + model_exp, meta_file), input_map=input_map) + saver.restore( + tf.get_default_session(), + os.path.join( + model_exp, + ckpt_file)) + + def get_model_filenames(model_dir): files = os.listdir(model_dir) meta_files = [s for s in files if s.endswith('.meta')] - if len(meta_files)==0: - raise ValueError('No meta file found in the model directory (%s)' % model_dir) - elif len(meta_files)>1: - raise ValueError('There should not be more than one meta file in the model directory (%s)' % model_dir) + if len(meta_files) == 0: + raise ValueError( + 'No meta file found in the model directory (%s)' % + model_dir) + elif len(meta_files) > 1: + raise ValueError( + 'There should not be more than one meta file in the model directory (%s)' % + model_dir) meta_file = meta_files[0] ckpt = tf.train.get_checkpoint_state(model_dir) if ckpt and ckpt.model_checkpoint_path: @@ -398,107 +395,123 @@ def get_model_filenames(model_dir): max_step = -1 for f in files: step_str = re.match(r'(^model-[\w\- ]+.ckpt-(\d+))', f) - if step_str is not None and len(step_str.groups())>=2: + if step_str is not None and len(step_str.groups()) >= 2: step = int(step_str.groups()[1]) if step > max_step: max_step = step ckpt_file = step_str.groups()[0] return meta_file, ckpt_file - -def distance(embeddings1, embeddings2, distance_metric=0): - if distance_metric==0: - # Euclidian distance - diff = np.subtract(embeddings1, embeddings2) - dist = np.sum(np.square(diff),1) - elif distance_metric==1: - # Distance based on cosine similarity - dot = np.sum(np.multiply(embeddings1, embeddings2), axis=1) - norm = np.linalg.norm(embeddings1, axis=1) * np.linalg.norm(embeddings2, axis=1) - similarity = dot / norm - dist = np.arccos(similarity) / math.pi - else: - raise 'Undefined distance metric %d' % distance_metric - - return dist -def calculate_roc(thresholds, embeddings1, embeddings2, actual_issame, nrof_folds=10, distance_metric=0, subtract_mean=False): + +def calculate_roc( + thresholds, + embeddings1, + embeddings2, + actual_issame, + nrof_folds=10, + distance_metric=0, + subtract_mean=False): assert(embeddings1.shape[0] == embeddings2.shape[0]) assert(embeddings1.shape[1] == embeddings2.shape[1]) nrof_pairs = min(len(actual_issame), embeddings1.shape[0]) nrof_thresholds = len(thresholds) k_fold = KFold(n_splits=nrof_folds, shuffle=False) - - tprs = np.zeros((nrof_folds,nrof_thresholds)) - fprs = np.zeros((nrof_folds,nrof_thresholds)) + + tprs = np.zeros((nrof_folds, nrof_thresholds)) + fprs = np.zeros((nrof_folds, nrof_thresholds)) accuracy = np.zeros((nrof_folds)) - + indices = np.arange(nrof_pairs) - + for fold_idx, (train_set, test_set) in enumerate(k_fold.split(indices)): if subtract_mean: - mean = np.mean(np.concatenate([embeddings1[train_set], embeddings2[train_set]]), axis=0) + mean = np.mean(np.concatenate( + [embeddings1[train_set], embeddings2[train_set]]), axis=0) else: - mean = 0.0 - dist = distance(embeddings1-mean, embeddings2-mean, distance_metric) - + mean = 0.0 + dist = distance( + embeddings1 - mean, + embeddings2 - mean, + distance_metric) + # Find the best threshold for the fold acc_train = np.zeros((nrof_thresholds)) for threshold_idx, threshold in enumerate(thresholds): - _, _, acc_train[threshold_idx] = calculate_accuracy(threshold, dist[train_set], actual_issame[train_set]) + _, _, acc_train[threshold_idx] = calculate_accuracy( + threshold, dist[train_set], actual_issame[train_set]) best_threshold_index = np.argmax(acc_train) for threshold_idx, threshold in enumerate(thresholds): - tprs[fold_idx,threshold_idx], fprs[fold_idx,threshold_idx], _ = calculate_accuracy(threshold, dist[test_set], actual_issame[test_set]) - _, _, accuracy[fold_idx] = calculate_accuracy(thresholds[best_threshold_index], dist[test_set], actual_issame[test_set]) - - tpr = np.mean(tprs,0) - fpr = np.mean(fprs,0) + tprs[fold_idx, threshold_idx], fprs[fold_idx, threshold_idx], _ = calculate_accuracy( + threshold, dist[test_set], actual_issame[test_set]) + _, _, accuracy[fold_idx] = calculate_accuracy( + thresholds[best_threshold_index], dist[test_set], actual_issame[test_set]) + + tpr = np.mean(tprs, 0) + fpr = np.mean(fprs, 0) return tpr, fpr, accuracy + def calculate_accuracy(threshold, dist, actual_issame): predict_issame = np.less(dist, threshold) tp = np.sum(np.logical_and(predict_issame, actual_issame)) fp = np.sum(np.logical_and(predict_issame, np.logical_not(actual_issame))) - tn = np.sum(np.logical_and(np.logical_not(predict_issame), np.logical_not(actual_issame))) + tn = np.sum( + np.logical_and( + np.logical_not(predict_issame), + np.logical_not(actual_issame))) fn = np.sum(np.logical_and(np.logical_not(predict_issame), actual_issame)) - - tpr = 0 if (tp+fn==0) else float(tp) / float(tp+fn) - fpr = 0 if (fp+tn==0) else float(fp) / float(fp+tn) - acc = float(tp+tn)/dist.size + + tpr = 0 if (tp + fn == 0) else float(tp) / float(tp + fn) + fpr = 0 if (fp + tn == 0) else float(fp) / float(fp + tn) + acc = float(tp + tn) / dist.size return tpr, fpr, acc - -def calculate_val(thresholds, embeddings1, embeddings2, actual_issame, far_target, nrof_folds=10, distance_metric=0, subtract_mean=False): +def calculate_val( + thresholds, + embeddings1, + embeddings2, + actual_issame, + far_target, + nrof_folds=10, + distance_metric=0, + subtract_mean=False): assert(embeddings1.shape[0] == embeddings2.shape[0]) assert(embeddings1.shape[1] == embeddings2.shape[1]) nrof_pairs = min(len(actual_issame), embeddings1.shape[0]) nrof_thresholds = len(thresholds) k_fold = KFold(n_splits=nrof_folds, shuffle=False) - + val = np.zeros(nrof_folds) far = np.zeros(nrof_folds) - + indices = np.arange(nrof_pairs) - + for fold_idx, (train_set, test_set) in enumerate(k_fold.split(indices)): if subtract_mean: - mean = np.mean(np.concatenate([embeddings1[train_set], embeddings2[train_set]]), axis=0) + mean = np.mean(np.concatenate( + [embeddings1[train_set], embeddings2[train_set]]), axis=0) else: - mean = 0.0 - dist = distance(embeddings1-mean, embeddings2-mean, distance_metric) - + mean = 0.0 + dist = distance( + embeddings1 - mean, + embeddings2 - mean, + distance_metric) + # Find the threshold that gives FAR = far_target far_train = np.zeros(nrof_thresholds) for threshold_idx, threshold in enumerate(thresholds): - _, far_train[threshold_idx] = calculate_val_far(threshold, dist[train_set], actual_issame[train_set]) - if np.max(far_train)>=far_target: + _, far_train[threshold_idx] = calculate_val_far( + threshold, dist[train_set], actual_issame[train_set]) + if np.max(far_train) >= far_target: f = interpolate.interp1d(far_train, thresholds, kind='slinear') threshold = f(far_target) else: threshold = 0.0 - - val[fold_idx], far[fold_idx] = calculate_val_far(threshold, dist[test_set], actual_issame[test_set]) - + + val[fold_idx], far[fold_idx] = calculate_val_far( + threshold, dist[test_set], actual_issame[test_set]) + val_mean = np.mean(val) far_mean = np.mean(far) val_std = np.std(val) @@ -508,39 +521,16 @@ def calculate_val(thresholds, embeddings1, embeddings2, actual_issame, far_targe def calculate_val_far(threshold, dist, actual_issame): predict_issame = np.less(dist, threshold) true_accept = np.sum(np.logical_and(predict_issame, actual_issame)) - false_accept = np.sum(np.logical_and(predict_issame, np.logical_not(actual_issame))) + false_accept = np.sum( + np.logical_and( + predict_issame, + np.logical_not(actual_issame))) n_same = np.sum(actual_issame) n_diff = np.sum(np.logical_not(actual_issame)) val = float(true_accept) / float(n_same) far = float(false_accept) / float(n_diff) return val, far -def store_revision_info(src_path, output_dir, arg_string): - try: - # Get git hash - cmd = ['git', 'rev-parse', 'HEAD'] - gitproc = Popen(cmd, stdout = PIPE, cwd=src_path) - (stdout, _) = gitproc.communicate() - git_hash = stdout.strip() - except OSError as e: - git_hash = ' '.join(cmd) + ': ' + e.strerror - - try: - # Get local changes - cmd = ['git', 'diff', 'HEAD'] - gitproc = Popen(cmd, stdout = PIPE, cwd=src_path) - (stdout, _) = gitproc.communicate() - git_diff = stdout.strip() - except OSError as e: - git_diff = ' '.join(cmd) + ': ' + e.strerror - - # Store a text file in the log directory - rev_info_filename = os.path.join(output_dir, 'revision_info.txt') - with open(rev_info_filename, "w") as text_file: - text_file.write('arguments: %s\n--------------------\n' % arg_string) - text_file.write('tensorflow version: %s\n--------------------\n' % tf.__version__) # @UndefinedVariable - text_file.write('git hash: %s\n--------------------\n' % git_hash) - text_file.write('%s' % git_diff) def list_variables(filename): reader = training.NewCheckpointReader(filename) @@ -548,23 +538,27 @@ def list_variables(filename): names = sorted(variable_map.keys()) return names -def put_images_on_grid(images, shape=(16,8)): + +def put_images_on_grid(images, shape=(16, 8)): nrof_images = images.shape[0] img_size = images.shape[1] bw = 3 - img = np.zeros((shape[1]*(img_size+bw)+bw, shape[0]*(img_size+bw)+bw, 3), np.float32) + img = np.zeros((shape[1] * (img_size + bw) + bw, + shape[0] * (img_size + bw) + bw, 3), np.float32) for i in range(shape[1]): - x_start = i*(img_size+bw)+bw + x_start = i * (img_size + bw) + bw for j in range(shape[0]): - img_index = i*shape[0]+j - if img_index>=nrof_images: + img_index = i * shape[0] + j + if img_index >= nrof_images: break - y_start = j*(img_size+bw)+bw - img[x_start:x_start+img_size, y_start:y_start+img_size, :] = images[img_index, :, :, :] - if img_index>=nrof_images: + y_start = j * (img_size + bw) + bw + img[x_start:x_start + img_size, y_start:y_start + + img_size, :] = images[img_index, :, :, :] + if img_index >= nrof_images: break return img + def write_arguments_to_file(args, filename): with open(filename, 'w') as f: for key, value in iteritems(vars(args)): diff --git a/facenet_sandberg/facenet_config.json b/facenet_sandberg/facenet_config.json new file mode 100644 index 000000000..09380406d --- /dev/null +++ b/facenet_sandberg/facenet_config.json @@ -0,0 +1,15 @@ +{ + "IS_RGB": true, + "FACE_CROP_HEIGHT": 160, + "FACE_CROP_WIDTH": 160, + "FACE_CROP_MARGIN": 0.25, + "SCALE_FACTOR": 0.85, + "STEPS_THRESHOLD": [0.6, 0.7, 0.9], + "DETECT_MULTIPLE_FACES": true, + "USE_AFFINE": false, + "USE_FACEBOXES": false, + "NUM_PROCESSES": -1, + "FACENET_MODEL_CHECKPOINT": "/Users/armanrahman/models/facenet_model.pb", + "INPUT_DIR": "/Users/armanrahman/datasets/eame/eame_test", + "OUTPUT_DIR": "/Users/armanrahman/datasets/new_data_tests/facenet_eame" +} \ No newline at end of file diff --git a/facenet_sandberg/generate_pairs.py b/facenet_sandberg/generate_pairs.py new file mode 100644 index 000000000..de3bea1c3 --- /dev/null +++ b/facenet_sandberg/generate_pairs.py @@ -0,0 +1,158 @@ +# Implementation of pairs.txt from lfw dataset +# Section f: http://vis-www.cs.umass.edu/lfw/lfw.pdf +# More succint, less explicit: http://vis-www.cs.umass.edu/lfw/README.txt + +import glob +import io +import os +import random +from argparse import ArgumentParser, Namespace +from typing import List, Optional, Set, Tuple, cast + +import numpy as np + +from facenet_sandberg.utils import transform_to_lfw_format + +Mismatch = Tuple[str, int, str, int] +Match = Tuple[str, int, int] +CommandLineArgs = Namespace + + +def write_pairs_to_file(fname: str, + match_folds: List[List[Match]], + mismatch_folds: List[List[Mismatch]], + num_folds: int, + num_matches_mismatches: int) -> None: + metadata = '{}\t{}\n'.format(num_folds, num_matches_mismatches) + with io.open(fname, + 'w', + io.DEFAULT_BUFFER_SIZE, + encoding='utf-8') as fpairs: + fpairs.write(metadata) + for match_fold, mismatch_fold in zip(match_folds, mismatch_folds): + for match in match_fold: + line = '{}\t{}\t{}\n'.format(match[0], match[1], match[2]) + fpairs.write(line) + for mismatch in mismatch_fold: + line = '{}\t{}\t{}\t{}\n'.format( + mismatch[0], mismatch[1], mismatch[2], mismatch[3]) + fpairs.write(line) + fpairs.flush() + + +def _split_people_into_folds(image_dir: str, + num_folds: int) -> List[List[str]]: + names = [d for d in os.listdir(image_dir) + if os.path.isdir(os.path.join(image_dir, d))] + random.shuffle(names) + return [list(arr) for arr in np.array_split(names, num_folds)] + + +def _make_matches(image_dir: str, + people: List[str], + total_matches: int) -> List[Match]: + matches = cast(Set[Match], set()) + curr_matches = 0 + while curr_matches < total_matches: + person = random.choice(people) + images = _clean_images(image_dir, person) + if len(images) > 1: + img1, img2 = sorted( + [images.index(random.choice(images)) + 1, + images.index(random.choice(images)) + 1]) + match = (person, img1, img2) + if (img1 != img2) and (match not in matches): + matches.add(match) + curr_matches += 1 + return sorted(list(matches), key=lambda x: x[0].lower()) + + +def _make_mismatches(image_dir: str, + people: List[str], + total_matches: int) -> List[Mismatch]: + mismatches = cast(Set[Mismatch], set()) + curr_matches = 0 + while curr_matches < total_matches: + person1 = random.choice(people) + person2 = random.choice(people) + if person1 != person2: + person1_images = _clean_images(image_dir, person1) + person2_images = _clean_images(image_dir, person2) + if person1_images and person2_images: + img1 = person1_images.index(random.choice(person1_images)) + 1 + img2 = person2_images.index(random.choice(person2_images)) + 1 + if person1.lower() > person2.lower(): + person1, img1, person2, img2 = person2, img2, person1, img1 + mismatch = (person1, img1, person2, img2) + if mismatch not in mismatches: + mismatches.add(mismatch) + curr_matches += 1 + return sorted(list(mismatches), key=lambda x: x[0].lower()) + + +def _clean_images(base: str, folder: str): + images = os.listdir(os.path.join(base, folder)) + images = [image for image in images if image.endswith( + ".jpg") or image.endswith(".png") or image.endswith(".jpeg")] + return images + + +def generate_pairs( + image_dir: str, + num_folds: int, + num_matches_mismatches: int, + write_to_file: bool=False, + pairs_file_name: str="") -> None: + transform_to_lfw_format(image_dir) + people_folds = _split_people_into_folds(image_dir, num_folds) + matches = [] + mismatches = [] + for fold in people_folds: + matches.append(_make_matches(image_dir, + fold, + num_matches_mismatches)) + mismatches.append(_make_mismatches(image_dir, + fold, + num_matches_mismatches)) + if write_to_file: + write_pairs_to_file(pairs_file_name, + matches, + mismatches, + num_folds, + num_matches_mismatches) + return matches, mismatches + + +def _cli() -> None: + args = _parse_arguments() + generate_pairs( + args.image_dir, + args.num_folds, + args.num_matches_mismatches, + True, + args.pairs_file_name) + + +def _parse_arguments() -> Namespace: + parser = ArgumentParser() + parser.add_argument('--image_dir', + type=str, + required=True, + help='Path to the image directory.') + parser.add_argument('--pairs_file_name', + type=str, + required=True, + help='Filename of pairs.txt') + parser.add_argument('--num_folds', + type=int, + required=True, + help='Number of folds for k-fold cross validation.') + parser.add_argument('--num_matches_mismatches', + type=int, + required=True, + help='Number of matches/mismatches per fold.') + return parser.parse_args() + + +if __name__ == '__main__': + _cli() diff --git a/__init__.py b/facenet_sandberg/generative/__init__.py similarity index 100% rename from __init__.py rename to facenet_sandberg/generative/__init__.py diff --git a/src/generative/calculate_attribute_vectors.py b/facenet_sandberg/generative/calculate_attribute_vectors.py similarity index 100% rename from src/generative/calculate_attribute_vectors.py rename to facenet_sandberg/generative/calculate_attribute_vectors.py diff --git a/src/align/__init__.py b/facenet_sandberg/generative/models/__init__.py similarity index 100% rename from src/align/__init__.py rename to facenet_sandberg/generative/models/__init__.py diff --git a/src/generative/models/dfc_vae.py b/facenet_sandberg/generative/models/dfc_vae.py similarity index 100% rename from src/generative/models/dfc_vae.py rename to facenet_sandberg/generative/models/dfc_vae.py diff --git a/src/generative/models/dfc_vae_large.py b/facenet_sandberg/generative/models/dfc_vae_large.py similarity index 100% rename from src/generative/models/dfc_vae_large.py rename to facenet_sandberg/generative/models/dfc_vae_large.py diff --git a/src/generative/models/dfc_vae_resnet.py b/facenet_sandberg/generative/models/dfc_vae_resnet.py similarity index 100% rename from src/generative/models/dfc_vae_resnet.py rename to facenet_sandberg/generative/models/dfc_vae_resnet.py diff --git a/src/generative/models/vae_base.py b/facenet_sandberg/generative/models/vae_base.py similarity index 100% rename from src/generative/models/vae_base.py rename to facenet_sandberg/generative/models/vae_base.py diff --git a/src/generative/modify_attribute.py b/facenet_sandberg/generative/modify_attribute.py similarity index 99% rename from src/generative/modify_attribute.py rename to facenet_sandberg/generative/modify_attribute.py index 8187cff47..c96093059 100644 --- a/src/generative/modify_attribute.py +++ b/facenet_sandberg/generative/modify_attribute.py @@ -32,7 +32,7 @@ import sys import argparse import importlib -import facenet +from facenet_sandberg import facenet import os import numpy as np import h5py diff --git a/src/generative/train_vae.py b/facenet_sandberg/generative/train_vae.py similarity index 99% rename from src/generative/train_vae.py rename to facenet_sandberg/generative/train_vae.py index c3c882fab..8cc3d9135 100644 --- a/src/generative/train_vae.py +++ b/facenet_sandberg/generative/train_vae.py @@ -32,7 +32,7 @@ import time import importlib import argparse -import facenet +from facenet_sandberg import facenet import numpy as np import h5py import os diff --git a/facenet_sandberg/inference/__init__.py b/facenet_sandberg/inference/__init__.py new file mode 100644 index 000000000..37934fff0 --- /dev/null +++ b/facenet_sandberg/inference/__init__.py @@ -0,0 +1,3 @@ +from .align import Detector +from .generate_tsne import tsne_sklearn, tsne_tensorboard +from .identifier import Identifier diff --git a/facenet_sandberg/inference/align.py b/facenet_sandberg/inference/align.py new file mode 100644 index 000000000..df063c49b --- /dev/null +++ b/facenet_sandberg/inference/align.py @@ -0,0 +1,138 @@ +import io +import json +import os +import tempfile +import warnings +from typing import List, cast + +import cv2 +import docker +import numpy as np +import PIL +from mtcnn.mtcnn import MTCNN + +from facenet_sandberg import utils +from facenet_sandberg.common_types import * + +warnings.filterwarnings("ignore", message="numpy.dtype size changed") +warnings.filterwarnings("ignore", message="numpy.ufunc size changed") +os.environ['TF_CPP_MIN_LOG_LEVEL'] = '3' +debug = False + + +class Detector: + def __init__( + self, + face_crop_height: int = 160, + face_crop_width: int = 160, + face_crop_margin: float = .4, + detect_multiple_faces: bool = False, + min_face_size: int = 20, + scale_factor: float = 0.709, + steps_threshold: List[float] = [ + 0.6, + 0.7, + 0.7], + is_rgb: bool = True, + use_faceboxes: bool = False, + use_affine: bool = False) -> None: + import tensorflow as tf + self.mtcnn = MTCNN() + self.face_crop_height = face_crop_height + self.face_crop_width = face_crop_width + self.face_crop_margin = face_crop_margin + self.detect_multiple_faces = detect_multiple_faces + self.min_face_size = min_face_size + self.is_rgb = is_rgb + self.use_faceboxes = use_faceboxes + self.use_affine = use_affine + + def bulk_find_face(self, + images: ImageGenerator, + urls: List[str] = None, + detect_multiple_faces: bool = False, + face_limit: int = 5) -> FacesGenerator: + for index, image in enumerate(images): + faces = self.find_faces(image, detect_multiple_faces, face_limit) + if urls and index < len(urls): + for face in faces: + face.url = urls[index] + yield faces + else: + yield faces + + def find_faces(self, image: Image, detect_multiple_faces: bool = False, + face_limit: int = 5) -> List[Face]: + faces = [] + results = cast(List[AlignResult], self._get_align_results(image)) + if len(results) < face_limit: + if not detect_multiple_faces and len(results) > 1: + img_size = np.asarray(image.shape)[0:2] + results = utils.get_center_box(img_size, results) + for result in results: + face = Face() + bb = result.bounding_box + if bb[2] - bb[0] < self.min_face_size or bb[3] - \ + bb[1] < self.min_face_size: + pass + # preprocess changes RGB -> BGR + processed = utils.preprocess( + image, + self.face_crop_height, + self.face_crop_width, + self.face_crop_margin, + bb, + result.landmarks, + self.use_affine) + resized = cv2.resize( + processed, (self.face_crop_height, self.face_crop_width)) + # RGB to BGR + if not self.is_rgb: + resized = resized[..., ::-1] + face.image = resized + faces.append(face) + return faces + + def _get_align_results(self, image: Image) -> List[AlignResult]: + mtcnn_results = self.mtcnn.detect_faces(image) + img_size = np.asarray(image.shape)[0:2] + align_results = cast(List[AlignResult], []) + faceboxes = cast(List[List[int]], []) + if self.use_faceboxes: + faceboxes = self._get_faceboxes_results(image) + if len(mtcnn_results) >= len(faceboxes): + for result in mtcnn_results: + bb = result['box'] + # bb[x, y, dx, dy] -> bb[x1, y1, x2, y2] + bb = utils.fix_mtcnn_bb( + img_size[0], img_size[1], bb) + align_result = AlignResult( + bounding_box=bb, + landmarks=result['keypoints']) + align_results.append(align_result) + else: + for bb in faceboxes: + # bb[y1, x1, y2, x2] -> bb[x1, y1, x2, y2] + bb = utils.fix_faceboxes_bb( + img_size[0], img_size[1], bb) + align_result = AlignResult(bounding_box=bb) + align_results.append(align_result) + return align_results + + @staticmethod + def _get_faceboxes_results(image_array: np.ndarray, + threshold: float = 0.8) -> List[List[int]]: + image = PIL.Image.fromarray(image_array) + with tempfile.NamedTemporaryFile(mode="wb", dir=os.getcwd()) as image_file: + f = io.BytesIO() + image.save(image_file, 'png') + image_name = os.path.basename(image_file.name) + base_dir = os.path.dirname(image_file.name) + command = '--image_path=/images/' + \ + image_name + ' --threshold ' + str(threshold) + volumes = {base_dir: {'bind': '/images', 'mode': 'ro'}} + client = docker.from_env() + stdout = client.containers.run('arrahm/faceboxes', + command, + volumes=volumes) + return json.loads(stdout.decode('utf-8').strip())['boxes'] diff --git a/facenet_sandberg/inference/facenet_encoder.py b/facenet_sandberg/inference/facenet_encoder.py new file mode 100644 index 000000000..8656d2f7c --- /dev/null +++ b/facenet_sandberg/inference/facenet_encoder.py @@ -0,0 +1,128 @@ +import os +import warnings +from typing import List, Optional, cast + +import numpy as np +import progressbar as pb +import tensorflow as tf +from scipy import misc + +from facenet_sandberg import facenet, utils +from facenet_sandberg.common_types import (DistanceMetric, Embedding, Face, + FacesGenerator, Image, + ImageGenerator) + +warnings.filterwarnings("ignore", message="numpy.dtype size changed") +warnings.filterwarnings("ignore", message="numpy.ufunc size changed") +os.environ['TF_CPP_MIN_LOG_LEVEL'] = '3' +tf.logging.set_verbosity(tf.logging.ERROR) + + +class Facenet: + def __init__( + self, + model_path: str, + image_height: int = 160, + image_width: int = 160, + batch_size: int = 64) -> None: + import tensorflow as tf + self.sess = tf.Session() + with self.sess.as_default(): + facenet.load_model(model_path) + # Get input and output tensors + self.images_placeholder = tf.get_default_graph().get_tensor_by_name("input:0") + self.embeddings = tf.get_default_graph().get_tensor_by_name("embeddings:0") + self.phase_train_placeholder = tf.get_default_graph( + ).get_tensor_by_name("phase_train:0") + self.image_height = image_height + self.image_width = image_width + self.batch_size = batch_size + + def extract_batch(self, batch: np.ndarray) -> List[Embedding]: + feed_dict = { + self.images_placeholder: batch, + self.phase_train_placeholder: False} + embeddings = self.sess.run(self.embeddings, feed_dict=feed_dict) + return [embedding for embedding in embeddings] + + def generate_embedding(self, image: Image) -> Embedding: + h, w, c = image.shape + assert h == self.image_height and w == self.image_width + prewhiten_face = utils.fixed_standardize(image) + + # Run forward pass to calculate embeddings + feed_dict = {self.images_placeholder: [ + prewhiten_face], self.phase_train_placeholder: False} + return self.sess.run(self.embeddings, feed_dict=feed_dict)[0] + + def generate_embeddings(self, + all_images: ImageGenerator) -> List[Embedding]: + featurized_batches = cast(List[Embedding], []) + clean_images = np.array(list(map(utils.fixed_standardize, all_images))) + + widgets = ['Encoding:', pb.Percentage(), ' ', + pb.Bar(), ' ', pb.ETA(), ' ', pb.Timer()] + timer = pb.ProgressBar( + widgets=widgets, + max_value=clean_images.shape[0]) + for index in range(0, clean_images.shape[0], self.batch_size): + end_index = min(index + self.batch_size, clean_images.shape[0]) + timer.update(end_index) + batch = clean_images[index:end_index, :] + featurized_batches += self.extract_batch(batch) + timer.finish() + return featurized_batches + + def get_face_embeddings(self, + all_faces: FacesGenerator, + save_memory: bool = False) -> FacesGenerator: + """Generates embeddings from generator of Faces + Keyword Arguments: + save_memory -- save memory by deleting image from Face object (default: {False}) + """ + + face_list = list(all_faces) + total_num_faces = sum([1 for faces in face_list for face in faces]) + images = (face.image for faces in face_list for face in faces) + embed_array = self.generate_embeddings(images) + total_num_embeddings = len(embed_array) + assert total_num_embeddings == total_num_faces + + index = 0 + for faces in face_list: + for face in faces: + if save_memory: + face.image = None + face.container_image = None + face.embedding = embed_array[index] + index += 1 + yield faces + + def get_best_match( + self, + anchor: Face, + faces: List[Face]) -> Optional[Face]: + anchor_image = misc.imresize( + anchor.image, + (self.image_height, + self.image_width), + interp='bilinear') + anchor.embedding = self.generate_embedding(anchor_image) + min_dist = float('inf') + min_face = faces[0] if faces else None + for face in faces: + face_image = misc.imresize( + face.image, (self.image_height, self.image_width), interp='bilinear') + face.embedding = self.generate_embedding(face_image) + dist = utils.embedding_distance( + anchor.embedding, + face.embedding, + DistanceMetric.EUCLIDEAN_SQUARED) + if dist < min_dist and dist < 1.0: + min_dist = dist + min_face = face + return min_face + + def tear_down(self): + self.sess.close() + self.sess = None diff --git a/facenet_sandberg/inference/generate_tsne.py b/facenet_sandberg/inference/generate_tsne.py new file mode 100644 index 000000000..0c5b83670 --- /dev/null +++ b/facenet_sandberg/inference/generate_tsne.py @@ -0,0 +1,207 @@ +from argparse import ArgumentParser, Namespace +from typing import List, Tuple + +import matplotlib.pyplot as plt +import numpy as np +import PIL +import torch +from sklearn import preprocessing +from sklearn.manifold import TSNE + +from facenet_sandberg.common_types import Face, Image +from facenet_sandberg.utils import (get_dataset, get_image_from_path_bgr, + get_image_from_path_rgb) +from tensorboardX import SummaryWriter + +from .identifier import Identifier + + +def _normalize(image: Image): + return (image.astype(float) - 128) / 128 + + +def _resize(img_array: List[Image]): + resized = [] + for image in img_array: + img = PIL.Image.fromarray(image) + img.thumbnail((64, 64), PIL.Image.ANTIALIAS) + resized.append(_normalize(np.array(img))) + resized = np.array(resized) + return resized + + +def _get_data(img_dir: str, is_insightface: bool, + is_flat: bool) -> Tuple[np.ndarray, List[str]]: + people = get_dataset(img_dir, is_flat=is_flat) + + # Get Images + people_paths = [person.image_paths for person in people] + all_image_paths = [path for paths in people_paths for path in paths] + if is_insightface: + images = map(get_image_from_path_bgr, all_image_paths) + else: + images = map(get_image_from_path_rgb, all_image_paths) + + # Get Labels + names = [person.name for person in people] + labels = [] + for index, person in enumerate(names): + labels += [person] * len(people_paths[index]) + return np.array(list(images)), labels + + +def _vectorize_images( + model_path: str, + is_insightface: bool, + prealigned: bool, + images: List[Image], + labels: List[str]) -> List[Face]: + + identifier = Identifier( + model_path=model_path, + is_insightface=is_insightface) + all_faces = identifier.detect_encode_all( + images, detect_multiple_faces=prealigned, urls=labels) + faces_flat = [faces[0] for faces in all_faces if faces] + return faces_flat + + +def write_to_tf_logdir( + features: np.ndarray, + labels: np.ndarray, + torch_array: torch.Tensor, + log_dir: str) -> None: + + writer = SummaryWriter(log_dir=log_dir) + writer.add_embedding(features, metadata=labels, label_img=torch_array) + writer.close() + + +def generate_tsne_data( + img_dir: str, + model_path: str, + is_insightface: bool, + prealigned: bool, + is_flat: bool): + images, labels = _get_data(img_dir, is_insightface, is_flat) + faces = _vectorize_images( + model_path, + is_insightface, + prealigned, + images, + labels) + face_images = np.array([face.image for face in faces]) + face_vectors = np.array([face.embedding for face in faces]) + face_labels = np.array([face.url for face in faces]) + resized = _resize(face_images) + torch_array = torch.from_numpy(resized).permute(0, 3, 1, 2).float() + return face_vectors, face_labels, torch_array + + +def tsne_tensorboard( + img_dir: str, + model_path: str, + is_insightface: bool, + prealigned: bool, + is_flat: bool, + log_dir: str): + + face_vectors, face_labels, torch_array = generate_tsne_data( + img_dir, model_path, is_insightface, prealigned, is_flat) + write_to_tf_logdir(face_vectors, face_labels, torch_array, log_dir) + + +def tsne_sklearn( + img_dir: str, + model_path: str, + is_insightface: bool, + prealigned: bool, + is_flat: bool, + save_plt: bool=True): + + face_vectors, face_labels, _ = generate_tsne_data( + img_dir, model_path, is_insightface, prealigned, is_flat) + tsne = TSNE(n_components=2, random_state=0) + reduced = tsne.fit_transform(face_vectors) + plt = tsne_plt(reduced, face_labels, save_plt) + return plt + + +def get_cmap(n, name='hsv'): + '''Returns a function that maps each index in 0, 1, ..., n-1 to a distinct + RGB color; the keyword argument name must be a standard mpl colormap name.''' + return plt.cm.get_cmap(name, n) + + +def tsne_plt( + reduced: np.ndarray, + labels_str: List[str], + save_plt: bool): + le = preprocessing.LabelEncoder() + labels_num = le.fit_transform(labels_str) + plt.figure(figsize=(30, 30)) + # cmap = get_cmap(len(le.classes_)) + cmap = plt.cm.get_cmap("hsv", len(le.classes_) + 1) + for i, label in zip(range(len(le.classes_)), le.classes_): + plt.scatter(reduced[labels_num == i, 0], + reduced[labels_num == i, 1], c=cmap(i), cmap=cmap, label=label) + plt.legend() + if save_plt: + plt.savefig("tsne.jpg") + return plt + + +def _cli() -> None: + args = _parse_arguments() + if args.save_plt: + tsne_sklearn( + args.img_dir, + args.model_path, + args.is_insightface, + args.prealigned, + args.is_flat, + True) + else: + tsne_tensorboard( + args.img_dir, + args.model_path, + args.is_insightface, + args.prealigned, + args.is_flat, + args.log_dir) + + +def _parse_arguments() -> Namespace: + parser = ArgumentParser() + parser.add_argument('--img_dir', + type=str, + required=True, + help='Path to the image directory.') + parser.add_argument('--model_path', + type=str, + required=True, + help='path to facial recognition model') + parser.add_argument('--is_insightface', + action='store_true', + help='Set this flag if the model is insightface') + parser.add_argument( + '--prealigned_flag', + action='store_true', + help='Specify if the images have already been aligned.') + parser.add_argument( + '--is_flat', + action='store_true', + help='Set this flag if the image directory is flat with one photo per person') + parser.add_argument( + '--save_plt', + action='store_true', + help='Set this flag if you want to save a matplot lib plot instead of tensorboard') + parser.add_argument('--log_dir', + type=str, + required=True, + help='path to output the tensorflow logs') + return parser.parse_args() + + +if __name__ == '__main__': + _cli() diff --git a/facenet_sandberg/inference/identifier.py b/facenet_sandberg/inference/identifier.py new file mode 100644 index 000000000..848cbd174 --- /dev/null +++ b/facenet_sandberg/inference/identifier.py @@ -0,0 +1,207 @@ +"""Face Detection and Recognition""" + +import itertools +import os +import warnings +from typing import List, Tuple + +import tensorflow as tf + +from facenet_sandberg import utils +from facenet_sandberg.common_types import (DistanceMetric, Embedding, Face, + FacesGenerator, Image, + ImageGenerator, Match) +from facenet_sandberg.inference import (align, facenet_encoder, + insightface_encoder) + +warnings.filterwarnings("ignore", message="numpy.dtype size changed") +warnings.filterwarnings("ignore", message="numpy.ufunc size changed") +os.environ['TF_CPP_MIN_LOG_LEVEL'] = '3' +tf.logging.set_verbosity(tf.logging.ERROR) + + +class Identifier: + """Class to detect, encode, and match faces + + Arguments: + threshold {Float} -- Distance threshold to determine matches + """ + + def __init__( + self, + model_path: str, + threshold: float = 1.10, + is_insightface: bool = False, + is_centerface: bool = False, + batch_size: int = 64): + if is_insightface: + self.detector = align.Detector( + face_crop_height=112, + face_crop_width=112, + steps_threshold=[0.6, 0.7, 0.9], + scale_factor=0.85, + is_rgb=False) + self.encoder = insightface_encoder.Insightface( + model_path=model_path, + batch_size=batch_size) + elif is_centerface: + self.detector = align.Detector( + face_crop_height=112, + face_crop_width=96, + steps_threshold=[0.6, 0.7, 0.9], + scale_factor=0.85, + is_rgb=False) + self.encoder = insightface_encoder.Insightface( + model_path=model_path, + batch_size=batch_size, + image_height=112, + image_width=96) + else: + self.detector = align.Detector() + self.encoder = facenet_encoder.Facenet( + model_path=model_path, + batch_size=batch_size) + self.threshold = threshold + + def vectorize(self, image: Image, + prealigned: bool = False, + detect_multiple_faces: bool = True, + face_limit: int = 5) -> List[Embedding]: + """Gets face embeddings in a single image + Keyword Arguments: + prealigned {bool} -- is the image already aligned + face_limit {int} -- max number of faces allowed + before image is discarded. (default: {5}) + """ + if not prealigned: + faces = self.detect_encode( + image, detect_multiple_faces, face_limit) + vectors = [face.embedding for face in faces] + else: + vectors = [self.encoder.generate_embedding(image)] + return vectors + + def vectorize_all(self, + images: ImageGenerator, + prealigned: bool = False, + detect_multiple_faces: bool = True, + face_limit: int = 5) -> List[List[Embedding]]: + """Gets face embeddings from a generator of images + Keyword Arguments: + prealigned {bool} -- is the image already aligned + face_limit {int} -- max number of faces allowed + before image is discarded. (default: {5}) + """ + vectors = [] + if not prealigned: + all_faces = self.detect_encode_all( + images=images, + save_memory=True, + detect_multiple_faces=detect_multiple_faces, + face_limit=face_limit) + for faces in all_faces: + vectors.append([face.embedding for face in faces]) + else: + embeddings = self.encoder.generate_embeddings( + images) + for embedding in embeddings: + vectors.append([embedding]) + return vectors + + def detect_encode(self, image: Image, + detect_multiple_faces: bool = True, + face_limit: int = 5) -> List[Face]: + """Detects faces in an image and encodes them + """ + + faces = self.detector.find_faces( + image, detect_multiple_faces, face_limit) + for face in faces: + face.embedding = self.encoder.generate_embedding(face.image) + return faces + + def detect_encode_all(self, + images: ImageGenerator, + urls: List[str] = None, + save_memory: bool = False, + detect_multiple_faces: bool = True, + face_limit: int = 5) -> FacesGenerator: + """For a list of images finds and encodes all faces + + Keyword Arguments: + save_memory {bool} -- Saves memory by deleting image from Face objects. + Should only be used if with you have some other kind + of refference to the original image like a url. (default: {False}) + """ + + all_faces = self.detector.bulk_find_face( + images, urls, detect_multiple_faces, face_limit) + return self.encoder.get_face_embeddings(all_faces, save_memory) + + def compare_embedding(self, + embedding_1: Embedding, + embedding_2: Embedding, + distance_metric: DistanceMetric) -> Tuple[bool, + float]: + """Compares the distance between two embeddings + """ + + distance = utils.embedding_distance( + embedding_1, embedding_2, distance_metric) + is_match = False + if distance < self.threshold: + is_match = True + return is_match, distance + + def compare_images( + self, + image_1: Image, + image_2: Image, + detect_multiple_faces: bool = True, + face_limit: int = 5) -> Match: + match = Match() + image_1_faces = self.detect_encode( + image_1, detect_multiple_faces, face_limit) + image_2_faces = self.detect_encode( + image_2, detect_multiple_faces, face_limit) + if image_1_faces and image_2_faces: + for face_1 in image_1_faces: + for face_2 in image_2_faces: + is_match, score = self.compare_embedding( + face_1.embedding, face_2.embedding, DistanceMetric.EUCLIDEAN_SQUARED) + if score < match.score: + match.score = score + match.face_1 = face_1 + match.face_2 = face_2 + match.is_match = is_match + return match + + def find_all_matches( + self, + image_directory: str, + recursive: bool, + distance_metric: DistanceMetric = DistanceMetric.EUCLIDEAN_SQUARED) -> List[Match]: + """Finds all matches in a directory of images + """ + + all_images = utils.get_images_from_dir(image_directory, recursive) + all_matches = [] + all_faces_lists = self.detect_encode_all(all_images) + all_faces = (face for faces in all_faces_lists for face in faces) + # Really inefficient way to check all combinations + for face_1, face_2 in itertools.combinations(all_faces, 2): + is_match, score = self.compare_embedding( + face_1.embedding, face_2.embedding, distance_metric) + if is_match: + match = Match() + match.face_1 = face_1 + match.face_2 = face_2 + match.is_match = True + match.score = score + all_matches.append(match) + face_1.matches.append(match) + face_2.matches.append(match) + return all_matches + + def tear_down(self): + self.encoder.tear_down() diff --git a/facenet_sandberg/inference/insightface_encoder.py b/facenet_sandberg/inference/insightface_encoder.py new file mode 100644 index 000000000..0219cabd2 --- /dev/null +++ b/facenet_sandberg/inference/insightface_encoder.py @@ -0,0 +1,142 @@ +import os +import warnings +from typing import List, cast + +import numpy as np +import progressbar as pb +import tensorflow as tf +import tensorlayer as tl + +from facenet_sandberg import utils +from facenet_sandberg.common_types import * +from facenet_sandberg.models.L_Resnet_E_IR_fix_issue9 import get_resnet + +warnings.filterwarnings("ignore", message="numpy.dtype size changed") +warnings.filterwarnings("ignore", message="numpy.ufunc size changed") +os.environ['TF_CPP_MIN_LOG_LEVEL'] = '3' +tf.logging.set_verbosity(tf.logging.ERROR) + + +class Insightface: + def __init__(self, model_path: str, + image_height: int = 112, + image_width: int = 112, + batch_size: int = 64) -> None: + import tensorflow as tf + import tensorflow.contrib.slim as slim + from tensorflow.core.protobuf import config_pb2 + # save context + sess, embedding_tensor, feed_dict, input_placeholder = self._get_extractor( + model_path, image_height, image_width) + self.embedding_tensor = embedding_tensor + self.batch_size = batch_size + self.sess = sess + self.feed_dict = feed_dict + self.input_placeholder = input_placeholder + self.model_path = model_path + self.image_height = image_height + self.image_width = image_width + + def _get_extractor(self, model_path: str, + image_height: int, image_width: int): + images = tf.placeholder( + name='img_inputs', + shape=[ + None, + image_height, + image_width, + 3], + dtype=tf.float32) + dropout_rate = tf.placeholder(name='dropout_rate', dtype=tf.float32) + + w_init_method = tf.contrib.layers.xavier_initializer(uniform=False) + with tl.ops.suppress_stdout(): + tl.layers.set_name_reuse(True) + test_net = get_resnet( + images, + 50, + type='ir', + w_init=w_init_method, + trainable=False, + reuse=tf.AUTO_REUSE, + keep_rate=dropout_rate) + embedding_tensor = test_net.outputs + # define sess + gpu_config = tf.ConfigProto(allow_soft_placement=True) + gpu_config.gpu_options.allow_growth = True + + sess = tf.Session(config=gpu_config) + # init all variables + sess.run(tf.global_variables_initializer()) + + # restore weights + saver = tf.train.Saver() + saver.restore(sess, model_path) + + feed_dict = {images: None, dropout_rate: 1.0} + return sess, embedding_tensor, feed_dict, images + + def extract_batch(self, batch: np.ndarray) -> List[Embedding]: + self.feed_dict.setdefault(self.input_placeholder, None) + self.feed_dict[self.input_placeholder] = batch + feat = self.sess.run([self.embedding_tensor], feed_dict=self.feed_dict) + feat = np.array(feat) + if feat.ndim > 2: + feat = np.squeeze(feat, axis=0) + return [embedding for embedding in feat] + + def generate_embedding(self, image: Image) -> Embedding: + image = utils.fixed_standardize(image) + self.feed_dict.setdefault(self.input_placeholder, None) + self.feed_dict[self.input_placeholder] = [image] + feat = self.sess.run([self.embedding_tensor], feed_dict=self.feed_dict) + feat = np.array(feat) + feat = np.squeeze(feat) + return feat + + def generate_embeddings( + self, + all_images: ImageGenerator) -> List[Embedding]: + featurized_batches = cast(List[Embedding], []) + clean_images = np.array(list(map(utils.fixed_standardize, all_images))) + + widgets = ['Encoding:', pb.Percentage(), ' ', + pb.Bar(), ' ', pb.ETA(), ' ', pb.Timer()] + timer = pb.ProgressBar( + widgets=widgets, + max_value=clean_images.shape[0]) + for index in range(0, clean_images.shape[0], self.batch_size): + end_index = min(index + self.batch_size, clean_images.shape[0]) + timer.update(end_index) + batch = clean_images[index:end_index, :] + featurized_batches += self.extract_batch(batch) + timer.finish() + return featurized_batches + + def get_face_embeddings(self, + all_faces: FacesGenerator, + save_memory: bool = False) -> FacesGenerator: + """Generates embeddings from generator of Faces + Keyword Arguments: + save_memory -- save memory by deleting image from Face object (default: {False}) + """ + + face_list = list(all_faces) + total_num_faces = sum([1 for faces in face_list for face in faces]) + images = (face.image for faces in face_list for face in faces) + embed_array = self.generate_embeddings(images) + total_num_embeddings = len(embed_array) + assert total_num_embeddings == total_num_faces + + index = 0 + for faces in face_list: + for face in faces: + if save_memory: + face.image = None + face.container_image = None + face.embedding = embed_array[index] + index += 1 + yield faces + + def tear_down(self): + self.sess.close() diff --git a/facenet_sandberg/inference/validate.py b/facenet_sandberg/inference/validate.py new file mode 100644 index 000000000..2a4c83ef6 --- /dev/null +++ b/facenet_sandberg/inference/validate.py @@ -0,0 +1,249 @@ +import sys +from argparse import ArgumentParser, Namespace +from typing import List, Tuple, Union + +import numpy as np +from sklearn.metrics import accuracy_score, precision_score, recall_score +from sklearn.model_selection import KFold + +from facenet_sandberg import utils +from facenet_sandberg.common_types import DistanceMetric, ThresholdMetric +from facenet_sandberg.config import ValidateConfig +from facenet_sandberg.inference import Identifier + +FaceVector = List[float] +Match = Tuple[str, int, int] +Mismatch = Tuple[str, int, str, int] +Pair = Union[Match, Mismatch] +Path = Tuple[str, str] +Label = bool + + +def evaluate(embeddings: np.ndarray, + labels: np.ndarray, + num_folds: int, + distance_metric: DistanceMetric, + threshold_metric: ThresholdMetric, + subtract_mean: bool, + divide_stddev: bool, + threshold_start: float, + threshold_end: float, + threshold_step: float) -> Tuple[np.float, np.float, np.float]: + import pdb; pdb.set_trace() + thresholds = np.arange(threshold_start, threshold_end, threshold_step) + embeddings1 = embeddings[0::2] + embeddings2 = embeddings[1::2] + accuracy, recall, precision = _score_k_fold(thresholds, + embeddings1, + embeddings2, + labels, + num_folds, + distance_metric, + threshold_metric, + subtract_mean, + divide_stddev) + return np.mean(accuracy), np.mean(recall), np.mean(precision) + + +def _calculate_best_threshold(thresholds: np.ndarray, + dist: np.ndarray, + labels: np.ndarray, + threshold_metric: ThresholdMetric) -> np.float: + if threshold_metric == ThresholdMetric.ACCURACY: + threshold_score = accuracy_score + elif threshold_metric == ThresholdMetric.PRECISION: + threshold_score = precision_score + elif threshold_metric == ThresholdMetric.RECALL: + threshold_score = recall_score + threshold_scores = np.zeros((len(thresholds))) + for threshold_idx, threshold in enumerate(thresholds): + import pdb; pdb.set_trace() + predictions = np.less(dist, threshold) + threshold_scores[threshold_idx] = threshold_score(labels, predictions) + best_threshold_index = np.argmax(threshold_scores) + return thresholds[best_threshold_index] + + +def _score_k_fold(thresholds: np.ndarray, + embeddings1: np.ndarray, + embeddings2: np.ndarray, + labels: np.ndarray, + num_folds: int, + distance_metric: DistanceMetric, + threshold_metric: str, + subtract_mean: bool, + divide_stddev: bool) -> Tuple[np.ndarray, + np.ndarray, + np.ndarray]: + import pdb; pdb.set_trace() + k_fold = KFold(n_splits=num_folds, shuffle=True) + accuracy = np.zeros((num_folds)) + recall = np.zeros((num_folds)) + precision = np.zeros((num_folds)) + splits = k_fold.split(np.arange(len(labels))) + for fold_idx, (train_set, test_set) in enumerate(splits): + train_embeddings = np.concatenate([embeddings1[train_set], + embeddings2[train_set]]) + mean = np.mean(train_embeddings, axis=0) if subtract_mean else 0.0 + stddev = np.std(train_embeddings, axis=0) if divide_stddev else 1.0 + e1 = (embeddings1 - mean) / stddev + e2 = (embeddings2 - mean) / stddev + dist = utils.embedding_distance_bulk( + (embeddings1 - mean) / stddev, + (embeddings2 - mean) / stddev, + distance_metric) + best_threshold = _calculate_best_threshold(thresholds, + dist[train_set], + labels[train_set], + threshold_metric) + predictions = np.less(dist[test_set], best_threshold) + accuracy[fold_idx] = accuracy_score(labels[test_set], predictions) + recall[fold_idx] = recall_score(labels[test_set], predictions) + precision[fold_idx] = precision_score(labels[test_set], predictions) + return accuracy, recall, precision + + +def _get_target_faces(embeddings1: List[FaceVector], + embeddings2: List[FaceVector], + distance_metric: DistanceMetric, + is_match: bool) -> Tuple[FaceVector, FaceVector]: + import pdb; pdb.set_trace() + X, Y = zip(*[(emb1, emb2) for emb1 in embeddings1 for emb2 in embeddings2]) + distances = utils.embedding_distance_bulk(X, Y, distance_metric) + distance_criteria = min if is_match else max + index, _ = distance_criteria(enumerate(distances), key=lambda x: x[1]) + return X[index], Y[index] + + +def _get_container_metrics(face_vectors: List[List[FaceVector]]) -> Tuple[ + int, + int, + float]: + num_expected = len(face_vectors) + num_missing = sum([1 for i in face_vectors if not i]) + percentage_missing = 100 * (num_missing / num_expected) + return num_expected, num_missing, percentage_missing + + +def _remove_empty_embeddings(config: ValidateConfig, + embeddings: np.ndarray, + labels: np.ndarray) -> Tuple[np.ndarray, + np.ndarray]: + if config.remove_empty_embeddings: + embs_filter = embeddings == np.asarray([[0] * config.embedding_size]) + empty_indices = np.where(np.all(embs_filter, axis=1))[0] + pair_empty_indices = np.asarray([i + 1 + if i % 2 == 0 + else i - 1 + for i in empty_indices]) + embedding_indices = np.unique(np.concatenate((empty_indices, + pair_empty_indices))) + embeddings = np.delete(embeddings, embedding_indices, axis=0) + label_indices = np.unique(embedding_indices // 2) + labels = np.delete(labels, label_indices, axis=0) + return embeddings, labels + + +def _prealigned(config: ValidateConfig, num_matches_mismatches: int, + face_vectors: List[List[FaceVector]]) -> np.ndarray: + if config.prealigned: + embeddings = np.asarray([[0] * config.embedding_size + if not embedding else embedding[0] + for embedding in face_vectors]) + else: + embeddings = [] + is_match = False + for i, (embs1, embs2) in enumerate(zip(face_vectors[0::2], + face_vectors[1::2])): + if i % num_matches_mismatches == 0: + is_match = not is_match + + embs1, embs2 = _get_target_faces( + embs1 or [[0] * config.embedding_size], + embs2 or [[0] * config.embedding_size], + config.distance_metric, + is_match) + embeddings += [embs1, embs2] + embeddings = np.asarray(embeddings) + return embeddings + + +def _handle_flags(config: ValidateConfig, + num_matches_mismatches: int, + face_vectors: List[List[FaceVector]], + labels: np.ndarray) -> Tuple[np.ndarray, + np.ndarray]: + embeddings = _prealigned(config, num_matches_mismatches, face_vectors) + embeddings, labels = _remove_empty_embeddings(config, embeddings, labels) + return embeddings, labels + + +def _parse_arguments(argv): + parser = ArgumentParser() + parser.add_argument( + '--config_file', + type=str, + help='Path to validate config file', + default='validate_config.json') + parser.add_argument( + '--model_path', + type=str, + help='Path to facial recognition model (facenet or insightface)') + parser.add_argument( + '--is_insightface', + help='Set this flag if using insightface', + action='store_true') + return parser.parse_args(argv) + + +def validate(config_file: str, + identifier: Identifier) -> Tuple[np.float, np.float, np.float]: + config = ValidateConfig(config_file) + pairs, _, num_matches_mismatches = utils.read_pairs_file( + config.pairs_file_name) + pair_paths, labels = utils.get_paths_and_labels(config.image_dir, pairs) + flat_paths = [path for pair in pair_paths for path in pair] + + images = map(utils.get_image_from_path_rgb, flat_paths) + + all_vectors = identifier.vectorize_all( + images, prealigned=config.prealigned) + face_vectors = [] + for vectors in all_vectors: + face_vectors.append([vector.tolist() for vector in vectors]) + num_expected, num_missing, percentage_missing = _get_container_metrics( + face_vectors) + print('Number of expected face vectors: {}'.format(num_expected)) + print('Number of missing face vectors: {}'.format(num_missing)) + print('Percentage missing: {}'.format(percentage_missing)) + + embeddings, labels = _handle_flags(config, + num_matches_mismatches, + face_vectors, + np.asarray(labels)) + accuracy, recall, precision = evaluate(embeddings, + labels, + config.num_folds, + config.distance_metric, + config.threshold_metric, + config.subtract_mean, + config.divide_stddev, + config.threshold_start, + config.threshold_end, + config.threshold_step) + print('Accuracy: {}'.format(accuracy)) + print('Recall: {}'.format(recall)) + print('Precision: {}'.format(precision)) + return accuracy, recall, precision + + +def _cli() -> None: + args = _parse_arguments(sys.argv[1:]) + identifier = Identifier( + model_path=args.model_path, + is_insightface=args.is_insightface) + validate(args.config_file, identifier) + + +if __name__ == '__main__': + _cli() diff --git a/facenet_sandberg/inference/validate_config.json b/facenet_sandberg/inference/validate_config.json new file mode 100644 index 000000000..22827ecb1 --- /dev/null +++ b/facenet_sandberg/inference/validate_config.json @@ -0,0 +1,15 @@ +{ + "IMAGE_DIR": "/Users/armanrahman/datasets/new_data_tests/facenet_eame", + "PAIRS_FILE_NAME": "/Users/armanrahman/datasets/new_data_tests/pairs.txt", + "NUM_FOLDS": 4, + "DISTANCE_METRIC": "EUCLIDEAN_SQUARED", + "THRESHOLD_START": 0, + "THRESHOLD_END": 1, + "THRESHOLD_STEP": 0.1, + "THRESHOLD_METRIC": "ACCURACY", + "EMBEDDING_SIZE": 512, + "REMOVE_EMPTY_EMBEDDINGS": false, + "SUBTRACT_MEAN": false, + "DIVIDE_STDDEV": false, + "PREALIGNED": true +} \ No newline at end of file diff --git a/facenet_sandberg/insightface_config.json b/facenet_sandberg/insightface_config.json new file mode 100644 index 000000000..ae43f5da0 --- /dev/null +++ b/facenet_sandberg/insightface_config.json @@ -0,0 +1,15 @@ +{ + "IS_RGB": false, + "FACE_CROP_HEIGHT": 112, + "FACE_CROP_WIDTH": 112, + "FACE_CROP_MARGIN": 0.25, + "SCALE_FACTOR": 0.85, + "STEPS_THRESHOLD": [0.6, 0.7, 0.9], + "DETECT_MULTIPLE_FACES": true, + "USE_AFFINE": false, + "USE_FACEBOXES": false, + "NUM_PROCESSES": -1, + "FACENET_MODEL_CHECKPOINT": "/Users/armanrahman/models/facenet_model.pb", + "INPUT_DIR": "/Users/armanrahman/datasets/eame/eame_test", + "OUTPUT_DIR": "/Users/armanrahman/datasets/new_data_tests/insightface_eame" +} \ No newline at end of file diff --git a/facenet_sandberg/lfw.py b/facenet_sandberg/lfw.py new file mode 100644 index 000000000..893718f83 --- /dev/null +++ b/facenet_sandberg/lfw.py @@ -0,0 +1,192 @@ +"""Helper for evaluation on the Labeled Faces in the Wild dataset +""" + +# MIT License +# +# Copyright (c) 2016 David Sandberg +# +# Permission is hereby granted, free of charge, to any person obtaining a copy +# of this software and associated documentation files (the "Software"), to deal +# in the Software without restriction, including without limitation the rights +# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell +# copies of the Software, and to permit persons to whom the Software is +# furnished to do so, subject to the following conditions: +# +# The above copyright notice and this permission notice shall be included in all +# copies or substantial portions of the Software. +# +# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR +# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, +# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE +# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER +# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, +# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE +# SOFTWARE. + +from __future__ import absolute_import, division, print_function + +import argparse +import glob +import os +import sys +from multiprocessing import Lock, Manager, Pool, Queue, Value +from multiprocessing.dummy import Pool as ThreadPool +from pathlib import Path + +import numpy as np + +from facenet_sandberg import facenet + + +def evaluate(embeddings, labels, nrof_folds=10, + distance_metric=0, subtract_mean=False): + # Calculate evaluation metrics + thresholds = np.arange(0, 4, 0.01) + embeddings1 = embeddings[0::2] + embeddings2 = embeddings[1::2] + tpr, fpr, accuracy = facenet.calculate_roc(thresholds, embeddings1, embeddings2, np.asarray( + labels), nrof_folds=nrof_folds, distance_metric=distance_metric, subtract_mean=subtract_mean) + thresholds = np.arange(0, 4, 0.001) + val, val_std, far = facenet.calculate_val(thresholds, embeddings1, embeddings2, np.asarray( + labels), 1e-3, nrof_folds=nrof_folds, distance_metric=distance_metric, subtract_mean=subtract_mean) + return tpr, fpr, accuracy, val, val_std, far + + +def get_paths(lfw_dir, pairs): + """Gets full paths for image pairs and labels (same person or not) + + Arguments: + lfw_dir {str} -- Base directory of testing data + pairs {[[str]]} -- List of pairs of form: + - For same person: [name, image 1 index, image 2 index] + - For different: [name 1, image index 1, name 2, image index 2] + + Returns: + [(str, str)], [bool] -- list of image pair paths and labels + """ + + nrof_skipped_pairs = 0 + path_list = [] + labels = [] + for pair in pairs: + if len(pair) == 3: + path0 = add_extension(os.path.join( + lfw_dir, pair[0], pair[0] + '_' + '%04d' % int(pair[1]))) + path1 = add_extension(os.path.join( + lfw_dir, pair[0], pair[0] + '_' + '%04d' % int(pair[2]))) + is_same_person = True + elif len(pair) == 4: + path0 = add_extension(os.path.join( + lfw_dir, pair[0], pair[0] + '_' + '%04d' % int(pair[1]))) + path1 = add_extension(os.path.join( + lfw_dir, pair[2], pair[2] + '_' + '%04d' % int(pair[3]))) + is_same_person = False + if os.path.exists(path0) and os.path.exists( + path1): # Only add the pair if both paths exist + path_list += (path0, path1) + labels.append(is_same_person) + else: + nrof_skipped_pairs += 1 + if nrof_skipped_pairs > 0: + print('Skipped %d image pairs' % nrof_skipped_pairs) + + return path_list, labels + + +def transform_to_lfw_format(image_directory, num_processes=1): + """Transforms an image dataset to lfw format image names. + Base directory should have a folder per person with the person's name. + + Arguments: + image_directory {str} -- base directory of people folders + """ + all_folders = os.path.join(image_directory, "*", "") + people_folders = glob.iglob(all_folders) + if num_processes != 1: + process_pool = Pool(num_processes) + process_pool.imap(rename, people_folders) + process_pool.close() + process_pool.join() + else: + for person_folder in people_folders: + rename(person_folder) + + +def rename(person_folder): + """Renames all the images in a folder in lfw format + + Arguments: + person_folder {str} -- path to folder named after person + """ + all_image_paths = glob.glob(os.path.join(person_folder, "*.*")) + all_image_paths = sorted([image for image in all_image_paths if image.endswith( + ".jpg") or image.endswith(".png")]) + person_name = os.path.basename(os.path.normpath(person_folder)) + concat_name = '_'.join(person_name.split()) + for index, image_path in enumerate(all_image_paths): + image_name = concat_name + '_' + '%04d' % (index + 1) + file_ext = Path(image_path).suffix + new_image_path = os.path.join(person_folder, image_name + file_ext) + os.rename(image_path, new_image_path) + os.rename(person_folder, person_folder.replace(person_name, concat_name)) + + +def add_extension(path): + """Adds a image file extension to the path if it exists + + Arguments: + path {str} -- base path to image file + + Raises: + RuntimeError -- [description] + + Returns: + str -- base path plus image file extension + """ + + if os.path.exists(path + '.jpg'): + return path + '.jpg' + elif os.path.exists(path + '.png'): + return path + '.png' + else: + raise RuntimeError('No file "%s" with extension png or jpg.' % path) + + +def read_pairs(pairs_filename): + """Reads a pairs.txt file to array. Each file line is of format: + - If same person: "{person} {image 1 index} {image 2 index}" + - If different: "{person 1} {image 1 index} {person 2} {image 2 index}" + + Arguments: + pairs_filename {str} -- path to pairs.txt file + + Returns: + np.ndarray -- numpy array of pairs + """ + + pairs = [] + with open(pairs_filename, 'r') as f: + for line in f.readlines()[1:]: + pair = line.strip().split() + pairs.append(pair) + return np.array(pairs) + + +def parse_arguments(argv): + """Argument parser + """ + + parser = argparse.ArgumentParser() + + parser.add_argument( + 'image_directory', + type=str, + help='Path to the data directory containing images to fix names') + + return parser.parse_args(argv) + + +if __name__ == '__main__': + args = parse_arguments(sys.argv[1:]) + if args: + transform_to_lfw_format(args.image_directory) diff --git a/facenet_sandberg/models/L_Resnet_E_IR_fix_issue9.py b/facenet_sandberg/models/L_Resnet_E_IR_fix_issue9.py new file mode 100644 index 000000000..d7c6075d2 --- /dev/null +++ b/facenet_sandberg/models/L_Resnet_E_IR_fix_issue9.py @@ -0,0 +1,797 @@ +import collections + +import tensorflow as tf +import tensorlayer as tl +from tensorflow.contrib.layers.python.layers import utils +from tensorlayer.layers import Layer, list_remove_repeat + + +class ElementwiseLayer(Layer): + """ + The :class:`ElementwiseLayer` class combines multiple :class:`Layer` which have the same output shapes by a given elemwise-wise operation. + + Parameters + ---------- + layer : a list of :class:`Layer` instances + The `Layer` class feeding into this layer. + combine_fn : a TensorFlow elemwise-merge function + e.g. AND is ``tf.minimum`` ; OR is ``tf.maximum`` ; ADD is ``tf.add`` ; MUL is ``tf.multiply`` and so on. + See `TensorFlow Math API `_ . + name : a string or None + An optional name to attach to this layer. + """ + + def __init__( + self, + layer=[], + combine_fn=tf.minimum, + name='elementwise_layer', + act=None, + ): + Layer.__init__(self, name=name) + ''' + if act: + #print(" [TL] ElementwiseLayer %s: size:%s fn:%s, act:%s" % ( + #self.name, layer[0].outputs.get_shape(), combine_fn.__name__, act.__name__)) + else: + #print(" [TL] ElementwiseLayer %s: size:%s fn:%s" % ( + #self.name, layer[0].outputs.get_shape(), combine_fn.__name__)) + ''' + self.outputs = layer[0].outputs + # #print(self.outputs._shape, type(self.outputs._shape)) + for l in layer[1:]: + # assert str(self.outputs.get_shape()) == str(l.outputs.get_shape()), "Hint: the input shapes should be the same. %s != %s" % (self.outputs.get_shape() , str(l.outputs.get_shape())) + self.outputs = combine_fn(self.outputs, l.outputs, name=name) + if act: + self.outputs = act(self.outputs) + self.all_layers = list(layer[0].all_layers) + self.all_params = list(layer[0].all_params) + self.all_drop = dict(layer[0].all_drop) + + for i in range(1, len(layer)): + self.all_layers.extend(list(layer[i].all_layers)) + self.all_params.extend(list(layer[i].all_params)) + self.all_drop.update(dict(layer[i].all_drop)) + + self.all_layers = list_remove_repeat(self.all_layers) + self.all_params = list_remove_repeat(self.all_params) + + +class BatchNormLayer(Layer): + """ + The :class:`BatchNormLayer` class is a normalization layer, see ``tf.nn.batch_normalization`` and ``tf.nn.moments``. + + Batch normalization on fully-connected or convolutional maps. + + ``` + https://www.tensorflow.org/api_docs/python/tf/cond + If x < y, the tf.add operation will be executed and tf.square operation will not be executed. + Since z is needed for at least one branch of the cond, the tf.multiply operation is always executed, unconditionally. + ``` + + Parameters + ----------- + layer : a :class:`Layer` instance + The `Layer` class feeding into this layer. + decay : float, default is 0.9. + A decay factor for ExponentialMovingAverage, use larger value for large dataset. + epsilon : float + A small float number to avoid dividing by 0. + act : activation function. + is_train : boolean + Whether train or inference. + beta_init : beta initializer + The initializer for initializing beta + gamma_init : gamma initializer + The initializer for initializing gamma + dtype : tf.float32 (default) or tf.float16 + name : a string or None + An optional name to attach to this layer. + + References + ---------- + - `Source `_ + - `stackoverflow `_ + + """ + + def __init__( + self, + layer=None, + decay=0.9, + epsilon=2e-5, + act=tf.identity, + is_train=False, + fix_gamma=True, + beta_init=tf.zeros_initializer, + gamma_init=tf.random_normal_initializer( + mean=1.0, stddev=0.002), # tf.ones_initializer, + # dtype = tf.float32, + trainable=None, + name='batchnorm_layer', + ): + Layer.__init__(self, name=name) + self.inputs = layer.outputs + # print(" [TL] BatchNormLayer %s: decay:%f epsilon:%f act:%s is_train:%s" % (self.name, decay, epsilon, act.__name__, is_train)) + x_shape = self.inputs.get_shape() + params_shape = x_shape[-1:] + + from tensorflow.python.training import moving_averages + from tensorflow.python.ops import control_flow_ops + + with tf.variable_scope(name) as vs: + axis = list(range(len(x_shape) - 1)) + + # 1. beta, gamma + if tf.__version__ > '0.12.1' and beta_init == tf.zeros_initializer: + beta_init = beta_init() + beta = tf.get_variable( + 'beta', + shape=params_shape, + initializer=beta_init, + dtype=tf.float32, + trainable=is_train) # , restore=restore) + + gamma = tf.get_variable( + 'gamma', + shape=params_shape, + initializer=gamma_init, + dtype=tf.float32, + trainable=fix_gamma, + ) # restore=restore) + + # 2. + if tf.__version__ > '0.12.1': + moving_mean_init = tf.zeros_initializer() + else: + moving_mean_init = tf.zeros_initializer + moving_mean = tf.get_variable( + 'moving_mean', + params_shape, + initializer=moving_mean_init, + dtype=tf.float32, + trainable=False) # restore=restore) + moving_variance = tf.get_variable( + 'moving_variance', + params_shape, + initializer=tf.constant_initializer(1.), + dtype=tf.float32, + trainable=False, + ) # restore=restore) + + # 3. + # These ops will only be preformed when training. + mean, variance = tf.nn.moments(self.inputs, axis) + try: # TF12 + update_moving_mean = moving_averages.assign_moving_average( + moving_mean, mean, decay, zero_debias=False) # if zero_debias=True, has bias + update_moving_variance = moving_averages.assign_moving_average( + moving_variance, variance, decay, zero_debias=False) # if zero_debias=True, has bias + # #print("TF12 moving") + except Exception as e: # TF11 + update_moving_mean = moving_averages.assign_moving_average( + moving_mean, mean, decay) + update_moving_variance = moving_averages.assign_moving_average( + moving_variance, variance, decay) + # #print("TF11 moving") + + def mean_var_with_update(): + with tf.control_dependencies([update_moving_mean, update_moving_variance]): + return tf.identity(mean), tf.identity(variance) + if trainable: + mean, var = mean_var_with_update() + # print(mean) + # print(var) + self.outputs = act( + tf.nn.batch_normalization( + self.inputs, mean, var, beta, gamma, epsilon)) + else: + self.outputs = act( + tf.nn.batch_normalization( + self.inputs, + moving_mean, + moving_variance, + beta, + gamma, + epsilon)) + variables = [beta, gamma, moving_mean, moving_variance] + self.all_layers = list(layer.all_layers) + self.all_params = list(layer.all_params) + self.all_drop = dict(layer.all_drop) + self.all_layers.extend([self.outputs]) + self.all_params.extend(variables) + + +def subsample(inputs, factor, scope=None): + if factor == 1: + return inputs + else: + return tl.layers.MaxPool2d( + inputs, [ + 1, 1], strides=( + factor, factor), name=scope) + + +def conv2d_same( + inputs, + num_outputs, + kernel_size, + strides, + rate=1, + w_init=None, + scope=None, + trainable=None): + ''' + Reference slim resnet + :param inputs: + :param num_outputs: + :param kernel_size: + :param strides: + :param rate: + :param scope: + :return: + ''' + if strides == 1: + if rate == 1: + nets = tl.layers.Conv2d( + inputs, + n_filter=num_outputs, + filter_size=( + kernel_size, + kernel_size), + b_init=None, + strides=( + strides, + strides), + W_init=w_init, + act=None, + padding='SAME', + name=scope, + use_cudnn_on_gpu=True) + nets = BatchNormLayer( + nets, + act=tf.identity, + is_train=True, + trainable=trainable, + name=scope + + '_bn/BatchNorm') + else: + nets = tl.layers.AtrousConv2dLayer( + inputs, + n_filter=num_outputs, + filter_size=( + kernel_size, + kernel_size), + rate=rate, + act=None, + W_init=w_init, + padding='SAME', + name=scope) + nets = BatchNormLayer( + nets, + act=tf.identity, + is_train=True, + trainable=trainable, + name=scope + + '_bn/BatchNorm') + return nets + else: + kernel_size_effective = kernel_size + (kernel_size - 1) * (rate - 1) + pad_total = kernel_size_effective - 1 + pad_beg = pad_total // 2 + pad_end = pad_total - pad_beg + inputs = tl.layers.PadLayer( + inputs, [ + [ + 0, 0], [ + pad_beg, pad_end], [ + pad_beg, pad_end], [ + 0, 0]], name='padding_%s' % + scope) + if rate == 1: + nets = tl.layers.Conv2d( + inputs, + n_filter=num_outputs, + filter_size=( + kernel_size, + kernel_size), + b_init=None, + strides=( + strides, + strides), + W_init=w_init, + act=None, + padding='VALID', + name=scope, + use_cudnn_on_gpu=True) + nets = BatchNormLayer( + nets, + act=tf.identity, + is_train=True, + trainable=trainable, + name=scope + + '_bn/BatchNorm') + else: + nets = tl.layers.AtrousConv2dLayer( + inputs, + n_filter=num_outputs, + filter_size=( + kernel_size, + kernel_size), + b_init=None, + rate=rate, + act=None, + W_init=w_init, + padding='SAME', + name=scope) + nets = BatchNormLayer( + nets, + act=tf.identity, + is_train=True, + trainable=trainable, + name=scope + + '_bn/BatchNorm') + return nets + + +def bottleneck_IR( + inputs, + depth, + depth_bottleneck, + stride, + rate=1, + w_init=None, + scope=None, + trainable=None): + with tf.variable_scope(scope, 'bottleneck_v1') as sc: + depth_in = utils.last_dimension(inputs.outputs.get_shape(), min_rank=4) + if depth == depth_in: + shortcut = subsample(inputs, stride, 'shortcut') + else: + shortcut = tl.layers.Conv2d( + inputs, + depth, + filter_size=( + 1, + 1), + strides=( + stride, + stride), + act=None, + W_init=w_init, + b_init=None, + name='shortcut_conv', + use_cudnn_on_gpu=True) + shortcut = BatchNormLayer( + shortcut, + act=tf.identity, + is_train=True, + trainable=trainable, + name='shortcut_bn/BatchNorm') + # bottleneck layer 1 + residual = BatchNormLayer( + inputs, + act=tf.identity, + is_train=True, + trainable=trainable, + name='conv1_bn1') + residual = tl.layers.Conv2d( + residual, + depth_bottleneck, + filter_size=( + 3, + 3), + strides=( + 1, + 1), + act=None, + b_init=None, + W_init=w_init, + name='conv1', + use_cudnn_on_gpu=True) + residual = BatchNormLayer( + residual, + act=tf.identity, + is_train=True, + trainable=trainable, + name='conv1_bn2') + # bottleneck prelu + residual = tl.layers.PReluLayer(residual) + # bottleneck layer 2 + residual = conv2d_same( + residual, + depth, + kernel_size=3, + strides=stride, + rate=rate, + w_init=w_init, + scope='conv2', + trainable=trainable) + output = ElementwiseLayer(layer=[shortcut, residual], + combine_fn=tf.add, + name='combine_layer', + act=None) + return output + + +def bottleneck_IR_SE( + inputs, + depth, + depth_bottleneck, + stride, + rate=1, + w_init=None, + scope=None, + trainable=None): + with tf.variable_scope(scope, 'bottleneck_v1') as sc: + depth_in = utils.last_dimension(inputs.outputs.get_shape(), min_rank=4) + if depth == depth_in: + shortcut = subsample(inputs, stride, 'shortcut') + else: + shortcut = tl.layers.Conv2d( + inputs, + depth, + filter_size=( + 1, + 1), + strides=( + stride, + stride), + act=None, + W_init=w_init, + b_init=None, + name='shortcut_conv', + use_cudnn_on_gpu=True) + shortcut = BatchNormLayer( + shortcut, + act=tf.identity, + is_train=True, + trainable=trainable, + name='shortcut_bn/BatchNorm') + # bottleneck layer 1 + residual = BatchNormLayer( + inputs, + act=tf.identity, + is_train=True, + trainable=trainable, + name='conv1_bn1') + residual = tl.layers.Conv2d( + residual, + depth_bottleneck, + filter_size=( + 3, + 3), + strides=( + 1, + 1), + act=None, + b_init=None, + W_init=w_init, + name='conv1', + use_cudnn_on_gpu=True) + residual = BatchNormLayer( + residual, + act=tf.identity, + is_train=True, + trainable=trainable, + name='conv1_bn2') + # bottleneck prelu + residual = tl.layers.PReluLayer(residual) + # bottleneck layer 2 + residual = conv2d_same( + residual, + depth, + kernel_size=3, + strides=stride, + rate=rate, + w_init=w_init, + scope='conv2', + trainable=trainable) + # squeeze + squeeze = tl.layers.InputLayer( + tf.reduce_mean( + residual.outputs, axis=[ + 1, 2]), name='squeeze_layer') + # excitation + excitation1 = tl.layers.DenseLayer( + squeeze, + n_units=int( + depth / 16.0), + act=tf.nn.relu, + W_init=w_init, + name='excitation_1') + # excitation1 = tl.layers.PReluLayer(excitation1, name='excitation_prelu') + excitation2 = tl.layers.DenseLayer( + excitation1, + n_units=depth, + act=tf.nn.sigmoid, + W_init=w_init, + name='excitation_2') + # scale + scale = tl.layers.ReshapeLayer( + excitation2, + shape=[ + tf.shape( + excitation2.outputs)[0], + 1, + 1, + depth], + name='excitation_reshape') + + residual_se = ElementwiseLayer(layer=[residual, scale], + combine_fn=tf.multiply, + name='scale_layer', + act=None) + + output = ElementwiseLayer(layer=[shortcut, residual_se], + combine_fn=tf.add, + name='combine_layer', + act=tf.nn.relu) + return output + + +def resnet( + inputs, + bottle_neck, + blocks, + w_init=None, + trainable=None, + reuse=False, + keep_rate=None, + scope=None): + with tf.variable_scope(scope, reuse=reuse): + # inputs = tf.subtract(inputs, 127.5) + # inputs = tf.multiply(inputs, 0.0078125) + net_inputs = tl.layers.InputLayer(inputs, name='input_layer') + if bottle_neck: + net = tl.layers.Conv2d( + net_inputs, + n_filter=64, + filter_size=( + 3, + 3), + strides=( + 1, + 1), + act=None, + W_init=w_init, + b_init=None, + name='conv1', + use_cudnn_on_gpu=True) + net = BatchNormLayer( + net, + act=tf.identity, + name='bn0', + is_train=True, + trainable=trainable) + net = tl.layers.PReluLayer(net, name='prelu0') + else: + raise ValueError( + 'The standard resnet must support the bottleneck layer') + for block in blocks: + with tf.variable_scope(block.scope): + for i, var in enumerate(block.args): + with tf.variable_scope('unit_%d' % (i + 1)): + net = block.unit_fn( + net, + depth=var['depth'], + depth_bottleneck=var['depth_bottleneck'], + w_init=w_init, + stride=var['stride'], + rate=var['rate'], + scope=None, + trainable=trainable) + net = BatchNormLayer( + net, + act=tf.identity, + is_train=True, + name='E_BN1', + trainable=trainable) + # net = tl.layers.DropoutLayer(net, keep=0.4, name='E_Dropout') + net.outputs = tf.nn.dropout( + net.outputs, + keep_prob=keep_rate, + name='E_Dropout') + net_shape = net.outputs.get_shape() + net = tl.layers.ReshapeLayer( + net, shape=[-1, net_shape[1] * net_shape[2] * net_shape[3]], name='E_Reshapelayer') + net = tl.layers.DenseLayer( + net, + n_units=512, + W_init=w_init, + name='E_DenseLayer') + net = BatchNormLayer( + net, + act=tf.identity, + is_train=True, + fix_gamma=False, + trainable=trainable, + name='E_BN2') + return net + + +class Block(collections.namedtuple('Block', ['scope', 'unit_fn', 'args'])): + """A named tuple describing a ResNet block. + + Its parts are: + scope: The scope of the `Block`. + unit_fn: The ResNet unit function which takes as input a `Tensor` and + returns another `Tensor` with the output of the ResNet unit. + args: A list of length equal to the number of units in the `Block`. The list + contains one (depth, depth_bottleneck, stride) tuple for each unit in the + block to serve as argument to unit_fn. + """ + + +def resnetse_v1_block( + scope, + base_depth, + num_units, + stride, + rate=1, + unit_fn=None): + """Helper function for creating a resnet_v1 bottleneck block. + + Args: + scope: The scope of the block. + base_depth: The depth of the bottleneck layer for each unit. + num_units: The number of units in the block. + stride: The stride of the block, implemented as a stride in the last unit. + All other units have stride=1. + + Returns: + A resnet_v1 bottleneck block. + """ + return Block(scope, unit_fn, [{ + 'depth': base_depth, + 'depth_bottleneck': base_depth, + 'stride': stride, + 'rate': rate + }] + [{ + 'depth': base_depth, + 'depth_bottleneck': base_depth, + 'stride': 1, + 'rate': rate + }] * (num_units - 1)) + + +def get_resnet( + inputs, + num_layers, + type=None, + w_init=None, + trainable=None, + sess=None, + reuse=False, + keep_rate=None): + if type == 'ir': + unit_fn = bottleneck_IR + elif type == 'se_ir': + unit_fn = bottleneck_IR_SE + else: + raise ValueError('the input fn is unknown') + + if num_layers == 50: + blocks = [ + resnetse_v1_block( + 'block1', + base_depth=64, + num_units=3, + stride=2, + rate=1, + unit_fn=unit_fn), + resnetse_v1_block( + 'block2', + base_depth=128, + num_units=4, + stride=2, + rate=1, + unit_fn=unit_fn), + resnetse_v1_block( + 'block3', + base_depth=256, + num_units=14, + stride=2, + rate=1, + unit_fn=unit_fn), + resnetse_v1_block( + 'block4', + base_depth=512, + num_units=3, + stride=2, + rate=1, + unit_fn=unit_fn)] + elif num_layers == 100: + blocks = [ + resnetse_v1_block( + 'block1', + base_depth=64, + num_units=3, + stride=2, + rate=1, + unit_fn=unit_fn), + resnetse_v1_block( + 'block2', + base_depth=128, + num_units=13, + stride=2, + rate=1, + unit_fn=unit_fn), + resnetse_v1_block( + 'block3', + base_depth=256, + num_units=30, + stride=2, + rate=1, + unit_fn=unit_fn), + resnetse_v1_block( + 'block4', + base_depth=512, + num_units=3, + stride=2, + rate=1, + unit_fn=unit_fn)] + elif num_layers == 152: + blocks = [ + resnetse_v1_block( + 'block1', + base_depth=64, + num_units=3, + stride=2, + rate=1, + unit_fn=unit_fn), + resnetse_v1_block( + 'block2', + base_depth=128, + num_units=8, + stride=2, + rate=1, + unit_fn=unit_fn), + resnetse_v1_block( + 'block3', + base_depth=256, + num_units=36, + stride=2, + rate=1, + unit_fn=unit_fn), + resnetse_v1_block( + 'block4', + base_depth=512, + num_units=3, + stride=2, + rate=1, + unit_fn=unit_fn)] + else: + raise ValueError('Resnet layer %d is not supported now.' % num_layers) + net = resnet(inputs=inputs, + bottle_neck=True, + blocks=blocks, + w_init=w_init, + trainable=trainable, + reuse=reuse, + keep_rate=keep_rate, + scope='resnet_v1_%d' % num_layers) + return net + + +if __name__ == '__main__': + x = tf.placeholder( + dtype=tf.float32, + shape=[ + None, + 112, + 112, + 3], + name='input_place') + sess = tf.Session() + # w_init = tf.truncated_normal_initializer(mean=10, stddev=5e-2) + w_init = tf.contrib.layers.xavier_initializer(uniform=False) + # test resnetse + nets = get_resnet(x, 50, type='ir', w_init=w_init, sess=sess) + tl.layers.initialize_global_variables(sess) + + for p in tl.layers.get_variables_with_name('W_conv2d', True, True): + print(p.op.name) + # print('##############'*30) + with sess: + nets.print_params() diff --git a/src/__init__.py b/facenet_sandberg/models/__init__.py similarity index 100% rename from src/__init__.py rename to facenet_sandberg/models/__init__.py diff --git a/facenet_sandberg/models/convert_to_keras.py b/facenet_sandberg/models/convert_to_keras.py new file mode 100644 index 000000000..950cb4b35 --- /dev/null +++ b/facenet_sandberg/models/convert_to_keras.py @@ -0,0 +1,120 @@ +import argparse +import os +import re +import sys + +import numpy as np +import tensorflow as tf +from facenet_sandberg.models.keras_inception_resnet_v1 import * + +re_repeat = re.compile(r'Repeat_[0-9_]*b') +re_block8 = re.compile(r'Block8_[A-Za-z]') + + +def main(tf_ckpt_path, output_base_path, output_model_name): + weights_filename = output_model_name + '_weights.h5' + model_filename = output_model_name + '.h5' + + npy_weights_dir, weights_dir, model_dir = create_output_directories( + output_base_path) + + extract_tensors_from_checkpoint_file(tf_ckpt_path, npy_weights_dir) + model = InceptionResNetV1() + + print('Loading numpy weights from', npy_weights_dir) + for layer in model.layers: + if layer.weights: + weights = [] + for w in layer.weights: + weight_name = os.path.basename(w.name).replace(':0', '') + weight_file = layer.name + '_' + weight_name + '.npy' + weight_arr = np.load( + os.path.join( + npy_weights_dir, + weight_file)) + weights.append(weight_arr) + layer.set_weights(weights) + + print('Saving weights...') + model.save_weights(os.path.join(weights_dir, weights_filename)) + print('Saving model...') + model.save(os.path.join(model_dir, model_filename)) + + +def create_output_directories(output_base_path): + npy_weights_dir = os.path.join(output_base_path, 'npy_weights') + weights_dir = os.path.join(output_base_path, 'weights') + model_dir = os.path.join(output_base_path, 'model') + os.makedirs(npy_weights_dir, exist_ok=True) + os.makedirs(weights_dir, exist_ok=True) + os.makedirs(model_dir, exist_ok=True) + return npy_weights_dir, weights_dir, model_dir + + +def get_filename(key): + filename = str(key) + filename = filename.replace('/', '_') + filename = filename.replace('InceptionResnetV1_', '') + + # remove "Repeat" scope from filename + filename = re_repeat.sub('B', filename) + + if re_block8.match(filename): + # the last block8 has different name with the previous 5 occurrences + filename = filename.replace('Block8', 'Block8_6') + + # from TF to Keras naming + filename = filename.replace('_weights', '_kernel') + filename = filename.replace('_biases', '_bias') + + return filename + '.npy' + + +def extract_tensors_from_checkpoint_file(filename, output_folder): + reader = tf.train.NewCheckpointReader(filename) + + for key in reader.get_variable_to_shape_map(): + # not saving the following tensors + if key == 'global_step': + continue + if 'AuxLogit' in key: + continue + + # convert tensor name into the corresponding Keras layer weight name + # and save + path = os.path.join(output_folder, get_filename(key)) + arr = reader.get_tensor(key) + np.save(path, arr) + + +def parse_arguments(argv): + """Argument parser + """ + + parser = argparse.ArgumentParser() + + parser.add_argument( + 'tf_ckpt_path', + type=str, + help='Path to the directory containing pretrained tensorflow checkpoints.') + + parser.add_argument( + 'output_base_path', + type=str, + help='Base path for the desired output directory.') + + parser.add_argument( + 'output_model_name', + type=str, + help='Name for the new model (do not include .h5)') + + return parser.parse_args(argv) + + +if __name__ == '__main__': + args = parse_arguments(sys.argv[1:]) + if args: + main( + args.tf_ckpt_path, + args.output_base_path, + args.output_model_name) diff --git a/src/download_and_extract.py b/facenet_sandberg/models/download_and_extract.py similarity index 67% rename from src/download_and_extract.py rename to facenet_sandberg/models/download_and_extract.py index a835ac284..cd2998b22 100644 --- a/src/download_and_extract.py +++ b/facenet_sandberg/models/download_and_extract.py @@ -1,14 +1,16 @@ -import requests -import zipfile import os +import zipfile + +import requests model_dict = { - 'lfw-subset': '1B5BQUZuJO-paxdN8UclxeHAR1WnR_Tzi', + 'lfw-subset': '1B5BQUZuJO-paxdN8UclxeHAR1WnR_Tzi', '20170131-234652': '0B5MzpY9kBtDVSGM0RmVET2EwVEk', '20170216-091149': '0B5MzpY9kBtDVTGZjcWkzT3pldDA', '20170512-110547': '0B5MzpY9kBtDVZ2RpVDYwWmxoSUk', '20180402-114759': '1EXPBSXwTaqrSC0OhUdXNmKSh9qJUQ55-' - } +} + def download_and_extract_file(model_name, data_dir): file_id = model_dict[model_name] @@ -20,20 +22,22 @@ def download_and_extract_file(model_name, data_dir): print('Extracting file to %s' % data_dir) zip_ref.extractall(data_dir) + def download_file_from_google_drive(file_id, destination): - - URL = "https://drive.google.com/uc?export=download" - - session = requests.Session() - - response = session.get(URL, params = { 'id' : file_id }, stream = True) - token = get_confirm_token(response) - - if token: - params = { 'id' : file_id, 'confirm' : token } - response = session.get(URL, params = params, stream = True) - - save_response_content(response, destination) + + URL = "https://drive.google.com/uc?export=download" + + session = requests.Session() + + response = session.get(URL, params={'id': file_id}, stream=True) + token = get_confirm_token(response) + + if token: + params = {'id': file_id, 'confirm': token} + response = session.get(URL, params=params, stream=True) + + save_response_content(response, destination) + def get_confirm_token(response): for key, value in response.cookies.items(): @@ -42,10 +46,11 @@ def get_confirm_token(response): return None + def save_response_content(response, destination): CHUNK_SIZE = 32768 with open(destination, "wb") as f: for chunk in response.iter_content(CHUNK_SIZE): - if chunk: # filter out keep-alive new chunks + if chunk: # filter out keep-alive new chunks f.write(chunk) diff --git a/src/models/dummy.py b/facenet_sandberg/models/dummy.py similarity index 100% rename from src/models/dummy.py rename to facenet_sandberg/models/dummy.py diff --git a/src/freeze_graph.py b/facenet_sandberg/models/freeze_graph.py similarity index 77% rename from src/freeze_graph.py rename to facenet_sandberg/models/freeze_graph.py index 3584c186e..eb8ceb4ea 100644 --- a/src/freeze_graph.py +++ b/facenet_sandberg/models/freeze_graph.py @@ -2,19 +2,19 @@ and exports the model as a graphdef protobuf """ # MIT License -# +# # Copyright (c) 2016 David Sandberg -# +# # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: -# +# # The above copyright notice and this permission notice shall be included in all # copies or substantial portions of the Software. -# +# # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE @@ -23,45 +23,55 @@ # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE # SOFTWARE. -from __future__ import absolute_import -from __future__ import division -from __future__ import print_function +from __future__ import absolute_import, division, print_function -from tensorflow.python.framework import graph_util -import tensorflow as tf import argparse import os import sys -import facenet + +import tensorflow as tf +from facenet_sandberg import facenet from six.moves import xrange # @UnresolvedImport +from tensorflow.python.framework import graph_util + def main(args): with tf.Graph().as_default(): with tf.Session() as sess: # Load the model metagraph and checkpoint print('Model directory: %s' % args.model_dir) - meta_file, ckpt_file = facenet.get_model_filenames(os.path.expanduser(args.model_dir)) - + meta_file, ckpt_file = facenet.get_model_filenames( + os.path.expanduser(args.model_dir)) + print('Metagraph file: %s' % meta_file) print('Checkpoint file: %s' % ckpt_file) model_dir_exp = os.path.expanduser(args.model_dir) - saver = tf.train.import_meta_graph(os.path.join(model_dir_exp, meta_file), clear_devices=True) + saver = tf.train.import_meta_graph(os.path.join( + model_dir_exp, meta_file), clear_devices=True) tf.get_default_session().run(tf.global_variables_initializer()) tf.get_default_session().run(tf.local_variables_initializer()) - saver.restore(tf.get_default_session(), os.path.join(model_dir_exp, ckpt_file)) - - # Retrieve the protobuf graph definition and fix the batch norm nodes + saver.restore( + tf.get_default_session(), + os.path.join( + model_dir_exp, + ckpt_file)) + + # Retrieve the protobuf graph definition and fix the batch norm + # nodes input_graph_def = sess.graph.as_graph_def() - + # Freeze the graph def - output_graph_def = freeze_graph_def(sess, input_graph_def, 'embeddings,label_batch') + output_graph_def = freeze_graph_def( + sess, input_graph_def, 'embeddings,label_batch') # Serialize and dump the output graph to the filesystem with tf.gfile.GFile(args.output_file, 'wb') as f: f.write(output_graph_def.SerializeToString()) - print("%d ops in the final graph: %s" % (len(output_graph_def.node), args.output_file)) - + print("%d ops in the final graph: %s" % + (len(output_graph_def.node), args.output_file)) + + def freeze_graph_def(sess, input_graph_def, output_node_names): for node in input_graph_def.node: if node.op == 'RefSwitch': @@ -71,15 +81,17 @@ def freeze_graph_def(sess, input_graph_def, output_node_names): node.input[index] = node.input[index] + '/read' elif node.op == 'AssignSub': node.op = 'Sub' - if 'use_locking' in node.attr: del node.attr['use_locking'] + if 'use_locking' in node.attr: + del node.attr['use_locking'] elif node.op == 'AssignAdd': node.op = 'Add' - if 'use_locking' in node.attr: del node.attr['use_locking'] - + if 'use_locking' in node.attr: + del node.attr['use_locking'] + # Get the list of important nodes whitelist_names = [] for node in input_graph_def.node: - if (node.name.startswith('InceptionResnet') or node.name.startswith('embeddings') or + if (node.name.startswith('InceptionResnet') or node.name.startswith('embeddings') or node.name.startswith('image_batch') or node.name.startswith('label_batch') or node.name.startswith('phase_train') or node.name.startswith('Logits')): whitelist_names.append(node.name) @@ -89,15 +101,21 @@ def freeze_graph_def(sess, input_graph_def, output_node_names): sess, input_graph_def, output_node_names.split(","), variable_names_whitelist=whitelist_names) return output_graph_def - + + def parse_arguments(argv): parser = argparse.ArgumentParser() - - parser.add_argument('model_dir', type=str, + + parser.add_argument( + 'model_dir', + type=str, help='Directory containing the metagraph (.meta) file and the checkpoint (ckpt) file containing model parameters') - parser.add_argument('output_file', type=str, + parser.add_argument( + 'output_file', + type=str, help='Filename for the exported graphdef protobuf (.pb)') return parser.parse_args(argv) + if __name__ == '__main__': main(parse_arguments(sys.argv[1:])) diff --git a/src/models/inception_resnet_v1.py b/facenet_sandberg/models/inception_resnet_v1.py similarity index 100% rename from src/models/inception_resnet_v1.py rename to facenet_sandberg/models/inception_resnet_v1.py diff --git a/src/models/inception_resnet_v2.py b/facenet_sandberg/models/inception_resnet_v2.py similarity index 100% rename from src/models/inception_resnet_v2.py rename to facenet_sandberg/models/inception_resnet_v2.py diff --git a/facenet_sandberg/models/keras_inception_resnet_v1.py b/facenet_sandberg/models/keras_inception_resnet_v1.py new file mode 100644 index 000000000..9235ef0a8 --- /dev/null +++ b/facenet_sandberg/models/keras_inception_resnet_v1.py @@ -0,0 +1,227 @@ +"""Inception-ResNet V1 model for Keras. +# Reference +http://arxiv.org/abs/1602.07261 +https://github.com/davidsandberg/facenet/blob/master/src/models/inception_resnet_v1.py +https://github.com/myutwo150/keras-inception-resnet-v2/blob/master/inception_resnet_v2.py +""" +from functools import partial + +from keras.models import Model +from keras.layers import Activation +from keras.layers import BatchNormalization +from keras.layers import Concatenate +from keras.layers import Conv2D +from keras.layers import Dense +from keras.layers import Dropout +from keras.layers import GlobalAveragePooling2D +from keras.layers import Input +from keras.layers import Lambda +from keras.layers import MaxPooling2D +from keras.layers import add +from keras import backend as K + + +def scaling(x, scale): + return x * scale + + +def conv2d_bn(x, + filters, + kernel_size, + strides=1, + padding='same', + activation='relu', + use_bias=False, + name=None): + x = Conv2D(filters, + kernel_size, + strides=strides, + padding=padding, + use_bias=use_bias, + name=name)(x) + if not use_bias: + bn_axis = 1 if K.image_data_format() == 'channels_first' else 3 + bn_name = _generate_layer_name('BatchNorm', prefix=name) + x = BatchNormalization(axis=bn_axis, momentum=0.995, epsilon=0.001, + scale=False, name=bn_name)(x) + if activation is not None: + ac_name = _generate_layer_name('Activation', prefix=name) + x = Activation(activation, name=ac_name)(x) + return x + + +def _generate_layer_name(name, branch_idx=None, prefix=None): + if prefix is None: + return None + if branch_idx is None: + return '_'.join((prefix, name)) + return '_'.join((prefix, 'Branch', str(branch_idx), name)) + + +def _inception_resnet_block(x, scale, block_type, block_idx, activation='relu'): + channel_axis = 1 if K.image_data_format() == 'channels_first' else 3 + if block_idx is None: + prefix = None + else: + prefix = '_'.join((block_type, str(block_idx))) + name_fmt = partial(_generate_layer_name, prefix=prefix) + + if block_type == 'Block35': + branch_0 = conv2d_bn(x, 32, 1, name=name_fmt('Conv2d_1x1', 0)) + branch_1 = conv2d_bn(x, 32, 1, name=name_fmt('Conv2d_0a_1x1', 1)) + branch_1 = conv2d_bn( + branch_1, 32, 3, name=name_fmt('Conv2d_0b_3x3', 1)) + branch_2 = conv2d_bn(x, 32, 1, name=name_fmt('Conv2d_0a_1x1', 2)) + branch_2 = conv2d_bn( + branch_2, 32, 3, name=name_fmt('Conv2d_0b_3x3', 2)) + branch_2 = conv2d_bn( + branch_2, 32, 3, name=name_fmt('Conv2d_0c_3x3', 2)) + branches = [branch_0, branch_1, branch_2] + elif block_type == 'Block17': + branch_0 = conv2d_bn(x, 128, 1, name=name_fmt('Conv2d_1x1', 0)) + branch_1 = conv2d_bn(x, 128, 1, name=name_fmt('Conv2d_0a_1x1', 1)) + branch_1 = conv2d_bn( + branch_1, 128, [1, 7], name=name_fmt('Conv2d_0b_1x7', 1)) + branch_1 = conv2d_bn( + branch_1, 128, [7, 1], name=name_fmt('Conv2d_0c_7x1', 1)) + branches = [branch_0, branch_1] + elif block_type == 'Block8': + branch_0 = conv2d_bn(x, 192, 1, name=name_fmt('Conv2d_1x1', 0)) + branch_1 = conv2d_bn(x, 192, 1, name=name_fmt('Conv2d_0a_1x1', 1)) + branch_1 = conv2d_bn( + branch_1, 192, [1, 3], name=name_fmt('Conv2d_0b_1x3', 1)) + branch_1 = conv2d_bn( + branch_1, 192, [3, 1], name=name_fmt('Conv2d_0c_3x1', 1)) + branches = [branch_0, branch_1] + else: + raise ValueError('Unknown Inception-ResNet block type. ' + 'Expects "Block35", "Block17" or "Block8", ' + 'but got: ' + str(block_type)) + + mixed = Concatenate(axis=channel_axis, + name=name_fmt('Concatenate'))(branches) + up = conv2d_bn(mixed, + K.int_shape(x)[channel_axis], + 1, + activation=None, + use_bias=True, + name=name_fmt('Conv2d_1x1')) + up = Lambda(scaling, + output_shape=K.int_shape(up)[1:], + arguments={'scale': scale})(up) + x = add([x, up]) + if activation is not None: + x = Activation(activation, name=name_fmt('Activation'))(x) + return x + + +def InceptionResNetV1(input_shape=(160, 160, 3), + classes=128, + dropout_keep_prob=0.8, + weights_path=None): + inputs = Input(shape=input_shape) + x = conv2d_bn(inputs, 32, 3, strides=2, + padding='valid', name='Conv2d_1a_3x3') + x = conv2d_bn(x, 32, 3, padding='valid', name='Conv2d_2a_3x3') + x = conv2d_bn(x, 64, 3, name='Conv2d_2b_3x3') + x = MaxPooling2D(3, strides=2, name='MaxPool_3a_3x3')(x) + x = conv2d_bn(x, 80, 1, padding='valid', name='Conv2d_3b_1x1') + x = conv2d_bn(x, 192, 3, padding='valid', name='Conv2d_4a_3x3') + x = conv2d_bn(x, 256, 3, strides=2, padding='valid', name='Conv2d_4b_3x3') + + # 5x Block35 (Inception-ResNet-A block): + for block_idx in range(1, 6): + x = _inception_resnet_block(x, + scale=0.17, + block_type='Block35', + block_idx=block_idx) + + # Mixed 6a (Reduction-A block): + channel_axis = 1 if K.image_data_format() == 'channels_first' else 3 + name_fmt = partial(_generate_layer_name, prefix='Mixed_6a') + branch_0 = conv2d_bn(x, + 384, + 3, + strides=2, + padding='valid', + name=name_fmt('Conv2d_1a_3x3', 0)) + branch_1 = conv2d_bn(x, 192, 1, name=name_fmt('Conv2d_0a_1x1', 1)) + branch_1 = conv2d_bn(branch_1, 192, 3, name=name_fmt('Conv2d_0b_3x3', 1)) + branch_1 = conv2d_bn(branch_1, + 256, + 3, + strides=2, + padding='valid', + name=name_fmt('Conv2d_1a_3x3', 1)) + branch_pool = MaxPooling2D(3, + strides=2, + padding='valid', + name=name_fmt('MaxPool_1a_3x3', 2))(x) + branches = [branch_0, branch_1, branch_pool] + x = Concatenate(axis=channel_axis, name='Mixed_6a')(branches) + + # 10x Block17 (Inception-ResNet-B block): + for block_idx in range(1, 11): + x = _inception_resnet_block(x, + scale=0.1, + block_type='Block17', + block_idx=block_idx) + + # Mixed 7a (Reduction-B block): 8 x 8 x 2080 + name_fmt = partial(_generate_layer_name, prefix='Mixed_7a') + branch_0 = conv2d_bn(x, 256, 1, name=name_fmt('Conv2d_0a_1x1', 0)) + branch_0 = conv2d_bn(branch_0, + 384, + 3, + strides=2, + padding='valid', + name=name_fmt('Conv2d_1a_3x3', 0)) + branch_1 = conv2d_bn(x, 256, 1, name=name_fmt('Conv2d_0a_1x1', 1)) + branch_1 = conv2d_bn(branch_1, + 256, + 3, + strides=2, + padding='valid', + name=name_fmt('Conv2d_1a_3x3', 1)) + branch_2 = conv2d_bn(x, 256, 1, name=name_fmt('Conv2d_0a_1x1', 2)) + branch_2 = conv2d_bn(branch_2, 256, 3, name=name_fmt('Conv2d_0b_3x3', 2)) + branch_2 = conv2d_bn(branch_2, + 256, + 3, + strides=2, + padding='valid', + name=name_fmt('Conv2d_1a_3x3', 2)) + branch_pool = MaxPooling2D(3, + strides=2, + padding='valid', + name=name_fmt('MaxPool_1a_3x3', 3))(x) + branches = [branch_0, branch_1, branch_2, branch_pool] + x = Concatenate(axis=channel_axis, name='Mixed_7a')(branches) + + # 5x Block8 (Inception-ResNet-C block): + for block_idx in range(1, 6): + x = _inception_resnet_block(x, + scale=0.2, + block_type='Block8', + block_idx=block_idx) + x = _inception_resnet_block(x, + scale=1., + activation=None, + block_type='Block8', + block_idx=6) + + # Classification block + x = GlobalAveragePooling2D(name='AvgPool')(x) + x = Dropout(1.0 - dropout_keep_prob, name='Dropout')(x) + # Bottleneck + x = Dense(classes, use_bias=False, name='Bottleneck')(x) + bn_name = _generate_layer_name('BatchNorm', prefix='Bottleneck') + x = BatchNormalization(momentum=0.995, epsilon=0.001, scale=False, + name=bn_name)(x) + + # Create model + model = Model(inputs, x, name='inception_resnet_v1') + if weights_path is not None: + model.load_weights(weights_path) + + return model diff --git a/src/models/squeezenet.py b/facenet_sandberg/models/squeezenet.py similarity index 100% rename from src/models/squeezenet.py rename to facenet_sandberg/models/squeezenet.py diff --git a/facenet_sandberg/readme.md b/facenet_sandberg/readme.md new file mode 100644 index 000000000..b78b96709 --- /dev/null +++ b/facenet_sandberg/readme.md @@ -0,0 +1,46 @@ +# Usage + +## Image directory structure + +This repo assumes images are in [LFW format](http://vis-www.cs.umass.edu/lfw/README.txt): + +```bash +-/base_images_folder + -/person_1 + -person_1_0001.jpg + -person_1_0002.jpg + -person_1_0003.jpg + -/person_2 + -person_2_0001.jpg + -person_2_0002.jpg + ... +``` + +If your dataset is not like this you can use [lfw.py](https://github.com/armanrahman22/facenet/blob/master/facenet_sandberg/lfw.py) to put your images into the right format like so (from facenet_sandberg/facenet_sandberg): + +```bash +python lfw.py --image_directory PATH_TO_YOUR_BASE_IMAGE_DIRECTORY +``` + +## Alignment + +Alignment is done with a combination of Faceboxes and MTCNN. While Faceboxes is more accurate and works with more images than MTCNN, it does not return [facial landmarks](https://raw.githubusercontent.com/ipazc/mtcnn/master/result.jpg). Whichever algorithm returns more results is used. + +Use the [align_dataset.py](https://github.com/armanrahman22/facenet/blob/master/facenet_sandberg/align_dataset.py) script to align an entire image directory: + +```bash +python align_dataset.py --config_file PATH_TO_YOUR_CONFIG_FILE +``` + +* You can either alter the default config files provided in facenet_config.json and insightface_config.json or create your own following the same format + +## Generate Pairs.txt + +A pairs.txt file is used in training and testing. It follows this [format](http://vis-www.cs.umass.edu/lfw/README.txt). In order to generate your own pairs.txt run: + +```bash +python align_dataset.py --image_dir PATH_TO_YOUR_BASE_IMAGE_DIRECTORY \ + --pairs_file_name OUTPUT_NAME_OF_PAIRS_FILE \ + --num_folds NUMBER_OF_FOLDS_FOR_CROSS_VALIDATION \ + --num_matches_mismatches NUMBER_OF_MATCHES_AND_MISMATCHES +``` \ No newline at end of file diff --git a/facenet_sandberg/train_facenet/train_softmax.py b/facenet_sandberg/train_facenet/train_softmax.py new file mode 100644 index 000000000..e982a431b --- /dev/null +++ b/facenet_sandberg/train_facenet/train_softmax.py @@ -0,0 +1,818 @@ +"""Training a face recognizer with TensorFlow using softmax cross entropy loss +""" +# MIT License +# +# Copyright (c) 2016 David Sandberg +# +# Permission is hereby granted, free of charge, to any person obtaining a copy +# of this software and associated documentation files (the "Software"), to deal +# in the Software without restriction, including without limitation the rights +# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell +# copies of the Software, and to permit persons to whom the Software is +# furnished to do so, subject to the following conditions: +# +# The above copyright notice and this permission notice shall be included in all +# copies or substantial portions of the Software. +# +# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR +# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, +# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE +# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER +# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, +# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE +# SOFTWARE. + +from __future__ import absolute_import, division, print_function + +import argparse +import importlib +import math +import os.path +import random +import sys +import time +from datetime import datetime + +import h5py +import numpy as np +import tensorflow as tf +import tensorflow.contrib.slim as slim +from facenet_sandberg import facenet, lfw +from tensorflow.python.framework import ops +from tensorflow.python.ops import array_ops, data_flow_ops + +# parser.add_argument( +# '--optimizer', +# type=str, +# choices=[ +# 'ADAGRAD', +# 'ADADELTA', +# 'ADAM', +# 'RMSPROP', +# 'MOM'], +# help='The optimization algorithm to use', +# default='ADAGRAD') + + +def main( + pretrained_model: str, + logs_base_dir: str='~/logs/facenet', + models_base_dir: str ='~/models/facenet', + gpu_memory_fraction: float=1.0, + data_dir: str='~/datasets/casia/casia_maxpy_mtcnnalign_182_160', + model_def: str='models.inception_resnet_v1', + max_nrof_epochs: int=500, + batch_size: int=100, + image_size: int=160, + epoch_size: int=1000, + embedding_size: int=128, + random_crop: bool=False, + random_flip: bool=False, + random_rotate: bool=False, + use_fixed_image_standardization: bool=False, + keep_probability: float=1.0, + weight_decay: float=0.0, + center_loss_factor: float=0.0, + center_loss_alfa: float=0.95, + prelogits_norm_loss_factor: float=0.0, + prelogits_norm_p: float=1.0, + prelogits_hist_max: float=10.0, + optimizer: str='ADAGRAD', + learning_rate: float=0.1, + learning_rate_decay_epochs: int=100, + learning_rate_decay_factor: float=1.0, + moving_average_decay: float=0.9999, + seed: int=666, + nrof_preprocess_threads: int=4, + log_histograms: bool=False, + learning_rate_schedule_file: str='data/learning_rate_schedule.txt', + filter_filename: str='', + filter_percentile: float=100.0, + filter_min_nrof_images_per_class: int=0, + validate_every_n_epochs: int=5, + validation_set_split_ratio: float=0.0, + min_nrof_val_images_per_class: int=0, + lfw_pairs: str='data/pairs.txt', + lfw_dir: str='', + lfw_batch_size: int=100, + lfw_nrof_folds: int=10, + lfw_distance_metric: int=0, + lfw_use_flipped_images: bool=False, + lfw_subtract_mean: bool=False): + """Train with softmax + + Arguments: + pretrained_model {str} -- Load a pretrained model before training starts. + + Keyword Arguments: + logs_base_dir {str} -- Directory where to write event logs. (default: {'~/logs/facenet'}) + models_base_dir {str} -- Directory where to write trained models and checkpoints. (default: {'~/models/facenet'}) + gpu_memory_fraction {float} -- Upper bound on the amount of GPU memory that will be used by the process. (default: {1.0}) + data_dir {str} -- Path to the data directory containing aligned face patches. (default: {'~/datasets/casia/casia_maxpy_mtcnnalign_182_160'}) + model_def {str} -- Model definition. Points to a module containing the definition of the inference graph. (default: {'models.inception_resnet_v1'}) + max_nrof_epochs {int} -- Number of epochs to run. (default: {500}) + batch_size {int} -- Number of images to process in a batch. (default: {100}) + image_size {int} -- Image size (height, width) in pixels. (default: {160}) + epoch_size {int} -- Number of batches per epoch. (default: {1000}) + embedding_size {int} -- Dimensionality of the embedding. (default: {128}) + random_crop {bool} -- Performs random cropping of training images. If false, the center image_size pixels from the training images are used. If the size of the images in the data directory is equal to image_size no cropping is performed (default: {False}) + random_flip {bool} -- Performs random horizontal flipping of training images. (default: {False}) + random_rotate {bool} -- Performs random rotations of training images. (default: {False}) + use_fixed_image_standardization {bool} -- Performs fixed standardization of images. (default: {False}) + keep_probability {float} -- Keep probability of dropout for the fully connected layer(s). (default: {1.0}) + weight_decay {float} -- L2 weight regularization. (default: {0.0}) + center_loss_factor {float} -- Center loss factor. (default: {0.0}) + center_loss_alfa {float} -- Center update rate for center loss. (default: {0.95}) + prelogits_norm_loss_factor {float} -- Loss based on the norm of the activations in the prelogits layer. (default: {0.0}) + prelogits_norm_p {float} -- Norm to use for prelogits norm loss. (default: {1.0}) + prelogits_hist_max {float} -- The max value for the prelogits histogram. (default: {10.0}) + optimizer {str} -- The optimization algorithm to use (default: {'ADAGRAD'}) + learning_rate {float} -- Initial learning rate. If set to a negative value a learning rate schedule can be specified in the file "learning_rate_schedule.txt" (default: {0.1}) + learning_rate_decay_epochs {int} -- Number of epochs between learning rate decay. (default: {100}) + learning_rate_decay_factor {float} -- Learning rate decay factor. (default: {1.0}) + moving_average_decay {float} -- Exponential decay for tracking of training parameters. (default: {0.9999}) + seed {int} -- Random seed. (default: {666}) + nrof_preprocess_threads {int} -- Number of preprocessing (data loading and augmentation) threads. (default: {4}) + log_histograms {bool} -- Enables logging of weight/bias histograms in tensorboard. (default: {False}) + learning_rate_schedule_file {str} -- File containing the learning rate schedule that is used when learning_rate is set to to -1. (default: {'data/learning_rate_schedule.txt'}) + filter_filename {str} -- File containing image data used for dataset filtering (default: {''}) + filter_percentile {float} -- Keep only the percentile images closed to its class center (default: {100.0}) + filter_min_nrof_images_per_class {int} -- Keep only the classes with this number of examples or more (default: {0}) + validate_every_n_epochs {int} -- Number of epoch between validation (default: {5}) + validation_set_split_ratio {float} -- The ratio of the total dataset to use for validation (default: {0.0}) + min_nrof_val_images_per_class {int} -- Classes with fewer images will be removed from the validation set (default: {0}) + lfw_pairs {str} -- The file containing the pairs to use for validation. (default: {'data/pairs.txt'}) + lfw_dir {str} -- Path to the data directory containing aligned face patches. (default: {''}) + lfw_batch_size {int} -- Number of images to process in a batch in the LFW test set. (default: {100}) + lfw_nrof_folds {int} -- Number of folds to use for cross validation. Mainly used for testing. (default: {10}) + lfw_distance_metric {int} -- Type of distance metric to use. 0: Euclidian, 1:Cosine similarity distance. (default: {0}) + lfw_use_flipped_images {bool} -- Concatenates embeddings for the image and its horizontally flipped counterpart. (default: {False}) + lfw_subtract_mean {bool} -- Subtract feature mean before calculating distance. (default: {False}) + + Returns: + [type] -- [description] + """ + + network = importlib.import_module(model_def) + image_size = (image_size, image_size) + + subdir = datetime.strftime(datetime.now(), '%Y%m%d-%H%M%S') + log_dir = os.path.join(os.path.expanduser(logs_base_dir), subdir) + os.makedirs(log_dir, exist_ok=True) + model_dir = os.path.join(os.path.expanduser(models_base_dir), subdir) + os.makedirs(model_dir, exist_ok=True) + + stat_file_name = os.path.join(log_dir, 'stat.h5') + + # Write arguments to a text file + # facenet.write_arguments_to_file( + # args, os.path.join(log_dir, 'arguments.txt')) + + # Store some git revision info in a text file in the log directory + # src_path, _ = os.path.split(os.path.realpath(__file__)) + # facenet.store_revision_info(src_path, log_dir, ' '.join(sys.argv)) + + np.random.seed(seed=seed) + random.seed(seed) + dataset = facenet.get_dataset(data_dir) + if filter_filename: + dataset = filter_dataset( + dataset, + os.path.expanduser( + filter_filename), + filter_percentile, + filter_min_nrof_images_per_class) + + if validation_set_split_ratio > 0.0: + train_set, val_set = facenet.split_dataset( + dataset, validation_set_split_ratio, min_nrof_val_images_per_class, 'SPLIT_IMAGES') + else: + train_set, val_set = dataset, [] + image_list, label_list = facenet.get_image_paths_and_labels(train_set) + val_image_list, val_label_list = facenet.get_image_paths_and_labels( + val_set) + assert len(image_list) > 0, 'The training set should not be empty' + + nrof_classes = len(train_set) + + print('Model directory: %s' % model_dir) + print('Log directory: %s' % log_dir) + pretrained_model = None + if pretrained_model: + pretrained_model = os.path.expanduser(pretrained_model) + print('Pre-trained model: %s' % pretrained_model) + + if lfw_dir: + print('LFW directory: %s' % lfw_dir) + # Read the file containing the pairs used for testing + pairs = lfw.read_pairs(os.path.expanduser(lfw_pairs)) + # Get the paths for the corresponding images + lfw_paths, lfw_labels = lfw.get_paths( + os.path.expanduser(lfw_dir), pairs) + + with tf.Graph().as_default(): + tf.set_random_seed(seed) + global_step = tf.Variable(0, trainable=False) + + # Create a queue that produces indices into the image_list and + # label_list + labels = ops.convert_to_tensor(label_list, dtype=tf.int32) + range_size = array_ops.shape(labels)[0] + index_queue = tf.train.range_input_producer( + range_size, num_epochs=None, shuffle=True, seed=None, capacity=32) + + index_dequeue_op = index_queue.dequeue_many( + batch_size * epoch_size, 'index_dequeue') + + learning_rate_placeholder = tf.placeholder( + tf.float32, name='learning_rate') + batch_size_placeholder = tf.placeholder(tf.int32, name='batch_size') + phase_train_placeholder = tf.placeholder(tf.bool, name='phase_train') + image_paths_placeholder = tf.placeholder( + tf.string, shape=(None, 1), name='image_paths') + labels_placeholder = tf.placeholder( + tf.int32, shape=(None, 1), name='labels') + control_placeholder = tf.placeholder( + tf.int32, shape=(None, 1), name='control') + + nrof_preprocess_threads = 4 + input_queue = data_flow_ops.FIFOQueue(capacity=2000000, + dtypes=[tf.string, + tf.int32, tf.int32], + shapes=[(1,), (1,), (1,)], + shared_name=None, name=None) + enqueue_op = input_queue.enqueue_many( + [image_paths_placeholder, labels_placeholder, control_placeholder], name='enqueue_op') + image_batch, label_batch = facenet.create_input_pipeline( + input_queue, image_size, nrof_preprocess_threads, batch_size_placeholder) + + image_batch = tf.identity(image_batch, 'image_batch') + image_batch = tf.identity(image_batch, 'input') + label_batch = tf.identity(label_batch, 'label_batch') + + print('Number of classes in training set: %d' % nrof_classes) + print('Number of examples in training set: %d' % len(image_list)) + + print('Number of classes in validation set: %d' % len(val_set)) + print('Number of examples in validation set: %d' % len(val_image_list)) + + print('Building training graph') + + # Build the inference graph + prelogits, _ = network.inference(image_batch, keep_probability, + phase_train=phase_train_placeholder, bottleneck_layer_size=embedding_size, + weight_decay=weight_decay) + logits = slim.fully_connected( + prelogits, + len(train_set), + activation_fn=None, + weights_initializer=slim.initializers.xavier_initializer(), + weights_regularizer=slim.l2_regularizer( + weight_decay), + scope='Logits', + reuse=False) + + embeddings = tf.nn.l2_normalize(prelogits, 1, 1e-10, name='embeddings') + + # Norm for the prelogits + eps = 1e-4 + prelogits_norm = tf.reduce_mean( + tf.norm( + tf.abs(prelogits) + eps, + ord=prelogits_norm_p, + axis=1)) + tf.add_to_collection(tf.GraphKeys.REGULARIZATION_LOSSES, + prelogits_norm * prelogits_norm_loss_factor) + + # Add center loss + prelogits_center_loss, _ = facenet.center_loss( + prelogits, label_batch, center_loss_alfa, nrof_classes) + tf.add_to_collection(tf.GraphKeys.REGULARIZATION_LOSSES, + prelogits_center_loss * center_loss_factor) + + learning_rate = tf.train.exponential_decay( + learning_rate_placeholder, + global_step, + learning_rate_decay_epochs * + epoch_size, + learning_rate_decay_factor, + staircase=True) + tf.summary.scalar('learning_rate', learning_rate) + + # Calculate the average cross entropy loss across the batch + cross_entropy = tf.nn.sparse_softmax_cross_entropy_with_logits( + labels=label_batch, logits=logits, name='cross_entropy_per_example') + cross_entropy_mean = tf.reduce_mean( + cross_entropy, name='cross_entropy') + tf.add_to_collection('losses', cross_entropy_mean) + + correct_prediction = tf.cast( + tf.equal( + tf.argmax( + logits, 1), tf.cast( + label_batch, tf.int64)), tf.float32) + accuracy = tf.reduce_mean(correct_prediction) + + # Calculate the total losses + regularization_losses = tf.get_collection( + tf.GraphKeys.REGULARIZATION_LOSSES) + total_loss = tf.add_n([cross_entropy_mean] + + regularization_losses, name='total_loss') + + # Build a Graph that trains the model with one batch of examples and + # updates the model parameters + train_op = facenet.train( + total_loss, + global_step, + optimizer, + learning_rate, + moving_average_decay, + tf.global_variables(), + log_histograms) + + # Create a saver + saver = tf.train.Saver(tf.trainable_variables(), max_to_keep=3) + + # Build the summary operation based on the TF collection of Summaries. + summary_op = tf.summary.merge_all() + + # Start running operations on the Graph. + gpu_options = tf.GPUOptions( + per_process_gpu_memory_fraction=gpu_memory_fraction) + sess = tf.Session(config=tf.ConfigProto( + gpu_options=gpu_options, log_device_placement=False)) + sess.run(tf.global_variables_initializer()) + sess.run(tf.local_variables_initializer()) + summary_writer = tf.summary.FileWriter(log_dir, sess.graph) + coord = tf.train.Coordinator() + tf.train.start_queue_runners(coord=coord, sess=sess) + + with sess.as_default(): + + if pretrained_model: + print('Restoring pretrained model: %s' % pretrained_model) + saver.restore(sess, pretrained_model) + + # Training and validation loop + print('Running training') + nrof_steps = max_nrof_epochs * epoch_size + # Validate every validate_every_n_epochs as well as in the last + # epoch + nrof_val_samples = int( + math.ceil(max_nrof_epochs / validate_every_n_epochs)) + stat = { + 'loss': np.zeros((nrof_steps,), np.float32), + 'center_loss': np.zeros((nrof_steps,), np.float32), + 'reg_loss': np.zeros((nrof_steps,), np.float32), + 'xent_loss': np.zeros((nrof_steps,), np.float32), + 'prelogits_norm': np.zeros((nrof_steps,), np.float32), + 'accuracy': np.zeros((nrof_steps,), np.float32), + 'val_loss': np.zeros((nrof_val_samples,), np.float32), + 'val_xent_loss': np.zeros((nrof_val_samples,), np.float32), + 'val_accuracy': np.zeros((nrof_val_samples,), np.float32), + 'lfw_accuracy': np.zeros((max_nrof_epochs,), np.float32), + 'lfw_valrate': np.zeros((max_nrof_epochs,), np.float32), + 'learning_rate': np.zeros((max_nrof_epochs,), np.float32), + 'time_train': np.zeros((max_nrof_epochs,), np.float32), + 'time_validate': np.zeros((max_nrof_epochs,), np.float32), + 'time_evaluate': np.zeros((max_nrof_epochs,), np.float32), + 'prelogits_hist': np.zeros((max_nrof_epochs, 1000), np.float32), + } + for epoch in range(1, max_nrof_epochs + 1): + step = sess.run(global_step, feed_dict=None) + # Train for one epoch + t = time.time() + cont = train( + args, + sess, + epoch, + image_list, + label_list, + index_dequeue_op, + enqueue_op, + image_paths_placeholder, + labels_placeholder, + learning_rate_placeholder, + phase_train_placeholder, + batch_size_placeholder, + control_placeholder, + global_step, + total_loss, + train_op, + summary_op, + summary_writer, + regularization_losses, + learning_rate_schedule_file, + stat, + cross_entropy_mean, + accuracy, + learning_rate, + prelogits, + prelogits_center_loss, + random_rotate, + random_crop, + random_flip, + prelogits_norm, + prelogits_hist_max, + use_fixed_image_standardization) + stat['time_train'][epoch - 1] = time.time() - t + + if not cont: + break + + t = time.time() + if len(val_image_list) > 0 and ( + (epoch - 1) % + validate_every_n_epochs == validate_every_n_epochs - + 1 or epoch == max_nrof_epochs): + validate( + args, + sess, + epoch, + val_image_list, + val_label_list, + enqueue_op, + image_paths_placeholder, + labels_placeholder, + control_placeholder, + phase_train_placeholder, + batch_size_placeholder, + stat, + total_loss, + regularization_losses, + cross_entropy_mean, + accuracy, + validate_every_n_epochs, + use_fixed_image_standardization) + stat['time_validate'][epoch - 1] = time.time() - t + + # Save variables and the metagraph if it doesn't exist already + save_variables_and_metagraph( + sess, saver, summary_writer, model_dir, subdir, epoch) + + # Evaluate on LFW + t = time.time() + if lfw_dir: + evaluate( + sess, + enqueue_op, + image_paths_placeholder, + labels_placeholder, + phase_train_placeholder, + batch_size_placeholder, + control_placeholder, + embeddings, + label_batch, + lfw_paths, + lfw_labels, + lfw_batch_size, + lfw_nrof_folds, + log_dir, + step, + summary_writer, + stat, + epoch, + lfw_distance_metric, + lfw_subtract_mean, + lfw_use_flipped_images, + use_fixed_image_standardization) + stat['time_evaluate'][epoch - 1] = time.time() - t + + print('Saving statistics') + with h5py.File(stat_file_name, 'w') as f: + for key, value in stat.iteritems(): + f.create_dataset(key, data=value) + + return model_dir + + +def train( + args, + sess, + epoch, + image_list, + label_list, + index_dequeue_op, + enqueue_op, + image_paths_placeholder, + labels_placeholder, + learning_rate_placeholder, + phase_train_placeholder, + batch_size_placeholder, + control_placeholder, + step, + loss, + train_op, + summary_op, + summary_writer, + reg_losses, + learning_rate_schedule_file, + stat, + cross_entropy_mean, + accuracy, + learning_rate, + prelogits, + prelogits_center_loss, + random_rotate, + random_crop, + random_flip, + prelogits_norm, + prelogits_hist_max, + use_fixed_image_standardization): + batch_number = 0 + + if learning_rate > 0.0: + lr = learning_rate + else: + lr = facenet.get_learning_rate_from_file( + learning_rate_schedule_file, epoch) + + if lr <= 0: + return False + + index_epoch = sess.run(index_dequeue_op) + label_epoch = np.array(label_list)[index_epoch] + image_epoch = np.array(image_list)[index_epoch] + + # Enqueue one epoch of image paths and labels + labels_array = np.expand_dims(np.array(label_epoch), 1) + image_paths_array = np.expand_dims(np.array(image_epoch), 1) + control_value = facenet.RANDOM_ROTATE * random_rotate + facenet.RANDOM_CROP * random_crop + \ + facenet.RANDOM_FLIP * random_flip + \ + facenet.FIXED_STANDARDIZATION * use_fixed_image_standardization + control_array = np.ones_like(labels_array) * control_value + sess.run(enqueue_op, + {image_paths_placeholder: image_paths_array, + labels_placeholder: labels_array, + control_placeholder: control_array}) + + # Training loop + train_time = 0 + while batch_number < epoch_size: + start_time = time.time() + feed_dict = { + learning_rate_placeholder: lr, + phase_train_placeholder: True, + batch_size_placeholder: batch_size} + tensor_list = [ + loss, + train_op, + step, + reg_losses, + prelogits, + cross_entropy_mean, + learning_rate, + prelogits_norm, + accuracy, + prelogits_center_loss] + if batch_number % 100 == 0: + loss_, _, step_, reg_losses_, prelogits_, cross_entropy_mean_, lr_, prelogits_norm_, accuracy_, center_loss_, summary_str = sess.run( + tensor_list + [summary_op], feed_dict=feed_dict) + summary_writer.add_summary(summary_str, global_step=step_) + else: + loss_, _, step_, reg_losses_, prelogits_, cross_entropy_mean_, lr_, prelogits_norm_, accuracy_, center_loss_ = sess.run( + tensor_list, feed_dict=feed_dict) + + duration = time.time() - start_time + stat['loss'][step_ - 1] = loss_ + stat['center_loss'][step_ - 1] = center_loss_ + stat['reg_loss'][step_ - 1] = np.sum(reg_losses_) + stat['xent_loss'][step_ - 1] = cross_entropy_mean_ + stat['prelogits_norm'][step_ - 1] = prelogits_norm_ + stat['learning_rate'][epoch - 1] = lr_ + stat['accuracy'][step_ - 1] = accuracy_ + stat['prelogits_hist'][epoch - 1, + :] += np.histogram(np.minimum(np.abs(prelogits_), + prelogits_hist_max), + bins=1000, + range=(0.0, + prelogits_hist_max))[0] + + duration = time.time() - start_time + print( + 'Epoch: [%d][%d/%d]\tTime %.3f\tLoss %2.3f\tXent %2.3f\tRegLoss %2.3f\tAccuracy %2.3f\tLr %2.5f\tCl %2.3f' % + (epoch, + batch_number + + 1, + epoch_size, + duration, + loss_, + cross_entropy_mean_, + np.sum(reg_losses_), + accuracy_, + lr_, + center_loss_)) + batch_number += 1 + train_time += duration + # Add validation loss and accuracy to summary + summary = tf.Summary() + # pylint: disable=maybe-no-member + summary.value.add(tag='time/total', simple_value=train_time) + summary_writer.add_summary(summary, global_step=step_) + return True + + +def parse_arguments(argv): + parser = argparse.ArgumentParser() + + parser.add_argument( + '--logs_base_dir', + type=str, + help='Directory where to write event logs.', + default='~/logs/facenet') + parser.add_argument( + '--models_base_dir', + type=str, + help='Directory where to write trained models and checkpoints.', + default='~/models/facenet') + parser.add_argument( + '--gpu_memory_fraction', + type=float, + help='Upper bound on the amount of GPU memory that will be used by the process.', + default=1.0) + parser.add_argument('--pretrained_model', type=str, + help='Load a pretrained model before training starts.') + parser.add_argument( + '--data_dir', + type=str, + help='Path to the data directory containing aligned face patches.', + default='~/datasets/casia/casia_maxpy_mtcnnalign_182_160') + parser.add_argument( + '--model_def', + type=str, + help='Model definition. Points to a module containing the definition of the inference graph.', + default='models.inception_resnet_v1') + parser.add_argument('--max_nrof_epochs', type=int, + help='Number of epochs to run.', default=500) + parser.add_argument( + '--batch_size', + type=int, + help='Number of images to process in a batch.', + default=90) + parser.add_argument( + '--image_size', + type=int, + help='Image size (height, width) in pixels.', + default=160) + parser.add_argument('--epoch_size', type=int, + help='Number of batches per epoch.', default=1000) + parser.add_argument('--embedding_size', type=int, + help='Dimensionality of the embedding.', default=128) + parser.add_argument( + '--random_crop', + help='Performs random cropping of training images. If false, the center image_size pixels from the training images are used. ' + + 'If the size of the images in the data directory is equal to image_size no cropping is performed', + action='store_true') + parser.add_argument( + '--random_flip', + help='Performs random horizontal flipping of training images.', + action='store_true') + parser.add_argument( + '--random_rotate', + help='Performs random rotations of training images.', + action='store_true') + parser.add_argument( + '--use_fixed_image_standardization', + help='Performs fixed standardization of images.', + action='store_true') + parser.add_argument( + '--keep_probability', + type=float, + help='Keep probability of dropout for the fully connected layer(s).', + default=1.0) + parser.add_argument('--weight_decay', type=float, + help='L2 weight regularization.', default=0.0) + parser.add_argument('--center_loss_factor', type=float, + help='Center loss factor.', default=0.0) + parser.add_argument( + '--center_loss_alfa', + type=float, + help='Center update rate for center loss.', + default=0.95) + parser.add_argument( + '--prelogits_norm_loss_factor', + type=float, + help='Loss based on the norm of the activations in the prelogits layer.', + default=0.0) + parser.add_argument( + '--prelogits_norm_p', + type=float, + help='Norm to use for prelogits norm loss.', + default=1.0) + parser.add_argument( + '--prelogits_hist_max', + type=float, + help='The max value for the prelogits histogram.', + default=10.0) + parser.add_argument( + '--optimizer', + type=str, + choices=[ + 'ADAGRAD', + 'ADADELTA', + 'ADAM', + 'RMSPROP', + 'MOM'], + help='The optimization algorithm to use', + default='ADAGRAD') + parser.add_argument( + '--learning_rate', + type=float, + help='Initial learning rate. If set to a negative value a learning rate ' + + 'schedule can be specified in the file "learning_rate_schedule.txt"', + default=0.1) + parser.add_argument( + '--learning_rate_decay_epochs', + type=int, + help='Number of epochs between learning rate decay.', + default=100) + parser.add_argument('--learning_rate_decay_factor', type=float, + help='Learning rate decay factor.', default=1.0) + parser.add_argument( + '--moving_average_decay', + type=float, + help='Exponential decay for tracking of training parameters.', + default=0.9999) + parser.add_argument('--seed', type=int, + help='Random seed.', default=666) + parser.add_argument( + '--nrof_preprocess_threads', + type=int, + help='Number of preprocessing (data loading and augmentation) threads.', + default=4) + parser.add_argument( + '--log_histograms', + help='Enables logging of weight/bias histograms in tensorboard.', + action='store_true') + parser.add_argument( + '--learning_rate_schedule_file', + type=str, + help='File containing the learning rate schedule that is used when learning_rate is set to to -1.', + default='data/learning_rate_schedule.txt') + parser.add_argument( + '--filter_filename', + type=str, + help='File containing image data used for dataset filtering', + default='') + parser.add_argument( + '--filter_percentile', + type=float, + help='Keep only the percentile images closed to its class center', + default=100.0) + parser.add_argument( + '--filter_min_nrof_images_per_class', + type=int, + help='Keep only the classes with this number of examples or more', + default=0) + parser.add_argument('--validate_every_n_epochs', type=int, + help='Number of epoch between validation', default=5) + parser.add_argument( + '--validation_set_split_ratio', + type=float, + help='The ratio of the total dataset to use for validation', + default=0.0) + parser.add_argument( + '--min_nrof_val_images_per_class', + type=float, + help='Classes with fewer images will be removed from the validation set', + default=0) + + # Parameters for validation on LFW + parser.add_argument( + '--lfw_pairs', + type=str, + help='The file containing the pairs to use for validation.', + default='data/pairs.txt') + parser.add_argument( + '--lfw_dir', + type=str, + help='Path to the data directory containing aligned face patches.', + default='') + parser.add_argument( + '--lfw_batch_size', + type=int, + help='Number of images to process in a batch in the LFW test set.', + default=100) + parser.add_argument( + '--lfw_nrof_folds', + type=int, + help='Number of folds to use for cross validation. Mainly used for testing.', + default=10) + parser.add_argument( + '--lfw_distance_metric', + type=int, + help='Type of distance metric to use. 0: Euclidian, 1:Cosine similarity distance.', + default=0) + parser.add_argument( + '--lfw_use_flipped_images', + help='Concatenates embeddings for the image and its horizontally flipped counterpart.', + action='store_true') + parser.add_argument( + '--lfw_subtract_mean', + help='Subtract feature mean before calculating distance.', + action='store_true') + return parser.parse_args(argv) + + +if __name__ == '__main__': + main(parse_arguments(sys.argv[1:])) diff --git a/facenet_sandberg/train_facenet/train_tripletloss.py b/facenet_sandberg/train_facenet/train_tripletloss.py new file mode 100644 index 000000000..2ba136332 --- /dev/null +++ b/facenet_sandberg/train_facenet/train_tripletloss.py @@ -0,0 +1,711 @@ +"""Training a face recognizer with TensorFlow based on the FaceNet paper +FaceNet: A Unified Embedding for Face Recognition and Clustering: http://arxiv.org/abs/1503.03832 +""" +# MIT License +# +# Copyright (c) 2016 David Sandberg +# +# Permission is hereby granted, free of charge, to any person obtaining a copy +# of this software and associated documentation files (the "Software"), to deal +# in the Software without restriction, including without limitation the rights +# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell +# copies of the Software, and to permit persons to whom the Software is +# furnished to do so, subject to the following conditions: +# +# The above copyright notice and this permission notice shall be included in all +# copies or substantial portions of the Software. +# +# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR +# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, +# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE +# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER +# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, +# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE +# SOFTWARE. + +from __future__ import absolute_import, division, print_function + +import argparse +import importlib +import itertools +import os.path +import sys +import time +from datetime import datetime + +import numpy as np +import tensorflow as tf +from facenet_sandberg import facenet, lfw +from six.moves import xrange # @UnresolvedImport +from tensorflow.python.ops import data_flow_ops + + +def main(args): + + network = importlib.import_module(args.model_def) + + subdir = datetime.strftime(datetime.now(), '%Y%m%d-%H%M%S') + log_dir = os.path.join(os.path.expanduser(args.logs_base_dir), subdir) + if not os.path.isdir( + log_dir): # Create the log directory if it doesn't exist + os.makedirs(log_dir) + model_dir = os.path.join(os.path.expanduser(args.models_base_dir), subdir) + if not os.path.isdir( + model_dir): # Create the model directory if it doesn't exist + os.makedirs(model_dir) + + # Write arguments to a text file + facenet.write_arguments_to_file( + args, os.path.join( + log_dir, 'arguments.txt')) + + # Store some git revision info in a text file in the log directory + src_path, _ = os.path.split(os.path.realpath(__file__)) + facenet.store_revision_info(src_path, log_dir, ' '.join(sys.argv)) + + np.random.seed(seed=args.seed) + train_set = facenet.get_dataset(args.data_dir) + + print('Model directory: %s' % model_dir) + print('Log directory: %s' % log_dir) + if args.pretrained_model: + print( + 'Pre-trained model: %s' % + os.path.expanduser( + args.pretrained_model)) + + if args.lfw_dir: + print('LFW directory: %s' % args.lfw_dir) + # Read the file containing the pairs used for testing + pairs = lfw.read_pairs(os.path.expanduser(args.lfw_pairs)) + # Get the paths for the corresponding images + lfw_paths, actual_issame = lfw.get_paths( + os.path.expanduser(args.lfw_dir), pairs) + + with tf.Graph().as_default(): + tf.set_random_seed(args.seed) + global_step = tf.Variable(0, trainable=False) + + # Placeholder for the learning rate + learning_rate_placeholder = tf.placeholder( + tf.float32, name='learning_rate') + + batch_size_placeholder = tf.placeholder(tf.int32, name='batch_size') + + phase_train_placeholder = tf.placeholder(tf.bool, name='phase_train') + + image_paths_placeholder = tf.placeholder( + tf.string, shape=(None, 3), name='image_paths') + labels_placeholder = tf.placeholder( + tf.int64, shape=(None, 3), name='labels') + + input_queue = data_flow_ops.FIFOQueue(capacity=100000, + dtypes=[tf.string, tf.int64], + shapes=[(3,), (3,)], + shared_name=None, name=None) + enqueue_op = input_queue.enqueue_many( + [image_paths_placeholder, labels_placeholder]) + + nrof_preprocess_threads = 4 + images_and_labels = [] + for _ in range(nrof_preprocess_threads): + filenames, label = input_queue.dequeue() + images = [] + for filename in tf.unstack(filenames): + file_contents = tf.read_file(filename) + image = tf.image.decode_image(file_contents, channels=3) + + if args.random_crop: + image = tf.random_crop( + image, [args.image_size, args.image_size, 3]) + else: + image = tf.image.resize_image_with_crop_or_pad( + image, args.image_size, args.image_size) + if args.random_flip: + image = tf.image.random_flip_left_right(image) + + # pylint: disable=no-member + image.set_shape((args.image_size, args.image_size, 3)) + images.append(tf.image.per_image_standardization(image)) + images_and_labels.append([images, label]) + + image_batch, labels_batch = tf.train.batch_join( + images_and_labels, batch_size=batch_size_placeholder, + shapes=[(args.image_size, args.image_size, 3), ()], enqueue_many=True, + capacity=4 * nrof_preprocess_threads * args.batch_size, + allow_smaller_final_batch=True) + image_batch = tf.identity(image_batch, 'image_batch') + image_batch = tf.identity(image_batch, 'input') + labels_batch = tf.identity(labels_batch, 'label_batch') + + # Build the inference graph + prelogits, _ = network.inference(image_batch, args.keep_probability, + phase_train=phase_train_placeholder, bottleneck_layer_size=args.embedding_size, + weight_decay=args.weight_decay) + + embeddings = tf.nn.l2_normalize(prelogits, 1, 1e-10, name='embeddings') + # Split embeddings into anchor, positive and negative and calculate + # triplet loss + anchor, positive, negative = tf.unstack(tf.reshape( + embeddings, [-1, 3, args.embedding_size]), 3, 1) + triplet_loss = facenet.triplet_loss( + anchor, positive, negative, args.alpha) + + learning_rate = tf.train.exponential_decay( + learning_rate_placeholder, + global_step, + args.learning_rate_decay_epochs * + args.epoch_size, + args.learning_rate_decay_factor, + staircase=True) + tf.summary.scalar('learning_rate', learning_rate) + + # Calculate the total losses + regularization_losses = tf.get_collection( + tf.GraphKeys.REGULARIZATION_LOSSES) + total_loss = tf.add_n( + [triplet_loss] + + regularization_losses, + name='total_loss') + + # Build a Graph that trains the model with one batch of examples and + # updates the model parameters + train_op = facenet.train( + total_loss, + global_step, + args.optimizer, + learning_rate, + args.moving_average_decay, + tf.global_variables()) + + # Create a saver + saver = tf.train.Saver(tf.trainable_variables(), max_to_keep=3) + + # Build the summary operation based on the TF collection of Summaries. + summary_op = tf.summary.merge_all() + + # Start running operations on the Graph. + gpu_options = tf.GPUOptions( + per_process_gpu_memory_fraction=args.gpu_memory_fraction) + sess = tf.Session(config=tf.ConfigProto(gpu_options=gpu_options)) + + # Initialize variables + sess.run(tf.global_variables_initializer(), + feed_dict={phase_train_placeholder: True}) + sess.run(tf.local_variables_initializer(), + feed_dict={phase_train_placeholder: True}) + + summary_writer = tf.summary.FileWriter(log_dir, sess.graph) + coord = tf.train.Coordinator() + tf.train.start_queue_runners(coord=coord, sess=sess) + + with sess.as_default(): + + if args.pretrained_model: + print('Restoring pretrained model: %s' % args.pretrained_model) + saver.restore(sess, os.path.expanduser(args.pretrained_model)) + + # Training and validation loop + epoch = 0 + while epoch < args.max_nrof_epochs: + step = sess.run(global_step, feed_dict=None) + epoch = step // args.epoch_size + # Train for one epoch + train( + args, + sess, + train_set, + epoch, + image_paths_placeholder, + labels_placeholder, + labels_batch, + batch_size_placeholder, + learning_rate_placeholder, + phase_train_placeholder, + enqueue_op, + input_queue, + global_step, + embeddings, + total_loss, + train_op, + summary_op, + summary_writer, + args.learning_rate_schedule_file, + args.embedding_size, + anchor, + positive, + negative, + triplet_loss) + + # Save variables and the metagraph if it doesn't exist already + save_variables_and_metagraph( + sess, saver, summary_writer, model_dir, subdir, step) + + # Evaluate on LFW + if args.lfw_dir: + evaluate( + sess, + lfw_paths, + embeddings, + labels_batch, + image_paths_placeholder, + labels_placeholder, + batch_size_placeholder, + learning_rate_placeholder, + phase_train_placeholder, + enqueue_op, + actual_issame, + args.batch_size, + args.lfw_nrof_folds, + log_dir, + step, + summary_writer, + args.embedding_size) + + return model_dir + + +def train( + args, + sess, + dataset, + epoch, + image_paths_placeholder, + labels_placeholder, + labels_batch, + batch_size_placeholder, + learning_rate_placeholder, + phase_train_placeholder, + enqueue_op, + input_queue, + global_step, + embeddings, + loss, + train_op, + summary_op, + summary_writer, + learning_rate_schedule_file, + embedding_size, + anchor, + positive, + negative, + triplet_loss): + batch_number = 0 + + if args.learning_rate > 0.0: + lr = args.learning_rate + else: + lr = facenet.get_learning_rate_from_file( + learning_rate_schedule_file, epoch) + while batch_number < args.epoch_size: + # Sample people randomly from the dataset + image_paths, num_per_class = sample_people( + dataset, args.people_per_batch, args.images_per_person) + + print('Running forward pass on sampled images: ', end='') + start_time = time.time() + nrof_examples = args.people_per_batch * args.images_per_person + labels_array = np.reshape(np.arange(nrof_examples), (-1, 3)) + image_paths_array = np.reshape( + np.expand_dims( + np.array(image_paths), 1), (-1, 3)) + sess.run(enqueue_op, + {image_paths_placeholder: image_paths_array, + labels_placeholder: labels_array}) + emb_array = np.zeros((nrof_examples, embedding_size)) + nrof_batches = int(np.ceil(nrof_examples / args.batch_size)) + for i in range(nrof_batches): + batch_size = min( + nrof_examples - i * args.batch_size, + args.batch_size) + emb, lab = sess.run([embeddings, labels_batch], feed_dict={ + batch_size_placeholder: batch_size, learning_rate_placeholder: lr, phase_train_placeholder: True}) + emb_array[lab, :] = emb + print('%.3f' % (time.time() - start_time)) + + # Select triplets based on the embeddings + print('Selecting suitable triplets for training') + triplets, nrof_random_negs, nrof_triplets = select_triplets( + emb_array, num_per_class, image_paths, args.people_per_batch, args.alpha) + selection_time = time.time() - start_time + print( + '(nrof_random_negs, nrof_triplets) = (%d, %d): time=%.3f seconds' % + (nrof_random_negs, nrof_triplets, selection_time)) + + # Perform training on the selected triplets + nrof_batches = int(np.ceil(nrof_triplets * 3 / args.batch_size)) + triplet_paths = list(itertools.chain(*triplets)) + labels_array = np.reshape(np.arange(len(triplet_paths)), (-1, 3)) + triplet_paths_array = np.reshape( + np.expand_dims(np.array(triplet_paths), 1), (-1, 3)) + sess.run(enqueue_op, + {image_paths_placeholder: triplet_paths_array, + labels_placeholder: labels_array}) + nrof_examples = len(triplet_paths) + train_time = 0 + i = 0 + emb_array = np.zeros((nrof_examples, embedding_size)) + loss_array = np.zeros((nrof_triplets,)) + summary = tf.Summary() + step = 0 + while i < nrof_batches: + start_time = time.time() + batch_size = min( + nrof_examples - i * args.batch_size, + args.batch_size) + feed_dict = { + batch_size_placeholder: batch_size, + learning_rate_placeholder: lr, + phase_train_placeholder: True} + err, _, step, emb, lab = sess.run( + [loss, train_op, global_step, embeddings, labels_batch], feed_dict=feed_dict) + emb_array[lab, :] = emb + loss_array[i] = err + duration = time.time() - start_time + print('Epoch: [%d][%d/%d]\tTime %.3f\tLoss %2.3f' % + (epoch, batch_number + 1, args.epoch_size, duration, err)) + batch_number += 1 + i += 1 + train_time += duration + summary.value.add(tag='loss', simple_value=err) + + # Add validation loss and accuracy to summary + # pylint: disable=maybe-no-member + summary.value.add(tag='time/selection', simple_value=selection_time) + summary_writer.add_summary(summary, step) + return step + + +def select_triplets( + embeddings, + nrof_images_per_class, + image_paths, + people_per_batch, + alpha): + """ Select the triplets for training + """ + trip_idx = 0 + emb_start_idx = 0 + num_trips = 0 + triplets = [] + + # VGG Face: Choosing good triplets is crucial and should strike a balance between + # selecting informative (i.e. challenging) examples and swamping training with examples that + # are too hard. This is achieve by extending each pair (a, p) to a triplet (a, p, n) by sampling + # the image n at random, but only between the ones that violate the triplet loss margin. The + # latter is a form of hard-negative mining, but it is not as aggressive (and much cheaper) than + # choosing the maximally violating example, as often done in structured + # output learning. + + for i in xrange(people_per_batch): + nrof_images = int(nrof_images_per_class[i]) + for j in xrange(1, nrof_images): + a_idx = emb_start_idx + j - 1 + neg_dists_sqr = np.sum( + np.square( + embeddings[a_idx] - + embeddings), + 1) + # For every possible positive pair. + for pair in xrange(j, nrof_images): + p_idx = emb_start_idx + pair + pos_dist_sqr = np.sum( + np.square( + embeddings[a_idx] - + embeddings[p_idx])) + neg_dists_sqr[emb_start_idx:emb_start_idx + + nrof_images] = np.NaN + # all_neg = + # np.where(np.logical_and(neg_dists_sqr-pos_dist_sqr 0: + rnd_idx = np.random.randint(nrof_random_negs) + n_idx = all_neg[rnd_idx] + triplets.append( + (image_paths[a_idx], image_paths[p_idx], image_paths[n_idx])) + # print('Triplet %d: (%d, %d, %d), pos_dist=%2.6f, neg_dist=%2.6f (%d, %d, %d, %d, %d)' % + # (trip_idx, a_idx, p_idx, n_idx, pos_dist_sqr, neg_dists_sqr[n_idx], nrof_random_negs, rnd_idx, i, j, emb_start_idx)) + trip_idx += 1 + + num_trips += 1 + + emb_start_idx += nrof_images + + np.random.shuffle(triplets) + return triplets, num_trips, len(triplets) + + +def sample_people(dataset, people_per_batch, images_per_person): + nrof_images = people_per_batch * images_per_person + + # Sample classes from the dataset + nrof_classes = len(dataset) + class_indices = np.arange(nrof_classes) + np.random.shuffle(class_indices) + + i = 0 + image_paths = [] + num_per_class = [] + sampled_class_indices = [] + # Sample images from these classes until we have enough + while len(image_paths) < nrof_images: + class_index = class_indices[i] + nrof_images_in_class = len(dataset[class_index]) + image_indices = np.arange(nrof_images_in_class) + np.random.shuffle(image_indices) + nrof_images_from_class = min( + nrof_images_in_class, + images_per_person, + nrof_images - len(image_paths)) + idx = image_indices[0:nrof_images_from_class] + image_paths_for_class = [ + dataset[class_index].image_paths[j] for j in idx] + sampled_class_indices += [class_index] * nrof_images_from_class + image_paths += image_paths_for_class + num_per_class.append(nrof_images_from_class) + i += 1 + + return image_paths, num_per_class + + +def evaluate( + sess, + image_paths, + embeddings, + labels_batch, + image_paths_placeholder, + labels_placeholder, + batch_size_placeholder, + learning_rate_placeholder, + phase_train_placeholder, + enqueue_op, + actual_issame, + batch_size, + nrof_folds, + log_dir, + step, + summary_writer, + embedding_size): + start_time = time.time() + # Run forward pass to calculate embeddings + print('Running forward pass on LFW images: ', end='') + + nrof_images = len(actual_issame) * 2 + assert(len(image_paths) == nrof_images) + labels_array = np.reshape(np.arange(nrof_images), (-1, 3)) + image_paths_array = np.reshape( + np.expand_dims( + np.array(image_paths), 1), (-1, 3)) + sess.run(enqueue_op, + {image_paths_placeholder: image_paths_array, + labels_placeholder: labels_array}) + emb_array = np.zeros((nrof_images, embedding_size)) + nrof_batches = int(np.ceil(nrof_images / batch_size)) + label_check_array = np.zeros((nrof_images,)) + for i in xrange(nrof_batches): + batch_size = min(nrof_images - i * batch_size, batch_size) + emb, lab = sess.run([embeddings, labels_batch], feed_dict={ + batch_size_placeholder: batch_size, learning_rate_placeholder: 0.0, phase_train_placeholder: False}) + emb_array[lab, :] = emb + label_check_array[lab] = 1 + print('%.3f' % (time.time() - start_time)) + + assert(np.all(label_check_array == 1)) + + _, _, accuracy, val, val_std, far = lfw.evaluate( + emb_array, actual_issame, nrof_folds=nrof_folds) + + print('Accuracy: %1.3f+-%1.3f' % (np.mean(accuracy), np.std(accuracy))) + print('Validation rate: %2.5f+-%2.5f @ FAR=%2.5f' % (val, val_std, far)) + lfw_time = time.time() - start_time + # Add validation loss and accuracy to summary + summary = tf.Summary() + # pylint: disable=maybe-no-member + summary.value.add(tag='lfw/accuracy', simple_value=np.mean(accuracy)) + summary.value.add(tag='lfw/val_rate', simple_value=val) + summary.value.add(tag='time/lfw', simple_value=lfw_time) + summary_writer.add_summary(summary, step) + with open(os.path.join(log_dir, 'lfw_result.txt'), 'at') as f: + f.write('%d\t%.5f\t%.5f\n' % (step, np.mean(accuracy), val)) + + +def save_variables_and_metagraph( + sess, + saver, + summary_writer, + model_dir, + model_name, + step): + # Save the model checkpoint + print('Saving variables') + start_time = time.time() + checkpoint_path = os.path.join(model_dir, 'model-%s.ckpt' % model_name) + saver.save(sess, checkpoint_path, global_step=step, write_meta_graph=False) + save_time_variables = time.time() - start_time + print('Variables saved in %.2f seconds' % save_time_variables) + metagraph_filename = os.path.join(model_dir, 'model-%s.meta' % model_name) + save_time_metagraph = 0 + if not os.path.exists(metagraph_filename): + print('Saving metagraph') + start_time = time.time() + saver.export_meta_graph(metagraph_filename) + save_time_metagraph = time.time() - start_time + print('Metagraph saved in %.2f seconds' % save_time_metagraph) + summary = tf.Summary() + # pylint: disable=maybe-no-member + summary.value.add( + tag='time/save_variables', + simple_value=save_time_variables) + summary.value.add( + tag='time/save_metagraph', + simple_value=save_time_metagraph) + summary_writer.add_summary(summary, step) + + +def get_learning_rate_from_file(filename, epoch): + with open(filename, 'r') as f: + for line in f.readlines(): + line = line.split('#', 1)[0] + if line: + par = line.strip().split(':') + e = int(par[0]) + lr = float(par[1]) + if e <= epoch: + learning_rate = lr + else: + return learning_rate + + +def parse_arguments(argv): + parser = argparse.ArgumentParser() + + parser.add_argument( + '--logs_base_dir', + type=str, + help='Directory where to write event logs.', + default='~/logs/facenet') + parser.add_argument( + '--models_base_dir', + type=str, + help='Directory where to write trained models and checkpoints.', + default='~/models/facenet') + parser.add_argument( + '--gpu_memory_fraction', + type=float, + help='Upper bound on the amount of GPU memory that will be used by the process.', + default=1.0) + parser.add_argument('--pretrained_model', type=str, + help='Load a pretrained model before training starts.') + parser.add_argument( + '--data_dir', + type=str, + help='Path to the data directory containing aligned face patches.', + default='~/datasets/casia/casia_maxpy_mtcnnalign_182_160') + parser.add_argument( + '--model_def', + type=str, + help='Model definition. Points to a module containing the definition of the inference graph.', + default='models.inception_resnet_v1') + parser.add_argument('--max_nrof_epochs', type=int, + help='Number of epochs to run.', default=500) + parser.add_argument( + '--batch_size', + type=int, + help='Number of images to process in a batch.', + default=90) + parser.add_argument( + '--image_size', + type=int, + help='Image size (height, width) in pixels.', + default=160) + parser.add_argument('--people_per_batch', type=int, + help='Number of people per batch.', default=45) + parser.add_argument('--images_per_person', type=int, + help='Number of images per person.', default=40) + parser.add_argument('--epoch_size', type=int, + help='Number of batches per epoch.', default=1000) + parser.add_argument( + '--alpha', + type=float, + help='Positive to negative triplet distance margin.', + default=0.2) + parser.add_argument('--embedding_size', type=int, + help='Dimensionality of the embedding.', default=128) + parser.add_argument( + '--random_crop', + help='Performs random cropping of training images. If false, the center image_size pixels from the training images are used. ' + + 'If the size of the images in the data directory is equal to image_size no cropping is performed', + action='store_true') + parser.add_argument( + '--random_flip', + help='Performs random horizontal flipping of training images.', + action='store_true') + parser.add_argument( + '--keep_probability', + type=float, + help='Keep probability of dropout for the fully connected layer(s).', + default=1.0) + parser.add_argument('--weight_decay', type=float, + help='L2 weight regularization.', default=0.0) + parser.add_argument( + '--optimizer', + type=str, + choices=[ + 'ADAGRAD', + 'ADADELTA', + 'ADAM', + 'RMSPROP', + 'MOM'], + help='The optimization algorithm to use', + default='ADAGRAD') + parser.add_argument( + '--learning_rate', + type=float, + help='Initial learning rate. If set to a negative value a learning rate ' + + 'schedule can be specified in the file "learning_rate_schedule.txt"', + default=0.1) + parser.add_argument( + '--learning_rate_decay_epochs', + type=int, + help='Number of epochs between learning rate decay.', + default=100) + parser.add_argument('--learning_rate_decay_factor', type=float, + help='Learning rate decay factor.', default=1.0) + parser.add_argument( + '--moving_average_decay', + type=float, + help='Exponential decay for tracking of training parameters.', + default=0.9999) + parser.add_argument('--seed', type=int, + help='Random seed.', default=666) + parser.add_argument( + '--learning_rate_schedule_file', + type=str, + help='File containing the learning rate schedule that is used when learning_rate is set to to -1.', + default='data/learning_rate_schedule.txt') + + # Parameters for validation on LFW + parser.add_argument( + '--lfw_pairs', + type=str, + help='The file containing the pairs to use for validation.', + default='data/pairs.txt') + parser.add_argument( + '--lfw_dir', + type=str, + help='Path to the data directory containing aligned face patches.', + default='') + parser.add_argument( + '--lfw_nrof_folds', + type=int, + help='Number of folds to use for cross validation. Mainly used for testing.', + default=10) + return parser.parse_args(argv) + + +if __name__ == '__main__': + main(parse_arguments(sys.argv[1:])) diff --git a/facenet_sandberg/train_facenet/train_utils.py b/facenet_sandberg/train_facenet/train_utils.py new file mode 100644 index 000000000..388e42f96 --- /dev/null +++ b/facenet_sandberg/train_facenet/train_utils.py @@ -0,0 +1,241 @@ +import argparse +import importlib +import math +import os.path +import random +import sys +import time +from datetime import datetime + +import h5py +import numpy as np +import tensorflow as tf +import tensorflow.contrib.slim as slim +from facenet_sandberg import facenet, lfw +from tensorflow.python.framework import ops +from tensorflow.python.ops import array_ops, data_flow_ops + + +def filter_dataset(dataset, data_filename, percentile, + min_nrof_images_per_class): + with h5py.File(data_filename, 'r') as f: + distance_to_center = np.array(f.get('distance_to_center')) + label_list = np.array(f.get('label_list')) + image_list = np.array(f.get('image_list')) + distance_to_center_threshold = find_threshold( + distance_to_center, percentile) + indices = np.where(distance_to_center >= + distance_to_center_threshold)[0] + filtered_dataset = dataset + removelist = [] + for i in indices: + label = label_list[i] + image = image_list[i] + if image in filtered_dataset[label].image_paths: + filtered_dataset[label].image_paths.remove(image) + if len( + filtered_dataset[label].image_paths) < min_nrof_images_per_class: + removelist.append(label) + + ix = sorted(list(set(removelist)), reverse=True) + for i in ix: + del(filtered_dataset[i]) + + return filtered_dataset + + +def find_threshold(var, percentile): + hist, bin_edges = np.histogram(var, 100) + cdf = np.float32(np.cumsum(hist)) / np.sum(hist) + bin_centers = (bin_edges[:-1] + bin_edges[1:]) / 2 + # plt.plot(bin_centers, cdf) + threshold = np.interp(percentile * 0.01, cdf, bin_centers) + return threshold + + +def save_variables_and_metagraph( + sess, + saver, + summary_writer, + model_dir: str, + model_name: str, + step: int): + # Save the model checkpoint + print('Saving variables') + start_time = time.time() + checkpoint_path = os.path.join(model_dir, 'model-%s.ckpt' % model_name) + saver.save(sess, checkpoint_path, global_step=step, write_meta_graph=False) + save_time_variables = time.time() - start_time + print('Variables saved in %.2f seconds' % save_time_variables) + metagraph_filename = os.path.join(model_dir, 'model-%s.meta' % model_name) + save_time_metagraph = 0.0 + if not os.path.exists(metagraph_filename): + print('Saving metagraph') + start_time = time.time() + saver.export_meta_graph(metagraph_filename) + save_time_metagraph = time.time() - start_time + print('Metagraph saved in %.2f seconds' % save_time_metagraph) + summary = tf.Summary() + # pylint: disable=maybe-no-member + summary.value.add(tag='time/save_variables', + simple_value=save_time_variables) + summary.value.add(tag='time/save_metagraph', + simple_value=save_time_metagraph) + summary_writer.add_summary(summary, step) + + +def validate( + args, + sess, + epoch, + image_list, + label_list, + enqueue_op, + image_paths_placeholder, + labels_placeholder, + control_placeholder, + phase_train_placeholder, + batch_size_placeholder, + stat, + loss, + regularization_losses, + cross_entropy_mean, + accuracy, + validate_every_n_epochs, + use_fixed_image_standardization): + + print('Running forward pass on validation set') + + nrof_batches = len(label_list) // lfw_batch_size + nrof_images = nrof_batches * lfw_batch_size + + # Enqueue one epoch of image paths and labels + labels_array = np.expand_dims(np.array(label_list[:nrof_images]), 1) + image_paths_array = np.expand_dims(np.array(image_list[:nrof_images]), 1) + control_array = np.ones_like( + labels_array, + np.int32) * facenet.FIXED_STANDARDIZATION * use_fixed_image_standardization + sess.run(enqueue_op, + {image_paths_placeholder: image_paths_array, + labels_placeholder: labels_array, + control_placeholder: control_array}) + + loss_array = np.zeros((nrof_batches,), np.float32) + xent_array = np.zeros((nrof_batches,), np.float32) + accuracy_array = np.zeros((nrof_batches,), np.float32) + + # Training loop + start_time = time.time() + for i in range(nrof_batches): + feed_dict = {phase_train_placeholder: False, + batch_size_placeholder: lfw_batch_size} + loss_, cross_entropy_mean_, accuracy_ = sess.run( + [loss, cross_entropy_mean, accuracy], feed_dict=feed_dict) + loss_array[i], xent_array[i], accuracy_array[i] = ( + loss_, cross_entropy_mean_, accuracy_) + if i % 10 == 9: + print('.', end='') + sys.stdout.flush() + print('') + + duration = time.time() - start_time + + val_index = (epoch - 1) // validate_every_n_epochs + stat['val_loss'][val_index] = np.mean(loss_array) + stat['val_xent_loss'][val_index] = np.mean(xent_array) + stat['val_accuracy'][val_index] = np.mean(accuracy_array) + + print('Validation Epoch: %d\tTime %.3f\tLoss %2.3f\tXent %2.3f\tAccuracy %2.3f' % ( + epoch, duration, np.mean(loss_array), np.mean(xent_array), np.mean(accuracy_array))) + + +def evaluate( + sess, + enqueue_op, + image_paths_placeholder, + labels_placeholder, + phase_train_placeholder, + batch_size_placeholder, + control_placeholder, + embeddings, + labels, + image_paths, + actual_issame, + batch_size, + nrof_folds, + log_dir, + step, + summary_writer, + stat, + epoch, + distance_metric, + subtract_mean, + use_flipped_images, + use_fixed_image_standardization): + start_time = time.time() + # Run forward pass to calculate embeddings + print('Runnning forward pass on LFW images') + + # Enqueue one epoch of image paths and labels + # nrof_pairs * nrof_images_per_pair + nrof_embeddings = len(actual_issame) * 2 + nrof_flips = 2 if use_flipped_images else 1 + nrof_images = nrof_embeddings * nrof_flips + labels_array = np.expand_dims(np.arange(0, nrof_images), 1) + image_paths_array = np.expand_dims( + np.repeat(np.array(image_paths), nrof_flips), 1) + control_array = np.zeros_like(labels_array, np.int32) + if use_fixed_image_standardization: + control_array += np.ones_like(labels_array) * \ + facenet.FIXED_STANDARDIZATION + if use_flipped_images: + # Flip every second image + control_array += (labels_array % 2) * facenet.FLIP + sess.run(enqueue_op, + {image_paths_placeholder: image_paths_array, + labels_placeholder: labels_array, + control_placeholder: control_array}) + + embedding_size = int(embeddings.get_shape()[1]) + assert nrof_images % batch_size == 0, 'The number of LFW images must be an integer multiple of the LFW batch size' + nrof_batches = nrof_images // batch_size + emb_array = np.zeros((nrof_images, embedding_size)) + lab_array = np.zeros((nrof_images,)) + for i in range(nrof_batches): + feed_dict = {phase_train_placeholder: False, + batch_size_placeholder: batch_size} + emb, lab = sess.run([embeddings, labels], feed_dict=feed_dict) + lab_array[lab] = lab + emb_array[lab, :] = emb + if i % 10 == 9: + print('.', end='') + sys.stdout.flush() + print('') + embeddings = np.zeros((nrof_embeddings, embedding_size * nrof_flips)) + if use_flipped_images: + # Concatenate embeddings for flipped and non flipped version of the + # images + embeddings[:, :embedding_size] = emb_array[0::2, :] + embeddings[:, embedding_size:] = emb_array[1::2, :] + else: + embeddings = emb_array + + assert np.array_equal(lab_array, np.arange( + nrof_images)), 'Wrong labels used for evaluation, possibly caused by training examples left in the input pipeline' + _, _, accuracy, val, val_std, far = lfw.evaluate( + embeddings, actual_issame, nrof_folds=nrof_folds, distance_metric=distance_metric, subtract_mean=subtract_mean) + + print('Accuracy: %2.5f+-%2.5f' % (np.mean(accuracy), np.std(accuracy))) + print('Validation rate: %2.5f+-%2.5f @ FAR=%2.5f' % (val, val_std, far)) + lfw_time = time.time() - start_time + # Add validation loss and accuracy to summary + summary = tf.Summary() + # pylint: disable=maybe-no-member + summary.value.add(tag='lfw/accuracy', simple_value=np.mean(accuracy)) + summary.value.add(tag='lfw/val_rate', simple_value=val) + summary.value.add(tag='time/lfw', simple_value=lfw_time) + summary_writer.add_summary(summary, step) + with open(os.path.join(log_dir, 'lfw_result.txt'), 'at') as f: + f.write('%d\t%.5f\t%.5f\n' % (step, np.mean(accuracy), val)) + stat['lfw_accuracy'][epoch - 1] = np.mean(accuracy) + stat['lfw_valrate'][epoch - 1] = val diff --git a/facenet_sandberg/train_insightface/EMA.py b/facenet_sandberg/train_insightface/EMA.py new file mode 100644 index 000000000..ad54e4140 --- /dev/null +++ b/facenet_sandberg/train_insightface/EMA.py @@ -0,0 +1,14 @@ + +class EMA: + def __init__(self, s=0.01): + self.s = s + self.v = 0 + self.n = 0 + + def __call__(self, v): + if self.n == 0: + self.v = v + else: + self.v = self.v * (1 - self.s) + v * self.s + self.n = self.n + 1 + return self.v diff --git a/facenet_sandberg/train_insightface/config.ini b/facenet_sandberg/train_insightface/config.ini new file mode 100644 index 000000000..e624c5228 --- /dev/null +++ b/facenet_sandberg/train_insightface/config.ini @@ -0,0 +1,29 @@ +; Testing dataset +[lfw] +enable=True +image_dir=./dataset/faces_ms1m_112x112/lfw.np +pairs=. + +[ytf] +enable=False +pairs =./dataset/YouTubeFaces/ytf_img_pair.txt +prefix=./dataset/YouTubeFaces/112x112 +splits=./dataset/YouTubeFaces/splits_corrected.txt +ytf_error =./dataset/ytf-error.txt + +; Training dataset +[WebFace] +train_list=. +prefix=. + +[ms1m] +mxrec=./dataset/faces_ms1m_112x112 + +[vgg] +mxrec=./dataset/faces_vgg_112x112 + + + + + + diff --git a/facenet_sandberg/train_insightface/config.py b/facenet_sandberg/train_insightface/config.py new file mode 100644 index 000000000..5e24c797b --- /dev/null +++ b/facenet_sandberg/train_insightface/config.py @@ -0,0 +1,60 @@ +# -*- coding:utf-8 -*- +import os + +from six.moves import configparser + + +class OperationalError(Exception): + """operation error.""" + + +class Dictionary(dict): + """ custom dict.""" + + def __getattr__(self, key): + return self.get(key, None) + + __setattr__ = dict.__setitem__ + __delattr__ = dict.__delitem__ + + +class Config: + def __init__(self, cfg="config.conf"): + """ + @param file_name: file name without extension. + @param cfg: configuration file path. + """ + config = configparser.ConfigParser() + config.read(cfg) + + for section in config.sections(): + setattr(self, section, Dictionary()) + for name, raw_value in config.items(section): + try: + # Ugly fix to avoid '0' and '1' to be parsed as a + # boolean value. + # We raise an exception to goto fail^w parse it + # as integer. + if config.get(section, name) in ["0", "1"]: + raise ValueError + + value = config.getboolean(section, name) + except ValueError: + try: + value = config.getint(section, name) + except ValueError: + value = config.get(section, name) + + setattr(getattr(self, section), name, value) + + def get(self, section): + """Get option. + @param section: section to fetch. + @return: option value. + """ + try: + return getattr(self, section) + except AttributeError as e: + raise OperationalError("Option %s is not found in " + "configuration, error: %s" % + (section, e)) diff --git a/facenet_sandberg/train_insightface/dataset_all.py b/facenet_sandberg/train_insightface/dataset_all.py new file mode 100644 index 000000000..6dad21a97 --- /dev/null +++ b/facenet_sandberg/train_insightface/dataset_all.py @@ -0,0 +1,111 @@ + +import sys +import time + +import numpy as np + +from config import Config +from dataset_list import FilelistReader +from dataset_multi import MultiDataset +from dataset_mxnet import MxReader +from mt_loader import MultiThreadLoader + + +def get_WebFace(config, count=-1): + ds = FilelistReader(config.get('WebFace').prefix, name='WebFace') + with open(config.get('WebFace').train_list, 'r') as f: + idx = 0 + for line in f.readlines(): + ds.add(line) + idx += 1 + if idx == count: + break + + ds.digest() + return ds + + +def get_ms1m(config): + ds = MxReader(config.get('ms1m').mxrec, name='ms1m') + ds.digest() + return ds + + +def get_vgg(config): + ds = MxReader(config.get('vgg').mxrec, name='vgg') + ds.digest() + return ds + + +def dataset_factory(name, config): + ''' + surport ms1m vgg WebFace YTF + ''' + dict = { + 'WebFace': get_WebFace, + 'ms1m': get_ms1m, + 'vgg': get_vgg, + } + return dict[name](config) + + +def build_dataset(config, list, balance=False, num_per_class=1): + ds = MultiDataset(balance, num_per_class=num_per_class) + for i in list: + name, weight = i[0], i[1] + ds_ = dataset_factory(name, config) + ds_.setBalance(balance) + ds.add(ds_, weight) + ds.verbose() + return ds + + +def test_ds(dg): + for i in range(10000): + func, param = dg.nextTask() + img, label = func(param) + print("%d label:%d [%d, %d]" % (i, label, img.shape[0], img.shape[1])) + + +def test_db(): + dataset_list = [] + dataset_list.append(('vgg', -1)) + # dataset_list.append(('ms1m', -1)) + dataset_list.append(('WebFace', -1)) + dataset = build_dataset(dataset_list, balance=True, num_per_class=4) + for i in range(1000000): + start = time.time() + func, param = dataset.nextTask() + img, label = func(param) + # x, y = dg.getBatch() + end = time.time() + # plot_fbank_cm(fbank_feat) + # print("x.shape:{0}, y.shape:{1}".format(x.shape, y.shape)) + print(label) + if i % 1000 == 0: + print('batch:%d t:%f ' % (i, end - start)) + + # print('t:%f' % (end - start) ) + + +if __name__ == '__main__': + test_db() + exit() + list_ = [] + list_.append(('vgg', 1)) + list_.append(('ms1m', -1)) + dataset = build_dataset(list_) + # test_ds(dataset) + dg = MultiThreadLoader(dataset, 5, 1) + print(dg.numOfClass()) + for i in range(100): + print('batch:%d' % (i)) + start = time.time() + x, y = dg.getBatch() + end = time.time() + # plot_fbank_cm(fbank_feat) + # print("x.shape:{0}, y.shape:{1}".format(x.shape, y.shape)) + print(y) + # print('t:%f' % (end - start) ) + dg.close() + # sys.exit() diff --git a/facenet_sandberg/train_insightface/dataset_list.py b/facenet_sandberg/train_insightface/dataset_list.py new file mode 100644 index 000000000..6a62c85f0 --- /dev/null +++ b/facenet_sandberg/train_insightface/dataset_list.py @@ -0,0 +1,131 @@ +# -*- coding:utf-8 -*- +from __future__ import print_function +import scipy +import numpy as np +import os +import sys +import time +import random +import math +import cv2 + + +def read_img(p): + path, y = p[0], p[1] + x = cv2.imread(path) + x = cv2.cvtColor(x, cv2.COLOR_RGB2BGR) + return x, y + + +class FilelistReader: + def __init__(self, datadir, balance=False, name='--'): + self.setname = name + self.datadir = datadir + self.celeb = [] + self.dict = {} + self.list = [] + self.balance = balance + self.cursor = 0 + self.cid = 0 + self.cbuf = [] + self.id_offset = 0 + + def setBalance(self, balance): + self.balance = balance + + def name(self): + return self.setname + + def add(self, line): + line = line.strip() + if line.find(',') > 0: + segs = line.split(',') + else: + segs = line.split() + # print(segs) + if len(segs) != 2: + return False + rel_path = segs[0] + label = int(segs[1]) + item = (rel_path, label) + # add to list + self.list.append(item) + + def digest(self): + random.shuffle(self.list) + self.dict = {} + self.cursor = 0 + for index in range(len(self.list)): + item = self.list[index] + label = item[1] + # add to dict[label] + if label not in self.dict.keys(): + self.dict[label] = [] + self.dict[label].append(index) + # update celeb + # print(self.dict) + keys = sorted(self.dict.keys()) + self.celeb = keys + self.cid = 0 + self.cbuf = [i for i in range(len(self.celeb))] + # random.shuffle(self.cbuf) + + def verbose(self): + print('Dataset:%8s size:%6d nclass:%d' % + (self.setname, self.size(), self.numOfClass())) + + def size(self): + return len(self.list) + + def numOfClass(self): + return len(self.celeb) + + def maxClass(self): + return max(self.celeb) + + def minClass(self): + return min(self.celeb) + + def getSample(self, index): + if self.balance: + # balanced + if self.cid >= len(self.celeb): + random.shuffle(self.cbuf) + self.cid = 0 + label = self.celeb[self.cbuf[self.cid]] + index = np.random.choice(self.dict[label]) + self.cid += 1 + item = self.list[index] + rel_path = item[0] + path = os.path.join(self.datadir, rel_path) + return path, item[1] + + def next(self): + ''' + Return audio path, and label + ''' + index = self.cursor + self.cursor += 1 + self.cursor %= self.size() + return self.getSample(index) + + def nextTask(self): + path, y = self.next() + return (read_img, (path, y)) + + def moreTask(self, y): + index = np.random.choice(self.dict[y]) + item = self.list[index] + rel_path = item[0] + path = os.path.join(self.datadir, rel_path) + return (read_img, (path, y)) + + def close(self): + self.celeb = [] + self.dict = {} + self.list = [] + print("%s closed" % (self.name())) + + +if __name__ == '__main__': + pass diff --git a/facenet_sandberg/train_insightface/dataset_multi.py b/facenet_sandberg/train_insightface/dataset_multi.py new file mode 100644 index 000000000..b219e75ce --- /dev/null +++ b/facenet_sandberg/train_insightface/dataset_multi.py @@ -0,0 +1,113 @@ +import random +import time + +import numpy as np + + +class MultiDataset: + def __init__(self, balance=False, num_per_class=1): + self.balance = balance + self.num_per_class = num_per_class + self.last_ds = None + self.last_y = -1 + self.last_n = 0 + self.datasets = [] + self.weights_ = [] + self.weights = [] + self.totalClass = 0 + self.totalSize = 0 + + def add(self, dataset, weight=-1): + self.datasets.append(dataset) + dataset.id_offset = self.totalClass + if weight < 0: + if self.balance: + weight = dataset.numOfClass() + else: + weight = dataset.size() + + self.weights_.append(weight) + self._normWeights() + self.totalClass += dataset.numOfClass() + self.totalSize += dataset.size() + + def _normWeights(self): + sw = float(sum(self.weights_)) + self.weights = [i / sw for i in self.weights_] + + def digest(self): + _normWeights() + + def size(self): + return self.totalSize + + def numOfClass(self): + return self.totalClass + + def maxClass(self): + return self.totalClass - 1 + + def minClass(self): + return 0 + + def verbose(self): + for i in range(len(self.datasets)): + dataset = self.datasets[i] + print( + 'Dataset:%8s size:%6d nclass:%6d %.3f' % + (dataset.name(), + dataset.size(), + dataset.numOfClass(), + self.weights[i])) + print('------------------------------------------------------------') + print('Dataset:%8s size:%6d nclass:%6d' % + ('total', self.size(), self.numOfClass())) + + def nextTask(self): + if self.last_y < 0 or self.last_n >= self.num_per_class: + self.last_y = -1 + # next class + ds = np.random.choice(self.datasets, p=self.weights) + func, param = ds.nextTask() + lp = list(param) + # y + self.last_y = lp[1] + self.last_n = 1 + self.last_ds = ds + lp[1] += ds.id_offset + param = tuple(lp) + return (func, param) + else: + func, param = self.last_ds.moreTask(self.last_y) + lp = list(param) + # y + self.last_n += 1 + lp[1] += self.last_ds.id_offset + param = tuple(lp) + return (func, param) + + def close(self): + for ds in self.datasets: + ds.close() + self.datasets = [] + + +if __name__ == '__main__': + ''' + y = [1,2,3,0] + y_train = np_utils.to_categorical(y, 4) + print(y_train) + exit() + ''' + dg = DataGeneratorMT(32, 1) + print(dg.numOfClass()) + for i in range(100000): + print('batch:%d' % (i)) + start = time.time() + x, y = dg.getBatch() + end = time.time() + # plot_fbank_cm(fbank_feat) + # print("x.shape:{0}, y.shape:{1}".format(x.shape, y.shape)) + print(y) + # print('t:%f' % (end - start) ) + dg.close() diff --git a/facenet_sandberg/train_insightface/dataset_mxnet.py b/facenet_sandberg/train_insightface/dataset_mxnet.py new file mode 100644 index 000000000..53fa64010 --- /dev/null +++ b/facenet_sandberg/train_insightface/dataset_mxnet.py @@ -0,0 +1,177 @@ +# -*- coding:utf-8 -*- +from __future__ import print_function + +import io +import math +import os +import random +import sys +import time + +import cv2 +import mxnet as mx +import numpy as np +import PIL.Image +from PIL import Image + + +def read_idx(p): + s = p[0] + label = p[1] + header, img = mx.recordio.unpack(s) + try: + label_ = int(header.label) + except Exception as e: + print(header.label) + # assert label == label_ + # img, label = p[0], p[1] + encoded_jpg_io = io.BytesIO(img) + image = PIL.Image.open(encoded_jpg_io) + np_img = np.array(image) + img = cv2.cvtColor(np_img, cv2.COLOR_RGB2BGR) + return img, label + + +class MxReader: + def __init__(self, datadir, balance=False, name='ms1m'): + self.setname = name + self.datadir = datadir + self.balance = balance + + idx_path = os.path.join(datadir, 'train.idx') + bin_path = os.path.join(datadir, 'train.rec') + imgrec = mx.recordio.MXIndexedRecordIO(idx_path, bin_path, 'r') + s = imgrec.read_idx(0) + header, _ = mx.recordio.unpack(s) + assert header.flag > 0 + max_index = int(header.label[0]) + min_seq_id = max_index + max_seq_id = int(header.label[1]) + identities = max_seq_id - min_seq_id + id2range = [] + for id in range(identities): + identity = id + min_seq_id + s = imgrec.read_idx(identity) + header, _ = mx.recordio.unpack(s) + a, b = int(header.label[0]), int(header.label[1]) + size = b - a + id2range.append((a, b, size)) + ''' + print(max_index) + print(max_seq_id) + print(id2range[0]) + print(id2range[1]) + print(id2range[-1]) + ''' + self.imgrec = imgrec + self.images = max_index - 1 + self.identities = identities + self.id2range = id2range + self.cbuf = [i for i in range(identities)] + self.cid = 0 + self.list = [i for i in range(1, max_index)] + self.cursor = 0 + self.id_offset = 0 + # shuffle + self.digest() + + def setBalance(self, balance): + self.balance = balance + + def name(self): + return self.setname + + def add(self, line): + pass + + def digest(self): + random.shuffle(self.cbuf) + self.cid = 0 + random.shuffle(self.list) + self.cursor = 0 + + def verbose(self): + print('Dataset:%8s size:%6d nclass:%d' % + (self.setname, self.size(), self.numOfClass())) + + def size(self): + return self.images + + def numOfClass(self): + return self.identities + + def maxClass(self): + return self.identities - 1 + + def minClass(self): + return 0 + + def findLabel(self, index): + low = 0 + high = len(self.id2range) + while low <= high: + mid = (low + high) / 2 + y = self.id2range[mid] + if index >= y[0] and index < y[1]: + return mid + elif index >= y[1]: + low = mid + 1 + else: + high = mid - 1 + + def getSample(self, index): + if self.balance: + # balanced + if self.cid >= self.identities: + random.shuffle(self.cbuf) + self.cid = 0 + label = self.cbuf[self.cid] + a, b, _ = self.id2range[label] + index = random.randint(a, b - 1) + self.cid += 1 + else: + index = self.list[index] + # index to label + label = self.findLabel(index) + + return index, label + + def next(self): + ''' + Return audio path, and label + ''' + index = self.cursor + self.cursor += 1 + self.cursor %= self.size() + return self.getSample(index) + + def nextTask(self): + index, label = self.next() + s = self.imgrec.read_idx(index) + return (read_idx, (s, label)) + + def moreTask(self, y): + a, b, _ = self.id2range[y] + index = random.randint(a, b - 1) + s = self.imgrec.read_idx(index) + return (read_idx, (s, y)) + + def close(self): + self.imgrec.close() + print("%s closed" % (self.name())) + + +if __name__ == '__main__': + ms1m = MxReader('/home/ysten/data/insightface/faces_ms1m_112x112') + ms1m.verbose() + s = ms1m.imgrec.read_idx(1) + read_idx((s, 0)) + s = ms1m.imgrec.read_idx(ms1m.list[-1]) + read_idx((s, 0)) + s = ms1m.imgrec.read_idx(ms1m.size()) + read_idx((s, 0)) + exit() + for i in range(10000): + func, param = ms1m.nextTask() + img, label = func(param) + print("%d label:%d [%d, %d]" % (i, label, img.shape[0], img.shape[1])) diff --git a/facenet_sandberg/train_insightface/distance.py b/facenet_sandberg/train_insightface/distance.py new file mode 100644 index 000000000..c757bdf20 --- /dev/null +++ b/facenet_sandberg/train_insightface/distance.py @@ -0,0 +1,35 @@ +# -*- coding:utf-8 -*- +import math +import numpy as np + + +def cosine_similarity(v1, v2): + # compute cosine similarity of v1 to v2: (v1 dot v2)/{||v1||*||v2||) + sumxx, sumxy, sumyy = 0, 0, 0 + for i in range(len(v1)): + x = v1[i] + y = v2[i] + sumxx += x * x + sumyy += y * y + sumxy += x * y + return sumxy / math.sqrt(sumxx * sumyy) + + +def cosine_distance(v1, v2): + return 1 - cosine_similarity(v1, v2) + + +def L2_distance(v1, v2): + return np.sqrt(np.sum(np.square(v1 - v2))) + + +def SSD_distance(v1, v2): + return np.sum(np.square(v1 - v2)) + + +def get_distance(dist_type): + loss_map = { + 'cosine': cosine_distance, + 'L2': L2_distance, + 'SSD': SSD_distance} + return loss_map[dist_type] diff --git a/facenet_sandberg/train_insightface/face_losses.py b/facenet_sandberg/train_insightface/face_losses.py new file mode 100644 index 000000000..840f147d5 --- /dev/null +++ b/facenet_sandberg/train_insightface/face_losses.py @@ -0,0 +1,218 @@ +import math + +import tensorflow as tf + + +def softmax_loss(embedding, labels, out_num, w_init=None, w_norm=False): + ''' + :param embedding: the input embedding vectors + :param labels: the input labels, the shape should be eg: (batch_size, 1) + :param out_num: output class num + :return: the final cacualted output, this output is send into the tf.nn.softmax directly + ''' + with tf.variable_scope('softmax_loss'): + # inputs and weights norm + # embedding_norm = tf.norm(embedding, axis=1, keep_dims=True) + # embedding = tf.div(embedding, embedding_norm, name='norm_embedding') + weights = tf.get_variable(name='embedding_weights', shape=(embedding.get_shape().as_list()[-1], out_num), + initializer=w_init, dtype=tf.float32) + if w_norm: + weights_norm = tf.norm(weights, axis=0, keep_dims=True) + weights = tf.div(weights, weights_norm, name='norm_weights') + # cos_theta - m + output = tf.matmul(embedding, weights, name='logit') + + return output + + +def arcface_loss(embedding, labels, out_num, w_init=None, s=64., m=0.5): + ''' + :param embedding: the input embedding vectors + :param labels: the input labels, the shape should be eg: (batch_size, 1) + :param s: scalar value default is 64 + :param out_num: output class num + :param m: the margin value, default is 0.5 + :return: the final cacualted output, this output is send into the tf.nn.softmax directly + ''' + cos_m = math.cos(m) + sin_m = math.sin(m) + mm = sin_m * m # issue 1 + threshold = math.cos(math.pi - m) + with tf.variable_scope('arc_loss'): + # inputs and weights norm + embedding_norm = tf.norm(embedding, axis=1, keep_dims=True) + embedding = tf.div(embedding, embedding_norm, name='norm_embedding') + weights = tf.get_variable(name='embedding_weights', shape=(embedding.get_shape().as_list()[-1], out_num), + initializer=w_init, dtype=tf.float32) + weights_norm = tf.norm(weights, axis=0, keep_dims=True) + weights = tf.div(weights, weights_norm, name='norm_weights') + # cos(theta+m) + cos_t = tf.matmul(embedding, weights, name='cos_t') + cos_t2 = tf.square(cos_t, name='cos_2') + sin_t2 = tf.subtract(1., cos_t2, name='sin_2') + sin_t = tf.sqrt(sin_t2, name='sin_t') + cos_mt = s * tf.subtract(tf.multiply(cos_t, cos_m), + tf.multiply(sin_t, sin_m), name='cos_mt') + + # this condition controls the theta+m should in range [0, pi] + # 0<=theta+m<=pi + # -m<=theta<=pi-m + cond_v = cos_t - threshold + cond = tf.cast(tf.nn.relu(cond_v, name='if_else'), dtype=tf.bool) + + keep_val = s * (cos_t - mm) + cos_mt_temp = tf.where(cond, cos_mt, keep_val) + + mask = tf.one_hot(labels, depth=out_num, name='one_hot_mask') + # mask = tf.squeeze(mask, 1) + inv_mask = tf.subtract(1., mask, name='inverse_mask') + + s_cos_t = tf.multiply(s, cos_t, name='scalar_cos_t') + loss = tf.reduce_sum(tf.multiply(cos_t, mask)) + + output = tf.add( + tf.multiply( + s_cos_t, inv_mask), tf.multiply( + cos_mt_temp, mask), name='arcface_loss_output') + return output, loss + + +def cosineface_losses(embedding, labels, out_num, w_init=None, s=30., m=0.4): + ''' + :param embedding: the input embedding vectors + :param labels: the input labels, the shape should be eg: (batch_size, 1) + :param s: scalar value, default is 30 + :param out_num: output class num + :param m: the margin value, default is 0.4 + :return: the final cacualted output, this output is send into the tf.nn.softmax directly + ''' + with tf.variable_scope('cosineface_loss'): + # inputs and weights norm + embedding_norm = tf.norm(embedding, axis=1, keep_dims=True) + embedding = tf.div(embedding, embedding_norm, name='norm_embedding') + weights = tf.get_variable(name='embedding_weights', shape=(embedding.get_shape().as_list()[-1], out_num), + initializer=w_init, dtype=tf.float32) + weights_norm = tf.norm(weights, axis=0, keep_dims=True) + weights = tf.div(weights, weights_norm, name='norm_weights') + # cos_theta - m + cos_t = tf.matmul(embedding, weights, name='cos_t') + cos_t_m = tf.subtract(cos_t, m, name='cos_t_m') + + mask = tf.one_hot(labels, depth=out_num, name='one_hot_mask') + inv_mask = tf.subtract(1., mask, name='inverse_mask') + + output = tf.add( + s * + tf.multiply( + cos_t, + inv_mask), + s * + tf.multiply( + cos_t_m, + mask), + name='cosineface_loss_output') + return output + + +def margin_loss(embedding, labels, out_num, w_init=None): + ''' + :param embedding: the input embedding vectors + :param labels: the input labels, the shape should be eg: (batch_size, 1) + :param s: scalar value, default is 30 + :param out_num: output class num + :param m: the margin value, default is 0.4 + :return: the final cacualted output, this output is send into the tf.nn.softmax directly + ''' + with tf.variable_scope('margin_loss'): + # inputs and weights norm + embedding_norm = tf.norm(embedding, axis=1, keep_dims=True) + embedding = tf.div(embedding, embedding_norm, name='norm_embedding') + weights = tf.get_variable(name='embedding_weights', shape=(embedding.get_shape().as_list()[-1], out_num), + initializer=w_init, dtype=tf.float32) + weights_norm = tf.norm(weights, axis=0, keep_dims=True) + weights = tf.div(weights, weights_norm, name='norm_weights') + # cos_theta + cos_t = tf.matmul(embedding, weights, name='cos_t') + mask = tf.one_hot(labels, depth=out_num, name='one_hot_mask') + inv_mask = tf.subtract(1., mask, name='inverse_mask') + # loss + batch_size = embedding.shape.as_list()[0] + + loss = tf.reduce_sum( + tf.multiply( + cos_t, + mask) - + tf.multiply( + cos_t, + inv_mask)) + loss = loss / batch_size / out_num + loss = 1 - loss + return cos_t, loss + + +def combine_loss_val(embedding, labels, w_init, out_num, + margin_a, margin_m, margin_b, s): + ''' + This code is contributed by RogerLo. Thanks for you contribution. + + :param embedding: the input embedding vectors + :param labels: the input labels, the shape should be eg: (batch_size, 1) + :param s: scalar value default is 64 + :param out_num: output class num + :param m: the margin value, default is 0.5 + :return: the final cacualted output, this output is send into the tf.nn.softmax directly + ''' + weights = tf.get_variable(name='embedding_weights', shape=(embedding.get_shape().as_list()[-1], out_num), + initializer=w_init, dtype=tf.float32) + weights_unit = tf.nn.l2_normalize(weights, axis=0) + embedding_unit = tf.nn.l2_normalize(embedding, axis=1) + cos_t = tf.matmul(embedding_unit, weights_unit) + ordinal = tf.constant( + list( + range( + 0, + embedding.get_shape().as_list()[0])), + tf.int64) + ordinal_y = tf.stack([ordinal, labels], axis=1) + zy = cos_t * s + sel_cos_t = tf.gather_nd(zy, ordinal_y) + if margin_a != 1.0 or margin_m != 0.0 or margin_b != 0.0: + if margin_a == 1.0 and margin_m == 0.0: + s_m = s * margin_b + new_zy = sel_cos_t - s_m + else: + cos_value = sel_cos_t / s + t = tf.acos(cos_value) + if margin_a != 1.0: + t = t * margin_a + if margin_m > 0.0: + t = t + margin_m + body = tf.cos(t) + if margin_b > 0.0: + body = body - margin_b + new_zy = body * s + updated_logits = tf.add( + zy, + tf.scatter_nd( + ordinal_y, + tf.subtract( + new_zy, + sel_cos_t), + zy.get_shape())) + loss = tf.reduce_mean( + tf.nn.sparse_softmax_cross_entropy_with_logits( + labels=labels, logits=updated_logits)) + predict_cls = tf.argmax(updated_logits, 1) + accuracy = tf.reduce_mean( + tf.cast( + tf.equal( + tf.cast( + predict_cls, tf.int64), tf.cast( + labels, tf.int64)), 'float')) + predict_cls_s = tf.argmax(zy, 1) + accuracy_s = tf.reduce_mean( + tf.cast( + tf.equal( + tf.cast( + predict_cls_s, tf.int64), tf.cast( + labels, tf.int64)), 'float')) diff --git a/facenet_sandberg/train_insightface/gen_train_list.py b/facenet_sandberg/train_insightface/gen_train_list.py new file mode 100644 index 000000000..a8e562f0c --- /dev/null +++ b/facenet_sandberg/train_insightface/gen_train_list.py @@ -0,0 +1,74 @@ +# -*- coding:utf-8 -*- +from __future__ import print_function + +import argparse +import os +import random +import sys + +import numpy as np +from tinytag import TinyTag + + +def gen_balanced(voxceleb2_dir, output_dir, max_per_class=-1e5): + output_list = output_dir + 'train_balance.txt' + id_name_list = output_dir + 'id_name_balance.csv' + voxdirlen = len(voxceleb2_dir) + 1 + id_list = os.listdir(voxceleb2_dir) + + # files + idx = 0 + id_count = [] + list_file = open(output_list, 'w') + for id in id_list: + subdir = voxceleb2_dir + '/' + id + seqs = os.listdir(subdir) + seq_list = [] + for seq in seqs: + seq_dir = subdir + '/' + seq + files = os.listdir(seq_dir) + seq_pass = [] + for fpath in files: + ftitle, fext = os.path.splitext(fpath) + # images + if fext.lower() in ['.jpg', '.png', '.bmp', '.jpeg']: + rel_path = id + '/' + seq + '/' + fpath + seq_pass.append(rel_path) + seq_list.append(seq_pass) + # each seq + valid = 0 + seq_prob = float(max_per_class) / len(seq_list) + for list in seq_list: + item_prob = seq_prob / len(list) + for item in list: + p = random.random() + if item_prob < 0 or p <= item_prob: + list_file.write('%d,%s\n' % (idx, item)) + valid += 1 + stats = (idx, id, valid) + id_count.append(stats) + print(stats) + idx += 1 + list_file.close() + + # write id_name_list + with open(id_name_list, 'w') as f: + for idx, id, valid, in id_count: + f.write('%d,%s,%d\n' % (idx, id, valid)) + + +def get_parser(): + parser = argparse.ArgumentParser(description='parameters test') + parser.add_argument('--src', default='.', help='source dir') + parser.add_argument('--dst', default='', help='dst dir') + parser.add_argument('--mpc', default='-1000', help='max per class') + args = parser.parse_args() + return args + + +if __name__ == '__main__': + args = get_parser() + voxceleb2_dir = args.src + output_dir = args.dst + max_per_class = float(args.mpc) + gen_balanced(voxceleb2_dir, output_dir, max_per_class) diff --git a/facenet_sandberg/train_insightface/mt_loader.py b/facenet_sandberg/train_insightface/mt_loader.py new file mode 100644 index 000000000..62bc2835b --- /dev/null +++ b/facenet_sandberg/train_insightface/mt_loader.py @@ -0,0 +1,148 @@ + +import logging +import random +import sys +import time +from multiprocessing import Process, Queue, Value + +import numpy as np + + +def transform_mirror(x): + if random.random() < 0.5: + x = np.fliplr(x) + return x + + +def crop_image(img1, imsize): + h, w, c = img1.shape + x1 = (w - imsize[0]) / 2 + y1 = (h - imsize[1]) / 2 + img1_ = img1[y1:(y1 + imsize[1]), x1:(x1 + imsize[0]), :] + return img1_ + + +def transform_crop_96x112(x): + return crop_image(x, (96, 112)) + + +transforms = [transform_crop_96x112] + + +def addTransform(self, func): + global transforms + if func not in transforms: + transforms.append(func) + + +def threadProc(todo, done, quit_signal): + global transforms + while quit_signal != 1: + try: + task = todo.get() + func = task[0] + param = task[1] + start = time.time() + x, y = func(param) + # do transform + for t in transforms: + x = t(x) + if quit_signal == 1: + break + done.put((x, y)) + # print("done id:%d" % y) + except Exception as e: + # time.sleep(0.5) + # print(task) + print(e) + sys.exit(0) + + +class MultiThreadLoader: + def __init__(self, dataset, batch_size, nworkers=1): + self.B = dataset + self.batch_size = batch_size + # todo list + self.maxsize = batch_size * 2 + self.todo = Queue(self.maxsize) + # done list + self.done = Queue(self.maxsize) + # create threads + self.feed() + self.quit_signal = Value('i', 0) + self.createThread(nworkers) + + def numOfClass(self): + return self.B.numOfClass() + + def size(self): + return self.B.size() + + def shuffle(self): + # shuffle + self.B.digest() + # prefeed + self.feed() + + def createThread(self, nworkers): + self.threads = [] + # self.db_lock = threading.Lock() + for i in range(nworkers): + t = Process( + target=threadProc, + args=( + self.todo, + self.done, + self.quit_signal), + name='worker/' + + str(i)) + t.start() + self.threads.append(t) + + def feed(self): + if self.todo.full(): + return + n = self.maxsize - self.todo.qsize() + for i in range(n): + task = self.B.nextTask() + self.todo.put(task) + # print("todo id:%d" % y) + + def fetch(self): + x_list = [] + y_list = [] + for i in range(self.batch_size): + x, y = self.done.get() + # print("fetch id:%d" % y) + x_list.append(x) + y_list.append(y) + x_batch = np.stack(x_list, axis=0) + y_batch = np.array(y_list) + # x_batch = np.transpose(x_batch,[0,2,1,3]) + return x_batch, y_batch + + def getBatch(self): + start = time.time() + ret = self.fetch() + end = time.time() + self.feed() + t2 = time.time() + # print('fetch:%f feed:%f' % (end - start, t2 - end) ) + return ret + + def close(self): + self.quit_signal = 1 + print("mtloader close") + + for t in self.threads: + try: + t.terminate() + t.process.signal(signal.SIGINT) + except BaseException: + pass + for t in self.threads: + print(t.is_alive()) + + self.threads = [] + # close datasets + self.B.close() diff --git a/facenet_sandberg/train_insightface/tensorflow_extractor.py b/facenet_sandberg/train_insightface/tensorflow_extractor.py new file mode 100644 index 000000000..b1ae76dc9 --- /dev/null +++ b/facenet_sandberg/train_insightface/tensorflow_extractor.py @@ -0,0 +1,30 @@ +# -*- coding:utf-8 -*- +import math +import os +import time + +import numpy as np +import tensorflow as tf +import tensorflow.contrib.slim as slim + + +class TensorflowExtractor: + def __init__(self, sess, embedding_tensor, batch_size, + feed_dict, input_placeholder): + # save context + self.embedding_tensor = embedding_tensor + self.batch_size = batch_size + self.sess = sess + self.feed_dict = feed_dict + self.input_placeholder = input_placeholder + + def extract(self, x_batch: np.ndarray): + self.feed_dict.setdefault(self.input_placeholder, None) + self.feed_dict[self.input_placeholder] = x_batch + feat = self.sess.run(self.embedding_tensor, feed_dict=self.feed_dict) + feat = np.array(feat) + feat = np.squeeze(feat) + return feat + + def close(self): + self.sess.close() diff --git a/facenet_sandberg/train_insightface/train_center.py b/facenet_sandberg/train_insightface/train_center.py new file mode 100644 index 000000000..e218048b8 --- /dev/null +++ b/facenet_sandberg/train_insightface/train_center.py @@ -0,0 +1,404 @@ +import argparse +import os +import pickle +import time +from enum import Enum, auto +from os.path import exists, join +from typing import List, Tuple, Union, cast + +import cv2 +import numpy as np +import tensorflow as tf +import tensorflow.contrib.slim as slim +import tensorlayer as tl +from facenet_sandberg.models.L_Resnet_E_IR_fix_issue9 import get_resnet +from sklearn.metrics import accuracy_score, precision_score, recall_score +from sklearn.metrics.pairwise import paired_distances +from sklearn.model_selection import KFold +from tensorflow.core.protobuf import config_pb2 + +from config import Config +from dataset_all import build_dataset +from EMA import EMA +from face_losses import arcface_loss, softmax_loss +from mt_loader import MultiThreadLoader +from tensorflow_extractor import TensorflowExtractor +from utils import * +from verification import extract_list_feature, verification + +FaceVector = List[float] +Match = Tuple[str, int, int] +Mismatch = Tuple[str, int, str, int] +Pair = Union[Match, Mismatch] +Path = Tuple[str, str] +Label = bool +Image = np.ndarray +ImagePairs = List[Tuple[Image, Image]] + + +def get_parser(): + parser = argparse.ArgumentParser(description='parameters to train net') + parser.add_argument('--config', default='config.ini', help='config file') + parser.add_argument( + '--net_depth', + default=50, + help='resnet depth, default is 50') + parser.add_argument( + '--epoch', + default=100000, + help='epoch to train the network') + parser.add_argument( + '--batch_size', + default=64, + help='batch size to train network') + parser.add_argument( + '--lr_steps', + default=[ + 40000, + 60000, + 80000], + help='learning rate to train network') + parser.add_argument( + '--momentum', + default=0.9, + help='learning alg momentum') + parser.add_argument( + '--weight_deacy', + default=1e-4, + help='learning alg momentum') + + parser.add_argument( + '--image_size', + default=[ + 112, + 112], + help='image size height, width') + parser.add_argument('--num_output', default=85164, help='the image size') + + parser.add_argument( + '--summary_path', + default='./output/summary', + help='the summary file save path') + parser.add_argument( + '--ckpt_path', + default='./output/ckpt', + help='the ckpt file save path') + parser.add_argument( + '--log_file_path', + default='./output/logs', + help='the ckpt file save path') + parser.add_argument( + '--saver_maxkeep', + default=100, + help='tf.train.Saver max keep ckpt files') + parser.add_argument( + '--log_device_mapping', + default=True, + help='show device placement log') + parser.add_argument( + '--summary_interval', + default=300, + help='interval to save summary') + parser.add_argument( + '--ckpt_interval', + default=20000, + help='intervals to save ckpt file') + parser.add_argument( + '--validate_interval', + default=2000, + help='intervals to save ckpt file') + parser.add_argument( + '--show_info_interval', + default=20, + help='intervals to save ckpt file') + # triplet + parser.add_argument( + '--model_path', + default=None, + help='baseline model ckpt') + parser.add_argument( + '--centre_weight', + default=0.3, + help='centre loss weight') + args = parser.parse_args() + return args + + +if __name__ == '__main__': + os.environ["CUDA_VISIBLE_DEVICES"] = "3" + args = get_parser() + model_path = args.model_path + best_lfw = 0 + count = 0 + if model_path: + _segs = model_path.split('_') + count = int(_segs[1]) + best_lfw = float(_segs[3]) + print('best lfw accuracy is %.5f' % best_lfw) + print('iteration:%d' % count) + + # 1. define global parameters + image_size = (args.image_size[1], args.image_size[0]) + global_step = tf.Variable( + name='global_step', + initial_value=0, + trainable=False) + inc_op = tf.assign_add(global_step, 1, name='increment_global_step') + images = tf.placeholder( + name='img_inputs', + shape=[ + None, + args.image_size[0], + args.image_size[1], + 3], + dtype=tf.float32) + labels = tf.placeholder(name='img_labels', shape=[None, ], dtype=tf.int64) + # trainable = tf.placeholder(name='trainable_bn', dtype=tf.bool) + dropout_rate = tf.placeholder(name='dropout_rate', dtype=tf.float32) + # load config + config = Config(args.config) + + # 2 prepare train datasets and test datasets by using tensorflow dataset api + # 2.1 train datasets + # the image is substracted 127.5 and multiplied 1/128. + # random flip left right + args.ckpt_path = './output/vgg-ms1m' + dataset_list = [] + dataset_list.append(('vgg', -1)) + dataset_list.append(('ms1m', -1)) + # dataset_list.append(('WebFace', -1)) + dataset = build_dataset(config, dataset_list, balance=False) + db = MultiThreadLoader(dataset, args.batch_size, 1) + args.num_output = db.numOfClass() + batch_per_epoch = db.size() / args.batch_size + + # 2.2 prepare validate datasets + # lfw + if config.get('lfw').enable: + pos_img, neg_img = load_lfw(config) + + # 3. define network, loss, optimize method, learning rate schedule, summary writer, saver + # 3.1 inference phase + print('Buiding net structure') + w_init_method = tf.contrib.layers.xavier_initializer(uniform=False) + net = get_resnet( + images, + args.net_depth, + type='ir', + w_init=w_init_method, + trainable=True, + keep_rate=dropout_rate) + + # 3.2 get arcface loss + logit, inner_sim = arcface_loss( + embedding=net.outputs, labels=labels, w_init=w_init_method, out_num=args.num_output) + # test net because of batch normal layer + tl.layers.set_name_reuse(True) + test_net = get_resnet( + images, + args.net_depth, + type='ir', + w_init=w_init_method, + trainable=False, + reuse=True, + keep_rate=dropout_rate) + embedding_tensor = test_net.outputs + + # 3.3 define the cross entropy + inference_loss = tf.reduce_mean( + tf.nn.sparse_softmax_cross_entropy_with_logits( + logits=logit, labels=labels)) + wd_loss = 0 + for weights in tl.layers.get_variables_with_name('W_conv2d', True, True): + wd_loss += tf.contrib.layers.l2_regularizer(args.weight_deacy)(weights) + for W in tl.layers.get_variables_with_name( + 'resnet_v1_50/E_DenseLayer/W', True, True): + wd_loss += tf.contrib.layers.l2_regularizer(args.weight_deacy)(W) + for weights in tl.layers.get_variables_with_name( + 'embedding_weights', True, True): + wd_loss += tf.contrib.layers.l2_regularizer(args.weight_deacy)(weights) + for gamma in tl.layers.get_variables_with_name('gamma', True, True): + wd_loss += tf.contrib.layers.l2_regularizer(args.weight_deacy)(gamma) + # for beta in tl.layers.get_variables_with_name('beta', True, True): + # wd_loss += tf.contrib.layers.l2_regularizer(args.weight_deacy)(beta) + for alphas in tl.layers.get_variables_with_name('alphas', True, True): + wd_loss += tf.contrib.layers.l2_regularizer(args.weight_deacy)(alphas) + # for bias in tl.layers.get_variables_with_name('resnet_v1_50/E_DenseLayer/b', True, True): + # wd_loss += tf.contrib.layers.l2_regularizer(args.weight_deacy)(bias) + + # 3.5 total losses + inner_loss = (1 - inner_sim / args.batch_size) * 64 * args.centre_weight + total_loss = inference_loss + wd_loss + inner_loss + + # 3.6 define the learning rate schedule + p = int(512.0 / args.batch_size) + lr_steps = [p * val for val in args.lr_steps] + # print(lr_steps) + lr = tf.train.piecewise_constant( + global_step, boundaries=lr_steps, values=[ + 0.001, 0.0005, 0.0003, 0.0001], name='lr_schedule') + + # 3.7 define the optimize method + opt = tf.train.MomentumOptimizer(learning_rate=lr, momentum=args.momentum) + + # 3.8 get train op + grads = opt.compute_gradients(total_loss) + update_ops = tf.get_collection(tf.GraphKeys.UPDATE_OPS) + with tf.control_dependencies(update_ops): + train_op = opt.apply_gradients(grads, global_step=global_step) + # train_op = opt.minimize(total_loss, global_step=global_step) + + # 3.9 define the inference accuracy used during validate or test + pred = tf.nn.softmax(logit) + train_acc = tf.reduce_mean( + tf.cast( + tf.equal( + tf.argmax( + pred, + axis=1), + labels), + dtype=tf.float32)) + + # 3.10 define sess + # sess = tf.Session() + sess_config = tf.ConfigProto( + allow_soft_placement=True, + log_device_placement=args.log_device_mapping) + sess_config.gpu_options.allow_growth = True + sess = tf.Session(config=sess_config) + + # 3.11 summary writer + summary = tf.summary.FileWriter(args.summary_path, sess.graph) + summaries = [] + + # # 3.11.1 add grad histogram op + for grad, var in grads: + if grad is not None: + summaries.append( + tf.summary.histogram( + var.op.name + + '/gradients', + grad)) + + # 3.11.2 add trainabel variable gradients + for var in tf.trainable_variables(): + summaries.append(tf.summary.histogram(var.op.name, var)) + + # 3.11.3 add loss summary + summaries.append(tf.summary.scalar('inference_loss', inference_loss)) + summaries.append(tf.summary.scalar('wd_loss', wd_loss)) + summaries.append(tf.summary.scalar('total_loss', total_loss)) + + # 3.11.4 add learning rate + summaries.append(tf.summary.scalar('leraning_rate', lr)) + summary_op = tf.summary.merge(summaries) + + # 3.12 saver + saver = tf.train.Saver(max_to_keep=args.saver_maxkeep) + + # 3.13 init all variables + sess.run(tf.global_variables_initializer()) + + # restore weights + learn_vars = tf.trainable_variables() + model_vars = [] + for var in learn_vars: + if var.name.find('_loss') < 0: + model_vars.append(var) + model_vars = learn_vars + # latest_checkpoint = get_latest_checkpoint(model_path) + latest_checkpoint = model_path + # latest_checkpoint = None + if latest_checkpoint is not None: + restore = slim.assign_from_checkpoint_fn( + latest_checkpoint, var_list=model_vars, ignore_missing_vars=True) + # restore(sess) + saver.restore(sess, latest_checkpoint) + + # 4 begin iteration + ema_iloss = EMA() + ema_tloss = EMA() + ema_acc = EMA() + print('\n\nTraining started ...') + for i in range(args.epoch): + for batch in range(batch_per_epoch): + try: + # get batch + images_train, labels_train = db.getBatch() + # print(images_train) + images_train = (np.float32(images_train) - 127.5) / 128 + # images_train = np.float32(images_train) + # print(images_train) + feed_dict = { + images: images_train, + labels: labels_train, + dropout_rate: 0.4} + feed_dict.update(net.all_drop) + start = time.time() + + _, total_loss_val, inference_loss_val, wd_loss_val, inner_loss_val, _, acc_val = \ + sess.run([train_op, total_loss, inference_loss, wd_loss, inner_loss, inc_op, train_acc], + feed_dict=feed_dict) + + end = time.time() + pre_sec = args.batch_size / (end - start) + inference_loss_val = ema_iloss(inference_loss_val) + total_loss_val = ema_tloss(total_loss_val) + acc_val = ema_acc(acc_val) + # print training information + if count > 0 and count % args.show_info_interval == 0: + print( + '%2d, %d/%d, loss:%.2f , iloss:%.2f, wloss:%.2f, inner:%.2f, acc:%.4f, speed:%.1f' % + (i, + batch, + batch_per_epoch, + total_loss_val, + inference_loss_val, + wd_loss_val, + inner_loss_val, + acc_val, + pre_sec)) + + # save summary + ''' + if count > 0 and count % args.summary_interval == 0: + feed_dict = {images: images_train, labels: labels_train, dropout_rate: 0.4} + feed_dict.update(net.all_drop) + summary_op_val = sess.run(summary_op, feed_dict=feed_dict) + summary.add_summary(summary_op_val, count) + ''' + + # lfw validate + is_model_good = False + model_lfw = 0 + if config.get( + 'lfw').enable and count > 0 and count % args.validate_interval == 0: + feed_dict_test = {dropout_rate: 1.0} + feed_dict_test.update(tl.utils.dict_to_one(net.all_drop)) + extractor = TensorflowExtractor( + sess, embedding_tensor, args.batch_size, feed_dict, images) + results, precision, _std = ver_test( + pos_img, neg_img, extractor) + print( + '------------------------------------------------------------') + print( + 'Precision on %s : %1.5f+-%1.5f' % + ('lfw', precision, _std)) + model_lfw = precision + if precision > best_lfw: + best_lfw = precision + if precision > 0.99: + is_model_good = True + print('best lfw accuracy is %.5f' % best_lfw) + print('\n') + + # save ckpt files + if is_model_good or count % args.ckpt_interval == 0: + filename = 'iter_%d_lfw_%.5f' % ( + count, model_lfw) + '.ckpt' + filename = os.path.join(args.ckpt_path, filename) + saver.save(sess, filename) + + count += 1 + except Exception as e: + print(e) diff --git a/facenet_sandberg/train_insightface/train_triplet.py b/facenet_sandberg/train_insightface/train_triplet.py new file mode 100644 index 000000000..cb1dd4824 --- /dev/null +++ b/facenet_sandberg/train_insightface/train_triplet.py @@ -0,0 +1,375 @@ +import argparse +import os +import pickle +import time + +import cv2 +import numpy as np +import tensorflow as tf +import tensorflow.contrib.slim as slim +import tensorlayer as tl +from facenet_sandberg.models.L_Resnet_E_IR_fix_issue9 import get_resnet +from tensorflow.core.protobuf import config_pb2 + +from config import Config +from dataset_all import build_dataset +from EMA import EMA +from mt_loader import MultiThreadLoader +from tensorflow_extractor import TensorflowExtractor +from triplet_loss import batch_all_triplet_loss, batch_hard_triplet_loss +from utils import * +from verification import extract_list_feature, verification + + +def get_parser(): + parser = argparse.ArgumentParser(description='parameters to train net') + parser.add_argument('--config', default='config.ini', help='config file') + parser.add_argument( + '--net_depth', + default=50, + help='resnet depth, default is 50') + parser.add_argument( + '--epoch', + default=100000, + help='epoch to train the network') + parser.add_argument( + '--batch_size', + default=64, + help='batch size to train network') + parser.add_argument( + '--lr_steps', + default=[ + 40000, + 60000, + 80000], + help='learning rate to train network') + parser.add_argument( + '--momentum', + default=0.9, + help='learning alg momentum') + parser.add_argument( + '--weight_deacy', + default=1e-4, + help='learning alg momentum') + + parser.add_argument( + '--image_size', + default=[ + 112, + 112], + help='image size height, width') + parser.add_argument('--num_output', default=85164, help='the image size') + + parser.add_argument( + '--summary_path', + default='./output/summary', + help='the summary file save path') + parser.add_argument( + '--ckpt_path', + default='./output/ckpt', + help='the ckpt file save path') + parser.add_argument( + '--log_file_path', + default='./output/logs', + help='the ckpt file save path') + parser.add_argument( + '--saver_maxkeep', + default=100, + help='tf.train.Saver max keep ckpt files') + parser.add_argument( + '--log_device_mapping', + default=False, + help='show device placement log') + parser.add_argument( + '--summary_interval', + default=300, + help='interval to save summary') + parser.add_argument( + '--ckpt_interval', + default=20000, + help='intervals to save ckpt file') + parser.add_argument( + '--validate_interval', + default=2000, + help='intervals to save ckpt file') + parser.add_argument( + '--show_info_interval', + default=20, + help='intervals to save ckpt file') + # triplet + parser.add_argument( + '--model_path', + default=None, + help='baseline model ckpt') + parser.add_argument('--triplet_margin', default=0.3, help='triplet margin') + parser.add_argument( + '--triplet_weight', + default=10, + help='triplet loss weight') + parser.add_argument( + '--sample_per_class', + default=4, + help='num of samples each class in a minibatch') + args = parser.parse_args() + return args + + +if __name__ == '__main__': + os.environ["CUDA_VISIBLE_DEVICES"] = "3" + args = get_parser() + model_path = args.model_path + best_lfw = 0 + count = 0 + if model_path: + _segs = model_path.split('_') + count = int(_segs[1]) + best_lfw = float(_segs[3]) + print('best lfw accuracy is %.5f' % best_lfw) + print('iteration:%d' % count) + + # 1. define global parameters + image_size = (args.image_size[1], args.image_size[0]) + global_step = tf.Variable( + name='global_step', + initial_value=0, + trainable=False) + inc_op = tf.assign_add(global_step, 1, name='increment_global_step') + images = tf.placeholder( + name='img_inputs', + shape=[ + None, + args.image_size[0], + args.image_size[1], + 3], + dtype=tf.float32) + labels = tf.placeholder(name='img_labels', shape=[None, ], dtype=tf.int64) + # trainable = tf.placeholder(name='trainable_bn', dtype=tf.bool) + dropout_rate = tf.placeholder(name='dropout_rate', dtype=tf.float32) + # load config + config = Config(args.config) + # 2 prepare train datasets and test datasets by using tensorflow dataset api + # 2.1 train datasets + # the image is substracted 127.5 and multiplied 1/128. + # random flip left right + args.ckpt_path = './output/vgg-triplet' + dataset_list = [] + dataset_list.append(('vgg', -1)) + # dataset_list.append(('ms1m', -1)) + # dataset_list.append(('WebFace', -1)) + dataset = build_dataset( + config, + dataset_list, + balance=False, + num_per_class=args.sample_per_class) + db = MultiThreadLoader(dataset, args.batch_size, 1) + args.num_output = db.numOfClass() + batch_per_epoch = db.size() / args.batch_size + # 2.2 prepare validate datasets + # lfw + if config.get('lfw').enable: + pos_img, neg_img = load_lfw(config) + + # 3. define network, loss, optimize method, learning rate schedule, summary writer, saver + # 3.1 inference phase + print('Buiding net structure') + w_init_method = tf.contrib.layers.xavier_initializer(uniform=False) + net = get_resnet( + images, + args.net_depth, + type='ir', + w_init=w_init_method, + trainable=True, + keep_rate=dropout_rate) + # 3.2 get arcface loss + logit = net.outputs + logit_norm = tf.norm(logit, axis=1, keep_dims=True) + logit = tf.div(logit, logit_norm, name='norm_logit') + + # test net because of batch normal layer + tl.layers.set_name_reuse(True) + test_net = get_resnet( + images, + args.net_depth, + type='ir', + w_init=w_init_method, + trainable=False, + reuse=True, + keep_rate=dropout_rate) + embedding_tensor = test_net.outputs + # 3.3 define the cross entropy + t_loss = batch_hard_triplet_loss( + labels, logit, margin=args.triplet_margin) * args.triplet_weight + + wd_loss = 0 + for weights in tl.layers.get_variables_with_name('W_conv2d', True, True): + wd_loss += tf.contrib.layers.l2_regularizer(args.weight_deacy)(weights) + for W in tl.layers.get_variables_with_name( + 'resnet_v1_50/E_DenseLayer/W', True, True): + wd_loss += tf.contrib.layers.l2_regularizer(args.weight_deacy)(W) + for weights in tl.layers.get_variables_with_name( + 'embedding_weights', True, True): + wd_loss += tf.contrib.layers.l2_regularizer(args.weight_deacy)(weights) + for gamma in tl.layers.get_variables_with_name('gamma', True, True): + wd_loss += tf.contrib.layers.l2_regularizer(args.weight_deacy)(gamma) + # for beta in tl.layers.get_variables_with_name('beta', True, True): + # wd_loss += tf.contrib.layers.l2_regularizer(args.weight_deacy)(beta) + for alphas in tl.layers.get_variables_with_name('alphas', True, True): + wd_loss += tf.contrib.layers.l2_regularizer(args.weight_deacy)(alphas) + # for bias in tl.layers.get_variables_with_name('resnet_v1_50/E_DenseLayer/b', True, True): + # wd_loss += tf.contrib.layers.l2_regularizer(args.weight_deacy)(bias) + + # 3.5 total losses + total_loss = t_loss + wd_loss + # 3.6 define the learning rate schedule + p = int(512.0 / args.batch_size) + lr_steps = [p * val for val in args.lr_steps] + print(lr_steps) + lr = tf.train.piecewise_constant( + global_step, boundaries=lr_steps, values=[ + 0.001, 0.0005, 0.0003, 0.0001], name='lr_schedule') + # 3.7 define the optimize method + opt = tf.train.MomentumOptimizer(learning_rate=lr, momentum=args.momentum) + # 3.8 get train op + grads = opt.compute_gradients(total_loss) + update_ops = tf.get_collection(tf.GraphKeys.UPDATE_OPS) + with tf.control_dependencies(update_ops): + train_op = opt.apply_gradients(grads, global_step=global_step) + # train_op = opt.minimize(total_loss, global_step=global_step) + # 3.10 define sess + # sess = tf.Session() + gpu_config = tf.ConfigProto( + allow_soft_placement=True, + log_device_placement=args.log_device_mapping) + gpu_config.gpu_options.allow_growth = True + sess = tf.Session(config=gpu_config) + + # 3.11 summary writer + summary = tf.summary.FileWriter(args.summary_path, sess.graph) + summaries = [] + + # # 3.11.1 add grad histogram op + for grad, var in grads: + if grad is not None: + summaries.append( + tf.summary.histogram( + var.op.name + + '/gradients', + grad)) + + # 3.11.2 add trainabel variable gradients + for var in tf.trainable_variables(): + summaries.append(tf.summary.histogram(var.op.name, var)) + + # 3.11.3 add loss summary + summaries.append(tf.summary.scalar('t_loss', t_loss)) + summaries.append(tf.summary.scalar('wd_loss', wd_loss)) + summaries.append(tf.summary.scalar('total_loss', total_loss)) + + # 3.11.4 add learning rate + summaries.append(tf.summary.scalar('leraning_rate', lr)) + summary_op = tf.summary.merge(summaries) + + # 3.12 saver + saver = tf.train.Saver(max_to_keep=args.saver_maxkeep) + + # 3.13 init all variables + sess.run(tf.global_variables_initializer()) + + # restore weights + learn_vars = tf.trainable_variables() + model_vars = [] + for var in learn_vars: + if var.name.find('_loss') < 0: + model_vars.append(var) + model_vars = learn_vars + # latest_checkpoint = get_latest_checkpoint(model_path) + latest_checkpoint = model_path + # latest_checkpoint = None + if latest_checkpoint is not None: + restore = slim.assign_from_checkpoint_fn( + latest_checkpoint, var_list=model_vars, ignore_missing_vars=True) + restore(sess) + + # 4 begin iteration + ema_iloss = EMA() + ema_tloss = EMA() + ema_acc = EMA() + print('\n\nTraining started ...') + for i in range(args.epoch): + for batch in range(batch_per_epoch): + try: + # get batch + images_train, labels_train = db.getBatch() + # print(images_train) + images_train = (np.float32(images_train) - 127.5) / 128 + # images_train = np.float32(images_train) + # print(images_train) + feed_dict = { + images: images_train, + labels: labels_train, + dropout_rate: 0.4} + feed_dict.update(net.all_drop) + start = time.time() + + _, total_loss_val, inference_loss_val, wd_loss_val, _ = \ + sess.run([train_op, total_loss, t_loss, wd_loss, inc_op], + feed_dict=feed_dict) + + end = time.time() + pre_sec = args.batch_size / (end - start) + inference_loss_val = ema_iloss(inference_loss_val) + total_loss_val = ema_tloss(total_loss_val) + + # print training information + if count > 0 and count % args.show_info_interval == 0: + print( + 'epoch:%d, %d/%d, loss:%.2f , iloss:%.2f, wloss:%.2f, speed:%.1f' % + (i, + batch, + batch_per_epoch, + total_loss_val, + inference_loss_val, + wd_loss_val, + pre_sec)) + count += 1 + + # save summary + ''' + if count > 0 and count % args.summary_interval == 0: + feed_dict = {images: images_train, labels: labels_train, dropout_rate: 0.4} + feed_dict.update(net.all_drop) + summary_op_val = sess.run(summary_op, feed_dict=feed_dict) + summary.add_summary(summary_op_val, count) + ''' + + # lfw validate + is_model_good = False + model_lfw = 0 + if count > 0 and count % args.validate_interval == 0: + feed_dict_test = {dropout_rate: 1.0} + feed_dict_test.update(tl.utils.dict_to_one(net.all_drop)) + extractor = TensorflowExtractor( + sess, embedding_tensor, args.batch_size, feed_dict, images) + results, precision, _std = ver_test( + pos_img, neg_img, extractor) + print( + '------------------------------------------------------------') + print( + 'Precision on %s : %1.5f+-%1.5f' % + ('lfw', precision, _std)) + model_lfw = precision + if precision > best_lfw: + best_lfw = precision + if precision > 0.99: + is_model_good = True + print('best lfw accuracy is %.5f' % best_lfw) + print('\n') + + # save ckpt files + if is_model_good: + filename = 'iter_%d_lfw_%.5f' % ( + count, model_lfw) + '.ckpt' + filename = os.path.join(args.ckpt_path, filename) + saver.save(sess, filename) + except Exception as e: + print(e) diff --git a/facenet_sandberg/train_insightface/triplet_loss.py b/facenet_sandberg/train_insightface/triplet_loss.py new file mode 100644 index 000000000..5c43b152e --- /dev/null +++ b/facenet_sandberg/train_insightface/triplet_loss.py @@ -0,0 +1,261 @@ +"""Define functions to create the triplet loss with online triplet mining.""" + +import tensorflow as tf + + +def _pairwise_distances(embeddings, squared=False): + """Compute the 2D matrix of distances between all the embeddings. + + Args: + embeddings: tensor of shape (batch_size, embed_dim) + squared: Boolean. If true, output is the pairwise squared euclidean distance matrix. + If false, output is the pairwise euclidean distance matrix. + + Returns: + pairwise_distances: tensor of shape (batch_size, batch_size) + """ + # Get the dot product between all embeddings + # shape (batch_size, batch_size) + dot_product = tf.matmul(embeddings, tf.transpose(embeddings)) + + # Get squared L2 norm for each embedding. We can just take the diagonal of `dot_product`. + # This also provides more numerical stability (the diagonal of the result will be exactly 0). + # shape (batch_size,) + square_norm = tf.diag_part(dot_product) + + # Compute the pairwise distance matrix as we have: + # ||a - b||^2 = ||a||^2 - 2 + ||b||^2 + # shape (batch_size, batch_size) + distances = tf.expand_dims(square_norm, 1) - 2.0 * \ + dot_product + tf.expand_dims(square_norm, 0) + + # Because of computation errors, some distances might be negative so we + # put everything >= 0.0 + distances = tf.maximum(distances, 0.0) + + if not squared: + # Because the gradient of sqrt is infinite when distances == 0.0 (ex: on the diagonal) + # we need to add a small epsilon where distances == 0.0 + mask = tf.to_float(tf.equal(distances, 0.0)) + distances = distances + mask * 1e-16 + + distances = tf.sqrt(distances) + + # Correct the epsilon added: set the distances on the mask to be + # exactly 0.0 + distances = distances * (1.0 - mask) + + return distances + + +def _get_anchor_positive_triplet_mask(labels): + """Return a 2D mask where mask[a, p] is True iff a and p are distinct and have same label. + + Args: + labels: tf.int32 `Tensor` with shape [batch_size] + + Returns: + mask: tf.bool `Tensor` with shape [batch_size, batch_size] + """ + # Check that i and j are distinct + indices_equal = tf.cast(tf.eye(tf.shape(labels)[0]), tf.bool) + indices_not_equal = tf.logical_not(indices_equal) + + # Check if labels[i] == labels[j] + # Uses broadcasting where the 1st argument has shape (1, batch_size) and + # the 2nd (batch_size, 1) + labels_equal = tf.equal( + tf.expand_dims( + labels, 0), tf.expand_dims( + labels, 1)) + + # Combine the two masks + mask = tf.logical_and(indices_not_equal, labels_equal) + + return mask + + +def _get_anchor_negative_triplet_mask(labels): + """Return a 2D mask where mask[a, n] is True iff a and n have distinct labels. + + Args: + labels: tf.int32 `Tensor` with shape [batch_size] + + Returns: + mask: tf.bool `Tensor` with shape [batch_size, batch_size] + """ + # Check if labels[i] != labels[k] + # Uses broadcasting where the 1st argument has shape (1, batch_size) and + # the 2nd (batch_size, 1) + labels_equal = tf.equal( + tf.expand_dims( + labels, 0), tf.expand_dims( + labels, 1)) + + mask = tf.logical_not(labels_equal) + + return mask + + +def _get_triplet_mask(labels): + """Return a 3D mask where mask[a, p, n] is True iff the triplet (a, p, n) is valid. + + A triplet (i, j, k) is valid if: + - i, j, k are distinct + - labels[i] == labels[j] and labels[i] != labels[k] + + Args: + labels: tf.int32 `Tensor` with shape [batch_size] + """ + # Check that i, j and k are distinct + indices_equal = tf.cast(tf.eye(tf.shape(labels)[0]), tf.bool) + indices_not_equal = tf.logical_not(indices_equal) + i_not_equal_j = tf.expand_dims(indices_not_equal, 2) + i_not_equal_k = tf.expand_dims(indices_not_equal, 1) + j_not_equal_k = tf.expand_dims(indices_not_equal, 0) + + distinct_indices = tf.logical_and( + tf.logical_and( + i_not_equal_j, + i_not_equal_k), + j_not_equal_k) + + # Check if labels[i] == labels[j] and labels[i] != labels[k] + label_equal = tf.equal( + tf.expand_dims( + labels, 0), tf.expand_dims( + labels, 1)) + i_equal_j = tf.expand_dims(label_equal, 2) + i_equal_k = tf.expand_dims(label_equal, 1) + + valid_labels = tf.logical_and(i_equal_j, tf.logical_not(i_equal_k)) + + # Combine the two masks + mask = tf.logical_and(distinct_indices, valid_labels) + + return mask + + +def batch_all_triplet_loss(labels, embeddings, margin, squared=False): + """Build the triplet loss over a batch of embeddings. + + We generate all the valid triplets and average the loss over the positive ones. + + Args: + labels: labels of the batch, of size (batch_size,) + embeddings: tensor of shape (batch_size, embed_dim) + margin: margin for triplet loss + squared: Boolean. If true, output is the pairwise squared euclidean distance matrix. + If false, output is the pairwise euclidean distance matrix. + + Returns: + triplet_loss: scalar tensor containing the triplet loss + """ + # Get the pairwise distance matrix + pairwise_dist = _pairwise_distances(embeddings, squared=squared) + + # shape (batch_size, batch_size, 1) + anchor_positive_dist = tf.expand_dims(pairwise_dist, 2) + assert anchor_positive_dist.shape[2] == 1, "{}".format( + anchor_positive_dist.shape) + # shape (batch_size, 1, batch_size) + anchor_negative_dist = tf.expand_dims(pairwise_dist, 1) + assert anchor_negative_dist.shape[1] == 1, "{}".format( + anchor_negative_dist.shape) + + # Compute a 3D tensor of size (batch_size, batch_size, batch_size) + # triplet_loss[i, j, k] will contain the triplet loss of anchor=i, positive=j, negative=k + # Uses broadcasting where the 1st argument has shape (batch_size, batch_size, 1) + # and the 2nd (batch_size, 1, batch_size) + triplet_loss = anchor_positive_dist - anchor_negative_dist + triplet_loss = triplet_loss + margin + + # Put to zero the invalid triplets + # (where label(a) != label(p) or label(n) == label(a) or a == p) + mask = _get_triplet_mask(labels) + mask = tf.to_float(mask) + triplet_loss = tf.multiply(mask, triplet_loss) + + # Remove negative losses (i.e. the easy triplets) + triplet_loss = tf.maximum(triplet_loss, 0.0) + + # Count number of positive triplets (where triplet_loss > 0) + valid_triplets = tf.to_float(tf.greater(triplet_loss, 1e-16)) + num_positive_triplets = tf.reduce_sum(valid_triplets) + num_valid_triplets = tf.reduce_sum(mask) + fraction_positive_triplets = num_positive_triplets / \ + (num_valid_triplets + 1e-16) + + # Get final mean triplet loss over the positive valid triplets + triplet_loss = tf.reduce_sum(triplet_loss) / \ + (num_positive_triplets + 1e-16) + + return triplet_loss, fraction_positive_triplets + + +def batch_hard_triplet_loss(labels, embeddings, margin, squared=False): + """Build the triplet loss over a batch of embeddings. + + For each anchor, we get the hardest positive and hardest negative to form a triplet. + + Args: + labels: labels of the batch, of size (batch_size,) + embeddings: tensor of shape (batch_size, embed_dim) + margin: margin for triplet loss + squared: Boolean. If true, output is the pairwise squared euclidean distance matrix. + If false, output is the pairwise euclidean distance matrix. + + Returns: + triplet_loss: scalar tensor containing the triplet loss + """ + # Get the pairwise distance matrix + pairwise_dist = _pairwise_distances(embeddings, squared=squared) + + # For each anchor, get the hardest positive + # First, we need to get a mask for every valid positive (they should have + # same label) + mask_anchor_positive = _get_anchor_positive_triplet_mask(labels) + mask_anchor_positive = tf.to_float(mask_anchor_positive) + + # We put to 0 any element where (a, p) is not valid (valid if a != p and + # label(a) == label(p)) + anchor_positive_dist = tf.multiply(mask_anchor_positive, pairwise_dist) + + # shape (batch_size, 1) + hardest_positive_dist = tf.reduce_max( + anchor_positive_dist, axis=1, keep_dims=True) + tf.summary.scalar( + "hardest_positive_dist", + tf.reduce_mean(hardest_positive_dist)) + + # For each anchor, get the hardest negative + # First, we need to get a mask for every valid negative (they should have + # different labels) + mask_anchor_negative = _get_anchor_negative_triplet_mask(labels) + mask_anchor_negative = tf.to_float(mask_anchor_negative) + + # We add the maximum value in each row to the invalid negatives (label(a) + # == label(n)) + max_anchor_negative_dist = tf.reduce_max( + pairwise_dist, axis=1, keep_dims=True) + anchor_negative_dist = pairwise_dist + \ + max_anchor_negative_dist * (1.0 - mask_anchor_negative) + + # shape (batch_size,) + hardest_negative_dist = tf.reduce_min( + anchor_negative_dist, axis=1, keep_dims=True) + tf.summary.scalar( + "hardest_negative_dist", + tf.reduce_mean(hardest_negative_dist)) + + # Combine biggest d(a, p) and smallest d(a, n) into final triplet loss + triplet_loss = tf.maximum( + hardest_positive_dist - + hardest_negative_dist + + margin, + 0.0) + + # Get final mean triplet loss + triplet_loss = tf.reduce_mean(triplet_loss) + + return triplet_loss diff --git a/facenet_sandberg/train_insightface/utils.py b/facenet_sandberg/train_insightface/utils.py new file mode 100644 index 000000000..5110c96f6 --- /dev/null +++ b/facenet_sandberg/train_insightface/utils.py @@ -0,0 +1,175 @@ +import argparse +import os +import pickle +import time +from enum import Enum, auto +from os.path import exists, join +from typing import List, Tuple, Union, cast + +import cv2 +import numpy as np +import tensorflow as tf +import tensorflow.contrib.slim as slim +import tensorlayer as tl + +from config import Config +from tensorflow_extractor import TensorflowExtractor +from verification import extract_list_feature, verification + +FaceVector = List[float] +Match = Tuple[str, int, int] +Mismatch = Tuple[str, int, str, int] +Pair = Union[Match, Mismatch] +Path = Tuple[str, str] +Label = bool +Image = np.ndarray +ImagePairs = List[Tuple[Image, Image]] + + +def load_lfw(config: Config) -> Tuple[ImagePairs, ImagePairs]: + print('Loading lfw data:') + pairs, _, num_matches_mismatches = _read_pairs(config.get('lfw').pairs) + pair_paths, labels = _get_paths_and_labels( + config.get('lfw').image_dir, pairs) + pos_img, neg_img = split( + config.get('lfw').image_dir, pair_paths, labels, image_size) + + # crop image + pos_img = crop_image_list(pos_img, image_size) + neg_img = crop_image_list(neg_img, image_size) + return pos_img, neg_img + + +def ver_test(pos_list: ImagePairs, neg_list: ImagePairs, + extractor: TensorflowExtractor): + pos_feat = extract_list_feature( + extractor, + pos_list, + len(pos_list), + extractor.batch_size) + neg_feat = extract_list_feature( + extractor, + neg_list, + len(neg_list), + extractor.batch_size) + _acc, _std, _threshold, _pos, _neg, _accu_list = verification( + pos_feat, neg_feat, 'cosine') + return _accu_list, _acc, _std + + +def crop_image_list( + img_list: List[Tuple[Image, Image]], imsize: Tuple[int, int]): + out_list = [] + h, w, c = img_list[0][0].shape + x1 = (w - imsize[0]) // 2 + y1 = (h - imsize[1]) // 2 + for pair in img_list: + img1 = pair[0] + img2 = pair[1] + img1 = img1[y1:(y1 + imsize[1]), x1:(x1 + imsize[0]), :] + img1 = (np.float32(img1) - 127.5) / 128 + img2 = img2[y1:(y1 + imsize[1]), x1:(x1 + imsize[0]), :] + img2 = (np.float32(img2) - 127.5) / 128 + out_list.append([img1, img2]) + return out_list + + +def _read_pairs(pairs_filename: str) -> Tuple[List[Pair], int, int]: + pairs = [] + with open(pairs_filename, 'r') as pair_file: + num_sets, num_matches_mismatches = [int(i) + for i in next(pair_file).split()] + for line_num, line in enumerate(pair_file): + pair = cast(Pair, tuple([int(i) if i.isdigit() else i + for i in line.strip().split()])) + pairs.append(pair) + return pairs, num_sets, num_matches_mismatches + + +def _get_paths_and_labels(image_dir: str, + pairs: List[Pair]) -> Tuple[List[Path], List[Label]]: + paths = [] + labels = [] + for pair in pairs: + _add_extension = (lambda rel_image_path, image_dir: + f'{rel_image_path}.jpg' + if exists(join(image_dir, f'{rel_image_path}.jpg')) + else f'{rel_image_path}.png') + if len(pair) == 3: + person, image_num_0, image_num_1 = cast(Match, pair) + rel_image_path_no_ext = join(person, + f'{person}_{image_num_0:04d}') + rel_image_path_0 = _add_extension(rel_image_path_no_ext, image_dir) + rel_image_path_no_ext = join(person, + f'{person}_{image_num_1:04d}') + rel_image_path_1 = _add_extension(rel_image_path_no_ext, image_dir) + is_same_person = True + elif len(pair) == 4: + person_0, image_num_0, person_1, image_num_1 = cast(Mismatch, pair) + rel_image_path_no_ext = join(person_0, + f'{person_0}_{image_num_0:04d}') + rel_image_path_0 = _add_extension(rel_image_path_no_ext, image_dir) + rel_image_path_no_ext = join(person_1, + f'{person_1}_{image_num_1:04d}') + rel_image_path_1 = _add_extension(rel_image_path_no_ext, image_dir) + is_same_person = False + if (exists(join(image_dir, rel_image_path_0)) + and + exists(join(image_dir, rel_image_path_1))): + paths.append((rel_image_path_0, rel_image_path_1)) + labels.append(is_same_person) + else: + err = f'{rel_image_path_no_ext} with .jpg or .png extensions' + raise FileNotFoundError(err) + return paths, labels + + +def split(base_path: str, + paths: List[Path], + labels: List[Label], + image_size: Tuple[int, + int]) -> Tuple[ImagePairs, ImagePairs]: + pos = [] + neg = [] + for index in range(len(paths)): + img1 = cv2.imread(os.path.join(base_path, paths[index][0])) + img1 = cv2.resize(img1, (image_size[0], image_size[1])) + img2 = cv2.imread(os.path.join(base_path, paths[index][1])) + img2 = cv2.resize(img2, (image_size[0], image_size[1])) + if labels[index]: + pos.append((img1, img2)) + else: + neg.append((img1, img2)) + return pos, neg + + +def load_image_list(pair_list): + img_list = [] + for pair in pair_list: + # skip invalid pairs + if not os.path.exists(pair[0]) or not os.path.exists(pair[1]): + continue + img1 = cv2.imread(pair[0]) + img2 = cv2.imread(pair[1]) + img_list.append([img1, img2, pair[0], pair[1]]) + return img_list + + +def load_ytf_pairs(path, prefix): + pos_list_ = [] + neg_list_ = [] + with open(path, 'r') as f: + for line in f.readlines(): + line = line.strip() + flag, a, b = line.split(',') + flag = int(flag) + a = os.path.join(prefix, a) + b = os.path.join(prefix, b) + if flag == 1: + pos_list_.append([a, b]) + else: + neg_list_.append([a, b]) + + pos_img = load_image_list(pos_list_) + neg_img = load_image_list(neg_list_) + return pos_img, neg_img diff --git a/facenet_sandberg/train_insightface/verification.py b/facenet_sandberg/train_insightface/verification.py new file mode 100644 index 000000000..4d6e67729 --- /dev/null +++ b/facenet_sandberg/train_insightface/verification.py @@ -0,0 +1,174 @@ +# -*- coding:utf-8 -*- +from __future__ import absolute_import, division, print_function + +import argparse +import math +import os +import pickle +import sys + +import numpy as np +import progressbar as pb + +from util.distance import get_distance + + +def find_threshold_sort(pos, neg): + pos_list = sorted(pos, key=lambda x: x[0]) + neg_list = sorted(neg, key=lambda x: x[0], reverse=True) + pos_count = len(pos_list) + neg_count = len(neg_list) + correct = 0 + threshold = 0 + # print('sort pos') + # print(pos_list) + # print('sort neg') + # print(neg_list) + for i in range(min(pos_count, neg_count)): + if pos_list[i][0] > neg_list[i][0]: + correct = i + threshold = (pos_list[i][0] + neg_list[i][0]) / 2 + break + # print("%d/%d" % (correct, pos_count)) + precision = (correct * 2.0) / (pos_count + neg_count) + return precision, threshold + + +def get_accuracy(pos_list, neg_list, threshold): + pos_count = len(pos_list) + neg_count = len(neg_list) + correct = 0 + for i in range(pos_count): + if pos_list[i][0] < threshold: + correct += 1 + + for i in range(neg_count): + if neg_list[i][0] > threshold: + correct += 1 + precision = float(correct) / (pos_count + neg_count) + return precision + + +def best_threshold(pos_list, neg_list, thrNum=10000): + ts = np.linspace(-1, 1, thrNum * 2 + 1) + best_acc = 0 + best_t = 0 + for t in ts: + acc = get_accuracy(pos_list, neg_list, t) + if acc > best_acc: + best_acc = acc + best_t = t + return best_acc, best_t + + +def test_kfold(pos_list, neg_list, k=10): + fold_size = len(pos_list) // k + sum_acc = 0 + sum_thresh = 0 + sum_n = 0 + accu_list = [] + for i in range(k): + val_pos = [] + val_neg = [] + test_pos = [] + test_neg = [] + for j in range(len(pos_list)): + fi = j // fold_size + if fi != i: + val_pos.append(pos_list[j]) + val_neg.append(neg_list[j]) + else: + test_pos.append(pos_list[j]) + test_neg.append(neg_list[j]) + precision, threshold = find_threshold_sort(val_pos, val_neg) + accuracy = get_accuracy(test_pos, test_neg, threshold) + accu_list.append(accuracy) + sum_acc += accuracy + sum_thresh += threshold + sum_n += 1 + # verbose + print('precision:%.4f threshold:%f' % (accuracy, threshold)) + return sum_acc / sum_n, sum_thresh / sum_n, accu_list + + +def compute_distance(pos_list, neg_list, dist_type='L2'): + ''' + [ + [feat1, feat2, ..], + ... + [feat1, feat2, ..] + ] + ''' + # distance measure + if isinstance(dist_type, str): + dist_func = get_distance(dist_type) + else: + dist_func = dist_type + # get dist + pos_dist = [] + for i in pos_list: + dist = dist_func(i[0], i[1]) + pos_dist.append([dist]) + + neg_dist = [] + for i in neg_list: + dist = dist_func(i[0], i[1]) + neg_dist.append([dist]) + return pos_dist, neg_dist + + +def verification(pos_list, neg_list, dist_type='L2'): + ''' + [ + [feat1, feat2, ..], + ... + [feat1, feat2, ..] + ] + ''' + pos_dist, neg_dist = compute_distance(pos_list, neg_list, dist_type) + precision, threshold, accu_list = test_kfold(pos_dist, neg_dist) + pos = sorted(pos_dist, key=lambda x: x[0]) + neg = sorted(neg_dist, key=lambda x: x[0], reverse=True) + pos = [x[0] for x in pos] + neg = [x[0] for x in neg] + acc, std = np.mean(accu_list), np.std(accu_list) + + return acc, std, threshold, pos, neg, accu_list + + +def extract_list_feature(extractor, pair_list, batch_size, size=0): + feat_list = [] + npairs = len(pair_list) + if size == 0: + size = npairs * 2 + size = min(size, npairs * 2) + num_batches = (size + batch_size - 1) // batch_size + + widgets = ['Batch Processing', pb.Percentage(), ' ', + pb.Bar(marker=pb.Bar()), ' ', pb.ETA()] + timer = pb.ProgressBar( + widgets=widgets, max_value=int(num_batches + 1)).start() + + for batch_num in range(num_batches): + # make a batch + x_list = [] + for i in range(0, batch_size, 2): + pairid = (batch_num * batch_size + i) // 2 + if pairid >= npairs: + pairid = npairs - 1 + x_list.append(pair_list[pairid][0]) + x_list.append(pair_list[pairid][1]) + x_batch = np.stack(x_list, axis=0) + feat = extractor.extract(x_batch) + + for i in range(0, batch_size, 2): + a = feat[i, :] + p = feat[i + 1, :] + if len(feat_list) < size: + feat_list.append([a, p]) + try: + timer.update(batch_num) + except BaseException: + pass + timer.finish() + return feat_list diff --git a/facenet_sandberg/utils.py b/facenet_sandberg/utils.py new file mode 100644 index 000000000..7d2053b12 --- /dev/null +++ b/facenet_sandberg/utils.py @@ -0,0 +1,455 @@ +import math +import os +import pathlib +from glob import iglob +from multiprocessing import Pool +from os.path import exists, join +from typing import List, Optional, Tuple, cast +from urllib.request import urlopen + +import cv2 +import numpy as np +import PIL +from sklearn.metrics.pairwise import paired_distances + +from facenet_sandberg.common_types import (AlignResult, DistanceMetric, + Embedding, Image, ImageExtensions, + ImageGenerator, Label, Landmarks, + Match, Mismatch, Pair, PersonClass) + + +def normalize_image(image: Image) -> Image: + mean = np.mean(image) + std = np.std(image) + std_adj = np.maximum(std, 1.0 / np.sqrt(image.size)) + y = np.multiply(np.subtract(image, mean), 1 / std_adj) + return y + + +def fixed_standardize(image: Image) -> Image: + image = image - 127.5 + image = image / 128.0 + return image + + +def fix_image(image: Image) -> Image: + if image.ndim < 2: + image = image[:, :, np.newaxis] + if image.ndim == 2: + image = add_color(image) + image = image[:, :, 0:3] + return image + + +def resize(image: Image, height: int, width: int) -> Image: + img = PIL.Image.fromarray(image) + img.thumbnail((height, width), PIL.Image.ANTIALIAS) + resized = np.array(img) + return resized + + +def add_color(image: Image) -> Image: + w, h = image.shape + ret = np.empty((w, h, 3), dtype=np.uint8) + ret[:, :, 0] = ret[:, :, 1] = ret[:, :, 2] = image + return ret + + +def fix_mtcnn_bb(max_y: int, max_x: int, bounding_box: List[int]) -> List[int]: + """ mtcnn results can be out of image so fix results + """ + x1, y1, dx, dy = bounding_box[:4] + x2 = x1 + dx + y2 = y1 + dy + x1 = max(min(x1, max_x), 0) + x2 = max(min(x2, max_x), 0) + y1 = max(min(y1, max_y), 0) + y2 = max(min(y2, max_y), 0) + return [x1, y1, x2, y2] + + +def fix_faceboxes_bb( + max_y: int, + max_x: int, + bounding_box: List[int]) -> List[int]: + """ faceboxes order is different + """ + y1, x1, y2, x2 = bounding_box[:4] + x1 = max(min(x1, max_x), 0) + x2 = max(min(x2, max_x), 0) + y1 = max(min(y1, max_y), 0) + y2 = max(min(y2, max_y), 0) + return [x1, y1, x2, y2] + + +def embedding_distance(embedding_1: Embedding, + embedding_2: Embedding, + distance_metric: DistanceMetric) -> float: + """Compares the distance between two embeddings + """ + distance = embedding_distance_bulk(embedding_1.reshape( + 1, -1), embedding_2.reshape(1, -1), distance_metric=distance_metric)[0] + return distance + + +def embedding_distance_bulk( + embeddings1: Embedding, + embeddings2: Embedding, + distance_metric: DistanceMetric) -> np.ndarray: + """Compares the distance between two arrays of embeddings + """ + if distance_metric == DistanceMetric.EUCLIDEAN_SQUARED: + return np.square( + paired_distances( + embeddings1, + embeddings2, + metric='euclidean')) + elif distance_metric == DistanceMetric.ANGULAR_DISTANCE: + # Angular Distance: https://en.wikipedia.org/wiki/Cosine_similarity + similarity = 1 - paired_distances( + embeddings1, + embeddings2, + metric='cosine') + return np.arccos(similarity) / math.pi + + +def download_image(url: str, is_rgb: bool = True) -> Optional[Image]: + try: + req = urlopen(url) + arr = np.asarray(bytearray(req.read()), dtype=np.uint8) + # BGR color space + image = cv2.imdecode(arr, -1) + if is_rgb: + image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB) + return image + except BaseException: + print('Couldn\'t read: {}'.format(url)) + return None + + +def get_image_from_path_rgb(image_path: str) -> Optional[Image]: + # BGR color space + try: + image = cv2.imread(image_path, cv2.IMREAD_COLOR) + image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB) + return fix_image(image) + except BaseException: + print('Couldn\'t read: {}'.format(image_path)) + return None + + +def get_image_from_path_bgr(image_path: str) -> Optional[Image]: + # BGR color space + try: + image = cv2.imread(image_path, cv2.IMREAD_COLOR) + except BaseException: + print('Couldn\'t read: {}'.format(image_path)) + return None + return fix_image(image) + + +def get_images_from_dir( + directory: str, + recursive: bool, + is_rgb: bool = True) -> ImageGenerator: + if recursive: + image_paths = iglob(os.path.join( + directory, '**', '*.*'), recursive=recursive) + else: + image_paths = iglob(os.path.join(directory, '*.*')) + for image_path in image_paths: + # BGR color space + image = cv2.imread(image_path) + if is_rgb: + image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB) + yield image + + +def get_dataset(path: str, is_flat: bool = False) -> List[PersonClass]: + """Gets a dataset from a directory. If is_flat then it assumes that + there is only one image per person in a flat directory. + """ + + dataset = cast(List[PersonClass], []) + path_exp = os.path.expanduser(path) + if is_flat: + people = [os.path.basename(path) for path in iglob(path_exp)] + image_paths = get_image_paths(path_exp) + dataset = [PersonClass(name, [image_path]) + for name, image_path in zip(people, image_paths)] + return dataset + + people = sorted([path for path in os.listdir(path_exp) + if os.path.isdir(os.path.join(path_exp, path))]) + num_people = len(people) + for i in range(num_people): + person_name = people[i] + facedir = os.path.join(path_exp, person_name) + image_paths = get_image_paths(facedir) + dataset.append(PersonClass(person_name, image_paths)) + + return dataset + + +def get_image_paths(facedir: str) -> List[str]: + image_paths = cast(List[str], []) + if os.path.isdir(facedir): + images = os.listdir(facedir) + image_paths = [os.path.join(facedir, img) + for img in images if is_image(img)] + return image_paths + + +def is_image(image_path: str) -> bool: + suffix = pathlib.Path(image_path).suffix + return suffix == '.jpg' or suffix == '.png' or suffix == '.jpeg' + + +def find_image_with_type(image_base_path: str, image_dir: str): + for image_ext in ImageExtensions: + image_path = '{}.{}'.format(image_base_path, image_ext.value) + possible_path = join(image_dir, image_path) + if exists(possible_path): + return possible_path + err = 'No Image found with name {} in directory {}'.format( + image_base_path, + image_dir) + raise FileNotFoundError(err) + + +def get_pair_image_path(person_name: str, image_number: int, image_dir: str): + """This is a utility function for parsing a pairs.txt file in LFW format + """ + # e.g. person_name: Noam_Chomsky, image_number: 2 -> Noam_Chomsky_0002 + image_number_name = '{}_{}'.format(person_name, '%04d' % int(image_number)) + # e.g. Noam_Chomsky_0002 -> Noam_Chomsky/Noam_Chomsky_0002 + # This is the relative path to the image assuming LFW directory format + relative_path = join(person_name, image_number_name) + # e.g. Noam_Chomsky/Noam_Chomsky_0002 -> + # {path_to_image_dir}/Noam_Chomsky/Noam_Chomsky_0002.jpg + path_with_type = find_image_with_type(relative_path, image_dir) + return path_with_type + + +def read_pairs_file(pairs_filename: str) -> Tuple[List[Pair], int, int]: + pairs = [] + with open(pairs_filename, 'r') as pair_file: + num_sets, num_matches_mismatches = [int(i) + for i in next(pair_file).split()] + for line in pair_file: + pair = cast(Pair, tuple([int(i) if i.isdigit() else i + for i in line.strip().split()])) + pairs.append(pair) + return pairs, num_sets, num_matches_mismatches + + +def get_paths_and_labels( + image_dir: str, pairs: List[Pair]) -> Tuple[List[Tuple[str, str]], List[Label]]: + paths = [] + labels = [] + for pair in pairs: + if len(pair) == 3: + person, num_0, num_1 = cast(Match, pair) + rel_image_path_0 = get_pair_image_path(person, num_0, image_dir) + rel_image_path_1 = get_pair_image_path(person, num_1, image_dir) + is_same_person = True + elif len(pair) == 4: + person_0, num_0, person_1, num_1 = cast(Mismatch, pair) + rel_image_path_0 = get_pair_image_path(person_0, num_0, image_dir) + rel_image_path_1 = get_pair_image_path(person_1, num_1, image_dir) + is_same_person = False + else: + raise SyntaxError( + "Bad LFW format in pairs.txt: pair {} doesn't have length 3 or 4".format(pair)) + paths.append((rel_image_path_0, rel_image_path_1)) + labels.append(is_same_person) + return paths, labels + + +def transform_to_lfw_format(image_directory: str, + num_processes: Optional[int]=os.cpu_count()): + """Transforms an image dataset to lfw format image names. + Base directory should have a folder per person with the person's name: + -/base_folder + -/person_1 + -image_1.jpg + -image_2.jpg + -image_3.jpg + -/person_2 + -image_1.jpg + -image_2.jpg + ... + """ + all_folders = os.path.join(image_directory, "*", "") + people_folders = iglob(all_folders) + process_pool = Pool(num_processes) + process_pool.imap(_rename, people_folders) + process_pool.close() + process_pool.join() + + +def _rename(person_folder: str): + """Renames all the images in a folder in lfw format + """ + all_image_paths = iglob(os.path.join(person_folder, "*.*")) + all_image_paths = sorted([image for image in all_image_paths if image.endswith( + ".jpg") or image.endswith(".png") or image.endswith(".jpeg")]) + person_name = os.path.basename(os.path.normpath(person_folder)) + concat_name = '_'.join(person_name.split()) + for index, image_path in enumerate(all_image_paths): + image_name = concat_name + '_' + '%04d' % (index + 1) + file_ext = pathlib.Path(image_path).suffix + new_image_path = os.path.join(person_folder, image_name + file_ext) + os.rename(image_path, new_image_path) + os.rename(person_folder, person_folder.replace(person_name, concat_name)) + + +def split_dataset(dataset, split_ratio, min_nrof_images_per_class, mode): + if mode == 'SPLIT_CLASSES': + nrof_classes = len(dataset) + class_indices = np.arange(nrof_classes) + np.random.shuffle(class_indices) + split = int(round(nrof_classes * (1 - split_ratio))) + train_set = [dataset[i] for i in class_indices[0:split]] + test_set = [dataset[i] for i in class_indices[split:-1]] + elif mode == 'SPLIT_IMAGES': + train_set = [] + test_set = [] + for cls in dataset: + paths = cls.image_paths + np.random.shuffle(paths) + nrof_images_in_class = len(paths) + split = int(math.floor(nrof_images_in_class * (1 - split_ratio))) + if split == nrof_images_in_class: + split = nrof_images_in_class - 1 + if split >= min_nrof_images_per_class and nrof_images_in_class - split >= 1: + train_set.append(PersonClass(cls.name, paths[:split])) + test_set.append(PersonClass(cls.name, paths[split:])) + else: + raise ValueError('Invalid train/test split mode "%s"' % mode) + return train_set, test_set + + +def crop(image: Image, bounding_box: List[int], margin: float) -> Image: + """ + img = image from misc.imread, which should be in (H, W, C) format + bounding_box = pixel coordinates of bounding box: (x0, y0, x1, y1) + margin = float from 0 to 1 for the amount of margin to add, relative to the + bounding box dimensions (half margin added to each side) + """ + + if margin < 0: + raise ValueError("the margin must be a value between 0 and 1") + if margin > 1: + raise ValueError( + "the margin must be a value between 0 and 1 - this is a change from the existing API") + + img_height = image.shape[0] + img_width = image.shape[1] + x_0, y_0, x_1, y_1 = bounding_box[:4] + margin_height = (y_1 - y_0) * margin / 2 + margin_width = (x_1 - x_0) * margin / 2 + x_0 = int(np.maximum(x_0 - margin_width, 0)) + y_0 = int(np.maximum(y_0 - margin_height, 0)) + x_1 = int(np.minimum(x_1 + margin_width, img_width)) + y_1 = int(np.minimum(y_1 + margin_height, img_height)) + return image[y_0:y_1, x_0:x_1, :], (x_0, y_0, x_1, y_1) + + +def get_transform_matrix(left_eye: Tuple[int, + int], + right_eye: Tuple[int, + int], + desired_left_eye: Tuple[float, + float]=(0.35, + 0.35), + desired_face_height: int=112, + desired_face_width: int=112, + margin: float=0.0): + # compute the angle between the eye centers + dY = right_eye[1] - left_eye[1] + dX = right_eye[0] - left_eye[0] + angle = np.degrees(np.arctan2(dY, dX)) + + # compute the desired right eye x-coordinate + desiredRightEyeX = 1.0 - desired_left_eye[0] + + # determine the scale of the new resulting image by taking + dist = np.sqrt((dX ** 2) + (dY ** 2)) + desiredDist = (desiredRightEyeX - desired_left_eye[0]) + desiredDist *= desired_face_width + scale = (desiredDist / dist) + + # median point between the two eyes in the input image + x_center = (left_eye[0] + right_eye[0]) // 2 + y_center = (left_eye[1] + right_eye[1]) // 2 + eye_center = (x_center, y_center) + + # grab the rotation matrix for rotating and scaling the face + M = cv2.getRotationMatrix2D(eye_center, angle, scale) + + # update the translation component of the matrix + tX = (desired_face_width * (margin + 1)) * 0.5 + tY = (desired_face_height * (margin + 1)) * desired_left_eye[1] + x_shift = (tX - eye_center[0]) + y_shift = (tY - eye_center[1]) + M[0, 2] += x_shift + M[1, 2] += y_shift + return M + + +def preprocess( + image: Image, + desired_height: int, + desired_width: int, + margin: float, + bbox: List[int]=None, + landmark: Landmarks=None, + use_affine: bool=False): + image_height, image_width = image.shape[:2] + margin_height = int(desired_height + desired_height * margin) + margin_width = int(desired_width + desired_width * margin) + M = None + if landmark is not None and use_affine: + M = get_transform_matrix(landmark['left_eye'], + landmark['right_eye'], + (0.35, 0.35), + desired_height, + desired_width, + margin) + + if bbox is None: + # use center crop + bbox = [0, 0, 0, 0] + bbox[0] = int(image_height * 0.0625) + bbox[1] = int(image_width * 0.0625) + bbox[2] = image.shape[1] - bbox[0] + bbox[3] = image.shape[0] - bbox[1] + if M is None: + cropped = crop(image, bbox, margin)[0] + return cropped + else: + # do align using landmark + warped = cv2.warpAffine( + image, M, (margin_height, margin_width), flags=cv2.INTER_CUBIC) + return warped + + +def get_center_box(img_size: np.ndarray, results: List[AlignResult]): + # x1, y1, x2, y2 + all_bbs = np.asarray([result.bounding_box for result in results]) + all_landmarks = [result.landmarks for result in results] + bounding_box_size = (all_bbs[:, 2] - all_bbs[:, 0]) * \ + (all_bbs[:, 3] - all_bbs[:, 1]) + img_center = img_size / 2 + offsets = np.vstack([(all_bbs[:, 0] + all_bbs[:, 2]) / 2 - img_center[1], + (all_bbs[:, 1] + all_bbs[:, 3]) / 2 - img_center[0]]) + offset_dist_squared = np.sum(np.power(offsets, 2.0), 0) + index = np.argmax( + bounding_box_size - + offset_dist_squared * + 2.0) # some extra weight on the centering + out_bb = all_bbs[index, :] + out_landmark = all_landmarks[index] if index < len(all_landmarks) else None + align_result = AlignResult(bounding_box=out_bb, landmarks=out_landmark) + return [align_result] diff --git a/facenet_sandberg/validate_on_lfw.py b/facenet_sandberg/validate_on_lfw.py new file mode 100644 index 000000000..4a81d0e25 --- /dev/null +++ b/facenet_sandberg/validate_on_lfw.py @@ -0,0 +1,409 @@ +"""Validate a face recognizer on the "Labeled Faces in the Wild" dataset (http://vis-www.cs.umass.edu/lfw/). +Embeddings are calculated using the pairs from http://vis-www.cs.umass.edu/lfw/pairs.txt and the ROC curve +is calculated and plotted. Both the model metagraph and the model parameters need to exist +in the same directory, and the metagraph should have the extension '.meta'. +""" +# MIT License +# +# Copyright (c) 2016 David Sandberg +# +# Permission is hereby granted, free of charge, to any person obtaining a copy +# of this software and associated documentation files (the "Software"), to deal +# in the Software without restriction, including without limitation the rights +# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell +# copies of the Software, and to permit persons to whom the Software is +# furnished to do so, subject to the following conditions: +# +# The above copyright notice and this permission notice shall be included in all +# copies or substantial portions of the Software. +# +# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR +# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, +# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE +# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER +# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, +# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE +# SOFTWARE. + +from __future__ import absolute_import, division, print_function + +import argparse +import math +import os +import sys +import warnings +from enum import Enum +from typing import List, Tuple, Union, cast + +import numpy as np +import progressbar as pb +import tensorflow as tf +from facenet_sandberg import facenet, lfw, utils +from facenet_sandberg.common_types import * +from scipy import interpolate +from scipy.optimize import brentq +from sklearn import metrics +from sklearn.metrics import accuracy_score, precision_score, recall_score +from sklearn.metrics.pairwise import paired_distances +from sklearn.model_selection import KFold +from tensorflow.python.ops import data_flow_ops + +warnings.filterwarnings("ignore", message="numpy.dtype size changed") +warnings.filterwarnings("ignore", message="numpy.ufunc size changed") +os.environ['TF_CPP_MIN_LOG_LEVEL'] = '3' +tf.logging.set_verbosity(tf.logging.ERROR) + + +def main(lfw_dir, model, lfw_pairs, use_flipped_images, subtract_mean, + use_fixed_image_standardization, image_size=160, lfw_nrof_folds=10, + distance_metric=0, lfw_batch_size=128): + """Runs testing on dataset + + Arguments: + lfw_dir {str} -- Path to the data directory containing aligned LFW face patches. + model {str} -- Could be either a directory containing the meta_file and ckpt_file or a model protobuf (.pb) file. + lfw_pairs {str} -- The file containing the pairs to use for validation. + use_flipped_images {bool} -- Concatenates embeddings for the image and its horizontally flipped counterpart. + subtract_mean {bool} -- Subtract feature mean before calculating distance. + use_fixed_image_standardization {bool} -- Performs fixed standardization of images. + + Keyword Arguments: + image_size {int} -- [description] (default: {160}) + lfw_nrof_folds {int} -- Number of folds to use for cross validation. Mainly used for testing. (default: {10}) + distance_metric {int} -- Distance metric 0:euclidian, 1:cosine similarity. (default: {0}) + lfw_batch_size {int} -- Number of images to process in a batch in the LFW test set. (default: {128}) + """ + + with tf.Graph().as_default(): + with tf.Session() as sess: + # Read the file containing the pairs used for testing + pairs = lfw.read_pairs(os.path.expanduser(lfw_pairs)) + + # Get the paths for the corresponding images + paths, labels = lfw.get_paths(os.path.expanduser(lfw_dir), pairs) + + image_paths_placeholder = tf.placeholder( + tf.string, shape=(None, 1), name='image_paths') + labels_placeholder = tf.placeholder( + tf.int32, shape=(None, 1), name='labels') + batch_size_placeholder = tf.placeholder( + tf.int32, name='batch_size') + control_placeholder = tf.placeholder( + tf.int32, shape=(None, 1), name='control') + phase_train_placeholder = tf.placeholder( + tf.bool, name='phase_train') + + nrof_preprocess_threads = 4 + image_size = (image_size, image_size) + eval_input_queue = data_flow_ops.FIFOQueue( + capacity=2000000, dtypes=[ + tf.string, tf.int32, tf.int32], shapes=[ + (1,), (1,), (1,)], shared_name=None, name=None) + eval_enqueue_op = eval_input_queue.enqueue_many([image_paths_placeholder, labels_placeholder, + control_placeholder], name='eval_enqueue_op') + image_batch, label_batch = facenet.create_input_pipeline( + eval_input_queue, image_size, nrof_preprocess_threads, batch_size_placeholder) + + # Load the model + input_map = { + 'image_batch': image_batch, + 'label_batch': label_batch, + 'phase_train': phase_train_placeholder} + facenet.load_model(model, input_map=input_map) + + # Get output tensor + embeddings = tf.get_default_graph().get_tensor_by_name("embeddings:0") + + coord = tf.train.Coordinator() + tf.train.start_queue_runners(coord=coord, sess=sess) + + evaluate( + sess, + eval_enqueue_op, + image_paths_placeholder, + labels_placeholder, + phase_train_placeholder, + batch_size_placeholder, + control_placeholder, + embeddings, + label_batch, + paths, + labels, + lfw_batch_size, + lfw_nrof_folds, + distance_metric, + subtract_mean, + use_flipped_images, + use_fixed_image_standardization) + + +def evaluate( + sess, + enqueue_op, + image_paths_placeholder, + labels_placeholder, + phase_train_placeholder, + batch_size_placeholder, + control_placeholder, + embeddings, + labels, + image_paths, + actual_issame, + batch_size, + nrof_folds, + distance_metric, + subtract_mean, + use_flipped_images, + use_fixed_image_standardization): + # Run forward pass to calculate embeddings + widgets = ['Scoring', pb.Percentage(), ' ', + pb.Bar(marker=pb.Bar()), ' ', pb.ETA()] + + # Enqueue one epoch of image paths and labels + # nrof_pairs * nrof_images_per_pair + nrof_embeddings = len(actual_issame) * 2 + nrof_flips = 2 if use_flipped_images else 1 + nrof_images = nrof_embeddings * nrof_flips + + labels_array = np.expand_dims(np.arange(0, nrof_images), 1) + image_paths_array = np.expand_dims( + np.repeat(np.array(image_paths), nrof_flips), 1) + control_array = np.zeros_like(labels_array, np.int32) + + if use_fixed_image_standardization: + control_array += np.ones_like(labels_array) * \ + facenet.FIXED_STANDARDIZATION + if use_flipped_images: + # Flip every second image + control_array += (labels_array % 2) * facenet.FLIP + + sess.run(enqueue_op, + {image_paths_placeholder: image_paths_array, + labels_placeholder: labels_array, + control_placeholder: control_array}) + + embedding_size = int(embeddings.get_shape()[1]) + assert nrof_images % batch_size == 0, 'The number of LFW images must be an integer multiple of the LFW batch size' + nrof_batches = nrof_images // batch_size + emb_array = np.zeros((nrof_images, embedding_size)) + lab_array = np.zeros((nrof_images,)) + + timer = pb.ProgressBar( + widgets=widgets, maxval=int( + nrof_batches + 1)).start() + for i in range(nrof_batches): + feed_dict = {phase_train_placeholder: False, + batch_size_placeholder: batch_size} + emb, lab = sess.run([embeddings, labels], feed_dict=feed_dict) + lab_array[lab] = lab + emb_array[lab, :] = emb + timer.update(i + 1) + timer.finish() + embeddings = np.zeros((nrof_embeddings, embedding_size * nrof_flips)) + if use_flipped_images: + # Concatenate embeddings for flipped and non flipped version of the + # images + embeddings[:, :embedding_size] = emb_array[0::2, :] + embeddings[:, embedding_size:] = emb_array[1::2, :] + else: + embeddings = emb_array + + accuracy, recall, precision = score(embeddings, + np.asarray(actual_issame), + nrof_folds, + 'ANGULAR_DISTANCE', + 'ACCURACY', + subtract_mean, + False, + 0, + 4, + 0.01) + print('Accuracy: {}'.format(accuracy)) + print('Recall: {}'.format(recall)) + print('Precision: {}'.format(precision)) + + # assert np.array_equal(lab_array, np.arange( + # nrof_images)), 'Wrong labels used for evaluation, possibly caused by training examples left in the input pipeline' + # tpr, fpr, accuracy, val, val_std, far = lfw.evaluate( + # embeddings, actual_issame, nrof_folds=nrof_folds, + # distance_metric=distance_metric, subtract_mean=subtract_mean) + + # print('Accuracy: %2.5f+-%2.5f' % (np.mean(accuracy), np.std(accuracy))) + # print('Validation rate: %2.5f+-%2.5f @ FAR=%2.5f' % (val, val_std, far)) + + # auc = metrics.auc(fpr, tpr) + # print('Area Under Curve (AUC): %1.3f' % auc) + # eer = brentq(lambda x: 1. - x - interpolate.interp1d(fpr, tpr)(x), 0., 1.) + # print('Equal Error Rate (EER): %1.3f' % eer) + + +def score(embeddings: np.ndarray, + labels: np.ndarray, + num_folds: int, + distance_metric: DistanceMetric, + threshold_metric: str, + subtract_mean: bool, + divide_stddev: bool, + threshold_start: float, + threshold_end: float, + threshold_step: float) -> Tuple[np.float, np.float, np.float]: + thresholds = np.arange(threshold_start, threshold_end, threshold_step) + embeddings1 = embeddings[0::2] + embeddings2 = embeddings[1::2] + accuracy, recall, precision = _score_k_fold(thresholds, + embeddings1, + embeddings2, + labels, + num_folds, + threshold_metric, + subtract_mean, + divide_stddev) + return np.mean(accuracy), np.mean(recall), np.mean(precision) + + +def _score_k_fold(thresholds: np.ndarray, + embeddings1: np.ndarray, + embeddings2: np.ndarray, + labels: np.ndarray, + num_folds: int, + threshold_metric: str, + subtract_mean: bool, + divide_stddev: bool) -> Tuple[np.ndarray, + np.ndarray, + np.ndarray]: + k_fold = KFold(n_splits=num_folds, shuffle=True) + accuracy = np.zeros((num_folds)) + recall = np.zeros((num_folds)) + precision = np.zeros((num_folds)) + splits = k_fold.split(np.arange(len(labels))) + for fold_idx, (train_set, test_set) in enumerate(splits): + train_embeddings = np.concatenate([embeddings1[train_set], + embeddings2[train_set]]) + mean = np.mean(train_embeddings, axis=0) if subtract_mean else 0.0 + stddev = np.std(train_embeddings, axis=0) if divide_stddev else 1.0 + dist = _distance_between_embeddings((embeddings1 - mean) / stddev, + (embeddings2 - mean) / stddev) + best_threshold = _calculate_best_threshold(thresholds, + dist[train_set], + labels[train_set], + threshold_metric) + predictions = np.less(dist[test_set], best_threshold) + accuracy[fold_idx] = accuracy_score(labels[test_set], predictions) + recall[fold_idx] = recall_score(labels[test_set], predictions) + precision[fold_idx] = precision_score(labels[test_set], predictions) + return accuracy, recall, precision + + +def _distance_between_embeddings( + embeddings1: np.ndarray, + embeddings2: np.ndarray) -> np.ndarray: + # if distance_metric == DistanceMetric.EUCLIDEAN_SQUARED: + # return np.square( + # paired_distances( + # embeddings1, + # embeddings2, + # metric='euclidean')) + # elif distance_metric == DistanceMetric.ANGULAR_DISTANCE: + # Angular Distance: https://en.wikipedia.org/wiki/Cosine_similarity + similarity = 1 - paired_distances( + embeddings1, + embeddings2, + metric='cosine') + return np.arccos(similarity) / math.pi + + +def _calculate_best_threshold(thresholds: np.ndarray, + dist: np.ndarray, + labels: np.ndarray, + threshold_metric: str) -> np.float: + + if threshold_metric == 'ACCURACY': + threshold_score = accuracy_score + elif threshold_metric == 'PRECISION': + threshold_score = precision_score + elif threshold_metric == 'RECALL': + threshold_score = recall_score + threshold_scores = np.zeros((len(thresholds))) + for threshold_idx, threshold in enumerate(thresholds): + predictions = np.less(dist, threshold) + threshold_scores[threshold_idx] = threshold_score(labels, predictions) + best_threshold_index = np.argmax(threshold_scores) + return thresholds[best_threshold_index] + + +def parse_arguments(argv): + """Argument parser + + Arguments: + argv {} -- arguments + + Returns: + {} -- parsed arguments + """ + + parser = argparse.ArgumentParser() + + parser.add_argument( + 'lfw_dir', + type=str, + help='Path to the data directory containing aligned LFW face patches.', + default='/Users/armanrahman/datasets/eame_test_facenet_old') + parser.add_argument( + '--lfw_batch_size', + type=int, + help='Number of images to process in a batch in the LFW test set.', + default=100) + parser.add_argument( + 'model', + type=str, + help='Could be either a directory containing the meta_file and ckpt_file or a model protobuf (.pb) file', + default='/Users/armanrahman/models/facenet_model.pb') + parser.add_argument( + '--image_size', + type=int, + help='Image size (height, width) in pixels.', + default=160) + parser.add_argument( + '--lfw_pairs', + type=str, + help='The file containing the pairs to use for validation.', + default='/Users/armanrahman/datasets/eame_test_pairs_facenet.txt') + parser.add_argument( + '--lfw_nrof_folds', + type=int, + help='Number of folds to use for cross validation. Mainly used for testing.', + default=10) + parser.add_argument( + '--distance_metric', + type=int, + help='Distance metric 0:euclidian, 1:cosine similarity.', + default=1) + parser.add_argument( + '--use_flipped_images', + help='Concatenates embeddings for the image and its horizontally flipped counterpart.', + action='store_true') + parser.add_argument( + '--subtract_mean', + help='Subtract feature mean before calculating distance.', + action='store_true') + parser.add_argument( + '--use_fixed_image_standardization', + help='Performs fixed standardization of images.', + action='store_true') + return parser.parse_args(argv) + + +if __name__ == '__main__': + args = parse_arguments(sys.argv[1:]) + if args: + main( + args.lfw_dir, + args.model, + args.lfw_pairs, + args.use_flipped_images, + args.subtract_mean, + args.use_fixed_image_standardization, + args.image_size, + args.lfw_nrof_folds, + args.distance_metric, + args.lfw_batch_size) diff --git a/facenet_sandberg/validation/Dockerfile b/facenet_sandberg/validation/Dockerfile new file mode 100644 index 000000000..abd48ab19 --- /dev/null +++ b/facenet_sandberg/validation/Dockerfile @@ -0,0 +1,20 @@ +# https://getintodevops.com/blog/the-simple-way-to-run-docker-in-docker-for-ci +FROM python:3.6-slim +RUN apt-get update && \ +apt-get -y install apt-transport-https \ + ca-certificates \ + curl \ + gnupg2 \ + software-properties-common && \ +curl -fsSL https://download.docker.com/linux/$(. /etc/os-release; echo "$ID")\ +/gpg > /tmp/dkey; apt-key add /tmp/dkey && \ +add-apt-repository \ + "deb [arch=amd64] https://download.docker.com/linux/\ +$(. /etc/os-release; echo "$ID") $(lsb_release -cs) stable" && \ +apt-get update && \ +apt-get -y install docker-ce +COPY requirements.txt /app/requirements.txt +RUN pip install --no-cache-dir -r /app/requirements.txt +COPY src /app/validation/src +WORKDIR /app/validation/src +ENTRYPOINT ["python", "validate.py"] diff --git a/facenet_sandberg/validation/README.md b/facenet_sandberg/validation/README.md new file mode 100644 index 000000000..0a1e8bacc --- /dev/null +++ b/facenet_sandberg/validation/README.md @@ -0,0 +1,19 @@ +# Instructions + +## With docker-compose + +* Replace values in .env +* Run ```docker-compose up``` + +## Without docker + +* The validation script requires python 3.6 + * If using [anaconda](https://www.anaconda.com/download/), create a virtual environment with ```conda create -n py36 python=3.6``` + * Activate the virtual environment with ```conda activate py36``` + * Install requirements with ```pip install -r requirements.txt``` +* Example to run validation script: + +```bash +python validate.py --image_dir /images --model_path /facenet.pb --distance_metric ANGULAR_DISTANCE --pairs_fname /pairs/pairs.txt --threshold_start 0 --threshold_end 4 --threshold_step 0.01 --embedding_size 128 --threshold_metric ACCURACY --prealigned_flag --remove_empty_embeddings_flag +--is_insightface +``` diff --git a/facenet_sandberg/validation/__init__.py b/facenet_sandberg/validation/__init__.py new file mode 100644 index 000000000..a75b11e43 --- /dev/null +++ b/facenet_sandberg/validation/__init__.py @@ -0,0 +1,3 @@ +from .align import Detector +from .generate_tsne import generate_tsne +from .identifier import Identifier diff --git a/facenet_sandberg/validation/docker-compose.yml b/facenet_sandberg/validation/docker-compose.yml new file mode 100644 index 000000000..38327f105 --- /dev/null +++ b/facenet_sandberg/validation/docker-compose.yml @@ -0,0 +1,26 @@ +version: '3' +services: + validation: + build: . + command: "--image_dir ${IMAGE_DIR} \ +--container_name algorithm \ +--distance_metric ${DISTANCE_METRIC} \ +--pairs_fname ${PAIRS_FNAME} \ +--threshold_start ${THRESHOLD_START} \ +--threshold_end ${THRESHOLD_END} \ +--threshold_step ${THRESHOLD_STEP} \ +--embedding_size ${EMBEDDING_SIZE} \ +--threshold_metric ${THRESHOLD_METRIC} \ +${PREALIGNED_FLAG} \ +${REMOVE_EMPTY_EMBEDDINGS_FLAG}" + volumes: + - "/var/run/docker.sock:/var/run/docker.sock" + - "${IMAGE_DIR}:${IMAGE_DIR}" + - "${PAIRS_FNAME}:${PAIRS_FNAME}" + depends_on: + - algorithm + algorithm: + build: ${ALGORITHM_CONTAINER_DIR} + image: algorithm + entrypoint: ["/bin/sh", "-c"] + command: "\"echo built algorithm container\"" diff --git a/facenet_sandberg/validation/requirements.txt b/facenet_sandberg/validation/requirements.txt new file mode 100644 index 000000000..41e8c9911 --- /dev/null +++ b/facenet_sandberg/validation/requirements.txt @@ -0,0 +1,6 @@ +numpy==1.15.1 +scikit-learn==0.19.2 +scipy==1.1.0 +mypy==0.620 +pylint==2.1.1 +flake8==3.5.0 diff --git a/src/generative/__init__.py b/facenet_sandberg/validation/src/__init__.py similarity index 100% rename from src/generative/__init__.py rename to facenet_sandberg/validation/src/__init__.py diff --git a/src/generative/models/__init__.py b/facenet_sandberg/validation/src/calculator/__init__.py similarity index 100% rename from src/generative/models/__init__.py rename to facenet_sandberg/validation/src/calculator/__init__.py diff --git a/facenet_sandberg/validation/src/calculator/calculator.py b/facenet_sandberg/validation/src/calculator/calculator.py new file mode 100644 index 000000000..e552d6a2c --- /dev/null +++ b/facenet_sandberg/validation/src/calculator/calculator.py @@ -0,0 +1,15 @@ +from abc import ABC +from abc import abstractmethod +from parser.pair import Pair +from typing import Generic +from typing import Iterable +from typing import TypeVar + +T = TypeVar('T') + + +class Calculator(ABC, Generic[T]): # pylint: disable=too-few-public-methods + + @abstractmethod + def calculate(self, pairs: Iterable[Pair]) -> T: + pass diff --git a/facenet_sandberg/validation/src/calculator/distance_calculator.py b/facenet_sandberg/validation/src/calculator/distance_calculator.py new file mode 100644 index 000000000..94b5c86bd --- /dev/null +++ b/facenet_sandberg/validation/src/calculator/distance_calculator.py @@ -0,0 +1,47 @@ +import math +from parser.pair import Pair +from typing import Iterable +from typing import Union +from typing import cast + +import numpy as np +from sklearn.metrics.pairwise import paired_distances + +from calculator.calculator import Calculator +from metrics.metrics import DistanceMetric +from metrics.metrics import DistanceMetricException + + +# pylint: disable=too-few-public-methods +class DistanceCalculator(Calculator): + + def __init__(self, distance_metric: Union[str, DistanceMetric]) -> None: + if isinstance(distance_metric, str): + self._distance_metric = getattr(DistanceMetric, + cast(str, distance_metric)) + else: + self._distance_metric = distance_metric + + def calculate(self, pairs: Iterable[Pair]) -> np.ndarray: + embeddings1 = [] + embeddings2 = [] + for pair in pairs: + embeddings1.append(pair.image1) + embeddings2.append(pair.image2) + if self._distance_metric == DistanceMetric.EUCLIDEAN_SQUARED: + return np.square( + paired_distances( + embeddings1, + embeddings2, + metric='euclidean')) + if self._distance_metric == DistanceMetric.ANGULAR_DISTANCE: + # Angular Distance: https://en.wikipedia.org/wiki/Cosine_similarity + similarity = 1 - paired_distances( + embeddings1, + embeddings2, + metric='cosine') + return np.arccos(similarity) / math.pi + metrics = [str(metric) for metric in DistanceMetric] + err = f"Undefined {DistanceMetric.__qualname__}. \ +Choose from {metrics}" + raise DistanceMetricException(err) diff --git a/facenet_sandberg/validation/src/calculator/threshold_calculator.py b/facenet_sandberg/validation/src/calculator/threshold_calculator.py new file mode 100644 index 000000000..d0781ab22 --- /dev/null +++ b/facenet_sandberg/validation/src/calculator/threshold_calculator.py @@ -0,0 +1,70 @@ +from parser.pair import Pair +from typing import Callable +from typing import Iterable +from typing import Union +from typing import cast + +import numpy as np +from sklearn.metrics import accuracy_score +from sklearn.metrics import f1_score +from sklearn.metrics import precision_score +from sklearn.metrics import recall_score + +from calculator.calculator import Calculator +from calculator.distance_calculator import DistanceCalculator +from metrics.metrics import DistanceMetric +from metrics.metrics import ThresholdMetric +from metrics.metrics import ThresholdMetricException + + +# pylint: disable=too-few-public-methods +class ThresholdCalculator(Calculator): + + # pylint: disable=too-many-arguments + def __init__(self, + distance_metric: Union[str, DistanceMetric], + threshold_metric: Union[str, ThresholdMetric], + threshold_start: float, + threshold_end: float, + threshold_step: float) -> None: + if isinstance(threshold_metric, str): + self._threshold_metric = getattr(ThresholdMetric, + cast(str, threshold_metric)) + else: + self._threshold_metric = threshold_metric + self._distance_metric = distance_metric + self._threshold_start = threshold_start + self._threshold_end = threshold_end + self._threshold_step = threshold_step + + def calculate(self, pairs: Iterable[Pair]) -> float: + threshold_scorer = self._get_threshold_scorer() + dist = DistanceCalculator(self._distance_metric).calculate(pairs) + labels = [pair.is_match for pair in pairs] + best_score = float('-inf') + best_threshold_index = 0 + thresholds = np.arange(self._threshold_start, + self._threshold_end, + self._threshold_step) + for i, threshold in enumerate(thresholds): + predictions = np.less(dist, threshold) + score = threshold_scorer(labels, predictions) + if score > best_score: + best_score = score + best_threshold_index = i + return thresholds[best_threshold_index] + + def _get_threshold_scorer( + self) -> Callable[[np.ndarray, np.ndarray], float]: + if self._threshold_metric == ThresholdMetric.ACCURACY: + return accuracy_score + if self._threshold_metric == ThresholdMetric.PRECISION: + return precision_score + if self._threshold_metric == ThresholdMetric.RECALL: + return recall_score + if self._threshold_metric == ThresholdMetric.F1: + return f1_score + metrics = [str(metric) for metric in ThresholdMetric] + err = f"Undefined {ThresholdMetric.__qualname__}. \ +Choose from {metrics}" + raise ThresholdMetricException(err) diff --git a/facenet_sandberg/validation/src/evaluator/__init__.py b/facenet_sandberg/validation/src/evaluator/__init__.py new file mode 100644 index 000000000..e69de29bb diff --git a/facenet_sandberg/validation/src/evaluator/evaluator.py b/facenet_sandberg/validation/src/evaluator/evaluator.py new file mode 100644 index 000000000..7543e532b --- /dev/null +++ b/facenet_sandberg/validation/src/evaluator/evaluator.py @@ -0,0 +1,62 @@ +from argparse import Namespace +from parser.container_parser import ContainerParser +from parser.face_vector_fill_parser import FaceVectorFillParser +from parser.face_vector_parser import FaceVectorParser +from parser.face_vector_remove_parser import FaceVectorRemoveParser +from parser.pair_parser import PairParser + +import numpy as np +from sklearn.metrics import accuracy_score, precision_score, recall_score + +from calculator.distance_calculator import DistanceCalculator +from calculator.threshold_calculator import ThresholdCalculator +from metrics.metrics import EvaluationMetric, FaceVectorMetric + + +class Evaluator: + + def __init__(self, + face_vector_parser: FaceVectorParser, + threshold_calculator: ThresholdCalculator, + distance_calculator: DistanceCalculator) -> None: + self._face_vector_parser = face_vector_parser + self._threshold_calculator = threshold_calculator + self._distance_calculator = distance_calculator + + @classmethod + def create_evaluator(cls, args: Namespace) -> 'Evaluator': + pair_parser = PairParser(args.pairs_fname, args.image_dir) + container_parser = ContainerParser(pair_parser, + args.model_path, + args.is_insightface, + args.prealigned_flag) + face_vector_parser: FaceVectorParser + if args.remove_empty_embeddings_flag: + face_vector_parser = FaceVectorRemoveParser(container_parser, + args.distance_metric) + else: + face_vector_parser = FaceVectorFillParser(container_parser, + args.embedding_size, + args.distance_metric) + threshold_calculator = ThresholdCalculator(args.distance_metric, + args.threshold_metric, + args.threshold_start, + args.threshold_end, + args.threshold_step) + distance_calculator = DistanceCalculator(args.distance_metric) + return cls(face_vector_parser, + threshold_calculator, + distance_calculator) + + def compute_metrics(self) -> FaceVectorMetric: + return self._face_vector_parser.compute_metrics() + + def evaluate(self) -> EvaluationMetric: + pairs = list(self._face_vector_parser.compute_pairs()) + threshold = self._threshold_calculator.calculate(pairs) + dist = self._distance_calculator.calculate(pairs) + predictions = np.less(dist, threshold) + labels = [pair.is_match for pair in pairs] + return EvaluationMetric(accuracy_score(labels, predictions), + recall_score(labels, predictions), + precision_score(labels, predictions)) diff --git a/facenet_sandberg/validation/src/metrics/__init__.py b/facenet_sandberg/validation/src/metrics/__init__.py new file mode 100644 index 000000000..e69de29bb diff --git a/facenet_sandberg/validation/src/metrics/metrics.py b/facenet_sandberg/validation/src/metrics/metrics.py new file mode 100644 index 000000000..dadf3f9d3 --- /dev/null +++ b/facenet_sandberg/validation/src/metrics/metrics.py @@ -0,0 +1,78 @@ +from enum import Enum +from enum import auto + + +class EvaluationMetric: + def __init__(self, + accuracy: float, + recall: float, + precision: float) -> None: + self._accuracy = accuracy + self._recall = recall + self._precision = precision + + @property + def accuracy(self): + return self._accuracy + + @property + def recall(self): + return self._recall + + @property + def precision(self): + return self._precision + + def __str__(self): + return 'Evaluation Metrics - accuracy: {:.2f}, \ +recall: {:.2f}, precision: {:.2f}'.format(self._accuracy, + self._recall, + self._precision) + + +class FaceVectorMetric: + def __init__(self, + num_expected: int, + num_missing: int, + percentage_missing: float) -> None: + self._num_expected = num_expected + self._num_missing = num_missing + self._percentage_missing = percentage_missing + + @property + def num_expected(self): + return self._num_expected + + @property + def num_missing(self): + return self._num_missing + + @property + def percentage_missing(self): + return self._percentage_missing + + def __str__(self): + return 'Face Vector Metrics - num_expected: {}, \ +num_missing: {}, percentage_missing: {:.2f}'.format(self._num_expected, + self.num_missing, + self.percentage_missing) + + +class DistanceMetric(Enum): + ANGULAR_DISTANCE = auto() + EUCLIDEAN_SQUARED = auto() + + +class ThresholdMetric(Enum): + ACCURACY = auto() + PRECISION = auto() + RECALL = auto() + F1 = auto() + + +class DistanceMetricException(Exception): + pass + + +class ThresholdMetricException(Exception): + pass diff --git a/facenet_sandberg/validation/src/parser/__init__.py b/facenet_sandberg/validation/src/parser/__init__.py new file mode 100644 index 000000000..e69de29bb diff --git a/facenet_sandberg/validation/src/parser/container_parser.py b/facenet_sandberg/validation/src/parser/container_parser.py new file mode 100644 index 000000000..f3915cce4 --- /dev/null +++ b/facenet_sandberg/validation/src/parser/container_parser.py @@ -0,0 +1,65 @@ +import json +from os.path import basename, dirname, join +from parser.pair import Pair +from parser.pair_parser import PairParser +from parser.parser_base import ParserBase +from typing import Dict, Iterable, List + +from facenet_sandberg import (Identifier, get_image_from_path_bgr, + get_image_from_path_rgb) + + +class ContainerParser(ParserBase): + + def __init__(self, + pair_parser: PairParser, + model_path: str, + is_insightface: bool, + is_prealigned: bool) -> None: + self._pair_parser = pair_parser + self._model_path = model_path + self._is_insightface = is_insightface + self._is_prealigned = is_prealigned + self.__face_vectors = None + + @property + def _face_vectors(self): + if not self.__face_vectors: + self.__face_vectors = self._compute_face_vectors() + return self.__face_vectors + + def compute_pairs(self) -> Iterable[Pair]: + pairs = self._pair_parser.compute_pairs() + return (Pair(image1, image2, pair.is_match) + for image1, image2, pair in + zip(self._face_vectors[0::2], self._face_vectors[1::2], pairs)) + + def compute_metrics(self) -> Dict[str, float]: + raise NotImplementedError() + + def _compute_face_vectors(self) -> List[List[List[float]]]: + pairs = list(self._pair_parser.compute_pairs()) + + identifier = Identifier( + model_path=self._model_path, + is_insightface=self._is_insightface) + + img_paths = [image_path + for pair in pairs + for image_path in [pair.image1, pair.image2]] + if self._is_insightface: + images = map(get_image_from_path_bgr, img_paths) + else: + images = map(get_image_from_path_rgb, img_paths) + + all_vectors = identifier.vectorize_all( + images, prealigned=self._is_prealigned) + np_to_list = [] + for vectors in all_vectors: + np_to_list.append([vector.tolist() for vector in vectors]) + + return np_to_list + + @staticmethod + def _get_base_dir_for_volume_mapping(full_image_path: str) -> str: + return dirname(dirname(full_image_path)) diff --git a/facenet_sandberg/validation/src/parser/face_vector_fill_parser.py b/facenet_sandberg/validation/src/parser/face_vector_fill_parser.py new file mode 100644 index 000000000..34c66155e --- /dev/null +++ b/facenet_sandberg/validation/src/parser/face_vector_fill_parser.py @@ -0,0 +1,26 @@ +from functools import partial +from parser.container_parser import ContainerParser +from parser.face_vector_parser import FaceVectorParser +from parser.pipeline.parser_pipeline import ParserPipeline +from parser.pipeline.parser_pipeline_funcs import fill_empty +from parser.pipeline.parser_pipeline_funcs import filter_target + + +class FaceVectorFillParser(FaceVectorParser): + def __init__(self, + container_parser: ContainerParser, + embedding_size: int, + distance_metric: str) -> None: + self._parser_pipeline = ParserPipeline(container_parser) + self._build_pipeline(embedding_size, distance_metric) + super().__init__(container_parser, + self._parser_pipeline, + distance_metric) + + def _build_pipeline(self, + embedding_size: int, + distance_metric: str) -> None: + partial_fill = partial(fill_empty, embedding_size=embedding_size) + partial_filter = partial(filter_target, + distance_metric=distance_metric) + self._parser_pipeline.build([partial_fill, partial_filter]) diff --git a/facenet_sandberg/validation/src/parser/face_vector_parser.py b/facenet_sandberg/validation/src/parser/face_vector_parser.py new file mode 100644 index 000000000..a18a1e31a --- /dev/null +++ b/facenet_sandberg/validation/src/parser/face_vector_parser.py @@ -0,0 +1,29 @@ +from parser.container_parser import ContainerParser +from parser.pair import Pair +from parser.parser_base import ParserBase +from parser.pipeline.parser_pipeline import ParserPipeline +from typing import Iterable + +from metrics.metrics import FaceVectorMetric + + +class FaceVectorParser(ParserBase): + + def __init__(self, + container_parser: ContainerParser, + parser_pipeline: ParserPipeline, + distance_metric: str) -> None: + self._container_parser = container_parser + self._distance_metric = distance_metric + self._parser_pipeline = parser_pipeline + + def compute_pairs(self) -> Iterable[Pair]: + return self._parser_pipeline.execute_pipeline() + + def compute_metrics(self) -> FaceVectorMetric: + pairs = list(self._container_parser.compute_pairs()) + num_expected = len(pairs) + num_existing = sum(1 for pair in pairs if pair.image1 and pair.image2) + num_missing = num_expected - num_existing + percentage_missing = 100 * (num_missing / num_expected) + return FaceVectorMetric(num_expected, num_missing, percentage_missing) diff --git a/facenet_sandberg/validation/src/parser/face_vector_remove_parser.py b/facenet_sandberg/validation/src/parser/face_vector_remove_parser.py new file mode 100644 index 000000000..5fad0ab5a --- /dev/null +++ b/facenet_sandberg/validation/src/parser/face_vector_remove_parser.py @@ -0,0 +1,22 @@ +from functools import partial +from parser.container_parser import ContainerParser +from parser.face_vector_parser import FaceVectorParser +from parser.pipeline.parser_pipeline import ParserPipeline +from parser.pipeline.parser_pipeline_funcs import filter_target +from parser.pipeline.parser_pipeline_funcs import remove_empty + + +class FaceVectorRemoveParser(FaceVectorParser): + def __init__(self, + container_parser: ContainerParser, + distance_metric: str) -> None: + self._parser_pipeline = ParserPipeline(container_parser) + self._build_pipeline(distance_metric) + super().__init__(container_parser, + self._parser_pipeline, + distance_metric) + + def _build_pipeline(self, distance_metric: str) -> None: + partial_filter = partial(filter_target, + distance_metric=distance_metric) + self._parser_pipeline.build([remove_empty, partial_filter]) diff --git a/facenet_sandberg/validation/src/parser/pair.py b/facenet_sandberg/validation/src/parser/pair.py new file mode 100644 index 000000000..b62ebc3f8 --- /dev/null +++ b/facenet_sandberg/validation/src/parser/pair.py @@ -0,0 +1,23 @@ +from typing import Generic +from typing import TypeVar + +T = TypeVar('T') + + +class Pair(Generic[T]): + def __init__(self, image1: T, image2: T, is_match: bool) -> None: + self._image1 = image1 + self._image2 = image2 + self._is_match = is_match + + @property + def image1(self): + return self._image1 + + @property + def image2(self): + return self._image2 + + @property + def is_match(self): + return self._is_match diff --git a/facenet_sandberg/validation/src/parser/pair_parser.py b/facenet_sandberg/validation/src/parser/pair_parser.py new file mode 100644 index 000000000..e22adf7d7 --- /dev/null +++ b/facenet_sandberg/validation/src/parser/pair_parser.py @@ -0,0 +1,56 @@ +import logging +from os.path import isfile +from os.path import join +from parser.pair import Pair +from parser.parser_base import ParserBase +from typing import Dict +from typing import Iterable + + +class PairParser(ParserBase): + + def __init__(self, pairs_fname: str, image_dir: str) -> None: + self.pairs_fname = pairs_fname + self._image_dir = image_dir + + def compute_pairs(self) -> Iterable[Pair]: + with open(self.pairs_fname, 'r', encoding='utf-8') as f: + next(f) # pylint: disable=stop-iteration-return + # skip first line, which contains metadata + for line in f: + try: + pair = self._compute_pair(line) + except FileNotFoundError: + logging.exception('Skipping invalid file') + else: + yield pair + + def compute_metrics(self) -> Dict[str, float]: + raise NotImplementedError() + + def _compute_full_path(self, image_path: str) -> str: + exts = ['.jpg', '.png'] + for ext in exts: + full_image_path = join(self._image_dir, f'{image_path}{ext}') + if isfile(full_image_path): + return full_image_path + err = f'{image_path} does not exist with extensions: {exts}' + raise FileNotFoundError(err) + + def _compute_pair(self, line: str) -> Pair: + line_info = line.strip().split() + if len(line_info) == 3: + name, n1, n2 = line_info + image1 = self._compute_full_path(join(name, + f'{name}_{int(n1):04d}')) + image2 = self._compute_full_path(join(name, + f'{name}_{int(n2):04d}')) + is_match = True + else: + name1, n1, name2, n2 = line_info + image1 = self._compute_full_path(join(name1, + f'{name1}_{int(n1):04d}')) + image2 = self._compute_full_path(join(name2, + f'{name2}_{int(n2):04d}')) + is_match = False + return Pair(image1, image2, is_match) diff --git a/facenet_sandberg/validation/src/parser/parser_base.py b/facenet_sandberg/validation/src/parser/parser_base.py new file mode 100644 index 000000000..9de6901e0 --- /dev/null +++ b/facenet_sandberg/validation/src/parser/parser_base.py @@ -0,0 +1,16 @@ +from abc import ABC +from abc import abstractmethod +from parser.pair import Pair +from typing import Any +from typing import Iterable + + +class ParserBase(ABC): + + @abstractmethod + def compute_pairs(self) -> Iterable[Pair]: + pass + + @abstractmethod + def compute_metrics(self) -> Any: + pass diff --git a/facenet_sandberg/validation/src/parser/pipeline/__init__.py b/facenet_sandberg/validation/src/parser/pipeline/__init__.py new file mode 100644 index 000000000..e69de29bb diff --git a/facenet_sandberg/validation/src/parser/pipeline/parser_pipeline.py b/facenet_sandberg/validation/src/parser/pipeline/parser_pipeline.py new file mode 100644 index 000000000..d17433f35 --- /dev/null +++ b/facenet_sandberg/validation/src/parser/pipeline/parser_pipeline.py @@ -0,0 +1,38 @@ +from parser.container_parser import ContainerParser +from parser.pair import Pair +from typing import Callable +from typing import Iterable +from typing import Optional +from typing import cast + +PipelineFunction = Callable[[Iterable[Pair]], Iterable[Pair]] + + +class ParserPipelineEmptyException(Exception): + pass + + +class ParserPipeline: + def __init__(self, container_parser: ContainerParser) -> None: + self._container_parser = container_parser + self._funcs: Optional[Iterable[PipelineFunction]] = None + self.__pairs: Optional[Iterable[Pair]] = None + + @property + def _pairs(self) -> Iterable[Pair]: + if not self.__pairs: + self.__pairs = self._container_parser.compute_pairs() + return cast(Iterable[Pair], self.__pairs) + + def build(self, funcs: Iterable[Callable[[Iterable[Pair]], + Iterable[Pair]]]) -> None: + self._funcs = funcs + + def execute_pipeline(self) -> Iterable[Pair]: + if not self._funcs: + err = 'Pipeline must first be built before being executed' + raise ParserPipelineEmptyException(err) + pairs = self._pairs + for func in self._funcs: + pairs = func(pairs) + return pairs diff --git a/facenet_sandberg/validation/src/parser/pipeline/parser_pipeline_funcs.py b/facenet_sandberg/validation/src/parser/pipeline/parser_pipeline_funcs.py new file mode 100644 index 000000000..5c76693e6 --- /dev/null +++ b/facenet_sandberg/validation/src/parser/pipeline/parser_pipeline_funcs.py @@ -0,0 +1,31 @@ +from parser.pair import Pair +from typing import Iterable + +from calculator.distance_calculator import DistanceCalculator + + +def fill_empty(pairs: Iterable[Pair], embedding_size: int) -> Iterable[Pair]: + empty_embedding = [[0] * embedding_size] + return (Pair(pair.image1 or empty_embedding, + pair.image2 or empty_embedding, + pair.is_match) for pair in pairs) + + +def remove_empty(pairs: Iterable[Pair]) -> Iterable[Pair]: + return (pair for pair in pairs if pair.image1 and pair.image2) + + +def filter_target(pairs: Iterable[Pair], + distance_metric: str) -> Iterable[Pair]: + return (_compute_target(pair, distance_metric) for pair in pairs) + + +def _compute_target(pair: Pair, distance_metric: str) -> Pair: + possible_pairs = [Pair(image1, image2, pair.is_match) + for image1 in pair.image1 + for image2 in pair.image2] + distance_calculator = DistanceCalculator(distance_metric) + distances = distance_calculator.calculate(possible_pairs) + distance_criteria = min if pair.is_match else max + index, _ = distance_criteria(enumerate(distances), key=lambda x: x[1]) + return possible_pairs[index] diff --git a/facenet_sandberg/validation/src/validate.py b/facenet_sandberg/validation/src/validate.py new file mode 100644 index 000000000..3950a0f22 --- /dev/null +++ b/facenet_sandberg/validation/src/validate.py @@ -0,0 +1,88 @@ +from argparse import ArgumentParser, FileType, Namespace + +from evaluator.evaluator import Evaluator +from metrics.metrics import DistanceMetric, ThresholdMetric + + +def _parse_arguments() -> Namespace: + parser = ArgumentParser() + parser.add_argument('--image_dir', + type=str, + required=True, + help='Path to the image directory.') + parser.add_argument('--pairs_fname', + type=FileType('r', encoding='utf-8'), + required=True, + help='Filename of pairs.txt') + parser.add_argument('--model_path', + type=str, + required=True, + help='Path to the facial recognition model') + parser.add_argument( + '--is_insightface', + action='store_true', + help='Set this flag if the model is insightface') + distance_metrics = [str(metric) + .replace(f'{DistanceMetric.__qualname__}.', '') + for metric in DistanceMetric] + parser.add_argument( + '--distance_metric', + type=str, + required=True, + choices=distance_metrics, + help=f"Distance metric for face verification: {distance_metrics}.") + parser.add_argument('--threshold_start', + type=float, + required=True, + help='Start value for distance threshold.') + parser.add_argument('--threshold_end', + type=float, + required=True, + help='End value for distance threshold') + parser.add_argument( + '--threshold_step', + type=float, + required=True, + help='Step size for iterating in cross validation search.') + threshold_metrics = [str(metric) + .replace(f'{ThresholdMetric.__qualname__}.', '') + for metric in ThresholdMetric] + parser.add_argument('--threshold_metric', + type=str, + required=True, + choices=threshold_metrics, + help='metric for calculating optimal threshold.') + parser.add_argument( + '--embedding_size', + type=int, + required=True, + help='Size of face vectors from face_verification_container.') + parser.add_argument( + '--remove_empty_embeddings_flag', + action='store_true', + help='Instead of a default encoding for images where\ +faces are not detected, remove them') + parser.add_argument( + '--prealigned_flag', + action='store_true', + help='Specify if the images have already been aligned.') + return parser.parse_args() + + +def _main(args: Namespace) -> None: + evaluator = Evaluator.create_evaluator(args) + evaluation_results = evaluator.evaluate() + print('Evaluation results: ', evaluation_results) + parser_metrics = evaluator.compute_metrics() + print('Parser metrics: ', parser_metrics) + + +def _cli() -> None: + args = _parse_arguments() + args.pairs_fname.close() + args.pairs_fname = args.pairs_fname.name + _main(args) + + +if __name__ == '__main__': + _cli() diff --git a/notebooks/Example Usage.ipynb b/notebooks/Example Usage.ipynb new file mode 100644 index 000000000..03998597c --- /dev/null +++ b/notebooks/Example Usage.ipynb @@ -0,0 +1,547 @@ +{ + "cells": [ + { + "cell_type": "code", + "execution_count": 1, + "metadata": { + "ExecuteTime": { + "end_time": "2018-11-07T15:46:06.403900Z", + "start_time": "2018-11-07T15:45:50.978981Z" + } + }, + "outputs": [], + "source": [ + "from facenet_sandberg import Identifier, get_image_from_path_rgb, get_image_from_path_bgr, \\\n", + " Detector, embedding_distance, DistanceMetric, get_images_from_dir, \\\n", + " get_dataset, tsne_sklearn, tsne_tensorboard\n", + "import matplotlib.pyplot as plt\n", + "import matplotlib\n", + "import numpy as np\n", + "import os\n", + "from sklearn.manifold import TSNE\n", + "import glob\n", + "import cv2\n", + "import PIL\n", + "\n", + "\n", + "%matplotlib inline" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Get images" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "ExecuteTime": { + "end_time": "2018-11-07T09:30:58.536355Z", + "start_time": "2018-11-07T09:30:58.395673Z" + } + }, + "outputs": [], + "source": [ + "noam_chomsky_1 = get_image_from_path_rgb(\"noam-chomsky-1.jpg\")\n", + "noam_chomsky_2 = get_image_from_path_rgb(\"noam-chomsky-2.jpg\")\n", + "not_noam_chomsky = get_image_from_path_rgb(\"not-noam-chomsky.jpg\")" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "ExecuteTime": { + "end_time": "2018-11-07T09:30:58.614393Z", + "start_time": "2018-11-07T09:30:58.610963Z" + } + }, + "outputs": [], + "source": [ + "def plot_images(image_1, image_2):\n", + " f = plt.figure()\n", + " f.add_subplot(1,2, 1)\n", + " plt.imshow(image_1)\n", + " f.add_subplot(1,2, 2)\n", + " plt.imshow(image_2)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "ExecuteTime": { + "end_time": "2018-11-07T09:30:59.581428Z", + "start_time": "2018-11-07T09:30:58.618548Z" + } + }, + "outputs": [], + "source": [ + "images = list(get_images_from_dir('people/noam_chomsky', recursive=False))\n", + "plt.imshow(images[3])" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Align" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "ExecuteTime": { + "end_time": "2018-11-07T09:31:03.729522Z", + "start_time": "2018-11-07T09:30:59.584935Z" + } + }, + "outputs": [], + "source": [ + "detector = Detector()" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "ExecuteTime": { + "end_time": "2018-11-07T09:31:05.301240Z", + "start_time": "2018-11-07T09:31:03.732423Z" + } + }, + "outputs": [], + "source": [ + "faces = detector.find_faces(noam_chomsky_1)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "ExecuteTime": { + "end_time": "2018-11-07T09:31:05.727674Z", + "start_time": "2018-11-07T09:31:05.303622Z" + } + }, + "outputs": [], + "source": [ + "plot_images(noam_chomsky_1, faces[0].image)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Bulk align" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "ExecuteTime": { + "end_time": "2018-11-07T09:31:13.554953Z", + "start_time": "2018-11-07T09:31:05.729619Z" + } + }, + "outputs": [], + "source": [ + "aligned_images = list(detector.bulk_find_face(images))" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "ExecuteTime": { + "end_time": "2018-11-07T09:31:13.742371Z", + "start_time": "2018-11-07T09:31:13.557184Z" + } + }, + "outputs": [], + "source": [ + "plt.imshow(aligned_images[3][0].image)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Vectorize" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "ExecuteTime": { + "end_time": "2018-11-07T14:03:30.267305Z", + "start_time": "2018-11-07T14:03:27.088999Z" + } + }, + "outputs": [], + "source": [ + "identifier = Identifier(model_path=os.path.join('models','facenet_model.pb'))" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Get single face vectors" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "ExecuteTime": { + "end_time": "2018-11-05T09:04:31.938275Z", + "start_time": "2018-11-05T09:04:28.815586Z" + } + }, + "outputs": [], + "source": [ + "# vectorize() returns an array of vectors, one for each face in a single image (we grab the first because there is only one\n", + "# face in these images)\n", + "vector_1 = identifier.vectorize(noam_chomsky_1)[0]\n", + "vector_2 = identifier.vectorize(noam_chomsky_2)[0]\n", + "vector_3 = identifier.vectorize(not_noam_chomsky)[0]" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "ExecuteTime": { + "end_time": "2018-11-05T10:10:33.309081Z", + "start_time": "2018-11-05T10:10:33.299194Z" + } + }, + "outputs": [], + "source": [ + "vector_1" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Visualize face encodings: Facenet" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "ExecuteTime": { + "end_time": "2018-11-07T14:51:17.533893Z", + "start_time": "2018-11-07T14:51:17.026358Z" + } + }, + "outputs": [], + "source": [ + "noam_images = list(map(get_image_from_path_rgb, glob.glob(\"people/noam_chomsky/*.*\")))\n", + "other_people = list(map(get_image_from_path_rgb, glob.glob(\"people/foucault/*.*\")))" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "ExecuteTime": { + "end_time": "2018-11-07T14:51:46.222916Z", + "start_time": "2018-11-07T14:51:17.542278Z" + } + }, + "outputs": [], + "source": [ + "# We use the bulk encoding method vectorize_all() because it's much faster \n", + "# Filter out empty arrays and grab the first item from each array of vectors per image \n", + "noam_vectors = list(map(lambda x : x[0], filter(None, identifier.vectorize_all(noam_images, prealigned=False))))\n", + "other_vectors = list(map(lambda x : x[0], filter(None, identifier.vectorize_all(other_people, prealigned=False))))" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "ExecuteTime": { + "end_time": "2018-11-07T14:51:46.236171Z", + "start_time": "2018-11-07T14:51:46.226300Z" + } + }, + "outputs": [], + "source": [ + "# combine into one features array\n", + "features = np.array(noam_vectors + other_vectors)\n", + "# label each feature (0 is noam and 1 is not noam)\n", + "labels = np.array(([0] * len(noam_vectors)) + ([1] * len(other_vectors)) )" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "ExecuteTime": { + "end_time": "2018-11-07T14:51:47.619724Z", + "start_time": "2018-11-07T14:51:46.240623Z" + } + }, + "outputs": [], + "source": [ + "# use tsne to reduce dimensionality for visualization\n", + "tsne = TSNE(n_components=2, random_state=0)\n", + "reduced = tsne.fit_transform(features)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "ExecuteTime": { + "end_time": "2018-11-07T14:51:47.956023Z", + "start_time": "2018-11-07T14:51:47.621815Z" + } + }, + "outputs": [], + "source": [ + "plt.figure(figsize=(20, 20))\n", + "colors = 'r', 'g',\n", + "for i, c, label in zip([0, 1], colors, ['noam_chomsky', 'foucault']):\n", + " plt.scatter(reduced[labels == i, 0], reduced[labels == i, 1], c=c, label=label)\n", + "plt.legend()\n", + "plt.show()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Visualize face encodings: Insightface" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "ExecuteTime": { + "end_time": "2018-11-05T09:52:56.778083Z", + "start_time": "2018-11-05T09:52:56.445334Z" + } + }, + "outputs": [], + "source": [ + "noam_images_bgr = list(map(get_image_from_path_bgr, glob.glob(\"people/noam_chomsky/*.*\")))\n", + "other_people_bgr = list(map(get_image_from_path_bgr, glob.glob(\"people/foucault/*.*\")))" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "ExecuteTime": { + "end_time": "2018-11-05T09:53:40.888531Z", + "start_time": "2018-11-05T09:52:57.252725Z" + } + }, + "outputs": [], + "source": [ + "insightface = Identifier(model_path=os.path.join('models','insightface', 'insightface_ckpt'), is_insightface=True)\n", + "noam_vectors_insightface = list(map(lambda x : x[0], filter(None, insightface.vectorize_all(noam_images_bgr, prealigned=False))))\n", + "other_vectors_insightface = list(map(lambda x : x[0], filter(None, insightface.vectorize_all(other_people_bgr, prealigned=False))))\n", + "# combine into one features array\n", + "features_insightface = np.array(noam_vectors_insightface + other_vectors_insightface)\n", + "# label each feature (0 is noam and 1 is not noam)\n", + "labels_insightface = np.array(([0] * len(noam_vectors_insightface)) + ([1] * len(other_vectors_insightface)))\n", + "# use tsne to reduce dimensionality for visualization\n", + "tsne_insightface = TSNE(n_components=2, random_state=0)\n", + "reduced_insightface = tsne_insightface.fit_transform(features_insightface)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "ExecuteTime": { + "end_time": "2018-11-05T09:53:41.184401Z", + "start_time": "2018-11-05T09:53:40.891554Z" + } + }, + "outputs": [], + "source": [ + "plt.figure(figsize=(20, 20))\n", + "colors = 'r', 'g',\n", + "for i, c, label in zip([0, 1], colors, ['noam_chomsky', 'foucault']):\n", + " plt.scatter(reduced_insightface[labels_insightface == i, 0], reduced_insightface[labels_insightface == i, 1], c=c, label=label)\n", + "plt.legend()\n", + "plt.show()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Visualize face encodings: directory" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "ExecuteTime": { + "end_time": "2018-11-07T14:55:43.367179Z", + "start_time": "2018-11-07T14:55:13.261710Z" + } + }, + "outputs": [], + "source": [ + "tsne_sklearn(\n", + " img_dir=\"/Users/armanrahman/facenet_sandberg/notebooks/people\",\n", + " model_path=\"/Users/armanrahman/models/facenet_model.pb\",\n", + " is_insightface=False,\n", + " prealigned=False,\n", + " is_flat=False,\n", + " log_dir=\"log_dir\")" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": { + "ExecuteTime": { + "end_time": "2018-11-07T15:46:31.597259Z", + "start_time": "2018-11-07T15:46:09.854515Z" + } + }, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Encoding:100% |##########################| Time: 0:00:08 Elapsed Time: 0:00:08\n", + "'c' argument looks like a single numeric RGB or RGBA sequence, which should be avoided as value-mapping will have precedence in case its length matches with 'x' & 'y'. Please use a 2-D array with a single row if you really want to specify the same RGB or RGBA value for all points.\n", + "'c' argument looks like a single numeric RGB or RGBA sequence, which should be avoided as value-mapping will have precedence in case its length matches with 'x' & 'y'. Please use a 2-D array with a single row if you really want to specify the same RGB or RGBA value for all points.\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABrgAAAaBCAYAAAD4I4/bAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4wLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvqOYd8AAAIABJREFUeJzs3X+M5Xdd7/HXd5jacgAFutBU68xpr3jZtPujONoabEErRlG4UFS8OQilt8zFgDElMTZOIiVmCJpqsVHRg4CFfDHRNMrttdFcrC1tvC1MoT+obYLAzGRvCLZbSgqHQsl+7x/fzuwPdrd7ds/Mmc+ZxyNpvvt979nv+cy2/euZz/dTNU0TAAAAAAAAKMXUuBcAAAAAAAAAwxC4AAAAAAAAKIrABQAAAAAAQFEELgAAAAAAAIoicAEAAAAAAFAUgQsAAAAAAICiCFwAAAAAAAAUReACAAAAAACgKAIXAAAAAAAARZke9wIOtWPHjqbb7Y57GQAAAAAAAGyye+6559GmaV50Ip/dUoGr2+1maWlp3MsAAAAAAABgk1VVtXKin/WKQgAAAAAAAIoicAEAAAAAAFAUgQsAAAAAAICibKkzuAAAAAAAAJ7JU089lX379uXJJ58c91I4CWeccUbOOeecnHbaaSf9DIELAAAAAAAoyr59+/K85z0v3W43VVWNezkMoWma7N+/P/v27cu555570s/xikIAAAAAAKAoTz75ZM4880xxq0BVVeXMM8885d13AhcAAAAAAFAccatco/h3J3ABAAAAAABQFIELAAAAAABgSDfccEN27tyZXq83tjU897nPTZIsLy/n4x//+NjWMQ4CFwAAAAAAMNnqOul2k6mp9lrXp/zIP//zP88tt9ySegTPOlUCFwAAAAAAwCSp62R+PllZSZqmvc7Pn1Lkevvb354vfelLee1rX5s/+qM/yute97rs3r07F198ce6///4kybXXXpvrrrtu/c9ccMEFWV5eTpJ89KMfze7du7Nnz578+q//epLk5ptvzkUXXZQLL7wwP/uzP5uvfvWrz/icNddcc03uuOOO7N27N9dff/1J/1wlEbgAAAAAAIDJtbCQDAaHzwaDdn6S/uIv/iI/+IM/mH/913/N8vJyLrzwwtx///1573vfmze/+c3H/bMPPvhgFhcXc+utt+a+++7Ln/zJnyRJfuqnfip33XVXPve5z+XXfu3X8od/+IcnvJ73ve99ueSSS3Lvvffm6quvPumfqyTT414AAAAAAADAhlldHW4+pDvvvDM33XRTkuRnfuZnsn///nz9618/5udvvfXW/PIv/3J27NiRJHnhC1+YJNm3b1/e+MY35itf+Uq+853v5Nxzzx3J+iaVHVwAAAAAAMDkmpkZbj6kpmm+Z1ZVVaanp3PgwIH12ZNPPrn++aqqvufP/OZv/mbe+c535oEHHshf/uVfrn/+WM/Z7gQuAAAAAABgci0uJp3O4bNOp52PwKWXXpr66fO8brvttuzYsSPf//3fn263m89+9rNJks9+9rP58pe/nCS57LLL8rd/+7fZv39/kuSxxx5Lknz961/PD/3QDyVJbrzxxvXnH+s5h3re856XJ554YiQ/TykELgAAAAAAYHL1ekm/n8zOJlXVXvv9dj4C1157bZaWlrJ79+5cc80163HqDW94Qx577LHs3bs3H/jAB/KjP/qjSZLzzz8/CwsLecUrXpE9e/bkXe961/pzfuVXfiWXXHLJ+usLj/ecQ+3evTvT09PZs2dPrr/++pH8XFtddbStc+MyNzfXLC0tjXsZAAAAAADAFvbQQw9l586d414Gp+Bo/w6rqrqnaZq5E/nzdnABAAAAAABQFIELAAAAAACAoghcAAAAAAAAFEXgAgAAAAAAoCgCFwAAAAAAAEURuAAAAAAAACiKwAUAAAAAAEBRBC4AAAAAAGCi1Xkq3XwzU/lGuvlm6jw17iVtmGuvvTbXXXfdpnzXbbfdll/6pV/alO860vRYvhUAAAAAAGAT1Hkq8/l2Bk/fr6TJfL6dJOnltPEtjFNiBxcAAAAAADCxFvKd9bi1ZvD0/FQsLy9n586dedvb3pbzzz8/P/dzP5dvfetbuffee3PxxRdn9+7def3rX5+vfe1rSZIPfvCD+fEf//Hs2bMnb3jDGzIYtKu64oor8hu/8Rv56Z/+6Zx33nm5/fbbc+WVV2bnzp254oorjruGf/qnf8rLXvay7NmzJ5dddtn6/N///d/zyle+Muedd15uuOGG9fkf//Ef54ILLsgFF1yQ97///es/x0tf+tJcddVVueCCC9Lr9fLJT34yL3/5y/OSl7wkn/70p5Mkt99+e/bu3Zu9e/fmwgsvzBNPPHHYWj7zmc/kwgsvzJe+9KW85CUvySOPPJIkOXDgQH7kR34kjz766Cn9fR9J4AIAAAAAACbWapqh5sP4whe+kHe84x158MEH8/znPz833XRT3vzmN+cP/uAPcv/992fXrl15z3vekyS5/PLL85nPfCb33Xdfdu7cmQ996EPrz/na176WW2+9Nddff31e85rX5Oqrr86DDz6YBx54IPfee+9Rv/uRRx7J2972ttx0002577778nd/93frv/fwww/nn//5n/PpT38673nPe/LUU0/lnnvuyUc+8pHcfffdueuuu/LBD34wn/vc55Ik//Ef/5Hf+q3fyv3335+HH344H//4x3PnnXfmuuuuy3vf+94kyXXXXZc/+7M/y7333ps77rgjz372s9e/79/+7d/y9re/PZ/4xCdy3nnn5U1velPquk6SfPKTn8yePXuyY8eOU/77PpTABQAAAAAATKyZVEPNh3Huuedm7969SZIf+7Efyxe/+MU8/vjjecUrXpEkectb3pJPfepTSZLPf/7zueSSS7Jr167UdZ0HH3xw/Tmvec1rUlVVdu3albPOOiu7du3K1NRUzj///CwvLx/1u++6665ceumlOffcc5MkL3zhC9d/7xd/8Rdz+umnZ8eOHXnxi1+cr371q7nzzjvz+te/Ps95znPy3Oc+N5dffnnuuOOO9Z/j0O+87LLL1tez9v0vf/nL8653vSs33HBDHn/88UxPt6dgPfTQQ5mfn8/NN9+cmZmZJMmVV16Zj370o0mSD3/4w3nrW996yn/XRxK4AAAAAACAibWY70vniFnn6fmpOv3009d//axnPSuPP/74MT97xRVX5E//9E/zwAMP5N3vfneefPLJ73nO1NTUYc+cmprKd7/73aM+r2maVNXRI92R6/rud7+bpjn2jrUjv/PQ9ax9/zXXXJO/+qu/yre+9a1cfPHFefjhh5MkZ599ds4444z13WBJ8sM//MM566yzcuutt+buu+/OL/zCLxzzu0+WwAUAAAAAAEysXk5LP6dnNlWqJLOp0s/p6eW0kX/XD/zAD+QFL3jB+s6oj33sY+u7uZ544omcffbZeeqpp9Zf33cqfvInfzK33357vvzlLydJHnvsseN+/tJLL80//MM/ZDAY5Jvf/Gb+/u//PpdccskJf98Xv/jF7Nq1K7/zO7+Tubm59cD1/Oc/P//4j/+Y3/3d381tt922/vmrrroqb3rTm/Krv/qredaznjX8D/gMBC4AAAAAAGCi9XJalvOcHMhzs5znbEjcWnPjjTfmt3/7t7N79+7ce++9+b3f+70kye///u/noosuyqte9aq89KUvPeXvedGLXpR+v5/LL788e/bsyRvf+Mbjfv5lL3tZrrjiivzET/xELrroolx11VW58MILT/j73v/+9+eCCy7Inj178uxnP/uwXVlnnXVWbr755rzjHe/I3XffnSR57Wtfm2984xsb8nrCJKmOtyVts83NzTVLS0vjXgYAAAAAALCFPfTQQ9m5c+e4l8FxLC0t5eqrr17fzXako/07rKrqnqZp5k7k+dOnvkQAAAAAAABove9978sHPvCBkbyK8VgELgAAAAAAgC3soosuyre//e3DZh/72Meya9euMa3o+K655ppcc801G/odAhcAAAAAAFCcpmlSVdW4l7Ep1s61mhSjOD5ragTrAAAAAAAA2DRnnHFG9u/fP5JQwuZqmib79+/PGWeccUrPsYMLAAAAAAAoyjnnnJN9+/blkUceGfdSOAlnnHFGzjnnnFN6hsAFAAAAAAAU5bTTTsu555477mUwRl5RCAAAAAAAQFEELgAAAAAAAIoicAEAAAAAAFAUgQsAAAAAAICiCFwAAAAAAAAUReACAAAAAACgKAIXAAAAAAAARRG4AAAAAAAAKIrABQAAAAAAQFEELgAAAAAAAIoicAEAAAAAAFAUgQsAAAAAAICiCFwAAAAAAAAUReACAAAAAACgKAIXAAAAAAAARRG4AAAAAAAAKIrABQAAAAAAQFEELgAAAAAAAIoicAEAAAAAAFAUgQsAAAAAAICiCFwAAAAAAAAUReACAAAAAACgKAIXAAAAAAAARRG4AAAAAAAAKIrABQAAAAAAQFEELgAAAAAAAIoicAEAAAAAAFAUgQsAAAAAAICiCFwAAAAAAAAUReACAAAAAACgKAIXAAAAAAAcqa6TbjeZmmqvdT3uFQGHmB73AgAAAAAAYEup62R+PhkM2vuVlfY+SXq98a0LWGcHFwAAAAAAHGph4WDcWjMYtPOtyo4zthk7uAAAAAAA4FCrq8PNx82OM7YhO7gAAAAAAOBQMzPDzcetxB1ncIoELgAAAAAAONTiYtLpHD7rdNr5VlTajjMYAYELAAAAAAAO1esl/X4yO5tUVXvt97fu6/5K23EGIyBwAQAAAADAkXq9ZHk5OXCgvW7VuJWUt+MMRkDgAgAAAACAkpW24wxGYHrcCwAAAAAAAE5Rrydosa3YwQUAAAAAAEBRBC4AAAAAAACKInABAAAAAABQFIELAAAAAACAoghcAAAAAAAAFEXgAgAAAAAAoCgCFwAAAAAAAEURuAAAAAAAACiKwAUAAAAAAEBRBC4AAAAAAACKInABAAAAAABQFIELAAAAAACAoghcAAAAAAAAFEXgAgAAAAAAoCgCFwAAAAAAAEURuAAAAAAAACiKwAUAAAAAAEBRBC4AAAAAAACKInABAAAAAABQFIELAAAAAACAoghcAAAAAAAAFEXgAgAAAAAAoCgCFwAAAAAAAEURuAAAAAAAACiKwAUAAAAAAEBRBC4AAAAAAACKInABAAAAAABQFIELAAAAAAB4ZnWddLvJ1FR7retxr4htbHrcCwAAAAAAALa4uk7m55PBoL1fWWnvk6TXG9+62Lbs4AIAAAAAAI5vYeFg3FozGLRzGAOBCwAAAAAAOL7V1eHmsMEELgAAAAAA4PhmZoabwwYTuAAAAAAAgONbXEw6ncNnnU47hzEQuAAAAAAAgOPr9ZJ+P5mdTaqqvfb77RzGQOACAAAAAGCy1HXS7SZTU+21rse9osnQ6yXLy8mBA+1V3GKMpse9AAAAAAAAGJm6Tubnk8GgvV9Zae8TQQYmiB1cAAAAAABMjoWFg3FrzWDQzoGJIXABAAAAADA5VleHm5+Iuk527GjPnqqq9tdeewhjJXABAAAAADA5ZmaGmz+Tuk6uvDLZv//gbP/+5K1vFblgjAQuAAAAAAAmx+Ji0ukcPut02vnJWFhIvvOd750/9ZTXHsIYCVwAAAAAAEyOXi/p95PZ2fZ1grOz7X2vd3LPO96rDU/ltYebpa6TbjeZmmqvdp0xIabHvQAAAAAAABipXu/kg9aRZmaSlZVj/95WVtfJ/HwyGLT3KyvtfTK6vx8YEzu4AAAAAADgWBYXk+/7vu+dn3bayb/2cLMsLByMW2sGA69WZCIIXAAAAAAAcCy9XvLhDydnnnlwduaZyUc+svV3QR3rFYolvFoRnoHABQAAAAAAx9PrJY8+mjRN+8+jjw4Xt8Z1DtaxXqG41V+tCCdA4AIAAAAAgI2ydg7Wykobx9bOwdqMyLW4mHQ6h886na3/akU4AQIXAAAAAABslHGeg9XrJf1+MjubVFV77fe3/qsV4QQIXAAAAAAAsFGcgwUbQuACAAAAAICNMs5zsMb5ekTYYAIXAAAAAABslHGegzXO1yPCBhO4AAAAAABgo4zzHCyvR2SCTY97AQAAAAAAMNF6vc0JWkeamWlfS3i0ORTODi4AAAAAAJhE43w9ImwwgQsAAAAAgNGp66TbTaam2mtdj3tF29c4X48IG0zgAgAAAABgNOo6mZ9vX4vXNO11fl7kGqdeL1leTg4caK/i1uYQejecwAUAAAAAwGgsLCSDweGzwaCdw3Yh9G4KgQsAAAAAgNFYXR1uDpNI6N0UAhcAAAAAAKMxMzPcHCaR0LspBC4AAAAAAEZjcTHpdA6fdTrtHLYLoXdTCFwAAAAAAIxGr5f0+8nsbFJV7bXfb+ewXQi9m2J63AsAAAAAAGCC9HqCFtvb2n//CwvtawlnZtq45f+LkRK4AAAAAAAARkno3XBeUQgAAAAAAEBRBC4AAAAAAACKMpLAVVXVh6uq+s+qqj5/yOzaqqr+X1VV9z79z6tH8V0AAAAAAABsb6PawfXXSX7+KPPrm6bZ+/Q/t4zouwAAAAAAANjGRhK4mqb5VJLHRvEsAAAAAAAAOJ6NPoPrnVVV3f/0KwxfsMHfBQAAAAAA5avrpNtNpqbaa12Pe0Ww5Wxk4PpAkv+SZG+SryT5o6N9qKqq+aqqlqqqWnrkkUc2cDkAAAAAALDF1XUyP5+srCRN017n50UuOELVNM1oHlRV3ST/u2maC4b5vUPNzc01S0tLI1kPAAAAAAAUp9tto9aRZmeT5eXNXg1sqqqq7mmaZu5EPrthO7iqqjr7kNvXJ/n8Rn0XAAAAAABMhNXV4eawTU2P4iFVVf1Nklcm2VFV1b4k707yyqqq9iZpkiwn+Z+j+C4AAAAAAJhYMzNH38E1M7P5a4EtbCSBq2ma/36U8YdG8WwAAAAAANg2FhfbM7cGg4OzTqedA+s27BWFAAAAAADAkHq9pN9vz9yqqvba77dzYN1IdnABAAAAAAAj0usJWvAM7OACAAAAAACgKAIXAAAAAAAARRG4AAAAAACA4dV10u0mU1Ptta7HvSK2EWdwAQAAAAAAw6nrZH4+GQza+5WV9j5xfhibwg4uAAAAAABgOAsLB+PWmsGgncMmELgAAAAAAIDhrK4ON4cRE7gAAAAAAIDhzMwMN4cRE7gAAAAAAIDhLC4mnc7hs06nncMmELgAAAAAAIDh9HpJv5/MziZV1V77/XYOm2B63AsAAAAAAAAK1OsJWoyNHVwAAAAAAMDWV9dJt5tMTbXXuh73ihgjO7gAAAAAAICtra6T+flkMGjvV1ba+8Qusm3KDi4AAAAAAGBrW1g4GLfWDAbtnG1J4AIAAAAAALa21dXh5kw8gQsAAAAAAMbJ2VLPbGZmuDkTT+ACAAAAAIBxWTtbamUlaZqDZ0uJXIdbXEw6ncNnnU47Z1sSuAAAAAAAYFycLXVier2k309mZ5Oqaq/9fjtnW6qaphn3GtbNzc01S0tL414GAAAAAABsjqmpdufWkaoqOXBg89cDY1RV1T1N08ydyGft4AIAAAAAgHFxthScFIELAAAAAADGxdlScFIELgAAAAAAJltdJ91u+zrAbre93yqcLQUnZXrcCwAAAAAAgA1T18n8fDIYtPcrK+19snUiUq+3ddYChbCDCwAAAACAybWwcDBurRkM2jlQLIELAAAAAIDJtbo63BwogsAFAAAAAMBkONpZWzMzR//sseZAEQQuAAAAAADKt3bW1spK0jQHz9p69auTTufwz3Y6yeLieNYJjITABQAAAABA+Y511tYttyT9fjI7m1RVe+33k15vPOsERqJqmmbca1g3NzfXLC0tjXsZAAAAAACUZmqq3bl1pKpKDhzY/PUAQ6uq6p6maeZO5LN2cAEAAAAAUD5nbcG2InABAAAAAEyKuk663XY3U7fb3m8Xi4vO2oJtROACAAAAAJgEdZ3MzycrK+2r+lZW2vvtErl6PWdtwTbiDC4AAAAAgEnQ7bZR60izs8ny8mavBmBozuACAAAAANhuVleHmwMUTOACAAAAAJgEMzPDzQEKJnABAAAAAEyCxcWk0zl81um0c4AJI3ABAAAAAEyCXi/p99szt6qqvfb77RxgwkyPewEAAAAAAIxIrydoAduCHVwAAAAAAAAUReACAAAAAACgKAIXAAAAAAAARRG4AAAAAAAAKIrABQAAAAAAQFEELgAAAAAAAIoicAEAAAAAAOWp66TbTaam2mtdj3tFbKLpcS8AAAAAAABgKHWdzM8ng0F7v7LS3idJrze+dbFp7OACAAAAAADKsrBwMG6tGQzaOduCwAUAAAAAAJRldXW4ORNH4AIAAAAAAMoyMzPcnIkjcAEAAAAAAGVZXEw6ncNnnU47Z1sQuAAAAAAAgLL0ekm/n8zOJlXVXvv9ds62MD3uBQAAAAAAAAyt1xO0tjE7uAAAAAAAACiKwAUAAAAAAEBRBC4AAAAAACCp66TbTaam2mtdj3tFcEzO4AIAAAAAgO2urpP5+WQwaO9XVtr7xDlXbEl2cAEAAAAAwHa3sHAwbq0ZDNo5bEECFwAAAAAAbHerq8PNYcwELgAAAAAA2Io280ysmZnh5jBmAhcAAAAAAGw1a2dirawkTXPwTKyNilyLi0mnc/is02nnsAUJXAAAAAAAsNUMcybWKHZ69XpJv5/MziZV1V77/XYOW1DVNM2417Bubm6uWVpaGvcyAAAAAABgvKam2p1bR6qq5MCBg/drO70OjWGdjjhFkaqquqdpmrkT+awdXAAAAAAAsNWc6JlYw+z0ggkicAEAAAAAwFZzomdira4e/c8faw4TQuACAAAAAGAyjeJsqnE50TOxTnSnF0wYgQsAAAAAgMmzdjbVykp7ltXKSntfWuRaXm7P3FpePvqZWie60wsmjMAFAAAAAMDk2S5nU53oTi+YMFXTNONew7q5ublmaWlp3MsAAAAAAKB0U1Ptzq0jVVW7IwrYcqqquqdpmrkT+awdXAAAAAAATB5nU8FEE7gAAAAAAJg8r371cHNGr66TbrfdTdftlnX+GVve9LgXAAAAAAAAI3fLLcPNGa26TubnD56DtrLS3ifOB2Mk7OACAAAAAGDyrK4ON2e0FhYOxq01g0E7hxEQuAAAAAAAmDzO4BovgZENJnABAAAAADB5FheTTufwWafTztl4AiMbTOACAAAAAGDy9HpJv5/MziZV1V77fec/bRaBkQ0mcAEAAAAAMJl6vWR5OTlwoL2OO27VddLtJlNT7bWux7uejSQwssGmx70AAAAAAACYeHWdzM8ng0F7v7LS3ieTG316vcn92Rg7O7gAAAAAAGCjLSwcjFtrBoN2DgxN4AIAAAAAgI22ujrcHDgugQsAAAAAADbazMxwc+C4BC4AAAAAANhoi4tJp3P4rNNp58DQBC4AAAAAANhovV7S7yezs0lVtdd+v50DQ5se9wIAAAAAAGBb6PUELRgRO7gAAAAAAAAoisAFAAAAAABAUQQuAAAAAAAAiiJwAQAAAAAAUBSBCwAAAAAAgKIIXAAAAAAAABRF4AIAAAAAACZbXSfdbjI11V7retwr4hQJXAAAAAAAbD7Bgc1S18n8fLKykjRNe52f999c4QQuAAAAAAA2l+DAZlpYSAaDw2eDQTunWAIXAAAAAACba7sHB7vXNtfq6nBziiBwAQAAAACwubZzcLB7bfPNzAw3pwgCFwAAAAAAm2s7B4dJ2L1W2g60xcWk0zl81um0c4olcAEAAAAAsLm2c3AoffdaiTvQer2k309mZ5Oqaq/9fjunWFXTNONew7q5ublmaWlp3MsAAAAAAGCj1XW7a2l1td25tbi4PYJDt9tGoSPNzibLy5u9muGVvn62tKqq7mmaZu5EPmsHFwAAAAAAm6/Xa4PIgQPtdTvEraT83Wul70BjYghcAAAAAACwWUp/Xd52Pj+NLUXgAgAAAACAzVTy7rXSd6AxMQQuAAAAAAAYl7puz7WammqvdT3uFR1f6TvQmBjT414AAAAAAABsS3WdzM8ng0F7v7LS3idbOxj1elt7fWwLdnABAAAAAMA4LCwcjFtrBoN2DhyXwAUAAAAAAOOwujrcHFgncAEAAAAAwDjMzAw3B9YJXAAAAAAAMA6Li0mnc/is02nnwHEJXAAAAAAAMA69XtLvJ7OzSVW1136/nQPHNT3uBQAAAAAAwLbV6wlacBLs4AIAAAAAAKAoAhcAAAAAAABFEbgAAAAAAAAoisAFAAAAAABAUQQuAAAAAAAAiiJwAQAAAAAAUBSBCwAAAAAAgKIIXAAAAAAAABRF4AIAAAAAgGOp66TbTaam2mtdj3tFQJLpcS8AAAAAAAC2pLpO5ueTwaC9X1lp75Ok1xvfugA7uAAAAAAA4KgWFg7GrTWDQTsHxkrgAgAAAACAo1ldHW4ObBqBCwAAAABgozi/qWwzM8PNgU0jcAEAAAAAbIS185tWVpKmOXh+k8hVjsXFpNM5fNbptHNgrAQuAAAAAICN4Pym8vV6Sb+fzM4mVdVe+/12DoxV1TTNuNewbm5urllaWhr3MgAAAAAATt3UVLtz60hVlRw4sPnrAdjiqqq6p2mauRP5rB1cAAAAAAAbwflNbDfOnGMTCVwAAAAAABvB+U1sJ86cY5MJXAAAAAAAG2Gzzm+ya4atwJlzbDJncAEAAAAAlGpt18yhYaHT2ZiQBsfjzDlGwBlcAAAAAADbgV0zbBXOnGOTCVwAAAAAAKVaXR1uDhvFmXNsMoELAAAAAKBUds2wVWzWmXPwNIELAAAAAKBUds2wlfR6yfJye+bW8rK4xYYSuAAAAAAASmXXDHWddLvJ1FR7retxrwg2xfS4FwAAAAAAwCno9QSt7aquk/n5ZDBo71dW2vvEfxNMPDu4AAAAAACgRAsLB+PWmsGgncOEE7gAAAAAAKBEq6vDzWGCCFwAAAAAAFCimZnh5jBBBC4AAAAAACjR4mLS6Rw+63TaOUw4gQsAAAAAAErU6yX9fjI7m1RVe+332zlMuOlxLwAAAAAAADhJvZ6gxbZkBxcAAAAAAABFEbgAAAAAAAAoisAFAAAAAABAUQQ+zag/AAAgAElEQVQuAAAAAAAAiiJwAQAAAAAAUBSBCwAAAAAAgKIIXAAAAAAAABRF4AIAAAAAAKAoAhcAAAAAAABFEbgAAAAAAAAoisAFAAAAAABAUQQuAAAAAAAAiiJwAQAAAAAAUBSBCwAAAAAAgKIIXAAAAAAAABRF4AIAAAAAAKAoAhcAAAAAAABFEbgAAAAAAAAoisAFAAAAAABAUQQuAAAAAAAAiiJwAQAAAAAAUBSBCwAAAAAAgKIIXAAAAAAAABRF4AIAAAAAAKAoAhcAAAAAAABFEbgAAAAAAAAoisAFAAAAAABAUQQuAAAAAAAAiiJwAQAAAAAAUBSBCwAAAAAAgKIIXAAAAABAmeo66XaTqan2WtfjXhEAm2R63AsAAAAAABhaXSfz88lg0N6vrLT3SdLrjW9dAGwKO7gAAAAAgPIsLByMW2sGg3YOwMQTuAAAAACA8qyuDjcHYKIIXAAAAABAeWZmhpsDMFEELgAAAACgPIuLSadz+KzTaecATDyBCwAAAAAoT6+X9PvJ7GxSVe2132/nAEy86XEvAAAAAADgpPR6ghbANmUHFwAAAAAAAEURuAAAAAAAACiKwAUAAAAAAEBRBC4AAAAAAACKInABAAAAAABQFIELAAAAAIDtq66TbjeZmmqvdT3uFQEnYHrcCwAAAAAAgLGo62R+PhkM2vuVlfY+SXq98a0LeEZ2cAEAAAAAsD0tLByMW2sGg3YObGkCFwAAAAAA29Pq6nBzYMsQuAAAAAAA2J5mZoabA1uGwAUAAAAAwPa0uJh0OofPOp12DmxpAhcAAAAAANtTr5f0+8nsbFJV7bXfb+fAljY97gUAAAAAAMDY9HqCFhTIDi4AAAAAAACKInABAAAAAABQFIELAAAAAACAoghcAAAAAAAAFEXgAgAAAAAAoCgCFwAAAAAAAEURuAAAAAAAACiKwAUAAAAAAEBRBC4AAAAAAACKInABAAAAAABQFIELAAAAAACAoghcAAAAAAAAFEXgAgAAAAAAoCgCFwAAAAAAAEURuAAAAAAAACiKwAUAAAAAAEBRBC4AAAAAAACKInABAAAAAABQFIELAAAAAACAoghcAAAAAAAAFEXgAgAAAAAAoCgCFwAAAAAAAEURuAAAAAAAACiKwAUAAAAAAEBRBC4AAAAAAACKInABAAAAAABQFIELAAAAAACAoghcAAAAAAAAFEXgAgAAAAAAoCgCFwAAAAAAAEURuAAAAAAAACiKwAUAAAAAAEBRBC4AAAAAAACKInABAAAAAABQFIELAAAAAACAoghcAAAAAAAAFEXgAgAAAAAAoCgCFwAAAAAAAEURuAAAAAAAACiKwAUAAAAAAEBRBC4AAAAAAACKInABAAAAAABQFIELAAAAAACAoghcAAAAAAAAFEXgAgAAAAAAoCgjCVxVVX24qqr/rKrq84fMXlhV1f+pquoLT19fMIrvAgAAAAAAYHsb1Q6uv07y80fMrknyL03TvCTJvzx9DwAAAAAAAKdkJIGraZpPJXnsiPF/S3Lj07++McnrRvFdAAAAAAAAbG8beQbXWU3TfCVJnr6++Ggfqqpqvqqqpaqqlh555JENXA4AAAAAAACTYCMD1wlpmqbfNM1c0zRzL3rRi8a9HAAAAAAAALa4jQxcX62q6uwkefr6nxv4XQAAAAAAAGwTGxm4/leStzz967ck+cQGfhcAAAAAAADbxEgCV1VVf5Pk/yb5r1VV7auq6n8keV+SV1VV9YUkr3r6HgAAAAAAAE7J9Cge0jTNfz/Gb102iucDAAAAAADAmo18RSEAAAAAAACMnMAFAAAAAABAUQQuAAAAAAAAiiJwAQAAAAAAUBSBCwAAAAAAgKIIXAAAAAAAABRF4AIAAAAAAKAoAhcAAAAAAABFEbgAAAAAAAAoisAFAAAAAABAUQQuAAAAAAAAiiJwAQAAAAAAUBSBCwAAAAAAgKIIXAAAAAAAABRF4AIAAAAAAKAoAhcAAAAAAABFEbgAAAAAAAAoisAFAAAAAABAUQQuAAAAAAAAiiJwAQAAAAAAUBSBCwAAAAAAgKIIXAAAAAAAABRF4AIAAAAAAKAoAhcAAAAAAABFEbgAAAAAAAAoisAFAAAAAABAUQQuAAAAAAAAiiJwAQAAAAAAUBSBCwAAAID/z94d+7aatnkd/91541j4DBSsRhRAYgqabUBotA0SEg1iK1qQezcg0SKlzh9AQYELOkt0SEisgJoKBgkEFEir1UlYbcHLUsVGjmEeinUy5+TNmTmec+zH1+PPp5nxdY4md5FJke9z3Q8AQCkCFwAAAAAAAKUIXAAAAAAAAJQicAEAAAAAAFCKwAUAAAAAAEApAhcAAAAAAAClCFwAAAAAAACUInABAAAAAABQisAFAAAAAABAKQIXAAAAAAAApQhcAAAAAAAAlCJwAQAAAAAAUIrABQAAAAAAQCkCFwAAAAAAAKUIXAAAAAAAAJQicAEAAAAAAFCKwAUAAAAAAEApAhcAAAAAAAClCFwAAAAAAACUInABAAAAAABQisAFAAAAAABAKQIXAAAAAAAApQhcAAAAAAAAlCJwAQAAAAAAUIrABQAAAAAAQCkCFwAAAAAAAKUIXAAAAAAAAJQicAEAAAAAAFCKwAUAAAAAAEApAhcAAAAAAAClCFwAAAAAAACUInABAAAAAABQisAFAAAAAABAKQIXAAAAAAAApQhcAAAAAAAAlCJwAQAAAAAAUIrABQAAAAAAQCkCFwAAAAAAAKUIXAAAAAAAAJQicAEAAAAAAFCKwAUAAAAAAEApAhcAAAAAAAClCFwAAAAAAACUInABAAAAAABQisAFAAAAAABAKQIXAAAAAAAApQhcAAAAAAAAlCJwAQAAAAAAUIrABQAAAAAAQCkCFwAAAAAAAKUIXAAAAAAAAJQicAEAAAAAAFCKwAUAAAAAAEApAhcAAAAAAAClCFwAAAAAAACUInABAAAAAABQisAFAAAAAABAKQIXAAAAAAAApQhcAAAAAAAAlCJwAQAAAAAAUIrABQAAAAAAQCkCFwAAAAAAAKUIXAAAAAAAAJQicAEAAAAAAFCKwAUAAAAAAEApAhcAAAAAAAClCFwAAAAAAACUInABAAAAAABQisAFAAAAAABAKQIXAAAAAAAApQhcAAAAAAAAlCJwAQAAAAAAUIrABQAAAAAAQCkCFwAAAAAAAKUIXAAAAAAAAJQicAEAAAAAAFCKwAUAAAAAAEApAhcAAAAAAAClCFwAAAAAAACUInABAAAAAABQisAFAAAAAABAKQIXAAAAAAAApQhcAAAAAAAAlCJwAQAAAAAAUIrABQAAAAAAQCkCFwAAAAAAAKUIXAAAAAAAAJQicAEAAAAAAFCKwAUAAAAAAEApAhcAAAAAAAClCFwAAAAAAACUInABAAAAAABQisAFAAAAAABAKQIXAAAAAAAApQhcAAAAAAAAlCJwAQAAAAAAUIrABQAAAAAAQCkCFwAAAAAAAKUIXAAAAAAAAJQicAEAAAAAAFCKwAUAAAAAAEApAhcAAAAAAAClCFwAAAAAAACUInABAAAAAABQisAFAAAAAABAKQIXAAAAAAAApQhcAAAAAAAAlCJwAQAAAAAAUIrABQAAAAAAQCkCFwAAAAAAAKUIXAAAAAAAAJQicAEAAAAAAFCKwAUAAAAAAEApAhcAAAAAAAClCFwAAAAAAACUInABAAAAAABQisAFAAAAAABAKQIXAAAAAAAApQhcAAAAAAAAlCJwAQAAAAAAUIrABQAAAAAAQCkCFwAAAAAAAKUIXAAAAAAAAJQicAEAAAAAAFCKwAUAAAAAAEApAhcAAAAAAAClCFwAAAAAAACUInABAAAAAABQisAFAAAAAABAKQIXAAAAAAAApQhcAAAAAAAAlCJwAQAAAAAAUIrABQAAAAAAQCkCFwAAAAAAAKUIXAAAAAAAAJQicAEAAAAAAFCKwAUAAAAAAEApAhcAAAAAAAClCFwAAAAAAACUInABAAAAAABQisAFAAAAAABAKQIXAAAAAAAApQhcAAAAAAAAlCJwAQAAAAAAUIrABQAAAAAAQCkCFwAAAAAAAKUIXAAAAAAAAJQicAEAAAAAAFCKwAUAAAAAAEApAhcAAAAAAAClCFwAAAAAAACUInABAAAAAABQisAFAAAAAABAKQIXAAAAAAAApQhcAAAAAAAAlCJwAQAAAAAAUIrABQAAAAAAQCkCFwAAAAAAAKUIXAAAAAAAAJQicAEAAAAAAFCKwAUAAAAAAEApAhcAAAAAAAClCFwAAAAAAACUInABAAAAAABQisAFAAAAAABAKQIXAAAAAAAApQhcAAAAAAAAlCJwAQAAAAAAUIrABQAAAAAAQCkCFwAAAAAAAKUIXAAAAAAAAJQicAEAAAAAAFCKwAUAAAAAAEApAhcAAAAAAAClCFwAAAAAAACUInABAHA0y2wzzSoXecw0qyyz7ftIAAAAQEGXfR8AAIDzsMw282yy3n2+T5d5NkmSWUb9HQwAAAAoxwYXAABHcZunl7j1bL2bAwAAAOxD4AIA4Cge0u01BwAAAPgUgQsAgKO4TttrDgAAAPApAhcAAEdxl6tMXs0muzkAAADAPgQuAACOYpZRFhnnJi0tyU1aFhlnllHfRwMAAACKuez7AAAAnI9ZRoIWAAAA8MVscAEAAAAAAFCKwAUAAAAAAEApAhcAFLXMNtOscpHHTLPKMtu+jwQAAAAAR+EdXABQ0DLbzLPJevf5Pl3m2SSJ9xsBAAAAMHg2uACgoNs8vcStZ+vdHAAAAACGTuACgIIe0u01BwAAAIAhEbgAoKDrtL3mAAAAADAkAhcAFHSXq0xezSa7OQAAAAAMncAFAAXNMsoi49ykpSW5Scsi48wy6vtoAAAAAHBwl30fAAD4ZWYZCVoAAAAAnCUbXAAAAAAAAJQicAEAAAAAAFCKwAUAAAAAAEApAhcAAAAAAAClCFwAAAAAAACUInABAAAAAABQisAFAAAAAABAKQIXAMBALLPNNKtc5DHTrLLMtu8jAQAAABzEZd8HAADgyy2zzTybrHef79Nlnk2SZJZRfwcDAAAAOAAbXAAAA3Cbp5e49Wy9mwMAAAAMjcAFwGdx9Rmctod0e80BAAAAKnNFIQA/y9VncNqW2eYiyf9748+u0459HAAAAICDs8EFwM9y9RmcrucA/VbcmiS5y9WxjwQAAABwcAIXAD/L1Wdwut4K0EnyqySLjG1ZAgAAAIMkcAHwsz51xZmrz6B/nwrNP8QVogAAAMBwHTxwtdbet9b+S2vtP7XWvj/01wPg67vLVSavZq4+g9MgQAMAAADn6FgbXH+z67q/2nXdd0f6egB8RbOMssg4N2lpSW7SXH0GJ0KABgAAAM7RZd8HAKCGWUaCFpyg5/8vb/OUh3S5Tstdrvz/CgAAAAzaMQJXl+Tftta6JP+067rFh3/YWpsnmSfJ9fX1EY4DADAsAjQAAABwbo5xReFf77ruryX53SR/v7X2Nz78w67rFl3Xfdd13XfffvvtEY4DAAAAAABAZQcPXF3X/dHun/8zyb9I8juH/poAAAAAAAAM10EDV2vtXWvtTz//e5K/leS/HvJrAgAAAAAAMGyH3uD6c0n+XWvtPyf590n+Vdd1//rAXxMAYBCW2WaaVS7ymGlWWWbb95EAAAAATsLlIf/jXdf9QZK/csivAQAwRMtsM88m693n+3SZZ5MkmWXU38EAAAAATsDB38EFAMD+bvP0EreerXdzAAAAgHMncAEAnKCHdHvNAQAAAM6JwAUAcAJev2/rz37i712nHfVcAAAAAKfooO/gAgDg5731vq2rJKMk2w/+3iTJXa6Ofj4AAACAU2ODCwCgZ2+9b+spyZ9JcpOWtvvnIuPMMjr+AQEAAABOjA0uAICefeq9Wv87yf/Ku+MeBgAAAKAAG1wAAD371Hu1vG8LAAAA4G0CFwBAz+5ylcmrmfdtAQAAAHyawAUA0LNZRllk7H1bAAAAAJ/JO7gAAE7ALCNBCwAAAOAz2eACAAAAAACgFIELAAAAAACAUgQuAAAAAAAAShG4AAAAAAAAKEXgAgAAAAAAoBSBCwAAAAAAgFIELgAAAAAAAEoRuAAAAAAAAChF4AIAAAAAAKAUgQsAAAAAAIBSBC4AAAAAAABKEbgAAAAAAAAoReACAAAAAACgFIELAAAAAACAUgQuAAAAAAAAShG4AAAAAAAAKEXgAgAAAAAAoBSBCwAAAAAAgFIELgAoapltplnlIo+ZZpVltn0fCQAAAACO4rLvAwAA+1tmm3k2We8+36fLPJskySyj/g4GAAAAAEdggwsACvqHH8StZ+skt3nq4zgAAAAAcFQCFwAUs8w2f/yJP3tId9SzAAAAAEAfBC4AKOantrSu0454EgAAAADoh8AFAMX81JbWXa6OeBIAAAAA6IfABQDFfGpL67eSzDI67mEAAAAAoAcCFwAUc5erTF7NJkn+ccZ9HAcAAAAAjk7gAoBiZhllkXFu0tKS3KRlkbHtLQAAAADOxmXfBwAA9jfLSNACAAAA4GzZ4AIAAAAAAKAUgQsAAAAAAIBSBC4AAAAAAABKEbgAAAAAAAAoReACAAAAAACgFIELAAAAAACAUgQuAAAAAAAAShG4AAAAAAAAKEXgAgAAAAAAoBSBCwAAAAAAgFIELgAAAAAAAEoRuAAAAAAAAChF4AIAAAAAAKAUgQsAAAAAAIBSBC4AKGSZbaZZ5SKPmWaVZbZ9HwkAAAAAju6y7wMAAJ9nmW3m2WS9+3yfLvNskiSzjPo7GAAAAAAcmQ0uACjiNk8vcevZejcHAAAAgHMicAFAEQ/p9poDAAAAwFAJXABQxHXaXnMAAAAAGCqBCwCKuMtVJq9mk90cAAAAAM6JwAUARcwyyiLj3KSlJblJyyLjzDLq+2gAAAAAcFQCFwCDsMw206xykcdMs8oy276PdBCzjPI+7/JDvsn7vBO3AAAAADhLl30fAAC+1DLbzLPJevf5Pl3m2SSJAAQAAAAAA2SDC4DybvP0EreerXdzAAAAAGB4BC6AX+BcrsOr4iHdXnMAAAAAoDaBC2BPz9fh3adLlx+vwxO5+nOdttccAAAAAKhN4ALYk+vwTs9drjJ5NZvs5gAAAADA8AhcAHtyHd5p+lMf/PtvJVlknFlGfR0HAAAAADgggQtgT67DOy3PV0b+8Qez/9PbaQAAAACAYxC4APbkOrzT4spIAAAAADg/AhfAnmYZZZFxbtLSktykuQ6vR66MBAAAAIDzc9n3AQAqmmUkaJ2I67TcvxGzXBkJAAAAAMNlgwuA0lwZCQAAAADnR+ACoDRXRgIAAADA+XFFIQDluTISAAAAAM6LDS4AAAAAAABKEbgAAAAAAAAoReACAAAAAACgFIELAAAAAACAUgQuAAAAAAAAShG4AAAAAAAAKEXgAgAAAAAAoBSBCwAAAAAAgFIELgAAAAAAAEoRuAAAAAAAAChF4AIAAAAAAKAUgQsAAAAAAIBSBC4AAAAAAABKEbgAAAAAAAAoReACAAAAAACgFIELAAAAAACAUgQuAAAAAAAAShG4AAAAAAAAKEXgAgAAAAAAoBSBCwAAAAAAgFIELgAAAAAAAEoRuAAAAAAAAChF4AIAAAAAAKAUgQsAAAAAAIBSBC4AAAAAAABKEbgAAAAAAAAoReACAAAAAACgFIELAAAAAACAUgQuAAAAAAAAShG4AAAAAAAAKEXgAgAAAAAAoBSBCwAAAAAAgFIELgAAAAAAAEoRuICzsMw206xykcdMs8oy276PBAAAAADAL3TZ9wEADm2ZbebZZL37fJ8u82ySJLOM+jsYAAAAAAC/iA0uYPBu8/QSt56td3MAAAAAAOoRuIDBe0i31xwAAAAAgNMmcAGDd5221xwAAAAAgNMmcAGDd5erTF7NJrs5AAAAAAD1CFzA4M0yyiLj3KSlJblJyyLjzDLq+2gAAAAAAPwCl30fAOAYZhkJWgAAAAAAA2GDCwAAAAAAgFIELgAAAAAAAEoRuAAAAAAAAChF4AIAAAAAAKAUgQsAAAAAAIBSBC4AAAAAAABKEbgAAAAAAAAoReACOHPLbDPNKhd5zDSrLLPt+0gAAAAAAD/psu8DANCfZbaZZ5P17vN9usyzSZLMMurvYAAAAAAAP8EGF8AZu83TS9x6tt7NAQAAAABOlcAFcMYe0u01BwAAAAA4BQIXwBm7TttrDgAAAABwCgQugDN2l6tMXs0muzkAAAAAwKkSuADO2CyjLDLOTVpakpu0LDLOLKO+jwYAAAAA8EmXfR8AgH7NMhK0AAAAAIBSbHABAAAAAABQisAFAAAAAABAKQIXAAAAAAAApQhcAAAAAAAAlCJwAQAAAAAAUIrABQAAAAAAQCkCFwAAAAAAAKUIXAAAAAAAAJQicAEAAAAAAFCKwAUAAAAAAEApAhdwdpbZZppVLvKYaVZZZtv3kQAAAAAA2MNl3wcAOKZltplnk/Xu8326zLNJkswy6u9gAAAAAAB8NhtccAQ2hk7HbZ5e4taz9W4OAAAAAEANNrjgwGwMnZaHdHvNAQAAAAA4PTa44MCqbQwNfdvsOm2vOQAAAAAAp0fgggOrtDH0vG12ny5dftw2G1LkustVJq9mk90cAAAAAIAaBC44sEobQ9W2zX6JWUZZZJybtLQkN2lZZOy6SAAAAACAQgQuOLBKG0OVts2+xCyjvM+7/JBv8j7vxC0AAAAAgGIELjiwShtDlbbNAAAAAAA4XwIXHEGVjaFK22YAAAAAAJwvgQt4UWnbDOAQltlmmlUu8phpVllm2/eRAAAAAHjDZd8HAE7Lc8y6zVMe0uU2Tx/NAYZqmW3m2WS9+3yfLvNskvgZCAAAAHBqbHABH3n+Be99unT58Re8thiAobvN00vcerbezQEAAAA4LQIX8BG/4AXO1UO6veYAAAAA9EfgAj7iF7zAubpO22sOAAAAQH8ELuAjfsELnKu7XGXyajbZzTmuZbaZZpWLPGaalWtyAQAAgN8gcAEf8Qte4FzNMsoi49ykpSW5Scsi48wy6vtoZ8W7IAEAAIDPIXABH/ELXuCczTLK+7zLD/km7/POz74eeBckAAAA8Dku+z4AcHpmGfmlLgC98C5IAAAA4HPY4AIA4GR4FyQAAADwOQQuAABOhndBAgAAAJ9D4AL4wDLbTLPKRR4zzSrLbPs+EgPlew3e5l2QAAAAwOfwDi6AnWW2mWeT9e7zfbrMs0kSv1jlq/K9Bj/NuyABAACAn2ODC2DnNk8vweHZejeHr8n3GgAAAAB8GYELYOch3V5z+KV8rwEAAADAlxG4AHau0/aaV+S9T6fhHL7XAAAAAOCQBC6AnbtcZfJqNtnNh+D5vU/36dLlx/c+iVzHN/TvNQAAAAA4NIELYGeWURYZ5yYtLclNWhYZZ5ZR30f7Krz36XQM/XsNAAAAAA7tsu8DAJySWUaDjQze+3Rahvy9BgAAAACHZoML4Ex47xMAAAAAMBQCF8CZ8N4nAAAAAGAoBC6AM3FK731aZptpVrnIY6ZZZZnt0c8AAAAAANTlHVwAZ+QU3vu0zDbzbLLefb5Pl3k2SdL72QAAAACAGmxwAXBUt3l6iVvP1rs5AAAAAMDnELgAOKqHdHvNAQAAAABeE7gAOKrrtL3mAAAAAACvCVwAHNVdrjJ5NZvs5gAAAAAAn0PgAuCoZhllkXFu0tKS3KRlkXFmGR306y6zzTSrXOQx06yyzPagXw8AAAAAOJzLvg8AwPmZZXTwoPWhZbaZZ5P17vN9usyzeTkLAAAAAFCLDS4ABu82Ty9x69l6NwcAAAAA6hG4ABic19cR3qd78+89fGIOAAAAAJw2VxQCMChvXUfYkjdT1nXaEU8GAAAAAHwtNrgAGJS3riPskt9IWZMkd7k6zqHO0OstumW2fR8JAAAAgAERuAAYlE9dO9gluUlL2/1zkXFmGR31bOfieYvuPl26/MkW3TwbkQsAAACAr8YVhQAMynXam+/cuknL+7zr4UTn560tuvVuLioCAAAA8DXY4AJgUO5ylcmrmesIj+tTW3SfmgMAAADAvgQuAAZlllEWGbuOsEfXv/HGs5+eAwAAAMC+BC4ABmeWUd7nXX7IN3mfd+LWkdmiAwAAAODQBC4A4KuyRQcAAADAoV32fQAAYHhmGQlaAAAAAByMDS4AAAAAAABKEbiAwVtmm2lWuchjplllmW3fRwIAAAAA4Au4ohAYtGW2mWeT9e7zfbrMs0kS16cBAAAAABRlgwsYtNs8vcStZ+vdHPg8tiABAAAAODU2uIBBe0i31xz4mC1IAAAAAE6RDS5g0K7T9poDH7MFCf2zRQkAAAC/SeACBu0uV5m8mk12c+Dn2YKEfj1vUd6nS5cftyhFLgAAAM6dwAUM2iyjLDLOTVpakpu0LDJ2tRp8JluQ0C9blAAAAPA2gQsYvFlGeZ93+SHf5H3eiVuwB1uQ0C9blAAAAPA2gQsA+CRbkNAvW5QAAADwNoELAPhJtiChP7YoAQAA4G0CFwAAnChblAAAAPC2y74PAAAAfNosI0ELAAAAXrHBBQAAAAAAQCkCFwAAAAAAAKUIXAAAAAAAAJQicAEAAAAAAFCKwAUAAAAAAEApAhcAAAAAAAClCFwAAAAAAACUInABAAAAAABQisAFAAAAAABAKQIXAAAAAAAApQhcAAAAAAAAlCJwAQAAAAAAUIrABQDQg2W2mWaVizxmmlWW2fZ9JAAAAIAyLvs+AADAuVlmm3k2We8+36fLPJskySyj/g4GAAAAUIQNLjxBDgBHdpunl7j1bL2bAwAAAPDzbHCdOU+QA8DxPaTbaw4AAADAx2xwnTlPkAPA8V2n7TUHAAAA4GMC15nzBDkAHN9drjJ5NZvs5tA311cDAABQgcB15jxBDgDHN8soi6UMg5kAACAASURBVIxzk5aW5CYti4xdD0zvnq+vvk+XLj9eXy1yAQAAcGoErjPnCfLz5MlsgP7NMsr7vMsP+Sbv807c4iS4vhoAAIAqBK4z5wny8+PJbID+edCAU+X6agAAAKoQuPAE+ZnxZDZAvzxowClzfTUAAABVCFxwZjyZDdAvDxpwylxfDQAAQBUCF5wZT2YD9MuDBpwy11cDAABQhcAFZ8aT2QD98qABp8711QAAAFQgcMGZ8WQ2QL88aAAAAADw5QQuOEOezAbO1TLbTLPKRR4zzSrLbI9+Bg8aAAAAAHy5y74PAABwDMtsM88m693n+3SZZ5MkR49Ls4wELQAAAIAvYIMLADgLt3l6iVvP1rs5AAAAALUIXADAWXhIt9ccAAAAgNMlcAEAZ+E6ba85AAAAAKdL4AIAzsJdrjJ5NZvs5gAAAADUInABAGdhllEWGecmLS3JTVoWGWeWUd9HAwAAAGBPl30fAADgWGYZCVoAAAAAA3DwDa7W2t9urf331trvt9b+0aG/HgAAAAAAAMN20MDVWvtVkn+S5HeT/HaSv9da++1Dfk0AAAAAAACG7dAbXL+T5Pe7rvuDruuekvzzJH/nwF8TAAAAAACAATt04PrzSf7HB5//cDd70Vqbt9a+b619/+tf//rAxwEAAAAAAKC6Qweu9sas++hD1y26rvuu67rvvv322wMfBwAAAAAAgOoOHbj+MMlf/ODzX0jyRwf+mgAAAAAAAAzYoQPXf0jyl1trf6m1dpXk7yb5lwf+mgAAAAAAAAzY5SH/413X/d/W2j9I8m+S/CrJP+u67r8d8msCAAAAAAAwbAcNXEnSdd3vJfm9Q38dAAAAAAAAzsOhrygEAAAAAACAr0rgAgAAAAAAoBSBCwAAAAAAgFIELgAAAAAAAEoRuAAAAAAAAChF4AIAAAAAAKAUgQuAg1lmm2lWuchjplllmW3fRwIAAAAABuCy7wMAMEzLbDPPJuvd5/t0mWeTJJll1N/BAAAAAIDybHABcBC3eXqJW8/WuzkAAAAAwJcQuAA4iId0e80BAAAAAD6XwAXAQVyn7TUHAAAAAPhcAhcAB3GXq0xezSa7OQAAAADAlxC4ADiIWUZZZJybtLQkN2lZZJxZRn0fDQAAAAAo7rLvAwAwXLOMBC0AAAAA4KuzwQUAAAAAAEApAhcAAAAAAAClCFwAAAAAAACUInABwCvLbDPNKhd5zDSrLLPt+0jAkfk5AAAAAKftsu8DAMApWWabeTZZ7z7fp8s8myTJLKP+DgYcjZ8DAAAAcPpscAHAB27z9PJL7Wfr3Rw4D34OAAAAwOkTuADgAw/p9poDw+PnAAAAAJw+gQsAPnCdttccGB4/BwAAAOD0CVwA7G2ZbaZZ5SKPmWaVZbZ9H+mructVJq9mk90cOA9+DgAAAMDpE7gA2Msy28yzyX26dEnu02WezWAi1yyjLDLOTVpakpu0LDLOLKO+jwYciZ8DAAAAcPpa153OuwS+++677vvvv+/7GABfbJltbvOUh3S5Tstdrgbzi9FpVrl/4z00N2l5n3c9nAgAAAAAGILW2n/suu67z/m7l4c+DMC5ed5wWu8+P284JRlE5Hp4I2791BwAAAAA4GtzRSHAV3abp5e49Wy9mw/BddpecwAAAACAr03gAvjKhr7hdJerTF7NJrs5AAAAAMAxCFwAX9nQN5xmGWWRcW7S0vIn795aZDyI6xcBAAAAgBoELoCv7Bw2nGYZ5X3e5Yd8k/d5J24BAJyoZbaZZpWLPGaaVZbZ9n0kAAD4KgQugK/MhhMAAKdgmW3m2eQ+Xbok9+kyz0bkAgBgEAQugAOw4QS85gl6AI7tNk9Zv5qtd3MAAKjusu8DAAAM3fMT9M+/ZHx+gj6JAA7AwTyk22sOAACV2OACTp6tB6A6T9AD0IfrtL3mAABQicAFnDTvDQCGwBP0APThLleZvJpNdnMAAKhO4AJOmq0HYAg8QQ9AH2YZZZFxbtLSktykZZGx63EBABgEgQs4abYegCHwBD0AfZn9f/bunre19c0L8G9l4lg4uwEqGtsSLcUU+QK0NIjaorUAIY2o09CkQUKIBiQXNCN/A0TFR8iR0DAfII6EKEZDFRs5FntRbHu/+J9kx4nt9XZd0i58H5/sJ8dZjs/6Pff9pJeHXOdrvuQh18ItAABaQ8AF1JquB6AN7KCnDpxpCQAAQJtcVr0AgLfc5SrTrH8ZU6jrAWiiSXoCLSqzO9Ny9/t0d6ZlEj+XAAAANJIOLqDWdD10h84CgNNxpiUAAABto4MLqL1dmHWb5zym/H4zTsjVHjoLAE7LmZYAAAC0jQ4uoPZ24cciZcr8CD90+LSHzgKA03KmJR+lwxoAAKgrARdQe8KP9tNZAHBad7nKYK/mTEt+xyYjAACgzgRcQO0JP9pPZwHAaTnTko+wyQgAAKgzARdQe8KP9tNZAHB6k/TykOt8zZc85Fq4xW/ZZAQAANSZgAuoPeFH++ksAHjb/jlI/yr/t9HnIjnXqRl+t8nI6wgAAFSpKMv67L67ubkp7+/vq14GUEPzbHKb5zymzDBF7nIl/ACgE3bnIO2PivvZIGnMxoCXvp8mrb9L3nqtkngdAQCAoyuK4o+yLG/e9VwBFwAA1Nc4yyzeMRJulCIPuT7Dij7nte+nKevvmtc2GXkdAQCAUzgk4DKiEAAAauy95x09pmzEyDjnOjXLa2e3eR0BAICqCbgAAKDGXjsHad/fy7eRcYuUKZMsUmaade1Crt+d60QzNPl1bEIQDAAA/J6ACwAAauwuVxn85jm7f75/TtcqyW2ej7+oT3jp+xls6zRHU1/H3blidQ+CAQCA3xNwAUCH2LUOzTNJL7P0M0qRIt/OOPqX+bNfHs/Sz/955d+v28i4l76fWfrfR9/RDE19HW/z3IggGAAA+L2iLOvzP7w3Nzfl/f191csAgFba7Vr/+cbeIGnEDUng98ZZZvFCmDVKkYdcV7AiqJ+LPL0Y+RZJvubLuZcDAADsKYrij7Isb97zXB1cANARdq1DuzV1ZBycU5PPDgMAAH4l4AKAjnhtTFndxpcBH9PUkXFwToJg44oBAGiPy6oXAACcxzDFi+PL7FqH9pikJ9CCN+yuj9s85zFlhilyl6vOXDf744oXKTPNOkk6898AAID20MEF0EB23vIRdq0DwLcg5yHX+Zovech1p4Id44oBAGgTARdAw+x23i5SpsyPnbdCLn7H+DIA6DbjigEAaBMBF0DD2HnLZ3R51zoAdN1rY4mNKwYAoIkEXAANY+ctAAAfYVwxAABtIuACaBg7bwEA+AjjigEAaBMBF0DD2HkLAMBHGVcMAEBbCLig5ubZZJxlLvKUcZaZZ1PJ16A+7LwFAOg2n+8BACC5rHoBwOvm2WSadVbbx4uUmWadJO8OM47xNaifSXpePwCADvL5HgAAvtHBBTV2m+fv/+O6s9rWz/k1AACAevD5HgAAvhFwQY09pjyofqqvAQAA1IPP9wAA8I2AC2psmOKg+qm+BgAAUA8+3wMAwDcCLqixu1xlsFcbbOvn/BoAAEA9+HwPAADfCLio1DybjLPMRZ4yzjLzbKpeUq1M0sss/YxSpEgySpFZ+gcdHn2MrwEAANSDz/cAAPBNUZb1mdN9c3NT3t/fV70MzmSeTaZZ/3JA8iDxP2cAAAAAANBBRVH8UZblzXueq4OLytzm+ZdwK0lW2zoAAAAAAMBrBFxU5jEvdw++VgcAAAAAAEgEXFRomOKgOgAAAAAAQCLgokJ3ucpgrzbY1gGAbphnk3GWuchTxllmnk3VSwIAAAAaQMBFZSbpZZZ+RilSJBmlyCz9TNKremkAwBnMs8k06yxSpkyySJlp1kIuAAAA4LcEXFRqkl4ecp2v+ZKHXAu3AN6g04W2uc1zVnu11bYOAAAA8JbLqhcAAPzertNlFwbsOl2S2BxAYz2mPKgOAAAAsKODCwAaQKcLbTRMcVAdAAAAYEfABQANoNOFNrrLVQZ7tcG2DgAAAPAWARcANIBOF9pokl5m6WeUIkWSUYrM0jd2EwAAAPgtARcANIBOF9pqkl4ecp2v+ZKHXAu3oAXm2WScZS7ylHGWmWdT9ZIAAIAWEnABQAPodAGgCebZZJp1FilTJlmkzDRrIRcAAHB0l1UvAAB4n0l6Ai0Aau02z1nt1Vbbut9hAADAMengAgAA4CgeUx5UBwAA+CgBFwAAAEcxTHFQHQAA4KMEXAAAABzFXa4y2KsNtnUAAIBjEnABAABwFJP0Mks/oxQpkoxSZJa+87cAAICju6x6AQAAALTHJD2BFgAAcHI6uAAAAAAAAGgUARfAkcyzyTjLXOQp4ywzz6bqJQEAAAAAtJKAC+AI5tlkmnUWKVMmWaTMNOvGhVxCOgAAAACgCQRcAEdwm+es9mqrbb0p2hLSAQDwK5uYAABoIwEXwBE8pjyoXkdtCOkAAPiVTUwAALSVgAvgCIYpDqrXURtCOgAAfmUTEwAAbSXgAjiCu1xlsFcbbOtN0YaQDgCAX9nEBABAWwm4AI5gkl5m6WeUIkWSUYrM0s8kvaqX9m5tCOkAAPiVTUwAALSVgAvgSCbp5SHX+Zovecj1WcKtYx4Y3oaQDgBg3zE/LzWRTUwAALTVZdULAOBjdgeG785U2B0YnuTDodQkPYEWANAap/i81DS77/M2z3lMmWGK3OWqM98/AADtVZRlfeZu39zclPf391UvA6ARxllm8cLZCaMUech1BSsCAKgXn5cAAKBZiqL4oyzLm/c814hCgIZyYPjvdX0kEQB0nc9LAADQXgIugIZyYPjbdiOJFilT5sdIIiEXAHSHz0sAANBeAi6AhnJg+Ntu8/z9vI2d1bYOAHSDz0sAANBeAi6gUYyc+2GSXmbpZ5QiRb6dJTFL34HhW0YSQfW8ZwNV83kJAADa67LqBQC8127k3K4rZzdyLklnb1JM0uvs9/47wxQvHipvJBGch/dsoC58XgIAgHbSwQU0hpFzHMJIIqjWX/wUbu14zwYAAACORcAFNIaRcxzCSCKozjyb/O0r/8x7NgAAAHAMRhQCjWHkHIcykgiq8VaXlvdsAAAA4Bh0cAGNYeTcN/NsMs4yF3nKOMvMs6l6SQC/eKtLq2vv2QAAAMBpCLiAxjBy7lu4Nc06i5QpkyxSZpq1kAuolde6tP5+0qn3bAAAAOB0BFxAo0zSy0Ou8zVf8pDrzt0ovc1zVnu1Vd4eBwZwbq913P7H9KtYDsCrdMYDAEBzCbgAGuS1sV9vjQMDODcdt0AT6IwHAIBmE3ABNMhrY79eq0MT2U3fDl3vuAXqT2c8AAA0m4ALoEFeG/t1l6sqlgNHZzc9AOeiMx4AAJpNwAXQIMZ+0XZ20wNwLjrjAQCg2QRcDWV8E3SXsV+0md30AJyLzngAAGg2AVcDGd8EwLHVZeOE3fQAnIvOeAAAaDYBVwMZ3wTAMdVp44Td9ACck854AABoLgFXAxnfVA916XYA+Kw6bZywmx4AAACA97isegEcbpgiixfCLOObzmfX7bC7IbzrdkjiJizQOHXbODFJz3spAAAAAG/SwdVAxjdVr07dDgCf5dwrAAAAAJpGwNVAxjdVr27dDgCfYeMEAAAAAE1jRGFDGd9ULWMigTbZ/T65zXMeU2aYIne58nsGAAAAgNrSwQUfoNsBaJtJennIdb7mSx5yLdwCAAAAoNYEXPABxkQCAAAAAEB1BFzwQbodAACg+ebZZJxlLvKUcZaZZ1P1kgAAgHdwBhcAAACdNM8m06yz2j5epMw06ySxgQ0AAGpOBxcAH2K3MwDQdLd5/h5u7ay2dQAAoN50cAFwMLudAYA2eEx5UB0AAKgPHVwAHMxuZwCgDYYpDqoDAAD1IeAC4GB2OwNUx4hYOJ67XGWwVxts6wAAQL0JuAA4mN3OANXYjYhdpEyZHyNihVzwMZP0Mks/oxQpkoxSZJa+kcsAANAAAi4ADma3M0A1jIiF45ukl4dc52u+5CHXwi0AAGgIARcAr3ptDJbdzgDVMCIWAAAAvrmsegEA1NNuDNauU2A3Biv5FnDt/gBwPsMUWbwQZhkRCwAAQNfo4ALgRcZgAdSPEbHAS17rugcAgDYTcAHwImOwAOrHiFhg367rfpEyZX503Qu5AABoOwEXAC96bdyVMVgA1Zqkl4dc52u+5CHXwi3oOF33AAB0lYALgBcZg/UyI4AAgDrRdQ8AQFcJuIB3c2O/W4zB+lNGAAEAdaPrHgCArhJwAe/S9hv7wruXGYP1KyOAAIC60XUPAEBXCbiAd2nzjf22h3ccjxFAAEDd6LoHAKCrBFzAu7T5xn6bw7uP0M32OiOA+CzXFwCnoOseAIAuEnAB79LmG/ttDu8OpZvth5eCCCOA+AzXFwAAAMDxCLiAd2nzjf02h3eH0s32zWtBRBIjgPgw1xcAAADA8Qi4gHdp82z/Nod3h9LN9s1bQYQRQHyU6wug/oySBQCA5risegFAc0zSa+XN/N33dJvnPKbMMEXuctXK7/V3himyeOFme9e62QQRnILrC6Dedh3cu00uP3dwd/FzIQAA1J0OLoA4mHtHN9s3xlZyCq4vgHozShYAAJpFwAXAd20eRXkIQQSn4PoCqDcd3AAA0CxGFALwi7aOojyEsZWciusLoL6MkgUAgGbRwQUALzC2EgC6RQc3AAA0i4ALAACAzjNKFgAAmkXABQBQc/NsMs4yF3nKOMvMs6l6SQCtpIMbAACawxlcAAA1Ns8m06yz2j5epMw06yRx4xUAAADoLB1cABXQjQG8122ev4dbO6ttHQAAAKCrBFwAZ7brxlikTJkf3RhCLuAljykPqnM8NiMAAABAfQm4AM5MNwZwiGGKg+och80IAAAAUG8CLoAz040BHOIuVxns1QbbOqdjMwIAAADUm4ALjsw4I35HNwZwiEl6maWfUYoUSUYpMks/k/SqXlqr2YwAAAAA9SbggiMyzoj30I0BHGqSXh5yna/5kodcC7fOwGYEAAAAqDcBFxyRcUa8h24MgPqzGQEAAADqTcAFR9TlcUZGMx5GNwZAvdmMAAAAAPV2WfUCoE2GKbJ4Icxq+zij3WjGXffabjRjEjcCAWisSXp+jwEAAEBN6eCCI+rqOCOjGQEAAAAAOCcBFxxRV8cZdXk0IwAAAAAA52dEIRxZF8cZdXU0IwAAAAAA1dDBBXxaV0czAgAAAABQDQEX8GldHc0IAAAAAEA1jCgEjqKLoxkBAAAAAKiGDi4AAAAAAAAaRcAFACc2zybjLHORp4yzzDybqpcEAAAAAI1mRCEAnNA8m0yzzmr7eJEy06yTxFhPAAAAAPggHVwAcEK3ef4ebu2stnUAAAAA4GMEXAAvMFKOY3lMeVC9bVxLAAAAAJyCEYUAe4yU45iGKbJ4IcwapqhgNeflWgIAAADgVHRwAewxUo5justVBnu1wbbedq4lAAAAAE5FwAWwp+sj5TiuSXqZpZ9RihRJRikyS78THUyuJQAAAABOxYhCgD1dHinHaUzS60Sgtc+1BAAAAMCp6OAC2NPlkXJwTK4lAAAAAE5FwAWwp8sj5eCYXEsAAAAAnIoRhQAv6OpIOTg21xIAAAAAp6CDCwAAAAAAgEYRcAEAAAAAANAoAi4AAAAAAAAaRcAFwEHm2WScZS7ylHGWmWdT9ZIAAAAAgI65rHoBADTHPJtMs85q+3iRMtOskyST9KpbGAAAAADQKTq4AHi32zx/D7d2Vtt6nek6AwAAAIB2EXDxaW4cQ3c8pjyoXge7rrNFypT50XXmvQoAAAAAmkvAxae4cQzdMkxxUL0Omtp1BgAAAAC8TsDFp7hxDN1yl6sM9mqDbb2umth1BgAAAAC8TcDFp7hxDN0ySS+z9DNKkSLJKEVm6WeSXtVLe1UTu866zuhbAAAAAH5HwMWnuHEM3TNJLw+5ztd8yUOuax1uJc3sOusyo29pC0EtAAAAnJaAi09x4xiouyZ2nXWZ0be0gaAWAAAATk/Axae4cQw0QdO6zrrM6FvaQFALAAAAp3dZ9QJovkl6bhYDcBTDFFm8EGYZfUuTCGoBAADg9HRwAQC1YfQtbeCMUgAAADg9ARcAUBtG39IGgloAAAA4PSMKAYBaMfqWptv9/N7mOY8pM0yRu1z5uQYAAIAj0sEFvGmeTcZZ5iJPGWeZeTZVLwkAam+SXh5yna/5kodcC7cAAADgyARcwKvm2WSadRYpUyZZpMw0ayEXADSQTSsAAAC0iYALeNVtnrPaq622dQCgOWxaAQAAoG0EXMCrHlMeVAcA6smmFQAAANpGwAW8apjioDpwWsaLAR9l0woAAABtI+ACXnWXqwz2aoNtHTgv48WAz7BpBQAAgLYRcAGvmqSXWfoZpUiRZJQis/QzSa/qpUHnGC8GfIZNKwAAALTNZdULAOptkp5AC2rAeDHgM3a/y2/znMeUGabIXa78jgcAAKCxdHABQAMYL0ZXOGvudCbp5SHX+Zoveci1cAsAAIBGE3ABQAMYL0YXOGsOAAAAeC8BFwA0gDPx6AJnzQEAAADv5QwuAGgIZ+LRds6aAwAAAN5LBxcAALXgrDkAAADgvQRcAADUgrPmAAAAgPcScAEAUAvOmgMAAADeS8AFHGyeTcZZ5iJPGWeZeTZVLwmAlpikl4dc52u+5CHXwi0AAADgRZdVLwBolnk2mWad1fbxImWmWSeJm5AAAAAAAJyFDi7gILd5/h5u7ay2dQAAAAAAOAcBF3CQx5QH1QEAAAAA4NgEXMBBhikOqgMAAAAAwLEJuICD3OUqg73aYFsHAAAAAIBzEHABB5mkl1n6GaVIkWSUIrP0M0mv6qUBAAAAANARl1UvAGieSXoCLQAAAAAAKqODCwAAAAAAgEYRcAEAAAAAANAoAi4AAAAAAAAaRcAFAMCnzLPJOMtc5CnjLDPPpuolAQAAAC0n4AIA4MPm2WSadRYpUyZZpMw0ayEXHIHwGAAA4HUCLgAAPuw2z1nt1VbbOvBxwmMAAIC3CbgAWsAOb6AqjykPqgPvIzwGAAB4m4ALoOHs8AaqNExxUB14n8UrIfFrdQAAgK4RcAE0nB3eQJXucpXBXm2wrQMf89YmlT874zoAAADqTMAF0HDGgwFVmqSXWfoZpUiRZJQis/QzSa/qpUFjvbVJ5f+dcR0AAAB1dln1AgD4nGGKF8cVGQ8GnMskPYEWHNFbm1RGfr8DAAAk0cEF0HhVjAebZ5NxlrnIU8ZZOu8LAI7otU0qRYz/BAAA2BFwATTcuceDzbPJNOssUqbMt8Pup1kLuU5MqAjQHS9tXimS/Iv8mW5JAACALQEXQAtM0stDrvM1X/KQ65Pe/LrNc1Z7tVXePi+EzxEqNo9AEviMlzav/GX6+U/5O1UvDQAAoDYEXMC7uWFL8vq5IG+dF8LnCBWbRSAJHMM5N68AAAA0kYALeBc3bNl57VyQ1+p8nlCxWQSSAAAAAKd3soCrKIp/WxTF/yqK4n9s//yTU/1dwOm5YcvOS+eCDOLQ+1MSKjbDrst1IZAEAAAAOLlTd3D9h7Is/3z757+d+O8CTkgHCTsvnQsyS9/opBMSKtbfz12urxFIAgAAABzPZdULAJphmOLFG7du2HbTJD2B1hnt/lvf5jmPKTNMkbtceQ1q5KUu158JJAEAAACO69QdXP+6KIq/KorivxRF8XdP/HcBJ6SDBKo1SS8Puc7XfMlDroVbNfNWN6suRwAAAIDj+1TAVRTFfy+K4q9f+PNPk/znJP8wyZ8n+d9J/v0rX2NaFMV9URT3f/M3f/OZ5QAnZCwdwOte62YdpRBIAgAAAJxAUZanPz+nKIpxkv9aluU/eut5Nzc35f39/cnXAwBwTLszuH4eUzhIbAQAAAAAOEBRFH+UZXnznueebERhURT/4KeH/yzJX5/q7wIAqJIuVwAAAIDzOuUZXP+uKIr/WRTFXyX5x0n+zQn/LjiZeTYZZ5mLPGWcZebZVL0kAGrIOWkAAAAA53N5qi9cluU/P9XXhnPZHzm1SJlp1knixiUAAAAAAFTklB1c0Hi3ef7lPJUkWW3rAAAAAABANQRc8IbHlAfVAQAAAACA0xNwwRuGKQ6qAwAAAAAApyfggjfc5SqDvdpgW6cb5tlknGUu8pRxlplnU/WSoHKuCwAAAACqdln1AqDOJukl+Xbm1mPKDFPkLlff67TbPJtMs/5+DtsiZaZZJ4mfATrLdQEAAABAHRRlWZ+zhG5ubsr7+/uqlwGQJBlnmcUL562NUuQh1xWsCKrnugAAAADgVIqi+KMsy5v3PNeIQoBXPL5wE/+tOnSB6wIAAACAOhBwAbximOKgOnSB6wIAAACAOhBwAbziLlcZ7NUG2zp0lesCAAAAgDoQcAG8YpJeZulnlCJFvp0xNEs/k/SqXhpUxnUBAAAAQB1cVr0AgDqbpOfGPexxXQAAAABQNR1cABzdPJuMs8xFnjLOMvNsql4SAAAAANAiAi4AjmqeTaZZZ5EyZZJFykyzFnIBwAnZXAIAAHSNgAuAo7rNc1Z7tdW2DgAcn80lAABAFwm4ADiqx5QH1QGAz7G5BAAA6CIBFwBHNUxxUB0A+BybSwAAgC4ScAFwVHe5ymCvNtjWAYDjs7kEAADoIgEXAEc1SS+z9DNKkSLJKEVm6WeSXtVLA4BWsrkEAADoosuqFwBA+0zSE2gBwJnsfufe5jmPKTNMkbtc+V0MAAC0moALAACg4WwuAQAAusaIQgAAameeTcZZ5iJPGWeZeTZVLwkAAACoER1cAADUyjybTLPOavt4kTLTrJNEhwoAAACQRAcXAAA1c5vn7+HWzmpbBwAAAEgEXAAA1MxjyoPq/Mp4RwAAALpAwAUAdJowoH6GKQ6q88NuvOMiZcr8GO/o5xoAAIC2EXABAJ0lDKinu1xlsFcbbOu8zXhHAAAAukLABQB0tkUtHAAAIABJREFUljCgnibpZZZ+RilSJBmlyCz9TNKremm1Z7wjAAAAXXFZ9QIAAKoiDKivSXoCrQ8YpsjihZ9f4x0BAABoGx1cAL/hfB5oL2c90TbGOwIAANAVAi6ANzifB9pNGEDbGO8IAABAVwi4AN7gfB5oN2EAbTRJLw+5ztd8yUOu/TwDAADQSs7gAniD83mg/Zz1BAAAANA8OrgA3uB8HgAAAACA+hFwAbzB+TwAAAAAAPUj4AJ4g/N5AAAAAADqxxlcAL/hfB4AAAAAgHrRwQUAQK3Ns8k4y1zkKeMsM8+m6iUBAAAAFdPBBQBAbc2zyTTrrLaPFykzzTpJdNcCAABAh+ngAgCgtm7z/D3c2llt6wAAAEB3CbgAAKitx5QH1QEAAIBuEHABAFBbwxQH1QEAAIBuEHABVGSeTcZZ5iJPGWeZeTZVL4mfeH2gHu5ylcFebbCtAwAAAN11WfUCALponk2mWX8/V2aRMtOskyST9KpbGEm8PlAnu2vuNs95TJlhitzlyrUIAAAAHVeUZX3OL7i5uSnv7++rXgbAyY2zzOKF82NGKfKQ6wpWxM+8PgAAAABwfkVR/FGW5c17nmtEIUAFHl8IT96qc15eHwAAAACoNwEXQAWGKQ6qc15eHwAAAACoNwEXQAXucpXBXm2wrVM9rw8AAAAA1JuAC6ACk/QySz+jFCny7WynWfqZpFf10ojXBwAAAADq7rLqBQB01SQ9gUmNeX0AAAAAoL50cAEAAAAAANAoAi4A/sQ8m4yzzEWeMs4y82yqXhIAAAAAwHdGFALwi3k2mWad1fbxImWmWSeJkX0AAAAAQC3o4ALgF7d5/h5u7ay2dQAAAACAOhBwAfCLx5QH1QEAAAAAzk3ABcAvhikOqgMAAAAAnJuAC4Bf3OUqg73aYFsHAAAAAKgDARcAv5ikl1n6GaVIkWSUIrP0M0mv6qUBAAAAACQRcMFJzbPJOMtc5CnjLDPPpuolwbtM0stDrvM1X/KQa+EWAAAAAFArAi44kXk2mWadRcqUSRYpM81ayAVwJDYRAAAAAHSXgAtO5DbPWe3VVts6AJ9jEwEAAABAtwm44EQeUx5UB+D9bCIAAAAA6DYBF5zIMMVBdQDezyYCAAAAgG4TcMGJ3OUqg73aYFsH4HNsIgAAAADoNgEXnMgkvczSzyhFiiSjFJmln0l6VS8NoPFsIgAAAADotsuqFwBtNklPoAVwArv31ts85zFlhilylyvvuQAAAAAdIeACABrJJgIAAACA7jKiEAAAAAAAgEYRcAEAAAAAANAoAi44s3k2GWeZizxlnGXm2VS9JOBMXP8AAAAAcBzO4IIzmmeTadZZbR8vUmaadZI4RwZazvUPAAAAAMejgwvO6DbP329u76y2daDdXP8AAAAAcDwCLjijx5QH1YH2cP1zDMZcAgAAAHwj4IIzGqY4qA60h+ufz9qNuVykTJkfYy6FXAAAAEAXCbjgjO5ylcFebbCtA+3m+uezjLkEAAAA+EHABWc0SS+z9DNKkSLJKEVm6WeSXtVLA07M9c9nGXMJAAAA8MNl1QuArpmk54Y2dJTrn88YpsjihTDLmEsAAACgi3RwAQA0gDGXAAAAAD8IuAAAGsCYSwAAAIAfjCgEAGgIYy4BAAAAvtHBBQAAAAAAQKMIuAAAAAAAAGgUARcAAAAAAACNIuACOmeeTcZZ5iJPGWeZeTZVLwkAAAAAgANcVr0AgHOaZ5Np1lltHy9SZpp1kmSSXnULAwAAAADg3XRwAZ1ym+fv4dbOalsHAAAAAKAZBFxApzymPKgOAAAAAED9CLiAThmmOKgObeHsOQAAAADaRMAFdMpdrjLYqw22dWir3dlzi5Qp8+PsuWOEXIIzAAAAAKog4AI6ZZJeZulnlCJFklGKzNLPJL2qlwYnc6qz504ZnAEAAADAW4qyrM+5Mzc3N+X9/X3VywCAVrnI04unzBVJvubLh7/uOMssXvjKoxR5yPWHvy4AAAAA3VQUxR9lWd6857k6uACg5U519tzji7HZ63UAAAAAOBYBFwC03KnOnjtVcAYAAAAAvyPgAoCWO9XZc6cKzgAAAADgdy6rXgAAcHqT9D4daL30NZPkNs95TJlhitzl6uh/DwAAAADsE3ABAB92iuAMAAAAAH7HiEIAAAAAAAAaRcAFAAAAAABAowi4AACARplnk3GWuchTxllmnk3VSwIAAODMnMEFAAA0xjybTLPOavt4kTLTrJPEmYAAAAAdooMLAABojNs8fw+3dlbbOgAAAN0h4AIAABrjMeVBdQAAANpJwAVArTlnBYCfDVMcVAcAAKCdBFwA1NbunJVFypT5cc6KkAugu+5ylcFebbCtAwAA0B0CLgBqyzkrVE0HIdTPJL3M0s8oRYokoxSZpZ9JelUvDQAAgDO6rHoBAPAa56xQpV0H4S5k3XUQJnEjHSo2Sc91CAAA0HE6uACoLeesUCUdhAAAAAD1JeACoLacs0KVdBACAAAA1JeAC4Dacs4KVdJBCAAAAFBfAi4Aam2SXh5yna/5kodcC7c4Gx2EAAAAAPUl4IIzmmeTcZa5yFPGWWaeTdVLAuAVb3UQej8HAAAAqNZl1QuArphnk2nWWW0fL1JmmnWS6EgBqKlJen/yHu39HAAAAKB6OrjgTG7z/P1m6M5qWwegObyfAwAAAFRPwAVn8pjyoDoA9eT9HAAAAKB6Ai44k2GKg+oA1JP3cwAAAIDqCbjgTO5ylcFebbCtA9Ac3s8BAAAAqifggjOZpJdZ+hmlSJFklCKz9DNJr+qlAXAA7+cAAAAA1busegHQJZP03AAFaLB5NrnNcx5TZpgifynYAgAAAKiEgAsA4B3m2WSadVbbx4uUmWadJEIuAAAAgDMzohAA4B1u8/w93NpZbesAAAAAnJeACwDgHR5THlSnnebZZJxlLvKUcZaZZ1P1kgAAAKCTBFwAAO8wTHFQnfbZjalcpEyZH2MqhVwAAABwfgIuAGpJlwR1c5erDPZqg22dbjCmEgAAAOpDwAVA7eiSoI4m6WWWfkYpUiQZpcgs/UzSq3pprxIUH5cxlQAAAFAfAi4AakeXBHU1SS8Puc7XfMlDrmsfbgmKj8uYSgAAAKgPARcAtaNLAj5PUHx8xlQCAABAfQi4AKgdXRLweYLi42vimEoAAABoKwEXALWjSwI+T1B8Gk0aUwkAAABtJuACoHZ0ScDnCYoBAACANrusegEA8JJJegIt+ITd9XOb5zymzDBF7nLlugIAAABaQcAFANBSgmIAAACgrYwoBAAAAAAAoFEEXAAAAAAAADSKgAsAAAAAAIBGEXABAAAAAADQKAIuAAAAAAAAGkXABQAAAAAAQKMIuAAAAAAAAGgUARcAAAAAAACNIuACAAAAAACgUQRcAAAAAAAANIqACwAAAAAAgEYRcAEAAAAAANAoAi4AAAAAAAAaRcAFAAAAAABAowi4AAAAAAAAaBQBFwAAAAAAAI0i4AIAAAAAAKBRBFwAAAAAAAA0ioALAAAAAACARhFwAQAAAAAA0CgCLgAAAAAAABpFwAUAAAAAAECjCLgAAPiweTYZZ5mLPGWcZebZVL0kAAAAoAMuq14AAADNNM8m06yz2j5epMw06yTJJL3qFgYAAAC0ng4uAAA+5DbP38OtndW2DgAAAHBKAi6AFjIyDDiHx5QH1QEAAACORcAF0DK7kWGLlCnzY2SYkAs4tmGKg+oAAAAAxyLgAmgZI8OAc7nLVQZ7tcG2DgAAAHBKAi6AljEyDDiXSXqZpZ9RihRJRikySz+T9KpeGgAAANByl1UvAIDjGqbI4oUwy8gw4BQm6Qm0AAAAgLPTwQXQMkaGAQAAAABtJ+ACaBkjwwAAAACAtjOiEKCFjAwDAAAAANpMBxcAAAAAAACNIuACAAAAAACgUQRcAAAAAAAANIqACwBqbp5NxlnmIk8ZZ5l5NlUvCQAAAAAqdVn1AgCA182zyTTrrLaPFykzzTpJMkmvuoUBAAAAQIV0cAFAjd3m+Xu4tbPa1gEAAACgqwRcAFBjjykPqgMAAABAFwi4AKDGhikOqvM6Z5kBAAAAtIeACwBq7C5XGezVBts677c7y2yRMmV+nGUm5AIAAABoJgEXQM3pOum2SXqZpZ9RihRJRikySz+T9KpeWqM4ywwAAACgXS6rXgAAr9t1nexuzO+6TpIIODpkkp7X+5OcZQYAAADQLjq4AGpM1wkch7PMAAAAANpFwAVQY7pO4DicZQYAAADQLgIugBrTdQLH4SwzAAAAgHYRcAHUmK4TOJ5JennIdb7mSx5yLdwCAAAAaDABF0CN6ToBAAAAAPhTl1UvAIC3TdITaAEAAAAA/EQHFwAAAAAAAI0i4AIAAAAAAKBRBFwAAAAAAAA0ioALAAAAAACARhFwAQAAAAAA0CgCLgAAAAAAABpFwAVAp82zyTjLXOQp4ywzz+ZDzwEAAAAAzuey6gUAQFXm2WSadVbbx4uUmWadJJmk9+7nAAAAAADnpYMLgM66zfP34Gpnta0f8hy6pU0dfW36XgAAAIBu0cEFQGc9pvxt/T3PoRvm2eQvss7f/lRrckef7kQAAACgyXRwAdBZwxS/rb/nObTfLgz62xf+WVM7+nQnAgAAAE0m4ALgYG0Za3aXqwz2aoNt/ZDn0H4vhUE/a2JHn+5EAAAAoMkEXAAcZNfJskiZMj/GmjUx5Jqkl1n6GaVIkWSUIrP0fxnP9p7n0H6/C32a2NGnOxEAAABosqIs67NL9+bmpry/v696GQC8YZxlFi/c7B+lyEOuK1gRnN5rP/fJt46+Joae+2dwJc39XgAAAIB2KIrij7Isb97zXB1cABzEWDO66KVRlUny99PcQEh3IgAAANBkl1UvAIBmGaZ4sZPFWDPabBf63OY5jykzTJG7XDU+DJqk1/jvAQAAAOgmHVwAHOSlTpbBtg5tNkkvD7nO13zJQ64FQwAAAAAVEnABcBBjzQAAAACAqhlRCMDBjDUDAAAAAKqkgwsAAAAAAIBGEXABAAAAAADQKAIuAAAAAAAAGkXABQAAAAAAQKMIuAAAAAAAAGgUARcAAAAAAACNIuACAAAAAACgUQRcAAAAAAAANIqACwAAAAAAgEYRcAEAAAAAANAoAi4AAAAAAAAaRcAFAAAAAABAowi4AAAAAAAAaBQBFwAAAAAAAI0i4AIAAAAAAKBRBFwAAAAAAAA0ioALAAAAAACARhFwAQBHNc8m4yxzkaeMs8w8m6qXBAAAAEDLXFa9AACgPebZZJp1VtvHi5SZZp0kmaRX3cIAAAAAaBUdXADA0dzm+Xu4tbPa1gEAAOD/t3d/MZbedR3HP9+yZycZ0ETpigjsTCHFCDegG6JRCCbEIjcVTJOaY0LkYiTBRKI34F5gTPbSPwlRYYwI0UFCxAKKRC0x4JVYpEJr09gCu1QaKBCDu0tmB/rzYs5sZ7dndmd6ZuY5v5nXK5nsnN8zM/u96JOnZ977/B6A/SJwAQD75kLantaB48t2pgAAAMxC4AIA9s3p1J7WgeNpazvT82lpeWo7U5ELAACA3RK4AIB9cy4ns3jd2uJkHWCL7UwBAACYlcAFAOybcUZZzUKWUqkkS6msZiHjjIYeDZgjtjMFAABgVieGHgAAOFrGGQlawA2dTuX8lJhlO1MAAAB2yx1cAADAobKdKQAAALMSuAAAgENlO1MAAABmZYtCAADg0NnOFAAAgFm4gwsAAAAAAICuCFwAAAAAAAB0ReACAAAAAACgKwIXAABzaS0bWc6l3JKLWc6lrGVj6JEAAACAOSFwAQAwd9aykZWs53xaWpLzafnVrOfWXBS6AAAAAIELAID5czZXcnnK+reSrGRd5AIAAIBjTuACAGDuXEjb8djlbAYwAAAA4PgSuAAAmDunUzc8fqMABgAAABx9AhcAAHPnXE5m8QbHbxbAAAAAgKNN4AIAYO6MM8pqFvLcKccWsxnAAAAAgONrpsBVVXdV1YNV9WRVnbnu2Dur6pGqeriq7phtTADgemvZyHIu5ZZczHIuZS0bQ48E+2qcUb6Z5+SvspClVCrJUiqrWcg4o6HHAwAAAAZ0YsbvfyDJm5K8d/tiVb0syd1JXp7kx5LcW1Uvba19f8a/DwDIZtxayXouT16fT8tK1pPEL/45csYZ+e8aAAAAuMZMd3C11h5qrT085dCdST7UWltvrX05ySNJXjXL3wUAPOVsrlyNW1suT9YBAAAA4Kg7qGdwvSDJV7e9fmyy9jRVtVJV91XVfU888cQBjQMAR8uFtD2tAwAAAMBRctPAVVX3VtUDUz7uvNG3TVmb+hu31tpqa+1Ma+3MqVOndjs3ABxrp6deandeBwAAAICj5KbP4Gqtve4Z/NzHkrxo2+sXJvnaM/g5AMAU53LymmdwJcniZB0AAAAAjrqD2qLw40nurqqFqrotye1JPntAfxcAHDvjjLKahSylUkmWUlnNQsYZDT0aAAAAABy4m97BdSNV9cYk705yKsknqur+1todrbUHq+rDSf4ryfeSvK219v3ZxwUAtowzErQAAAAAOJZmuoOrtXZPa+2FrbWF1trzWmt3bDt2rrX2ktbaj7fWPjn7qACQrGUjy7mUW3Ixy7mUtWwMPRIAAAAAcMhmuoMLAA7TWjauee7U+bSsZD1J3MkEAAAAAMfIQT2DCwD23dlcuRq3tlyerAMAAAAAx4fABUA3LqTtaR0AAAAAOJoELgC6cTq1p3UAAAAA4GgSuADoxrmczOJ1a4uTdQAAAADg+BC4AOjGOKOsZiFLqVSSpVRWs5BxRkOPBgAAAAAcohNDDwAAezHOSNACAAAAgGPOHVwAAAAAAAB0ReACAAAAAACgKwIXMPfWspHlXMotuZjlXMpaNoYeCQAAAACAAXkGFzDX1rKRlazn8uT1+bSsZD1JPIcJAAAAAOCYcgcXMNfO5srVuLXl8mQdAAAAAIDjSeAC5tLWtoTn06Yev7DDOgAAAAAAR58tCoG5c/22hNOcTh3aPAAAAAAAzBd3cAFzZ9q2hNstJjmXk4c1DgAAAAAAc0bgAubOjbYfXEplNQsZZ3SIEwEAAAAAME9sUQjMndOpqc/eWkrlK3n2ABMBAAAAADBP3MEFzJ1zOZnF69ZsSwgAAAAAwBaBC5g744yymoUspVKxLSEAAAAAANeyRSEwl8YZCVoAAAAAAEzlDi4AAAAAAAC6InABAAAAAADQFYELAAAAAACArghcAHAI1rKR5VzKLbmY5VzKWjaGHgkAAAAAunVi6AEA4Khby0ZWsp7Lk9fn07KS9STJOKPhBgMAAACATrmDCwAO2NlcuRq3tlyerAMAAAAAeydwAcABu5C2p3UAAAAA4MYELmBfec4QPN3p1J7WAQAAAIAbE7iAfbP1nKHzaWl56jlDIhfH3bmczOJ1a4uTdQAAAABg7wQuYN94zhBMN84oq1nIUiqVZCmV1SxknNHQowEAAABAl04MPQBwdHjOEOxsnJGgBQAAAAD7xB1cwL7xnCEAAAAAAA6DwAXsG88ZAgAAAADgMAhcwL7xnCEAAAAAAA6DZ3AB+8pzhgAAAAAAOGju4AIAAAAAAKArAhcAAAAAAABdEbgAAAAAAADoisAFAAAAAABAVwQuAAAAAAAAuiJwAQAAAAAA0BWBCwAAAAAAgK4IXAAAAAAAAHRF4AIAAAAAAKArAhcAAAAAAABdEbgAAAAAAADoisAFAAAAAABAVwQuAAAAAAAAuiJwAQAAAAAA0BWBCwAAAAAAgK4IXAAAAAAAAHRF4AIAAAAAAKArAhcAAAAAAABdEbgAAAAAAADoisAFAAAAAABAVwQuAAAAAAAAuiJwAQAAAAAA0BWBCwAAAAAAgK4IXAAAAAAAAHRF4AIAAAAAAKArAhcAAAAAAABdEbgAAAAAAADoisAFAAAAAABAVwQuAAAAAAAAuiJwAQAAAAAA0BWBCwAAAAAAgK4IXAAA26xlI8u5lFtyMcu5lLVsDD0SAAAAANc5MfQAAADzYi0bWcl6Lk9en0/LStaTJOOMhhsMAAAAgGu4gwsAYOJsrlyNW1suT9YBAAAAmB8CFwDAxIW0qevnd1gHAAAAYBgCFwDAxOnU1PVKPIsLAAAAYI4IXAAAE+dycmriarFNIQAAAMA8EbgAACbGGe24GeFO2xcCAAAAcPgELgCAbZZ22KZwp+0LAQAAADh8AhcAwDbncjKL160tTtYBAAAAmA8CFwDANuOMspqFLKVS2byjazULGWc09GgAAAAATJwYegAAgHkzzkjQAgAAAJhj7uACAAAAAACgKwIXAAAAAAAAXRG4AAAAAAAA6IrABcA11rKR5VzKLbmY5VzKWjaGHgkAAAAA4Bonhh4AgPmxlo2sZD2XJ6/Pp2Ul60mScUbDDQYAAAAAsI07uAC46myuXI1bWy5P1gEAAAAA5oXABcBVF9L2tA4AAAAAMASBC4CrTqf2tA4AAAAAMASBC4CrzuVkFq9bW5ysAwAAAADMC4ELgKvGGWU1C1lKpZIspbKahYwzGno0AAAAAICrTgw9AADzZZyRoAUAAAAAzDV3cAEAAAAAANAVgQsAAAAAAICuCFwAAAAAAAB0ReACAAAAAACgKwIXAAAAAAAAXRG4AAAAAAAA6IrABQAAAAAAQFcELgAAAAAAALoicAEAAAAAANAVgQsAAAAAAICuCFwAAAAAAAB0ReACAAAAAACgKwIXAAAAAAAAXRG4AAAAAAAA6IrABQAAAAAAQFcELgAAAAAAALoicAEAAAAAANAVgQsAAAAAAICuCFwAAAAAAAB0ReACAAAAAACgKwIXAAAAAAAAXRG4AAAAAAAA6IrABQAAAAAAQFcELgAAAAAAALoicAEAAAAAANAVgQsAAAAAAICuCFwAAAAAAAB0ReACAAAAAACgKwIXAAAAAAAAXRG4AAAAAAAA6IrABQAAAAAAQFcELgAAAAAAALoicAEAAAAAANAVgQsAAAAAAICuCFwAAAAAAAB0ReACAAAAAACgKwIXAAAAAAAAXRG4AAAAAAAA6IrABQAAAAAAQFcELgAAAAAAALoicAEAAAAAANAVgQsAAAAAAICuCFwAAAAAAAB0ReACAAAAAACgKwIXAAAAAAAAXRG4AAAAAAAA6IrABQAAAAAAQFcELgAAAAAAALoicAEAAAAAANAVgQsAAAAAAICuCFwAAAAAAAB0ReACAAAAAACgKwIXAAAAAAAAXRG4AAAAAAAA6IrABQAAAAAAQFcELgAAAAAAALoicAEAAAAAANAVgQsAAAAAAICuCFwAAAAAAAB0ReACAAAAAACgKwIXAAAAAAAAXRG4AAAAAAAA6IrABQAAAAAAQFcELgAAAAAAALoicAEAAAAAANAVgQsAAAAAAICuCFwAAAAAAAB0ReACAAAAAACgKwIXAAAAAAAAXRG4AAAAAAAA6IrABQAAAAAAQFcELgAAAAAAALoicAEAAAAAANAVgQsAAAAAAICuCFwAAAAAAAB0ReACAAAAAACgKwIXAAAAAAAAXRG4AAAAAAAA6IrABQAAAAAAQFcELgAAAAAAALoicAEAAAAAANAVgQsAAAAAAICuCFwAAAAAAAB0ReACAAAAAACgKwIXABwBa9nIrbmYmnzcmotZy8bQYwEAAADAgTgx9AAAwGzWspFfy/o1OetbSd6S9STJOKNB5gIAAACAg+IOLgDo3NlcmXqv1pXJMQAAAAA4agQuAOjchbRndAwAAAAAeiVwAUDnTqee0TEAAAAA6JXABQCdO5eTU5+ydXJyDAAAAACOGoELADo3zih/kYU8d9vac5O8LwsZT01fAAAAANC3E0MPAADMbpyRmAUAAADAseEOLgAAAAAAALoicAEAAAAAANAVgQsAAAAAAICuCFwAAAAAAAB0ReACAAAAAACgKwIXAAAAAAAAXRG4AAAAAAAA6IrABQAAAAAAQFcELgAAAAAAALoicAEAAAAAANAVgQsAAAAAAICuCFwAAAAAAAB0ReACAAAAAACgKwIXAAAAAAAAXRG4AAAAAAAA6IrABQAAAAAAQFcELgAAAAAAALoicAEAAAAAANAVgQsAAAAAAICuCFwAAAAAAAB0ReACAAAAAACgKwIXAAAAAAAAXRG4AAAAAAAA6IrABQAAAAAAQFcELgAAAAAAALoicAEAAAAAANAVgQsAAAAAAICuCFwAAAAAAAB0ReACAAAAAACgKwIXAAAAAAAAXRG4AAAAAAAA6IrABQAAAAAAQFcELgAAAAAAALoicAEAAAAAANAVgQsAAAAAAICuCFwAAAAAAAB0ReACAAAAAACgKwIXAAAAAAAAXRG4AAAAAAAA6IrABQAAAAAAQFcELgAAAAAAALoicAEAAAAAANAVgQsAAAAAAICuCFwAAAAAAAB0ReACAAAAAACgKwIXAAAAAAAAXRG4AAAAAAAA6IrABQAAAAAAQFcELgAAAAAAALoicAEAAAAAANAVgQsAAAAAAICuCFwAAAAAAAB0ReACAAAAAACgKwIXAAAAAAAAXRG4AAAAAAAA6IrABQAAAAAAQFdmClxVdVdVPVhVT1bVmW3ry1X13aq6f/LxntlHBQAAAAAAgOTEjN//QJI3JXnvlGOPttZeMePPBwAAAAAAgGvMFLhaaw8lSVXtzzQAAAAAAABwEwf5DK7bqurzVfXpqnr1Tl9UVStVdV9V3ffEE08c4DgAAAAAAAAcBTe9g6uq7k3yo1MOnW2tfWyHb3s8yenW2req6qeSfLSqXt5a+871X9haW02ymiRnzpxpux8dAAAAAACA4+imgau19rq9/tDW2nqS9cnnn6uqR5O8NMl9e54QAAAAAAAAtjmQLQqr6lRVPWvy+YuT3J7kSwfxdwEAAAAAAHC8zBS4quqNVfVYkp9J8omq+sfJodck+UJV/WeSv0ny1tbat2cbFQAAAAAkhZLWAAAFRUlEQVQAAHaxReGNtNbuSXLPlPWPJPnILD8bAAAAAAAApjmQLQoBAAAAAADgoAhcAAAAAAAAdEXgAgAAAAAAoCsCFwAAAAAAAF0RuAAAAAAAAOhKtdaGnuGqqnoiyfmh55jBrUm+OfQQ0AnnC+ye8wV2x7kCu+d8gd1zvsDuOV9gd5wrsLOl1tqp3XzhXAWu3lXVfa21M0PPAT1wvsDuOV9gd5wrsHvOF9g95wvsnvMFdse5AvvDFoUAAAAAAAB0ReACAAAAAACgKwLX/lodegDoiPMFds/5ArvjXIHdc77A7jlfYPecL7A7zhXYB57BBQAAAAAAQFfcwQUAAAAAAEBXBK59UFV3VdWDVfVkVZ3Ztr5cVd+tqvsnH+8Zck4Y2k7nyuTYO6vqkap6uKruGGpGmEdV9btV9T/bridvGHommDdV9frJNeSRqnrH0PPAPKuqr1TVFyfXlPuGngfmSVW9r6q+UVUPbFv74ar656r678mfPzTkjDAPdjhXvG+BKarqRVX1L1X10OT3Yr85WXd9gRkJXPvjgSRvSvKZKcceba29YvLx1kOeC+bN1HOlql6W5O4kL0/y+iR/UlXPOvzxYK794bbryT8MPQzMk8k144+T/GKSlyX5lcm1BdjZz0+uKWdu/qVwrLw/m+9JtntHkk+11m5P8qnJazju3p+nnyuJ9y0wzfeS/HZr7SeS/HSSt03er7i+wIwErn3QWnuotfbw0HPAvLvBuXJnkg+11tZba19O8kiSVx3udAB07FVJHmmtfam1diXJh7J5bQGAPWmtfSbJt69bvjPJByaffyDJLx3qUDCHdjhXgClaa4+31v5j8vn/JXkoyQvi+gIzE7gO3m1V9fmq+nRVvXroYWBOvSDJV7e9fmyyBjzlN6rqC5OtQGxbANdyHYG9aUn+qao+V1UrQw8DHXhea+3xZPOXlEl+ZOB5YJ553wI3UFXLSV6Z5N/i+gIzE7h2qaruraoHpnzc6F8HP57kdGvtlUl+K8kHq+oHD2diGMYzPFdqylo7qBlhHt3k3PnTJC9J8opsXlt+f9BhYf64jsDe/Gxr7Sezua3n26rqNUMPBMCR4H0L3EBVPSfJR5K8vbX2naHngaPgxNAD9KK19rpn8D3rSdYnn3+uqh5N8tIkHuTMkfVMzpVs/kv7F217/cIkX9ufiaAPuz13qurPkvz9AY8DvXEdgT1orX1t8uc3quqebG7zOe15wsCmr1fV81trj1fV85N8Y+iBYB611r6+9bn3LXCtqhplM26ttdb+drLs+gIzcgfXAaqqU5OHnqeqXpzk9iRfGnYqmEsfT3J3VS1U1W3ZPFc+O/BMMDcm/6O75Y1JHhhqFphT/57k9qq6rapOJrk7m9cW4DpV9eyq+oGtz5P8QlxX4GY+nuTNk8/fnORjA84Cc8v7FpiuqirJnyd5qLX2B9sOub7AjKo1u7fMqqremOTdSU4l+d8k97fW7qiqX07ye0m+l+T7Sd7VWvu74SaFYe10rkyOnU3ylmyeL29vrX1ysEFhzlTVX2Zzm4+W5CtJfn1rn25gU1W9IckfJXlWkve11s4NPBLMpck/vLtn8vJEkg86X+ApVfXXSV6b5NYkX0/yriQfTfLhJKeTXEhyV2vt20PNCPNgh3PltfG+BZ6mqn4uyb8m+WKSJyfLv5PN53C5vsAMBC4AAAAAAAC6YotCAAAAAAAAuiJwAQAAAAAA0BWBCwAAAAAAgK4IXAAAAAAAAHRF4AIAAAAAAKArAhcAAAAAAABdEbgAAAAAAADoisAFAAAAAABAV/4f5N4CZFEc5N0AAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "plt = tsne_sklearn(\n", + " img_dir=\"/Users/armanrahman/facenet_sandberg/notebooks/people\",\n", + " model_path=\"/Users/armanrahman/models/facenet_model.pb\",\n", + " is_insightface=False,\n", + " prealigned=False,\n", + " is_flat=False,\n", + " save_plt=False)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Compare two faces" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "ExecuteTime": { + "end_time": "2018-11-05T09:04:50.839002Z", + "start_time": "2018-11-05T09:04:50.422416Z" + } + }, + "outputs": [], + "source": [ + "plot_images(noam_chomsky_1, noam_chomsky_2)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "ExecuteTime": { + "end_time": "2018-11-05T09:04:52.676870Z", + "start_time": "2018-11-05T09:04:50.841114Z" + } + }, + "outputs": [], + "source": [ + "identifier.compare_images(noam_chomsky_1, noam_chomsky_2).is_match" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "ExecuteTime": { + "end_time": "2018-11-05T09:04:52.963315Z", + "start_time": "2018-11-05T09:04:52.678783Z" + } + }, + "outputs": [], + "source": [ + "plot_images(noam_chomsky_2, not_noam_chomsky)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "ExecuteTime": { + "end_time": "2018-11-05T09:04:53.763808Z", + "start_time": "2018-11-05T09:04:52.965658Z" + } + }, + "outputs": [], + "source": [ + "identifier.compare_images(noam_chomsky_2, not_noam_chomsky).is_match" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.6.6" + } + }, + "nbformat": 4, + "nbformat_minor": 2 +} diff --git a/notebooks/faceboxes.ipynb b/notebooks/faceboxes.ipynb new file mode 100644 index 000000000..bccb27f33 --- /dev/null +++ b/notebooks/faceboxes.ipynb @@ -0,0 +1,478 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Sources\n", + "[Original Paper](https://arxiv.org/abs/1708.05234) \n", + "\n", + "[Tensorflow Implementation](https://github.com/TropComplique/FaceBoxes-tensorflow)\n", + "\n", + "[Dockerize Implementation](https://hub.docker.com/r/arrahm/faceboxes/)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Imports" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": { + "ExecuteTime": { + "end_time": "2018-09-20T16:53:28.939258Z", + "start_time": "2018-09-20T16:53:28.915868Z" + } + }, + "outputs": [], + "source": [ + "%load_ext autoreload\n", + "%autoreload 2" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": { + "ExecuteTime": { + "end_time": "2018-09-20T16:53:31.737683Z", + "start_time": "2018-09-20T16:53:29.467029Z" + } + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "1.10.1\n" + ] + } + ], + "source": [ + "import tensorflow as tf\n", + "# Needs tensorflow version 1.10 or greater \n", + "print(tf.__version__)" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": { + "ExecuteTime": { + "end_time": "2018-09-20T16:53:32.050781Z", + "start_time": "2018-09-20T16:53:31.740171Z" + } + }, + "outputs": [], + "source": [ + "import os\n", + "os.environ['CUDA_VISIBLE_DEVICES'] = '0,1'\n", + "\n", + "import numpy as np\n", + "from PIL import Image, ImageDraw\n", + "import os\n", + "import cv2\n", + "import time\n", + "import urllib\n", + "from urllib.request import urlopen\n", + "import matplotlib.pyplot as plt" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Face Detector" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": { + "ExecuteTime": { + "end_time": "2018-09-20T16:53:32.097500Z", + "start_time": "2018-09-20T16:53:32.053459Z" + } + }, + "outputs": [], + "source": [ + "class FaceDetector:\n", + " def __init__(self, model_path, gpu_memory_fraction=0.25, visible_device_list='0'):\n", + " \"\"\"\n", + " Arguments:\n", + " model_path: a string, path to a pb file.\n", + " gpu_memory_fraction: a float number.\n", + " visible_device_list: a string.\n", + " \"\"\"\n", + " with tf.gfile.GFile(model_path, 'rb') as f:\n", + " graph_def = tf.GraphDef()\n", + " graph_def.ParseFromString(f.read())\n", + "\n", + " graph = tf.Graph()\n", + " with graph.as_default():\n", + " tf.import_graph_def(graph_def, name='import')\n", + "\n", + " self.input_image = graph.get_tensor_by_name('import/image_tensor:0')\n", + " self.output_ops = [\n", + " graph.get_tensor_by_name('import/boxes:0'),\n", + " graph.get_tensor_by_name('import/scores:0'),\n", + " graph.get_tensor_by_name('import/num_boxes:0'),\n", + " ]\n", + "\n", + " gpu_options = tf.GPUOptions(\n", + " per_process_gpu_memory_fraction=gpu_memory_fraction,\n", + " visible_device_list=visible_device_list\n", + " )\n", + " config_proto = tf.ConfigProto(gpu_options=gpu_options, log_device_placement=False)\n", + " self.sess = tf.Session(graph=graph, config=config_proto)\n", + "\n", + " def __call__(self, image, score_threshold=0.5):\n", + " \"\"\"Detect faces.\n", + " Arguments:\n", + " image: a numpy uint8 array with shape [height, width, 3],\n", + " that represents a RGB image.\n", + " score_threshold: a float number.\n", + " Returns:\n", + " boxes: a float numpy array of shape [num_faces, 4].\n", + " scores: a float numpy array of shape [num_faces].\n", + " Note that box coordinates are in the order: ymin, xmin, ymax, xmax!\n", + " \"\"\"\n", + " h, w, _ = image.shape\n", + " image = np.expand_dims(image, 0)\n", + "\n", + " boxes, scores, num_boxes = self.sess.run(\n", + " self.output_ops, feed_dict={self.input_image: image}\n", + " )\n", + " num_boxes = num_boxes[0]\n", + " boxes = boxes[0][:num_boxes]\n", + " scores = scores[0][:num_boxes]\n", + "\n", + " to_keep = scores > score_threshold\n", + " boxes = boxes[to_keep]\n", + " scores = scores[to_keep]\n", + "\n", + " scaler = np.array([h, w, h, w], dtype='float32')\n", + " boxes = boxes * scaler\n", + "\n", + " return boxes, scores" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": { + "ExecuteTime": { + "end_time": "2018-09-20T16:53:33.087249Z", + "start_time": "2018-09-20T16:53:32.100085Z" + } + }, + "outputs": [], + "source": [ + "model_path = os.path.join('models', 'faceboxes_model.pb')\n", + "model_url = 'https://facialstorage.blob.core.windows.net/models/faceboxes_model.pb'\n", + "urllib.request.urlretrieve (model_url, model_path)\n", + "face_detector = FaceDetector(model_path, gpu_memory_fraction=0.25, visible_device_list='0')" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Get an image" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": { + "ExecuteTime": { + "end_time": "2018-09-20T16:53:33.134167Z", + "start_time": "2018-09-20T16:53:33.090222Z" + } + }, + "outputs": [], + "source": [ + "def download_image(url):\n", + " req = urlopen(url)\n", + " arr = np.asarray(bytearray(req.read()), dtype=np.uint8)\n", + " image = cv2.imdecode(arr, -1)\n", + " image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)\n", + " return image\n", + "\n", + "def resize_image(image_array):\n", + " image = Image.fromarray(image_array)\n", + " desired_size = 768\n", + " old_size = image.size\n", + " ratio = float(desired_size) / max(old_size)\n", + " new_size = tuple([int\n", + " (x * ratio) for x in old_size])\n", + " image = image.resize(new_size, Image.ANTIALIAS)\n", + " return image" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": { + "ExecuteTime": { + "end_time": "2018-09-20T16:53:34.349108Z", + "start_time": "2018-09-20T16:53:34.135325Z" + } + }, + "outputs": [], + "source": [ + "image = download_image('https://i.amz.mshcdn.com/WZUyjzT0PDhqKpbcSAi4QYV-TWU=/950x534/filters:quality(90)/https%3A%2F%2Fblueprint-api-production.s3.amazonaws.com%2Fuploads%2Fcard%2Fimage%2F792479%2Fae396389-d75b-4852-9a8a-7b34e28f71bd.jpg')\n", + "# !!! Image should be at least 768 pixels wide to find faces properly \n", + "image = resize_image(image)\n", + "image_array = np.array(image)" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": { + "ExecuteTime": { + "end_time": "2018-09-20T16:53:38.455380Z", + "start_time": "2018-09-20T16:53:38.096346Z" + } + }, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 8, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXoAAADfCAYAAAD4Bhh5AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzsvXe8ZVd15/nd4Zxz0wv1QgVVkEoqFaWEJBQtJIEQ0AZjo8bTxjm2jcftcXumndpuj8e0aXumHcbTTmCjJjVtgrEJFhiQiEKAkGRllaRKUuVXVS/fe885e+81f+xz7r2vRJqZ1pjm89bn8z43nbDP3muv/Vu/tdZ+SkRYl3VZl3VZl29f0f/UDViXdVmXdVmX51fWDf26rMu6rMu3uawb+nVZl3VZl29zWTf067Iu67Iu3+aybujXZV3WZV2+zWXd0K/LuqzLunyby/Nm6JVS36mU2quUelop9WvP133WZV3WZV3W5euLej7y6JVSBngSeAVwGLgX+AEReey/+c3WZV3WZV3W5evK84XorwWeFpH9IlIAfw289nm617qsy7qsy7p8HXm+DP1W4NmRz4er79ZlXdZlXdbl/2ex/1Q3Vkr9DPAzAEqrq7KWpZlkbJregEgApQFBgtATOHr0GBdsPYdINAk14xREqL5ERFBAUNU9RMWfRBgSVDJ4kdiQtb8LoIavctbnkdNRZz3Tc0gwOeuug3Nl5Fs1cnmFIKO3ic/BSFvWfFu1YrR9o+dw1vHVcVopskZjzX2ee/xXOffsNq35XdBax+9H+mjwtBLf9fr96olrEc5mD//f0IlKqTXn1p+//vu1T6Kq1qrRPh09RKK+GaOfM9iCxGuPDnR9smLkmaW6cbzPWU0YHIJSw34Y6OKwQWtVcqTNg+eKH5XSZz3DiE7KSEtHmlyPW62PX6OBa+41vMmwjUXeJWu0BmN/9rAqFKG+m4LgAokx+JE5oGR4rCDDL1DP6ea1YzLSbjXse5HhRxGp+udr6dvIww1ODMPLj157MO7Dc9aM1mD8zjYoX02+0W/DQw4cOHRKRGa/xsEDeb4M/RFg+8jnbdV3AxGRtwBvAdg4OyYbtgmN8XF+8tW3MW4Mu3eeQ9oy9Ioef/WZe/j0J7r81b/9eVZ9TqgckdJ7UJqVlRXStIUyGlV4ylQj3qMdFMTJ6RGUVjgXUD52VlCGEAQhVAtGHPQQ4mCKUoRqEYhKYQaTTaJtQwmIhHgs8RohBJRShBAQEbQxuLKM9wyjxij+PpwAujrPobUeHKe1HjyrViZeX4NSwzYppVAjxkHr4TWjAVagNVrAGsOeF1yM9x7RCi0MztVmMD4YnQyuXUt9nDFmzXeowFhnDC1hcL6XAEoQF/ACzjseffJJNGpN/4jUfa5xzlX38LG/JMS1OMR+CNF8oan6Vmsg9rnWax3U+rPWGmvt4H39vTFq+PvIufUz19ev2ygieO8ZGxvDObfmd7XW4mHOWpjr340xCD7eU4GxCqMSlAqDhUdE473DecEojfeeQKXDQQANouK9CUDAao1SUX9sEttltCFRBmVUvG/VII8QnMf7QOljP3oniCjEQ1DxeQKBIHXbdaVvCqU9iEGraH61VtWYgmiHF40JCQcPPMDlV3wHp1b79IPDFkLTAaJZSgNGLEqIY2803W6X8XabsixQSJxbOo6DVAuWQipgphClqv6odKOat3V7qdpW61nQoNXa8UySZNAv9bwFEC8YbQZ6Wi/iXnlE6uNUtBkS0GsW4kqP0IMFe3Bd5c9aVxTVlBno3uirrs8DvIRqDghUz/2jP/JTh/gm5Pmibu4FLlRK7VRKpcD3Ax/6WgfPTE7w7t/7faZNyv/5vvfyyS8/xpHDh0lNoN1JeHjvI3jnEQoSDakWjDgSDYbAeLuBSTXiHVoFtCuxEjAKjBK0EoxINHLaDCa7UtFYCjKY/CEEtAGl4+DE49RgoOrPplK8UE212JkRaZkRIxEUOFcODIIxCqUknikMJif11cSjbEQ1YjRi4jWMtUNjZer2xDYaYwbXONso189QS32NelLULa9F/PC6ZyvuaB9479f0h1IKawy2aou1NhqbUcSsNRXmHy6mI5OsvofW6qs+R5ywnuciMFkzeUefuW7f6PVFZNAP9ecQQjSoIwvGqBGvDUk96evvRidmfV68HoQwbKcyET0GcdgkGRp5bbFWY4wmsQlKgdbxWloJSgtU/fGcPmG4eKCjzsaFOuq3NYY0S2g2GjQbDTrtNq1mk3aakTUyrE1IE4vWBpvUBmX4PNEA1Z999RoQFBow2sR2G0uapjQaTVJrSa1Ga7AGWq2MKWuZcgpnFAuJpWs0Ohg0JU4VNIGMQFA5ThUV4NUYbSNwUuDwBBVQldcOwz6px/Bsb64e12iYY6tHx3dUZ+pxrvXEWDN4PzrOKIU2FpRFItx4ziI/ev1RCSEgfu04frVj1lxvhG3QAt77gVOzdg5/fXleEL2IOKXUzwP/ABjgdhF59Gsdnxddtp3T5Y9+4yf4k/fexZ337eMTj9zFl97xTlb9KR556hAzZpp0vIV0u7gykKQWcQJeKHzgfR/9EN/36tfibUA7wQUPGqxJUM5R62zwHq+Syt31cWJhiIoTMFaNTN6aQqJSAhkYOVO7yloNVldxHowd0EEhhArBKaR6772PE1Ipgq/oKVk7uGHEaAxlZPEIAW2+OlVRt6++3KC9VbuCCOY5ihQntTEWCCAV+lPyVZVydAEc3FvpuOAE0MYMnp0A1ihUCChReO8HKMp7P3hOay0hDPt54KXIEPHE+0C9SNZtEmGNIawncz1xrdVxLBkurLXhWtPDIwtKbTxGDYkx5jkLxuj70Yk3bE91DUBbMGgSDcoaUmsxxmC1QekIAFIxOC94F41T6T2iIqK1ovCq5nEADZr4bForlAGN0GxkpGlKYg1ZkmCMGXg+dZsz78lNTu5KdFFQ5A6lA1oUHgaeFZXHqlRErkpHo5EkmiTRNNJsADSUUngRQlDgFeNjHSQ43Jgl00K751hVjhRP1zpwFhFNXyyFMVhpMtGzLKcKB/Qrb1gJJMEDgSAGZaq54QNqxKjWbXDOV+M81I/oCww9bapnTJJkjW4P510EZbWeqIqTVNWcqT2L6Nqv1aHBAmEgiEdpNexDGOii1OczNPDGGJxzQ/0VQWp9JIJJQmQnnmsjvrY8b3n0InKHiOwWkQtE5E1f79gNs+fR2roHm2a84fXfiXar6OkpfvSXf51TqwUm6RAKsKIIAlonuFB1uzagU46fPkOj02FVAmIMzc4YycQYtJqUWlMQKCUgBqRaEhVq4OLWCIHqu4GlHEE4taEe/lajhsqoV4PjK0OjlQbnBz68iAw8BagMBGpIg6gQEdzItRkYsegFjBpZqdz3Ubd1FKHUn6210dAMzquRTmVQq2euUXotXwspjSKp0fZordGVURkYuprurq4zioyBAZIWCc8xrGtc6ZE2j7alPuZs13104RulmuoF5myPYhRZjS5io33xtRa9s1+Hzz/iAeoEfIiehBJskpAkCcYqtIkIWFe6YZTGmOjZ2MRirBk8fz25ayOMGrr32miSNKk8BIO2BtGCV5Gu8QheCRJKlIoLYJIYssySNSzWKpR2QCAERxCP844gcYx8cEBclG2iSBIdAYcSTPVndby3MYZ2o4kvShq5YJTBNz07FxfYdceneelHP8uLP/cAt7iCmazPRUXJrOpxtLWAKXPAY6xGuZzUl5iioIEhGEVAo0VjR2iYum8ieKi59AEWpjZ1ozpSL9yjXlotUSef6yGgIlUmlQGPntrZi0StIzUdt1bW3GvE+69101r7HL08Wx/FSwVQvzn5JwvGjoogFH4FJX2CKrnogi185dmjHMr7nOpF/rG/nLNSaEzaRvoFEFGxAzCa3Zdfyv5nnuXE/Bz7H34U1czwITA3v8BYu8OVl1/BzvN3xoHteTTRAAUJlM6jra2iuINITYUK9Bp3tl5xFWqASLXWSAgRfRG9gAG6U1WgrFpIXHDU8TiPgAIXPEZpRBQehShNBFAVraRUdFmVIoiP/CwGrakQq60Q8RAV6CpeaLSplCepuP2IvpXWVewhxOeTij8Wv0YRz+afayV8riGsjJwaKnsIYLEEJQQT+9pIZXiCxxo7YnCHaMg5Rz1J1/KuDDyF0ck5WERU5PiNMZS+QkUS+945h7W28m5Mda3ac6qMJgqUwnsZIriz6BlgzcI2ukCMIvraS1vTd2n0ZDKboAEvnoQhopQQkIjRUUrjtMGVPuqOjnSJBAhKkYQ4byLwUajUkGiLTQxJmsRzvOABLR6pvIsYg/IobDXWmkQpSmMwJuCcJ4SqD4NDV/1rtcXYGOtQWmO1wuga8Sq8VIGUCt1ro0mSFOcdThqI8Zxnxlj+0LvZo9s8dupRxrxh6Uuf5uqf/wkakxvwH7+Py7bt4K7CMX3h+az0ezS1sHXDNFNZkycPH6aftgnGYVVGUcaFR4wiaAWlw1hNCB4ZQcqgCTAAUaMgowYIo2M8qlf1cQPgUKFwEdAqgjxj7AhIUhhTGW2pPcM1U+UsfRrSpF+NLpVopJ7Tpojs/4mpm/+n4osVFg6fIinbFN1lfu7HX8dP/9Yf0FeW3/i9P2VcNyjHAt/7q/+eC2fH+P3/6ecpVZeGJIR+wGyeZO+RZ8kX+rzuFS/nhl17OKNL7IqDzJI2mpxaXuQTn7qTz9/7Fa646hpec8uthNVVBCFJLaVzhMooiPcoZQaBIpEQaR9CNLJK4YNDi6oWBBNXZgPg0Rq8r7NQJBqOajGwOsF7R7xkFazUQgyrGQJgUFWgN6LCGBGrjUvFVePXIOSzEW6oFirvA1pbQKGVVLgORGsGuikh0jpn8YOCRxsVFw2JbnKQEqU0WmdD1GoEJZWrXPG3WmsSA0XPRWQZFGk/UNoScdGTKV1EXZGqcYgYvA/REClVoXyiHR4x+GXp0MoiEoPoioA2Gh9KrLIUpUdZDUEoCbE/VTUm1uBCjKMoUWhd3VNVnLcHqvdaRaovTS3BxbGvFxkRGbjYsV01Y1cZeKNjMJH4LIkxKGsJdaCxMuo+eMQaNIFgwIeSVBmCDyhlsEYRyjICAVUSRBG04AUSZQjKg01INYgvSKRFWXrSZkLoOzQWCVLhFx8XB1WiSoOoklJnNFxOaZtYXRCS+Dy9fhHnps+JnH+gqTI0eewzidSp0XpAnygFykvlmRQ4HxMeCCUUKzTGd9BRK/zDqUU27LyCstHh1P6nyW//W8LujVz2/T/Cymfv5xaTk1ghm95MY3Y7qcDc5z7KCzZt5l5tsD6ndBqVWHQBPRzax0QIX5Z4DcY2ca5E+RD1dyS5ZjSeEnwYgChMZfQhPnOlg9FDiDGm0g+9Qxe5RhiAI1PpbEXZoSONpep7xjmmRw17oMIXa5Mc6nloVAJm6AFHRiBQurUg4hvJt4Shnzt5kr9+5/t46TU3UpiCTBX8y9e9infe8TlOlz1Sm9BvOsbbHR5zq7zzU5/iB26+iXK8wW/8yZt44xv+F268+kru/PtPQLiF0pUkjQTSaIj7q6t0bJNX3HAzN119A532GH//5c/woc98kt/6179MtprTNilFKKMRNAYfwFGv3jpm1YQqEFgFdmogKMFXhriK0nswFdoLFTcnIXKF0ZgalIIkOMRH3rMUcL5EKUswFerXduB8CgEJFQ1TZ4sojYTafY38c00lWW0qOCAE7wkDlzDSQN4VaJVSWaPnIPiaGajd4loBBwiYiJQihRCN/IALrgyhCQZrAquS47TCWIPuphSmQCqDHvvEE4LHhTIuqCEQQjXJVESKQtV31auxjRhfEBnERAB6El33QMAoVaFjg1YWpRU2yVDVAmwUJElaoXdVZecYjE1IGy0WFucZH2/jQ6j4aYW4YXB2FH2NUlOx/zRaRToFAiiPCiUkik9+/JPs+8fHsEnCT/+bX4jxHIkLj5fAcqgC9eLwEgiVofAiBAKZg56N3kErWMoQePCeB7gwyzi2eYILz9lDoboYBToMjcEAEQYFUhJ0Sa9QpHqCD3/yMU50U/p5SV54irzAh0DhNc2GJXVz/MhtN9LRPRKnQAdEg2cYD1E6MuFoweIofUlZOlY0JF2D27SR+R/8KaY3X4AJhjPdY0w1xmg98gQr7/4gn//Sb5PPJrzqF36do3d/iqNHjuCfepyx8XHMxmmKzecxefNNOLsZLwqxMUbXKaG0Gld5i0kplK6PNgrREAqHiEaNMB1D6jKCOI8MsvFiTGUY+6EK9lN5z3X8ou5PHcl4anQ+6G+twQe00ihTxc5G80BlGEeo7/tcGaErI0RAKYseoXi/GfmWMPRlUXD00EnkGo3CYJzn1uuu4C//5sM0xsdxAbLCYbKcLKR85JOf5n/4zn/G7W+9nf/wK7+JWuwy2co4sXiaZtqkVziCixPeV+5k8B6NIrMJ/aLHyy66ghdfeBm/8Qf/kde85ru5bvellCuCtgneQ1F6MAkBwSqNdznWaEQJDoelQvESQKto7FFQofABJRGGKZtnZ4B4Yk52GTw9SoI2UBY0SAgBjKnzfIcoJKJZXSH2OPh1AFNrHYM/GMrSofRIUFODz30VbI6G1SQRLssIXz9MJ6RK4VybeTT4q1LXouiRe0XeNoRAKR7ThPkvPsT41AwLmcf1+3SlXz2TwvuAUtHon5o7webNW/BFibGW0pUxGCVxgtUZO81GRgg+eioipGk65DqtxZrIc6epiYsbxOBkkg1Qk1KC1slIqqUZ/GZ0gtaW+TPz1foRsBVlNzqZR+MDtQwnf734DDlccUKuhA/dcRfqTJfxRotf/eXfJB/vxNgGiqZNaDSbTM1OsXz6DKurvYqDrzyPZgQhAY2xCU2tSft9Jp89zjsXF1kKPd777tsJWCTEBW+UGogLqUJrjw9xye6VnrnFhNNhJ3keKAVUGo3DRJKShDP877/z7/jSXW/DdHLwikAy0JeatoiGPgaWIcT2Aq28h/Uwf/JpVKdDf36RTtJh4/g5pM7DLS/lTH+Fi695KUc+/3Hu/r03IdYwPT2N7mwi1wYOHkEdeJZDzTZTV13Nvs8+yUe//GHG200OPnucbb7Jo/NHWcgsOE3WSPjjP/xduqsrWGr+e+ix1q8+DGNDZ4/j2a+joGdwvvfRY6rGelQkeIxN4kI+El8JEgYJBnXSg/iouzXFuEaPYgsqoFNTy2tiwN9QviUMvVIa7xTiChwKVSpkeZmLztvKgTNL2GYDWSwpuj0S02Euhdvf8S7+1Q/+KPPLKygjdLIWIU1Aa3yMDwERvHgJMR83BBQacQUhNZgs4S9+5Y18+FOf5I/ufgs3v+gmjh07Tlk4ytJT+kCv10MpxXe9/FbazQbGRLefGj2LxLTKKgUuDKi6gK4RfmAQyI2oukpV01Q50ppj82f41F2f4ZU338qGZjMalnI4SUX8Gn4ZKvRtwkC/BgE6QEskg6LSENsnNqJ78awuLzK1IRsiYr6acj9XwREdPRqtYvAYW3Hzo4tARd2gmAg5Wy67kPu+dB/l3BFmLr2K6SIi3jVoSQIv2HU+wcc+yYsCozXGWrwrYnZT/cwogo7v0ySN9EeQKghu0DJcGLM0oyj7YGzMwQ8BbYm5ahVnHRGTHnx2PmeiNQYiaFEIEZUbA0UxDByPjkUtQ+8nBu7iQlFHTQ2u52mPzaCtICsr7JzYxpPdLn0lWJNhPHTnVzhzso9KLUnSrCZ11KNksQBjaZLhg0dTstk3ePSZOba/6AZW2o7e8iJhbBzrFCYTavsVAUbkjIsQvSoJBUE0fWc4fmqOolR0ewVGwcaZSdKkZHnlFEfm5rCNjJwSo1pY3690ZATRiwLtUV4DMU/f+4APFtds0s6XKLo5s9u24yfGSZTFBs1yf4XxK17EmVQzcd2NqF5O73MPcObEKRq5ZbzR4PhiyZYXXcY/e8FOvqyFzK6wpyuct2UTl+7ezJ6Xv5hDH/4M73zgHhZM7c3WcahqnhoGc+irxV1qg28qV10q3nCUtx+G8OJ51lrES+VND5MZRGK8KlTov850qxMshrYvxlpUpd+jbTvbyx4ART+kf75Z+ZYw9EGERKf4skuhWohPcCslv/h9P8z//Jd/ydKpHJuOkZseFIHpzjjTW2Y4Jasx5xiYnJoltNvcd/9DXLBrR0ScKDIHRUW9Ru9KYs5xGbNhTpgu1954A1ddcxX/+e8+zJZNm7n5pTexsrAELjAxO8vefYc4PneKXTt2oELM55UKUYcQeTMvMaNGYyteNn6u89IZIO8hehYF2imKfp/PfOqzTI9N88QDj3Ljd1yOUa5C1KEq7KkR91Ap42tC8KH6vaJWKsOutY0cIdG9jPd2BOdAOZwvMdoO2jUa7R+Vs4ujYnlMRUERucnYw2CtiSZTBBGDK3q4Sc25N78QKTZxzwNzmM5MvBYqohtiRocPScxf1mCTJAbyypwqbWdgXLUxvP+9f8dt//w29j51gH4vp9VuMTExzobJ9oA6CRh01uDuu+9ly8YtvPzWl7N//35CUaKMq/rWVIHHYa0DYuLkU7EoSAsEVSKi11BYElSVhTFE93VfalOjvGhYvUCwgXxlBbEJ5Zghc13cvmcZa7dwmUI6llVXYFJDwJF4CMQsL+WjRi+bkqYPrGiPCY5zVMKRvY8zc/llTGyawq0u8K4/fTs/+cs/R1e6pKERaaGB0YgcsschpUbhCLJKGRwXbB5HTIpSKa7fo9nQBJtQLrc5enCOTCw6z9E64PXalNM6fkTQiHaRHgzR0HeaE2zcuIO5r7wTWRCKYh9eT+PaTVq2SbZtGy2d00+bqGYHvut7mL3ycp558ztouTOcCsu0Jzcz/+x+5t5zAuU3Ioli455tpPMlW19+E+7UCmqyhTeWRDfjczqiVyNVPMRFmnS0BmTIyVeZOAKia+MfF+w1dMzIsaOZYRLq4yKlWfnaa7KkokdInaRZXWiYrDE690Y9f2DNb4O07f/eDL1RCms98z0htdDVi+TO0WlOE3JoaEtfeazWTDQtc6njwScO8NLvuJYEofSQpsL2rZu5/SPv4c9/6bc4Q58CQYeAKIOUsQqQNCU1HR488iT37tvLE4efoez2UXnB2IZJjuw7zYOPPsCuXRew7fzdZGWHHbvO4el7H6EvBeNKo0tNkTiU0iQmplMqbWLMtA7OVvRH8CWCHQRoHAFlFMFB4gSUxzZhesMEjzy9j0ajzTXsIXghRWGShCAaja6q+kIMMimhKAu0TmOWj4+D3y9y0jRBlTHjos4QUEohOmC04dmT83QmV5gd20xIbKXsKlK3VFkcCkTFAGfMMDBVXKLO6a3577ioGa1RpspxrhbUoED1e4jzhN4CbqzN4Ufu5sKbz6fvc4J3GAmoKtCbe83b/vLtfN/3vh684+D+p7ji8kuRUBKUwpi4EBVFyc4du1Dect+9D3HuuTu49OIX0l1dpnAl3kUKQRtHR7VZmJtj5znbEF+SFysx/7uR4B0YZSmdJ0tTdIhBXRQU5SoYH7M5lEKZlICP1ZVa41wxiInUdkCP5veHOpYxLMRxeZ/7P3sPQWUY78GkaFtw1fgsX25pVNaiMeFZ1ZpWKegUcIIyJmbaYJFeTmHAuIJJEcrjJ/FBCFPjuKKgLHo8euApfFEimYmxAV1nUxHjPMHgVKT5fKHxbUNTWjx8eJUQ+qz2PElmCToQpERcn88+9Di3vMDQCTFRIKdEIThXpRJrg/fRO9R4vAo4sUyMTZE2N9B95lGS0tLLTpP7HSSdko7AiSN7yRaOUKwuwswjlOksrcySj21g5/fexuLb/wKtJzhTzLFhpU1/qccWe5j9JvCxh+fZOtXh8J/8Mdu2buPJfftpWYvOz9DPOhH5EtBBk6icPnqwWA8zbVQM7FdBUacUWhTaKIpQYI2tbFRMplAS01nrjLtB3GME6ccqZyFYQ5pDbj1pacmNBpejgo6pqjYBDEpiQSeoGCtQMSFDE+eSr/LmFXFByWyCDyVqtKT2G8i3hKEXFUjSkn5vAT05w9OHF/jSvfdy31f+ArdpG8t5j7F2B3ygMKB6BY8ePYDNWjS1UPZKpDVGUCkH5pbpacH3V7HWEMQQnMNrhTUpf37H33D//r2MZU022CavfsEV7Nmxk/GsxQfvvostF+3gtS97JQvzpzly6gzFSo8j3QXOnD7D/oMH2bN1K4nNqOJ3FTdu8FLz5fGZQoi5w9oavCsr9ErcIkABSshNrJrt5wXTWZuXX3E1nfYYyml0FgO2L3nJS2g0MzqNaVKbkaS2QgYK50qW84Iyd/TzvKKZDCE4cp8TxMfsHoGiKMl0IJiEj3ziz5jZeSHOaox3A4QxunWD1orgXVXcVKVGGlUFc9ciFaXWur5DVjGmgZokpZ/3sROT+BBo65xQ9iiUwSuD1yl9hHFg+eRpOo0GucvpuYJcHEbHjIqiLEmShOCFsckWSUNz0SUXcuTIsywtztFsNnGhDhhHD6DX6/KK73wFiGa5u8rkhkm6vWW8c2iVUpYFzUYDfMDhSavMi36/X2VM+Zgt4+Oz1Xzv0IjHZ43PP1KHUNMFOrJEAihjyfMCZz1FcNhWwoF+l8OHHmRyYisnp2ZZHdvAhLWcMX2yIiXRMWus70qcNuiOY7V0bOiuYHqn2HviEJt3X0Ypip53LC8vc/N119Lt9hCTElQWvcvBohQI1YIUEXnMOPP5MhvGMvr9Hu1mSqxFLbDJGIGUA88e5IY9O+na+EDWR302JsaHIrVlKkOvcF7YtfsitEqxieH0vifJGsKT+47Rnsi4bPYFLCwskHUmaRbQbkyRhyYTXuGli6wssyR9TqQZ7YVjNO0Yfd3F6CmW3ApXjKUUF13B0plnuWLLeSyt9tgzuZWT0mO23eATkkdq1AilBhPqPlibshuNdJ3BVlNuVWqwGZrHSNuo+sNz4jS1dyMSY2BaG3wJwYDTMWU27Qt/81fv5NDcs7zie17FrisuIziN1gqHYLA45WK2jgJFlQ3HcAesIIJyFSD77y3rpnSKM3qSTz7xDB99y/s4pzXFLVddzW2/+FL++CN3MN9dBQtlYsiCQroBtOUP/uRPePV11zM9Pcsbf/O3Oe+W67HtJl94ah8XbZ7AlIJizWnCAAAgAElEQVRPYjDk+OoK/9e73sausY38+9f/NOOd8Tihu32UNaxIoD0xSR4Ui/0+Pe+ZmN1IZixTeiuPffkRbt1zMSrv0ssLrDFoD1XuFDFrQ8UsmorbjlWwmpiF6QmSIpgqy6SI2TGmQdHvsmlqltAvSL2nt9DFbpjgTG+VL37pYax2TE5vxJqEVruJUoJNIq3QSBJ0VYo+taFFljawiSWxLZIkjZkuytBsNpGGRhWO/3znHcyvLKAU+BAzQwZ0ksjAUGqj8V4POGetK9gzImfn/2odEUrkRQHMoHiwzB1bt57DmVwQ00RCiVUe7fsYDeIsv/lrv0S/iKl9L7nhelbzXozbSKQDlDgUwp6Lzqf0PfZcvIuLL7oAX5Tk+Qo6bVbbTMS/paUFjG0goji9cAINpFVRkQRIkwzvSuxI4Vm9N87Q9a62JACcRPdb14ycHqmEXDPxYhA2cuuxvmLh1Dxf+NznSc6/AE9gpe+YGZvm4olZjh06zNbWJEdbBuc9WaJJvMcqgb6nlSW4vE+fwLRr0Nu7j2Pzx3jJS19Ob3o7+0/vj/UgRrNwYo5G1qBfV2CGykgpQFmCjvvIoAO+7GOsZnnuKbr5CUJQJDYBA4kOuF5AW0PfzNNge7UvkhkYs4G3KFWlswIfLO2xSdKsA5Khy1XGVZ9TK/Ps3v1Cfvc//hl/evXvskAX25zAr54h2XQud3z5Hl53w0vQpQaT48YVe37qF/nKX/0+G8/0SRqKlnN0dcHEksf5Z2g3E8a1ZanXZ8JYpFvw7MkjdLduxjtPqxBWtMSUy8ECvVZ/R/8GOq31IDAawyx1TGdtHGuYhRZ5+Wj4K89Bxb1xgvMsr+a8583vZGfa4ckTPT5w+3t5w789D59ksdq5ihP5uuo9xOSRMqylBuvgr0JT1wp8M/ItYehX+yWP7D3Gi6++nJe9YA833fodaCvMH3+WF1/9Qg5+7OPMTm7g2Moioj0bpqfor3S59LKrmDlvJ9YLv/Orv8Q7PncnrVaHt3/wE2wZb/Pj//w1LJcr/OHtb+Y119/MG3/451jqd0mMoljt4rVCWRMrZkWYndjIYq9HsZrjC09iFL2FJbKJDqcXl/H9Eq0UaTODOqBaB1OEaDUh5sdL5O2PHD3OP/zDp9EmJRRxQjhfEELB5Ze8gLLXp+wXzHZabJho07aKRDm682dYXM05fmKJW299Jbt2n0+QktKvECgQ7wkirHpPCCWhFOh3gWhwTDCRq1dDBGoMnOyvcPcDn+cn/vXv4HUsvrEjwR9TlZd7H4tsbBX0TJSgpN7XZySbZySAW3OQNbq3Eo0pxmJMinOB5sQk+/c9Ti4Vl1l6+r2CvCxY1n0SNL4IhGrTsDzvkSjNxvExFk6dYmJsjOXFWP9QhsDY1BS22aEoPUmSUUqJsYYjRw6zc+e5TE5sQGSJLM1w/QU6nQ4qeNqdCZb6nvu+8hU2zk5z+WV7MFVeTwiqyuevg8aBQTaboo5QVNkTdUC33gBsZO+UWhskkFiLwnDVlVfzwOk5dAGpSmhu2c6jC/NsOP9Cmt1ldi7v50g6Rr9oIJ0mooRQFjRCIHOObYXm9P57kWKF1W0X8FBfc9nYODIniDXkrmTPjj0sLy+TTLbWBPZCqIvuXAxYhQDa43PPz/3YLYgs1L4d4hyRgRSEDNQOdJiLxqtQyEicaFQPtNa0J6ZoNFo4DwSPP76PZEwxfjpFdRJ+/3/9BR7+7B1ccMElZO0mLmQUPuGtb3svr73hZpS2YMZJWWDpoku45o/ezNN/9vuUX7kfwyqTtoFqjbMMHJ+bx4eSLCgOdBdY1cL2c3Zw3vnb8eIIOpDEcnhEqQGir1OBR4ulBoY9urBoVZlHkUE9BIMtJ4Ye7OhiZ6oiwLhZYrQFE4sFf/HWd3Dtq29lY6NNc9tWvnTHR3nXH/45m150OZde9kKmshaSxHiRD0UsgtQ67qklRE9JKbDR3pg1e2R9Y/mWMPQbxpu8ZPcMHTfP9pddz9ve9yF+7Id+iBNukX1HjpOGBKM1zUbKeDvl6KGjrJaepZMLvP2JD/Djt30vJi9x+TLnnjNDsWQ5dOoEdz32IF+4/x5+4CWvYtfsFopeF0mEZfEkWmGrYJc2ilIr2p02xxcWCUpwIri8R2pj8YoDUpMRnMdRkqBwIogxkUuDqBDDwPxgZS/6AQkxiBUq1DXWHsfjOHr4ADdeeim7N28kUxqbaHLl8cYwM9bkyUPHOHnsGOefewGvevVr485B1MhaA12iOgk++Kr4SOG9i56Dj7ys97G0/Wf/9E38+mt/ih1btzPX72Jd9DbqNtf7zADVTpk5SWop8pKGyQbe6yBd7ywZNfwqBLx3rPZ7bN60hdN5n6w9xvTYNhyeuWeeZsemGUy/D8ERVj1YTR4C7S2z5FoQ7+gkhqN79zI7O8XC6XlmdKwmdgpOHTnK5gv2QJaRZi1SVaI0jI9PkCQNTp9ZYHrDDLOzmzm4fz/3fPErXHPtNQTTxqmUtD3O/OJShcZicZQPw0ra2lAr4sZjWmrvJWZxCOB9HZwf1kpoibGOIAGjNK50rC4vs2F2mv6Z01igxLPsS1SjzT4KxoPh2iXPojtOe2oK5VdopBkSSsY6HZ5+/BF6qsVqsUh7+07SmXPpiaLUHkqPJAFjLfff+xXOu/FyxicaxMK6mEYYEWG1t1K16ZoohRKD0V3KYKo9oXSMTdQ6UfHIQYPREoumiJSD1vUmezHTRiG02216RUmaWLJEceTMIq20Rdls0bINloJgWxvIOorOWODUPEw3hb9/x58TTi0QZidJVgsUDqVzlo3h0jf8Ap88+Mski55GknGmKbSuuI5zu12cj0V525IUX8b41TW7L0HnHmchzaFEVZvDnZ3NUul/BXLqquBBWvOg2IxBId9okWKdAumrSmzvC0Ri3xhif7//LW9HyoINm2fYvmULF16wnfO2tvmvb3s7j931MfyZY7z+B15Pe6JD0shidbeNoCNmJFY1HIPgqwy85m9WviUMPcFRjGXcN7/MQ//loxR9xb/5D/8J3WyjGinTqkUZHI1MMZYq1HhGMt/nJTfcxK/86Zs4dPQIMxsmmdg4Rnf/cf7l9/8Yv/vWP+PxJx9hx/gM509vRitFX3v64hn3KYV4CgTRmlTA5J4kyyjEEYxBJQalLWVeMJYkiFJx+9QqC0Z8vW1uheirrBqPYGtOVikajSZKPP/ittsoyiWU8hhtWV7ssnT8MP/iJTcxkylmxgym0aDvAht1iyIUjGee7dddwgc//RmOHtvPZ+/+CDfdfBVBSoypAkG+iWJYiQsqVrCquIOkMZbEJoQgvOcrn2Rbu8PrX/HdzK2swGKBNmlVHl+hvkp5QojbJyhbcOr0MZ49+AzXXf3iyG2P5BHXMpqrXf8S0YlDJ5Z+rxvRn0kpXYEyhk5njLxX0BJFZhv0pxRGFL7bI19YxGmDL3s8c/oEqruEdZ4NRrNp8xZ0KFjKS5Izi6ysLLJ91x68TsB4+nkPJ0KzM06zaRBleGrfUaanN3H1d8ywmvfw3ZJ2p8OOnbs4ceQgImBsdNe1SWIaqegKSelqwo+iVxlkbAz5Wr+mX4LEnQbLsiSI56GPf4YTR+fRjQ6UAV8WpMQ6j2YPnJ3mAb1II5+DY3OcO3M+c4ePcHp1iXxigg0alixkWy6inN2KWilpNaFHia3GPc9zussrLHe7TOppRDw+BIxJBumVdRqQ1obSl0hQKOmD1xXFWPHZQUArjDjAVh6BIcFDtT+PTWpaD8CAMiwsL6C0ZWH+JFYMdmICbTfQ2H4uaukobJllz+xO5g4+ztHleZozF9LvTLEaCvqtMZJel0QliG5hJZB4w7Ey5VV/+J94+Gf+R3q+S+vyF7N7z25KX9AxKfO+oOMUizqQeI8RS8MLp1XAAs4qTGBN9tbZ6cSj4CUEqXYPrTm6ilKR56YiR4o29m1cLGJ9jRHD3Nxp5o4ewW7eSGY0baVQaZM911/DD68U3HPXl9j3+DP8u9/83/ixn/xRLn3hZaSNbNAGxXAshnvnx21ZQhiJCX0D+ZYw9Ke7BavZedx2+Sy3XFYw3mzSLRb44F1f4IprbuLj93yG04XjBVs20GWVslsw2dnA4ROH+O03/Bxv+7u/5ce/6zamaXJyuoOUq7Q2tfECurT0EXLlmGpMcvT4MR48+Ai91V5EYyiazRabt2xh6+ZzKJd7vOsDH+CSyy+lW5acXjhNu9MmSzNWCDQ0pC4GT2JEX6rd9GoeVCgU4MBIwthYi9I7UlVwOl8h0QVKGvi8xwvPm2WmoxnPMiYmpsAInUQIhULnhkRpCgy3veLF3POPj9E229h5wZX0fBcJfVThKaSPBCjLgC8FX1XgevGUvmTF9Ui6nrv238977/hbbr7kau5+4D5sohjfMI3KAw5Nswnd5TP8430P0e/3UFrR0KCLPqVpcPf9j/Dnb/4vbD9nGxddfiGv/M6XoZxl48wMOhHKoMlEEB+qfbwh6MBhlbPxC48zdskl6JZhRR1jwfVI+rtotjK0z5B+E0cX28goyx5mfIzVpRUO7H+Kz3/pbr7v5uvZMTNOFlIS3aTTyqDvKFLL9nM2c+DUHHd+7MNc88rvJgnCORtnOHzoMFlzln7pSaxh26attFJYWVlianISH4S8P89YlrJk643thmmosaLZoUK1TYUyKAKiSqiSdx0+1itInd46zLJBBPHggDI4yqUlHnnwKQpJ6G6CBpq+CpQeSpcjeLKWpTQt/NQuVNHnTCsltLcyac6lPTVNNj7O3IGjoIQtpk8ypcgalunMc+6LzkfblIUpzfKxjFCWuF5J0A2a1mPKEmfaNFSXbmjGsnpXRk5dFYhWBJODMogPaC8VUl+ldJspWSTxFqsAm2GzMu53b22sANa68mwSUm1Z7fbweZ+kkUJnnGASmqFLGN+A9VBMbqXY0aQz1mGsM06J59BTD7C4fIzQy3no4UcYn9zAFc6QF479+/ey+9Ibmb5yF+bRQyxesJsQuihlWA05CULfCEmIWW2eHqtK0QgZ3mqSkBIYVrTW6cQ1tTlaLBVz4KnqICrDr2Mg1w68aRks+DH88dx0x54WFp88yJEyZyzNaNsmhXXooiR0FOfe+lLU9BgvVgnv+at389Hb/4a/Vn/Nd7/+tbzoiksRnZG2G2QhUqaFEVIsrOS8/61vY35+8Zu2sf+fDL1S6iCwTEyidiJytVJqCngPcB5wEPg+EZn/utdJMh469BSXzSaAY7HXw4njsiuu4vP3fzm6vz5nOe+xutJjaWGVwir2nzhJs93ix1/3AywtnkB1Jjj9zD4SI3TaExw+cIRuvkLpHY898iggXHj5pVx/7fWkJqkChCWI4ArHgwcOcObMItdedS0HnjhEqTUex6lDR1GrOaz0SFsZKZq+jcVCLoRYXi8Q0XRAaRdz34NgGwkqtZxZmueFL7oUX6yiSXn8/gdoNxqkmcUmmiRNSZoJ2go+C/R1Tq90EBz5Upfzz9/KkZPPsGlmlqTZQBmDVRla1/utxHJqrZIYqKndcAQlgS/cfpzZyWmKvueHfuRn0crw/g+9j1aS0Naeuz72QTIT8/pTAv3lHkcXujx+6Cj7jp2m1Ja26XB6ocu9X36IT995J1tmNrFl8yxXXPNCXvziV1CWBf1eD2k00MaA80zN7ODxsJeld30EyTXuNTv5x713cv0luwhdS7dcYm5plc0zG5k7cZo0TVheXeEzn7+buRNziAtMTUzSbGqMM3QaHbTy0MloWIvxhunWGBunJjlx5BnO23YOmQqEYpW2LWgnit7qIrrfxZIy3bIURZdOq02STWKspZtFSqqUWHsQKyFq70RhTLVpF1IV0gz3Ka//8YWM8PMhxLS+yONFz6pbehqtDo20zVxwiNE4X9LNeziBdiNmx+RFjyuvvIxnDxxAtzq0swbGZJxZWGT+0DHaDWimKdovM95oorXjiQe/SDMzLMwv0LGKq/fs4uAze5k6Z4pGy7Dv8ftJ8lVWc6HfXSRXcXfKft7DWkNiM1zpSPNA0JrSB4wl1jbYhD1Xvg503DROlJCkBo1gjUVrG///AtED1DqlKBzTMxuZXzB0l5exbUVmM7xKMdV+9Q0828carKYNVpdOc//dH+X04ilmz93Ok089wdzxY1x4/i6eePxx9u8/TL+3zCNfPsjuTXDheRshUSRO46wbxB5inVOI1AmRV1tDJcrQyMcxO6tideT9aFZLTEaot+P46jZsbZFTPM8jbNx6DokoytUewcQ5qU2KlDlPnc7pbt6N0w0al1zNmcce4Rzt+dy7P8SH3/l+Lr7yCi6/8Ub0xmn6J84QVlZoTzV5/O7Ps/zUs6g0+0YmeiD/LRD9LSJyauTzrwF3isjvKaV+rfr8q1/vAhrozXdBp2gSQlCkovjcvZ/HzMyg/QoTzQYrRY4UwqbpWeYXu3zx4Yc4f8d21MIyX7zvHqYuv4wkF57Y/xhX79jNI3sPosbb3LP3YRZPnsAaxSMf3ktpE0ySYEWxcWaGiy/cw/T0NBdv3MjWWzZxpujzzNyzfNeNr8AQyLL4n6hQJV0pWAwKUxRgEkpfbT8AMcc29HGhj3eK1I4xtmUjxjRZWSp59sAxpiZarKys0jYNEqOxmoiiqm0DlLaRBzUGCocOAesLxpIWWgJPPfUQRejhRfAoQuEHGQ8Q98vx3tF0Qq6FAs/J/gJ//NY3stnMcM11t/L+v34zXjyzs9vAJfiQM7VhguVTJ/BFSemF3ZddQmtmK3f++h8hZYbVhtIo3EJB3jc0snFOzK1w+OQKn3/0AJdccj1mOqHb79MvfCy9955l5xnbeQl+0zmsLDjaTc8Tjz3LjH2aK3dczKmFJaamZyDVTI3PsrC0gLEJBw7txyFsm27TtI1onBsNWp0OQRUQdNzeQgLTnTY3XHkFb/yzN/OGH/xRFrqLjDsHp48zP3+G6akpMvGcOXwEmySMjU+yutwjJAYJgX5/hYjINc7Ha2ptB9sZW2VRjORKV/9lKEjk4kO1N43RIyl3WsVAarWPT1GU5GWOiEWShNIPKRKN4MqcTdPTbB7vsHDqJDMzk/hQ0mhbvA8kDZjJmuTdVZQqaFnH4slnCFKyvLqCnpwgU4ENY+OMbxijtWGcg/v20p6ZwS2f5oKZFjPZBF5msT6AeJyvNuMSi9ImprsGRbAKTYmRkr37nyIUObohBK04evwIY51xlE+wNokb9SW24rgNSZazecu5rHZzWq027UYb1+uTd1fQnZTl48dpnD7OvjvvJJ9foX3ddfzDqaM8c+xZLth5Ps888DDTWcIrb7qVx/fu4/jCKsdOnwaXU/gG/eCZ2xh4SaNByONen0HcICCqKgor7tNfGWC1Np1yFL2P8u1r/uHMSKwqVrSfvQXx2h0lRwuo6i2RUyfQbDAWNB2V4McMmROcFXQJjx6c46TXrLpVOi94GZumLmRh75fwJ46wsa158sEHeeQfn4RGRqcomVKWVSlZSRPGNu7EZSkcf/qbMtLPB3XzWuCl1fu3A5/mGxh6JQGdNbn9o3cSipLpsTG+56YbOHrqDP2FRV520xU8efAZVrs5Da3JDLQyzdGlRT7wsY/xQ69+DbRa2NKzZXoD9z/1MNddchPbJyeZmJ1EipJrdl9CohSeQKkVx04e5eTSIqcXTvHQwcfoPlVQ9lZouowx2+Ty3Tv42899gO0zm5k2KcqXGFMiOAovpD5QBsNKXmKTDKsVqRFs2ifNUvrLnjLPuPrl34VB6K3MsXPHxcwvzNNsZrhQMtbeQF70sCm0xsZJUoPzq7igaU9MUMgSKwtLBO9QrseWsQmuvfa6AR8IFqFR9WL9DxYqZOGEkBjmfc7/8e63cNkF1/NbP/uveOn1LwOfoo3i7+/4EM0sgM4Ym5iivzjPkcPHuOq665jZspVf+PU3InqaxDjaSpEFx8x0g6mZKbZs3sQDjzzM0cU+yrb46Z/9ed73nv9K3wUU/ViNGQK+DBRiaafjqLSk7wtUyP9v6t472rLzLPP8fWGnk29OFW7lUrYtS7IsB7DB2MYB3IMJhqYBQ0PDYmgzQ/c0dBjCgmH1GqangTH0gDHGbmycMLYBy7Ysy3KSZCuUVCVVrrpVN4eTd/jC/LHPvZJoeuxpZs3y7LVq3brp3Kp1z3n3+73v8/weHnrkQ7zw8DSWAVZGPHHuSdaXO0xNTNIan0DgCUVA3svx3lGpVoijKiqKUJQmEu9KgJr0GQGOubFxlgz01zZ58uIVekmDOFRcXVoCIVBoEBK53UZIQa/fRUvI+gNO3nobOgj2lmp5VuwVLzeC1uE9zpWeCDyl83nXsyItu0bG0ilZyuCkEhSmVBaZImNh3yKXu1ukhcPhiQJFkRtqMsCnGVEUkDvDeH2K6dlZTp85S2EM+SAvHbtKMRh0GIsdh2Yn6fd62HxAYhzNapNqEHPjseNUag0uX7nIxs42vXab/XfciAnH6FMHUd7AyoW9J0sNSgcoN8TlZTJbKHMqeYoz2egEM+IX5QX9QYdD8wdQz4lnFACBAh+T5SWdFS+J4gpVFePx2FAwf8Ms6eoVZitNTKfDk+tXefTx08iwztaVHeaqMcdm5olTEO0hq1evY5VEhJ5+d4dQ11la22L14iWm5w6Uxr3nuLvlKMBFSTD5bvCPHy1c1fMK8nNdzs8t2m4XleKfxVw8S3b9L+f6/2XOw0it5Az3fuijTMYVtjp9YjTCO6zLiZXA5BKvqwipIPAEC4eYnJ6mf/kpVp94iObRexjmOXLjGmEywKJpVOap3nY7wcRBnFLw2Ke/qaL8Dy30HviUKKlNf+DLHNgZ7/3y6PMrwMw3/EcIya0Lc9x8+GawnnObG7z7z/+Mjg1I8gBjUrqyD16TSw+24PDkHF/bHnL6+ha//4EP80Pf/0YeOfUFijpMtOY4c+YRfuJ138aH//Y+Lg7WuevQTdSbDZTUpBL2HTyGEJ58MGR+fp6VtWU6wwGrm1ucuXiOs09/nahVZ5B4lq5f5NZD+zi2OE8oHcXA8pUvniVpTDC1f5H1jXWiSGFMjzvvvplmtcLn/vaL5M4xHAxpTTXpZZssry8xNrWAMxU6+hKb7Q6LiwfRQci5q1dpViKqFcVOL2dre4nUOOr1BkpH9LZSTBzyRx/8E15w8zES64h1BR2NlctRSk14eYSWPLy+wo/94s9irGVyfIL3/ctfZ3HfIURe3uwUkkZUIdCanhVMz8yzvXyNar1B3Bjnf/7V32IqmGAgJFVZ8PqX3sZbXvvdxDWJs5603eZ1Lz3Bw6cv8Z8/cT+bQZ3v+6Ef5hMf+zB5NiRNU1zm6GcdBr0uj148y1PnnmK4IRgL70Zox1/d+zWiQGDcGXSoSKshXlquXrqCCKr0dvos7J9k6do1ms396DDAFAYxOkYXXpB6EFGA6hleceeL+eO/+AA//46fxXnJ4sIi1VBhvKXVamEKz/TUHOtb68zuX+DBJ84iTcbsZB0RaIzJRrI5yhvDXnKSRGoFvnjeDH8XSSEA73cRzqO5rZSlBFeIPcx04Aw26yF8GUDphKfX71Ov1JiZGGft8iVEpcogH9LeGXB9q01YrbG5sYGOY4aDFN/tIbIOJxYP0sAxNrPI5tQk1WrM7PQczWaThpCYnS4TBJxZuUZraoaB1VSqDb70hce46egizjucNVy5coWJ8SmU0igfgJVs93uMj0mq3qOcxDkJtgxLSYcDGvUGUZyT533CKBzxmgCrSTOHCCLSzFCrT5BlFl+NsVlKxQcYE6JnTmJaxyjckF/9sR9DpBm3H19gNlSc2DfD/vE6E/Umcy++jZl6lSfOPcPC/gXOxJtYWWWqVuPrjzzIt712nLzI9qS9ctSVG2sw1jLRmgZ2c3UVu53283IkntONP3fMUxbvZ0cyu/GWu1KDv49euvvxPXKBkOw8dR50BGNVKl5hNWinKKTHOEVgNVZ4pCoQ3mK0oXL4Ng4fvINCZFSloIoiFIqhyTFBQOg1UmTPy374hjX2m/7Kv/96mff+mhBiGrhXCHHmuZ/03nuxi+77O5cQ4qeAnwKoViv8yA+8FV9sMl6b4HsOzlF9x79l4aV34VXMXS+5h8/94SMkqkUYxQSBolFPqEYhQTJGp9/n8uWr2FCzna5RjSJefc9LGfS63PnCm7j3i19nJx2g6w208ASFxliDDgMIEpwTdNsp440JGjMtbtx/lEqrzkc+9RfIYY9bX3Ar93/+Pm44+lqyfEC1GVHVA8ZrDW64aZJmY5FKILB2wFA4pIV6q86g0yV3GWPjU1w8s8yF938GLxMoHG95xUuZXWhw6qknuXT5OjecOIacaDBWn6bXH7DZ7pMbiw4SlC/wlYCVQZf/7bd/mx/7Z2/n2vmL/PLPvAOdKzq9IYEIsKZLVxRsDHb42V/+BebjJnI75aff9FYyCr721EN4BEZA2uvSqLXoDTKEjAnDiDTr0WpU+PS996JljLNQxzIXSl52+y00pmpk0iFykDanUmSMN2rccPwQX728gUmHPPLw1zl85ABZOhhhbjN2hh2OjE+zE17mk08+glGaonAEOsT5AltYhK1Q2D5aeSpa40JJUJEM+1sofZS8MDg0OZIojIlVgDMFKozZ6LTpDDvMT+/DeM14YxbBNVaWNoiCgLvvuZWV9etoEaJCz9zCBNal3Hp4kUoSMuhtl5JDBdYbAh2RF3mZrkQZUuONKBOYRDmv3TVDlcWgXMY+29m5Pe2zsxapNI1KleMnjqPjJly/VEoTRzNhk+dsbqyhlQAJrWaTYTogMAUJOTMVx8baMnp0fAiUJ5aOWHoSJbjl6BGSekS91iQIQ1KbEwYhSZKwtbxGNw/hztvKtKckoh5N4EU5orLTpUw3qVRwQgCKDoaBSElkKan0UhCoAC0lxjh84clzxWCYkmcFCIiiiCSsIkSCKUqOfZYbTJ5Rq9VI8ZhAU+DQODMPDfUAACAASURBVIQv+OT7/wTnHK1qRCVvc2L+BmpBgNYQJyGBnuTOKEQLR9HdYbpR48zFDVbXrlHYjH/09n+KH/YZ/bNLJZzyKBHSH3S4vrTC+Ph8aWTcwx0IvHxuatpzVVPued35cw10u0yrkXd27wTwLJivZHapMryh9JFIhQ0UjaTKjrG4WCGsReuQzOcUwpXafpFRhBZvNBFjCBy5ytFIEukx1pDjKbQHnROlfdIo5L9SWv/e6x9U6L3310Zv14QQHwHuBFaFEHPe+2UhxByw9l/53j8E/hBgcfGATy382u+8Czu0zN00S3/DMDs/R2enw/v+/C9JfILUDtNPuenEDTTDmJuyPsurbTpC8bHPf5E3v+FufLfA9y2DfIcoCjm4MImRgiIfEFFG6qk4BKfKjE1byqMmJ6cYr49jpUVJR54JJoKQO288ThE32f8jb+eP3vUufuC/ewubG9vUxqZwWcr0RAXjDdZaCj3q8nxAtdEgjvpoJZkYq3E6twRGgugTuBzl+8S6yvHDixyY209/OCBA0t1sU4kjxibGGKaG9uYmhw/PsbO8wWylypc+8Ff80C/+FL3xgB//7V/kw7/xB3zs3R/iJXe9jMWbXsjffvoDvPf972cxnuH+D36K9fVlNno7nDx0hCCsUnY1BVrCZx/4LDrwuEIgwxiCgGqguXj+CqEeA+Wg6HPzyZOMT82MzgGCQDhMGKKEYGGsydGDE3z5/CpYz2c/81luvOlnSIc9BLY0mAmN0Zbb77iHT37q83hbJ5DlyrMoSgRDYfslqyfrMZlMYgRkGLaWlxkfb5LnBX/7ufvpdg2TEzXuvO1mFIp2r88TS9cYG5skGwyZrCtkf51qJePozBwiVFy5eo4kjMBlbC4tYb1BBRKHxCcVBkVKo7WA955QlpmjXkBhi9LurkostH8O1liIMq8VVzp1pSiJmkKAtyXnR0qJQmFNSmdjg6fOnEPJCkxUSlu7cRjrmKlViFxOISyFSZmammCnt8PM1D6uXrvATFPghx0q1QoLC/vori8RaAUYVCiJKyFaB+igdKwqHSCCgIZqUBGe9e1ter2cqAI6CBGqLHjDYcpTZ57klptvod3epjk+UWINhCAUJcrAG4dXu9yVUmYZyIgsK9VHSI+WAXmWI4SmOjbD9esbTM80GfSGVBPJMG0T6AQpBFlqiGsBLtTcd/99KKWZbzVZnG4ilCLyEIYxRirCZsJEtcLtWrO+fp2dx84wNl6jlynOXtxgdbuLyDKUdHTSDpOTU8RCkHV6VGoBURKyCxqTokzdKn93z2XEPL+Lh+dHbj5/Dj+CnPF8R/hut+8FmNFpQY12SBNTU/RWd6hMjZU6fiewPkc7j6E0VQaq5C7hwcpy9KNVuPczpC+d1bFQGAsmigjxe6eLb+b6by70QogqIL333dHfXwP8KvAx4EeB3xq9/ctv9FiDLOevPvVZJqcmaXc2CScDvvroafJBwdT0DJeuXKZajwiEZrwxyWArJW4o1tbbeBmilKcRhCz3erTXHFdPn2O6UeXY5BGGRY/ACWQYEoRRmfUtd8lyAiEi4rhCklQZ9AYESViSB3NHrZpQbwb0whSfdfjRH3o9w6JPGkjmjiyy8sQpZD9lNdsi1glIjVIW4wxz++bZuLiFVpqX3f5Cvu32W8gBhyDwBe1zpzEdGK9Uqc0kWKV5+uw5xsbn8O1NTizMECpNnues97qYrI/stOlefJp//fa3I/A8c/YZ/uQ976QpE75w36f48pmvcebRJ/jp73gD97zoTh5/9MtYoUAJzpw6hdACHYSAI88L8n6OEBEqKDBDRaO1j4tnnwEZ4p2hmlTp9tssHjlCtTWGUBrlJUhHGArqE4pchsjzZ+ilDozgwQe+yC/8/M8Q6JA0zRBe0ajVGQz7pFnBv/k3/4qP3vvXnHr8DD6PUKKCEQ4fGmzhqSTjyAjmB9tc3B5yz913g3Osr64TeMtwuIW3im57h0ajyfLSVWYbVUJhaMTw9h/4PtLBkHp9jGE9pFCCPA9JZqcoMktcreGKglq9Wqo2jMFnMdZLlNDlzF+WMsvd4/1uVKQQu7hYNVJ6SPBqT22ze5SWu3N9XyYDBVpTSSJCFaNlhNYRJi9wI430MO0TVSPG5/fRywQbVpNMHebR808zOTHNUxeXeOVLX871y0ucu/Q0s/WYAMN4s0KYKKyyaCHI8oy4UiEIyijFwhTccesL+eq1pxlmAxAThN6T23J5nxWO2+98Kd1OjzCp0++naBUiZUgUarTdQukSz6yUR+nSXa2k31USo0ZafCkVeZ6xdekMM3MHqFSqdNptpNaEFCgVI71Ha0W7vcPU+DhXVnYYVkNevP8ozQZEUoC3aAXeGZwtKLygMTtN48A8tUqdJz/4IboioRFOYoQjjFsM8h36Rco4jiioENWq5K4zkn6KUtjg5Wh75fYksUIwcoI/v6jv/nluDrHWeo9LuWeS3u3ohR9hCXaVWKUCSAnBxtY2t8wucqFZpeY1uR6WGAmpIAC8xUqPknpvAez96DGxOKERupTrCgFaOIS0KFk8b6n8ja5/SEc/A3xkdOzRwPu8938jhHgI+IAQ4ieAy8Bbv9EDJXHAbSePcnBhgvd+4E+pd2v0dgZMVJvsrG1w+NhBxifqeAeBrpIPBlhlue3OW3jggYeIkwoDN2RtrcOk0Ewkk5y/2kOzycJck/0L+7FaMMxS4iRCK0kQ794xSxaN86N8ViXLF7qARr1Bv9fHVRNi5Wm0YnqZ4dSpJwmjOrW4TlRrMt8CZQEZ45RAI2jv9FESQqWRWuNw5YTQSyLAZo5+d0CMZLLR4Omlq6yubTM5cwApNdUowhVDbJ6x3e4xyBXtrS7H7n41My6jKQJe/tIUiyGTgtwUhIXjyk230BkMGZuYxCLIfUma1NYDBmPK8BGjDIXKCXSEJsBHnpM3vpBPfPKz6DAhFAolIOv1mJ6a4umzz7C6ssnJ44eZm5/isa8/wanT55mamSPwEcpZskLgAkUgNNVanWGWY4oCZy1RnCCEJEgqfP3yF3jpa17Oow+cZbjjUS4kEY7CQCupMFH3/Pff9TqeXFrFaokwBYsz+zh5uIYIFBSGvDtEG0clipifmMIUJTuoV28SVseJttbxXlCJmzQTRyhDJsbiMj4wipAyIIoFWe5RQZUo0HhTsonYwzs/+2LWOkBrQYFAyjIwxgueNc6NWPjPOibL4BshJaZw9Id9pmfG6bVz0nxYIiwQ6ECRFTleV2hNzdDfHNAfDBnkBpzDpAUHF4/zmfsfoCYs88f2s3X1MhlzZIWgGdTQQiOVRgUh/WFKrBO8KhPSCme5dOEirTd/B05LhJZUEg1eU2Rdujs99CjDttZo4J2jnw3RlIowKRmFiAcEuixAOhSYwhAEZSGNoqjkvMuAKMi5fu08B4ObKUxBaGUJFjPFSBlTuk6LwhLX6nSyNqGS+EARVuojx7ig0+sRFo7xuXkIAgoLM8ePMdccZ6vv6GjBO37+f+ANb3wrX/rip/nBt30vJ4+1sKYgjkLSfpmTjNh1w46KttjNcPV7H98dtf99ipxnceB+LzXOe1/C9XaT1KQsk6xGrnhnXfkx4VHOU00SahPjBL58fQgj8Qj6xQ5OpRR5jjO7iVa6/F5cmXHrQakQsBRZjrUFhxb3g8swJv+mi/V/c6H33l8Abvt7Pr4JvPr/yWN12m2+cP/9jE1P8JK7buexa+e46wV3cvXiZbQKWLl2nVpykGa1RTvtkcQalQi2d9aZaFWo6ApnLvbptT1JkjG1bxZpeuhqyKmnzvP4E2fpd/rc+tbb6fbbxJEa5RjrvSNZEGiyQYaUupyfak+UJBRZTliJCYRDIqhVAl7/6pfzgY/fR2foaCNJhCSUFhOwl/CUJCFeOEKtR0d/BbY8pmEE9bEZBr0tKlFON89JKjWOnzjJ5QtXaLQSuv0+Ung63S47nR6B6/CiFx7g6tMPUgjBel6glQTRIohDrM3JJUwnIftadVzWQREQjALOA6VxMgalwDumJye49OQVqjVNoTO8twxMzsVrq9TC8sY2PTWJzVL6vR69vAyN6G6vMDtXY9jpkA1zHvrqI7zq7jtQRQetKmTG8cSTpzh68hhhEDDoG0xRdnwyCGmNTxA1A85fP4Wow8G5I3RWe+ysd1mYm8MaQxgqoqLgtn0TnF5ZosgiKmFCEob0hwMqOqZwfZzzxDqmFdWxQcEgG3B+/SrD69fZXl+jPhaiVIhyIQJBrMvQdGtLVEVReKIootvd4c1vflPpgcBiXLmILZ3Fo+O6dOAVuxFuu5Lq5zJePM8mGClVZg4bU8peK0mFq9eu0KhPld2eUriiYJDlxElMUh/jzPkLkIxTqTVZvXSZI4cP0tnucuXKFU6cfCH7W3D5+hWEh2HhCGtNgqRGFDWJa2GJsI0CisKXzu5Qsnz9GmQZAQHeQm4dG5sbKFkKiXadrcYUbG5tIBjS7Q9o1qaQiN28l9Fr25XOT+vLcA43ys31IMMAa8rIxGHWpdlssbMzYNDr0fWOiYkpKq0KxpSdb55n3HLTrXzt9CPYOEJVG/RVTOQVjUodURjiSp0LV65jhGR2fAIba44dOsrVc5fZcX1qUZO/+cTfIrF86MN/zSte8Z34vIc35fhNyNFCfZSVgNiFkBms3b2Jl8V+1+H6d9k9z/37c6/drx3VvL0F/t6NwXlskTHdanF+bZn8cDm6cbY02UmlSLMuVvVBuxF4ziNQGDN6HtnS1LW53iErcmq1KoXJeez0OqKAIAi+6Rr7LeGMFSKAyhz3PvwQR46Pk2P4/BcfpNUcpzreROuC5uQ40ipmmg36nS0mm01Ebpg6cpSTB45z7tIfU4sTrmx0WahN8I9f80aWjOG+zzzEoRM3k9sejzz5OIUYcHLuCPXGGEVhiKIYKH8BcZgQ6QhPThBIKo0Wnc2zLOwbw0hdJtw7R+AMb3vTK/jI3zzA77z7j/iVt78NqQVZGJKQg/NUdEQYCKJAEYchNnco5ck85IFi7OQhVh+8QuIqbPQzNtp9Eh2yuO8AQ5uyvNMn0pKdYc5Op0OtEWLGI9bWVvAOMgXaQyaWCMvmD6MjAhki0Qzx4CXKeTCQ+hyJBa9GKfUOGQSgU3QQE0TQGXYppCTLC3CWdrDJiaNHOHroAGEjJN0eEoiCPM+ohwFvedMbGJghurPBS2/czwNn1sgJ+Y3f+l94xz//OXppyvLqMtevXSPPc4ZpzjCzTKuD9Nub7BSbuEHAgcU5Fg8d4Nb5Gzi7usTVlTV24imOL05wdrjOWneL2WyWsBLTbDQ5/+Q5xmen6KQZcXOMJ546TbPVwEcaHU0wv3CQIwcyxiYlyitCEZIVGUpYmq0WXoD1ikGuWF1ZIe5sYWVJ2VSMlqSjl0ZJLywXtUqMxjmiHF8JUQZj7xqoxHOUGNYKhPNoVcKatQ5QQcLNt76Ix59+DOclgdRUKy2GRU67lzI2Pccgg7Q/pFav0t7MyQsgiGgPQ6ZqPW6qNDgzvIQ1Be085fzjj1OLq9z5ohuZnpzni1/+Kiubmxw+foTWdIsXnjxBoKG/tMbCrSdxhaCTGSpJTBBovNP0+8OycyTj1FNfIqlUWVyYRhalIUrrEKUkSiuUChBSUKlU6HTbNMbq5R1DKnQUYnwPKS22cMxMT3D58gWmFuZZWdmg2WiWXba3FNby7375V3jHL/wcZzbazJuAC2tXmK9XeEF2iFBpNjee5uzSKgeOHOeZxx6iNTvLLXe8iE8/+VX+j3e8g+/79/+BrD9AqYi16wO+93vfxq037edf/sIvMhgMqNWa4ARKKqwtM5blaAFajmYYncLKYv1s8M5uYffPi/WDci+zm9nMblGnjPjzovwZI9wlXghaKuZLmxeJ2wvkOBIEaI+15WPLUI1GQQoryswARiMcHYTozOEHFmEFWWnjI0xCrCqw3/yI/luj0GdFxle/9nlWdnocPzlRvhCHgmhC0GokLC9vMOgXtAdtFhbGENLT2emzudVlojlG4VJarSqZkbTm57l09hxfuXqQr37+C/yTN3wv15XgLz7xV3ziyr288M5bWGs/wNH9R7np4A3lUst78kFGZzBkX72B8QrnHY044WqREogAERVlTqxtkqs2Cs1CVKFxYIzlgWKupkj8EOlkOcuWVTKfEbjSRu2kwAsJzhJqjZUKEYDVFhXBcH2Tydl9KG8ZttvkMkWNNymyAjMQ/I//8Z2E4+NANJKUlTNSQzkf9Dictew+T43LSxg2JUPe2DIezhqQUUiW9vnaww9jCfjU/Z/lz9/9XsZr4+giZFBYChViup5bWiGNqsLFdaqtjHTokIVCV2uEpFQCwY4IOT43w/1Pr+FMm0F/ko++5330BRgbluah3KCkIleeAo8Jasy2xhirjWNzS185mvMHcJeusLW9wb9433v4nZ/+SWoioR06iqJNv1NQhFUmDxxgrdtn/XobbyTVsTqXtlZZ3L/AXSdOcqXbYWW7wx2T+9gZDEk7K4RKMd2Yp9dfIWxNUUNRCQZMHJ5DhYt46SmKArQgRCJDj9YSpSK8SEGWOx0rBTJQGCPAgRajBCixO/cVeCwohWeE+B30ScYbTE6Ms9TbQQqPk4Y8L3XsQRSyttlma7tDpVbHeIuUBo+lO0yZmptj+fo5jjUOMBekbE3U2Tc+TXu1zczYJDOVMbI0o9fvMT05yUS9hTOeOpoNPeTYwXmy5esENx1lae0S19bP400A1mONIbcOgUKJNjNj8wyyDOHTkvMShES+lFaKwKN0iEHSXl/nqYcf5TVveSPX0w6dXoexSpPIe4SVbLfXkJnlyKHb6KTbhAWlA9QUoEPIcqw3bC9f4rbFOxiPA7pxwJgOQWVMTtepxQETrWn2HzrI9OzdpBXF8ImneeMr76E6LOibAhlojCuQRpHohMtLq6gkxGwNgQk8AlviYfaKutQa7/M9XX2J0S9/f2V3bvfe3zXS7bln2Q2tl3vIE+HK5baSohQX+NJNHRSOU1tX2fQp+xFEOsQoVb4uC42IQaLLAHiflRA8V46NK0ml7NgTD1sbJDqgyAz1Zo1BluIJMbb4pmvst0ShF1Kw1tlisjXF9mAIfUPUqDEYpKysGgZ9x+KBI3zuyw8QRJIgN9yyeDPddp+VlRVmmy2+/03fzx999P2k61vMtBo8/tCXeOtb3owOq4x7y74oRraanL5wjuOHZlhevkYiIw4dOI5E02o1iJoVCjdEhJJAS8J+gpCjdChjEFpibYbWHi8VkVDcdefd/E//63/kP/zaL0Gvh9EaHXp0INFBULKxvNvLhAyCAGvL/NeLW5tMz88jhefgsQMEVqMKz9z0OLlyECg2ttu0ix0e+NrH6RYDhE5ASDSlKUfZZ0Oatd51+UmkiMuudDS6EXgKHFIHOFFqvoPYICVU4ohbb7mJpYvLOGvIrUWokPYwJyscNvfEjQCDop9nNGotklqVy5cvcfLYUYzPqQcxk/UmK12wQkA1ZJi38SHU6nVcJqgkFaYnmlw6fZ7J8SkurV5ltrnAwLbZ2txgLIopXM6Nd9zK+VNL/OZ/+l1+/HteQ6KrDIuCSiLYbLfppVvUqnX2T0+RpYbrW0vsP7ifsfE651bP4rE0A4sbrnHt8hW21lZ42au+B7KCIm8T+wk+9MH38F1v+EdEscPkKUEYYgtHqKo4McL4wkhGCUgIpCCgPFIHApwSeK9HS9WS9mlxOCfx3iAQWGOIgoBceNY7O8wv7CNOEoZpn0Bp0v4QmQSEYUCRZQwGfbTWGG8orEXhuXb1EpVI8fATT3LTjYs0m2OYwHNwYZpGtcJqZ4skm8SYlFa9gqt4kkYVGwWEvSHdnYxjc7MMhx2+75V3gi/K/5+1eOHwrsxH1q403+XKk9msxPSKcqeF38WFCPLMUFMVhJP4zBPbkNbEPmIdsdq+ShZFWGeYPDLHxvoWNRGRTo5TNRnrO5tMVFoMR6dIqTRjzTq1MOSmI4formwQ2Yhj+46wfG2VekMQxJbt7Q71yjRxNaIeV6FSIdEV8jzHeIMUiiiOqNYEYRCS5/nzJJS7b3fBf3vYhNG1u68T4tn3tVbPmds/t4t/1mjl9vjxvgwbUqMTgnXkWca4jBgEjsjsnggEDkp0ykiual25z2H0UypJjXa7Q5ZlBFIRhCHOWpJqTGaKcudXGOTz1EP/99e3RKHPi4JYh1RrFba2u1w9u0RYPUCgKccIXnH14hISR+Y8w3aKHRYcmTtAdPQYX/rig3z7y78L6y375mepKM0b73gZAy8ohKQeazbbK/zk9/44v/u+d/H0uZTbTt7A8uZ1Ag2rV1eoBwlBHBKECq8zAl0n73XAKdqbPQrRpxFHOFvgwhxTDIm1pLe+zv6ZFp/82F/ztje8DiNLq7w3ZQhJmg2oeIfScg8BvPsEmT92krWVdaozlqDRZNi17J+YZDvbJveOdJgxyAuCquYVr3gDveEQRhJR5wXOltxMa8yIpOiwxiKUwHiBc7vJ8SOKpHMUhafSrLO1tc6g0yMdGlq1mK2NdbrdNjqIUNaR5TkIj7GQDwbkW1usXr3EgUP7+NpXHkKiacQR165cotMf0Ki3yLoZWoUgDUNreO3rvrPE42rF+uoq9WqNpNXk/KmnuL60RD8t+OpXvsaNJw/TqNc5MDONUx5dC7j1jtvIZpoUVpCEIRZFaj37Dy3SHRTknTZSKbSQ7Du4gBUFO90Bt9x5gs3tZZ65cI6sWxCKnH37plhf26AZFVRjS6NS4Ye//41krgEio93tEIdT1OKoZNrIMrZQBQIhy8jIMhC9JJU64TG2DFYRlCEk3oOX5eecgECqsrP35SnL48mLIXEcEQqFTqoMrKGMhjTUKgnpYIDHl5AzLwhEOeYIhAfv6DqJkSWgLbcZSVxFuYKhTwlUQNZPqdfrpMO0DKaJobN5haOHj7Ez2ObuFxxC5EOM6eGzIWlnhzRLyYoMWxg6O22eOn0VFybgHYmIEb6cEQrhCXWECjQLBxYpXM4db3gNW76gCHa57oaFqUW6+TW8crzrF36ZI69+BS955XcQFI5ra9dJ5mZInaQ93Gbz+hYvuftuGklMQBkjujVoMzv2AqSXxElEs94g9wXN1gLDfMB2ZwvpPA+efgJnYDjMCLQkL3K8tBw6sYi1Zdym1gGmYBTD92wimlQCWbCnqNodzTwfve339PfeP8cwNXLgKqVKauWujn5P0z5KXNMK04y4vr3J2PgszbEGQjq0lVihGBhD4RzGOHQYYk1GGSCkWF5eResQ5zSpM6Okt3DkFSj3KVoKnPn/WUdvraFSrXJpZ4mJrEZlfoLByg6ZlMRxRCOporRBKkORe5qVGspBIBTZMOcFt7yQzXSZI0fnWL62gq00+fJjZ9jY3KFRS5hdmCaeaPC5T9/LLWNznNre4cmzl7n5xEGM30EUV0nbQ3ISsK6UG6IJRYRQggce/yr790+zxhBhNYaMGE0hcy5feIpXzB0iCmPu/evPIJ0FARZFU4fYYa/sGIMEL55d1gkhOHTidq595Us8/tjThNMNWs0pNtt9UlOw3dlhfXmVShQjEfzBO99JNx8SjGBse+ky3u51HM1mEyEkO+02Khx5BnQJPJOiJEp6J5iYm2J1dYWJ1hjjrTmuX7lCOhjQ7w+ZmmiRpWkp0XMFh08cJc979Jc36ayv85XT5wiDCoMsZ72zzcLiArIS8/4vfJlihHSdq1mOHz7A4kSTbr/PmbPPMNFoYrIe42ELKSWVMMGFCdeuXOPK0jIvf8WLyZWiXhujEleomJB+tUaRW2qVCsYZUmdY2dnEeGi1EnodgwgD+sMOveEQqQQzQvCVBz/Hj/zoj/PwA5/BuZCLSxeZ3T/B+ELAxvoyWs+ipaE65kizFSJp6Gz2qTRqSDVRAuGsJ8szZKDIUouIQ3QU8zf3/w0HDi5y//338+rveBWLs9OYfEg1CsujvyhRz8aWOxmUIBumWONIrKR7bY2akHgtMRHIUFONI7IsJU4S0mG/7CZV2dV7b0vMblbgoogvry3x7ZM3MuheJ5+cZrw2hr9wjWJcUhQGa1MajRo6qrC11aHanCKqjbPaXuJj7/xNtBZ0vSAILMqBNaO5tLBkJqI593KMnoGozAfeFyp8pPBSIGXE4pGDFF4hSXBaopVGI5BC4Z2gnRkWZg8R2gHDy9dYf/eHeeyPP8j5vMsb3vtu5KYnmq1S6a5R2XeQhQMHaC9foFWrMV2vstUMeeKZJ2hNNUlzQ97tMz0zT572cLbPo6ce57t/8B9z95t+GMYWkZHC4ag1GqxvrfDk089wdXkVZ8v9SrmT8iD8XhykEKV7XOuyM9/l5DxXcVMuaXffe27IhxshmUtc+e73K6lKb4TzaBS2MGxcuMINk/tZGwyRPscJR6hCnLH0sgzjIVAhzjq88OUCWUC11qLX640iLfs0m2UesPflDUUpSW7s85y53+j6lij03ntajQa99W2QdcYaDVTaY5DmJJWARhyjY0WtOYaxnrFGq5QamXxPE7+2s8LhxgTF2g4+d1hjeO23fTsPP/4QR/cf4snHHufcpcv85r/+Zd5z73088/QZri5vIGTK8QMLrD5zmqaPUELjvCkJic5gULzknlfw9YcfZH4qRmIJpMRkFlkVhN5iraOS1OltDeh024yNj+FsQaQ1/UGXwJi9Z82eJEtpLlxbo1ABx25+EdeunOfa5lUqSYM4itHSMzc7QdoZEgRVZmYPcmR2HJsPCUbZrXhIpRsxWNg7CtbnZvEOrBstdxBY44mRWGPIUkOrNQFeYzLB/Px+1te3qFZr5GlKFGiK4QCCCBtFUIuZnZlAGM9tJ29iamKBzc1tPv7xj6GrdVLp+drFZcaac9RiwctuP8xW2qHeSKjVq2UCUBASal3m5HpBa6LF0tmzVBsxFscTT53ln9/7q+zsbPM93/8qhukWUzPTqCKn3NEoPwAAIABJREFUGKYESYiXksIWdNMhyJIPlKWWMElwwz7pIMf5HFsMaXfbdHsDdE1T5DlxXAaLDAeWIFZQKDqdDR59/D7e+Pof5NKVNbrddYzLaI1N44VgZ2cbEUbccsud/Ntf+3Ue+PyD1KpNgiDC4XjsyT8kko4Pf+D9BMKhBahAg5dcv/IM3c4OnZ0uK2vrtFe2UJUKupLAsEdeFHgcQaBw1pTy22C3WyxHP1qHWKlxuUF6jzUFp5Z7TMx2mBUelKad9pFCMOj1GZuZBu/Z7mwzVtVYDEWU8sTKeYooppLVGBpFFIRgu+BylNMIHNbnhNqCSBGqQPoYK6okwRiaDpFMkMR4b3BIrBxglMJrgRIlZgIh0CikKW37yxrMYou5Uxd40fg4lfWr9A+eoL25SaVWJ3Oeb//O7+Tj7/o9VBBw+fJlhkXOjYv7cJkgiWqoWkg/TykPNYa77nwl73zfR5DNKQpnqVYCnLUIX1CJYrpb20y0JriydnbPzOQx4EUZ5rGritJyb5Sz2zT93VjMZ0c+z54Gniu33OPdjMxLUpQgO2FH2dGbHcQw59CJYwxqCYEEvCDUIabogVK4onyNutFyrShy8BqtFXmRUa1UyLMcLcrnfl4UqCBA4qlUat90jf2WKPRBELC8skI9Dlnd2uREa5qgGaJNuRAbDLrlrG98gvZWtyTvmRxbFKhAUU8a2DXHmA75tptfjIpjnjp7mS987l5as9OMqyrf9ZrvZmPpIj/3G7/CD7/1n3D61CmWVraYXJji3EaX/YePUZxfARXihC2P5wKCSkh9vE5mc4SOwBU44ZHVGlFskf0erh6x3e/QEJJweoo8HyBUgPOW3FoyU9CQpbvQ27Lrw3v+7MMf5pd+4sdYffI0Byb2saW22Bz0S8ebG5TLwBAGuaHfS3nf7/+fVKOSi66UJIoTAhGWtmshqTea4D1pmqFCMVoq7T4hd4PKPVE9odPZYqw+yUvumGZmZh5EubhVUhJEITqpcL3T5f2f+AQvf9kxlC2YntvPxvoKm+0hW5tdjt90E6l2bPd76LjJsNenJmFmMmEwLPDSIQtDI4lYWV5mdnaWUIcAXLu+TBBphv0UT4AKQ2QUoOSAA1MLdAZdjhw9ypWHvkpMmfQEoAIJuWer16PvDUVuGeQ9wiCg1+ky6G2xsrqEF5YsH+AzSbfTJUk0YLEGhmmfZjKPVF36gzaddodTTzzJ/iNznHnmFIuHjjLWWiAvMt773j/n4pXfw3tNszFdjuRcUMYm6pBUFLzue36Qv3jfnzLVamBGeWNZmqNH/9csy5AqZKXf49K5M9QXFsgpb/7emnJxu6fP1qU5y4NxBic0eAgQhNJjdItPfP0p3nbnUWxhuN7eQlc14xMtrDfUalW8DOhlHfrDAT5MOLOc8+jTa0yFTR6/kvLEo1eZn6+SRIZASJxPUUFBGMSM7d9gYrzPq+46RLMSouQOpjiPJkHrKlru4ImpyTpeK4R2CFuakryU9HwC1rPhhphKQvDMKokMqSnPl3/xV7jpn/0CtVe+EqkipDAoEZJlBe10gLAFm5s7XM2u0FkZ4uKCG++5kSAUiEyCUnTaGe/76L1su5BqIgmEI65GOKtpTFXIfROT5gwGg7J7lwLny0V6yaIb4Zb3CvWz8kmlSpqplwLhy7ncrkEOyhuBGhE7S/7+aHQjKEmmSJDgfZneffbSBS7kbYqtJU6OHUR7UF5hpSTNM7wYBZALj/YaY22ZYWALhLAkSYRAkqdF+RwQChlKhIJASmqVmG/2+pYo9NZa9tXqzBw7ype+/DBjtTpnl68QC5DGcdOJ47S726AMRZoy1CFL15Y5fmA/swvznD33DMfmFjl85DDbWzssL6+wfXWVeqPJ9tV1Prr6SRYP7OPA/DS/+sM/QdpsIgOHChVLl89zcH6KYPEQO+I6dYYoKcitwRIQ5JJnTj3OsYUJPBJcxtTsQXY2lnCpI/MByigCDANZEItJ8sKDyomFIO0NSfIUITRxErLd7nDq9Hnuu/9BnKnw+fue4C1vfi2yt4K+eonKxipDY1BFA2FzgjjiRW94C2kt4dTpZeK4ivVDarHmxpM38Lu/99t4WVIFTWFQKkLJgDLIe3eJJChDFGQJsyJHK0FqPF/84iNcuX4NJyQIjSBgq7dNd5CSVJo4rxluFCx3HufOu17G5PhRQiFoDCyDzgZfP3OGX3v3x9DBGEWxjQwqZEJhbR+tAjZ3NtFhnaQyoNPrUa+M42TOHTe8iU/f95fU6glaWzY314jMDDLUTM7uo9Lf4eOfuJ/vePmredHRgzz8qfeXChjvGKs1cD7EKY0tFFG/xnq3ze3f/t38u3//v3PjkZNcPb+CFQHtbkonzyAdkoUCJ2OsLTBC4ouc65faZFnM2OwMoZ5k30S57+hmAz72yfvZ3nTkuYRckDtVdt1pTiChn+WEUqOTFj/3jl/ig3/2nzBFipdw6twzVMKA1Fiutjvc0JrHe8/tt93GM+trCKlwwjO5MImQBcIrojAkqVYIhER5iRCV8mYAIMvMWV2k2AR2utfZ3OkwVq3SbbexOyljzSZmYHA1iTcOrQS6OceLmhHjEzfyL379vWgXYZIZLq05JArvM8JQgcgJigHpma/TSAa87iU/SbdzlaVNzYnjL0EHIFRKwn5Q01gzRCmPFiVQLAyDkrKaFfSDHt2nL/OdUczh6SZmbZmKGGeftqR/+m66f/Gfaf7Tn+VjZ89x+y0nEO2CYaWgEsC+uQXiKCIZh7n9B8mHhsz0iMMKG+vrPHH1HJMH5gj6kk6/S1ZY6tUqSlqSWFEEMb/3+7/HwsE5jt2SUVeKgAgrXJkPoTVSQSHKefhucc9tSfPEOdbWV8jTjIOLhwjDkMKWy14hJQoPuxiMEb1T4JF+tOTF47SmGGQcO36CJx86zeGbb6PkT4RI71FCsDnok3VSiBKMMdiiQCpJEGnMcIg1FudHSVKj5iEIQ+pJzOb2FkOTUdj/76Bm/69cgdK85I6XsJEPCAJPoxXS7CcMeimKgJCASASIKGZSx7SvbXDznXdxYXmJS6srnDh8hEF/wLvf814a9Ra1ao17XvYyVtc2eeTxp7j1BTfz9DNnuX7lIq966YtpLAz5wTe/ivd85ONsEHEgHOPyuW1O3ngPBycXEFagoggdBWSDgp7JufTwX+K8o9WY5IYb7uL8ZceFCxfodgeMN1tIofEIskGbUMSgQ7yx4IbkpqBvPb/xr36LohBMTM4gZZPADHj41BO8/vXfxb4jN6AWD3Lm/2LuvaMsO+p7309V7Xhy5+nu6ckaTdIoIAlJCMlIIEACRLCxDTY2YGN8jY3tZfvitDBgngnGxAeYYJN8EYggUEBZGgnFGaXRaGY0OXbu033yTlX1/titMfe+dw33vvuHa61Zp3vPXt199jmndtXv9/1+vo8+SmVxhnZ9gcLAMKe6FqMCHKXoRl0G+leiTZk0StjzzCTnX3Edq1eOc83VV7B10yoW50/jusvKl+VJPg+8szgmQWcwMDDIiRPHCcMaoyvWs3HDelzXJY1iXNdFSBffF+g0pdYfMjI6QpwucPfdd3HhxZdQKZWJjeL0bJ0TU3WW2imOr3EcnySROG5IFNfp9SKk9TBaksQaTUrZOsSZJoo1aQoyShgZ7afVXSKJ24Ai8Ab5xD9+Hik85mdv5qX/9FEuuOqN3H/HrYwOeLhxRkaCkD6tqEuz02C+Y9jk1dj3fJ3Z+Tb7j8xxxRXbsSYltRW6KQQkOKFhavok5XCclDaJXcLIJlb10KoHQZZLVlPBoQMnKZWGkRJik6BcjziDwPXRxiCtwRiXUPgkPctf/uX7ef+H3ke702LNipUstedZsinlYoniUD+FMlx4yXb2334PcaxRyuHEgedJjeXyS17C0888w2KjwbpVE3SbDcKix8L8PNZa4iQCBF5tgvrsLNecv4am8TDE+AWPmaUZ6t0l+lYMYX0XbTN67S5eRdAlodxXppc06C9WsSrOd1smw+ouWdzkfe/7EzavHUWFZX78oxu4/e67eOkVVzA/M0vBPYJ0FA/tepADJ0+TyEFcleC5LjrNsc6OzIPgq9bh5Vdtp9atM5RIBl91BaceeZS010SmHpkC3emx4/s/4FtP7eOrSvP3W1bx/FKDIcfB8WPGJtYRVAoQFkiEwHN82o0GIjOkSa5QcV2FyTL8Qkij02N8uJ+paImhsIJKM04eP8nz+5/nnI3bkK6DEeC4+U3TGJ2r4ZAYozl29AQIh9t+cgfTMzNkUURYCCkEPv1DA7z+9a+j1l/DdXJHMZD3TpYBZgiZq2mMyWM8M4PjK6Znp3GEZOrESdavH8lLO1ikdOh1Uhzl0+vlxFPXD3K2v3SplP3leMJ88WW1zUFpgJaWoRXjiMycwTP8IuM/xURvLTRaEUEYUO2vMrRiiJlHd9KnRpg7NUfh7G0cOrafiVo/g0GF815xCWmSsPPIUVRqiI9NY1zLqoEBpmfnaM/OUD95DCkdCjrm+Sd24QU+QWUE7RQZ7VtHzV/NVRf3uG33gxw8uZ811SHmulUqWiASF5FYZJKiFBRrRaKkx9vf9S7SNKWXSl606hpWrptmZGgYHXex5Pzru275Lu14Ab9YJcFhqRly1y0PMjlzE2HQl8evqQBtYqR0SZXh+zfdwnv+6PfQrsP5V76a22/4EpVikclWl5f/+jtZ6LToZjGhW6DTiXI7uldAxxpXrWB6KuOmmx7lFnU3f/3Xf8zll74Yo19AreahGcaaPA5PQJJ0ufRluYb39jvuYf/evdRqFeanGiw22wyuGGSuvkC5UOD8baswImP9unUEYYE9z+4harXJRIX52Rn8ao0kkzghKMfDaJibqZNmGuU6WBOhXOj1OmQ6AQteEKIcD2sh8Aok3Zj+comFJcu6VWfx6X/6PL5XodXqsvfAIVpJysjabbz1Dzbz1KMPMH/kEFKkmG6MTcAPK2w/fzu1oXWsWTXCXKPJ6QXLV7/5U6TW1GolzlqVsGX7WSzM7WZ6coGiN0mlzwFdwCY+NnUQmY+rikQavvDFf8WKAhZJ1E0InDxvQCcpQnhIKXCMROuUKLJY43HoxBTznQ7N9gJKCmTgcfLEEYbLQ7iVkF9/51upDA7S7Ka5pyLLQEjSxDI3M0dfbYBOt8f5517AAz99iFVnX4QsnOLcc87h1lt/zMZN6xlYuYrd9z1EodZH1mvSaPcoB5KRgWFGR0eJbUZHZMRpbpRbv3otv/ne99BMXAqBR7fbw/fCHLWsNUJqfFdxYP9+giChVhtmrr5Id3GOjbMLoKqU+9eghGC4byPz8xIjS3RND1JL4Di40iXJMqQUTM0+T+BdTKstGLr+Wvxfuoq1/X2Y736DtjCEscHxAy7dejb31Oc5a9s2+nc/SbsnWQpCBvolpcU5aqof4+V4COUoyk7IwGA/aZqz9NM0RghDsxdTDFwSYFVYRbe6pAUfjGD37j2ct/W83AinFMtkejAKqwXHj59g9+5nmJ9b4MCBw0jlMXl6ikKhgLUunWaXpaUWH//4P/KmN7+eyy67DJ3YM5+rn0XNCLvMOLI5CkOLDMdVZFFESeRYGwkYKVBAnCYEQUix5JFkGWr557zghZFSLTcJJKjcfGeX042SVOfenl98Qf+fY6IPw5CdT+3m6qteThonPLN7D450EKmh3egRd1OGasPYxZi0lxB12nQX66zrr3Lx9gsYLdUwjsHzy7SiHlmaUfQsnU6LdpwyM7/Aqdk6+48e5/5ewrnnbSU1Ka9+2bXc/PB9xCqjHaZMbBjisccf4LILr6TsVWi1liiWayghELaKUcOcmDlIzyzg6AKDQ4Ocmp2iXJFY4eKXq7SFpjqylv2TCzx/cIrF7gJOEBB4VVzp59szxyB1ivV9Epuy7+BB4k5MoVIkE4bXvOP3ueOGb/KWd7yDQ/UOwjXIWDIyOEo3sSRJD+1AuVIh7jXJNCwuRfhhwIc//hWi3qd4+1vfwFlnrSOO22RpihIC3xNkmcVxHVKdkCQpRa/MurWrmZubRcmQMPDA5DTGoqe45MLt+EUf13gMjaygrzqItIJjkw06zUZutDEGJSRSaBwJnV6HVGimpqapBgWkhLFV4wiTIEwe3dhoNFDWErVb/PIbfoWjxw6QLs1y5MhhJHnIsiMl/dU+3vuHf8hXv/xFrFPj/MtfR3rBaW664cuMVAYJM4mtlli5cR1e1eE1176Kr3z93zC4KFVGCE2zk/GNG27jxh9nXHTuOfzG23+Zz3/2o/zub78NAWRZD0yM1j08JQiqgzy39xhhMECWpXieTyoVWZZRESllL2PD6jGOHTnCogownsAr+MRG8Tcf/Hve/4E/pVdfQvoFTs1NM9I3jJKK8TXr0G4Z5TiYOMNocF3B+KoBer1FWq02oyuqPPHkTxmo+Uwd24u08ORj91ItWJZmj3J6foqCK0iTGBxFr9WmWqzgFot0k5REaLpxBFYw0jeMVB5DQyNUUkmr22Sp1yTLGsSZWfZz5hPWD+64le/fIpAGPBe2bx7HJJrv/ug7rN33PAJBsVRClj0wCf3CRQmBRGEygw0cWt0ujXZKx+vjnJdtQ8UaLSzj557HgW99hZIXEukYbWHbi7YzfPQ4Hg7COlSs5KSN8FoZR+KEcHGBkeFh1q6eIFCKgueRxBnNbhc3DPCyjMAV+MZFLad7vWRoDcf3PMchGWNCj4WF+nI5Mp8oUbnU2HUDPvuZz3HgwH6GBwZoNVtUa4NMz82zZs16lpaWaDRbDA8O0G43KBQ97rnzHlpLDV71quvIsjQHpSFfYF+ecbQi8qaso1zO27KZR394Dwtzc2wOvDPoC7vcf3GkRBiDI3R+HQ0om8tBl61ay7V/gVA5iM4IQZ52Zn9WFvRzx3+KiT7VCdo1/OS2mylOFLAm5oIt5/HsY/sZ27SRPSdPsGViNUXXZ/U545zcs5stoyO8/o3X0Tc0QKlUwq0OogpljHARZJhOnebcNI6F1lKdxXabVnwZX/7ujUwePcngyjVkQvGVv/8Y7/6zd9OqORybmuTw7CQXScPaNWs5eSKXacU6ZmTVWvYcnWRi9Tridr5NdYICmXFoZQ5alPnql2/i8LEujj1OFw9HDFAINcr3sBocVxLHCQtLPbCWIFAUHAftQ7EQgo5oF13+6o/+gtVDK3j3O99LUxs+8YVPEsXTbD9nKw/vfAYh87roQr1OwangKENGTJb0mDndolKt8s1v30MQ3E1j7jRf+uKnsWknJ1kKheMpelETKyWNpTZe6PO2334bP/zeLbTmOwRemWLoEDqadaODuf1fFfCVi1A9bJLR7Dap1oo0ophiySHLNIFK6auFbDprFfc8+xxPPfEMm9etY92mQTrtJjpNqJQKeFLgyowLLthMfW6Gu27dQZpCu9tbXhlZXMeSJoZUGBZbKfXZJQqriyTS4JZHueDqt1AqVinVJrjlricZCteiuosMD41QLRRp9iLM8lbZSgeTQM8Uufvh49y96xP4QYtTCzGDK9ejZUg3zlhZrbE4X2fXY7txvSKO6xAEDmkGnsxYUXV4y0svR4oOfuCTbR1jppHwyPOH2H3iBLgjzM0cxdcuX37gdlauWsHqiZXgKHyZIwRQho0jPnHHgnDpxhrRbuQ34DQlitvYLCHG5k1B6SGEi7AZSWZQLBFHljdd/w723XozGwdWMtfpsO/APiSWoZFhhkdGqfhl4jSjunIj73jXH/PTu+7j2b338P4PfpDjB/eyb99+FmZnc9meyciyhJaNaC62kKUS5eogi4tNhqp9pI0mvh8SJ+3c5YwmchUYQyUsEPg+xVqVaLLDcLFAxXMgS9hz4jjF4RV4tRVMZYKNvmI2TcmQfOWuOzh05ATjV61h8vJLWV0osFLETM81GBsfodVpo2plRFjEcxSe8kmEoZukCOWCkzC2coTDhyapeiGnjhxk90wTd6lF7OQ5zb0oN6D5YRlhLVG7Q32xxRc/+yWsNWxcfxalYoAdMSwsNhms9dFu1cmSHkuNJlqnIDRJoliqLxB3YoSCq6++mmNHj7Fxw0aEFSDUMgJB41mTt8TQ3PSNb1N2ffpXjtM/NAiORNp8ee+6MDJYBkuu8pOQ6QxXLe+2BMRZCsLJ4eDLJNScw5XD885gNH+B8Z9ioq+UK8zV59l+9kaa3iKLqUHNNpC4LHUb+KUirV6Poqd46uFHWFEocM7mLZRKDmHogrTYLEJ3JRZFmiWQdlDSoBON40pq1SKhVfzO236dR3Y9DaHLiolV9OKELedcyGKry9H9z7D5nNU8+MiNrK4U8X1F2yhKuJxz9ib2nz5Ec/4Y5156HjNHT9HfV+LSl76M2x/exd/87Ucp+yuwbg08gWs0nlIEKkA6AqMEmbAYafGkR7lQJEm7JFmC4znsf/4Am7es41P/+A9Mnp5mfGiCxU6PD3z4w+x65DFWrl/NipFhPF/SaWsc5SCkIdE9XOEglYvJ8nLMwnyLQjGj11Us1JsoR7F+w1ak9M+gEgBcN+DeHXfjSJeRoQH8QGHKHlEcgTUkcUQQFhAZaCfFdRTW8ehGKVLnqpH6UptKoOhpn1D0iHpLZGkb3bGUVleYmBil16rjupAZj2bbpeANMH36MGnSQkmHOErzUgMOUuQ3xDRNkFLhOR6pjrn97tu59lXXsnrVOhITsf7s87jmqj/DKW3COqN87tM38M2vvgXHc1m5doLn9u5DCR+r1DL2wUHrODedWIlOanzwI98kcC033/J5nnj6EVaNruDUsUN87LPX4vseadqgngaEymXY7fGGyy+nWgWjfZQM6bU7VPyMbRNDNJsRBxaaWCnY9fhulOzRtBmOSHCXoyi9wEMby++8/a2YLGf1J5lGCtBZhhAOGo3N8mBxIRVRlKCkQrgO3V4H1w848PwxunHCm37nXTz8ve8wWKwwMFQlKPo4SuG7IZG2bHjRpbQTzapV68jUDv7kT/4Lf/mXf4FxB/B9n4LvUC6G+K6lUJJcce5ZSOFy2513Uy2VcMMq0nb4xIc+h9ZNpMzVHi4FHM8gnBxp3O106EQRH/nHT9IxTYQv+O7N3+G2u3bRakJ38TSfXL+Rx0LJjOxxzW++BWdoBFMY5OTRo5xKE6SQrJpYiQgqNOPc/Da/sMi3/uVuPvS3f4VOUrQX0L92PdGpSbI0QlUKRCZi2JZ579ar2Hn0GeKiw0i1yvTiAv5wmYNTR3nxqq3Ue/OsHBrmntvvxFGSXqxZanQ4fPgoGkG326Ho+QxWSowO1Fg/OEC9ucR8N0YG/VSkJCwW+P73v8f111/P+MoxUp3iSBeEwTUW64BMJFYq4u4cZnGBNX2jRBsmKIYF3OVESmEV2koK0sWRAitcRKrJ5HKZFYG2htAPyTJwMfnC0vUxNiNNIjLL/9mEKSHEvwCvAWattduWj/UD3wHWAMeAN1trF0WuU/o0cC3QBX7bWvvkz/sdy6pVhCfBtWjrsji1yNDAALFM8T1F1Ep49vheJgYGKBcqpHGG2xeSxjGe46N7PYTQZFYiBaRxD8dAlmX40oUUlHRZWRukvrhE1ot4eu9uEhvxS5dexkc/83lKm1awfusQz5x4iEp1iHq0CC1DaBPcYoWrX3sBralpKsVBTrEATsiORx/lY5/+En2DK3CzIpmIcF0HHx+wKNfBZHnHX0qLr1w818UkKUo54EjS1HLbbXex1LiAv3jvn7Pz4qd4bMcjvO7Nv0JlpJ8LRy+i0+sxMDCANhqlZE6EVAol8iDxNMuNU0anCKmJoogYhROU+bu//wf+4r3vwcpcDSRFAiYkjnIFQWo0xXJIL2kiA5dOp7FsRou48cYf8o53/Bq4EpFJXCev/ZcDn1hJBgYGGKtVeb4e84pXX8Fv/u5vs+NHXySKU6585TXEC/N40idudzl6coaf3HkbUhdIshSJIktjkHI50NliUg0orMxVDlpneMrhe9+/id/9nd9lbmGa4eERvvH1f2bblmGe2XOaYnUdW87axg3/9n1edtU1jK+cYO++A+TRGRIcS6ozHOWTJDFKCbTNowht7KA1XHTpVRw5eporr7iSU/OGyCQ4VpIKH2WabF0/ToBGGJmrWZRBeglKlKj0Ul68eSMH7nscFRb4xr/dyFvfdRX7j8wwWCxRxMetFTGJQchcTix9HyEEAS/gcc9kFy3rtCVCyTPo7DQxOM44n/nUZ6k32my/4GJawuf633sPt377W/QyTdWG6LRLO4zZeMU1pN4KrEkolgosLNUJilP8wwf+llOnTnHHHY+z1Ai4+LxLuOaaC1i/oY8gLGCymB/fcRNxNAP4XPLiCeZnTtOM6wgB3d4SjfmUTmxASCqVPpKkx4vO2UhBtAmzGcoq4Cc/2YFOq1iREPaVeCrtoqqjtEyJz972Ezafdwn7nn+ew/ueJ3Ryj8Ohvc9hHcng4BBmWQETFit86GMf50//6E85eHyKplPg1970q/zoe9+lIB1WDQ5zuNPk3p0P87oLz+POnY+x+ewNvMIZ4uHWaerTs7Rr44z0Vfj2t29g6tTp/PXXmvrcAqFS+EIy3t/HxvVruWDr2fRXK8RJwr07dnB43nJkbg5VrNCvCoSywN/91d/xmtddx+joGOOj4xihcKWlR4SjfFJt6HVabBkbI5q1iL4KpbCAVgKrJI5WHD45SeJ0cEOXoBBSc6pIJTDa4LiCXrfDwuIClUqZIHRQ0gU8HK9AEi0SOhXO8JX/T0z0wNeAzwHf+Jlj7wPusdZ+RAjxvuXv/yvwauCs5X8vBr6w/PgfjqXGEgyHTE1Oc97VW9j59G4cB4zJqA5UGK72MblvDt0znLRNdGpYt3KGFcNl4iQD2SUoVnFKJYJyGa0zsoUMa31UpQ+b9Ejm58myHu1Gm1/+ldfwz1/5Fusvvww/bXPx9nVc/8uv5NGdD7B6cYrMD/nBA7fRTjuMBKtYN1ADUWTH4QfOzbp6AAAgAElEQVRYNzrG6tIQ/+3Wh5md/B5xLyEQ/TheMafTOYX8SVmQ0snvxI6Tr6JFHh5sjEE6HsZKlM2PHzp+mt/9vXeRxpK777+HovXYcc89XP3Kq0ilxQtC1qxdTRRFuZtO5DjTzFoKbh6ikOkUbTVxnC5r6B08R/LErmcZGxsHciY4RuAEId24yYHDz9LNOvzLN7/C6OpBTJriyBJZJ+ITf/VR+lxLYmJSa3CMIWq10WnG0Egf9fk6q70Kv/aal/PxW25j1/6nOfyRD3Lli9djQjgyN8fC7BJ3/fghsq5Ba0MSBznUC4UjHZTz72YVKwSu7xFFUc57MRnKcXIUrnJ54MGHuPzyl/DErl1ccu7FvORCh07m8YEPPsX0qSZvf9vV7Hv2aV595Ut5/KeP0UoERqTLgd85oVQpFzAYbRD4GGNBw/x8m7M3bWfnQw+wbssW3MFxMpNQEE0CGTI8PoBwM1wCdJZRb3e477H9bD7/JfQNhFgxx/aVAzx9fJGTz8/iLBrUUh3fqZJmMyTdfkqFwpnnCssIXJmzyc0LBEyWFz7SkhmN54ecPDHJjTf+kGYrIu5muK5P3I1oJCmTWvCiX30bQRRx+MkHyVKXi1/2FlJPYJSPSgSSmOZig4Fah0MH9hEttbjo/Am2X3Q+vUTzyc9+jKlTCyh/mG5zmltuuYef3v8DBqoB9XqLbqvBk0/twcgQv6joH+wj8BUVLFpHjAxX2HP/13jTuSlL526gYGLSOGSplSKcNltXDfOc6jE41SXBx3d9vn7z9xiRHn2BQ8n36EURXjGk3lgi63RptVpEcYTn5ZTJmx7excSmc5CB4bl9h3jla1/H4OgQ86dmufk7N5EkDb656yEGCmVOP72XqbERdvdi5p/Zy7nr1vPNT3+NKErQ0qUdJdgs4rUvu4wrLzqf8dEVDA72YdEoN1flmExz6SVb6cw1+cQXv85T83P4iWHV4ASFoML3vnMT516wnYsvuZh168/GJBp8D2sMBoNRHpHyiKt5mbVaLOEj0VqSCkmrF9PKFrGRJFu0+DrIP5s6o1gKaTZaGASTc3Os6KuSZRmNKEEjGOqr4PZO8d91g3/O+LlnWmsfAOr/w+Hrga8vf/114PU/c/wbNh+PArXlOMH/cLieixs4tFothIFapYIxgm4nxWrL5PRp0jTG9RSdRNPuxUxNzpCmCcYakixFuB7CkfSiHpnJ8HyPsFgkLJUpDwwwNDqGXyyQZAm0GmgpeeThXVx63oVM16fZvuEsFpou7XYDXw2w44GHOLVvHs+v8PVb7uTLN9zEj350H//0uX/ld/7ozzlx9CSdnkG6ZTAuwgi8wEEbk9diyTkaSqqcdqdyoaPveWRZRqqzPINSAkKjfIfb7/wJEsHi9By61WWoWOTWG38AOj/PcdSZVPrctm7PBFiDRRvNC8n1xhriJCLJDFFk8HyfQrFEoVgmLFeQUhIWioSFPr72ja8sv8FjgoJEq4hiRXH42LNYkeK4oJTAcXNAW6VaolwtUesrUS2H9Bc9fC8jymJ6nR4PPfwEKyfGqU/X2bVrN+1mitUOpC6B4yClwhGKzMQ4rsSYDEluYNEmzbXOUiKEOsNzV67HF7/4ZQqFImPjYwSFIkns8OjjDzDbOMbkXMLkfJGzN5/N5o1rKBYkmY3zqLtl2JuzrHvOr5kEkSs4tDS020s8s+cpfv8P3oMfjJHFFrRPv1Ks7HfYtf8EN+94lucOH2G2Pse+/Yfx3GGe3buPO+++i/GxfkaHqkgspf4aA6HPprJkXLepH30GGaYYufyaOwKpyN8TMn8d5XLIByJnuoOl24350he/yrf/2/epLzSJY4NwFZnNWKrPUi0GRN021lq+edO3OXJijgcfepKp9iRKe6RRnJeLMkMUJ2ityeIuIjAstZbY+fAzTB47xZuvfzX/1wf+kPFBwaaNK9j91INMz52k3m6wZ+9JMivJZI9iv4NfDFjsdKknLtONjMmWZN90j9msxOmOQ88E/HTnTowCx4Wk12bCKyE7MVdc/zq2nHses406A1hqgUctVAQOVEsFbBzRVyrlu1JELtm0Atf12bvrMXwdUw1cDh85xJGTk0Sehwkkf/Cnf8C5b3wVtmOIUzgdt+iWHTpRj1YWs+ueHcRxRq8Tc+DgIeK4x5te83Kue8VL2Xr+dobXr8Xp68Or9aOCMsIvoIICQbFAtVTg8gu2M1Crsv/AcbQVTM3OkmlLuVrjjrvvIEvawHLQjLBok+EVCwTFMpHRyDTFcxSJEsSuQOgER2T0FV2cLMKzGdb0kDIi0y163QUcldJXCVBS0e52ieMIh4xAZhRlwuWXXMpLL7rk502tZ8b/bo1+xFo7tfz1NHnaFMA4cPJnzju1fGyK/2C02y28zKGo8jtiIQxRqkG73WU8XEGWdhAKHNel0+rQ7hiazSW6rTaFWgnXV9g4otXsIoSDtRmuTvL6rBB0Om0MGZ6SpFFCd7FLz0qitubvP/YJ2jIm9PrQSUajuYgrFE2Z0ZhepNtuMTy6hr37D+EKiSMgaKYsRcfpGonyigzURnMbu17umps8bk0qidF5c+aME8/qfOvuvJA/aXAUZBgeeuxRfuPX3kQlCKl5HpWwyKP33s+1v/J6tDG4Tu7IdJVcDrZQuT3a1fnPy1KMWQae2ZQkSfC9MmGhjDYJnaUeVrukFmQQMzlziA9/8gNYq3JDjJBokxH4DsJYbrnvdjavWoXAIhwHi8JbvtmUaxWwGY2FJforBQJHI0RIrxPRajRxW5oDh48jZAGV5IYtk8VYpXCUS0KGUi5JmuD5OY2PF2iPQZDvekSuapBSkmnL6ZkZDh85xkBfmTRI6KZdKrVhlJvhViyf+cwTfOj929DGsHnzBk4/vAdMikWcqWdam1MGHSnQ5EGdRhucwOHLX/kSb3jja7n3p4/jhBWUzHj5hRs5ePQIiRlly7bNLMw9wTnnrsMJfU5NQSIytl7+KkLHMNhXAjKqfVVaszOM9jmoNGZwUOGmZvmmnr/n1QtuWF5YmOU1eZ3lwKxnn93L7bffSxJbet0YY1ReckDjSEHUjvGkQxJHmF6XE0/sZqxaZKvn8MCPbmHDlrPZfNFLQDsYndFtd5mfqyNdj0wHCJGSmSVOHptmceY0M33DvP2t14ID8wvHuGfH/Vx08Yu57g2/R3XwLC57aYHv3/QDpmZ6Ob5BQmDAiBArLW42RVHUWVhcYO32MZQLwkb8wX/5fTZvWsfBg7spT4xy8pH7aLWaDPg+lYIDJi+rpYnGcRT1ZoOBwREILE6pwFKzQZJovIJifu40sjyIiSOKjk/nVB3Ri3nwwE/ZeME5/NmXPs2HPvxhdN2j0E0YLDgUZ5eYEi6LaY8s6lKtVtm2cSUbVvYzMdZPqVjKkQ5JlscOagdlJJk1pEqjSiFr147j73iI2uAAMwuzaGNYs2EtT+x6DK07nDz2HBvGNxDh4NgAhcG4koZJiPuLVH0fx1W4BtCaLOox2ldDigL9uKQIdBqQpBotfUyW0tc/RGYcglpIGjXp7+/HLxYphj6BzTh45CBW/+IT9v/vZqy11or/lTjy5SGEeBfwLgC/5KOModXoEDge5VIZoSbp7/eZWzjNpeeexzM7nieJFEmiiU3KBeduR+sMrQ1T07McOLWL1kITJ7OMDw4zOjpArVZFScmORx9HBD79KwYYHl/B5MFjnDw1h+Ot4MWvvY77du7g5LF5Ssrn9JGYbVtGObVkGCyXqE5MsLrgM2hiXvfSyxnorzHXbpNFLT71tX/jdMuQmRTPcUh0hOeEOSlSLQNJRW52kAKUzC93qjPSNMN1XJR1sMJgbG6OeOap5+grlaj5RURqGKrV6EU9/GIBJXLZoRAOxi5Hsy3bqR0tMdhl6mR+jRMd0YscXGEZHBwhjQ2WnM75J+97N0dO7ifJMgJPkWYCrS1SOKhlOVfdZPQNjZE2emRY4jjOJydjSA0EhRLtVhdhcplgIhx6sUE5BXpJSkiV+ckWgSzkvJuCj7YKpfNGdWwz3NAjTWIcRyK0wA8CWq0WxWIRpRRZkoHIJ79KtcZHP/Yx/ukf/yGnSxLhiRLr117C3sO3kvQGmJpVrBiIePfvvZv7HvsT0DmcS7oSTC5Rc1wPTIbEy7fZJsVzCxw5eoqpE5NUyzXaGHQvYu2Az/qxrXSSFr5zkqRawnRjSFqcu3EdRTdHUpeLfez3T+HIDKsTdu58lutetgosZEZjVRkhnX8nJuYfApACbSSeF3L06HG+c8ONeF5Au9mh24nRGrIUkPmuEK1RbsjEmrPpRAZjLfWZSV79G+9k5ze+xcqRIa55428ilyL2PfU8571oG+VSiTiO6XZ7xLqDtAmlQpn5uR7apnSTOu2sx2LcxgrB0WNHabcDfvrQQXY+eZDAq7K4dBqsYmRkPZntIQOXhhZI3cYVKb2kSbFQotNr4J9ewDOS3/qtX+Xw5H42bN/K6g3ncPzIKY4uzmGNoK9cY2S4yNLiIjYTLDTaBIUiSklOT0/iOS7jI6P0PJ9eFBN2FU/ct5Phc7ZQHugjsRFT9WnCis/i0jy33no7XP4KXvn772DN2ChP3/hdLmsPsqM1R3cpomQFHcehGISsGilz3rY1KDLiJMYhy53K1pLKPORdmrwn1RUZ684aY1Nfhcen56j29ZOkmpkTxxkdG+TKl13B5nUr6HYW2Lj5Etyeot2tc+JUA1FwUV4B5ToUioU8ptTmYoBNG87Gk0WstCjPQ0cSqyzCZjm7CkUvzmh3lzh8rIFIE7KsQDcRtFOB445i5C8ur/xfkNz/d2PmhZLM8uPs8vHTwMTPnLdy+dj/a1hrv2StvdBae6FwBL4PhcERQtdBmS7akYyNDONmgjdd9yvIYcFiL0LJEq7VDJUctJU8secI+549zLbV57Nl88X01UZwEk3RDRBKcuDgIZotaMchR0622PHD+/FwadYXWYybFNwVLC2krFhXInJckk6C16dwNSRBhiSg1epx7XXXkQ2VePr0YVxl2X/8IFde+xqUE2AdQ4LGNwGR0aByat4LE7FFYKWDFfl+3XE8fN9DKE3m8O98eSv5/k/uZCACzxgyV1AKyjxw/08RqcpLM6lAaoGzbJ5IMw2ZII0MdjkezWJQpoBcnthSndFrt2jV52l25/jWj77B88cOYVJBqAroTOf5tq5CiRytK6QlNQnv/ehfM2kbqEqA64UEpT6U66KThFhromKJ7z7+KGGlhoNByAzXs/iOR7cXIYWXu0q9nI2fxF1SNFZYfOUgtFkGyYFCkVmB6/tIKUnTZeyxUcg0I0tSnn52H0L6ZGjCQFKrFpiamqbkrGGo2MdNP95JnGb5ewcHqVSeCpQJpBUoJNJYpJubWnAMbuBgUDz91G76+2o0sh6O46N1ymIvpT+QrB+aYLw2SLc7j4ljVg6tZKE+RaeVkz6nJ0+grSByXWQET+49TqJcekiyTKFsgtbZmWALDRgAKXnqqWf41Cc/z49+cCdoh0a9TacdLb+WeTCPki5xasjzriIGh6rEi13a3ZSSCvnGRz/EyXiJu57cSb3dwB2pMLZmJVmaYdI0d5IKg+7F2BQ6vZQsi/ClJVAKHac8tutpHt31CJ3mLKv7CpRsRuh6XHnZOVy0dTOr+iosTR/Od9WLS6T1Bs0eLBonN8h1mwjh89vvfCO//s43MzjWT9LSPPrwozy1Zw9Ggr/YRmeGFQXN2HAfb3jt9bzqqlfiSUWr2cGTDp6OKShDwTOsqJWoFop04ojZ+hyDgaa/WqPdaqI8n95cF43PxtXr2fXc05g04sjR40xcfgWNC7fRk4JMZHRTjXIr+CqgUqqSaEtmDCpOMNqQmRhjLJ7xcFOV93BMgmchK9T44/f/Vy4dq7CyGIJJKYQBi60Gdz66i3/91nfYcsGLCSnhFBWV0jBrxtazbtNqXJsvnoTKcwscFN3EEgwNoUp92GIZ4zgkBR+CEFkqURwZ5aYdO7jjmcfYMzXNNde+kfUT69k6NMrKMESmBkeNA4O/8IT9v7ui/zHwW8BHlh9/9DPH3yOEuIG8Cdv4mRLP/3QIIYi6GVnaZmZyAX85b7WeGs4e38jc1ByXveQSfnLofpQWDI/1UQxDorhHqGDVxDj/8s3v4YUBL7/8UlqnT9BuW7Zv28SJmSUWFo+zeHqeVnuJa668lIXFOsJRrFg1wudv/BZ+0aPe6SBdn04Ws7Ak6S97jI5spNFuUwz6CEv9JDJBekUOnZ7hwsuv5qHnTuDKImQC4QgMEms0Apaxs0FuudYGR6q80Wb+PWQ4imM8X+XZtUZjhebYkSOsGx5BG4MWEhl63HP/fVz3mtehSclsgkOAXCbeaa2xSp0JolZSkmlNHLfxvJB2L2aor4rBRymNUPDpT32GoeFqPpEYi8ynPzKrEUqdCTL3MCwuNfj4Zz+NTgzrV40jCmW6UY/6/DytRpPESjpphvLyiL0XyIvY3MEn8PKYw1QjjCVJUlzXQ+tsGRkrl8FR+Y1Q6xQhchBY4LpoKfOVi8nwPZeqq3BlnstrCgHFUoVKxWNqrsn8wjTramWm5yRrNvTodReQbgGpDI7yyDKzzBgHoy1SKIzVZxrkMzOzXHTRxfCFLyOBSnWYelOzJLuMDJdJrEWqMokJaMy38Nwy7cQwtWcfNk1ITZkwLCJdn7QX4MkSmTBI08NkTl6/tRlWSYS0aAuNhTq33XYnGI8szW8C2JyHn2UZjuMShiFpGuF4DtrmgeRJpklkgqMUUavJVatXc++Tu1g/cTbGZDR7vfy1lYrMLqeQWUtYKBDFGe1Gi/HxlURRl0a7w4EjR6gEii1rhtk2PkjS7bB/ahrlxmRH97C1VuWqLRdxcnqeW+99iCXKjKxawXi4hHZDnj8aowOFdFziLKPd7iGFS6VWY6nVYlV5lJ0P7qC51MJxArZu28SWzWfhqoA1K/rp+603cOzYSQqlKqvXb6B/YIhqqcyXvvw1pk9O0dMgghAhFJVKhaefeZLh8TUYIThy5BhjK8fZvn07d999N9ddex3NVoPxlauYWLOG3c/upb7UxPFikoJPtVLCZCnGZHl8n/RzU5K2xFEbVyYc2v0cDz/+ECPjY5z3opfyxX/+ApdfcQUHnj3Mibk5UgIKxsNpZ6w5ayOdXgImphA6SEfg+D6bzzuXnft/jOkuoVS+0LDWMDl/kpvuvQepyxhH5tGVnotEI40lSwTbt5xHnGkWlzrsfvYEPrmLfmZ2msmZU/jlpdw09wuOX0Re+W3gl4BBIcQp4P3LE/x3hRDvBI4Db14+/TZyaeUhcnnl23+RP0JKibYCYRS9VspAOaRW8lk8Os/IuefyzMG9rBuu0teoEwwOsXHjWvwwwJEwMebRW2zyzte8ktgYsqzL0KphMttDBS5rNp7NyHPHOXfFGPP1OQ4dPMDwWI1tm85istMkLboI4dFJUlyZ4tcGaHUl56wZpjp6FocOHeTCbeeTLtMou1HG2rPPomclP7z5VuJEEzoKi0TbFCHFGapdmmYo18FxnBwzmqbL23aLJG8yWZM3b5SSoA2FUoh1HKT00VLjFUosHHiOJI3RMgLAYki1wVrwXBe53Gw0WYY2BozGkOVyLWtptJvcd/99vPLlL8cqSRiGy5H1uQMvNQZfOdgkxnFcPC+gVAjwpCAt+WjtEGcdTizOo+cbJJicvucohBGITOUrR5szvoUEgU+adFDLMWx5WlH+nMGemeCB/LkvZ256QgEuWZLkIU82r6cr5ZAYjURw8vRpJsbXEy+1kQomxvp57vmTrF5TIEvK7Nw5w9ZzCyDTXIusI4zNEEKdyQTVmrykQ17OUgIarQY3fv8m+ouDuEGZBM2JhVkGrcTqFhGC6tAQi60YayyVMODI4eM4TkbBURyZXiDTltgkOB4kWYYQGmsT0izCWAch89xZ13PRWcrszBxZBosLiwReiOc7KLVMSBSCOE6WQVyCPIlSIYUiTmIST6HiiO/88xdoTS3g1EaYN1ANingWOiYjTVPiJCP39cj8huu4+KHP7OwUblji+OkZklSwYV2N8yb6GHIi3LJP/+AElXI/oTFIaegtnmJttcj5awZ5+lTGoZN7eO8fX4H0VvC3//QDVGGA619/PQ8++DB+UKTZblPr7+fkvoNs27qN7nydNNEoTzMysQLhFQiKFaKkx4rxlYyOrSI1hqAUgGtJnZSLf+kSHt+3l6QnSFNN1I0Q5T5MkrI4V2d4aABjDPNzc5w6dYorr7ySThxx8vQU/aUiqQbXzXEbnaiDtQmdVhvdi8FPSNIIj5xQKayD0Qm7dz/OiYMHkKpKoxWwf+9eNp01ylXXvoGXXTzPiQ/9AyfSFKsCdCfhRzf/mCteehVr1pxDnGagM6QbsGbLNgr99xIUXaQCYyRYTdRsoHWGsRaBpFLsIxKW5lKdWqWPrRu3otOAoufgex20ga4FYTKCYoWx0RHC/oB28xcv0v/cid5a++v/k/+6+v/jXAv8wS/825eH57gsttoEgaRdj9m0aR1F7wjzacS9D+3gJavW8SKzntd97G+4fe8emksLLCwuMTLUh+e72FIFWSihrKXXaqFIkcKjs7BAIBNqxRQVzXDWcInR/rUEYZFz6hm/tv083vPjG9CtlMz12bapn6f3TDEy2MfZKyb4yLc+yRtf/5sM1FxmGzMMhSGea5lfnGR0bDWzs5OUvSGQFmPtMq/Cz7X7rke708YnxJWKZBl4JJTMlTkqb/rESUoYFrDWoLEoqZjq9pBhQOYFpMYyODjEs888y9nb12CtRZs8ui5vVEIURbmt3uRpODq1JEkXZQpnItP+7899gc3nnM1t99yO7zlYnWGlJDOWyMSEnsSzlje+7Bruu/c+dCfm4FyTk6eajAyP02wsMjIYsHHjGNaTHJo8hnB8oiRCBODoHIFsrclDGFKJ0RJp9TK3I/87SqUXeD05evjfo9s0EhdDXu5yPJeol1AuOGRRD+04GOmCVLzvr/6Wr33tq1hH4bkRprmLN105Rqt3lFOnUh68fxe/8Rsb2bRuA6fnOpgsvy55YMty+ATLMCqZY4FTnVGu1Vi/eRONpWkOnJqh00x5eM8koy+9gLjbRVvLEw8+wuqxDQQqICilrFy/Ap31aC10uPuJJ6isWINUBitKyOJ6XvTizVwzXCORgxibeycsIgei2Yzp2UVarQTPK5Nqg0g1Wic5+KrbJSiEy6hp+8JnDJNp6gt1SsMO/b5P5+QJKkmH1evXs3pwFcqkxNqSRilpmDI3P4fn+cRxkpfS4hahK2gnKXv37yOOYiaGK5w/VqLoZ6iqT7FviPUDq8gQtBoLCJ0g2z2ibsY569fiFOe5eXdEee3bMNrw6S+8lr/883cxPV3nuef24Xoh83OLXP2Kq2k3F1msL6FbizRiQ1EaCgWfomuI2oso36PdaSKs+/9Q92bBll33ed9vrbXnM587D919uxs9A2jMIEGAAyhOsqiBoiRbohVFSpSyHZcf7IrLlVTKccWW48SqlDxEcVyW7ciarYmkKJEUCYIASIIA2Bi60fNw5/Gce8Y9rrXysA8gJS+hUnmgd9V96HurbnXdc85/7/X9v+/7kaYZq2ub7PZ6nDt/jiPzy/zSP/1Ffua/+utIXfCtr36FD/34z5DlOVEY8sorr2KMpV5rMhxt0e8Pee6Fr/H9H/s4f/jZz1GMx4zTFKkkDc8v0+BxQb8f40uPL33ut1AapppTTM8v88cvPM+F0yc4eeoCozs73P/QAyzUBQczIPIOeSj4Wz/7U/yLX/8drm3t8cjF+4maR1iYm8HaHJMLhCoHcO5X+fAPfJxLb74JWmOQKCHY6A5xojqKKgXQz7PSllnk7Hd22O3ukxtBZnNcUpT0yQqD63joJCFyBOFBtTR6fJfX/1eN/v/XSwjBxfsv8MjD50jThEuXrhAGEbkwRNbBjDIWqy164z6nZtuI4Yh6UCUbpUgt8IMIZ2+I3R5QLRS+DAj8GmkvhbGh1WjiKVW6dMKILM+pOorZvMAMOtRcRW4LtjYPmZ2qU2iwosb80UX+9It/xEMXzpIXKb/2b3+Fhhcgi4yk08FjkuI0kyIi6wJMuJElu1VrTT550p5UKpVP0taUASrfI47HMKH0GARr/S7a88mkYJAktOttvvXiN5HCpyg02hoKXUyIUeUAKIqiPEmY8nu6KLCFxJEKqw2OkBxfOcav/86vUlJJdLknBoI84+KJk3zmRz7Fc1/8Eg+cvp/+4ZC4N+aD73+Gg/09Tp48yfue/jCeX6Hb6dOqTuNZF2kdXMfHmkmJmix/aaHBUe7kFS6pOMZo8iInzwreqVAWojwBGWMnsk3ZiQ8K1/EYxAlOECGVQIkMX43J+xvcvvwKn/+P/ye/9R/+Fxamv0Ul/DJzs6/z+KNXeeLJAa++/AUevvhAeTwv3Yp/jv9pEFYjkaRxUp5CgEwb/s2v/CqjgaDTH1LoAuOFfO7Sq3SMxgY+T7z3ARr1AuH0WD7awJiCvcMed7YOIJpBWAdPWLLCZWrpQYpgmX5eYziyFMajMApTOBTaIU3h85/7EwoDnudPXDgTDuk7wSpJeTJUCqNLe6sUln6/T+j5bNxb5fjcHPHCMd5OMl5N+uz3D4kchyRJyLKCTqczaUKUjOMYR7ql5VILMiPxHMtSO8J3NJEbgHHx3BrxcIzNNYEXIWUpIflBSKXS4Ei1zpTn8Hf+6T9jU2dYR3H6votcev11Lpx5gM31LcbjmBe+/iIUmrv37jFKemTSI9OWu3dWub2+y1vXbrJ+7x69/V3SwQH9vV2ef+U7XLp9my9+80XGKmeYD/i5z3yaU/Nt7pubKcvJBBSFpt8fMBqNuXnzJk8//TS/93u/Ry2qcu/ePe47dYoszzl69CjNRoOVuUW2t3Y4TDI63TF/9Lkvsbc3Ymc/JUkMX/rqV/hH//gX0LnlxPFzfPTZ9wIrsNIAACAASURBVKDHm1x69ducPHEB12qk8IjaNT5w8TwyHrC9v83czDwvf+ubxIMOIDCmKJG8uBxfOUnFC1FyQvKyhsGgi83G2P42drCF7q/TG+2RSk3hGmygEJEkaLq49QaqViFo1ZAVD7ddx5meJg4Ufec/McJUURRkWcxMtU7c97hzZ5UnP3yRVi3m2Mp9vHr5Dao//mnIUt587TWefOghbFpglaVIMoSSZBVbYrpswTgZUgyHVIMWuYDhMKMeeoBLmgv2OodESpEddPCkQdocLSybW0Pe/8EH+fbr99gdGUY5OJ7kX/3v/5IPfPTjPPXYE7RqdeK8QBmNMgIhXIwQk5ricpgUWuMo9a6M47gKbQ26KKHSUspySWgMmSkDMLqYBGYkWD8ou06EwkoIPZ+bN2+V4BIk1pZDNCs09l2t+x0CfRkG0rlGCYuwZaXr9MwMo/GYweCQqXYdq8taVQz8yAc/RJ5lfPZ3fouLDz7B65evUK3VabVmefW1l8AzjPMRn/uTL/Do+XMcbHYJA5+jiwvc2riDKaCYlO0JIMtyktiUbpKJp9/YAt/3SbMUiy3ZtvLP4A/WlhVbSil0UVotHUeRSUEvT6k4BkeknFic46FTZ3jj5S+Sjy1kQ4JGwP7+kHERE7kZvRS+/EcdHnr8MQp9iOtH6KzMM5TNhxopLXk+6QuZ2ByNMQxHQ0ajA4ZpH8fW0abBYe7x6tt7rMw3ePj4EkvHp6nWIrRQbG6tsrmzQ6or5EJOoCEaRM52p8vR4ycQfo7nyEmlg08QRug0wYlCbt1exXUqpGmCMXlZaGkNvufiuJIsSydykwIUgS/Qac5hp4s2mmtvXeH44lEe8CyZyXn5hVcYdbv0Kg28MCRJUwb9Qen4EHKC14NknNMbZgzHOVOBZKoWglOeMquygirA8UGmGb61+I5PZiWpMviBIqjUmHYU1+6t0unuo8cDTtz/OLvjl7hz7w5zs7O02tNcvnIFYXOuXrtKw1GM84LHH3kYYxW//9XXGPR6nDg6w/c98wTL83N89UvP8fRj7+HO1hYf+vDTFOMh1XrE2ZUlFn/sh/mff+mXWIjHKMdlNI6RUjIej2k0mty8dZNGo8H3f+ITfO4P/5BPfvxjvPCVr5COh2S64HAffNfj0uW3qSRDPvbUe9gZwLUb6wSVJg9efJD9g11+/FOf4tp3XiEIfR6/+Ajp+dNYo9B5VC7DfYdzp4/w+PkzqMUFomqV7c1N/Kc8tC6LyISVGBRSODzx+OPoPMcKByvgxz78LM96CmdUkEtNmiZkxpIlMaDIM02WWYzOSfOcQufkRYqZSHHjrCCzPsYYXv8uZ+z3xKAfDIdML01xbe0KP/mDn+Eb3/wGc0vzHAxe4mC0RMeP+Ycv/g4f95Z5+NzDbPgZwoVE5IRZgpQFU7U2WmviXFNzmvSKQ+J0xLW1dWyimV2cIaqE3Fm9S70W4FuHm+kIR3l4yhAVCqIq167fIRkO+Ord2/THgkpkubX1Bv/Z0Z/j3/7Hf09Re4yq3mBtVCBUQIHGM2DSjExVESYGJUlN2WXCBC6sHFnixqQEI9DWlp3xQiGUIEkSfNdFSEmhJFc3N1icmaYaBsSHh4g0RmcaqwxapNhMkE1kCGNsSTzCYIxAY0AF5CbBSE1hIj7wwQ9xZ/sWlUpQPtmiqTmKn//Jn+bVV19l1I955JFnGIwSdrf7NKcXuHdvjdmZJUZpwdrtNRyluHz1bQB8x+f6zVvMtBsMBj3yCmS6wPXLpeNhN8baACPKAjisJI9TkIIoDNFa406YncaAEOUSWBgzOWZqrHLwhCRJYwJH88T5+9DZgI29DuPbq1SiCJ3ErN9bJQhCqsrFD2qsb92l2mxy7drrHJ9t4gR1rl9fp1AVDBbXlYjc4AsYe4I41xPep8ZH0JqfoXJvk9jReDrFlTnCqROGVVbX72LyjGazRjIaEtQatKIG+7bgvnZAXFh0UpCKjP/pH/0Dnj1+mlnfI0xy3t7bRTbrHH/sLGG3T3HQx45imvMtFqYbnDi2hB+FaC3Y2NrioHuIRdHvDUlzMMIylOALl63eHuNAc29rja9deQtPBaTdfY6ePIcWAfEwwQ+r5PmY9bV7SCMp8hJhKe2Y1OYMupv4jo/jhKhCY7Ug15pRluCk49L37RQoGVIkGXEyoMgNSSwxJqfWUKR3U37/D77E2VNH2Ns8YP9wQLNeZ//gkLBSY3lpiZs3rjHdaOEPKig9xnMtZ86cYuXocZJEMj1T4eBwG1Gp8ewP/wTDzj4nTx7F5hm1WsQo7tJqVVi/dYf1QcIDvR6B73GwvYEfuCAlS0eO8Ju//Ts8+uijvPnmFZ798LOk2vDJT/4Qf/qFP8IRmtXOLr7rc/X2AWePLpGZIcfmZnj0zBNsb27TSw3x6AARNVl44AL7d2+hkxzlBAx0grZ9kAV1r0V0vEd92uPq9g7f//EP8eXnvoo2CiMKtPUBjZAZxnGI2m2GgxjPk2RGINoNprDYyoR2hcUWtiw8450wJGBBGVvSrpggC4XA6LK6RFj4F//oF7+rGfs9MehBENVCPvLgR9nt7KLJ+OMvfpnTF05y7+p1KnWXl/bu8jPf933MtWbY3bmNdMujUIHANTBO+jie/y6lvXQw5NTqDe519rm3t82Z2grojHSc4gRVXrj5FnU/ZJjk5I6LHRsOOkMajVnyWOO6EaIYYfyCr3z5s5y88AhT7Qrz3grJIMFxr2LzHGvKpmusRjmiTPYJByEF8WBM2AyxuuwgFUJgZAkCEcbiuQ55UZRSiudhtMZ1fOLRmNALcApDw3fR1Qpbd+6hrUUJiVAKxgmaEmumlCDPy99byiQTh4nRmKJgc3uHJ5wH0QgwBqUtP/oDP8zXn3+em7du8eRjz7C706E/HOF4DsNhaZVLxinj4QjPdfB9n8zkUBT0hn3mZ9sURY4ucjwbkau0LGlTPiaxCKNA/rk2VSmxtgx+xXGC5yvyPC+HvDGUwOXSM++YEpgsXUFVuJw+Mk1YcZk7cZzR/gF9OwYbc/TkIkooatUa4ySnyBwW3/skd+6tsX3QZbY9zc72Jg/fv8LLV1ZxvEope9kCKxWFsbgZeJlGhBLpwOabtwkKSd9oQtcldgu0jmnXfdruFJEfUugcWa9iLPTsmNxCbWjxXY/RuEA5ChkEXD/c5+FP/Qit0Of+pVnas/O4zTq/9I9/gStvv0Y402BxukngO6yv3iXVGj+s0GxN4UwyE81ag71Ol+5gSBJnKBUQD0dUxppTecD77nsMVQv50uf+kE89+Agq7REXEt+vwAh2dnZK901hgAJbZDSqDUSxjrTgKUmRxKBDNJAXmizL8ISLr1T5t7IFrqMYjkdkuUUYjSgKSFI++bGP8dk/+E1Wlk9SCUL29vdZWl5CSsnc/Dwy08TJCG3LIOHGzg6+HzA9UydwqnT2t8tAm3LQ2pCOyxNIWI1IRiOyNCOxmouPvYep3/1jhC2o+C57ex0WTiyzsDBiZ2eHp97zBIeHPZyZGay1XL78FlNRhLQFi9NTVKI6+zu7+K7i5PEVOvu7uBq2hl0uXLzIOIkZd7q4YR0loKkcbl26RHtuGhl4SCBvVnELwd/4O7/AU8+8l2FnA+O5fOj7Po4xpYXSvBOfMaXpQEkPx8lJ09IuLIuJ2wzKHZqUk9qESRWIoSSLWYNW5XwEJslxg5zwbv8i4JHvCY0eLMbkfP4Lf8rzL3yT4cgiTZnmtKpABIp0mHCzGDFwwDOCuMjLxZS2aG3JXcnBcMDBaEwnybB+CManrWrUK00OukPWtvdAlf0z0vP407e+U3qsgSzLcJVCG0ESJ2zcu0seZ1hdYW2zYNQbU507ws7BGpt7a7z2nculkwSNlmJidczQeVYuS40hHsfkuabIi4m9DbQt05hiotfnWYbRGs/3ydOsVBKERTgKoS2uNlSUInJdbl+7CroEi5XLG42Z/D6YSCcTzdtai9VFOYR9n9/4zd/mueefo1INEcbwyIUHufbWVdrNKd7zzDP0xgmDuOD1Ny/Tnp1BBR7d/pDxaEAtcJmfaWLJScYxViiUcOns9wCJ5wVUZIg0E6uoVVit8JQ3ATCLd5egxljSNMOUgvPEcjpJwb67mS1/pgChMxqh4NhCi4W5BlAQKc0D508yXQ/xhaWzu8O1t6+RjhMsmuGgT7NZR6qSMXvfyjKD7jauzEnTEQiBULIsgktyUp0wH4YsZ4I5XXIQhCcJlCKWOSotOHNkkWqgcJTF8yVhGFAJIzzPIQo95mdbzE83CVyHoLDMJZJ2phiNM77w9a9z9P3vZarRJFI+n/nkT3DtO28T+TXaUR2NoTccMsw0B90ht+6scv3WKqub++zs9UjShIcfvEBVlqewUAh6ex3c0Oftww3WqppbcsSgVeHNnQ2ELUpZMTdgDXu7e1hTNpxLABWSG9AAwmKFplqPkK5AugoUVOo1/NDDdRwcR+K6Do4f4gYRUcXDCEO1XsH1JC++8DzVWoXtrW0Cxyu5yMCbVy6T6pz2zAymSFGej+9KugeHHO4dEA/62Cymu7OD0pJsFGOLjMP9XUbdLturq6TDIbYwFDLgjRt3iWp1bJHRqlU57B7i+T4n7zvJ9uYWvc4hVmtWVo5x7eoNhJQcOXaESuhj84Rq6LM0N4PVOcPBiHarRbsVcfL+FTKliQc97r7yOntv32L7jesI1+PIAxcY5HmZnHVdfD/EcRSu7zK/cpLQ9Xjz+jXOnn+QQpvJPqg8xRosyImbLAxBWoQC6fplkMovv4QToFSAJ4KSpyc9pFGIyRdaYbVEZ5TOoFxQZAadf/cT9nviiV4piZSas+fO0Vnrs725x9TCPCY/YOXcCpvrd1FCcCftUx3sIYYx0ndxZSlTGCXp7/dLG6N10XHBoDMmHyf0O11MVFb45kaAUozSnKnFBYx0yieYcYJwfIJqjTiNKdKcLBkwvbRClh4yzBIOevscCRuIZBkbCo4cn+P5L3+pTMGGAdpYHGXLWLKwaEr3SF5kvEP1E0pM7tgFUsh3GyeVlDiuiy4KoiiiPxhSC0K2d3c4PT2FZ8H3XG7fvoMw5RHPYBBSgBWTp2L5f6PVS1FaxZQjiOOUrWGPz3/2s7hSIRwPz7oMD7o4VhGPE7754iu0GtM8/tST3FtdY2trl3otou5JTJog0oJG5CONxREOWZLSatY57AxZWVmi2x/iC4dxGqMcFyneAV6bMjugSrCC47gUWZk1KIvFyhuTUuWC2kwgJp7rkqRjIk9xdL7B7s5ttGnx8EMPkfnQrNbo+T7dbpdmc54kt2zvDxmMd8jzHOUG1Ko1jLUkac57n3gUefk6N253GGYpSENmNbUk4VRQoSEF+C6ucLhTJPhKMpULDqTh6fsfIOmuMfJzorqDICDwA+rVGnuHPVSakGYJkeeQjrrlSbOwBANN7hiKnUP+zo//LM25BhvDAY1Wi8CWFdOdfh9tNa1mmyiKcL0at+7eIut0CaMao1GCFIZWPeLkygJXb22S5yn7/QNcx2WxMcNrX30Rg8vHP/FJvvbSCxx9+n3M12bRGpSydA87SEcRJ3mJWVcCPSEi2UlydxiPyQjJETSbbRJtCXzFeDRGANqCX2lSDHNE4KAZozHkRUYQeUjHZ5jlpOMxDz74IJ1uj7NnzvCtb32LB84+gDYxSkoaQcAoydhY36Xmh/TGBXdu3sT1Q6KwztbOLtnwkEG/x9R0G4sgrDf4wlde4GvPf5twtk3c77J09BivAIPekEcfusj63bukacrDjzxKp3PA3t4eH3z2/RR5zuzcPDevv83UrMdhZw8lHb724jd55MhHMWFKcTAAT+MIh9mFBTbW1zh6/ASkwEhTjRpQ8zG+g8othZNw4thJnn/h2+Ra8xM/+VfRSWkRt1iULSaPceJduLjQhjRN+eVf/mViovLG6TilW09K3NDDdV2CMEBKSSWq4PkeURASBj6OcgnDAOU4hGGAH/hl++13eX1PDPogCBkOuxi3SWH7tKcdjp1Y4mBXMLMyjUNMp9vl1u4GWglO55bQWrzCklEglMEPFa7jlwPXD2nXGxijSYt5bq9vkA5SRnEfxzWMwoi/9c9/kSisEluLdRWB49E96OP5iulqC1WJ+MEf+jS/8dlfx9U5b954gwsf+CjX1x12u3f41gvP4WQtotBFawvSkhUxLm4ZOrIFSTwGYUiLDFe5GCMQNscTLkLrEis2cejkeQ5Csrq5wVS7SYHhsDckml8mGx0Q64KNjQ0CJ0RqGA3HBPWAUb90/JTVqwV5rhHCvtt3XkJvBOM0p+JFxP0RvnHYuL3KVLXJ9n6XW1dv8cx73sthd5+7b1+hezgm0ILpustC4HLi/EkOh33W9rrkrSn6/SFaS6wZ0W7XOejsMBzF9IYJ9dkWB/0+1hVom5dBFFHWKwhRDvfyMyAmT/oCMH/W6GgswhEUeYrvuCzVA1puxomzx5jy6wy2tjnz2HH2724xvzBLpdHmC195mVpzgbDSQucptUqD0XhEvVYht5bDuODO2jozVUm3KrE9STcdMW0lP3/yImfShE13xM2DQ4xWmALqUZ1BmnBVFNzZvMP7Lyzx5EPnMLpPmsUo5TBODmnVHdrVOTrdmL3uHgs1gRd50IWGE/HWcJe9rW3cqsfq9j5jYZhxcpyaT609gzeGXKSYLOPqjds0G1VWZtq0mzVa9Tpbux0yaznsHIAy1Ks+WarZ3unS3e+y2+8zDhxya1nv7VOfanLz2hWOnDpLnA6pBQ47Bx38Sh2hfKwuO3JwPOr1OuNuTKg8HCu4cmMTz9mnOdNjcNhlqlZlvhbSbEXc3d5lez/Dr7XxKpLh1hZLS8eYbiYMD0ekeRks3NnewqytMju7wFtvvcXDD15kb2cfv0iRuUvkSrYSwdWdXWSek5OxfOYUQitG3QFHZmYYNeusvvQC0hFEjSZhJeJ3P/+nRJU5AuEwHnaZlUv4rsdhp8PG2jrTrTZJkXJ3/Q5LC4s88sRj7HUPcazhwkOPsL25w/7BPvNT0xzmIxrtRbb2h6jRiOHhiDCs49VquM0qdm2X13//S4Sez8LKEu3lBZStIGsRpsjpuQO8zNAfGQZmRJoYpPAQCLAGOynLK11ezrs26CiK+KnP/CRZJhCA4zrlHo8/+1xYynxMUZShw8LYMhsD5GkKWcZg0GdgS1DJd3t9Twz6LEnZuh3TGe4SBIaFhTkiLyVcaXGwu4eqh9wnJK+98RoXjp5CKUN/MMDWHdzYYB0f6UGsx0jlYYXEkCJzTSfpInyD7MUozyNJfF67cw2/foQ875IeZPihg3VgXBTMLC+yv3vAwlSTV7/xPK1Gk1gFjNPr3Ln+Mmt3h7huwUxYp5tlZMbBmehlQkq0tTiUgakCRZ4l+H6AVKLU4Sm5kYUpAyymyAlcF2PKp4BmtYa0gjRNkaHHdq9LM/IpspxqzcftdktQQhwTROG7byjHcbFWTP5tJrW/BikMVhc4SjEcD0FKqo5HoWFY5ORJwkc+8iyHwwHJOOZkY5p922WYFUzXGiy3PGzaZ2m6hacdbg+2afmSsDHHjfUN0l6f6UaLaugwTAuwingMyjjICZRc25KQU9YqCOQkRJXnZcBMSEuhcxxcLLrUOJWiSDOOHJvFJjuYbIqd/j6PPHKWw52YVrvNm5dv8dI3L9GOpvCtZLnaYv7kUYzVJFlCLx6Cozjc3yOWkI0MtdBjczTEZNDQGmVTRirHZoYlv0o3zWi5PvF4RK0W8bgJuDw4YCh9Xr98hXMrbYxyMLEm9IOSCuQ4NKeaHEk1p1dO8Nwfv0hTTNEZHlAXkoGC3XiEFA61io/rSVr1FuNxzDjXuG7I3sYGMxWHY3MN2nOz3P/g/bQrLvFwwNbuHldvr7E/zEkCSXzQRZuMKB7Tu3mDv/GXP80wyfmtz36WxSOzjEcJTqXUt0XUJMk1kXIpshzXdckQhErRas9Aepda5FNoQbPWZqwtb11f5/SJY+ztrHF67j6qkcedW+ucvP/9vHn1FtYc8tipFfIg5Mc+/D6uHGySF4bVgw2m56bZ39kjSRPuO3eK7e0dji4vs3t5ncLmBL5EDQtevb3F+aNHWJmu8rUvPsf09FHCMOLUqRPsHxzwlz75KdbXb+N7PmhKYLsSOFlBKgt0kRGnPc4sn2V+YZGrV68jHWg0GjzwwMPcuHaDqak2J48d5calS1y4+AiXvvki7aUp2Brw4muv8RMfeYL93XWUU4BXMOwP+cZvf4GHz55jaXkRXIf6yiJjpXF0ihobpNKoQpSvbaD44FMX+d/++7+NqlT5yZ/6GTJriAJJlnUY9ffIkwypAobDDNf1qVQqSKFQ0sGNmiSFBBHiCgdBgRIT8AiThx5RVqPAnytG5B1ywX9icPAg8BGuYnqmhXI9hOPTi7scJAmV1MNUFIO5iKqS7B6sc5IpskyQZ4LCpIhcI8jxgioWST5xdFgDeVr6tp2gwmDYJ5E1Vkejsg/G17hxAyVdcjNASEl/MEBjubu1Q6sZsLI4w+u3tphttrh69TJkNTr7MbVKlb3uDraIyrpZIcgzU3aKGIOVCmvsRJNO8SfLHEPJiczzDN8KPGlphC6nT50iqtZY39ri3p0dtFtG4Hf7PcKgjXQ9TJFPnDoCz/XLlOPkJpMkaQlAnpwQykWNxhEC4UjysSnrCXSBKytkqWbcG3B0dp7Lb76J0TlNx2NlfpFjS7Os7+wgDNQDl3arzWA8Zn6qTuYmZGnG7dXbLM/Ns7V/yO5uh9B3iUKfJB0RKIF1DPVmm/4oZjTKkc47FsrSP681FI7FFS7aZEjllAVktsDasrxNSclwcMAj95/k9s27fPTDH2Zt/ToPX3w/z7/wFW5dvcd8bZpji8ssHzmG8nxmZ6fwfY9xGhNnCXsHe+RJzq2dVRam5lHCcHf7Mm3j0zIaJzcoBJHwcHxBLiVhZnBCiU4ThBEcqTa5/Z2rzD58gs3tbcJqmzTPmdaKONdIabDKYf9gh7PHZwikiwKqgQ9pRq8oIHRo1ptIaxgnCXc396hWQkKRU/Uc5ueaLLartKcanHngAifOnMKMBohGRF0abDxm+5UrOIVL6DpoT3F7bx0ZKK5efRthXWaVT3Q4xs8VUjoURcZ4HGP1RB6TIJWDwWCzlDxJWGhVSE1GxQ8hGzDbmOHhBz7MU08+wh/82r+m2W4wO9vi7IllppsBC+97FGl7ZOMepurxwtdfoHbqPjq9DN9xOHP8HEdmjrK6sUa7Ps1MbYZhf0C9Psth0cfkMT6Sy1fvMPjQE/j1Bk8/8zTDoabdnkJIw5kL54h1TlLkuDJklMQ0p9ukSYHQ5f6mSBNMljA/M8sffe7zaJ0xNd3k6NIR+t0eVmlmFqa5u71GND/DQv0kr37zEm9cvo4pBNMzTTrDXaTKwBcEoaQ2NcVHfvAT7G1tM/IMQeQS27zsXhKQj2O0HAMVPvXpH8WtOAgJP/fjn+HFF59nsHsbq+D29hqOGCNshu/5GASHnQGu7zB//gIqK4OKxSjFdRs4nk8OWCPexQMKod4Z90xakSY7uHLXJ4X8i3BHvjcGfZwkuJEiNzmb2z08T3Djdo+LDz3D3t41ktUMG4Xct9Tk6y+9yQ994qMMkxRpauzrQ4rBADHVIB5n+EGEsorhKEXklgCPgyKhk+ZkqeDBH/wkwxsbyNgQSoGqn2DYX0May5HFBmv7+0ivhikUa5tbjJM+9597ksF6l/XVDT76nsd59XLB3/3bf5fP/Oxfw/dcwkpY9pK4bhkcchwKa5DKlstSUUozruuA0XgyZXYq4Ed+4CPMTbcRNmf/YJd7m+uMu3dZaDbIVcjqfofdZEjDVNFS0Bn2kK5kv9NFOZLCFGiTo1Tp383zHK3zcshLVR4DhSRJDZVKhWTcx4iCRGf09gfIMORb61dYqnucbTc4tTxLe6EBRrHSrLG+v4bIDYvzR4iN5uSJFTa3d9laW+eJ+y/wlZdfZ+QHbIxjjIJmq0FnbZV2o8r08gx7h6Oy8XIi35RhEoMzWSanWfnGFVZhjUC/EygzFkdYqoHH3FSdzdU1nn7qSZ577k/4vmffz+/8xq8yVZvm+973Qc6feoClpTlSocFRGOuhlMBVkjgesLO7w9LcAeLSiDdvrHHk5BLCyUlNgfKrDIqEdhQgUo3KNBUhmAoc+uMEx1Oo1FAxlmVnms0r67gPLWLjnFxnxMrDOOXR3NiCU6dPMNo7pO37hMKDOKXZnuVebxvHCRgN+whjmWm1Edow7fs8df4kZ45M0arXkEIzu3QEFdWo1kIyZTGJoX1siWOzU7R9h9986RKxhcbY41d+9T/w937sJ/mDX/tVBqOM+596kmorxC7OkaUx0hj2DnYIKiVsRWOJswHNagtMylQjYjlw2Ot2aVTh/PHjuMKlyPe5/u0v8cCZOertCrVqhScevA+sJcn6BIGPc+QYG5s7PP2eh3h1t0sjqGG8iEtXvo0XRtQWWhQiIZA+jhLkaUpRaFRhCV2PaqD417/++/y1v/ojLAY+MoBM93AdhVYNlBLUWk2scPjV3/xd4jjG96roCYPBxglnjy3yxS9+Fdd1WVpZpshSOoc9kjSns7fJxfPnmG62qNXqjIcjPvFjH2E03uI7X7vM9fV13nzjDi+98jJ/+2/+F7QMjPt7jNuK+aWzNMMq+7u7jLIxjk2RAgb9AbkYM3vkOE3j8nv/5N9Rr9Z4of1ldKR5+H2n6aV73P/gQ2jtY3KDwKHQGc0jEa4nyeIOU63l0s6rHOJ4gM7GCLdFRoiWLiARRk+e2v/sKp/u7bsy51/k+p4Y9EooZupH6fS3aTUEaWKp1hZ49eVXmK+3yU3Bea9Gb1sTb8yggynmK12GOmAmnOFgc4dClJF2d5wT+BGqKJd643SMG7nEnZT+eMynPv3jPPtzf5Nr+29jenPIKEZgUFlGv7fFkYV51jYOkLJCj59rkgAAIABJREFUb2hZWZnj6re+RbV2yHsuvped7XucOXKCre0NgsDDcZx306nWljpbnhUI1yPLMxAGawyu6yN0Rj1yefzhhzi2MMtotMOlzRvoLMOLahwcjLDaJQw9AldRq/skuqBQkngQl7d0a4njmEoQonVZmVAUxSSJW/r0zTs1BEajHAed2pKypASucElHOXmuGcc9SHMqUxFz7TaR7xL4PvVKAyUcVs4exxEB0o/Y7Ozx0iuv4eAirKDVrPP4xQf5/ee+jXJ9pOuSjA2BE+JJnyRJGcdjHMfHvptKFVBYhChAGrQ1WFnKVq6QZEhcAUK6WJujpKTT2WVhqs1zz32VZ55+kr2dfVxrOT23yJnT55m/7zSpYxE5SFE2XwpAWIvIc+bm5wGPQIQM+gM2791jwVP0RMG0UIg0RVUCpHKxrsbogqmwipck7NmMlUqdHZ2QWclsEeGLECEd6ghiCa6RZROpY9BWUYxzvFyQmxinMPT6h2TWYI1AGEsr9JjzLfPNOheOL/HY2SM4rkAi8QIP5ZQ9N71eD4VBmBI643qSs6dX+ND+iK9cvklmFL10xGvXr+DXa4zyHpt31pgd1lhcOc/YZghHsH5r4104zTsgnCRLka5BOJIo9HHGEisKqrWAZhDhqIBCKK5c/Q4zy8v4vkcYRLx9/SYPPfokaVpgioJQeNxLc2KjwPMYFwmOdhCZJe4Mqc1UsMJQ9aBLgkSjHBAUSKHJC7h65QZzF89SjypMzUwjhCXVBck4Z3d7l4WFo3S7PebaUxw9cYK9tXtYIzFpykzkM84Dev0hx2YW8TyP0SghUAGPP/U0aQ55keElMcJqHKdN4I/p7+0y367SO9xFeAGf/9olau9/jKZKST0HR4Maxow7PTKdYR2B8j3GyQi/5pOhOfPggxyOMrKkj/QsR44vgtIsrywxSjKyVFAJIxzlEFYahH6Akg55kZOkLhpNEKiy7VUa1tauMX/sAcbWQQkJNoOJ2eKdq7RMy8ln/S82Y78nBr3v+YROxOn77uONty8RVRoInXHx/AkOth12199mvrbM1oEiVFM8/P4f4fVv/BpOkdLwK4SLi9ze2ES6HiOhcZMUz/HQWY6wgsNkTDKIac3O8d/8/f+RD33/z3L5znX+/b/6Pba3blINcmp1n67eYjQ4ZG6myeFhjjYOl67cYLndZLG1yNXru7SnI95z7iT9QRdj9GT2loO+7J6w7wZ+RJn1xGiDyTNmmi6PPXCaLO6ztTlk6fgSQZFxc2OLJOuw34u5u7pOzdnkgx/4ABvdbeo1hyRJkVLiuw7dSRrwz7S6kk70jj6vtcYag+e7xOO0vIk4EdWoQpJnSFcRxzmh6yFEgec6RI7D1PIitUpIe6qN1dCeapOaghe+/k1u3lvncDjk/R94huNLKxRFTK+zyfL8LAutGmaUs7G1h9S69H5XJfvdHkIF5EWOxZl4iksYi5IGcoMUijx7R5c0OJP0Z6FzIl9RiTxOn15mpjWDvaEZDnrcffserbDCwsICC0tLpcSFREiNj0LLCXFLF2XTIxYvcjl+ZBn58jUaTpP5ep3N/VWOhQEzrluC5bUEqci1JR0P8bUiHo+RlSrCFniOQ0UExKuH1E7PEYQOY2fSz5MVYMH1PXZWd3AyiVZQCE2qJJV6hb7WLNQiFtsRDx2Z4dSxIyzPtJG2QDk1Ar8kpDmuj/B8hONiTI5mckpEEUSa06eP8Y2bt1GBR2t6nq/cu8aJRkS9vcBGp8O3v/MG/+VHPo1NfTxruXtvlTCsMk4SPMct6V7KI83HSKXojYZYJJm1aCMRykO4Ljeu3mRmZhmhBUpFBNUpLjzU4stfe4EH738YW+SMhzmpCqk2q2SHQ7K8j6xUiZOEyAvIjMbzPRgOcGyGFBqjDVYYlCNZml2iyAtef+NNTp08x26nj3IsbrVKluQEQcSd1TUcL6CBy/bqKkWeM11rko5jFudarA42CCqKyzffZnqmTbVWw/d9tC1IdIxUkl4yJPADaq2I/r0Rf/1v/jwbh13e+MZLODLh5dfe5GNPPoxjcuK8z2i/h5MapFRkumCcp9Rnmijfw1MBWDh0NP/wd/8d63fv8c/+5S/w7MVTBHWX2YV5xiOH2blppLETIJFGuj6uKvczhSxf2yQbl1ZMYal7BmVGuMonKwo8DNq45ZwXfybdIMpdl/1zc+e7ub43fPRWYMyY67deZ2ZxEacCS6dmaC7MsbH/NsuLx7iqK6RG0U038KN5pi+8n6rjoFwPz404trRM6PsYbdg97PD2zRtcu7vKlXub3N7YoV1tY4QkICSUHu9770P0pOH8hY/S71n2R2Ns4ZMPYmwyJAogFxkqrJNIyaNnn+Dckx/hxk7BV77+pwz6PWr1CCVLpJS1ejJ07WRJIibA59LGlqUxF04ss3HnKoc7a1QqEWtrO1QrbaR0ube2xubmBo7v4PgVWtUIVcSkow7jeIzvKBSSvd1dKlFY6pS29Mu/05Y5+WMiFThSIIxGSYkpCi4+cB5tLLk29LtdplrlAjVyJPXIJ5WSrjYoEdGaXaBwPaRw0brg2NElPv6xDzPXKhdt4ySh3W4y26rwox//EA2ZcHJ+moVmgwiJSQricVl1YI2ZnHgsetK4qXOLVB7a8G4hclmIZjFGT+okNNpo2lNNvvXyq8zMzjLoD7C55djSMu37jpNIhWsdfKPx0EAKusBkOdYUGJ0hbUE9sDSqLsPCcGunx9WNPXZ1QbeS040Kdu2YQpQhFx1n9HSpy/pGkViD47i4VuMB4X4KhyOoRni4CCSu4+KIUhfv7fXwCdCFJsNCqHB8H0fA6aVZHju5zPnlGSJpyIqCaGqGSrWGdD2cIEAbjbEaawqEtpjCYqyDNgLPrxJVPU4dO0Kmc9S4YLbSpNUzzA06fPT8aRY9gSfGKJFQFAkbG1tlVYBw6Bz2y6pmW3YJmQKalRYOAcNRzqBfMBoV9A4TtHY42B3x7W9f4tvffoMvfvVFPveFL7K8vMy1t15nbe+A7d19Ov0xb791lc0rbzEvc85VBI9OhTQ6G/i7d8nuXSbe3yJAlzd7wFhJocvK3U/+8A8yvbDI5v4Bt9Y3ubu1zzjXNKancIOQ4/edIhfgWsl0q4HjuIwnCeuGDx86s8zJqk9lOEQe7KM6O/j9HZzDbfxhj1AXiMKiE40TRPTzMYSKxeNL/JWf/isEvuITH/kgr11/g73eIWlWEGvNiIKDZMgwi0EJsiwjyzJsAZ4VaGXpoWkvzfO+Zx6n0grxoxrYBivHHmWqfZJme4VG6yiNqUWiSgvpBSAVnoLQ9fCkh0tE5DUQJufujTeR6DIqTinV/D8f3d8Z7n9RCef/ddALIf6NEGJXCPHWn/ve3xdCbAghLk2+vv/P/ezvCSFuCiGuCSE+9t38J4RrsXWNdgL2d3cxMazf7JENEs4dfYx2dAKdR4gCwsos/91/+w+oTp8ievjDjAeGwPepNpssLx7hzPEVHjl9jqcee4gHz5/k/NkVmo0Kketz+uwj/K+/9s/5P375F1CFg4Pgzv4WqfZhbIkLweLSOSjKZj2RJKSdLfrdHl+7dodvfP1z6HHMUE3z+ec/j7FgUwUGrDa4wsVaiZWQ2xzHc5BGUFOGJ84ts7l+k8bMDKn0ubu+zfr6HpfevIZRHlpYpmeaOFZTixRXbt9AWAcpKtxaX+XW+j2klHiOR54bCkBZiUBhraDQdiKPlC2SKIl1VClJAH/5P/9hMp0iHcOZsysYnYEKuLuxQz+VvPL669y8tcqlt26wvnqXcW8HncU8eu40VQkYwR9+41V2xwXV5iwzi8eozc4SRj5/6ZmnuXDsKBWR8/2PnmKYJLSmW0TK4gqFlhajHKzyUBik60x6cQSY0nEjhINWDhYfipSgWufkYpXXX7pCriWRkty5cp1Ws8qzH/shaq1llBRoM0JLgXYURkqU45LnGoUi9HyUU0W7be5bWeHEbJX/4b/+aW6kQ+67sMjUA9M4711k6gfOM/PD55APtdgLx3SKhENhOdmcYaAyJCHC+uTG0HSruG+PSK4ckCiDNTGOyYgdwd1v3CBMFQdiRIyhJxTrccr+eMCxxTYXlpustBsYTxFUfSLXoXAChB8iwwjh+WipyvcQEpRCuS4ogRM6iEDQajSYrgbsjw7p9RNiDVNPnmKnXedX/vj3qCyv4Ey1AY/O4Yg7q3fQugSzKynBFGQ2Lbt3hOabd7dJ0eT/F3XvHWzbeZZ5/r6w0o4nn3vuuVE33yvJV8EKlmRJtmxkGwcZurHBZtxNGAwzPU0xPd0wNdX0TFMDDHYztN0YsGgbsBEG4aSWLScF27KVr3SDdHM+9+Rz9tlhpS/MH+tYQBUFaqanillV+4+9aqfatfe33u99n+f3ZIJnjpziwa88yrHzF5jYsoF6O2HTtv28MtvBtyaQQxspwhbB6CRnTp9lZtDlM994ivMXL3D7zfs5ODnJ1vGEG64a58fefBO7NrRQnRVE2iGzkIQCrwSBdMRRg5FazJce+SY3/NB9XHf7G7n24E1IDN97/ghnOxkH77mPbz33Micvz+BUQRxItLKgoN8fkGcFab/Lv/ypH2N/A951/W7eefNe3n/zfj549628/567+MDd17H2vW/w/Ye/xOxqn9VlS2oGlIVltpvz8x/+AOPtgM3j4xBHaO/QpkBLCERVMBWDPp2VZWpaozQYITEiqOJCw5KxTRNEtVFGW9PEoo7Q4KXAeIdSglDHKFEjCttEyRBB1MTLNkE0TJDEDAY9dNRmanoDypXEgQYZrhNfbeW8dxJnwToonK0Ky//GFf2ngHv/lvP/wXt/cP32MIAQYj/wPuDA+nP+kxBC/X1vkGYpK91FXFkyVpskKYeYru0jXRrBp03SnsPZilNe2pRvPn+ISNZobtzAzje+mfNrA8gNsfMEZUGsJEQ1dNLCFCVewLIv2bzvWm7fdwdlafnlf/O/MNKQeLNKGHpyPHE4RKe/Qr8smJjYwd4dO7ntpnuZaI8xc+ocd9/8BoZ8wOXDr7C20sPkhiiOqu2VFBhvXyUxCivI0xSBZWpyCGMGjI1NcPnyAiurGadPzbLWK4mCkKKzwo07t9H2holIM9pqo5Gk/YIiM4zWE/r9Nfp5j3q9hlznYDjnKct1cqZwOGcxppLQeVcBlZzxhCrge9/9Lu24xcZwiA3jEyyma/TyjKJW4613vIEPvuef8LoD1+PDGocPHyftZOgohjBk46ZpGlrxvje/idtuuoZIVTz9Mi1QwjHcjrnu2s3s2jRGogJW0z4+EyiZVEhexDp/2wESU1aWPrcuF1O6Ui8IVyK8JQoEg9UF7rr5RpqRJNGwOHOFq7buoNkYJi8FToSEcYu8AG8FUoYUTpDnFhUElbSVGK9qCCRRWKPZSBBSUJqMMFQEHpIwxEpBTxREW4a57b67mesvcnllCZnUqz+sSxF4okAjjMUqBedXCXuwNjB04ghPwPLSGrpVr8h01uKtw5QlUirSbkrqHCIMUFKhZRVtWKRrmLILNkOIEqks1lVoCx3VkFGCjmp4GSCEJGnX2TY9xUSthlECoyVFbtmma2zRbbYmTcaSOlAySDPWVgcoGbK0tEyoQqwFZwyDfsmVpTX6ucV6hfWWMAxpjU/StZoXTs5xds7w0GPPcvTMFZ47cprj5+f50y99k2Ozq8j6EC5sEvmK8ySUZlDmJLKG63oWTs6RXV4kbmoGriArS5y14CEOAkqTE8uASGke/dY3me33cENj7L39Lq675RY2bN7M49/7Lpt3bMd5SeANAQWhAC0ERVnJcPO0yxcf/wq79m4hzzosXDxN3l0hcI4oH+CKjHvf9U586fnob/82/dKhS8fSiZOUi3M4P2Dz5BjtJKbVqqO1WjfwKcIoIqnVUEHA2Oho5V53eSUbzgbYQRdfZpjcQSGwA4vEUaY9bN5B2hzhLcJYtPBoVfldKud3gZYOiSeJI2yRM+h3K6ifrTDHPxAwSFm166Wq/vhKq1cHs6/1eC08+ieEENte4+u9G3jAe58DZ4UQp4CbgO/9XU8SSNrhRhrDAaFtYAKJSYN1OV6OkFWAQxhWHAmjm3zxcw9x24/cRnNoI7feex+Hv/pfqDcCfGAoTYHOFWaQUpiSMZWwksNsZ43VNUN3MEtSr7NpuE22tMyKSxEyxOawuNZn9/4pJjaMcebYLC+88izW9Th47XZCPO9/731cd2A/yeZJ3vOuD6B8jl93qVrh19tpEqkqIeHYSJPRVoPeyhyLWYYXMYOsj/QK5WHh4gWu3zGFyrtc+/r9LK30WOilpLagGQWs9Q2pLRFasdxZJSsq16VAroOPFGDAW6SqYEjWGAQaKdx6ilRBu1kDFZB2BtjhSsO/cOYytcYQshHw5NNPEbfHOHz2IvfceA2zswvEUR1JNWzM85Kayyj7y4y2mwjvkV4SaJAiRzjDTdceIJRNeOElXJZDGOJ89ePUSuNMJReTSlWkTfeDz+cQWuFLi5OW0lnG2w2Gkxo3H7yGx55+iqzrkaHgrW96M1fml5h76SVOnjzNtm1bueWmmxA6IAhClEyRHl46eoxjx44yPNRk9969jA3X2DQ1wdmL59kwOUIYaQIUodIoBb28TyADBi5jaucmamsha3lRDTG1RxhXtZqkIlIhgdN0znTJWxZZc6ycnUF0K0kg1qBkRR71QuCFojSO2ZUOm4baJEmVM5AXObGtYa1B6Yrfj9RVwpQMyB0oFVKWBUIGWJeSWcO2TRuR/R6yPspgkJINMs5lXdIN4xztLHGb1DREjM1z4ijGOUsYBqAFUks8ChloVrpLaGExSNYGGc1GE+MEx4+8giRkojbM1Og4URW7y9jEBCtZj3NLcyyYVQ4evJnXrWUcfvYpNBnSZCy/OMML52YYqw2xWHS4OFwQ1hI6/VVajfEqn9XkKCmIA8nq8iy3330HO/YeIDcJxnRpj26gPjTMpUszvPziUcKoRlo4VLdPHCkUHqEhzwZYZzh//jzv/2cfJsJS+AKHg0CSqxyZFlw8eZqLK/Psnh7lyvGjvBymvPX2u5BacGX+MoFWDG2ZIl/rMrRhgtVOh7QokAi63S7toSGGhkdAgo4CFI58aQEbJRRBhSExpqCUGQmVqUrqECUEuGpSZyrUFdZR5RULgfUWUxSUxQApSgJdDWulitalkxXYXFIFqJsi5/ylC3TWeoAkz7PXuCz/vxvG/g9CiJ8EngV+yXu/AkwD3/9rj7m0fu7vPELZIurvQEsonMfgKIzFFqtY6wh0RFkaJAG+7OKV4hP3/wk//L530C9LpKhz1Tv+KUmZceLZ71P058i7HaR1RGXA5qv3UdaHWZKSvLNEFCd0U4MdWKZbIdMHD9JsN/jq419COcWF46vEXGbmwiyDlQ7joy0uXDyHoeDR5VWW+2+Ho0MV4sDmCCTSS5xwVPnNHuEhVJrd2zbQXV5FiJg0Tclcl1CB9hljpuD11+xm95Zx2tE6L2frOJ2sx+WlNZQdcMZWAy/j+uRpSq0+hEkzhJAURYH1CmxOnnUr9LGOECpACUusA8piQD2uMzs/w6rLSH3JqSe+TegS3nHzbUzpmEjAhpEGUgt+7N63MHf2JE2vKNf6tMZHQErabU0YaLQCM+jhRchgMMBbRxgErKwMWF41HDt3HikdQ6MNXr68CLKO9xbhKregQFUVDRVx0wUhUkA+yLFaE8gAgaD0ku+9cJR7b93H9smNFKnlvvf+KP20wh0PTIBIRukViovnzzE6sYHa8CQrC7OsLi3S6w6wskG3Z1hbWkK4koMHdvPi8bMoHGEQYiWUpUVLT1A6ohCKImdkcogzFy7QDEdJQo33pkJtWIdRnraHjha0L2eUq44LR19iSzJCHA5R1CDNU64MBmhrGWrVmet3WSg0s906/aJkc2MULwLwEUQROm6jwwCpFUhd8ZFSyyPf+gr9QUYYh0SBZ6gVs3XndpqJ4oduv4E//e7zTAxv49/89z/Dz7//J9m74zr2XbONbHWZfrtBSoqjpLO6StJoYbyhn3vyLCcrLU4EWKnZe/AWnvrml0FnWFfSbLYYTWLcWpcDWw+wYWySYjDg8LGjtMaGyVZ6qGiMr3z/HDPdDtHwNOQbOPfd77PRS6IoJu+l+JGAG6/fx5NPPEOWVm027yxawVg7odXyjI012LlzB81GmzzVlLJkNctJ+30aoWa40WTXpq28cPRlpiZHiEVBuxZi0h52uEZmEuJVyV9+5EE279vO699yC64mMUU1o/GywoVEvuRgs8He193KrW95Az7PkamjNraBoBGB8qRJRN4bMLl5Gmc9Wa+HEOMM8hwvBN3+gMAJpOySqJy+WyWsaXr9DtNbNhGG1a5LyhBRTSXW3a4CoVTlJpcgcWhlsXlOmRZ0VpdRoqyAZd5Q/gCKKCpy5SAdsDB7hSNHDhPEMc5VyjqtX/vy/Q8dxv4usAM4CFwBPvJf+wJCiJ8VQjwrhHi2yFOECxG+SZlaynIN41awQuB9SFFKBCEgiZIWwpeoiRHW5laIXF71fo0m0wlbb72dHXe9lVWj6RpNl4TWrmsIRjcShnXydJV+UeCR9POCTq9LkVs6yz1uu/HN3Hv3DzMSjnP62Ax50WVy4wZ27NlJ3IxY63dAgrWGJ574DiMTI3jp8V5hjUA4sb6GVQMUrSVDjRoIg3M5pc1pNhokgSIRnjfffIDr9l3F1OQEteE2cbOBigOSpMbkUIu9m6eIXU4tkCgEkdZID64wGFOFUUjh0Vry8z/3s+zds4c4jDHGrnNvJM4LDrzuOp557hA1rVBJxOSWHdTHx7mwNsd4O+TyhQtMT48zNZ7QSLtMNWsEicKqii1fpCXd1W7Va/QBUZCgA0UYRggREoVNFpc6HDp/ni8+9TzDjWF6eYklwokqVUdCFcot/2bgiHV2fass0VIQek+EQCvNlcUlstRw3YHrufWOuyiQxI2Yr3/lIYwLuTS/ihEBs3OzzC3MoeOYK7OXuXjhLFESsdzps2PXHp5/+hmQAdMbN3L85OlKhhlGFesFSbXR0ORZAV7iikq+JpVEuvVAGa+QgC8LUl/g8pzUWeKBY199glYhiaTAZX1q2jOkAkZVQK20xKbiOc3NL+KFIB0McDKk1CELyz3OXZ5lfmUN6yVKhYDg5InjnDpyhPkrs3jrqSVtxscnSJd6EEpuef3rmB5q8eP33MNjX3iQya3bmCkMLy7Nc36piytDvFGVkkaHlMZhnMIYTYEEKQkDjbWWT376s/zYhz5M6QSt5hCdlVXqrQbtiSG+/exTfP3J7/Doc09TRpKF3io+1lzqFXR6IWFXMzm+m4cPneVsa5yjYUTHSMqsYMsNu7nlwF6WLy0QBXXCWpO4WaPdSkhcjrYlnc4ay72CblZQGktWFHS6XXr9LjMzl+j1Ohx7+RiFhTQzqCAgzR0lEblKcAPJ1nyYQam59Nx5vvXxL7BwYpbAeBYvLfAHv3s/X/yzB7l68zTX7trHt59+BqEThkVCU2v0aIsgjIjiGq2xcWpDLZJGvarcwwBjSvCevCgIo4goSHAlpHmGkJUyq+jlCKtJwhqxDpHWI0yJ9g5sAbZEY6kHku7CIlfmVxlkJR5JPW6gnGfhyhX63bX19/urYasQgn63R1HkZOmArN8HWznfq8Ci13b8gyp67/3cX1uw/wB4aP3uZWDzX3vopvVzf9tr/D7w+wDt4QlvRUlZ9CmLNTC+0lurAoKQMs8JlMDRpbB1AqUYeMNffO4v+Jlf+HEKqGRZKmAwKKk3x5i8+05eOvoijz7yGLvveReNMOGx7zxK3xWobEBhBa2hYYJQ089SAqUJyxYuhb17dtNu3cxLrzzL4sISd9z1Rj7/0FlCrRkdGWN8eJy5mccJAkWep4RaoVBg3TqdsnK1BYDJc6SwGK2oN5oI5xl0e+yeGuF1+/cQ1xO8ktgyRypPLRKYTg8pSjYMtxmthXTTqjrPjSUINFGg6BclTsgq6KDosn37Fp55roaxDik0RVn1XL0ouXhplrgWU3ZzSgwmM1hnkXmKb1f92/3X7yX0hnI1RcWawkBzfARfwsRIk7W1DqdePs7E5DQylNRadYJXF3tJe6jB/okpHnrxHNYoFjtrOJegFOvIVY/U63WFr5yxQoh1fLPEIcAbhHfUk5hEB6Rlyr79Bzh94hTN8UmSZpMkCHjTm+5kdinn5oP72b1jC4lZpnAOWXZIlGPnlkly47jj9VeTiJz33PdOmpOTLC3Ns7CyRqvVpMgtZbDe5lIBxjjCIMY5Ty2ISKIYaW2FkdAheEukNYkKuNzvMB41MbGm5gR+UBAGESIOGfQGOGMYq9UIipJOljI52mQhS+mlhkhKukXJYHaOtZWM0xdPsry0ylVXbeOGGw6yb9cekqSGlrBz5w5yFCdPnuHaq/eyOleyffsOrHPs3rWVtob33HMXs6deQirNCydX+fa3vsbufTcRkCMldNb6JI0qhMQ5iSkdhYdAa0gr2e7o+EbOzS6y2lmlGUVMTW5kZmmFDaMjTG5tEUmPFJ5u3mdxdYU77ryLj37i8+hRDYHk4vIizaExVtIBIm4y0VK0Rkqu3TbN8nyXrePTFLU6J+ZmCLRldHqC8eEhpDfcctvdbNi0BZ00CHxAOHCoJGJhfo7JjRvZsW0n1994I9976lke/dY3We70CHVAuzXE+KZtPPPs19nevAqblwRhjFwrefzPH+HFoxO8eOEso0mDO294PY8cPsSZSxcYS5qMBW2yRheTOxpUMMDc5AgpabWGKG2Jy3Nq9RpKa5oqIDclQmqsk3gvsd7ijSEMI86evsD+fa/n1KVzLK8skzQbbNu8heGRNkFSJ89LLpy8wuUrV7jx5jewbec+5ucv4E2OF5p0kBFFITKMcQKsr5LiEFXrpjQFg0F/XUYNCCrJpnztdfo/aKEXQkx576+s370P+IEi50vAZ4VIEAizAAAgAElEQVQQHwU2AruAp/++1/POk/UHZGlaKQQqIDO2FIShp3AGFSV0+556Yij7niDQ/NnDX+MDH3wf4XDFcg7TlEak+czxb/Prf/ZJmnnOB+ww3aOvYKfHueXGq/nsXz6My1NMmSOEYXLDBk6eO81V27aT2tWqEk4hHXQYb1/FtumreebJE+zbdjPTG0cYnZzgL77yNWoIfvS97+GZ557j2eePYXNDPYzpmbIKxPaOZj0gS/sEOuLUufPs2ryL5bU5do80eNftN9DaOI1DYkxBqBRB6ShyhzUZYRAwkAP27Jlm4VQHoR0LSx3Kos/0hiFOnLlIIaIKXzoYcPilF0kaEdIFSFXiBwO0kIwkDjuYw+mCMJmAbI2wXqOUKRF1Hj1zln928+0MLnbwIw2iKEL0cmIfk3UtrXabC5cvc+TIi9x6843IOERIy8WLp2m0hysjEKBCzc4Nw7R9xoXVLloKIg0Og0PhMThf/VmclygpwFJRLl3F/9FSoxJJrywYIWfDxBif/MwDvPed78JQ4k2Jj2Kmr9rH1FUO5z3eebQaYWVlmSLLGJnYRqAEzaEhjNQoPFJruv0Fnj95EWtDktASKEnpIM0L4kDhrWGQe4IgwAnDlc4Sm9o1vClpiQAZB/Sd4cJqj+UyI80do0lETYYEYUQnHzBcOpwRDDVG8aXBWMvuoRFWBh26zpL2DEoYjpycZ7WzxoG919Ec3cDY1C60MLx46CUmh4eY3riRKIAdV21h676DfOfJZziwZzvDNYGINFo6ep01fva993J+5jhT09Ps6fX402e+RjrWJJieJHUFUWOEsfEpZJSwvNavYh5dgcTiXYAOEqSzZHmPB7/8MH/5nz/FV//8czz2ja+yadsUly/NoTwMbMpw1CINNJ1elw9++F/xbz/yAFs3K1a7mkQrirUOKlD4foe5TLMYR8x86UW+kxYoOcSv/rtfZSm9QlNKTJ4jwogkifEmI+t1semA5cVliqxHby1dD9IRrAQ9YiU4cN1u7r7jHuKRhDisMZSMc/e7b+X/eN+HWPjuCVy6TEcV6G1T67POPvPzHZZUxkraY3E5ZfvmjRS+z0pvgaTeoh7oSkLtIQxijCkRdUngDFFcJx/0Cct1b0qa4awjjCRYgfM5WsWEImFkdJh+mdNLC06cn2P6Ks0mb3jume9x51vfjkkt9TDh9KkzHHr5NO94y9uIm5KxsXGsrCJF67UYH7WxpsCIDKzEC4kUsDg/x8L8lUo1JSSlBe1FhUN5jcdrkVf+KdUwdY8Q4pIQ4qeA3xRCHBZCvATcDfwigPf+KPA54BjwVeAXvPd/b1S5c44sHaxrws06T73itXQ6HaSUpGmKc45BP0OpCryfFSXGKbJBBsbQCyW+Wec3P/kxakOet4ctdlxe46P3/w7brtpKc7iFHhSvtjvStMe5s+fZMLmRoqjcpcaUGFOSpgOKsmC106U0Emtjnj10goce/had1R6dfpeP/6ff4/HHvo1JB4SBJs1zqiacBOdIQo0MNLOdNaKoxWraZdCZ43VXTbNx84aqUlQhOqzjhcZgKSmoxRFBJAkDyVC7SaQl/X4XpTxhGGKzgjAI8KZi+iRRzNGjL1cXyXWomQoT9u7Zzcf+42/xkY/+OjfffiuFyXHekKc5vU6PS7PLHJ9dYlalRHGASfvESOpRjFKCxx57lCOHjzAzc4Vrrj2IBbLcsdLt0R4Zo90exTqHNZYgjDDlgGuv3kEYhghRIy+rnryoZElIqXGmSmUwtqxwzs7gseu8IE82yFDS06xH6EBz6vxl4vZIhftwBa6oKi8RN5FxkyBp4L2gHiZVZZTEOCVwUlKqEJvUcbmBtODzDz9M4CQ1HSJEiJCeQT+j1y0wRqJ1ddEti5K+tNg4xIURZRDySneF+TRl0Zes+JzxZhspBL4eszToooSiqzyDsuT48jwz/R420iSmZHutRkMV4BW5brB35w7uuuUWDj39HfASHda5+tprmRifoN9bxpoBYShoNWLW5i9x++uvZnJyFJIaWkbrCqOSiY1jtOoBxw8/hybjwvHTvH7vfrZt3MTn/uzL/MZvfZReXrKysoqWHgqDcFUFa4xZh+HJSqXl4bOff4R3vf8DfPz+3ycfZAjjCIKAZqvOYrcgaQ7x6c/8Ob1BiUORpQUIgQ4U4ChtiXE5RTkgLwaspIZl1WA5HuKD/+pXOHz+PDYJmVtcQsmIfp5DGOOVRsqI6elNbN+6k7179jAxOsSeXduJawk967ESzs2d4dCR5/j+s9/miSe/yuNPfIuTJ0+TO0dPOOpbR7iUXmTHZJMLl07z9luuZ9VarnQs23duJ5EJwfgEL37/OYJI4KVAryfjeO8JdIArzautEa1DwjgiCAJqzSZxvUakK99EVG+B1KhIctWWaRjkXLp4kWuveR2t1hgvHDlB2BrGOIHTkm6aMzI5zYYNG0m7XUaaQ1SotpKwFtEcHmLj+Ag1AzIrKbEYV2KKnNXVVebnF3DrA9o8r/wiP2DgvJbjtahu3v+3nL7/73j8rwG/9po/ARU6oCjzv2H8qXC7FcVxcWmB8fExAMQ6L8bjiJst/vKLD/Ghf/6j9BgQBnU++Yefop7C+3cfZMennuL5+WV+9EP/HU8++SQHbrmBft4jkjVKZwh0RBBUEiZjPZ4CpRRZXl1MpBN4JLkoWFvn6JRpii0H9LO0UqSEmmt27+DI8TOIuEkoJGVpEK6g2RhmkKUsrnWJVZMTJ4/xc+94E3f/0JtoDrcQQhKGIVjwcULXGGSkCL0n9Ba/2iFUkjLvkw66tEYm6K6sQRgy3GrSzTuYMmdsaIjjx09y7Y03oBRYAYUPmF1e46nnXuDc+YucXTpVSb2kreRaXjGwkufPnuFPv/sIP3Xvu5CdHs1miyiKaMgWB2+4jkbYoJXU17NQPcsrq7xy6ggHbzlImmcU3mFsifMek2X80/e8lSd/808onSCJYpwrCXREUZqK2CkUSrtKK+4tzhm0DoH1yEUpyfo9pBphdm6OHMFv/of/yM9+8J/gi5KcAWG9ifCghEQph3SKztoKrXod3UzoLHUoy4haVIPSUmYZ/X7Ky8dfYfeGHYQaUudxRUo9rFF6EKVHSEdRZBS2xACFsawUGSvpMh3nGColvdBVWnDnyZ3jwuIs9XabKBecW1tmKEy4knZQ0rHFx0TOUiws8VPveRN/+JUn6BnHhjhikKZcvfcqdh24gSDWdJcXaChPZ2UZqXbSbLXJ+hm1SBJSoAhQOibA411WRVPKkjjRHD9xhIOvvwlhI86cOs//9Mu/Qqs2ThAkVZ6xqpzJ4XrmgXNVa0BIh3cQKIWUAX/8wJ/xgQ/8CLUk5P7PPIBwmv7aGl946DNcffU97Nw/TeE1y/M9klq9ykZGkg761OoJ/TJHKoXwFlemeO1JkURS0xyZ4Atf/DYPf/4b/PEnP8ZaZw5bOhYXZhnx4Jyl3xkgcKx1Onzm03/EbXfewW1v+SGEqDTlidRcXlpg7vxFnv/+9/nFf/0rvG33XuYvHqW5aZSxyVFmjp2ktIZ919xELXDUXYF1NXQUMSI1FxbnmT15Gu3vJPUZyisCHVQzo9KgpcR5X6mVdDU/iqOEPMthXdpZlnr9ew2ZnZ9nw+QEUxt3sm3LHtJCMDw6ytLsRcJ6SOkcURyzefdORqa3oOOQRr0J3uDcAOUNtbiFliVmrcCnitIbCqUJvSQvMnq9Hsa49TQqX0VwCkvxX5E88o/CGeu8f5XXYq3FGPOqTrRWj5mYGKfT6RCGGuMcxpgqfSoI+dKXHkIJTaQTLs7Mcv1Ve3jz9Tdz7edPsJEWqQkZ37uXIK4xUgpkzSECuc6MMDhryPKUXjpgMBgwSHsVz92VZFlGlnUpyi5ZllMMckaH2yTS0K5HjAxHbBqLeeud1zDoztDPexRlDqIiBYZIHJJsYOkUPW7cPI1Uko9/6rP8xm99nEsXLlIMBhRZlyJLWVhc5bkXjvH1x5/m+OlLCBnS7XZR1qxzqz3OlARSEmpPqDxRFDK5YZK1Xp80zfCA9IaAjM7SDH90/yc4fOgpQp8TSkEQhARRQKPRqNSZUtOPFB/5yz8hDTT9ImM1TylMQRBKQhSDhR4rF+ZZPHcZ0oK7b7mdVrPJWq/LYmeVlbRfMVpKQ9ZZYnp8lFY9QouicptaixSSQIL3dn1Y/AOk8jo+wjnSLGN0aIRWo06rGSOEIDMlO/fuYWFpGeMFpijBFmgsyuUoZzh6+BBJFFBPYgKlGGm3WZ6/jMy6qHyAwlBIw+u27SKqB4xOjNIrSkoDham8CKXz9NKUvKxIlM5BZi0n56/g202MlJTWIAVsqQ0j8IRKMxY1iAysugJfwkKa0VQRF8qUy2tdzvf7RCNNanMz3HrVRrprHULl2Tg1zdX7d5IEMKQLGqJgvBaiZYgVGhk1CKIIpMeYkjxN0aoKOC/LDK0k3llWu13u/KG3ktWaLE4OcU5rXNigVxpyKXHr5EqAvKwuyPi/Ih8qJdcvtNBs1nnbu+8jGR7nxMV5+jJAtSc4P7fET/2LX+G3P/47JMk4Z04erwLtrUEHFdTNlBUGAikQUhIoSeBLZNHHlGv4vCDtSLqDgLf/6I8TDjUYHhpi69atKK1weOr1GAXs3LOPf/8bv8Xb3nkfca1JLaljbEAYRYyPT3H1667nmmuv5cWXj3PDnbfQ73e4tDjD+dMnuemaG7mwsMrnHnuGpfk5JmqC0UQzc/oEQ23NzlqbKIw5cfgIYS3EBZqsKIBKcqwDhdYKt+6JgSohSgWKKIgxQiC0IlSKl144xAMP/AVWKUwiCSfaTFy1CREJdE2j4xhpK1R4FMc0R4ZotRq4UGO0xDhHmZc04jZjtXGGG2MgI1AhwnhMaSmLgrKsXLlS6CqaUElkEDA0Nvqa19h/FAs96xPmHyzyxv5VG8XaSgM8MjJU9dCEBCzOWnIvWe4NuHJ5htmzV1haWGBseISNo5NcevEcHz31JBvffRPN4SZTWzZybm2OO95wB0pG4MU6RthQlhnOVUqWosgpirRq3RQ5WZbS63cZdDPSfsH73v0jfPpj/zePf/5P+I1//XN86N03cnCT5bnHH8QMFnDGYIVBuJJACrLS05eKepHxw2+6jpPnL3P09CoXlwtOv3SEufOnsfky586d4srlRQZZRDy8jfGNe2i2J6lFDbR3DLeGWFlYRgqB9BZviooZg+fqA9dgsoLlpWVsaVDCIULNwlrK7376z/lf//ePUq+PYDIoyir8eamzRLezyvTkBCYHX2/ywNOP4dOCYq2DaMQceuppThx5BZykXm/THB8jHG3gWyGdsk+nXE+vNwYkBEQMxxGf+YNP8MCnf49GHbJsgDUFHouQvsImryuCpNTrwSPV/TAKWVlZYsPkKP3BKv1ByqDboSjX+OQf/TEuiFChwpc9XJZhy4J0kLJ7zwEGmef0uVnOvnSS+QtXaMUN8jJlUPboDlbR9ZA3Te3CmQKtHL3+AGNl5V4MJUWZYY0kyyzdQU7YaHI5H7B1yxaCKx3GnGZkuE1TKna5GCMrxIWRcCXtshBBOVQnbdZYSgfEUcRZD0/lfQ67NfZsHuNfvPONnD3+PP3uCi4KqA/FxHHMwFikDHBOkgQJ1kgarRZinePjpSYMAlSZY3yJlgpZOqIwZjnPEcND/MUjT+OCOsaPIUwdZQ26lOCqmzEGIStHtaC6+DpvKMsqklMqjdYJSX2cD/zELzA1PkUj0dz99rfzwsvn0e1NXL4yz//10f+TmXPHq1g8AWWeEccx1guck3hbkjtP7hTWKUohyJ2nyEuEtljtCJpjXJzJMSKhOTKFiJq0RieQtTqN8RGMDMhERC4TsqykHPSR1jDor4CAbrdLVqZMT05zcfEirg07Nk1yZmWJQdxGNlpMTU5xqdNlLK6xcyrmTXs3cWr5JBtGRnh2ZoZvfP5bRKpB4DVBnOCkQiiF+IE7SQjieh2hK+x3GCWESYxQEdPjU3znyw/RPXuFIFWks336Z+cI0wKZ9WGwQtFfINEC5RzCFOvfl8AWBUGeorMU1+/hiwFxGHPmpRMooZjN10i14ZknH+P5Z7/LkSMvYYyh2117NSLUCcdaXmDD/+/llf/Nj6rSq1on0leOTu88ZW5wRmAKwGlkKbAywhMivSVo1PnYJz5NP12j1a5RGx3jubXTnLxuguGkSfHY82zWml6eMl2fqsK0fYlfl/WVhaHb6RJK8M6i0HgrEF5gTY5PJX4gKMoBgZM0ooDc5sytXeTyxcPs3jSMKAbY5fM89/B/RgYGQYIhAFliM0ORO3TWZ3y0wY6JFv/b//g+bt63FVWr0e32iVWdLIfl1RXeeMcbmF9d4VOf/mNeOfYyQ62EMIAkBFvmjA6NYAJPIiSNOCQOY8IggiAiUTUKUVL6CCuhvWGKX/zlX+ff/vv7We1ZdFzR8CIpaCZtmkMRjREobUHhLauDlEWbUzhLTSve/PZ72HRgO2W9JAsyykDR3NDCSM+gb0i7WWXnEAFKSoTM8DKgxCJEyf2/+zs8+pXP4IoV4lCBiHBaoqRBYqpQ5CoCC7suJwi1QnlD0RuA0ISNYaJjfY5cWmQ4rENZ0nUKRIGVJUZaSudoT0wwvWsXE9unaQyNoMOw6nEOBmSra8i+50vff7zKUS0VKT2c1ZW1HIlTYLxHeg1agrZcKbv4gWXnhnGuGR5mT63NgcYYA0pyk4H3RI0ms3nJyYUVzq2sMNfrsqwESwUslyXLzhGqhLXS011Y5EPvuY9eluLmr6C6CmUdMhVoGaKURqiQJGwQqjrN2jCJinBpAdYjAk0kPIYYVA1tM/wgJy0DHvzmIRpVAC+BKEAEKB0SxEG1eHkNBGiq2MogCGg22kihK59KYcFVO92zly8ha00WZufZNtpi82idGycMzdYEmybGGZ0cRSuPVglhEOCMxRuItUA5ibcWgcd6W1WzOgBRJSIFMgTr+b3f+ySRKjBlF29SvvW1h9FU8uRnDj3BUjFLbnrI0lF6C0FIIGKMCImc4omvf4v5mTm27tqO2raB2bUV3n/PvczNLHD84gmu3jjB6kKXt73tLnYOtdm7fQujUZuZzmX2j0xz7MolHvwvX0aoGkoqwONEiRVVOLfWMVZqIhkiQo2SmkxKPAUf++1f58lDJ3n25VNs2rKZMIwweUHa62DW1rhy8jSt1hD1VhMlFUIK1hauIIs+ythKQp6miDzDxyGrkWVq0zRLmSUQTVYXVumnnWp+kijGJifZvWc/pTUILRB4tBakRf6a19d/FAu9x1OW1SJv1nuIHocQHqUEvV5nPXbO4fEV9MlX+F/jHI9+57ts27yV5ZUlDr3wAuNDI5x559WsJSH9Cxf5xq/+BtEgYxVP0esihcAYQxBUbsqRkWG89xSlwSHIy4LClBhryXxBqnIyV5AXA574yudpFvMsHnuUg7vGaGwYprF7M2vRKs8cfoionCOwfaTxCAJkDHEk2Lx5itGhJrfdej2d1Vn27dnC1Xt2Ia1laX4BURqu3r2bI4eeYixy/Mg77mHr5kma9RpaCgKlK8yw1njvqSch1pZkvWWEKEFBLAWJdqjC0nAKehnvfeu9/NKHP0yAxRpQhAgkRWap11sIJNaDsgovAr5/4Qwr3rG4uEKn20HHgrgVUh9vIhqK/iCl0+2TWyisxdiSokhxRYkOItLCIpUiiELarRZZOuA7TzyGyVNCadFYvNVIEVS7Kvw6U9/hjEMqyVCrjRIVlRMv+PLR55hqj/Py0WPk0qONw2QFpp9j0xw3yKl5RWQ8QScnzBzLs4v0s4xu1qdfFLxw+hTd4YR+JPBKMhwkEFQhztJ7vKvaGbkpKm66CigKh7HV701YQ5HnBEKhwqAKfwkDBv0B1jh0ECJURTB1QOk9xoMMFXEQETSaXF6cw9uqXdjPBqylA8BVkXJaEccR/eUOC5dmuHD8NH/4id/nyOFjBGFMWZY47yjSlCLPsM6RGcFzJy/x9g/+S2SjhQsUuhbjpcCLCraHA601QRCgEGgdvIq7vXjx4qs76TiKkOuehzCK+do3HiX3ng//5E/zvSPHkBsmeePb3809d7+F/VdfSxIpAhWQFRkISRhGSCWqGYyUWFuF1ntrMWW1Qw+CgLIoEWgOH3mZTmHJfYAKYu5601tJS4cIEk6dOsUTjz2Oogpx12FAkS5x5LnvESiLjhRnZi4jhObymfOszC2y68B+Hv7mI/iiYO/mbVw5d4h3v/E6Zk6d5pXFHnjNGw8epC2GyQervH5iM2effplCDfCAUuu/SQIIY0QU46yBQJKENWpJg8cfeZSv3v9FRFcRJ0OMJ0M8N3uKodFhcmFJTUHhS5JawlPf/DYr52a4cPwUs2cvogQ4W1YZ0zYDb8i1ICSkJhKSjZs5v7BKP8+4fOkS6SBdd48rhHO0Wi1qtZiyNBgLOmgjgr+XLvPq8Y8CU/wDbks1RZYgKjiX92J9IJuitURrTWFztHBIC1FUo7AO3W6yODPPDVv28GJzgblHv8Hp/gp6U5sbfcBtTcmzD36BG/75z3PLG2/h0Eun8QJKawmVwq7jhQ0WQ1npup1fN/sUqLIgLSxFlPP8Ky9webbNzFLGzKFXyLpdajIg6+c4Dz/2nrt54oU5VuZ7VcpPllLDcenKPI0oYWTTGFZtQgUhS+fPo4WrBjKhZLgZMTW+gzKbwMuAPO/R6a1SDwSXlrvEQUgUOGIvKbOSu+68ndve+076/VXGnxjnp3/pF/jwz/40IqzhjCCIJA9/7UFq8deJGwWFdSAk3joEEEcRhekThxF5YegaxzOXznP4lRP8xDvejVtaZjRJaLeGUF6gwwDjAjJbMt/vMjBV37+hNa7fRTbH2bHrWoQMiIXEY4jjFlIIvvbwlxgaG2Pv3t2MjO2gKEqEc6hQo3WA9YZ2Ukdg2DA5Rl/1mJldYmxkA5cXV9Blzhc++QA//z//DLIt6E1KQq2JfcDyiTOUuSBCkbQbHD19jK3X7yF3hnRtDV2EfP7+B5mMm2TdgjTuIluaV86eY+/0NNkgII5CCmuQUYixjiK3WBnSdZau9Qil0YEAX2K9Q3qPKfMqEk7risEpA0o8qhRY5bBUC7/xcGzmEvfcchDvHOQeoxV9SoalQdQFQ/EoKyuSoIDDh14gqbd42zvuI0wirIoxtiBfWKPekJgsB2foF5bjV/rkwzuQErSX1cVSepSQf4NsKtd7zQjWVWuC8fHxV7XYznmElygV4Kzj3/3ab3L/7/0OwzsP0HKGW/Zvpz9/Drt1nO8+9Aibpqe4PJcjtVpHUDuct0ih0EFCUeR477DOI2WJVhHLy8skSa0KI9ExZRQTSUVkLa4sibTGInjfj/wEJQ7nBGEUkqd9WjXF4eUVyqzP4sIsutZgqi347oOPEEYBzz7/PAc3bWWNPlcPTTEzt8Thi/PctHWM9vgI9TDmTx7+Bvfeejcf+d7j3Lp9C7dPjjF3/izbtu6osiSqLwcHWG9QWiBkwIXTF3jgsw+wfWSK75w9yc6Jjezfu5dD506zv72Z2bIgKQxhapChobFlmjunNtCoD9EcL1FS4LTAW4N0DnwFJSPQrCzPM9Ie4enLM6w6xezcHLOzF7G5Y3FxjampBBVUDP+RiQkW5hax1jAyplgp//+GKeZvOsGAV/tRQRDQaDTp9/s41vnv1qOlqoI91nNaX3ruGD4KGWrUWT5zjrnOCv1A8kpvhVqWs/adZ0iE4bqdexhkaSWlchWjBvyrQ44fsFdgHRokwHmFtZAVhjPnl3jmmWPMnDgKRY4IEpZ0jaVkmDMm5Phlx8TWHQQNARQEPv5/mHvTMFuzsr77t9Z6pj0PNZ+hztB9eqDniabtpmVuaUBGIRiBTJBERZTkTcwb0ZgYIyrqpRFBFIMzCAEEGkHabuwB6KbnidNn7DpVp+aqPT7jGvLh2eeI7/Um9od8YF/XvmrXU3XO3rX389xr3f/7PxDgs7o7YjDIyZIEpQJsVjBKxwhPUG+02B0MyPIYP5D4tQZ+WDImnIMgjLC2jNeToqQzOhynnjvJBz/xUT78+U9z7W238TdPPsar/sU7ufRlL+bgDZfxwle+mPb+LvsuWkSrACNAFxnG5hQ6wfcdKgCFJXE5RhkC57OTZOSdNpU9h9mOU9a3++z0Y5JBQn8wYmVtjV6vRzUKqYXlyFkpn8G4YP/hi5GqpPAJJpincyhPEg/7fOepJ7joonmKol+aeDlwGnwZoa0lSxKMNRRFSuQrwrzgssOHsMKRofjkr32c7X6P+LlVRJKgXUHjyDxusUFvxmM7yJi/8jBjr2B7Yw36Yz7/h59ktJMwsBbRrLO+tclctYkVgsI6xnGKcY7CapwEX/lUPA+wpXGYEGTGoK3BYMu7LYePOstwWpcFXWuc1aXfsXOTcws8L+DZsyuYoELhfLRRePhYXWB1hi0SNI7EOLx6lf1HLqQx1cV6Hlb57GzvMNrtU8QjtnsxRkhskaGcZn3lOUweI91kASgMLte4PINzGQACtC5pxcIZQFF6DSrStCAIIqT0kEqBK+MvhVL8h5/9edqdNrkI+chn/pYHnlpm4BTXXn8de/fOA6UCW0yMuIw2SCXRRk8yjMuFBldeV0EQopQiSRIcjq//zd24IuPJh77BL/+Xn0HpBM9meNJnsDvEk37ZvZuCfmq59bbXo4TPc8+dAgcvveFaEmuoAVcvHma91ycZ9ihcxi2XXcbOzhZ//e1HOH1mwB0PPM78zCx9WXDxwjyVvGCws8vd//MvMfmYQieIQCI8QSUoE54aXpWf+cB/4hO/83sU/QHLx4/ynpe+gu+/9nLaoaQe5zx6eolf+7XfQTTrpDon3R1gB0M2Tq+y+uSzrD78DN5YUxchThdYCqy0CC+kimCkeyyvHsMaTW/QJ8tj4niMdZKd3W2Go1H5PgrwlEe328UnZ7gxphg/f6+b7/yehgoAACAASURBVI1CL0TZOkmJlALPU/i+h+dFMGk3oyhCovCUXyoZhcMJVQZJO8Gn7/gqeZwjpeCi00Oy4TZ6rs3OTRfjqxo3713koU/8Ea5ZpdC6xOIEFLocABtjznNoPVmaXQkr0FKSKonDkOkcL5gGt4cRTZaSKo/t1HhkvcHR3Ra7xQKp12GUF1x4wQEwGaZIiQKFDiJ8PyrhljhG4rCFZnp6FuH5FFpz5rkzFHlGmmWMxn2MzhgmCWe2B+wOEhCSMPDxlA9OEoYhQb3O+nhMrdHmyZMnGaYJI5fxstfdzq5OuObWGzm1s8qzm9tkxpU7FuPAgnUWWdKIqSiPhqxx/SXX8fU7v8GLb/0BXnDdTYSVKrujEdtJylpvm9XtdYajAVPNBp1qlXa9hsLRbHfYe8EljM25Im/PzbTK24RZtdvv85u/9kH+5I9+n2TUx/MsnjQIYXHGEAQhDz30EFHgUauGHNy7QBTA4sws/aD0h9l89gw2LkhGCWlR4NWqNOamac7NUl2cpzo3hfR94tNb3PmxT7O0usG46qOFYmd7h25rilQXtOpNtDbkThBrDVJhCkM19JidrqHNgNQWFFaiwgCEoDCWQucozwMpyq4iDBBGTzx0fKIgAOmwTMKdhSDG8bX7HuDJ5RXO9mLGqcZp2Bn1GcZjjLMMhmNMblFGMN+eYqbaLo3SdvqsPHeGnX45jBSTQIw8SynyGM+WpIEg8NG5QQkPR1m0PalwtvRFkVJONlNy0imnJVw0HpeDQuEQErAOZxWra5ucWj7BztYui/ML7Dz1AGKwwsGrXoivSrMuMVnUpSw7bmsnIjjnkMJDSoVSAUKoMuFKKYqiwPM8Pvnnn6PVnmVjd4das8nJU6fACpJM0240kUqgpKQVRdRbLVLhITCMhgPSLCVeXyXyPGYOzHH09EkarS5XXHyEbmeBrbFm/sCFXHz993NqZZN2YDjYbXLq9DIvara4fmqeLPOIBwM++yefIvDLbswWOSrXDFdW+c8//XPsrGzQ8ENuvvoKLrhwgYdOPsW9j93PmZVTPHN2hRdfdgNRtUlmBGMJ+IovfOLPWD36LPnZLZq54NSjT3PfXX/LMIkxQmOkg1Jqg9CGC2fm6a1voOOYJBlNYkENge+xsbVFkhcUuWGw2ydPhlxwsIFXrCCGo+ddYr83Cj0TaS/lUKQ0vDJY47DGIaWH75cnpC5smabkBE5KnDYoa3nm2ROYYcpMpcb+vuGAq7Nvzx7uSXb4yjUdxhXHybvvZrE+hafOtaulR/e5LiLw/BLWcEw4tSWiHRggH2OFJgvqfPt0n0fXupzebmJsvTQ6QpE5H012XpySjWOEl1Bp+NS6rZItkA1JsjFZmiCs5PjTxzj+zClsaqn4IcOdXYp0hDQp6ajPcDxiI3EMYo0fBKRJgs4LpCxRNy8vaKiQtdNL6DRltLnNZRddyG9/6DeY6XZ55Mkn2H/JEaL5vWzuDjBOEAQVatU6vhcAitwB/YJ33P5W/s2/+QBrZ/pUXIP52Xn2LsyzsLiHTGj6NkNEgtm5KRZn55lptoikx3S7Q2EcV1x3I7JSnUi1Lc6VYijrHKWjZ4jvVcBJ9s0vsHT6OO/7sfeQF31Cv8BTHvV6jUOHDjIaDeg2W3z92/fSrIdYq4l1wdks5clP38ldf3EHG8+cxQ4t1njgVam0WiVskFn0yPL5j36KqVGFA6qL6iWEKLI4ZzAcEKiAZqVKnMaM0pg4z8mKgjCIqFQ82q0Ke/dMkWcpQgQYY9E6x+FQvk9hTRl7l2W0O53yb7TgS4V0YiJeK4OsjTVo5bG02eMrDz7M3Y88QpIahFCsDrexUtAbDNlY22C03mPlyePsnljhka/dg9sesacxzeL8HvYc2kc1UMSjMVnuWNvqc8MLv49RptFWk2U5nu9jEKWlxCSj9+926naymSrP/yAIWF1dpVqtTpSo5QwsCBRaF1QqVT7wi7/KNddcSZZpRGWGH/vZD1LYgm6ncz6EXkC5iFCmm8lzKV+URd9aW9I8dZlrLKWkPxiRmZA3/+N/yk2vup2f/JmfY8+hixjnlqzIMIUhz3KyLOPk8Wc5deJJGo2QIh/zuc9/hsxo1laWObWxQqMaceHeA+B5PPbgt1l+7jTffOpJvnDfozx7/Czzhw9Rm9pHLCUHI59BEqNnGwxVQX/o6G/ucM9d95PnFs8L+dVf+G88fOd9eJUK73rDW1nr72DTEZFn2Du9j25jhgsPXMDivgV68ZBwoLGnNjGFZkDOq3/wNTQ6HdxUlWK2xt6rLuGKm2+k3qrjjMEKjXECHQQEY8HDn7+fKKigdEY2HqGNK0OCdMFoNKA/GDAcpqUffZFRJJvUZcpVRw487/r6PYLRu++CTUosUQgoTFo+sAIhPTy/QpaOCcMQcAib4HkeWiuihVl+5yN/wP/zX/8lHVvw6gcGnL3mOp6qhXzlYJt7Fz1mvmGpC8XC/nlGgxxnCrTJgbL4gcHhYZzDuAIrHUVhKYTGCQ9pIM/75OJStBeXgda6xPeF0ygJZUa1wBcKbSXVsIXWPoEQ3PXIMb7v0gpTU7Ns5Y52p05zugFWIMMpPOWxO+wTMCBXIb2BpjdIefrEOhfM7WGh4XOqP0IR0ow0QWHw0CRpTlCrcdG+BR577DFWH3uKSjtiqb+NKRy3zB3kwUeeYKRq5LnCyZSoWUHoAtuL+cKf3kuWGzwVkadl9JkfVbDOZ0vnTCmfRncav1sjkg7jJKZwmGyEpwT15hSXvPhqBqpKQYhvyng6KzwCP5xAYYC1KE+hhIcOIM3G/Mjbf4i3v+V1RNUKH/qtD/HQffdzZKbCsYGkP9rh4sNHSJIxWhdEDnCC54Z9Zo5KHly+g/XxNm953z9n+sAevNBH7wy5+/NfYfnxYxwK2sjQccAJ3tyd42hRRgb2emMaOz0qno/faBJEFdJcUwiNdQmtsEIURoRVn53GkHAIc7ZOpaIQhcGGktVBj+04o12tkRUpl7RqJJljYCHROQ0Z4qwBkYHnqMiQ9SJDpQFP9+HMYEChx8xMt0l0Qa1T5wUvuJSd5bN4nXlUZ5Zmq8ogAlszhGGdNCnIjKE3XCHODHv2zfHam9/GXz74BN95dr0c8BUZQnmAJFIVmKR7IUp3VGtBuZJkqZTH7NwMa5srLCzMkcUWz4smdELQuqC/NeDo2OOfvKzOdlblxtYiH/rIR7jt5bfzqc/dg/AbEOblZ1tU0TLHTIQ8QghU4CFwOJegPMc4ifE8jyiqkQ5TgpbHD7/jX5PlOYO4z/U3XM2rXvpykvGAO//6a5xd2UDhY5QjVBE2DNlc3uZlFx0i2TjN1Qcv5ZnTG3jJOq948Q18K9sk9hStxgzt9hS9s6c40LyAyy/eT7a1QxyFjI+ucPzkGYIgIqoHuJFh9cwKj/3CL1MJmqg44InTqxyoNnjm2FNcccP1rMaOL9//TV5/y6vo54bP3vMA3blpyIeMw4hf+eKnee97foQ5U0fs63LRRQfxbIBTpQ27LyVYyF2BdgolMiBg9oobcVP7WH3sMYQf0osTbJ6TCkfoJMI6xkODH+YMbZ9901XOPrvKuFYnW3/meZfY74lCLyZYtJQCoUqqJZSTcDMx7zmH18fjAVFU+ftDJKHQSc4D9zxAmr+HcbPC9CDj6G99htf9v+/kwUe+zQtvuZK7Lq/z/qJgemaaJFknGaelib8q02C8yW5H67ycGVC6LUp3brDlsBMlqJvATc4anBVQdmNYUdqQaq0JQoXThjg3+DLny/c8wk1Xv47UGJaeW2bpcYfJHRcdvoRTp5eJmiG7gx2uvPkChuMUW6RsDmJ8P2S6U0dIQz4uqNcrJTPJ5fgiwpeKmekpHnn6SZyUxFmCF4alMCk3bPa20dIQdafJR0MaSOpasTi9yB98+R52N/uEQbWk2OHwPA+lBNYV3PgDb+R3f+FnecXllzOMDUGtXqqH4xHKOYIgZHlllT03vBIpFJgChMU4EKr0wTkff4ZDWIHwyw7IcwLlKOcHheNdb3kH73rba/j65z+POX4KYXwadZ+lzR6+Z9na2eTgwkGmfcfqKCEZ5Ez5Fe77yKcQQBiU1gAmM1TGBZV6hcLk1CoR9RyurzQ5EtbJI8n2YMByoennOTOL+1EO6iqibhWuLkEXtGSFqGXpiYQTgx6Xyw5hrhkXhiknkJWQQZowLGK0lEi/7ListaWuwHN0mm3atQAlQOQFu2mKEB4f+dLd/MQbf4AFmbG6sk6rM0+cp9SnugilqNYkralZtDNUGxWshDg2DPpjCgReoRFICk/hywqve+3t3HvffWSjhMgPJvMCOyE1TCyilYeihNWsLcVAnhfQ7UyzdGaZ+em950PmcaoMmcdj1B9wNo740v0ncMkuVmzximuvQhcplVoTay2e8jHm77rjc9ftObEcTlIUBepcboBSWG3Y3hogbMrM7CxZlvPQt5/g6UeP4nmCyPdweKTaEanSL0l5inY34uBCh8UD02zsbnD5kRbxsMaJswVCTLFhDIf2ddjdXOPWV7+C8coSRS54eHmThc4sbmaaKe1hdxJGVPG6HkcffIKbrnkR937ncWqRYm5xmgUn2Dyzy18+foxLpub5vhdczNGTS1xwYZdD7RYuTbGZZrPbRDfmGSeOzaCHHFWpugxZ8VFBFRBkOp0wshShNsiwTd9mNKem2Hj0MbqNKsJJqlKQeh4mTymEw8nStt1mGulV2OxJgugA69sjrBg/7xr7PQHdlAlJ3iSdqdxtnBPVeN4E75vge81mm+FweH54e26A66SkF/mcfPw0YdAAz3GlbLD5oU+yvHKa3Pc4cuBCvvT4fUx1WhPcMqCwDgdop8s225jzyUcAxpS0v3OvwVOlWtWXEuFKXxkhLJ6cuM4JUXpX6hyDxvfKNjgejCmCKk+fidkeZ1x97ZV0qm3edNubODh9iAv3XUSn3uHa664jLRTDcUGWxHznxCpRtUIYWnb6Yzzh0wgreJ6PtBalC3wJvd4uKlBlQo02JTdcaxpRhbjIKYSlkIpRkpEPU37y3e/lYx/+OP3dFCWD0mtHl9qCPM8RssRrR2PJu9//71nZWsfGMb1+j15/B+FKz5phmlGdmiYTEQgPX7jyfRFMiow73+Kfe5zlObbIkcZSOIsJfFKriVp1+r0VllbWiDNDkluEL8jimPm5Waq1iN7uDtNhjSsaM8z6VdZ6u2xkCTvDIcPdERvbPYZxghf5eJ5EOgdW065XmFeKS8Ma+/oZN6om7+gc4l9OHeHV44jZ7THDUY81lVLogopU1KQgbAWo2YC8G/BMvFUKnVRIy69SC8vdb6Q8Kp6PLnIEjmoY4nSO7zSH9k7je5aiyIlTQ1LkJIXhmmsv5ZN3fJ2l7T6hH3H02WcZZTmqUaXZbSB9S7UeEVZCrFKk2pJpx2g8YmPQp9NskNsA0WxgCsugv8VLbr2FW2++hTweo4Q6LwQ8B9lYa0uKZpFgbD5h5ABIuu3Z8/Rm585ZR3vkdkAum3zt4SWuv7jNv3jL5bz55S/h8fu/QLNZpfAMQkm0c2i/7NzOLRbnFLme8srNmNZEYfT3Nm5JkuCHFbY2dylyw3R7hsCrIEVIkgPSBxWUAeZWIMYxi80WdeVx+uwqz5wZsLGRs94f8tzWMhvZOmGa8YK5NvujgmTY42yc8vG/vpfHixSsx3h1HdvbZWu0Ru4ZotTn0MJeBskuski57OCl1EeOlZ0xdb/LpfVZgkbE+saQqFXnnm89Tq2zgMgTpts+K2dOsb66yw23vpLx7i5mZ8TKxhb93g697R3SeIQzhvF4DEKhZBWjDO35S2i0pzl1+hkiqTDDITXPIwh9bG5KDx4hSntvC66w7I5SYuVRqSX85E+97nnX2O+JHT2AsQVCiAkbwJaRZ47JMTdhyJRqvGazSa/Xo9FoTJSzAQhLUa/z/v/2Qd55YA/za5s0PUdvO0YtKaoZeKLClx66i5deeysPP/gY0ooJXOQwJsd6AUJSDox0gfQkQpS7czk5UYMgoN8bUO0EJc97gmtqV140RmsQJSxkcQRCASOEatHqBvzGn9/Bu19zLTPNKnPXzbDqL2GbjkbXxyaSgdlm+2yPnd0RnmdIM81VF+6nt32as7uGTq1D5BsKBFKAKQzK88hdwdrWOjrPKKzB93wUkoXuLKeWn8PGOQ3fpxlWuOcrd6MLQW4UekK1FEWB8iU6tSV7Qyowjo6sM3aGV77r3Tz+hS+y0+vRbDbBc/QGI05t9Hjnj/4Um4UHpig1CjLEw+J0gVLq/IJsJxCO8iROazLhKHxw2lJVgrov+OpXv4HIcvK8IKrV2BokzE7N09vcZWF6hmg3xWQZql6lo0Lmwr1oZ8l8jXHQJKAShUhrKfKYVrNKO2wjFKxtr9PtzjJVazBXqbOzu02jVWOYZ7zEb3Cou0ihDZ/fPsWo4RE0q7SLiEBYhu2AzSjkq0+c4araPJGnUHnBdL1BYTTjPCeX0A48hlZTDQO6e5tUQ5DSZ7uniZ2kcArp+lw1Y/mbtR0+98AKNx1o0+02GcZnIAgxUhBKi8pL/3UnfBCWldVN+v1t9i/sJbWCC657OSkeWEGeWzY3tqlWq9z+Az9Ao9FEW0OaJDzy+GNsbm7hB1EZLRmUM4dyhODKTYOUnF1bYX5+vrwWlSp9+l2duiooxps8dNTx7JlNWnVFvz8kszmhriFliBUWYSiH/ZNFXQgxwe4nSlxr2dreJgp9qpUqw2EPL/DY7feoRFWEFJw9s4wflEZinicxplykRk4hleVFnQWybJfTJ5cQFUk4HdIOFU+vjDg+0lQHI977rtfy4IN3cfLEWW5bvJxadYpksMzVlx7hue0R3zy7zmUHFrnpyiupCMnDJ49hbMHu9jqBDPjsfV8ndQGN0ND2Nd3pBXZTGDtLRW8z1Zjjtz93Nz9829Wc3j6NKizH1paYnd3H9Oxhcj0k3t6hKFrMT8+hRUAQhrQaNWQQEPsRM3OHcUGFODW88fX/jE//0W+xePhi6oOUY+OtSaJZ6fxqc4P0AA8cOcM4YXbPC/j13/zL511fn4975X4hxF1CiKeFEE8JId43Od4VQvy1EOLY5GtnclwIIX5zEhD+uBDi2n/wVQiH5/0d+d85ge/5ZVGY4I1SSnCTzEUM9XoVYwo8T2BMgXAa30pG/Zx7WwVx4MjQNKoh1wwVa7/yKb553/2Mtza44tJL0HlWjr2NQwJFoc+72FlbJtbHcUyWlUKu8oWVJmtJkoLwcc7DOg8hApzz0VaWdDBd4E06giTO6DabqIrHdLWOrsEzx1Y5deIssoioRh3a3Wk8FSJ1gEslG2dXaFbLvNZkNKThW6QQbI8SnDQYMyozOK3AUMr4H3viCXKbTYafevJ+WTqdNnlWMOXXuWpujsfvvBu0hxM+eZaDzUs3SZ2RZSX3OQgCRCGQ0sNULUqG5NT58jfvRyqP0XDI2toq67s7vPYtb2M7cygsnnQU1mAsCBxqEmD83Re9lBJNWQiyPKGIh9DrU+/HfPg9P8b4iTWWTpzi0MEDmHjIztYuypdUfUmRjOhOt7BC00wNNeMIJPi+oOJBO5B0w4hAawIcjUpEq9rAhT4bwz7NZpNWpUrDD7FZjudXIHY0jE9d+vRGPbTV3CQ6zMYWeiO0J4kadXzfEfkGPVfj4fEqm9kAnSUUWiMchJ6H53sll8CCMzmNagjCUBhNrMHphFwrXnXLFZxYHUNY4+lnV6h09rKx1WdjfZX+YMwgyRFhSJLFxNmQnd0Nziw/RzweMDs3hZ9atlKNqM8zHpUDYj+M8MOQTGsGgwGbmxtsb64zHPa4/pqreN1rbqfTaE7wchATyqM2Buc0Ujo6nQ7r6+vnIRfP84kjhyQkiw0vmFnj3/7zy7n96v1ceaCKtY5UFeepprnIzntUKVV2l0KU7JyyW8ipRgH1eh0pBc16vRweO0OepyTJGCcsWZFibE6aJZg8wemUhhBIa5iZahEXY/yoQjtooJKAP3voJGk25tWHWrzyliv44B//IWO6/NN3vIPR6mlyl/HqWy9gfzCkFcbcdtWVPP6dR7njvq9xZvsMZjSmaRXpYMwVV1/LNS+4ksumZrj00IX4Xh2nLLmfI+tTnB0qmq0GUwcWuPfZVb55qs/NN97CoYUZCmG58eWvQZPSrvtUg4Cg4qN8BVIxGCf0hmO6swcQqgpGUlhFZX4/nb2LFNrhEIzSHB+JOIckRIpcaHbjASrwOH7sBGvLJ5jqHP6/V+gBTRkV+ALgRcCPTULAfxq40zl3BLhz8j3Aqyl96I8A76FMo/o/31w5+JFSlrF8wpvsOOwEi55we6WHtSWueC5Kz1pKzq4UGKmp1Zrc/+RRlt95M7mSzPsVRjbj+qTGVXcuUZnrsn//3jK42dhygCoE0gEYtCkLXskFLs2etNYgmIgqykVBKlUyf5BlDiRlOlAYlk544zQmrJRYaVSp021GJGlCqxJyanWTmak97MQDxragV6Sk5PTTIcdPnWKqO0UYKJT0CSSMhzFB1ECGPoHyKIQkS8o83EJrPKXIbUGoPHSRo4Qj8BWqACcUoyLlmv2LfPZ3/wfFOKbQFjNRoXpOTFgiBuEcThvCSrVkTiAxUiKswriQH//Az/Pgk0/z3Jll8sJy0VXXIhtNfuO//zbWGiaSk9LYCll2ZxK8yULtpEVaUZ7QQqIomHZw8ktf4WPvez/VrT7jtW32LsywfPY5ZtpdGvU6phgz123S7dRRkaA6M00WgosURlo84ah4Hr4U4IMflDTUelTFR9Hb2MLFOQ3pYdOYzOaMlCstFqoV0iIHbfFyg0hSvDTnGt3iUOzTT1NSY/GbFabrTaqdCnlbMBIFgR/ieQKfUoTmC4dA4JRHGJUXuDwXjy7KtC7rCqY7db59bIuF/QeRXoUrXngTURDSqTd49ugJTi2d5ZkTp1laWeHYsyd46KGHWVldpdWo0/AEUaXJS1/zNnKn+PIX/opGq4UzYLTFFhqHI0mTElLRBYNBD2sKrr/2am564bVUw5A0GWFtgRIlK8i4Urlaq1VJ4xQpFXmeU88FTmiUn7LWb/HRP3yMT9x7irseH5BbQVgorBEIZwmNd35TJBB4XgnHlveSUumHHrnOSLKUJMvxvAApJMZq9u5dYN/eWfbMz3D40H7mptvMz01Rq4a0GhHTzRrP7ZzlzOY6M4v72RglLPV3+KGX3cgNV1xOnhoWoio3HZoj1z3ueegpnj67TW8nQed1Tp4+zcrOGkvLa7Q7i1xyyY0USUyjXTC/7zDPbKZ88d772Fw/w1yrSjbc4cjCPMUop7+6xlsvv5zNs1tok+LpATs7u1Sn9nDy7Fm+/0U3ExtNr7BMze2hXg1pVcuwceVbji+fYP7AJRw48iK8oIPOM2yuCDwf7cObfuTdvOL2N5CmmhBJVuRoZwmDgEKX2QZBELG+sc2efXtZ3jrOwyefeB7lu7w9H5viVcq4QJxzQyHEM5Q5sK8HXjL5tU8AdwP/fnL8D105gfumEKL9/wkq+f97jjJE2hikdAhKmERJUQpPRDnMM9ZOBrTF+ROqKDTOSSpCYmSGFSGdcZ1jc22+88ZD3L4sad75NMYkLFRCZj/5KNM/7pWD1sCnyMtU98AL0cZO8EwoLAhrSyc7W2Y9IixCKNIiA2tK6ASHdWVXYI1FSovF0Wl1EDpBhpYz6zt0GlX6aUxbthm6TY4tLbN/scrSaYdSPpIET1rmZ2ZpN2sUNmNraYN2p82p7RiERAmIM4cLApTOGY9TKrU6w3SMlgaTgTEKZSGoNkiNZri9w7z0+dgv/GeSQVzyqylFUto5EAq0xeYapSTO2tLTHcjzlMBX2GqZB4DX4t0f+EWK3S0++T8+TjSw/Mmv/DZ3fPVv+N3f/hi/93sf5aYX3VBivCiU52HRBPiUTacj12M6CJ79+r2sf/wz7KlVGRY9pl3Gqd0Re2+6inVvTGXc56njp7jogsMc2D+Dn6RsrW2wPcqwCeyv1FBK4WlKo7eJ/UBFeKiwFObEhebE0nPMd2fZt3cvetzHUwKTabyohiUnzzP8wMMKS5wmBFGIMOAby35XYWU8RNY9hmlpE7BvukUlUGyc3qLpDNOFT+EpAjx8lyOVRhnB9L5ZwkqEQzMej4mzgrGuMkw2eObUkDgLCKSFKKK250Ku/P7X8fS37mamVjDe3WJ709DtdvFCj/ZUl0roMVer8dz6Ore+4eX0aNDp1vj05z5DtTtHYEvvIDER1iR5gjUwjjOMgTBMUEpRqwa8+EXXI6TArwScXlrhiSeewuaglE/oBed1LcbkWJeTKkEuqgwHYy7rdPjQ+17OL/zcH/BoPqKb1xhECoVBKw1GIFypGbN6QmAQJbnBDwOsKWmdgafACXwfPCGxRUqrHrG21iMMaxSFphqGeIHP1s4uW70hC3PTfGd7F1Wb4c5Hn0Y6RSI9Tp5d4+b9s3xjuWB30CPKM+brXe578hEO7V1kORuwfnQDkziW04R/9oOv5uypp9F6QLfRJCgivvLtv2XDs7yo4tgZpWSdMYPekK2tmPb0FEeqHse2jlKtW76zvsGtL3kpr3/Dazh88cXsxgW1eotkXGCFx6Frb2fpiW+w0V9jX7jAwuJl1PYIbBSSRQqyHKkiKJOIqUZ10kzh2hH/8ifeT7fd4fVv+kGaUQUfSRhE5HnOKBnhpGUn6bPZK1BTwf+9Qv/dNyHEQeAa4FvA3HcV7zVgbvJ4L3Dmu/7ZuYDw/32hLz0QSjzSOpwtEDik9L+L/SJwTmMnuDqA7/vs7vbodqcYBZLAKYQ2FNKn1od6a4q7aznf90jEnt4Y3R/hgjZ6d0hYjdCZRHiKvMjw/SolhKwAXc4FnMFO7BHAYUw5eJV4FJkGeY4KKrDGlhRRFyPyFCULrLH04oRknGCcZs/CPMsbuwRC8fWHHuYdB26iXvepVWtAwHg0JgxCjewkrwAAIABJREFUIt8jK5Ek0jwjiCosr6zRiCoMTYGKZRnmoS3BMKFTC4hdQS9J8FVEKALCWhXfGWx/mzs+8vsICTp35wQL5fs6wcyNzctPwZWt4zkLYeUHOFKqNZ8P/cqv8RM//lNkNsQ2p7j5tW/mU3/0GaLGNOMc9s7Oct1VV3HmuSX2LC4ihaBwDmUduWdQ2icUVRie4qu/+FuI3SGhHjNOLdNeiItTokqFne1tmInYXt9CCZ9ef8xZaZmqSS676hKefvgogyxn0zgWaq3SEE1rnDHIsn1AYEgzS384YHp6inqlQjoeEClFnmuCMCIZp/iipPVCGc0W+hG60CgHWZYjnOOCWo1ni4R2rUoyTmk1quApQHDy2BaZa1BTEYmxFLY8J/vJDvs7e3Dk5HmK1pqxhs1hwkUXXsnK+gjh12m02wx219kZFYTdg9z62rfx5F2fxTMJXb9BtVUlalaoSUXFCzi6fIqXvfVfkwUNpJUcP36MWrNZwncTa+8gKLtIrTVGa0yh0dLDWTAYpO+T6axkTvVT9szMsP+Vr6DINX/11a+hlMQKx8bGGt2paaypokxKaDIKKzn67A4/+h/+gmrnAJXxWcaRJXCQW4d2EiFNicm7UilrjDlvXqcLU85sLGhT4PsBSRwTBj5z+2ZIkpTBYMDCvimSPMcHhPBxRhBFdZZXt2g1ajRqVYYOBv1e6S9jPPY3AtrVEIqUKy++mC8+9iRvfsVtfGfpOHurHl4nYG2n4E0HLucr936Rbr3Ggek5Tq5uccuFl7E8Ps3+fbN0lU8mNkhT8Kc6rC4/x2WXXcNNN9zCLS98Me9tVFFhlTiO8VRprxz5kixLUEpSGMvu2DB75DoORBYnIlLZoNJsEhcDbK4RTp6vfEHgo7Um05rQ96k0GozimL/480/z5Tu+zF98/jNEQUhUiUgLj7g/Ji5GVL2cmXr0vGv382bdCCHqwGeAn3TODf5eoS5378/feIG/Hw5udQHYiWeGKH23Jy0fosSnEef++7LIKyUR0tLtthmNBngIEl36ixRKsHF2l53BgLSwPP7yReLZOtNhhFM5G8+epNVuEwbBuRxvtMnPJ+5obdDGlHCEsxOWwLnB8N/RxwSUOL/O8UQB2ZCOZ5mueUzVKxTpmGqlTEqqRBWsLhglPRa6U+SipBQm4zFaZ1gDEg9PSoJAYZ1mfX0dYQ1FPGDvbJtmraQPWgyFM4yTEa7IuGrvPq6st7io22G6XqHdbYI2+GnKr/+XX6C/u0USp3+PAXNuOHaO+niOJVFCZbbE+Y1ld2udf/u+94I27K5tIHJNp9Hl2Omz3P+th/nyV/6aIAp5+w/9ENsbW7SaTcb9ETiHtA6MKIMUnCXXCd/69Q8zsxvTTAtcpNiROSOriayPKzIyndLpNmhEHvv2zLK8dAbrBEoqTpw+wdXXXklUqyACj61+j1ESkxd6Ik6yDJOY/nCEyXIOzC1Qtx6Rs/gCzAQ7LvMMyvt5mT5laLmvfDKj8YXEFDm1zFGvVXHSUWuE2DymWVHMTdWpLNQ4SZ/NZMDYOpRosDXKGXkgRYZ1KblOSbKCQZxy9fXXQVAhMwovCJHK0mjVuOuuu/GExYiAmRfcxCBTdLptZpoNZoMqbRdiU8WNr3sbqepSUCFQio999GOEXoQw7vziXM5ZSkZLaRDoyPOMLMsx2qGNxljQxjEcjknjmPGwjy4S3vCG1/DCG67DOcNUt02WjHDEWKnQfoAMPazY4off+kJaQczlFx/AS3VJRxAWIcpzylhDXhTlZwJoW9pHAARhgNWTa0c4glCwuH+BWhQxHAxBhhw/fZLhKObU6SWcE6yub+Aryf6FecLQZzgeszsaQlSh1W5RazT46tOnyTUsLC7y4OmzLE7Ps7K7wqKS+Naws7rNK44ssnrym9x29UUMtntsYAnDGvedOcsmA6Zyx75WjamhY7CzyY23v4Y/u+Pr/NTP/SrXvvQ2elj6owFClX4+WW7QGvIswxpDJKEiS6HaKLdsDkDLCCNzxtk2npMoXSHwfCQQBj5FmpHGMQECoW3p/6Q8kqzgpltezEc//DtU/BAzSgmFQmSaufY0F+y9kEcee/p519vnVeiFED5lkf8T59z/nBxeF0IsTH6+AGxMjj+vgHDn3O865653zl0v5MRYbOINkpsc6Ze+Lqr0GSqHRyiEACEF1pbDokLnBIGPA2pECGGpBhHPPvAUaxtrDKXmaDHi7gtC5q64hJmwyubx4wgPTJ5jrMMCYRAC5YVybuIv5aSwixI+Ut5kkZGCOI4p8pzI96goTcvX3Hj1YbaWTlANJJtbq2hbECcplUrEdVdeydx0h6ov8JShWq2ztdZn0B/irMXpUkLunCXJUobDiUhIKaYbIYfmp1icn6VIUnaSEX5YIcst/VFM3Un+8Stu420vfQnfd8lFHJju0nCWq/YfpOr5eLVayXiZrJUlza708Tk3PCvrfakHCIJS1r90+iRLx0/z3n/1Pt725rfirGBnbZNf/6UP8rGP/C5aKYZ5jI7HvOmNP0ihcyqVCkpJxuMxfvlkSO2wNqZbEURntpFagHFEsaU6MAij6PuA0HRn2tgi56L9B5Bas2dumnQ0oNtqU6vUSbPSLVM7Q1SJqEQVIt+jWWtQazRotWpMtVvMNptUjKOmBMGE5pkmCYEfEoUhtTDE9z2sLSZe7QIhQElF7jSFztHWYfoxspeVsnRnqVUCAmeYqoUszLVoHZhiK0hI0CwlCWeLhMNHDuMrh3WSUepIjOTA4QvJdVF+DkoRRt5kgXfcd9+9hJ7ACY/mvit410/8R544ucIoMQgbUbga9z9+AtE8gAxCfKWohRVOHl+iyBzehBE2uRbLvzVNz3/WUJIIpJTYArIsI880ngqQUhH4Pr4vGQyHKCV41cteijU5nhS41OCSHFlkODTW7/Cnn3uKkzuaJ58+QVZVGGHKTjsvfY2cFGjnSpM4KZEOQs8nz3PSJANP4YQoNxM4tjdW2drcJEtzpCvnRqPRGGMMS2fOUK032d3eIB6WA/BK4COsBm1whWZp9TRDW+OJ9V2++sijrK33iDpVLqxXWZxu4ioddLjIyXGf+v7LOdovuOCCBYLBgI0kpd6UvOziRRidpu8GXHDlQX7s5z/AW97+TxgXggSfkVDktTrCGEIliYKQRqWKLQoqvk+jWkE4Q+RLnNVEYchwOCiRCeETKh9PgZQ51hZ4nmQ8GpEkCUpKlBF4KIb9AbnVWOWQvmI0HvOBn/6P/Kef/VluvOo6dlc2qNqArGfYu3Do+ZTv8rw4t6P73/5CuYX9BLDjnPvJ7zr+K8C2c+6XhBA/DXSdc/9OCPEa4MeB24Ebgd90zr3w//Qcnl9xew/fgJJhiQlbjRQO50xpHSpUyW1HTbJFy11DodMygCTL6Y0HTM8sIk2MpyR6sMENr7uMnX01nk6GDLc2uXxumn/0HY3Kpvjlk08S5A0SnVOkKcoL8DxLUZjzJkLOlNx56yyjUQ9PlswRJT1qrSpHDh+CIuVn/t17qHkFv/xff45GZZqdYY+oXmFrp89zSzHonD/+77/BnX/7V/zlX32RfTMLDHZ2uW6xzdVXH0F5MNWZIYoCgkgwSguSOOUb33yUNJPsDkfMNhf48Q99iNe99l2s5GOahSUII3bHYw7Pd/mp9/8o84cP0GzPE6mIoqXond3k4pn9iECSYvGtRAl5nt98TnRWiow0xhY4NDv9bdqdFsIKsswikBMmkqXwFXo45ofe/k5spQ55zpwK+ONPfowk14TVqPQ4ERLrT0AvDW0v5XNv/1csVFqllNvkBB4MBwOstVSqVZbQeBft5ZtPf5sD+xY5dnKV+QMLtBs+U7UGp04vM9ods8+vUbMStztiLqxTlR6B8gjCgKJIqQUVlBDEOiMXllZYpZyYC6pRRD7Z9RbWlti+s3jSJ/RDsrwgzxKyUCKMwqaWLU/zpZVjXHrjtURNReBLfKkorKPIDWs725zdHrJybI0LL1pkek+DJDOsjjV+Y47U+RTKZ9wf4XJDPx7hV3xMYfCdR7Ud8qY3vJlLL7iQ+XajHFQHPguNiDNnTrDnogvRMiAo6qSMwBV8+CMf5+Enj+IF1XJD4JUsF2sd9XqNOE5AwObODoHnMd2dol6JMNpQiJLNJgSlkEtYpHI4FZZdQJER+AGB73PfAw/Q201KXYYHeZEiDfyjN97CytGz3HX8JKGKQGtC60idwOIYJwmhHxIoDztJSBuORzSbTbwgIEkSQk9RrwgoegSez05vTKc9Q2+4gzamtJPAY1RkBMIxv2eWzc1NmvUmYVBhfXOHZqOBRqMiHzMquGDG58bZFo+s7rC92eONN93Ko0sPceslRwisx99+8wlqjTpzcx1Or25SmZljY7fPxbMN1paWeDDNuf+RbzNYGRF1mqSjlEq9Rh4PcHlGkg5Z2H8Bo9wS+V4JzSGgyHFag1LEaUa9WqG/u4nyQ2r1xmTDqAj8sGRr5eVw2vPUeQqqkopUFxS2oCJge3Wd3SRl8dAhojBCpxnDcZ9Gq4ZfaSEoaLYXHnLOXf8PFfrns6O/GXgH8DIhxKOT++3ALwGvFEIcA14x+R7gDuAkcBz4GPCj/9ATWOco8hRPujJeyzpSa7HWwyInMEopnxcocAFGO4SVKFFOrputKfqby0RWkUUtnAyofW2J7nfWmAk8DuzZR33PDPe8ZJHlacHemWlMSJnBKUpBi9GitEt2AvLyRGNinyylAidL7NHkkIF0lr/4499nqlrhM5/+LLNTB+kNM9KhReXQbtTQIif0PH7vU39KpzPDVVdeSzwaU/cjpqfnCHTI7NQMkhSFRoYeoYiQqsrM4gyyIqn6EdOtJjUb0j4yS6hjnJGMrMEqRSE0K0tLRKKGLxyjtIfqZ+zpTkEkyf8XdW8erGl6lvf9nuVdv+2svXdPz/T0jGbRSMMgYS2AJYFYDGIRAScEKJaUqcIyi8EJ4MpS/GOnUpUQgyEk2A4CG9sYMLLFYktoR0igBWkWzdazdZ/us37ruz1b/njec3ogiRlXJVXyO9XVXTN9znzn+973ee7nvq/rd9kYvWe9xUtPUOHkl5dx+CxVwLoWKTTb2+dI9QgtUjQyDqWFRgmJRCKlRaqOUZGRKMelOzdYNoYsKxAovASniNWZlaxsx+x97+eUXsdUU1y9QNoO3xgSqfE+zj9yKVgc3eDSmTOoYsD2ULP/xPPs7jqefu6AZm5o6xaVF6yA4WhMKgQqEchcohBIF2c+nTWRrS4UMngCHQhH1TQ0GlToSAmoTON1vMeskKy6DpEkYGwkS6awPRjyusl55n/0JDvP7THrDFYYcm8xynPp3Cb3XlinmMCFuy7gkwlHxXnC2h206ZhVG2jnTdz8JCRak8gEgaALHdpr/sU//w10IjE+yhWVSviFX3k3N+uWoAfYTtNRoYUkIPnQhz9KKlNwllRFR7nHkeaauq1AeoT0SByWiHfogsXaDmdtFByYDuM8nXN0Bqb7c2zraFvPqjJM5y33330fs+lhDOlpDDJIRHC8+198iE88cZ0ypNC3WZvgCTbSM1MRCLaltTUnzB0RqKslwVjyRDMaS5azKWjBhVLx1nu3eeCi5qEzYx6+sMmrtgdcGsM9GwWnxyn1rX0euOMqmZZ40bA2yVDasTYsWExnWOF56sYRnz2s+ZZ77+Hbv+JhPnPt01ye3MmvfuBP+Y0P/hFveP3DbE8ksoiGwpaUJ27t8sTODuloyC+9+x/RHLRYYyKUT0W8cGRiSdJsFGcf3YqdnRdpbEuZaiAmUqlEY41BCM1kbRvTeZIk79PDUrrlAmctSsV8De89q9WK5WxO3dS0TYcWgmvXnkYqyantU8gAy9mMuqkpixEuaJaLOfPZK3fGvhLVzUc4boz/36+3/T/8/QD80Ct+BfGr4o1kDSDRWcy6PO6fH7tiY/RfQMpj8Fl0/WmtEb3kseksrmpIhwNkC/d95DrrD1/lKe3Z273J6bsf4Jf9Y3zDQ4+w9/5P04oA1kOhccYiECfgJeciDvh23J1HkSCloO1aHrjnKqt6xW/881+HRLOqKq7vvECR5kw2L3Jr/4BgJSpLWM0r0mLIxXOXqecrZvtTinFKZ1eU+WmKYo3gAh0CkhVrTnP/qYtUOzMWvkWujThaLvi6t301v/j4FzCOk+P5fLbk8cee4K++7evj4iqiWskaz2K5pCyKE6jVy3vyx7+HcBtT4KxFa4Xz7oROGEI0qymVoIJjZ2+frc1tZo2lqw0PPPBqTGfJ1jLqtkEIFTNNnUfJlEwJPv3xP0aajkRpdJJiTId3LqYdOUfbNGwX6yym+2TjAQeHR3zZX/1yPvrhP+b6zvPcc/EcFS1n7zhNszdjSEHiQXtij9rEllPIUoKPg/Eoi3LgYsBDUNAIge48Oi9pVh3CS3BxLmSsoTOGLC8hSGzXgRakQnKwbEnH29y8XrNz61muPHAnOhGsp3GepNMBdz38Rp5rBFVtcCogkozZ0QqtE4QIuNCitaYoS4yNBkEtdQy6MZbFqkIFz2Aw4tbBS3zjO9/Br//6v+MnfvJ/4dd+7R8zGnoKlaKVIs1zmrYlL8qI4Qj0CjF/cu8662NlnCiauqZMs/5EetttLqXA+4j8VlJjne3vK4FWCbZrOH/+PEfz5YnPRAhIUk1eZsyXS4KOmnwlJU3TnjhfVe9qF6q/xwQkecqqrhgMhiwPK8o04fym4j97+1dyx5kt9KhkGCSTtU0W+3s08xlHs4q9RcNzL93ktz/wMURRkg3XsDaQZIG1UcGtXUe9WrIxGbDsLDcPD1FYloeHfOix62xduYuRaPn4C9c4OFyw+Nw1JmdPc5d03Ls24vLGGgeLKecv3cmLB0dcPnsBa2Jb2DlLmiTQzxlcL7MeDAaYpuHG0YzTp89ExIMS5EWG0hLnFGkezV8gaOo6fjY9+/6YmiuEQCU6+g3w6CDY2lxnPl9x6eJFmqo9MYamacKyqZFC4Kx7xSvsF4UzNviA9Y7WGhKp8Ca+LKXhWO2S9eyW4DsCCi0lRkQdu7WxSlLDEavOklUdiwQ+Uy95cFgw+aUPMMsCO996Dx+/9iwH13f5pm/4Wn7//Z9CW08IDm05QR+o3t0XF8M4DyBE1673USvddSt+5Pt+gFsHN7l06jQfe+pxnnvmRVaNY2NrzFNPX2P71GkGiaQoCy6dvsQXnn+J7aLkR378p/nZn/8HbF25wvLa4wzKAUKmNO0UnQ9puinL9oi9w4rhxphuOuDt3/MDHDUtd22fZb5cIPWE4Dxb4wnB1Xz6M4/x5Oc/xx1X78EriRhp0jIhSzPato3uYQJd10VDlLi9d0sp8CL2qAkC5z1pkvZy1lieCyFomoZbOzc52D9ib3dKUo4QKKo2kCQa4yxBSdSxMco72rblwnrJ7z36NBfEKGq9Mbj+fbR1R0BEkmZnGdSCrnBcuXiGD37kQ5BlvP71r+X6s89w94NXWZiGbZnQ3FjivMIJxVo5pG5bOm8IzlIOhlhrMN7ibIckJ9USikib9AiC1AQJqUhpuppWC27s3GJ7a4vOdsznc9bGa7gg6Jqaz+iWLwwTkkpTTTs++fnn2Jvuc//mkLsu30maj+nkGsbColnglcOvKoTUOOMQ3iOV4ODwkI2tTdo+Bs44QyELRpMJ/+79H+TbvuEbQWV813f9HbLRWZJ8je2tt/KDf+P/wIdH+d3f+WVu7t9iMlmnM5Km7sjSiAsBRQjHJkPFYn5EotN48lUJzsVsWAF0XXeCu5BSnQzpu0WHlBGB7XrJ5tWrV/nYxz+B7YuqICTGNyyWcYNxLiAROB9nAcVwgAi3lUBNvwBGJrYkK7OY5tZ6sjDjp37ob3FxfcggL/BSk6xdxHSOzfEmoq044wUPLvfxj9zHGx+6j3/7hx/iT5/ZYa8RnF7fZDZbsqwNOiuojcTIgvc9+xyvOr1N6xOG587y4eu3mKSC4nDFmXxIt3GavWmNczdw0vL4izvc/aY3kFcJZwYTaNpoREsTlnVNUsT3Ix1O4tAwdEgkucooxxlHRwf4YCnLkuGwJMtSmrZjOBnhnMWYlkTJPpe6OzGTHeduWCnQJjDJEnZeuEYxKdg6dzoqqIwh6yXDIYQoVvGSNHnl8sovCtYNRCdl8CYGffhoZHLe9RWK6nc+T5pmaK1u26v7oWIIgQSNLnPadkGRlRyVOTshQF3zyD7c/6uf5XRaIHzg4vlz2LajCo6gZBwcKRGdrSJyXHyIUXm+fx0nvJYQCN6xPppw6/oNZosln//cYxzNK7J8wv7BHJllPP3MNUZDjfcdjz72KBBYW1tnd/+As+cu8Ia3fivGBarlilU9x4oK2y7QaYbYvIe3f/d/w7f+jZ/he3/4RzEIPvqxP4YQmIyHhD6VS0lB03lu7O1R5AXL+Zymauna7kR9ESFlijzPb7OBXsYKOlY7CSEjeIzbvBLxMtytMYZnnnyKP/7kp1hWHc7GauQP3vchBmUZqzgp+2F5HPhKKfCzQ5IObGgxPrbnQj8cTrSOrHQh2VsuCF4wTgpOjQdc3Ngkbzyf/ZM/RaU5xji2NzZIywJRahrlqBV01kT8hAikWXYSDaekIk0zZplhv7TM2hZbWyoC1arGKwHBxyF/ktBaw7LuWK5akp5jo6J/n9eOT6OEZx461HCEDwlltsFzU8FKrXFkEjql6UTA+ggUSxKFUpBmCpSlsyZ6FPr7SApBnub9yVFy/foOxhn+/t/7+7zlbW8lS85z39Wvploq9g6u803veDu//I9/hY9+5I8wJnKWsjyJ8tL+cz02KHVdR900J8ZDhUQGQddZOtOxt7fHdDql6wy7u7sYY05mN2maYW0kUEqlaJoGYzu8dxG57KN00nQdzse0pKhe6kBGuesxDiS4mMbVNk2MM1QqVq5a4aVhvJYQ6gWd9SxbT7ACWc1JfUOqHEoHslIjT52B8Qb3XrrEd7/jHZwdDyARZMWY3YMjHIrOCa7v7nJjOudoEXhqZ8rUJfzR7nWaINgzgtF4myMzY/rSS5xa32YhM6arwLlz9/DIW96G9SC0pu1aTGeifNe5foE2J67fNE1PwlWMtZR5TpFmWBOd0oQY4SgArSSpjoErx5vfcaGl+/s/zzNGowHNaoGWgZ0bNyiKIdYGVqsVRVFEN3nbkkhJqtR/VJX+RbPQex+zNn0IeGxcTHtIWPDH6oFAsOA7f0K71ImKIQ9CkDmJFZ7BWolrGwyaShfkQmJDy0Ntxvn3fpbxqGSVWGy1wnuHEgrVO1qllAQfTl5T7Pj6mL/Z6+m1UkghOZxPGQ8GPH/zJrZ2qOGI4DzFIGOxqpE6Z2N9k7LM2JnucXjjJhtntvin//RXeftb3kI+OcOyrqmqOc61MVLPSPT6HTz81v8CO7kLX57n3i95iBefv8bVK/dw6cpdjIZDVJTMIAWs2o50MOL6Sy/iTeTxiCBwxvX9QI21caM6NprJnsP/F38d82hCIOKh+/8HPjA9PODmzi3e/4GPUkwmSBXzU/dmU6aHR9jWxFQlKfrWQGwPVLu7FKjIUCGGUUSefgwrxwNBMF81DAZrhKMVN649w8B0vHr9FPefuoh0lsPnrnPz8Wdo24rxqTXK02ssfI1QIs4ZJGRZgXOQ5jkegfWBMghGTWDpNae+5ev55t9+N9dPjThY7cevVYHKtASt8RLqpqIsiniyCw4hBfetbYJp42JnDMoHNssxr3/tG3FdAiKjg7h5ZJH8CL2cFY/UCcvlkqIo+pZNvIdilQbCS2aHRyRScfWeK/zn3/kNFFlKvdAsVrtsnar4pne8hVe/+jW859/8fmTAiBgdmOUpTdf28mDNU089xUsvvcR4NI4nKBfduT7Edt/BwT5VVRECHB4esbG+RUxUgzwrCB7qumO5XPLCCy+ilUJLRZZorO1ASLROsCetg0DAopO4nETpcWRIGWMIAUwXfQl4jwghZg+UGQ/cdw+lUFjjsMFjuiZuOjaqloLM8LIgqAEMJzBKWdscc+XOS4zKgr39AwSCQZ4TnGU8GDLIMpYicCQU886RCUWmAoPg8M0K2Tlefd+rONzbYS1RhKajPTji6qvuptWBuTWoJCFNNHVVAfSZvSCRHB4ckuc5QgrSPAeio5+gYpWflzjjkAjyNMV2LcI7kj7M6LjQis9ZIM9zyiwnGBvTpbCcPn0eZwS2i+bQVV3hiT4Nbz3Odhjzn1rCFPRhIAJ0T66U4H1EnL6cXokQSK17umU0UQliawULzlmsdGjnkTrjmbZFJppcSow0PPDUjLc+ZXH7M1xTI+o4tEs6fxJMDhF3EBfFGDUYiNFw0WATWBuOWdQV0gYOFnM0GhNAacf6xpjOGI6mK/b2F+RJwdr2OvPDfT7y0Y/w2lc/QJEmyHxA1cyw3SpW215QNwmv/orvoNUlTq8oioSjWUOhB9x9550Y71FCksnYIvHeYrzDWMe1569F5Ym1BBdixd3jB46NQUmSnBzbT3r24rZH4C+qsASgpEZKePTxx/nghz+CFwpjPYG4cCRZxnK1JEQcUcTSQlzMBRzt7ZAEEZkfRJ+C6yWdgmg2k0Kyka8husC6yLhy+QJjrdEHcy4NBoSuJu8cm0IxGKSMt8YE6Tl97hSm69Ah9iHrqsMFx3JZxxSuPMcrGOYFe6uWL/nB/4qjVHH/N34tUguqZkGR5wRgXlUEKdFJjJk83vCN6RgJjekaFHHAawlMzmxjnaFtG1KpUE2AZYOqHdKFOLhE0zWe6nghM6ZHCB/3yCX4iL+umwadSB588D4O9/bxvuPo6BqKBV/39rdCq7E2cOvWXiSuukia9MFQ5jnOWb7whSe4cOE8Z8+eoafuxWelN4HNlwuapombjdYMB0OqatVvwALT9e2WumG5XDKejOMzZTuCILZ0nAcvUUpjjDl5Ppyz/SnRH/vyom+hbZEhOmZtZ/DWgXN403HnhfPDzB89AAAgAElEQVQk1lIkkiQNaAzBd4gQN9M0aFQLqQEtBXXiqaXh1Kltzm+cAt9RJJpSS06vDcFVKExs1fWf4UaRcFkr3nD5HNXigI0iigfWTq1xNheoMuDbGWvDeNrPrEIaSdfGNmcgnkKbrsUHz6AcsLu7R5blCCnJsvwExeJsQEiFFDq2tbwj+JheF1w0jGVpetIeViqiJrq6oW1q6rajHI04d+4cWIk3LhoqhaCzhrZt4zD4ZUXbK7m+SBb6gHUCbz3CRT2wdwopC4y1yP7n8SbmeloRg7sRCV4mOKFIhWeVOEa+IPUD9GBIJjI+azs++tb7qHRO5jzBwUOLwLP/4J8wHCcYEfAohMpAqhhPiDj5XUqF7WwEB3iJs9Haf+bsJfZv7eO15s477qUSAVdVNK1nMTc0LSy6jiAVu/M5dW2pWs93f8f38nXf+O2cu+chlHXIfETT5FTGMms0r/vW72Fm4sMvrWK2nHLwwktcuedBrr10Dd9UbG+eJck1IrQoJcmlZ1Km8UicZHGgHBxBBTrbRRNLFyKt0N8OjTbGYEzHYrEEJaO2uW+DiViY44XGBY/vGky9ZG9RczCfMyoyusaQpAXWBGSaIqUkESBCbPtIJEElHLxwA6EVidExiMP7iLvoq16lNF3rSHLNk/NdXL2kfXqJmkvEsORoZ5dXF6e5mq5zrs5Rh9A+eRO3u0A00U+hs5QkyyjLhK5aRVaQllRVh7E9HiGt2fvY+7n13/0Mi/f9FvbsJnSCRdOggucIy7J2DAdj0qDAWFACC6xWSyatIGk8Ipe0rkFXHVZ0NM5QGUNrKqwItHhUlmC8IdYKgQTJxniL/b0jvBMkWY5QCqkkrW0JzjEaTzicHeGN44nHrmFFyihxdKHi7gfv4bHPPcWLL73AcDgEiGgQCQ5N2za0bcfly3cSowIlzpjYusEzX86omhW2NSRqQNt6pvNlZBEpAb7FGMP+4S7PPPs0W9sb0T3bVIgQkR7eCTrr8W0bEcjCY0yL9JCQEkKKRGGMw7lAMRjROo8TFpVoEAnOQ9023Dra4bBesLaeQzkAJJlIMKpAqJQgczqZYHJJKDROSyQdaQc6zTi7MWBRrbjz7BnOntokzxOEkIzLNRazipWQTJdLxnnGINcUZc4LNw4o8oT1HG4tp1xfNMxay8N33MVNEagPKxyWvFC0PgLa2nqFFh6EZH37HMFabNsyKkts27KczdBKMhgN0VlKVhZ0psWJDuMMeuWZzW+wEW4xnT5NoUcoKWN6nU7ipuf7vjuC0cYGQQ+pukDXVXgFSZqCC9imjWcHpVDiONv6lV1fJAt9HzrSV+/Wxl4Yzp/sfN55vIgVQnAefKw2E6lQSDy+75m9zDhSaNJByerhe3j0u74UV+RM0pxsNefTLzzJxuYmA5lipEeEDi2iueP4d5yPAcvBn1QqSsUj6bDMaZuOQbnBX33LV6ESRVpqvAzUqyUpkvXhEBsM1hq0hyzJGW1MyMoCnSYsqwU6BKy0BHJO3fsw01rggVRKmuWK68+/wGRrk2XTsr6xyWc/+2esTyYoEdAShFJ420SnZpEzHo0IMvoOArGnBxBEX2lhX1a5x6oyTVOWy2XsKb5sSBvfR481Dbu7t7i5e8ByuUT284osy0i0JsszXnjhxRPm+cmpIIAQjvl0Fjv9QqGIsDYpjgOqY/KRVIpUpCwOpmROU908pKg8G6SskTKxkqGTpK2jqCxJbdnKBqSdY6AStANh489YFAWy/xmzVJPajoaWy8kZfuvv/ALl297J2/7Ze9kgpcgG6CSPkDcf6ExHCJ7OmJP3SQCtqRkpTVARkkFwNPWKRCcsl6u+RRFOwHfex/jE28Yli9CSJM8iGVJJUh0llnka9e1tY7l164jhZJ1E5Xz3d76JN71lQCLW+Omf+h+4+uAWn/yTPyJJ+pi+/pRrrUMnKfKkYo7tEULfUlESeTL8g850jMdjiqIAwDpH28W+vbWWK1fuYjabkaYpw+GIPM8xXUfg9rPVdTGZDfoAnkBsJ/gWnQicNxBCdJ+HQGcqqnoeFW0KzmyeYSudUFnB3sLSrDraxRHCLvBNF30dBmwb8G0sDkzb4VpHsCF6SBZTDudHFOWAQkvW85RUBMoyZ6McUqQ5Uiu2yiH7u7c4u7ERiayZZCtJEO2SVbOkWtVkSvOFxx4DrWi9xfXYlbZtSXRs6w6GJUEIdJ5hY4OZbFCyaipu7e4wnR70916s6JXWLPPAUCY8/u5/hTw9wJs5i9WKxnR01oAUZGXO9OiAtl4iVcpgvE7bGLpmhSa2kJ2xhL79GpwnotzNK19fX/Hf/P/zErdTpQDEcTKNpE+t93jh8Djwrp86x2Oity4OmlCRxtfjUJWQHOxcpz06Qhy2HF4e8/j3PEKZKfxIc/DC85wdrGF9IHUek98eTh4PTOIVetiZRSrZt3YCqyqm1JvOkxcjvvf7vx+lA0F6BkWJJLA5WcMHR6E1Wkm2zp5GqozJ2hoy0cxnh2QIjhZTlq3mwoNvJJ1so5TiuWvP0a5qzp45j0w0lgBCcnR0yI3rN1ASUqWRWrA+KlgbJFy9ehWURChJImIMme1lfEoppIqSrjjEvr0gK3WcI9r3DfuF3Pd0qmAtzzz7LNdevB5xDmUZe4XO0DZRHz6bTtE6jodOZh290KJdLRGoE8onCFQ/yIqD9xhgjYobQUbCuh5RWo2fNWylBanxpCZCy/IuUDhBqA2auGAqrbDGkKaxsm/bFhEC3lqWEhqtGRc522fHfOL97+HdD30FSeXj/MfFEO0yy5hVK6RSJ0MyYw1KxrStda0JOiZZiV77773vCZHzk377cUvmRBbcb7qHh4esra1FtngAEULsV/cuUYRlOp+SZZpP/8mn+K13/5/8zm/+Plcu3oWwW1y4eIVHP/8oWueEAIt5jelAqxwRJIG4mNu2xtuIhciyDGM6BNCsWrI8p6qXLBczhPMxbMc6qipK/65cuYL3nrIsKcsy8nOSlDTT/edlESgGgwFVVfXzH4tUAWM6lCL28fE0bUWWpPHZkQJrO9quZrlcMpvNycuC977n/fzSr/027/3Yp7mxO2V+c8azjz/Be//17/Duf/Ir/Oqv/DP+9e/8Gz78wQ9GnlGQdJ3h2rXnevct7OzPyPKS1XKGzhO8VBzcuIm0junhPhjL1StX+PRLz5FONtHFmCItuHzuImuDCUsl2Dp7ln/4s/8rGYLEBMb5MM6SRNwkvXcsl0vyPI+Cg/4fKSR5njMYDABeRuwMJEIxSXM6Y3jp889xTuQsQpzTaKUoy5K8KEh0EltN/feMQSsBqaL81pn4zCqtwPecem//3Jr5l11fHAs9nGAGIP64SZLE/tZxVRVAiajoAH/Cu06SDIQkyVNUIntjTEypGowGNErx5Cc+zzB4ns8Nf/B9D1A+dJm3TC4ymx+hlUAiGJP9ub4Z9OqfJCHgItmx3wicdzzz9LMgwBqD6zxvfuNX8l//xN9FBMXe4SHGBVarhkunzrKcHlEtlvzY3/5xjPBYD1IGrKvRacmr7nuIR77qHQQ5pm4qnn7yCdbWxgzGI2SiSXRKqiSz2SFlnnOwv48QkeedBcudZ7e55667uXTlfqwH21XUzSpSHYWg61pccGghSZVG91hmGQLB3d4IjIkVm+sVN8F7XFNz83pk1P3xJz8TVQUCgosa4DxLsaZlNo/4o7Rv4QhxrMGH5f6URGu8En1QuMc5S5KoqC93HWmumK5mDDc2MAGapmWYlWgpyKQi1C2JVqRKkXsY6IxhmiGhV0xFwNRiMaNtmn4gHU9jZUhJnGZmVmz5wPBTT3F+MkRVNagAzhCMo5AZftirYo6VXCLqm13XckHmOAJpkpOlBZ33HB0dsr29HZEY5liVoXEvewaVjKH3W2sTMhVNZ8fqFalVjIvzFSQBZxy59vzA97+Nb/vGIW960zYu/Alb46v81u/8S0bjdUxn8U5QlgOsjTwmQpwrSSkJWtP5wLJuIQgGRYkIgcVyxnR+RF6WJ/375XxBAISSFEWBMYamaZjNZgCMRmMWyyVN2yKIihMpVX+qHRG8wLSGeDIzJ5ublBHLUFULhFAUxZCiKBgMcjY2NhBpwnOzXV51+R50cYpf/M3f49ff+2G03CSVitOThKRdEbzi3ge/lCuX7uCTH/84XkFa5Hz9176dgVZ0baBDURQJozRwukwYKcGVK3eSJYq7zp3HBHjxxi02h2N2X7rF7s6M56s5q0xzsKiRdYecz0m6lpvTm3QpVCHKTKWK5FYhJWVRsFgs6TpDmmYURdm3QT0ewWR9M55StcQRJeNH8wWzrOB9suXGUcPW6BTleEw5GiGTBKk1VdOQDobUxjCeTGiWcxAyxg4WxQkaZjQaEaTs55bH3p5Xdn3RLPSi13GfGD6sQyqFlLdlSMH5k8U29H/X+T7h6URidpsMNy7GbGxf4uDWnHZZMU5KpltrvOdtp5m+/QG6/SN8cBgtqGy0aSdaxyOv93FxsuaEiQ+cVL5N24EAFyyj8Yi26njg3tdQZBlt5whKsahr2lXFD7/rb/GTP/mTqCwhzQo602HajkRKVp3jYx/9BK0u6BYtbTvlwpmzqERjhEPo2K8XBKrlgiefepI8z2nqDpSklHD3pUu87nVvhCRn1TZY0zA7nHKceVtVFVIKnIuL9HG7xodj2WiPevDuz7VvAmBsy3R2yOXLl1kuVwhP/zlAmiQnRo6HH34Yay1Jkpw87FrHiqhrGrq2xTgDPTQtBIt1LTqRKA3WdNTVkrXxBEUc3HnnSHVC6CxlkkWzlVIMkjwOP3vJoPABFSDrZbi+V3ZIKePwWQRkY0lEQFrL2DvSMonGPOEItiNXUQ20dHHRsv2iDf2CrxWjoOPsxgbyYoDsN8djUNrxQh/v2XACj1vVixjNFyBYh+69GUJKPOCCxAYIQbKqahSKUxsDNpL7uPfON5PJdYpR4Bd+7rfI04wsT0FYOrNCaYdzDbPDI0KIm0fVGm7uHTIcjTnWjQkBbdtQtxVNW1GWOc5FNzN9BsRoNGI2mzGfz3v5oGa1WuG8Y3Nj48+d2ISMm7ZS8dRjTBMJs0Ij+j59WZZYY0mTEu8EaVowGIxPJL9lNuT6zk1OjyecHU/QqebUPXewubnG2jBlkAmuXr2P33rvH/CB972fe6/eRSccMtUUaQptS5YErGnopvv8vR/9m/z8T/w4en+f5dEhy8UMmSnapkVkBRc2x5w9vcXOwR53rm2x9+IOq6bj5v6tyKmRgaO9W9Gta25LVruuI0uzKKMcxM/94PCQW7u7+BBDX/KsoCwGJ0ZDpQROAt4z0SN+5ud/idNnrjIFqlVF23U0bUvbdTHNK0g2t87gTYewFuE96JTWRdlrZw3G2Sh9BrRO+8X+lV1fNAt9tMHG6t0Yg9QCH+jDPURMQxKSIGSk5fWExRDz0CK3Q8XetPMBFzzCC6TS5AvH3sEehwS25JCLZy/ze1+WsHu1pFYCvCe1ADHURPbqnuh0iwEcIURHnCPgAoQ0izInb1mu5kgkxsK7fuTHWDY1s/mMIlOIEHBNy2K6T90vuMegqXJY4LxltqiovEBLg5C9c9Ralos64l3rhmAtH/3Yh3n8scfxtuPy2VNsjcY8/PAjvPXt38Bw6wx5EQMl6uUK6x2dDSitEcFHjk2vva/7GyzPCw7292L4CiFqnv+C7LKazVkuVmxvn0LqBB/isT74mO/rgyfNMtbX10nSlNYYOtPRdi0hCOq2xtbxhKWcRMikP5YqQtB0xve9fM+p0RpfePJR6r615AlgA4lIwHl8a/Cdh16iCaB0gidggyeI6MZM0pTaODob8wNCKpilMaSltQ1eqchNV5rOdORlgUwTLm6fxncdVWfQSscTjY/qohA6dAJpEMzrKm6MMhA6T9PElsjRbEpP3SNJ0khclVGpUhQFnbVYFwe8MYAb8BolNXmS411guax47vkXuHX9iMY4nnjiE9TLGV/+pjvRZYNxjs50CCkIQNe1aCnZ2NpkWa2QSpBnKcNByXI+J88yvA+sqpokyRgMhtTLNr40JUnShJ2dHZzzLBZLrHEURclgMODg4CAqdJC85jUPM5vNkV5ADC/rTT8xEc65qNFXSJROEPQFho7KOKkVUusIEXSeXCYMsgnr25uY6Q7D0PAj7/pRhAadZUzWNhnmKZOk46tf/1oevP8Szz7xJDpJwdfxWQyQaEVe3eQtr3mIi5trPPvHH+E7vvIrGJcpZzYndI3h1mzOmfUxO0f77B7tcXFzjbqecaZIuHB2m1nbUTu4875Xs1mOmd3cicHf/YLrvSUIMDbq6dMkYTweM+zbNYt5PP3EIiPgjEFLRVjW5FlOkuXMO0/oPNJGM6IUcV3RKr5XaZKQFzkuajipmgZCVA1ZF1tfXdsSgLbreu/Cf4LD2GOlwLEhITrG+nBuF/ABOmMiV7sPEY+3euyZH0cOhr4ygtjrT6qG+1zJa37zCerreyTBoXXK1Y1Nio2StjdwdCouGrFtEY+eSkfwEx6Cj47RJNV4BCLNWC0rnI2Y1tlsynQx495XPcgb3vRm0kQjiDvxv/3d93Dz+kscHR7GIZ1QKKXJy2FUGIQEqXKqboW1gmXVomVGqhXBtCyWR1x75nHuv/tuumrFKFVo3/Hm172Wd377d3D1oUdY2z5HmqjYt5cJSumYEepjhZkkKaI3miVpitSapms4vb0NwaDVbfPS8RW8ZzY9Yn1tnSTLUFpRlAPquu7t9i4O0XuTjCcS98rBgLwowHmsbTFNRyKi0sC5gEpVD6qTSKkJLrblci1ZG4zp0ixu2MHTtQ4hom1fhIBEYhG0zvW0T5Ba03YdqBhB6UIgL4bRleo8Q6Wh7XqllqDzBpzH+f4Ocp6mswykJnE+QqqIrPrQG8C0TGhsg+iOmFeHZMeqohCLkMnaBNebZ3yI0D0fXG+aUrStxUuBThOEjHMJHGihkT706gvHteefYffWLc6dOcN3ft938b3f9V/y/d/3TtYmAaFTpEwQKt6nPniyvMCbyPDJs4y66WiqJYM8p8xSnIkZDtbGZ0glaQ+dS2i7lqefeZLTp85Q9i5nrROkkEyn09iP1pq6i5A9PLRdQ0c8BR6rt5RSEdKlMkzb4Z1nMBgwHA5xeJJM40NEJrv+1G1MS2s6zl86w/lTJX/ta76CVGbYqkalKaO107zmkUfoZvtsDzTnL53iy17/JpIsI9OS1naMxiMun1njf/uffpof/8Hvo1wfc/n8JT713DPs7+2yvrlFYz2vvfNuuqMpQg24NNlktD7gwDY46SlczdbWGaZNx25Vs75+ivWtbWazOd4bTFfHU6rWpDKe9o0x5FkW25QitpmPW75SKrTSrJZLkjIOg4+77yFRvYv5dn9fIPpCJ87PrBB4lcZWUZ4jCeRZRtd1FGVJ17YoGROoovPolV1fFAiEWMlHY5RUCms9aarilF/IXl7pepKk7Vke9qQyVkqhZYHxLcEZCNGd5kWARNNYy0N1wgP/8gW+8K4L7A0VqmsYXjnD5odntCqgHMhMI4TtByo2aoHDbdS+EtE6LqTEuJY8z+g6g8olN2/e5I7zF0llwo++68c4f+EshMDezg2efuIxLpw/x/b5C6AlQQaCEAxHW8waePOb30YqE/amu5TlBBOi1lqJwI2dHfZvvsi//9338uLzL3DhzGlG4wk/9Dffxeb2Fss2kGYFutRU9ZL1rVMnASa3dm5y99Ur2A4ODg7ZGsegjpMBmlC0pkFIH63y8lhaGRkoTdsync+471WvItEZqUromuZkwCil7AfVjlu7u1y4fDH2s50FFMFZutUMaS3GdSRCoaSIclWlETIWvULIKBczniyJ/4+xTvASdJZQNQ2jQd6frCwehyLgOoP3AZ9lhAC2sRSDAXmq2dvfYziKJw/nINE5uIAIgiTVkTuSxFSxNFUkSXQFB+dZ1TWTpET4qLjBe3TIqOdTPvbRP2Tj7AXuufNB1tcvkA8ykJKuaVnMZuRpymQy6VUoASljYbJczhmN1uP9KiNoLhb1BiFBoyAEvvDEY3zzV72J6fSA33vvszx38xk++okv8OBD30laJoQQUdrWOobDIdZYEinpvAcRfcxFUfbBI70SrWdJNU0FCsphjsOws7MTB/hITNcQsKRZhuxBc8tFDcIxGo04mh4SnMM7R6grvFI4L+M94+P3TxIdw0S6KNV03pAXJQJBWcYWkfeeruvQSqJSQ5l7Hrr/bs5fvoidH5GKyBsaTuKMauviHYS0RCYZqdC05gDvoF5WDGXL//hTP0h3OOfWjScZrW/x6Ev7fH6x4tzGGarKsTbJ0W3DS3XD2vppps0Rw+E6YQVGJhx1LQeHM86cOUsyGNE5yWB9G20cTVtjjOvVNw1pMUSI2Np0/futtMZ2rg9cdwihezWMoGsNBNE7jS3BR5Pjsc7jGIMQ1zVHmiY0TYNONMH1rtsekRDnPo40yyLjJgi0euXL9xfFQh9lbB6lJUKEE9LdcY/ZeUus1iN7Jfaa5QksSMheySHViQknLkYeqRW6Ba0ChYdLv/hBRm97DY++YZ2QC+rQEWRKaiLC1/dKCCEkXtCHnvjIKyeaNoSQEZDV1kw2JuAFg0EZPyyhKdY2WCwqBoOS0+cusL21hdKaIDW1cXhjomqhbRD5hAcfeQNKS9K0iHFuaYY1hkRBNxrym//qQ3zpl72Rd3zTO3ngNa/FISiKAau6Jk9SvA+0bUNZlFTVMvJUNjY5c+oMWkDwjsQYVssVg8GgP/r1Ac4uwfqGZ599litXrrKsYo6nc56mWmE6g9IZQkROR54WeG/jkTnPT2SI8/k8GqViMQwQF+VgUak+Qeimir63GE5Y5ceYheM5i5JQm5oQNKPhKA5ae/iT1gnWdAQXF7GInYsPTYwLiJK4LIlmHq1E/7Wqf6DiopRlGcumQwhJay0+RPw00mOcjXwWrfriQ2LpcELyxFNTnvnAE2yfuQQibgqj0SgqVfKCpmkYDAYkSpLopB9UBvARDxGCP3GUyn6nk4kmdB7nA6YzdK7jc49+node/Tpuzl/k8uWL/Pv3fYDhxQTZCVKd0nUr6romTZJeTx0IXtDajmFR4kRNkmjquiHN0hPlT1VVjIZDnn7maYajYTRwmfgubm5usr+/jzWO9fUNtE5omgqtNV3XMSiGdMHgRHS4HgO5hBD9aUvEoB4l4yfqNUJEBVNUssU/R+lpwJmATlJWq4pEZSQhQTrDICmZHk0pipx0MEAlKUZHCaxpG9pVTds2vO4195MkgqPDJUnqCYuaH/m5n+M1X/pa7HzJ9to6R7svYGWKCJ7T45yXdkGEhAfOnaP1hltNTZkn7O/f5PLD9+HqCp8nJDqjqTxta5iMxwhgtVpFzLLWUdXVg9yO3WGx+LltSgy9AzgqCOWJ6IH+fn25FLnrutgt8B6tFK33rKpV7O6FgAsOa6MMNk3TmMj3/6VhSghxUQjxh0KIx4QQjwohfrj/9/+9EOL6X0AXH3/NTwohnhZCfEEI8TV/6asIgbT/IUOIR3LbL+ZwW652zMk4HtyqXgYXF/bYS4t5svHrUqmRQIpgW5YoJNud5OJ7PsfF332UMxsTgvYIY1kksfLKVBK/h+6duPQDXhHDk52LR3LRv8dt02JdIElyZrMZSiukUiQ6jRNylaDyApRGSEWeR3VPXdc01nPfa1+HkRmNaZgUQ4phTqaT3mKt2Tp9lr/73/4Mf+1bvoNXPfJ6ZDHCCMWsapFZidIp5WDAZDxGKsH0cJ+6rllbW2d/dxflDTvPPsHek4+CqeMi2CtjQoDGGrRKWVvbom2PteCOuq6IYSu6JxUIsizFWocxUXFT13VP8qy5dfPmyVD8eCDqgmd3/yY6TWn7PuPxwDd4G90P3vboBYGIYQNYHEornPcY56iaJYGIkPY+IIVC65iPGisi1atXVNw8haAoC9I8I4pz4+C+Nl2MOLSOxsR5iAnx4Wm6FusMqdZ0/UMVQswicM6AsAidMFskLJcpXuSIBLI8Z7WKOvrhcMh8Pj9ho/TPAkIIsjTF+uPeajhxDxtrESr0D7xgMBpz+e57+Oa//m1cuPMu3vzl38Ab3/Rl7B/9CdjowOy6ri9y4uJiXd++1IqqqnrvRHyv0zRqOaPAIb6ew9mUcjBkPIrtpqIsTjbr8XjM+sY6y+UyUhtTzcH+PloqUI5EyxPG1MuTyiAGmrRtizOGbrXsJarJbSYVnGzKcZHUVLWhNY7PfObP2Lm5y2Off4Lp4ZKuDcxnc3xfUSeJoDMVSoL1lvWNEa975AGm0xmXL9+NSAf86WMv4NYStpVme2uNw+vPc3brFKu1ESstqQ4PUEHw7P5NjtoFUieMshFZUVCMR0gtyZTAtA1dV1OWBVVdIaTg6GjKeDSkbVsODw9P1iMfwgnDR0rZv2+ud/GHEwfy8Tp2/Jmd0GL7zTJNcryNp0BrAhINPrq0NzY2EAgaa07UhjHV6y9dWU+uV9Kjt8DfDiHcD/wV4IeEEPf3/+1/DiG8tv/13v7Gvh/468ADwNcC/1AI8R/eekTMkJTSIyR4H6MFo4EyYoKP2SguirFP+mHHxydjK6xrEPg+Ociz9JYEwTMjx3P3TsiTjGw4ZJQmPPLpA77mZz9OhyGxhtQFnDP44MgyTZRwxsGTCx5cZGnjQ5Qoasl0eoRONINBGVHAwJ/86SepqyVFmcXTgPQ4TxwMSokEyjxHOMFiVfOOd34H07plZSpKlWJDJC5qrdFZiZcFVSfppCAZDHFSMBxGc5S3NZ01LJYLpkcHPPPkEzz71FOx/aJT2nbF/s7zlKbilGhoFnPqdkW1WqG1pm4bhuWQamkYDiZolXHcmxYCvDNMJmt0XXRYqr4qGY/HeB9OqjOlNEdHRycbcbyHA57AlbuvMtreRCcpIShwUVGlem2y0v0tGAJOxKGqj2J0rAPjHGFnOZ8AACAASURBVJPJGgiNcYLI2tJ0xtBaiwmOuoutjM47PILWdMwWC6wJNF1MLvN42q6jso7OB4yT1M0K52Nodd3GbFeVJCCjZNO6qPzywSNJsK3ncH+Xm7vXIx7BR5T2aDxiWJYnlMG2aU+UOFLEqhYRmM8PEfIYO6EAFTc371Fa41xgsn2aVWNIh+t0YkVR5nzpl76Br3zL/WDjENaY25LYtld/GWuYTqdMxuv4HmwWNxVLCHFBHg5G1LWlaTsGwxEhSKyB1apGywTvxQkbx3lD29XM5zOGgwHloKSuGpq2xbUW7xxSxRZfPB1KdI9ECCIg85w0zQhBYLqIo5ZSYq15mUJOcePmLptnt1h1NZ/6s09yODsEmVKOJ6yfOkNlag7nRxwevkRXHUScglIYak6vJ7S3dtlf7PG//6Pf5F2/8GtcvedLqOuGpRKkZcqtm1M+dO0WTSv4s/mCyfqAc8MBTM7wub0Ddo8OuHE4Z248k+1zBJXhpUanyQm8LARBlmVcf+klZB8+5Jzj6OgIYwxZFrNbpZQnp5cQQqy8RQy3kSoq2NqujsC5HnB2/L2iKqrtFW8BnWi0ijOzuq7jM+ccQkmM6ciyPCr/XuH1ly70IYSdEMKn+j8vgMeJYd//b9c3Ab8eQmhDCNeIAST/wYQpgUTJ7PYQVej+zwEpNKBxXkbIkfAIFR8S70XkvYcEvCI4ic4LgogGqoGQUdlxoeSTX3MPt/7KBSY4dOrRFu5AsGYztCroRJysW2GxxHxRRNIPDAXBEU0/1tI1BnzOzv9F3ZsHXXrddX6fc85znu3e++5v793aJcuLbMn7gmVsbDCYwOBhBkNMgVkCA9jAEDMZSDKEsAyBIVUkMAMYKM8EMoDNYuPB4IV432RZsiVr6251q/d3v8uznS1/nOdeyZkKo6nKVDm3qkvSW+rW1XPPPed3fr/v9/PdnjDIR+zub5ErSbG8yriasrezi7CeJEhmrcX2/eymaajrmtlsRmcbDq8fZtw4KFKWkyVmymFNhxfQdQ2J9OSpoCgycJ5gLN7YfkDtONibcvXiI1w8/zBnTj/Iffd/nivbV/j8F+7FWpA6wdmOomvwmSBcOocqSlzT0HUVS8Uy08kOy0s5lhpL4PLFx1Aq9tC9DywtD/E2ARGom3gFjeYgjZARhzscLHH+4hMEuqg28AnOWs4+9hCj4Srp4cNo6THCo5I8Mm+EIvQbtyOCaoSATnhcohA6Jdca5wPWC6yIhFErHM7XSF0Qelmgs4HWCjoDTdvReIPKUqztEB7axkPQECIrxjqH8x1JInFIuk4wEdE81XUGSUYionvXO0Egib3SRNJMdvnDd/07nJtSFBqFouscDokuckQiI2DMC3KdUmQ6AteUZpAPYpWWRDhYVuYQRB+qHQ+EVAlOP/YIy6NljmxeT/AOqR1nzl4kU0OMI7LL5wREERBaoWTknssQD6dEpniR4oPCOIPQgsZWTCb7FGUZq04ZECIeumVZMixzTOtjRGaRMRquUI42GOTLJGiElgStEF6gE4kQjnSgWFouyfOMYTno+e0JQQ/ohCeRFqkVzhLXcBeDy2vTUbczzp7e53MPPEBIhjznuhOg0riZtRVVU5GWw6jz7yyV6WitR5DghaJpO+RgCd0Z/uyTDzCzlu2dHS5Pr5K2nv3OYVYLvvmGUzxnc4Us04wYISh55Myj0SzlEqwQrCSaZ996M2kWP0NnIVGaUV5STcZkeUaa5Wxv79G2BmMMZVGgE8Wc9jrvSLRdg1RxyGqMWdz4nnoQzImybdsuWmPz9o4PHi89Tjm6pqE1LTZYsiTBtQZCPFB98nTq9Pj6z1LdCCGuB+4EPt3/6EeFEPcLIX5PCLHa/+w48MRTftsF/v6DoXfGxr7d/FozJyn6nokupUCq+KDor0vzB+N69QdE7TXEK2JrLTbASqvYw/H+F66wfWqTzaREG4FTUHQdY93hbcfBwUF03fbvQfYVOELM284EIeJ1WwrG44PId89S8izrsbglZx4/x2Q6IwSHDAHFk22mNE0pyxKlFJPJhNlsyuraapwDCIEUCq1TQoC6bha98SzL8D5Wpbu97E2nmkwPKPMRWTpgWK5x5NBJXv6yV1BoQT2dgVRc2drGVBOuXrvMqOdxWOtoTcuwHHH5ylVs12GbivHeTqyyRX/QyqTPUxWLttMcdeCsIc9Sdnd3OXfmClky6EFqLcZMOXXqONW0YfPEcaqmIohYKc61+yqJIC1EP2cRikIXdDZmnjZdG7889PeDEKJruldgeR9nJyqJbmgf4oCsbQ3GOxrne0dx1JB7olIlBIGxkXjadIaDyQQfYNLVGBciahcPKlZvBAhScNB2vOvf/Ta63ae1MK06iiK6IqNVvq/Amoamrej66nW+jvO8ZDKd9EooTTWrUVL3pqxoWvLB87FPfJK6bpGJxIVAqjMms4qA770PYfErBIF3UWY5N6vFuZaD4JBSRWoicaBYFAWjwRAI6DTtnZ4qzr68Y3lliSTV1HVDZzpWyhGhnRD8mMGgINEFWTlEDtYRxSpdyKi8Ytp5dic1XdtRpoEN3VEKiw8CITxauXgIyUAiA4pYSJ29cImHH3mUez97Dx/54Cdg5jl33yPU1yZsn7+Kt5a8zBazu0RHpLW1jkFespwN4i1YB2QCSRDccOQUW+MJN5+4AblTcXHnAKELOgufvvwEF2YTDqzhwWuXyILghsOHORhvc+stN4K3DLXGm5aqrigGJVJEDhcCyiInBMd4PGb/4ICr164taK1zOfb8u1rXdWzLpGkPg3O0bbNo4cxnRcCiLSyEiEiKtu2DljzeOsa7B9E3kkhQDm8C0vwXUN0IIYbEgPAfDyGMhRC/Bfx8v6f+PPBrwFv+M/68HwR+EEBIvVigiy+0iAM6IeldlCneG7TKEFL2PdCekyIErs++1ipG3iE8ST98a0uFGpQcSkre+c0pL947xV1/ew69tc1tt1zH3tVLJI1AD4cRMESEgsn+PRBClEn1TlOZpHSmYXV1hTTVeGsxnWc2m3D9DTfxyENf5sGHHuLO5z4XpcXiYJoPZSB+yMPRAHzN1rVrHD++RMAjZZwJJEmUbDVNZNXMN4xcp2SJjgEa1pEkOUWpSdMCKSSnz5ymmk156OGHKVbXeejxq9x2020MzTZTo+i2LiLXT8ZN1gc6F1hdOwTUnH30MZ777Ns5d+Y0G4dvinwUegKhs71vQZFmGXiD1gnT2RStNcZZUp3SNWMuXXiCCxcu8MpXvpKmhZvvupNH0z8EZyM4jji8S9IUZy0QsNYhRcZ6OmTXWA4pjUgVs7ZGhECRZiiVUNdROWI6SPOMtmmioUwIEkk8aBJN0xlc30POdBaNcY0jzVJ8fxWfdBUOgdQJynmqQcbkUsvmyKJ0GoFwcQVEqasQPOeQ5Mbrj3H/ZY91MyaTMcWgZFCWtKaJwdtdR2tblBKoRPYmQAFBkucDrAmLzcC5yK6XBBIlaYylrRu29qYc3VhmZXWJhx89w6hc7Z+/R6vIXvHWkSY5znh0mtL185fIt4/y4hAc3sV0MO8Fx44de7JIIuKDh8MlAjAez7ClQGjJytoqqS6ZTWeUZULQKUfWDtNVY26/ueTg4jZJInnhi+4gTROGecknP/UZPvi5KyhRYNIlWteSaQ04bIjtCS8CMkR/SxcUVuS87FV3U84cJ8ujFChWRiVZqrnhxus5e+3xCPATkVhbVRVd3XJwsMdNN94IStI0ExJX0XQpdZKx0zQcO7TEI499kaVyhLcVLjhCazl2/Bjb42ssDYasy4xCasysZuIcxcoSZBrX2Jge5R227XCdxfspOkmQWU6aJBjovTzxBmT7dmQcenuapsEaC4EFSz4G/kSpsHOOPM97hMZcQUh/05IIMa/aFbJz6CC5fOUSQQSOHDpEKxPSNHu62+3Tq+iFEJq4yf8fIYR3A4QQroYQXIiq/d/hyfbMReDkU377if5nX/EKIfx2COEFIYQXzINFFm+qH97M1TggsK7rB0qmj4pTC5cnxGjXOOSLALQIUmoJpmE11QyCYD8D7yS/feUBPvCG62mu36Rs42ZgdNS0zgM3FP0/h7BQkcRqMmCcBTz33fcFtrd3ydI89mfTGKh87NgxHjt9hv3xmKaO0/f5oKqqKiaTSb8hWLTOWF/fYG9vf5ECNA+BmA/1fC9ri9wQH/kyIerciyIjzzQ6lTz62MPs7W0zqcYsr29Q1S0iKTly8820DlbXV3js3s/gPWipcb4juCj1JEm4+bZn8MX7v8SwyMmkwtu5vrfrdTGRyeKdXSgLZF/tp4XAdBWT8R5FKrjzjjtpu9i/Lw5vUhuDUik9EizeCp5S7SopML4jR3JQz+IQNMSbnhd+0ccMUkU8gRTRmGUNXkRVglAClea9XFOhte4PIYNMktjK6vX549k0GuuspzYGYx3XTIfQOQqBlvHgkFLhkUxch9KCw3mJ2dqj2tvmynQPKaGuazyxOivLEiEls7rqA1HEotcbb6SaLM+IGQchyhOFRPVB0aZzrK5t8uu//hsgAtvbWzx2+gxZMcA6ExHPLixc4cY08c8iVoXWWkIv2XM+OgJiEEns4YcQ2UXBx+AQrTXjgzE7O7u9PFIzKAqSJKFpZvjQYpIM41LS4HjFHSd54Q0lr3nRdbzx657D9SuBE4OOQdji9a94Br/+372F//Y7X8UbnncItf8EBQbv4nC77gJBpFiR4DxIH5BJzvmru7TOcO7qJS7tnic9PEAu5+y3Y3SqqGdTJpMxdV3TtYaDgwPKckBAUnuHdR133XwTp44cZWwDp7d32b08ZdwKLtQtm8NDHOzUjFLNQT2mTDS+rpm1U/JUM21aGiUpyiWMU2RpSUdUeCU6ZXm0RK4k1rZU4wNM10Z5qFIMyjIqt9o2bu4utmXm7vP5/jRf8/Ck96Bpml4qa79i/5t3D+ZDa3qvyHA4gs4hJ1O8spgeMvd0Xk9HdSOAdwBfDiH8q6f8/OhT/rV/AHyp//u/BL5DCJEJIW4AbgE+8/f9N+aBCTBX2MQWRqylwIfImvG+Q83VN73JIBC/uMZYJOpJQBYOksB+s0t+9jJ6a5ud2S7OWJJ0md1ja7zrNes8sbuNDgqCggBJP0QjIqIQPvTa8z6tvZdXOme5/vrr2dvdRUrFeDKOHHhjWV1d5fDhIzzw4ENUdUdVN4s+XQiBoijIizwO6ZBonTEarVBXDdWsQYqErrU4GyVztsfsVlXFbDajrepe8RL75WfOnOHhhx8mTVNWV9cwneHQxiqrgyHN/i5eBISM7KDp1SsoJbGdRwSPVhlKAonGyJQ7nv8C7r3ncyQyLHJNjbHxOfuIiZgz1YWIG3nT1jzj1mcwPhgz3tsmVYa9nUvEJStRgxwXgCAWizyEuFHJnv8eiBLYUmfsV1Os8dgQ+kpQgKA/wMEFgReS1vYJQN7hvcM5vyANplmKEpJEKIIXiJBElaOISIC6q6nqGNaRFQVSJDy2cxVVlOQ6QQn6wzR+/sOQk7SG1/3gj/Khx8+hs4Trlg8jlaCqpouDeTAYkeroIDbO0LRRUx6NWVEdM52OiW1KGzXTPc6D4EnTnMm44szZ8xyMD7hw4QJnH3s8zhd8VKLNFTtKxZvrbHawGACGHt8hxJO8qFgJ171tPt6eMh3jJJumIYTA8vIyw8EIiaStO7SSBOtZXRoSvIxQt2XHzUczlhPNxtoySvVGPKmQWmO8o945TTE9x3X5hF/+p9/Hi287hmynKGeRIYAxSO+j6sp32C5waXuP9aNryFGCSRou7l5lr54ybjtqEwikBC+YzWZcuXyVJJGMRkuARPbcqO//oe/n2tY2Sb7MzCq6LLBxaI1Roan9DHLPkcES7f6UJa9Z00Ns59kbjykGBS9++Ys52N7G1hV60Z4EEARr+dDfvp8slQgCXVMzHU+A2EJs25aiKGKRiKBpauZwxHmbc96KnsPy5olt/zEtVjy50/d7Y0wplwitGOUpv/L2f85S8Pg+FOXpvJ5O6+blwJuBLwohvtD/7J8DbxJCPK//Nj8O/Df9G3tACPHHwINExc6PhP8EZm3usEuStNerK7ybpzrNBx0ySuzwqNCji4k9SkEfiNCZRaCDcx7pLKrUfM1Mcf0ffpn73/oq/ixcpk0S6oOWIzec4tE7L2M/v8WwEwTtgSeJg857fM/Hj1cyokqif21sbpCmmqqqKIqS3WbGzDm0SllZWWF1bZVZWxOCYziKtvJ5766qK/LcIkWk0EkRIxPztIgyzX6xCdG7ThU4a8A6rIsD2el0wvLyBsePL1Hu73H5ymWmkylpmnLi2BGm+7tMzIR6uoOzBlkkHN/cIE8zOgGIDuU1QSZMbYdQGcbsASCCI/jYcmrajtlsEh2QLhpourYmy3LGkwmJ1mxuHsU7SLOUL3/p0wyWDnHsxpsJztN4R+jJmUmSYEzM20yEfHKIRURaKBeD1+Mh4+JG2K/8oCX1pEJqEdURAYT30aUb4nM1XaAoM6qqJlMSvCPVKXVdE7RAK0XnW1QSs4YTlTBrG2SSsDWesLS6TKFTlPDgLaE380lVonXGm9/606jVE8zalpBkKOU5euQo01kVZXZak2Up13a20YlCy8jnUSKhaWoiA8cgxNxwNg+R6FuEiDhcNh2j0Yj1jTUuXLqM930QD30oCgYpBWmqaNuwWJ9zyZ+1FiFDr9v3DMqYY9o1NWtra+xsbVEuDQnes7G+StsasjQaALM8GsqyLCUYjwwJLkx55u2HSHXNQK1jZQPW0llHQPQkyY5qfMDDp6/gleZK/XluObLO6bUR56/tR+WJiVA7pQJKpBjvmFaGtUNrHD12kpGdMhgdobGeEDRVHYsB01ZMDg7I8pwiH0V5IzEcniLn9tuejx4NCTojk6uc25+Qz2Y898ZbuP/KeYwXVLnFebhU1wyShKIo2VeBZLxLfrCCNB3lUNPMJjDKUUEg0wQtCt7/1+9D5IKXvvRrEUKS9fkPcyz2rKoWbmGpVAwjcXEzT3W6kKNGFZKJyIO+dfP/xHtLGbOwgZ77JOMMy8Gn7/ksdz//hbz7d3+fb/mu//ppbN/x9Z/c6EMIH2NeWn/l631/z+/5BeAXnva7iPO4+Ht9rHKFDLES7YmW1jqKLMeHGI6RKInvHErGpoKxMa9S9DZ3azpGeU4nPau64ZZBwTN//34mdyzxzr1z3CMNr994AXkhmHoBuY8YZGR8sELgJUQ9BSiR4ANkSawMzcEO3/SG17G1dYWQKBoaTq0e4d4v3MNoNKKpOu6557O87rWvZbi6RpEXtLUhK+IHXBQFpu3IywFCScYHB+TZACUkbd3S2XqhmXXOYG0021RthzcRoJUkGdPZLs1Wzf7+Pkc2DjMtStY3Njjz0L20l09zy3pB9dBDBOUZqJJsdY3Pv/9dPOvu12F1Hif/rqNMU65cPM/ZR7/ETTfeyNVr51hZPkLXTdHacu7xc5i6YThYwnQdg7zgYLyH6xpe8vy7+Cdv+wGWEJRHV5ne8yFkWSGzZc49cg9HT95KWMpQ+2Ccp0wzsC56C1xAiFjdIxM8DTeurFIJReFjbzI48GnC3u4eRZqge+Kf7mcI3nnyLMVgsLZmVsdNsqoaRJB4OkTikaT4LqCCJBcZYz9hzwomvqb1A4zOWUklRfAIJF7IaDhD0LQ1u67FNYqNlTXQgYbY/55VkX2TZVm8saUFCSkH4ympjilEwktSXdJ1LaNRpCAuL0fJ3CCLDBgA4R02tKRFzn1feohTx67j9JnzDJePIgI4YfEu9nuNbZkdtORFSTBA0m8UIiZWeRNZTCqBycGEcliytLLME1sXuG7lKJUKDIcFrm2QWYpUMEgLmqYj0cP43XMtQiWkJCwXBSdWFeP9faazjtFwQJrFdlGhMpwtuXjmEoePHGG0tMGDX/wStDUvu+0wzWSbs12Iirier95pwdryKpevTvnS2WvcuL7MuAtcX4IQmr39Ay5du0I9m4INLK+krGUZqbTkQaAwuFShV+7gla9/E+X6MULryNNV2hBQGwX3bV1CIUicIxGeCZJhWuC7ip2mYmocz77pBm67+Q50NkIJiVou8F2czxQ6h1Tyj77rTUzGO4hER9+GTCMwzkuctTTVrHe/RuFE1XQ4F8jSyDAyPWrYO4vQCV5EvlTM2HWxYpceQp8V0ffspU/wPhZpo6amysf8/uf/mvTwkLPvfvryyq8KZyw8GZYbh0RzVs2cAxFlS9Z16CRfnIBSRX4HPtIQ53ImpRR5VmKlQHnPMVmg6wqpLT/4gKFcXeX8yRvodvewSxphO1ySIUWILk3p8C4GgMRDVtCZBqkklamRAo6sH+VLX3yAjbUlymE0Oh0c7HHq1KmoXlhKOHz4EMYYrl67ytLSUrx1BPMVJorhMKoGVuUK1WyGVBlFoUjT1YUBI6o0oqFGKcXyYESaRbpgbRpsW7Oxsc7p06dpmoYnzj+OHSYUpqKTDl2WxN6HJcskj9//KC94zeuZOWi8RcqA7wxFprnpxhv5q/f+BSdPnOS2ZwkGw2WqacX4YEZRasb7l1jf2OD4yWP86tv+Z57//DsZjyOKNs1TOhE488RF1oF2NuPE9TfhnGTpxEnC9AkEkVueqqSvYOKgUvnY1gmpZpVhbN3gkSgcgaZpUUkcQCkC+inOwqIPt9A6tm2sd1RVFVsVLlZRIUQDUZYpnI2u5zQrGVcteZLwSD0mSTWHVBqHbNFlhe/nRc4H2q7mOc95Pg9dOM/y8hIoietizzzNZH/4xve4urTM1u4WhIhVcNIhlF6IDeba9iTRdMZEdZMQkbneZ6j+0i/+Kr/9W7+J96JfAzHQonM2YiaCxFqPszE7OQQIEtq2ok/jJFUZnQk0le/9AY7haJkr+wcsrS5jWoPSUbVUplkMElcCguvxCQpv+zwGl3JwMGF1bYlQVSRpTLaqq4bddp+udQQ0u3v77E8nHDt2NLYWz16iyEpk4wlCoXXCkWMnUEmCtwona9774c/xwmfezmo+YNw8Dr7j2vYlvIS1lRWWhppCDaJAIuRgHb5KaTZWeM6dL2a4uknrHZlMMUnAoZm5gLGCo/mQzuxhZxXDRFBVExIlKPKCwSjliYsXeOPNb6IzcebUNBVaKIbLS3R1i+laPvLRj/NPf+on8SECyeaVaXAeY82iHz9v2TzVFDc3fsY9S2GMQffyyq7r+lnkwmDbi1Lme6AHn1IEz7d8+7fyM//yFxid/BRXL13hnuknn/YO+1Wx0cfWjVn0rpQCQYISKZ1pYygDkCRPBn9EHkek1zWNiYwV/6QlGwClcaYmKUrMTCJER2gP+O5rKe/6w3s4eNOLOLSxwqPSksmc2L11C8hQlFjGib/q+TdJogjBsTOd8pfv+2u+4bV3sxkc584/zg2njpHqnKZp2N/fYzAYcHxtDZUkfQCEifz8/uWc4eBgn87FPMlEabq2xvmnuH57Nk3TtX3ARnRuYgzT6ZTGNmxfvcru9lYc1jnH0vKITFbozjIbt6RpQiJV/LIqOHpojWp/F18sg87RUlK3DePJGNtWvOKVr2QwGGBNw/aWY2V9lSNHj/CuP/kj8jQjz3PoN6y6bpAqoFTKuK5Qec5nv3Q//+gZtzHMFI1zBC9YueF6Zg+dwxmDTiK0LHhHquJzRQhSmTDFMpIp+9r1YDBJliQ0TYd3liQZkqqE1sYeqXdu4RCcK7fmUYail8IiY6pSrgu881jfIVVBM50iBYx0zqV6l9FgxIoQZHkMQJEoTIjBJJ23yDRlf7IXgVxtRbGyis4TrHXk+WARlpMmGolka+sq3kWDlgyCJHtSaDAajZhMpoxGSzjnSVTUUiupkSqqrNaPHudjH/9sDDkPHV1n+nmVwvTSutFoGWsN3hOLoR4VPc8+9kKi0wTbNgxGmmq6iw+wtLqBCjJip4mDw8l40pt/YjayMR1hfqt2gem0w5UlxgWKIqeeVaRSkw8LKtVwYecK1526jsOh4/SZM+zvXWM4WuPFL3kGf/bBT9A0HSdP3sAgLwhagPGIRFEbRbXb8N6P3c90b5/n3XyIZ990hGObI45trLNeruJ8Q6ICuU1JU3AyJd9c49jNL+Rn/4dfwfsYzpMlCcab6IdQCeXqIU6feZRnXHeYajwmyRR7s5gNHN2Q8TZ5y623sr2zw9pwmaTMwMXiwtnI//mZ//5fkCjJ3t4BrbUUg5Lo6/MUfQLXPHRkvv/4fmj+1D1JCEHSO2nnhcocDzLHhUf211xiHiWqf/unf8odr34JP/5jb0dvCgZB8U2v/SY+/J57n9Ye+1VCrwy9eiPa70Gg0ziwS3SymFa3xmCNIQrD4kNquwZjuyf7k97jbGSEy6YjtA2/++qSLz/zKInRiBAwouEbwxrf80eP8Y/diM3lAZg4A3CuD93AEYIBEVA6sl/yoiTXBcEJnBZ85FMf56UveTGrSyOeecttFLpckDfjoeVo24r9vT329/dp26jV9z7iFNI0YzRaYrQ0Yn19I1aDWbEAJM16B+tgMGR1dZVDRw6zsbnB0mhEXhZkg7JfTJHAOJ3VrK4fwaKYtBVKxNvQ9t427eSArq2ZVhOWhpK9i4+R+5rgJly9ehkBHD9+jHywxMr6cdY3T3Ls5M2cuukWltYOccutz2BpOIpUT5WQpgU6LUAopMyj2imT+A5uf+nXMKsaqumYJ84/wXRvwq2vfCW268iVxjm/GFQJIvMllQmegEKSBsUVUyG8xPuAcX2GrRTY1oKPMtes1yfP8wna3iIen5/vN84461BCkvRtsNHyMo31IBIGWUroOoTUHBEpQhq61lE3LXXTYboOZxqsTHA65a4XvQCda1SimVY1bdvzwrv5NToy6qUSbG4eZjqtY3+914F7bxdgr3hgEluNoYf2+Sgbds7y6Onz3Hvfg8hU07mORCaEYGNOq4TJZNxv7CkhGFQSB7ChvwEIKbEE/4iaJAAAIABJREFUZKg4VlT821/8CX72Ld/OejWlm+yQaR2HzTLFTC1lMYyANS0XqiBCwBuLzEv+4E//Aw9eq7mya2lriWkEe1sHVJOaZhpT3S5dvsjezgzvc+6485U8/MRV/uojn2HqU259xrMZlCUE39+EPME2zGY10xb2O3DDEd/05u/hM/c/hAiaoSpQzpPJFWzjCLpjn5qTL3k1xa1381v/+o9414c/gQmK0glmsqOQElM1eOOYNg2rN9zEJQvnxzOMUGTFkGkH+62h7jpSlVIWA7SQHOxvR4e899STKV3vVnUOEJrhcMCxY0c5d+4Mo1HO6sqAJBGLA3xenMUNPn68i7Uu4q1V9wYpYNGdgCdVNnNnM4BvA2sDya/9/m/wwfd9gLWTGwxFRhfgXX/+nqe9w36VbPRioSedSyoj3Cpu6InSJFrjezZz13V4Gy3eQsZBhRQJxsSHk+UZzhtsIrDCcfiOW3n3C1f51AsPIXWBcgKcxdqGl37mEuX+hFoIpI/clNhakXiiZE+KfkDcBeJ4RJO0nv/1l3+F3a1rSK1ZOnKIcm2NU6dOcdttt7G5uYkUgraNhqrl5WW0TthYX0eIqCBI04ymiRLHpmmRSvcbqcCYjqqqqOuayWRK23SMx2NmVcXO7i7j8Zimrtnf3mM2mZJlKcdOXM+katnamcZbjA9IlcRg5uCw3iN0gvAd9332E+xefQJvZ4Q+DKQ1HRtHjlEurSHTEV7loBLsvF+IRmuFCxZEjHd0eJyIGZaegAzwj7/nLbznfe+jriquu/kmBstDVk6dZNY2UX9MiKiBXrnqQ4zjQwiUjxCnnXYaFUFJQtNEk0k5GJAkKiZm9YyVruv6CtegpMT2vVCIpqt5QIaz8aBIlGIyntCZjkQpRHAMiowySAob8JlAkpAmOTrNSRJBkkDnHfvTKX/x3r+kyEvSLItY615EMF/HogerGWsYLC2xu79PkCKydPqg9ljhSYTo33ciSHXPpFESrSRCKtbW1vnz974PBMgkbrqiP7x9sAyHJYvsUAVBRHRDkBKUpm0syhrOPXQf/+yHvpPxY5/nZTcc5ru+4bVgKpp6RpGXIBQr5UqEkQnRYw1iS00EEHhqC50qeOe73seDj1zg6s4B0zbQOcGlq1t0IXDo2HGuv/EZ/O2HPsGV3Y4/ed/fsd3Cpd0p6XCFznqs8T3j3WO9Zzw+QGLBG4Kz+GA4fuQUhJRZ5dmraqamw5otagdLt76QO+7+Xly6iZk6/s3v/wEgIisrgcIFWtm3/ZQnVQJIkHrA6Nj1NCgmk4ogNT7R5GVBEiS2binSHK2zvp0S22uCJ9dY1xmE1EymNXfd9WKyYoWsWOLq1e3FjOapFX3074mFTn4usDDWLA75+S1U65S5YXQuc43YYs073vG/kS+NeP3rv5kr209g9yuWvaao/z/W0f8Xf4WA7TzBCyQaJTU+RAiYQJLoOIDD+6iNn+vnfVz8SZIglSDQB00EiUTjAkzqCcZI0kOb/MEJxYW1ApkMSKwjDYFgBcNUkyqL69GuOsnwfk5VBJEovHAY32FsR1GkGGV44IEH6VyIxMuuwxG4cuUKW9vXaEzL/mTCeFbRtA1dW5NnUbPc1k2Ut0mNFElsP3jPbDLGeoMQijwvGAwGFEVBmmoSrRiNhoyGJUki+2u6QSpJluesrm1y4fGzuKZimCexmuwshEAWwAmJrSuUkKweOsqddz6TgyuP8fj9n+Lg0nkGZUZAYKSkVBnK9zMBAalSEQGhopwyuABB9MqZKEH13iO9wEkL2QY/+b/8DkubR6lnLV09oZIBRpt0Pvagu57WGJVMAq9i7J8IHk9D3XiMjHGG3loyIUn7oWhjWmRPBvSeeJgmKVIEUq0RAfI0Y3lpBCIqs9IsYpGdh7ZzeNv1vPa4hqxv2Sg0tjUE6fEi9l5dEDgUnY3Pcn3zEE4IpMrJZErA05kOh8M4iwt9VkIQ4Pr2k/eIxUwC6rbFOt/3/Q1aJbRNdEH7EDAhHoZt19I0dbTLo3DSo5KI/qhmdVSWzYF/QkUDVZrijMG3BukC2+MxL3vWKYrxhJtuOMZk9zKf/Nv3YoInSQvA4qWltV0MpyEODgnRfOa9wdoEYQxS5zzz1tuot1o+fu/n+PL9j3Dvw1c4mDrOXNznk/fdx/s/+BHe9ObvIpMzLu7tsT0VDDZPUFlHqqI01ASFN9DUbXRge4ESChkCtnHo4Pm3f/TH3P/IY4z3x9Q0fPThh3n2138jS9c9D2ROPWt55au+lnLpELaNhYpxHukl3jis9YSQIKRGBIEihyxDlSOckygSqqqisR22nSKMxaZDbF2R6ozW2mi+E3Ihi23bmllryAYjHBHRLWRU2EX0tyNNM7ROUSpBJnKhkX9SdROi4Q1Bmmhc/6yDdwQpcaE3UNnogG6zho998G+49dk3cd9nPs7Nh09y1/PuZHh+h+um/3+LEhQR+iMlMajCtDTtjKap4wOch+OqCESJX6hem9o/wM60BKIaQSmFCxLRWYSCru7Y29vlwt6Ytx+6ykevK5CJZqYDTdPx8le+HNHEK7gUkuA9eVoQPAtAVaIkWisCnmk1JskSfuM3foMv3PclyrxAOoAQN8ZUc/z4MY4eO0bem0+CAOMsOk/JipzOmSj5C763p7eRfCnFVxIg+0Um5lWzjxpoAK1j738wKNje3mY2m9K1U7a3rmDImbaOunOYtkOlJUpKXOdJUJjZlEGa8LEPfIjf/c3f5Pu+/Vt5+FMfYufyOawxNLZP7qJ3hqZpNCwtXMv0cX8eEaKWXIZ42HZWIQZrjOuG/d0DLl+6xJWtbY4873mkSoMUMUJQKQIB37uQo/5bkeiYVtT0A/hURX9EnqToJEEogdZJlNIKRVkMFlflRCm0VDEcuzebRfVSxAt0XTQ2DQcl1lnSLLadBP012gm8tWAtGhWt5k5incMLy+RgdzE0U0nP9g99mHovZ4w+j3idX1tdjQM6FyMvF+9dxBvpYJCzN97v2ScpSaIRAnSaYq2hHJSA7N2tCoFaVIBP8lVCtMv3XgvV32jSNGF85VH+wetexXS6TTuGLF/mrW/9EfKiJJUpWkiUCCDiepuz5UXfiuicByxtV5MNBhw+foqLl85z9wtfyo03nOTlL7sTmUgePv04k0oyNgkf/Mw96HLEXbffznQyjmsJgWni4eR6A1XXdZFl1VNIBZJgPFp6tqct7/j3f8E9j5zhwKf8xM/9OvnSKXKR0HQVXVOxtLGBRSAS1bdENE7FONA0y4nZtnFuKmQgRSNkxvqJY3jpUd2UJdFww6kR933uY1y+cgXrGrq67d3FjqqeIYVke28Pnecsr64gEgWJQojIrwo8iSmZU0XLolzwbJ6Kc9FaRzgZT5Ir52s/mceg9mAzAcjxmK+76Xqunn2A0aEN6krwxe2HOfHqEzwUzj7tLfarYhgLRItycGRFRryKZRBigvwcsBUHk/0pqSxpmsVoMu8JDjKdEoJDKQ0qUFvDrTJj0h6wmWqSZ93C/rUx7y0U9z1rmVd/7oCbvu87eUOd844PfYyB11R1jQ+B4XAY3YFVxeqhI0yso7V9KHCW4dqWr3/t63jt172GupuA92RFyrXJAZ21MWvTBQZFSb6xRl3XlGUZT+++Gu1MTWLiJh4XhCJROfh20fN7EmmaME8KmqtImqYlG2gm9QGTyT4nrzuBMYbR2hpvffv/yItuPs43vPgOSuFYXdfsHszYXB9gxgdY6/jEpz/NlcsTwrTm59/2Q+SJ54Zn3MysyqmFRPlusUDnv+ZX0fkQaa4eygvdV5Q5VVOTa00rBCtLy5RljnWW637kTXz0+z+LDXHoGGI5T6LS3kiVkAiPqw1ax8G76tkmLvgINTM28j6E6lsZMSZRSPBOMKumpEURY+uciw5e2x8kIa4RH2LraHJwwHC4ijUztA100lMUA1Il0EGgtUIaQRcsMtExUKOuGY6ihDFISV4U5ER3bBIHCXGdppLZZMba2goXLlzg+NGjGGvRQtOZmlRpROLxeMrRiOl0xrCcZyUDLizMdVonfTsBus4tRAuuZ6KkaTz4g4+D07arkQj2Zzv8wc/8MPX4gGe99PmcvedeTt7yAt7xZ+8l1TnOd7TOk4SUNJHwFLhWLDYsVS1ZysY8cvkKOiv5zL1n+em3fAty6wLFoSWWzD4isbz6lc/m4pUOmedcPr/F//XgBVY3cq47fIQJKWkZY/ecs/jgaJqapmvI8tiSVQK0luwdzFjfXOPur/s2nvGcZ/NL/9PbOXz4ZrbGmizXdFguX7zKP/ye78HpAZnOF3KVEALOxvmIknE4rZIUepBFRkpLIAwGrGvJcKPg+7/lblaGgVYZdq49ga6HFAcdw1GOSiTLKyskecpmcQihFE1Vf4XCK01TBHG/gNiPn/twsizDWb+Y2wELk9T8dvckq18QOkueaDrT0fRGrGPZOmcOHC+8/rm8+8EP89bv+E4evOeT/OQ/+wn+7m++yJt/7Fef1v76VVHRR1NQwNgQFQC6JLj+i5llEd6V5RRF3vc2RR8r6BdD2Nj/ijbyONAwdK5lJcCL//jLLCnBEaU4ceIIWZmyvTbisW96KdN0jXw04Nk3HiErC9bW1ijLMsKvBAQX2N3dI9UZa6vrHNo8TNdZhoMh29s7tG0NwHBY4IkOw9hbb7h27RrDQYkQgpWVFYQQCxbK/IOfT9zbtmE2q2i7evFc5gMciAxyYyI1bzgasrS0RFmWtF1LWZYcOnaUuq4ZDAY0Tc0b3/hGfvKnf5rL+2N2ZxXXrlwhUSlNXVPVDY2BT9/7ZTaOnOSmY4cQNjBtBVOX4YNHEw/MJIm/0jQjy/LFsHOhLOihc/PPpWkije/gYC8iBITojU0Su1xSeY9K0n5YKPAu6r2D65nxVYXobwldX1mmaUpZFMyaCqkkRZkjRB9ULWNP2fXYi2xQUjf1whmqAhAiC0YimAeGJ0mCFpJUx/yAjXyAV4q2remcw2DpjKHDgU7xSjMYrpKmQxISbOeRIlZv+Hig287EfyQgQqzKnXOxePAe4RXOgJYp80Du4ATBhz4QJgaJpFqT6Bi/Z31HVTVkaUnw8RY0m80WLZuF0kgIXDALfIbpWrZ2t9h94ixHjh5m59oWS2sls2rKFy5dxSFReQppihGCWdtS1w1JklBkeY8QMZRZjugrfS01bWNYXx1Q2Rkqzbh26YC7nvd8rj++xpUnHuA5120ijGPSeM5szTi3VzNrPT4IOmvid0pA1c4ohzlJmsYBsgi0rsHZho9+9BMcO3YdV3cP+L13/illUcQg92AYDgZ855vfQjrYgKQEEWXQSsZbl+2DtHWiSRK12F+UUhjl0KlCGUWaLMFgk8d2avYPqiiwcI6DWUvTOA7GY268+WYGS8sxmLs3OxVZjhLyK+SUQkRciHegk6x3Ysehyfyz+cp/Xyyq+TnV0jqHNYa2qumMobEdK8MR//q3/nc+8PhDfPHcWe6443a++9vewJu/93v5pV/6Pe774n9Elvl/fX1VbPT0VnMfILgEERRSRD2zMa7X1ceqdn4Cah2jtngKaTJeY4nkQNeh2pbNV72Em+Qmd/ybzzPantAd7PDo9jarB4pv3rgLGTKuXt7ip97+U0ipoOdNK6mQLpDmGVIpBoMBuU6RMuHU8VOMJ1M+9pGPkiQJeZFHuWCI1JHDhw+zsrLMXXfdRZZmDIdDdvb2ycuSrCgoRyN0FmWK801/OBywvDxAykDXdYtTHiDPc4aDITqJfJlLFy/SdaYnD6bMpjUbGxuUgyHTacXxo0d424/+MGtHT/KC13wjlchBJEwPxnhrkWnBbuNZP34ja5uHOX7icAwT9wmtj/xtEWL26VPlYU9VCMx/5r3HB5iNx4vbRyLjPOHiubN420YkhQscHFSMQ8AHBSqGes/zVees+7LoSYUhgJCYLrax2s6gpCJJFUr0felEk6Z68UWOyVguBnF3XcysdS5mu/ZqKvprcte2cSMw8Yp+ZLhMYxpsZ3vMcHRmSyHouo6qbcl6rslcRQEx93MOCRuNRr1QJeAIC630Sv9zhesTtuYSSUPd1HgTaagA1nfUbRtd2d4vmOTzAfRcpz3fKJxzEX7lY1tv/tfpbMaS1HjfsLa2TNNaVjdP8Nv/57uo9RDnFNOqwgjIs5xyEBHDAHUTERsBgVIBG5KYaSsSVKgpgNWNddZGIx58/AmWBytcvjbj7le/ivu+fJaPnn6UpY0NVpeOwmgZ26tP5sPzuq5ZXV2O/7/O0lnTH1jwrd/2X/GB//BhNtbWGNc17/nLT7O2vAbBkjrPr/zcL5OsruNdQqGSCDWUsg9biQCxpmn79odafObeg0fEZDIhEUpTh5T3f/pBrs4Sgs44dPRoRFYoh/VggkCnBdY4EhS2M4vvpe0MSa/ym1NUF/4eKRfE1/nrqSiEeUU/b7s552Jq13wNWEdZlBRJyhce/hLrqxmP1Fuce3CHb3zjj/IDP/1zpDbnhc99wdPeYr8qNnqlJCqBpqvwPoaCSxEDo0MvO5tOp1hrFoYoYwymz42VUsbeb//wEpXQtBV70xkvvuVFpD/wHaSvfw13v+cqa/dd4V/d+t18x3O+kQulQWI4fuQkhV1iZ2+Hpqmpm3ph1988fIS1zU1QCq0zirRAesGJYyd469t+nMlkijEdOk/jBL+/Vt93//189tOfYXVlBYJgaWmZtm0jAGueQBQka2vrlOWgV550sV3RX/3mWuhIwnMY4xgOllhd20D3h87q2jrHT5zEGk9ZjijykiItefzsOR44f41Hdxr+/Yc/wZcvbjGdTtnb3eWh85d59wc/yvO+5m7+6M//jMv7+0g6fL2PNF1k//sY3zdvETx1ZjBfsHGzkXRty6VLlwn9RtQ0DV1nuOnkKc49fpoiy8h1waoYUp44TmfBeom3Aak0Os3Ag04E3scNPVOKunNR2tr3jW2/NmLUZERDzL9MOklj+EVfCPi+7y7Ek4lI0cQCqU5pqophnuFdS6IEK0XJoCgo8oylYsggK9BBoHxUErXOYPGsrC6BcAThMK6JGnZjUQjk/KBLFFmR4VzcwE+eOI6Z7mIml2jHF3HdPk2zR+srZKLAC5wxZFkaDXIyhqfM2wBt0ywq9clkQpalizUSMd2+vxnGTWIyntBUE775BXdw+NQJrpx7iLTY5MzZ83xxd8bqkRvYWD3Esc1D5DJHWoU1FtF/dqaNELgsyxgu5Vw+6FA6YdpWrG9mfPzvPkKeFLC3y6u+7eu578EHeOd7Ps8v/877ec/9u3DodshTjNQMMGhcLB6I342mqRbvXfRgN6EkWxee4G0/9sPYqsbampe94m6+74f/JR+79yG0T7FG8a6/+SCm9bjEg5gtDEhztvvps2cWYSBKJr3AI0GKhDTkJDLBpRYjWmRwJMkqf/6JL3H/4xfZPLJBvqxZ3VziWc99JlUbqBoLQmN6vIrrDPUsMmbmN2zvY0Ex37jnG/lTgXbzA2KeumWtAx8Wn2WSpqR53+MXsDxaJhWKzz76KGf3UobNceoKzlczbly5g6rq+KVf+8Wnvcd+VfToAwKVpti2BQI+NCghUD4jSROsi1VAkfV2cil6uqFHoQhW4GRDmiis99hg2N3fQQfL8uEBCQOe9/LXs/zqb+UVPuEqHeeuXGFctbzzr/4EKQT3fPZzFEmgqWdkOsfJBCkTgoxDl0QmyERHlYbQCCV4+PwTVLOK1bUBTkhE69jZOWBpNODE0aNcuHAhBpjEmCqGoyHWtkzH+wwGAxyOqmlBpOz2GZnGGIo09r6zvIjse8DYDhEpW+gs6XvlcYHTqw0KnaMKgU5TPv25T3PixO2cO/0outTc/rVvID+4wqUrl/jA5z7H9/6TH6ENkpd8w9cj9y/SVDVdSPAuoogTZ3C9zj0AhOjqg1idGGNIVYIIsUIaDAeARzpP04d2HyjBketuYWf7CqujwyiRcOL2W7h85jwsD8jauDl2yjFCRBRyIklcxnM2Nnh0d4ujo4wVLaG1iCIjSTXBBbwwKK1JZAyDcb7DCkuuM1IlIcswxqF1TnAdUhBdtn0EYprm6GSAcVOMUVyd7TCSijrNyUxL63Wv0glYqdhyLcZ6BsUSXZjR4BmGDOvA6YBpG1A9C94EnHYM8yUmncG1Y372H76Uyf4lsuEaj27N+Mjn7uf0tTEmX+X6kzcgQvz/yoqUrh6Tphkd/zdzbx5la1aWef728A1njjni3rhDzplAJplJkjKLjUiVCOKsaGlZTZe6bFvbwrkccEAtdRUqIg6lNpQD2uJsoQiUIiSQkAOZSc55885xY44zfsOe+o/9RSTVVSquZXV71ror7z0rMuLEOd+397vf93l+j2I6m7C83Iubl4DKOpIkDvBM8IgktjFl6XC+onKWYlLQFQVrawvsjQzKGnrTDVrLNxH6D9DNO1hb4X1NSwmKeoa1Ppq3yhofoNOKPfXpqKCYHhBUhh1PuOXW59Ht7VDOAh+6/wn+zbd9AR/8i3s4X00YHLse6z2ZhOA1iQx4leOcpXQVwjgkikS1ME6gVY7wDZUWwUte/tkkwXH1LTezM50w6Czyshce420/9/O861ffyo/9+E9SBkB5VIAQNDSolIPhEOd9I07oRGx2qpEoaDYSIRwIhSstWZojE4WQEu8W+eP3388X/auEG591C8IHqsqjUxuVNd5TCx9xD3VEGFtraUzzcUEPEETMkHXeIbTEW4dq5NqH7c5YLKlYyBLbw14RDY3WgA50ul1EHU87fZ2w7adsF2NOrCzAzphHLzzNoJ/zVx/+KMvHrv+M1th/Fgv94dGnKErqvMaZxqikKhIyWq2M8WRMp5XjkIimogwhkiulihNq66Ku2zhHLjX/9l99HdtPX+Dki+6kN5hn92CXK9bjlOLxsxf46bf8XKMuAYJnOp2xstyiqksqU5N32qRSIzxkSWwf1aaM7HQduOeeT9D51m9Aao2tLY6AMzV7uzNOnz7JyRPrWFuTplEi6SL3l06nFxUgZdkM0uJyejilJ0SmdcBjTBy2HZLvgCMKpnM+mo3SlDxPCMEwWOgRHMymM556+hwf/JsP851v/F5WFtcwgw4vuOOFPHBlh7n5eT5x3z18zVd8IT/1Iz/AnftXk4gMJwJGudiXxRNEk/cpwpH6xpioGLqyt09VVczNDVhZWeWee+7huTffipQKa+PpRSpB2sqjeiHrkMwNSJOUWVnSTlrYyqCSDO8CMk3piJRJVca2nVTsjMe0WjmtrE3qA+WsQDlQrSQabyImJM5z0qyp7uJQva4tvbaMXHofyDNNliUUVYGSEqkc3lWx8nMzuvkAISqydEByGHBS1RwYw6QqqZViNivotNsYATJE/fZhaAxSHCm3sFFBJggIX+FcxYkbTtLOOii/xfpLnseOCfzx3Q/yqU9+jGPH1un3FsiyDtZKTG1iUhFgqhjAYowhzRLqusTZmk63y+bOFkEEjFKx/eUFC8tLPOvq5/LgxV3uPTMjWBOHyuJTPHL2Ci9auYY8S5mNR/R6PUJZA4Kdne3YiszzI7zubDpkMpmQtHuUZcXd997P67/v67n7fX/DR+57ihed22YWMgaDVVyDSH5Gd14zGAwioC4qcjG1eaZ9IQIhSJSOJ/Z/+4bvQfhAf67N+jWn+fi9m+xulTx43yf567s+zLve/QeIvIeQ0c0CUbmSJjHMpyjLhj7r6HRbjUu6WV9EACUwdR1btMQwGuc9WSpZWzvBb//m7/Pyl34WN91wLUJIqklk0NemYjydMpvNWF1eiaIPYmpYnEsVR9mxwQfSLMUaS6r00en3sHWjE43WNc5DWfnI1UIgrcIjQJmIAhewv3WA6nfgYMRUKZ64vMmtaYev+85v4ZWveg2z2WfOuhGH09//Px9J2g5p/xhSahbnT5AmKSoR2FDFTEwXjzimrkAkNDYbDhN2lEzo5BrjPEVdUrmSMBqTJxKVCKT3DObnqHxgY38fTMAj8UIgtG5SqQJ1OUGh6Xa7GOuifVxI2nkrxhcGgW8W5CAE5x/7FO//8z+kP5eTdztUVc3WxgXGkynnz5/js1/2OWRJdIIqJUnzuBA5G47Aa4O5Ht47NjY2WF5ebab16dGC+umxY+125yia7LCNkicJdVlGIqSC3YMDzp49y8xOGY0s4/GIr/zyL8EUFZe2r7C0uMDwyjarq8tYb3j8zJO8/6/ey2KwpEHx7T/5FmoZ6ZXONqk5WjWRjlAW06OeqKvNUQZAaBa7Jx9/nOtvvAlrHNZ5rLeYuiQ4mJYl7uIFnnzL25AeklbGis8JOs5DZvUELWNM3FNFxcPDA5a7bW6QKXmu6AsJWpEgMaKhOQqJ1vKobXK4iFRVRZJkDV9Ex4JANMVA8NTW0s5b1OWMug7ct7XBjSvL9HNNSyckqvFhOM9GUfMX+/uccTV6YYVrr72aSW0wM4tM5FG7Ji5csc2U6oREKEb1mNUw5X/7/OcgTc3BeEpnMEAIyWjquP1zXoddPAlCUxvH9/3gD+ODinpzZ6JZr2E+IUDJeC24pqIcjkf0Bn2cMyRB0s5aTJwhUYJMpQgpqW2s6ELwDGdjptMRV50+HbOAjUPJhKIoUIk8MqcNh0PSLBZZZ86dZVYappWhl2k+74XPwYwn3P3gE0xVShYEU+3RIkGLWIiUTRGT5/lRXmxVVUynUxYXFkDGDTgRCkfN+GCH9/zRu7l09knavZxzG3s8+miBrzIuXLyHR574ZDwpBkmaZDGARSuU1kdxfBsbGywuLqKURiVNeDxEr4qHNFVHMZy+qe+kikqgVt6mLiuOrczR7SUszvd42QvuREvBVaevYnll5cjMOR5PUIlmfn6BLG+jtYph9i5m47rQhIjU8Ro7bOHYJplOi4jZVjoBW7Jx9jEG/T4ybaGyFnWQeFvzm2//WX719/8A1ergqHj+4jFWTh3ju37sp9BT1YgpAAAgAElEQVQiQwrJ0vr6PSGEf7BZ/w9W9EKIHPggkDVf//shhB9qWPPvAhaBe4CvDSHUQogMeCdwB7ALfGUI4ezf9zNcCPT6c4wPhnEHxoMFE6qYVakESiQ4aTB1I6+j0ccisN5SlB7dJK8H75nWhqKqsXhe8oLP4sEHHmJSGXSnS6IEEkWQMuqshWhSrHJm0wktm8ejXhAY75gWM5ROUE0YuZQSoQVzc/MolTA3mKPd71HVFXu7Vzhz9iyPPPY4L37pKzjY3GW+36M11ydLkyMeBlIiQ5ter421FaurKwihSHROWU2ZNTKu2OOLH2pZlLRaObXS1K5GIiLTQyckUrE33Gdja4fKC5JE8L3f853s7W1x5skzICy58KwvLrHaGVAZS3fQZ239Gq5aOUE+nzMbF7gqeg+88kgREbtlUSLFoYpBHG0yQghms1lUiaQpIURJ3qGz+TDaL2qlPVmeMG51cL02/amntJ6pK/EWUgetTps0QOUci2lCpyiYBMt0sERiHLKTUlmDEAlBiliJB0sIkQueqBSvBLpRO1hbN9CwsnFPxzgZpZO4ANYOKTMINXnaopu0SVSEUcVKy+F8wDjHtC7xabxdtq5cobeygmwlzIrJkXb68PMSAoJ1GAHBW9ZX5qmKEqETWt15enmPpy9uYPoLLD/nuVSlwgXY3N5CCUDEkJVUPXN7HlbYIcTveWi1b7fb8dQgBEpkICBLFAGNDdGFKaXECAl4ur2cg/0dqrLCGIvWKWU1I0s0syaOsCiKo6p+UhSAoirG6ERRB8d7P3wvmUookNRe4BpeeuVLipk5krVCDEPx1hF0dDw771FJQvCRFSuIyW1f9fovY2dni8lwwqz2bF5x1LXjrr/9MM9//nFGDxRIpcl1LPRUE0F5KMw4VJwdSrBBEXzEXNeVIcta1HVFHKBHwJ3zHhmiU2RWlCihuHBlk2QHPvi35/isO1/AYH6OaVWSDcdkWYssV1y+fInJZMbq2irXXHctaZqSihizWVclaZJQOUuik3gKa4o2rTUhgEPHeEdXMjvYItRD9nY3MUbSyhfoDo6RJJZv//5v4Zff8X+xQ8Uv/dxPc1WtWLrtubT1HIaaqv6npVdWwCtCCJMmaepDQoj3AP8OeEsI4V1CiF8C3gC8vfnvfgjhOiHEVwH/AfjKv/dFKE0xiwEIaaaQKqU2k2hjBLSK/a2gFEoFgqdBCkfGiXWximojSJBMjcUpQOdU3vCBj91NJ2/RbrVRVlDLyM8JLjTyLB8DKbyI6N9iFtsrROWH9fGoGIdeCQjVLCIqmreIPgAhBUVtSNpdhEr59u/4DrpZzue+7OX8i1d9LmIwIAgXNd6+Rvi0kWKOabVaQNIYgLr/Tf7kbDrFYhkODzg4OKDX6+G9J01T+oMFpBSMRmPOXrzCz7/tl9nZ3uHM45/gz/7kj1hfP0FV1uxcuczpkyeoypIky0m0wnlPXUxRrRwhckyoGE4nBAL7oz067YxOu4szNbUt6HZ7DUArqiekjwY1awzWe7QWPPvZz2Jnf4+F+RUyrbDWYyhwpmJWW+bX1mifPEb38W1qM6MkIKSim2qCsU2LKNC3jjtPXc2Du1c4f7DL2vETVMFjrEVlaRy8NwPsJGnjUXjA1hUIdZT9Gwl10fmaJm2U0EzLijTPKcoJiYhD9uOrq+gQUErEeYyHEBR4SwzC0THfNYkxjmIyptuejxtvbbDGk+YJs2JGICCdYDopyOcl6yvLSBmogiUNgoP9IbrVRQxWmJCRJgGs46FPPUQIoHWGQOF83bTyiINnKUHExdMUNVmnzWQ0ZWF5iUR5qMF4T02N9gJnDboJN/EN09/WltXlFS5d2mRpdaXZqFXU3kv93yAlsizj4uZmc/qsIh5EJXiZUDiBTBNSYxFIlBeMigItErrd7pGAot2ORj1ciLORPJ6yRPAkMr6evYMdXvV5n8vmlUs895bncObiJfZ2FadOvoC/Mn/Jhz/6GInO8dhI1VSxWCqrCq3i6Xd7e5sTJ040IoYGFYFkOpnFE3ozzD6UMopmXuOboiBNm5aYC4xGY1bXr+Jn3vp2fuYn3szm1hYnT1wTWyzCMNw/YP3kCSaTCfffdx/dXo9Op8OJ9fUo70wjWTboGCp0pNSxNiJOsgRXT5HlkM0LT9FtaYwD4Q2qGOIJjILjXe/8Q77mhS/isaLkZS9+BWF3zDTL4kwuiZLmf7KFPsS7ZdL8M2n+BOAVwFc3z78DeBNxoX9d83eA3wd+QQghwt/TIzpUcMR+lsSYRmVSWzqtNlpF91ymMypTxv/JgUw0Qsq4u0tBIiNQytQ1loBwgY5XVHikTqgQCA1KxmSqWHpFJgUiKjcOFTG1McgkSv2CjHF2IcQWgZSSuvakSTzihxBdmUpJ5ubnUeoiO3t7HD9xgvHOPp+4/z7+/D3v4bu++43cdvutODy+8mRZhCQF78iznK3NXUDS6Q5IkpwkSdjf36euK8ajIft722ztbHPyxAk2t3bY39vnwx+9O15IKuHe+z+JTFKms5ov/7Kv4o1v/C763QHttMvGxYt86K6P8eoveA3b+zusrq6yu7lFv93GSsUgaTGpRzx17mkWFxcQzlEXBfs7uzGQwhicqUnydiRBtmIwQ13X1CZyaura4VPVoGSjzty6GmMtvqppZSlbV3YZu4olH+glGVNfkyUxaEYJTao11lUsdruosmJ9aZnHrlwia+VMp/voGC0WB9SmRgqJUhKZptTWUBlPEIJ+L2rBTZMWJkM8xx8C55wxKOmpjUMpgZSBXGqEjLpogiD4Oip5VGwRJHlG8AGlE+rasFft0W1nEUbXztjd2wPhaHfbVNOKLMu5fOkc9obTTIqSVqKwwnBpb8j8+jUIlZP6SFUtyjGPPPIIWdrGRlj50fAODp2ylqRBKQitmM1mDPr9mHCUxnvBB4u1ccApVUppHdo7TLBYH0hUTrAlaRaD2SOiOOrlJ40L/LBKds5hvMNXHq3TOHPQEi80SmhcWZEl0Z0+HU2QMtDqto68Iof+hiSNla2pa+YW5uNnIAXBx5nP3Fyfzc0Nbn3Ws7nrro+wcuIW7r33Pl53dQyuqTARbywVeLCHWGAd/TNnzz3N2tpaVL0Qoj+h4WK1WpEm++mGJULEfud52hiqoKoKqqrA2gBCs7U7BF/xnd/9PfzUj7+ZXq/PE48+ycMPfYwXv/yz2d3e5XnPfz5lWXBlc5O6KLn/vvtYXl1lOp1yw003EUxcS5ROIudeKYL0WFcibMHG00/QzeIMMFUdCIa97St0BxXthWN8zevfwOS1O/j5Ndy+RbfmaR2MKQcluUxJU/XfraV/1+MzGsaKmHl3D3Ad8DbgKeAghHAYWngRWG/+vg5cAAghWCHEkNje2fm7vn8IMSWorkBKTTUpUFrSG8xFSZaIcCGJp9U+pPOlCBGRATTmDpUptvYOcM4eVeAgyPM2KsT9yTtA1sjmhnHORbt6kBhbR5mejAk7Pa2bgac60k4b73AzQ6Y0UknmF7qkqUYIRbCWXr/P3sEOQnjGkxH/9UMf4fVf/Xq2nniCX/zVX8OZGBzS7fUIKkoT67oCEd2ynU4HQUqatgjB0J/rYYyP3JHg2N7b5WB/yMWLG+StDrvDffqDLkIIJsYRzJRBr833/+CbaeUtrIsslsH8Ct55fvGt/5FXf8GrqfIOiU65tLNBNamYScn5yxdItMRVYz716OP87C/8OpPhlKyVcNP1V/Ovv/YN3Pr82/jkJx/k1ufeQp5qslaOygSuduzu7mLqGF93eeNSfO+zNsVsRllOKYqC3Z0dxEGJFR6dSuZNK7JyWgLpJft1jassVVoQpGdZSc5KwRO7+ywqh27FtooLJVoLXG2xlUFohZDQaWUYUzMpC/Im2ScESWEsgeqoWvXG0u51mDrLhiuYyzKC9LGd52u0SlBBklpPbgOz6YT+9aeop47KObpJisXF6mu0T6fbYWFxQN3gakVHkKgMnV7N3z5xmYfsFs+/6QQnl5c4dewEW4XheS+9FRc8VVHhKsuZp85QOYFUAi1i9oT1jjTJqWpLlmpsI7kNqIiOUDDe24Vu1KVH/IKOucbSodOUqqxp5S1ENcOZCanQVMWM7W3D0vwSMs0pq7oxsDUB9lpx/vw5CIGD6V4DN5MI47CyxBLpmweTCc4YWp0OaZYxOthvdOSawdwClXEkAmZ1jdIpedrCuRimrdEUvuLFL7mTFz7vDj74vvcxG9e89Rd+h0fPbfJNx7+C6XQH3Y4ya0SCkOrIZGhMxZlL50myNCaGOQCB8wbwtFrdhq+v8cGj0xRcNH9JJdFKMBweMJuVpFmCkgIhY2xpXYDyit2NPb7xG78FKTwZmvlQ8Z9/5R38+x/9Ubaeusi4I6j3R/SOL3HNqdOkvTbbFzd46sGH2JkV3PycG+PJR/fp5Bla1oSppdy9TK6iCkgmKbYqSbOc1top5k9fD7rDZLRP7+RzMS4cKd3y+T6R2ls/A7D/DB6f0ULfRAHeJoSYA/4QuOkz/gl/x0MI8Q3ANwAondHtdLFNNd7tdvC4pgooG3YHhGBAHppjMg554xGtqmJ4sCljFeQ9UitSnUB4RorovUM2A63D9oi1/kiP37w2Wu1WExHYwwWQ1uFl5I0ba0lbA178gjuprcGFjEOSZpKmVEVJnmdsb+1y++23sbO7Q20cJnj6/X40WTjHztYVVlZWaLWiG1WKyNxvtzvUVWB/PCVp5zzx2NPsjsakeXJ0+rnzxS/hE5+4l9rFi3o8HnPzs27h4GCX8XiPXKdkOuaMBiFo97q4epHjJ67i8uXznDt7lptvvZ1ep8/u7pP47YrxcJ9/+erPR+UpX/9N30q3v4ZK+uS5ZlR43vwzb8EJgTeWYjbG1VN+7i0/xfqxFZaPrbJ+ap2iKMjyjNFwRFGUHBzssbFxhe3NrShtnM1opTmpN8ykIUVQG4+wgjoYEiHptNvxeJ1qTDnj2WtrPLk3ZKnTRwcB0jRQt4gQsMGjfCRTVrUFFKHJlZVSIJRHK3GEf+71BpTTGXVR0lJt7GTEQq9H18YQZqc8pQgUKjCxjlKA0xmtThvhpjgTqKoa4wUqM8z3B7GCRsTeK5BojQ2BpD2gdJYze1vcYDvsDAsWbc2gv0iiAkVVUc0KZJDMZhVO5DgHSabw3iCloqpKlIo0Qxd8M3+I+FzrLFdddZr9vdHRwPMof5mAq0uyNDuipUok0+mYpaUlDibTGMdpYyZwVAJLZtMpOktjBrKKIe6CQJJqnDfRCU0eTVXek3c6CASj0UGUABMJm1VdkuctrDUx2KTVahRjMZy+thUey7/5uq/miUceZjwac+LkdWxsPMC1165z10c+RJ5loCFYT0R0hmYGILl87jJKZ5xYP4U1lqqqj9gyWZZjTU3a5D9orUAqgvDN+1Sye7CP1ikLiwsNFbXEmIpW3mE8uYKtZnR1SrAOlyUcWMcg65AGzY9953dTFwW3XX09S3c+i5e//HPp3tBh++J5br/pJspQM70w49GHH+PWW+8glQ6CRYc2/XTEgxfO0GlpWr15TO1IVEZVFugA+xfOMDhxI63ePB6JbN7TNE2PEBV1VfGPEdL8o+SVIYQDIcR/BV4EzAkhdFPVnwAO/biXgJPARRF96gPiUPb//b1+BfgVgKzVD95FG7jHMyun1LZCJ/FiQ+sGOqVwPjJxQjAoFc1RxlhUJhkOD6LD1tsjdKy1DiU1MQtWN5m0z1iQD7ktEI5MKPAMcKiqZ2StFtj4vBSKTruLJPDFX/LFFLMpS2sDmrQSRsN9HnrwQUCxML/AuafOcZBpSmN44qmnyLOM0ydPUs5mnDx5DZ96+FN0Ol0uXbrINddezbXXXhdpYQ4uXb7EwtICTz59LpILlcLVlqoq2Lp8mV6/z0vuuIMkiWEGtrIM64Jf/I8/Q5Lo2Ju2NrYdkqTZtBSfuP+TXHvtNVzZvMxbf+GXedFLXsCXf9GXcdtz72BvNOGuuz7MYH4ZJRO0lijhGU/GeB/pg1neJk8lC4N1VhaWGHS7TKczhvsx63Z3d5eyKjFFBcEz6LcZdE5T1xWmrhHLS5z/zT+hV5ZIlUVFklA4IVDEMJGsgXr18gxRB2b1DNPqk8ocryy45ne2NkLxmt7roWHtMOglAr8cnXaOkoq6jgHnSZrhjEMnKQeXx8zCPJ1UQiawtUfXnpZzOJ2wWczIBx0mxQQ7HpL0Io6g3e4hnGlctxJvbMO8d0D0F3gpMF4wf+Iq/stH7+OrX/1K0g70l1e476Of4DkvPUYxHUdTpFAgE0SwFFVsN3h844gu0ErGyVRToPgQJZdXrmwyHk3o9Xrx9w+H17anriuy1JMk8f2UUpB3O1gX0Drh4GDIoN/DBYuQKZWpUGmCsTVSHiIuFEoIrDEoLfFekkjR3FsKbyxVY+UXKqJLCIFuu8X+wZBup40zlv5SB2cbs5v3pIlma2uTTAWeuHieXm+Oc+e3o8s7g9FkA60zfCiw4TB5ySOE58LFS2R5TpZ3MLWNc5PGPCckzwzi6wqtk4aXxRFAcDye0Gq1yfNWpIhWBdvb2wwGA6o6AgZ9E5A+1+uxUUwppeSyN7SmirSsuPOGG5ldvMIT/2WXD//1x7i8t82p4yd4bPci3/BlX8VNz7qOKxevYEczbr7zFuaXl8Al3P3B97I816HXbrO5s8vy6nGCD2gPMtTMJhWhLpFZG+cCvhmoq8bHcqjumf0jwsH/QXmlEGIZMM0i3wLeSxyw/mvg3Z82jH0ghPCLQoj/HbglhPBNzTD2S0IIX/H3/YxWexBOXfc8inLG9vYe3V6HTqcNh+lOSOo6hi0cDjcIHq2T5t+evYMrTKdjIOI9BRIp46BNqTj1jpWzQQrdsFF8hCw1Wtfm9z3SjUd7v6U0JXO9PrPJlCRN6Hf6zMZDPvAXf85kssfq+jJFUfLmH/1xVBJ7j8Wsoq4tKtVMxmNsgEcfe4JZWZPlKXmaokRGu9Nhc3OD8XhMsJZWr40CpEzIMsWNN1wPQTI36MZhaG1x3mKNwXtHKiTTckZR1bjK8Zaf+UkWF7sk7V7j2PPMipLJeMzO7g5333MPB/t7/PCPfB9f+JrXcnztNNu7+6wtL8V5gPHsHwwjWKmY4p2g3W1j6hLrJMFZVKKxzjEcDvmi17yGejbhBS+4g2PHjzM3PxcRzEoigel0Rl2Wka1tDVmakssMm5X8zXf8MM/L5nGZRJgCLVLwkKmYrBNNLjGp576tLVwQ3LS6TisTmOk04ioa/XgiI/zM2zgvCT4gtaKsKqSWKK0wVVQpaJ0im0VS9uf5jXs+wM+/+z/RbqeIXovq7C5PfPjjPHn3fbipZ2NS8K7RiL1ei+xgSmt5AZlkdLIuQcR5j9bJ0VAv+LjvawleChwCrSzWSbSt2Lv4JHPziywdO8m/ePWX4oF2nvAb73gnTucgHBjb9JwbMmKe4EyNSlpHFR5EiJazMRB9NBoBNN6GOeo6ZiE4G7Am+jCSJCFgCEFiLLTyjMn4gHY3w5gYWKITwfBgn263y0MP3o+3VUw90ymORhrYDAIPC6LDdUQlMTBoaWkluj8JVGWFdY6V5VWca94cAlIL7nzezbz4eTfSydrcfNvL+bKv/iaGU8cNN17LpcsP0lJzKF1ESiWSyXgYTYjBU9eGtdV1qqrCmBql4u83Ho8jr8pFs2G73UXrlNoVVEXVoDbaxHBv2N3bJc/jutJq5chGbjrc26ArFZmAkQvYdkarclyVd1iXnlBNec7KOgdlhU1bvHf3LPNpn85gjof2LuBI+aXv+RY6vqTsLvOil7yA33nLj/C6172WVjNfdEE0yJA+xXjE9uVzDJaXkWvXMjh2ispJZp+mgjoEpJm6RCnF+lXX/tPIK4FjwDuaPr0Efi+E8GdCiIeBdwkhfgy4D/i15ut/DfjPQogngT3gq/6hH+C9J81SlpfnETJW5ueevkjWncM7mBvMs7gwT1WWMSkozaJuOGli6LxkUkyjut7GHqNWmhji2/wRkQESKSTPVO4+bvOxCuLTeRQ0X6NoZX3Gowm/8Ru/wuaVSzz55GO86I6X8cijD3P82AJ33fW3vPcvP0CeZdgQcaV4haAgCM+g26aqDGurx7m8uYn1nv3hhDw3bG5vgJLoXLO4sEKaJpxev5pep0ueCxIVud1KScqiQDYwLCUDWZribEln0GX3wiVe8TmvorswT7ffZWYMUimqaUErzahUwcWN85w9d4HNrV2+/Y3fy9LKGrMyHlUnZUnaybnw+FOYKvZ0Q4AkzSnLKpKGkozSRDnkwazCy5zfevefcnx1lUeePsPwYEi31yXLUjavbJKmOb3uPCtLiywsztHv9lheXqTd7rE83+G53/wGzvz8b7PgNW08MXXEQ4A0kQQCtuFh3Li6yl3nnuRgMkCFnCNE9aH1XESQWFsn8TPUKg40g0cIHSsj/0wcZV2XsbUTHD5JqXzk0FS+xh6f49SXvoJrX/sy7vqtP+PsRx6klooaxaCzSBAZKE3l6mZOJBunZKA2NUInWGcQpiYgcEHinUEnGbPJlML32R85nth/nGfffolO3sG0E7IsY2xqtJLYYJAiBtFoleCDadhPtoG0NYO4EGWkZVnGwHljSJKE0WiETjTC6SNWf3AeV5cEHVnqmUxjqydLsSGQ6jjwNWWFAiYHQ66/5jj7u5sUpWda1VgnUYkm2HAkJz1se2qlmlZD7OfnecJkMiYC3BosgGzwGdaxtz3mdV/4hQyvnOE5z76Nv/7g3awcv4pbjq/zyEOfIEvaWCypStAKjPVUdR1hflVFq91GCKjr6JmINM+aPGthjEWIGBovBMymY6bVkF63Rzw3RnLk/v5BFESEwGQSA9vr2pG3coZaYnxNJjSpkhHBkmo2Zgdc1epwYvUYD1++wLG8y5yWvKq7xkfqMQ8PN1jpL7I3nfBtP/7z9J3he7/xf+UP7v4Yl88NeerpC1xzap3JeMzS4hLleMzuxYskieLSuXO0e33c8IC828elHbIsO8Jh7O/vN8gXicV8Bst3fHwmqpsHgNv/B8+fAT7rf/B8CXz5Z/wKACECr3v5bdz+6tfyA9/6g1y0V1iYW8MnkbcSrMGUFuE1zgrSNMGLgNQJo9k+k3Hk4ADIRKHQSJ0ifAwNMc4ikmizljKP4creHfUeEaJJpz/MbOSZ0AERj06dVoeP3fVxUhVYXVhhVkxJZGA8m/Ghv72LRGu8g0ykBOvJ82hWqeqSJM/Ics+ycRxfWWY4HKJ1wni8T3biOIPBfBPEHD0AMWUI8ApLIM3zmG1pKyrj6fV6KBUt+qYOWJ8x2d3hZStTHvnjn2Vw/Gpu/V++nImp0O2UsqzY3d3j8UfOsbt/QGehy+RgQkt1uLh7kcHyIgBVaRjMLXIwHDGczWjnrfjemEiCLOuCxaVFDoZTjJ2hEk1/vo9IA51uH6XTI3Rx2u6RJhlFVXL24nkePfMUpjYUlY2BHrYgqwt+6PqbmUzG6FyhgYQ4bLMi0BISKTUmeKgd6/PrPDU6YDFbRKiAROKQhEZAJULAHFY91mFsRdbJCQasB5lkKBmoiglJ3sGaKWd2h6ytHcdniuA1Oki0buGqElvs033WCa6c22Dr8haVqZkZx+n5q7HWoJMkLp7OI1IFSuFs3K9aWZuk3W1uComWisqVJFrRcp6yLClrya+/852sLS5x8sQpnJMkQiO8i5x8JxtPgsXiqQn0MsV0UlCWEXaXaEWaJpSmRtax5VX7QLs3jzGGajpD5sQ2lwcpojM4SRJcMDgbF86yKKhEPDVPigmSQGkr+vMr5NVTtBcypjbj4xtD9LSPb5XQtEmllCQ6qnes96ysrqK0ZHdnJ7Lu0xSZxExXFVQ8VStBe5AzHm5z003P5mBq2B1OuP66ayNBtByR5VmjwqpxleHi+XP0V5ZxIeCDoN8dUMxm1M42i59mNJ3EQtBYFheieWo2m+FcYK633MxSJM56SCKuQAfFZDpqqmUgqOba0jG20kmWsoSzYkxHtigyh9c55y9u8Kz1k7SC58zeDt1skZbOEASmkzHLS4tsDPcZuRZ/+Jt/Sr37BGfTlE8+/SD//v/8d2TO8tcfv5eF02tsPH2B6666msWsx8XtDa7qDNg6+xiD9TswrTHB9siUZTDXoZ4KQnXArCz++8X073j8s0AgXHPVab7rO76NL/rGN2KCoKVbpGmOylNMWSKFpChmtLIeEDXrSZqwu7tNUUyp6/KIfidE1EELJCo9DBuPipsjahyHsWxRpueb5yTPBAQADQQrGnOOrx3nkU8+SK/bYmlpgeuuvYG6nPI7v/O7KAXBRX2zaDaL2lmUFLTyNtZaiqJgYX6B4fCAtdVllEpZXVngypVN+v1uUxlGFVFdl5RlcQRMcrZmbm7QBGZkR+Au5y1ZnmFt4OYbrkNMd8ilwx1s8Ntv+1G+6bvfzMXdGYUVPPno41y+vIkXkmpS0E80pq5j0DgNr0NIhgdDqtrSbrXpdToMh0MSHdnxqc7Y3tklydpx8JwkBG8J1rKzs0273WY2m+KapKM0UchMg5SkpkbKhLqOfd3SF+TDEVJ40nYr8oxExB70pCR1llkGMjiE80gNx3o9dra2UTohONuQIwIqjW2NVCmkjot8CFHjb0qDEjoySIJvuPcqInkTwWgyY/3GE3GTStM4AxKOQIxWrL3mw5/8FIOFJQyxVTGbTWinOb6OUZM6TRAikKkEn8RBMEiCj/JdpeOCMpvOSNME1cDVlJSknQ5Xdrc5v3GFU+unmF8YYJ1HIrCuCX9RICx02z2cr9F5ii0rKlvjZYJSglSk2KpmNB4zt7hEWVVkqUYkXcajSRNdJzHBHuEUaOY+0+mURGlccJRFNPaI4Gnnbaw1fMUXv5BcBh56uOLjT99LmjhKYkV8iA+pqih7jgHu8UThvTtqmWXtWLRpoTDO4WzNv3zN5ywkiZkAACAASURBVGOKgl63x5OfuoBUOTs7u5x7+lF6vU5kxggoq4qdzSvIhgF/RFCNH388hTSDcGcdNhQsLywTCMxm0cmdZnkDh/RIJZBKMhzuRce9MbSyDsYarLEoFdU5gsDa3BzF3i4iCE7KDvumIs0SHq8nvGTlJGd3t3HCk3b7fMTscLtcYsfXTLVmZ2tEx1nmWimboeZFi9dzfVfy1MUNfvqnf4m6KLnq9mfzynSVjz/yNPPrV+HTnF/7T7/Lj/7AD3LugY+grtpm7abbmJvvIUOgHFsqc8DBdMYfvPt3P+M19p/FQr916Txf8fqvZXMsmVrHamcBoxxlUUW6HVGj7qnwITCeVDhrqMqCuiya1HvQXh0hY6VUWGcRShP79s8QF2kcejo0NhJxiFSIfXol46ALmvxa7zl16gRawNz8AmvHTrBx5TIPPvhJjHVxTuAiytSJqB+WIQKujLOkWYJUccEfzHWpqhohPY899hg333wzELntsa3gSbQgG3SPjsbBR8NFkmRYE6FcSaobWadGGU9Ha5IkpiPN9jfoF0N+4v94Aw+e3+NNb3kbf/y+97Ff1gjvWOt3UKlivxyi8kiO9CKqlGpTMz83x97uLqF2eB/5JN1eL+Z7ak3eShmYNolOWD++gq0qdNL0y7OUzStXWF9coKqqiM61NQSofQl4hJNoYZgLAl9UVFLiEaQI2kFgigLfSlCVi626TLNV7nH957+cJXUbG3/8MQZSxVQeGcFoUmuClBEzWxe0s3a8DkQkYjqhoquURoLoYWQse8WIVz7/c8nSmCGqlKQuDcaUeBLuffApKtmmnBlUmuCNx2CRqYxKGNEYkWxA64ApS/Isw1iLazwavoz698HcXMxRMDOklExHQ9q9Lr2FOWxtKeqSeTEgyyKv/5rrTyGFZOPyBu3ugMeffJy5pQGXLp4nz9vkefQfSKGwVVRjtFot9va2KcqSufkBg96AuSaNSsiIOFAucmic9NiqQilNGSqEjH382B6MOGjvHCeuvYZTc57feuf/TSIyijDGm6gqiqjZZ+7lE6dOMp2Oj1KqQBC8IWmcvtZalEwwGNZ6fW664Xp+9dd/ndd+6Tcwmuzw4H2/R3+uRspoiNvd3sV5g9QKG/wRZK/f7UUeUFWRZRkKQTGbYa1laWkFETxVYXCuJm8lECwWhUIwGk2OhBh5u0WuU2bTMsLHsozZtKSdtzBVjZQjnreyxIWDfdp1gqWmlJ6nM0mxd4mbWws4X1PPKvK2YugOeJHo8MR0yFh4iiTDJo7aBP60Kni2Epxe6LPUnuee4gKXHz3HH53f5+zBJvWjv0vPCJ5sB77k67+dF9+8yhPD3+LktTfyzd/2/WSqwz13/wFv+aXfQ853aWfPYJD/occ/i4W+08p57OlLdBeuBSydrMNOPSTPY9CI1rEnPZ1Oqa0liAgkso2t2BhDplKSNEXrqJ22BEQjtTq05B/K/oO1JEIQRNQNCwlaSByxv+9xsVzgkJ2i+NQjD7KyuEBlCzYPdjm+Ns/u7g5aSbQUaGhQpY7REeY4ZTA3wHmPtTF4PNqhLXmWszi/QHDNUFBarImzg1aa4JsTgUIidRoDG4J7BqFADCNJkhzweCEJaRuJJxOBrb0pu1tjUiH4iZ/8QT514SLWBFLvuO3ql7J/sAtNX/UQ5yukpzfoMB2PydOcumw04Ynm4GD/qC2zvb1Np9Njbq5LsI5EacBQGw9SHUWmqWYBMA022DsXCY8mkGrJad0jGY0ZVjVJqunpDFNX+BSkEuRCY0rPwWrGq37o+5mOh8xtjLl/8l7avQUSpfE25pwKHRVVVTGL14S3GGdop21qU2CNwSlFgscHR5p3uLw/w0jPysllvBc4JDhLCPFzLMuKD/7NRxFBMp1N8bN4LeV5i17eIUti7/tQmRJC3ESMNXgEtq4Zj6asri2jm02oqiq2tqLUdH5hIbp7qxotE1p50uSIRp76qatPc+n8Req6ZrK9wcrKCpNihjGekydWGY1GGB9lpkkTQSm0QilNp91hMpqyu71HmmrSNKJxpZTY4JChUbE5iw82Zhs0SV/GWlKtG8WQ5z0fOMezl2qsauH8hCDz5poRDdG0CZHxnrKoKUvb4MZDzHFFkGatTwvbqDi+toatKt7znr9EqC7jaUVZVrTyDK1jmtZkPG3acvE+PAT4hRAQR6dvF02LJsYTJkmCNYYkyUhThZQdEB7n6ojPQNDrdplMJrRaLWbTgspU9LoDhIgb4CFEUKSa7dmIV/bXSPuSS+MxN6R97p1tczxf5Yqacne5xw39DseSlPmpZS+VMNnii9av47HdS3xACqhAtUDrnLky48Rin4/unGWlNY/IMs7t7XBn5zh5WRDm4I4K7p/LuP/ciPWrV5ntVnz/D3wzOMfyfI+QWHIEufqfJK/8n/UQUlCiaSPpJIrhbIrONJlKI6uirhlPJjhfY4wnYjsaPbGzTQZpglJJo5QJ+GABgVIp3juEiNZo5y3BOmhyXJ2IGuzDC/foNTVHRIGkmM34sTd9D9ZUWFeDUNxy8w28/e1vJ001SZqgfBw0BQSDQTTOVFXNhfMXUDqh1+uTZdFMNBgMEEJw9dVXI8QhKz0eQfO8Fbk7ukEEN5jj4KN9OhLwDh1xccDmvaQWHZ7anHDNUjvC2fI5rkz32XeSV7/ks/mdP/o+aHe5eu14TLHSElELEhmhZNFo4ujkLYpJSfAutgx0JP7lrSy2H8qS+cGAhbmFeGoPHi9Eo3ZR1MbjLFhnkDSqDFQzQCtim0sIrKjou4RMKrKWQvjAri1opYqWl4xsRf3sdV75htfj5rrU0xFS59huxV454Xh3Dhc8WjgyncVWTZKQ1hrvPJWPoKrS1FGe1oDNfPBxE9WevbJkvxwzWBqQCEUQCuUkDoWta8rRlNlwQpL2SZOU2ltUkkXkQ/AxWrKVInzkpRRFEfHBpqa0hnbW5vjx4zhvGE+GWBTOBxYWDk87PrZvsqxJopphTEWSpuAs73//+zDGMuj3cVNDbQOmnHHdVaeZzcZkOmbrOu8YVSZe06Vr2ie66d/3kDIqcRAhzkcO6a91xBwIKZvNODTKoRRJzD6WdeDxpysWlGJiIEla1FYhhWu094FEx/D0ubkBNFA+0QgevDOUVUWqc4ypj1qR68fWmJVTgvNc+6w7GE9qApYXvfh5PPjwh9ja3ozO2SyjLC1SK0IzeE+TFBxHGQPR9Bgoq4JWu03SBKgIIiZAyciAz9sN8bS25EmO8wEpYWFhnqq0jT7d0O2mURcQPIWSHJgaX83oBctkPOOWhWN8YnJAq9Vi4g2bozHtrE1RG5bSPp9z/DQfP/MAN199HQ+deRK1sMisrBgIxb2p5YNbT/OsfBGvMnZG+1w1WCHdm9Kda+Nw9FY79C9eZqI67BeBpLrIbu1JcsPnfd4LeWT3AQZzfbqtf0IEwv8Xj9p5SpexP9pjPk8RvR4+VLjaNhb7aA6IssqAtwFvHUJJkIosywnWY22D8hUeFRSIKM+T8jDByh315r2zCBkXGISIagCeifo6POr6sqKVaI7PLzCaDkmSDlm7Q1XPsLYm63bBuyiz8zHAu6pqtJZ0ux263R6zWUnwgY2NrSgxzGOg92g4bQKfPd6FOPx1u+gkVmDeW4SQ5GkbKT06TRpPAE0FqZt+a2BqPR979Arq+mXq7XM8cWnII9sznho6HnjrO3jgro/xp3/9fh5+6CHKoiRv5YxmE7QFVIgKFSlptXIWFgYMD4YEJEEE8lYenbtSs75+/CjCMYQQb3YEqdRYVOxDJwl1aSI2V4oY2nyoNSfmt6ZJRm5A4um32vi6ZlKWTOYybv/8l3HLC29DtHLoNUiAwQJMIO87vu6Hv413v+ltXL1yDGFlHHKqnNmsRHpIG/VJWZZkWRZBUt41n3fUpR8UBQfWkrRzuoMuock4kN4TaktVlBzs7rGUtZnUdey7K4m1DqcCw/GI9tpaQy08NAlFnXen26UlBcIGirIgTRXz8/MMpwVK66M0Le8s49GIykTYnZCS85uXY86o1jFsPVj2D/YgQFEV/Ic3/0gTZRe5OuPRiPFkzJt++KfI2i3ydgsfAlrIGAOZxPlUlFbq5tqMUK8kaypzKdFakao8wr6azyjRGmFLUIoLW2O2RgXC9kllgWkWWmSgKg00JEl8pDOa2sQ4Tu8RWjcnD0ddlZTFmN2tDepixLWnr6GzcIqF+TWU8/zyXe9nVh2gkzjbCQisi8q4Qx15cA6tEkSISE9jDM4YhJB0B31AHKnuDqP+oiJVNumxAhcE1lhq6yn29snSNt1uB2cj00cGS1IHyDP+ZLrBS1WX55+6ho9ceJrd2ZCB8wy9pZNknEWyVdd8ycI6WfH/MPfmQZqlV3nn713u9i355V57VVcvanWrWy0h1GhDohFixyAYMAbMMh4IMzFLmGXweBgvYRhhMNjMAMbYMTBgGAaQxeoxEiCBVkRrQ1u3uqura8tacvv2u73L/HFuZjdEGNoRMzHKiPwjsyqzKr7v3nPPe87z/J45N9olJg54crLgK7a32ElSPjHXXHdT7OoaqrY8oZd8pN3jZTbl0dEq7zp4mgeGL+cTOwecJZKGOXWqGOSBgWopkyFbWyu87fc+gFcG29Monb7gGvtZUej3xxPW78qp6zEHrSbEHtp4vI/HeATvPa6VYh2jR1uNd5EsydBRC82wy44NbVdUvKBcnZejIAFUhxo+SreRTMeI6waqSZII1U4pWajaSMwti9kh48qh25JzFzd4//vfQ6JzdEwxytF23GurwZiOle/laFlk8ob4OKLuQn/H4ymLKjAaJFhlyHItunCrZLYZI0ZlJMcz09jRIktQwhBpWociYKIjKXrUao1PPXuHi6OCGwfXqbzCGvChZb9d8K9/9l/zkpc8RFXXnEhSBnmfw/IQq45GXg6b5mTB0ey16KAxXe7rclny4gcfRKvQaeJlDOaCvMa+0bjWsSzn9POU4Bp0korKyQkzBiW5mCpaVK2pfUuDRlUlLhoOo+Nvftd/hVvv0YaAdYF506INqDZiTIq2GVVPs/qiE0zulGwrcSW3viHRfUmpcoLprUNL2znFAxoVHJkxVN5xfbrApQUb6znEhNaC9g0tEVVX1GXDZz7yJNsq5UC39EPkTvTYANFGyuWCsmypfU2RSnFtnYyLZmVJbpNjTK9SivmixIeWyeGE5XxBkfdI05T19Y2/aNRzoFK6UYgny/sEH3DOs7a+xcZwA2uEaVMkGf20YHO0Sb+fMlobYtKC4BU6IhhcLYAvMZUZtE5ILaLwSRJh53dEVmNBBYXytjsta5po6ZuUW3PNsgnoZEkbAgEjQeg6orOc7RPbcj1UjhgCxirwULdtlwzWCBAvtpw6fYrVzVW+/Vu/ib2nrnD59pRUjfjI+97DYjnBJAatZOxalaXgF4wmBEGPxCBAQh8g6xUsZjOIAVMktMGTGIMLEUPolt5RRAO+c9irgE0N2mp0YqjrptPiH5JnA2I0LJ3ndG+Fw+oAZy1htMZ7b1wi2IRBbtnUCR+rxpSzijMr61SUvH3vGq9YP8He1StcvHCOmzd3aDdPMN7d4exoxKXDlsVkQTEsYBmITcYNrfmVT3+ML7vvQT525RInTp1mulyih2skLlJPNS97YMir73qUt77tfbQDSz9JWezv873/3d/hd976Jy+oxn5WFHofFTTCetBOch2jNkTXkiQpIbhjAlw3ZCEEUbmI5VmDku6hbSU70rmWSJC0A1THrpfZ3jHytSv40s46jEmeO9YeORuVovGacjZhc3uDlbTHu971uzzx1BPMxhVt1cjGTUWMsayv9cmyootMq1ksqi4e0JLmfTJlGPYHzGZTQihJrJUZf4fAlX0ENI0U0qquBY/c/Y+zIpfXzAeG/R6NMuBqmtZz62DMMjRAxqSOTBYNOumh0PzwP/0R7r77nu41gLIs6fV6FEXRBYBrnBO7tdYJZ8+e43D3gEVV0s9zXnT//Qy7FCnn3DErX4cujN1Gdm/eoqoqVgdDev2+BLS3FcZYkSNaK+McLb+jSQ2tNcRQC8tFWX7/V3+TL/q2/wLfS9DR4ZqKNO+kj3aASwLZ6ogv+cav5Bf+6U+ztnqeYbDoPKWsFmAzXCtHfZukx+9pNBLZt3SOSmv2mhqfJLzmNa+DRAxAPgZSpZkGRz2dc+kjf06R5WwEj0ezyxJFhnURoyK3r1/F9HP6/b6EkCslYLwQqCOUdc3hZNK9Xx6Tiua+3xuQZVlXXC10oRVHEYnH5iMr3ao1CUmiuf++F3Hl+k2KImc8HrO3u8ve3h4HB4cMh2tonaC1PQ5FDx3yWxtxNCsFWWbROOEEOVEsiXtYdSEeOWVbHp80ZfmpyYseadHH+4g1ClLVuZAjGxubkolrDNHEzlcATSvyv+jBOWRGHuW+e8s/ewtuMeOu9XP8wa+8m1P9IW/7nd+m6OXPuy85Bqy1oabfX+leI8GFAwTnaJ2c+FcHfaw2WG0FIqY1WtHl70JEun45OctoVylFURTd6x9JEyvRoKlmLSvotwWXY8P7969zIc3ZTgoq33BnusfnDbf52HKPGCqGeYYj4ROT23zT3ee5dOUqp0+d58+uPsPa2RNc29/l687ex3t3LnEnWWHSLnnN1hmu7d5ksb7Ou2/v82Vn7+Ppw6vko3ViFXikSPny7/kb/Og//lHmf/pWiuEq1w5qzp+5h1Td+c+qsZ8VhT4oQ24ipY8EnZGogEN0wkc5jFrr4yWkeLfiMfM6dHre4CPeH3XrnogAz46Cl2VerMF0N561xzZvT6feUGJWCd2oIXaSvLf/7q9x7c4lXv/oo9x//708cO/n80v/7jdZ6V9Apyl5aoDAcrlkPt87ToSyNsHYDK0Nu3v7EuygFINenyxLJbAiyrgHAj6kxyIGazucsla4xqGNZrGQcY89Ck4xFtctELVJWISCT92ac1hDE4Xj45ua6XRBv5+zWCzEHBLnrK2tHXPb83wgr3XbUmR59/2WU/1TJImEcM9mE5JEwqqzTPjbtnOYZllOuRRVlPOi4EkSiwmuA32lxyEgRsuibty2tFqTBU1qI66NjJ+9yaXHP87dX/wqPB5VV1iTYE2BR6Fshun3qDd63PeqlzH++HXWe+vUdYU2CmU0WdIT+aBSRKANTkZ9QdRWu21NZTTzcsZDn/M5BGswga7YOxZVSbk3YegNCyJnsh4rHj5VTon0UD4QjActx//FbIqOntOnzjCbLdGJJSDvTdIFk/SzDDog2RGLxhhDBDKTHfPKtVU0rpXxWDdG1F1uwp998IO84w/ezmw659TJMyRJIu9HYlkZrR/PrKMPIkSIkUTb48Byra3MuaEbaWpCiB0eIOBdJJguS6DLHLCpOM/ruubU6bPcuHlLCB064FXk1ImTgCI68E0g+kBTN8wXc7xvyNKsy0h1QpatF1TVlB/8n/8nfuQf/yOefOomf/7hD3Fhc5U2Bgwa293rRyHbrhXUsoqCEleWY1LlkbNda+HQqxhxTYNJhTSqk6RDomgUFu9aVIeS0FoRHNRthekekMkxWsBwfX+HL7j4ADcPrrAIsOM8dj6n1884MRyx7uEbT9zPr1c79GqFLzQTZ/n5a8/wHXc9wDMHNzh54gTX7hzwyNl7+dD+Mzy8tsGzkyUqG/CZ/Wvcf+FuPnN7h75O+fk7T/BNa/fx+ztPwbBgu+jzSz/yY3zDF2/yX3773+Xn/s37+F/f+QRpWbK5dZqf/1e/8YJr7GdFoVfRsSiXUGQYH4jKoBPJXGzb5piBboyhDZ1W3hjq7vuqY6Ro/VzhPkoaEn06oII4DLuTQIzPx5aq7njvOx66EiomgehrUq35+i9+mLR/jo10lUXcZbK8zVc+9iAf+vQYxxrBNajQkhXFcQBCmmZ4L3AnYfVEYbDUNQFZYi0Wc3qDPkVekKYpJmqUeS7EQpbLnlYrlLbEKN1w1IqqbUhcTXSe6Dw6NpRty3TWsFtrSFISoK7m5D2BS8UYWVtbo1osqeua0WjE7v6edLNp2sGvcoqix3A4FBVGN/9c6Q9YNi117TrWkJH5fCIP5IcfejHXblxnNp4wn5ouRzbS6xX4NhKQbjW6gKtaDhKoQmSIJjOazBjyWvHpt7+P8/ffw+DCSVyMLKdT+rrAFBkqLdCs0j9p+YJveTN/+Au/zp2nJoyynOBLone4Vgn/ygd8cDK315agYB4c46omSwtc6jl97wWanhAxNZJ3285K/vj/+l2GISXJJEM2pJZ01hCMI2Qa51v6/ZyVfp+isGgCp09t8dTyCt4FvG6e4/AoOSkZlXT4YQu4Y2lg0CIaiAQxA4Uo4e8mQtSixU8tb3zsi/ipn/sZzl+4mzRJkUi8iItChkyUlvGjTYjdnLx1LUmaUVW1ZM1qIyBAJZ22j8LbT5KUGGV3IAocI4KG2J1+deDEyVPc2R93OaiBPM+5s3uH6KV7zrO84++IOuwoFNsFeVCo2HD+3GlWRwX3XrjIndtT3vIv/neGPcUv/NufYDgYUrkl1qpjT0uW5zRtS5akJB1m4ihCtG4qymoGBNbWNsjygthGEiPqpaO9Xowgt7Zc/3iHUjIWjkR01ORpJg1JrtjcWGN2OGZawLQak3qP1gXzpObppuVssHzl2nk+tv8sm6XlQWX4hJvQNkPydIRPAj+78xTbSco9TclgfYU7410umBVO1IZ8xXM+jPhlVbF/eEjhW5Jezl6Z8uN713jsxN3cKZ8hZilBXcCGlO/9zp/iU7Zge3uJavu850Mf4oPvfCe/9tBjL6jGflYU+jwxlBFUXbGSJoRoiU2Net7i8aijN+bINOE7bbkceU2nk9Y6wRih50FARL6ysIRAjKKOkLQXf8zBh0i0clMdQc6if06WqcKSJE5wVaANU/pE7jp5jg98+DKNz+jnGYMsQ3USRO99dyRGUoOIrK2v0dSeuq6ZTqeMD/cIIEENShFdILUGmxf0+7lEKlqNcp7aCdJAin2UtCRjhaynFC0B17aApwktJsnxi4oYGs6dPkHVlFjUsc/g6CHS6/WwVo6yVnfUx9jtOLqQC0AeJEYz6PepO5lg0zQyFokR71tsYjm1tUlsa+aLKUpFBoMV8BqlhbLpmoamWVJ5xTJLcEayWa2BDI23hugC/+6f/zTf9Y9/gGR7BBqaZkqeDNBpjrV9vAe/0vCmb/1a/s/v/5coJfgDFWLHWA8kRsYxkYgymtp7Jm2FsxrlI/fefzdlU6JXhqhGXoNAJMxqshK8MoRGaI3nHn2EF18bEELCtckehzdmnNu6wGJ+iHKOqim5euUSeVJQeyU4XSVohDRJaaoGFRwQaJKGJEmYzMbEqMiSnDRNGQ5X0AboNONJMAQPSaKxOvKFX/QG3v2Bd9PUHhA0QlmW0hh0iWCiOOsEBXh0BxnL84IYZcxxBH6zuRGuvA/E6FHKHksZBfULBDGYoTTVcslDDz3AszducLh7iMNJKFAiO4XZckJTum40GsmLrGtKLMpqTq5vc9eFk3zD130tq8M+H/rwp7i5N+f2nU+wvtKjaWuyJCOE9njR75yA4mJQRCQ5yjmh2DZNRRdiJrz+upHXMk+PcweOJKXxSPPP0elG07YyEm6a9rixqiqh387riq18wN5izF39EZ8ql6ykBR7LtKx5/PKTvPSuixzc2mGUwBcOt3jPYkxZ1dSjjPmiEQaRVdxLys3yDq9ZP8eN6QHn109x7eZNvm37PL81ucpI5+y2EZvkpFbx+HiHR4eb1IsZed1yu73AzeQGp0/3acIaZuaJD5znW77tO15wjX3h+pz/Dz+Gg4wkS2X2FgVbrIkQxaF4ZASBI02tbNuNFmee7uZu8hCQ5ZP3nuDF8ep96GZymiRNKLIc9TxnbFeHMVEMNvDcqcAb6eyVliQdm2mUNdjoGaQ1sdlnd/cOe/v7Am9ygcViTtPULBYznGvEkNShk9PUkiSGwaAg7/Xo9Xo0zmNtwqAvKp3BoI+1iVzBPpL3emxsbrKyssJwMKTX6wvbpVMl1LWj9ZJmE4mkViSpVoGJkc2NNUIrD8Y8S7FGJH1NXeOdJ8/z4weTMQYtLCqi8zR1jYKuONAdg0Uumec5WZoB4nYtF0uapmZzfZONtXXaxjGfL4gIZ0YrLWY0bYXDA8yNRMIp36JVpJemDKxlK1nhJ//Jj1GPK1BQNxW+rYhti8WQJj103oOVHmz12a8XOB9pfSN+BgXe12jnSYymjS3TpmTWtrgor9vLXv0oaEua9AhH23pXc+vyNZIoSAy0QZ3c5uLrXsPO7h6Lasnpk9sY5/H1guhrgmvJuuKpjJj1fHQUvZwsT+n1C4bDHqO1VYbDkTQYTkKyjTbcdfEiESirkoPDA5qmoayr7hTL8fW4PlojTTISI6aeppKHSGZTrNaChehOtNZaaRSMdN8xuk6sIN6Jfq9HYhJsYqSRUYHgj0LnPd5JgU+zLne3C3i5c+s2B7t7pFlOmiUMhn2KIqdf9FlbWyfJ0q55kkhJCCSJJbqGlz78Er7g81/L/ffezQMveik/87O/yPmLF7HWkGWCcghdgVf6uV1FUJ3UM9I1eFBVy+O9nbVJN2vvySna+WPSrcRfyq1kbUJiNFbJycUYTVM7+v0+1kgqmZxuLOViQc9pXIS0cSgTsW0gt4aQpLzo1EWuXr3M2tY6p/obmNmM1yYFI1dRzRxrSY7NUp5Sjsfn+7zq1N1cOdzhwvo6ezf2OD/c5Pb0Jl8/OEs+a5k2mrFx2DyyVKBsn14tVM1L0yd49LWPcHviqA8WJPcETjaRL9rcfsE19rOj0PczXHOb3BQsmyXNYgkmok0kSaxE6TlJuVGqI/b5luAcRhmSTj/vXIP3krCjlCJohSPSOOncvXdEFaVb0fJ7AgG07GxVjAQfid6hO5SxpiBzmsQqYuWp2jFZrSG1FPqAv/PmF+Pnl6gbjzMFkCF3UQAAIABJREFUaarp9QoSoxn0CqyJYIRgaLTCNTUqSE7t6sqILO2R2Zy6bjF5ii0MvSInz0Rxk+Y5LkTqylEuG/Z29zgcH+DalsODfSmAvqGpSkKUEUSeCuzNu5YzZ05S1iWgyLKUJE2oqoUspogsZjP6RZ+021cURUbZ1igV0HjSREFsUTpgjALlRZ1jNWlq6fVSVleHpEUPrRNCUNSNI0ky1tbXQStmizkhIiEL1qLSlEQbmtmSq62jUSmlkhvaWEXWS1gt+myFgl/8Bz/OpXd9HJX3qZqAdtAkmmgNqe1h8gHf8j98N/rcCpdmt1kCMVrwnirCMiuYtJFl1VIuStJoCAQG92zyzPSAP3rfB7i9N6FShqdv3mTeet7zm2+nCgnbX/UlvPTH/gl3f/N3Evqb3NnZ5/r1Ha49cZXecIVlu8RjaEOkbDza5gQsiU2FDVTWrK6skicZvbyHTRKyXs6ZEyfYWl/jzKnTrAxHXLtymaYW70L08MhLX8rh/j7KIhC+6FmUFY99yZfzgQ9+lGXTsLm+LmEZNiWSkieJ5NIqUZ9pDEYncqhVkYgXD0iUEYh3R9c6ZGmGRhj4sleyXaKU62BtijQvAMWlS5fo9aRrDkTZDWmNURarE4ZrIwajvrDTXYVSkaLIgZKv+5qv4rE3PMpwsMKzzy4Yrt/NAw++iJWVDSDpmD5eqnKkS/OypHmGCy2xU3xVVUlTicva+UCeDSQ5CyWxnohb9+i07r04ZF1oaIKT8CAfqRqPSROsTQhRMgRSa6nLkrSpCa6RJqVe8Ap6xKYk04G5jvzBbIet7S1uH+yyN5uzo+H2vOT86jorylFrobWeT3JG/T6/fvsyrzxxL8/uXuaec1vcnO/zsu27+A83P8a5lYJhsmCjNIwbw8Yw58nFmD/SFTob8vKXvZF3fuBx7rv3boZ3neT1j7yM337/7/CRyx9/wTX2s6LQxxg4tZnjHXgT0F5R+yV11VKVMn+UNw2BDnVzYVDdkkfi4IxVqM4FtyznzOdT5tMJrqmIwQmxMDhQ+pi4d3QxHDNwNMROgSFExAanKn7u1x7nDz5c8qHPwJR1mvw+8uH9bGye4Fv+5pfx4IsvkK3IzL9pGkm575bHpluqhij6aGsteZoRFehEU7kGuvHU0agEnguEloeUdOT9Xp/BQGBZTdNwOJ127t9un+E9h+MZQXdZmFmKSWQE1iuGBC9BH23rmC7m1L4BVMcrF6WPMZoQFd6FLkDaHu88YpBRWtN05hfvcK0neuHu5FlOlmWkWUaSpt2xWXDFEvSSMLAJ0SoynTLXARchoNCxwsaaNDb0QsOp1DJy8I5feRtJGVHaMm8q8lZiB3WSEZMcszbkb/2338WuWnK7qRj7Eqwix5DX0I8W13pmGiY2UNJw9tQmr//SN/KlX/llNK5FpT1e9tov4CAY/tZP/ARv+Mm3cOJNX4KvI7afEjSiCdcKT6CsK6q2oWkdZeXwQYnkUBk8kNiEPC9QmGNTnCiqFC6IByTpEsU2NjdYHQ3wrqLILR/9yEc4e/asBJQrySg+mI7xUSB9d/b3qNoGFLKMzQyNayXtq8PfVo2chOS9V8KO0hKB2LhAiKC0leZAW5FMeo4d3UKYjMdjjul0cqxyO6J1aq2PBQfifBb/SuiCWRSa9a1N5osJm5sr3HP+rASz6AyfDEnSPnXtUMpIapgLWI5UdBJsDoHgnIgkvCz2j65THyNBKWEdeY/VAo/TKAjIv9VxhTR0+AV9zPoRw5qhLGuRbEZDkfcIIbBI4a50xAmvWM9TzsXIi/o9wsGCPBoOnOePp3v0Vk8w7iXcoWV7ZcTSl7wqX2dz0dLzoBJPNZ0y6K/w1oNnedm5F/P+S5/mntPn+dWnPsK5zXPslGNelaxS1CU+tphWkdrA9cWCp5cLfuOXf5v5YI0//fhTNIvApz9yiTe+7qvZSbZecI39a2f0Sqkc+BMg6/7+b8QY/5FS6heANwCT7q9+e4zxo0p0UT8JfDmw7L7/4b/q3/Ct4/NecpF3f9DJTWcSFJYYBVRmjMa50M3kRb1BpDPDSIzgYrkUl16SoI0mt2KUcTGig6OqGrzzNJU9Tp35y5hVkW0dqXbkwlIkeKt5/7O7vO/yPiooQunwdUQzJlFw8vwZts5cZDRc4+TpbVzTipyrS+dpXP3c64koP6LzxOBpXUvV1AwHPfEMdAqI56Sj6tj+HUIk+EDTGam2trap65qyLHGuZj4vqZoaZRPquqLIemLkihJTeBQ+4YM8EIw1lFVFntXkeSaO3MQeKzLaNnYYA+kSo9Ioa6mqBcZofIdvqOsW559zKR59HMXSHYHE2rYlsQntsqGOso9Y+CXBRdazBGKCjhrfePLUYrJIMDVNteSnv+cH+b6f+F9wfSsnDJNgyCWmrlySFoYv+uY385nfeC/71RyV9ChMIFWKZe0otScYi3MNJi/4um/9Ftr1hBBrRr2Es6e2OVhOefs7/4RXvebNaGTfEtOSdjEmkGGTjDS1BI52HAplxfNQ1p7hKBeMQhBUQpKkgGSY2kTJ/iOI8ap1/lhaa7RB5xlFLqTRGAOXLz3D6TNn6OV90jxnNltKc647B67VKBSNa1DaSK4ydKZCfYz+IArPPyhxLocQyNK0K7D6eLRjTXLs0JaRkcVYT9s60jQVumqQhb0U+EwC5p2EdBy7VFtHlhZyivU18/mUey6e42u+5jHmsylJpjiYzgnqDN4HnnjyqQ4bLEW4NxgwGR+Cfs7IdeQbCT4IdRZZxhqtMDYhz3M5fWgJSEmTBBck09m5tjOegTVGmFRKiYGrbWnbmn4xJMsy+oMhy+WUpqnxdUMzUKw0iovZkIPDQ7aKhAc3zvH746uMRwOuBcdbD25xfzFijYIbzYw8S7iyd503nX+Ax3evcaWsSVdWSBYVt0LJv73+LN92/uW8/ZlPs7p2kk9PDvjcM/fy1M0dXrG6xng65mZmcCsZa9EyDjUv3TzH7gAmd3bY251yevMkW1tbeHUbuPrXlXDghS1ja+ALY4xzpVQCvEcp9X93f/b9Mca/rPH5MuC+7vPzkMDwz/ur/gGtNV//ps/ht9757xmkJ6nMAl0bfDySownwC7rCrRVNXVMupIBmeUqR949nesKryFAaUqWplrW4V2M8Zs4ffUY6V6PWHdVStMcheEKM4Ep6NtA0BcoEVPSoYQXZAKdGRDPk/kfegG8nrPQH1E1Dlue0dSO7H2OwXrryGCLeI0HbzuG7GWNZLjF2kyLNsERMXhxL3EBuvNa3GGOFrhhEZ39wMGY8naKQi7oockyaMS0XnDl9mp2d20TnGQ4GnNw+LfS+1NI6jQ8BHyLQcLB/yMpohX6/6Pg5ibhX04KmKSGR00HrQmdMS9BaTidyk3kODyccjsfUdS2db1fMfFSS4Wuk+yvrmtAKtqJ0moPlgo2v+Boe/4//kYf7PWxRYGwgs54sOrLWkISMuKx5y3f8Pb7pe7+b1Vc/wMho8qRAmz6+3xIUPPDKl/POX38HicuYHDRsnFjH9Atak1BZw/XJmP5KwebGEN8HE0Q/n2nYvXaFw8mUC6vr9Fcss0lJEQuCU5gmp78yJLPSIVoNLap7/TzBSVKV9wFMQprqbu/XhaDg8F6hoqI/6FN3rHTnWoGeodDaPpfxWjt6gwHzxRIfIpevXmZzews90TTeg4/duFIUMxFH60WJFpHMWbmoFcZYQMagbdswGOYsyrJ7CInNX2tQRtFWrttnyT0mcMB47EgN0bO1tYUMPNVxt9/UDYlOiRHS3DBfOqqyotfXfP/3/z3uPX+WGBfUrWVSVbgoy+uT2ye5cfs6NrG09RKtFbP5lBA9wQWCEgb986mySZpy+vRJDg72WZYz+v2huHi7Ym/SFBcDUQWqphIPirZok6CURwdNuSjxrSdLM1ZGBct5BUZiGE2aMrkzJk0zPlke8ApSrs/HLHPFo6MzfHh8hVesbPAOPwevGa6d5KnZHhsR7lMZSd2yYjLqdsbDacaF1vJR31K6lhOrW4yrlrfceZrPWd8iBM/d/RM8dXCHF68MScvA5nDEy4ucP6ogSx0zC7HImd65ytaZDebzBe/58ye558Ia73r376HUxRdQwl8Yjz4C8+7LpPv8q2g6Xw38YvdzH1BKrSqlTsUYb/6nfkARyE2NLWqsUyxtRR5zIHbHLCnoxkjuY1XV3Tw5xybS9bZNQAKDW1kuOkcA2rbGKClOzjcYZY+BS0ebfQCtOLaH+E51I65CQ5vIcknHkjTkhCbBRE8IBcpVXPnMp3jxww8Q8obc5GglGNQjeZeKERUiTd1gUzHKVFHCvn0bqCuh5UlXEojaHc9akyRhMpmyXCwplyVplpLmRwVZoGlZB0HzLtIsS3RQXL+xg8Hg25bpdMrp7dMCsjLSlQcM3kVSmzNpp12gAcenCHlf1HE0XgwS4BECZFlKxHWOTUdZycNhOBgwHA6ZLeY0TdPNl6Pom9VRfKOmNS1JY/BloLR90te9jm94898gK5csDw/Zv3aNxc4O84N96mZBUy5Z3DikDAn/4hd/kR9+6IeodYWJhiwryNKCqpoRE8u3/tDfR/dPU+k++WjE+HDMk5/8JLvPPsNJA6dW+7zi4QsEU5HoVZyrcREKZcjQvOTeB9hvLV5F0uhpwpx2ZMg1RC8zaYJ00zFGXFOzOlqlLBsSK6hf13rSLCF2bB2NZCj4NrJcLnGojlZqISqRCRMEbZCn3N69Rr+/Qt5LsDolybIuzCOQWIsxsoxMbdIlbFnKtiVE8EHm8aK/t53d3xNcJMsSQFHWTdclx25Jq0BBZnOMoQvxeE6JcoTrdiHS6/UYz6ey6/JBmow0IbTyPjsCWZ4SYsb89hW+/mvfzGJ/jxBrbu0qLtx1F3/+8SuUyymPPPQwu/t3GA5WGNdjfPTUjYfQEJW4mRuPxBg6yYPd3t7EOcdgOMB5kacqdJdcJchxa+hYTQYfBd0Rg7x+bdt0ggsJCF/MF6yvr9E2gZXRgIPxHsvFjCLNGTvPp9SSN5g1Lmxu855nnmZ1tMJOWHKi1Oz2LAezO+jgODCGSRJ5tV4lrERu7u+zUvQ5t5pT35nz5KDHQVNRqgqX9Xiy2edRU3CznXA6G2HGC0zPklaW1kDYe5r9tU2ms5b9kWK0PuCwHFP6wLoZcPNWwwOv/Cv757/w8YLklV261IeAe4GfjjH+qVLqu4EfVkr9Q+APgb8fY6yBM8C15/349e57/8lCjzI05S6vefQin/rjKWm6ilKO4OtuTm2JEZqmhSicaKsTgg6UjZh0VLBoq0n7PVrf0IQKHRTaapoWMBpMIChRzwDHQQOivjFYZPSgg3BLQifJUs6SqAAkeA0h5mirujQrGG1vUJYVfZt1GY91J28DhSHg8Sqibdpp0hV5kuPqgI8VoNABkjQhWI1BuCBlKfr1JEnY2FyXItEKoI3gsdqQ9jpEc5Jz4/YeV6/tdMakApsaaic+BWs9MUq3k2SFmFByIRUWRUbdVNze3efixbPM5nvEkBBVilfQODlZSa5pwEcjQjdjSQ141bIIrsvptPR7OdYcjb9gvpjIK5FkJDahpwyLWLFULSp4rly9yplTJ2lWEuzqOmfvfwnWms6dGQmd0ej2ndtMZzPe8+xtXnHPaRRLbKrR2Qq9oSY2jtH6Cp94+jNcPfQ89cSY3fFNVlcHnFjt841f8Sp8NcakCTpd66SINU6Bm+1D6xm7PnFeklrDxLXYkKOCpw5zZu0+PXcCQ0UkIaYtq3oLpjv87W94CW9/R0VSFDJjjpIvbGyCjoqqcigjYwbVNuBk6Ri9x3RsFiLs791hbThEG0NoooS6FBlZmpBmKW1QxDayKBvSlQLnHUEFrC1oSnFaGzqsQVS0TiSHzjmCl+aj1++jSaSJabusVeVpvSCLW7fsmiMt1E95s7FJga090bTYEDBW42qRMLuueXLes2wWNIsG7IBmuWQ4yEh7W3z4kzfZOC/EWE1g/dQqIXoeePAB3v/ea1TVHO88IKILgZVA1JrtzQ25P1xDanMIisW0ZmVFM5vP6BUDVMcGMqYHyLUjSiqHUZqmqXBNS9N4vA/kUZqv6bwktwX7u4cEX7Ha6+FdS5EWzJPAfqN55vKTbGyscn0yY2u0zuqaoT28w+3CcH71JIeLA667mk9ZS7h1yCPnLrC8fcC15T6fu3WRD+89ySwtyHuruFAxrQqeqB2vHo6wrmF1MORGdcjp3ojD6pCvu/BK/uXuE6yphNmkYjGds35mG99W+KVldWtIc5ACL8wh+4KWsTFGH2N8GRIC/qhS6iHgfwReDLwSWAd+4AX9i92HUuq7lFKPK6Ueny1qLJqv/ZJXEvMcV85oWsHNHvFrkkTGBL1+TlEU1E1JuSwJ3THWdgHiPohOvcgLUM/JJG0X+XaEPDhy/h3JCgFc8LjQzZWDLGk14ViyKd8PEGT8ImqGbsZqNDFEVHfUfe73KupaiIFt2xwva9u2pSwrnHeCXO4SspRWOCdcl6IYdJJRw2JZEhCNu3OeLE8xicY7z3g85tIzzzCeTMiKFGssRZ6yvr7KeHzAye0TuIA8JDv4mlIyh82yjMGKYXWtR1EkHByMyZIRxLRT7oirtGkaptMpi8VCPADjyfHXaZYxGo0YDod/YU5vrSHNUrJMsA3LciFjBRUxiUVbuQDHh4dybNaWJM1ovBPWuTFgExwanaT0hitkRY+81+PJyzssq5ZFtex2MWDzAaVz3Hv33Tx8co1U3WIjW/LSu9b4xq/+QoxyZHlBmvaIHlTXpeMCrnUcTBaYXt4VGUgSeTADJGadUFliHVGtwgZN2pbcc3bGP/yBz+eRl+SQdm7loLqQ+gDBd8YjEQrU9ZLEKJSB1lVEHTDmOZCe95IgNhwOKIpc/AnW0tQ1GiNhMU3N7dt35Jrs3LXgyDIrMskoTmm6IB5RqT3vOm9FT19Vi+53dMlmWqOiuEyfC2nRAr0j4NoarSJNXeIJuCDuYN89iH3wBF/T1CXbp05w3wMP8mv//m3ULuV7vu/HCKoPsSC4jOADK8NNglPcc/F+YpCGTmGIOLmPrOXMmVOcO3eGpEM1HC2Dq6ri3LmzHBwc4Do9fNo5W73ztLUE0buOtVOWJVXbiMs8BKLSlI2jyHPyJEeSf70EqLQOrwKZsfg28gf2gN7aBgdVzemtLcam5vJyj4dGm2xVgcX0kG0lIfefLvd57en7uHmwS7VWcL4Y8XsHT/Pw6ISo7ZYVG+RkKjLJFVfLitN6RO0CG2vbHJYLTgxW+ZPdJ7m/P+SLT5whyxU2szSTKSe2Nzn36P1cvXKVW3t7L7je/mcZprqA8HcCXxpj/Ofdt2ul1M8D39d9fQM497wfO9t97y//rp8Dfg7gvrvWYxoSzprbTLwnM4poZVlaVdVxsZev5x1lUSzxskiVQIGqbWS8kaTyPA8ySzTaErwc/aIPnRtQS2iDUSSp7ZZQwr+IUSSERCE3hg4eFkMk6QwoR+k2WonuVuqXfp62Vx8TG4024sDTQhRcLBYdgsEwPTigddK5i9zTkyc9fLd81sqglSXNDGXTMi+XVMul0AetBpWglCbLMpbNkrpcMlpd6/jkJcNBQZanXN+5SS8rKNKU3kDYHgZoG0fwLSv9gtXVNXZ27rB5aov9/X16/aLTZXchy4mcaLxz2C7tpw2eaj5Fa9E6GzNkMp135pRA3ZaE6DFWk+mEyfiQXpFh0xSWAWM073nPu3nTG99wPE47UnUcmV6EHROxNqUo+tx2eyxbyzve/zE+56H7uOf8kCzvkRQp9WyBcS0ntvt88xsfoTfaRqcJyk2JWQ9lUvn/K6jbBXVZY5VhVgdmJqMiQrcMb7r81RAjRdrw2GtPk4YGYwJZEfmqL/1K2vkVksM9qB+gzZ4mxAVF7OMNJFaWsTJGAauUjLvahrI94p5H8iShbR2Hh4dsrG9huzB7Y6GpAqsrKwQ0w9E6ZVnivWdyOCEombtbm5AaTRtaAczFQHSBolN4PR/nm2UZ+AYFNK4l6Tj6NtXdsjj8BcOfdw6TJDStJzMJqY0YHUSFFEX+TIwYpYhlQzCau06dR6NYLhw//lO/hA8jdnYhqJb5dEFTVmS9ktSuoIKjSFMODvaRQ01gMMg5efL08RgxRklqk/GMJgTo9XpMJmNWh2ukScJ4POZw74D1tXXSLMNqg/ONnPY1BIPEB3qgy2CIwMpoxHw8Y7g2olouWcwnFD5ypjfiabdgO11hWTk+oWa8tNjg5vgOq70+r149w86tW7x+sMbjquS6W7Bt+tRG8WduwUuKk7zv8Aq11ZzqrzJuSx7L1/jDdpdl69nMNOmh405vyG9V+/zts/fx3kuf5HUXX8y7Ln2CfH2d8XxJGWAla9nvKdLgoT3kR7/pv+Y73vtRgv5/MTNWKbUFtF2RL4A3Af/saO7eqWy+BvhE9yO/Dfw3SqlfRZawk79qPi9VX4FO8dMJwe2h9CZeB1Tn5Iwx0jSijbeJqEe8E3aHMeLKXCxLYgis9ofPzca1xsbn1B+uDfjohUXSdZ1Hyh1p9BV0ISUqSlvnXIOKAkXSnTQLRJ4sXiqZUcrv8GiddvZqYWn4zlEqPBpZFB+rG7zIu0KIWCtmjRg9s9lM0KvBdwYycSYW/UKMSmkquFznaLuwE6LCNxUbGxv0+30ODvZJU8Opkyfw3tG0LW3TsrCWDR3pFT200rSNw9iBWOOblhMntrh5e0dmtj6F2HHebdHddNAGfxwAAd2iGY9rHd75bq/SULcNLji8jxhtaaPM7cu6JukKSlvXTGdTlE7+Arri+e7d7jqUeaxSbK5vcGf3gHxlk4898Qwnt06ilSbv55iRQZc1k/1b9PMViBmuhbzfo9U5ZfDkmZwaZ9MJWTagZy0HSwhpSmwldL1uGpqm7dKoAq6c8eC9I+7d6pMNlHTBixukaoDPSj7x9HVCyLoCClZFohJEb/QB0zHSY7cnzdIU2dUL9VMbw82bt9jY2MLalMY1JEpUZ9ZaOZER6ec9lFY0Vcl4fMjG2trRTcTRxikip6m6rkk75/iRisv70OF7A0VPyJ8hBHwbj9U6ddUeu85JLEThzIDsA6xSAgvzXk4wUcivbdMwGm1InF/wOK85d+Z+8v5plNrBmpzbN2ckNqHIFM9e/iRF5viNt/4Sd108y3whMsQstWhlCK3vRqvgXOjkx/oYh9Lr9fHe07SBJM0ZKMV0NmWkR+R5htVJ5/oV569WMFssAMNwZUiWZpRVRZpK4E2eWm6VC4Z5X5RzyjFxFaezEbfcjMv1jJfoPuu9VT555woXtk7QbzRuvsdouEpoDCpJeN9kj8tOcXq0waqJTCYT1nt9xpR8VbrFx8oZPjZsXTzHjUu3yLYK3nb5o3zDuYd566WPsbG1xf68YlSM2M57PBsqiqBZv/sE62HJyihlenDI2vr2C9TcvLCO/hTwf3Rzeg38Wozxd5VSf9Q9BBTwUeDvdn//PyDSyqcReeVf79ONgaWryPSAz314xMc/aVGq7fgwIs/r9XpiWfYlTd120jY5DpeVjHlkFtke/0xEzCDLZUlqDKEr1Coc8cM7bXjX7bTekShx1GklvBvVEfBCoMMHAwRUkIUaSoq1tULMi1EwDWWnbAhRkuuNea6zilHokz7ISERpLXI2A2hFliTHnZgYwRzGWlzT0npJPlJaC50wcsxD7w8GDAcDdm7dZH1jkxhb1lfX6WcpSZ6xv79P3bTsH06pG0l8Gh8e0HpFWc5JEnGsBg2r6+vE6ZTNjQ2sNhAdWinBFXT7ixgk5DrLM4xKmFcL6roR7j8dSyTEjqGvSLrgZOegbbxIPnXCdLLApikqPJfVe0wrVc/vMgNGW3q9PqsrDfszjyfy8Y9/mle89MUQAtlKxqSZMkh7FL0+fjmnLGuSQQ+CJ9GKqqxIgNRKhkFIIrdnM1y+jfWOoIWEWhQ5i6V00DbmbG9s0csqdAxEHHjNlBkf+UTgjz94h2RtS9g2iUXUjmL8kdOa5Mv6GEg7gx+IXFZpy8HeASdPneZgPGZjQzIW6mqBUQbfOpI0ZVGVWGTJm+cZe/v7bG5syN7GBJJMTh++qlARrNbHzUmapkwmE/r9Pq2X/xNa3gc5NR79X9WxEMAFAcEpFMYamqbC6MDBwR02RhskNkWgf0hQS1mT2CVZmkqAxnBIElN2ru9x8/Y1dnZ2GCQK7w75obf8BP0ipyj6xCgY67XVDZQSdUwMmjTNcK5FKYNzZQf+U+R5JkEqcMz7ET6PKLvm85ngF1qHioJjMMBksRS/QdqjaRxaS8O3ub3O5HCMsdKcVa4mqMh2UbCnI3vaUWjL2Hi2184yuXyFM9ubTH3FwWTBKwdbfHCyT5v1aJ2lDnDJOFZaz+3xHudX17kx3efhwRab/QGF87y33OXajeucO3+KGzs3ONha45duPMn9w5NcqUtW0ox1o7kz2eNQz9Fr6+xdvsl9L3+It3znD6K0ZXbj1gso3/Khjrqy/z8/7ju/Gn/8B76AGHLKvMe3/4M/oZ/mgD3WuB8Hdms5ChtlWZYS/tEvMkKUFWuIcvOgQRuLqx1pmohZKrZyfNMWrRRZnhHCEe/GE4LocxWO6D1ZqrBGy/HViI4dpMMIMUjXHwKPvf71FLkQLI1NJRC5M5RIlxuoa4fzjqqqO9BZzbKquHN4SF2XvO6VnwtRqI8KQTEcFTnn5SiulWKxXNJ6T+O80AiDAyXKDRccTz31NC+6736qtpGja10xKHqsrm8yGvZx3jE5OARkGb26ugpKk1jhpDTO8+zVa+wf7HNqa4sH7r8XgqBpQ3DoLrFLo0BpGie7hrpp5HcmluWypK5rJtMZtXPyWiiL61yKURlSrTFakafCYPmZ/+0nOcoZzVKR/mWd/f7ogWdNIiiLCMvZIdfu7LOoK+L0kBXluP/iOfJYszIspNvbOeTK3mdYv+8+esPfV0CyAAAgAElEQVQ1tDZUpbBebt++xYnNNZpg2dvb45kFqGSdLEaWnSFHHWn/k4RqWXPt8i9zqpgLUKstOTjY4N/8yuO4YoukWGGlL8YdZcEie6XoI3leQASnotAZE4tvhF1U1xUeRVXW9HoZIXrqtqaX90mMZjadsbG+TuguvOgUSkdaWm7cuCGZsCvrKOUxiZVQniBMeK0ks1VpiRd0wUNQKHM0npR7SmthwuSJoSzLI7Rl578QRIVNDVVZ4X3gl3/lX3HwzBW++7//Pg4WgbJ2HI4P2drcZH+5IC4XnD59inTQZyXdpmoanJLrINMJIYxJkh6LxYwYtOxrjCHP+iil0UqMUcLP190pRO6/5XJBWS7lIZJY6kZiC5umQSGjJK01ETGtESOurphMJkyWc1bX1tEqJUlSFJAmKb5zwPa04tqNZylyy4ZNOJ30uLqcMUZxdmWNg/keqbU8lp6g9VNGNmE5nbNMDEla8N52zF6IbG5us7d7B59oXqML1pTnwZWTfOTGM7z89F08Pb7Nplnj7ezSBEeaDthd1iwTRZ5aXq0HrIeKu5MBu8s9PrSVcYUFvopsVXD11iHbJme9qvigX3woxvi5f12N/axwxiqTYOwIsoJe49jYFM6Let7n0RJGaZGl1a5GExkUPTSdYaQzFaEU1iTgxRV3FGFmTUIUL75wYYIgjp0T161Go5HxslIi64pBoZXI0oyR7iBG1cm/FKgj4JIS0FYrGZ4xGumuupmuYIyFRSLMd5G91VXD/8Pcm8balqZ3fb93WGvttacz3anq3ltjV1e3q6va7W632xNubGFisDExhjgYCQIIokSEiCgBFAmiKF8iRSJRghSFELAg2ETGxGATY9oN7jZ2d5ueh6rqmu587j33zGfvvYZ3yofnXfvccgjcKF96S0f3nH3O3Xvttdb7vM/wH0pbkoLIFItcainWd1HMFUKAmJQoK8YgmwxS7YzLCqM1RWG58fZtutZT12O0Sti8YE+bht37D3jtG69y46232Nra5Nq1qzz11HUhSnnPYrFguVgSfMv29oyNzRn7hwe89fZNmq6ld70YraskDkkIU7RZLOn6Dh8i9Xgi5zTrRylrskAaqEL4CbYsqCcjZtOKSV1QVIoQe2ImcQ1WkMCafTnMaGSeIvosVTVhczqmtgVqPOPUR964cZOHd3fxXrM6XvIL/+AfcPW9r1BPL6DUiLNFhykrlsslm9MJB8cr2tWCoAoCwrR2JExRoHOfWkTgFMVowvHpCKrLKHMVyhf5n/+PL9PW2/ShZzKSrq81msoUJJU1W6zCBycCY1qqIN97kop07ZLxeML+3n22NzepqxpjNcYaVk1LURi0ScQE1lSCKkGqQtc5yqLk6PgEOxICYPSiUZOGIZJiDWv1XiooU5aoJG3RFAS9loIoqQ4mP2VhBdFlC3rnSUERgsNUJWU1Z14WjKbb/PE/+R9zf2+PlhZbG45PDxlNRrz04rNM0QQiKZ5RlpqRVczGFm092k7QuqTIXJemWbFYLDk43GNv/x4HBwecnS04PT2lbRtiPB8mj0YVs9kM5zqWywU+iGcwCkIKtH2XuRwioeBcT9v3nJ2dUdczUvanEHiyRUePsYZiZNl7sEdIch6971gc7fHxC1fZivCwX1GXI3yATy93qZyiCxGzs4UrC97oj3lxvM2Osewd7TPf3iRFxf1mxfu2nuSrN1/ng9df4Ov37vLMxkVWLPmB4gI6Gm7Qs3XxArWxxGXLbzcPeF5vcHu5wI3HHJ+eslHXqC5w4AOFmrKztc1P/O7vf+wY+y2hXnl4suTnfuVLWBN4dhp4aqPm9TP/LrW59cQd6FYNwQtjz2dpAI3ID5RlmW9s0akejWpWzQJTZHSCzf1EJ85Fg+a3ZI1+vZAGnC0xkotsGd7mTCcGhRkyeyuGKEYL7t2nmFmvkkF1Ia2PSSnoM0pgIGzVdU1C4HgywI30rs046wwRS9JqGTgARaa6o5Jg8Z2nd4FLly7T9wGjCnHSUYbp1pTCFIysCKodHh7SdR3z+VwWz7gSJqgSkSdrS1JMvHN2xtHxIcvFKZPJmPF0wqiwoBSltdSjCds7O3TesVg27O7uMplMhEBUlqTlQlppRiwbp3VFYSxBg1aRwpSsOocPWfEwo4KA9b9DsAfWMhBKKVJhxBxei66LnW5ysjzi2mSK8ZHD431+7I/+IRxggN73JDTtsmdczlDJE61DmxH3bt3ETC6TUiAkwfoP7aLhGPom0qxmfPZzr/PwqOPTX7qNL59Ap4VIW2gjPsbWkmKSRAMRzZOAK6gU8U4VU5yyqrh1+zY7ly6KXV4SU3pbWKL3NE07LIF1OwuVPVK1pSpqurZjtTihKkTzvSpretci5hrir+x9YDwe4V0gqkgx4MizgqPWghiLyOdoXU+RZRCMlQ09eVBK9Ox/5m/9DT7wvo9wtPsmLz5RMZkZXvrgd1GUU37zK6/x3OUJup/xpdsL9k8PgAJtNeNpLQmUsSyXZ8J3cQltfEbAZWe3Pq5jw2r1bvTdgJyLUap3jchJrG0GU5L15x1N12KN5ejkBF2WFGUpFb0JlJUM5et6wrLvicuWVbvCFWB9ZGZGfPjyE+w9uMvLszmfao/YKKe4EYxWntV8Snm2Yrc/4ma35IXtKxyEhpfUhE+pYw6XC14yE24VLX/v4Q3+9DPv5wt3XuPFqy/yxtENXqwvsqc1O9Wco+WKQ7/goh5xs+p5sqj55iRRMufLbp8f++GP84tf/By4gG80G2HJYbL8k9Objx1jvyUC/WQ84cMf/R5+7u/+HT7+B7+Dj9kNvnH/FjYPlYcg75yD3Kooy5KY+6Egu/DQ1x4QOkVZ4HyXh5yRpKRNo5Xc2CkXNDIETJk1laTXTkCnJHBLpSQrtSrj5GPW5JbhJElkDYJKFHAuq4AiotcDL601vT83UYkx4XpHWRSkkNtSKNDSU3Wukz5iDPRdjyk0JsrQNkbQBpqmo+08u/f3cM7xwgsvCEVeawhm7YurrSgJ1vVUHJEGWUQQzLXSa9VAHRSTeswzzzwjBCyt2NzcYFTXUo3kltWqabj34D5t31EUBePxmM3Nzazc2TCdTKgnY4G9hkgKspkO5faZb+ldZHl2Rkx6TfQxxmT/3XNJ2cGIYj3nUDKkLnVAz2acnp3Qm4qXPvIR4u2bvPr26xTveYGL0yfpvcemhLWapu9pnZhg6JHmzu4+erQlkhuhRxtNUZZrLZSu67IEQIvXmtZ1JKWIdkIyXjZ8a0k2oZwABDvvKPMmoRBkVt81VCOZMyktAlopJe7eu8tkNsES8kA+QlDMJjXLxbFIQQfhaygNQ4C2wVLXUxbLBfsHD7l29ZoICXhPymbl1lppYRSatl3KAD1AUDKQHWR8QUACRie0NVlyxGcFTEPoRT8mKYMKnueffoLi7Av8+Mcu8vs++B+wcvCLv/ovsUXJT//hP8DlLcsbX36VL998E12M6NoVrnWcnB0znU4py5K6HtG2PdV4RGrFEc75VqDRpdyfa02bEGiaJUVhqapxTpg0gzpmVVUoI5tBDBB8n9ntkda3+Choo6IoaH0rLPsYcL1jESAWBpwDNDE5xuWEC87w+t5tnpzPmKbEJa9o6BlNxjQ28svHd/lQvU3XwUvXnmNvb4+pVZxONdsHkXlRcts2bMeSRiX+1t7r/MT0Mu8c3uL50QXu+RVf6c64XG5jti/yxeUB9/qW7754jXu7t/jcsmGkpzyw8M2vfw3XBLqupyy3ef9Tc27u9Xz9zQePHWO/JQJ98g32+DV+6kc+CLbjlecMMZ2S4oQQpZx0zhOCXzMSo1Lowq4HqTqdY4YHJ/vVaoVCCdHE95BM7rXLZpHQxJCDuMrBN3k0icJIhlYag4sBRdYRQQItqiBFh+jlkYOQFhOJyHqIJb7GGqMTXRBkgigC5htVJWxRILBxS0IRHYTUS9YSglDLs4mDVoqmaQUl0/Scnp3mbL7nhReeo+vPBBGiFaNyxCp4Bou0UVkCg/6MICvKspSWVBC6fDApZ1aG6DzjumYyHZ+7SpGEjUnC6JLpdAJKAmAIgYd790lJsX+wz+XLV4gpsX94yNHxqVQwSgnpJ0aCi4QU0T5y9PCAycZ8PXxOGVkxzJCGrG4I9D4lZrMZhgUPT2WYm9SU3/zUZ7n/1qu896Vn+cxnP8vh0QnPPfss3//xj+PpSX3DykfsqMY7WAbDMhqMCWuW9Wq1Wm+EYiID3iUOlo7aezZHE3TyjFIgFKXkB85RKItHKpWU9X1I4mtQlbXMF5QmKTHNGXTVl6sWa8ckFylKqOqak+NTqqqi74XEpLX4wFpV4EMAnZhWIxajirPFmcwfeifkOF2glbSeIk7+ryGjn5RIWSRpW+psU1lVFT50ArW0BT7KZmxVgTKGqIStilHcuXOXl7ZL+qXn4dEp7xwc8ef+yn/FwVIzLkv+yT/6Ja7s7HC6/xkaW2OVePCGBF3nUCoxqkrqyRxtDWUpmj+TuiZNQWW/WDENGQAJYm6zWonhu5j6eHwQv1dlgmjhaNAkfOtYdsITKCpLUIF2eUQE+k50iC7sXMb1jtPmlL2Ht6hMAdpy0DS858JFpsnAylHONT9y4Sl+dbnH3e6UigJnSr4SGz6ka955eIcr4ylLt+CH+20e1hWvxYZl0NgiUkU4LGpeTYqd8YxfbvZ5T7HBlc1tWPWYoyN+fzHlde24c3ifMKowbcBe2GTxcJeLV19m+fqvoXTNgT/jnh/xoFzhtz0cPl6M/Zbo0WsF88JxcWqhqJjZlsL0GFvkBacytErKr2HRxyw/PKjoDdngcJOowYYP6EMUWKWSQK1yi0bptA4mqEedqQT6llJk8KXVukChpYSNA1v00VOoZGGnuHbYMTLKRxm7HtCiMgIHMrlIanvXy/eJhFYF1pRZsVOgb1qJfozWBu/T+eYUI9PNDb7/B7+P7/zOD/H8i88znU8IKlGNRqJLkt9LNhQpgQc7QD3Q+b2HKCSw3jvOTs4wylIVFVVh0SYHXBCLuvz5QzaBSUGyq42NDZ69/jQnRyd0ncArI4ll72g6R+d6et+JoxeRGFvefvMbay/aQelxgFsOx/Yo8UclRT0aMd+csbW1ydbGBvPJjBNb4i5c4bfevMWz7/8g7//wRznziV/9xK/zK7/8Tzl7eMLx7kM2qilf/eqrLF2EQqMIjIoCo88NvUGSh5jZ0eBk4B88eqzwTpNC5lEYQ1CyqSclkgf5JQCVMeC5BanFxWl/f5+nnnmatm3Wg/eUZLYyGpUYI1l5iDI4lVafJSWFDx1dv2JjvoFRJUfHx1ib7fBsRd9n1VFjMqLLIhLTYY2TFxe1RyCyKb3Lza2wBRqLyc5tSgWUSdy+c4/YrTjc26MwJUd7+0yrMTvzmiIVfOoTn+fbX3iZIvWo5AjOU9d19ie2GFPQd46jw33u3bvN6clpXuNFPlaz/iwDzLOqaqqqXiu3htzuq8sxRSEImxAdrm9pVkt617IxnbK1MefSxR0uX9hmc2PG5nRCUSqca3m4v0eMgf39XSgVEY9JilRabp0eoPqEj4a+c7x6cocrpiB5R+cd43IGPvGFeMTT8022V47vG13mq8v73E1nvGzGXI6Rrg9EZdlJll+LD/nt1nG9qLnfndCsVnR9y8XJhJc3t3jWWDYC6LLg4uXLvHXvFpvzGd/9yg9juoLewbiAt5anPP30iD/2Ix9+7Bj7rZHRAwmF8w5TjThdtrz/yphv3rP40FClil5pohONjpjEm1IyJukhOi0BUIyQFV3XCWkiiaKeURqjJEtXOi9eznuVCRmUkQkWlS1JyWX6pLhU6fz/QpSMOYusr3H6YogCkSTYd/LQMgeqwliariVEcTIKKEz+QmmB5oF4rmqV8fWWGMVRqw+eru/FPckKLluRKMqS3ft7fNvzL3LvwQNee/trKCyYgG97Jll4zGbNmfUiIntv6ozy0RqCsAN9CLS9o6gluyv1CBOj7EkZ2jnoBBkFySQWXYvWmlXTMJtOuHBhh8WyQem8cWoh5Vgd8T6Bgdh3bM3HvPra1/jAd3wMW5gsxiX0e8F8pyywpdffWx2JRQFGs12M6JqWUVFwrMA1KxKJ337nHmVpmduSS5tbvHNjwdmiJabIb3zyk4yefBY7qnB9xNgCMXFp1uYhA3QveA86YWLAF2OUqri4tcmBl5ZfaUph2GpFVKKKHryQe6QFIRBBrURWOCrNweEh48mUyWRM9J7TkyMu7OxwcnJIIlHYguWqg2Syl6swRVMW96qywYdSip2dLfYPjtna3CY6hws9ZVXS+R5UJCpN9EnUMo2mdSGrUcptJ4YpBpM3k8IWuF7Ig8GLoN6olvd2vuPtmw9YXptSFzU3bt9ltXD8xf/sr3AUKj7zqV9nY3yB3/jcFyhtiwpQlrXASzFopcWY3OY17zxniyVnZ4t8jQ2jqpTPmq91ihGfxGKxtLJWl22Dd47oZd6htCYpcUQbTSquXr6CNoamWWHLgq5tiRmFVPiALwKrVcOD+yeCXNOJoA2GQOsjx0phomG2MWbv5IBusyL2kVfsFl8bBZzrKBIka6m6xHg25W6/4Pr8Ar5p2Vsd8/1bF/nF7og2WZpxIi41N+mZj2dsKoMzK2ZK8aKZ8fbuPd6/vcP10vCJxR5vHS5Q05LR0nN65vhjP/onOOjP+PRX/wUPj/b4+u4Zk8/eeewY+y0R6AFcytmx7wmq5Cd+9wf4b/721yiKMcEpUt8TdcIkEV2ikIWlItIjx62FxIRRKTIEhSnoesdsNmW5PMNkqVaFVAAp+8SmDJdMJCF8WHEB8j6SNCgli09aPgYfJfs1MWJNxYAbH7Iy37ucpbm8gYR1vzVGwfh3LrJaLKkLQ8gSxcvVGfVYECAgiKC+l55jSAGfhcRC8FhbMJpPubd7SOx7fu2X/iGeCfONDaZzTfKes1WAmLIM8UBmykSgJOgfHwX773pH7wS/frB/wMXLF4ixkwDYO6ppTczvK4oNWRBOKypbSPnvxctz/+CQ8aRmMqs57RboQlNS4lcOl2SwR4yo4NmYbfKJX/s1fvTf/WnmxQwfPFard7kMDS2bNWEtRRIDIkeMvSeTCZPpnJ3tC3Rdy+npKaPRiEnwHB08ZOOFD9FsbGJ0oipnTC9exaMYKTFW10ZT1QXOycZdj2oS4nWwd3YXFxRfeCMwLiIwRleHKF9K5aZykM9ZfPAyE+j7HlsYjC5BycCx9Z6uc2zOZxgFW5ub3L17j6I0bG1s4nzP2ekp29s7HPdnedOPRC+DeW1MrjQL+t5TlhW989y6fYcrFy9K/1/JjElpkRWw1pJUpA+BkBJ1WdE1ba5GJEimAKWtJCnI0sPKyLV1nceWBkrLzXsP8DzP6sxz+eJTzGeX+Jef+wqf+fIXWNkRy87x1//PT+JTRXQFTXCIy5Wc18VZg7Eqk8AUKuXkoesyYWslGH4lOPkL2ztszEradsk0O82NpxepRmOZkRhL07QoJb4HKQaOjo7WQAt/kitB0bwQc3PnCN7Ru5VANxGGcIqBsrSsCs0N7ThoTnClwp71XJld4M7iId8+2uSL/oiJqqjKGZ9VPU+frXiFCbfcEY3reP/1F9jfe8CLowmfbU/ol3BpfoG9oxO+drZks3P8R088z2/f/Abj58eM/YRgIgfNCb/vwlP878c3+MmL1/jM7gGf+9oXmVYzdKr47m/7YXqluXn6RVzXA288Vnz9lgn0YdCY6QOlTWxNI0VxguumJKuZ6IpVcsTO4/uOpBXaGHTGzxtrxWos5DQlpYy7FhanBNl0jtwYgkjWwxkkjAdySNt5gaFpI6ibpHBhYGsGcaNNihRF/8b1ET0yazjbgNgQwRFB7hgjw6yEIAaGFsVkMs0D40RZSLtGPDzVWm8keg8kTO61CiJCc/9gH3zP01dK6G+g/JiHB0tWbSTomojCOYOxE6wpMptYNsHSClxUYcW5p3d0Xc/p4ozVcsUHXnqR09N9FBFbaKLya1STKFlmHaGiwIVAWVZYKxWP1hrfS3tr1bQEL8QpbwN68KUNga3NDaILuK5Ha0XXdtSTmhAF8mf0OZri0az+UTLV8D1IxgwjymLEbLqJUprFcsHOfJtUFPS9GLPPNp/A+56iHDEynsHqMYZBR17lImsgL0HXK3otvr2VLSAu0QjL1Xe9DPlSIikJPjGTfpzviSFgrPi6PtzbZ3trG6ImKbkH63qEc/1ah31re4uHD/eYTTckG87QYWUjPiOC2k6qO+89rm84bJc8+/RT9K0MxwtjcVlFFCNw36SEtRuzaxg65paiwVDggwcVKayAH6wWBBZKEVzEK3AhkHRJ1zeM4gjrPT/yvd/J7/qe7+TL37zDL/3m53mwaGi85Sf/8E/zC//w7wn3JLK+57WBq1ev8+DBPSbjiVTmJI6PjolJ5iX1aMTGxgZPXHmCSV0zn8249sRlFoszzpZL3njrHc4WS8nWU1zj6UF8c13vUDr7SgfRsbfG0rcdGmjbVkAZKknSE6HShj5EZqbgS0XLx+w2495hJ4YH3THTyjCJjue7yM1Zj/VSwb5TFRTW8UE35cLVZ/kXb71OdWmbU+/5wGiTL7kjHp4ec2Gyg18dUU3G/PbBQ1565n189o2v89zWFsfAc2aLf/zgLT5Qjpg1S2rtOPKOPmkm5YiYeprjfTaON/i+7/kwv/kb//yx4uu3RqBPiN5LWWCTZHq+P+S7Xr7EZz6vaVUAH8EI09XHSECyO52RA8aJCNbg5pO0JmbRssKcB6XBV3b4eTBSXh9KUmtRLqUsGJP78UraFbk3H4O0fnTuf4pgYcwIm9zvzrMF352Lpw36IUTWbjneO8ZmnI8jPgL5lB5x37eEbGQ+iGxJkAsQKtLihH/n936Y2N0i9JHj08BJ23HSOVpnODpesrm9jbWsdWSGWYYxmlXr8ZJesVguaJoeU0oWN51MqEY1KQl6yGUmr86nbFCYbHMvPqVEVVVoLS5Uh0eHBBdlUB1F38f3IXMUPKNiQvA91ahmVFWEHGyTzjIRKeWBdFp/Df37oZc7bAAyu3CE7Gs7iNaNx2OarsEoQRWhlPTT7QjnY968/ZqjYWxJ37s1iqvve9pVR7tsBLmVWkgjClPI9QpQjMpM/ZcefBzIGOQhtxdIblWXMhuxhqIsIEasVWtUWcjorM45JpOpUPrnWzRNQ1kWdK0QuBLie6u0gA0mY2mP3Lp1iycvX1nfbzFJJdoFtyYdFVqLRk5hcb5HG0OhVQYrIIlJNgXvu07aPAlpwaGI0dL1lpGCrnmI1RUWKKNmHBy33/omja1xqeRn/rf/idFsLM5qmaR0+cqTvPHm65ycHEOC4+NjvOsJ3lGWVZb8AJTEhZs3b2C0GI0vzg6F7GQ0oEnBr4OI+B6cJwYo1udV5jqwXC0orGWVvZCltpZq3uT51chGFiowazQ3zBkfrbZ4sDpkqjRbs5qrh57r9Tan7R6nNvH0xmVuLA74sml4drrBb9x7jScvXeDWyTFX6k1c7PgAJV8MC+g6rm1t8s7xA74WFdV+4oee/jbuhDO6puET+pgXtp7E+oaDBw9JWyXVRBE6R+M1dal56f0vcdlO+Rf/6hcfO8R+awR6JIvxEZIq8cqhY+JHv/M6/+obD1DtilUYYUsZAI7LmtZ19Flh0lgDeVAHmagTAiGKNvYwvQdyz7Q/H8DCI0FEBmZFaWQI6j0qeKyxBJ/75kEMy2UNa4FxEZBUTCqG0Uiycp91XwpbrKFigihJlNmQe8g4hs3GhYDJA15rbW6zaLHrSwmSfDYhfiWi73liA8Lh62xMZqRxz/a05GRhWPWKpm05mY44ix1a14CnLCe5evLEkMXZtEah6ZzMAo5PTjk42OfylS2Wi0YMtFOgNBkxE4UTIFC3xMnhAm2gdx0+JvquwzlP56UtZHyi8x3KgNIJ37dc3JzQ9Q0pKaIqWC7OMNYwqkYZ7ilBecjihwA/nJsBgjcE9K7r1tIJMUlLzljZ2Cpj0SoKLjwpfAik4BhgiDG/B0pnkhaE4GTY7CO9X2JKRVglkWG2ij4sqcoZjohxSmz7vCMglSBEfEzobGZfVSVvv/02l689meG2Qrhz3jOfz9k/3ufk7ITNzW2xSkwdG/NNVqsVo1r0lJxv6HpFVY4pihJrDW3bsHNhS7Lb4ElG47ueuq6JKtF3rYiXkTCqJPmA1RU+JYytKY0VdE8h96YoWVr5+0L4AIW1Ag1FBMY+/423+PYnL+KiRY02+OTn3uDnfulXWJkd0vQaqEiZAlqLZj0qrK/T/ft7TMYzFs0qo4AcgYA2Cp8cRRKpka7rcb04wyUVmU4nNP2CzqvMOynRqQCVfWFjwFghS/pH4NYxS3WYTMYLKRJJ4s+QZ2NRC1lumlnEKgbMuOZYef5Zt8uf2XyWhwf3eaKp2B8H9g/u8FPPfoBffvgOp2dHvHjxSb744AZ/293iB0YXWHQdT05nPOxOuWzHFE3Lj413+JfNPquTEfNRTZMin3bHfPOw5elkeC2c8t1bz/P5e6/xnu1NptuXWHb3+fVP/X1UVeJ6xYfe9308c/3HMKrF9M1jx9dviUAvBCRhXIYEyidMoaE5pOtOKJShRxZskey5X6XJpXLKjjsD5lpGq2h9rth3dnYqvcwsjvY7H5GYzSA0Xe/EnaqQ7F+y4HOZV50HPzGbiBuj0IVA2HQ+zhgkaKhk6F33rv7yZDph98H++rMPsEHv/buGt0Mw8M6hFKRo1igjQS70nK72+KHveRGlb7JqZgTdEmMDcU4VI0o5qAsOV0vKVGCLOtsyCpnLew8Z3eFdoG0alqsFxkpJWlVPUFiIDgpdok1CqYR30u+UrNHLXDpno0SBoYbUiyibFgRHSJFVv8RgicERYym2ikrjQuKrX/oSr3zHh6RHjxWTmBBz2R/XWv5DVTI8htkDQIpSOQjJSgxgQoCoZMznDvMAACAASURBVKgXgqA7xvWIGBpS7llbpUlGIZJOoo4YY8R5J5LSXYHRI1RqCBiUnlFPLmOQJKJPAe2khSipYmbGKvKQPrJqWmxhUSphjCLkTd/k56yRYNo5JzOPoiamxOHhPraYiqZSYUQ2wGhOTk4oCsN4XIvDVUysVi0HBwdc2t7BefGCIvf4B/CCeCWI5V7bNBTaUlcj+tiJE1UQ5FWMiCSH1kQfqOuKo8NDfO+4+fA+29rwhddu8qkvvQHTCd1syrSwrPolWhVoxgSjMDoQncfm+wyESlaNSgFgjApSl7kmGTFny4IQg1heaoNJY1Znga3ZFZarFdLokXUnx+pAZw8JrZhuzFkuFhRGU1djVs0Kg+hX+eCFX5JEVVQMyUEZQePVqqRrGnqtmSTDpJzwle6A981nPEwJ1QY++tx7+eLNb/LRi9f5xeV97u2+xdXtK9w7O+ErnPHyaMJud8bVYsqGV7xn4ypHheMH1Db/l1uw7RTlaERKFbejx9Pz3kvX+e277/DM5Ys8FQvebE/ZvvAE9+/fY2Nnm0DHV975FJ/9V7/Klck1fvwHfw98/p8+Voz9loBXAhn+12F0i1YysDQh8Id/z4toq5hUEXqFjx4XeqIXwwaRLTAEpUna5FIMyow7JqqsUaOy/AAkQg5O0kIhKHTQ2dUerFEUCgolSBXnHFqDsWq9KcUelC5IxqCikv6mF0cqkwwlGhUiLjmsNXntBxSJru/RKtK2TSZe6WzdV62zTaMVWhqXdF6qA+ebNQQ0RtHMHofEBdOA3sQUSwo7YlJOqceB8TSyORlxeaumwNB3PcEryBC9qALVWHRlXOhp+gXTaUXbNTxz7UkKayCJ1K2ttFgpKk2MGpQnKMAalK0oawmUgYSLkWQkkwxeZiPWgAmOShl0DEynBS42AuV0PSku+YVf+oeYQksGHKUUX0P9HhF6e1SX/NHevVKKDDYnEOmDE5y+gcJK5SSvo0ipJ4F44HYdTd/S9x0JQUetB3k+yXzFOhRyfQOJYBOXr+xQakjRUVrNyBYUgPYy2SxMwOhE33uKsuDB/iH1dE7oY8a6Kwqrc3WkmIymaAztYkWKmjZEglJcfvIaISW6kOjbiOulTXbl4iVRs4yK5BSbkw22pnOWxydS3SqR6LZYgeqGSNQBbyJeefq+pSgtXezookP0b3ReI4K/N0lhU5KsPEWCCqiiZGv8ND//m6/y6+/ssppPaMsCn0ZSwVBCUmgTqHRER401JYJcA4iiLx96DJG6KDIcVSrm8XSC0QVVMaauZxTlCFNCOSpwyVPUBaY01JOKelQzGU0ZFzN0siglrTeVIlVhUUGLNHFGuYWk0RTi66uUmKInaVvhxVPW9z1Pbu9QFoonxjXaOW72DfvRYH3L5tYmn791g2+/9l7SYoWyBkYVp6tDLkzGHEfNNxYNz9s5V0eGWXK8sXjAqw9uc7Wa8HvqGaltOHM9nSlYRsc9U/L6/T2ubU6Y94GzWLLoHLY/QRUT7u/doYyOS3XiwvUNmo1T/s5nfvax4+u3RKBPSkp3UkEMipQKiCWmGvOBpwsmHNGGiIudBE2lSMScyfk1Q06+huGqAjTaSICztnjE+b2QAJuRLSgpLcVxc8CGR3xCzEGcEEz63q1x87JpaAl8ueVjTHk+6FW5vER68YL0gWI04vj4mLKU4xks5x7VDBdQZoadppSZpeem2847+iCD0emkguhJ0a2Dn0DYbNaHEZLY8HyMkb5vgXOewBAoB1en5597Dl0UTOczjo5FAM1mLX0xmRh8RKWN4/qeFCJqyBpDFOlayNo8wkRtfaSLCt+2lFicC/QuEWOBSxVvvnWTejxdnzuRkj4/L0PmPgR4YI2vh/NKKMW0JoMNWjnDfTFk/nINxSc0pZTZmjVVWQnRLZ/vlOUy2q5bD+WHAfHVK1cJXqCKSgm2W66jX/fDnZNjblYrqrKQ91i3E+UaW6SdX1UjfAy46On6LitKpoywkkp2PJ4gtpie45MjlssFbbdk1TQslkuc92AMRycS7NNgsZcF44TA5dFJTLINEsyjdxhdIAYpw+cXXaWkBPiwahpZGyHwya98iTtnJ3ilRUMHzcSWKCUD6KIQDslgQD7MhIZ7LYQBbikkwbKsBUOf0VtVVTEajSjLMuPoK6pKOA42z8Vs5tlYWzCdzdbzmq7r6HP1J/35c06EcGfUer2pAfUDRJP5LyoxXTXMVj27y2O2t3cgar7RHrI1u8ThzT1eufIMv3l0kzdHno8Um1zwsAoFD9oVihXJKG76Ft9G0qRiY1Tyu66+l9f27vKs3uSljTmHIbG3POH61jYH0XHTdCRV8IzZ4XPdffwkoVTPZN4xndZ8z8e+m4//rg+yPR2xNUv8J3/2jz52jH3sQK+UMkqpLyqlfin//KxS6rNKqTeVUn9fKVXm56v885v598881hsEjw4CHVuFFmcCLhjK9iZ/6U98F3VxvNbYHtogg1uUdGLOA71gxUsgy7RmWdch60tRo3VFjPJ/E6IhYoDRqMpBRNO6iBh7iLfnoEVjtGWgYCslSB9hGoY1Kxej0aXF5QCVlMKUJYeHh5RVhQviJlSW1Rrbvr4oGc/uu37drx8w5S6I3G1MiVXXoEOHVSINMZBdkpF5wfC6Pkh2NqpqYhyyYeTuztA7hcWaEVVV87WvfpXZdEo1GnF6esJysZDXzQPo4fwPG8vR0dE58iVErDECL7WGoBXet5wuG5o+0S4bPv6hy7z/ScsLV2qu7iQubAS2p5oLW1u8/uobtE2/7skPPId3Cdupcx2cR5E3A3Fu0MZ5VMv+0SHdEGyGQeloVGNtIcgTY4nZXanve7pOBuZt20jQTSJ3UZiSqhgx25yTyDpJWljFIn4n/q0RhTKWb3zzNba3N1HIdU9+2EgUJLBoiixL0DrH8eKUpm14uL/HrVu3ODg4EJlqHzG2pCxKbGGZzsfUdQk60biG3Ye7nCxP2H24K6S0GET0ThuIYLXFajFFJyVS/n2KciwirTFk9QkXHa3raFzP8eIU1ztigNOgKKZbzDa22ZxvMasnFNZSFhVamfV6Uej15nxuJDJcAysVsC6xpmBczwDNarU6J/Npk9Fc9l0kNiEjGmz+Xde2zOebUp3nRCcOlZ/S0kpL7/aUyBcAm/F2iYDzK6ZErs1n/L7r7+GaM5ycnDG6eIGTGPjFo/scXr7ILxzfZFrN6BsndoHzbZ4MnpGBl4otJsHzQAU+f7TPJTXh7uKMG2nF9myTL7e73Ft2fKwYUfWeO4dLXpldZCuWvB4cP3N2hyenW2wX8F//j/8lYQVXLm7x6d/6Nb7+1i2+92Pv4Sd/8Fn+6p/78ccKrfD/LaP/88Crj/z83wJ/LaX0HuAI+FP5+T8FHOXn/1r+u3/zIyVMUqCVGHjbhKcD5YE5tt/nT/97H0IQKRHvHcaKlIFgbQc9d9E9h4E5J5mwzZP386GsaMm/S+8FGdQKtrjIaJKh7TMMLEU9ESUu8/mtzm+o3J/vvKP3Pc7lPnLOiI5OTsAYTFllmWHBfg+DxDXaRhrbkuYpRDo2adq2g6REFybBctVgCgMajBXUCTnYklIuk5PYqwUvAaIs0Vo2JTkfw3DT0DQt0+mUs8USazSFhu3tbRbLJSEKE/fRbDr8DmgjnENVQ4y4EHHB0/eBpnckFbm6ZdiqEpdmFU/Mx1weF1yqS+YpUaSe3/jUP8O5lkE+usjGGUOQGBb8sDGeI270mscwyCgMm8CjNnpyLdO7nh8qvbbN7Zv8t8Nn6bqOtu2ImSwm19NitOGVVz4k11mZDH/U+Hwcg7CZLQo2NjfkeHMWPWT8KUoPfTiP8/lchPG8px6P0MaIXpCx3L53jxu33ub+/V0Ojw44PTvl4cEBb914h/39fVzfizHNZExRldy5fw+fgqiL5sotBpHciEllTojYEQ7ns8wS0RJkH1FsjVFMdKzl+PSEzdGcqa0plRFTEqtR1qwTnaqq1lXYENyHx7rVxvnnFu0dOY6madbZuhjLs67qRNCvWG/4PgZigrKqqKs6y4eT/WOz1WLeWIZrPyQFkK+nLBN5WE1MgebohNduvcl3XboOrmX18JjJxhanKfCr/QPeP7rCw+QYTWoujjd47f4N/uDmJT4YDIfOM9qe4aPn8MKMXzna5TsuvZfFwxNumpbTGLlYj6gCvDSbMzMdzdkxT23s0C1WMK652a8odcFf+A//Mskl5rNLXLv+Ij2Ot96+z5febPnz/+l/x+M+HivQK6WuAb8f+F/zzwr4QeDn85/8DOIyBfDj+Wfy739I/eumn4++PpqqnlHVE0o0dR8Y9+Iqg64IXnO17tGmzYgKMbQYoIkpBZyTUvhREs86+8ul6PqGy7WazhhB6byo7MkqlmMxw+RUYj08SyRC6HP81evsViklJge5l2yKDCXLpbexllXbSosGGa66HIg25huIvEOxLiUjgkWXfreYawSfsGaE1hXORQJafGQz+zdpCYBaSUNK9FE0g6CbXILhhk/EJOJuYgqSWC5X3Lt3j4ODQ8bjmr7rhGhVVYxGNU3b0QW/DqApZ4MD+UqGkIqoxKJO8NjQdx0nixUBTanh9370PVTlitk4cnnb8tTVmg+8cIHvePk6lV7hVodY5bPUc1pvtPDu9tWjglcD8qbveh7VSJH7QK//36O9/Ec9gx+Vwl5bOubfx9y66foOq2XQq2yBNdl1KWleeOFFlJZEQ2xUszNWEnLdgwcPGY1rytIIQ3vdypDhoU+RpOS2tMYwm4yBRNM05+c6SbXQNQ1FKQ5JaLmvd3Yusr21yWw2ZzaZUtliDS/UhUGXQvTzwROUou8TxlS5Hy/IrphEMdX7Lp8/CZQpBFSKdF1L7x2rtsGW1dqUXIaYOSnRMsweKoO6nlBV9TqLHjbUdQtuaClq8oai1kE9xuG6nPMmHoXSDiElZUikKGIumU+nUk1ojdKGpLQkKYlHzuP58D6mJC1878VwvO+xZY2a1Lzv0nV2zx7wfdUOodQcrHq8SYxVxW0CpbOsUk9/fMhPPfXtfO3oNt9dbuLLwPHJGfPZJv3KcVBW/OPjXW7YgPORLT2ndQuOY8tzxvKj5YwQHfeP97mwuUVqeiyGWI05q2a0KvLgYJ/jk0M++B0v4k5b7tw/49NfeDTv/jc/Hhd1898D/wUwyz/vAMcppQH6cAe4mr+/CtyWi5C8Uuok//3/q5Ntj+V1N8OdefTKkpYttT1huVoRVaC2Y6YjzzOXa944jJg24duIqhNF0ri+RWc0iQbxiM29+zV0MouLDW15SNiyoluJjC5R7O9QkBCoYQgRW5qsdDlktIJ1Ryli8KgoBBkfEqp3mLLIuO+wzpqd90QfESs2ODw9Y7VqcH1kPB7LBhIRtElpCCmhs99nCInKWk5WZ4zMBFIkZZbfqmmpykhHIulEEQIaUPWARJABsvU94qYTidFnrHgNSTK8VXPGw/0jgvcURcHGbM54PEYpCTyTcS3OUSQsrJE/o7LkwcOHGCOmFJ0TYlDveyKK46MlrYtMZhNxoQor9k4ajs9qVssGhWdne4uH+4cUxZgPf/CDnK1abIxE35PqkZwLWAfjIWMfgsejLRljLc6Hd/Xkz3vt58zaITN8FL2jlFpnod5FFDKzcN2SZrXCdY7JpMYWFkKkLEppoRnD1oVLrFzH/r1dIKJCxBQlffScnp5xcnrC5cuX6LpO0gOrMoFOEXwCH3BJBMYslklRU18sePDwgK2tLU7dCaUVlMh0PsXagof5vNtM7jN1QXQikra5uSGbguu4ceMdnn/uBZz3WGPAR2xZ0rYN2qZsJJPbNUas91QyeCe+CyGJoXnwQXx225akNamC3gdGtkBFcVwLKZsZKnLlJeusKAohRCWRKlhvzik8Ugm7LNFgiIXl/u59rl67ztnZmfTpS4VReXOMoHWJTwEVB7FDqOqKpnHoXBVLZbTWqMUooeMMWlbDmo4aDD0WjS5qjvqOixF2m12u7Vzk1aP7jHXBaZHQekRF5O22ZSN2/JGt6xwVC26dPuA9O09xY3+XP3nlaX7u7uscF4ZiPOX+8ow9a3jOVOyYEQ9OD9na2eRjRsOy427b8aPFJv843qN1HcW45qxvOMRyslrSRkubFkwKw91v3sV2DZfn76Uve+Cdxwrgj+MZ+6PAXkrp80qpjz/Wqz7GQyn1Z4A/AzCbVIziiqeuX+dn/+bf4Xs/8iLzqWVnvkk1mzBWUJZj/v2rl/irf+PTFOkKwVqMdoTeY7S4HilM3rmFPUjKQ8GcFCZxC5H3RzIPZQuCazAqQ8mUtGuGIHJeCZD7N8PxZ/10YLU4Y3rpIikGvHPiA5uzhnPXKsm0V82KelRzenpKipHxZEwC+uDxzoHJMEoVhGgTRLK49y1FKLCm4Gy5JLRR4Kj1DIKh9B6MJuqEU4EyiVgZWlHqjEYw5ygV1zuMKWVQ2LUioFVKZTGwc+2oIieGVKMKFzzaZru66FH+nAnsM8ba+0CInrOzFVppMSQfF8QUuH//iF/ZOyTpQVraU1ULgvd4f8AbN+4Ait/99m1e/LY50fdESgK8KyCLjrrLrOHz9lthZbA3DGgfFbrTjwSY39kKqqps3JGzPEHBaNq2FTa1D0zqGuMjRYa2CnpHi2uTUVy9do17t29hk/Tkh9pjd3eXK1cuozO6ynmPjpEELFdLXC/zFRd6tLFcuPAEKksQzKZTDg+O2NmZc2/3Lilqjg9PMdqyc+FCvqeF0HW6XEAazlM8V35Mka9/9au8/PIrwhxXwnUoSpnjeO8wphC2tRbtnqRk4BwCgoDK5Lzo8oyGiHKCauuDWxvRFEWBCz5DnnNgV0lkR1IEVHaO0pRFiUtSjQt3QRKqqqjp+p4QHV3XsLm5SfCRpLxUp1GStqSES6Jze1NpRYqCxQ/Jo1SVZ2eatuvEEwGFVnFdiQv1WTK/lGU0VDK0OlDYksl0xhdW+0zqMa9sXOBw7x1WVrSKQlqxVY34jf27vFyMUZOK9uCQ7aev8uXbt/mJJ1/kZ++9wUHlKeZTimXHG80Jq8rzymxOuehwSbGs4GlV09Dzh658G3939+sU5SY+Rd4sWsaXLpD2TzEuYYuag4NTXn7iKje6ljAYED/G43FaN98L/AGl1A3g55CWzf8AbCqlho3iGnA3f38XuJ4XpQU2gIPf+aIppf8lpfSRlNJH6krx4J3X+dyv/yrvffYJppWhMBbLlGYJp6ctp4cHqNNd/tgPfYi+dzSxwTUtphSp4RgCOmYn4ZQDsT6ftK+n7L9jqGdtgUqaFNW6vAQRJUs5y1JqCNO8q39LkKy+qiuadonMEBS9c6QkJCfnPL73Ge3iSEkMUuq6RikxNneul0w9ylC3tMW6xUJeQENPsQ+CLW5amSWM6ClcIEVLV5Qkk7DeEX1EpTz0U5agoHPikzl8Bud6nO9JceAblFy8eIHlcoE1YrdIJNc3sugHc3OdCmkp5fZHSFmlMgR8puDXo4KNmUDglose5wt6P6bD0gaFrqb0WJpo8LriYZiwMhv8/D/5BJ33JN9RGDnvA8SyLMv11wC5HAhnzvt3k6Zi/H9k8cNrDJn+4B0wVAyyEZwjdCRYiAlNSNmJTIujV4yZ4Zs3uSeeuJoVUuW+u3XrFnU9WqNHBKar1+zmyWTCbD5jtrHJ5tY2yhpu3bzJ3qEUv1VVMZ/PaNuOnZ2LlJUwQpu25ejoCGMMVVUxHo+Zz+ZsbGywtbXF5uYm29vbXLp4ka35JltbW9y5c0eOzUhmLArZ4o7Wtm0+VzEDFYb2liMGT/Q9vg94FQlJoYxsjFpL5jxsrLJp5TYJEJSI/w0ImCG7V0rRdoL8KuzwWnp9bofqbNCGSipfxyBsdaWUPKfiI+sbQIl0sRdtnZgCxMCFnYtraWbF+YwJEjoKdDRqTQSqpFlEONbwdn+K9onxaMI7hw94eXoZHVbMzIhv29hh1Xbsj2f0PnLaNph5zf6NO3yg2OET99/kffNLuFLR+0gxmuK04iz1rFTHjh1TjSZMVcWp9XBxzhd33+YFNcb4HmUMi/0WM7ZMxgZCoHXCeN/emDIeGaJ3jxG+5fFvDfQppb+cUrqWUnoG+Cngkymlnwb+OfCT+c/+ODDwcf9R/pn8+0+mRycx/5qH0YprFzZ45so2Tz+5TV2J6bcrlvTGE0YlvTYUSvPKtciovCu08aTpesAKYiZlWYSUEuiYd2t49O2ld8d62BdCoihGua/46IIXpMr69ZRIGg+nTWvZSLTWXNjZxhYakExQWUvfi6aNz/A2kTtw6wxMIRhq0eYuMBn6phSEJMbhjw4Rx/U4L0hZLG3fyXuFhLcjfKXQxalkjcyIyWN0FBlmBRi17qlL60UWjHM9Lpybb48qgQqqJNo/JksLqLwItZLZRDSKxWIp7N8kMrwxRvrgMbZgOh4xn08Z1xWLxYKDwyOKqiSaRIygTEFSmt5LRocR/POybfit3/oteu/BCAlo3U99ZNC6duhK578fBoGP4u0f7cEP1cCjlUBRZBXQd90rMoAV5IbcE7IxZ+QIUBQjxHFJ2jgpKq5ev05Vj2m6nt3dXbz37OzsrF9/CKCDlMUaGJDF8rY2N3ni6lWqquTVb75OjJHpdIa1hqIwPPnEE1RlleUQSpbL5VpGY4AKpxRQKMZ1TWkLZpNpHsYH7u7eEy17ldY9eGsLRqOx+NtG/a4eekoipNZ1njY4nJPyrusdRsvfK6VQRmdF04TreyG2IWi0kCJlJRWiydczJUVZjnAusFgs83VK62o65XVwcnKc24dWhAzTOYJHDM3Tu65bSpGu69eSFjYnaEppLl16UqqBlN4V6DPInpgUPiUmpsRbw9eaBSEVXNq4xN0Hu2xRUHQ9f2T8NPPVgrdXp1zavsTe6pSvh4Z5V3IQA89tPME/tQdszzfomxXXe0vtEw+XJ7x/80nGTvGF5SFvFh2LtILQszndZPf+Q5a1Yl5WXEwir57KEeNqRFmXTOdzjo+W2GqDG2eHfPTbt/mxH3j/vymsvuvx/wdH/xeBv6CUehPpwf/N/PzfBHby838B+Ev/thdSQKEMlUpMR9K7TLGkcCPGHegul+Ia4Iz//M9+D2V3W4JBChibSGZouXhSyvjh+G6NlOHLhxYfW0J0QjyKIur0O+FgPpy3CzKqXQ44bwpaCY7+1q3baAqMGeEGKv7/3d75x1p2XfX9s/c+v+6v9+57897Mm7HHM3Y8dQIhBBO5Mb+KQkNJiCgtIBEQpWorBK3U0qqqoLRFlSqhUhVKpbRQAVWlAkkJpaRUwQ0JbRFJE5LgxM44/hl7PDOeeb/vz/Nz790/1j73Pbtu40jY88a6S7qac8+9c9+65+6z9t5rfb/fFSSFq6qkDKvg9mZPkgTnpdDpbeieVYYCmGiXBaz2URH59MYGZVkyL3MOJ2M6nQ5Ga54dG371oS/ygY/ucPO5lNT1yEyM14noAXmFc3IjrqwM0FpTFK2SZhNy9qLzn6Yp0+mI93znd/Do5YdprEgWWNvglMgv1M5Thy3zZDINtQCLw1JWFXGU0u8PZNUdxVin2Nk7BIQQ5/2cSDuMcjRNifYOjUO5Bl/NSJDfbV6UlI0Ngl5HE277eLmiarsCPJ7meZH2CbKCbyeDBUszfM5sNpM8uhatfglATdg5pOCFXq+IA/xPEwWiTxoJMenSvW/kgQfeTq/XY2tra/F32p0DCIQ3TdMF0sp7yTFTO7CSprx44R6apmFnZ5vDwxH7B/sopTizdYY0lb63SilmsxnT6YzdnZvsbm9zuH9AXYsq5WBlQLcrOvCrq6tMJhPKoqAlLjnX7tCaRcG+vWZN06CNoqod86IOK/kIi0JZR1XWoWOYfI6VKjRZpyO7l6ZmNptJlzXrFxNby3Gw1tLrdcmyjKo6krEQ1js0TYWJBHHjnAvCase5ELLbPt7ycTabhYlfFhLOO7qdDnleMFgZkiYdtD7aHQMyroHIaXwEzle4uqGMIg6ahsloxpnVNXq25oHeOjuTm3zv6S1WK0c9GfGGQZ+baZdfZ58r1vG58pB7e5uMx3OGvS7rPc17olW+2kfsHGwzOHWK2K3wjPZ8oR6ztnqa39m7go1TJkXOdDRmq7/CPK6J45quVaSp4nC8y+apM6hohauN4aGPfJ6PffyLrzRWf2WB3nv/P7z37wnHz3jvH/De3+u9/z7vfRnOF+H5veH1Z77s5wKNU+GHa2TLpTVNVOFoaIBG97Ddc5jkDfTqlH/0t38QkyR4P6OpBFaooha25oKg2VGu8ngxTylpeOF9gyfQ9o+JiUlzEfWitM8RcOgYmUn50AErpa4t3kn+U2SIQxMHJB/bDlClWEA9O1kPbx3WysrORHHA1R9dmTZANLZhdXVVimqJIHu893zt+T7f8+1vpmDEQ09MeP//fILPPH4Vpzs0LsL7lKqIKEsPSJDr9boI1V8UMAXC6BlPJsxmc6qq4Ou//n6eeuZJYQujsV5TVvZYgD2i+ze1FSp7CKLee9I0AaN45srzNNajVQI+IVEdMFquiQ+6/gJOwukEq2OirMup4Zq0cjz2+x3/HY4jcNpUXAsNPG7t5NqmBI5j69vAUte1yAlHEf1+f0G6KcuKNE3CxCKdpyTd1/Iz/EJ2wzl3rAgpn93606KC2t2EtY6qrAAJTlpDpJU0uLce5TR4wYoPh0M2NzcZ9Fc4rorqnGMymQCifLm1tcXGxgbD4RBQXLt2jeeff55ZnofvC8OVVXa2t9nZubnoppUksdRuWr2msCtOUoE5xkkiv7/15HUJtpH+CSgJ7sdWydbXoc+Cx2jDcLDCbDxhGgqqeZ4v0mcgWjbecazRS9ug5Uh8bzKdopRfPFqOgqz8WYzHdpKvqjJIiB/JWayvr1EUBadPbwZSW5jUQqsJpSCyAI5GFUTAQMXcVBVVBKdsxIW1Da7vXudNG0OevHGNuyPFlDm7AxLapwAAG6xJREFUVUWlweqMz5UjfKfL4/s3WVvf4IWDXb5W99nwjrd0e6hUM9o9YGOjz2hvxHOuywf3rnNPZ51r+R7rUYdL5y5ywxakWcQ9F87gsbzlngvcsZrRSw1Xn7+OHdWk/U2UfuUKNieCGStsVFHMI+T9rLagEogjahXzB595jp/6hd/nH77vw/z8r3+WX/nAx4hjkQawoThobUPtKhrfCCzSHW3JpVt8yEN6g1IG7TUxgThCwBUrj9eiQqlUm5nXIVwDQUlHaWFtdrIM6QvtmOUFRVlKU/AADawbT5GXKC25S2edtEXE080SPBFKxzhnyZJU9DrUEcrEGEOW9NAqZjAYiF52HKG8x6DRXccgv8GPfNsbwc65XhmemHR46KOXeeJLh1RzxVxHVNpzY/sF2n6scRoLQgJpEH1wOAanQkepjNhkfM2b38oL119gXsykSOcanK0xAU0hKz9H7RwmTolihcLS7XSwzvHMl57D+aAFpCUweB2BAxuukbB+RfPfeYXGknQH4BqqRv6OC6vxNthH8YtXZe1q3ntPN+uQJSlJYEK3aZ7jAb8NxCBBpp0oQKRrpQgrXZ20Fk0Wo6SvqQ5BKtYm/E6yq5PahwrFSkOadQTeaCTtIjgbhdYREJElmeiwZDHTyZzRZE5tPTrW6FhyzRrw1lGWNWnSZWW1T57PaZqG2WxGnCZY78iLfJH/N8bQyXqsrZ2i319lPq8YjaZMpwWdpMudZ++k8Y6HP/85UBL06roBrzAG4iSiKOfs7u7S7XYx2osAnNFEXuEbed5Q4w0iLKgUXgssuGmk2CkF/4bhyjpxGrM/2idKjPTtzWckSUykRKRQyIDS4am2NU3tZAJpGg539zAqxjYeZWTSIYrCdTeoIEXubMNkMg7cC5FbaIvIB/sHuLokTmQH7f3RDs97gVc7Y8E65hbQmlyXZD7hZj3nTNbBF5bh5oDt2YS7N8/y4PAs96k+ozpnpGp8rElZ4RP7u9zZX2H/+hXecdcb6eWWaTGh2015s08h8ezsTTl3+gJ7MVypC57wJRvdVVJX8dmDG5TVjAv9hHfcfzc3rz3KX/rOb6ZuZsRdxR0X1oh3Jth5SXP4p5ijf21MAmoUaQhoGO+kCbXCE2nPpXvvprt5J9Fwi3l8ioM8JUsNg5VV6mZOhIic6dBFyXlpX6cUi6bK1jZocwS1U7qdDaSrVEhOvyinj1JB6/qoWTUENqyDMq/QSqEVlLY6tpWU1Um7ZRVJZUOeV3gluPV+t4M2frFd1Vq2p1VI+UigEgRCZBSJMfR7mcDHvCNKYrqqwzaneCGf8RfffoYffcc9vO1Np/n8fs5Hrnp+7Q+v8uQLMefXzrLaH3L58uXFrkMbUU48ODigyHM2T28ifTlzdne3KcuSOEkoq4o8n2MbgRtbC6PDQ4qiCOdrut0uRV4QxYad3X0uf/EpvBbBraoqsa7E+xpHqzLqiUVKEhOIMnLHOayDP/yjTzDLywXprLGWKvAP2vz8oggYrnFLPFuggI7tyFqkjQ+7hLIscc4t3l8UxaKQ22ritKv0fr+H1kpaz4UJzjuHVh5nJdemg46SNlJfuvfeS6LI2tSiMWSbIJ8s59qJ0mhNv99nZWVA1VRYXxNFUhuxoW2kUpo8L8nz6aIo7b1nNpvJKj9JmEwmzGazcG08WhmSJKY/yOj1Unq9hDRVxLFmsDLk7rsuhp2GYzyeMToYM8+nzGazRTtIkZvW+KA9FXjoNK6WicsJnFk5j28s2gXCYFlhrYxZT0OapvRXBovaRF1J0w/hDbRS0OVicmVxfwqHZXv7JgqpD2mtMErOo0A7T2Ji8vmcTqeLMgZrReCsaRq6PWHsdrKO7Kg5Ik/hPMoZsBppDR5TNZoOEVlpiBNHozW/le/R6Rj2duf0oi7PHm7z8P42pfE8oIfEKHxe4ldgnigemeZ8zbmLPHb9Sdww5fr8gDvTHveZAe8aXqCwBY/Ob7CZDciI2MVy6DRzNIk3vGXzLG/tneZDH/qv3LtxDx/5vf/N5plLTMZzdJLzPT/0br5hlvMN5hjD98vYCQn0LbRN5EkVIgymkC2aqz3rQ+kMH4eiofOCVc+6Cd1uim2aRf9SQJQIw+7AGOnr6b3HOpkFj+d7IcgOoGQvJ3uM4JlavN4WiWSlJ7IIBNRBXk4hFFrbz7eNDGyl1WKPWJalNMWuG3q9jCgwfJ2TmymfzxYInaoqyfM5eXFIns9QRtPrdvGNDdh7y+k3PEDvjjeRbb2V9Ow3kaT3sbl6gR/7qz9IqjWj2RyfZeTFmNXhCpcuXeLKlSscHIiGTVGUaK2C0JclijRFkbM6HLCzeyMgRlImk5zRaMR4OmN/NGY0mdI0DVkSszroMR9PObV+iiIv2T0YkSRdQRC1qQEvBBnnhakMUFvp62uMke07Fqcjkizmd/7b7yEa8Wax4j4u59w+b0k0bS6+hUyakJpoz7VjrC24Z1kmPtRtJ7CjidxaG9iZAr1sJ+/D0ehFNQK8BeWwLmjgxxqUcC82t85QVSVZkhDHRoqX3krdOQRAZ0V3qapk0kmSiLLMRUYhMov6Q5pmC4x/nheLnq8LRU9EbRMIeX/ZMXnvSJN08X/H4xnONWRRRpb1qCtLGeSMh+vrJHGHNOngnSJNOsxnRZCAqKWwGsAB0nJSyFQaJbtLpTFKLVjl3nsa31Dkc4oix1Y1ZVlijKHbTamqgjzPyfMca2Xn1V6H42xZExvm8xHKgPONwCSVR+FRTngj89mMluHdSboYE8lCUauARlrB2oqD8aEgjxaSGYYIUS5tSV9eaXra0LOeNEqI4hRvFR8dXWNzuMXBbEKcdTnoGjrEuNQzyHNpTj464P7hHeTe89D0OufXt9g5POCNd93NJ64/ya6uuL73Avf314ldzd7+Ht1un2Edc6OcE3VW6PYjiskBz1YHrJ29wJduXOePn3iMGwdjjIuZ7Yz4+GcextSGO6tXHl9PhEwxBFRkgElFUaiHN430gdQRw4HB0wRd+AitYpyrhATkRT8Er4h0jHVHzEh/TNdC6yMNGGHeHZFu2hteSB1K5HGRPKys0ljggxfmpdVZp9OhrgsJfHESCofCTlUtSlKBR+HDil18ab97kD1AqNxlVR/L79bhWoAtC7pJRrebMJkWzKqCN5y/k7LskcQGnazTjEbM8puoquQH3vlOdBLxyNVnmGxPGXRXqKqKS5cucfX6tTBxyTWI4+QogCHQufX1da5fu4n3sLIyZNDvUzUyCXW6PZqqkBVaXdHJUvb395lMc7nRfEM3pC9sU4ss7HGEhHN0+33qul4E7DQy6CQD53jsiSfIIgnEZVm+CB3Tyjm3EgmtGWNoapnoq7ISKeljAbwtsLZ5/zbnfTyH3o6NJElehPZJ0kzkA7IYhaCVkk4nFORZpAOiKKKsaqI4pqlrmpCGK+uKODRDMZEO5DVJg0RpS9CzpGl38XltwKsCDjwyEf1Bn4ODfQjfI01TEcfrdIlTafaSlzM6nQ5lVaO1aPlkWR/lochzwNLpZMRxFmpAglnXWpNlGd6H4qlzGK2ItKa0DVEgUAWB4BBchWGtjaapvfTFTWKcBec0phuhwy7dmIqmqgBRanVWk6YiPGcRaK5SIrBW1UXYceVknZT9/V02Nk5jreg/JUa0bCKv2ZtOKauKLMsYDAbsH8rEoZXoMGlEPmQUhN5aRrxtLLFSNFR4Laqj1lVopzi/ssLTZcXpNKUxJbN4yKdmNzmjYr5YjrjbDJn6irmveVva5VpRcSXLuHx4lTNRwkgnPLR7nXclp7ixu8f9/XN8miljSk6lKQ9WQz5pDjGuIU1jJkVJow13F45BrHnMjljtnuUNb15lfzwicRm9LKK3tcH2wS7z2XO89/7vhoc/+Yri6wlZ0UsFvRUmkyq+NG/wRqG8g2pCpNuCVmhiHIvcqFaRtAirqgURRtLIbVBvi3LyXu8UeANe1PNs44VspY6U+xZaGIvV3lFBV1JDjTQRTyUge68WmHtZ+bBQznQulDS1prGeoijACUSvrgMhy8FkMgVYELWaxpIkGXhDkkZB896zOhhitOTW//E/+xl++ud+hcL1OTj4EsWa5+Of+hM23vg1rF+8yPqZsxid0utv8OyVK/R6Pcqy5Pz58wE5IiSnTqcbqPuid+KsFAMvXrzI+fMXSJKE8WS0uMZaKbrdPr1eH1TEaDyhauqALff0BxmdNObw8BBt4iOkDFoaX8QxdcvEHQ6xZUViNI3TVMVcVuXNHKOO0DZtID5evzheLD+ei1fHmLMLFFVI+RxfNbaf0RZR22KhMRI0212E0obZbCad0JRoCylHGE8ahZFdm9dEsXSoOrd19tjEKeNMxp4UbZMkIU3SoH7ZVuAdzinq6kiHJwmELqUVO9vbYbIQIa80FbjlfC69T/v9PsYY8jwPabg50+mM+XxOXZbEcUqayKpY2i5atEEmMKXI8zykDisRb4tF7C1N4nAtPGiPjgwmjkLx1eHQqCh0dwsscK0jlItoaodtoJt26fVWGA6HDPoDBoM+3otqZxqnpEmHQX9Irzegkw2Io4S2OXxRhLSakfutbcW5Pz6g2++APpJIIOgyOevo9fo0TcN4Ii0KjTlK50VtCiewZGM8xIYoUmSTKYl37I/36fRS9kY5j8YNj/qae7Mtdn3OvAP9KGYjt3xzf4Mz05q1Toeqo+nXhtFKj/2VHmQDPjHd4SYVd/TWGOdT5rrgwahPYnOmumKjO2B3Pmc9SjmINA7FbH/G9RsjdkclGMVBtcd7f+gvU+7sYqp17vu7f/8VR9gTEuhBaYcNKJh2xSbPhLbv6wm9aE4922c+3ma0+wJ7N17AWjA6xRspCJWhsYhBgfWSXvEKH6rw7b/GhPZoSGG2hYm1N70PGiut6FHLlpX3uLDksnT7HUnXOMlfKu0XhaIWEljXFc57gYMiKz/lfGD5KebzUnD3Xkgjk8kEa+U1yVEH/ZYGlBct+t7KCs5ZmiylG1v2bj7Pmc03sGY2eFdyF6fLGlValFPoecnaEO66cAfW1ouVJUCRF7QrrLpqaBpPkqSgRIveWgmS3W6Hzc1Tgv33XpqeTCaMJ1Mm0ylWK4q6Rkea4WqflU4HrWCeVyL/4JUU2dCYKMZZR5aJaFcxk7RQVRZUTSHt4Zxl+8oX8U0JvFin5jiKqg3Ui9Z5rkVPHY2t49DGdufWQh7b36MNqta6Balq0B9Q5CVxlPCFxx4jzjKR9TURTdmmfHyQ423HkcdJlZZLf+bSYlJxeFwTCSa9LBftEetANCrLWjgSpkuWdkiSmCzL6Ha7ggKqSq5cuUJZit4TAXGys7NDr9cjiRNGoxH7+/usrAzo9wc0TYkyFm0c2lgcFUkKaRYLrNhKW8jKNjgnWWphUEtwj+OEqiqJo9DkJ9SQIm2Eze0sKlIBNWcDAk0YrhpNZDKybMDa2hmSOKPfH9LvrZJlAi4AQxpn0ilKJ9SVx6iYOOpwx7nzZFkf5wVRp7Xhxo2b4bc1+EYxHk/wRlE62fn3V1Ypi0oWjWFHtLe3y43tFyiKXIAY6igNK2NF45QBF+ErmajnRUN/bY3vW99imKZcndWoUykNfbaTjA8XN7nDJdw9avhzg7vg1BqjeszX9SP+vOvjZmCVo286/ObsOg+VO6wMT2MnBXNbM5/O+Qu9c9xZ1Xz3yhb98ZRJXjGPUz7c7DNyKaaK2J5U7NZT1lY7NPOcvKr5mZ/+l+xenrIL/LXv+l5eqZ2Q1I2UeQwRqBqlOngalDJETqMiD9bwo+88RxRljKzGu5i6qPnoEzMuP+OJMELRD6v5tpXcIoWjASSHb/Bha+yFXYcXjY22w5N1QqqSZItICSwmBfCqRilBrWyd3RLEBQ22KXGmAzFSdHS1TDZaPtPjKWtJKTS2YTo9WCAIBkmG9Y6qsXSzHrUtAY+zRlZKLkKZWCqh0YhuLMzaQX8F52p+6Td+izPrm3jVsLUx5AfcN9CNOxA1TKcz0s4aGo/ToRmHj6kaBzqSm9gqolRIX0YJhdzj0BH42qOsxhrNeDYmSTrUrlkgmYyJqMuCLIh1pUlG1VjyYoL3Nag4vC+0+LMxIHIRWiWU3mHSFBWlrPc8ddPDWI2dXaFj3kwVECWSPZPfswwpn6qqoBW+0lHgBliUNmhtFynBliTVsoxb4pg0127z9mnY1nvRE7KGZ750jfd/8P3Mmpw4yuikQRY4jvBEaFWH9pJaxlKk0L5GO0OU9nFKhVSiwihLZBKUh6quiaKWqZ3ivewiG1ehfIwxQiSczudMpjOKOifuJKLrZBNc7TCRw8SGg/GYtbUVlIE0ijncHzMYDFlbO8NkekhZ1cTGkyQdDsdzkkQTxylGRSgUWZThvcVqhfaOxhZHKDEDeE89q0SV0ygia4mVCLQ1laUuRG2ybjx1mtFFM1wfUNVdlCtpyindToL3iuFwjb2DHdK0B8VU5D28oyrnXNg6w+H4kCiO2N3fRRuDjiNq61HK4bRwV8oqp7E1RJbGOapZzaC3gvJQOyn4g6EoS8blGIdFJxqcC1QYHQAaUoszWKzS1IlDa0cSZ0zGEx45OOSuwRqj6oB9NJtpwv5hQRInNN0OZ5sel7efoy4KttbWmZVzmihn1TdcdxZXzak9VEmPT23v8LXr68xnO3zHXZf49NOPcmHzIjen27x7cJr/VcGB3mNexxz4hnNbazz/5POsbm0ymx6ysXYn20+P+dmf+yX+48//MpVJeHoyhWtPv6IIeyICvRRdA/xMiT6LblXwPIvgjTf4Zk4WGbzK6XQgURNcWVPV0SLl4T0oHTDoAW5tg0xrFBnssXaCPuDnWzJUmytnMRm0OX4XUkCyRfdaMNibG6ekYbhSyHZVcrYqFKaUDvrsTYMNPW69FSnVM5unqZ2VG7kssEozK3JOD4eSg3QKZxWEyUio5YosTtk7yLGNx5qaXi9lbWUVLKz2B+zs7/Mv3veLsg0vxvy5b/1Grjz/POfvOEeaxNSFkLhwCmsJWOk26EQ0dSM6OLQwUwli4/EIacAtOxuwGCPFW+l9m4q8cRzhteLw8CAwfkXHX4cVMCq0SGwaksRQ154klo5CzuWhmbinaUrGowOi4Yqs/vWR1Gwb8CMT43z9IgasvH7EKm5X7lLwqxYNSSTNE5Ekgviqa+k65axlPB3z/g/8Njd39nHKE0cRSous9GAwkAmDoPAY+HSChmpz9ZJaO33mHDdvXEVpQxRyw0q3fWml1U1VVWRZh7KQRjQi0uWZTmfM8pw4iUk7MaOx7Aob1zaNkcFtmwZNhNehUYgVVqmJjQicNXVo8m3ppCnWNxR5QSfrBKlpiGOD9aLlnsQZVVVRFxUeR1WWTGdzHBpnFDGOSsOslBTcoNPBOUWaGNJun2Y6kYYrjSNRlqSbYa2AHLZvbqMiT93UJGlCXdbEnS7dTsb+4T4mMhTzOVnWYVJPpVWnEiXKxGiawGafTmdY1ciEqWJp/YjHWylA46UwzUL2wHFskxfu8FBbacUOUXgvSrRutYsznmo+46t7a3xyts+2axisJqyWns+Md0hWznCqN2R4JuOR7Svcl62x3RRcjHtslxOaynJ2Zcj18R6TbsSbvOPBjYs8+txTfP29b+J6WbEyiZhoy8F0yuDcgLmruVFO+Z43P8DHH3mc2WzO+bNDsm6H9Y1TvO/fvI9rl59hOq7pZ51XHmO/jDrBa2JKqQnw+K324yuwDf4/apwn0G4nf28nX+H28vd28hWW/r4Su+C93/xybzoRK3rgce/92261E6/UlFKfXvr76tjt5CvcXv7eTr7C0t8/TTsxxdilLW1pS1vaq2PLQL+0pS1taa9zOymB/t/dage+Qlv6++rZ7eQr3F7+3k6+wtLfPzU7EcXYpS1taUtb2qtnJ2VFv7SlLW1pS3uV7JYHeqXUdyilHldKPaWU+rJNSl4LU0r9qlJqWyn16LFz60qpjyilngz/roXzSin1r4P/n1dK3f8a+3peKfUHSqnLSqkvKKX+zgn3N1NKfUop9bng7z8N5+9WSn0y+PUBpVQSzqfh+VPh9Yuvpb/BB6OU+hOl1O/eBr4+q5R6RCn1sFLq0+HcSR0LQ6XUB5VSX1RKPaaUevAE+3pfuKbtY6yU+vGT6u//ZS/Xgem1egAGeBq4B0iAzwFfdSt9Cn59C3A/8Oixcz8L/EQ4/gngn4fjdwMfRigXbwc++Rr7eha4PxwPgCeArzrB/iqgH45j4JPBj/8EfH84/4vAj4Xjvwn8Yjj+fuADt2A8/D3g14HfDc9Psq/PAhsvOXdSx8J/AP5GOE6A4Un19SV+G+AGcOF28Nd7f8sD/YPAQ8ee/yTwk7fSp2O+XHxJoH8cOBuOzyLYf4BfAt77cu+7RX7/DvDO28FfoAt8FvizCNEkeum4AB4CHgzHUXifeg19vBP4KPAO4HfDjXsifQ1/9+UC/YkbC8Aq8KWXXp+T6OvL+P7twB/dLv5672956uYO4Pljz6+GcyfRznjvXwjHN4Az4fjEfIeQKvg6ZJV8Yv0NqZCHgW3gI8iu7tB737yMTwt/w+sjpEfxa2X/CvgHiLQq4W+fVF9BmP3/XSn1GaXUj4RzJ3Es3A3sAP8+pMV+WSnVO6G+vtS+H/iNcHw7+HvLA/1taV6m6BMFV1JK9YHfAn7cez8+/tpJ89d7b733b0VWyw8Ab7zFLr2sKaXeA2x77z9zq335CuybvPf3A+8C/pZS6luOv3iCxkKEpEf/rff+64AZkvpY2AnydWGhHvNdwG++9LWT6G9rtzrQXwPOH3t+Zzh3Eu2mUuosQPh3O5y/5d9BKRUjQf7XvPf/OZw+sf625r0/BP4ASX8MlVKtJMdxnxb+htdXgb3XyMVvBL5LKfUs8H4kffMLJ9RXALz318K/28BvIxPpSRwLV4Gr3vu2c8YHkcB/En09bu8CPuu9vxmen3R/gVsf6P8YuBRQDAmyJfrQLfbp/2UfAn44HP8wkgtvz/+VUGV/OzA6tpV71U0ppYBfAR7z3v/cbeDvplJqGI47SD3hMSTgtwLbL/W3/R7fC3wsrJxedfPe/6T3/k7v/UVkbH7Me/+DJ9FXAKVUTyk1aI+RXPKjnMCx4L2/ATyvlLovnPo24PJJ9PUl9l6O0jatXyfZX7FbVRw4VqR4N4IUeRr4qVvtT/DpN4AXgBpZefx1JNf6UeBJ4PeB9fBeBbwv+P8I8LbX2NdvQraLnwceDo93n2B/3wL8SfD3UeCfhPP3AJ8CnkK2xWk4n4XnT4XX77lFY+JbOULdnEhfg1+fC48vtPfTCR4LbwU+HcbCfwHWTqqvwYceskNbPXbuxPp7/LFkxi5taUtb2uvcbnXqZmlLW9rSlvYq2zLQL21pS1va69yWgX5pS1va0l7ntgz0S1va0pb2OrdloF/a0pa2tNe5LQP90pa2tKW9zm0Z6Je2tKUt7XVuy0C/tKUtbWmvc/s/mrm+yqug05oAAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "plt.imshow(image)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Show detections" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": { + "ExecuteTime": { + "end_time": "2018-09-20T16:53:39.487896Z", + "start_time": "2018-09-20T16:53:39.440615Z" + } + }, + "outputs": [], + "source": [ + "def draw_boxes_on_image(image, boxes, scores):\n", + " print(image.size)\n", + " image_copy = image.copy()\n", + " draw = ImageDraw.Draw(image_copy, 'RGBA')\n", + " width, height = image.size\n", + "\n", + " for b, s in zip(boxes, scores):\n", + " ymin, xmin, ymax, xmax = b\n", + " fill = (255, 0, 0, 45)\n", + " outline = 'red'\n", + " draw.rectangle(\n", + " [(xmin, ymin), (xmax, ymax)],\n", + " fill=fill, outline=outline\n", + " )\n", + " draw.text((xmin, ymin), text='{:.3f}'.format(s))\n", + " return image_copy" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": { + "ExecuteTime": { + "end_time": "2018-09-20T16:53:40.997471Z", + "start_time": "2018-09-20T16:53:40.164446Z" + } + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "(768, 431)\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAwAAAAGvCAIAAABjNiXLAAEAAElEQVR4nIz9WdAk2ZUeiH3nnOvuEfHvS65VlbUvWApo7I0GiN7YzWljT3eTlHE0GlGmB5nGpAeaXrSYXmSmN5lM0otGxjGjbGw0wyFthkuTbDZ7egHRAAh0YyugCijUloWqrKzc899jc7/nHD3c6x4e8SdIupVlxR/hy/V7z/Kd9dJjX36aqSk5bnD5a1/4K1/+9Be3isH45MGoEvM6enRfZ5LAE5ZQKwI5mRMX7xXyf/17f+/4+o1f++TL/9u/85/EumkaZRFyJiJ3gruRA3B3I7i7qhKzMDfRxABVL4TcubFZgQgPjRlTAw0RQoW6wMlM3RUOhxsMcHc3M3cHGQAzg5M7FGTmABHBzN3cyNxN1Sw6k0gQEJqmNjMRISJzdzhAzCxUOKc/QURoDyJJT2z/JGIyd3IQkZnBnImIyAnmnk4zgjnyNQ64kzkAJjIzIuJ0uZsBIEovYqZmRETe3ic9EIBZJDYi8nwN0mnMQsR5ns0AY2ZmVlVVJaL0pu7u7kRERKZmbO5uBmZhljRISyNkBuX3FZH+bPRGtTJF3j+BSJgZi59BzgDAxERN3VRVpaqDsrx27ckgBYAQgqoaIEGg1r85AJCnL7qZcXfkWaf2oZRGuzLI7q27EXaf0yDd3d1YCEBVVsIMd15+PpAoLy+puyPRt5OZAjA4mG7eunVweFiG0s26Oe8GzMxpjYgIcFVPC2dmaSQxRhHKtN0eTga3RITuTqBEEg440rsTHMIEOFGmyfQ4gPvrwsyWyS1PWqKNdhLyRBFRIqH+9KbL++ende8u6QbM7sScCbe9vBtSmoQV+ukfqjqbzdLj1tfXE2F009gta7d27XwukUeaYGYHCGB3wKljJSJ2J8AdntYd7UyJiLsmIcCEQJR4kxEc6m7ppUS6aWmnFEJE6kZEquq6IAAA4CwczJ0AcTgISI8meEuo7ACpKuAixAQ4d3OV3pqIQJrGRWwEYUh/BpjZXLtFcXd3BQggd/dEXMwAmRlAbuRu7mlaMhnA4Q6DO1xYVKMjL5+RaoR7GhUlGm6fDncDHARmN6W03Gnpid3NBETcv4TJ2N0hCiY1YhMhjvXs7PThg4d3Nnd3Ll16ItYoDASvyY3ycD2J2fQ8YjeI+ahxChiz11AiEhCBoqkKz5qo82ZnsFFxMdVGE9eKgGAeLaqwBC40RrgTkRCLE2BK5jBjIk4yEuRMIHJiEAAndAqiY5ZuMs0sy3zupBOnlXK3JLrQE1xGS7fqCJuZ67pummYwGJRl6e5N0/QZTUSynu3oAcTgR4rEdCYzi7BZNI9EIGJ4j26zkMyCqxOw6Uh/ppt0q+zu5oSWKjoiNNNEvVnyFGTakePSmQTOtNrK6k58dSzfiZHuEM4yO32vSUYjDykxphC7KffkTyjqOhSwpmlK+cM/++MP3rvxn/7u71174nI9OdYmGpUGYiayQFwgWiBobMpBOT05nc8nRIAbOwJYAjvIGO6WxXaSAgDMoioBMca5GXOwqNZEjQy1wtFAIhzRwZQmwdxUzZ1A6g43M7iZOTmh04IAnIgcRAAhCSZi5hDIzMzV3IrAKEnVWBgAM7l7CMHUDA5qmdnZ4U6Lae1PcVIeSai4JwWMVl0Qp3X1/iomCUeZPcEkiVe844NEZglOdeKAe7q3fU2jJFrMiJiWFcAK1yVN01FMC55WIIUHCQ43S1IPAJZu1KPI88f57ztK7f/b6Tlqv07gMbFNO0uUxwwnwJF0/AIT5Pdqh7dgS+IkifozsMT5Pb3eH2F/zMtPScrS2yXtJn95YigPpf1/e1szSkKNmJm7Be1QxRKA7sGy9H1f4tAS/AWBiNm9hS/eaXFKWhz9y5bH3CeDFdhxfhHTVCQl1x8S9Y4VaZWevjS37ubOrTRMiyIiSQx1BLkywhXiYV5o/T499yFFf95aXbK4p7szIZlhyCYN91cyoZq0cothZ4WUT+Cs3TIXMzNRPmFZMiS7C9bjoVU6XH5lw2L2+4RK7TeJAoFHTE47eE+kgQSEmbondpqpu39/JR1ulgxIELf6vMUu3uMpdzh65NRpMjcs0Ft3JGHi7fulGyyBXSZ2QveaSyNE+2CHu6nDTImJOSM9YjIyByll3UZp3c0zBIErjECNEIHgJhQ46XIAECIWuKuygt2ZyBwgMOCu7CBmhpvVACUhbKbMwT1NBczsvEDM1LgiJZYlT7em3XIsKMG8kzn5y3bOVy7s5irdYcWS6T/0PGv3mW5VoLVqNN3akRaW2u9bwYvWzO1x4srdfp6+SEcIoXe+a9RzJLR6/LtvuPoWZliWLWm6u4lKwpaQqTyp0bAvfnR0tHVhd1rXYRBee/f14//6/v/uP/9fXbuwOzvTwbCczuuilGYWHEJEwjZ3K4bh1ls3z05OR8JWN9QYxaaJMYHxJHI0KxhRjSAmYDqbmVkoq3kzpcbh7iTeRICMYcmWNjJ3dhjMnDped0r+CiSDg0Dm5paMJ89mHbH7KoUBYKZkJykMLSREgodEYEqAxs2dnJbxh/vCqu6UJRGoFWHERAYmjhY70iEic2OWjNXMqTWL0xkLaddC3W6dkCTHQqAnOkvogbK0wxL9dVIbPZgMyrBsheKTtjBLFJ9ekN1ASd6Rg7JG6XjvnNo7R3yP4tVuupK8yjiIwFkaEuAGT5YoG6cBd+cvPZGWmK0TJSuiISnLFVWNFv91mrI3b95BhNZyzTftFr2vnzKNJfeAoXtnB+DmHXpYJsK+7OvNWMIlC6jRjm0JprSi3pJ1jqyGEoEhw8oEMt366qpleO/jSHfnc5ZT93RftrdW1rqDI8kP1H7ujzPhW6Z20qg9uqesTPsK/azM2Hli6xa3P6rzwj29I5ETwdySE4W5BxbhfQCCbmBwJyNw8icQOVHGjq6dZEjwy1vnqAMMWOIg9IAm9VBvy/PtxJqj5zhZmW0iQjqD2sVFQmGJfwwtqCVyImFwH1mmRejPL3lPJCbxbOZwcEIT3i6uApTRToYO3W0SGHRzU/fk0O3IJp3RDoES+zK7Ww/vEsFAnl6DlgYHMMGJDMaM5H92N5ATQ4QlsDoiWOHqFh1wiKNQZ8+yQcmJXAk1M4HdEZBd2Q3cYWxcGBNJSO4vN8oiL7Ys4QmoApQdrsk7BnhGt5Q4LINDgFoff58yz0OfPkm3s+0rYGXBFITetOcjSbbkf+3sme6hy+JiQU5mhiQYaIGcutGiZxqZU6LfbixE5CAA1trwCduSo3+3zl29NIYlQZcRXicBOE1/C3r7kqcbvJ8Tof1ZpXPwi4iw/KV5Gv5SBMCSa79F4QSE/8N//j/782//xTe/8wNz0sGwHFR3T07/7//vv/+7v/EbV3Z2xicn+1sbu7sb5YiBhsnhRmyR4wc33zeNVVHEuhaCgOsYuRD3bBQLkRIBTkxggiMIR1NoHFVDE4U5FWIs4tBCCnJhB1F0JXVyiuZJShBg8BQ0ymaPEzkDBiOsgtDFZDGzw82d4cTJU8TJ7dbXbZk+JQfYuhnvr+uq2G1VdJpnb4lm9Rwnz6q1RdqtKu3InSVAdWWll1wAyWMNacVTi4wW+ixJ4XR5jhJmMxrkWJJTaLFCC9USiTAIZC1Vwog6/bp69FXO+e/Tx1Xm716tDReC2R2uxtVCcAMwM+lNYx8X9lWGuRFWwjHUaj6iZeZZrEjvsy9r/WzHJ+5thUsfLhDQKs6MyRjkjoU53Ep2xwKHdQu64qJo3y6TxCPtuXall5ZvWbwskyX6KpCJSIS7OUQPkmJZjnTLhBYspmPl/OXVTt9wS9ot8btzz/0ALKD8Ctk8Umd0n7v3Wpgr7b8rvs++MlhaZQcRCXNHjen26PgnKS8FM7NI4iO3VWQCSrwgrYJfWhEiBog5WHZM9IM7i9X3vtBYXkH37DlmZlCK7XTSZYF387Mz+un0HjOxIIVjAHKSLrbSe2ViS64wS6FaSsM04u6XHqcny8SQwq09ZxuQRCeSjYRsenWjNXQU2F+vjPnM0ut0mjvLv0TTDorJsgA5MxGTewRZWYXhoGq0NngE1AAHg8kc5uJERk6kAmWLAAGcEiaQ3IAgd3ITFyMHex3MGGZG5uSAehpGVu0gY3LTZKoptG/qZuM+LyO0nTPuKZ3+0mP56JwRyNDZ2+BRzoNIEtIlBRUWkIKW0cbKkVV+z0RfcJN6H2qs8GDHKQ503s2WqtsTnHvPcTflZf/iik3FTOZkrYnb/2ll8OeVbD4NvsyzSyc/8sgs1p7qAGdg14oLc0tQJE0HecJ04fJW8T//G3/9V7745a9+8zvffuWV8exMiuGHs+N//Ed/9vmP/8L+2uat9+58/CNPPvbUDphLEFhpEOaIt+7eEmEYtIlCzkKDIkQmB4ESnziAGJsQgpnWMQ6raqJ6eHiwd+GSiKhHbRpOASKL6SUSvGEzIhbpog1IMQAz65B4Zn90iTaLI4VCO72upm4KE8dCLXUcuuB8AhPrgtvPm2W9VSdybTN8WgG3uirm7prO6KRzPxqVpXZP166I9VXKWNXpfc3RgSLvLF0iAi/Zf2hPJZb+MLBgj/z/FcC0OsXn9Nny/MAdXcwYADEzcTRNAZ3+5X0WyjPJSyooawhemRB65OqsQJz+lyvT3teXrZoBEac4OJ0jAM7gMk91cskkOdexXD949MhJ6wbgvnBCdOIy3aw/fjpnUS1eAX0r36n1n6lq+4gl9NAfz3nh8u8g9Z93ZmKi/ml9ULUCdFbG371v/8JuZroDj1rQ/r/dlyuoKMHolRnoz9+yyu+9aUax1lq5ic5ImLM9jJwg1WqjpP6pza96tL20kllIC15OgyEzY2FaBGFTpLsnsUDgToxkxUNE7Hnd00XMLMxLHJS0I1zNjNncPEX3kp4TyS/iYCLLAglo418rq9MzvrrXyeqqU760MFPzDHFKbiIiyn4m6hAhMxmBSJEdLCCQOzFAxoQqSFkV5dxgkd2ikyGlxXkUcmUhB8Op9cm6EkiT984BOIOYiOFKbhQj185ipnm9PZnF+VVoQdZmzJa/zC5/boN8+PnHv4Pxzx99Uk8LmiK+aIHvCnmvcEd3k587GKYuuoiFuFswHRGZG2UHoyxfvcQjiTPOKdtHPLODVP2nYFlltMr+UbDm57zNikBYVWpt/m+nX6zLlm3he0+QZggbhLU0fPSJZ5/+nzz5+N6FP/3OX16/e2e0e+Hm6cOz73/vo48/tU31889fJNoJQkwUTUMojq1+eHQAc41aFIWIzOupCNSNQO7glILsHoIAzvCqKIh8bVjO6uGte3euPfZYINGo7CBPINOZiBgwZyYHSQJSKehO4EzfmUQtuT0IXUiZWqdMykv1Nqad/NggSpEjM0VKfswz2GZIuHubjbsMRLCyePAuBSSHHo1g1M5rumnSTz1u6DI5k/0W3VIAGKoE6t+/lRR+Xnv5oyzgPtV4DiUlRrLscU65aarJtmzHkNwDntMJcvypG29SEtzR7vKcLBNfq/L7hN5lvLq7W+v5IRJma5FfjDEp7HxhClR4d5OF+wcAjJ1BZNky+fkiIBlDy6q6XQXN+aGPdCQQkwgzEUx7iVnEzJ7UGyHFwBbqAaD0spRiWouc1hUtvqLms0lMne7MwLE/YG+ZtiXRPp2kc/Nrqhp4Mf/dAPripE9IK6IwfdkL8hJ6qWP9k1tvPKd8YSwf6RHWvnvnk+uTjbfJQH2yWUlf6x/dIPtLdl7NUA9UJd3qDlVrr0WPOx3kCZSbJoNNKeGHENgNTmBnScESTuciR7sciV1YzLR9O8vK0Q1wphQ3B9yQgHLyEGQJ1eKCxcAJAIMd2s52mkkBWV715LuHtxYTdZQpzCxCLcd1tJ3+TaRlZoV7A3czTcmP6u6ZZlTJYRwAc9NVaNhLNaPWaOwIPy1HkrecnWqU1BEXLK1DkQFzV2YppSAmZqGcNMcwJ/ZoFjUSM4wdLuwFMzOIEYTLwGVki14rGsecqWauQUQcDJx8Qg52ZzREBIJ5JOcSzDlHxxmavDbkTsQkDDVYmlgws5pFNRZxSYkYMG9ZAClTwvL7da6+ljr7BNnjvhUEv6S/3XMybxtN7sJJ0r88scZKsn+fPTu+a6VKXnoRSZTecdb5ohYiIpDB+iZlksA5pN7D7uToZSmAmbWNXSyIrSV0whKSSfzbjYTaBLuVw5M7cBm0dW/d+adXUs7Rjl6J2iiJgyBOnX7hFmCjF1gIt++8uzm8MCrOpuPJFz7xzGd/8eWvvfKj//af/0sP1dTLH7z1489/7Kn9p654kOBCagyKhdy7d+fg+KgoSzRNOagoSIQyMzvMjInNHe5CZO7RlFiEKcbILNtbmz+7+eHW5ubOxma0hlKFjzsjFcIo1LLZRUxuzOROUHVCEYK7RzXLGU9GxODOcgCWpXaORrgTMUtSxmmpsv2drOuFYfaoeGSXJ5gRunXifSFtqXVjdCuUH+pkrQ7LNlcqaTNPi2zu3FJeXyF1a99Rdt+92WWJnoNBoDZY2124IGpaPKhTjW7ZYutS65NA70m6JULsB2s6ljuHRXph11T+k9QAE2XPd3pn7/gnK8veyLuzzHJqc2uUcmLCRyYedtN4XkF2T+n/2jttMc8EzyEx73zUSVLwsspvyYyIieFeiHhbi9ElJPUX7ryG7q9U9+J92ZdtzwSqeBkN56UGEfOjXe5La7FMJ9QX04/Ei/2Z7KRPK+lcZMkNQz3Pc//L3mCsT8n9l+2HybqBPRKhLi9Z/l5V+5G7/Dq5mGWRAtm60qzlNDIzyvSQGYpNU6JXzmZvyUXyInq2EojMTSjlO1HyGregnBIld0CGMikZt9U0BDB7Kq4houQsz4YIUrkNtRPegUV0d03DSughEIuwSIrj5YrO/op3mskTQnFXjapm7BodTjA4JZvPO65Pq+cLA4yRwwgpjpCGrcycguzJ58+cfScAoGashJQBkVwrhTBLG6TLfMjM5sZGJsRwpMo9BjMIwlwEIbdQBhUn9tJEGpOcIOQOFkcwD4CCQcoGDWiAmASvsRjYURvMmBbzw7FphAMHhhlIzF0NDjZiInbELsvNzMy9gPhCfqW81hztZjNui207Tu+kdJ9W+59bmNtxYufAz4KwY5BOknSmXfeg/g37wjmfTJzyM9JTVpMaM00jlwLlI1HKqsOGll/H2yKSzuWMDtqnFyJz85SK5620XpIty+/YY/M8vpU37UtjXzau0o3SsKz3JVHvvXoSqWOQ8PVv/MnF3Wv/07/5dwJtHE9PYqDf+81fnsXZP/rn/6rmAC6/e/3Nl9569re/8pV4cLpWDKJGD8VPr1+/9/D46mMvzCcHt+7eH0/Go7XRZDoOUrgrUQoEAmDyGJitfbZGrUZrG1ub77733qc/+cmqqsi9Uc3pFOQMJpHkHMlT2eZXMMhM4S5gZnZzz4Fqac3xJTSQ9C4Ad81h7Kw/OSXZeXIRtVVZ2T90zrex8rm/VEvPYo4xdjNrZkyg5KNKgrsVSB6jwjkVqJtRu94d7XY6qU/Q5zVB/8vFT49QtEuU116SaCvlNyQKVbB0IK/Tc92DZDm3I91QRFZKzLrPvdQTSkkHZsZE1lrBcDc3Jja0dlXXxmB5nvtTnRzkgJ9/tZUVWfm1u9USeyx+4l5NJlEPN1AXjYIzFgAur3viRiI1Y+L+8nkPDPWlYcu6ixoctIqKlj1bRJRlR6905tyrOVKKGxaGUSeIlpKolv1SPfXWt0rzmBcvvjxdvQlcXfNuNIvBL7PMsrhf8gzROXyzQtv98Z///vwJBGmdhRlMo4uw0OJMZmSyAihlQFNGP6l4jVtd1eMmB7kkx5/lhGtVFeHONo5JKySayaIZIpwoPN01D9gsW2W0YPn+7LUi0DobiplCGpyIEDE5J88lhwQr+vH0/iQje0CFApk7M2JUOCU1FTUSCQmZwkEs5Nb6GpMvHuaAm0sedqrqZ3Rckyo0Wj4DHASh7JUSEZHcZoNbDOTJD+QGYWJSS4magAszF0UIkpoGeFMAREHBSqxJdokDHht2MLN6lDIIuG6iFkJFqZHUicEGjm51qmVXKinMTcmZOcBJASdmSowJdUs5tEl5pJYA7ETCcDJ0Ji5y7epy/VE37X3x0i5HH+ijV9mw4AhvTdO+pOqYpW9trrCnLxvJ+YltSnXHd33m4tYvKin/c4mfHmGKo7Uhzr/pEr1xQnCGjvOW03rymJfZvPcrVlxlK5zer/b1HirCsqTqsr+7M+mc6yj8xl/7ndlpfeHq5ensfqzC2Vmcnhz87b/2H50+OPmXf/at0fa1o+j/r//qH66X67/9pa+c3b0rxBB+42c3o4KcVP3o8ORsPBmubUc3QfsMplAUsVaXAFBONGMxbZywvrX1/R/+8IUXX1qX0txd2KIToMwEczWAwKTmRVG4GyxpC2sd/jnBiEEg6GJ20hoY2hQOy10WeDHfgEO9DU8xUg6RdKuHRx0JFnShsZQN19VEJt2kbqBU0wAgB0qMe8tm1jmvgyO1mmFm1yWaTodZsnHyoNrxc0s5C1dnnz46IqDlF+kUT//P9MBkScGJjE2dpSO4VoQtJ8+uTAtyxtUSw/dZl4jSCW6e0hOotWJhoLxGncgkIsquntZiYA4ps7v3Uu7L8KX/3PNKtw8+zl/YH3j72g5fqWJrg/JdkocDvYj4Chv3p9pX/YJL+r5/VatsFm/XU/erWn/5MLfVM9onLgQWLduI7fSuOtgTLHDPX3aDZ07AqDPmFqK8/yLn12VFJfS99N1Q+/96z1F3nm678XTTe57aAYAWodV2ApNGSJBnYSFwiy6FJBVuEpEQSYolJ8yaysi6DKE2S9TJ3UkN5GLuRpZhD5m3YS+jlDDPAIhZWnia351b/8gySG3dT8lBa8n3xMLCHCQfzCxMoQ17JTBHhHwVliKGHR0aG6upacPIRg25Rw/pFdxbX3qb+eLogn3UxmkydZmbWxpommK0pjiRL9xS6f8gkaXy0sROzEwuTkbkrOzE5M4WBkVZl2WiOncHkwdyEQQ1RgRNtSamMrBrY4FmOrcUvw5CcIox8ICEZmpRyIrCoxXR1+ZSNq6SuzmpJbeONeYOZxEGwxUgJnEzYjADnnxgTkTgtlGPJxPo0fJ2CRMAZs68+Ak9oZHWIKst72TN6j1TwkCfTvpcgF7zoZ7AdyDh2/yhFenodCXg3mW8LzGLkyNHqnoDWxlbX+zngeFRBxn6CSt5lhafF19ikRW6lCDRw1596bE8jatQb2k05/zK4bf/s/+znZ7BYnMUEafEVrHQbP5bv/xL3/vej4/drCh0OPwv/+F//8Slxz9+7cnJ8b3xpD4Yj52LZp4q3+EKYWkddEFdW489LdrM5EXlpollObj78MHd+/f3nnp2MpsZg8jNrHGDe6pld4K6a2xiVGEui1LEm0a9LStIWbHu6EKGK7OQ4EyrzZPPkjuI8Mi5e+T31O8Pln9+xNnu/ZhpAsJLK9EtYXI3umcnVJ/yepopv0L3p3ufQJd0g6dn56fL0rOw8FX2dQkSQu/djpfSRT2/wXJSyMp0dXPSp7k+PywkHSgZfZQzjJNYX2r6Z93lKS9+mTcyWO190+f//nP7R1+drAy7z1StRuxxGq0aRBm8to7JLOg939CXISYAM0vc2znV+oNvr1oa58rcnp/wR77Cz1uXVsCtTsWKAO0f3ZlLU7Fs5OUk1uw+XJ3V/5DR/gf+el5P9IV+928Xajx/IZaoYpU48zKag9MagQjEnrCEtB1EW9GROzgkn4WvsE+rHZhTOKz18bTNYPsv2z29/6eZkVM/fpUkVWe+J4hRFIGZhSUFkig7VlJpQdtVobt/LnjpVhBmIKIQxJgQ3TRVjWXYZEIxqkVNZJOSLLP09i7jG+5uxEnr5zh+Fi/oTmDOQ0rhOUkxu2UJxNRiTYc5C5M5IYgrk7sLhSBVKJgBVXJmA7kwkxamhGhW1L4G35zVcnK6WRVcUiOgGCJzE+TE9Xhy0hBzUYkBk1ioErSpOEJhJI66qYkDSaFuxCQscIcbQVMvrwAnJwNpsmBTxkU2SFt8sOxmaGdg1WikTl70ocSCgtp/e3Kvu22ntjtbrs/OHcH33RsZFRF1KRbLI1kmyJ4S7d2Zkei9Pbev+FbkSe9N0q1SRHh1ZtCH/o+SB0n2LI3t/GgfdeWjWP5Rh+dBJqYNOrksawVwWtrB/OFtCeVAeToZX7u8+YXPvvSnf3mdSy5Gwwdn4//Hf/n3/2//+//T3sbOQXNwcDoOUjECG+/v76xVQ9IkDZlYxCiaRnNiyZo5pXgBTsGArd0dB799/frHnntxXtex5CGEggyGZREC1RphCMJcNLGZz+eu2pg184YlZasg2TqpJ9cyiu5EOSFFzRIycaQS0/4MZjC0UB6rSKUDm6rZA8GcysSckJc3u0HbNfA2rYxbaQpAF515AYCdjY1zxLc1l1rOyfiDzi+nZyjWpuyhR/GUHDkgxSPgYArVLysJX4HSrUZJzjZKDNhPzmjHtpic7kuRRzcbXWR7AMzS93KYGXpJr97GmNCminZPaZ0TRLTEoivLdF7B90fSH9uKvucU52/xAKdGPr0UvSWvac8GcnN2iq0iZO76AGVLsY8p+7o8oYeuamF53pYSgb31hfRKkfP3ILgtVdevzBgRmT2iqWB/+VYubIUpunSf7id3T7a8mRF1rsfVEH7/M7VpNysTvgLXVhaxv3Ar9+wPeAUV+TKwSwTfXd0tdMeelH3JBrdkcVIOHxtziybS1KXK83ZwyPC8y1dlSjJEzB0eAW4TmIgUkcGekzD63EpLssi7lutJP1A2kYDUeZeYgoQs0QiUCsVT01SGUio9ycWSyOCM+qahO6Cx/ZzhPgu1KcCUuhkxcxAYk6a+tanao2XZNDQnN1W0HZLSBCePdcY52etDzCD2lMjMLczy5Mui1hvQFl4lp1WHKgnEIiEEAqsaDKU6AHNoIGNQtN2S1+4dNT96c+P4bEfdvOZhMRhuj530wtbjz16bX96+Xc+n81hZMaByjtmRNUehnhGtT4tRGBCRERqPRGAOphHu7Cpk5CCHxihpGEyW0hpSSzaHgIhzf38Q6TIQT/2RqW0DDXS5p9mgXWYBbpeso/dVcYqeKdW3pjqy78u6JclDXUO4RFhLnJIflJpFpFBeRnfeEkuvyVzCN8vMuCJgLTUkIyyfg453urr69lmLd16wxnLnjiU1kUMKS+K0P5mdHMOjjhQ7IiICu1vQarOuz8qSXSDBTLyBkTSG+qWPPvWNH1yvDXWksL51/dad/+d/8ff+L//Hv9uAD06OpAhao57ppz7+C5f3Lx4c367KIqo3qjk4bm17dcBzV1aQcOrAt3fp4lvvvH3yxdO1rY2GUDmdnpx+8OD2vdt3ju4+qLUpR8ONrZ2tze0L+/sbGxtVVY42ODZRY9TYNHUNVZFALB57Tp2eUd5OXJ5VrIrTbmV6S5VW6ZzZzbwQWEnop0ZO7TolOOTEOSiSzk2FcB3A6i8hg3O/pJ5XvyWLLgzcqSUAi2u9zWc6t8aJCdrYXAfLWuzQuyRNk/Wc5Jqt+dw1bgEL+/S9ADRL3gJa+cl/XgYrEXUhMGLwAq5mqdD565avbZdlQe6PVJDnDz/XFRfLHJLvmaMQnaZM69uf1qRgjIhTPDcLbE4Fj+0+C+1SdcClP5KVeCWWWbfV4kuv0+f8PkTw9m9rd0VJ6HGZJJYyZvpopkt4Ry83ubs5Ze/OYh27waRfV4BRP1a4QpPUI+OVd++f3CeblTP7N0xP78OI/t26z3k856b6EWKRkBNTAIexMKUqwG5U3BmsHQV6y569F2FnZ/e2ZKMNl1PGFonTQZ113LdR3NHz+RNa/007aCdiJhEhJOiTIk5MRIFSdWeKcTClah5A83MX72vZuMgSLCWfCYiInZMYdCKWYCAiY3cYjNU142kwi7u6GdiTO9bb9kWduCIilowdRTjFAJL7p523LKN4MQlk3hXigyg7i50kpaGDSN3JSTPWIiIuHEMKw9Pj2etvrb/34WPEPjl8ODvQkmdhVHDZvE3x7Tf3P/8LVz/2/Hhz7eTewfzB4cZkdnVzQOsbRyJ32WexifM6jAYMio5Uh1cKIcIbJffAsrGxOZ/Xc1WEwMyeOtK1lNQFmO1cqxFqY4550LmLB1rH4UpFS06NJ2In70rP+moend34KB3fP6fPzklGoN8XplcntBAOORXBGMzODjLXVhFZD/8v/AUrD+o+L89DoozOef9oULJy1SOF+cqAgRVZh9zZcDmr8hGqvLVjCHDiYDST0sxPmvqM4RpVWCAA2TNPPv7MtSuv37jdOGq3wdb2N1/74Z/8xbevfez5w4enZOusZk2sRpuxWtNyI1TMTbR5LY7IcIfCHSljDkqIgDtMo9XN3uWLr/z4tQdHRxfC/o/f/unRrbsHDx88nI8H1WB9OBLi2dn4zt37TV03dcPC25tb+3t7Tzz+xO7e7tbW1tpwmGoZoDBTVxNmQe4inZRXrhUTyb64LosDbQJHbuTTKcjWRFk2kTtq63bX6lJy0vxmJ3KWAGRu7ohmzn3TfJk+yL0VSnDuUxKAtk9Tj6zh7uTJ75X6dPXKx9wdTtbJfELbsWLpoR3FsLCrumendE/HtlTegadWG3WOhBVN3KrD3v0p2/zeuiKSFHNzNwe12TCpzj/Peho5tdrGvafOH4kbVpTQyrGiNfFzmOr8lwux0rsF5cVNTVFJOJftEMgoN5RsFZeLu5M7kaqpxZRL1HekteNfPMcTlDZ3NxFaGU8HUNIanZd6acTp5+7XvnzMl6YBIxeeJQxkZk6QdniLBnsQoCtYzbdaKSHxRHbg/ru0I8sCxlIVQG4/AXSsQ4tr8Ai5+agVaf88j8K7a/trzedo9dG3l6ybk68/UJvO4m6wkJyRkDZJorWGF8N1AmBOqXY+F1gkyU9tZgWDNI+AnEFm0OwJATvE4WqOTDkECCG3jw0MkEDSKwShlPiTHm8KSrZ7VqiZgRbr0CEeGLkxieeiaAMsJip2FHBmmqd8JSZYdhUkSgHQIh4y8lQi5KoAp06DTEJELCT5A4PcHCG3fad2bHlIRmSemweS5433vE+6SD0ISCQACeIFc3Y4xNImaZthGO++Q+9cf7Lc3FA9HJ+YzWsQNTVF2pDRwzcffP/N169+5RevfuJjuyFUT+2PP7jz9uuvh9f0wpNPX3z2hdfvPTh8eG/n8avlcDBtVJs6EHMg0TgU2d3a2d/Ztcn07v37x7GeI1Io3cRJCVZ4SUTqlpqbpBJrywlbyE1mAVInIg7cenYXexX0WSnJT3P3nHi1StIrB/fKo1Z4Z4nmz9WGnlcH3UgIyfoltNIk93XIgiXLhmzbL8yeFt/3jNKMVMGUMzd+jnWKJSulN1Dqv/iKFOphu0fdts0F6SZ59TSCd5VihDCY30YZG304Pz7zWcm1NY27hTjTC1tbn/vk8z++/nY53JzM5xN3bK//gz/+6m9JWcSqKqrx2eFgGL72yiuv3b5RsIem/sWXP/Irn/rU5OgwDswLaGzYiVQqCzPxmXhsYlVW65s7TVmcVvKXP3hltxq6+LXLVz73sY9uXNylQRXVK5NAPNV63jTHpycPHzz88NaHNz/88Kc//WltWg0Hl69evfbkk/sXL60PR+vViB31dJr4DjBXoxBEODYxLWTq+ZnSwtF1/kkxO7Sbd4AodwMz72XcEKnHFBUBgzSaQl1YKBBIzdRVIAxBThCRBKM4wD2V6DqzZJBEANxMicDCZq4a0yZl3lpIbspdn73sewCELO1OmO4MmBp73jqOWMBsaoALBQI0e7ypDUHksJ21aRzMgajr/JuMZkul2Ylik47sYm0d5fWdB+kEI3UzOEkQANqYmrEwWND6VUgYbmBvyyhgwCzWRmSaWCjHIqBttvhCEPh5EyG1SktfEME8tq5RR49butQiQspq7ZzDLU+RmZNQcGgqc2ERVZW8/0Z+X0EmFGLhSHFec+4Y6y5kcHYPgQLqqFCSLEqILO86xOa9t8kaltG1hiNyh2rnY+hEEWW4BXhb2Q6kXnZu5m3BfnIlusOJOJoDysJqmvWxqbvDEDikF0xSwJFaTCRJluCoseTYf1fgLSKLPuHu5ErMQgFO7R661LowEnHklecUFU9kZS5MxOIes5g3DXkrPTgIzowQQuhriP66d0ncnWjrnG68XPrknTmTiNnjItqLBC/YKVkfArPARO6UplSSh5eYB/V8HpidIImT3JB7BKccGSOwgGEe3fN2yM5FKFXJLXrecyIYqaWImxKcIaQEBwp1Bnk0FmoITs5CIApmJTAll6IQI4KQpB3qjIibhC1mWpWFEdLenJ2iaZMwFlzgrE6GCHgwD0TRSTPtqonXIfAUTFJQ3QCRWEIRQJbyn7UxNQcYLO5G7u4WgqjDlIoyuDsZswjcmVnJiMBBQKporO3WmBtZZcJzolTokepY2I0AJ49OZl6bqTsIASxRo7uoxxAcoKocVuX6wfs3nmpOi8HO7aOzWNsUZbGxG+vJ0eQo6jQUZRHCh9//8UCdtgdbLz659pnnX3jh2Rv/+pt3v/r9F6flU2I01wuhOLPog1KVAa5Gxc7W6MLa2jAMg+HO6z/aOD7au3z5xux0RtuO0tEExHIejLgWqDBApOTOYDdGYw2InEXMh04Oj1CFCgs7R/OyLJoYCYCpELuaJ8jEKbssC7C+pvfWrYi2OjjDbiK02/x25d9p3c3dVCVLPMpayS01H0JrXKGFMJZ290l9CEDWFhKBBejAurkpwMzSWjXOLK1P1jrRpInq8lY8ywnWLdDlRclyC8gcplljoXUcdJaY9wILfXyTPrC18eMk0Lvdk9qntNwglva8IhBROLz9nhV17afT01mceUHFLM5Y2KJyEz/3qZf/9Fvfe/feQeBC3avhxs2Dw//h9/9gUI7ICCFooIN6+rOfvK5NPTk6+PDOzS985tNSVUx1HWfpTYUpqPssylpR7u08uP/wL//sT969+S5VgcviN37jN9SbEUmcz8b1tI6Ni8SZUTSUwkS7GxsXd/Y++uJL0fRofPbh7Tvvvv+zd9+78b0f/JCYNnd2nnnmuc/+wqcu7+zavPaoripFiGZEXIWiiQZ1Zsp+RXI4w3qbSPdAorp5vzTZASLNmyyBhSnVdDu7q5oCCCyWi2CLTl57Mm3U0NtXK/WIaomvE+kpcC6dzPKkLUnUFblQHwRpG/YQ2m9TyhURWS7VzFZ+W73eRe6sRRCLN8tovvV6deTii7SoVRfL+bS+TPXtBslElLrkJF8uJ2SG1jfWEb+DoJR0bsYqi+aClopsu2nsZbR0I2/nbqnAuz+k5T/PxWWy+sy6MydIYSE78gdOE7HwaoiEBqrTWHLBVWWuMbIzQrQiOoSnItNAUVU82+gEJJGRvTTevZl2xbOgtO+daWpCQzlUbrkOq63DWBh8IIJqJuC2QofhOc3N2rVOnzh3MYa5BXCHykHEIXkfVNJekLBcOJuKuFuc0U4XLXmgndIYqCv0y9uwIGXgdDAlxrxfNAHmYBhSD55MEwRJHuMkUTUZKtI2VulEJJYdPytr2p3TR049ull0DWEWISaGuQkLE2JULovk1RByqIciRLX5fF6GUlUpiLojdWKCRaZ2dl1SMwlOm8i7kHju5GmE1MYwp9hkLMauqQemu7urU+OWcpqFoKkwh9gDGagkYlhsmgFXEsUDm8FqNUI5CCQeY02SSqgWjLDAPZmTE3A0cs7tVcmdDCxORCRQj42plKyNUARbNDN3SYkw5iBNONwc5BYthoJrG7vxaG2tmY8DcyEFcw2CQBgGYjPx7BBGVqaUpQNSCxMCYOQKMCgkJZ2lNMyRGvOQOdyMCQVbnE11rlhjwmhzc9NKeu3hreN5HYoo21ujC1cKXgslHR/f9Yena1OsjfXwlbd5Ozz48O7+xycXP/6pj/2t3zvY/NorX//DWuyFr3zp0v7awXg6Hs92r14dbG9bGDAVQixm9f1bPJk+fe2pe+Y7lR/CJiXImYxrRqRooWEIIxAQwNEtmpETlAKcHREENzRODIVHtRCC5yZSDGaLuS8redrvEpZ2UGvp+XyOP5bIvP0fk9Cih0Lv3CR4VhP+WkZgdyeR1Oio2+Ov5eie2Zk9zOkSaqFJSsZd+ArQaR9qV7L19HQu6oXUWtqeL9+g/6YtuFndTqfP8gt9ykKAWWxBUqff+29tqtbvcBsOHz6c6FmNs9Ijok9n80bViGA+OT3Z2b/8V3/5l/7+P/pnXAwDYHUMRbh5/87GYKMsB2f1pGGEQSUTKQdrUuKd+7d//8/+5G/92q9jPC8QlIngUc2iDdfXT6bjP/jjf/LGT998+ekXnnny2nv3bzOsqMrJ8Tg2TSFcFoXC56qBpagKJVdTbbSpY4K0o6L6yPMvvPTii/OmuXPvwU/f+Okrr//4a9/6+g9/8urHP/LRL33+czubm5hzUzdCzGCNGhTE5ObqSCVXKfZkrbmaZiJpWlCKcKTZN0+74bW5HJaCuIzU+DljF6YEkM552pJznLhj+hyYU06eJyLARVg1dV+FtzmMBE7+c2/rodw9hf2RRYclZ4mrIWWhUJd5Zu2mxa0N7FnfL1RClo8tMOrwS7beWxX87wEWPXdrdgy1CCkATm4p5t3idKD1K6TeH5JLrdVSS4C0x2sLAZeessIVeTC8lOFLPZvpnDokIlrltYVuTKGc7H5rcyyIkxOjLSN3eGPqToNyoDE2rlwWIDeNlXPReAM2kmkQGAVLSQ6ZhftGjHnqOBUtbVNCeeXUzAHV2A4rZ3q55x2H+gAoAYj0+qqp81aBnrc5ObqitjZiuqeSEeBmBE0GQISTBwJ4AZyIONdLSrfhAwBy7ZA7MQNpS+220XB//hNkXShg99Q2kZIRStR2wwOQoiru7kJEDGJPxNyXv51GP49+3FczwR9JtETseYe7BQeIECHGRouqYOEYQeSBGG5exzKEWdNoKChwjE3uiZcDoe7w5I81WONIZgi5uLubmruZS86lc3Z1ajch4tyfLLhnvheKpgIXT2gDEI9ECt9kDmbGXml0ttoKFqlI5hq9blJgmZy6eHH/33aCkMQYkrMu7+CjDo2eenAg7SuqWjXRh+wQOMw0Rve0eZiDnVOvRJhChmsTbaphBbOagSIV+zaUHP4UiMgc7iVQtLgP8Bz/zg6FlKtA7Xbu7kSWrC8mNUuZSinl180cHEVNZg01KEe8vb49373wk3p+5ZOffezipbJs5iKycXF761mpZHR2R9+7P3ntXX//xuzgw2qC6c2zB/ft7MbDjY88/9ivfeaj1dlrX//a63/xtXJzdOFjn96k8Z3XX7cqPPbEi9X2ZRuu0fz06MYHs+PTix/52OXtvcuz2Q9v3PjQ5wUVZjwvYGIiDdVmjZGHAGZz8dQh3TgaMc2Z2V2UQa5EZrBGXTXzpJN6TG0RqGtVnsXwsrTqXCVttNN9kV2aVrk7JxF9uhP3kvDQJmL3OYvb3OwVEsI5QZrumiO8HapZGqd3/3YZlDm/IbM+uj3OsjV+HgKdE/Xui8/nmLqPvRxYdJ3t5E+XPpC/TrZae/9wcng487GH2okwV4qI5vWsDoUE5vr0+Iuf/sSffP3f3ng4dafAMrG4vrPDDTmTE+YWJ1obnITmgSMV/82/+BcvXHvyE888PZmcErHHqOrh4s533/zpP/rv//Hjexf+zm//zZdffvmPf/r9gunewYPpdEKGqqxgsW4aSz4WYvWUdE8iwdo803pWq5qaRffHL1564urVL37u8z95861vfu8vvvndb79+4+2XP/GJX/joxy9vbunZ3Od1KQWEa1XAAudmKd5WfdiiSXK7GEBSN+4OUOJ4bjOFk38cAGefPzsQ0zbgRO4xkVzrl5dF5XaqbUpUaWibs3sXeOo0R7dUyb3UAyuApwIvd3dysBilwrbka0SCSQTyFBjyHMXjVKZm3VNAuT8kFm9NrSOoR09gorbze0eRLW21lJ6/cYDQR9ad0u0TtGnq3pr1kFl2RUjyq3dK7hyVnxcHaTT9aog+GOqOdgL7X1qbgajZlElVCbS4JK0sGbpcYCJy8gAuwWSoLc5jPYCXxBHUBLLSIztmNBhD1TS1U8ppHakGMHTemYRFzWOHPNE6ctoUjYV4ctOcONmFt0GLXBNAG6UUO8I5l5i7Jac1IZVvWBI+ICKYQ80Balv1gYAgnJuM5ky0fJXzIv0TAJwTTXcF0mnj1Rbs9sEoALQ55ULMpmqmZVm064gWLKbpYCZunRbZ4X+eQX7esSwT0dMp/f28zLPPz92MGSR+Nj0dFIPTk9N7H97ZWd90s+Ha2vrO9nwyBaOUwLlOxwEnpbTLfPa9miX/LmXHv5shWS8OTeutaXOVlM1rWjjIwE4NwZjIwcyFJ5RGSk6BRcLDk6OD9957an2bL+zqzoabQdkYzFxrMwjOLDGVX2SO69l1WFBN2lvdHA6LgCCN18zFzOrGlUsMNmus1WbGpG6RNcLN0dSNWurqYOoJjhSNO9VuFqvCuZ6tl7Q5Kobi5I0hl+BJytoBuuRv72nZ1ibpSlgSmAO5gcxN02ZB6iZmCtQhnE3mlZUhFJFHU16jx58rP/PF3c/9quzsnk7ujafzwfre6XBnMjlqBrz/mY/tvPDig+9858F35nz4cDhVevsDO3p4+/obs09+9NlP/+LnHnv+je9+99abN9c3Lof19YvV2tnNDw7f+pk3dWzmXJbTZr6xtQF4KeHNH/xo7r559eK0Vkutf4QAbgIDoWrYicxp0MCdTpkgVHjOMNfU8swhBWXXH7HGSI7MNd75SIQIoOz1WUEYjyT+zNS2ZBt0n3yZGB55q9QrT0T6TXc6+2rBVoRUGtKZtcvs1h0J4uS0p7zQtMTIS9S5cDItRRg62+n8gzo50P3a3qRvMj3irYlyJ9LutPCHf/gvLSjEKNaXdnY/8txHuQokPJ/PiyI00+nW+savf+kX/z//6J9vbO6aWQihianSjdSsHFZwD4VAWBlSjabT+StvvvWxa88El2mMHELYHP6zP//Tb33r27/6S1/+1U99fihhNj4TAkwfHj2EUFlJM62FnIjKImjaBEzboH6uOTcmDKqBaiTmAJ6cjgEfltUXP/GpZ59+6rs/ffXbP/rBn331q2+/884vfvqzH3ny2e3B2tnx2UDKgqmOlqLQ5m3HJ8o9MlOSiBGSFaxJVnvWhISUogG0jWqYKXUvToTQFTy3yniF5KgDyp2GTkrXPJqZmxNLSi07T/HLq55vn3xE6UnqBuIUKmOGO/cTabsC8mwMtNlhSCWPLW54ZGyLFjpxQY6PPNydF7voLc7PT29VL4AQQjcn6f/mSmTESB61NFdMjxhPN6pWB7v1dqV4JHuc/763OksO1XYF+xZV8s93oR8ngEk8qnscrFWq7HV0J2M4uaurEBVBVCxGl9yrs3O8qSoWu9TBPXn4U44a92plQzJ502y07XhzqVfXc7ZpGrTM317oKemsv14skjRzuhzuoAwsUucCdSNCSN5jNzKvGUyS7sIUkveUmJgLFs5AOfX8BJGnHsRpB4ZWurXOtq5Yyd1hJhKcMCirup5PppMQhCm0WVwgohTx64TaI5Od/x0YqAe5ss3Q8loaVd5gp7Vf2wY5MAXqppGidOK/+PZ3vvnVr13ZvTifTtc2N3/nb/6NS09cRRAwpVzd9m5I7hvzpK45w3ZVSlEBcrfkXgnItd8GcnIzdgDqROTs7EwqDDcCk0sgB5OS+TTOJmfX333r/Z+8tv/pz37zh6888/lPPfHEcwWJ1pEG2XmVwcbyzPQnDZ1acPLUnTe1enZ3eNRYoCiqtQcPJ3/6jW8fz1ipaNSjaoym0aKlxvXeUqUDqJVFhmbzQcVxejgq4mc/8exHnrlSciR3ip7itrkCuEPB7UIvTB0iwKMpg5OF6ARJAbDW9ZMBJdBonMynAZWIoCjHTTMdrW+//KnDwZo5HUyt5M0qbD6cn8ybs6osj5nONqviy1947Mrew699I9w6aM7OHh6cYk73v/kXpwfTlz//pU/9xu/gwd1bb77+we2bldFeGMSzw4MP3sN8tnHh4qxg2tlZ/+73bhwcH03ri5/9TD0YDDaG7mwI7kqYqwiRiLoC6lZFBlOQ9D6I3vbEU/K0/3ygeT0juBVNnM1JmNQ6p4y7gcFL7t6ldOme1PLz/pPW5/FIzANgqXakf+f+opyvPM8Xg5D3tW1t/FVw1fLpo9ztvnxkVjw30keO//w3Pw8Lrnxm4jbDt526NpExvXJ47913jI0CaV0XTwue56ZpNDgTx3nDRM3Z8Rc+9bE//vYPPrj/0N2L4TCqzj0CYmpFIJ3PqzJEmM1rbTgU1atvvTX58q9WHIxRl/xP/+U/e/P99/8Xf/s/++wTz80ns9lsUqyVBdFwUE2P56eTs61QFUUBV3PS6BFRPNd0qiuTdLvYs+fKKhIeFIWameq0Ptsfrv+1z3352cuPf+O7f/HG++/+y3v/+vXnn/vFz3z2mYuPz8d1mMUgUqum7i4GcqT0BU6VU+YZBXsKo7onWJSa52SxSzkhXmFCAoJigXAz+aSAiWd4YtYViGXVviS+jT2rpET6S6Xj/RBsbiiQjLzsNrJopg5jArnC1Z1TqD4qUcg1q55akElLAdkag4M5uGtL4m2HpB5DMRPA1u7VtUyCC5DX8WRyU3PbhiRneLQUl4KOahkpEhlgqnA3VRfxHAxyJloKY/daaCziIJmNe1km/Q/dwFYK0XMr0taB1dOyOcel90buDhYyQ9v+GAq4GgUGcO/BnZM42x5uitLEG5hL1LA2smANYxaVO6WT04tTAmPXwMPdzWFpr+ZaG3NzdZGgce6eU4/zUD2ilUQd8ZhZ1wwj7UaiWoMaAqec6KTeTJOfpk04Nifm6OZmIqmFG4goxpgSbig5CsmRm+t5CLnIS1I6JUu6EMmRKpxkYmpM3F8LalPfiCilkRRFqWrb29uz2WwymTgo2TbmaT8qExJmmHlyhnWlLn1ZvKJNV47u0b68v1jHgO45LtxuKOdCTMy1qUV7/4P3X/3JGw/uH00eTOJstrO3d//Og/WtHS14LqlAngm5dpKzjw8GBzEXaZNPreuYai+QW0sxADfyXKIuEdogCjNBCKxMFsSBCIqQQBBC09R+dvb6N779nW9/+2xy9uMfvD72Onz7u//rv/t3X3zuBYsNO5kBJAyGGWW2Wqix1ZlxdkcSdd6aZZr6SClqtdOpvvv+faxfK4a7TXRzImYrYGZSCqXtQYgBYxL2ilGUpZNOyv3Zlz/30lpxOju9tbFVirt7k52UP3+leimYYLimIjoyypuTmxrallgOApv7fMr1VIrgNgulNc3pw9OD9aog9zhvGGFIZVHHcT1hpq2NSx61keJ0Y+OpJ67uVMN3/+B/fOmXPr+5t31481175437//abb926u/fyp6bHD2+89oOL1aBWu9loSeVo5/Ht9UFNHqdn9f2Dt3//9ye17n7hi0XA4enxiR7Z3AOGXFOczKY+rqmZ2mxcz2NKkZ/Fam4GH3s8QpzDiZnnCIbC4WSqzXPPPfPcM0/VPvNGBV3qc/e/RYpq+tCajj1cAmhnAbZ9pM7xQ5b2fanobqnIoE8waoqWYb0NlnXctyxFk9sm7d/SZVJ2v3UjWlgj6VnJe4JuWzpicGsyGYCuNmWJdLs7nP+zLwq6b5LC7A8jhV0d0bOXgVsjBgDCxvpoFuvGdViOqmrkDjWN7oHZ1YUpzqbrW6Mvf/4z/+D3/0W5MZzNJ1U5YBKKzIG4btbW14synIyPhxy4HArHGzduvXvvznPPXJu7/eN/8A89+v/mP/1fXtrZffjgcFAURA7ytWG5uTa6dfvh/YOHl649e3ZynGpxkzsiiUYjENhzE1YmuKqltuSxiUiNL8iJZTKbiONjjz99eWPn1Xfe+Parr7zxymt3P7j1pV/8pc987JMQns+aajCYTqYSCgfqupFQwKluIoeQ8QWRuhGRkKg1RSiaeu7wQoQobwEDpEKsFFairoUDkOrJklDUjhoyqfYgcIdsPKeUSbdVWUeRK3I/02jeaDphbzaCwZVJLboEJ1c1UhcSjamyllNGq1mT/E9JtWeJrEoEIlY1U0s7Sif11zIKkDeT9+512s01cwJTCikSSdPU+X3dcql18ttpyx4EIopNpNR+jSz1QZxMxgkMtdRsqiYkfYrv/l1lbiymqM8e3SX9a9s7pGBR7iXeXp5gag73AOggY5dbkiizcZfAMNy/dePOhzer3ce2ZLS1NZoWmLPW86Yq12ky8+m8GWRvUxfQiznbsdPEJswP7t1XjZcuXSaSxqOrErOqlmWRygMJ7O6qmhwtnivVFykvzMQszNTEKMxFUalqUYSmbkIRWDg3uwcFkSZGDtJGhdLmS7ktU1GEJDhCCMysZiJBUoULSQjSgqScH5V2fGcu2mFwbxGWnDfMXIjM53VRDlRT7b27gTkww0yTkwgibNyChs7GXW2etNIxa+VDJw0T+fKiIRBRG+Al8k6Iull0uHhj9sEHt//gD/7Vnfdvj9Z25kenBVX1VIPKP/uH/+S1997RzY0IZ+FEeAwOBAGxBBYpy3KwPhoNB6I+mUzqet7UWje1G1L7nq7hlpmjIAscTVMTIgdHVQkFAAFKZom1RNs6m+7Omw2UDyY+K6iRcnr3+Gtf+/r2xvpj+xfmGrkMrpKs3E50rIDFdkaS0zEROSz13UuZVmZqzi6KsLF9dbD3/P0Tm2njjro2M1ciOBWFRI2cDBTVjYGQN8NqeDqevviJZ7/8pc//5Tf/FZO6TR3zVEdrHtyk3Y1xuSRtoeqIuIvvphRASSInWhYRSY7BsQYSp1K9jg2aydnkFG5cDuCxmdRFVYkUdbTNzX1hHoUyxumwGoVRNXXFM4+Xf+XT9PQLm/tX5eEL4eqVw+9979bd+we3/jCEgmBjxnC0VsVTnI15NDoZU21ahlCPp+xxc23QPLg/fv3tkyDN/u6lJ585fjC5f/2Dw5/deufwvQfxYVHQsBwcPDw6mcwGc38sbMyhdybHD+fjWSkzooLLpo6Uljzw3xj99vPPPm1ADskk+egJEXTNEJYAfYdFOkjRX+WOL87/yq24SB7Zbi/vR8Ll9NMK/9piW+gF1ECLI/pXJ7lsbqn7R/I69x+UPqeyDPeUmdoTHP3BtC2oLdnN3EnCfPTzH0R4QeE9HGapS0kqxCQnohyIzgWvCExOwt6YqrsaNFIgEDQaO7sCZD6fP3/tic2NYcOohJtYExfq0Zq4Vq5//KWPjudnP37t/loxqCMYMlG7/uDeky8+9d/8/f/2YjH8vd/9j8utreODo+GgaFS5YADDcjAcDKP77fv3Xn7yWSJ2kKPb8SFPmRHcVLv+oL2tuT3b0aZkoQysPh6PNwajX/z4pz7y3It/+cNXfvj6T776R3/ywfvv/+Zv/OZgVJ2N56O19SbqyemZhDAeT5I15FRrEzV1LTSLFjXG2MTRaLC9sTmoimSCLFCnI/dAhyPtz7oigikLXFgSfEsujT5ht/fkFLRaJtzsmchECScRh1nbcsuJSRBVa7ObN9831Z2t7YqLYVWRuYh1yfAJeid3srm1tJ3zRdq64lQYt+iXRgCyCbdwmSbmYQaToLXQCOzWb03RxfIyOWaVQ8wc3IwsZYiqqTMXKfzSNEbEIbCIrCRBr0ToFlN9Tv/1ISMv28TLVywdRJSiCNyuDTOnPX0X8S8iM5MQzBqJ9WNbG4OjIR48ODxtfH0Q9tdH++teUglbH1ZOpmXCiES9cB7Bu0a97lYUoRBSs62tbVU306Io3FGWZdM0PfJAjJGZ0yJS6u7BrFGpbYqT7L8Qgqqmf6NGOEKQFq1CzQKn8tTc/HrRHdwRY83CZVnGGEFUMas2zFIUZYzq7oPBADlRydwjdQ3FkJY2F8NTzy3XSbPZfM7EcI1RB4PhYDB0BwwQSSyeyoPa5V7VlN0ydRIZPUHZ06bof2gPX768E68AwCJC3KhZg8l4fno8HQzWK4SSB3E8nUxmX/2Tf3Pr9u0p4lR5pgYmTqwUY0g1VICrRVcuQlEWFiOBUuNgN1B22+YgVWYiV2MzYiO4EYPIJcbIDBYu3AduowbF6XQ3hAbe0KDc2Lny+FVw/dOfvLG3Pvrd3/4tr4qoIhYCs1mz8Nz233zh1Uxqhtxdkbv2uRvAqg0ZkxRNrfMGk6Pxzz44io05ybyO87qOZsJFUQbTWIhUVeVaTwbHBUWh7dPTIxHcvf/gtR//6DMvX4s+AxkTLGFrc6MlwHoOs6bmOda6O0MSPQRXjWqpV4Mj1RXWGJZDVZrOJtPJ8UDWeVRZ3YTKN0ZhXrCDq/V1kjK4s2A03IQwRa59Vq8Vw4+/eDjYIqLq4tUy8MXNzfqnP+F335O5afT747gex+tmZLE+G/sAYJqMZ9OzyVxnu1s7T1954sOz2QtXLj7x5S+Pnn761Vd+Uj6YPBXD2fjO3TtHzz735OXNvR9dvzsqii98+tMfvXzt7uz0xr1br//gR7fHJ0eDMK1jFcJcGxeoaVkMAE6GTWJAN7cucESrVL1S3tVHMH1VsnLktL82F6c1Ax5xMrVpSCuU0yEn74JW/77DAbTsnDw/tNw6tVv9hYev914Lad+xatth39oNnfrntx8ePRgiSrIxzYOZZVHTTkKI5oFLDcFjneKtZuac4rfu5q5AXV/a2Xxsb/ftOzdHow2JdNro2mh9dn8M0c9/+tMf3L/1ox/+oCo5RszEx0N+9a03PnzjjWvF5t/+m7/nwg/HJ0UhRICgVhVPm+IJV+W7H3zgn/sSiI1SH6leYzTKVr71wx/JLkzOLiI2ghkKadinYpUYG6+Fwe9+5dc/88JHX/npT/7tj773/7354d/63b+1v7n33VdfOzk5HY/Hqm6q87ph4vFkRkBRlXUTNTbpSU0921xb/7Vf/uWqrEybtH1i2raTF3g2ESKDjLjP2C2fL5UNpxV184Qecp821QwOksJAGyljFrN+pxNzeIu6cktBdcyb5vDs7CdvvnF2cvbMtaeee+rZgDoQw+FsTOwMN6vncQnII0edE0mxcGxajmLytl8NS6qLTl2RckWjm0fyvGlkGzWzqMIhs1ZqKSvcVr/mf2Hm5jlH25Ucwjg9Pjo9Otrbu8AhuKdHtQURPVizhC97xN3/3ClItJiJ835MvOClHFVKqc1p76Sfd2dqkVwbLBN2Q+myJsWHt29f2d549rMfvX37wa0b749v3ZzdmA0vXqLHHh9cWae4XlqGPssj74RMBpp729sA5vO6CGUTGyaOMXeukoRsQgAwb2aBGJwrv9JrSgsUkKwuRvRosNTesxpUUaO5M3sTG2Fh4XlsPKVjmzFRW3voQlyUg7qp6yYGKZpYxxgpBAfFeVOWpZmpuTYNCwdhFukSsBJ39mg14eAuswcJqxNTtBhjLIvSUkaoGRmxg5KJkCrDiXtOstQd0tpeTksGcV+VnpehHQJrVzRlvmfCdgBtSpyqEdhUm1lTFaO51kDhUU4mR7sbG3c+vPvklataVW8+PNhYG0R4JLAII5BqcArEgEdrnIhEjMEsxBSEiMVMmSRHMlsAxKbiaszp7YNLIGkFdD1iubq5zYfj568Mytn4e6/+wPYvXr345Gh3/97pHeFqwAWioirgKKho5nMuvTXGVtVknz/MXEnVLYLZjBycux2aalS4k7DwcFDMuG5irCoJ1XA+rc2MPBaMQcWb66V72Nos3Gc1zSJFKiXCGycjMYSIxMUSZEDeCLQbSSKG86ld7TLl9TI3xqKo0FPHCLBykEHhFgrWo8OHmyNjkmY8qdSHu7tzsqnNB4PNwhlsE9QDG4gVtTU1mvG8KcJaWa6BSNTCaM2evxYHhN2L49ff84eHG9L4dNw43AtW3pgKFXYWVbUIm5trjz29fuHS/PrbT3/h41efffL3v/7N73z7Lx7T6jGSZ4ZlHG1tUdho7PHh+u6zz77wkZcuPH61qU+GZxd2ZvZn3/7WNGoNUvOCSzMXkaIokakcmU67aiVaOLc7C6Mv8XzZ69O3B7ozeWHrkbW3WuKIZXHn7iuiCl3DofYwy1UQLdefv9Win2p22Jh1crZ/dndaR6/LTO2pUjv/hIVPq5uB/p/9G6+QVh91IT+zvz+Mh7ZbKTEFTo4Aj+rMLgwGOdybeTNa3/joM8++cf1tL0dltcb11KNvbmytl6ODw+Pj03E5HKrwjKIx7W5uv/7aT/7WF7/0n/y132pifTo9C2VgoahN2nlGXZlFKBSj0fu3bk9ncwpBYx3QNgN2gJLXOHlJyZAzjtN31vVYJZBT00QXCkUw4thEBo7G4/39i7/xq5eff+nFr//Ft/74X/3rrZ39u3fvbWxsrK9vVoPq4Z07a6P19Y3Nze2djY31wXB4cHDQxHj56tXNjY3rb7/97ltvz+tmPRFNW4CTVDgxIzcyIRY2d1PnrofvovBuGaumXjs58Vq70OyKVz/b68vJNwyObjnnJxUxGaKagR88OBiPJ4eHx7fl7sXtC7GQ0aAMEkA5OwRkqf6Fkn5CslodbREUzM00uzvASK1gcgNzgxt11gaLs6X6XiKAOHlrQrs7Y3pvEUlVAESC1FyWCKlhLYuIGHIJvEND4BDCfN4sKpSXfaE/DwCtHJ310MdAlKLybdDn/JEfR494SvtnuzQOCJuaE6SUcq2M26Fcv/jyc5en9+7efu+du3cfvPWjO7j23ObuJZl1+KBzFKeQi3XtwohY3QGoG5mCOJpKIfN5zUxNrIuqqpvaYQA065VEPJbKmHIxWy46F3cvy4GqEtN0NpcgbrntgppHjSxCyQtCWVYkqArL9KbmgBmIiwoAnEMR6jrGGIfDAYcS0EZjIEnokPKGLlk+pjKRRSN/ODE5XITTrsnjyeRn7/3MDDF21f4gJ24b4PbXpNN/3QS2idcL87dPIR3Eb3+Fd62/0mCIuq78aXc/EITEHVA7OTqdjKcSKgVH5mpz/fT4dDOUx7fvz0VCVTV1VFhMwNOjRxVDIBZha8t7VdPGfxYDFQXgrh4p9wAiaksyo3s9r50QpFRHHZsQhMjJnJpaz8abIgp/7+ABFRWFUjbWpazY2MzHp5Ob731w5dknuZLG5yJJcwBYeE4zikz0R0QpvzJPphp5KuK15PcG0G7vEkh314jWR41qKAYSqul0FutGCmZQIdhYX2fyci3UtbBboTNvmvHRsTcanMRBZjCy/Fgsqvvape2LuwTds1ol9tzHwc1NY4wxOuCMXOMqPI3N7tbOdiivv/bOwdHdvfU9O52fHd3W2U4cjYzkrJls7j5OxDqfzlAAxVydOejMiapozIJ5qkcoR3Lthc3LL8w3L9765rfC4f0RDaJGkCnVY4sDDKpydKa289i17Sce56rk6WT8ox+fPvH09//4qz9+5Xubz710woPd7bWnm0ukvkvl4drm53/1K6cW33jvZ8PHdxHk8WeeHL3yCk9P10fr42hWhsYiE1dlRZS6tKEHS7Jdba7t5+x77ld3L8gewLL66O7Sl2bLSc22Ut7VXUPt/dszW1utgxoEJk4dQpcv9m60/UFmY3t5eH1iWB1C5zaG98/sAFD/RfqAqT/alRsSUSo0zuqLV1slBePUd0yEXc3cjFJ34NS11dyETY1m8ZPPv/inf/71k9PxgKpAxXQ8GxSDSdT/7n/4pwjworTANmDWiMlsFMoXX3qRqjAdn8mwYOEmxsabQgo4KTAabRRlqcIPH5yMx5Ptrc26maOrboLDkfo352bq7m65+qo/m05OqY2gkzWaGujUgZhkPBvD7ML2zt/53b91/c6dv3j1tdH62suf/GRdx9PTkwuXLxdByqJqYjOenE2mZxpNivLew4O79x/U89qZ6xjVjXMpENjzNhfEGVZz2i/aSFV54WprPSgA5d0MDV3ibRYK6sbMKW+059/q0VAXDgNS559kJhg5VK2JOo31h/fuvv/+ByfHp8NyUEj44Gc3nri6v7W2J4EJzuwGJW5NYhgLCcHciqLdAsCNGGWiLfO2EVHyYIGpaDOaO8aTnB3ebqMBkFve/zm1okmt+1r6bJubZfjlBs2bRhKm0/FkOt7W6G4hlEkNdwRNrX3zyKM/Vz0TJx+WO9OkjsnpjRZhcso+nuUbtqgaKcyX+a29rbtBotgcmPh8A+WxTh+4ThWDverS3vOXx0/y6zfuuFFsegVlneQCkPyqyLmzRPM6SggSCjUPQTR6Y5ELNrMwKBttAC+rqq7rhLNTzWHyShNAIu6eU3KJg4gaolop5WhtfTqdDgZDTS1pzKaT6cbGoKlnqQlD6j2XMIHBLMaiLOdNTYKiHJycjPf29qeT2cGDw729/asXrty+c3tnZ8uhpyfHRlYIkSOapoAa2ix+Zm4zwwiEBIYsppKCwICEIKGcTCZJIrmrE6XJjhYptxAE5c2tstjydu9YOKWe6l06QkI53cr2aCNJzNYWcW1rTsjcOFlaqfm3elPXhw8fzufzUbVGHCw2NChpIsOqFFWbziVVNBcSYbU2IB5UJcxjjBFqBDjERdKu8rnawjQqt7Ant6gAKRuERIIr1FRhKFjRVMzDEHgyuXPz/VgM7jbNncOHz7zw0iGzFhJjPaJw6+j0+s9uPHFxf7SxfuHqFSqCYZFwjdYNYH190JKvWRKp8FwJQ2YKNyInj2aNmvrslObjargGbcgbinPUU1ErOAiRzeuIGZPHpjSCNc305MxrpehDDmIuiAQlgxuEG4Vaa+S3jcLziFrvAicY6qmJEjFSRnDKi8xNOAhIyVM6Ggw2N0Zyekjjw+GgCA3TZFxV4LMJz9cGRRXHR6eqo+GwcvdSrJSilKBF5VyURQhFhDUSSUZlsVNKSW7bG8N5Mz76xnea0xlY2KYo9cynTbRRtb1/8epwe2s+nz44mxZNPPzha3dPG37/1uZ4Fs6mp/X8wMaPP/7Y9tiPD06L4eis4Gpnf37r7vSDO49fvTzbHM4Loplw9EFRjVMhgqHgInWRSm0y2uxntCUxSw0GO4dHfz07bJT4xN2F89ZLaf+6tikJdXxEbbu2FVGJNgTW3XxhnLQmursLSxeba3/tXHetNd3K3sWAW0TVt0/yizyqzp8ltUlb6EQm7k5ZYfMlAl+enJWJWhhp7Ruh9QCRmosIaq1nM9XahTxt45W0rpMxNZPJpa3dTzz30ldf/eFwmweD4fzs7GxWV8WAKJDptKm9AddwUhoUtfnrH1z/xPPP1K7GEFUHihDIHaqNWtgYQSSa1/Pp++9/sPmJjyPFvtxb9wNRciO0HQgN2UzoIHNS4QpzMzi7GjOFIIGl1ri2sTGvp02Mh5PTS49d+UxV/OG//h+v/+zdQVU99thjT167Njk9M7WyLD16U8+rajjYXD+Z1bc/vH16dBRCGI/HdHGflOHaalGy7DdO24a7mllva8luPYmdnPpN/VqrzJlD6lWYsGbbKXFpFVdQc2u/OozdDNE8qtbNydHx2clxVQyu7F9cK0eom2Y+I3gZhMgkiDuxSBtW4KTXVS1vAOkwB6e9mnPN/8Ktqqoi4s6m3sKFHEs28+RHYILDpZJe14fkHsvsDKQOQwBcTYncNDITKNZ1VI1lWRRFqOvYdaFYgfbn2bXPDP3PfTvp/Dn5m5wG3sdATOTMsgjcMHNrjPbvwOAyDEIzKVS2udySasxxEJXqacRkM1QjpqrRAcsMdQt9shDP0jwDYDNzZ6cgKcchlKFpGi7YLUwm47X1tflsJkVw1aZpvC2jQHIiJbSd6dBVtarCrdv3vvGNb7388Zefff7Z69ffM9PLly7fuPHhdDJ99rlnb9++/eprr/6VL395f38rNnVa69wVxyypzyZaUZSD4ehrf/51Vfqrv/6b715/45VXfvRrv/7rTz7+1I9//G8+8fLLe3ubTOLuamgsNb5aBPiz+diSfLeIoSxU1Qxr6+t7exdm8/rBg4cpFYWJcuNvT4Xi3XYWtLyITJRwVabbDvJ2tLHiJKckxnIEFm0DAbTymonI2Z0hLKZxOpkEZofOokpVBkbhkSdNCdopy7VicBzjnNQYzqhGAzezGNkhTEg5mHCPEYwQisBEMA7ZKiD3thMSR4tKNmAhg6oZM4Q4iM7nPretqpq4H9y/61U5HlbHwTd3d8pComtkVMXwrR+/eWU4+oVP/YKINDpt3Irkrmvn6jyz5Fkibze6cTeoGhMDClOl6FCDFcWAK6ZiKGShGgyqUVHH07NTZg7MMcyLtSEDMRRSBMzn8aQ+m/PRWTOLZByig92CkHNM7cm7AXTznxYub6rY7h2NDNAslY8z51acZjCzlCq8OdreWN8ZhI27Nx/4NA531lIv/GoUKMBMS4fWTX33PR0NUJZkdzEY0u4OmEs5WvP5QMIRjyrhYVGCBtNmfhbPNqpy+NJzR3fvjN94d2vahAbwgjlExkl9NjjxenZU+1QbKDNvDjfP6k/T2v1JHMRyvdj4xls/xdbwwujKKQ5vTI6vTKfPPP7E5z/zhbff+Mns/tGH7904rqf1WjlzTu3O804qTK7WE0FLEorOba3aN/YWC7os4nz5Xu33q7ZBn1VXH718bXdCNgXbjXyxJFe99UQT2nYnXan8+fH/nEetmC5LLsO+NFiAp6SD/wMiAx368daN1L8qBAoOZ1Vzm9XzabSyqpIRZ96Yq3EEpJ7boFx7+SMf//prPy5CSRYCSVGFSJAQ6kYNGJVViNEH5VSa6aT+4O69+SxyKBpT1rT9AVHTFFK4GRu8bopCxtDvv/7aSy89X5JYbCDsbeUKU+oZmNLikMvXiBwwgqqKk5kbTEIhZUlOc7OZNkenx+P57GwyFaFANJ/NTybTB0cHNcWJzuaz+NSwKofl7t7jTdNsrG+A+Oz0NJAM1tZ3QXUzf/Dg7izO027uiihwAiuROioSJ3KybKuYAamJeB/rcPbWa3+FUkJ0ao7S7qGZw6/9RUf2/2fIsdAAsJQ3r4ATWVnK1uZGVVVVtebMdx7e31xbm8YmupIYpYJlkhA4xojsOGAARVGYWoqRFdlYNaS2tDDKm9gZ4GYR2XLNyRpEDkgq5Uu1C0xs1qRtyIiEmOFIXbXbLabSe1JqLZnIL0Y/ODl9/8MPXzo4unLpicDCzF19JLVBwJ/LOdT9L2/eQL29Drqf8uP6PEaL6zovcr8J6sKdkAoaun158vY6RrCBSEkSDGsiojMRbkIlNYomntw+GqxdDMUg5sbK7rDW+E0NAXLwpYmRi8F0Or19+1ZTx6IsL+7v/5t/89Vf+qUvFYX+0R/96TPPPPnxj398cjYOqeI9g0mitDuPL+RgjPHKpceqcnT16hOTs/nP3r3BzBf2Lx0enJydnV68cKmp49b69ub6JoHcLcWuGgOlbDIQiYjIZDotyko17u1c2lzfIBDUxqdnTdPEplGNRVGYOxuSmldLoISRUje8S37vmZLusWmIuShCY3E+nzZ1k3LaUmUGUk2SI+06RCvM0HJEd1ivnVqnQrr8NmrzWjros2LU5qPFoWYGjfdu3rpz8zYhkBQxzkMIiZ+5KtlwcXNvfXPnJzfeuz1t4qigohgfn5YsQnC32sSio3EiUMFWR5UmMrGTBCGSZHomwEEQRWOuMweDiUgNFp2ADfA6wnYx8KKMRMO93WZQTspQwMJsWm2uzerpeDopi+Lg8Gh8Oh7ubMxsWq2taYwigVrveWo8QQvp4XBCSurPEcDoBjeCS/KsuEitJpB5wwdjqyIZAjXAeD6fz9XIVIW0ic1pE8wbA5uIAJOZffDgdHuzUCnVWRxpjyhOTu9uTIDZakHfEp8mgiYjA8gNPrfYRMvtrSRINVxb2yllgMl4fnQ4YBIWIrMQ5y6iyY+i5HGNQ6mm45PTo4ceCkz2Q1nNjo5r5Y0Lx9Nqm7kAhMMo6rys3FjKS/tP/+pXbjumr762zkCjRVVp4Do21JzR6bQQw3B0Ws/1MK41hy8MNu9fvmgajy0e1Pr6jVuXnto6CLh+eKf+xp8PQ/H45t7Fyxf/7I//+Iff+96MDSXFuqEYC7iTExWpFljAgnaPYE9xZcutt3v1Vn2wsuTtaJsf9i0BagtPOpGW8WXOHsnVy8uOnEW6FZAdupSaxQMApQZgGjWLZ5xHJIkNLRt4HIiE1eAOTm4NzsmfqerBwYlnzYlgnpssOJC6E5O3waCFoO7kOffj4/DUOzJbGZ1o7xIqUk+N9KacmlfkUKsTUShcyoCmrr3waVPPGgpWIUYSomC1zmqdOYKELYTw3Ec+8vTTz905PNnZ2Q505ubONiO1IlbORdSykrFYZCKuDg7Hp+N5tV56bAKocTMJ5OwgIwT4RlFevnihIP7Ru6//9vGvP761ezyfoxAS1sQSFjWly7LAUt6ksUjTRJSiBIQgXBZED09Pbt784MaDe3ePD0/ms6PTk8lsVtdzis5m3kQmKkopR+sHD061sTffebMiurC/v7W9dfmxx0YbG3Vt22sb+1vbu7vba5uDsBacMB6PCWjciInhNZOCUTuxWkJBebN5ghuLNLExd5JAxKmXOwFpi928u0XKZMrRGTXNSK8zaHNQwM2YhNuohwFEwcg1RbVATFIwZvN5fbY+Gjw8Pn3v1k0zGk1Gm7vPjOO80LIKmNZ1IYiRqqLIoCk7XV1ICORGMSHuTM3GBHVtYp2yXImL7LhPOyeZu7qkXVTVVZWJQyFmRp62kVaoIu+Q3eMwgBgGSzVMqgQuxrN4Oo9GQTiINW5GVWg0CoiIjABKmzwu9YFAy9dqxJLyG1LicHoNolze1DI5tY6BnJeQKnMcSHXp7FACqWdvBlL/Ekp7EkgLQ93dIORoMJsTGUZlY0qqdT02MavKDdJK/OThweblyXBvvaknScwRsbpKmw5BSNvWuBRszFIMbnx456033/nIRz62u3OlLDefuPrMrdu39nYuNTOcHE421tfMakp7EJG7gxNYTJITykJmvrezc/Xy1c31zRjjvTv3WCSEsiiKQTVkyIvPv3T04KiZNxKKRiMln2lCYpRat8QQmhjrEFiYrr/15ld+8ZeqwGenh4wYGIMqRJ2BXDVW5UARjQASc6O0nZpTVHWXvI8IIG7kIGIzC8QWI7MTG8ghbmwKTeAVqaiMNaYE6VTsSXCAmZMPjFnSph9tRleSgDlDX0Bg91yokBfN0gq3GWA9hyLMjUDM0NiIhpvvvn/zvZubV55Q40IGHM2jSSiPxuNxrR4f0On0ub3L9fikurCN0Rqpl0yBYR5nDAUPI5PrjBsBVSGQtfqJGUzmiHUsQggcrK5J3QiR0SCyWWlw1R3ny8Xg5gc3jk9OoNbMZra2Vq6PVIK5aN0IMEMzrse3H97/8OaHe09cRjFo1APYKRNzq5W6AEQGygxnCxHiZEDt5ESVWFWbeuFWltPYlF6dxfDweBYKkIs61Gk2i8QUipBsvcP51N0c2ubR1ydN8+6d21B3kDgHp9QElIkbSp0MjYmIF05igDiDeHd3lry7pyTTycBsIIpO4gEe1kabZTkyCaHA+O57cXxvrRKeE48MMlEaEoZVVaB0sDRzHzJZPWusHlUDn0/tZFI/PKCBjKWpixBonYvhbD4uRAZr61MUdVjf3dnb//gn3rlxUw7vDUUn9YnInnAY68F6USCWNXEoJEz8+PRWOXzw7Hb1w8MPfxqLs8bHt46+Pnu9hlLJ13/0w3/y/o397f2TZvLujfdjo1IUIzOtJ4UI13MugnNZlpWbw6JLyqagAiTk8Ca6R8hSiVdW5Hn22kAS2AVEyP2luPXBQJEaKrUbXyBt/AcRaRPiDO6SChC7vcbMs5md9h9JW9MkBnKkLo4s3Eafk9s4GcldUlEbgWV1czElJ2WLcDiXytpECsGF1BQWy1A2dWRmaxoDKJS5MTAzkMVyQJt2QuSplsABQCTA85Y56VumlD4Gz31NcmEbg7NbmlCIWC7sahssIURiFOzNrDF3WEQ0j3Di2t2LNSmHjfqH9w7f+f6rJ3Xz4OCwcT6bTudaD6UqGKZRBKWhANUap/XcqwDiOw8e3r5z/+nnr6l6IxAJzXQ2KAazJkZGwaEqB6GZrW1vv/Hq+7fv3n1ifx+B1WI0C2VQVQijiQJWdXV1S0sINtfGivXRlO3dWzff/tm7739w4+DoqI5NXTeuHogL4l0uRmW1ORhtDtdImAfh1uFDH0oZqv3NrTUpjg8Pjw9Ofnrrbm1uSqQohEZbw8HeXpCiLMvJdGLug9GQLXrdREfeglw1ZSel/ataE8dS38kUx00b9Hi7VS+yFcsptG2e+qmlxMUERhOstizATZH3dkqa2Q2kYkxQuLrO6/rw4OD2Bx8OhqMXnnyqntTHJ5PNqipDCafZrGGiqiiEyTROptM6NqnZD5E0TRyEIZMk/0miFmIRKShVuQkAAzGHSuGABBFiUlW4SwhFKCi9C0DJ/Z97SSLtWJaK3lM5AHNuOEOqoSrmdYTires/21rbe/aFMGecaayKIIZJPaeQK7NWbJROXHZuHmaYplJwIaK2VCgHFlPtfTYse07gc15i74fGF9aVQ1pLpx0JJ/TExO6aWhxobWoaRpWRhFKixqosL+3vjuNsQAZ3zbksDocRA6QEI4rkULemHpWjtXJ47/bdp649PRqNDo+P7z14UFTV1u4+kU/rZrMI9XQaiJ2Ich9Qz14QyqVG7q4ap9PJyenJ2tr6zu5OaiNUN/P79+89ee2Jo4OH9Xxy/fr1Fz/2fNOotJ2QEmkBcLUYlVnMVAJ/5rOf3t3fA/ylj37E4SAMRoMmRiImRh1jWcmsnjGVgMfYFEVRFIWZpj1ePYd4wUAIIRXwpxKMuq5jjKm7hUkCqZx6rpvlVILUsKHgwIsVWbjcO9svW7lEKW97yS/fWc/Jpd4nGywcTCnbQhtzBwWJMHdlQq1ahMAis3o2ns/HB/fjdtT742pn74WnnjsTlvXNFJCkUrgQdlhK8w4FmQUwwRnCzFyE8WzGJByCawRQEiSgASKjIIia1DM7PRnfvHXnvQ/eu3MzDIehqpy4LIpo3rA1YHaPTbO7u7O+v6MPH7z99jsvfOrjvFGZmwGkcIBYuW0+md8utecmbzutJ/Pdcx0oQOBUay5CzXyuYcqIgaOqmipzGFZsrkTu5GBt6jqakgizzOq6acZn07MHVO8VHIkiMxu75AyQRGGpRSu7t/tAUeLQjiVTMhCBzGIKqZiTGpnRcDjY2NweDNbciUTm07OT+3fWqoJcG9U1GT14eLi7u7m+WX1w8HBnf2swKChgVsd63oSignOhTGqzxgejMjitQ7RpKgo2n6rVXth8qmaHSqPNAe09/+TBDx+wc1WE2eykqEYNJBrcY1O7i4gMRGjanIVJfWVQ3pnFx9c319e3H1uv3r39/pXB2kBGPov+8KFPJ8+NNqtQTZp6Ws812NX9C1HrV2/ficSJL5RMmV2YEMjcojI7MZNSa5FmWu9Iu3MIed5qsS/NuM2USD244bCkVYqiSPPc70+YDu0J2O7frtTUe+lHuRF8e3n6zt2YWwnZbaKpyftHTq6eOn25uZdlNW8aAkLU+enpB3fvNBp39/fXt9alKptmQizuYsacq0ERc+aLeMqPIkvuTTX1nGRguchBCjWztN8fJ9dm53T0VPzemLlpbktBcFhQRtRanEJAYJvNz4abGxgUyuXZrL575+H7N27cuXv3zu3bH354e+/Sla2t7enxaWNWxzgoKiGiJhZckKsLgwNrjaggeXh6+OH9e8+//EIV1LUui6IgjtGr0chhxWC4s7dfHx26Sw28+f57H3/ppRmsEFCMNq2LsmiUGCIpQmNg4cYN7jyootsrP/3Jd9547f37tx+enlRlWZKI+u5g7cr2xb31jZ21jUu7ezvrm8NQFhKUbEr2Z9/4ejEc7e/uf/TZ559/8ul6Op3MJiezyazWpm48ekOxZr13dvrGT98mwmwye+3VHxfr5e762sWtbdkYqsPInJnZcw+5DFGdLGtR7Yp2k1Oild05lSxl35imvdKNDBYpb5rD6TQkPNuZcTB3ciZVNBZN1QFVzGZ1M53vru8+feXxItLJ8dnVq1cuXNytKvEYBWKKqBAJL770wpNPPQHy+Wy2tb09GIwChkGK1NyVCCLBPe3EmULvmkZbq9caY1TP3fHjZDKZz+eDwUBEug0LFWYpI9YTj3W19GRmpmbubjoIdHByur2zu7e798prr//g1R+danP1madRFXUzq8yCiKZ2i7RQZ+fLHHpqzgGkFCaHEdKGwI/oldcXH+d+oqU7tjVESQj1HNFQUKAAp3mjThApi4KmTYOaUYT5fFYOBpPZ7Pr1t5967pl6MicRmINTo2ukRTSwEkW3AAtmweJ6UQwlDFjYbHM02trePDk5Pj09ctgTTz02q2fMDCYmQZscEFWJKWRRBbNY6/zilX0SCyWeePKqqoZCLl++8ODBnccev3R0cOCkL730HGUBl0LKyS8CuBdFSCs+n8+fefrpjfWdo9OT/cuXiuFgc3PrdDy+9uS1jY31s8kpiEDeNFHS3issAGJs3K0sirSzNGdvV+pIbe5LFdotoOy8+jnCtRD0C6fkItent4gAek5B5NTRlcBZ6+g+TzWLMagZMYtwXdfRGgpOBZzYPJJTtBi2NncvXT69fevW2RmbFbFpvvWtSTU6W1uzYmgSuAhrUgTyicwbc9ZAToGInUREgkhVxrSrqLkwB2ajJpQ0N4tqIyoqKMYn+7B4dPDerZ8peVS9cu1pq0qvxIhVNYIINp3NLuztf+XTv3B688aTT14zM3G4GYeQSZSXiuO6t8/Vc3n31tRuLRU9KAvBAVWBMeph4VvrIZRBzZta07nMhZkCRCHEaFW1rlZEI3MNsr21vnF6eH1nXxQeCRAws5GDPLjDchVPm0KyFNkBkLpucrv5ijABpNbAeWd37/Llq8PBRj1vJFQFox6fxpOTYSjnsS6EHx4dHxzNPvKRJ374+jv/xX/93/3ar3z+b/+Nvw6vZ/NZbSiroRIVIDLniGG5rlREC2w8oNKsmMZ5KMJuUcR5rM+Oj6dx74Vrx/duHd24eSmwTh+yWKnB3UyiOSxSAI81gojOTi/t7X1mbzvU483dvSvrlZ0dzlV31wYY4XB6dmF9s4L4rDlWzKuq9LClMg9rO9XaJAyChJRCxwQld3gkT7F/gkOoh9FX6X8hyhhL88l9oJ+nOnESPzIKvEivWH1W32DoHpe8zv2+PkTU+qTSOdxiJmIiEkohLmeCi5Fp00C9cL75zvt/+bU/f/fGuzIsnnvphadfePbKtcfXtrbADrW2RzWcPINjcnayVMCIrp9ayq+0NhW7UXeDp5CM5Shi9pblNNg2eM6cqp8R5josUJVCFs+Y2ctiUtDbd269/u6Nn713++Gtw3gWh0SXdgd/49d+86WPf/LI7b/6Z/+kIXeBF0RMpqQFgx3kbhYkzJsa4k784eHDmumt6++8++abVDfXLl/d2tlphN+5dfPWg4OD6STsbR+fTbjA4WSu1UB15t4MiyJOJkELEDcWo7sQi3HTRK8KrYr37t3582//23fffdfmKkTPbe1e2Nu/cvHSY5cuXdjZr4pBIUxO7qZmtek8ueLBBGrqSBBVn0ym3kRTHwyGg1HQqGvVWrk2qDleODvTSD/8wQ9PJ2df+Mxnps3s4b270+PjtcsXRmvrQyo5kKGd95Y+vGv6i5RvTGnDyE69LkzX/DdnDzUiSFvpkCJi6AAQQd1NoeQByajmJNC0kOqJx55cH4yO7z/YXdu4srXXzOf18Wm5uVENBiHI6elJtFhVxeUrTzz11PPzenrp4v6bb75xfHToPFMjjU0T66aZm6l5jNrALWpsmlq1NjUo4DCLTROb2Fj0aOpmqV8wADdzAnthXRfHFNVjAdrdApIDE9Z4PZlNo129e+/GnCZ1Fa9f/9nx9LSsZHYS1YUpGLl77Be0Y7nPafslmaVm1uTZyxba7pFZ9Cdst4CR5w7v9TxN0dX0iNQ+YEVaEEEtOcqKsiwHw6E7ZrN5VVYQBnEI4mbEOJtOlYuIgiAxOaNzk0CHG5PCHHA2CyyuzeVLF37jV3/56tXH14qwXpTXX3/9+eef9+l0c3tjsyxnTeNFyNFtSjEeFyE1jWpiAUBRFOPx2fMvPktAtPrZ556qhsN6Nrty9eLjj/1V82Y0GvzKr3zFVKd1XYSScp1enmPVCHhRBFWdTM92d3djxLvvvVOW5YVL+2p2+96t0Wg0r+dn47ooRCTvjk6Ap60YVd3MzYsgofUuuZObK/JmJlkSicA4F9G3zc0S7XRrS8TW7SyWF92TzUZOaC3OTl7nX1tq8TYVoD0Wm8AnyQ64t/sIN1EP7x2Nx+NBUVhTiw9i0zBIymI6bdbW1i48/uTxvYf18Z1nLl+O0Zvj48GWxKKcSBWBYWQRKgqqipLQ6GRasAioYCYSikxWM6ESNjdXsJEi1kahkUIdqH0+kcODzaq4e/fueHry5U9/adqEcO3J22eHc5/lsDM4FKEoiru3b//0J+Vf/6UvPvH0tQho04Si8Lb+LmnP1uWZEGF2onnyDrQyKk8pubuqNYSiEK2nh5t7jz82ujyd1UVRMcm8jpPJWNXDcADXJjYivLe5brGKc3Y3lnr68OTg9r3H1/apjcKAPO0tZJZioES9Qp6lNerEpiX/AadEMlXsbO/t7u8TSRMtlMMYtbB6fHi/9CYUUnNVx/rd997f378SQvmNb//l2x8cv3TvMJAoYuNTE6AsvamFtWmmEiBVVWxvzEm8iaZKTkJFPW+qgZSF8dBPah1ceeKZv/Ir7//l9++8/dbehV07PdPa2U0GVEsBk2FUgdGgsCbw8cneWK+YTCan37vx+uW9/S21ivjB6fHtB7cv7+5LbbvlqKBw1MwC+70Ht085zMgm3hTDgatJoxVE3WrKnvdUmyS0Olc/xwJ8hEDr6LwTW4TcdaKr/1oYgecwUE/cdZ29FmlGKUzQPgtmaqbJBkNbmZojIO5GrqSNWyp8gzkb63z++o9+9J1/8+fx8HRzfXTn/v3Xp6/euXP7o5/6xMuf+hRJKUXV5pYy2FmSTiRPW/m2oa1omhzMeYs+IlUFMwXSBLtT0MGzhrKEzFKqKOWtgEEU7hxPGNhYH5GszefN7Vev3zr43js/uzkeTwrIhdHW008/+dTjV59+5srW2ro5hkTrg8G9+cxIo8WQOn4ZXChGLbnyguZ1bbUK8du3b/3TP/rXb77+o6cvXvzI08+sDYahKLmQ45PTv/yL7/mgfPqLn15f3+Ry+ON3rv/lj3/y0Zc/gno6Pj7cCEVTx5qJJPg81qYcRNbXbh09/Na3f/C9V189PTvdG25cu3zlY8+/+NTT19bW1oSy47WZx/lsDoCS3Qyoo4kNh2K0tfXhvfu7ZjwcNkwGn8MMHIqgTpO6nrtyCQG5uxSlN1pW5frO5v7ONls8beaTs9OyXB9yadDM7V06Lnc1grnu0L3dhxKtux6IGtvN2NP3YtBWLKcssgyi3cjJyUlTEShFOIkEAs1m8/l0rg2G5agIxWw6E53PmrpgoaiTo5NpkK3t7bIY6Hw2m8avf+Pbr/zwtRdffO7Wrbvf/+53NjY3pRi4cVGIhBCEJQgxi5fMVBXMw0z0whRYRCSZ6cwsEkSERUSKIELCwsxUUOpsySIi3DbpIxIREilFGIE9AGqk5kXBf/QHHzTNhTqmGpQgwQNHjVmU9/w0j7R+UopREvru7t5xZlJ+mlM/HtHf6xFH9vS0pk9+xIrZlMryQarmRsIBjFCE6clcLaGmMJ1Or165evGFl4+mtUlFAjclcnDKDDXzCHMhEnInF8Cdr1669NiVq6rWxNlv/uavz5t6Op380pe+WAzKs/GYA2veozc5kp0cBmNPO7eLqsamVviwGEzGk2JQsaCpZ6kFmhomk0kVipPjMQgkReo0mRtVpkzAEDTNvGA+ixM7AxVEPJvPKpTMXJYym43LIgyHlbuZaVkFJmHKO0iXZenubgp31dyKsA2GpipOInLVBIVT2DFj3EQpHYJhELO0W8lmKHMucLlsTiwSg/olhF3GCboVRMdprbY4Ozz56h//2U9+8JMiDEIu23SCk1o9j8M1qdY2qtH6cy9/ckPt7gcfiJGfne6NNjQgBsCpMVNTnzsBLMJSpu3NQJTs0Wg6qIpSyvls5mZcSEM6CFRyiNPx7PiITw7PBuWD40MMB9WFixuD7eO1DTRTntck4urmHt3UtJ7Nf/bm238+m/713/ud/aeuRkY0bc3ulb7nS7s0pZlKPrG0DYGTw2vzRogIaGbj+dmDn37/z1VGKXAdoxM4BKlGo3E9d1cRMtcHh9ebqQGBmInVfToKs63BdoVaENmdzBnMHBwNur13Fr7VVYdrjlN43ggMzJub29s7O0gb9Rgz0XAwoDieHj/YZS3KQePVycF9aNzdvfDw3r2fvf32aB0vvfBcSTT3OpBLqERCYxqbGogRiuHgw5Ozf/ujH3zhk7/w2NrWyWQ8qKrAVbLouGKMwqysBk+9+ORg/y0qbrz1g71CxGNsah5UAAtC5U4ST2azUSgHANSubW6+dno4q6dQlbnKcGAWVZsgZDEi6IilVouq89lkbXM/xCmIopu5BynyVhhkKS0z0WbynfcJ/rwY7CRVnxeoDSmu9A2y3rVJ8Sc71dv48FLD+h5/9QXgii8q3ZnbwoVWwVFSEymgDWJOhrzqbDqfns4+ePe9V777A53ri8++cDg5OTg48YnffucWqeys7e9dudrQnEPhkvouJhbmBKCzGmTKSQ4OIk+lrORce8wva6Y5NYI9NcLuhEkOyGRDgECB17dv3b378O7DmcMhk9MbQ6r2Rpdeenb7o08/ce3yzu5mVQ2Kw+lkPD5mKgY729uba+998KAsJc7ng5IHJHAwhehOTK5OEgYwLuidD2+o2H/0m7/16aefCUQG9xhdwu9ee+KFF176w69+DY3t7e1zUT44nfyX/79/8Lkvfu63fvUr2+WwaZroXgMpnlSNhvdOj3/42ivf/tEPPrh7+8r+/i988nMvPP70Y3sXttbX6zj3RufeIElSIeEAc3Ojxsm9EJk4gblYG5mEGjbXqERHk7HD3YVREyEqUM9C5OHa2rCsQhmmp+P5tOYipKzd0Wi0trmmJ/O6acpB2VajZJZOOZtmRkh7h+Ual0Q8bXJmBgzm3qi1Tn5OeXAEcWdPW6SCPLlfwMRM0AKkMRKgMY6PTs/GY3IaDYZuOhoMjh4exKbe2ljXhoaDoTY4Iy6GQzfcf3BwdDr+nd/7nV/49Gfh+su//FdNrSwHSde0nMbtf9K1rvn3HTnvB4AjIlVMedYyatrGGtJSeHSbkw6MbDy7eXL43Z9eP1CwlDJDEal2s4LNHWTcFs5gOSDd52FKtaRwtA2d0z7r2WkP567xJIcVrl6BRB3WQa8/hHs/eattzuEUKJipuYEoRiOWzc3t48lJCMFU3f3C5cvTeR2NjJ2c1YwJkiLl5lDNyTH0/2ftT8NlS7OzMHCt9Q17iuHMd8qb9+aclZVVlVWlKpVKUmmWjLCQpZYBubGNLMCNmWy1scGSQSB4wN1GgDHCYAnstrBBlhASGhCaVSVVZY1ZlZVz5s07D2eOaQ/f9621+seOOPdkltR+2t3x5HMzTpwdO07s/Q1rvetd7wuKmDghOtbUNU2fmsQggGoKswgdtsEVPiVeycicwFxqjU0paUqK0uNcmXcIUmTOGCJnWZQIeyHAPM85xqosmSWKOucR0RqjK22qlJKzBYsQ0rAsIydjs94exjvXtp0K5JlF7Lt3k0EwACl0Qi7x0ri060LpnbGUWHpjVKC+0RqtIZFEaIiobUPsQr/qn2zbRD2Dob+uaJGIDNxv68Al025V9n8bOCQr7fK3LtC6DJRXLQZLLQgU7NNDRATMjPNgrAAQGkBSJABlBZYMrQVr0GNeYlnu3bl9WLeb1Tgztt7fI+h0UHT5IFiHrFkHgpCsF3IIahBcL5GKBNbWIamE3HrjbZNqgRSANcRwcHB87450s9kcaVgMxmc+e/d2uSaPXr48v3XN9V6tpq+Ug4AagFFZvfn6lS9+8fkPn99iAZtnX3JBllEgrrh0qidzsR/lqNg3agoRJBHVtLk2+OqveFeMxmdZTMGQE1ayveB7758jquy8A1XWzmUO+nmaos+ksOJ5YolBGIFIrUHPqPAlVhgngdqp1wFEjbGINrHkWTFa2zDWxRh7wXMVAAFpFhAXPlNRjV0orb188WJe5Nh065V718ZDH3rvuxzH6dFkvqhNPhQwztqYOolssrwz5id+4Rd++pd//ebv2/3j/+6/Owu1IlRqg6AaAI4MOFk0s3zN7lx44Bu+5d447176fFEfcYoRHAZ0oBZj0FA466J11qUMrQMDsXQ5kW27VpGczTNwsU25cYums7Zn/uEgKwa+XEfcfODBwns1IAY6YTGohrSHtHvyC789+DgZ2KcztBMA+0tzvJOL3PMlzDKlRFh5J5+sor2MVq+z9bY19sREYvWvwgrKPVk7+3OuPLBXMe7KsUpQjSAmUYbbt+9eu3bLGvfUu96p8+bw2q3dvamzA00JNU1vTj75a88++MRjfn0dsszmGagCC/VF9h47WDZV9EC4LqGC/mooytJVBBBxJcO2CvZERZUIjbHAvfLCMguwn33uShQmTyF1pfebzmWi3/Kh933Ze94VunnCttZ2f75vkhpW60zomjPb63T9CgANBpV2wjE5X0i/XccYOZVlYROQyN3924Px2qOPPHE8OeIUe+sjBUwG3/nkE+rML332M7HrvPUGjAHzS7/2sTt3dv/Yd30XM3prQ0wRGL37lU997PMvv3x3d9chfdvXfMO7Hn5ya7jmjZ3XixQiJgYAQpB+wUfqvW2XCe6y1VeRxanByCQQFm0aRkycF3lCDSEaJKMGFGLdCBoRVTKsyEmA+3BEOUZl9N6vNsRlzLu0yCDTb4FLEIJlWdSV1U2DvuFagIjT0v20bprEPVdGRYAjAFKMkZDIYNc1iJA4qAgm9tbM5/MQkios6gWqemtVk1G1oFnuUlsnUQuS5bmmLnVkva+qwb3dgy9+4eV6Hi5evLg2PlOWxeFkOhwPmqbuRYhCaIVTnyOzJBHpZ0RSjUlZuAezEqcTNRru2T0MqHKyBYks95u+laDXhBGWlAQJEyRe1D7LDyl+8doXbh3ca+7tVr0wkYoQApBZpSanZiOe0EH6y74MiWgpstbvdD2owCzeIhAgCHMy1p5kmW/bHk4vK7QSCyOilULJql/+NGisKIkNGJ9n1mcB6ej4sJCmqEpwlkO0zouCdwZAhVAAKM+grzazonGUl8KsoFGFUTqXCMkQ2sJIEgJMkTOfMWqOTlg4BUKU1FOulTmASEx8c3dvcnSsCqQaU6qqarQ2LqrSZ1lMMTGHyEnYkG3bYK3t2pbIMIsC1G2T5XkIXU+N7Lq2N3iXXjJRJcaESCmlIsvbtvVZFkMwqIiUOBZ55qwNXQdErDYldpnnkKyzi8X86Xc+tb252YXWWtuzmrPMK3pV5JWljXUelt34bmlC30+ZJWNhxe1SNb0eDN53dhRW0BMTtKV3z+lV+2Sn6LvPdMWV7vPFVUMY9g2MnFKWFw88cHH/1v5B3QRJwsmSVWDqyfWKMSbKyqvHR8fHk7XNbXR5VzckXO7ubmRnJw5byoScRlLCvlsjc1ZZuhiKPAdQ4eitC6Hru9hKUMPMbeND4+bHIF3yln2WjK3cWj7atoOhSeAQY0rIrIqOrHUusZR5uTVez8ri6ptvnr3y4EPveExUSO8rRp5cKOgxMDhh06GqAPdiiYhCCCggCoyIktJ4WL7zHWcsAkLHKREuNS17W3Y0BCossTdpSb00qzCiJcyJVGJnNBhdWpqKokZBg72tzck96mfwyXRe7aJIZlmNI2vWN/rKlwJaTtyvmoQgobWSwPe8SYWOt7c3ozfE+B9+93foaHN74K+8/PlmtiiH6zb3VT4k1NSElLrBcG2xiDdv7q6NN954/Vpd14rtwfF888IFJGQVg+AMphjyjSKayg+rp3bGexujG7/0r02yxGpFc4MiSSDm2cCADaxzhKuzo3Jj42LAw7ZpncH5onTZma3zMaVksOkaRNMCSODtnXNJLUDY2NxsQzDesbLtub6shNp30ADAiaLHSdrWm4CeyNjIKfG5UwgNnMQop6YD9vDJanQswyY8aUpdrYTWmpPbhCsLrZPHCt1Z/kn9zOrn0pc+hBkssTABaEgDcrv7B6+++LItqrXNsSWM2fyMtVAOr7xxpTmaZsZgG/eu3aybsPP4IzsPXe5isoCUGFnQ9fIRZGSJjCGAsiAhKvb6KarKK5jHEIG5v3QDwMmPiAhLrIv6y2FTSpCCVzozLC6e237wwvnJwf7HfuMXb7z5wke+7quUuAlNVRayaGJoNSETba1vWMDAvDYegdogPKkXCZb93w4ckW26OSJt7pz51Cc/9eiZM1/74S+fHh9JYmTxzkmMk719j+ANlD4jhBhiNqzGW2deuXLzf/7n/+KPfsd31BzZaA3pZ//Vz712/U1ErPL86z/44fc/8XQONsybmiCpgDVo8L76MvQ8GkRAXrahQ88vNkKVK6yiEZCYMLERlBDJmtJ6Q4ablJits45sURTkXBdC17VDqFSXlmzac3pO3ImWFMwVt+AkzO735Z5l0o9NXMqvAmoIIbEa6+7cu/vxjz87nTbWZT0/vddl7Ye7gjJHaymEVlVHg/Lhyw8SYlc3Fk3TNMo8yH2ZZUWW5VWROWsBRaKxaLOCyXTcNdMmhjgoyhe/+NKV168aY199+crjTzxufAJkEUkcmCMZRVTWCKtQpv+XFUWAZRkT9JIKpxOFfkL0Pt73owbAk8HXb28niUGTwr128uyVl67dvNItmq9813ve/66nQwpgLYsYBGVFc4optbzYQmSMOelNABHl3tluKQvVC6cpkfQhLyAYYxGxJ5ec2hXeXlA7NcN/z4rbSeBlTuIiQuvtYDiUSassi1m94Ryirdv21t1XO0lobRsDq1hrlSG0wRsTutibAdVtE4jZSYrMkXPnhFVZDWLouh45VgBQ6UIHqo4MCA+KvMzyej4LbVcVhbVWWTDw0Wy+f/s2ETGoiBrvysEQnQ2Bi7Iy1jVNm2W5iM7bRV+TstbGlI6Pjhb14pln3j2bzUSkKIrM58770DW5zxXUGNO2bZG5LMucc5aIUy/q45zLF4FZYDCofvM3fvOZZ565evVqF9N4vB5i7b2XlITZWLNiY/VjwCgSLJU++oupSyrCCrFYdvzS/bAXVotW33h4Oit9Gzq4OuGp4aN9YL/8zH7nEFVDkDjVi3a0trZz/jwfT25PjqhnXrJYoywChD7LfFk09WL98kMQYiTbSDxTDj984YH9/f0b8/mihOMUfL5+3DVknSVCSQaBiFLb6JKRCQWRcnJA61lhGfcPbks313pqY2eKoslL8oOs2gqUeZtBipTSSoECBXv9VdleX3/y0ccrSKPzWxcuPNAziO+vP28dsaen6io7J4XepFl7we5l3xArKQPXDC1oC70FYG/ZgqIKHBMpkAFQSGkl06ZIyIAorIh94RD6NyiwAvZaC2+F5XBFn71/y0SSNVYByGI1GiFRCMHYJSsfBAHYgFlMj4VjIhNAfV5q3YY2sgsW+YHzZ5MtD+/cOD7YHZbDjbUx5pkzWJUlWXPUisRUuWzgfDeZPP6+Z9Z80UrXdjMlEcHMeMtRmG1OWWEXaFrFNl/f+sAH7115Y/Lc58aJh5XnJkRVYzKNiog0KPZk/sLh4TBf2zLVrfl+U1qvqajZe9cqdJyCxCTSSXKcgNOCu92u1tn08OhwWJ1BRAKlXlcWgQCFemeQ5Uq6Wu7ecmfhfuH47YWwt7F8VtsRrprbl8JM0mvX6X3XxR4Ex1MD6a0L+P0hdNrm721/Rn98z+bjlIQEBTIgnbfXX3z1ztXrjz3zHnWo1qxfPFM8eH7noXZzZ/Pma6/deu11jTEvy2Z6eOWVrpWwee7sua2d9fU1K8jCQoimbwQhAGFhIlqKjACafl+mUz1xCMtv/fZ1QQ2+pTho14bd5nB4aefMTjUMTTO2+u6PfGi0Pfqt3/no1X9+/bv+7X97Iy/4uGEy6AfGecyK7a2tjeF4/2iSZ7nNimhw98aUvCPB0CyGeVXP6llbO+d31sY7D1z6tV/+9aPp0Qff997NomqaOQCosPRcEA5VbtZGg73JYWw7dHa4tv7Ca6//2ic+/vu+9Ztev3nlZ375F4/ms6yssihf994v+8DjT9uoIS4EMSEASFBNqGiQWAkABBDkfkcsggAIgjFESpn3ypK6KCxFnkviGLsUo1FEAgK0xpC31hjnnM9zUW2b1pDpnYNIAZAEGO83mGjvAYaIfXprEFctwL2KE6pyX3hcrdpgrUVDgNg07d17eyGAM4mZVdUa299uROx3DWFMSYoi2zqzE5S7ukl1NznYK4x5+OKDa8NqnJdlnllCi4AGBRgtgHGs0LI0lGLoYgyGnAGIbXf1zeuPPvzY7OjIWLh06ZL2/CrTN61YAEA1iLbnVRAJAAP234xUpB95fQhAZIj6/M0DGuylJhABwBrbM22XdJB+Pkuy1fiX3/z0//7sp9MMvundH/l//IW/dGFr5zef/XjipNJrhbOC6Mqs/tTsZtUefV3OTGMcLUUXe24NibB1Zin3o4oIKTLZ7K074v8Xj7ftrKhqCLn3dwRIIoPh8Ojg7lq1rilxiCwaEt/dP1LrjROwGFlzhYO9vcXx8ROPPpblvYuabpQZIzBq5p0hoyLC6qxLKQGCdU5EjHd9Cx2gGEBIaT49aqczsrbYKjPnuzYkiVWRR0spJWtd4LhoOo/2zPrmzoXziO5wOi2robWujbELcTKblIXfP9gvimJzc3NzY2N/f//ypYeff/758XAEiFmW102zNlybL+aj0aipF4d7+2fObDdtG7pQVZXzbjQc+aJMSX1eNSE4V1hfJEbjHAAYb4mJmUGFDLGy6XU5AIlQl41sCEKrO9vfUjbwlqtNukpTe/rKUp7pZEDISRi0TAqhB4qWJ106cshqNV+qQqNZSlf0i5BY5yhzOxfOyWDwxtGBAXFq+q7sBNopt5oYqSxGTWg4y6+n1q1X2IU7e7sP+EoOF/uLiWZ5gvlaUXSGutCRsQhgey6cQWGErgUEYq0X0zyP54aD3dk8dBMxSSwyGK3W/PoZyMddCjmCGmBIAIqs1vZGQGyNqafzycFBOR7s7OwMR8NOkoCQXe50Ctq3VrwtHlI5KYIxAagiC6gIGuzlA1ERIRkiFo1k4C1bICmJgiXApRCqKokHtSCg1CvKC6MAJT6p+QP3ViS69Eg5QacA8f4uvqyf9zpQrNa7wWAQYxRVAyAqBi0DW0JVaZo2KrIrIiiyESySmNznbRe07Wxhm1mdZXlWesBQlSYr0dhkMiwq33U8zOkbv/z957ZG3/KRry4khtmRd0adascZku24ja2hKGnOKuiKoxC2t3ce+NpvuPXGm/bwYGC1hZCRQzCWXOBYC+4r3yG6PpnY2e6ddhqTz6LmQXSeWuCACqwhcBK2DLenu53ELi8ubazlWU7Sk7EAVUBsL/gbABFFV5doFbb+bjALQL/nnPoRVlVeOMlM+8GAy4YVUFRjUERPn/EkdHnrK6uzvIVydz+c7TPbXuBb9WTeQV9eTsxIhpi1DVeef+WLz366jh0iMcL6+trFC+c8EMV0+cFzN86PP631nRvXFBqMuHf97mxx+MHBV+48cmmtKj0aV2RgTS/EQNasvov2+bCImH4okeFVJPa7rt4AgIDAfLogbD/w9GMbVRWnc+2OSgJsj9Ps8Jmnn3jwkUu/8usf/ef/+le//dv+wNrGmYO9/bZpmm62v7h+2DRNm0iMZWpmi4UmAijRoKXhmZ2MzOR4Qt5GTkeHR1/xZR9KF+Y/+8u/cfP2rT/w9d+4MRqHLqCqc8Y5w6lLqRkP8q7waxvrNw4ONLOD9eHHn/s0jNxnX/5CWy82yiHU3Td91dc99dDDYd5EEWOt9CCcJQaVHmVBUAXTa16ACC4VePpoRBBjStY7NRRB69AuuiZKSqhKyKDMwfW6OCIhRFB03gti10WDVjFR32StkLSvRyD3iaX0PlggIgaNnuYo4MlVv/8QYVAURIuU5+V4fWNx3HIE64wIO29UkIBSis5bZkHU4dra9s5mVeUqoZlNmun0ge3Nh86d2xwNKp/l1jhAQrQWAVFQFSGpCECVeamKUZUfz+rdw8nd61c3ts+UuYuhK4qNRx977LHHHlWO6D0sm7eWqhCnbBzCiXmnwpLhs6pyrRZW7ZXDl/mBqqhQ1KCqIADcc4D6YoS8evvlH/1n//hzn/74gxsbH3jksde+8IW9rc1OOmMdRVYFY+yygnkCkMP9zOY001N4KTitKqiCBM4TgsYuWGtNv2+smp1OJvbvOjF+t8XlPjHoZCEQVlVlVuessaYLXUS+cOGBNgVCS8hdisPxmaeeuRDQBk5kUCXl3njrFkVxYXurm01L52NonbWFK7hNbd0qCRLGJBJjs5hffPghJmhSIO9YhFQyImewnU11QXlZYpFxFxbHR7GLIBCZrTHELKHNrAPUxXTy6hePrl+99vDj7zicTO7qLljnnEeygIposqw4nkwUwFozXyyms9l8sTDWguLh0XFZVrN588ILL33zN39jSry2ubWow+tXXg9duPTw5Z2t7cm8btrkfO6rIiV44aVXybm9g8P9/YOdrU1C7IUaDIJ3VoGSLFG63pjMkrd2SS84WedhlTC8TZBpNQRWvz6Vj771gPs/LtljvIqNqH8jnfQSighzIjIphOnx7N6t25KQRWJig1Z7naf+jIYCxzp1w/Ggm8Oia7gqQdwMF5+4ffvdO2czMF1dc9fOjg6H21vMMTfWWZNZi2QQRIQBcVhVd27dXsxmkOKdREcuZ04tQgziB+Ny+6wO18EVoiSACSUpa1+UlCVOk0QUsZ7Nv/DcF+6OijbHdwzc5tkdWQaJcj8OBBDlE164ruBqVaGVMkFvK7LEiMgo98TDAAimd62H+9e8N4AGAMDeKRkVkmBCxB6tRewb7aBnWuiqwXX15+hqP+4DWTzhavQLjrFWVYDIZV5VQ0xAENsozEVRIKo1oCDzpmuCZIzJOAHEfGSdQbHJDKhy7K2WY24b8llWZVlhwDBYK+hmKXjnAPlrv/pDX/HVH7QJ2+Ojarw22N5RYwCEE+fGOGcjdxmkKnfoXCdaa1x74p3PfOd3Pf8z/xLms42ySB0KkDFECqnyF9719Ne40UQM1m0C6SQZhcoXKYVIAETGWE4JVI3zkrrZ/h4V1Tvf+4HR+ka7mAZlcKBANqHhnq4GjGgU8VSr4+mS1qm4BJjf4oJ3emqsXux/XPGuVmk49rzi1ZxRXWp0wap81s+gJYn4lGJTH3MsT3Ffcr0PcwERqCesihogAQTWu9dvffbjzx7t7hdntwCki53NbFZmFNkYW9jBo08/ZjB94ZN0/er1tm6GBO3h4cufePbw+nVr7EOXL7/vg+8vhhUiWmvJqGpiZmMIAAn1pFKHKCvVxPsqKm9ZJQDgVI9wHwbZDWe72bEBdoXvmsbbyuVZvehY7cPveM9zv/jLP/rzv7qxuXF47/bieBISJ0RBGhRlbjJg7ep2ERZl4XIAFCm8FdA61GoyROSYmln9wXe/5/nbb75y9crHPv3Jb/26b0wxGSJNrAQ+NzHUqZs/cvnC00+993//hV9UiQKJcvOJz30KS78xHOc1f8tXf+NDD1ycH0+t90qGQZMkcCSowuzBgi69jmVVoFjWuhVWjTMmgoI1YkAMMGACAGtSjAJsjbHoOAkkdkBlnldVaTInCm0MLCzM2CdCS/JkT8lcck9OGnYV+3VoWS/V+5dczerae5eHmFQUDGVZQQgGsKyKnZ1NUBWNqr1VlnrnhNUY76wLscPUtbPpyNmn3vH4ufW1UeYrZxyhRXHGOud6QdW+i16EBVUNCVJh3dZoZ5D7ejabHNzdvT36zKfB5eP9w9n1m7cunD+3vjmom5kxxKntawTawyognQYBAQURZhHmBLCsEvR9770TSK9gBqorlwLs2UJ9XNhLeQZOB/OjX/nUxz738gtrVorYruU2hfkb146G21sAklubkkQWYxBPDeJlEtODYqv5KQqqrETG9hRaROS+upQVtusiR3G0kuA7tUy8PdI52UPfCudSz+t7645LSIYoqpAxaAhVk0jbdkoARCGkqhgcC+xPjmuwYAiUQdOozFSBU7x94+bB7Vubowo5oejQDwe+Op7Mmq5d31q3Wb5oFuWwBGFmddbWMcYUM1CIUSxyuyCOsV3U0ymqchtIwLvM+AwUfJYBSIjsrDE5OtZFXb/5+quPvOOp4cZG00YGIOuNpcPDveFoPF4fV1U5mRyTIUUcr63tbJ95+eVXvM+Y8fBwcv78pS7oog5tx10X1ja2rTGDwVpgdVm2ceacCoDNkpoLly5ffuQhBDk8OmDVtNS76vGe3m+c+sSQWVUADJ0SbVvtjnqy1tOyZ56XK2/fUL+klunSjeXkZvW/ly9RO6CTpQ5kKRmrffzaa2ADEZZZNqv3rr306u27B6kocp+nIISoSYA1pUSI3pNCOpxP1kdrzZSjcmCy2dBfKl+cL9aU5/WcIbHEeX04LKqU4rvf994nHn/8X//SvzmaHRtDVVWWbsdM93zdrI+G0ZnjNlJVCviiKP14LbgMbMmB2SVrkBQ6CUl5CcIwg7WKkFLiEABNCgERXZY1bZNVWd/eq9pjzz2njVZf+GTd770/VEVxyZCmlKIi9pufCqMmkl59hfs7oyqyEozqy2YAPXjHQAnIoJJSLwaDrH3RAfvYC+9zRFYzCwVXkDBgj84v92lmtc6UZd50TWRVlrZrOEZO0aKJ2DrEIFCsbbJxjchgbduNcw0N2JAPKldWibsBZm0dbty7J8YpeSorAt/M26m68xtnW8Cu68S6yCCurHYu5utr03nr0CWViCahDQkKY9RgF1qfu9DGBeaXvvabOpAr/+pn57O6dCUBtTEY0sGD56v3PjManonogSO3LYoiElhMhEDGAFowEqOAqrOxW4TDQxFbDMYYRY1pWRMtkRwngKRMKAQk9wP604jL/dxvmU+exmYUv6RfZPkcQVj6AAKAZNU2qLAqgfV3cHWbTi96J5+u9yWCGE5S+xXzkgh6pajlJsxgFQJLaLo337xycG93e209OkeEYpEQuAuur3BYKseDh97xWJaZja2t1196ZTZrROlw7/jNo2lUvnHj+v5075FHH33okUcGw6GEYIisc4AgmgBPPOOETkK+ZV1dTxaB04++/NevJaBgbbcAVFOUC4RpXr12OP34Jz53a/doPu3aLpBm07sHd968YYtSwCFl4C0CgFoQatuOcqtK4hEIc/IWmKqi2lqf7U+d8aJ6eHg0Go4++P73/+Qv3Hj9zs1bd25f3DwTUgqS2GgxKlmDd3B+e+OxyxfObo9v7e3ZDHxpcp954zPFr/zIV547e6Gu68w5VWDQZFScZdQkyQlmgKKaQBWU+0yTUHXZ0eRYkQFMb8Fie3YnkpIx1lrW1MaUYrTOooIAxBgzZjKGjEHCtm2FuSfw9JkTWkA5hSUg9mxMY5a9u3h60wQ8Iaf1b2FOfQDedQERiryc62I8rD7wvmeyzC0WE9FkLAonS0YBOWpdN3u7ex6kKsuNqjq/tTHwlKPmDovcGQAwxjgLSG1MHkxGToCTpF5jEUGEwkMXd7y3L75+9fbNqwCSUI+Orrz4knn44QcfevjBEBqBBKp4EuEBqBKIA6DebVhUVZYt/rBiO/ZXgFexYF8CIyKHzhhLfXSoioANxF994XOf+cKL3/5N3/rhJ59e3Dn48Ac/GEWO63rRtPPpouPkvCdnReLbpiIzay/hcCIIBKhoV98bYmoW9aJt2+Pjyex4wqzvefqZvMq6LqAxfV7zfxgD/R88sEcnAFQUJaWEzhlCiMqJyTprbNN2dujHQ18Y4/M8xgggJDwcDucHh5tbO6O8HFeVQbDGtMzq7TrsDGPMrEdEXJTG2WaxUFVZ2apJbI9nhxJi7mzqWo2h9M4oMBEyeJ8VRZn7nDSBSgKsu3AwX1BIxrpZ11y7emWn7bLBsGOxTkbjoc18z289ODo6PDwMia21RVnN6vripYckqaJW1bjMy+s37pRlvnPmfEqxB/KQcNHUs0Wbz+rj6Swxjsdrztu9g6NBmZPpXY8BAK0lEOEUtW+zX4WVKiCiKr3x1xJqQ+j7ypb769J67jQUpGBglbV9aVr3VtwbT1EZepBJRUXEIKGCspAhAO26bv/Grec/9sn5nf31vDxoGYC8N8hIigYARZAjcMqAbExhsdgYDI4PJ6ReGVjUeH8c54NNk2Z7murcUpo3G2ub+zd23/jiqyElD+54NnO2uH7lFjN6X4SorSQsimy0jtbEouiqgUHvI0YOyYoXqRSEMKCWSH3BjpDIGGZGBWtM6MLu7u7h0dF2vqW9+Nty73kLgtuvN6vgssfDBAFRUZBOSh6qoKwKisAKKL05YN/juTIVJyRRWOkIk6ohIUSz9MoDIwiESmhQlUBIgHoj5J7FDoC0tNBRPZFlOuk2VbOUvsEutD4rYhRjbFvXNcwz4zmxASjXxxujqq4bCI0ZbagOoJljnHamCqa05XBUbWyNdo7v3Izd7M69GnKNLrl8vVi/DMNNMKqaogr5rOaFz4t5imgcIDYSmaBDr5RHNSFxxzjoGCNORaZdeORrvkknRzd/5deKNlnVRNp4ytc3jiMu9g96WilzcmgyMnXsFiQWTKbkWFvlzqBVQGHMyKAJi0UGRMSGlRnQgJVeRw+UoHcUOj2eT9P8T25Zv/Ocngr4Vo2f1byQvlkPEUX6OvJqcwIAZTwJHFbNkqffDqcyjSXAD0KrLQCWiNFyjPRHiUiGVkUJYDqfX792VTgqpyiJNeXOOqKMTI4IQogYWbLx2uV3PLW1sXNp58G7b956882bNrmphLmRWd3+1m9+4s6dXVF65NFHirKUHlvqWYLL7jlFoFWb7Ap1vE/ShRPcqydu9BCRMiuAZevFuluT2YtvXN+fLurIdVKbVSTGC46MHRvcGlUHbfCD0WQ+R5WqKEZ5TkjT0LmiMj5DVUc0GpVNN9dkqmE13Z2AKop2XTOZHr7rsUevv/vdn/vCc5998fntr9pBMCCiCjnYjrkcFeNxmTn7vne/8+ov/tx4axspAiSn+dd95Ucu7pxppzOHxABkrGhiVVSCJKgIZNqU+ETsCAEIWUVFHCALKotBo8IC6L0ts0xFDo+PDifHzlnnCK2VxL21qvGuCU2q5/Wi9qwOaVYv+t3d9HRaEFAUBdHeBhrgxLgUV8V36u+HAiqq9F5USytwAFQCAIMGDORZlnkXY5IkW2treeFSXEQRAM5zy1EMGtYY2nZU+B//2V/9kj35//TjEwDw3/2tv/jYE49fuHB+PB4LJAHxWYYE1hhLff+GJcgJnekX4X6bOoW6EvTrM5LB3gr1JAAXRAA0gAiMSAx4BOGj917bm05vX7/zge/+3svf+jBL1xsf/tbvfAwInXXO+a7t0FhFAO4VdFRVjUVm6W23jTHW2TaEUC/qRRebRTOfTCeH9WLWdlHROJ+BcQJofaZkBKA3wRYQMtRjVAS2B2sBFAgEgFXtUtqYRJTofsOnQezLrKqcVJNHzcgY9aQhcSKKoG1sM5bI0TvWRZ2C4RATq7GmsOQssUTrbDZca5tOU2MMNKghWGE2BOOBmR9PQ2gtkjAboi7EqqpijEfTIyQZkSVuc2DKHCTKyBmkIi8MWWE21g7cAFVbTrmPxtrjpmmZKygOZ5Pri/mDjz5RjDeSApFubazH2HVdZ222aJxOpevCdNEsFvVwuMYsRVE8ePFSism3YdYsGBprCUCRKLbdcLBelgWSbZqWVWlBOhNDyL0RHvUEZ1ABZFUAswTSAaGXJ9EYu8TReovLwbKCaVaQvYIqcG/IAgqg1Bc8+12bRU/h/aC6bOc/WfP710+ge5WlGJ8CyFKpXGMMd+/cvfrSq/du3uvq7sFzl5vZbO/4uERIEknBWmeMIWsILAhkzjehQ0PrVXl8PEN0iCaCuEG5sX3h7hsxNAkVKufW1tb2D/brrkNj6q5bW9/c3D579cattc2dxWK+6ILkhZaj4DP2PlnHXUKOla9cTh0l7ToHBUECjqoswClAgRlFB6HJvSFLiC6m1DVt5nKObCzCypoHUUWEABOoKCECivYdXCtsqMeilURx2Q7PCkAnlY5+GwYEpdXWiwjUF7z7GYMgCKRsRBBJezcqgxa1x4d7EVhKwmhotfLB8vxwQoNGWNrEsCohUggBBDLnYtc5IEJIIZSDTBVAoKjG5HJGRUNdx2Qkz3Ow3CWMXXIqiGSr9fNPbNXz49s33wyk4+1z1dqOsyVaL5AkdM6CQWPzYjq9NzueWUjTyRGgDAclKmYOsWsTi81KAABMYHVad7cTPvD1Xzu9d2/625/dArTO1aNxtrEd0HQp4LL2g13sREkNoapwFDSpF8w1YBKhoYVER2RIkyDH6HOPJCnpEhDDXtYPiZCXXvFvifa/JLjp9/V+8J/oLZ1Uvnp2Tr8x9hQCgV6ht2cY6ElajtSXS95SST59cli+vRcdWZofn7DxvvTPQxahpPPDo717ezHF/b27uT/bdNEFsWQtGU4dKiFZtgQgoDQ+t+Mou3XjzuH+HQIFToQ6GpTi/d6Ve7+49wsXH730/g998KHHHmFhkH5BFkRAVeNsQiQllJ49plEEDAL1XpJIYFRVgEETkaYYQZWF7c0W7xwdXLt3MMzXz66vFwRtCgHVoNsoBk89+ODliztg4ed+5VcPmvCOdz95fDiJbWeQi+21wxRnManQZp5VHs6c2bx9wC++9rqlcjgadce1E4gpJG6HwX79+75ssnvvpatvPPTI40+febiNrc9MyYQOxRk2kFJ7dnvzwUsXjrtZVeWZqw7uTOfTOa5tQxC11CGIRlA0ibhjY32WlWpUcu39F/sudO88M6eULJq+NV1YkkQF4Zb7vGPRtvemR48//hiiYhsGeaUiKTJYyDUz1h1dv2HqNCiroMzUu/T1UDGSUsKeldpjRr2cj6Ze1weBQbhnM/Qjq9eaB0BGAFJFFGBlILKGjAFrfdO07WI+KNayvNgYbyMKSUyBrSuaJk0Op5A6APh73/bhzNrSOe9MZkzunQHjvDOGtFfgR0SgGAUUECh0bRIFJDXGFAU517LUoXv1ytUf+PmPXXn9xlNPvufypXcOx2tIqIAJUj+zTE+aVJCeRbrC05fMCKVeXkpYpbcGQRHsBdtURBJqRFUUGwQ5osVX9m597OXnfvrn/6XL6Oq9G7/27O987ZdjPZsTQsdh3tTqkEE0tGgskrcGGbvErQVC5TzLQDSxhBgm0/lsNlvUi6Ojva5eYNdK23jEzOcDm5uiEutv7e3/3L/+1z4rNjc2N9c21rbHm2c2AcWgcXnmwANj38SvwNALIlkPhCIQYwRVVOjdSRABl4bDmlDAYO3hmJuunlufjapB9L5rGo8qkILEZnFn0bWDrQe7xo6L9aZp8tyAzL1XhsRMIcTYLAibTojcaDReO54cuGrEMUhKTUpImOeuqnwMzY0bNw7q2Xg4WButVZYMERLYwjt2Hq2zmaCAwdx5p2jRZy63HKxzRebr0C1CcOpfu3mn2dre3DlTJyUWULEIvsqdt7m3x4dHIaaiGvp82LTR5aUrBm2SLsTBaF2QrDFZ5kAlLzxz5awlMIbo3NkzztsudFmWc4rDqti7V7ZtTUSGDACQsX1nO4viirquIClFQ0rAKAyISCBJEEGIEMAgIIEkJgJAWYE+K57ZUmR8GeScoHq63L9JJC1fIUVAFcXeBwgsi6AhIUZVEW3r+eR4EhNGsa9evX6MbAZFlzqLJCgNa81xTJYVoigbEIG6rsuiyKu8XjRoDBgNgd/Y3dXByI7XeX6U2sWdxYF4ZbLzRW1zT4Pq2v5+8OawiyYfFOtZa3ygPFnDohC63BlrkFzwzniF47oOXBTNwnHrSIaFI+PLstAYRiTzbrbAvNrceNd733354mURRAKjIEqiyAAFESobAFGrZEXFYERlgwhgeks6xqQiCGL6XjBRAwCkzL0/M560zCn2/wMUBAYUNcaIKmttrAMtFUEoirIlQlBJwTpDmKmiGDXU81mWvC4Cwr4LTJeow5KohKqqZG0MIXc5h8ghKkDmfD2fAgqRpMjoyyjO+MqyUid5FQSkU1HCjIQYTOZbpE51LqhbZ0Z5UQ6GEUxSSMaEIFk1aOeTo/m92M27pj48PFjMF5PpJIRgnd/Y3hwOw1hkY2tbUzOPkWOwDsdbF+YxmY2tB77+61584ZWwe+ScT6MNHq0FZiW21kpSEPXWAaByyoDQICqIBRJ1cZl1FWSUBUnYIgJFYWB0aEBIraqi0V4NWlbK6cvgou9/PCXMo0Smf9IDG6rLKIeZe1mPHq4noqX8Ja6UgXoiOyrA0p0NiXTZ9fcWAHWVAfJJdgFLRtFbwp0TIOokgUkqSmDauLh30LVdQzglGAChLVHIGy8qaMACJInqNEr0uSZj48DHgbMb7uzm2nlT3Lh1p2sDxqyNeDw7fO7ocNYtWkwPXHxwmJWExgABsAAn0JYBweRRHPXkTxVDbWoLV0oQo6BKqkDS3dm9de/eXWW9d++e/cKd3bsHB8Px5gfe96Gnz18YcWjCvJFkfJnZLHOUuA4cvukbvu5Xf+eT58+d+eqv+KrZdHrjxtWXbl5rEVgdhyDeZaPSWp8SG7Sh5Sqvys2y3jtoY2hCHEQpsvxbv/nf+pe/9G9eeuGly+tnXd87ZUzkFAFEOIUuL7JqNFw0KR+U9bTdPTr6zBc+f+nsBZf7NsWoKCCFz/KySLFr2nj34Oj46GA6OeqarrcyYOYQmSX5LM/zHJGczzc31zc21nLryqzIjQ+LzrvyM5/6XIgsKrPFVAGtzxeLpo11UeWE5srr19aqtToGqDWo+l6SWVclLVUSXXbpLlXmwfQtpgCwJAxi4r4bG3q+mSqDqiEHQKQgIGjQepskdLEJqWYt9g/v3di9ocCeGNUAOBEk4tHaEAD+zM/+dv8J//J7fr9FMtY6tNY67DNAEED48P/zx/tjPvrn/ogxBgi+8R/88/6VX/q/fy+AeGt+4Oc+CgB/B+Cvff/3HR5Mnn7PuzGzTVeDBYGIwsDLRhEmZmFQUhVWkQQ9ERkEpCfPKerKYoVBgBGABTUyE4GJnGKYS/fZW699+rVXdm/eMEnPb2+9/NLzPobYdNYQkJaDoXUeI5BQnvsmcddG57DIPXCs28Xh3r2jw8PDw+OUUkpRRIw1oFwZi0VJzquKkoto3rh588ate7du73YxSeJBWa2vrY83h+cfOPu+D7znoYcvH+4exZa9zYqsGA4rm1EvFooIMca+zNUToXhpVwtK0KsXExlRXiza+qDZ3XujMpldWysuXPAIWTFInARNyMy1mze2S6qyiweLI2eKNnEn0CbArDo6nJ7deEDitnfMKOqctdYPKwEebm4752MMmjhGns2m+3vTN2/s3zm4+8jl85erofXWEdjciGJG1qhD6rsibOYySiIpKVjvnHU2y30ZQ1bXLvPl7v6Lz3+hWNugYriYHFdlIcJrW+MYRJk0kaG8zByZLM+TAlZFtZhNQWU8GjkaWItVkSvwYr4ocw+qR5O9QTUkMqkJqW3iYu69nzRzCR2KrAh5KL0IHp6wQZZG1kR2ub4vJ5AiIRGyrniyANDLa2lfYdYeRtU+Vbyfeup9tu5bWz9wJYZGSHhCGkNAwJS4T2zPbJ/5fPvZ48kEk+1Eakn5sGpTFEADqISKoEh9D3/kKACceLqYb6xvCGjXNqRgMqPc45KOdYBVNo9hPF7HxB6IFcTa8ZnSl8WNW3dGO9vrmxtvXrslAszBEDlLhaMq84hqMA3LfFBuZUW+uTYon35ic1gSGbQOAYnDVlVcffVlburh5ujmnZvZ+vDcgxdJga1R7EE2UVSHInFB6JQ8AliIDmMEF5equcDUNwsBGa/MoqmHAdQQoajy0qwZiVUUwZBVjgpKDhUZERyAMidmtE5BVBmJOEZJDNYaa0RAgalXlkQgVEQwvZ+vCpmeBbA09bXGgGKMWg3KGHh6PEFC45xFH6yt69pZYzJbS+etglWXucyiBVEF63MEo4CGjBGyLiNnw6RGv0ZFFcFmLjPWAGju8Ojw7r3dW22Ydt1CQiQFVzhZwP7xISDVsWuaK2fOXHj44UcUIXRpMjk+OLi3sXlu69wjlx9/+OHHHh0/8dDhweF65qsLZxcGa9AiyzTE3sNHersFWnEfeppwb4zX61AJ9hL2shy2fUEAl0eo9EAN6/1Y5NRQv0/EOQGHVlAa9o1AsGIx36/26/LewilnPD3VT6Cqwky6pMu8jSew+jg4/XHw9qLzsk63KpL1GqyKLLmxmfXTuouE5WhorCMgVLXOsiYAoyGmpN47TcLGZWtb7/7Kjzz06EOb4+HhtC1eePXN115f7B970iEU7My1568sDhdf8VUfeurJR5OzwVgWJOt9VpBV6xCI2j5NR0QFi4QsBoSULZpQt1dfePXTn/hE07Zt0x0eHNprR5Ph5hba4sbtW09urYGEgpKzGLXjlOZJE6akUpaDJ596+tMvvZpVaw+cP3sB5YvX32y71uWDoiiyIksi0/m8mXfIdjqdd62eGW+vbW13zdxmRQKMIY5H6x94z5d98tln37j1xuOXL8UmmaKq6+NJXQ+ryqDeO7h37+ig2lpbLOrp8aIaDF67+ubrN64+cemSzb0xFCTuHuzfu3Xn8PBw/+iolVQ4X5ErsrwoC+sdkUUyokrWIGLbhtlksr97jwxVZXlm53yPreysbcYm3njjRsudKzIwVrC1WSZk7x3sO7RPvuMdo2ptNpnW06mKIgEqGVADREIEIgC9ooCuLE5xOeRhNV5w2YUk2tvwLHeCnowIIiDkTVZmLrOA0ITaZttr6wPbtSxxVFgyGSeczxYxYpnbHmr8f/3hb/gP/tmv/jv/5Od/6U98hzMWlYwxvW0KEnzwb/5PAPCpv/C9H/ibP/bVf/fHP/rn/sjX/d0fB4Bf+bN/5Bv/ux//lr/1Yz/9p/+97/jv/9flsFX9gb/+wz/yt//a7u7dyXyqRsiAEtOyAb/fvGIPjZIhVALV3jQe+uqXMUSqQMbmvYT0SoyzR0qFRFllt5uU07tdW68Ph+3h/HOf+syX/XtPv/fpZwyhc1ZAD44O793d7dfEtmnQmjwzoa2vvfH6fHJU14vQhXpeO+ettQaxKrKmrjPjM+OPjo5Y2JXVweHks1988e7BsaI16Aw4AOw6Pjw6mi1mN2/euHr1ymBYTI8mhS831tYHeb6xvfX0u568ePkBRduFMMgrFo4xcmI0YMzSsQQVGRUVRRgNbW+epQuPTV94bX/vlnF77RevaFlsX7jQLiZNhFj6u/Vudxi3xs7ItlPs5skiNMxtkmw4PFi0mfHZYF20TZiOpjMkyKzz+Wje1G2TevHuO7fuHh0c3bp10KUmdN2f/4c/Bf8/Pj72BQD4wR/4L0Mbk4QUBj7zhKlnGHMIYCB2oanr1NakoSiy1Eo9m47HA0u2qevF7AB1OBoNjSbgNrOFRzMoS1Aw1jjvZtXR0eGB6f0KVRnQUG86JoQoK6i8b4rG+5zNZVHkhMMLJ6SEHoeEE74d9LTLt7GATuiP/cG9pu3JbrE6qmfjizGGACQlQErMk8n0wtmLVV5Mp0dRxHhHipJYURX6qhKJSuwt052JKU6n08GgSik29XxUDV3uNtfWmPnoIA7Xtp0zbRPOnjlTVsM3rrw5Gq8P18Y3b98xo2H02cGiiwgowROWeeYya0AMCXAySGVejsfbCVlTUxbeWLx588ade7uqemZ9w2k6c257lBdlme0e7lZ3h+cvXzTOcG8k7kxmgSQ4EOeMIvZxjQE2kICY0aGqoqKKQFo2MYAS9ViooAgxIycWVkIFQuEkAtCb3CGARkkqagwbKjkFBEUrAJoSW7Q+88ysGrI8AyTFpWQlIdHyCYoC9voZiGCWWyki5VnmfSYSnct85gS1axKS6d0bc29bZtXokMgZMs6gUQVCBwgpqSVjlDI0bd0WPnN5qWjQOjTGKCN3N2+8cfvejeP50SzUgOrJhLZdLOrZbNZ27Xg8PrO9Y61zvjg8OJjOZ5ygruuDo/1rb9xFeHnz0rmvfOdjPKoOKpcy2tlaD5lLhJzUqYmw7Na7HxzoKoDo0fi+NMx6imq8iiqWkj99iN8XgN8i8fy2uAdWQs9LIZwVLfp0wNT/qPc1eN8yX1Ynv190Pt2o/NZZ85bX3/Knf8lvT94VhXuR3vW19Z3NrYPZPMXYz2VCUoW+DSGpKpI1CBI5kZKXvBg/ONx+8FJo5+NA7zn3BI4/+fyzH4N67hkBDARd3Nh/7td/58aLL6oBAciqtUceferxx9/pKkgIEYwaIkWIAkkISSx755p6OplND2/vfubXP75//e6Zc+dMBJNt2mxjh7KcVY9ifZwa58RSSMyCDsmLqCijamJ2PqtD+9kvfv75Fz4/PTqiwntC5VQNh9baJta2tbGTxawBga5Nu+lgZzzKq+rV69fe/cRjLLA4nr3zkccO93e/+MZL53c2y7wUY6koUkwGgAjeuPOmzYgU9/aOiUEjD4ry8899/omHLjeL+vbdO4dHh23X5ll26eID73j6qXxYlXmZo7VkqG9BUFAB7q0Ze8MP1RR5wd292WQ2a1qOx7Npinzx/IX5Yr53cJCJQ7SzxSJqUAzd9DgA3ZnEN5tuvndgFbFube4NoUFjAEExIQmpam95IQJgwCxRQD1pn+4DCAAQFQYC0yeWvTEc9KPcZJlPCgawaTsBWtvY2C5zVZHYGDSqRtK9o+nxyQh1btUSCcyihhCRjLVoYNUsCXZ1zEmLoKS4esZvG7ijUfW+978/iWRFIaArlNoQWCTApR1HD4b0ENcJ1YcQe+7ikk6wJH8AJADbA2MgCWWO8bdfuv7aS3fO7Ax2zp09Nz77rd/2nU9efhdrRCUkvPfZjzdscmd6cEBiZ4Dm04Mbb74OEjPnLPBamSEQGQycjvaPLZlZexzatL69de/OwbUvvPLmjVtic/RlTNIF8USZyRFJ0TqXJ+32do9v37wbumZYDqZH0+3NzYOjw1dff+W973/Phz781XleNW2TZxmAhq4TY6JJzlrs/W6wJ3SphMDWDx96dOby4zffnN28q3sTnu8fvLrbZQoXx5hltw/vsI+XH36f5TLOTZVnEqL1JNSSc4s6+HzYaHvr9p3EXJaFKHNmWOXgqI4pHR0ev/TqK7PJrG3byaIbDbJBXgDAv/ne7yRMNncKaJi88dY4NYCoxEt9SAVAYxR72jh0IUybNhj7hdfeeP3WnR9/7fa5nY3QNF1QbuY2GyA3EuvccblRxCiDPMONvGlbYLQYPFC5VmbeQDsfZm5wZluEU7M4v7FWlAVH9sZpVGutAlhvKUXk1JuCQ++T0rMLQGCpWXk/fTxp7l2OZ9UV0r6kK8JJ49ap1RgRQQVXOk+qJ+/tP/Atryw3FVky1gghcTKm986AGOLDDz16dHWiAKya5UULFEJC4wwZBWVmZokxtqEDMkkEDRZF3jaNCzQeD0BTXS8eeujieG184/oNn7sHHnxwf+/AemTFu3t7Dz/y6P7B0dHhhCO3dWds27ZhfTRq2xmBZA4Jk3LQCMMytwixnhx003mzWDR15mk4KBeLZjo9zqydkEjXZgidM4+MH7r00IN1WFx589XzFy6Uw5FxliUe7O/Pdq/b2KAIK7RBuxhBknJg5ASoIgoiKpwSCyOgsWSMIyQWVWab1LLKyj9WFFhkqSNA0AuFAxo2dPbikzvbZ4JK4ggGiAAFEAEtIQJzst4gWlIhIOpTKkAFstRv2Mu7DoCIxIIAerB/QOQGo7ExNJtPY0plNUohhK6r550pcoK8txoUpAAkoM44a8h7KH0OzCiBmslWUfhxflTHKAHJTyeHN6+8uHvn2nw+6Tjmo8Fwbf3o+KgLoeuaxWy2mM2RAc6zL8rDw6MuhKbp7tzZi6njGLqZWNPuLibXX3/xkQIG64Nsc4s31+aS0ObSRVWFnjO/6pID1BXtpm+kA1YBJQRCoJNoBAGWap9vgV56GYG3sI9P5sjp5/B7PE6ipWW8csK4Oj2JTrHlVqjO73m2t07S3+VXp0tgPWcfQMGgq4qyqoyAFUiLNrQdbKypNb1NkoggWSLUlAy641buHB60DCIBUSMWoZG0di4//9jejatxNjcpjPPcGZzc2T+4fUeQWmZfFfVx3c4W5famGRbiHRonIYWjaapbkuQL7wpz+9aN471dXDT18b6j1NTHdRfmdW0LXxGSxi60kUWRSLjvEwNmAcBep5KseePa1S++/Mq73//+GzeuQeg2821nDRAV3ltrZrMuHieJUvgCSes6McLu8REMBp9/+eWqyp+4fLmrm9h0737Xu37pE3fv7d576vF3dL1ae1QCnS+mN/ZuD4ZDbCW2rNY6byPQzenB73z+cyTKKZ49c2ZnZ6usyqZtpvXi4PjgdrzbNuHo4LBpmmFVnd05uz4el3npnbPGAIsIq6q3dGlrG7fcVjV69jOfe+7FL5RFdefe3flstrG2sbWxoQySoKzsyOXWutJlI5s9cu785tqaswTEaKhfSFWRCVQ1aTJkhLAH2JeDCHXlEq9WwYCKskJSFiUEwcRRkRQgccq8dVmWklpDqs6gC+0ipBotStelKNa40EVI4Fb+XHa1bSQRI+xdhmY51wDwc3/5T7z3r/yj9/7Q/wgAn/n+70U0v/Xn/shH/u6Pf/OPLKtgBvSf/Uff9of/8b/qN4o/+b3f/vS73uNzV1qXhA2hKohKVEZlYDUoCtJ754rIyusDdNkUthTtZQUjYJJEkAiaQFHZKibSmtILt17/iZ/+cWmnYYaE3aNPf4CUX7v6/Hw6a9vWOrO3e68qHCjFJrosN2QApMhcWWSa0ICoaJLks+xg/+De3u7G1sZoZ+eBje1isBaCPPvZF964essXw4QuBkEyhKJASSiy2Bi7wMaocWDQGQMspm7T9Vu7SEje3Nj7jU9+9qU/+h/80QfOn5/P58PBoA0hzzJJHEMiQ8bYfn2wgDHE43nLqFCOqwcv28E4Hczrg9nR4byBmNs8M3lXpytvXN8e3bh8bhPVxTqVWWUht5RFlrLIyZs2tkVWpiDDfNi2Xe6KzPvRUEzmX79y9catW6oahbNRWRQ6HI0A4Jt/dAkC/eaf+4OWrLOO0DLKUiFQARTe97d+rD/mk9/3PQTwkf/+n/Y/fudqxbr1xpW/+nf+h/6nH/7BP2usLZV97JrZxBpvrIkhDgAy56w1yiks2mRMSql3CBmP1w72doeDYZrOU4qI1LUpL3LrnSIsZlMRVukDlL4LYpnj9k1EuER6uH/0i2BfspelLt9yfC3PAMt+g2VO/Xvkn73STa+evSI6LEtmfT2u//I9TppSQtWUEgBsbGyUVbW/e6SR2ZsQI5ZZSJFEoRdZht7EDRTEZ55DjDHkmdtcH2fOS2i18MOynE6O8tyvDTen82NGvvjQxaOjY7I4mU8Sd2jNaG3YhGZytL+1uU3IZeZZgkIEkcxB6choUk71YjGrZ/O2FsD19VF0pJxyZzLvcmd9PswIM4cud4NhuThsbt26HkO3trU13try3jb14vatG7o48CCKtksQkgAiSFSO/Z6HtCxYiAgSeefReyDbCyTqMm1GIlJEwl7MxiCBSkJCQzYl7lSBQ4ytKFKGvXQiI3AMxiCoBg1WrDXGogExcr+kotbcl+IlIiQ0xliHRI45uazIsqJt2y4EY2w1GGhK0+NpjEm7JNyJ8+AcgoiKc8Y7sdJS0zZ3p3fffPPO669TMz9z/sK5J981vnQpZNl0evTCy8+/8tLn69kxIjz82KNk/LVrNzWFqizniWMb1kfrqnTj2s2dM2ePj6eHx1MGOppMmnqBnByWbcIgGLt0reOdzAw3h/PMJFGH1jmCFICU0IKyruKAHm+EnucNS1aa8En1ankF+nV0xbZZxYOr9ou3hTunC2EAcN+0Z8WyOh2ULBOM380Neqm0jnpyqv8P0M7J4/dChlYY3vI8COiJYkptinlVnDl7Zu2Nq6HjLGkKQSxCbsCQCUtuvQgToPP57KB56Y1b04QJIqN27EhsKb64+E7Pedi9k+aHk24+ADXoDaP3PvPEkm6+8cbh7r2ARcozKnNjbaybeDTNRZ1q1GhyU3d1DG2G9vxwJ682bty7O+tCMRxYrwqJY8ccNQTWIifInKEIVntSr0SDRohu7+7avLi1u/vw44/fuvKq82SNAeyjIGKE2LWomDnvvOnaSa+Ssnd8SOPBi6++fmZzu7IudaEa5+cfOP/m9SuPXn7UODc/mjuBMs9u3rtZp3pEo6cee3LWpDfu3TaDMiJKhM+88sWnHn28WczuffFe5h1zarqm5cgqEQCsy7I8Cd+d7F/dve2cM0Sj4XB7Y2t7c2s0HrnSZYld23WpHVf5R77qw61IncL2wfbLL7/MIWyf3Xz4/OXMZik1xoi1zhorookTEiTtVKBTTdJTgMigQEqB1XsvSJxUEZeyJbBUZSMAUkFgVRZNokkYVNFRjuQYUK2pRoM8K7KslEYXszq0qZk3DadqUGbGNIuGjGiEKssL40/GW/8/a5zxVmmp0oOqxuL7/sqPAsBzP/jHnvnBH33/X/+xj//n/yGA/tqf+W4F/Ia/978CgEX8w//4X/XDGVT/wY/9zA/859/7hc99SgmiBAXW3mAJQABVUZlh5bGiK1GspSOBMveGFCBi0Qn4IEIaASKqqnSxnXDLlfutz3zizuHr43IIi+bMzgPrWX79tZfCou7aBlBZZDgeOzNUBefLFJOAAHI1GOR5PjmYkzKk5LyfzyaHR4fnzp199LHHMPcPPPbk4dHsl/73n33t6q2iWHO+nMwWBAiEZF0v0kiIHJVjgNyjgrGOAFKCtmmTiCIlRCa9emN/f+9v//nv+77z5883bTscDEIIAAhAxASUREQUjSROKQIyoOOMTIUj4arCM9uDRs7nubhU+y53w8PZ4ac/9Tl95/ixB5+GkEgMip8edkVe5WVelCVzQHXz48Z538U4X8xnNUdJ3ezw5u3rKXVkjGgqqspSylzWL5m/+Z/8wa/5kZ/4mr/7E7/95/6vxlhrvSVVVBRGpKf/2j8AgOf+wn/8zN/8hx/84X/y3H/+vf1Q+YX/+A91xn3ulVf/KkAf/fyN//RP/MW/84++7wf/u//hr/95yxoXdbeYg8+CyGRy7J0bDofeemOMhDhrZ8DiM8+imqf1agwC2kVjTBLJBrmIhNh1MRhH3CaWdB/OURDVJeaiaFDxd7MZWjE6l/kjEsCqnR5Wclq6DIiEThca+k2jd0ZEc7JD9PgQAhAR9sriLCJiLAmDNbaNdQjx+vUbR8eHddsOyjJzrtYooqRAxpw4dgIoGVKAFGLmnaTgiSCxz+ns9nbbNCl1EuP6eBhDZ0tXDv2tO9eLsvK5mUwOB4PRoqlT5Cy3A86znNqmQRXnDAIbVAuoMbRdG9oGVDxJYbGNMbR1dCZ0XeEdh24RYzYeFGU5GhRFkVtnH7z4wKyuVeLk4OBwcjwYVrmTtVFp8nT5/FnrikSe1ZKxwpFYCECE+x6glZdfb1trQFBVydiwpM4aBRSB3qFKRKw1IMESKofjw4N7x4fMMXUdOg+qwqoA1qAS7e7tqtL6+no7q1MnzmbWWEBUFWYxRM67JTa/2rZdhsYaTlBW49K6pqlDTAjkvFVRZ/x4bZ3IhMUipsixZekUIc+dJt69u6fz46Jri7YdHO4N9642d/cPblx983OfPvfeZy687z2fvXbluVde2Ts6aNr64oUHXr99ezpd5NZdWF+b3tvLvHvmHU+vjdenk9mtu7vXXr8WRJuQ5k09rxsVRZEmLpQSiXO5mTRdTDi/d1sP9zfOXmqbloHIGFCGPoK8b+Fyii5zfxzjSqDyJKRAXPYR64m+1duinxMZ2C+1Pj094HuX0xM/uOW/Cj2c9yWxCyLC21DY0wHNqbDsPhZ1+tNPtgOAt3TjgwAkdopgTRBdLOY8b3ayQeG8phRV2AGiWtGkrMsuLZWozCjGRzGRsk5iosyhi6pSDjYeHQ+292S+P731xsHundyWqsEAZc5H7mbz49lszlAwerVgDUrXjtCMygE3rVFuQXxmAbJO8XYDvswmw+3q4tpwY93qYiaABKYDeu7q9b3twbjMcucTQ2ziuc3NLAGBthh8louhum2Pjo+3t3fQSDksrau6KADMLKpgEFTEeTcalHXTOWc4xGlTp7vttVu33v344zHVsWsf2Dn3hTdvXb1325aW625YFGrpxt7tIvMD6x8+d34a5fb+HnLMimJUDXKG6cHhelat76xVeS6gxrvEMXJsmO8cHNRdS9aAz1hSl7pImGrZmx91V17M87woqzNr45H1mfGWvEVPiiamc0W29s4nXn7jjU9/7hM3d28+/MhjuWohDKJoTIoJEYhATUopoEEgZAUWzQm0ba3zMaYooGRSUhS1zoMKc7TWpNBZg6pJmAWZOYGQI992mvnqmfd/+cF0yoFLV1oyEWOzmOae1sbV0BhVJZT19XUAI22URg2kVdyz3Dxc5o11LssNoKKiITghYZ/oRhB85O/+UwD45T/1h/oXOKW3DXds23tXbwzXRy4zoMl7R86kKMZ7AIPGEhhEvW/hcx9N7ZvvgIlqSx5NFdEQsSo7UmNq7W41x//0X/3UL/zaJ8+dezzr+P2PveMH/+IPVG7Y1cGSz3xuyBhL125ee/WVV6oiUwUktMb1MHpelJM+lbEOAJume/DSpcsPPdR03dbmJvnsV37r53/r2U+urZ0hzaaTOQFk1omIhkREiOAMGgABIk0e7dpwkFJcLBbOmA4oAQWWxJj78vkvvPDf/rd/+7/6/r+wsb4eUzJEzEykKSXpZVQAbEpGBMkmxJgUmbJskEKjAhjYutKP3IL3jffg1OTy3Esfzbw++fCTyBE8lBvj7Y3tum7UI5HtuDmez2/dvXu0fxBC9+gjj2zvbN555d7dvbvGYQyBAGdHE1dab/3qzq5Qa2PRGJd5Bk0p9M3n/a+MM6sVanmLv/Uf/nMAuPVd33Jy08eXHuqfhLKsnaudK86e6+Ukz2xv9SayMUV1PndjG6IKeOeJsGXxWaEqMUYylDuTYjRkkNCkSLNpSNFYC4kB0DknrATY92P13J0YU9t0uNK0NL3IvYoxhpeaPX0l60R/FvsvjoQsDCiryvYqmcaEumRYw6nA6GQu9F31fSNCL5WZYmROXRtCFz7w/g+88tLrx123ubV5cPd2Xw7rvR9EBIhSigZRiawqdyGzJtbtcQiYgiFs5nXs/PrG2tpofPXqlfX18yEmToIAXdue2dm5e3e3a9u6btCYwmex7SyZRdshgnfAHGez+Sh3DtK4zIwxXQwxdCgJY2xnM0Qqco9ZIZwy40blYHtjvDYal8OqGAzndT2bTwFhHuPkcC947JpmnNudMztZUTXiwBVgMlU1ACgMBJy45/inlHr9SGNcCMkaG1NyKEDaK7pGEWc9A6gm7EmqoJhgdiwpNsJJJBI409c6CXvh0xhTSpLl2e6dw9CxJYOA1lgWtsYys3UWVI21BKgIxlqtGQDzrCrLsSo4lzELIhVFmVISa33mq7zsACVFJqNWrXOCHNt6MBqIdpIaBd7a3Lj04S8/fOOGIJntjXY4+ORv//pzt+8chDiNCcDfuHtYWpsbSx4nu4cb1XB9bX08WgdBihrnzd7ursnLCBRCYhYWdqTzdgHINthuLjvbg1ls7t64ma2/8b7htjUZATILGaN4X2UYABDNSSi+ElUFa0FBRdga35OGTy+nvWo3rMCb0/CPrBRm35Y8nAA/bysr9znqsi6gfaOWqC55jbAsi91/F/YV9FOVshMY9QT4eRv+dOrI++qLfZpiECBpCunVl1967YUXMiBnbJg1s8lkG8GSkWUHiGklOutICLg3jrNKTg0BeiSHyQgwG6DBqCoLjFtuvGlGby72bkM9QQldijFKwIFY42yeCYJGy8lbO/QmpyRWLeYd2d2maQ0NLzy4fvGJ5PKCbF5VJvN2VPqQdDgYt204PJrs376BHLfX1u8eHO3v7j/xyEO/7ys/TAR1F67eum1dZozd3z/Yunzh/MXtOnY3b91zWUlq264ry1JC6z0ByHhQqrCoEmbzrkHyn3n++WFZXtjc7prFejXMR6O7s6PCjKFuBmX+2o039o4PKu8LYw73d+9de3NrWA02RsZQN10cHk/PP/LYk5cfjfNFaV3kRMayJhHZsGZ7tDGdTxb1YtLUnUAKbcvJII7WRsZZIWy77vbx7vXQaWQvzgg5NbnzVV7kg+rpdz+5fbj9wmuvHr84OT9af2C83swXkrisiq5eWAMKUZUBte06VTTOtWQ1BgVKgk0IrAhonXcq0svHGFRDgJREO+eMy5wlbJouia0XMdjWglogUCzzSiWlOAftlGtvhXI/Wyy6EACsCilH0IS69Fz5jn/8iwDwL77n92V5PsrLD/2N/xEAPv9X/4yxpBI//0N/4j3/9T9671/9xwDw3A/+34pq8Oz3//Ev/+v/4zf9/X8OAD/7x79TQX7ye/7t7/onP9dvj3/z+75ntLH+dd/yjdX6mmoic7KPEgCBEoDT+wnH/SaCU68oADYgRigTBUIxpGCOuX7h5hu//YkvfPxzn9/cOLOVD778/e/8t77ma3e2zhp1XIK3ObMgAp60iJglHgwIDIqKzucKaIzx3t7b253MZpceebTu2lm9OOvzZ5/95K/86m+UgxG6bDGPYI1RyBxChBSDA+ONyckMKrexsQEE3rmdMzuc0o1bN/ePjiYxpKgGLFjfzOu19a1XXn/jR3/sf/qzf+ZPDwdVSBFUFURVWZYaGwkxiSRhRU0IhghEMspUIhkKoKEJ1ljbAXZB5Jhb/fQnfjEe33nP08/U84PZYZWRMndHk8XtO1evXr3Z1mlzfaOsqo1hlbrJ0X6cHu1JSiCQ+yIlmU6mG9noJGw9WXScc9ArFCAQUR9EfPEv/amn/+rff9cP/cjbDv6NP/Pvf+3f+1/+9E/+EiBulO6wjv/Jf/YXAeCP/rE/yMwvv/rGpOGt7e2ubYoiU07K3IsaGDKEJCyGLCgCoTFGEftN1Dq7t79XFHmeZSl2a8PRvbt3B4Oizzv7nkkROaEs04pxeTpSOfEI7oMURDzhZkpvDgxLrehemqZfo9+SIi950W/hMCy5FKv9ox+pxmBMLJxQwHmvCnfv3fvim89tru2cO7fT5VlMidQZhMjsrQHEvpfCWhIlTsGAeqSsKjPnuvl8NBisD4d5VUwn08Xx7IFzD9y7s8ciz7znPW9evarJTI8XBu2gHKkYTtwsuqoajNdHCYRQFos5xqa04AjXiyrzDpQXC2mJKPMqEhfNaDi0LGWW27zMyBY+21zb2DmznRclGevRcV0v2kVqO18Vs/lEQtgcVFlZksscFskUUUmEAnAvqyS4ZN+w4Z630glEk4yxYDFIABIQRcGQOJFjjqKGU6yyQiR5IDKeerU+BFhqL/Y0oSWDFxG8NWj07M7G2mikqtY5Zl55COKKLAJojBIY41JSBKuAIabcZimJta5nT6sqoomJEa2zhhDQGLI2pFBU64P1M2F9W2YTmU1S3dSJq2q7C60Z5C+/+dqf+js/Cf//fnz3d349wOT6628+dPHhMw9eTm20xgionghZAQD0YrzaF3NXX7k3dVZjbIoRFI11K0s7PYV0wu/Jx/m9H3hqXrzldVhxrN/aOwanP2z1Nnxr1PW2utj9G3cKENJT0xlWkzoxF9bu39i99sIrLmiZ54uYegspB2ild5rU1ecpkgIDM3MSVgQkUAQxBGjJACqjBjKa5bh5ZpRnfm10ePNqPTvSlMqN0aAcM1AILcQW2ha6RZJ2DtJE9tYPynUGy2bgN9aHjz3hNy8gWEVIZNRam1dZljBO5iYKtM1Olb/j0ScevvzwG3fv/uQv/Nwbb7556x2PPnzp0uTOLlqrMShriuFwf+/DH/myO4d7b1y/FlqUpHmRhxQMoXEmhWTRezKzegFkWHHeptQe/s5nPvstH/naYV5wCMPNzZv7u5esHThnSjfp6jp2W+PNB86eee75z04n0zMbm8dtM4ldV7dtWCxil1Vl7v24GsQQGZSVDZIFskT5xYcCp8iJCeb14tqNm/cOdpujugXJ82wtz23u0qhSwSIfhDbt7u/dme7Fg25QFGfaLUduWGbTo+nNo6Py4Ye31ze7pi5L/9Cls0YSp8aAptBNp1NOwqx7R3Nji3ldH0ymszpY77vYq1EiSOraubP2I1/9Fe9972NJpobAGEsAr7z0+o1rd/PMc2IVcc6Rond5OcjaxUHdHu3uXUdrqs0N0Wg9CQMgWosBkrACwE99z+9vu445hdCFkMri6OA/+vat7e1BWfTV48znL/6NPy2KKoJkFnUbI3/0v/xjMYSm65KKs9YC/uQf+/bv+rGf/W/+yz86kS4zxZ1mUnkgQ6CKDBrE2CwlADKB236JE5WTRsf7D+lHv1pNHKNxBq29unv35ZtX70wOf/Mzz37ikx+zefHwxhkzjV/z7vec2zr7r37+F9bX1re3t4w1+3u7rAEBurazpRPSpIBoARUZDJmiqBQpSW814TY2t4rBYDKf27y48ub1n//pn6OI5WgI1ikm421hCEIDqd6qivNbZ3bWN9fH5fZWubG1aYwzROPxWuia3YfOXb198+rNu69dv7s/qw1gTBxIrM+f/dSnf/lXfuU7/p1vN8ZyigAgy15dAQAGSSTIQD04jsoC1ri19Wo6b8QZBRml8h2bjxQQMpf5NRPrwNP9ya1rFXTz/ZslJaQ0Ob5r4+y9l3cGZm00HCVFQWxDLKvhF/YOpQ4+H4QA1pZZDuO1LUf2ZBFaLk+gosLM0O9qS7kc+OJ//aej8nv/2j8AACX89Pd9D791XT6sIwB8w1d/+Fc/+jv/04/+xF/9K39hfjx/+MLl0XjkLI2qwjvHKZBzvUMlIhkySAaRDNkYo88yNMQiWVl+/vWXts7svPrSS9Vo7au+8sM3rl97+YUvJlYkUhFNqS+AkQFEQ2gAyFg1xty3NwI9SSSXGDud+M28DZ+/z9lcXQ3pB+FbY3R9C+C/ynT7j+pbwEIMIbD3/szOzuGVO5Ojw4ff8Y7ri1lvwBRjskSiS9t5Zgkh9P4BhfMSk7FZ6VzTmdQGyqSdSTNvibCtw6haV4HDvSkku721XS/q3XvHTdeCQFUNnXXKFAJzTF1sJXUFSWZtRrAxGloETsmBahrWXZ0SC8k4y4q8KouCEKsyr7y1gB5N5TNA6lKNMU339iXLj9pGKRXkwTgmB+TR+tevXH/x1WtdTNZnvRk4MxPRkl4uGmP0Lk+JQ0wqAJ6iBocOFVNSIgocEGFQ+g888/TYl0wcxbMaQDSAospJjUEga4zrxcFAkBC8I59xlkmMkaVLnFipyHMWJjJd6IwxHj0ncXbss6zrUkrJpMQcAdg4B4hkSEXJWBYAMMY6DsGg02iATUI8bAHtutvaMNsKHFOMi8Uss3h7987PfPb5PwjwnZfW83Ko4qosP7u+XhnJNK0PK2PN+mhtMBgQmRhjSnw8nd872L92585xXTNRVlTVqBRKTdcd706tyVxR/M8vvApizq+fPTo62r13Z/vSRUABUaVlBN4LCfSRPSCceKdDz6jSFCJnPgc8uReI2OvJwYmu1duCD3wrqfkk0PldK1Mnz5ev4JJp9LZjljNi9Vz1/qe87ZwnU+nkgNOhTx+envx2ObQAYogH12/7Nl4Yb968t1dzKkblaDgsjC2UHFoxRIgGackSR0iJWZTQoBgPHKEX2U2m/xxURoHcWD8eV3k+XG+Op5q4GI1sUbWqEVlip9MJzyfSzUVZRYRMpAJstbaxbXfOaFVEwN6WigEY2OZ5keooioQ63hy/67HLD5/bSSlcvnT+27/99//sL/7cr/7arw++7VsTwsHRkSlHlS9DjE1dH+zvu8KAN5PJcVWMUogxxML7PrbTmNYHo9B0iy6WxXC+mBLR7vH013/n49/8kY/kWTmoxunenRTbvDRSuMV8NtxYe+DcA3fv3ulCvb0+Gm+Od2D9uZdezi0Vg+HxwWHsuqHNC1dYdFE4ce9kiolwGkLiZIypykE1GJ45e342mzJovajv3rs7nc/aeccQE8sszbqYWNQZbwY2arp+7xYnNcbacdktFq/t3pxzZwmOmslgc7A2zCglA+LV5COPik3d3do/lGQ6QVcMLp3fdllx8+at/cnRIM8R5IEzO2trQwZ0eWY0Ew6icTQcra+Prl65lrk8JVZlQxRTcj7zmQMjgHJ4uFeH5rwzg7WNugnGOJflvuzCEfbGAU0XDNFobRMAmqYNbWhDPJ5MU4rjUeWciSGIKoBp2q5uuuPJ7Ph4kpittd5lSVJZFHmRYVQAMK0Wxtfz+U/95E88+PDlovSWiKIQIAEpUOgiWntC7j9p8wTouXuwBE0VICa15srencO23l9Mfv5X/01noY5hbfsczxZrmL338sOvf+Z5bhSUkg03prestSIpSUTRLPNkDCT0gAoQmRGJyJZFYYwBZmuNqlZVFRIPx2vjzfWf+smfObp3uL12pmGIKeXekghJ46A7f3b9y9/zzNOPPbG1tjUcZkCNqmRZYYBCCG2Lgxw3xvnGaFTkxRevXN87qkdlNWkashgk/eZHP/ahr/jQ1uZmStFaI6qrZiRAUCvAKbQSk7JnZcXb3Wy4Nh6d3yjLalBWYzN44r3vmsqkqnJlHZYlsBKYqiiZxTg0BATJggfIl5d16V1QdDz9H378f52F7vzGmfnBsXqbu5ITT+ezfg1KfAIFERGtlHUEVAng6b/2IwDwue//k6uD5QM//E8+8X3fc8rmefnYP97vn5w5t3P27plyVLZdkyJqirl3RKBdMN5TLweDpm3bIi+Hw7Xd3X2XeZd5MrSRZaPx5rWbdw8n9dp4uH88LYuqFz7HpYybCKhZwu9L6sN9yL1f0Jd2QstABXq8qEeMiHBppQInNwGwl+dcxkN9gAbLm7SUWz+pgp0UFxABsDewWYbsfeAUYjAE53Z2AJg5GoNIKAYRl9o1qho5MrN3eX/e4aDMjWnrBQHW80VTIyANR6PhcPja629cfOjhoijrlEbbO9duXVfF8dnt6c2bAjqs8m46O17UQ0z1fG5JLehvPvvc2+/N/6nH3/izf2jv4MCWZu38JhjDvWKFdW3gO7v3rM+HgG2zcNaG2J1YWvaFki51XYhFXs4XC4iUEqPxkpTAMFGKXRcbaZwDMMwmRQoBewVoIFVSYaGl2RsIMidCC9CLKAlr17SLxLyqasYYo7Wu7VpnrWreBRF1eeFCCMPRBpGtm0YBbE8Xsza0LKJExBbQCXNCQKNoQA06BujVZpkBwKIvTFZlRfbZ3/n063dmAPAvrh72l+g//bL3Vt5I22aVt5ZGg6rIfe6td+79f/dH+2P+t//L78udu3LjxqSpB5n9b3/7OQD4vq98xz+6eu/kUv9vAH/yD/2BMxubB3v3Dif7Z9fPcAho6H6QocjChL2hKfW+TKqqIGSNA6ui3tsuJABGdP2E7kWN+4B9ySU6FWqcmHydDlNOF7/eFgadHNA3na08TPD0wb3Y/fKEb+3OPwm2Tp/55E86XWhb/f4tCJC1dnF4dHxvj2ctN2Exm7WFz511RW6UUFSEWQWFCClJz/yDKCIKREaRVKU3HRLgfpcnVEFm5aggJvMbDxRjEFVBYGRCzZxHATNuTQxGIgCgISIKSYUyqobJZXWMpMmSIqCAAKBFJo1sUB57/OHHHrmQaduEI40iWJ4/v/77f/83ffQXf+nnf+Znzj71bptlxvp6vsgULNDR0UFqMGhAT9bZ0AbvfO+DiKqSYlWOh8Wwbo9ms5pcXretxBbh8Def/fTXf/VXba5tFc4dzA7KjWrSzWJot9c2do8P28VsXBVVmb3r8UePpu3NN68dtzWBCW27d3e32D4fAzOIKBjrPFogbEFVOMtLAAgsGgUBIOHaaHRx54FzW2fqplbQJKnp4nQ+b7pwPJ/d3bt3ND8K0qEj6z15V1TV2vYWd93tg/2qyNaH1bW7N9rN4dowd6S9ahchak6u8NNJY0y2vr62trUhSBcvP7DZbPQK6MMy59QeHe/e3dtknlWDXFK01gzGgyzPJDIodKEDm4cYsnIAZGISAbA+K4yNAoquHBSiGbBB24HJGAQAWCQvqqIowJjBcBS6qAIxdsfTY5VUll4lkfUiPJsvmqYT0aIsBSnPMmNtvai7Llrn+jZLDUAeU0gvv/Ty1vnts+c3RmVeOSttAIY8K4tyGJlgmZAv69jWOUNL1zNdimMjK0qeZTev/vkf+oH946PhYNRMjjHw2bNnnnz0mfdfevT3f+Tr1/NqvLWTVUNEG1gRiAwRkUE42Lv3wgtfjDGWRVGHSMZibxPtfFmWECMhllV5dHREPr/40MOvvPLq629cGVRDSeLRCwupWOVMeWdz9GXvfPyDzzx5dnuH0LjcGFuyCCpqFCLxloKBQenXhvlDD55bRJ4v3miElSyS8YZeee31X//N3/zDf/DfFaE+mUspMrMwQBJIccHNPNRBYp4oQ/fclRef/cJnhmWxaEKsNdOcnGuRFZgQvfWgmnlvDRhClqiQrDVAwEQJSVWrojBIa+Xo3u3dN+/t5lVZx2CcbdoFAam6+WLeb+zf8A9/CgA+/he+J7cZoXnnD/0dAPjcf/UnHaFBfPG//lNP/dDff+9f/wcA8Mn/4o/3Asgf+uF/0q9WP/3Hv/s7AB4+O7pyd/r5518FgB/6b77/7NnzixCmi2ZrYyO2XROCtTYzrg5tlWXkrUWjgE6zvCxd5jd2ttquUZAsy2xmQxCA7IELDymHFGU+navisq51ShILeshKdClJeAqoX9lmYs8LAWUAVbjfbLhiP6+AovsFghMVk5O4/ATIf2uWvHpORMJJmBHRWpsSN/MFcApNfePamxMV4YDioG/QFQFYAmssElMqMu8MDYdDaZujybTMfZ57ESRrDo8OACnL/PUb1wRg5+yZkaa8Km7fvWNaVwxK5xwjg4PC5grirN0YV0e7twDgL3750w9sbeYERsQRFUWhSNP5oukatLA+GFfloMgLZ22W5+Wg6EW2AE2KKYQYYvdVf/sfW+M21jeTQyGrSCmx8YbIpJS6rnviyafe9Y4nJbbQB8srlvp0Oj0+Ph4OR95lSEho0FgUQEEQBEW07nBy9Nuf+KhDMZpQGDVlBG7JzVr+1++yklSFObH1zhACiCNnyGRZniM6Z1NKzvtgoyGy1hhjnTNk0RiHiMzsvaub5vBoWpal96WIWGMRpeuCzzLwjlHUEBgAEsNqEZwhdFYVuG84FLXezSfzj33sE4uW+2r9d148+y9u3P07n/7cX/rwuzaGg/HacFDkmffWAaG8/2/+CAC88pf/syf+yt/+7p/6xZ/997+zyNxLr7/2Nz79Yj/iihW77g9eOvsT1+4CAKsUmZt18ytXXhk8VQJr4iTCJ5GHMIsuWdA9A6j3hCYCEUmso+HYmayv9awiG1LtESA8iT/gFABzEpqcvPK2SOiEs/yWx2oCvi1qAYClLN2XlLrgVGgFp4KqL/0DVgFZb7R7cjykEL11ufMHe7sl+uF4tIhdFNa+k5poGXwz6HIEESMmVUSrsqoGoqoRRVE1/aTvl2MEB2CDojEWAJU4aVJYGlZRVlE+sECIyCBdSilHsDaxchcH1qKAEiMtI1aLQmvV2tZ2+Q1f99WYpq89/8lSU2Z8gNQ1+uDZrT/8HX/g13/jo7/9iWft+laMCYIYCynG4Whw7ejOvKktFfPFwiB1oTPOoYIwly4nhY3xxsFknlBTZJNVMcUmypUbt6rPfu4D7396vRjcmN4cjjf3X7/6yM5FjXJQzzLQB7c2Hn3kIdE0yLPtzY39q9Msc6C4f3y8Pt7MmSMKqzrjEI1VKhGDJgjKzMYaBeOcFYLQpug5dAmEBlWlqptDn13IfJZ3MU6nx4fzg+P5ZPdo/9rdW3cO9hZH81FVveeppwdPPvXqyy82x9Mzly5ePLc1nx5yYiIFg2ht5mlrq0r1VDRNDw4mx7eaKHlZWYuqmjmzmOylUL/zqSer0h7NgazNcq9Aw+HQeT9vo4KNHNG6pDzIfZ5XRMXh4WzvcGqdu/vGLX5zVxhEs9DpOMu3fdZpAADrM1E4PJ7WdRNjLPISAasyV4W2ba3VoshYZG/3YFo3RV4WZTmwXgFEgYicyw4O9hOzdQ4AZtwGcI3HSRNvz6bf9sxXltZCahfz+Zm1s6xC6AByACJABWBlxCVPB5fTiTglMCqQXpve+uT1Fw7a+WK+cHWsWJ984BIwf8N7P3j57LlHn3qCgFBdjEyOGAUMJG5JwajM2mnQgBYjKXmnisKJECyZQVFO6l0wVBT5tevXKfOD49Gzn/pE2zajakSQda3kaCSKkzSw+MjO9hMPPbC5UeYlKRixiD4DQWYhEuusGqwcyWJhrPV5vrOzvX73sJ3WWVl0XeeRQhc/86lPf/M3fsP62ijGkFJs246ZRYSTsqQu1PMwqSXlkfJoHj938ejOzVdeeXG3bo8mQY40xMhOuhAceQADSogaUwvAiICKoWXolQ00AAJwBNB8OLBknMnzvOxSR95wEkQhp/3a+tPf/fvGawNbZsZYUFCVz//FP83AtLSkI4P00l/+cwmARV3mQfGT/8UfVxFFOl7UvXthNVgfbm4i6pd94H3veuY99/ZfO5yEs2fHk3ly5NfWtji0o/WtzRyTdE3T+CxHpJBi5KAoaxujKGVKyVqDCDFws4hl7sqidDZfLBrmE4tN1aULniIS9b1FCgDQ98DbnhHay0b0MqErP8PTRJ/7/J9lFgtvE0K8fxDc3wyWQcyXSA0RkXEutC0nKfNya3NzF16LoXVaHh4eGGeTJElijb3PjOjLFYQxRYl8+049KouiyMu8SCkt6tna+npRDiaTae5dbk3d1SNvXGq7tt0q8yZ0itDVzXy+yLJsc2sztl2dUDlqigDwNz7xfP8x//TbvtIDZkQuz6s8b1MnEDdG61/7I//s9Lf44l/5s4jwzr/0t/ofP/f9fwYA/vwP/y+nj/n8r/ywMEsXnCUEHQ2rrY2d1ERQAVRmEUmGsFvwwb2rForkMMb0wIUH8mGhAJCAFEQJnF1oakCNJfZGCEMbW4yCbwEbTt8yZiZUA4qqMcp80hH1ot4kYojMoBycNum2DgAyUfXeE2EI0XsvIiLadZ0pDRG1TWet975MMfbKUkIGCDpSY4AQqA+4QtKUBjm9/vqLd29dP6mgnminZRq3hvk4z7xz+v9m7L+jZc2yu0Bwm3POZ8Jd+7zJfGkqs7K8l6uSbRkEQrMaNdN0w2pg0EL0YEdqgQQs0aDRIKCnQZhZmKYbRGN6QI16hLypUpVKVSqfrvKlfS+fvTbs933nnL33/PHFvfmySmvW3FWVK17cuHFvRHznnL1/+2fIQvChWA+Xq9AjMbA9qiej+g//h1/8O1//zj//m18AgHFZ/MVve8/enUOJsX/M63t3twbVSuLNz3ymrkeMhDmbqoExMyKpymk1TmsKNCKaoiGiCBzsHVy8eHk4HIvmk6IHABBA+yALeHNp8mCh82AJAg8UKw/WJQ/ef8JBWsM/+MaXPvAjb6JdP7iOvnIQdpILfvrIXsKp9gDOLMqGbdehdxcuXj5Yre7cud07xItDcCxoBfQpjU7QFHMybVUEQKGn74mAAqlCFgJRsIwOatI1+K1B1cTAgCCAA2UkNUhmoMYJDASU0LzLloFTwVAlDdI1jInXDDYzc1uDccX+3W9/6tzZc01TfN23fOckVKUrEnG1s+EH1dgN//gP/PD//Z/+w5/6p/98ON4qg5svl2cuXnzrW99557eO07L1dXDOdauud9FzwaPaaDgclNVgMEoQX7t114/GAJi6NmWpHD3zwtPjraoejoc6MVQuud4cze7OuIVLW2efevyxHBuJ7bCePHzl/Ct3XgNHrcgirUQFURHIMIuJGKKiAq/bSjNEdp4lZ2IKIbBzscvL1ao3oWKSZt4mOQAy73i73rh49tKHtie392//8i/9nHYr5/nOi888+sijH3jnU5/4+Cd++Vd+9Wu/5j2XLpyRrKKZGUxiEUJVODQtvO2eufDY2550ZVWUpQ+OATySd4aWs0ZwbrxRZ8sIyGJlMSjr4mh/RlBKXIa6Uss++KqukcN0pV989jVVaKIaOkAPBpD13U8+Ue1ulYEBYGNzuJwvDg6OZrPlYrmqqmo8GsdU1EXhyTQ5LKxbtQA2HAyaNh3ODpIKGHgfRoNBWQZGXAeDAqxS12JOA3/3YP/v/sN/9PyN1y5evfj0Fz6/OZz8qT/6JzaKISYlcwjYdF1SHVR1bBOY9YdcImstC+PR/OjOvVsv3Hjp3/7Mv7//+p13PfrE2y4/8uwXn7kwmHzrt3yzI5wfHz/z7NPL5QJEnHMpSzbY3tk5ONxvmhWKENBwOFahtl35UGPPA0FHzrkyJE1FCAb20JWLUfEzn/7cvTtHw3qz8sV82SqSJSkc1ArjgBfPbO1ubVZVVQ5qQG5V0KFEcczEmLpsjCrASOO6arq8Mx6cO7Nx5+iI2NVlEZtFXYbXXnvtlZdf2/nA+9q262IWyaqimoGICJ1xUJ/zmhWkXX7/29+LSeTVVy0tl6uWHUIIw8pStqoapi4hGfEo55xiR+gmk0o6jDEhJiAzyJ6ZRYsQWtKsyOy9o1JcwbQ8PpICAcAVPknWiHUdFFmViamuxwCaU8dIhKS9ny8ZkhMRXw3mq+Wy6eZNRCAAGJej0sVs6cz2zuNXHiLm+eExom6Oxq+98OLs3h4RTAZVWdZNXLWrpUcqyxI0g7LzqBKDp8J5URFp3/rIpYcupLouwbQqPcu5u6+/bCjQlzJEpwPEvnIBQIM+gs3MrAcO1uRLABCzftiLDimB9puvGAKgYu/j058K6xFY7w3Usyn1wX2/x4fUjHHtRtpDuKZgaqKoYI7w3M5uesuTR/vT3Z2zh2LHx/tUFKEKmoUQGMwRARgj9rlkjqhwRKpt7BY5OecGwwECFJ7BsmpXl+VgtNus2o2trWxSFhCa9PrNG2UxPDsqDw4Pp9pUZQWpW8VlXazt3f/J7/vwH/+PH/1DP/vx/+17vxHRPJEviiFVBlqWZX+mPP2j/+3b/vpPAYCJvu2v/RQAPPNjf+Gpv/q33/03/h78+E/1j/kj3/fh//nffhQAYobCO0BExqQp5pxFUxcBwNaTQDDVrc2td7z9nSEUMaaiKIg5xWgIoIQKRgwCWVKPhHUpVYGBAJgBARWFCAgdIpFnZEbMCmYoiAKoGZh8KEtQW3Wrbr5QsCpr7KKohlAgghnU9UA5ZxEmD8CE3jGIxpyTqsUonjyRaG7IAvR5cLaeTkoSBWTLSERAwABqhPKFz3yqmR5JMezfluDWVc7ZzcmwLB0TmnlyCCCSn/4r/+3b/tpPXfmRvwkAX/rhH6jq6j1/6x8DwNkzZ9Y/bjYgHwfDf/L0qwDwPd/+9cfz6WJ+2EiuN7euPfbE7s6utgs0VDVmRHJgYJQNATIYGDOQMRInicH7xWL+md/5TNMsNibbIgmg9wg1MAUkADJbI+s9NKpfPcPuO4GTEu+rR2BvfiicPuzB+gaR+3HwSdLXm3AdeHMhBQDQL2LqJf9gsK7t+siaUwTIxLz309XhrXt3MpgvQzw80pQhq4CpI3Wg60LZIxNBNkMTyEkUtScUkSGhrt+QfithImNbz8nVTJTWpr7au28SaG8riKp94pxKNiOH2If/oWYwQEc97doMwFzJ/rFrj1y8cHm2XJ298tATTz6lKwpccEl783vPXn9ue4jvfueHvv27f/8/++l/zaDoURwJF4dH7fNfeilOu0mJahHJgi9i241G48nW9kZZl95773c3q727sZmvqnpU1WWz6hSkqOmXPvax81cuPPnk5ZiW1bC6NzvujhaPji+84+FH4nJVexc8ZclntsbjuthbJefDsm0ldyTKgBnF1mlZFE3FtPdaT5ZUNZQOMvSl73A4dD4MB6PgnYkRUpQEpITWNTk1spylgR9sOn9usvHWdzy1SPngeDaui+/6rm//5Kc/9Ruf+PSTb338fe96R4otgjg0x25jc9uXB6ltJqPhw1cvCUMrWVW9KGs0kQQ5QYau9T4Ik4oxoCGGsvSFY8HcLCdnLxy3HROOx4NkaSlucRQZ2UGvn4yQE8Rup3IBEvYaSIiOrWDa3do8u3sGEAejUWyaoggmsVnkimk5n4FRWRdHy2Wb03LVpJjretA07fZkvDEZqaWcBQAYsfSOjQqBK9tnfv7n/j/Rw2Bno6wK9zP/yze9+0Nu2bmUq7JsU3r66WcvX766u7ndtdGHQIV78fbN1+f7C4w3bt/5gT/6J5/58tP53tH3fvAb33btsTNbO7Xwo295TFXOX7oavJseHROqYwHLBDIsima2V0CuhoVjR+iWy9aEhkWVVNGcICogOM++dCEoZEIblL7m+vNfvB473ppsWReJUFi/9NyLb6z2Z2/A//x//C67wP9/X5cun9esq/nixRde+OAHP8C+wJQQEaAPVbachZAKKlRUJAkqImWAp97+3r2j5cGdI6IEBjkLIgtYzF22bCKWFACQSdXabmnCQGRAaqJouWt2XeWAknehKIMASBqUpcZueXB05i2PAAA4iBJL5ZQlSVouF8QBj5cxNnXpB0UoiwIRLa8527f3927cu3t4PFNAx74uagAYFb6QVA5DyTLAXBRuXBPocmu4s/3kY967mGNRkErrCUd1lWMbwQZ1FZxfHR+ycxHBO0Im5zzCoihoMT3sYloyxRTdemcBZGTHItL3RdCLu4gNoE0tIAgIMqoAUD8n6KkPIEAICsAAsu5ZAZCQiEH7jPc+cWYNCAFgT1hGhBOzRDNVR6QA2nvtIpoZszezLJ0yYuW7w+m9G7du39/PTYY7+92yKThgCCJiqKqAYh7RVFSF0G2Oxovjg3OXLsyO9jV3G9s7YlYPh6tm1TZNVZVNF+dxMRmMinL88s1743ERnG5v1hWdz62Ox1vntyd7B/frYbk9HO7fu1OeoA6n5xJ5R8zEFLwHx96zc/zFH/kBH3xZFevz6QTW4lCcXrf/w/f/58/dfAXLtUY6JqiKwoCzZgzekA0AqM9INgMhgiwZUDY3x23bVbUfDQdt1yW19VgG0UwIgMlKz5VjZ0AGDp0pqAgRmnOIiASMzOBMsyQh8sKcAdAcoivLOqXOW2iaWcpdCK5dxqZpQyj7RBRm76uAyMC+adS7Yr6a1VVAUDIXm1gOQ/AQ47TI3pHPKojEiNLnCYkxoakpCqChw/3Z0Ref/qIzSHJiHovrAmhYVsCsogGZ1RiRyfXV5Ms/+aPXfvCvv/0n/sHnfvTP9A/+Q//+l/obf+5XP/+3v+n9PJ6sj9scUXUW2+Pl6okrj4n4vYMZW6dJRbQIrEBiGHWhkM6fveKJGE2jgbrAjhCqsmSnPrAZm0UiQuReaIzgiJyq9MUNAhgovpn+b2YA+hWYzanC7sHdjIgA7MT48I15We9B2vvnAiDaSfDtA78FvroAAgBQNV0nqSJAHyqn2nucshIAGKsYYgjb58+t7uwdHh62TeMA6qLwxMyshAS9hauJCVpmwyhORYHByFCUgHseGSGbWp+yli2d+n30zl/MhLg2IiZDM2egQAhgGcTQuHdHNQDjTGyOQcUZkvWWv+DOX7569sLl8cZWJ6vf/tRn//x/95fjXMf1eBmnwzP1aHc8vbdwXB610/HWZrtqm26FjEez6c//wi8cHhxMtjZUddU2ZVWbGoqB4GQ4Hpc1qKpYVVYPP/wQmL9zf3//YBp8sYyZiqqx7nC+cs6ruIGUadFNysFbHrkadSW+k4B9KGFVhdF4dOt4DzwnTaqChA49OAA2zsTonWfpEx7QiJCZetdiZpdzRkbvvaogeU/BOUYlIGWA0mPMAEioQIjdYr6aLaMrNiZnmiZ1i/Z97/16x6PPfO6zkMq3v+2t08WMFBCSMyiqynI62t+fH+6H8aCJLTtH630cDJCcI7R+ZbJzZChmPoRewNw1DQAwMgJ6xoLIJDOSqSj0XHr1AYFw2cw2BixAAOCYB3VdFXWMYoaD4RCJ9toGzTwHkNx2EQyS5KA2rod1TSmJqqFZu1pVZVFXVZcgSQKAFLutyagajX7PH/0TD7/j7c9cf/Zv/KP/5zEnN6x+9td/6cuvvfTUtce+71t/z9uvPllycfPm/dWs233yyuaZM5PtXaCQn/90fv2Vf/6v/hfPxac++flf+cWPPnr1iR/94b/61oefWiym3/P7V1yEewf3H3340cIXklrHHjmIKpMz0yzROwbMDt3h/ODzn/9CirlVYPaoYBHElIiLqspmGjOjeSoWi9V0NvPsc84OMYSQcwcA/9VjFyvTt117+B1ve3L37LYLgYsQXABCAWE1VFCVJFlBc4pxtmwWqzbKMnUv3rn7iS98+c5x95tHRypkhl0bb9x8PbYdAhYhpHZlZkDUGw4DZCYuXOjEUkpAoCmXZfmhD34w5/y5z30BsWBA5xxnnc8Wo/HIjLrcIvaERDRcA7QETMyaBQGxCM4H1JSWK+9C2zTIICmVMY1GQwBo244deNF79+7f3TtcrRIYzedzZL104fy53Z3drQ3PTsRMYNk1h8fHWWRnd2dn+2xMcTGbA8DmsErL4/Fk+9L5nWZxVA93BZoMzlxadMesTtHm87kedYGZ2ZlYbjszSL44afBE1ZDQeRIFJPLBE3sxzWYKqAbOOTEVRTNyjsHEBBSEmQBBsphZCAHWPM11v6um2Med9GHX8Abr85Tq2RejD9AgTgjUvZTm1Pf2DeK+nnCg+3uUGEwUCbu2ffWlV46nC0vQdFpMxk606ZKYMiAiqyUD7JNenGPTXJZ+enxUOBe9WzQte7/Yuz+ebJ45M9nbu98kGW5vFYOxC4N4PL1/cBybw8vntqtycOOVF8z4wqWLt+7ewmWzs7VFoGVYH8z+xJ3FOwYyBQGG4J0B5Jydc4T06I/8bQB4/r//c8T87F//C2/90b/9xF/88dNzaXdr59bhwd/6d78GAD/4p77ju77pG6WqkIUMS+e9W0dPE6GBiJioiugrr752//69Rx95tKqq4+l0sVgVdVUNalAgQlFEJDAyBQBe57WZqAka9sRAwz7ssP9oAAFOfZccs0ieTqcxtcxcVVUQx8z1ZDIcjvszmNmZ2Wq1BComk53VsjmeTkW7emvDTNuYCaHrOkAwgJiTc0TM6+IACRBzEkIMwQNAlOyIDw+PDw4OuHDs1u/q5nBw+j4jAIExgPfOO0cntjqnLgohuJd/8i8zweHB0bt//KcA4F/8vg8XiH/hlz6+Lgq+7f3D8ShPlbRZHE+71JWhRkFF9mUp2sUUXVnHZXr5lRc2JrvmA2jCzO1qURQhFE5UkLD/1T01R0SQgB2b4Nq/Z23xsGahnVLiTklCD9oLPVivnN4+AXLWTwgPzM5OzIROFhQhnRqOfhXr6E3TLiREAyYAEDx1lF4PqN/4s1WH49Ejjz0+felGXiVUY+rTUvBU/ykIYD3+pGAsIklyFhMEBHSASKBqCcBOmp2e7Q5rPLmPkzt5rbSGzhhQtZ+kMVBvT2XaF3u9MSoTnmTBEoLb3D1XjTbu7R+5isC5L33x2WYvDjerxaK5+s6z3/DE1z/7zAsvv3BjvLu5tb0lSZEop9zFeHB46IuATL0ct58DD6tRoKLg0vuC1JbdKid99JEnHnr40Zdfff3Xfv1jh3uHoSzmcx1v7BJrTBqKCjvGRi5fvRKlm6/26knVzjoC71mJitIHT0wGMXV9aqIh9umcRVExcu7LUDtRj4D1kJk/+SJyi8VitpgPywFSsY79Q+xtagnAB++ch4Sz+eL2/CCJJlVRCKEaDyfvfsd7nnvu+Tu39x5/5NHgQ9cuL+1uhuDNO8jZulwgS/DoPKw/037EaC4AaFZCRm8pEeJoNAIAx65pIgIgUorpHW998szGBMUcsYECkBEREZqQxEngxcH9pAYADl0IXqKOxoGYASmmfGZn2xE186Vo9kXlFVaLhYkVwQ18yS6oqsbE25sqAgBVUcWUAIBZXI53X3j+rZcvPnbtLQ9fOvuZz37iZ37zVzHgZl2++MqXb9++0S4W3/X133Lt7JU7t26N6tHB4cGXb90otrdfvPX6pz7/O9Pp0fG94wvbZ/7ZP/gHW4PxH/je79nZ3ZrND5h5tDFUxMv1peliimqwJrwVCiQ5q9pgVKWuWaymdVVNZ9PVKhE670oTMxPnUY1yhBDK4WDSLaeIwK64eev6atmMNkf9mvDOk0QA+JcvvN4v0U/9lT/DzgH3iTQMAJYVyBHalT/5l/rHfOlv/5AR+bL42p/8h/09n37yqoEAwO1b6+f5yIe/rouRGQmJHWfJkq0/B0SJmcH5nHPOGQHKsmjabmdn6xs/8pG27Z59/qUQ2NSYaXM8jjGlnBx7eEOL1GdDYDY5yVDjjIA5Dhyn1E6PjnxZxE672D3x0CPDwQAAUs7eh4PD/S7KpQsX6sGYXVgsl6bJOWQwYnLeq8Q2tvPlghCGVQXOHR8fmKojBoDz25ONir/uQ++9cHabTNpmUQ+qeTs/Xh0bZ0CbLeeIMKxrcOyYqlCWRRVjAsPgS2QIwaWYY2qbtt09c0bE2rZxRVGGIMuF9kMscrAWrJEKnjCXERGYnfd+vWOs92g7JSnjyTzspOA5Bfbt5H/9JvsAMP8As+FB4jMh6RoSQuhhJoAkGRGZqetiWRa7u7sq3C1jXQ9pvHnn4B6zk5QQCYHWwfb9pMBs1awYJCGo6GiymUWJXVXWXda8bF09KKUqqg0I5c3bt4bj0WpluQ3oB6Esrjz2aGrj8Xx+5vzF6fH07p1bsVtyNVq/hhNxXwhMTEYGaMhAQKronGe3PqeRKTAD0Qs/+RdF7Mkf/on+/nO7Z89Pj/rbqtp2nfNMjnPOmnP/SgzI1okphowOC0Q6ns729o/qQRvbiMS7dYVAamprDyfu2YNEnsn3W6+ZIumpUwESEvUmGrruzsGAtD+de74X9Xka2DOr9JStxY57JYVzrlnNd7fPr1YLcoPBYLBcrkSSAqSUQ8GInFJCcMwIoCICiD3LO8ZIjEwMAM6xiq3a1Kq2semlA3/nM18CgJ/+nm+o64AG3/k//UcA+K0/+1/1c5Xn//qfe+JH/4dHfvBvAMCrf+ev+OANVI2cX5enrvBld5KlCLCxuTGdLcK8HRbDuGqJYLQxksYTeOdcigsWYVeIVuyYiMBsPp0Ny7Fj7rqOHWRJ/fV/Ks6CtS9oH22BD2CCACeFy+m1TQR9y/DVjOfTxz84xvrd51kPPvJEbfDgw04f+cAafKBK+v/5ZQCeuK6qLkabLUgB1RBR0bxzAZnAxASRABkAgcn6yrnfAAyNAJANDW194JuuF7gBvVGUKZqZqpJDNMY+c5f7mu9ERrfmDCIhqgohA4CqEQEiujbLJz/9mf1btx9+/FI1rt/2zrdhIke8v7x34bGzLcSO8uaFndFwfHBwWIRiMBxOZzPDdZWhqoNB3YNijp0zp1EWs0UBvDmeaE1ZYTZf/MZHf3N//zh2kdA5KqTNUOM8LSG4Lrcx0b17B3H+/NbXvWeZ095rBxvF1qj0na0KkLM7289evw2sbdsZGDsH2ucKn3j29YCWZnjggz+R2q5DiBVUTHrYz6FDFE+YRBGRCYi48I4EN7dG4cxWGxM7NqCuzb4srvmLDz9y6ef/0y88f/25b/mWb9nceEtqjtrV4erokNTiatUti0VcqHdZBQUQ2YCSSgBBy+ocEWPWegChKMyU2fVmGMTERJvj0Ub1sGNeR4oxxqxAiKYFqqxmaXmobQMAksAxmEFwzjuXRdCR88PFfNGsVs5xzJAFJJvzblCWRK7Pf8iMKeVQlRSoabt+DTXtcQzEEJ/90mff+qlf3W+W5zdGP/TH/9j92cH11175/LNf5BCe/uwnfvuXf+Ha2Us27e7f2fvy9ae/8PL1Y0hLlaZtR6Es0d176WAy8E8+vHN2xz/zpY9jBgNqY3TBZTVm54nYIHctgLLrIQoaTyZN0y4Xy5x1PmuuXXsMIeSEhppBiXquAjhXGHrAIgQvoq/duEU+OO/aVaxcSczOrYkU/9e3P/L3vvTSB/7a//jC3/sxYEJE6bFRIFW4+v0/BAAv/8Mfv/Yn/9Lb/8Lf/PxP/N/e85f/LgD8zJ/6g7//7//rf/Xcax8+d6l/nq2d3cP9vd/46Mf/j5/997tnttuuDSHknO3Ep5iAEBE8BAmoFlVSSmXpZ7PZeDT67t/7e4B+/rNffGYy3MjJGNkTulCoKgBrf36gIqPBWu1EyMwcxUyzmx7XgdWidFaEqhpv7O7u9OMP53zXNCqyMZmUVVguF8fT2XA4QIJmtRyUdexiVZQ++OPp8WqxYMeHB/sxpUtXLt+5dX9QVgCwPRx8+0c+cu6hh7pVQ6a9J48hgndqIGha+GpQQ11GwoyoLmTHjSUw814AoPIeg1MbUCxak8KXgSirEILzHplFjQRNkYh70jwzMeFpotyDGysAIK0NDt/g75wQKvEk8rqveYgYEdZhhQ9s4r/7LmzSBy704hpDYERmEjAiDMF3ZovFIsVcFGXKUhGnlGJEYg8Gtp4LcB8NwUyW4tb2FkpObVPUdW5aRc5iq6bxRXFu94ySuz9dcJpOV6ul5K3NjSHy3mGzL4dXr5zbP3ztzv29a9ceQ5xF6QDXMhyAN2KMiYAInCNkMARG9p68d4/+pb8FAM/+2J8hx2b22A/+BAA89xM/dPpiy1D8hX/wbwDgz3//dxGjSlIVE0KEwMR9h0yk/bwCiQjVZGv7zAc+uOV9WdW15Ox9wPXhgaqGSI7ZOcccHHsmz5T7DROgJ10poOt3XEQz6GPprM967ockzEwQ1MyyEiGzI+di2wGigbVdR8gcCE3u3btVFfXuzsZitVAz7wrCLKJJhYwV3tBwwwkW4pxTtbZdIVoIBSI6ZOmkibk1zagA8CMffPv2YFAXYWvA/dv7i//N9xS+cCWbZjAG0+s/8YPOOWLHzC6EFJNqUrDP/tU/U0+G1x555PkvPPNPvvWDL9++/eMAwYeUxLsysGjSpllNF/N21tRFLSJtOy2KEjEeTQ+LqiBHzvmu7SAt63JY14OicNpEROjdsE5PK1hrunuVlp66QuOJ8rx3xwawvgDqr/0HL/ivXghfgQnBm+Gc07Oyf0P5NInjzWzr0yfBN/y03niWBxuP9Q+uQ8asS7GNqci6MZrEqqomk6IoCAmzIps5H1/0jwABAABJREFUMqD1bwdUVTFFYnLrLCZDwN5UuI8OR+o/dtV1xE0vMlXtc3vRzNB4XeysW6b1H0y0DjLQXoIGBmszDnBnzp45uHdfNB8eHQ2l3d3ZOr4/Lb3brTarQaEoXWp9UYECg2uWLQFtbWw27XKxmJMzEGWjQVFnUYdUsHfoUpePp7PYtVmkjenFV15tovhQLZtmOB7GVYeqIKkaFgfzWRV4ter29o6ObXrx4rkL5zfbRk1CXU5WeaYIZ7bPjAbDNkoVAjvPPoCwQgYzMTVA7QelhGvmo/ZvCpnBacaQY9frctdqWgLtGfuaRQQZkEByqmvn6lBlBIJm2ZQFi7WxW+1s1d/9e7/x13794z//yz/3kW/8+rPb2/XG5v6tO6Aa29RHUHRdI2AM6F3JhMjOG4GaeodIiEyeQhnM1NRSjCqCBgQgKZGJisSczBC9y6oEjKBJBXIKjgUNAFKbyWPhHCUBAE/UbwFd0yhAPdzwoUwxg1iOqS4rR0AAjOiD87xGjGOKbdMBwE654TqlhOfPXTiYL45Se+nKw1VVboThsHOPjS/sTQ9Xms+ePb8z3EiLbu/eQTkYfu1HvvmoWdWTYRJ5/kvPbo8n1648VBfV5nj80OWr0vVK1KJLmRypmWNnWT2Cc14gEzMR93w6Aw3eL5arj33sY21svYcMxuwYUDX1lYF3BbsSOCWB23fuHx4vBuPN9e5MbIilX8dEnEbs9AgQs6M1+YTwREN9qgWtqjVBsqjr9Xl5kjIhJ7mz169fv3TxXE4dgiMkQOodLA0MwMjA91Ko2EZTyTqoqpi6qiy+9Tu+yY/DM196FojIvCcSNesAgQyQTwf4CAag2RyS904xjTcGF8f16mh/Z3M4bdJhsywLHxw5QACofGhyZHLTo+N7d/baLNP5/CMf/vBiPju4Nxufq7umWTkHZilFAihCuHb1sqpVVT1+pM4xAsCFnd3J1u4SiChoyoPhBtzbz9LWg/FMF9m0HJfEbj5fjsaDUTWYz5eruBoNh9tb27HrUk6WBAgd83hccwJCQkFnjp3rUsqqMWXHzsBoTWBU02x44hr1ZtFK36P0HguiSkR4khemoKdtrpkh2mnUESI96Bq33qxBT08UIDLJJ830+nelrI4ZVHNOvY+SD05Ectv4orpx4zUuuSjKNnYIdOJmBL2TZAghSUo5omo9GiniwfHU+XI43hxvjwyxU1iu2uNZk7QDtsAYs6ZE04PZw1fOVtUwqXDg+Ww+nc5VUk6d4LA/Vf7wz/wmAPzcf/1tIXhA+PBP/TsA+NQP/dGkwo7aeMJl8a7fyF/4mz/0+A/9zSd/+G8CwBd/7M++A6DXdfbvQwgBmbR34sH1OamqKaU+GdpMzCClbjgeqtr9e/dTSlVVLxaLrMKOLWvve0lIpsDkmBwS9U01uweTV/pk5zeOGaI1RX19biIQs4mYGXF/1T/gSqCKBDmlsqqZ4M6dG9u7Z0/cnp1zbk2FThkRuLf7PsFAHljRmHNGJOccgMUoy1XXFWCOAGCrridVQYzIBiaMiIBmmTgQEyCoAqtCr10/EVOzo7osiVkJLj/0sHXp5Rde3BwNAWB2dHQ8W2oHOUPS9vqL19+1vTUYb6BQyo2v6s3NDRU4XNz13scYR/Xg4qVL0hmDd4F9oKZF1T7PZT2LWdthwckkai0YwJMrf12Q9H3ASbXxJpDmdwV4Hrz/wTIF3lzoGAA9KMx788TtjQII3nCU6C8qfCAsrLd97G8zgWU5ODpIMQ6Btzd22MOhmQEG5z0xo3WgazzRTMGSSJZsSMiAWdY6nTWaaNDnygIaGPbEI1A1JUTgvuxWYFbIBKCoaNY3l8SE6yu+3zZ6jr7CSdnuPvM7n1xNZ2XpRlXxyMMPHe7ff+6zT6+WizMPbV9869moQuxAqSrruqjv3L3bLFaeeXd7O+caSFLqUtNubm6HUKAyqa9DxYS5a/aOZsPBQEAV1UB3zmwZ4MHeviNktjYuK6zny+XxUZObeGZz93Dv6DOffd7e89RkMHE8bJIqEZtz3r3nXe/+3BeeJiJfFsAsWZMIAYBDNVM1dv22ibhmeKFzjoidcyJiZj6EkAMy9ZTI/sPqq0J2zgdzzola2zaJU5ZMCHXp+nlrdtDlxfZW9R3f8Q2/8bHf+sVf+Pmv/ZoPPXr1kTAYwbJZNdEX5fa4iJD6qwiVAD0iexCVKMGrISsQu4VbOOcxq+YMZg77dZkMLYP6wFnNCB1xP1cvnJ933f7ewdg5AOhWkUsgtYDOhT6xmVYxppTYF+PJxqAeSDK1g5zVEZfOgymCialD65JEybFNy0UDABVUkuTs7vY3/Z/+i61Llzrt1ANmlS5J29RVdTw9nq5WT7z17ZLFDJ3zQEzgskZH4d7h3X8v/+Htb3vb13/wPwNg6FUMhkAORIBdMkMA168fA1gjnJBMEEEtIaoHBLDPPfuFRVxsDArFDD0lD4kIOxNkv7W525TDpmnu3HsWfeFdkVMqQ7AsCuZOJv2nKdO29t0Dgp68bIh685/85OU//oMPff8PA8Dv/PgPdm289cM/8M0/8Q++8yf/2Xo9r2m0Nt1fm5799m9/+ms/+H40JGLnQhLLEhnXPFzSdbsWvGOiZdMSIyMi4qKdvvODTwy3i5uvvn7n5h6FoC2QJ+wzxZCdiRpJP+xXBQCHnDGe2dn4gx/8mv3XXtqf7okrv3zzzkt37tcE2kUA8MTVeDPn2IQ0vDAOZQ0EKbaWuwtnz1RlYTHnNpqZJ67rCgAIqR4NUkoIVpYBAKRL5XAUNjcgBMeBqGRXxvZYjREcOfJFgQolJ5dNVh0n9cBFBmwidNEDSBZRAUJmT+RERE1DEdYZ4ogmmRjB0DT3u/jpbsvMzpn1GpAHYoxOt2UmIgbVPsPLVJW5TzUCw3WrB4gA9mBeEvYB2n22/Mn9ZmS0tqnpiyByjIqi0lOUsuTt7a3Cjw7vHdajyWI6XaImSWAqpsiemBRNVFRVNBvY4dEUQc6df+LWrbvArhpvJGIg7rq4f3hcDcabW7sZInJerZZ379wtqKoHG0Dh1r27Dz30UNespgfzRx9/9ODgzksvPNfGCAD/8Hs+PCAchuA9qCEZ/foP/Od1PSTnkdn5AABP/9ifJsAsmZgBEZie+fE/r+tLEQAgS/5f/9qf/fwrX16mZtUKew9EvfIVqB+o9/ASI4IBpZSkzfsH05zEOS+SDw8P6npQ1zUgKeU+XBZPPLkBEQ370QSjuZ6rzQzEhEIniDwzMvc/A4hKRCraq4aYGQAlZyhCP08hImYHRkURUBUssQvz2eF4stkuV74YIrFBNFAR8J7UQEwY1yogEOkvHO+cmuac++53MBiXdT3PS40tANSlIxVXBgMxcux8YM8E3nskziooJqa+Px4RnSvYO3aO2RmxAsScL1y5cm737JeeexY+9fzs4FgEUoZkGIrBr/7yr7/w6mvf9M3fdWb7rADffv328fHxtYcfRXRJNBRlyloGz4aMrs8JPqHOECISs5mKCLGxY80AquTW5oSnJYiqmAkAmv0ufj+/a5VzeuO06zv97omB4bqj6JnS8gBVqL9xenWt/2m9NxT27ZvgG8KxB5+/V66ZyHKx8MxMtjie3rdYX9oixwSAYoiITGhIigkUAcRAVY0EKBkLggKhGpgAgVqfyA2IyHCCFJtIj2X2PhUmklX7vQDJTAVE134NpETkvQ8+ELQ9EtlvEu7hqxd2Rk9206UvaVJXjz38UPmt/tatmy/dfiGv2pYkt7Gdp/n9453N7e3JVrNaLqYzs3zm7GYoeDisfXDz2bJwntAzBxWJXVuXxWC8ORqP5qvVu9//ztu391566VVQ2NqcLJdz8Oici8mapSz2Dx7aOfOBD33Nz/7vvzhtV19+/ubm1uDC9tlR7asBbZVl4cvLF7Zv3rp3+/brbY5VXS/mh6EuiK137CBm9g56OjqiC8X6FARIkgl7/yTo/ScBsOcpM1Fvy4KIBFhX9WGKkpWtMGMmY0MRKcvgwSPEnHVc1d/97d/26x/9rd/42G/N5qtJWUvSeZvIF9EaQEAQFCFgWhtN2kkLa0SYcwpFCCGgoel6NC5Z2DmxzOgNAEGR0IDIAPuoey42x5vN0SEAKKgpqKiaMTI7t2y7/f19Nbh/by+4alavjg722RfB+7Zr6zKAoUoylZik7WIr0qYU+1D38eTmK698+P3vPXv+0hKxcz7mXBiXZYnFIKWY2ccoR8eHEdSIowqoOiPIiQA/89nPvPvdT5CHX/zN//ej1x4joJ6rr0hiKH2oJBKYUV/EiyBbkoyGOefRaBhTt1otiPD1W6+deff7EBHRIRJYIuacUlFWsWnOnL80n84Ojw6PZktRMiKNiTwamvdsp2PpE63oqzdea2Kbs6Ymec8XL5zf3d1++Pt/BAA+///4wXf9dz/5vr/0k3/v932T8+HOf/N9y9XiT/ybnwPoJ3Qw3r4oWZbTuwDw9NNf+vwXvvDud76zzV1RFmKQc7KcVcTAsgmoESKyJ9SqhCgCRoPB4NUvvPLLn/qF973vfRceO5Ogyx3Mj1qO1K2SoyJnK5zPqUNCNWN2HmhYFjwspWsC5Eubo0cvbrVqG3X52LXLkypwjxOLEHMVqmE9Yh+AEAkh4/ZowkQmmgVRzQcvOa9WzcZkg51jRm8GjvuW3TG0lqNGEy4YPDvnAxExsZoM64EoIlo5HDuHRVFsbpWEyGiE6AoPAERI6HqJJZuURRljHyIOg7ryzGjmibVv2NWIWYEQ37QR9/j/ejtmOl2G6/QNkgyCSMxk1tuCExCKCZIh0Do0jtYakNOnffBsQIRescJwgj5Zj1KQZSOkLnZ3791hKAFsPpsWhUvtIgko9OsTsigzM1MofNu2ltPWZOI8NjE9dO2RRRPnTae9WZvG+bIxV9auWjbLrp1tbm4WmxVBGA2q/YPbR/uvXjq/ParKe3duJY3luOSiWMUIAM4XWWIGIyHnSuc8EPZ8eWISyUxE4LQflhICETtG5txDFgAAsGwbMZMse/fvX7x8djQaZhMmj54UwQg4UClO1/HbiiaJsWD2yM55AGAEzwyGVVVJjgioKuwZTHNOCCUjIgDTGk9ih+xAzbxnAGZiIugDax2wGbBn57lto4EF7/sCxXvfY1QiPVkSAZGBVKQIBJjm8+XOzhk1Tikjcc65KDyAeh9yFsmSMXPhmDil1BcESIi6PqFFJJQVEC9Xi7oaAEBwzEgKCM5xKMh550vvHDkm9qASu8SI1iVi58sCmEJRsvfSG5kDCIAhVoNq98xZABj6skVAwqikSrFLn/z4p9oVXrp09aXr1+/vvRZj+uCHvuaJJy9nEe9LAGhj8uB6aCfn3E9n+tluX9xTX4aAEq0tdx/Urve9uhnBG9SOnir0JpqOqjLzV4BAeDLGetBL+sEq5+Q2oD24dvAEan2DfsTEgNZLDeyUxvWgu3RfnKkCUtu2h3sHmvKTTzyVsh1MD0I1MEBH7IhybsEhIJqCc8EyiOY2davUqgmIoklMIlk9+yzZTNfuAOTWr79HdrIiAqAxoYgZUHBes6lmot6PuU9WAWYeDoeD4bgoQtcsVu3cORdCcI88dHF+MB1UQSFPp8fdsnFsjz/2yPaF0c2DmwvIZJyaLi+bI8XNrW0V29jYaLrVwd5BKLgIrgqFdlHB+bLwhVstVwaCnrbObLVNc3fvzvb2mc3NSfC0nC1RrK7L42bRtWk03sqR2lWqq/Lq5UtPPvHkxz79KUSaTedx1ZQFFYEtdl1r8w4XKbsy7B0drXLHwXexQWcFDYBR0WjNRV87cfUfjXOO2SGhdH0Th+CRiYlZ+4kiGq7n4+jY56yW0WPo52oEYIoSFQAKV3jEpomhqr/ua94fRb/0zLNXds5u16MOsTNQdgaZwBwamRFpBiDoYal1VYwI3hM5sGQIYKqOPZoCEZgzRFABgL5WQ2TPRU7RFEejzbxYAUDO2mIkKpBIDFbz1aJZEnGzaKezud28VVTVwd5eUTjEMyoyLMsQHBF3mrrUxZyzQEy5l8F36Xg8KcmnL37+txaQO8dqxllIFA2AoIud4zCbHh2v5qGqBEVSAtHaeUnJYjPdy+zJwF565jM9zVQADVDRGfZ+WUAKJ1bwpgrOuRgTM9f1oO2a5WLBzN6ctFIOi7RqkdCQDNU5VhFybraY+7q888LhvYPDnKHtMhqsVs1wMPSeV6tlv2gno/VUq65r8vzqK6+hwGQ0nB3d927tGDGbrn3xz549/33/+F8BwC//8J/u7ylJwWwGMNq80N9zfDz/xMd/6+qVKxsbo06FCJm5aRrRrL0KE6Cv8JCInHNAzmFZlVu7mxD01Tsvj4eT4dmCcrl/dKjmXFmjKuQcfFH4MFsspMuYgNBJ5IEberZbd19/dGN8bjy6/sormx42tze7ZiUaAUCyKElR+uCDGpgoKFbOg1lwnhjmbcw5MzMaMCIaVD4QAAaXJKccAaAoXfRQjKoWqBxWPgTvmCBXlc+5yNJKl0tfeXSSc7TOE7P3qgoGzKyqmkFwHX+Ioqor53y/t66aFYD44BHBTBjZyBCUQO2BdtY5dxo0DT2H70TT3iNCpxXMm/bxBxD+B8NPv2LHf/BHsD8kTjgBzN6yiIhjzqrOu7Io5rOGPa+WXQe5Z2TammwBYNYLbZJIWQQz3T86/OAHP7Baru7v71GofFkdHM2m0/mFixfPuABAjpkAJGWNysjNagkqAHjmzMVQkHe8tTkZlMX2mTOvvXg9SQaApusqIgUajjeYnQue2TkOvggpJ+89EbNjMvM9ZhBQFYCgLuqOY9t2ALBsV8vFIgTfLJeL6UxEmVyP+PsQDPH4eCpNF4oi59w0y54G4dgJaj8RU5HVahnUFstl8ASmWTpXVG23cA6417aCYs/QOnFdghMh3rrlNDs9uVUNAZkopdT2QRUu0EkKR3+WAxEoNk1TlIVzqKZdXInm4XCSMi9Xx2oZ0MxssVgy9+bRvYgAvHeqICKm1q9BMOiHm4PBMN6J43oEAIbYX2o+VMYs6KP1IzY2Ise+SwI9z5bI+xKYkBz7kGOsqkFOeSU5EUDO7AsAGA/qu3vHztdgkrvkyRVUvHj9peefe2l2fFwPHTN/9Dc+nvXd3/ZtH+mSBqbgHZqz3COaoLpWTvV1BuKamWF2YjF40i30u+ZphYEnX/0FfkJ2+d0v/q/47+nbbm+i9fzuPw4PTMEefOSJL7vBA89gZoR0avuuqmgmmtvValjWDz/88L3jWZAVOAJc5x0DmKg6PNW0Q4yp6ZZdgmyKkhFyQlMByUQ9J0L6EotzzyNEtJOIRiJkh6qYRVdIIiJZmNZZbCJZTVR1tnTzZlQ6bhaLLsaiCGVRuv/1p386gHeC5LEaD8qyNIOUIjEkkSzy6LXHqkcnuYt3bt85OjocjgaL+bysXIqtJLW8C6JlKAfVIJtNp8fMFEq/XB1P5y6lHDw3zXw4nIwG5aSuSl+9dvO2d0EVtLG2EfN+bzo9apf7iyP2XmLc2R6+9W1vEVBy4d6rr37ymc8K1cmxr93LN15/9zvi1ubGdCFJoxKIWVH4fmBI1Ne/60Fpbyfq2YWCALGLHQKZgapBb05CPbWDySEHJwpZrAQmcATG5BATgBETecoKzqHlOKnLb/3mD//cz//64f1DVDjrL7RIjr1JZAQH0H+syARqms1YwQzRMYNzjgizqYFpilSWAIrIJ9tG//cjIzEzmDn26kN0AUMAgKzCGbJjRWtzWnUdsvPIoczveOc7Ypenx9NLFy8CGTtvhklFumwGapBSzqIpaxdjzgkARj5fuHbm/Jm6dG2oiiYn5wMaaUqeyQCQK9WA4He2d5gpxw4Z14RWkSI4yZk8O3ImfT4PADAA2VoysAbY+EQxa1j0hWaPuptKUThid37n8v17e5AgmCt82VmXpCUAkew8O+/V8PkXrq/aVPjQNqkuXM4pxjYE1+tBwOyvfvyzAPDJH/uzr996/e79e3/6Z34TAP73P/F9jsk0vfz/+tFr3//XP/zj/xQAfvoP/d57+0c/8qF3/o1PfuFbf+LvAsDf/55v3xgW/fPMj24DwObu+cLh9ZdfvnX7VlE+TMGFUMSuRUbrSWYAqpIxITrnPaCxoxBCWQ28D0VViMbl6rgoyoKtHPH+cv7ko9cWR41GaZumXSwGVdgYDsflIDA3Xae5xTLMcvSD+ujgsCLePLtxqHk5XYgbAEBMsfDBsQveG0DM/QIFQjBcAyqaFUokdo5DbGMVyqIswYSIe9l5zrHD/OLLL7ToLNqgqF9//dX7B3eqirquAcds7MybresGx0wEZGtDMlPQfmfsySXkYpdSTsPBMKWubZssybme0SlA2Jsn6Vpi0p8ydEr/PMGETjA8VCDsc1oA1qdSfwN6O2lca8kMjGlNDzrd379iT6d+WfXoIwCB5pzJkJmjGjEFFxBxb3+v4LKoR6Px+N70sP8jmRCBVJOZqUrKIh6Z/aAe3N8/1JyPpvPJdoWihqQGquCdf/31W1VVnj9/dndrs121sUuxi227Gg6qza0Nz13t8czjm3fv3bl346YHDOQAAImz5gzQZXG+AGLnC2KvamVVINIa9FUjhpgzJiQmZI6pRaL+g3CFn82mlnLlnKZYcuGMUtaYEgClLDElkWydqYmZOe8QIcbcr1AzYHWOGIk15S4mhASQ5/NlyhEhm/WympP2+80W2/37DgC9qqMXZIFBjgnUAjtkzqY5ZwCohrWKGiAwA6KIEHsiypKJUS2nlJ0LoqBZSl+ASrNa5ZR7tzsirqqa1sERxsxi2uP6hKiqW9u71x669vSXnx6VJQC0KsOyLgYjZWtjwkCMnAxRjPuZrC+cc0VZIRAgxJju7R/FJBycc35jMFAHRmzMo42NvjTYGo9u3rnvzCFiNPK+TDFKxvForBKNULJ9+csvf/O3fvNwtLFaTL3jtouVKyWJf3P13x9YaKeYTs90kZO3VU/YVPjmqkXM6PTO9do/gUJPwZuvKHF6uBRPYJuvrn5OmvU3qqUHB80PzrvspAZ647X0i77/ykljGngvZfjy9esv37/fbI2cJGfWX7G9xvm022Hncs6pa428QQLIhMoMxIDJTAUJkHp3mV7YoGbGfs1m6fmbITjocoqaUkwpKRg7rsoSwVBNclq2nVguKMQuqqoaZ+ncU0+9yynHZceBFnGZTYvKHdy/e7Dao+DSsg2M586fzymL2t7BgRIWdb1YHI4mtXMYyqIoqsWqbdqWva/KsmlXGXmyOSmCP9i/X/ggorltH7py+cq5S8Ny+G//t//QZtsZTJZdl3IbBoPnXrtx9ktffO3eXR98QL6yc3arGjVgK7GHHnkCtfztzz1vnqKkl1+/+bP/6eceu3zt0cevDkYloSflmKIj32+sAKC6JtKfwN69PSQgogmoqAIQIyMZETH2V4QPhSFmTeyMTZiYPSKwgRpYr4GuqpBijN18UE/+s2/9ho/+2sePD45v7d9/iokcEzoGJQUAUyJwDkVYTNkZGwMZgnPkPWfLBtp1bV2NTRWRejtcJuzBrLWUQtV5R2VpbZOdA4AkQoRdzqs2smcF6FIGpPFoogpVVZW+IF67OqimNikBMKGKiqECdlm6LvWUMLadLhbX3vmN59/yhOSGXciABmSgDjhDJGCAAgAcMICAChABYIRMQNmSR0eAKbbkHPbS/zU6iqr9AMKwR0sMDNQUJEvti5yzSPaeU2zBERW+A0kkFmiZO2Rz5MzUe7dcLZ3nGzduX3/lFUEUAFTJmT25wK5P2AGA//L85Bs++MG3vuWRF64/d/3Vl4np73znBz/0nvefEhII8cW//0MvX3/1aG9WlaPhcHg4m//Yh98Tl8tLu1sbO7uPXDwDt+6d3d7OXMas5BiIbt689dnPfPbilYvBo6REjskxCFkWPTFeQDRSZQ5FWVZ1NRpveirTUjKbJ1itGqjd2atnV51Mm8NHH3/LjesvbWxMLp17S7votjd3z27tlFX16s2bz11/Zrg5djubc8SxK8ZjF1GYlB1mTQCQ8lrG2DdAvZUtMwXnQWC5XLRNi94TkQ/BF7ldro4Oj93OdhG8gvTbXVXX91cLNyhuvXZbk53Z2L5y5UqXl+d3d8gBsHPoCnOqBOgL75mREELwzrGIMPUHDfVDWheKmzdvTefzVbOqQnj/Bz74xS98vm27ejBAYj1BbfoxBUA/0nqDmrA+R9f1Da4fRGRGay3MCVbfowViJ9lBvR/JV+zd8ICByps3bDw5FzyxgmlOSDCfL+7evVfU9e54N1SDe12XcyYqJPfQhQPrUJGQqrL2RblazA3iq6/erOvaeT+bzcmXZVHv7BSrVRPbdmNjgkwmdnQ0Pdw/rAeDre0tRFDLh8cLSMt7aXb1ws7i+HB6cFyAgCoABOcsW8o6Wy6R+Hg6A4CN8SY7LCpflZX33tRWTdvFmEWWq5UPPByNOXBVloAEAJsb443R6GB2dHZrezQelMgSkx8NHLks4lzYmGwu5zPJmdlVw1FwPosMEEREsmrWrH2mRNjc3ETo2nZ69/6tZbNaLBuRDkBoTVXHtUtHP4uBU1QCCYmJmXnd5SP44Lsu5ZTXlSsAMTPxyUdK0Hv/+YIZzQSRETTniEAOyTlPzDk1CHbx0oWsem/v/nw+H43GQEDEzNZT0HqDj34O5Cfh8oWLugRMCgAJcSWqSY+Pp8BcTnxmt1jMXWebgFLYqm27NoLqbLHIWbuUF6uuGo93dncZzdpVORkWw4Fjl5MBwGs3Xj33yKMV6ezwsCrGgKiiRKhqooZmZuRDdffO4f/0z//lH/sj/5e3PHZVcxOqol1FBiQi1Z41RSdoytqFiBCBEHvm2loLtUaJerLOA2Bb/3LfNAI7nf9+BcZzWs3AGw5AX4n9IBKdRIM9+N1T2MmsP5cAT0Zv+gDZqOchrFntiEl1dny8Op7l6ey14+7Oar6EbrzYKkXY+QyKYD3XQU1R2THnnBWAmTMZmhEaMgMwKGbLfTJAzio591fhaZ6ywQmDPUKO0RQ9MTgAMEOUJECG1pdcCIAihuicQzOKUd0rN+5qKwWGZVx2Fo3ynVu3p0f3H3v71WwKANevX3/5hdtVWTvmydbGqm2KinfOnlGNo/Fgc3urbTpiYnTMrhyURelz13pynt1sOh2Nxme2zxwdzrbGm6Oyqnx4yyOPfvKLX2Jghsz9lR6KX/qVj24MtjHnRx96/NGr1w5nq+GZ3Szd4ui4qsfVYGQgRT3cHg3E4PkXrx/O9648fPHSxYcm5dijVwUV7boOkYqiRASRdQXcm6QrWOGKQEURSnWgFs36bRTMEImd89lAJLEzD2QIxv1HTGp5faUaIEIRXOoWG4PhO9/2ll/76G+9dOOVT3/+c1//dR9ECGyZCcVUkZMBATuGdZQJmKohQ10XcdaRQsqJHBmYZzJwZMoGgGgGWdQQfBGyqAU/OrM9W04BQEwUOIO1kgKRAcbe2qcuGL3kzIxKiAhJYjbQmJ1nVU05J7Eu5bbrUuz6ViGJmSsOZgu4c6eNrShY4FZEERyRSkYFY7QsrAZRQghmGkUzk5gRsiUhUc+cNSua9L5dfR6m4RrONQPqV4shqqSIyDnl8WQcUzubTZ2jV15+tapH7FBVDUxEHZrkjtAWqzn74qVXXz6ezUQtJvHe56xEIJItWfAMAHVdjwaDtmnOnjnz8OPXjqZTBoptt7u1XVScJaeUemHUxniyvXvu3Hk8d/Fizl1JIMs5MF29eAYA2HJSVeyZ1LBqu9/57Gff+4H3PPHWJ6DkSrUo/HQ6Xdoyx/4SQjHVmIjMgJNC06baD99y5amD2T2NKWpk1yWGwaRYLWZ3929Ea4aOkeNoGFjjanEoWkdZAakwvLC3t1EMhuWwLgPJ4sa9V8OgjF0EAAE1xKQKOXvvQxk4c6+ImM3my9UCHREz+VBWlQvlkcFqNrt3//7GZFzWVZTU7wpgfjzaPnfRrWbt9tbOhTPbR8cHV68+hA5iUjaqqSB0MYuphcDeu5M0IyByvQzaAETRhcHuOby798WHHn6065qkVg3Hqy5uY+9zDYBKSASnBm5E9EbM9XqfPSlPDBTf3LD+rk0qrAmkBg9MwcwM8U3kUDwZqSGArr8rPQiBCJLlwvnz73nv+z728d+eLVe7w7EYErIiG2YDRiRmT0RlUYVQZDUjHo4mVRFEZdW0miW4Nca+WC6rUAwG1aJZTqdzAB4ON32gtuvmy6WZlcFfOnO+W3DTtWc2t65Mto729xaLGQD0Tet4VFVV3eYu55xFm/17W+MxYAg+lEUJhABNimn/8MAAfC4UFkVZimFRBQBAswtnz969f48Jzmxvjct6EZeMBGKqwOjaLk4XS2Z2RoZMzgNT20bVdVIGALJzkLtm1YTSDg/3XnzxuYtXLoYCy9IVlfeeUVDVRGTNWiHqx79wEk3yICkEAHIWUyVmPhGCaRa1NcFFVMAQkXMUAnSegUFBT+RG4L13ztrVtG0WIlvj8cZsuWgWjYo4cn1sFjOpEPTXGoCYrdr2ve99z1seujCdLwAgIR0dHgYfB4GaZbv//Euo2dpmslGOD4fbW1uScmy7to3z+Tym3MVcjydbZaWGRfAiMTWrVduujuftsnkcIFRuuTyYeHj0sUfuvH7QMLFSG1tPtRohhxQVyHmqrn/5lX/0j/7x7/+e73jH2x4bDyZVXeWmIaacM53gZNiPwKCPOOvnXbq+bfogHnM6JiZCADYD1a+k+8BXfT3oOvEVk6+vBk3hAcY09PaMJ2uw/5QRTU0eXHRf8eP9nexcTBliLsC1XRdNO8ltjIDovBMzRkA1JGVHamCmMcU1N7wfoazt330vFyYy7O0y2HoiPwCpiogaKDF5X7bzZTtvek6LqCGSkYkmAAMyZCImBDZCWlfyKFmcWQA0AV8OvcjyuevP3njllc2NmsrSUmsEq9h0s3ZrC1VULQMAu4K9s5yRoO26mGI9HJKRY0/smuUCAVJKZQjbG5s3b97e3diuQkBR6Trm8p3vfPuXbr3UzKajOowHg05z5cvJ1nB3dGb/7uvbG1vj8Y7WtgB55vkv3XjuywX4tz31nhvHey/ceHFrPDpz9uz5jd3F6uD23durNm7Vm2cmW8PhCMmp9pW4OOcf4GaZ5AwKjEyETLTW1KEBICEZILFD5yTnLiVDNUJFVOt99BG5JABQNRHXtzeQ2dKwDju7mzfu7f32Z39nsjl8z5OP5TYFdNqTgNghKJkQgaoBAQExcSgCE5uqSOx5/kREvRIfjcCMUI16qFBBKbAPxWBzAgCiWcz1WgsFFISUVVTqLNP5dFAOBLBNkZnVREmzmSIQmGTtclo1bYzJEAUSANDGrNjx94++uDd9BgXRSE07E3CspgGIDZfQIFFBZFGJXM4ZgNFzMkQkh05jdqFMaoK9Tw72RVy/hEHQUAUsq6iJQ0AkU0TA5bRMqUsxOc8FSUWi7QKECvIdEjkcDCY5rQaDukvy4isvLttF4WsTzCkTcKsxdovReDAejQFgPBzWdXn+3DnywIU/d+5CjhGiFcyiHRKpqXeuqqq4SKY2GAyrySh2K+saNyyarltkBYAquDapijG5KLksi72Dg4/95sdWq6URL1fLZbOczWarxaLturZtc86qmpJkEQOKUdQ0Y5epdRxaScumIfJ7B3frYsOFcr46PnthB1Oar6bb9RaD1KVjb11eVFWxPz1+9vDo4MbdP/K137QZ6s3xZBPau3t3elM5BcimKWYqya1nQpS6lLo4nU2RcDwYL5p2OpvVaqtlezSdBcSm67r7+/Vo4CsPAPNFFOHZrHv44SfTSkfB53YhHeWEkrICoEGbEgVLOatJVMSVAqj3vh4MzBIkMyA1BWDBEpiBuGnjYrk6nE739vcvP3Q1qQgYMzOwAWAf4QTrU+p0V32wAFonVuAJOeKE9INrnF8BlE4knF+x1b/peU6/Z4Qm/d19r8lEBKgCwQdzsGwP79+/z+RN4ezZC8f393R6kLMgOjXQDAQOgU0p57X1gajFlCeTST0YNV0C6HOqbVwPRsPBvf37+4f7tR9uTXY2NyazxXHShMxlWQ+ruigrsm5zYltMNF0U48nN+TEAOMQEZgZd102Pp6oWnHfs9o8OB40fDgdlWahY13Wz2QyRFvOZLpYT20QmitT/CQRWON4YjgTri7tnX7n+0mhrPJ5sgEBg36ya49m8yxqQQTG1MasBWMqqIjGmlLKpIRIYgmRuuuVqriA3XnulHoyrujQTUQlITG6N8iJTr9vANeeSyCFkMwSFHtIjhMFgYCbzxYK9Gw1HPXe+V2AZgJoFX4ASmBiCamJCZkopAQZHWBa+Lcu27V5//daFKzQYDJaLJuVcFKVI7j3VnHNm1J/0RDRfLd71jnf+ge/93k/8zqfh3qfmzYp8WdUjzzZv4yp1JfN4NF6u5jnl3e3d8da4azpTK8t6Nl9slfXe4dFzz73w2BNPrBYii4PNne0MuD3afuyhRwBge3fjeD5/71Nv/T0f+c5//a//4/Nf+GzY3hRNqYuEAQkROHYZgw2qySuvvPYv/sVPXzi3efH8hf/6v/g/b9YDA81ZsDeBPJl09Wq7tfC7j0wl7OU7D9YuD6CehsjM2GdcwFd1Cydm2acP7ieGa9HA7zLBhAcRpTeWFT3wtGZrB5CTbwOdxHEQoCGcjrrBjBADu82trdl8FY+Wwr3Cs/fDREZGEDNFIgVVURXtS2pmR0akIsBgDEbMpphV11yKvvRRVQBCJkJgxw7doEKIELOklGMb2TsXPJJXVTQI5ClwH7eaNQMAM6MzB+yQU0pNbLsXXnv57v19QAfGMXXs0AhU0KJJl8fjwWw59x4nG0NP0Cadzeb37x1MNibVYLh/cLgxKZPGVbMcD4aWtW3i1avXuja/+urNh65ekygpp5zjsCre/da3fPyTn5hnHQI8/viTx9NGVjDfO97YGEWAXFZ3b77+yc98+vatV5+4cOUjX/MNG+cvP3//9hdffO65F1/ev7N3cXv3kUeuIBcHh9PZdH734PUzO2ceunKtHJSxTVmSmXkfAIyJZtPpcrbQE+bCaDgeTgbIqOgYCUAZmJJ5ZGPMklGJ0Hq/AUTr2ZAMAQmzJSIzEu2kdJ7VdoYjMnr57p1f+ZVfn1SDp649HLuVI2C2gg0AFAjNgmNEIvJoSC4AGaBq6hhAFdfMQlj3PobEDGKWY0dMqiBAXJQA/Uki0G9ToGToEF+/cXP/1p2qKI+JTYGQXOGNDAjKYel9jWBZck5ZsknKJkhUAMB/+Sf/3LKL1gPRSYNzOYshILOacs8tCWgAjEToHLPpWqCGRFmkLGoTUzByvOb9AMF65AQEPZvClFEB0AStd7t2RNQ0rfPkvGPmrum++MWnc1THDtgx4WI5f/32frdaTKez4+PF6y/foozsGBSbnBMhKzCoTzg0BoBhETbrKgQqBtWi7TxzCEUogBBWTfLspBUtQxnqY5yn2G5sb7Zd54NTDArKSQrvAGBnc3K4tzQEgGRZjULq+POf+uJrL7w4Xc6iQs5m1vtmEIBpFkc+ZXHBI5IhhKKIlpK2XFEE2hqf39jYnB3r9mR3MtycHRxfvHCpWc7n06NOpQy+GI58ERiICI6Oj5ap+8z1F65unv99H/7644NpgT6gb0AAQExEkxpZgoyKIIjOQDPAYHOz7dq7B4cHh1Pvi/Ek5qRNk7VwZVEAwr2j/bItAIACQpe9wPGd+1ns2Gg5P25TIpXSkzJLFwnNQQbKyRTQqroEKYNj1FYEuCxT23nnTDLIfFji449c6ro8KLd84ZvFDEyYKPZ4JBquxUsIpgCZHLLrjYPXbmQAcmJs2xsgYN+1KgCaISMAGek6Kh4A+nSkvlQC693hTqofAjM0UwQB7QF7BDDAnrimCIwMTTTJQjDc3tiddW2TVzkvukYBnOOUBUwFRSwDQIwJAJ0no3BwNHMESJyzLBZLF8q+onPOHcwas25UhWFdDoZ+uVzOFzNkGG1tFmWR2tXtO/uTAv1kbKvFpnfDzdHhgQOAwntnEJftrOu8D4vFzA1GOxube/fvZoaUc8pRBauyLIpiwG4xm6UYWUy7DF59LwWvfF6pkVw8u3txZ+v1G696d2XbzjGpaH7mhadffPXFZFI6rwqIbGqqSoiiYgopq3MewKzf7nXlnG5Mxs2qyRnM1DlEEl6zutSIkYgsIgQAT0xI0GsFAaFA7ygAcVWVjO7Lz1/fu3u/ruon3/bE5pmdZeogEBClGL1zLnDJg2Y5wywEgAYeXZeaasBoyZnbneww1serJbvApt5Qk+ZsxgFUyQDZt7nLDr0RqiGCaC68124FAJPxcDlbzQ/3rSoP9/YthIeuPcKaUl6So2JQXrx87vXXXs8xjkeD1KXtrZ3SF3f393c3N4OD+uJOPR7Vk42qKK2JAFCCPXrl0vd+57fTTM6OJ4y4UkH0yIJgYkLkCRHJa06DcrBYNF965u7e3v7v+c7v2hqNkcAs9c5whqhrLk/vc8NIQMhI1kedcn8wmJ3ImgnW3Od1fXPind4XSW9AOw+USmsaz0n9ZCey99OqZ13N2EmV08/aAICY1/efjNzAANcaRdB1zFbPuEU1XXubIYLo7nhjOBzu3dubWrfQ5H2viEc2YmIkMmA1IexZH5RVxQF58ohArOuXaUCioGggkgGM2ZllldzLTnov4XWmSVUi0mI+N7ACXD9t7f9eH9g51twfX2s/qbUq9svXn/UAZHIwPbhzdIBYOC7MsCrKg9UxGDhXtBJT28aSCWUwHKLKqmsP9vfG4/FwOO66FEVmyxV4NxowOlCQuhjELn38N3/rqafexjxfLFfDqlq2y8lwiJqeunrtueef2+8WKVM12Hjx5t17N+9Smx85e3F0Zucz15/9wmc+1y2Xb33o2re872sHRZ3jyqGNxiMSSzHfvnu3lbi9uzkc1hFzG5t4GJXtytlLo3LUM1WIoVm1jnlQ1R646VollKTErixqQxPVLooZ1b4syKoiKGnS3JuHGBoxKiUAdVCQkao3U1UxAmPKQKNqUCQ5NxgNH5t8+ktP/8zP/cr4D37fQ+d32/mhAyFIREGJUZN3lA1EzFEoyqqTGChgzqSqfQodgRkqmMDa4tpEmck513UdELuiBgBgJO8UVU3KwmsrqWm3RsPRYDQoayTyIWiSbLpoF8t2mTuIbM57xw4AnGPnirZti9EQAHYvv2u3p4cCA5BIOrGCsLVREoKo9gG81seaIVivLe7JL9oTfky06wmpoHyyqrA34jVVk56pw4zQaU+kVcOgLsymS8QU2/Zo1gyqOonm1PGg+M3f/q1/8c//uUc/qoeewnLW1FxbZhU142wMRKkTarXuMgB4MwfZM4hoVQ9IlSSBNAaCmGO0sqqdL8h1rqwELLXLQeFTzAK0ytDkrFkBYHNY296SCDWvAoWuSVgEMk8pe9JQDGNyRAQIPXSnOaNCYAk+pL7zBQxUEKIPhXR45dLjN27e2BzuDoqJdMAYbrx2u59AN6JOpBxvgmpqck7ZTEaDOp+r/tPnPl0Mq4889ZZCOIBLvgAANRHtVCBZMggIYJbblESsLEdhNEzH84E4TbaYRUSs6zE5UhaFJITzZgkAXFjl3XuefGJv1TSSGkFX6tHhq57y+c3JvIvinMQmtXNQdc5Xg3JzUuc5IcB8eaDoitJTwNJ7FEvaAOHVi5spEpInR6+/9lLuVoSKaNhbETOAgOutR1DZud6hBokAiIhVlUgNlZABkAgEzIjMUFT6h5mSGiARqHIvvbO1SX7PmOgtMPq2FRAQNBsCEYOh9iQ0YO+7rhPJngjU2cb4/EOXX3/p9sH0aNwuNKCAgmQDsd4BCHLwTlVVVaKSw1AUktJi2XZtY2bssvPBwJJ2YMIM3oPIarGQrlNg9UVZFGG5nC6PDyvIrizy5mjgqjIvfODBoOrX9KAeLOeLksJ4PJkMRqNqEIwDkfPeRGOMpjio61W9ik26dPa8976q62Wz1JQDDvrDKiGsUlsXfiOEmQ8kAqqTanD5/JlGVDVX7AicZGBiFen9sXNCdEhk3mHOhkxmxujIbBAmk8G52eIYbFVXDiSBC4BrCrYhknRAnswToZEAETpkDh4LyJDVEOD+7duvffnlgHS4P33VuclkEwzm3UrRFvN54Xwd6o0aJHeByciBNiWH5WruRq4eudne/nh8dnPjjNBUokq7wmyMDtApIAOC5JQzF0FZUcB6jgjC3v2708P7ALBRD8qkAnFra1KWYdm2W1U9OzrwiKbatXOVrh64g8V0NNjo6mI1O94cb5w/d3Zjc7yxuUEEjXYWeJFb1ggAO2X58MNXz44nhweHzjAnSaqEDgmyZEQEFDDRCL7wMTfOh2Ky9YGv+dDu2d025ZpNIBtST5xBJEPpJwEADkCRDYFUFeRkaIU94f/E1vVE035K0DktUU5kAQ/CQnoqL1svjhNTiJ4qffokve9WD7+uJZZ4+oxrQGjdo0P/t5ioqiqiM+gj99bYrVO4c/vuvbt3j5v5wkOHUhKYqANyxI5Y0ZRAjcDIGWWjKJLRjJVVMrmEyAhgApjNFBWdQxWzvmZy5Jz3zvVosENEBFERlmQ5Y3alQ0IzlajOc1EEMOtyBAA1b+bM1LKIZleXhaq2bbfolqjCDsFRK0kBQBCi9lktXYqhdaEqq2qkKrdv349Ns7N99sL5i7fv3J0dL2azRVEXRVEAUbPsdic7u9tnzp+9/dwzz9WDgQ/e7e7mtjm3vSMZNwbjD7z7/b/66U80y+7Lz18/2DtolstJKEfDwd69u7/zuc9Uvnjo8qUPvff9Z89c2Lu/XxdFIBwgTkbj3LWHx0e39u9P4/ItjzyMmL2HVdMcHh4EdHSGRsOJZouSy7pCJjNir5O6NCbJ5tlnzUCaTTNkZJctqwGxlz6DRwXIIQGagSiSAfa8PHTskEEpCzIyee9L7wHcu973PiH6tU/8zs/90i/84T/4B6qi0LgIPhhQNiDkvjo3AHJcD0YAwI5TTtqzD/utCE7iePvK1DldG8Gx5FzXNQDM2qYcDvuNpgguG4w3RxuTSe5yl6JDWswWDFANq83xaDAoO+2c96EochZfFElbAek0Xr64AwBfeP43VJW4yNJncNBJcJL1Ka6gSujWlDeVnoJnpn0zrushtYKdeCcD9lSfPtbb7GSm3Sd4o2XTrBpc0cVcDSpfhoP9fTOJXZtjHo7OWhQDQ/SS49HR8aMPP7I53jzePxZRyQZIa66cATInQIjxaDoHgCyKwJK1qDz6ACIqGQjJexVruhWCQU5QBC6K5XI+saFzlWRBBHaU22RJAGBY1qOyOmxadsGAVTGKNjGeH24A0vG8QUKx3O8tatrlTlMyNbHkQtA+XE6BHRcufM03fNsvf/RX9g4Orj50FQRjzIhspjdfv12X5ZmHd6XrCnZECmhR42hrLOxhwPNsP/vLvzS9/fJ7r10OQ8fkAICJUk4dIoYCRc2s7dKyaYg9cTLNg6qsfd0s29RmRCJPQHY0O1CIFy6cV8kAgKQMkOIcpYOcg/ebY39DV/PjO/5M7TG7AE0XTdvtrV1XjhQEVAmNDaqC1VcpJSS7dfPuarbYPb8TqkGMQBiiROecZkEDyTk4n3P2VbnmMRD2XmanvHXsk3t6ATKuEVc4kfNwX00amCgRMPauPwYEYKBAfW/at8ZEBGt6tSkYGSr2OZvaRz/0ZlRAUBRF6lA1CYjzfO9g7/b9u74ab53ZOd4zNfVIjkBU0Hr+N6pa6pKgFeQLX0bT1WqpObNzKSVA7OONs4KBiUrsIkESASIXgm9WS+/YMUtKs8X8xuu3L127jIhd267nGoGQuRqUDqnyztceAeeLmVI2UxU17bPIsncuQctMRfBF8GW9JWDIDgDalWhn43qiK8kLndQ73o9TpEcuPHTp/CUqQpKO0CRLv0zAVFRMe39tQAQRVSAAb6qAneVM6MSQPSVYElEZClUE5CSk5vpCqN+z1tIfyT2C3VvRMtKgGNxZdsHcIBSdEkQrMGRRThiCRz/0gANfUxGS05QwgUYiT75pZrPp/rVz50uV+9OpzmdOcX7/cGt3R7Y3E6nLXem8SZ7NZs1iubm5VToPIWRGzdnMhuNxygkAhlWFXWdAknMVwmg0VMkO2YEDyA5catKlc5cogQpub22KQDUYVsPBcFyn1AFiJzkUwoTOAADO7O4++fhbwNAV1SrnJMrocF2dWBYDMAQqggfAwhdIyTG95z3vGQ6G3XTVL4GeVGeqSHBSlJwwctZiyQeivk4UzcyIa+X8mjtxsrv2hcepbuBNts4AbwBF/dOdqvnsxEyrL5EenE2fllAns2swNDr5p6mditOI1gR37PPjzJr54vDuvYEPi5nlZjXyBXUZu+yJvffQWyTQWh/BzDlDkvW02sxMBXreXr+6ERWNiYn62SiXZdW7TklWydK1Uc0kZVNxIfSVnarmnJnIBW9muUe2AMwETBEEQRHE1YO66Zqjg/mq60ajURGGbc7CfrpqgishNYxUDAeaVqI2Gk+Iwr37t7omO1dqsuDLQT1oYiuac87Hxym3TUUBFFnpQ+9+/7JZ3rhza3o8PT46HlfVYrncnmznbA9fvrb7wvW9+bFk7ZYrTzQeDY+mB/PpUcF48fzZd7/jnVtbuwezqS+DSB6GUKq52H33d37nL/7Grz372gt+6F6+8dpjD19WyZak69r5fHoPOYtsbe7kJBkwRxlWtfMVErQp+kCeSSQxoXPoi0IUQCWbOeeMmIiRSKG3I1YwZSNEc0w5S0rJFYhgKmKEXdtZVtVUEn/3t3/Hq7dvff5LL5zb/ZXv/KYPS0zadcKswIzqmY0Jic2MmJ33hNh2K3QEeX0dnVzqbxDTel1hb77Sxx3PuzjOsa5rUEspEeF61OULlIIyDsoBkokpOwpV7cUnUEJWy21sBVVIo7aDUQUAL1z/vHfBhUIBTXtiBSICW1/HiCkQMBmdyB4REYlPRr9gpifkVnAIDIgEBEC2XoRvSCgJ+2PIcG1nbqmLKWdC8oUPxDDA2EXnXJQcu3Y0HG2Mhw9duVz6en40zzk7F/o55hrMRQOiJNB0fV2Pa2KXKkofd8Q5YbfquqadDEfsAyGXjjzT8aq9f/cen7WyKLuui6lDUI0dAOxu7RavH9tipcg557IYMPL+8eGFy6N6c7zfLpFMAZx33nl2bA0FGjJzEYrheKgI6Hh2cHx4/wDBPvfZz19/4aXx5uTe3fvbm9tntnePj48UbTIet00zn88vbJyrnUOEJGn3wlmsi+svvtqsloPN8f7x/jOvvvSuJ64qUe+lS+TWQU5IxCwKbYyLVcNOmpic98EFNA5EHLyoSErzZiGStnc3VTSEAgBiagVsenS3VTGC2AKAvPftj2BadsujrPDajRvNYt6slu9+36RgrxmH9WDZLRbTg1U8Hm2WwYW2W967e+PVl1794PDrfRghmCtZNTlGJmAAT9zmBAYmvbm99Tycnnh3KnQH0B72B4O1P70B43q8R4BywhkiQF33pn1D3P9w33T2zimAiIZ9eWTaj5RP9u6+weglJESgPZ0u59ls6sty2a72D/eTZGIXyqJLLRkyMpGhgUbp7R40C3gjoijSUxlySgZAhDmLaEJEUSRyzJ4Is0i7Wq66pioCIhhhl+T+0ZHSQ5opRR2PNwAg5ewQB8PKG9VlIMSMBt5ayWWOJrk3NjOFMvhia1OzEBMxsGfHpEwAUJIr2WfRLuZXX3nlytWLg0mV5DgAerSonevxZVQABNcXiqYgiKiSECklAUJNgdA5D71rS1IwnwUByHJcFRgI0BMRMVEg53qv0/4zVcnUy28UELlp4/2Do7IeonerrpMsw/FG23atiicffFmHygE554V8im0WsMKb95kxOHd8eHDP7Ozu+XKzPLx/VJHfGA+LophPDyQlVxas+eDoQAl2zu06QRZIAkYMiKEsz50/XxQVwJFI9s75OoSiBHLQex6CgcCgHJGgdJkNdza3F8vGsyRVH9AgN+0CgMBcqOvClZIaFQWAQV2/fuP1s247M7147w54HzioWRY1QyYCQAYSEVQLlW+7ZrIxPn/uXIw9z5dyzrDOrDpBVtalhj5YuDzA6XnD9eqrv76Cg/wV93wF07kvVZkRTrIvHnzAg9UPnpgdPGg0uibjnUzOvoJ4dPobKfjR5uTihYvNYjHrVuDYkw/Mwa3D4NcO7X1LRJhNY4rW79rAfX3e/xYk1LW8T1WVkJwLhJxSylm6LqaUVFXNCnbsHCCu+3NVQgxlgURRsqoS99nYuX+RBESEzlTb2E1Xi2wyHAwunL10++Cg43x0PMvt8d6do6zjoi6lExd8zrmZHi8XrXNl8L7t8vR4PqgHAio5tV1XVeV0uqBqHNvULRs0q0P51KNPhCpcv379pRdfGFTV1uZOs2pHm9tPPvKWW5/6KDMNqtKVgKTo0AM9fPHi29/xNjU9ms1GocpdrAhL7wqi2dHBxrj+Y3/0D//E//i3ZquVpfzCyy9fvXB2WFWr2NF8Vlb14fQgFH5nZ1czTA+n40FVBJc1FY48Bed8zsDOwIEqIDgG7x0UZRF8AGPnfGw7IzI1NcUABVFRlAnNstRFST44Nc8lD6Km1Czbw3v3H7988du/5Vv/5b/7N7/z2c8/dO7sOx+/ps0SzeV+XgK9izOaWF2VKSUmJG8qGdABYb+L9Jfag9jmqQ2D9GV+WewdHI+KqizKrlmRY+2dMMBQIBRFHUo1abplTNlAhQAMs2oUyWZJdb5ahDq85Z1vBYBv/JpvcewQEYgBGE5GCOtEBwAAZGQAM1lzqNYDMux1zSf/Zw9QATpAoHXqNp3o4dfNTX909c2CiCC6tuvYOyD1xGTw2us3vvSFpyEEzUYspee6KqfTqQ0spSiSmb2uO2JIQEkUTcEw9YQ+I8uKBjl2IMDEGvN8schd4xEPD++I4PaZszHl/Vt3CCw33fToSIaDlFObOrWcUwcAk+EYM4CAEbiiaLquKonADqbzrSu7jz71BA1rVWPvvXdI1DXNarEkpKqqhuMRECJT1NjcuLl77sxzL10PLqjYnVt3ltPV7HD+2LVry9VMxEbjYRcblXh2azOJxNSNRuOj1eJ4dnj50rVBGOZuqYvjZU4lFYwMvYTYERIpUlJzBRVVxW1rBkTcrZpOVoUvPYeUzEzZ+/F4iH7IDF3uNjbGANCsFuXWmAM4JGLIiCkJdNlpl9vj2TLODu8N61JL57ybTRfe985WeTTytqCqcMVgJMIb73vHu556K/uNrJRScmjmTFILEk2iQwOVuqgNetrsmrUDp8BPr4BeB2euLz0CYwbCtce1oPVWeetr0RRgTQU6qWrwhJlg0Fc/69wgNVNCYCRjQNQ+Oqhvg1WFCBz7+er44PAwSWpTnM7nEa0v7tEgOO/Q5WigoKqghoA5Z5HonHPOmUjPJ9WUgUAk2dqH16mpJoE1O1XrwjftkglQNbjQxjhftVvk63Iw2dgBgKbtiuCYqfbeAxgYEiQUW7tNQuo6YsdEVRVy0mjKjM4zOURmXTsMd/fu3z5ezt/5+GMHr1w/nN3eHU1sw1g0ZVn0vXXqeudKUTXNJllyUlDRdMKbIkwOzEmUtmudq5W41YhenA8WKVMJMeZmYYIIDtEBUm/iR0jsChXshYiFr0MY3Nq7VxXl7kOXusWqLAoaljf27yVQIYQ5IoBDUrGEntE2KmYIRs3UUlmF7am9+tkv3tu48dhT79o9u9Xm1LSaRTlbYACV/cVxC3Fn92xKElMeloPZqpmnFi1Riu9+73t//dd+Eb58u1ksSnJgiqAqCQDK4FeSvOHuZMuhI0VNEtjhmoxMWfJqvkKHw/HGaLBZ1LWBpJgdKABUdXV4f8897g5y99ztG+ZZsphA7JKaBmJAU5Osyp5EZL6YX7iyG7tuPp/XVABYzmk9xurxzDcqlvWF/hVVCyEhiMgbLOXTyuPU8uckXuMrCyB4c+V0Au3gg5jTV5cyD/7zzfcDUJ/ZCj2/7k2nFaARIKEF7shu799bLFd1qJPiuB4UVem9QxNAJiBQMUAyJiLRnEUUQUwtmfYtHiJIDwWpc87M0NCHQEjz+TLGaAZrZMyA2Ytp7Nq261LXBefLsnRFPwgDPZmPr7UZ1kdtCyG4UBf3b+5nU+f9wfFRKAYCFrw302UTU8zgwFCrQYUIs8Uy5s6FgkRjbFcrmB1Nz18+yx14x+wwigCHrssg4MiRGhm2y1VO8cqlS3dv3b57797Vqw8Th9y1ZXDsXROXm5sb88Oj8cYGGRbo3vfu98ybhss6E3UilfeQxDsuajddpIOj/Zjaxy9e/sLzzxrnVdO89vrta1evjqq6y+lodjieXG6a4+efu3O4d5jaWLL35NiTIjhyjhkZDBOweq4AHZorHM2m+ygCBl2bF9NWEZA1SxMCZYoNxxyt7WKzIAyasqD5IFBXhUMMhHdeuwEx/n85+9NYzbLsPBNbw977DN9055gjM3IeKmueKFLFQSLVEkVLlGhZVrsBy4Z+GDAsGG4YBgy4DfSfFmC3bbSBliF1q+GGWqBESSRFipQpimQVRdaUVTnPGRlz3Hn4hjPsvdda/nFuZGUVacDdB4nIiBvfPd+Ne8/ZZ+213vd5N0b1aj7/6P2bL15/fFavZaBM5oZsZEQBJqPcRkfMzIAac8zAKuL8eWb1J67RHxxENBRA2xcu792+vVisxj4Aas7ZmMFRjJmAJ2UY9tm+qiT1vWQFMOQ+pbbtc5ambfq+82UxGtUA4PwMAI0QdEA3DuZvknMA6fkNaYPGTT4GbZ37uwYdJQICQ7az8xfrufpuYAfjUD8NAzUzMlMDycaO1awaj9pm2XYtqq6WTfCBnU/dCiyWhb+wsyMpquSua33g4J0wDVDH4VcmErCYMwCIat/3setAGDwwQLNaLhfzqg6j9fXTdnfeLOb3elUgx2UIDiHFtFosDCy1fUpxgEUlsa7tvSvQg/OEBkyGjupxde3aVV96gyGz5jylvCea54yG46qsi0Dei9ndrg2e22YZPHvnp+MZQkC14+PT3WpvNCkMDA2dJ4NceO+Cd2XYPdjfvn6pLMKdmx/99E//+WduPHbw3jurmCdJfWAAACQ1FIXzlHNy6xtTdD6rVmVtKeYYISOh1wxilk2TRmKK0jvvF6sVAAjo9s7m5uOP96lfLo/PmmZ+tHd47+4LT16V1HVNs7W5vr29eXJ66pjmfTcabWuWrjtdm/rlKjGAZkmxQe3HVRBgUhcCgmXB3Md2e2M2rguz7BAILcnALiIgAAU8D4BiYjyPAiKAc90lAQ4B7KDnTJLhX2GokFRBh8nqsA5/rIi2j7es50OxYfpKQ38dUAEBFXRITxy8c5IFEau6vnT54u6HD7Y3Ny5sb909Pq44OMDCeWZGJUfqmBOJDREvCDnn4HzwvknJchoKuBzjQMgd/DV8nkA2FGaaotAQId6naCJAx6vm8tgtl6v1SQmDkF4yOVTN9Wi6alapy6o5Sy6L2jsvWU2zsXOM3gcEzJKGbEgiVDIAiP2i4vzSE5enZbjTxc3J5dnVJ/xW6U1Ns4iYJtEeUjQVSVFTkpxSTiIDCSirqok6CmBwfHKwd+9O1yG6UgiBkgGhoIPCI6pkolqJbWikEBLyEPMnlpHRSBTy9sWdZOtgduHaFY15XNXLthEwIVAABQvsPbMjQqgRdFTYyXIxcgkI2651DOPj1bd/6+u/X/+bz/7YV1546YXpxmX0oS2MQIJo33WJsVEjs1AVx+3qrF8Wdem0OD4+mga+dPkyAGhO9XSEakxUlVXOOXV9Tl0ofCjC2mQ2ncyc8+h96HtyMi0qLnxWNdSynjiuDTGlSGqDIDjntLW15Xx49f1X99qln24IcJYsqmaqPOyczxkgKWUAnK2tj8fTuiyxFyIGAO8DEYuAgX2i0Ph4kPXJjwGcPxyQPnF8sjr5uAT5k/2YwSLw8V99PDiDR9ygH2n8DMfwFkPr8eM3UjUDI4DzNf5RV+oH0OoBY4RIlZteu6CVn8e2HE/G1aisKl8GV/DQg0NDGO53BAAS1aQ6BLUnETFD7xFRAQd9yPneidEAmq5bLpci6lxgJiAERXa+j21OkRCrqsJhiEikg2CDBj2LqgmjGg0NpQRkbt7MV+0K1Ni72WS67JZJUBM4H5nC5vZmL1XwE4S0Wi0BB/uGMXFa9plAJCNa7FtEQYSURcVCGRDIoUt9S8HVoWhiy1Q+/+zzr7/52sOHu1euXE25YwdV5RfLOSuURVCzRdtUozXAMJ6Uiz4W7HLWVdcamJsW5XTsm7kwvPHK9yuFpy9e+XDvPju/WPX3Hxw8/tjVyuHJ/CTs4lNPPJHS8v7ddzEbK0EWQAViM2Qg8tD1S2NxHERIhUrnPcvYh+Zk/sq3X1msehnWO1l5jyCak3kqkBkpozcDROWCeeRL5/jBvTt+fvrg6OjiZM3qae2K737rO6lZcqiMyJEgGrFDdAbUN6vSeYfUty0hMJGIsGP7E1xzeyRsY+ahHtm6eLk9PlsuVgv2ZcHoEAKYREMktE6ygKllIOhNezUmjjkvFstVs8wp923nyOeY+mUDAN99/XXHPhSliqkpI59HzsF5l9IQZaA+DDroR6QPgGGXfd6TJEK1/Gho+wNqhZkNdzsMzA8FNhMVR75PKZSlC+709ASHnGeFIlRNM/dMgnlUlXVRtKtO1Ya2JxAyEDFpVjM1FXCkkkUyDBpAhBh7MmaglGU1P2XG6WwaqvLxJ2/kpItFIzH3TdM1DZgMA7mY+tV8FXOOKgBwPF8ulkueTJQ0Z2Ew0lgUvL6+trk+8wQFORs63USEFPtu6QsTHY1qDh6d61OimJj54e5DIFxfWxeB6WQqSdpmtXdw+Mza40QkKoCQNSNRcI6IU043b364tbHOa/7B3VvL0bgugnO+j4n5440dIjn23syarnVl4Qqf+9zF6NCcd0ml6RpUVKBkUoxKdNh3qc9pwHol1VAV3rnV6uRw/8EHt2599OGHT16/UlWhaxswc94tFov5fJ5SzIKIZKpdO2/ZxX4FmnLXinX96pQ0rG9s1eMJcbe7e7/rm6oav/D8U4vVKnULQky9ElWFL9NA0hp8tcSD9gd+wMUffqVBPWFIoiBACiSqWZEYFVlREUBEwAZSsyEMqc5Ag2xTBt/I4CQDVR0EoMO9hAg0aMgUVBTA5mfzdtU6pGlZr9ejO7v7hXN1CElJzBSMGMk5EjAbkkQppaxBvffe+5wjDm9kg34JTREAbYDimZqJihoqE6WYkmR2FM0OFnO8cEVXZ3nAO3UdjOuUpXC+7yMjg0SNOqknk9FkOpnJ4PpViykXnoqihAjsmMhl0WgCAMt2OR0VW5tbZycnlx9/cvvxG6PNC+r7nFomgC6DJbaYpc99TLGLfZdTkmwi2vd9yrHrWgDtYwKkbNKkfNYYcunLIAaqVviyz0im5EZglZEHR+eeIMdApKLOu8lkcnR48M677wyjTgMks7IoTWBQuwiaIjh23hGIlb4yXaa+K0vouna8th6QWtIEeXnvwZWeXn9w79+89ub7N6699NkvX37+Od6ema+4qoPzrijJmIyQeNEvq2m5PplYhPWybM+OmD0ABB9ySqUvQnAg2ROCo6L0bUr37t8OgcRS1zaXLl/0PmRpsmZN4IuAHAhQJJsaqjq0HHsA6GP8zGefphC+88ZrDVtJQKbM5IIb6g3LyoOm2KxPycD6FLuUQBS7HHwYRmBDRXNu/wUc9JdI9vHz/hNVzCC6sU9WP/gIkPgJvTN+/NT4RHn0aG78Q+OtH0SGfVzxfPy3H3/uJ5tMdu4ye0SrBiActJ4fK7UNbMixxgzW5tSLhKoqi2K2tj5eX1uQDXmhg8500EypAtijvHQAQyoK1w/iasDBkoaEA+7SFPrY9X1Sw6KsEVHNcspmxqpFUQzTFiJKOeXBzzScfuifITrnTBOAKihgRiZ3Z/e+geUubm3umMNsuSiKZt6w56QGjKX3peckWSDllMbjGaiZ5tGoNJGYW0QQSapp+LaoIZEjOpdDomrfxLIq2q6bzabbm9t7+3vj9fH62jo5C6Vrm1XKsj5dm69Wfcx7zfHZspmsrSmkw6OjMbux865wYVxdf/LG0eIka1RJ0jTrZbVR1PMuu7I6PptvzJdhY0bkjo6PyoKffuJ6aq4d3rsfDJx6dKiGiB4UDDLWE3IACFnZhEmB0RznnDI476hAA++dJvJOXUAISBAAAUgUhRFRUU3UBBmXyzNZnJVcPrl9SVWm9bht503TchQDttyaCRCJoHPOO3KAwbssADkZDTSLcN6ZfjRwhU+0N+1c5ACIYTSe9TGfnS0WllztsQrj2Rq7wgzOmqUzdt61sY05sfdR9OTk5PTkDCwDoGYdTP3vvPXOYwA3P3prwFupWmCXUmJmG1KWTc1QRBDOZ7Gm58W0qrJz3jkDUJGu60QexXQP3RH7GFxhet5NGrYyqiqIROhSzuPJJFTh7Oyk72JO8drVa8898zznnLMMOSbOu5Ty2dlZ27V1NZYsKQsRgUXJ6pwjVDNzjgGgGpWjUWWaYh8xpb7pJMWti9sjCnDWdV0fu1y54uxsuXvvTte1Imm2Nt3a2RIFdBh8rUkA4N3bdzOCRzQ1R+BIHeSN6dr6bDId13XhHDEOTfKuPzjcT33vne9iJ5A5+mpcK4IvnIlKzk3fc12xL1KMaETk2q7Nqs+/8OLp6aH0fdOnZdciUdf3HNxaXT6xfclh+Qd/8EfN2tqXn30WV42JyRB5iaya1bSP0QVGwKbriB15NAUDc857X4ZCJUsXkxllkSRJERSHpRYy4mLV1jG2XXvv9p1msfipr/3kE49d2bvzUXbathrKsm+bGCMzLZeLy5dIpC8Kr9ZJig7pZDn3Zau5z8lUM2heNcejERKBade1ajmfrs7Y+9FoooBq3lQNgJmGeISh62BBRTMwn6vLiKNkUPOefFEZUBuXTRd7gSGpANgxM6SYus4UTcUREaGCIpKCgD3qtZ4v7maioOYYRQTI4HxTi6qqYojkiZ3Y/r0H4/VN6DOJslrK2Xufzp8K1ufBT0aBKZmllMqyJOLhyXFOVZGhZ4oELCAAwGSggAg4TNIJidCQgNzu8eFJ3Lx47YoHAwAHpDl3fV85FkImJ0kxSumKSTWp63GWPF8snQsAdnY6r+u6GtXo2cAA2LoEAMmCoRMbr1+4BIXeffDe7V/5litWEVaiYNnFLiKogahk03yerQFOFEx1eJaAJUFA9MZecVLOtpXWfDn2IArmqFABRgBKa6GqxlsKzOzYuawWXAFgInmythaKQnV4siMR84BbM6CB/QNGxHQuGgY0lAKLceUsVdNZWY0wi3e8kO7hyaFfNY9B/cWrF5eHh/d+7bcefuOPpp9+9qf/1t/og4zG42aZ1uoqkYrmtcl4MT86bZdFmHpyG9vb65sbACBJkgEjICg655FHdXV0pIBwNj+9+/Duc9NnV217/+HehZ0dVRgkQaFgMAJjJDNTUO37VbeaAwASzra23vng9qvvv491aUMq5zDiByV2ohmRnfPL1VItg+Oj49P9w+Mr29vaJ1VP6IgyEckQiQoKCEwMgDb4bj8edZF9XKacq2cGruig939U/Xz8sPhhvc65uPRH5gl/atPo0YBIEXFYUc0EztHq8ugthv8xn6/z5+Z8Im9qBbuhTCHG+cPjD157vTk83q6n0Uzabjk/o/WyLD3A0B8DRGJyIpnIiYqAIpGIDDxSIEAbAIgmkomAccg8geBD8GwGMUaRwZpjOaecddDLghoT6aNcjmGsCQ6IUMQAHABm6cE8sXfz1Tz3iQy6rtu4sHX75E6FnTdnGUNVNNKtzo6lPXIlG1pRlsSacyx9ESY1gY1HlVguqpKdSzmbMRg4Ij9YNlTBMHi/Wq1cWbRNc/XK1Q9ufvDw4IEriJ1tba4hamyjZ0pMfddBdm9/8IEonJyc5hg3Nmajssw5rl/YEq+S86uvvsZNcklY7Mr6Vn940GQbjcYHR6dlVcxGJRrs7e+O63Dl+sXl0UNoeyLVZOwCqYERaDbKTkwJUJ2ZMbEjIAMXiqN5d3raFGVVrK2V5VjzKiChQxAEQ1VDkIIIFVvNCTMSF2Fwzaq2HXvWroUkk9GUyeUs7IkZRa0Xc+wsRwaFLCaQYk/lCFQG5/mQvPjxNfrxpf/xZRqKOpQjHiWO/eLsqFmccenbTqrx2KHvhJy5lJKiAVJu2qZpFvN5jqkuK1UFHfQ98PDuLgAcHcxR1TmXs3h2j+J1hksHEEFUz/nh51/ZD8R6Q7AUMkmvREpMwOdf/blqlRGBz/NQP8HTUjM0QofjySSUxWQ8XSwXILq2tpGzMYecIpB+8P4He7u7BG65bHPWlHIRirouu67PkYpAzBz7LvgwUPC3draryYgweYfLtm+6lQe6dfOjZrmADGDkfQihSjGpQVlWq0X66NZHRVWOZzMF0BD6+RIAjpbNeDJpciZvnpRz3JyNULMjZLPYtserlQE0XRuK4s7d28w8HY2X83k5Ho1GIy6Zh+c0oQthZ31t9+hourHR93m1WJ2enk5G1Z2792br47W1aUcdq/NVrWKb69tPXN9I2u+Mpk8/8WzB1dd///dXZ/ONomJUTQoAzE5VRVQ1IgVwnIYUA7XBehs8A2GboyPmIsS+V5AM0uekooP/wgCyKTLnnPvY/Zkf++qnP/25e7c/MiQRMAMVaFbdYrFo2yanBGYxRUcmKca2Q0RGyNLef3jn6ce/UNVVn1d9XDiXEKKKREmMofCUsWeuUm6FAwACoYoONDRTSzkVViAROy8KMYpq5jr4onCIt27deeutt5fzRVnVOzs7773//sMHDyZr09F4/OJzzz1++dIAEW66zjMF59rUDrIBADS0Ye9oqkxkokmUGFWEEAEwxwQATFzX9dp0DQ1z3/dN7xBRTUUYkcAEjQjJETC44ArvEYBIAUxEBq/1MAOQnAGRiRyiqgw51dkUzLxjEhQZdvykoC6440X3zv27O5/93NBRQOAcs4Zs6IzZc5hM7PR0vpjP98Jhm/JoNGqatutPJ5NpXY8NLMZUBS9gKQ8oeBB2jnNJ5AKf5u5s1Vp/wnaUQoeIpZRqGAHYGaFm6UGs8GVO5skh8bm7AJGAskDKXI7Xq8l1oXWjgB6ISQxElB0gZ+YiVJWBiGVTAXCPVKs5BAp+xMQ6bIvsvLNBhIgMAKLKxOepJwaG2BMSmdMMyMSOAaHLbtHvnRzLYr5Rrh0e7lV9e80VtOre/90/OPzMi9d/+s/u51jV1fJs4aa1r4uKGPuliozqkSmAx6IsYCjK0JIQIgbm4H3Xtc5T6pvRdFxVFTn35NNPHx8dJ8neF+k8dRODK0RtGJSIRAU9WywAYDSbcTX6w+997/7JMW9vZ1E2IIcWLcbOMAzej1CEkH3bRyA+OT29d//epCxHj+T/Q2ylmQLwYNp61K0hM/k4u+n8cTDkGTxygHxcyXzyNT8yzPrEc+RHo8Q+8bnwCVERfKIiwh854ScfRj84M52f+BEgkXCgwIHpfBXOuk0IHt3e4rTtVAlm1zYdkWc0O+fxDG0oNe0lJVE9by4h2LkrzQBSTsxoCJoVAL1nlfNimplXq2XOacj3WK1W3vuiKJDIFEyzgAyeG3vUoyVUQEwpiWYmAFQXU89ARSiuX722f7rftiskRS4sUj0pggsRe+9pNK7my6VIz+RdFQrHpFiGMJ6OmGltfd0XRd91zntHrvCFdw7UEC3GBExMZFlUZDQez6azw9XBql0R0ywUOJp0FNvlYn66qEKdunjn7r2XPvWZKxcvX7+8M2+a/dPDd95+88HRXnB8undUgpsV9ebW5tWdnZ0LF968d/+3//ibbdtnR4eHx9PJYzklAbq/t+tw68bTT7z/2qsIFoI3TQ5okN6jwdCvM0tmRgCkQKDzZZOFbtx4an/v6OjweH2tnIwq0A7Fhu78EFOiach9EfNEbGzABoiWJFdFDQTJrCAHiDlLkuiK4IiSpUFKg4Mm0yClVIzYBmPhebyt/ckLDhGHtNesoMjzZXt1Z7OsitOTw6bvzo5P52crRkfITH7w26tpTllVmLkaewTKCZzzXeyJsAo1AHz5sz8FIEXwwQcw5aGJzQzITETMQ5TXecfyEfBeVdRsCAAnJFOl4AaKDn4cakNoZnret4BHc2xDGTYuAAgxp8VqeXEnsGM27GNuli2YY4KYO+8Kx75t4ny+SCk5TsEHFZWcHJOZSewckuCwIYG17S3yjtBcyWtVmfp08HCvaVcXL1+aTmdVPZpO1kxJsgTmdrW8+cH7XYqA7EKgLIs2nbQ9AOyezstiNJ1UXVzmvr28M7tyYe3e3m7sW0+Qs7RtM2QizSaTuq7AYGtzIzg3nk6q0YiDy6o+eDEAxC995Uu//41vSE593xtIUXjnQ5fig739DNItWq/uo/sPHbkHuwfrlze21zemZdUtV+3i7FPPPtt33cpwPBmlvgEAJgSmgdSigASWcoqSVc055x13ImCGjhRQFXzplbwJxpzF1A+7PISmb3KOzWoJqDs7223XxSR9lPOGmmOTDDacEx3jfL5ymnMX+y4ROXRpvjr54ObNZ5/4SlkWR7v7IcD9h7c8843HXlyuJGWAmMFsuTzxYdb1K1Ety4ooEBogpZSa1SoUftmswLrZ2sZ0bW0225h3y299+1vf+uY3333nvaOjYzBcX9/Y3tm5/+DB8cnJoBb65h99+7Erl3/6az/x1a98ldFi7NrVYlqPQ3COHDkGHDBu5hDBVCVLzmK5T33TNjHGruvYmJFOz+a37tydrW98+auf2l81y5NT55yIoKdz0T+CkbFH5x0RmQozm0nKPTpHzokI2blfHweLsGRmj0RZh7Skc2kdASqAZjU2Cv7B2XKv6XbqCgAUKSdVQ0UAJmMSgTJUfZdOTk4ASc3G07WiUkJwwccU267j0gFT38c8iMg9MeSuPRLoj2KvvnSwHlIOvtYUy8xErGwmKabkHHnnLBvIUIkM/Z9sBKwAYohcKHtgJhaiLD06RzSAeU1RCDEldV6ZjQgYzDR7YlNVFEQgAhHlwIiSRYFAiQgYAIAM0A2CRwVQRACP6IZgagAQs1LBdk9TF293i4PCvXh5Z73tYXcvtPpiWX//n/2L6sJm/dQzsXBR0mq1GFNVetva3NAkEbkTKet6bWNjqLcsZhc8EBho17fHJ0cxZyK8cGF7Nl47PToJXPhQEHsDqMoyiTRtQ+yRGMA0pRQ7A6jrEQB8/gs/Nu/1rVt33WjcGXvymkVEnCciX4RAhCllkcSOoQMTSTnFPrHz0kYRyTkTDesnn0dwDZxDHHhVQPxxgfJoCEAEZnjuGzivTMx+tDr50xDP+Iia+Ekt85982bkq6JNztI9HEB+fH89H13A+DDNDAoIh7vic2Z7bOBFcj5bnnSFvTtbcaDwP4Jj84GU3A6NhouaIEHEYcCERMrGSZDMFOk+dVnaMNqi8AdFU7BHVeniaZCIA4KII3ocha1bVZEhIseH1hudRoWqgWTpg8z4giyu9b9vu4sVL8/nZ/v5eXTg2NIJQhsIFz5TKjoLr+h4BnWMzIaK6LjUlldzFboyTcT0pyjquOiasyqKuKseUUsJzlba4wueUCamZLzfX1nptVmeLjc3NzXLcHp7FmErgcrpehBonPB3Prl++XDh3enz03u2brgyf+dSnr128Yqq//q//1dHR0Vk+PKC7Dj71xT/zleufeekwxj/4+tcvXdg5PjoL4eHlKxeYwiq3d/YOLm/ONq9ePbx/N9D5ukiEpM4IDDLhOa9d0RQga19U4+nFnY31y0U9OT46ODt5WBUTxnOFJRIwoCEjoCmgc8TAYGxKQKqGBmXpBIxayF1HvlCVrmnIclGNGBFMnaOAZIbEGlPnNA155jjEt35iEPtoXouIQ/IA/LX/5O/9iQv3f9Dxje8BwFLPilCs2nkpRUo9AxAPPfvznUY2VRo41QCDtXgYgTEj4jATExFCAmAwMDuPCD3XZDzaXgw0FgILwDAwPYmzZDFBAjMlJUTaXNtOKYsKIm7v7LAL8/mRY7+2NnYUGDmnOHSBRTKZsfdiJGAAcHQ2F76ErBm19FU1Gl29ds3MysJPqlHwxTjUAC6ltFotbn94a2/vYDybcVlwUfarVat2cLoAAFeOhsl8WThEfOnFp0bOdg8eiqVQ+op9XVXkfRZR1SuXLhKg935Ul7PxyNdVUsmaB2hAKIr3Pni/6ZqKse0WIuoKlyQWlV8sFiLSLJrD+4d33nsY2O0fHQDbU89cfXd3bzaeOhdu3LiRVktbLjG4QvzwbXw0SqBBS2M45MOJZgUKKEJEoQiqAGkA3ivIYFM+P6pRCSbE0PWtxF40x9QPW86UUxQpK6+aUkoiwg4AcuxWLiCxUyUm71zXtoumac1Y1VQTOb1796Otzc16VC/mZynmgdLR9bFpVwAJEJgMApg6Y4upjykeHh2OJ1P2ZTWabmxNvvPy9//Fv/rVV155dTFfjkZjUybiVZPnH97LOZflJOXsQzhbtK+//f67731w+97u3/lf/O11z5YTE6oKn8dxntvs+355erQvOeeU23bZxi7FdDaft12/vbllgMeHxwdHR66Hm/fv0mi8f3IsnmvHfYpAKI90bGCAYCICKgMaTkUHDZiKimREeASm08Ftj46ZWVEHL7QpABsjZFUVQPbHTffKzdtXtzYAILIj1JSNiNm75Wp1eHKQU7++NqtGY2Tu+ljkiIhZtGkFkVKOq1VTjmtwMMR9mMUO825MrWoOwQiINKvkpF2GFsrANUNG7F1waD2YIVJwpDrAJ8UAFbJhDw6AObuWcKUWDCtkE8kEZeHrmJUZ6rBOQKQdWEeKjktTZvBmHrRTEzLvESQnADVkMyZgO38S00CN10fdBDfAgwfCRkbniJEPDg9KoXI8eTf064Vst8lyP61qrP3a6eI7f/+//trf/V/VN55KG94vpF+tYgFNJ54pKQHyw/39z33hCwAwn8/XN2ZiyuRSlvnibNV26HhazTZHGwDYd6kKdVmWMXeGBgihDDFJskxmJiKanHOtaD1dA4Bbd3a//vq/e/ferrqq7wSdgYH37AyzZTBFdHVd5iTAVJdll9puvjo9OlkbT32pVeXULLjzILDzb8G5nH/4Pf1IIwcAkM4p6T/cy/nTBwXww0qgHznVjxyfPNuf8r6f/P0Ah0E7byo9MiAQkg2YdgMDiyktTs/SslmfzE7bdry1CXXVk4SqYE9gQmDEZGamRuQQ2RRkADMMtjJ9pEUlGAjOg9JsiMwYlKgiKaXknEMMohkAHTtTbZpmCNzw5JEgSpKUFWzQSwGiY/JcOOc8u5R6J123NpuJ2e7d+65AQiyKgtDHnGr1hFpWXo0Xh3PHBSKlnMj7EHyX47JZHp+cVqMx+bIsJ30EJmYe6iTLOaLZkO2yWq2KohwgAK6oZ9XsdHn2/lvvlUBPXby6dfkSAFX16HjvZNWnbLB7/26zmM+b+cWrVx57/PEKfOECOb544fIv/uIvfusP//DtV199/Z13Dv7Z8qf+g7/4V37+Lx3u7X1486O1jbWHe4fTjY3xpAKVpaSHp4sLs/F4a3t1eDimQhUY2AatFJqAAjIygaERGPBsa/3i9Sdy4mywbBb5WJMlR+doiyHrwBiYvQsImA0FLKOaJ9SC+j4eLU5VFJJU7IbhOvPQ6DXnSBVUxUgRmJnEFIiS5o+F+vhI2jbE6p43jgljln/0y//w1//Vv86r+X/wE3/27htv7ozri2uz5vSkaVZt30XRZJpVK1cVRUEMMXd9bJ1jMljNmxCKpJDViIvHX3y+3Shu/+HX19fWVos5IfBAONSMhKrnYT8imkzs4zrmXJNNhFiURUrZzLq2Z+Yclc4pVjo4Fs7nrx+3NMFAzVImIlAEwqIMoa66brlYzCXK9auP//k/9xfMRCI49t4XTA6Miqp07NE8mLERMEuMZOZCYUiMvGobAHj93Xc+/fxjdY0OsPKuHo39mJtm9eDuXWv72WRWjWaIDICnpydHR8f1aFzPRuw9eb+KsVd7uH8IAEilpjZaBorbs9H1Kxf65RE79WVQssDkC9f2PSCY6pVLF0XlaG8f7RH4GNQ7x84hYD0af/DBh1Q4QAPUovBd23sfsqQ2ogsegB1XxsVoslYulzeuPPb8k0/eLctnnnrGsZOkmlK3PLP9/aooAEAkO2Yico5VFYnYMRABxS5G6TqsXUDoU/IUgDClPqnE1KWU4FHHejqqsiVJDVpazE8ODw9n61tIyM51bdP1uU7eJHZd27YtOzJIIokIkX1OOih7k0RkR1x1XV/VYbk66GMzmT7WNI0IeBfu7d7aP3rovO8jTqbbW9tbXb+KMRKV3hdgmiWZQDVSifHr3/j33/7O999//3bMyXu/uXFB1CQLoY/90DdkTYAUUgbnamIggn/5G7917/7ef/y//bsXt7a6buW5HGQ4YmhGjJainByfmSmhpZSHOUxRFDHmrukm44kZHB2fePW7i1U52+jAmP2yawENkcTMANTOJciGZKpDj1NUDfPQUv/4QaQiqMbESaIaEQcEAiOwPBj/RQXRGEEEnRu/f//wnY9uAcA85nJSgwETdX1/dHzUxsYBIkM1qpF5tVqlGMuqTFnUpKxKBo6pY2FTMckA4NC0KkY7WymxutJSw6ny9Wi5mn/wcH93by79sjk7dU6feeba+sZMU3TsUVnF1AxJEZNaZEZQS85X9fpauYluZoZZWwbIOQUAEPI+gCiikhNmCw7JFMkBCIGgilhCIkQWRURvhHLu9zlXvyIgAul5Ntz58EcGwKkaGfQodxcn905PxjsXAJYffvjhY1JcRMyWywAX1N+9e++P/sE/+om/879ce+wJqYs++1Z6dGHVdIAaKkaky5evAUCKCQBTSrEQi6ntWnbMPkAnN9/5oCpHLpTvvPbObH26fWl7PKuEzQeXTJMmBs0xEZgvvaQIwADwy7/8a3/wzrtz4Q7caLxuat45T6hmMLDbckQqAztGqsqgMN472D0+OKqKyjth1pxSEepHMmgykHMd9HkJ8qNzAPhhNsqjHfIPlTs/UuJ84o/2Jz/4p9ZDn4QlfuJdPtEBgiHGWM9bPfjoZaLDOBgRFSCldHp6IgRr2+sffXB86/6tamN948nH/LhkzwhGBg5RBlQuEhgkyVmyMauZ6Dnwa7hMaAgHeaTpydns0QY9peQdsyOJIqqgoIKi4r0nokc8yWHyigM9DRFNzbMvi9IxE7EbF6NqNNo9OnbeVQzI5ovQK5yezLc2pwQ6mYzmbVRAZhqcFN67rm+b1TLGqFnbtnNl70JQAxXTFHOK8AgqLCo5pbIsVXJKeTKamuioGM3ni4rKi9PZtB7nectlaOP8bH//rGmFOACdzed+Ui7mi+XRyfbWVRNMKp/5zOfWN7YubW/rE0+eNPOX33vrg4O9X/jZX/jZn/npg4ODlLIS3b778Klnn0BgNVhlWWYrpmv59DSZsuHQAwIkBRIZkEw07PHY+1Wz2jvY3dm+dunK5d29+6KZmIEzkIGJGSiCWU6GRAU6x460SwSGoKLmR4UwY8ZALgi0MfnCj+pNk5QkZSCiwRaOWZNhEDVFwKHdjgDw8TwVhpGlmQCgiNZ1/f7Nm6+99dZnn3/OleXlxx5v9vdXTb+1sRXYB1x2ObaSm77vVktLKQQHmNkU1BCxrH3K2YeS0c1XfT2ZFOPJP/+N397aWJ+MRwMUZFAtEwEiOR8GQbQnd270ON9eIIKy42CuAGdmLiMIINsQj2WmADao5x7dOcO9hIBEjCIKhjGn0aim4EyjW1+TqEVZqMpwzYvIxsbmzs6Fu3cfdF3vHZSeVQ0Bgveeh2uZ+izLpulzBoAHe/u37t1/+unLoNj2XSgLzFCPJo89+WS3XJoakhcBAsKi2L5yyTlKpkmtjUkM7j/Y290/BoCsal1XFOQLq+si53ZUOXbIjshTVnFinlHNYuwXzSrGeHZ6wkSgApJtyDVBMzDJUtW1q/xytfAhMBIgEDMzMXNVj/qURJfsQp9ySnr1ypXVfKWq737wnufw4vMv5kQf3toftc3ObBMA/sZ/99t/ctn673tkyXVd9X0HqKt2tVzOs0QkQFCRmFMyTWiSYo4xh1ABDLiNAQNLABBjZyaq6jiYoUju2lXOiZFzyox4fDI/2Dtc316fTCddhFu3djfXZzHFJFiVQORFVFV9EXb39r/xjW++895HRTktq1EBEPuYs4EAKhkaIDGzxgSEZBhTwhCS5EhW1rNvv/zq3/u//N//D//7//ji9lZsW3YMgxNXEdEIKRQFmiKYc67tVzFqTKlpG0Ia6YRdCEXVNzmidd1SXAgQ6rIC1CgREVGBVE0znhv1UVUBIYRgCOwcMWUzO0fxErGR6ZAjP9x4wyrORGYqIobGDsVQwAlBciUALHKeqYZsMaZHCWngi1BWFRF6z1pVzrP3PgQnqsxELjR9kyRllT4lAIi9AjkoRm+8/eEffPut2Wyrdjgi6XLeOwtnq3pvr9l/6Inzxdur6TTm1JpaID+kOAFEIGFWZ57UQxnD+MFoPXkXplP+3Gce25gWZr3ZsixLImXfO0oxHce4lODIfFWMVUykU+uYESnkhM6C4wKJFDCbDroNUziffwyMVaCoLhsBkQ3RcUyLHN/Yv3vHVpdS/4XppVryDoeQVyBWiXHJ65U/fefD7/4//9HTf/HnN7/4hTwab402Us5lmLD3KbcGtre3twlAiCkmKjjmpH3nvO8lnRwe8comxRQ9OXOB/OnJ6apbrG3NuOLZ5poPBRBoFscOAURsEMkBwMHJXKlAX0JSyxbPFWCAqHVdMFPX9ZpyUVSO2AV2wXvPsesWZ2fb6+t9XMaUJsx4biQ/hx+qDsKcRy4weyQeQEBAzT9Ui3xcpvzAAgY4uKXg3GD1qAN/fp5hE45DITPssX+kyhmq+eFiHtpQw9l+uBE1iEeGUJrzsd2w0iuICaJBTvng9OTg7Hi31ROIJ0BjzJPKZU8U2DmipGjogBWHxBsQkSyKzEhoqsyBGFAtmw72ZB2wEDmDnldCRMRMgMpMVVUjIhiaYowRAUhBhi2ioQ4dIecUFEw1i2N2BI6B0TkOo8V85URKJsjiiyKjLPsuthKwch67gKuzJudIZVEUAYdIohgdgUN1JCZ9184BRC0nwdS1fU5qKqIM5J0Hid3ZWYyxqKqFyNrG+jNPPXnl2pX56Wl3Nm/b1lflbLpx5/advYODs+Uqik3rcYqpaVZzPOmPTt1zcOnS5aIorq1dcmAaY12FS5ce//TGp37n937/X/6zX/6Lv/ALP/GTP/7bv/u7xXi0aJaH+/uPX7nUt4um6dz2JTF19UY/P6sQEDMKMBoA5OFZPYS1IzNAbtvlwd2CLNVj6Q5mIw4EZmBodJ5oDeDMkmrUgn1sWkeFaU42LIBs2UDMTAQxg65NNjzT6ckxkM85EWpgA0NGJ5mbVn2nPpgjl2JSFWYwSY8w/5hUiais63fe++DX/83vHR0vj/bnbQPb29e2Ny7uP7j1YNleWt/07N3itIxYe2vRjCxJEkBHJZnmvi0LH5A6ySdNO7t4tVzfiVVhVpyexStXn75+7er21qb35D06hznGFCMASE4lez7fpuThZhBVcoxIKSVRYGLnfc7to03MeToBnP9q50QMAwSLqUci531OgkQpdwBrCCzZCD2CoiEhknfLo+Zkvmj7NCrD/GweizybzBiBHRdlmTU1qy5GzRkcMwDEZEdHpxvTemdrJiwWlItKUg6BXRk8e1PruwyAYVKlFPtm4UAWMZ513XEvb996kIUBQC0jqYJ4H9hxEvUBFFRy9uyRUCUBomRbtR0A1KNx2axEBRGAwDElUyQl0rOTrm0on7aGJBJ9CKWvAKGux6uuaVatRGQsRMyNvJJ9+NHNr33ty6s4B4LAxeHRwfr61mtvvPOzX/gSj8b/j7/7H4FIgYAgZemdw1AGcp78kGSCbd+2XZtSRiNTMTEm5wCR2QAiGDnePdz79m9//ZmXnvhrf+0l4Afk665puvm8BHWEqGYxgWBWF7OuVstL9YyUuqRVEI/Ivibvs2hwRd9pVKhINHWWZXnWnJ40Vy6ykbRxOZrWly9dyVmmdXlcHbdN60OlCmLWW8wiIYw+unXvD77+R2dnzebWleWyA0NM2RunpGI5FCUYmhpkdUjADITeuWFBZEZ2fmNr+5U33/7P/vP/2//uf/O/HpXBRBw7MyPyYDl2bRtTyt1qsVjO533XrJr2/v4+F+WLL1ww4kk1unzh4ocf3g9FPd7cXMRoyGaWVIh81myAGaDv42K1spg0Z0D03nVNZO+Q8iDMaFYdDApOMHKCRKk39kVOmdihmBCpSk6JHKekHoP00rNQWQLAIopS6KVPOZejsvBhGc9OT5su9KWfj0Yjcrw6hRMwco6982XwhXOlD+xS7Ifs9TbbyNeLpl+fTH/ii198/e17//zXfx+oUAxEBbrK0QTCJTG59aC1Bx0BgBrxIEgVs0ykRMpKKNhbh77PsAvabm/6Z5+4tl6RA2DoU2xNnKPSe1ocL5eLA7boMBfeVvMDlSVR9kzeF2Il4Qx9DYAxZ2QsglcFU6vKEgFiioBQFOPR+hPFeHtlERxqVqZCV4kX4ryLaXW1vPjYlWuzg5PGFkYOciGSQ+HWLZzcvP32L/9y/dYrW88+dfnSlX48XRVjdVBWRfADOwJYMUdxIaRePDEgrFap6/P2eDYdjZEQMU0m04trG8DIAaPm+fHpaDoZTSYAQ/wommUyS30PAOqpGFcZA/SWu+hDgYxKyoTgiULhg+u6PmMehZJUIKfZeNQ0y3/3B7//M1/7yZ0LaxnLhA68yzkN7E8wQHtE04EhJQIR0WDAG8JQJQz9jGE7mnP++HWiQsw/EOBrZgREVNUhW9JMmYe9NxhYlhRCoaKiA/PPVDMNQocfyLFRPzFTOy+SEMAICAgfBaXbueTTkTO1mGPqowtBEPZOjhtkKEc8nmgRhD2SJ3QKmQAG2K6YEVKvGpmInUNGRwqGzOSMEmHGrDlnzQM06dxHjCJJchI0b94Fx8wDrG5AxhiCZ2dmfRJC8uwAB++ho7KUnKMoEKuqu3j1sXdee2UceOQ8+JLq8cPlYZQYuFweL9Z3/KrvVzmWdQEgiAqiiDSu68nW+sH+LkICS32/RFIgNZMkOeeM7JxZbttuERfzuZF95Stf2byw3bRt07V938W2W5zOzQxDMZ6sodGFCxdFIX74kbV913WScr9oLl66pGKvv/XmrQf3nnjiyYuXdja2NzbWZsuTfW/2tRc+c2Pr0n/3r3/z13/tV3/sZ3766o2ru/sHPtDhwe6F2agOrlFYtXFjYzPVq3bRJlWHSqjuES9ECJnZKSIwGrBk6vv9B3cWyzOQfnu27pA7UUDzDil7c9RBT0S18yllFHTOawgpJQKCBI6Glo5kBGM8m5+RckpKnpmc80CatBemwoH3FLwPRJiTIGEZQs5J1AjJl4UYhlCI0tf/+Dv//o++uehsOt4+fHi2Oo0XJtvT7VG5Ntu7f+v+4eHFqt5iOjnYc54MMDMx+ihAgKRSONOuNQJDv+z7zzz7fHSBi9FktvXuu+8tO/vO99+u61CWxWRSrK2NL1/Y2tpYH43GRShFYt/1BhkIDIyZmDF3ImrEntkL5L7vA59vDIZR3tAGIaDBG2AmSIhgdV0YWEo5OC5CEA0IoAaEzvmaGUGJDTJan9LB0eEQMr+2vhG48OwIMYucrZarrlkuGhJP3tFALWJXhnG/jHM44wsz751SVlYApFAiIqpVIZiRivrU+gDNat418ayTt28//OjBEVEF0OTcE+TgXJaMFIxc0oSIKffdqi0LRk85Kzq3vrkdfOi6bjbbWCzPBDQwCqJmNRRiq8uNKxcuZ2nv3r951py2nbhCty+tk3fYgoHmjGZOBQYx1aWrVx574glXIDMicvDVYt7d+ujhlV967vHt7cM/+kMncbk43ZiOJKe6HJFRjuLREJgMx+UoeB9TzCpM7IAtQUCXs0ZVUTk4Pb7yxFOL19/5J//y33/6Cz/l651lxymhZalDADXnC8mLnCwKtV0aoJaEznEhtvSOkbyohRCsB4cekDRHAskxtcvYt5Iz9JJa7clzEgV1ABbYdW0fqolpFMgaYwa8e2/vD37vW12Pa7OLfSs5a4qpUi9JgJFdEXPWLJ7YEQOQipqiMKhZ4QjUuq7XUIwm69/89nf/i//yv/w7f/t/DhK9oxyz9x7Bzk6P3/vwwz43qNliJrVs0It54mjYppxzahYrJq9qa5MZdd3panmeMQaYBbOZ8+G551944saTEjsEzElM5NxyLCYgMcYck0PUGENwy75RyaJG7Po+qkoeeKHsUkwxJkSEZOyAGbMJABydrdqtTY+cVNk5ZrJsuRdiLErHRpBsFAKHkHHgdZGIFFygGeRzDIQg+nLcxvzsjau/+OKX/9W/+da//Z2XaXTJrDQxjT3RQL9F78bMTEiqmiQ7AnJmlhElSSxCRUYWo68KIEk9VkwFVdNyDGKiXc59SuhDsbG5c6VYg9R77FN33M7vj72Clqo9Idf1pKrWMk+MalHpux7IPJHkJCplKIig7x2ohqJYW5tFP2rbuQtERAbmo3756rMb6A9277nl0RjqUXCpAzR0XCO0BcVWdeY4LM9OvvOt269/967Hza/+2fKlL7mN6XR7I/hQQgaA9XLUZYjRfLCqDJ20zvuNtY2A3ORWVaXNXV5c5IvrmxtFWQUu267XpJIyoBv0JTHF3LYoCACtxVCXqp7BmqTDHc9moIBCjtEVpXeQlw2Cq8tAjhOaqL78/e+dnBz/uZ/9c62QUdFKAhIiRkMEjwhG5xWPDjqDR130wUXrnBuGOwCAAN45QkwiBoN8QQBRNBMgMzlCJjRjURVQJBRVkeScd96ZQc7JBNj7nAWRnHOWI/wgReyHosE+LoAGoQ4N1EtEIDIAYpYkZufUk3FV7mxun0zWTqvGIW9dvFJubmIogR1xgcBK56E3qnkgtvc5axEcF2DoPfeSu75jAIdExn1KUdQRee9yzqA2mGwElJDBIPWph+icH+IHVFUgI3lEYGbvXFGWOnBcEFLOMWbnwBcFILnZZFwUYTqunNkTTz+9Arv7+n0mQ9Tlcn7p+qX+7BTJXBFyFDFgQyIaVfV4VJ/6Y8/eO7eKiZkJABNonwgx9v3+7oHF2DfNpz/90nMvvHB6dvram28uFwtABMPJaPL0jaeqqlLRs7P5YrFol820muysbd1b3g9FUYxmYfvysm2KolSAw+OT0/krV/cvbm+tjyeTS5evLE4OT4+PP/3ii2Fz85/+2q+/+r3vXX/q6ePjoyzZO7zz8M4zT93AAAeHDza3ppO1kSyrtFwSiCENaQ4ZLOXskBVQUy6c5zBW9IZUjkpnK0Rnio4DM+S+r9zoySeff3jycH/vfsRWUdFDm6IZOufVhiYmmOlwTVZlMZmtNYtoAFlsuVyOxyWz8wSMRJAkLTSeWKh7yVVZ9jnlDNPphhmczucPdg+OT+Zvvv3u/v4hUjkqWJOtmtVb77575eKFrk9raxubm2tHdz46vnuncjS6cOH0+CAQesRs6NBEgAhNed7nydr66dHZ85/63Ob2pbNsBCqSmHgyni3my8P901D627fnOXZr03FVFDduPPE3/8YvffVLnx3VAR2qiiYVEybOkiSrd5WaOnZm5/Fzw23y6D949EcYaNIAaIYApJYJyUDFIg2hxEadyLvvf3B0cJZUqrJaLZf7B/uFK733quCdU7GYs1o+Wy1WfauC46KSIdgJgAjqerSxMTs+vN+kxYVLF2czDr5AJGAyFecdAscogkNOHWaDmPJb737wxju3kNxgPSVyqgZGyHx0fHzv3oMnH9sejyfe+5wzVqFv22XTOC6Zfd81mvN8vjo+PgXAqh4BGBEjuSiys7m1s3NJpOtSs2xXqc9VPV4ulq5ws+l41S1Ni+A8EfddDL7suvTRzbv7e/vjSQ0Gi/nuK6+8cXrWnCzTT3z5eWL/3uvfOU6Leb+qimLVqQ8BECiBcwYsZlRw5cMIgFTRhBQ1JzHWGJs+y3wev/z4iz/z0/it/+t/8Q//q1/52Z/58fH0SpfKw5O+Lp26otOFeb9KXQbBAAK6Wp1dckhMSNCnFFPvPafYSo5FcEQgGQy8qk8JEUtRH/vehJyv2dUpqxiVRd2kjOfeEQSg1ar91ndfPjw53dm60sfc9p2CiUIEEnKDndrQcfCqGrMyCuKAQVQ1jZkBkLxLSYvCXb185fVX3/jOt7/zt/7mL3Vt4xyllENwIbiHew9CD4VjJoqxV3JHzcocDz+mqh7NNtd2D45NZTarstOjZTIoEM1AvGPN8tHNd/cPDnwZyINJqstR23ZlUZgZu2CmxSyUEBiRrQbgIm8iMjvOKbvgB/2FGSKzdz7nDEAgyalkB+gBXn35V95+D95+7//XyPL/zwPBEbELGGO+//CBIKKjlBOQZyJ2lCALBQBQyUmUEMGAHabcoYhnTBqdA5OFpM6z65tTI4vdaRMCYUaHXRe7vmHCPsvx/pFMtiblTDB7Jl9fctMn6wKc45w1KSPViaucOkQjwgrVDAiwpOFnqI6xYAdiCrIUNmMk2z04Go0LnoT9s93VwcMfv3z9NOG4yeMAk+k4Lk9YMRBOinHXqUkrkuuqLrwnwpPjPdo/mRnf3j353W++isyff+GpqwCgwGgxRyxdluREx8F5Lke+6rq+qIqiLELh6+kUnItiZuKKIIZNn7xnBJCcV8uVpliXIwCIKRX1qG8lhBB9SiLMiEA5ZhZxXoPaGo9aZxYFAgCBmjjkIvi7d+/+81/555tba49fv5ZSRNEyFPAJ+fH5wOpjoxeeJwYjoAGJiHOOmUWEmVOM7BwxdzERcc7Zu0BEfdedLuZt1+Q+qllRVaPReDIeD19/H3tiDkUYiBrIeO5XfASt/UTF8ycF0YhDBC4AGBI+6vc7RFWNRsQ+hNFkXJSlmhRleeniRSlCUmPE4BwDAwkaDMzE4LwqpZxEVVDn88aSluNRFlOAogwG2SIOpYxzbshDTTmnvjcAGlR2BiaaRRAd4jl7JQs4zy44JEJ2oBJj7toupQwIJraUFQC4V7//yvpsbXttvLm2dvHixTuHB1Xpm74DRGJlB85BXZf5LA6GeiLnnGMOjlxgT4BMjtmq0aj0cxaarG9Tsvt37/eL1WPXrr34Ez9++dLFD25++PDhw82NzctXry3PFinn1XJ159ZdH7yogmFMPSFvrq1vbe5cu/rYfD4/ODw6bdqNrQtJEhNbH5dt+8GHN999u73x2NXrVy/MTw6BqOlXV65s/E//5l/5+//gv7713lujtemyEWBatO3u0cnGdHp2crZcxAuzjWM8KCbFWjVhAxQFBGRnxEVdDk007zyYE+GMuFodHj18b4CqETGAMpfT8eba7KIfTZFgf/+jUHgzQEcnJ6dlWVdFqecCLgYkAAEeCqFMaKUPXe81AzqvmtSSGZJ1DlOGnMw8YjGaWtu//f6tN994+733PjhdrIh8VY+RKyS2LqJoWY1ef+vNF1547pnpjS4mrsLlJ5+abaw/+OjDs9OzYmObmrnE3vqkOXkkZAL2a9uX9o7PLjz21Euf//JJk8bTqRBUVdn13WK+RMTRaJZSX5UzKid9H3MvL3/3nTde/89e+uxTX/ryZ2/cuHH18uWN9fWUIqjklLqmLUMgQnacYiJnj3CJCABq9HEJNLhjVGXwl6kqMjHS6dnp9s6m93R4eJRFANxy2XnGDJZzvriz88XPfe773399lZpRMVqt2mHCllVEzLkCGJHIVAMxADjE2Ww6m81id3Z0ur/qbo3HR9ub2xub22zOMw0JUuQcomrKUexkuZo33eHJ6elitbZxoVu0509edIgsyqenp8dHZ88/fa2salNo+66uCnYhx2UvKxGSLKN6lJICkBmaoQGlmIgJANn7ZtU92L1TlpUZAeByvlzbLDfWN+bLedcs18rJmSTVFNyoa7vVskcIwY/v3d699+DBRzfvHB2eMpcffnT/eNnPdi597ef+0mvf/eNb77497/Js5HJSJDBSZtAc0ZyiqjgBTGKSDQGQMcbYWZw3LYc6Jnr2uc9t7lx95dWbq2V8/Or2bC2vbeGyT+sXH989bcqZWzRN08VFG43Il2UGyRZ9GbRrnQfnsSh9jNHESu+StAZCbKKJvSGrkSioc2ikCqIA6FFjIkYgjFGK2t1/uHf3zoO6nJ6cnBJ7ZkI071kFVM+1sWIABkOP34a4VFAwQUMTVADnGRQXZ8vtzbXZdONXfuWff/bTn3rx+WebbumCyybkcH0ypdlkUOAVdbXsugw6qSbBOSKabqw9/uTjNz/60MiuXb+0+PCmQERHDC6m1McISAd7e3v7B1myOUAiy4IA3oWuT6oCBOPxqFmuAvGoLJsmgrFzIec0VMwKNqjWEajre+e4CAWxU1Fkxx6ufObz6wFfunLhsdpdmhSb6+NVu2Ig7IwFqqLq2xYBqlE9mkzGa5NyUqvDDAoMTd9KSiLadrkKlQmooS+9Lwv2CGwKyTBptnHhEMwskUchNTFCBFCVGAKqpq5dlqX7pb/2V5+6cqGZn/iqVqAu9X2/evnbf/A7//ZfX9oeb21PX/rUC6r29rvv3j08ffZ0WfqRGkEegEnQxDaJAQd0Y9FKlAP3BL1j57wbVgBPCIjODbF2iAgE6MjVwe8+vP3973/zc1/61I/9+Oe79mzGMJk31IgzWrgsZdWzq0CNM1JZ+qpwuQcTMMyGktd8cfe99/P1Z3/92y//1vdfgbpeL+mvA2zUk3k7T5KjJFMLOTEzsXY5RdWq8OV4PBrXxWg05AwiEpIjZkAcYt1i7HOMjsh5Bx/bQBDZucIHkc5EyHkgTiJ9n0p2DFYVVRPbee6DC0zgkVGMi6Jpmub2/Nvf/s7P/PTXxsUoplRwGDYHhjDARNzQFjrnKJkNzk+AgUd7TiwEDD70OR0fHKjh0fFxTjIeT5qmWS7n87P52dmJ5sG3CEVRrK1Nt7YvXLiwffny5SSp6zpmDiHknHNWckSf8Maf61B/WABkj3BECAPB6LxiUzBCNEL0xIDETkSapokxhrJWla5plZUMhy6+4nkiNiCqgJilXlMvWhiz15wIHTtkhSTWttEAASjGqKKIKKKIVFa1mhIiMg8+eUA3wEYH3RMNQTGmAy5UDUJRe1cgMqKpSEpJTd3FnZ3ctdevXa9caFddCMFEgkNwKJBH43B1fPGD+3tNjN583+UQgmWAJKRYl2M3EO/Ucs4BXYFoIif7R9trG5/53OeefPLGvXv3v/vK9yUlH4JkuXLp8mw2izkvAD/44Ob+4UERiqKoEHFUj/YPji5evESOQhmma2vHy+7d9z5gzzduPHHxwqW7d2+L5LoeHR4eT0b15tbFVdNnTWdn+9ubG7/0V37uX/7Gby1Pj3w9ErWsdm/3aG224zwc7a2ubF2f7VwfF/WVnUtOSbMxEjKTc8gEYOycZMlRV13yzoqRPzn8CHLKIgpiIuuTjcl07exkObu88cxzL/hS7965k3I2gz4rizgV0yGUAgHR1Eh1b/ehR+9dmVKaTScGWVXc8MYEaqYmKdtoOuu6/lvf+fZbb73z0c27i0VTlqN6NKmqETuvqpqVFMmwrOrVcv7qm28+/vhjNTig0IGNLl55fDrdvX339OH9wnHQ3CwXy7NjkFwUYy7qe4dn9eblz//YT0Xjog7IaAiDosJMRCh4MmV2XlImYO8CgQTvXv7eu9955U1GvHrl8jPPPPn4tSsXtjfWZmPnYDk/TrENng1kmGKfy/MRB80dGCiex78DGKoxJFATRULqY+yWF2Psdnf3nCu9Lzc2LpWhTqaxbabTyfXHrr3zzgfNsk8pMoZhmYg5Ox/AVLIqgIqUlQeAqizW1qcuuIuXLoGD49Pj4+PjxdmibbuNza1RPUIQNDX0fcpN18zP5g9391cZ6tGU+bDr0rABErXAzBwkZxOKSdQwJulTBqKYEhkFXyaQEAKTSzGaWvCh7eLp2WI8GXtfOFf0OasBOd/3+eHug5yVyBfBtre31HK7ms8m49qFE13mxApVWY1iZ0WYvvP2t7/zne/EnIqi8qFerfJ3vve9n/+Fn9+ejdHcl7/2F7cuPPbay9/ZPdwfV8WkLrKktkfvGEAzCKIiMmjKmhCVCObtQow7SxiqMJpeXbt0+eLjXZuOT/tVd3/36PRb33v92tXtxx+7gkxVORXiDFSWW6PR9tmiu+792sa0Xd0LDOB0vjy+deumo6BibdsotmItchJcAXZiS6COfVRDw87YjMg4GYlZzqpF8F0nL3/31b4Tk0jo0BEOZK3BzI/sHQM5GKCwiOzcAGAAFCTAwWVILiWtqyrlvmv6jdkk9d1/+9/+k//k//x/RO9Wqc8xMrFjdghd7HKO4mglMYMwEYgpKzCN1qc+oC+LC5e33/jofQERtJQlmyla8B5RkAh9UEMxffKpJy5dvPS9l1+eVe6Jp546ODi4c+fOpc1Ls/Fk7/7DC+sbzuN8frZ5aev4+NichRD6vg8FLxYnm9PRqK729w+WGWZb1zTK0f6RK/BkfvjMha3Ao3bRrQImlGRasHOIGbIvPQICU9IUVdg0JUkgBKSqQJiaBAk8kxpG0b5ZRc31uCxqtzht6nHBjGYdgjpHDIgmhkpmCGaQQBJZ9NSh2I3ra1/83FOLs0MzctXIgLa2Ns5Obv7e7/7W2dn203rtscceL8pyvli98OTTz924cXoyD75EckgGrP/+W298cOe2ogNfiRWirixAciQmRyw5qw4RbedgVSZCRBVTC9NyxN1ieXa8VlY+58KEUjw9bErnpSqf/Mkf33n8+vf+yT9d3bk1cXmZI6NLDqMoM6qC5uydBrb3Xn3l1W9/czzegOnGcn4AALBaTkyWKTaEPngSUrBsWVKeTNeq0TSBRdWSkNiTIwETM0YkpJiyxRi76NkH5xAYAIZCgZjRrK4KNWljBkNyvk+xy7k2JATynMmtcidAEy6ZUFNOvYopO/zgvfduPHb9M5/6tIqKKQINP4/zSgjUkAZ4GuIA8jNV9c4jMSGSRzM9mZ8dHR4DIgC//da7e3sHkvPJ6WkWYcS+bclxEQKZOe+dYwp+bTZ95plnXnjhuZ2dbSPs+z4ET4SDFfAHtY4pgNEPR8bTx4JqJFU8bwE92uQO1nUkM7SDo4Pjk0PnHBPvP3iYva/9FgEEZrLhM8HMnPMAJD3kLMtVg0YIgcivmjaDemTnFMl57xwYqDkiRh7aZXoeNmyDYFvBCD0YiOhg91LVlAXPE8FEFLz3vqwsCwGChyIoADiIGly49+Dh048/MSqr48PVbDSdt2fKGFN36cpF6JaLd97L0Zg8AKDR8mwVZ2tWQ8XBsZuWk7ZLfZvWRpN+sdje2ML1zfG4Xl+bvfzd773zzpum2rVtYIeib/Nr08mkrKtyVDPodFTP54sh2fX0+KiP/d07t3JKAJYBCauS6OzsZPfOrY3NjXa5ZEJhDqU/Pp3vPP00hoq4cFLmVf7CS18s3Oy/+eVfrny5yH00SbE5WZ2ujybz5mSxWo5nm+2iPeskGHkuClcBYEyqycTEe/SuiNCDd9XIS98ZWBfbKxcuPfP8c0A4LkcFrhv6Fnql6vmXvrC+c6Vt2rbpQJWZFouFiZoqGmZViTGmpqqcA7daLLucPJahCmCI4ERcimYSnF9vMn39G3/8yiuv3b+3Z8ZFqLa21mISx6V3ZZ96dkw0uEmoS9EV1atvvf3sU09/+lMvsvf1tF5J76vRjedfbC5cvvnmq0dH+965rQsX+rZbNXH38NiK6Y//zM/RaLJaLUNZRI0IvL6xiYqqlrMQCpHPKTkuEEFERLDvcTS+JCaEdHpqf/SHb33Hvbmztb6zvX7lytanX3rmhU89167mokroAN15z3YwvuB5kQ8/AJHakJiteg4nTTkSwaVrzw7bnmYVV6sWXSjRHu7udqt2Npt0TZ9SphCAse8SGFR1vWxbJEDG0odR6QDgl+/swn/6n//3nBt84mia8zYvELEHZMm58GXbpcW86bo+pAhozF5jXq1WxIFBzl17ZuycY+ddCM63SXIS9gGJ1cCHcn62HIDus7UxGq5PpyL9fHHSxYV3AKCa08Zs4/7dB//v/+Yf7+3thmJc1dSsOslaVdO333//Wy9/56/+/F/uVu2igxvPfHb70vU3X3/5we0PT9tFiViXFYgTSVkEERmdCFpCI+tyl3oD77PCMy9+bjK7zGX9ta/92P7BvT626MvTZVqtFrfuHXzjm29MJ3UZ3Gw2G4/qshpv7zzdnB51vc02tlZ41jdn3uPp2dGv/tq/+cs/+xUTatrIThXJuZK0UHGaHUPBGKIqWADNiIGwiPFMNDFyKOvvf/u11197x/uxGhZlpaCxT6IRCavApmZDLhABklPRnA1xIOShGZqCCjpHBtq0DRGqwqrtJ5P19z689e++8Y3/0S/+pfdf/95kNBqD77qu9o4A2DktaHm0Spqdc4jgvTNP65e2HnvqcXJFNakFLCkkhabPhOg4gCEBmqgxx6wxpuWyTVkXq+7atevb2xf3D46bpvvyl57Z2ti8d/tBKMdPPff86fHxzsWLv/M7v/P4Yzdu3LjRtk2zWr79zluf/vSX0WGXXk+L5tkXXxhx8dbrry37xU9+9Yszzn3fUmyXwWhcZLDgeDQaD1mxdVVNZjNkiiZNbIURA6mpEfV9MtUq1DlpQe72Rx9979VXJ+t/9PCo69qz0XgTMKW+H7AWmkAAVRSH/DLNzpOkmKUnEkN0RN6jD9CnvFget30qKsqSF81qvqxP56v9w6OtzU0znI63N9avjarkyImIgYXSX9y6//Dh3BWVgBNwCg5I1RsBoGHhzlUljCSiZopESBg1gqOM0nUrZgpAIcPZ4WJ/2SQORvxjf/EvXPjS53cuX7z0znsf3L9dopppdl7I2BGJBuRQjU9P9hGLi5PJ5ri8tXu3BOtWpwDgU9K+HXmat7EHMkUPSKxlKIuyGGwXwJRMHfGQ19PFHvoekVQkABFCVZVoQ1kAzvnezHmf+jyqKkHpUjMAuZUpo7U5hnKsDgoqkkRZtamAXBRIpKo+eABt2+X9+w9efP5Fx+5R3QNwjiIc2JoKSIBDKoU6Dl1s0TMNj/Os+3v7H374AZFDxO99/9XTs7kqNs2qWbV916tmEWWmuqym4zH2GYmc4/29vZs3P3z55e+88OILL33mpSuXLwNazpmREezjGJnB70kfG8fwY1A0ACAoEJ0Tgc6XTURmByB9SsvV4uTkGAlm08kqy93bt9cuXhjrOoE5IkQ4twojigqYpYx9jHAO1x0c7Fo4ZiQedEdmBjKoSwca3RAbdR5SNshLReETEWmISIMcCIQQVVEMQDRLZDVEYiZEMgN3dnZWFL5drXbWL2ysF6NyPBtNV+1iNJt088Mssre715yuKp4F8qOiHpX1w92D2MoojNqT09t37g90DWYsQpkmdHnnwubG2mq1lD7Oj49K71Mfaxc8UHA0Lesck6E2beN8WCsryto0Tc4CqiFLms/rqtze3jw6Ojs6PSGEMZEsF3urxXg6iTF2q9V0tKNCd+89ePqZZ4KfbI/q2Eu/kM+++IWvfXX3t77+u+XmBJHYweHx7uSyM+kPT/ZvPPbEwfHhOHdUBJHcNS0igkFRlobQppiMDbSoPTnMvYXCdQ1s71x4/Jmn+xgJMTdIoQADdAUAPzHb2nvwcDwaj+raVFQSqA5XuWQztePj+6+/8nLXtK5ka3r0kNCQXB+t8KOinOyddvdefu/De/cfHO6D8Gg0G0RsKRmBY/JgUHgvklQzqgGSgmWVlOTNt9998fkXVDkLAodk0inWs61PfeUn3nnt5VvvvjG3FIiPFnOu1772c3+h2Nw6XrXVdJpTh2Qpp2tXr5ZFJcmcK/o+ee8RWUWZmYyMUNSaZUPeE1oyLYvae97bXxwenX740a3bd+7/z/6j/8lnXvrsZDxxWCRNdt5BRkI3hAQgkNpA8ARVQGZVZSYzSykBZHIABDmn4Ko333577/iMEEvnHj7cbZZLRMw5lz6Yiqg1XVeUoSjKRdMgYVaZVlXBMCb4m3/lZ//23/rrkBtPRihd3y1XTd/H5apdrRpJKXW9KBmXAO746FBF6lGZXfmNV979vVfeD0UV2JQrFMRhkwyIiO2q7doOmQmZOAAZI9ZV2fU5pVSWxWq16Lqmjx0zVXWh4xrQQvDM3LTdbBKSiPNeVAAYAVV0b/fgc59/6b3331qcRiLzntbX1hjd4mwhIlVZZ8ldl/o+ZxEkb4a/+Zu/+ZM/8RPTepwQlymXs43PffVrWzuXDvcfnh3uLY5PktOy9Flz7hKpsaLmIYaSx3W9P28+/4Ufu3D9WQ6lWLx2dWdrY3r3wVINm958uaaqanp02mpuHj7siuCruvjH//jXn37s6uXrT4ymjnTZtzFb58vRV7/6Ze8qBTw5PizrIhREVKixRkRlRg/mUBKbQwVynsnxEKCWdblo//APv5WVPHp2ZR/ToOtMCQhMMROgJxZU6VMWI2JPDGCEZICKRKRElFJfjcqUMiGklL332ZB88Zu/9f/59Jc+8+Bw75q/xKaI4IO3IROa6OTsrItpSHEREw5u59KlP/OTP75qYlnXFIqk2nYJiBVAM4Alj6RqapmQHWKzWpweHcW+Y8IcU7NYrM2ms9msCmF9fdb2kXx1/annTk5PMzjwdRjNpus7r7z6faPycL44OTm5dP3G/ltvTdam667WPlahePyJJ45uvcfsHYflonGkflx1OS5Wq7IoR2XNZeGKQtFIhyGCJZU2tgQk2UipDC6yf+zatY/2H35488NkN9vkIPeGyyw9AebcE6APpakZGaEzE7FMgMZWeo9IOcW33nrLuZzzyoWiqqdFKHd3D07OFmU5ygJn8+bo5CyEMkeZt7HJ2CclUodsYLlTlSDJeV9IUiAufNHG1ggHFO+58hoMAZmCiEg2ZmYkxWgk89XcQaIQTB2V06/8/C9c2Lzw4Pg0Xr16Wo68cXn5UofmJKkrWyI1cwCYlUuXc19X4wXiteuXf+mv/eXi5ddPevzyF34G/l//8Be++fL/8H3Rn3o4MjMm6rJwhYVnABOzFJMPjIZd200nY8laORqXk9w0mE0wgvcOnKmZWVHUR0fH87P55vom6pCKBgCKyERAgKKftMdj3/cDyuajj27duv0RM58cn/RNu1g1H310KyUpyzqmfDZfxj7lGFV1PB6PJ2M3mHxU+q6nonTozWR3d+/h7u4bb77xZ7/241/4wueKokpxGP/Bo4KGhknfJ//dH4/DfsiM/wg/LVmG/W3wYXtnu9/aPH54KjEF5tlkYqIMGJg/lgIOxZMjRgJAKKuqrCd9FAYXHCVTE33EflQ0BwRDGCUAIDrvhxRLGWxzfM6wZmYdZEk4dOmQEMETwkCZFnlkRVREMlP3xc99/uXvf4+YPrx5OzxXV/UouKIIoW+7ajR+8GC3WbUEyIBuQL0Ydk1rCXKXJ/Ws8qdvv/r2k88/t3lx587N2zvjjcK51XxRhDCuytystOlQ0vZktrO+OXbFrKyJkQIOTW0F6mYx5jifLxEtOGZCBks5VtPRznTap7hYLseTCTIfnZz07SoaHBvMNjfA6N6DvWvXr09nNUomxdVp+5N/5mc+uvfw9Y/eGm2Mo3Z9Hw+PDjdH4+PTvSvXtssRvPHu9z//mS8hOsDoXRHIHxw+yBLXNteKelSEEsEAlIm9qzpdAJZ9cmerFbGNyukqNlomEyZFUGu6GAotAQCtqMuYelUtqhrZidiVqb+/e+vOzdulr6rJNDv21fhk3u8/PJ2OqlWM793aPVp1HLhwNXovmeycb+cC+7IoENVAnIPYRUBm5xOhQgpluH33/v7e0drammRjcsP0KooKuic+96Xx2uzt731rd/fBaLz+1Z/+c9Pti3MxV9d97HxB/SoJ0Gy0Nh1Pmy6OuCCivu9C8Fmk6VNdVMWo6LpGoQMDNTLVVUPJF0URgDApfnDr/v/pP/17V65e/uxLL37li5+/fPECM2XV1PfesZrmnIIPA4XPsRMRI5SsPgQVadt2NhvV4/Lew3veeTVtll09or7rc9bpdHJwfHB6ehqKYFkVbbVcgpn3PjhvqoPtsyx8vziZFHztykUgC0UgE1Csy5Hjsunboqw31jf6to1dAnS+GMcMi/kcKI+KagVexRy5H6DfjRxBjH0IjgkNJKYUQuhSMgTvvaROckTAvm9DcABWliWi+sBVVQAqgg5x4OQ4pQQqAApi3hETzk9On3zyxrNPPbc8O7nT7lcXp5NqlmI8Oj2KfSI8H/WLCDtWNUl5c23jzq37v/e7v/c//ut/pe8aLqteham89PiL9eRCvrZanO1/+N6b+2f3N9YmbCBNj+IcoJm5oj6YL2488cSzLz69FORape/qkl988dmzxem8bctinDKkbN4VPnilBKI54+ki/fbv/OEfBv76t7796c8999kXr8/qmZhMphe/9jM/+95r3zXCX/nVf1qV5X/4H/4iEVpOYlktERlaQktgyTk07QnFRMyUyN2/v3v71oOiGDMFU6jruo+dmTE7RM0wMDsoNZ3mVPmQc4+m3rFD8kwm0qZo5Nmxxs4AfKjrapRyni+belzd3zv4lV/91SuP7XDpUyNK0GtKJqGu9k8OjudnRVkQ06CmZHaAsLa5VU6EC2+EWQGQTM9DCUjRCBEdSh6VLEjWr5qTw7XStacHcbE58oAl3333rXa1mno+Wi4ePLhZjUaLxcKgW64OH+6Gsgjzxf6yOez69Rc/9eTbb72p1h+fHh4erc6OjzYub3508wNYnMF0wsHn2C2Xy2npkYsoWjlfTSY+FOh926yAyfmQc0xJQEgRQdFzCM4tu3Y8Gj3/3ItFUVhMo7KY1LLKyXlKMVcFSO4cRuc5ZUEkZBRWA2ASMHOBy3Hx2//2N3/7d/41MuWsQ0eTCdpmOZutJ42iKAKQNaf07e9/8zB1mrX0JQEQkuR8ejYPo1qJiqLou2ykdeVMM3oCBTBFAsdesyCrEIiISnaOyLNBWvZxNqlaLs+Env2xn9iuJp68LRbHbS+GLFhvX/BraxI7Iclg3rnULIOvEwgAqnC5Nt64uP0TNz7/1E/+zKLB4PWjv/qX3v2H/0AfHML6zm8c3z8YFWUoUmomwY2JPVFRFIZQjuq6qsaTcSiLEMKoKL13gFAXlQcfqgI9Ixii+43f+X165TUXQkrgmFPO43EJB+KwAAIU80hk0pzNdzY3se/4rNkkxsIdW25UDBAygEPHvFgs2raF9SEEEodUTzBQVecIhEwBQVXB+UK1Ozg4fOON11595ZWmWT5+43HJcrx/3LTNsmk2t3ZiH1fLVd/1TdNub21776uyms/noLYUcZ431tcQoesiIZZl5T2fHZ/85m/+5tHR4c/93M9VxSj2idl7z33fAzxaiT5R/ZzjGc+zMM4/SIgKw1duzIwK0+n0uaefPnjz3di3DOyIlvPFeFI7Zue9DaEfQEiEqoiQcwaAoihyzgSEapJlCIZRsHNJIAzsKFI75wOrKhISsqmo6GClAZDhBgYAw3PM5hBH4xwPmcRyLscY6nJwm5ubX/ziF1574/Xjs7MPP7r14qc+VVeVZCVkQD04PDRGIsYkgsrE7arLCdq+EzV2YTyapiyzanKye9gumhX4tl1NxqPrly+98dorB/fvlt4/dvnSE9dvbK2tz4qq9gWaGpsSOh+Iiii5T6nresc8KhwSmCSNsU19l3JW6/sYY276tr24eXS6PDg5PTo9Ozk8LMf9fD6/sLP5xS9+RkmzghnUZfk3//rf2P+v/v7+2b4vHRCZ8rLNZSEnpweXLl/79svfg9e++1Nf+3OxyQFD4YuqDTEZE4oqAEhW7x0Be6wQR1kKX270Z02MbReb0/kBVInQU/anR2dPPfmkqT3cfzgelSdnnS9pb+9g5+LltbXtto9l4axwEdFzEcpR06U7d8+OTrrDw2Xqlslcb+TrKZpoFmZ27IGQkIexJUBmRhATS8HRsFwNnGX2rumad99//8UXn499730NgghI3nemq371+Iuf9t698b2Xv/DFrzz+9Iu78yYZAGFZFqnvHJOZ8y5U5ahpTs7RkEQpRSYMgVwgYiirkJMMWxYxZ2YxqtkwWMWqqovC7e01v3H369/6o+9+5jOfunb1yo0bjztHXdMgq2Puuq4qSzXJMRfeAQ7Nbxj6lO3y1DRnUzNLKVdhgkoeQpK4tbkBqilF5oDAKpgl19XIs4sxeudFhRHZtI/d5e21K5d2VCKWjsyRMQIgqxKw8yhQ+cKt+6ywWPartjM1HighIqZiOXIoPHM2QAJVMZMBIlr4kHL0IRiTc+HOnbv3b374wgsvjWejuldiHk9Gy8rnvvaeq7oAE1BRyYRAhE3TqOQy+E56NFvN5xtb4xee/dT7794E8VWohWC+PFst+66JQxDbaDSOqVcVBCOEIaCLHf/qr/6LH/vq569fvdK0XV2PVdH7evPS9Yf3b+1cf/Kxp55669Vvv/f2q+MwGs0mcd5M6jExLfr2xlPPfP5rX9tfNBQK9iEt5+vT2Y3Hbnx48057594jID2nlBiIyamJgRLSeLLGpm+9c+v1dz/4nbXxlZ2ty5cubVx4brZWr29fF3wTg125fpXYrVY9Oa8iKjkUZeF9zD0zrJZtYHbk1Cxnm87W/9Vv/dGyiaPRWAUAse37wVjLzGak7NSg7XPh/bQu4mql/WJrfXr54lZdeDJZLeZ7h81KMYIZUXAuBFTL3oeYU9Ml8u6V196opl8MRejmizv373/6U88RFI32N+/cbvp2Vk8NDXlAxRkgjibTEgj8KKaMgMwEZiimYgaGhA6dkCnZ5oUNQoeIO1cvLpard269i0SjtfFSWlcxMu+MN9uz49XpYVFUzz7+GAAcP3yIoMHsytamdfHBrVuY49Z0dO/Wh2tUXrqwhd7ffP/9F29cRUfS6XQ0O25Pm0UzWavQOQXMqqlZGYCAqWTMLkdJXco5O/ZVqGejou/arNh06dLlq9PpWjo+mk0mouHgtO+zJWm7lNlhl3oFSjkP1o6BFAdIiIaWWRwgaJLgfUpKlsGypL6qC+ZqSM7wHFStCv7WO+8tki/KovB+CKdiorKuXRWGUOTgGS0zEKMf6M8EqApERAXlpK4qUkpN24rmQGXOKgmTsnLF5RQ4nQmUCJld5gikWePa5Usbjz3Wv/dWzkk5FITgXSQwHBp8RZitT65c+rWXv/ftd2/3LV69tHnxa1/m9fXm/tG6L8ZFeWgxq9al84hZlYGjaiiKrIMGzYqiqotQFKFwDs0CkWNWFdLBn49NHxUGtCWRI+fYeSq9y30qfWFkANqb9H070rgzql+6fGN5Z/doflSMsVHjwmc1FSG2GNPpfH71Cp+r3ZiQBtz+MKZkINBsZVEA0JtvvPnNb/7xg4f3l4vFaFTfuXXbs29WrUjeWFtDhb7vU845pauXr4xGE0Q4OTlNsSfi6WQSQhCDvu9STNYLI5pIUZTk8Ft//K3A/s//7M957/vYi6D3np2LMX4si/5EWAYBEg50IgOFoZZBUSUiZ6hooS6zd5vT2XFZnbR97Frqu5Fl9jxYitBoYDUqoiIo5KwZVREEid0g8QEgGADTxojn0ahodE6XEwQ0VUAbctP0PDv14+RXG8ZlqgKAOvDp0EARSJHQMQKAGbquX119/OqiX77ynVcfPNidrq2NJhN21Pf/X9b+PNqy7CrvBeecq9nN6W8ffZ99o8xUqhcSQgJjA+4AFxY8SoDtZ5tnP7fYr8YrD/s922Abg+thu2QjI8BGgDGWZSRAXUooE0nZdxGRGX3ciLh9c9rdrGbO+mPfSLDrj3qjqs7IEXkj7s7Ic8/ZZ6255vy+3xdr8Vk+Nz+3sLU1S2MaSp6fny8nhSBFAVA6eN9ud0+ePKW0GY4mRw8fPbK8RJEXBnNcV1urNxa77eNHDt9z6vTK0rJVOtdJaoyxBiyBMWma2zQHUp65rpxCIWCJgWPN3sUQqto555RSVV2Xde1CnJZuc2949fatzZ393f3duYXFO7durSz3jx4+JiAxAHs/6Pa/74//qX//a79U+1qIOULFcXc0XCz7QHj81InrV29u7+0O2gOJ4ly9srQynU1dcImyrmZDCqMOgaKY0agGzE0yePwdZ3b21m5evZa1utfXL9Zlfero6aydKKP2d3Yje5O0X3j1lUcefWSwPK+SxDGjTcVC0HkNlh1trW2vbo52xiVDpimPIsomVlGNMRFtrFWkiJQIAggiR46zoraKjCHEwBJFWW6SqFFQUWS5dO3y3v7eyvJS8F6UJKmtgiOTppr+6+c+/9zvPbXU6wZ49fra/un7H+r158bFTCQqpQPWEsVo0263NjY3m1QvRRhZBFmRCtHF6AiVxhYLMIfmBMCAMQBpAsbhqDKJ7rTbrVZeOv97X3uunZ9Pc/vIww997/f+yaXB3KwcH8R3Kg0cYvRaSVOgI2pCDMGJgLFJZBYx4/Fk9cZt7+va1SGEk6dPB8bd3clkUioSbY21hhQASGKNjwACGkFJPH3i5PJ8X4RJkwJSAoioo7BCUp7rGEEAIbpQ1fWsKGKMnVYrSZPJtIzBacJ2lpJwYEQQiQ6BtbKKJM1Np5Nf37zTWzlERC++8MLW6uq999yXZVnws/3hXgieY1QkSdJqxBBa6zRJtdK+rrROjUaF7HyhiebnB8ePHX3pxVdDCGU5DV5i5FlRBScIZIxSpAVijL5BuWuliZRzZd6yWzvbn/70f/2r/9P/hBiEUWny7AnV4ZMnV1ev1kG/81v+yLET91x6/XU3nfYPd2MMk2lx6MyZex9+3KGZlrP5Xh9YJzpH0J127+jho2u3tyoXTXqgM0AFTcibiERhH1iEbNpjVOOxL8bjazemr1/++L33HX3PE/d5oUfe/tgH3/uh8f521mqT0j5EABVCYIAYgnfeKKWNlopD5BBhOJxdv34LgZhBWyMiO7f/T9i/x2O4efv/82V3H/e99wmrTStpzWTYmu9hK52O9l65+Pr23l6aptZa0oo0oVGIIsykCFAziAJINEFwGpAUxCaSMQgQo5KpD5PNtU6rzdx08CmykFVVHXxdD7qd0WTUTrOMrHOeGRKT1M4bAaWV1oaJMARfFLm2xiaBKEXsLfSmZdnqz587ezbcuVWHkGvopq1JNSuK2qFPbFqUBUdmYWMtKjWbFc57YNFkLJnc5AAQkZRN0KSLy0ceuP+hb3zj6+VsxkE0wP54yIAGwYVAxjAhkVWoWSSGKIQHwH6GEECEjdJ17UiISHH0edpmDkVZS3QCKk3y4CORbueDdto3RpMC1TAwJE7HM21NCB5QlCYRETQcgUMEEUWkUfEBVVXKqmARMoSNJMiJZW3EoJjoUQL2ez3lQ+1GJlNjN+m2bDvNkt58CZBohSKWxQsErepYJzYPoszcwueeefr/+I//eVhjqOjJxx9o/YnvvKnMzJjMGBbRIEixLstuf96QTZNMW9Ptdm1q5+YGiTVKkT7ochBIiD5aRWS0TgwH8VEm0wJIJVnmCifAAEGbpJWnw9EEUXmSqMFhZIL12f6huZMPPHD/pZ3x+o3rNukYhT6wRyYEZnAhDIdjIhQkAVAHabpChCAhxogASZJVZfXUl5/6whe+WBQFCKRZZoxt5elsMqurqtfvtfJ8e3t/PBpra/M0S9PE+xoRReLiwrwIzmZlVbvalaggNwYBXe0U4Ww6XViY77a6r796vtvtrRw5FEKUyFmWLS4udjqd6ELTF0dp5l8iQHeHUI0aGrG5gBFAVGQk8kXhiqqb5UpEMSTatlutLG8ZbVARAKBqQIrQMI5Ck/t0kJDC1GRtSAQWAkYiASWRmVkRIUjkA721HCTHIgBIZCJqvEcCIDEKx6beulvA3Y0EEeGGXwQgCDrL9KXLFy5dvcLItS+vXHpj+cTg+JGjk5kjcKPRyJM+eujIdHNa1HUdfKvXOfvgfVqZnfFIxTjf6w0GC6s3bxk0h5cOz811UqXqcjrbmQzarVMrS6dOHDmysqKN0UipTdIkzdstTK1OUpNkaC2QiQAaSTh4V0ZXcl07V8aqMjOKXpOiVma8T8ezmVaS5nPLy4Ot0ejFV18fTkaunFtb3Z7vH1U2SVPjmKuyvOf48Y9+7/f+yq//8nS27zrU6XaKut7Znxytw8LSyoUL11Zv3Tny9uOxjJlKDepWSuRqEdP4JIJImnWU0aPZ9Gvf+Ob86bOPLPRt1j527OTq6uV+ezCDsUjI8hyJlDGxIBdl6dCxKrBn6c71t7anm9ujlSMrt3bja9d2fbkznXqHieh+YE1kgAKiQogaxWhFQk1xzHejgSNH71yFrBVphYhgLYkIoRBRDEEnan+4t3rn9qGVJQUgAKWvk1bOET71y7/29FNfXO72yiQ+99zLlXtB519434c+9J73v68OUvvSmDyw10YPBgMBjLFBiEJj+2RmEBCEzGQRIDZB7woARSAiSGTHHBExejUZV4jYbnWTZFC5ECQ+88wLd26tffQHvv9d73qyrkqRQCDAYhNbeY9aN8U9SzAYszStqsqzMzbdGm16VSkCCwZJfduHvy1vPf/UU19rtbJQRWvIByeg22niPQBiCAwQ+p3WmePHjCLh0NzTTWK1oABqoagMEoJzzseARAJsrEpTYxMl0+akH5yrqGEOq0bzaDvtxJWzLG2tLC+8fu2yj340nMTIHHk4HC2sHEaiPM+JUGKcTociYrRGIt+0Ipk5eJMSswPglaXFpYXFNNOT4dhVMUZgwcr7qqo5SHPSioEFPQFLCMpaFgZhZNBWMUiWdb7ylWfe+eR7PvC+bxlPRs5XeStj9j6qY8dPr6+tX1tdP3b05GBxeX315mQy3NzauefRx8/c81AQM9wfFhGWrHZlQYjGJES63+1bozxHjeCDawbnIUKUSIgMSFojUx2FRRLKSWlUuLFTbDz98qsvv9bpqc7SIVY667Uno6GD4MGVbpa2srRtJ5WgiqKiZ5dkmkhlaevm6t5wb0zKCoBW2rkaAD589BSzsACz1BzzLFGhzjgu9/NTh5fn+y2FQZGQCEhE4ShqOOPdabG5P9wc7tesk1afMYmi6rp+6s6bo9396f4kMWmappSY5y68tjvc9uyPnTxGTFoUEjmOVkSTblQWRCgcIdRuNuqmNkYOIUhkBBBSvnHWEUWWshwiamyYVwoFm7EpD4uSRKazsqDm00OKtAByZBZp/KYMzBxFOEI0SbI/8+0kH47GC0uDpfn337mz2usPtC81ASSt2XiqjY4hzPLcGlsUUyAkZdJWhojWJKlNrTYaMDIHMu35pcHSISZ96sw9mxs7b755uSq8r1mjKl1NRnFVxdkMGi47UZNzplQzF4AmcQlEnAAl1ntGY/Msi9EpJVVZ+rrQWrfa3dloR2sNEkNd5Wk3Nh8JFqWMNVoECDWAIKNSGCIDoc5sYzZlQACsfdBalzFqrV0ISWJi7QxgJ81SY1ICqZ3RwMHXVbGwvLDDlWfmLEsVZp3+yEvXNrwFmHgOKmZJ6nwYBjx39OQzT/32eDztLZ2guSQgX1lf27FmmCXamu7hwxXPRLEEnpVeUcRM2Va7ACwq74aTVOtWnvQ7bYhcO5dZk9pUEzFg7TwBRkFtFOJB1RhBBJkU5nk2wglLFAJSpJEcsPf1/mT0u1/+YnHlNoq083zXTb2EqEBp1ehXptNJZFZ40I/kEBtflXdeawsCN25c//Rvfvq1V17vdrvz/TkfXLvTSpPEWB1cWJhb6PV6N1dXhWO/14ssxtr9vR0iarc6eZZUdTWZTEbjiQLSRqVZErVSWimllcKyqjY3tpaWFuraPffss3/6+//U8ePHFKlbq6tvvHHhkUcetcocBJAd9H8UiDSVD8DdtRZBmFVDQBFJiHb29q+/eWm6vRMqp1CMMVmet/LMphYV/eGQM5HGR8ZKYd5KorYomqIEFI1IjWcQSUC8FxZs4N4NKZKFSSlGYObIgkCAdOB+R2lS20SEY4SmL4RCTdnDeHePFQDUZTWezPaLeprmaTWpqqqcTpQlXZQ1x3LQIwlstanqen84DJHzdh8ZQNHG3m4sil63t7W1A4hzvYFWGhBHw/2t1ZuL7c7ZE8f+2v/x6//nj27/Xz5eXAX4KgD8xq98HBUiQqaSsho//sBDbz74yFe/+TUOvnAlEm1ub27ubLbaPZXpq6vX7rv3voXW3NFDR9Zu3tFaZbo9K8osS8qqMEaRuKyVPvmut7924crUzbZ2tupyTD72Ot0kOwywIkwiGtDYpEVYzWbhyJEzRV3O9ec3tsuvf/21C2/cdEg3b98mr7QQUAakXSRlbAhitEFEJVErQ4iNvAvv0j8ZCImyLAsxxBAAVZZaQcXMidYI6HwEQ1NXrq7dfvKJt4FERABDJbt//dM/+8rvP3f82JF23rI6K9GHsrp1++rW1t72xs57vuU9S4cWR9MRQFCEg35PE3nvtE0AhEg3oXvMDIKeBOitQDwGjACxiQTWRCDgaweK8nYnBCiLIk1tFDZGvfrq6y+/9NL/8nf+xsmTx4U9oXDwLChEAgftd5aYZWmSmOFoF1AE1Xg0bhBB4EAQWp12f65fuyoxWWSfpq1RMRGJhDmioIDRaBQuL/SOrCxZRUo39gItoJpBITTKWQJjEwZUDBSEgbXVUdhHhwStdpa2EueDIYVNrr3CJDGAwfvqyOEVhcDMwbmiqLWy3vvgY115Yen1+sxxf3d3Ois0UZomSBGQjCZC4RCJsN/r5Cm12mkxmQ73x4jsHdR1JFIhQmREadR8LCxkEASM1kgCEWOMiBQZQQg4VsX005/+9JGV5ePHjzIq773SRpgdu5WVla2trUvX75w7e071Ygi9Jz70na9dvPlr/+rzR48eP3nq8NLiaRYQ9iG4tJUmidYalSJg72oABAJkltCc7xQyKIkoIUQS0Bg4hDoooyhNmXVZxdFsvPnFZ7c2io9867vmFzorh86UlbbpwPsYgqkqNLanFHpXT2ezqgwhyN7e/nA0Ids1xobgG93nF29daz7HHzx8uq0F/HQ+z84dOXZkoZsrVOgF+Id+7SvNNf/hz36rjvTXf/dLf3gB+Ja5AVDn93ZWm9+OlxevvHFpNhpPptNvvPRCNKIMHTq0pBHrcSWRYsbUYCia86wGITGaHn7gHoJojPZ15OCbWDFmCCIhMDAoIlc7rUyMENmbJHEhCrBW6Os6Tax3tY8uNYk01F2TBGZjEwYRiaRQQAmgD6yARUMI1Vy/bQhXVlZ6wDdeeGF5fiAxOGBVlU0tXlVlVRUEkOV5u6OMJmsSY0yiTaIsiZQBmNRDjz4e0aCyy4ePd7oX3vPO933ms1+MEe9/4MFHH3/87LnTe1sbk9He7u7+1tbmZDT2zovEGIJws4lwjF5ExBrHwc1KX/tyspu2WsJolYmK8lYny7LRbhCBzCqJ1WzsOIQsy5kFSCOQRNAGEZu8WACFQhQJOURkRtJ5lpo8BYRBO09a2fbOdu1mIBEJlYmAzhgRLkQ0Ju219Z2Nq3susYPeXMa5izAFKJGc891EQ6bF6dL7NE8ndUVHzy08cP+prRvm1TcX5nrH77nv1NGlp59/7vB8r/fIw3vTML907Gi/NR3tIen1zV2tMcuyTrczHI2UVrqVKaNLV1NZLw567URjFEQFpEBEULSxo/2JINUhgPNADUGFAMGkllJVc0CgHI2OMUaYTSfRdPanEYI3mma+ntW1JDqwkMZmmDMcjsqi6Lc6KCgijXM2OBe9F5adnf0vf+nLmxubSwtLSZpUZZlnWStv5Vk6HO0fPnzo6MqRW7dvGa3n5+dDjM7Fytd1Xfd6vRB9MZsVZVG7QETGGGstMxdVmSaJq8pWK8+ybDIelUWltHrttdfue/Deo8ePBufvvffeLz/15Zs3bjxw3wMhhEbfc7deoQbi3LATAaTJmiREbtx5MW5vbl187Txs7lGISZZ7S2li81YryTJSKMACQAeh8tKkJmiNnaQdlAHWmiEgRIzIgk3VIhI4NoNyggMwUuCotBaREGMUBqQD11oTo9nIgA78Nwc7KyFIkwkPd/tBCHpntLO8vLgxHG6ubrVtfvLI0f5Kvl/tLKZtpVnhrGKYTGbFtGBmBiiqUhgCh36eJu2WydLhaNLKssXl5ejdjWvXQlFYjp08W+j3AeDF/9ufUwrzTtvkKSlSWkVBRKNNqpMUSCNpH5kIWYIED77m6KIrQ+0b71B0DpC9czGEiOJ8CCIByAO8/Mor69s77/3Ah/7UT33S8VRzIDIcggGqx8WjDzz6yoXXJhM/aPW9rwinW9trixqWVvq3r9++sfrmqXd/cDrdnRXDJMuszbLc+FhHEoUxtWp+adDNWsfPnHKxvHz1wmK/k6vUKjW3cGg6m21s7LJw9LPxaJbn/ZXDhxhhwdqbtzf+43/6/JUrG8Oxd2BE9XKtvauJ2AOQUQKMKEYnJAxiOTJpBEMAQE0yHDCLcEOhIp1laZIkTdWLyITE3hMiKIxB3rx0aVbOOqkJEoXov3zuMy89/1w3tcPtnWxRRZuzl+lkduzQ4fd/67epJPnG018/fvrkmXvPJlZqHzqdtjXGe5/mmXOMSEoZAIBmCOKDaBKWA0iWiABo0gp1CJEjKNEgVE4YE0+IZVVpJd6xscne7vC3f+e3P/bDP4TiQZgQSCGEpnzHBhbpp44rw6VTxnCMKaYuMAsr0gK1d76Vp00WtzYaEQAERUKISqmqLrM0EY5GJcYQKdCKRERIDtAQCEqhYss+uOCCsPOxrEofnTKKCASkdhVLTFMrFSoGMoYANPrUquFk7/57zpw5faoo9xWieEnTRECMMUbrYjbb2d0zNp1fGETmyWSaJSmgDoFtlqZpu9Vqq5i4qozOo8TdrU0UDDEiRFcLsPFeAiCIYWSFmkhIizXEMSBiDJHICAgIKpV7H43CJOfzF1567fyLnXba7c0JaKWtKEYJkcv5xfl2d/H8xY2f+dlPdOZOnb4H/vN//dq0iMyrjz1y/NH7+z/4/e/XyWy/mNhEGYtzi/3BXGdSTCNHZYxC40IQEGOTGBhZN8sbUUTDEMU5Z9k4r5lBUUbK1mX1td+7+Ow3zj/66Ml3v+Px6bD8tV//6kMPPvDeD7xjZeXBa9dvvPby6yePH3/4oQcWl045gdWbT/vI7UYtJEx3e9gfOnLmy3eufmXt2rcvL/Zb+v7jS8cX+wlEDUGRfO+nvgIA//Fj3/l9v/DbH/2Vp37x+z/SFDo/80ff9dc+9w0ASI3+/OYqADzRPvzCdG22uX3o3NFiWvT6/Va3XYATI5OqjEWViEop0VorrQFENaFLxIxsND35xCMnTxyBGL2PShowCnkW5xkAFLBEFoHofQNorFzNiCF6BMYoJOhdTSgxNlBxxbGREkEMIfDBeDWCMDUMXmqn7dXV2yJc19UDDz/s93brvd1+lqGru51ukNjK0zQxRisUabVaDCIi7VZLKx19JBDnnAd67F3vzvv9oeOMaX5+ZXN7+MC993/PH/8TX33m+d29/dcvXtzc3U47ORptl5fPHD9ujUq00YryNM0z28pSTaiV7nbyLFESXCvPb1y9+clf+MXzb1wS0mnSBpWkWaZtokxirCfwKdWHV44mRhujog+JthBFa4vACEKIgBIJyJg8yfIs73W7vW4vz9Isa2V5ikp5jucvnP+dL3wBlBJjI9UAXowLUm4Py6+9+s2nn3728rVbXiWZt32wvUF6v/aPEk1jIGK2ancSVJpvzUaysHz2j3xrtdh/4O2P/4lpWDlxmrut9RtXNu7cWj753pkSMFxr5T0neX9Wc2shXZhr19VUp2k9HObGZr2eeH/5yuXRzs6ZE0cff+jBTp4xCzAIChIFlpt31trdbp63ZnDgCWcU4aispnZajyc2Ug/bc5Rb5lJUv6JcqT2OrI3OEgVuXJYRGNBanQPJbDadFbN2mlMUEKREOV+Xs3FqbVlM79y8iSwLcwtbW9tFMWMWBKWQ1u+sT2cTEhxu7+3u76NSyoeyqBigdnUrTwE41I5dnWrdbrXr2hmjkUgrSwoRsXJ+Oi3yNE1NqkANeoP98c5TX/ni6TMnT508TdRAgtVBchiIavJZgQRRWAClca6B8IEfnoMmQpK6qmejEYkYpZNcq16/3clbi/N5p22sJVLAjAJITXlMQuS8DzEqYxibkgiaTg4AEAg1/wGxCJDEJqODEAkZ2SORVkDNfiUCoBoGHRAgIDDBARix8c43VzEiKKURUUD0XHf+7P0PvPTaJee9Vz6gVwntbe6iTUhTVRXRk4XWZFpZlSz0loazcc11UZUtDaeOndzb25cQ0yTZ3rpTTkblbNbPcwOUJ+mhQ4cB4PH//d80C9bNf/l3AYgbo4UFEe8dInpEdeijP95cc/uTPw0cWMKJv/APmj+5+jN/k5DP/s2f/W+aPv/oL9cinSR79JFH1j//5WtvXgGA8f7o8PF+w5fwQVRiskH/8MmzL7322vxcqiQ4KWa724N2Pr/YHg7l1p1Xi+F9rHIxkyRViGJQotEJ2A5gFmS+e8h5tz/dG9e77W7r2vqd6MK73/+ekXPOIweaTmfHHjh16LDpz82zVpPaf/2bL37iF/7D9WsbnWyRRCfWMApHr40mJTF6FLFGNxJ4FCJSWjUCe2jGrIwNEDQCiAJAIqOUIeIQBSVirIMHYDIKkY0x65sbt1bvPPLQfcLujQsXr184/53f+Z3F7uTrv//1zb3R3OJhJzNP9OiTTz76xOPa6tFkf21j/crFi4dOHLHKtPKcDBEyKYgSIAoREpJWhCA+BvCgEFEImRCpEdgEhigIBE2mTAhVprIoQoSsiBA5clHF1y682ep0zp05C+KZmYgADAAKREQAgabDIcJKG0K1vbf12muvIgKQMmRZ+XarZa3KMuNqGQ33W50cgUL0hKi1RhTvw9bO3q2NrUcefUgLUUREZvAIiKQIJNEqsISoGkUcsSRAlCTMTJTMirC7s2shskIGQiARb9CP9jdtaj7ynR+GMIIg3SQfO2jlnU6/V/Z7K4cWAWR5vicI4ss0oaWlRZtkAXTa6u7ujVZv7olPvK/GxaiuSq2EhbUyhKasAghV3iGS0kq8iBDgQbc2agJFMcQmeh2p+UwzaOQQjdK1q+6sb82qelZtHD9+EgUaW0QUJIqtTu8Tn/j4jWvunSvnPvuZZwnnE6PyNK9n9lO/8rnL57/yV//Kn+i0O9u7EwHd7vRavX64tUbUAE6iJmBA4QjIAEJKkzaehWtWAGmWIWKMMTHGucokSpNWrU4M5XMvXL5w8U47b5fT+t6HnnzksQ+yhN/53X/wyU/+6o/96I/+2I+8j7S8dP7Cpas3gTQq5FCKhHD34+z5oC/eUXhmaenw/IAwGktaU/C++ZYCfXB1lF/8098SOWb6oDE/l5rmC6sP/p6NW3cuXLjy9rc/cnhxcPn2mzrpS2K00VJWBIRCyKAoMEOe2qA0IcUY8zw7duQwNiWMQOO954a8GCNz0EqDQIwBkQDIea+0ApQYmQREGEEREUdGpYShdq5JcRIQMoY5Olc3nV5tbYxw9cqN1y9ezFtZBKqB3vVt3/7601/b21jLrbExSIiKMVfGGKWMVgSISiFpEfGidFb4EFDf9/Z3dY+dnoYYuI4htFo5o+xPhidPnfv+Y0defvXiN55//ptf/ypDBiY32pAiRQQSE2u0wiy1iVbAwSgyGvJMD9rpocOHlhZX7rv/wTP33PeFLz2FzAmppIFB6JSMB3Hve+dj3/GR79VGAdYx1IpQQKxWwoKsjE6FBSkqjUgaiBANEYqAQppMJ5tbm+1ub9DpExh2FASrUHdNlyixSfa53/3cr//WZwzkSdJ30RezauxldHVNLc090FmYguxXfprQtgUuh4eOHH34Ix9RZ4/uRKdsduLc2eFoWkxHs/2pn7mXvvkSMfZa3Ukx1YYOrxxmIFJ600+Dd2me7e7s1W1XlfV0NNzbGW6tbb1x4eL62uaf/J7vsoAxeGWsi3R7a3e7DnZ+Me1t7e3vGZt4V6VJm5EAYJBn+8N9h7piQWWOZq2Hzj2wvb1+Y7qFJmQJZsosJJmTqpxOdBlIvO6mk3q8Ntrqz83nQgphMh27WFqrBv3e7s7u1sYaRg/RWa2d9wAYGHeHk529kTXq5u31IIJIiuJkupsnKYpowpbWGiHJ06TXQQQExSxVXVW+npSTQsC0OqbVL2clT3m+10HSVXDamL3d4Ve/8vTDP/7o6upqVZUrK8suVMyQpGlwkQAVUZCAiIoZsQmlQ4gQiAA0AASuxM9ovBuGe4mHDmSC5BKLvRw6qVXaNJkZ8cBHpoAgIiMhGY3WQhIRtFUgDCiiQFzAIKgpSARApbABdkCDZWw8cooA0ceIoEQAJZpGpQ1MqBrBmUj0oYk+F+ciGS3BK6UFQS/Mr8wNFpfmlm+vrpe+mtaTvssYpKwnJDYKhopdqHqDOTeufeUSY0VFRYgQBp3OfjlOWi1Q6vbtG2E6nesOQuGTXrvX7dLd1tkb/+Sv3fe3f+bEX/7Hdz7+9xAginD0wBEhIqgjP/oTALD2C//88Mf++tH/69+484l/ePxH/1cAuP5zP3Hqx3/qzF/7Z1d/+n9u1rU3fvIvC5KLUZMJMYJIv91/4J4HXnrlAgAgw8bGBmlijgHidFxtjYfn7rvv5u217bWtoycWYnSz3VF+SuvU2gS3t29urt++/+xD4xL2x9v9/hyiVkoZTTSuu2SIKYC02j1MbWL0eFIkxhRVXVA8vHQsVd26KoP3w9GoklCKfOZ3vvSZz34BIO/PL0utrE2i+EheKa0VCkCmLCIqRAYQBFKN20uIsYkZ4aaTJwICiTLGGBAhhui8QmgGqMyCRjGgRM506qblhfNvPP7Yo3durb303PPf8cEPrywfLadVGeK1y9eGs2JnPD734AOPveMd3cU5H8qTy6eOnzx6Z+3O9uZWuzsYDAZpns729iPnWhFLlMiMoqhBgIom0UoRqAb+EOIBBl4AqCmSOHL0zketkhhV8CASWQJouzucfO3r3zxx4tRsOpbI2qbMsQm5Bw6AEZDSpOUcez8jotF4HNgToSIdIMYYjNWtVirsT546euXKVV/XaZKJMKLOs8zVE2W0c/zSy+eX5+fe+fZHk8REYSRsWG8aSZNCFUFr74MCTLTKrXYgLnIIqFRiteFyJAJK53Wo8tSePLJ8/OSRBx572+PvetvTX/oMiccAXHNRu7c98UR98lir3RIRYAakEEOY1s4FIYYivn7x4gsvnx/tFwKWfcExxhijE0T0ID4EOLAssABKjA1erBEAACEpJUIC0hSXQAjIri5J64Yi75y88urr3/d9f2Y03F/fuHPkyBElIELC0um3vvyVrxWTKjXdq29eP3fi9Mrxc19+6jlxup7pB+99NMtvf/zjH/+xj/05q/I0ac3NJYOFxbSVV2VNzNwQ6hmYPSCRBoAYRUAIBAEpRhAJWhF7RxoRmBu9oVJE3XHhy6pM0/TZl8//P/7VL8RYnb33oX/60z/bTpNf+qVPudoVAXb2S2XSEGPwBURRJm0+1yHyQSmTZYvtNgGLBFFWCHVq/tOP/JE//e9+50/9wn9trtEKyhB99H/xM88CwE996PHDg27zLVdPmi8Q7bPPv3z81LFWnp49eezq+m6pa+8qnM6y9kJusoSM0qJFXPRCtjH2KqWNQRFBa+Eu9QQRm5+TDvKTBQDvxsaRAKBAE8ENgADqwLeLIMCESAo5RmYhrZlZBK1NFOmtjc2nn/n6a+cvOomL/X4APQ2S2eT9f+x7Xv3GM7cvv9HN8kSSGGM5LVUnJwg6S2KIAqysEmuHlcek9cjjT3QPHdt1jKRJBRFutbIksS76opomafbBD7zzybc/8twLL7/88pWdvaIoal8ENImwrSpElO3RBkBBhPOD7mDQ6baz7tzCYH55bmmpCgGROp3WZDLq9roS6+BLQBHhhx48+cgDpzRDOSmzLpnMikQEiei0VeKTRtgWfB1rH1mCoI/gQvC1i5Gn4/F4PLrnnoxIoUisasU61FPkTqqy2dT9/jeeL8u61RloNuhZaYMGB9lc4fx2GSYodmHAJxbzE8s3LlwYxers0uLueP/86xcSoOGk3N7bG+8Px3v7rpzt3NnIUnvTB1LY7Q9GeyMffDONP3PmTDErt7d2i1ltlJoM98ty6gMom77w6mvzC4vvf/c7E5tMCnd7ON4s6tLkhffHz5ybvnFxb2eba0ct0NpQADZqvtPbnk53o5PS23p02HuZjUO152fjQNCXI6ozt1Osah8ePXyi1229sb82rGfTuvTiFWWjvZ1A3mYqz9Lbt289+41vbKxtuNoBx3Yrm0yhmpVSVcF7BOIIZeWSPI8xahEFaAB67VZqVb/VarfzljXtLCfCqqinRTkdC+d6lKs7o8n2/l6ez+W2ZUFNJrNBkosSIpXofG977ytf+uqsmNz/wH2z2VSE+4M57zwgGms4ssKGgdQYyRvjvgZEAM3sRSGJM/V0PkuXWt1OsDsAd8ppq5NBZq3S6kA2HUEA6WAgULk4LeqZg5SEyLgEFYlFQmNQaYsURJQwkgKO3nsS0VqhIhGo2TkflFG5ShAJRJAjSFTEhFqAIgsigVIqAqEAQJa1BFRVlxpIkdaiYGtvZzybIIIxttPptVudQ8uHt6a747IwOvXiqqpsp632fI8lWmOcg3arZZn29vZn0zp48eyGe9OMgIWGk8mhhXlXh7ryd9ejg7Max6CUBhaKUQ5wk/HgXHf3QOjL+uDM95ZqOx58dd/f+ZcA8Nrf/x+VgZY2IURN6ty50zfW1wFWfV2NxkOvYG1zI22n7TzF2h8ZzD3+0EOf+8KXaRNOH1+O09Gs5DRvKdWelrt3NnYffrDX7enSTSBJuDax9lZ8QsDCRVmoQfaOt7196uvx/h5WTkLIbDLodW/fXhvvTx555NHpdPL6C6/0FxeKwL/zO18Uprn5udHuTBmNQohKN749BEJCIARSigBiQwZDROEIbwE1AQDgD+MXGvhl08RDRgStiAQgiiArH0Rrc+PmrZurd65eu/6ed7/39JlT+8Nxu9N78l3v3N8dZnmGRt3/4IPdQR8ITJrMysIYs3L0cHswN52VNJtabe6+QYJEzEH4wIqmmuZAjEiEiiI3U9WDlGCOkWMEYUUUQuAIiBpAYxMxq5MYZ1/60pff9eTjwbkm/4KBUYmAl1gjCRFlaacsQvASI/gQtU4ExMfoOBhrbWKApKzK3lyvP9+fDKciUhaT4GNmrUEpptNck3PV9evX3/bwfXknRSTSShg4Nh1Ruut3bvgRpEhpzaTUtAr9fvueM6eB9PZ4MqwcmlyIzz147w//8EfZmlk5JKPR6jJUDhJG6C3MOw2T2pVF6eowP78gbAOkqP3axv6Fi8+vb+45xwAJRRc4MjMwEiIgxOiFRbAxvCokEgEGoIPiV4CQI4s0Y29u3v0YRWvjYzSKosS81bp8+crNmzcffeTh27dvb21tLS0tNba4jfXNK29e+IE/++3/+Te/8tRXv7y5fXZ7f7vbsb4y4rVwfN973//qi9Pf/tznv+X9H2plaTdJ8jTNktRXTuuE48GmToQCICAswnzwdpNSIBJCkAM1AAsrAWBp4izBKKtIzwr3ja8///TTz8zP9/75P/nJdz/5xCsvPv/PfuqnXWkWj5yuCgMcnYsEmkgL24MP+N0O0KDX6rQyDZIaawAhstYqQvzMj34nEn33v/0sADB5naQ6ye/WQ3p+MDjoAKmDdUbQvPHm5dWtnRt3Nk+fXTmXzN1e2yIHJ1aOLWUD9NxI6NJWHmqnDxZleMsn8lbpA3fBsgCA0JApkEiROaiKEACpyXVAvAucTYxliQBKQEKMNklEMPiYJmm32xsOx88998IzX3tmc2vbJJlSyvsoiALaCYydf/x9H1hcWn71hec51q2cAK2Pqp21iTlyMImFBEZ+ErvtB5583AyObM6cTbLg63gAhUMWnkwmu7s7xiTD4TRJ0sff9ujDD96/ubl1/cbGpTdXd/frxHZDwMjhj/6Z73rHkw/1B3ZxodXt2zTPszQty4qjB+Ff+qVP7o83W+3MWO/8sKy2QcZ5K0iMo8mtdr4SRe1Pp5V3zUtYu2mMoS6gLp0I1qFxgAmS0sZmaY6IzlUAkiVKq9htUUazMoysVh01y6A2ILPRbLQ/S2x7NuXMiosBRIQgRjczeFs7FWMLwmy4F6AuMzMZDX/+k780OHpGKb04GGxvbg7H493t7eHOXiuxdVUCB+dqrbUIhJ2dSEBEpKDb6Qz3J0Uxm43HhMgxel8JszW2KsuvPv17x48dW1xcvrW1VaGekYqJCYyHjsyfPHHy8sWLF86/VswKr7Wx1qZpK6knRTWUut3utgf9l2/fevKeMx/pnrpy4/q17a2ezYRggczxwZF7uecqulWqmQa3P8HIO6PtVKmWybIsvXr12kuvvLqzudWkfpaViwwMQoTldIoghsBosnmWaA2IWZZKYvrdztLiwny/N+h1uu1WnqWptcChDjydlbdWV9e3Nty0WmhlIHpcTsvap50+KCGIBrCd5pPxBKJ85UtPzWbTPM07nQ4irqwU7Xan1+kiQ/CBjG3GTyzAEhQ0yRwSWRQAIk2Luiir5cHcff3j+ze2dlzZ6ueJNghgrRVFUSQqBMJGYIWgJ7Nic3d3L2CKqU4sJkoTGVQqsxooZa1thkTIEQSYFSADkAbtvCsqP5lMXAg2sWmS5Jm1SksM3JxPCBB1RFTKYqJjdFVZG6UQtVZtFJDI+siJY7Oq3hvtJ3nGMYYQlNatPG9DNS6LunZKYeGd7vS4CuVsNtdeMGB89L2kPZ0W+3szkUlZzUz0rbnexvbe4qBXej8cz44cWnxrHz8obmJoJLUQm/lhBFS3/81PHf3zP3Hsz/3tg+1fH2TSsvwBlrL599V/8lfP/O1/8fDf+3++9vf/olWJCFdl3cpbZ+89C19+5drlS0fPnVWJolYSidPELKTZtKgOzc8tHBpMZsXm5t58P9nc3T3U7rXy/rbZuLl9Z1yXni3l+dbeTidd6fcHXIyMQld502ntVeUzzz535oH70k4vbZObTUMIN67fuHJjbTKp9sb1O5584p4HHmOA3/j0f5lN625/qZiWWiUcwEefpDawIAIiIUCMEYEBVAOSaFjDihQIsDAAEDV8HAohVFXVDHqoSUung8ReFGxkBQDEEYxK1je2XnjhlQ9/5IOogg8x73SCiy6E/cloYX4hTdL9/f00TWpXmcSiVqWrlKYkSUlbldh+v7+2uckc7y762GzHiNLM5KIIQEQ+gDE0IjKRhgzfpDRJDCLECAIQAMX7kCASqps3b5eVW5jrsw+EFBuoOjIKIzZ4X6VaYrQFgKIuNrfvhBAFxBg9K4pWu3X23Jnr12+ub9xxvur08qqoQLRX7Otirje3dGTl6NLCOx995MjK/PziMlMUCSyAgAoVMAYOvvYxNIUFICIpNKi9D9ZSi5Jjh1c6/d61tY1Xrl4LioTgxddfaX8mf+xd7zx0dJE11tHbVhbGzrGrOc6CgACm7TwzkTJtdDUOFy5cf/2NS7PCaZv7ACJB300xRGiQFIJIqJpgQyBBYAFCrUmEhVlAgvMxOGOsMRqRGqmUIgUA1hjmyBxbWbq/PX766Wfe/a53LS4uTaeTjY2Nfr/fbrfX72y0kzzG3T/xJ9/zxNsf/tcf/09z/XN5Z/DG+RKCTW0qUR5/29v3djZfeunFd73n3UBqvjewpBVZEAXATZEoDXEVhBs6QkPVYG4S1IkQgBt4KwqFEBqjqfNslBAqY6wPPrG5iJrN6hDk6NETRnVvb+xWVYWJjhIkooC8hZlt+FsAkCUK0VtlCQQZNREJfs+/+zwA/NZf+GPNNUk7nZb0I//htwHgH7z7fhDQafugGJKDCiZPW9ub+6vX1zr5gGuY6w4W5lYM8Vxiy+3J5sZ4YWkJFfrA0LzERM2N/YdLn6YcPLjVm0R3pMYJydyIzO7WWyIHphJERdpHDwdJ2mRtwsxK6U6vXc6qF154+fkXXrx6+Wr0kiYdbe20HEpEYAyRA2LUydiHYw881F5YfO2lZ8vhpiLDiMyQqCzLckxobzbBbu/J93wgJJ1pjDpLOTYcFAJArSyh8s4LcwwRoAohDIdDiLHfbn/Hh97/7ndUN1e37qzvXLp8fWNrt9NTh44tOT/d3N3bGUlEFVkSozn6Vis7fvre4yfPtFrm1s1r1iiFkqdaG+Ur4ThDDNPRdPXO6t5wVPsYmUlxiA6hkfGDbXezVjdPbBPgpEmUNiCKIEo9ufHG870M3vfwSlH3PTvP/YK7icSL11Z9TcZ2XQWz0gWK1qJwnJXTsLIw7Jil3tI+x+dffBU0d3PbSrqpspasIFy4/Ob2zg6imo1GudUcXKqVd5UhlSVpiLGuyiRLCRBFVm/crErXbuez6VQpBSIcnXfOGpW3WpPx/le//vVH3/GeCpSYxBEwkLJqWtRpr/e+977vyScev/TGmzdv3tjY2iyKKk/SQSuW9UyQ87nuZJsubdz5nu/42NrWllb6zfNvtA4tHjbZmdZCtTN+cf3m/nzKre7+7nA8HKeJYQSVmo2Nrad/75lpMQPByaQAoNG08C7aJEFA5JAlSZ4ZTZgrtdzrp0nSbuftVra8uLS8tJC30jxP8zRJjNZGCXNZe+f5nrPHb9++9ebVK7c3drjeoIDDyWgMfmF+0MSJYJCWzSzazqA9GY2/+PkvPfmOJ3d39zqdaw89/LA9YYwx2hgGEVCN7aoZJiMAM5BCAhUCVrUT0kh6YXGJJ0GPdvN2qy6rrho0bEkRQaQGtK+UETBliC5yCDATh86HChAYWMAoLUoHaLfajAgQ8ixv5S2lMDKHGPeHe6PpZDqd1cGnSaqIFufnFucHCm2jLmRQnmVaFACgLaU2oUTVpbcasyyLPgQf9frW+ptXrjU+DY0Qgs/STIwPKUyqan93nCetStfFbKJZIzJHr62CGLMsK/cr5z1hImKAgAWFFOlkNKsWe346rQ7WETyoaQIHQiLUTfMcCZXSZOzWp35OGJY/+uMAQObgXPjWF2iTa//i7wDzW1oBBi6rIh5s1GFxaQAA165clsTOnz7eWxiIr8C7zfXbi4vL73vX2y9s3Pjm889Py7FJM5rphVCxRDJ6bW9tbXf96OEHbm7dWt9de9u508PRcLJ95/TiigArhktXbvyXp77wo3/pL8z35lpKDzptUdTuLdhsOtycXH7u5Ru3N7IkG00mN1c3LOXBCZFCJJuaqqjqujbWIIJWRkRAQrMpNrzrBi/YnCAPdspmJWVpjt3MjE1FyE12CiGAoKAIgCLUihQgjcaToqpb7d5kuseRdWaT3F65dnU4GrngkyS9s3abJZIi52qTmCTLfHDOB2jywpVGaBZ3bt4soeaJMIso1MIShLXI3fw5aAQ9zd4oAE07TwREogAJiHc+TdIYcTYtrUrOnHokhqHSKYCBg7pWN28kNAMgdqhgVm5v7txwsQRMBKXdzb/+9a9Py3HWTjzXWcsSAGlLkJazIhT07nc/8e4nHsfgT6ys9DopSADEIIpZFBERSRSOMYbgnIteYgxEkKaJ9z6G0M6SOKtSjYcX50fFNM9tbQyIlK5+9oXnd8vpg2+7nxILWjmIAZiMqgOrVl6XfjauW1l6c2197c7G+Vcv7O7uASmhpK5FRAGQj6IARRAIFCEIhiCIb6UowwFJDA+8FcYgBvHBA3ilEA+MgaKUihwJBBCNMXXtlDGvvPzynbX15aXFLEvW1zem0+l4PBYPp0+cUgZarc6pkyeGo9GLr9/c3tvodR4xkC8urMzGRb+PDzzw4Oqt2xfPv/7I2x5dnp9fnJsbj2YhsgAK0AE9TPggruduc6Opeu8yNUiEGw6ZUZYBAoemRxJjZC0sGAO8/PKrn/zEJx598IG/9bf/tjXmp372Xzx3fk+prhxE9jBD3RhMntu7BQB/8vixR4/1Qfyf/dWvAsBvfey7CBgZPvdjf/SP/vznvuvjnwWAf/+DH9gbl+vbZbMODOYXZ9NhXZf/+Nve/Xe/9PWvzaYA0Oks9Prz23s76zfXPvyRd3Tb/Oobl9a2NlYWF8yRQ+CDIozBKdJAlJkED8wHd82Of+hx0P06KIMQsclkbLpiCt8qfQAQDk4MUSIiKqWYOXIE1HnWrmt/6dK155974fLlq2VZKVCA5L1nCRDJu+BDdNEXztks9YQhhM6RY+9dWFm9cOHWtQsoHIEYtY+4szPsraw88s73O8hAkoPxqiQN1VCR0lohaomVQkIkjkFCjEHKaTHaHG+t7cwvL505PX/u3qV77l948/Ll3/nCr/7qb/y8Urbb6kUG0qkX0Sg2MVyMPvxHPvzOd3/r2uq1y29c6XTmNKU6USB1BBV9iDGAoKIs+Gkx89qkWZ6hL/Isa7VagCBaZVnazbNUKXGuKOvownyvm2opx8XGtfPR1istlA46IUr6W5PMIFy7ej14ZJ1E4ehZpSAcOVa9TjsarPt53cmrSTk/tzKtxp45bfWzVq+u/c50ePHKpQQwJR2qgowhEat1K+mQIhFwZakVZsYyQu1qV7s0zYILIYRI1AzohTkyAkKS5ldvrB5+4G39Q0f3JxWaJAgwCnPY2t2pZ+N2nj/46CPn7r/3zTffuPLGleHeaLPcTgOLlLfW7xDyrc3Nf/bJn6+LEpRiRCjdif5iO89252RtI9ZKQYSt7R2GWDhfI0yr6ed/+3OuqAjV7v4wCPjaAyhj9XQ2M0q1s3S+3+m2s8W5uYVOe7nXW5ifb7WyXq/b7XazLEESY4ga6RkBiOSBfYhzg2xpqX/P6RPrmzvPvvjqs69eij4UoZxV5uiRk+i9RZV0u9FzK+/MDxYZ4vbWzng8zrJsY2Njfn5+MBiEGJAsADALKERSCMCBsQkfFfYhKGPnFlbGu+X2dKx6ueWqCiFDMKS0UsRNqkCTIobCGICrugZUOtPiMERmBACIEiSA46ADuskwQhSJZrLfbrfb7Y61ejab7u3tV841Z1pGrqt6VpTtVk6IzEJInsP+eDaaTli41cr7g35qjDYEoSxmVdOA0BfeOH97Yxu14jpoY/b3RuPxJOsnmZI8zcdqFkPURhFoQza4eloUvYWeoCRJEnVAQudcjByRq9oL4v5kwj6ZlfX+aHRwwosH460YYgRGxaAsKlLaok1WfvB/BoDt3zzQSrM5GAGJOSibsJ2f/tG/d+Pj/yvdbXGzQe9DjFGAoVbtLG+qopu378Cgs3B0ZbJfFqPxQrt935nTTqulhfmF+Z5FmLq6hezcRCS4yCGUF668ce+5xwPHtfX1xez2xtqdyXBToz68cEjrfG7pyLFj527e2N5OJitzc2Ulc4sD1uml1Ts3bq6VxezKtVtamdl05kLUJic2wUuaGeejslaiZ46JtYowRm5kP9B4lAgbJkeMQqpZMeNbwKbGuAgikVmREBIzEzXuClYogoIMzJGs0Ym9du3Gzs5ut5v5gM65uq7X1m4Peh3xvp0luxtbLz73wnu+5b1eYuTQJLcbo5lZi8ryLMZY17VWprE2HLA2IwBCAGZmTbrJWhFBlhhYSLDZCZg5xtjsl2+BOBlAGJyP0dVfeuqr586dm4x2mT0dRFpKU/gIS5K3IvOsmKJi54sQHSpIs3RtY/Opp7584cKFKDHLUhJytVdK2UQjAKJRudaKT508qjgmBEqDj40yG/jAsxkbyyRwFGZSaKzVRGL1bMoctTFaxDqvUetubhUGjiWQSnKLmm7fuT2c7R1Z6a30eoeOHRleW9va3mENVVHNplUr7V1749o3f/+5YlxanQBmRKquffDB6Exrw9JIZaNCItLCjBiarRHulhSNkeJuehoZ20zKonNBa90YPmMMpHQIARERNRIZm9y+s/7aa68d+vZvD3V97Nix3d3dmzduHlo6OsOZqythCrF6/wcfY4Nf+b3Xg9/xRb377OXTpx/u9o2P7sTJYy88/8LVy5dOHDs0N+iurZlZFQA1IwgyABNijHCXhY8HId6NKOyAuNpgyJiUliiAoEkrZWLguq5JqY2trd/8z5++df2KRvmhj/4A2ej9REKpVI+JIgsQAgcAeM9gQQMpMseW57JuJ2j8xR/4kBYxRFliUST48Js//EeK2m3u7u/sjaZV6M4f+Zk//T15ovJON01MWVaB5R986J1Xb975xWt3JO9rpTUlk92hnxRrW1tJ9MbX092NNTcd5B2M5MpJv7UowQVhm6Tw3z7wLvX/D6qfpmYFkeaOEmCMhHS398NwtyFEhIQqhECkbJKJ4JWr11955bVLl65MJrMYmZQB0FVRiQgptNq6quDgrLEi4GO0JqsZ3Kzqpdmpx98+OH7i1pWL1XincAWDPvzgYysn7ymoHYSFResWy0EiryYFgK52dVnUtSvLSuvALIFFBIOvYvTjnb1pNbJbduXwoZXlucOH3/OOdzxx6fKNl158ZXdr6Fwkrcm0PAdf+2Jc7mxPf+jP/qXf+I///rG3vfvokTNamcQq72d1nQAKUiACkADgs9yQ0mmWkOGklaiEiFQEijEW02kUoaZ3jMo5r4mUxsQIxamUdc1RtC4KNMkJ5rC3u6eNdYwCCgEJ2VVlN9fHFuaK2XBnf6+Td23a6iTVaHc4f3g+OB4Ox2FYrE92y1BbUaK4kyZK6VaaxBC0Usxce5dnqUmTqq7Kqur2+iHExCbD4VApVVWlCMfosyz1zjvghnqwtbXTnltOralZkBERq6qe7O/qQ0usyuFG2Zvvn33koXPn7t3e3b9x7eZrz720c+vOhMw8mcUjh1f3tnqttmYclSVLXELZXIyXptMdJSBiWYrara3dGeR5v9P5+jO/X46LVt7a3ds3JlGoxtO9pvubpzZ618qzRx6459SJo0tzc6lWrSzv97tpatvtFktsrFpKkwAzs4AIRyQyBDEyKWuknWtbjmZrdzbr6N1sisQ2SV1ZKVIKlFJ6f3c0nRRIcPXKdZOYw0ePjCfTaTFbXF4SECIFkYhIGseWMCAohcLMIdbOKWNVks0q9+z1F3tpd5SYkKWkdXDOqkZrIQoAmQIcnJrLqqrrKpgEA8UQIjUzDxFkJIUKI2pAC8ylq/2wqj0g4ng8ioGVsqR0iNE5RoTxdBZjVE0wGUgQnNV1EEDE6L3zLtUKq4kW9jEaY7RSelIWJ0+f2tzZK6ahLKNFKYqyM5+TUGKSPE3LkTPGprodi1AUNbEbLPadyGg8DmUVI7sQQ/B5apTWpfeV47aR0Wg0amfNCe++n/jnAPD6T/4VUigAJ378HwLArU/8Y1GktNr8jX+9/L1/cfFP/XkAWP+Nn9PGrP7STx7/H/7OiR/7ewBw+1P/NMlyADj5F/63Znm6+C/+BhBE4AhRRNhXBzlyADv7+/XlK6zwzJEVTLIFk+ztbW+t14tz/bl+bzwcFQ4KL8V0bLQmtFVdXr12ra5LQ8nlC1fNrBckvPT6y8Gj3J+7em9vUlrbPf/aZeecLyvUYrKkiPVwOIlVTLQJAaraZ1mv2N+PQaEmowxEAJYkTX0d8UB90ihQ/puAlebcyaFx3NDdnJWDQ6jWyjsfY2RS0KzIzdAJARFIkCUyUlmXxqgbt1dv3b71xOOP+lmNgJcvvrm7tTXo9MT7fqs73N79xteeueees/2lObo7WyHEENgY3W61moXeGB09Ax6UD81eoEghHEziYjzwETa0rsa31kTvMgMgijSjPPEhxCiJSabj2Te++eyHP/Qt0ddKsYhDuiv3boxaWtfOAUGMXLhpFMyyzsVLFz/72d/e398jTZp0jN5ao3USQ4ixtsbkHQN13Nm5U9fjQ4uLXNciQWsVJFCjLYtNFw0QmWNUirSxhiV4H4OzRhmdxsg52W7IXZC5Xqeb27IOYshFl7KJIe7u7haTnWKh2+kvP/nOw4k263fWXBCIdOvG9kvPveoKzpIWRxFRMRCxytNMmEMIWuuD2kGQmZvqlv5g1AJwYNUkUdKgfgW4eTGbORmpt2aOERGttVVVJdZobcty9s1nn/vgBz/YMC8Qsd3p2DSZjStfq8F8D5RMdu4cOT7/PX/8uz75756pJq262Lt8dfvU2RMRKkQ8dHgpMWpu0Dlz6vily1dmVZONw43Gl+itYdBd+RRgw2ho2oRvNUsaKGuToe24ZmFttfO1d1WaJT/4Qx8ddDqXr14mbcYTB2iBlK89AipjNUUAUCEIABJw9Bs7+2XbWl32sjTRWBTTNDEhSOnC1u5of1xG1lHsxtbuzv5QgV/qtZcX+91WWscQOCZWAQCB+CBpK9/YXF9eXFgerNxcvXpqZRBd5cvpdG97fXPofDW3OBCMoBqjM9294Q/G9Y11662vm7RLgAMyG4BEjlHectg2hP7GkkOxWVt1snZn/YWXXrp65XpZ1sFzw4IIETh6QEiTjJmVQgGuyqLbapVlUZelIWWsNcaM6iqaPF9emg+122/Xs/HW7v7t0fBQr63TjpvNSFT0GDk0EZHKKCIFAgjoXPDeW2uFuS4KIEKIEX3guixj6cgHnk4KY5P+3PyTjz365NveduPGzYsX3rh5ezQcOqVJq2SGEFxNIMePHDmystDr5ePhNunMBXFeoiitTH+QT8pye7xFIMookyrkxKYaSaJEk7VSm1vhejQqxlOlElY0dsXhw/PatGoh9EwxMII2GhBbre5kNtsdjYAoAkcGFOEQXF1255YGKu21Onc2b58fFv3uwuGFw9/xyCNHjy//9u98vo7BOb+/u4MY0sTmSiOINcoqFGWqsrRJakwOiKXzoXadrAXMSpHRWikVQ4jeK6NsYkMIaZrEGPJWq9ofbqyunjl7VhitbU2r0lpbIKxvrLfameOMUkshOoR2otpz3Sfmn/jIu9939dKlZ575WnlrXabTyLK3t2/J+Cz1KEpRgWGcCHay/WK2vDAog7u9trZ0+vTm9Ztr11c7eS+4CEBV5fYn07oOJdWZ1Zbg1aurAAAvXYD/3x6PA/wPf/C7PXjz1h/+7ne87z0xcEQxqe32elFAW7O2sbGwOJdlGSIptFZrJ745+OpmBnawbig0NggMJ9PZ3t7MVLI4r203epcobTQhSRRRcuAEIQQlEryLwZG2WgEhzTggIkizGgmAqn3dJK4qUkAwmxUcQ5SIQCEE5yMgalIiUpSldy41FiX6AwgpgkCIsaqr6FPMktzg4twgSTKjTO1qvXJkZTwt9nd387wDdazrejKeLPiBMCeJsdYWUrmaM63KYpalWdptksJgVkyK4dRIy1qjNaKCoi49I4dQGhrPZsVsBgDP/O0f6fVa2uoG0BhiuPSzf8ekmbFJjKxEOPjbv/pzpAiAG4qRAlr7xX9E2iibaNRaq+1f/RlAjj6GusqznDk652PDeWQB8QAgRFXl3Pbw1vUvtL7tg+985KFEye3NtcH8oErMicPHX9h5razMdMK8IrFmQ51pcLdvr7/5xhsBOMPeZG967qH7n794/vUrNy5dvlMVLgBVnhEVc0BmZaiOdQ2hleSGCVGHUGmlXWABZbUVgWYP06QEojVJcHWIERu3ojA3KVR4UBWBgNZKJDLHhnnUTEdARCkjWmKMABCZReRAg3FXVS0E0NQihMx8/sLrDz98Hwm2smztzh1i7OctN6kojYv93v7uzje/9sx3f++fZGIvDCyoBZFF0Cb2QNTcHBoOZCoHnRrhAzXuXe0zgcSmNdWURCEEIgqB6cDKFg9SNUQkAgBt7+xkWWvh6GGEoLQ+OFoDASCDxBAA0VhV+Sq16asXX/n0b336/IXzPnqbmhCC994YBRBIoSIKUXl2Gsla3Btt3V6/eWhlXtCjSEMU5diAeFGiaI0shIQaIUmMANWExpDE6FytiDFyO0trH+ek1W+nu3GiLDEH7wOQExWndbnu3PZumbbnsslkYWV5c2t9c313a31vPCpaaaec1XmaEhOiUgpBQJECYBBBAYXUZOoJBFKaCDg2LxE2gc93lbR3Xyyit36VZj4IwixKqyYTplk1tDEvvfjyjRur99xzdjodj0ajbreDCGmeTiZuPJ6dPHv8s1/8/Kd+43fPnPtwEGc7aQjtl1++8/BjJ86dXqqKnW5vMOjmy4vz9547/cUvfxkpoNISotJaAJq8FBEMIQCgUlYdmL6ECKj5AQ8ejAdnQRSJorCqK0XkXHXkyKG/9RN/8+qbF//R//aTmxvlcFwmyQJEhSCAFD1kJgWAtrWddkoKRardCW7ujVOi3OJcOx10ki5kCDyZzmKMg948qHx3NN3d251f6GdG375zq99J5pbnbNRV7TqtA2U0EGptx+Vkbf32bLueDdfKyZ7U9aCVZr5OuJqOtotynHcTUEqACQ44/wDy1jiMDkpAabyszUlGRBBFKQJoLuPmoywHLwgSqSxrb2xsvfzSM5cuXRlPCo5QFO4uCYiaLAjQqo4eQbRGFKnKqULpdVqj8ZgTC0pFcJ1OByR+/OM/t3rpzXfc88jty9ejgheuv/b4i09/9Id+7MSRe6qpDxJYYuTYyjMiqL2LkQ8dOjwcXxQR7z2hShLrvfMSdKKsJEVZK0mqgteL3XanM50UibVzc/0TRxfuPfOhze3i/OtXL12+mKR2frCS2urll57e2Lhe+9mdDR70+xHdxQuvRTfM07lOPjQ2lrWvXAkknXZbEADRB69tMpnVbjYxNvaMrieunMUs157V1v6wRLXYVaOYT511ShqlIVhz9coNyGE0mzIyIGtDRE1TN/Zb7bbSdQ1z7V5JaunEsceffPeJo4e+/vRX9mcTjjgZFS2ERCsD0WqrmiY7e0RqZQkzAyoXPQn32u0g7GIkorou08TWgLVzCgkFkJT3AUC88wCwt7W+u35n4fAxF6rMkNZquyqLYuacL+q6v7yotDWtdHd/l8t6pbdQaz792INH7j99+cWXz3/paboyfe/b3/Xq5UtjLuvKXd7xSLUe9BNtTAiVq2yejybjclrcunajnhYxUmSoi3I4nY6m0yRtZUkSY3302GG4eOVzP/GXF+b6vU4nSxJMUrJGqSazGe7CCbmJ+mSJzSgbhSV6AACOsaigjqOd0YVr1165evX2aAzGBh8nu5OV5RVj7b988cXKOc+xcnWLoJgV/X7fJua11185fmKl1TkSfa0JHEtE1qkCFw4+FxxjjEqTWG2zdGXlkJNk7fZ6ZowXMYDEgoCOWRRKhIZwmgiw8+zKxFCWJVrIeR+dk8iGKKAIByViFYoSBcAxBu+IwBhFIQqI1SZvtRBoMi0io4iChl6mUANFFAIxiGh01hm0W6lCOba8cmhppWkETGcznWT2yiuvEEKM0RCKYwjCPjBEAFFKIaGwbG1uGzHzc/OHThzyUO7srpFwmiXoFTMQKWOAA7vgBLAsK9Vrl2UJAN75unKEKAfAm2Y1ERQmVL6sA8dGKkFNHooEDl6DoAFh5OAdIIAE72KMioBDVIBWa1dV3jmtdDFzAJC0O7EeU8R6XP3Wpz978aUXn3jybUm3bZRp2dag00cka+xkUoTQ1mQlcghYi3v1/Asnjp3buLE+NMOT58608971K9c7rW5ic0GMRCJstFaAxmACiUDkGKxW0dfWGB+5mVMQkyA0iXZIIJGb4QawECk8kFE2wg9saoymqImRGwBQIzI96Ko3OhvmEEOSpMyh6QDFyIqIGrVGFCEVSQLw1Rs39vf3u3kGIpPhMDVGC1ptVOCuTQui11548dG3PXr2gXtdVd7tSilFaIwSaeJY4A/OwQDCwAK+sTIBGasbD1WIITR8cRFuTIYASmkWRhQk4RABQGntSkfKVqXPs3x+fql2Y03pgYgEdPM3KIU+FrWfLXeWNvZvffqzn/r6s9/sd+fEB0RWGgAJEQQkRiBiIgAE4YioPIYLVy4+cP89UNcGFTTGgmZbFtGKlKAgGq19CMYYJA0iRFYhziZclZUmamXWKI4alucGN4Z7gIaIYhQVOHL0dQAXVSWjmeeNzdtrm4eOHRt0B1cvrmYm9aUnVsRNnpFvumECrAABkaGR0QggKtAxsogoQn1AGGsY843ZKiJAo1tq3vcQAshbMfWCCG/NzgQkSbPN7e0vfPGL9913b1EUSqk8z2MMrW46Gk9LNymqab8/iC59/ps3T527d3N7J2n3IqZf/tLVU8c/CDRD8pWPnU7n9KnjeWpj9ETNPS4cnGqQko1FH7CJgoCDvmBTBEBTqEWJwNLcOMLCCEgQxJGmG6vXi2KWZul0Np0VpVKJ0cpHbooNRZRaDQBHl+ZOHFsZz8abu3uTQhASJOm2sgi4N54kKS0tzjnmhaXecORGE3/u7Mm1Z9eR3eL80rHl3kK/kyaJ976VZ1kyAwDhECUmWTYcbX7tK0+dnE+6iet3TH+QJwK1QCuVUjxHh2KUkGpMem/d9s1h864ACAAaGbjWFGNs/iDG2EjC747EgEgppQBpNqtfe+Xic8+/sLu7a23OEabTGbMQGY4cYgSiwFEbasYTiOidc5WTEIzJ+u1OWRQSwmB+YXf91r/82Z+5+OpLj54+e/4rT822d/pLC2cGC6/9/jf/76++8Rf/wo+/653vr50ToTzLhCVytEbVdZWmaVVWs1nBLFmagYgLUjtW2hIpIiiKMiQhscn21ijLEq3UaG+r024tLizk7e63fuCxdz15rtPrZFnSH3R/9dc/9fu//0yW2f7C4JFHHlEzurW+8e3f+m0rKye2d702ZdrqHjtx2sXqpZfO7+4VpK2gQ0CBJCjLQawwhWiUIZ0UQSLS5auXrS5bMrZxN5EiT1Kl1c5oLxmcyiiUrkYlCiTJjGI9ns2qorSJVb1Wfy6/59hjdtA/dd9DWpmd0XBjc7OqSh94WhaZkk6nkymTGt1o7ESCsKBWwsEHh9oQgQ8ucPQMiU3zNGsUgXRgNeBmIO1DcC4SKaPgztrN+cNLANZoIxDqchq9m47G3UF/sjfqdfqJNr6suKiHvDedTYu66g/697/3HY889Milzz+9s7a+5+uJq3vthFMrPpoovW4+ZWc4+uEEut2d/f2NnV3UdhpqZvF1xZE7nZ7ShCSDdvvYkWUA+KM/+XPNXbr2yz9n0gwUARIIgDRphwRRFr/vR5prtj71bwUEQJZ/8ACzd+fnfwoZTWZbefIPv/EaAHzsodO+qpM0q0OoYwCAsixcjKQICVGr0Wi4cXmtKCerq9dbLTvoDKxNfVGjJqUsKsEAwqyVQojBCyB0ut1xpz28s6m67dbyQsj0wSGCABAOEB8HAlJh75FjqhWj6BglRouiAInQKxJgYrTGKmNjiGU9MaCaVopVWhR2Ot25uQVh0rA7mk5CcJrQahJhpcggaq07nU67nbVSa7UiiBrNeDwUFh+iRNB7uzvra3fEaBGJPrZtapUWZlSoSCfWGqOC4YBSldX6+lrN5fzhfqff8XtjBokcWJRNEhGuXMUsUSQye++9r+FgtwqBiVCTMo26hQA5eOHgm5wpJBGOIAiIwBBDBGAXSPnA0dUOEXwMMQZSTTceE2WdsjXUvg4xMAAMJzMAXRUBorKJvb25/dqv/7pp573enCvl3kfv63XbOzd3O207K2aHl9pWAyKQpXE9bLezLE2Zvff1B97zgeX5Q3fWNmZFGYLTWjf+bwnR1zE6F7xXivdm00lZqSR3Pmatbt4ZWETVRElEFgRhEBJNKnKM3iulCFGEldbY3LUHi6wcDLikgTyhYMN5AiTSWnvvjTApI8wIIIJNq0whCjbNBLTWbmxu3Ll9Z/GRB4tqNtzdtUqTiCakyKk1FmhvNH7u6988fua0UYoBODKAEKokSQGFmYUaETShQhEhQG6k0Hy3LdRIPe/OQt7aDgUgSvTBKUIRCMEZY2MIIpAkyWg4euPSm0kqk+nIkJVIAIrBAEAUb1MKUGobX33jm7/865+8uXpzbr7jagcoTdaMUs3/UEQiAioipTQwAyCwunbr5sbuZt+2hERCJE2odVNagjKBua4dNnHRzFqhsQZJtG5H9s7VwqCVBohzre7xo4dfvHXdowDruvYiSAa95+iCNoCGgXEyq4qpq6oAno1WRilB4BCIhDkqFACMMSqlGiM5C4MIHXz0gTkSKVIYAzd0A7irrGkGY+ruXKmZOgGAUiryHxiU7k7HIDC/fuHC5StXV5YXrDEAQEp7H7K2NZEm030Gc+ToA9OLyf5+iTpyjMdOPvj6q9/4+rNX3v2ulbIsMoHhaLSwvHji1PFra+ssMUYhBYjI8WBCiY1aEe42Be8+NwDBA8qXAAlwo4Y/iGwGBNK0sbHxH37lPyzPz/3QD/1Ap734qV//T6tffCPt9zlICAGIlDAAHF1sx3K0u7FubaedppHh/nOnupna314VXzvv0yzttIsQ64XFrsBkMtx68NwJIuzkZqHXNgqEo1bUztM00QCABDG6NB3YMc72hyceeWKu7YBnyCLRmYyytg4RiUEHIGHQzZL833vg31IC3X1/At2tUJlZaeudP5BvIRLRcDhaXb1z4eLlO7fvxMhap9NJ4V2UKMFHUoqUUkoJSO3r5vVTiAiSJjkH8T7mGWZJKjF658vx+HOf+czqlav3nTxravfQ0WXX0v3l5Rc3dh85+9DRs2duXL0k4h965zsVN8EKAECz8cRobW3CkV3lODZAawwxApgQdGQvggAxhGitsJSzaWm0jSYJPkQHWWs0GHQ7nU5VjIqCfZidOnX88rVLN1dXI+Hmzl4rb9mse+LMQ2eP31vXAGhEfBHaVZi8/Mobo/E0b/VDKF2IWrFQBSACSCwV10gloyZjQnSlGzoqtdQJyahmUri+MTneNX5WhxCIEKNn1tVsevbs6Q9+7KNHDy11em1j5MKF19K5gWnlvg5gjefIIXIQrTURSxRtUTehVSKRMUoUgQgRAZVCEXC1K2svpI3mGELkaI3p97pJkhRFUXuHjMIMRKlNBGR3e3N3e6cztwiKZrNZcA6Z66I0c/PD7T03t1gGJhe04Gh3b2t/d+nQik7s2mi3TfaJ7/7I1TevPLtza+/qditLGNRid7BX+26ejDXidNZNUxxXvCKiFCvw8SDqSmliAmM0sD+6sqAlNC3K1V/4p8c/9rcO/9CP7/7mL0kjJrj7KyAtft/HAGD3135h/s98bOkH/tzOpz6x8AM/CgB3fuXnjvzZHz/yYz+x9m9/8t7/5SfvvVvuax+1AKZ2Vs60VgDgvfcx9lv9+bl5H92Vy2+GWCHE8d7utUtvLAzmcts+vLgiShdTn5GFSETAwYcQCAA06cxujvYurd3OOl3xZclJO7Vaa60UihCA4sb4Eq3SVQya1KDT4TRXDjGTLoZmqXcAHMWwdmAYVBBnLJNCEgjRa22zNNfKVKOSRc02L/IAAQAASURBVLVsrrtUFKPgvRZstVpJkiijtU2yJCWSGGofQqJVFWazqiZF0XGWZnpjc63f6+7vTgkhtUldFHt7u4dPLjcWIa20UqQUIEEILkvT22ure8XW/Q+eNXlWljMl1geMTMEHDhIjAwQAPZ1Ok+UBACiFIhxDQKVIUePyFcEQGZiFGQVFIkSGgx2emRk4AgBpZY0JVdk8EQCKkZs0QUXU7naYZDScVN4BwHRWTkvM0rY13dFsL+mq+WPHVtfXVjevHhkcsjoFEeKgyRRllVjdzhUZrNiVXJgU/9pf/yvr2xs669SRnnznk5uf/eydyzdX5hdc4cR7qR0JJEpz9BCl1cmWVhb6yyt7k+KFVy8wR62owanddTmxCLOoVBlE9MErBUqZug4IjBrv6p053g2aiA0kEFAhISKDAIC1OoRQ13WWZY3wVJFCCVEYUWmNLjIDWKPr6fTC+Ytve/ChuqpCDFqRJtCEiVIaqJVmhatee+Wlt7/v3afvu2dSlUYjCgJhq9VqiESNyPqg1hGKHKNEjUpEAkeMDa8vMkciBKAQm6aGNO9yjIiIDDFiyEwaOcYYmQCJR6NRUVRVVXlq5ArNSxQYfTmtVaKvXr7yyV/+JVdFie1Z4ZRiRFaAQiiCbyljQCICKKEI4jnaLBmV5cbe/tH7jrrRBEGhUBNcCYCEJoALwbP3AOCdYyCTGOEgwkppbUzwUZNWmVGttNftGKMcQmD2dQgRErSAiqMEBnFBgTHa1oXf2dpTokMdQDjRCXJUWiNCZEEFiKrplxCScHNXN3WQIGDT7RFsposiQAeOoRAkBEWklGpQFOpuLdV0fRqdTVOCaFZ5nq/eXL1169aRw4dUpl1dsDAqSRKtokxno+m46rSXHnno/ptb1zhOJrO9K9eutdorl69unbt3LjcdF2ccMbXZ2bNnP/+Vp43OhCAENkTYPOmDKWVDKeK7TKCDIVPTmmqcYbFplKAgCEt0zltrI8O/+bc//9jDD/3UP/rfO93WN178ivq9uq7GqDIiIXBZagFgrqNm09oId1otk7dXV29zNa6jWhj0JsPSkPKuVATT6Vgrs7TYdS4yiFLIHDnUHKXb7bCAC2XjkVAKvK81QTvpFKMSIyqlHHMTFgRIOjFYEYkxrIkO4u7eEuf9YZXef6OGRoohRmEAZIZQOUTUyhDRzs7OxYsXr1+/PpnM6pqDiyJYlFVZVXdZ7o3lMwJijLHRdinSCOSdX1meR2VqFwRQBK21nVbry1/5Utbq/49/9W9SnK5dePnK00/nXnSnf2dn68SpU0++/1sR6PL1S7/37O994P3fpkW5srRW+8jW2F6307xlIfhZdfDj1C6GUCQ2SRLDISmrogLf682NRqOyrl0IJtTO1X3o+uDH05kyJm+1JkW9uHTsBz/6I6+fv/DCiy9tro1N6mczfvXCGxubW8Uk2CQfzPcOHW1nrQQUMATnC0anrW56AkiitdWoy2nJEY021WSY50krs7PJiJRmYx0mwuApjZRMRtMYOELUBmNZPPzwgwuH5rOWPXXvmULB7t7W4onjrbxz59badDzpWlMUs+f+WxXL/98ff+xbHt+4s9HuL/ja7e7ucbMIA4PE6XRcV1U9my71WpSRj/7o4lJqU45clnUwfCnyoXc8/MNnjtx87cKN51+eXb852Z+oVOcQH+zPh2nVyTrlpNq5ua48cOHThErnfe11YtMkIQUEBFwfP3z64NnEA7qe886oAxr6gVtB+L975n+on39wG0TiG//q789G4wf/7k8DANUliULCytUmNvZMnO/30zSdTcd5KwVACPyBb3nf6TPHVlaWk8RMR5PI5cL8scP9eRUwzBwDu7qeFZOJmwYJgT21kjpTNfgYSgGFVptGciyAIJpRNVZ45hBCK80W5zXbDCohgGiEvRcRh4hCKSbTys+qkqzJ59tKqxicCGitAbCsXVW4yCIIg1a6ODgUgw+hNkYrrQNDVZb7e3sIkCTWIHAMtS+r2hllnXPWphpAHnzooZdfOl/sVazI1264N/Q+kAVgJkWKFICkqaoVM7hOO+vP90KslQQWiSH6GoDAapumWE5GViuJETgsLy4BAArEGFUExEwTMUjpvI8hhMCRlaAEIUbhqJGMVcISvWsyX6EW1e7EGMuqQEWBRVkdObro0izt9NqdZL6KcXc2A4DxpEDd9RXHADpvRxN2y3Lu0GFlx6NR+dILr8+86yStUNZ1mXgnqbXtVm/q3dr+8M0r1yYDl/d7Gzs7V2/euu/e+44cXg6zMXk/6M/fc+JEK8v6nU6n00UCYdSKlUIH+Ltf+31rsNXJjCEOzbpGIhibAwhHUbrxIDRNEyQUidBkYQCKiFIkMfIB+A4aoTTSW6Bd0Fo552OMhHQQayvUiA5QKWq4y0GMTq5fvzGeTEKILKK0BgGjFLCAkkG3tzPcn02nr7/66ql7zzUjlciMSK1WboxVippUpIPDPSE1bjF5az5wcPiXRnpFOsbId8EE6mAsJ83bysyEyCAhxO6gc+LEyZMn7i3djtXtZu9EFMEQYplq8+bt85/4d/92VpXW5kppVIQYtVaIGKL4EJxzWmuig20WEDVhRGICL3Lnzua7H32H2GBZCaKPkUCRalxKKIAiorVhYeKmU4FCqK2xqQV2DYQy+OCqympVo5KoSCMg1LUnRaS0KBVjUEixZhZlMWEBTdbVXkiAgIi00bXzzSuPAEqQqVGKcDMlb5oLEhmaTMHm+d2dJYlSkdk5l6Yp0VuIHOCGOUONcuYP/lwbM5lOLl+69OSTTwhHRQo4EkJijZuOEaiddxTU+/uTlaUTpejd3ZdurV1+8OwT1268+dyL/KH3PjYbj3wQAHjg/vuTJGEAa5O6rDiK1ZqBEREJ4b9fVAEP/kGQZp7VDH0PylqO0ARC1VV15NByvz+YzkrnIolNdVqDImuid9GH3HYAIFHQWZyzJtseTzHsP3RuGblsZ22NYgkhigYl1iqYlcVkMMgTbUgJRI4RWnlGRKlJqtpB5KZ/phEEmDmaJBuO99bXt1YWl0E0h0iAAuBjDBGZCbTVRkfCRrgH/2+NH3jLGC8QGIy1IQTvg7E2TXIRWV/bfPnlV65du+69A5C6it5zDCIC3vsYOMtade1FRCnlnBMRrZVVWlgawID3nGV5u92dFVU/CFpsd3vnX3tlMp3e/8CjVRUm5WjsYt5fntP59Tu7Dzzxjse+7SNTzwvtwb2nH1rdW/3aU8+8753v77Rb0+lUESLpRjkXIwOieM8iLBC8Z2YwKKFBmIKveXd3FDkorYOwBC8Kh5MJTou81Wq327Oq7vb6xdbe7u7e9Zvr45mbrA+JNCr1n/7zfzEG6zIqytqd9vFT/V4vv31nOwQDApNyQoR52hwIuQZPpOuqLqdFYkkpQql0K3eRhVSIBIGQYh2gqkIxEw6iNJRl9ce+47sef+yJV998+Zlvfu3a7avv+fB3KJ0fPTa4cv6NrY0dEcgX+9EYAPjjS3PEKrHYbSWDdmIIXO3KqowxKq2V1uFuxpQAhhDHReEDkNYIoLVppVlirU2TGON0Og0hBuYQIwL8yu31BMxkb1wXLiBVRYWKlDXK6sBxWkwrV3IMTlJE2RzvH2r31jc2Lq2tZu32ffc/uF8Nb29uLx9aXj536tGHHtLj2ed/67/cuPxG39hjKysToKjAB+GylgjsvLZparRX1MpyIVCGMPpOnhw5tHB3pT3IhBEB4YDNB1JQWARk+9c/sfj9Pzr/Zz52sHqgbPzqJ1b+Lz965KN/CQDu/NLPMAJZaLWT5oK2NmXpfXDaKIIDGyMAO1+BY/Euy/S73v725YW51atX5zqtMyfvUYcXbl670+lk7blenMW0M6hr512plMz2pmVd1K4SxLKuo8BCO6dWKzIjilEaCJqIvWYURqRQkKARREqilEbyEBiVNNg7Ic2SEkZFWlGeWBGRZgIhTKRBExrTyJ0VcGaMTtOqhiiitFaoACOZhEhpJImBODpR7YS0SrIIgKDPnDkzHhXlbKa18c4LQAiRY7TW6KgSm9gkYZhycAvzPQapxUf2iwsLPZ1fGl1yMQIYq5MYYlFUApSlqasK3ckW5vpwly0bBWOMRVmNp9NxOStqX9XldDwjhlC7RJtE2167PT8YaKNZfGITm5hiVpDVtavW1tcnRREAdWKydm5Tuzeb2smw1+8l7TbZEQDEwD74zKaBgZk/8uGPPPXNr3qBrN2ux3trm7tBWBuDZIuhRKeNsuVs7FFPCtgdFq8+96W3v+9b5laW887eaDr6wPvfu3/m5Or5N04sLjx6330LgwXBUDkfkYva+3KKKC+8fmFnay1NDMfgvSMxQYJVGgmjY1SCCM47o60xJsTonFNaoTQqCLw7V8LITE32NPJB+yhEJFKE3vuG0O+CT0zSuFEUEGDTOBNCDSjCQMqsrW1ev37z8KkVEcmN1aQSZblyHBGB2p32cK96/eLFD0xGaasd7wpwtWkyekSYARQ3LVhoKCfSwJMBMUQmFmogoI049y47rhm1N9G7HGKTxO69byjMZTGbzaYslXeemv0cgAEjg7bJjTu3f+Zn/+XecD/NbIxl5WqtE4jNDBAOxDFKiUiMorCRSCECKFKRUKd0/s03PvjO9x2ZX5zujhJlBJoZKcXgI6PWRjgQKTI2AtdVhQQoDY5ZM/oYIpLyzm3t7rjgITWkFGolwEBMCkFQkYrcDLZ0NfHsRZEhoDxNWSQ2WiytQlkCEmnDPtydjSCCatJtEUBpEyAAR2tU9JFICSmOTEQ6Seq6ds4pIpskTXFprQ0xxBgVKWEmRCLVDCgRiVmee+GF7/7u7+73uyHUAGhUatJsNJzWJVuTEOHGxtpDRx7zZTY/3z197N7rl667uP3FL984e/zIySO9WVGFyIcPHzly+NDVGxsWklSnMXoQQUBAUkj8Bzpfit4TKVSq4Z9BRAAFd+egzM1CJDGyTtRsOn3ssSf+/I/88C/8wi9vrU2Go6lWPdRUhgBMHMjXzeFVGeB+z5i8TeABaqsTo0JdVqlpLL2gBI1RAMrXVZbmWtgYAmsVgTZGI7HzEKLRCgAiB2tNjBGtnU7CrfWNtz28ggwtk1T/L9r+NFyzLLvrA9dae+8zvfOdI27MkUNEZmVWZmWValKhkoSgLBCTkEA2Fk2DBA1taBCPsR/axpgHtxkEDQYMSFiGRhZCzJqlUqmkkqqy5hwjMyNjHu587zu/55y991qrP5z3ZslPf+776WbEG3mHc96z1/D///5zH0TYBwBUYz2apg+hb9AO9ZT7vOSvLjePTUiIAhrXyTshhLv3Hty+ffvWu7dHo3GeFwqmXJQcJfoIQD54VTXGziZzMgYQomqjS7CWQgjGIEd2iUUgANMfrHnPIUpe2N2Dg4e7Oy+88AJSMpmVrfbaw51JW4rZ4ezCU89+6Du/Kz+3nbV6PFpktn1t+30Pdh+9/tqrzz33nLW2ruatVrt5vwizKqDRyBJZCBmEQy1pkhd5roBlWZfzMklsgigaxRpirpWTxFU+lMcnQLSzf/Dw0aOHjx6HqGmSp0mOxmZpqlQb0rSfEWaT8fS1V296Xyau3WltFu3EUoslLBahlpAXhQqAiksLI6gIYKQMLFU1Kr3Oud1upU4sQF1HVQTV6Xi6sjH4g7/7U5fOXX7w4F6/3+mt9BaLhQm4Ohgc7T082j9KKMl73VlYHM3GAPAf94+bE/0vPH+tyFyW2pCFJLG1D2gQAKvp/B/fPmxe8yefOuds8n883vutZf0fu3x+YMzffeX15j//6JWLpJKQBYDp4UTysPfgsW21YgwuSdNWjokRkrkvF7Eu8uzx+KQ96IjFN26+5X3cOT7s++CE+nkvqMxn83Y7rzrp2pm179z+o5/9qX8z/PKr57r9m+XOAVeLVp4hVFXV7vYqqZ1L0iw656IwihiiQa/T77aWdc9pdsLSm9j8IRIaUFDWuP+vf0QQznzPDwAAk5793j8BALs//o/P/Bd/avv7//ydH/3rBqERbgLA6qBfwXjIod9tWbLwYCfPEgSo5gtCzbttZ91sMpmM8narePWrX11dabc6ReQgHEcnQ6i0UhuFhSOCFEURi9bMIgj3Ox3b6XZb7ZikDil1DqxRIlZlQFGMoAaVrGt1ugMBTrKMDSowKiE4Q2KssqIY5sanoIgK0jCUlUGtdRy1Diyi1trR5OjgcGc2nysAKCR54VptQZskKSJxjCxobVa0us4mVeWzPBUFW1VxtpgpMiKlWd5eXSsSW07L1dU8TZAl2tSCMSnp9ubm/cc7YsWX9VZr/eMf+5jR5Ctf/jrPpKDOTGUetdPqMnvDslKkLdd0t6CAjCZUfHy4P51OmcUYW1VVOSsDR4tYxTK3luczE2qXp0W7SHttABTm2XQqSsHLwcH4ZDpJigItZkXW73c1hD3cPXf+XO5yAPCLMjhnknhwfNAfdLv5+sM7h4PN3tZar+ocz6qFj9azydH5Mi6qWdqhxMl8Dlk2mIeqt9kbTmarW9utvFP7UNehmi/OnztXpObO0WOfYWYM+CgxRlWX0L2H91975y3baokdF0VbGEUjovEaEdBZ10yBWEVVM+NAVSInZIVFm60fABI1AwJpLLRgVEEV0BhECrFhyYC1pqpCRJ+mqTALGWMshKigoIQiSAYQZ1X9+ts3Ny5sFTZp17GN6AhKg8YZCJwYh2h3Dg92d/avP9WrAgBYFk4SgwgSFBPXFGeiGiWKAqAJwiFGawwACYogLHVOTbwHKpwqXFQJKQHxGisV7+tIaNFh7cu7d29ev3ZheDjM03EEWtRlUiS11C4z/+s//ftfffXrG5urtS81sAGSELEpfRABwBCSsaAgMRKqNcTCworONK85Xox/8uf/3Xf9jv/s4tZ2KAOwBYUYBJQsOnAFEYowKJIqKHNUVfF1EKBoLKdp7eOXb7z2yr3bad4OdRNpJCpsiZxpJFrsyEYJEEEFoUEdSkCghk0lsCQ+R46WmQwEjo16VlSssSgAABoZRZson0Ysg0pNwcmn0z8fo7EWEUWZYzCIaBIVQABLpCrKTMYqKKG7/2Dn7v1HLw7ej6iNhMumttXKDo92jMHts1s72/HRw0cnkwe97hpUNkzK7cvXp4sH797a3Vy/2I4sETbW169eOfv2zTudznpV1QgoKAYMi6rgcidLpBqbXs0oQDMfckZEOXJTkykhITUwuciKZIfD0dr65rs333nntTudwWoNWPnorG0ZqkO5CCUABJaucYmjNAHCBFhFJUmQq1D5aVJk8/EoydP1wcrxcFLVc0NQdDqpdYTgsszXfj6bhKqOi0oFAWAWY8szlzHNrEvadx7tTSqfWViEWhAjgAhagISYIEYVC1YElrItABUWQGMMnEYZImJgTpPMGFtV8e6dB6+/fmNvZ//o+CjN0iwpZtOFMsQo3tcAIBIQjSpGDmSJRQiNRYtNcqoAqJIog6hiIM/oB4OOiQoVL0x9/+HjZ66/Lzc0HI1TBy//+q/t7O5Vw6EfTq9/67emWTt1GZGRxDrnktSdNdvHo6Ojo+PV1QEhoSgzW2fQYODg0IGIQ0RAz1wzuIQUYFEufF23ikw5QPTUbNZ9cFmO4B482h1Oh9aZ2WxclVWeunZqveeWS9BY70PSyTa21pTV1z5xHeXE+6ouY1VOvF+gBTKWDIul8WTScmme5OKjc9l4Pi/aOZgwmU+UI0nkalEHTDodAJM488QLT1WL8Yc+8qEnr1872DkgC5PZPDX50dHJzsMdVLh9934NgFlqs6Q+Pgkno+Yy/eHt7X/1+PHfee3tH/7tH0iStLO+Xlc+shatYjqd/9lXfh0A/sSlrR+9t/dPbj76Y5fPNRXA92z0yBhDVOT533nldQD4r7/p+b/5pdf++Z3733/5QsP7WFSlZ7+3c//sxXOpMqIp8rzT7Ymwr+eqjM5W00meF/3WyoPZ7dlizjX3ii4iBIi7B/tpO0cQo3B0eDxoFx/6nZ+aXXs2zmezalqHqprPIpQq4FWYQCMkSTsGTbOcMNbzWZ7mabEsgOIpNh0DKwqQIhFgYy6gre/9QQDY/9c/1ryG3stVwuW/ylyiQtpaToBe+KYX6i9+iY9OCigCAgDkWeKSFIVBIiFWvn7zzu3D2Xi12726fe7oZHwwPrn+9IvWdXygNLUSgwUCds70AFy2ahYrBxtbq+XJGU7SIstGQVSQbLLsogSk8X8ogtrIRK1WRi6yyUwqQQypMWqdNc4hoKLRaIMXJCFSAHAJWWtF8Xg43D3Zj6qdXnceA3W7270OgiZE9aJ88ODh4cPHRFYUI8t0NkNDeas3WLva662kqaqqIbLD0Wg6n2YtZypjwcyrMB2P27nZuLzSzpPFbKqkjDroFApahdDvd5BjHIde0b/81NVX3n7Dz+fR17OqwsRFLwG4IN0c9Ir3NIkKUenx491yMnPWDHorg8F6kqalr6Pq8eEhccgIbGRnITWunbcNWAYBQ8cnw9msGo4XRbuX99ZslnmJZEljjHVdzudvjW6cvXIJAKqqskVvXi/SVv7s+56P0ayvnav8bF6W/fVOODlBTXyV+gC5hCAxs2mRu7IGg8l4Nqtn01bvHIJtFd2jkwOy7pnr7ysI08TU6I+Gh2G4uLi6qSx55obj41ldfst3/PZxBbuTX6p9zJKCWdU0B4EhMsjKAILauLUACVGZT5lqjd6noQc2rlvAho4NsGRDw+nAExGds82yCy02OQXLvUojX1BVQSV78+69lyYvOjBpCO3EehVKbFRJkzRxmbFuPJ2+e/PdZ648AYqigAYS2xgpqVGoIACRIiqpATCRm2+zmfksu2FVVfxG0ywqptFzMwGjIQJQY62qFfUCsrG51s470gNHFgx1Voqpn/f7q//pZ//jpz/z6c3N9bqqQQCBEpto491kaZ4+egrDaaYOLIJN6YWaJbYsqyx1r7974/7jBx//0Ec+/IEPrbR7qUkxqkSJNUcJaFOFJnkDWDh6b51VVUqTiPjwYP+rr7/+5Tdeta00cZZKRlQGJQOArE3boYBkRNSHGAMRmWZRqCpEbrk/QUyTpK7rGOssy6QhNi2pj98IVWgiwJibjSchEKAKqCBY61SVmaNIYq11VpibCphZG7SripICgHKMaZ4Nx+NXXn39xRdeaLTpkTkhFfYsdae9sr9/K4SesW5z61w9W9y++fDsmbMSXJpsvnnj0bUnV1d77XJeD/LW+5975lc+87KEqKrGkkgkUIMkoKoIiCq63D4uhyWCQMvukwAB0IBBUKTAQQnIWER7/96Dr33tqx/+8Iefe/L6/mh059OfwSQnMhICc5yUCgBlEF+F3Jh2nqKkwoIELCH4qgHq5HlhjCFwqcuMdbNyMT4Zrq+sbayuVnVVlWWofLUoVZbqO5vnLkkcWhKbmGI0OTgYTc9tJL6qUZHBihAAkzCqqMBy2YeyzH5BwIYPAQAAzAwIzrnhaPjuzTsPH+w8erRXV009lEjEEH2ooyqIKLMCynJnTGiMVYXaV9YimOZmBhY2y0WDKjbQbDaWnGJd1kfT0erqhjWGq6oQ+fEf/afjo6MPf+TDb968WSbuP/z0v88G/Y9fvLAzOUmty9vtyAwW291elucIBILMMcbQvGOXo6DIwUdDiGgYsCxrQRQFY0iCt4YIwRhTVXWaZrPZ4uh4d1JOfSytw3aRFUYdaytLFayyTqsFKjiwnVa6ubKaJ0m9WBwdHtaLajQcjSezypdVqWSTJC8ksiETYz2f1XneLqNXNPO5J6cEDhVNjIkjm6bOEKIty8WLLz2Ttpwo3L7zbpG3VjZW4q5/PJqJ1wcPH4xnk3IxTbKWzTPv/fT4pI2nK6FTeVrhKMuTrfX1NMutcWma7e4fNH8V/JIhbk7lMT91MAaAP3Fxo5Uu/z8pngaqJMl8UTbFfuX9eHxyHjazPJ36OkvSTquzv/8YhOtQd9HUpffTem1trWj3Do6HwLC5vl7X9Y07dzY3N1pF9sarr16/9qyzaV2NMov5mY3j3TjPE+G6Gk4Gg9UAun9w0un1gg9p0o7Rp9IIJMS5pIlWAdVLf/wvA8DOj/09axMF3fy+Pw0AOz/5D5tN9OFP/bP17/njm9/7xwDg4Cf+GSDs/MSPnP2+Hzjzn/9pANj/sb/F0Z//gb8Mpx/f+Q9//DsB/saHn5yWrFkKAOVibhPnkkSFlLCqyyTJDkeT6HU6Wrx9/60/8Id+T6c3kJjkzvlQJqkV5qYzSq1QyutbWwf921U1r+raliue1RgjgECGlm8wQASjBKKe2RNA4iCSkhNlBgnA4AN5H0C8qtWMxBgjCEIGweUh8uOd3dfefPNoOFSDmBhE7La664PVJy5d2lhZmZwMUczVc5cT61i1jn5RVUFkWga0fWtyEYkxMovd3t6avzuNUbhWIFFgrsLx8cliXnZWilZWzj36WC1cglFETDtth9kMo3IZu53u1pkzd47ueR9LX6IhEzGzkmRmfW0tTRIASF1iAY/m8/l0utJpr6+umzQ7mpb33ro5mc9ORuO1lf5Gr5urrvd6Weacs8oWIe11CwZ8vHe0c3AobLJ2D8gcH58U3U6WJuvrGw715PBwZ/f+bD4HAM8xT92HXvpw6tLH+3uff+Wrabc7n1QHw8ml7X67K8NpTLKMkas4n5bB+aLXHRwd71fVaOvq83fG5WQ+j8wr/bWDw6NyXhWDdSshSsh73ayqR/sj3LBFJz8Zj/aHo3MXr25cfurh4bjVenlczVRO1RKIqsigptkJoapAjNEQEUKMwRq7hBrCNz4MGVw+bREROYqx1pJpaLOElCXZopoH77MsZ5XIaqxVViI1ZIQZQIoif/zo0f7egXOJagWIogxoQojWOkpcmqdQT965ebP81m+jLIcQGqaCteSDNjA+g8uut8G8NfmXorKcmuqpPfhUGqSKLCocVCgqRInWJgrofSRDhsCz1EFane0iG6NNAJgxdqE/r+ef/exnRcSiQZCGH0CIgAYAGtE1IrKKqIpq4wOPMTpjjTWi0ZcLq2ANFnk+n89++Vc+/dWvfO3aE08989T1tZW1PMmKLKMsr2JUVIUYYijnvg7VbDibTKa7hyf3Hj28/XhnUVdJkYPRZnkH0PAql+4nRAWk5emlEiM0ERHNdEC48e8xICZJWpZ1XfskSeEUD9jUNHC6XnnPZGQMAZgmYUJFmmKPiESVY2TExBogUhExoNYICDeedGuQiEAtEYF+5Uuf/wO/9z/rdAoETY0jZedMXYckc51u1yXpR77lk5/+1Z9mgLRdnL968cY7t2aLSStPXvn6naeufryKzADXrz8z6PdOhtMkK4AUgVQUQYmUWd/7OP2dAAIJCAqq4tJurNpEPwAAAohIp9t99OjR//L3/8Ff+qE/f/3JK5/+9c/9m1/62dzmTZJWmrWDVABQe1wIExGRSawjCwownZW+hiTtONdpdVdTl/gQ89yEyNZI0W8Px9MQokttXZfsY6iCZxS1AOCcq73XAlUdYCZqhyfTi1vbSgFYSZHUISUIDtRSU9MDizYCdkREQ80W2DZ6IGussHz607/yxutvpUlLxSDauh43RESJ3GSmqTaAAwIFFhFdsrXa7Y4qxBgaeAQBCjWcDAFFVQxRWLXf7oxHE5sn3U5rfHLYUrj35S/HG29860c+9KFnrn7mZ/7txXNX07wt1eLoeO+Q/aWLl4JiXfkmOtAYY4wRZkTnvY8hhhjRWBA1xjCyIiIaFC3nFSWulRdp6qrFbDKdJtYYBrLu6GSyu3vkXArEncwNukWK3Ol1V9rdzKYhyOF4VM6OFMnWcXLvthsft4ui22k/f+nM6sr6mzfeerS7dzyazmtfhzrOa1bsDNZUDQvv7x4kLo0gESMY7LfzBBJSrz4GRJ8EVUzT9ORkKCK7e/s+yNUrlxeL+bntCw/vP3r0cOfslcshRmecta4u58dHR3t37sS4XAkliWs+6XbavX6v28qKouWsA4Bzm4Nf+NN/6FP/6Cf/+c54+ZpsWS39/d/5zX/2F3/jR+8f/Kcf/CO/8Gf+2Kf+4Y/9tS++DgD/7fufMTEaVgBgQEAzm82rsm51On42z1sDRHN8eIKik9F4e+tc6lJmHg6Hh4cnwcf+oJdl2eOdnTTNNjY233jjjX6/v7q6+mhnD5jXBr3A+sxzz68O+r/wsz8rCmVVNfmQs/k8TfKyXiizTyyqJGmSZq7B29/8J/+dtYkFh5Q2wdoHP/FPhAC00b8Bh3j0E/8bIqqyAbUIrPLwn/2D2eR4Mj5aLCY+xtf//B9J8sHK+tagvzIfDx/cfae/udEHe/vuDgCgSF3XCmiM9T60spYGUQmPTx5evXL5pQ99aGvzbOUDR8zSBMmgNtYZAARDFI1ZWd1o9To7+3v5YI3m0wpt7UtVJjodey9LVSFDdawePH6wME7QJupIjNglEwdVFFFISciRcZZA2TlThWIxL2/fvjebjVb6fbJmNJlEjofT49H+RGqpzwU/n0vgXqddtIterwuk9x89vHf/LprM++G8XKgIC5dlZa0xiKaufMKpD9FzSBQnw+l0vOiutGOIzMG5ZBZCYqGqQu7yc+c3VPRkNJzOpleuXLz35t3pfJwYrH1lTOIM9nvd1ZWBNQYARGJdxfl0utLrrHZ6HOt33rm9dzSZ+7C2ttFO/Nm1rY1B/+Dhg+lk2srWI6PUoW3TrNXtp7Z3PNndHy7KRTWeJEUxmcyHw3Fdl+1WvrW+ur62WrQ6zZOlWQ/de3h3UdePDg7YGDQmyQya5GA46/fbMBlGlizPQzk7GC7SdrfIW6v99uOjwyzJz529cjCezsuyk3c6rd50UgqQSwqW4IO2im6nP0hb3cVktncydFl76/ylcVU/2jkcjWapzUMdDRlEgwSICIKKpBqW3FhmQ4RkONQNL685TxoBjbAQIBI1ZyQRNYcOYaODWaIIDRmW2Gz2G5kyQ1QFjrEZzKRpsphN7t6+kySZ4iywKAGLkDF19GCwaLULv3i083j/4ODc5SsQBYES54wxIjUTN18REZaZR4AcWVUJEQyIim02BUiIp34ZVUFkFVAVVo4xSdIQOTBbkiwtFuX853/uF77jk79DQi2BKTGROGvln3v5N1595bW1tdUo0aFRZQVslJuN7RqX3GQFAuccIjIrEAmqqhrAzLkQQqw8ofGBu63uvK5e/trXvvT1V9pF0R900+bBXrRCjCGGuq59XQUfyvkixlj7iC4JAGwsGhSpScEYo4La6L+XEy4FBQWNQTg2oxZc6l5Oo2GNbTBImKZJo3VtyA6N+rX5nGgZpdn8hkW04euc+tubMk8IMcRIiA0SSoG0Kb8AWQUBRSKpOJf44Dvd9p27t1977ZVv+cTHOaKKkIHEucWi7PTyfn8QwvzrX31DNGHlpEh+80tfytqZIKtp3b67v384b3eKOpbrG+vnzp05ObmFmIc6IMlpnbb0fTf64OZHWKKAFBSBGvZwI4Zv8OIhKiKAERHnkrKsRMHaTIVIrUY11ESE2nJWAkAd4oIlsWIJbWqAyHOMIbgkrerqaDhKstxZO5tNZ7MZGtPu9GySpYXu7e9nRZI448sKGCImjYDO2iQGMkmiSiwAYCfj0oBVtIAaVUDRgAFFYVDVJnxZ9Rt8Lo6BjFGIjUfBEO4fHL3z9k1EG5klqnWmrkKzbmooX00NtFy2AuoSkm6ITIyRmVXULC8qgjTQUQBRFokxMItLkjRNGHSxmAFqqKq7t28TJcj09Ze/1sL04urWaDg9efD46P7j1ScuJUrlYuGsafZutJwssohUZdXMflCVVZ11aZ4rQx1jZA4xkIhFSttZMcjTtDg6OQFwvoqPd49EtHCGJHad3Wxlm/1ivVV0MqdRTiYTjISbrVqhSNLcmm4CFBd5LXxSC/H7rmxd3OyPprPbDx4/3tmbLqq5JEcnJ2menl0fvPjckzw/Ej8TNGqLncPxdFYnloQIjZkt5sbZZ973TKvbsUfDTqf/5a98ZTAY9Lu9w6OjJM9qDrNFubq2oQCjk5PFdDI+2Bvt7fvZYjm5OR3hbG6u9/t9Sw40CkOSJO08dRurv/rn/vDx8ckf/Je/BAAf/9CLP/8n/5BLsw9+8PnmX127/sRTf/5/AIBf+L9//6f+wb/4f716449vbzRzwKCCxnjvj09G3cGgKbKrshxPJog4GY6ij/3+IAY/n8+n00ljZWCRVlFsnzu3u7u7v7//7LPP+Nq3Om2uw6Iqi273ZDgiMme2t8eTWR2CAofILDEEIZMIsw1GRbtZmiWpNrZoVVQFo4iqzVyYEAHpNFvQkAWFuiotCQKPx8dH+6OTo/Hh8KCsZoC6ur7Z7a1srm95H3/6P/z04dFentpr166c2zq3KL8Ab9wyKtWiNGnCQIXLYuXzLBWNAcm45Hg03t3da7fPFEW+mFeJs0DQeAtQSa01am1RXLh8pbM2gDSxiTVo6lgnmcXGwIOKyyk2CPDx6PCdd2+MRYEyjWTUiKHGYYGiiKi2iZsPxlDTbBFY7xnUbayf6/dXFWh1JczmixA0y/I0zYejOjOpAh2czGaLMBzP7z+8+87NdxblZHPrzOrGubKsZ9NJmqZZntvG/dG0/SIqjIacD9Xe7uHGmZXEOotAKIqurLyyGkyuPX39wb0Hj/Z2x9VoY2XQy9ODxX6r1YFQJ9Y6685sbqyurqRpBgCWDEJYX10RhpRwb2dvMZ2cGax0ugNW2Rr0SIAX87VBPzVU5EXgyAB5kds0RYjd1ZXuoD9beGHJrFvt9efz2dkzmyB8852b0/FkY6MfQwCAQb8zrsq9ncecOdvJo2AUscallsp6OsCk2+ns7S0Sl2btrhdTeuomsL3R39t7sPvo8bVrH7z96Dcm0+m5jfP9Xn8xnQRWdSawR0PD0XRRBXCpx3nSand6nYAmzYt3bt6azStMkwStaZZZ2GDwAAlISbBZIS1vUADgyKc7peUfNiHwTff5nvRy6cF5T54paq2RIDGyNY6MaY4cQ4ZDJCIV5shJkrz99ttnW60ekagSOeWA1rFImmY5YFbOxpPR4/3d7UuXVViVrTVLODUs13K8jHjH5jwmY4gITwt4UXmP+aKnmZ2AIKAKoqBkTWA1xhg0UaIl94UvfOmLX/r8s9euz6YLsugxmoX99//m37kkITQcl/spBRFD2MjDpXGgNWELmiSJsiiraVpnFkABkE7R4qBZ1lZxKthqt6AtVVWP68V4bwrCIWqtRk5xdmTREKlKkiRk3fKLKACKCIooEfF7Ji1dXhBCI0qqIqfYqtPqAI0xqmCNiQKq2shvY4xJkjQZsdY6VRABa+1vdZI3YnPEJrW1OQ6RyOipED1GbhAUy4sB2gQIgoKoRg5IhEhVVX7pS1/8bd/8URVBtIBYew9ALk1Go2FVsa08qlU1DDEpbNRKDd+69aCTlY93xk881ZmX0063d+nihVdee5tQrTEiDahxmRGxzHeT07UdYlOtqhDiEpEMiGhQEa2zvKzlZDJffPjSB09G03/1U//u7v1H3bwPJnE2A6SyZi8KANOqbGVUV95AkOBNmnpmNFh0i+q4Ojg68T6kWcKR2+0ib+XW2RhFlJK8mC9mMTFGoPasKc5qDwC191nWisJIGMQnlhZl2Th6GrcMqhACgrII4vKiqypIM+ASBTXWqQjH4GwCyifDk+OTUZq0iBSE5rM6TXNhjbHRbtnGgyyn4HRjDDYU08hE1Igx0ACrBo4gmjgDgIAEiCEyCzdo9VpKqXw7MW999c37hwdu62y2ce7+3TuJ7XTaKxLdo4e7z6ldydq08IkqWtRajDFNoYpIzFpWJRA1DxFFjcIaVYQEUBFdkmgMVTmfICapa3f7NcO8qm7fv19XoZW7uppur/UvbPQ3u+laYXOo8linSWpamCZJpzuoRFaKXjfP8jSNdW0Qva/nhw+KTnet21sp+g58y/iD4fTBCR/Ma6YajP3kJz+6kZ9J4wSFpjH/97/0lddujgRzrwZ87A56T1+/+Ghnt7+6qYCdbjvPsrduvP3bftu37M8OkjS1zh0fHT/xxJMmc9PpTCofZqVFqlhOh+inq6tuxyYpgjHNnFYlcnj+f/hHAPD1//4Hm9ecP7f1Tf/Tj3zlr/4ZY5dzIzkVF69trjefgNWq9AAQgiiZwHJ8fHzp0qU8LwBhsVgAszNGQphMxoNO19kcAJx1tTHMcTGfr6yslGX5hS984fnnn+90usfDoUvyJEtDzdP5vFQ5PtgzLs1bRRhNkChN88hc1jWwiogtAR0NOj1hjt4DgEoksUQKyyxBadboTQAiAnjvnTGJNcrh8GD31rtvH+0d1SWXwRfdbt7urK5t9wcrl69cbV++8vbbN37xF37+T/3pP/HSN30wThef+OaPw6c/jzEkmQ2RRaWMpVMgo7PF1LaTB7uPRov9Z559ajabRW867RUkCCE0yQYND5SME+Dzl69+82//1s9/5Wt5O6sDJ6l1iWuOOwBgUBBFREPEdVVVC3Vp0+4FDgymyXoiAVaRoIoaOBACiihrrzPo9VeLrN/rrhqbcNS0cKnzIYS8KKyx0ceoQNaB2lpkfDLd2TtOkmxjc73VSglnvZY4kiSJ/b6xBtVak2SFeEEggxh86LXavXYfwRKQAe228pPHi8prK8/rUA8X0xLleDpMDLdVLrTbleyY8bjdKii1qcNOr9Vq5Y0AyzmXZ6hFupguOIRup/P+Z3upbRHZynvjLIDGWINyYhDQR/UKWFXzAtqtbqc9W2R53uu2DSXW2DObG6I6mYxC9BfOnwFVY5ZW3e2traMbt9Y31g7qea0cjQWlKIiRDCbTaTnodia5r6pZ0mvZrBUjpIXpJslKKz/afZw89+E8Tw/295574pnMJZwkdeRIFAAcYpYXYziZ1VVr0KciITJRdDyb3XjnHeucLo3NDKqoKoCRlQTwNL21oRw207/IEQjJNPx9YGFL1tKSwi7vubN0iXFAUUMooIDGWgghEhmrxDE2TblaarDCLNEm5vj4CCezbn9NySAQoIkgxjl1lti2W62T46P79++/+NIHl1pjo8biEmrYBIc2h8BvgcIBABJIZAEUVaPKuiQkgiqqKABLRDAN3AnRhOgFQBfSbWdVXS4W9eaZSysrMwYm427cffPrX/t62nIETarwkrqLCmRQwERhRDVoiEg5KosBVCRRzZI8y3OLihKddWmnNV+EfjcDsMygIDYxKRKSALBjLSBhRUaOzCysqkDohSWwMZYaoTIwITb6dBEhMghWlREVkQCR1DYKJGVBMM0Ej4gADALEKNoEooEhst5Ha80pT3nZ7ccYm079NAgFhBWEwZAxSGriqePcJEkMIXI0S7+oIqJdzoS0STARRGtsZHZp9sabNx7t7G6fOUeUcgyA5JKUo293UsLDJ69s3bo/vLV/74MvPX14ePLg8Th13UsXnp0NH+88rgInqbKz7UuXLhMpqjqbsJBqBBTV2BQ9esrtbEDVzYNsORlrVmPKwgBoRJQDp0WigCoao/zKr/zKr37msxsbW5asKlpjjE2FpKpSqKazqqxtWmoQqTL2JL6svc3zJCk6vUHe6iY2RQRh7rQLspZZQ9S9vQNANkQhCFhj0jQaO5qOAMAYR9YxMKEiMqAsykWzQhWJiiIQQWvRgOKRCCIJyWmqGjTtCkcBEBCIXtXE6JnIWpvMZ5WvOc9b5WKRpCk2mHIlJELDhERI3ntCI6reh/dsZaICDIqaOIcA0qykgFQhhBhjVNQq1i41CpGUX/7cr+/s7Z/d2v7ll1/u5IW0i1cf3BPF9fMXJHcMSg2qNMZm0AgKzNzcEnXttUHCEBowEgUQaw5JkgEoABtjQx2qeh45LUNkgEePdhbzMk0zYL85aK+0k0HhVlvO1PNWK0mIneVeO8kpb4VQBtlcGXSznH0QBwiCHTufl6QB67kCDTJHG6tS+7piguQ4zG/du/9T/+k/fO/v/EAXypQc2MKSiz6gmFa75RF7vcGlS1c+94UvKNqVlfX5YtHu9cej0fHJ0dr65tHRwdrGehRl1cxl66urxlf7d8pQe2ZtZsb/5M1bAPDpH/rPe90+C770V/4eALz5N/5SYFFjXvnrf+6Fv/z3Xvwf/ykAvPE//UWXFQDwwb/yD5t33I3/918GhNv/+H+8+qf++w/+dz8MAP/9x59vQLEAoEQSWUWm40ld10mrH9UEH4SFWVb7q1zzwWJ/a+uMiNS+ds4R2sVicfHixa+/8oqIXLx48fj42KZp1m4f7u2eHOxfPn+uVRStVudgdz9N8yQpBShJYT4cAWKUSEQs7KM4Z8tFWc0rAABmISZV4YhAFlCBdMmlRQAiQO9rECbk4fB4Mhl1u3ntoq1TtdlkKvcfHD7ePXr08MEHP/TC+krx3X/gd3zzxz+6CMwAW+vrALDZ7R1MZ4KEaYqIxpjRcJi3syRLRov53mLxzjs311bOuX6hpCEEBVQBAmCOiApkYqQ8z1/62Ef35rPxos4TYyyaprZoolLQiEpDQwt1rYHFCPtoMWkywq11hctTmwBgBIgo83LBdUWWuoPemc3tdt4XJhTLTKooYADIJaYqZ6LQ7D0hCiFGjiaxV65erhZThYgoEX1nMGhLbz6bT8uFzbKMAAyYOsQU1FmHKutrm4PeavSSGJckJkss1HVYcJK1lPBgdHw8Gz6Rnru6sbph6f2/7/fXn/AP7t/bn06+dut2HRaEWnvfAGoVMSvSUiVxNoTY7rYMNuZPStqF98EYY43TGALXpV8YY1yWeD+fT0amlVmLee5SZ5w1yizVoijy9vrKdDEtMut9KcEnRQoAZ1ZX7lk3PTzQIoHMAoJGFrS1cJG4qgzQhcFKa2fvqKxc0uoKowZ/6fL2/t7+l7529+ho5+lrT+4+2GXxaeqUsxhD0EiGCLHIc5e6g+PDLEsamnPe7T94cP/4+NiYlkEDjWiUBEgbbxQsFzXfEAs3F19YxDCdpg0AYMMyhVOpbDP9kVO1PwAANnc6AFnVICJNtrIhCiEggChboMZdZq2blaWu2gbrS9YxqBgbWIAoSVMFuPXu7boqbUa8PMreq2Zg+Txdlm3KHJfjqN/Kg1kOfppJhghDgx4AVZHIUVkFCZv4z7quR9PhaDRuHNRIkNn8F3/xF8fT8XZvi6gRQyirNrobBkVnowoqOWeYPQAii3MOAV2arQ76WZqH4AlkOivv3H9UVqxg5vPKGEcG09QScaudpXkWQxV95ZJUASyhAgZma0zwoemby6omQmts5SPqMvGqOQ7fu0AIDW++scTb0x02LKtDBGZG25jDwVonwogmSRLVumF8E5nTLVijgF4CkxvEwOkXbfQ12GRihOADR1rKp5HIoPAplhCQTGQlMmnefriz9/VXX7946YlqUTtrlEiEXJImDh3KzoP7FHS11Z2djMaHRx/5wIdu3zoYH9XArTu3T6rSWoNmtbW9fbFIM4ks6BXUvCcTPb0TlnzqU0xO8602q9AlE1oiCzeRcDFGkyUmcW/ffOeDL77/+Refy5JsMp1WpTeQRq5YIpABgPGiXmvl6BUZWbwRjQqLySKNJk1zRKhrKfKWQrx7Z+/45AQQInO33zFWe508c6kE9oIVwKODAwCwLlERBRGIQhKjlLVnQGadjReLqhzPZ3mnJcoGVISNdbBUtTUQLmKW5VSSSFVihDzLlWk+r5zLvK+Em3c4iTRjg8atiQoEKjGyCJAlREySRJqwXGOalZkIgwKdRougQAw+hEhExlBZznudYjI8PNrd+dgLz7XS1hfu310/u7Gy0X33nVsXLl4VCcPxyXb29GJW5jZ11s1ZrbWIpBoBtKqryXRqjV0OiQEaeuopwzpo9OTIWAwcyWZozP2HD4+GR/PJ0fJi78P/Xz5uH8PPvN18+ov/x9/4lm89/4GPyN1b73zuc5/xJjHWBVZr3JtvvLV1Znz27LYhU1XV8clw9Yl1JPIhkEmrRdnO8rX+AKYTBzD3IUYFgO/ePvPU5e33X79wZrXNMUaQr/21/0eSpCLiEgdgIIY3/uZfFBbvOU1zl9obf+OHCMGL4pI9hsJ66x/9tel4aqx7/n3P7+7umeWwNgqhRarm8+Hx8WrWtc6EGEIIKnF1dc2lyZ3bDwCoKHIiWiwWALi6ujYeT1599dWPfvSj1tokSYaTya37DyfD4Xq/l+ZFjPHx7t7O3v7w5DixFhGD9w0H1ZoG0dmAcSnEGCIDgIqAsqo0TSOAsI+hwXMCGpcCoCi0W61HD+/eunNva2Nzc3Xl8YPHOg2TCoFSRbey0p+cPL538/U84bNbg3IxKQM6u4zAu3ru7M6Xvtxf36yNmc3n4LLV1dX19cG0ngzno92D3boMs/l0e/tyjIFFrbMoS8cALtcF1oNfPXPmo5/4xGc+9+t5mlmLzpllf6G0zPMGEyPXdQSylhJIEitZRDXW5FmrlRe5zVTRc4goIfrhLCTOJVlWc5wdHwSvzmUABgjTNBWJ3k/qah5ZgIwKGGPTxKXOOIPBzyIvWkWmCijJZFKOxuPJeCLCtpzNi7xABYNojFXU1LmL588hmMWs7nYzi5QgOiK0xDEUrXy6mN248ebTm+tPPH0Nd3fC4dGFjQsXX3yucrY2+pVXvmJJRTkKAQALoEHnHCpaRUVF68DYZmBWdFKNMdZejRCZhJSQGlcSx6A1WdJBrz06OCSIaeacFQ0lKrVTa1AsRlVIXAoA3TT/+PPv117xi69/OUETQckYbWDwYgTjfFZ1OqZIMUQNdTTdDNm3XHrtqWtf+fqtV1/90oe++VucxYODnYvnzks9r30ZYmqJgMWAWktZkZJtjDAs0T98+JAlphnGqjbkwBpAiZHBkGv2HSAApunGRISMaaItvPfWuUYb66wlRIO0DJs8daC8xx9spFTNDUbNyEdkOWZvTmJUAiOiII0Z20TWmQ9Fmi1bzSQpQ2Qk6xLjTa/b29k7GI/GG1urTf3TqG3QEEdpsjZUgRArHwjRECpCCMEYw40mFuA0IAOYJS7ZPyQSyVgAjJFjZKMqSGlRLEajz//m53/Xd/7O0XRcdNqv7rz2K5/9zObWlktc8MGQWiJlRmsRsfZeQRjEIcRYJ8aoAtcVAJ5ZWT9/7pwhfPhgZzgcorEnJ5PJpJ7Oq/m8Xszqwcpqkjpfsmg9HS/ObKwWSRGwMkBZlswWM0fUKDUMgKp6DmQRiWIMREiIKoCIzEzUGNl4ORJgZVZRtac2veWvQpt1ZxMHDkRorRFxTSXTzJMQkTk02uoYI57qAJslmiKyMAI2F1pPFd8sNoTgjHE2iTGgMBrSxilIKIJgja/qvMh8kC99+ZVv/7ZvTxILRq1zRCmztLMksxLns3aatVbPHR3cN97cfesmQAGRNMJ84utSe+28XITNjTNra+uPHh3k7S6zMAdc7hQaPBohGlU+DbRXYwwaihIRFBStsaDKLKiNkh1VtciLvYODFz/00ic/8eF7d+/s7Ny7fedhr+hFHzlEYxwAHA3Lje7A2rwGoRA1BjXu4OhIdBQicgT2nNgkccl8PlfEwUqn26JLly+QUV/NQ1XFCJHMwXB6dDIBACSrKo1kHwGdyxc+PtobS7lo5Wl3tXfhyeurG5d6axdtlkcRawyhNWYpb0JEVWguhSgTNaHMLTK2rjhxhtBFFiQjrMxiDDELEVibcGRDJk2zEDwANGZDVUFU5kCAZBrZuy6XAYrW2trX3tfB18YABkgTc//xI14snl5brY+P+nH63MUNTdPd11/9xNNPjViHjx/68IIaVUsgGKqYFomINDKGEMJ8vohRmEWFUVABo8Qsc2VVi4Y0peA9C7BiHWNd+b3Dg2Y9/x1nz57vZhdWWp0iTRPMnHbaqWpAhCRJkyy3NnMuI+NskjDH6OsYfF2WyuyMZZEYRMmKwKKqfNB5Wb/z6GBnrmOB2le/99s/8X2/93dd+N4/Oth4X/dM1up188z86md/PgCGyIi0urq+s/vmrVvvdjtd58ze/kGRt1dX1tbWN9qt9nA0mU1nvU63ljibjqMvY/RymkUYg8cGO4dKhBxrNeSsYw6A0ASYCKsC+BCcIVKtfS2EUcNkOreJS7PMOefQGqD3Xbseffj0Z34NAFQ8qptPRzHUw/39YrDe6/RDCKCaWJs4C4BV5Y+ODs+c2Wrm9mma9rqDL37xZWPM2bNnjTHHx8evvPF6EOy0WmmaIOIXXv6CXbabGGKT/AghBEuGyKAhABHAeVkzUFl7AAiekwQJqWYux4vpeBKDbxWtXrvnkgxEbeKSLAPgl7/yVQOwtX1hPh6eu3Ahm9Qn7z5CIufM2TOb6z0jYZwmVHsWqaxJUIlBAeCFZ67feONNQljp906yVKPaNBHVar6YjUYvPPtcKy8G/b415GtvbAaCrAoqYLHpf5EsWAdpeu7ixY1bZ46GwzRNEKGRcxKahvwCqmrsIrCSJZd2V9cNu7qOXiQtMjKuDjEEDqgmUSAhi0LxYLj/6GAneEZ0edE2LgkxGEfMQcJMuEK0DFj5CEqJdUWW5GlazSaoPptajqwBRSmGGLwHVFvN56u9QZG3Jzs7LnMM8vTlJ1ZXV1+7+aaHxcc+9hIBscaokckmzgnHh3cfG5FwPHGjUvaH4WiovbWs1VIbz270cosG1Vq7mC2g2eSIEpJLHaIVUbDWJomcxmALgCKDTQg0IqmgNVmeFI5cDFE55GmyutqbDEfOOuAarTPkrDGYOGtARbO8AICEdavVevL593/91ptvzUaus4pgYmQE5KhetLJ+c2PQ7RQHh7VIjCGAxVhLK2utb6083L3bvbH69JPXJ6MjObNWFClLPVtM+502RFaN7KvxqMpamcYIAr3u4PhoD5SdsWLEWivCp9EewsywzCWn0ygrFREyREQcOYSgqmRME4nAuNx0KKEKaGO1BhARBl0Wzyoqkmd5WZZVVRVFHmO01jYhYs0WDIhUEJNkVlf9TltVGKjZZBhjQ4wgmiTJycnJ/v7h5pl1EbHWOZcsA76aNDZEVGnQosZaJJRTL9B70iVYHuJKRIZIxaoEYVZWEQU1y1gQRBBot9p3795bLOYC4jL3xS99cXfvcX/Q4xhME2JES7m3KARmp6gxCqJNnCP0VRy02lcuXbp87vLe3v4bN27s7eyvb2yxpfnMq5hQsUbz1BPPeB/m83mIXoXbK93ZsCw28o31LUBQR91+72QyCpNxFHVpVtUlINrE1jEKoUGLSMTUIJpUm7EUG5MoI6FhrkEpcDDUUA6bWZ00xSLQ8nNrLXPjvFvuvFTFGNdMC5pGHxFFWEWZlQgMmgaNoABkjDA3KbmK6j07owTIHJxNBSCKkHUqmpBBl4BKkri7d27eu3vvqWtPxBgjx8GgbWna6Yy3z06cI2Hu9bLrzxZHxyd7hweHh2Ftc7suq9H48P697c2Nq+znGyuDIk2JiMiGGBrEswioaNOLnmJxmpUoq4Jwg8EEZQZAS4YNaIDmzmGO1tnIMp+XvZWVc95vrK++e+cuUyzDAsk1I6ZpWe8NR53trUp95ijP0nlZrW9uTqbl0YPdtZUN18rYhyJrddpdBkmzdOtMN3IQERWo6qhiZl5uP96tBADAoDEuIYQQlAM668jkl6++eOHM5vrqSqtTpHkCVETIZWnUaxCXy37j1PInok1iXkCAu/fuz6eLJGuJqLWurr21GCJrI6VelsjS6OJUNcaIKimlItEsQfCNy1IbQV0MzXEjiKBR6qp2STIeD2OIyPz4/v12kty7e9vPZurs3bt3FckJlMPRInCr33NBVSHW3iRN7U0i2mxoq6oKwSepAwBhJTLLfVwIIsHYpZyPRZGo9PW9hzuIYMkCwC8/ftz8Ev7+p15yhqwz6GxDnbBFC8hZl33b3/7J5jWf/6t/Coz59h/+yd865fn3f+xTyvAH/8XPN//5v/6e37a21hvB4mQ4B8Avfu21T3z0YxcATuYVZbAY1SZPbZExZApwdHB8ZuvM3Xv3jw5P7t67//73v5Al+e7j3U6nc/78+TzPDg4Ogq+n06nXOBkPY13VwZcRAaCqajJYFAUhFKklpLoKHCqOXlWts3W10CZzW8lLVUZGUQWcLsqDk2ObpO1uZz3LBDCogIJ19OJLLw0nM3jwcxBrY/S7PvU7br3z1v7+3tmr1whOM4GROKrLSFWrqvY+xCiq2O12j44O33rrrQ988KXV1bXDw+Pf/M3PBZWnrz93fHw4WFl5+523h8Phk1eu7O7s9Pr9Is8fP348mY2TJM3zXFiyolVWpXAoQ6iD1D4CgAqWc18NZ3cfPh6NpsBKiBZMu9MJMW5sbXcGq/cePnjr5tuvvfK1P/B7fw8zAbjRpER0g0EnbXXPnzvb6SSQdstJ3Hl0b3Vj3aEQSmBGSwBw7tzWB59/9saduxgq8P54NI7R91fadV2maLc3t9bXN9ZWVmL0SdbiIDEomUb+GhsxKACgSULwJsufvn69evVVFXHWNFR7RaHTI0RAFiFEBDA4nk6MWBWqgq9DTWiAlZkZyKGyry2rRo1YgZIzaK3hWC0W48hBCADEQTAKQAJoraIIh1pKkViFalFC8D5xZChNMuMspc5JpqqWfVg/t/r0k09uttcW49l4MW11srKcT8bj48nx8dFJnuTW2hpYlTtZOj4e+tni/NZ2gTapY27ScxcuecIsT6eLccdSxxLUPpZVliYAEEM0YFHVoiEHAgBK6FmjNKpDELaCgmitDRxjlE47y7IWIaHWs1mZWLcyGCwmU2VGFQ5SSyBj0ZCz1lrbLIsKa/zRSEejzU7rzeFjTfNEWgA2iigYMVRHjoG31tcO9x8t5vPYzbK0nxfdk/HIttIi+Hdvv9Nvd7/jW74tS2xvZSVpZXfu3bl188blja3c2V7RihhFoopfTMvh4cF8PEqtkRjzvBDPoHL6+AQARTQI1OCAl1oZRABw1rFIjJEawLEILovBU7E0LGnGpwsYVGhW+gqgBGCIfGTmb7Tj76mGREGJ1JphtVgTccaAIQYQAmeJlFAwSzIEeHT/4fueuwZAhBaR3uuQAAWpEZkYQgJVYVlqgpoVnkhkbn6w028KhFlVog+qpFElNjN/kSi+9hKlVRQrq4MkzxXh9t1b48loda2HQETaWP2bX4UCxhht4MwYqatOt0MKTz198YnLl4skv/H6jTdff2sxX1zYPre6ceb2g71qUU+nZa+3tvnEdpJkb7/19my26HQK64pPfOyTi8U0xMXFi2fKut4/2WflXndgbbqoqsViJqI2dXUMrGKs5bI2RIANgFEVhLk5HUEBAShGMWQbhPeSBIgoItZaAGCQZnq0jHMPPtiwTA4RJUJjLGKTJwKNNQxQQUR1OVMS1W8s3hQISZAis4+RiJCMgEZmFQG1iTPRlypsjG2nZufhnRtvvvq+Z54yDqcYUf3RwYPZ7M7a6hzhxCYU42xtvfvU9fboJDk65sPD41Bz5ePw5E7RulpWRyv9lXPnzr5760G5WGijSlJGIFhaFkWE36MZAagIiwgYa4hENfiAzhFhjAEADFGInDhCNC+//OXtrTMQPYJDtLNyUceQJUnj7FUyj4ejLE/OrXWUWYPPO21jXavbS5JkMpxyWKRZhsQhVjZJW60UJIYQKLWBufKigvf3DneORrbdBz8CNYk1GiMwOJvP51Ne7b7vxW8+u75eLhYKcVZVLIqkYBRUjEVVOQ1LQgBAQw19G4ge3L9zcjL89c/+hgg0BMs0TReLEgCMabRQ2LTxDS+K49JVoIjGUIzNX6ExRhSa6LwmG6WR1xkkYalrX1dVv9M9HO6XZfnwzt2UqH9m+/7+3iLJe2fPj8YTKVrYbh/ef+inU/HR2QQI67oKMWStAppxAUJVliGEJEkUIAQGAmsUxQCANeQIQQXRuhSDmslwWnqPQBaXWZt/6aPX/8YX3vqzv/DVf/b7P+yMUQU0LslSQeNs9u1/+ycB4Df/mx/4+P/8Ix/7K//4N/7KUlP8uf/m++uq9LUn437/j/00APzr7//d3/svfub/9p9+/W9/58edTjqZm9Z+7/DgN7/2tY8B1EYNxNS63urKvAobZ8912t13b926/uyz22fPjU4muzu7a2ub585u37z57mg0unfv3urqKiEuppN2p5tYnU1HMXpjXAOQKOuylWegXFc8DiH66JxD4wDAWjufjYnAGBMjRy+oUHnvhY5Hk+F4snX+3OrmmiqAc2ANAlJqAkdj4KUPfgD+3c8VBqyj7/zWT85eeuFv/t2/OxsN189fhmYlDsgsDjDGEEKs6+B9UJVWq7Wzs5um6bVr10KIL7/88tHR8bVnnz3Y23n22WettW+9+calCxd8DMZaAFhfX+92O1/7+tcTl1ikVqdFNjk8OgISwX7NElgBYDYrZ9PZ47294+Ekb3VJKQY/PjnhEJIk+8KXvrJzMHri2tWPfPQjwvHkZJRcy6uy8rFuddNnnnmi2+/neRrr8uDocH/n8fbWmfMXL8YYwAKiBeMAICvyc9ubhyeH0bqd3b1qNsuL9PD4yIfw/PPPndk4kzg3m058GPV66y7pWOuk0V6onm4OjABEIGPM+XMXjo4OH+3sGiRCXLordOkjDQKzah4lGOCqnBm2pMjAMZakAIICIEiR1ShaIlZRRGMsEgFAkzBh0zSKVyWrzqJBcsY6MjaKcBRSCDG6NM9avSx1RKRGG1qWD4Ej262NjclwdOfmuyvFYOvM+jqs+HJx89230yxdS9YfPtrbuthzNmn3+9OjGkTDou63uusr67PZghDzvIgxojP7x4eQ0NZKf7PfwRCMQmoTANCoUSMioUNCs3R7l4GiSGRANIbIEIsgUJNpgmhi4FiW6DCzqeeASEVe+Lp2JgEWYWVQa8gYF0V4CdiAnHWz1e5b45i1rixm1qWTKkRVgzqel4eH5umnrq6vzx8enQBuAOaLUinJjkaT7mBteDB54/VXv/u7vuvalSeGw2HRbllr33zt9bv82vufuX7u4vbm2fV5NZ+cHPeLVm5saoxGxlRC9IlLfR2bjUlTsJAQGWoWRcvZOjTVQ1RVFraIzdjDNO6fRmcqyyL6PcnFcmK+5OmBj946C4Te13levKcsWR4nje0BcVbX8xh6aSuCMqGgGc8WFihLEtHCOff40eOqCq5wEENzSCMapabPkNOzAOg9vUszRj7N/9Im/WlJRVSLThE8oVECMCAREQiXSBgWqcuqLBdpkd28e/NLX315sNI1FkMdiQx7D2SISMmKigXMyYaqGrQ7V85uX7l4qZXmuw8ffeXtdxaz6srFS5ubZ8jYz37uN8eTUgNvnzlz5cqTQfDGjbdrX7c7xaXLl8py/vqNN1944fnJiB/t7PnoT8bDeVWySrvTadlMTLBkqhAsWedMXVVk6FR/1fy4y1VXc10iS/TiiJBQZVmkvPfq5o2Np6r2Ju9MWI01iN+4jsvSuKn2mBGQQJeZb7pE8OlpDAXRktdWh5gkSZqkUaMiGGeRmGMgBJeogdKQX++l9999/e3XLz58dPfRw6OHjw9jPNreXmkXIhGRwLrq7rtvDk/a3c5ge3PVwPDweDJYae/uvPG5X43f9MEPFPn6+upqCL7T6dVRYmQEXWrA3xvmLSt7JSJAJaKoDdPIxODVCJ2mM4qIcy5wTPPsxlvvvP3a33rq6lXmqOh8EOOc98EZBwBq7Dws7h7skZPtXrGYTvvGGo6gmreSxLTZx+ADQCzaabtTtNrOWRKRRV1ViwWDDseTx/vHERypbS5cvSh7vQ6KCotLs8rr7sEkL9Z8LcaQS1qANjChqnVWERUFyZyyuZEFAJ0o+Kqaz3xVhulsjpaCSODa2tRaS0TGGGZRaHyRiAhATSdgiShKUHVEpil5T6+7qJBCwxlHACSFKoa6roioLhfW2JODQ4d4dn39P/7CL7nts63VjV/40ld76ytxtfeVo515AhH5pJoN2oPcmHFdcmRY6s2jAVyUZYwRCE2ausSpIkeOwRsyhpqIDBFRVlr4MJlVxmYSa3Nq18jcsoGzhAYtxKbpMqiOYLmLV47LR8JpFOAn/ud/AQC//Ge/W+U9Ks+SNVwArWTFcDYBNZq0X37jbQA49qFjTQbGQvLi+z7YWV2fVn4+n9+9fffM1na31z8+Prn59s33Pfc+xFu+Cgh08+bNQac7nowZTXF2vfJlHcsAFMECgHVZkRdH+wdlbouilbh0Oi2rekwAaZKkiRGJhNBttwSlKisWPBqPdw6PWWHx8OEbt28hQq/fOb99bm11tU3aaXeqskozCwAbvVaWd378f//Rp564evnc2eHJESyBYQCIohBjjMyNDj2EkKapc3axmF+5cmVtbe2VV17Z3d3d2NiYTSZXn3zyiatXv/zFlwGg024f7e+XZdnrdPb3951ziUvSJM2TtJu19o6PZ9NZ1krLqipDrKMAwN7e4cH+fhRdW9s6PB6VZSzS9OyFK4WzZV1p6u7v7n7yWz/5kY9+5KUX3/+rv/wrezu7T115wg/KCOxSF8Ps/uO7w+NjYD67fXZtbV0YlZxFC+hiRACgzGad7Py5rW5/bf/waF4uMmdY43Mvvfi+p6/uHx8+uPdAVQHppRcHBBAjI6GKKDAsnbOoQmgT5Witu3jh0vB4jAqIBlEVCEAAABVCXWnwxBF8jZ6tkAG0tIxPQIFGVu1PUSBgBJHIogKwMpERhy4xpA0zNkMkAWQAMsosUaIxBlILoguOQTWxqZIyC4NGRCa0a4O11954Zzadhmn98EF56cqFS2e2d/xjX8dOp1vXJZHrdLo+7DvjjGD09dblCybLy2oajC36/aODA/Z+Y3vznVtvvfnGGx9/6YNpmhUuE88AIKF51HtUJEtIyiKMDEa0UdmToKHUuSAcYi0CVblARQDSoOSoXviqDGnR8t6zgkGzVF0AxSBBYmhAc94P8tyFsNnvtlIqgY1wYzUNGhmIBUZTX5bh7Ln1ewf7w8l8knqX927e+FIZpWNcu90aHY7+6Y/8k7/+//yrraJYVOWg33/qySdP7txfjKfEOjo+zjvZg7v3vvi5z//OT/3uBChWdbFe1AuOkZGsNieXIgASEjd7T1gaaRq7TKNuVjmtihAB3zPTiDTnJTXkGANLAAsKMwIQogqjMdZajhxjbP6suZ8AVEQwdYCgrAtf9TodJFTQqAKERBYFLZluu390dDwZTTbaawhgrANd+vBRqVGlgLAwN0/uJsEOlrKVJce68QwDAAARWW2M8EDCIqygYgxYR85Y9XRycrKz82gO8y989QtVtej1OsxBUXwdDQIKIgKzemEOoarnZ9bWX/rACyv9QTUe39t5a/fRXpblH/3IR1pF9+jk5Ktfe6Usy5V+X4nOX7gcJL777s2j4yOXJEU3C1yzxsPj4W/85m9cvXxhPp/4UE9nc5OY1LlqOE9Tl6J1SoRUC8c6GkEkc7rDaIi94hwCuOYKBh9YmEBIEJttUHPpmt8VvEc2ABX9xhinWYFaoyox+kZ23cztYoyJddba2MSdGtsE6C4He4CkgBbR4Nx7jhEsqYhBIAQiTRyWsymSrK31zq6tnz+zvr7R/+Lnf3k0PjHYlWrRauHo+HErbWd5Hryy8kp/MJmMqtFslh3ZrEjtYjKehdL8/N0H+zsPvvd7/suzZ8+kman9IqiqokPb7Lzey2Bl5uXN1mxKQQE4slpEEWHmZZItaGRO0jSG2rlUFNpFazqeLMqpy+yca2GLHnuuCwAhGqFiUvt7u0MKca2TTxd1lroiccZRigQpJ9ZlWZ532mRc8N6AaqTj+WI8nhDYwBrAmCz3jVwJkBBFAksIAa1N6sijycILRkwUWSQQGrJkEI1BbYo8NYigAoTILGmSBg7N9GO+KEejaQjRGDXGEpmiaM3ns8Z2Lsi89Ngv386Rg4KEEJMkWmc4NnPBJWi00Vq7RpCPZC2B976qVMQHn1j7cHf33Jkz586lt2/fvn7h/PmtzZ//uZ9db2Xnt8///M/+4rknns4uX1ZQMTiryyoGmyZN3cwxGkt15YUlyTJrLYsyKyI45wARY1OtKYJhhumsXNSxriMBOLcsblyyLIBMk2HGYMhSNGmRguqv/NAf+fYf/pff/Ld+rHkNnRojfu0vfN+3/J2f+I6//29/4c9890//wO/7rh/5D7/vR/8tAPz4934KkdZ6g9uPjhwYm+ej4RgAOv1uKzGpy6gz+MAHP3pv59Fodz9L84P9g3bR2VzfHI+mVVXt7uw+9dRTN27cOHv2bIyRQw2qDx486GcoEgEhcKgZAKA76LXaLdQyz1ud1S0WmvmTWV3vH+wj8IXtM+1WlhoCMK126oy9/3D3YP+Io4KxD+4+oMReuXz5cO/AL0qjWriz6mNiqLHGb60OvvXbfkc1G3/p5Zch+hA5eu+safAHRFT7GGqf5Uu+cL/ft9YB4NWrV6uqunPnTlMuP3H16vXr13cfPXxw79657XPPXLv+xeHJ/v5+4tzh/h4AWGsrX/XbHWAeHZ8gApIdT6dHx0O6fB4Ajg6Pi7y9dfbszVt3fZDVzXPsgzGpcdbPZ2vr62fPbbfardF4hMzf9q2ffOVLX379ta+t9PuLqpzOJ4FDp11srq+trAyKPPV1rCVaymI01mVRPQCIo3NXL7RaWTmtv/WjH/7C628uANCaMtT3dh6trKxcuXw5cJjPpyxsyQQWwKam0cayKoKK1ro88lxF11dWt7fOJM6ByikKpslVIorxbL/39PntEih6ThUhSlRmFGYWliDqAZsdfOQIDaAfIguLAMdaVU0kxagiBALLp7ECIQsnKsbaRq1FZETVzwWWYX9qAZDZ9vt9RNrc2sBaT478yvrg4pWLlujde492Hu8w+NUz3aJf5GmCki1O5r0iK1qdpN+58cbrr9+/e/mZ64td7hTtal7devOdlaJ9cfvceDbnUFuXAIAzBhpVACiIsECUGAw7a5ar98Z9bLWclwqSZKn3Zah8lrXQ2FDX3stssijLWSvPQRgEQZvoUKsIolSWcwBo5fmGS+eTaZFmRZp6RYisEpyziswhuixfzMrD/ZPtyxtJYhaLarIIj4+Gx/O5GDevQpFl3UH33Xff/f/8y3/+A3/iB+ejUV37Z595dtruP7x9q9fvPTzcPTo5eN/1pzLAS5cufPHVt9MkCxUjWm1iQZVQSYGEmeC9rdepsrXR2QIhqHhmkUbuaskoNrfOclpAKssao1mNIREZVQaFNE2qEIisc2nt6zzLpYl9bqC8hqKIsjhjpmW1IuySFJqmD1SEU2OdtQZxNBpNxpP1s2uI1plElzpBNUSEVkFZUFissyAsp/zyptBq1naICKIiIhyREEA5iqGloZiMIVJEQsFQx6eefnprayvN2+ViFoKvvXEGrbWAhKINIwdEUrImL65tX3n6yqVer390ePD4waPdvd1z2xefevLp45PRzXfvHByPTkbT9Y3NxazsdXpZam69fWsyHRettIoxSh0kTmYTQhjNpg8ePb5w5sxkPGXP45Nx0cpaeauqq/Pntg+OD7iqB73eeD4FRTCooii4RKjIkl4YYrTWMS+dPiKcuKQpbUUFRI1trqFhZuaoAESmsXgxs6oxdgmDbhZkIgKgTdpUYF5KwRoll0iTktGMk5uLb13ihasYUktKoBKVmTmu9oqttf7TVy8UDpXrejbMszRd7U2m2Gu3hpODPIsByIBbTOvah2k5N44ytCejedLmIKCMzrTUmM9//uXjo/nGmcsXL2w/3N81SQrRQLQs2piY4LS5E4FGuXK6riVhJkJqblFc3rTGmLqujCEVWdTl93/v9zrEX/yln4aS2dfoiNBxbLABhVJAdPMQhtPoKDoLvhZq237L2TTJnCuyBIxBY8CAsYbrajIdTydTHwMpKZokzUPpwToAYOEovoM5KoOyKlQhVLFGg4lxNnGmkcVERBBDDa3CmIZbYBp6AQRfqcRut3snxnv37h+fDJ11zlrvY6nzdru9WIj3ZeKMBI7BE9gmOA1Qhdk5W3vPzMZijIGomRhZA6iKhGKMCZUnFJekKLBYlJ7ZGGMRx8fDk539XmdQBN5WLiajbDJ6cX39TK93J2995Nqzc5cthqNet88IPnCWpaoaRQKzIfC+Dhwsuxj5VNONoEpAihI8hxBtmgCSCMbAgTUxyKc0neU4udHACRBiYpwFkhCMTayF3/yv/ygqfuxv/e8AACF+4S/+XwA4OY0ot0Sf+pF/CwA//YPf813/9Kf+i3/9Cz/63Z/KNA7auZR+Vs6FLQDcv3vHoLSTHMGOqng8nuXtto+MlTkaHl+8ePn45Pjw6OTx48fXrl1bWV09PDzM07ys63an82j/8ODwgENsiLLNN76+vt5qF6aOi0X57tfeODiZeF8HHwbd7sbm6v2dg8sXz3a6K0nRauVZZaoQH3Xy9lant7K+sbG+D4aeeOqJwaA7m47Z11Y1VGWW5HVdAsALz17v5MmFrSu3br5z46t33dpZ5pg4h4QKYKypKz9fLNIsawwuaZqqYq/X2zqz9ejxo9l01ul0Ll689NRTT82n41e+/nVheeLJJ6q6RsQ8z+/cvdvK0yLPRTgqi+hoNCagxCaAWHt5tLfH+AEAAGMvX758891bx4dH7/+mbz6aVrN6bJPMWDpz9qxnv762UlZzBTGGnOJLH3jpwd13p9NRr9PaXF/r9gfdQQeUA9eqkpA15EStqo2e7XLmT+3VlVCV/U7n2rXrN27fno2nF564PK1mx0NZXV09GQ7n8+nWmTNFkZfVgmwOCA3zojketNkJA6iAMU5Uts+fEyRuKCqghEhkBbnXLj7+0ksvJFQBStSUQSMLKYOwxBhiEBVLGEUjh+iFhYwTUY6iSiEwAEgMgMAxRAVp/MQgIpFlaYCSpppCUlXvAzcCRlVRZWZbGnnt7TcPH530u93LT1/e3F77+juvQMArT13t9gfHo8M8b1tL6+vdk8d1GXWr3Td5vluNHofjz7/zlY8/sY2p7XV6j+++nfh4/ZnnmdwEuJVZZQaAKBENJOQMQNAIIoSUUoKEziWIyDEqiSjOy2jQkU2+9pWvjUejp59+ttdftdYeHR7s7u7kSdJ1mTNJADauWREqiqqENE8BYKPfsxOZex5XPBcy1qURhLQSSSIoUPC1quwdHZ69uLYx6J0cT/fryck7b1aoTMWs5qRls5VuVPmlz/zck5cvfPKT3/kY7DT4cn6cFHC4mEKRLU5OrCufefGcOD+sJuQyR0nJYhxhxak1kVmFiWwUE6NHFLvMttQmBE6aJAVjtJGPqIgSNll2+A0iooioCECzcwEAowARBESX4x4SBo4SyFoVTtKk0WWAMBFGkVFdrYtkzFXwHGpEREuKjKBpYutyfnx4dPXaE2QSIIsoUbyogCACKJog0SMnJokskdkgwTLDlQwaVg4hqkgzY1MMLFHIqohKjQ4FuIEwEem8nL///c9vrF8A4MBBRfM0Y/ZEZAg5hBi9Q3Qqg3bnxeff/8SlC/PZ9Pj4eD6rd/eOmOnJp58KUQ+OhosqEqZra2cn02npw3avd/P2nf3DYZLkxqa8KPOsM58uykVtkLI8298/GnQ7MbIqZFlelyFPlKOMxtNW3pqMx3467yRZTTiJU1FcGuAlQgP2jYynMVvGogEUJhZAMiQiDGQb8ThwEBYBJGWOGomoqqo8zwWCASvSgJNOJ+dAABpjbMJUWaTR2ghLw5tcYvkQATBBIywoRJiolAicAHez5Oz64PzZrczYRV2xSM2Sqszn87KMhDbWcTSv0lQTp/OyBkFf17JQzrIib0/miyDcRI3lnSLS4MbNd+7v7G1uDPKWG46mk5kXJKNQVYxofYhN/gYSIlg4vTnJGkVmz6QqwugokjCokYCixqSIWNaVj7OVldU0TzppXi5qATDGVNEDANuIygIBECJiUMIoZQx1OeO6s7rSE3KVcPSVojZW4dl0PpnP6ypYmwKmIuIc2IVHNgDAsUYCi7ZFGcAiInuEz335N6zTVKFVOOM0KYo0yyD63Gbtdh/JCWKpcjI5OZ6M5pNRPZmcPN69/tS14OPO/bt1tTC2zYE1+hgqKqCTinOGo7fOVIiKkpIEEZfYwJ5FkUSEJZI1JsaI6IgapmUzSKPUpKSAQhp54asao7MoVS2ThY10cDRkmx7OqjsHe1TkB7sHx7tHqjg+HtVBKLBTraqFpdhEkAERxyAJTCYjjQwMHFiX4zAbOSB5ImajSNZzAGPqegpaE5IoNvoPAMhstiyAmkUFqAAHCQ4cKH/L3/4JAPjNH/ojzWsC+9/2wz/++R/6o99gdpwSNOJ71AxEl1Krm+1NpwCpMALAz//yr6cJWsL1lXVfhkUdi6Kwqe/03Xw+3zs4fOra9fK110fD4YMHD7bOnAnez6YTtBBQwNLR8VFb2IizQk4QAIo0KdIkRhqfjCZHR2dXNlyyXi3qM1tbRTvxgw4hxxiSInVZC0x+9sKVyDoaz05OjtdW+u1um4TL2bTXbidpn4AUNfoaKQLAYnLyiz/92rd9x6ckSQ+n5eXzLSkrA+CsZQTriKelChPBdDqJwu1uxzjbHwwY8NHj3cl88cHrz1x94qnRaHL39i1f1ZcuXiQ083nV6Qy2ty+o3J+PJ9FHJDLOkjOzEJSIxIVaXZrOKvrsF1/58wCdle69R3dZQnfQnc2HEkOWxbOb/U4rD+yn5cxYdQ5FKjRp9GysvX79WYNK1jJCBC3rhQgQpiDRGFBGBVGKqsISACBPWozYW1skUGeZWBem02kkyDqdlnGJse++83aMfPnyk4SWlckoL1lMTkABUDECCoiQIxWrKHmnU/kQmWEJ9yVhRaQI2OoPMmubesQ0yFUC1qXMAgn1dLbOqvCeORoBFEWW3BZoGg+Eps2HpWNo2XM2kBdZTiMoNlK8UzmSffvuvdF85nLb7rXag9bj/UeTajJor81mkyLPNs9eD2bR7bds8uBotJ/na61+t47x3TvvQGZv7N/5yv23P3j+2mx08vj+g5XBytpg7cSyOAKDhppQp8YgrcCRQY1C4+EiNMv8OqSoKlEyl9Y+jIfjarFwxgLqcDJcTOcPH9yPIVy5eAmioLWdPDeJCxLr4EXZAPDSDA5puzXRcO/wsGKxllS4Ab9iRCVFkSRNqhhHk3GRpvthWBodLhaLap7mfWU/WsxX+t2smyHnn/nVX3rxuQ+trq3fuff2q29+7dn3PTv1C2PTTrd1dPKQMWJrczSbCAOiZSkDx5ZakGbJr8ZSsA5jbAYrgKiES5IDKik2KpDEORBFajztyya7abhNI75FwiUypLm7iBt8sCFFsM7VMSSESNgYwQDAUQMfApY4XiwUwPsKQLIsy9MkhqASHSDEcHx8qArcyJZMs3YTEQABcgYRrbVRlZss8mXP/x4zSAGgmZYYAtEKRRGsABCoaCCDrESiTJCkSafbmcyPx3Hy+PGj1LlOu11WZYze13WnyNUHI5JZ+siLL1w+f3E8n5ycDOs67O8fk3Hf9OGPKiY3b70jjElSHBweEDILdgerRyfDu/cf+SDdfmGsvXTh0t7Bwej4JEszNFTNqzRJj09OQLXB02VpxsyLsvT79bmzm528VfnSAmLCZIxtcs1EFNBawxxVxRjb8K9ZBJq9JOJ7shjExu+GjXCqCRFTVWutrwOANu8Ca00IcnpOIFGDwRRUBUONn8wSNcaz5a50uR5FEHBkal9XGlp5QhJSZ85vrbdT5wAQFI0JzMPhCAWEmUMgBEsmyTugWlVV4qyyksnGw/E8MgDmRWt2fGysA6irWgFpfWMDAMrZuMgybOWz8czHEAM0mhVAqOuQpwkuf0ZUQQFQZlIAoqgURYyoNGZGXN6TCmCt/cxvfPapy5cuXL44m9ePHu5nvZaqhEZdxbUhRWVQNaZIktwgG/Gxqo+Oj1RCt9e1RKJRVUHY+1CGYIxt50Vk8KIK3O222NCiigBgCJIkM2g51M6kHjyzvPbK17sIHYU4m6V5SikBC3p/fDT0YlR1MptC5vJ+OylsYY0pfbl//M5vvPyJb/v2Qd6qZ4vuoNdpt9OUxC/WVrtbG5fzPAOAk6NhWdVobGQNKkfDUa9bBB+sKeqqajqaZkfMqiFENcvIMSEiAUIyxgZlNgAqxPFwdIyoYoH7XVgZRAeLNO9un1tMFzPzuDJ29/jkOUFm5MAA2ECAGiEZItZ1rSrOOiTDgpG1GWSy1IBMzoEAWedrv5iPEa21Fo2zdpm1+Rd+7osA8I+/65vyxDHoH/5XvwYAP/MnvwsBYvC//F/9we/4X/7Nx3/4XwLAp//8d6MaAPjYD//zptT5zH/1PZH5P/1fv+v3/G8//ft/9KcA4F9+3+8G5MheQZr0HmECAGtyhdDudiPrZDrP0uzo6KT2vtUqQowPHz7Msvz555574/XXDw8OrHNXL1++ceOtRT1nYeeoms8zVBCCU9YskSSJ6WUrvXZ7+9zZ1BXd7gDAlovKx2p9tbsox0igCAxoknxl/cx4PBoQlXU6m05DrLvdNmE7OEOE1gKAKkqj6L9+7cmTw2Mfo81amiSVD1x760ySOHDOAJbzuQ81EUWOztmVlZXFYpEVxWJR3rp1Z3Nza3Nza2dvL1Rl8H5jY+PKlStZlvmqvnT5SmLtdDjUyHVVokKWW1EdzaYxRlWKrOSoDvTFr74KANPFzHFQDe12gVKf31rttTvtPHfkgJK3b75x9fKlTqeIIWRJCs5qhElZE8bIbKyxmeMopnn6WMscI8TGwhikJlQAkAC2yGsy48nxgrP+aie+s3vr7r12r510V77yxS/Nykm3v7K2umFtAljFGBqBjgBRg49vvI2ggCgASkbIKHKzJCFaMjJU0JtG09HMmJWbW1i/wcDDxloCBO9NnH/LxzKMoDmcGrbQEmKH1AhRmjmUqm0cJwAAkDR7p6UYG+xoPK1r3zb52bNnF7P5w4P76+vrqxsrl7euPH648+Dx/XTgBmlPrFVQwlBzHUZDNwvGJSe+/MrBg/Nb2+ehkxZZHcKsXHiGzCUiclreULPcAQRBaGg5RtUSNeUCgEKIDq3LiuP5sRX92Ic+nKdpJXo8X7Dq1vntUHlyFhObt4t2q8XCUpXEIFVgicYaAPDRQ7tzMh7fP9pr9KOe1Bl05GID7hNjbBb94uBg1B+sGHLe88raan3oQ60cJE2T+WK62Wu389WTg70vfPlXv+13/f5Bv5+12pPFNA+Lt998q5PD1bM27xW3Hj5ezBeISQyBCAgMCooKqDQa2Oa5Q2CkCRM4FYaYU+EwM7OIWa4kUUHg/0ctu2SlATQmcVreWYBLJwmKSPQhS9MGDI2IKtAoLQlpPBkXaWKMMWQT6yyicNQYEYQUTg4OJQbm2HwdQWiSrBERlEQYBAC1QaQsbWKiTRYCQDOrQGbhGK1bHtbv4fNEAFCssyoSYjQmmc+nx7Ojg4MDl1lVreuaCIyhuqoTwDRJvvnDH3ny6pOT0ejRo8fRx5PD4067+/7nXhhPJp/+xV8xxjx17Znd3aPZZNLtreZ5O8vTW7dvgaIxtt/tRdHhaMQ+WjKz6bTIcjJkXTafz3v9Hi8WLNHZwpAtiizE4H2dpMl0McFG52kRFVmFm9+twVORlpEowgLSEHGWelF9zzndbDiX72MFAFGwxrBhZk6sa+6ELMuWZqolSml5URvhCuJprBgioDZlLjZedFSylthbBAtiANZX+kWRM9d7R7t4QjZxgiox+rICxFaeSww1VyoYQyAyWZ5GjO0sL9JkUVaq0C3yap6PZ9Oi1SLUrbMb5aL2gRPrRsfH/f7g3PaZg8PhaDjPsk4VojWk1vLygaOIoAikoAHIkCQkEZkDBDWxYb4aQQ0gqWJq3IP9g/76aio0mc7aRXte1ZQCCAFAxmiAIopwJAVnKTGUkcXcaqzrqjqqqizPnCMUjTFEjjbJjTVWABGEISEwqKm1ppvCaJglCQe/WMwAUa2JrKlJZ4fDhzdubbosY06L3FrjFGVe0vHJQlicTVtFr7eW9lqtVua8t6FKBumiLGcHJ9OjYSdvZak1xEWatXrFSr/XabXyLFOV1qV2u90bjycPHj1qGZOnaVmVzOxc1thM5vPSo6his+9GQ5EokGgUo+oUI+iiWgiCkLCJlYNf/fyvX754dm2w+jOf+bX1M+v9M1v//tc+m7fa65cuvH24r0VXs2JSR8AEREgtAPq6UmUQrauKWZiZjFUAZUFEaw2aBDX6IIuyarVaKmKRfFA0SipNE/nffvS59W6G4rM0aR4yP/GHvsU6Z6wBRWuNIftrf+77VASdGiJU/NwP/ZegyjHGEKKExuHzMz/4B0KE2kdhVpaqLEFilti65qZfn09HhHF7feX44BgYgpfxeOhD9HWVpakx5s033rz6xNWnrl3rDwYP7t0bF8Wly5ffuvG6Vj4Fquo6GrLWEsUgHgDqEKJCWhTddhsUvY/zxYIFnbVFK0sSK5pVvtZGV0DQ6raJNPjMWhtjtM4lqatDUBUQbjgY0Ydmc72ytva+979/6+zZ33j9Te8DLgOtlJnb3Y61rq5qQDTWjCeTxgPfUGofPXgwHo83Njbv379vrR30uqurq/1BDwjLsnTO1XVdFPmlS5du3azbRT6cDA0BgohGAjCJ9XUQ9oeH+x9+8X2w/9kQwxOXLjy892BtY31tbSNPsyxJQu2HJ4e7+3vbZ85eeuLK3JfKDIhBIxkbncbofV3VR7NOq91vdyQyOMugATgCN1N/OM3yTl2iBmOMqxtbVQg+ynQyXkkvFXkhBr7nD33vu7dv3n/4eG19vaxrXCZXwnukeF1mKP6fDjJjyBryvjHYNs9WFVFFUBLFpe9HFQCEiOAbudugoqhCuqxy3iuDmtEO0jeGjsTNBr75VngJqgewv/U0FWyeXQhLI4+dz0pjXQyx2+1UNV25ejXL0nv374LHcroo68X0uN4f7VURN8+s84k/PtmPqo65VB9adL+evDPcOXvm+tPPPVdV3qGZhikAM4rNMwAgY3jprl7GfSORCgt7Mg5U2EdUtQlx1DRNEakqK2ANRKo6WF0BgMNyv5YQVIJyRFUUQLWIoKwcml9fVF5gfDQ/PvLTvGhbmzBAwwOLxhmbZsaoABk3msz6g400aU1G87WNM4lNy9nCmtRQ9ItR6ep2p+iuZ2/f+dr2zSeca/fWNmxqijytJvPt7maRObKuqo9EsVk8KTCAADpQFGjqYFEQBUESWjLWljWLihhjjLGh9jHEJC9AG5FUgwgwSECES9Iy6umNtBwImMZXDwAiBskQCUeV00QbESRDSAaAgBaL0ofQzjOLSKIaAymkxqC17TSdjkb1fIGpQ1URicKq6owlMMwqISKAhKBLDh4iorUN8mRZmy3dvwBLH3CTXQoN1IeRDBGhar0oRXVt5XwJ9clo2ORnIzYJArZ5G1578untM2cePXiwu7tL1izmC1W8cOHi7dv3Dg4OrXErK2sxirAUrWIw6LHi4dExkQXF1KXeB1/H6WzWKlqSpiqsIHBq748xsogI19G7xFlrkWQ8HmdZSqCgktosKkYFUrSkSsDCZFDRElBVMQe1kBLahm8kp6leDS+guU7vzfAQiMgihhhjkjoRMQaZ5dTNh6eePjpFKulybd5wg5YFFp5Od1EV8jSxGGNVDvr5oNdl4cGgl6bUXLnFYh5I826GAHVVOmM6Kx2D1CpyQLLkBCREns8WIM4lWbfIB09e3dnbA0AG9POFRjWIzthetzubTK11Z9YHFungaIQuQzAs0dlUVJSXYYYESoSMwAqMKkAawTJaMiLQEBIDCALHKty9dQ+ntUNX2NRDeG9FQkjGQACMHGMMzmDmTGohdUlCLVQJvqnRRQHSJOm4Ap2ToHWoE2OMJRZOgqYWGliEBm/QuiRhhlpDVDXKCPBobw96/eeuPrHW6xFzQsawXHzheXdmzbYKkyac2JKDgAySjKezL33ms3f3d3799ruVw5UzG6QmTZwjKPIsTayvKo4eABng6OiY/r/E/WmwptmW34WttfbwTO94xsw8OVbWfKfu26NGBAiDsWQTYAwOCAYbLDB8wBYYgkkBtowIMNhGWJixrSAwIMwgQ0hGaiRL6kbq7tt9b9+6t6qyKiszK8czvuMz7b3XWv7wvKfuBfOBCMLhpyIq3sx8I0+e8+7n2Wuv9f///mQn4zEz37x5o95uydjQh8Tatn1VhsurxWq9ZQDrvapKYvBEiLtuP0LXde2m3q+K2PKD8f7i+NZPv/PN3Oby/OLd2w/2ZpNffvrq9t7xqBx976NP5/fv980GD2YRmCyCQ2VOKQ56h+12q6rX7LGdr1+YMyJJiorWWG99yw0Bmp3tVBAG+BGrJFBBQRDAIUpLFQhVhQVAVGlYooJDLawsSUKIzD0CiHBKYpFUlDmpMIpIjJYoc870giwAMC5K53W1WISunY73VutlVVa8WrdtW5blrVsnXzz+4tGjRw8fPjw5ORlV1Zs3b7z3h7N96NkDtUkAQVSJyFkDAF0MSRXJWGeITFmNQAwiWWNFU0r9thnmHoDGsoIxWFZZzbHvuyIrrHOSosGBhi+gxCwxpuFMcrFYnty+lxXFxx9/UlbVgLZDMJZwMpoI63ZbA2FWleHqcjwejUaj7XZrrf3ss8/29+bjUZVirLfbFPqf/OY3fOaGDSuGfnl1WS9Xwunuye1nz59MqnI6GRdFPh6P+7Yjgzk4QdtpNxmPAGBvurfdbm7dvFGNJsSp36wut9s+JgT44MP3bt0+eXN+2m/r6WhEKsKsxhhnqqIKhl6fnV9erWh/z2cZZU4tDi4WHCKWDcrgLQcKHJHok88+xyz7td/43nQ6rtfb0Xz23gfvf/+Tj2OM3/7pn1Og4bwmMjypBooZDK2d3Zzq2lVDaMkIogzHflWkYYPaOYFod2we8CM7S8nO3aMKgqjXkasACjt+juKQ4ggooCiqpDv66Y+uQZJ0raZVBHttF7o28tirq4WqzvbmSdN8bz45HJ+dnb/73vtO3OXFpc9sTP3Fcnl067ZnG+LycrlStaPM2axqqHm5vnq8ObtXzY6zw3E5mVZ5s5K22+huZgOKCMYM3A1QEFSBJAY4sTfIoEGSNXYovI0x1gKBsT5LHEPfq0I1GvUxdE297ZogURAmVWmIgvDQoO/7AAB5kbcOnq4vNpL2jXHG1KqaRAXUIlhDAKHvvfWcQtOEvKiulpu2bqejqSbbdW3o29xn2/Vyf1qV05Khe/nl0/v3vnFwfLuooCgspFBZd7i/f96t79x/C+kjEQCjMKRBKKnirjRVRRqaAkyGAFSZFWjI0VRV51yrkCJjgTs64pCjuDNdyaBa333gQ1UtMgQlDF9hSLHInA/cMbO11hCllFSUjEFAIEGgEIKtRg6URC0NSUwknVbOxnp7dXa+f+8EQRWRCEVpWEsqQorWuxDDdYmtsMs/+JEzf7fClVh3sVDXe/xOTZNCsMYg0ZvTM2fLpmuWqyUaQwadc4OZQlnvnJx87b0PHn/2xXa1un1ycrVefP748fvvfdg0fVVNDg/tRx991HanrMb5PMRwdXXZhgRoVU3fMwJLkq7rrDFDM6YoihhjkefGmCS4XK5U1HnHLJvtdlSVo6rqmsYYMxlNNtsNR3HOq4oBVRQljBwTCAoZg8wJGUisgKK7vr93SMDraSAiXf+MUHGI1+hDr7vZMzLzcDfgNfdouBFFhyiD4XlBgxh88FPs7FeEwGpUuWvHGd3Yn3kD1SgvqqwonFHgGI3Grk8hdiGE3LnxOK/KCpj7EMqyIoKqHAeWyajq2qhKzvqk8vD+vcur5Xqz6UIAtOvlcjqbI/iUpe1qOZ3O79zar5tNEOkSG2eMNSKoKgKCoKwCxrIOdCLAXUAtaEhkyFtAR2QQwY593l2uj/JJ3waJcUjodN4CABpSEhncUSTOUubJAJMokfosK3w+zL+UFWDAvqA6FbWQGBC8VW/V87DoYD4ZtR33TQtKaDEzVlhdXgrhStIFpJO7twpvY9uORyOTe78/mx0cEFkGVGuKUfnm+bN//z/5j77zS79c5N4XBaOB1B9O9sZFgQQqvNlsQ7dlYeuyLvRI1meZ81lVjZarZex6QEyBXZbleaYK89nMZ369qQNHa6wA9G1AmxtANOSM0cQFGay7USJ7VZuz9Q31h9O9/3KxfHfvYDYf/8a2/el7b00PjxZPX966daM0YpGbVLsyBxKOCQUIUJjrut6duGSYxiuiqrACpBSRsqqonHUgMJDY0KAhdMYAgMSYIlkzrEoYDtEsQsxRwYFNlEjIDvksg9QfAImcIyIPIBIVICXuY1IRufaLCscYQ1ARTQAAv+t3/o7V+vzP/Zn/Yn+2RwB921lr8zxfr9enp6cfvP/hrZNbz549+/TTT1X1zu3b1rm2befTuYRkVC0OW+5wnEwAsFpvNk1zPCkJTZ5nRNaZjNB0bY8iyiwxGTNsQYqEKYllIFAUjqENoXHOkTODBiANpQ/L4PxPSAc3bv7F7/7g6bOzvZND2EU/c+bsqKrqum7bHpCGBPjRaDTk/6xWq9Vq9c1vfiPLstPTs8169faDB5PJmCXFlM4vLxaXl4W1ZZ7N7pxAii9ePCmyovCeU5xMxytOQ86oguTeD2zxk1vHl6+er+ptkeUtt5KSz7OD48Oj4+NyPLq8vLh4/co5H9bbzObeehZB4fpqUa/Ws9EoULtaXHnvi3EFRLsAkAHinxulDAAkaTXyK4B/6Y/8uz/723/y53/rb/31X/s4JIg9z44O3prc/+TjT6ezeV6OmElYyOB1+2fnEIVrkMp1v4cQ1ZA1hlPioQAaujnXM/5rAojoEHg6lDHXT1QzyAsErwusXWdn1xG61gENk3eAH1VjiNe/3IUrEH7VmdLdXwS2bduUUp57EV5sVi8v3yyWq8KeerA/81M/+/jJ59LQnnHbVU+xzyY261wIGoyQQQPUtt2rZvFUV46n2vY+d3me+b5RlW4IsCUAGW4CQAVBZVQBIEKVFCP3HC1i1yUEkwC7lKxxYmyzbRzY0uUhxcLlVEDbN31IRGTIWIIhmHswOwCAy/yr1H78/Kktsl3D5ZqpA0MUZUzDU5TIrNZrwoxTevrkibFUlpMiK5quS8nbOF2uTHU8ZY3tppeA+zduXSy/sPX21s0qhPOrVaNFGaNlUWFRFAW2znDHiAbJKO9wyESkkJSTAgoMOi4GgL7vrXVIJiVhVhhOKwMofJBLi6CBneprKIpUEJRZjGpC2cESAYnIWJtScsYOupHECckoKgJY7/oQrTXEYoHddUaBAfHW9jGcv3lzdP/u0M8wxoJoDGmgoaiqilhjRBPAjnU18F2u8dNDH0pFGMx1Y0N5l/9Au3hJFTXOf+c731lsXj76/NOub0ejKsSYUgLRdlvfv3nrw3c/ePrkqYZ068atrus/+fTR3sHhjVsnHGm57D764aP9wxuzvXnTNK9fv9zWtcuKrCi2bbxabsg6n2XOUO5t13WoPB1X683GGMxz3/ddSklYnHPCgCDG2rpuQ9+PqxwUnPfGGEniXK7IUdNwMNIhvQQBlDiqMHhjlRVEcSBz41DN7CbWX0ECB+IzMisMOO2dFdAYI8KDg35X/ACw8PA34PX0c3iw6zDuHDqHzIbAcJpPqjs39veneVm66XyclY4IUteFbquxTaEZj6rR8YFzNvZ9U69znzmDlsBZu1mt264LMXLCvBxVVYUs43GVUlIV04eLy8V8Ou5jYBbvXJFZia0hOLl18OWrC0nB+pEMcbgEhLsIt154lxbPkkJUNAnAAFTGZUMyjKrx1gv4YsptQFXvfQEaOQ3rh2mneMyMKfOscNZbGnpww/GUjJWEAGqstYSgyhIRyUYVUjKQgytYEySHFgCsNQYFI4/QAdGKoyCSxF55yfLF6Ru/N3vr4YPpraM+szH07+zN9qpxDMnno/Orq//sP/tPfukv/PnTNy+m4xkCWCCndjQaDe4xa8h5H2KPzq8vrxADILD0to/G9G0fsyxbXl31IeVZkeWiKqPRyMYoKQBHq0LKwImYLbFRJLJWKdZt6vvxbHb24vUXb174w+mzzeV3nz/Kb05//ckPJmelqfIvXjwbb9d9twUOGWlfr1TBWULmGJPFIY9W622NgMwJyIqIsCCBc4YIiLKeRRBS26EhVhGgAfM0xJ6Qvc5pGjidu5RxBUTnXZHn3mWa2BCSJSJAIAEhg0YwcQoxEpHzNiZFUjLKSa1zZVnlm85gZ5CsIwD48tmT09MvWdJsOjs/u9qu19WoGlVV27ar1eri4vLWrVvn5+fr7eaTR59aZ2+dnLithzZdnL5RYGcNIlhnLLOzAQCaulmvtt18WlkbQswzEo6qjMJI2DVNVzej2YQAY4g+90lCH9r1clFUJaqIcJSUGvHekaHEiZMSERkDAFkxYTJ/7pd+mYesZgIC1ZQMUpHnF6eL0AfvvDGGOZVVGfrQ1s1ms7l5fBMVT1+fXl1dzff2T05uOech0bNnL169eTkqyxs3b2qKs6r6wfd+I3O2yB0hXF2cl9XMTKd13TQppi5yjOenpwBwdn7x4OS2t6iKkdkYnM73pvO9PqYudLFrQ1PvHU66q3Vli6yikFiaZvniVeBY3j6ZH47rZlvX26bpCNE5Q4BgCJwjILAGAAxgDI13+WhSvPf1b7338P3XLxdPz7cff/LJ68XTv+9/8fuOj08mkxkChRiLoqybzriB+TQoQ3Wng8BdfKIM6B9C4xwPXmRgUCAwwDg0QgfKz3XLEmVHVwG93r7pumbZFVXX1c91LwdVlUWVfqz/MJReiDvazvUpXr8SU6sSoa2bhgwaCwBy+ub1+WoNgDRz6/X2T//pP5MVhavy5eVVkeXGYceRiRnE5xna5JiI4ardPt6e789uHk/HKaM+MLAA7qJ0AVBVBMHoUNIBkgECMBhZQ4qsmvronOOUEDAvRsysQGVWQdhaMd67YEKEkGdl27XLde19VmWOrFfsmAWMBQBWeHT68tVqUR0cOHKkRiUgGAENIahohtZby5qYpd62zmru/fC5Ly4v86L0BRl0eeE3ddczlx5FOEXu0YxmB932xTvvvNdcXXWhy6aj73/0kXOVDGd3BU5swAqRDNoIYcXozSBWl13OBQzKUBUWRqbBKMKMQAwgALTrH6Hspp54DeUDVVRCAhIdwjMUAAwZUDDGfGW/FFVDxlkrkgQURJqm4T4ZRBQxSChC1qr3GlLHslktCRUYUFSFQBkRDZImVZaEUVQUhIgIzTAIu87A2q1FItjJr6/N0iAKA8/GWJf7vulsln32+Re/8RvfffXq9bAUB6twSulgvnfr+OZ2tYltNxlVXdd/9vlnPsvf/eD9xWLdB1lut/cevLXdbr788sXZ2Wk5ru4+uN91oU/88vUZEho0PstW61We+VGRxxSLvOSUsUrb1SEEYTbGgkKIgYAyZ4vch77jBM4RABrj2qbLizEgsYUUuyjJGouoqqSKKQmCMWjQaoK4u8GvSxa8vmiQtYmqwjBzG+QR1loA1SEsVq/hBkiIu9Cp4Qerw0ycUHgwwA8YSUYUFB4V/sHJ0dGkdE7H49x7tJb6rrm6PKMQp2Vx+/axzcx6uaxXS59ls9GYmbeberPahMgisL93WJVFSpIVRd/3xvvXr14P2oWCCu83q+3G+zzLc2HZu3nj6vJitV7YrBiVFJIJHKIQkUMwCsyqNDTAWEiBIgOzGrWeJnleKXkB7Zm8TR2jwlBMtxwjSB+Sd541AUBSdqCUeD4pjqaTIjOG1JOxACKKpMaANZmoGBiIa2IhiykigTfe+cyp1jHm6oQcAFjEFEOGpkQEQRbK8kKIRZKC2Wy2T794Oq5G9+7eO35wp/CufvXm8aNHd+6//evf/Y1f+KP/9pdPn1nCKvcoYCzBcGeoIFHktK07Y4YEeB2NplfLJYsk4bjZFmXV9ElhG2PIfLbaNBOwIfSqevv2nbce3Hvx5bPXb14rizNZR8mwOmMRkSU1Tdt2XSdpw32f46YAujlzBZ5evnnw8H7fdUtv+klly6LLXA0SmB1Zy4iRADGmQAYRkFNqmkZ0eFQYBU1JWZKISUiChIYAISb2PgMkvd4Qhi0nz733VlIPBNYZIECkIYDQWAtEiooGdfCKEg3KkcRpWPPWuiQAAil1iuAzzxy7EHzmyBmAQQQhAPD8+fN6u5xOp0kkhJCYl4vF3ny/LMqu6754/DkSPXjw4PEXj6+Wy08ePTLezWczX2RREmEixBADDeQCVABIkVerptm2OaeiKlAkd7mzHjWBaGjbFKJE0SRgBAGHJ/blxcWoq7IsG9rDbd+BFlmWSWIQVFA1CADTg6MffPr41z/6OB+VZVWlGDhFMnYyKr2x9WbbNA1V3lib+fzmzZsh9F3XNk1TVcVysbi8vNjb23v74VvOOVVt6nqz2fR9Px2Px9MxMce2SSlaa4CVQ1evN+PJ/OBgzxp0fUyyDSmtN9th/15t1h7EWl+U+Xg6Np429cY4z30S5q5p+u12cXHVbdvx3kEnbJNWebU3rhihV6nmcyqyer3RJAJAziIRekfOIlkAQEvGoCr0ffr+Dz6t6xRZyjyfWry4ev3k2Ze/96/+67Is62IiMm3bG2NF5HqbAlBUkGus3W5EIAKIaKw1zCEGu/vgDBpHZBDMV5XKYN+6Lod2HXKCnbr0Oqh7F1qNAHItcx4exkMHCBRh8CcnUGXE3fzsxyYqP5qCWVUxBFnuBbjt2vneXlVOYi9n68uj/cO/7Hf8Ff/xn/gTR4c368VFNauq24d990wgutyKCoFDAVETnF1BfNNt70ynJs8HaXaCr3pNqqJ2gI4psEgKCcgYsqJAaBWRkw40ekLrskySeHTGj2KIqtahLbOqDb1wJ8wxyUb6IveACMbElABgNJ998mvPowCpigARcYhIyAnIW+OMQZOZLMY+MSFgikmZieibX//G+eXmsy+eKKJ1GkUY48XyvNivutQUVdH0sKlhr7xZZEdVdsS4bBn2D08UTlNi7/zQV9nVoSzCjEpEonJ9qEdUFkBEMADJeT/QIQd5zW5gjwMoSoBgOHkAKgsTGEBkVh6YRrCDKKoIkgFVS8YZG1LMy8IgqACohBi9c8IQulC3dTGaYFKjAKoECIkJQZnXq3UMiYaGhrCCOusIse1aUDVkObEoD5qkYZMOIQyb/SA1gOvCesg2R5Jh/GeQVCElCTE55y/OL37hj/7Rcs9YIlBgldh1JJK5TJL2qatXaw2JRZzLHr79wPl8rf1ytbm4ury8WHRdINKTu3eLslytl2Dsm9Mz5jgejznEerOuilw5KuKoyAyItxRZOCWDaIyzxoGC8wXH1HfBGyqLom1aUBgfjTObPd++iG0A54DFECXAxIKGDFpQSCkhWmZFgutgLIVdZioN9zOnBGittaogrAM10hJJYrR2KHqMscyceFDHowDvZp0iXzWQCICZiYaRNeDAJ4r9wd58XLnt9mo2Ljabdkyjul11TbM3Hd/c25uNq3q7WW5W8/l0Np5eXV6tF8vFeuN94X2eW1MWlS/KZttE5lV9sVxtEkuW5YDYRy5H47KsoigippSyLBOJRJh7U4yLfFSuPnlsAZDM0FPloeZFVNWUAgFlqATiiUrrC4JS1SZGlqnL665tAydPLUf1JsZYZjbwLt8FQYzqfjmuVLnv26bOHfncOW84ydB1NM4YIAOYZV5Buj4mSdY4RbTOMst0POpXNZIBAEnRG5TEITTkrCOgEAtv0WYdc2x62Haf/qVff/XDz+9+8I7P7fNHn5wtl+OjG59+/vjs7HLv8IBCsKqldz0H8DYfVU3XStNMxuOiGo2rqhpVnNJmU+chXS0Xm+3WWWcjb5sVmaysKrR+eXFlrFsuF5dXF/PZtHDTk1s3QNPp6WuDJIwopJLQkHFm1dWtJMyz7z36+PGrF/dPbvziX/yl+Xh2+613/uxf/NW8rPZunXz08jWa89F0tohp2UVqorOFlYzApBQtUJ6ZvumaphkO1cNzd0A8c2IRDilmecWixlLmvfd+ExoUztEOut/IwqDMkZkFQIUznwGhEgoh0NCUHODgIKwIPBwFdnMMND53Aq0H7PouqSLiICROHBmEdzg7sM5Wk8oQsrLN/HxvHvs+y7O90f5oPLq6Wl6en0+n03v378uTJ5fLxfc/+uinfvInk8KmqasCFYVTQFdaa8yOoI/1tl0tt4UUzhA4J5CYBVUXl1cXp+fj+SSzjiNbp0bEEZbjCkCfPn1688YNAHDOKYIIJ2ZAstapKqABgFXd/ep3v9/GUFQzVrUAkgIRTKqya+q2rlWhbbsYZTqZ37l9e3F1uVhcAUAMcHV1lWX+7bcfDlbcEEJd11mWbbeb2ye3pvO9zeXlcrVeb7ZFUYa+Wy9WBqHI85j69XoZogwy9tOzcwBQpLbrsrIgJATgPhAasCC6S2Y9mO2Hru+a9uJyOd5sx7P9yaj0eYnGinBKLCGiddVs1rd9TMHmOXljs1wNpF2WAIcYM5+NyvGf+sU/+3v/B9O2D6tVEz08ePDgt/9lv2u6d9B3HYBBNEggX6mS9bruGdRtKvqjvjioAgg752KMfd9fXLzoQzTZSIx1zpvBTWyMtYbIDNxIY4wxhAPy2KCzlsgPy48GqgTRMO0lomFbgV0PaHculZ0MB5AQhkwfhMRpB3pTUVWbQhyPRm2ztYf7N28dm3zctZK6/uaNW2dv3vx7/94fg7zomighbpcJK+fG5f7h+OLsLIS2HOcc+thEi9lV33abF9H1U6C6bspRLtfBx8NYJ4lYUDIEBBlmm3rLibPMD8Of1AcEAsE6tLFPnFhSinUXUgBrozI4w8Cgg5CGgCAyC6ECxqG7VRRbDsZaZAiQ0DlgkZQiK5CpqrlFkjTEbBkE1KiOqNluuu32p37iJ1arzenlq9KVSVKX2DdQV6muG0Emn20vJQfTOQesicx0elCO2jdvLsd+DwRDH3zpDFoBQBFEQlDCgfCYEIcKFxSUeeelYuaYemZhYUPXXYRh1ES4G4sAoF63EhFAIaVdoCYOGaREOHQQrfEIbdtOJpOmafu+YxF11vssxbTZbA+KESEoJ28sx54QnHPG2YvLy+12i6Aw0PmUVCSqdF3rvAdEYywwCINqGgJTjbFD9fOVzB8RDRnQARQ0nCgFCQkwxmitkRRj4s8/fzw9zgjAGdN3narmPi9cnhu/PL9waIq8TMwnd+/WsXv56nS52Hzyw0+ralxVJRGNJ6Nbt28urpZItN1sVbQqMougyrk3o8KFtrFI49zVTa0xGKRpVW22NYDJnBv2AGsIVPq+d87t7e0vFlcxpDz3s+kspOTQt3Xrysxk+bJZWzREJsmuMTuIsYYyV1W/Ot8Mwyy9btMOwqDhc2YRwIH7AtcCQL1WCsoQL/9VxDpez8QV1Vnfh05VvPcWtJqOSm8Xi9PUrGLIDw7my0V3cLD/7odfm47L1NdXZ+dFnt08Om7a9s3lm+ViicYeH930vkgMiqYPaXm+CJGRsOlaAVLApm2Lagwgm81mvref+WxT11U1NmRC3964cXO2Nz+9Ot82/cP7d548O00MQSTEaDNvEPvQdqxoADhhG47JHKj1SSmmLMvcOI9dZznlztccgxlSoNU4pww54CYGAPjV7QIAYLsEADiD/+5X7FthIUTIfJDYJ87YaCSWFD25qkh1R4kvL5affvyxepjPp348/u73vlv3YTabamRrDIp0KfYcEDisJKXgq2q1Wo0n0/W2Pru83JvvjcZTVczzarPdnF2cMSdmEU3bzcZ7P65G3bDIi/zxZ4/g4YPjo4Pbt24Unp58+QKBjMc+JDSKmW1Cp8w2CS82v+ODn3z3zu3/+NNnv/XDd+/ffXD+6dOb89m33v/Wn/ov/rTP8299+xv/+S//hd/2V/7l/uhmUqbMRWZhBosi3HVdHzrrHBH1kRMLAFhjVCQxG+sAIQl7NxTijIjGmuvuLcQU+qDOOTEmiRpr0TmXZdYYRegTI6CzhpOG0FtjM+/6tlVUETQ2M9Z2ddsnAOPIAxlKsSdjmCMZkzipXvMSHa3rdlTmXd8nTiiQZfl6vRbQ2XxelFVdN5vVaro3v3HjBhlzfnH+wx/+8NbRSdt3o8IjsHVOEUFklBcAEGJq+rRYbyrSPLPB9ImCI5uYry4v+9DFi7i8Wu0dHI6mcb1aXZ5frheXVVnM5/M3p2+cc6OytN4575jZuQyR0BoyBAD/4h/+I5t1a/NRZLXee5C+qce5z8r8qq1TDIgQ+tA1zb27d4s8/+Gr133fG6KL8/OiKB7cf6AKm3p7dbW4c/t207YvXryYzfYevv02GEoiz559udnWJ0cHV5chcirHo7bZXpyfaeKujQxEaOqmA4CLq+Xdg0kIEa2ygYRo1ahhJYdEzHrr9kmz3mZ5udxsFO1kXDqfRQVMTKAFGcPUd0FAssx3BOAdORuFVcCgBQA2MUm0xh4dHj1brj7//In1eTnCbbP4xje/eXJyp2kDoVFFVdadBZ1wVwB95XX+kcoRf9QEQGYuiqLv+88+++yTTz7tmNTkAx4fAMkQ4S5UjHY9dYME5HYlkbXGOjfEUDtryRhrLBmy1hoymfeGjCEylogsIRprvHO70spYYy0RGDucWM3QV7IpJE5ddTCPsQ9dX2+6tpXQpBt789/ze/7a3/zeD569Ors4v3BxOx5Nttvu5t3bizfnB/vz9Ub70Bsym6vNxZfno7sTtvoL/+Efm/Xwe37r70wCA7/PGZti2PW2kBgEQTzawmVi2Bh7dXn15vQi9qkoitzlKsCJU2RgjjGAKkdsQx+EO06b7bIYlfP9WW6dgpK1YigmAICPnj45vbwgQ8riqhLRAKG3WebzTRdj3zEAJwIQ65wDIyooAsyvX7z8mZ/97R+8+17zm5sudWXmPJVdu9k2rg1N5BZt+eZ08f1nz99760PvgGyzF+AXf/HPixhhjBCtsbtRFxgGMIN6C9UiAdukMmydiEiEqphS5CFpk1MfO4DMWWuQZJB3sQyVDSGqioqAwLDYdGj8XK+y4eQlvBOUNG2bZdlg9cu8E+YIQobatg19X3iPosZiYCY0iZP1fr3dLJbLmMSQc+iiMCIqa+SUu+J6FoswGLZ34Cb4anEPlzE2SARh5YHeh4SGhcmhMSYmJkLr3WQ8sZgMGU7JGDOuRiW5+XS2XW808t6Nw7btfZFvNvWz1y9A6fHnz1Dw+OCo7/rM2cPjI1Louna9WC+Xm6yoYh8ghnHpc0NWuSyy3DvnDUZj0bk8tz4j1brulWOWeRAJIRhrBg3TkEC/3W5j8j733aqzBsssr7vOkhtlRRyUQIlRQWkQdZKq7OpVwh/d3ruUS0myox0Sma86ZKpKhCkxXkOedvOyIZhyUFupDi013E0dhuamNYgO+HA688h9am/c2s8cMnd3b9978OBh29avXzwHjVlmiyqPfVgtl6py5/bdvKwWy20fGMhut83pxeJqsdlsN0WZHR8fjUZl03TWlpdXV1lWjMfjvu05JlCw1oa+jyEtN5t1vblcXLKC80VmpG+7PBtxAg4poSZRISCVDPT+dPYTBzdvkU3bzbLZ1sQdh57AgHLgKVm2NnV9YQi8C3UQoCIv9/xhr4kkvX/37n/v53+6Wb3kfl1lrswp9jWoVONR5jO0RkQtYFWUgFD3TQypa/vQhT5Kx9qEpKa8WDdni6UL0qa29GVBJkS1ZEowVk0XsA9tIOhEJfDhZKYVNVbaxGdv3iRWVNwuVxkiWGu98YXLje/73gqOq5Fx1PZxs9rkWbZt6ovTSyScz/baepsV2Ww8Wq/XzmaI2tQrSEVRlMCxyP18Mp2Misy71XJpDWXOTmbTdRM4CqlhkCQCLNKFTKhfbEwfQjWxbTJNF86vJkAjhrmxI9ajyewn33rn177zq+cvnr393rubkNBCaHoYRIGAdddsu1YB0jBwxUF9gUCkIN5ZIIOQmBkMTmez9ZtzAEopiVEAGNIzDBtEIutj4m5dj8ZkLIcYJXFhbVWWlig0dWa9IWrblgEUMKXQxghggyZOHDiQwZEfAYAhW1YjwnNnLKUEAJzSIIsIMaxX67reEujg2uhjPD09TylVVbVtmpPbJ1VVOecuLs6XflmVOUhAFRZRFk9EygCwbdptiB3jcrOpigwFnHc9hM1mLQZP7ty+uLg8PT3fNm1RlFlROOec86KQ50VZhqvLy/V6OZlM9w/2jHORI0RTuHKoILdtjIxoc1dkgKScACRzRAZWiysAyHx2Va/Xq9U7Dx8uF4vXr1/PptM3r19Xo9GtW7dSijEFIlqtV+YVPX78uCiLn/ipn6rGU1V9fXZ2fnXV9aEaT1OK9XYjIhcXF6gwm87INMttQMViNIH+4mqxPp6OKEkMgRS8YBIC45QSWgtArQTM3SQvepC+jRwTCoKxVjR0oW7O6+12UW8wczfundhRQSUOLg8AGpyASUNkLoydVmNv86tV/dPf+ImbqOvv/drXP/y6sbZNPQ3IkGuZswgjKCoAXvN7vlIfy85yboxBwCErbTQavf/+e8vV+uxyDeR3rh9hCMy7nASNA7xQAECTCnMa4ioRYFCsDl/oeiymAACGdh2EnRxJd09p3f23c43hbuqyq8Xfffu9enVV11tj8eD4xub5uTVmejxpN9unzz6vm5XPEJQevPWWGDyrN6L4tW9+7bAc/7k/92fqZm2Lou/im5cXN27eGR9N/GzcvLzMilJpFxTDiQc+pCAYEBFkSFHBZzb03HUdEBwd7qcoMUSDVJWjqqgUIIY+dH0/iISA101zfnW1d7CflwUCKAirJOUgnNACwJ/8C39eGHNfoHVAJAhiiEFGWVaHVDctsRqbZ5nPnDNoFcQow2i6Wa4uz86Pj47n0/nl6k3UYECQsOv69Xah0JGr2oDTvQer4FLdIqbvfvqdzx4/V6jIeGGxmY0pESijAA2+PGBmQmuIYOfu2gmvVJU5gSoZJB3GmYMQCMiQAgwqYoMC6IZPbfh+iQwjwM5vDQqAhhInYUEiJDLWNF03KnMVBVJOgmSNNbHp+773ZWlSSjGG0KehzW1o27Rn5+egYJCUBUENUmJBo2QpxaCyc2oPTrRhir+TsgxzO1VEJcShg2GQDBIa4KHusbZvOmPtar0oyhG6JiUlAjIGFdu6XZkVb9qD8Sx2oev7NqXLL6/ms72ry4XEdPfkzrSqUuaF2apuFsvtYrlZrrzx7Xo7qorM2dw6wzEjGI/KyWiUYpxmszZFtL5p+2nhLWHTtmVhDdnFVe+dQVSAVDcb1QQo1u6abk1TZ7m/WC2scDWrJEUW4JBEGNApMqCC6kC/wAGeJDJEAu1uyOF30DAnZh56P8xIZP8rMuf/r4tkl7Y2lEeJIwFkxnZ9Nx/7o1GFNo6riWjHgg/v3b95dNRt18urS+eNK/x0WuUme/nlc58Vd+++f3Gx2NaNcbbbtK/OXi/XtYIrRtNqPAeSq8V6VPKgY66Kqq6bvdl+iDF3WYoS296SYcGLy9V0Wk3Go8VmNSrc7VvHn37+ikAd2QQaRZiZvNFNf3O6//MnD94BN942JivWBJcYX4dmlaI1vuekCpZpxAJEoyJrLbTMUpbtugfAhPrm8uyTZ09+7oN7GCoEsYYNFjEGBbHeOJ8Ji6SkwKBijWaVrzLftXGzbW2CzEOvtu1ChtDF5pvvv705W8pVMKIu82PypLTG1CRNIalhAtxutqHAbQrn27VaWxRl6oMVtbnvwrYsR5oXQDDyoywZYg4cM2fKvNjfOwgxvHz+ouv6vtlKioWrCldpjKiSQnv/5mFMqd5uiixPohw7YVcWxXg0enP26mqxREtUWONAtCfFeV6uNptmuematul6Y+mz01fdyF9i3yxecYHLuP3Bpz9k4LbZ/Oov//nU1t12k/o296V1GGKHA/eWbN00oY+AEGMCNIQWgJmZUJ0xwhJjb8mQQWXOnKNB/Yzoh+B0NAggYJab9vxi3TRNn5LzjowBkb35jACA+XBvPs4zSG2I3bZpGHS1bi4X2yBoXdaGkDgpChiYuGI+m4L1RZaNx6PtRZN5DwAhJGds17Yp7NQbxjoACCHcunVrOp0/fvwFIm43m2dPnt59cP/thw/35vOzNxeT0UibC0UVFiQxZOiaHvNmsdgfZ9VetV7XpJokxRC70FVVZb2vxpMTV/RdR2SrPJ/OpgJ7IfYpxT1LoLpeL66uLn3mj6oRKwCic+5iUN7YDJ1walFEYWD0p8y7XlLb1rijfaCKlHnx5IuXbV1LiFVRHh8dWUvr7cpk1nl7cXke+3Dv3r079++5zCPRDz/55Pzi4id/6qcuX71GY1g1K6q2awlpvjdtNhthzrKsqTufFQCwf3C8XG6gcJMq77vOKbAoGUYy5AEMkSVASimOR+McQ79p+shOSWJq1pvQtdbZSZ7Zsqxclli162EYKQEMDr2OWwSDisjqjc2y4vnr07Pl6e07N955+A5HBTIDg8Co0d1IdAjG3ilTYch02h3zgHmn7EiJvc8G2O7x8Y2f+9mfvrrcJAYaPM6wi0mQXRaQDs9SuE6z2JludoIa2dGdd+8SUQVjBHXXWOCv/nj3YBYV4QF+P+hHdigTO58dTcqsdLxaXb54/mw2P9lsGtEk0H/22UdVNfbevvfh148Oqo9/+Fm/Cpt8VY/LZ48+zXN/ON9rur4XXWz65Xp9++6tD7/9Ezx7s6m3ueQjXwCAsCCogogCDyo8lSa0zjnjXe5dMamGWmEHn1AyhggwSSbMDNL1sQ09OEPORGVCiKm3LneOuj4gIjgLAM+XF3lV1SkmAEyaJImlFIXjTqiBqClwCm0MUOZFaXNvvTOw3oTlxfK9b9zb29tvYhtjq33vfdmG/uzy8smzz/cf5vO9ubQuCK/7VlN7vlwam4dWQ+Dc+aTRGEL+iq4EoixDP2SogA2hwjB0ZN4xMYfLGouEikOQ+y4FHEBTYhiSihRA1QCyCBgCIjQGVFGBjLEADAyInBiM2dTb0nsyEFgUwBEOBLYQwq5yGpQtKmBQQfsYX716IyqExCkRGFLs+94YgwYgXbOtfpytAPgVD3qY6RABOQvA17BE0BQH/WQIgUEcGkRyzgu0lggRY0jcpwJt7KIF5MTNtlWDTdPOpvPYhddfvjw+PLx7chJDn/q2b9uurS8uL1W08L5tU+m9Ua6yIiMySNMyn01Ge9Np13ddDNRo4GQlWe984Q0pSMxyX+TWGPDeh9ih6v7+PHJsmq0hQKNt1wxDghgTBxlaOIN3c5BpGbpmaF3b/oe7jXZJsQTKO2YS73q4CLrr9wyD5yGtZIjU2knHv8qhRSIaPAvMgoiJmQirLPOEfexW7eVsr7h15850Ol4tFsvLVVVWrnB37p6A5Uff/8Hh0cFsPj87uxQU48yzJ8+fvXjTRc2Lic9KRZuX49moEI7npxfWWO+yvk9lORJRbz0Zk2UlC4tIF1I5nlsPXbcuc2dR96fjg9no4rI1tgQkVkVVG2Tmirum2q/TSEMeQkg1URp5uycOu5ihax0tVMRChob7WHjN1TiW0KcH071X28WaY+H9xdXlo8+7D+7d2pvvtfXCGCqrqu9bQLDWJFARCBwl9dYiAlhnDeWq6iMwuSbq5dUit+jn47u3jj6/uEohGEW/m2dgbp0m6DluO9jfO5SYNqnecF/avBt42bkvyXjh6WiqBJBiUVUQhUN03hFHMiApLRaXbd1t1xtjTbfdVqOya5o8szf25lWV5QRZlpPzy/Wm7WJgAcLtZv3kSf/Ww7ems9nZxXlX105MV7fe+qialJuuu1gvll1z1dZ+Ou5TGxxtUFsjbyTdGo/kcG/54stqOi5Pbm4//7hHcnnVMbRNMGRC6oeJ9Hq9jillZTE4SgGQkwiCVXXWqwoKWG8MUR9C1/cGBp0/OjIAEEMwWRZSrLd16GNZlgf7+2hNYm6a7WrdEOikrLZ1x10/H5cGjDGmrpvAiRUUiMGU1Swrc9aEIOuLi/Oz86OTE0PGIGVZJuQBgAMboC52HOH46Hi5yut6HUJYrzevXr+6e/fBw4dvXV5e5ll+dn72/e9+7+HbD/dms+XlUvrOgUpSRGOAQNFnHgAoyy9X6y9epBuTt5uudQjYQuRYjUdK1HHyRekzmEymIJpSMkhkDRpDof/uD39gAG/fPtnWG+sdICqLqoIxi8USAFgoJjHWX2tduG3qweTjjOkQmHnYbYmoLKvB1HRyciIIddPElK4WV+PJZDabvfvWu87Zq+36oDp88vTJZ58//vr777//9lvp/oPF+Wmz3SzOF23dGm8P9veXAl2/BMA8L4ez02S6F1Zxtd6icO4si2TM1rC13iiQczEk5z0BShcv35yuTxcY2TD4LBNU8nayN53u76k1RJhSgsSaEhPC8AECRA2WCmFu1msOzEk3Td+E7uc+eGc+n/d9NDa/Njd9BSqjQZoCu9IFcFdXD1YsTYEZhayJISIZjinEOBqPs3yk11YpMoS7zvePOX92YoNr/c6PHLTwVfkzCJpFUXRwG33lJgNVTSntaCWwq5vw2hgvwiJqm/XKG1ms1s+ePds0Xd0/f//DD9fLq9is9uczZ83b999GK+t66TJ76+h4PMs+/cEP333/7Vg3qzNGFmRbh/7Zsy8+fO/h4fHR6nTrjBfVECIAAOEAviMFGGaFBoyxomLM4N8XIYjcZy631iJDiinGJImdoZ5jk/qozMCGoA/B5h5Rhw1JRIx3y6s1ABSTWddHBBNZnIPNZkMmy5wzBApKSDQE76TUtgESQAbFZLJ3ME6c3rx58/Vv/eRsOn1zdZmEsrzU2FhHMYXvffSdn9w7EA5Pnj510yJI7TQcHOy/ePwyc1lKHDEpCVmz4zjJsHEiKSKRCDAnRCBANEhEXR8GLmxMKaWIiN5nA1sMABCVYADsycCaQlYAFBnwATrQ84acduWkIsbS4BPMEJKxdbOtqsoaw8IpheGfsdpumsk0H7KbrFVJSsZa6xJfXl72bW/JgDFD0Gzbtj73CGiMUeYdf0p3d7gOSKPdGoWhMUmEKtdLFwCAlJOqAFKRF6mrDZl6W5PrAEABjHXc9lnhBmyrqexitR7Pp6TUbOqL0/Pj4+P79+95Z2PoVovlfDY1BEYPzs7OwbqszADBIjiAvckoRyVJpaXSUZWN6j6UeXG1XBvFXjkrvMHq7Ox8NhkdHe71fVDVxEZENpt1WZVoTNe2lkxVlNu+N4MLWwCBVA0zgACZIaoNVEGYB9PCV02d4Ycx3HrMbA0ZQ6yyAxhcW8Ouf4qMaIYbGgBRQQGG6dowSBsOQ9aYvu/Go+L4aF+lUYl78+ntOweT8fji8rJd1eO8GlX5W28/iJgeP3ly6/adWTl+c3qmgF3Xf/d7Pzi7WFpX5nlhrSNAY60BWC2W3tDJjWNnbV3Xo8MDFU3C08m06TpjbeLUdZ01rktdTFpW4xT7N6/Pbty4M59MT8/Xhoo+clImMlnkMsikkBmAFxFI4kANKceKCK33YAn1QiMjWQOp7tGHzGaE1Ar7pK6anrW4rVt342Bbd0+fPxeI48wYJFQx1qhC3/eDrMdbk4ZAthQUofAVVhSF+qSL1aUBGRf+8PhW4bDdrkcmC4EhcdJoyViErmn83jiGdNXWoLqBANYWlFHkYDgJM0FZ5qVz1pkeEm+bvoua1NlRWZXCfHW1AJHcZ/NxSUTz2awsstVmWWR5OSrv375pOUzGY+N8G/lqseySCODVYvHyzetHH//w8MbxeDTy5LRLpkt9ECBTTKr29eur9aLpG5+7X/vOrz64c/Ot+/d+46PftL64/fY7T1+8+viLJ289fOtNU7/4lV8OmW8UAxjrc4dZndpBD6gAm802pFSQVcChOwsAhOisTcygWpYlkZHEZV6Oq/HKb6MkRCTwAIBAIrpYrBDo9p174/GUrBFAZu5DausmM2StjyHl3vrMAUFmM6hbazPBcHm5BtOOpnM1Bkgn4+rwwfjl02f1eptN5s5aSM3B0SG8AAPScySkTb0d5ZM7d0/evKHz83NjzavXrxPL2w/fRjxomqYaVy9evHjy5MkHH3wwrkav3ry4OTG9ivc5MIgmawdFNru8uGrqRdsej8eskHkHDApwsbgCgdl4LyVuNlsVFU71ZmOyrA3d48efO2e+/RPfSikWZZk0xZiMMcYaTuni8hIAFDDEZMscjEpij5RC5BjI+bLI6q4DhKLwe3t7bdt++OHXHNHHH3/adm1iBsKmbbTV+f7ew4dvO2Nj5Kqsvnj85PmLL7/5zW/ev30bFPMiWyxXh0fHCNg+6pAgtO2Dhw9M9ubTJ6+sr9abNQBcrlY3J5OEvG1bwCKpJEVvwbIaBUgJLQn3q7PL02cvtEk5udL42XjsqxJzx95QmQWjziODAGniGNqE1hrdTYWGBE+OXG83uTec+mW93TsenRztU4whRCQmJAUQVtpNwIYhgOCwvROoSAyxDz0AWeNENCUBgL7vVbnrupiCNYa8kYF3RoMkgIAAgXb9IEJAIsQkCqhDxtDORUsIA11nYDjsFBq7WgqulQYAw1YKoAo4MD8H5h3q9bPY8ubs+fmyLKY5HQVoTZauXl8WhQvJWFMBaJ45kbheXR3fnJ1frWLbnxwevj47zZwZTUdz4142Fw33lyt9/uL13X1y5ATIsHZ9BwC1toSqiV1CJFDjgMAQoFIMvQJa6wQADbFy6pMhAoME4KyRPnWp60xQAOtQAlgU5tYVPiYRoZRsJHy9WgCAwJh5Qy55EqPgQzbK9iKsg2xym9XbGCMmFpOZWzfv9l23WdenyyvGycHxrfOz87/4S3/21u2b4zLrNTq1qMlDjNJ2slmef+l1bKFWTgZ61ydKejienJ6vrB9t+i73heFdDq7VXX4JEAROuGt6KRogMkMgnKBVTsPYNfShyMtdSvxAFmZV5Z3CHkwacEaGFJK1llSFkxvwgiAqCRRZQFUJsSqK1XqdFRWpOOv6GNRbyXTTdOu+s2UZQgJr2BhOqmizrNxu25QEAWMUIhOZFcDZTBOAIDML7/xfxhhEGmA2AJhSEhEiZZYcPAMNbiYFARBjUTjC9chIBbbbbTFNQWJBGbDm1jmgvmkz45I1ripYpavrvuvv37l98/ZJ07Vd6t6cvcmy7Gg6b1ZrYMgm05WphajpgqNsOh7NR9XeqOibtQWut8vRZFzlzkXy871m255vl5vtcjqawGS0ubzcP7xRTuaXq3UTWma2jqjnqigtqrKQNd56Ml0vDGic8ZEh9ABqkQ2IIoFIMsYSGh5SaohYZGAkEVgFYEBS5MQiikRd1wGoMThwdYGQDKWUdlofRQQCYDQ7vD5ZiomJDGGG2mc++iLWy6ssh5tHR2VeLi83l2cX88nk6ORotjcK0jx9+mI+OTw+OFwvLp3JXly8evT5k8WymUwODFkQlCQF4cFonvtCpKsqP51MraMQZojY9i0imsxdLjrRSM6G0KW2AdBkMLRJIpTFfugkxRYtB+qjoSQAiVWT8yZS3GhfWiJVAQIFYDCihfGqgijE6sAbggRNz9GOCmVxUSuFMROpP1U+P18cfHhvzc3LV2e351WVO8ooESoaAgucAERQLbnIPaIHsFHUZBknMQQI6dbxwfnZ1fFstlrV0iRnptaDAPTC23qbGXuUjS5WTVaWy9gGA12KBmHV1XmeZ0THkylKiqHXssTMS2gRoahM37Y9B0heEhhjU2iNiQRyNJ/vTcu2q4+no9n+Xl5W9x/cI0mZoyLPDOF2Pd5uNpu287wp7VHTxX67ZsVNH5QsVaP6bBkNFEDeoG/DgcBve/iOef78J+4++PrXP+ieP98/OPj2h9/4s4vNWR9+27sPHj36ZN3D+MYJNG1KwedZSjVIh4PZtzCXVwtRBDFkDYKJMZhBGCGgZAQgKlhVg0g+t1meezM1Um83VTkHgMTKsfPGjsdTY9yzly+vluvIWpRVntnpbP/89QuI/d60Gs/3C2cFpOeUYv/syeus2vvgw299/6NHXZtev356dDQ/f/Xq7uHe0f5+3XcDWaDC9O33HsBHvwEaxGBoY4jxxdmbgP29t98SkNcvX1ZFcX76OqXw/nsf2NxttpsH77z16tXrF6+enxzfhlu3+sUrQceJCSMhWgMA4EDRuHarry+379y+bbwbTUtPigLS9l88ffpGXu/tHeVFAarOuoP945hCvdl++O6H9x7cM9ZcnJ2yxsp6QlKkQRS82WwBQC253JEqJvaijohV6q5x1gIkgNB2q7zIyjLLsuxqsfjBJ482223SKstcjLHrwu2Tk4f3HpblWFktyRdffHF2dvaND77+4O49UkXm5XKN4BTSbH7o3XMJbdNsV12RHBWjalP3g3vu8YuXN7/+DgAkhi7IqMhAjYhiZpWAWR1QfbX+5C/95qwsbxwfq4FRMZ4U423XyJCDPK7UUifJWkfGJVAERBGmNJQMNpCzmJR7CJJW+1VGE/qJbz5068W/9E/+o2CsWO8y/+GHX/+Jn/zpPiU0RGQQJPMo2qdYt81KUrg4exMjH+wfGuMUDAu0TcjzglkAIC9yoyYkBEPWOGUFMuScoZwVI6MxnoWQDAPQTsTDBGhxICKiwo4ouzN/IQ6jluGUOVRCCkOMIQx/SJZEZBArDQdcBbDtZnVy60bo7XoVD/ZuCMWY2rLI59MDALj/1h1QfnP6vJyWq3Z1ubw4mR41bdP0TXXz0BI6Y/JYzKDwmJ2dXdwY7R+OKopqCJEcAPQszgxIR1GAISyrC33mHSKqAutORTF4a1HVkLXOIoMqhxQDJItDpoJY68QyK2tSERfVtSyb0MPguLPAHMbjCoVyk0tn2CllyZHlGABzNERERVFkmV+uN8JyulhO9/fu3D15+fzJKDfHB/PT5WWPmCEYRCRa1cv14iI2q7ZeNnUC0DF4CGkyGjVNv2kbmxV9jJY191417dirAJwEkMgQMDMzACmSDHsgiIBRVAVMMaWUCMgMMXGABABDjmwSNGSs42GGBWqQRcWAkoBCVFRiBiIEBSJm4cSW4Orq4uToRmLNnG/7NifDRG1KjKSAChARjfMMBMj1tmmaVoDQgKr2oUcyQ99C+ZqYoDBoe5mjiBhjvlKiIRLRMHQFhaHnwQAJd3mi2Hd9mXkOaKwFSjSQA0VJyQCq0nz/8NXp68FYP6tGt2/ems6m62azWCwU1KLOqrJZrSimWZ5TVU3HVc/pcrXhCKM8c6ipbw/2ZqmvYwpdu3Uug4SFzfLxuI9tU2+0b2dFFrdts1iU03mR+YmOltuNCPR9BOmMggJK4KIq6r7bblcx9pmthBMKFC6zZLoukTEudykN0vSBOPAj/Y/skKNfyaKBiAxZRWBhbzL4KqtmQFgSIQOqweuZGRCyJGNIhVJUg2Y2K7bNwpIc3zgsy2y7XF+er5zNbt+5W4wzcvjZZ58W+fTm8W0EWW7qly9OP/7ho7bj2WjPkIkhlL6aTqZ5VoyKIssy5/JylFWjChG8c0oYYsiyLEkqc7tYLbvQjzKr02LT9ZvUhAgp4CyfHEz3COTxyxexq8mMMAH0qbAmB6JhDE9EiMIgAh6sM5gIBLW0plDo2+CtU1GbWcUk0nugHFQVZzbrAS6b7s3r87vHM+a42tSgntuEWYbGO5uBKjGrMKLsmOmokZFIGLFu27LK+z5m3k5H1YunL6ySMxkrCwcxbJ3ByPOibJvYdMGPpxtuhFBDstYCSuHyv/Ar34X/P11vvf+grjehrWO9yQnrxVV/tTR94KbeM9au63FK7x8evv7oe6T6rbffW9hMmclS19bC0VmLiDHyatNwUhbhjjPvnXOAigDCkkTIex2O+AiRpanb/dn4eFY++uRKUg8AQORJLTpL+PSLx4zm9u07jz5/Elarn/5df9m3v/X1X/mlP/flZx+365U5OfCZzbJs0zQxhMlo9Pb7H37r2z+van7lV37td//u3zWbVt/5lV9qNuuRN/PpOBrwHseZCasLACg8tTFxSkSUOJ5fXE6ms/ff/9CqOT89m46my8Xy408+uXPvflWNY4h7sz1IUm+34+nMxm5xfj6YSjjFoQNkAYTVmfzscrWNyYBMaFyUnrtw8/hG6cvlqrE2H02m3rnIkUUA8eFbb48nEwbuQofWxLYzxmSZZ4XIGmPouh4AqnHV1d1gwiZVScxmUDNEUFGOKYX90V6e5Qj62aPPX796devWSYyxaevNZnt8fPzg/oMiK521Z1cXn332CEAfPnzr3t17zJyEN8vV8urSlkU+rgzgrTv3nn3yaR/40edfYD6tu76uN8YSADx68vjWhA48urxoU/SaVZnLnTeOrPfW5rENkuLN42MLsNpuNDNNjMvtthqPimJkci8IiZNahCGOnAVUOLESi0YAoATem23ob909efdb7986OXLevPvOuz/47kdpu86KMjWbl1dXdw7nVt4nQkUyZNu2Xm+btll03XK7vbTIo6Jc19t+k4zxTdunJH0f7f5hWY5ev3lzcvvEkWv61mdV6BgAQuK9o5sgImozmw/gvCSKZJAAJAEMzE4xMHjvh6MjgDIAEOzSLgDg+v8DKhjgK57eDs34Iz0HAti33n2nD3r1/MwV4AppQ4gSkmSp640xT589P7mzV0xGr5dXLivL0fxysS2zfJrPQhfvfu3tp48/x5tz2yVqQVGX24sDOzHgLLi6SwBAYoFFFHplkWSFDVtDNqRIxhrrAY0oEJIKO2MRCRUABx45kKBG7mKwYJGcIghRbFtQg8b3gOsYaxYAYEnZiCAZEBAGBtMDFtk4hkswEWmH0k+BT8/OjLWDfa/t+ufPX3z7W19L8eDs7PXRg7veWCSXJHSxP9ifLjZXr05P98Y3ncP16ysFxGpshUCpLMu6TypC5IYQg+tuGxJikoEisZN2DANRwetUUZUBoowIzKyIhDowFQbdkKgaa0Q09g2LWkOGEDiCJmdMZkxRZNPJeFKNilFeFiUYs9luV5vNqzdXL1+9QYmZcXEoVhScM5umnpaFBVVRY01gCZwEoOmaruvAOzJGBfq+dwMWk+Urp7fq4DmVgfI8qOittXJdJTHzkHIylN0gisYCISg652NKKfJ777335evvW2sQhQwRIJFljadvzpbrzWQ6RTRFOe76+E//oX/9/8c7zn/9+p1ffwgqWZFTStZg4T1IIlBLmjnkwARxXPpqMlHUzbaLkYeUAGZ2fsBMwlc33vCZc0gig/YN1NNw4hg+e9hx3lFQURVVUIQQlUlJCZUQjCEWVRZgefutt8rKXF6eLRcrBPe1r39jf29OJj578qQoint371lnLi4vv3zx6tXzU0euqEpJYMnMRpOD/f3jG8fO5UDWWDOfTYcMCiJyzqpqGzpAgCCH+3vz2XSxvDKA1okPMS66bb3OzGhvWlWFAxndnM7PtrHuRAJPfDk3puiDj+AZHCgxoBoFHHriA5KKFGZZcbmpTYZkYGAXAKsj5BQYwDg3tpmwNG8udVJhZZsUoW0J2SsaZ/q+5pQsaOmNt8hJkiYEg6SKAGSH7OfLxdXh/Dj1oW9aa4w1BCxiCVSssaHvYtftTWah2TCzM141WGcm1dhZwzECwP/43gkAkrVJxFnrnAGJ1pAFBdFxkefeEidPMB0Xo7Ls+rYajY5u3ixHk9F0MpvvaUrOmtA2Kok01dtN1/ZR9MXr09W2XWzqi6tVUlIxoKYJ8eVy8SdPz+sYFql7sV08vjwNngLhk7PX0Rl2/vufP1ayRVb9yi/9Cjfs1X72/U/yB29bykCIZYjEMt7bGMN6syYkay2qKIgyx5S89865EDqrQmggJQASCc7g2ObNdj2dlN4hABSW9sfjPrTbujYa757c+vbP/NS9m7eev3j5c9/+VuqbzMjB3kRiV1aVy3J0phpVd05uEp6fvX723V+Td+7dOJz9zjw3y/MXX3//LUmBU3B50RNlFq3VV6+fA4BFMALAklnnLCnoy6cvD0YHP/8zv+XZsy/Pz88noWu69vzN+YO33prNptN83NVNYobQhuG0zGBdhkSQEgAQUIrJIG422y9fvPrm+w8X682kOlo3jVH0RV4IGHTGofPGG6Mqk2rsMx84hJQGQaSCCiqrRmFjfVLpUwAARJLBNKqoIlmZE8S+a43Pcms5RRI5mO3NJpPF1eVnjx4VedF3bdvVeZ4dHc4P9/c4Jovm8vzy+x9/l4iODo9G07KJNbOsVou2acDCpBzNZzMRuRfk2ePnpxeXlENTr5omFFkegQFgPCn2D+Zpdb5Z1+PpPCEnTWS8Meoc2ZxY0VbZ/Q/eCU27bWrwZMA4cgLQQ8LUqSBaY42xxsBgS2JRUTDDkxz6EAC3WVb+/M/+/Gg66lOXZe7yYjndO/iH/tF/vMqL1y9efPHsi1WzXVycCTAa04WwrTehb5QbZyFzjoOOx3NQipGz3FPoSYBTIBLrWaQOYT0e7W/qkPnKO8Oq2kVHqW5bsoWwIObOkVEYBOmDD0gBBlig7qRG+iN30e76rxRAP/YC4EdSa/pxI4rNqkowGE8aYhPXo+k4LGLdhaqcrjfbl68uZwfl8Y3j1CGQO7tcrK6WxwcHmSUi/PKHX2z6dr3deHQ3p/snd04MJo6tA63yPAUEAIhWIApylJhQC86IVAgMWQHTdwEUiqJIiTnFzHsDyMwqmFhUJbOZC6HvOga2xoekgBgiIqEoNEpXTUq+AoDM3ThrPvVey2yEfFQd71+umhC+VDUmKzPLUUUTG2cJKbGwSALIi2K52Xz2xWfvvHX32RePu+32YDp+cd5Mijx0KcumWZutN9tx2Y5H9rf8zM/0QV+8fFEvNrnJhp9nYs7zHAFZhHY5oIIIxhhWSIEdDREXKD8moxFhEFEUYwa3+3AmQVUVAEM7egdoJBRj0BrhGL3Bsiwm43I6KQ/m04PD/VFZFlWRFzmjLq4Wp2cm925cFFfnl1mWpcDO+b5tPNl132y7tsoKAUFDShBjGCz7aA0aOzwCYoxFUewU+D9KPB0aNIML7Ktdfvheh16HAJACATIgEJKCKhAIMosFHDpFKfU7jwAiEKSYCDGEyKCsUFXVly9ecR8A4B/4yQfeEKQ4LcvD+Syz1ntXFqXzrmnaruu6EJu2SaEfFflkVMUQjMEQg8u8c75p+67tnc2ywoszfduCgDW2j+nN+cW665msGp8AU4J/9fuPlIwk6WJslj1DGpASKKnw9ng+jVFAcTadgc2evXwdQhQBGBIxcOeSw+uYkaErS2gQKaUYoxBjkVuRYUaKg+Fddtm4OEAViVAACZGMSSkZJQtqDc3Ho/s3p4Dy4vnz5eqqLKoP3ntvbzpiTV98/lmW0Z07t52zp6dvvv/R9zf1ZjyaFLYcuarKq1Fezqfj2d5sMpupNS5zgETGgSIhWmu8c9bZlGIf+rrebuptH4KZz8qivFrWL8/fZBbGpVcWlhBig8TjcXW+viSlzDiDmJH1mJD1WhFFqIP/GlDQAqIxuUIlwHnecyozRyIGCAEoxsF9h0MnGdK6aVavL0b3jl3m6tSVzoYuGiYmIyAAmhiQgWnopCoyy6Cus7TZrqbT8Xxv1jetcrKonPqUxGbWJOaUCDF2vTiymV/1wU8rNMb7wYldWzIA8B88fTGs7b/+wX0RSUELb6sid5AqS0bFYvwnfuWT4T1/8u/+Hzrv/8p/+T/48Ur65b/xz6mkB//AHxx++dE/9ftM7rsQDyajMs8Ln0nXna62TQLrS7bgMgcAyNIzf/HmVW11ZdRr20p2npme7MjnL1gyn7/38N0vfv3XydLh/NCN99jkKiYGQrUppqIo6rBdr5fGEhIMlDcYqFIIfWiBxRuDIkQInEjN/nxWX7zQbjvyLvYBACxJluH+/CCGeONgr+3js09/cHB0vPfBw08/+o2ri1Pum9k4d6YQEVuURe6362VV5DcO97ZNPH/xxdnLL/cP9kPAcUaTSWZM2fZ92/UkyWg8uXE4Gs3gB088GRKmxLgrmyXE9P0ffPTBBx+c3LtzcOMoKdddh0gcWVSKPLdo2r4LKaTEzGCNFxGNkhk31CiopMwG6NHjp++/81bs+2Vd28y3603mcuusNbYNzXa7LKuiKPIQOwYhZxIwx+RyC6ZiToFTTGlUjLfbZrXeAMDl4tJYVBBRAVTnfOxDu2lG4/k4z2xKhXd5mQvgk2dfPn/14mB/P4g9vHEkEjPvIsfLq8Vsvn+5vJxUxWw+WyyXdVP63C6X65iizzJvnRojxgDR4e0b99978OjTlVohEGNVmfPcAcBb9986OLrRG7w9nX386NH4ZBpAAwfrPEBi7o0jP8qsLaBw43GehEMXA4tzFhwFVQTNvcEB6q0giRMnUJAYknTDuQgQizyvr1a/8uf/wnhUibD1vo/p1ZNXuS/azTpyEOLXL55O96fluAgcvHNVVdossxasQXUeWMfVZLFaOUPeWoLoPVjDoKHIjEKv2qs0zk4N4KZp96dji1wVNkkKgbPMhrB1vgSBlHYEc7mudXazhwH/ggNNBP6bzLVwjYyBrwAuOEzPriOJ7KPPPvc+d96W49Jntun6Poa249UqWEMxymePHm9WayfVarP84tkXo9kohLA6W202qwRy9PDuyM0cwmax+uKLx9OieHjr7iTPUuoykwEAKSHYRIZBQFMmqgJCQGRFgIUBjSIpCoBh1sTCMRikXWUq4JEy66NoHfqECEm7kMiYhnl+cjwbj9ev3wDAaHTrrH/iyOZ2Gnnec+FLC1rWq3Pt+7zMvVVAv+27mILJcwVG8gnA5/7lq9d709HR0fFycXV4fCvgyEDqW1NVZUzpYlUjpMzb3/LT357un/zhf+X/4jP/N/+Nf/Of+JO/+Prse3k+6vous94QkLWaVAYRtBmCRUFFhQUIEAURjSFjKCUW5WGQMghjhYfwHRj0tYRgHAE4iUFFSGVU2r3Z5PjgcL43LnOfZ34yKZ216/rq9M2m6/sudHXTdzVbTBZZUpiOqm0I0dogqsJ1CPmoShw4ChgvKn2UyKKohiCxdn3P17MtZoZBjH3NKR6urwIxRJg56Q50CaQDucgOFilRCCkBG0ADRnOTg2pMiVBFGQSIXEpMgiLQ96nv05v6nNtIkgDg//jrXwxf7l/5q356ryrbZlvleeaJOebO5qaqsf67/p+/MbznP/3b/qpib/5X/mt//MeX/n/+9/x1fdf/3l/4E8Mv/73/yV9eVVWIMc/9l69PF9umFw0MIQEAGF+AtczRZ5lFXzfbpm7yPM/zvCxHprQxpmazqKPEmGJMtJtYqiEDu2SMXWqpqiZmArTWKAglSimmNFjhBs/pYFGA60C3Hb0dAUWEYzRIzhgQNECH+3tV5b745AcXl6/ffvvBjRu3xqMSQT799JO+2/zMz3wbAM/evHn8+bOz09PJeFq4vBqVR3vHN+dHe/P5bDrK8kwsJJCsKBggRhUBQwOYA72zqCrKo1GZLX3TtV3vAdYygW1bLmsfU9rWcbVdxpQXo6yc5PwyxqTGZIokKGiMIERhRgsWNQ4LGAajoiXKCA3HwhrmVHiHMZEzzgywUEqIrGpFMuszP9pc1c186/KRdU6ACCHK0FFURVRRRkgsYIhwSJI3aGhVb/Iy358dpC6mmGIIufMYRFN0hVURC8iZr6azZ1fnMK2MpRTZF3lM/YDiN0TDE/RvvH/vjz199h8+efq3v/+eM+CIHLMDLqyUuftf/dmPAOBP/J1/zX//3/qTf82/9scf/cG/b1hdL/7IPykAPitzl+3/bf8QALz6w//Erb//f/v1P/B/ff4v/v6ubXPvLq+WEsPJ0TwhrC+WbaxZ0DoLAPNi/ObV61++OPN9++1vfOPFsye/+dH3f+pnfsvLFxf/71/+L99978PVdv0f/Kn/182jg8yY7z7+/Le88x65TAQ4sLeowIjYdd1msyFLopJSAgBrrXMOQGOMhghVODESikRFk3nXiNy5ebxenHdKAJBnNvNojfjSOdIys0Tp4vUzjhBSR6SH+xNr1BLmRaaIImKMrarckpmMeG8yOr9cdusLLHJI0GHv8zzPcgOifV9l1mI2nY1hCI7re2ecy6ouadJImpLGL18961Lr85xBjHMcI2vyZJtuS0rMnEJPNKj5B1emTcwAYAHRuQRiwa42608fP/nG++8s1/XR3qRnVowgCETGkrFekduuTpAcsDOF87aweds1kWthVWFjvQA+ff7s1as3ANDW9bgoWYRABxGkqiCQQyPAyGFU5j4rXr0+/eHHH4/G45N7d1RSF4NzhlVF4Wq1DJ8+unXr+MG9u9vt5ur8/Gh/L3P2YG9KzgsrIhVZQUCJUzkq3/va2/vH7vzq7NHnL/cns37dni8XAPCd7/zmlx/95s98/b3141dffPlkdnRYlLlaq4opBmcoaUqYNtxaYzsQRSjGJQh474yzDADAfR+y3CmjqKaUYuiZhYjBwPDRIJsqL5zS6ePnK6L9vf1oDSN98eqCWRWUnKLnwxuzMp/13YKIirGbjDMEMAS5c6LQd301Go2rkeoQ+aKjUVVVeZ7nVZXfPNoXUU69typJDMio8jFynvvVqsmtzzMNq5pIS5fXA6ccvsoH2tU2150g3WXj/re9viqhABHtZrUOcXnr5G7ddIn7mBIR5s63SVOSohxZm33y6dOjw7duntyZbFaoIXa983kxomIyaTbxzv1jT4J9vV7Up08X38humJsTSVsSBQCPBoiSiRCJVUPoQdWTHZhxiNY6n1hAkYwLkVF0l6apKAAD0MuQESRljRxiCgAWXbbaNN985913b9/6pU8/A4DF+rK0mUOzXWvTL8AGym3f9+PRrA8N8CavRi73vI2bbl1aQp8JK/eBvCVyz1+8/sbXPoiLi/Vyef/2+6nfPl/QarOdzfbOzpfzcVkZ2zab0ThoirnP7t+7P2CdyoJAgcwQXjqkpe/6JSI6HIwNWSKUnUFPAeXHmnY7nOYOtmMMgapIH1LmCDhoinvz8e1bN+/fuXV4uDcZVUWeWULmoCoxdMwu9qYP3Nb16dk5qCdwh3uTJrDzplejnaAljrjp66lOo0oSQYgxxjr2fQiCKiCC2vbtsBkPru1hnAcoREYVRXg3o9up7nc1taoOc8vrEhsU1JAf5CC59zHU1hJzRGFjURhUxRkHJBx1s6lDn2KSi/PL0hUZ7ZbnP/VzH/yBv/Tx3/Onfu2P/01/BTgzG40UNUZxNkPB3/NH/zMA+L//DT//P/1//MXf80f/1L/7P/otw7/nT/+9f73Lir39vXfeee/B7/9nAeAv/iP/85//Q//G3/Tv/5lf/F/+DUWRlUWekihcnS7XRT5OQz61cYaQRV1WOkci2i+Xbd2mGGOMVVkWRWVN0W86Y9RaxUEELeKMBZLdHXWdY3xt6mIQIUJFTZoIiABIYZCF65CmLmBUEABYmQQAVdF6JyzE0XsyBi/OTk9fv3z33Yc3Dm84st77v+X3/6u7xfNvfue/9W3/3+n6q3/be7nPzcjhBow3BVgBbLu6pSIZwwStxkDODnk2iCCgopJElZOwxiAA01HOXWORVMUaskgQ2CIEUhMJnctcaQHq01VRZNk872OizBMii4iwsaTG6FAwkQHBgfEaUhTR2XQqKswJWDAkj5ZEnMHMECsY6zYhFi473j/8Yb0IiqrK0KqyKg8F/fCdVkUxvMgRK28Lj7NRdTSrZqWdTUbDH93Y39u9Z5DgAtz+e/9pAFj+2/+HGNPpv/7PEIj3O+qxN6TeeecMQplnmcFl3UzK/KrprM8HJwunWBgft+0HJ3d++zvf/DOffFng5K9971u/uvl15ee/+2sffP7y2fLZp7/tWx8uVuunv/SXRoWWmTR9i7JVMeS8gITYN83WGARQY8yuiQuoqsahN95ah6gG1Vjfi/Z9W5VZWXhMpRlyi1CMJaBkyE4mhYoSuRA4xRiZyiqfTqt6s/DO+twBqs89cOLQEQpqmoyKw8O9zXrTtG2e+zzPKXOEVIfgAMaj0qglgwCQOBnjbJG7vEJRxLBt1jGmul59+bItqtLmGZEZj0eSooLJjd1uNqAmhI5jD6CExArWmtj1AECGQgxV5kGha+Gzx0/fun/HFq4PsRqPjKIM+dQAhXcC7J1zRUHGOG8BYYilQ8AUIpLNS9s0zZMnz4eQpbIqBhoqWkoqROS9B5au3eZlNSlzW1gJ/MOPP15eLu/dv6+sZVFkmQ+hA4UiL/Ksapu+rduL1J6enjpw89E8t3lCBkVjjXE281lbN6Qaup4MjKdVNb798uVp3Lb700qU4XJxdXH17Z/9ien04E/+F38CvH7+7FX57js+h4xQQgREJjCZYQaf+6wqqqwgQOlT27aR45Bqp6Hn5LLMI2GMse16EWHu1SgAiIGkHEM4mu/pprfk+/rSl2U5mxp1wWAwYjJFGx6+fU9NaENjXeYslIVDohR3ie8hsOsTgQ19b4xx1hY+y10e+35UloXPLy4vq2KU+6qTbv9gX1UTR6vOWkCU1G9zp5w2wp31lUAGSooDeYh2hmvYzbgUYPBB/7e5/mulkt3fm2/rcPr6LM8rAsqcSwmuLi+yYgpgvHOWfFXMFstN3T2Z7x3F9Wq7alhVCX0vpk3bl5fTvcneZA+a7OXLF/z1ilw5zgHWDQAYELJebMap7+u61YYlRbVZngEaYWYNhqwCGLJ2SEsdkIEGYhz0zoIqgAiWhFUVlYAVztbrX/wLvzS6ddK0DACvT98gb6bTgyqfIKXN9gJqCaGDGJF7m5u2XXfRFGXJ4FPqQFEFrM8ASTQtlu3zF2fHR8dPX3zZ9tndk4PD+XS1urQ2O5ofvHr65Sgzhzff2YfgCUh4sbzabNZFng8Qnb7vy9z/qATaefaGAhV32eKqApASp5QGtgEQqDIh4m6egspJEQyCQdXUF97cuXv3/ffevnHjcDzKrEXl1Lar7Xq9Wi3qpmmaWhQjSx9C03agFGIoi2zkyyzTHjAHl0cnLGiwiaGLvSKgdbGLiZlZFJVo9xwPIZAhvc41G0hWInSd46lfWREBgIhUSUQYhJTIDoFAqorKQLmxzodOUowIwMyfPnoEVlQZ1KhCiNGr6bsQE6ekdd0AUFPX+WSy24ryfHjhEMvJpMh9FHbWW7Iku+V+48aN4UXb9sOL3/1H/kMA+OSf/4frsPudg4PD4cV0MgmhR4Djw/0o8Pr8Ki9NWeYA8OrN2c0bB1lZtX1vqCiKUYypqZsYYlWOrHVECEjC3HUdgB0wSKDIwoZ2PoOBGbnr6eDwxGUwQIKIICqIJIMjZ9BOowAO+duD0AoVwXsPoDEmSuyqglN8/vTJ3Tu3j49vpCR7e9PLy0sA+IW//bceHR1yiIurxZvXpypYuezGwa3xeDoezw+Ob05nc+s9IAgI0W78CkSITgCIzKDOp+EjY4mpVxZAiX23bZrNuj49PXt++vzV+cX//s9/GmOMHJpmW5W508RJ+m7rkLxmbmC3chJQIEzCCGDQAgqawdOKhMqhPyxm3YI8mo6YhTXyhJw1ZsMpGYWghtzUl1fNor/ajqrc+KyLyRNZIm89ogQWRUVjDRjaRSiiqlRVaQzFPo6qUdt3RklCBDHWkkqySAQaQrdaLe101rRtr7bwWQjRO7LWhrbNvdvVK7sMQzie5KPC703Kvclof1rNxplz5gf/+N/xtf/dL/zkP//vDO/5qjP68g//Yyd//x+c/a2///wX/jlE4JRu/L4/AACv/8//G1KxBlOS3FkzKlGlDVy3kRR7tBERALyiJE4xbTfbT3/4cbeuS+OffPzJ5esXTtLqzZu4WM6dPSyL1avXh5PxvKq6fhNVkgZCLyGoar3Z9qE3ZFUFAAengjG23m59boGgD0EhMYh3llVjCMfTyajKDIRQ9wCgwJvN8sbx4bgsIYmKSEpJ46jK0Zo8z7fbZeJYlJkCOGstUkQFAG+NJUIyADrbn090FvuICDGJImfG95hSF2zhBpa8kq3GRep103ZigDRWeV6zxhD7rouhH0+nkTm07Xw0y3OPMRXOt33nDXQahIMvM+44hH74BBCEOVrjUQnJtG3/4sVrPN5PTX1zf98QlmVm0DpnrDUqkuUejA0hAoIxNqQY+i6EEFOyhJbsYruo62YymcB2NZuMYui7ba+gZkhFVAwxcN/bqrp5eLCow6s3p3HT7I+nV29Onz958tt/5297/513Ly/PU4zOmJRglJWhCd22q0bTo8OjajQVwZREmCfTKQGk0GuMzntmIpMvF/XBwfTDdz/4jf/yO02fxlUOALdvHp6c3CiK7J13733v08c/fPz8xvFtqyazlmKKMaolsDYxdESTcuytiW3QIYonpa7rWRkRWFKMPRGxaB8jcwRSQwgASTX3pg3N/sHhZDRzLW+ululyU623pvA6LmDst/XmJ37maz4z27Y7OJyPp5MsLxOnro6oxlpr0OaFUyURBjDW+sx758gYX2/b0Xi2XYcUYTI9ZKEk5NDEkKxxCOS85SjMnfNe+rCtVx7QZzaqAhpFEAURMbtSYefq0v+quvkrPfSPlTv/zU0iC4wQYTY6GI/3IodNfeWJRvPKGW9NVtfd6xfn+/vzsN2s6u1quTwazzyNV6HJEbvz5XsHt/o6XqzetOPx1ZuugJs/97N/dVz8QNJmPh8BgEEmS5nzBJVP2rZ9DDEOwnNAQSDjCBKRcRbAWBDllBCAAAU0xKiovshFwQSJm9j1fVKxo6xL8T/9j/6j8b13Pvj2z8B3/tLB0e3zLxuS/fnewzYtkU7b7Qq9j30oAL3Bdag9ZXk2zvLx5Wobmg4ok5TEeOeLBHR2tpzNp5PxeHlxZm9MS2uXAHXdvX/v/Wlh3rz54pPPP7n/zocPTm48+uRx17XOGQVRZeMM8PUPGOFa4QGEBg0CJ2ZWULKOEAGGiPXhfCZJmJkz55AQhBWEQAGkzLOD+ezB/TuHe7My8xLaq6tl225DCF3btXXjnc2zfDbfTwoxyuXVMqWgYlT08vKqOMr39w+u1utOovPUtUlJUbjjkOVZF3qJDETGGmQcIm+6rmPmzLqhrSOqZMzgrhfWgeKomogMIqmmoQlEQ7gpJ7KeiIZAmCHPLKXEDMbY4SDa912VGzVKaCVxXdeARd/3oOCdD32MfciNG+SoAAMMAQDAWJN5H1NCY7I8d2SNmh/8Y3/31/7gv/aX/8v/8fCe3/G7ftfw4vG/8I89/F//wff/wX/2T/8Df8ujv/P3/PX/1n/69j/4hwDgj/8dv3dvPimLAhDV2KOD/fn0dN11o/0pAPQxvjm7ODw4sCYLPafYc8+Zy0IMBIajNNwl5i701loFlxIrqLWWeQfFHpCHA4R9cCTgMGdPDAhJEiKZXUSlqO7mYSyaQEjVkBIRoGmbbZ5Za41FIxxOX78aT6qj46PFYnn/3lvC+v3v/yYA/B2/8EvD9/sv/DXvcUjW2HFWls5WWTGb703mc8rK/b/l9w3vefXv/Muk9sbf+vf8+J1/8cf+zcO/+e/68d959X/7FwHIep+DcsKi2KqAJAGAru3iaRiPs1E+OsiykIhtFvpQsUytLRFMYmQxBpMoEBoyPASA4CD118TRAI2cJ0R1fhs6INirJigSmo0zNg5dYMV9P66XbRi3o6MJuMIZxBA8IdlMrCQQAKOiaA0ZoyJ57hkBkbzPHbrL9ZUGzdADEVmTQnSqKUlZlkHhcr2weUaj0mZeI2qKzKnM8tLtFtvY7w4DN+fV/nQ8H+XTUVYVhXE0NB4e/RP/M0P48J/6N4YH7av/0z8M5kco8BgDItz8fX8AAF794X8EQMEQ0v+Ht/+Oti3LzjrBadZa2x137fMm4kVEZkRkRmSmUpmyqRRSCyipKEBISBSooORaBlEgmqYoCj/wIBASQg6pQCULDBqEQAZkSaXSKTMyM3w8/653x22zzJz9xz43pGLQ1aPH6O4zRkScd969L949e5+15prz+34fMIAAAeMAqssJmto3zSPxEcUCgFMSokUIO9OTJ69dCQOHTMXFre7BnZTnsxAOz+ZI9rVXbh8eHoU2+iAurxbNPBBYNhKStfZ0Ok0xuTJPKTHbldwQFJicdau8OTZAKYGyc0QYUiNiYozShxgguDJXkCTRGpObzBonCkmRre0XsflykeUuH7LLHCBZazOXecW6WR4c76+tb1y4eLlpWrJFb9ogRWXPQAYNUVZ3EQDaqMlwguRTIDYGyTdeAwzyQRCxeRbbBESZKUCQgFOMBk2VWXRQoxhWiR0hWUMqfetOiyIDSEmCNdZaN5vOjxlqUqu6Ph4ToEBkKshYIIhBGISIQ4zexxhj2/jFYmEN53kBAidHJyml4WAEMF0bj0bD4e03bteLOZsixmAJCfo40m5zXM0WzeLk5MaVizGmZd1ESepjM1tsjNZSElWt646YXFGacrOsisGwSoAhqQIKgogkVQQV0pgCARGWKVkid+vxp9LMf/pjv5liBwBVmb388ou7uT083K8G5cHh/OXX7l1677vO5u3QMkoLERLGRChJKEqiGgVCl1KK3vskAQCU2TdtFAFC55yorGJBKQMAQQFjAujm5UvPvvP5X/u5X04hDIdDLItZt7Riu7p94q3XL1+7PG+Oqskor9zm5raiPT4+my+6PK+My+RcKWGNy8tVrqkzNsU4Gl6w1jZ1PawukClCQLZV2yZrC2Za5SMT5NamFEXarptPF+325cesHQRIUVFVDRvQBCLas9YIdCUJOt+FFd80MK9obecYNjyXTq8KoM3xxsbQth2LcpnZZX3mrE3T1qvPsyEArK1vZIaqcXGybGcRFifdxsaWSjIil8vi+QtXjufL5vAQ2lI8D/ML62s33DDefXl/OMwAgEgRBBQKmw2GPDfLed2GEGNISZIx1uWgSs4RpOhDMMSEKDGKAgIEACRCJhWJMYlIirEcjYO1e0cn7/rc933bt/8vy0Dwr/75u975ef/+xTcuPvus4jimZNCPS9ekM09pYgeugFinJnYnJ0ejtY31ydh3RzGkPiwkCiDZRRfuP9q9uD0x4Juzkyw3g2IgyaZgsslw0cTD4zcuvfDRL/kdX7AxXj87Oy7LAgCstd5HIhJV6mcYiADnjMcE/FtDrnM85psXQIGRYwgIlFsDoAbEEGaZffz6pcsXtgnT/OxYB0Vdw+HxrlIaj0aTtdGlSxdV9PT0bHf/8Gy6mC+a2aL1SVJUJA2dP6DD4Wi4MRn72WkXPVgKXYrRL+tFWVUxtppSZkwihW41QG2aRlXZ9GB3ZOrB90lXJJ+eUYCqcu4I05RkteWjxhjIYGgFCRj7GBi0hvsPuHGMiCs2IGqfD9x1XQyJiMvMLpuGVB0z6eoIDqupGuSDajAYKCpnlsloFDImq4o3/va3++Cf/l/+EQB0If3CN331dD4/nc9v/SkAgFdee/1b/t1vAMDPffMf+ZJ//M9/zw//21/79j8SJbExBRoBc+XChemdh/3GxyDL+dwRj4dDVBFJKKiqhcuR2MekhCoqgEToQ98Apd7XJ6KIIEngPByMUAxRElVISX1KompVNGkClPNh5+pfuAphRkVkpnw4VEkGMPpgjbtx/RrrnAyub2wJ4Ouvv95537d///Uf/92/9x/9+z/1H175h7/zrRJibjgzbjweTyZjtm7rv/9GANj5qX96+Sv+x8t/6Ft2fnQ1NTv4iR/c/oNfCwBKqxnN4U/9U0lJNSoSSEoA/XKVlVmR5bHzAAAJFYGCrg2q6vLNwwcnddPVoR4CrzveYFupmhgQyBAhUj9XAsAgSQgSaRTxbZuRSUkVIMY4yYrSZWHZGKIo6pj7eaFRw+q6/Zk1XG2NQSUzlgn6w58SGTaoqElFIpoeLYBK6oyRLs1OpxzBoe0kqgAppBQV0RhXh9RJMs4EAwKSYrCoFmScm+J8mLVWrp7cunphUpWF48wgIiYBIHrqr/4gALzxl1eVJRm+/Cf+1u53/6/A5x14xEtf9+cAYOd7/vzlb/2bALD7XX9GFdFYRxxTBOKhwMbapDg6bFLXw9tclnkH+WR4lvwvvvap7UkFIfzEr/4i2yJN1l48OWtd3ozWdf3C6cF8cOmmG2+3yQJUyddqiElDjGfTaYySZUXXeWSVJGVRnJ2eFmWJxKrgjBVUABDqmXAooIumNswqHvr5O3OIEmLKctubhvM879oYU/IxHB2fKAgAk4D2h4BERTEgDlEpb7p7j3brLq2vbxKrKhJnmMQQaAI2btF0HWcAUA7XErJyyjLbSuzqTtGWw4KNCU1DnPXRmjFBF5MQc1HGpqaUGCJDJBVD2me98ir6WwEUiVgpy3Jr2ForKTW+293ZQZG1tXVns7hslssGIFlnXVEg25RS03bed23XMXNRVCHGZTM9PDwGRe89AFCS2HVMwIa7zpsiq1ymMbRNW5V5kRVFzq4g5MiEA1si89LXtx/eH08GZVmJQlVWzub9qoXGdjGZHGLyPVxNGLz30QcVKbIMkExmk6amWQ6r4Vuffqoy9HB/D+7uG8PBd0sJddMJFarw8mt3nn7i1sVBVrBatKApheglRvKp7ppeXZtAUv+xU0EV0Kbr2Bo2RkH77ZmRDdnzGgGSweDod331H0hZ8ejuvafe8lTQ8Cu//iuH88OLVzevP3HjdHk2HFeudGsb62gL34po5nLjsgrIgCohM7O1lohSSiLoIzXLuLG+JiLWGWNcECJiBSUS1N72pICMIIjYp5xmmVnM56GeFWOn0bBz3guykaT9krACj60+ffJ/dH5BH6rYz2X6nes8xHtVKRkCB2jKsghBpsuzJ2493vj52fxkmJUhwHA03tjcONnfvXLp4sjL3lk7e1QrWhU6Pjq5ce3a/sHxIkhZbRwvkqVRDNB5fOzxZ3b3X5vFJQC89x/8b/D/m8efAoD7O/Brv9j/8gu++P1XL1z4z7/+8mKZfAe+UatMbIfDodXk03I8WcflbLlctsvlcGQ2JqOj45lhEk1d612WkTUn00WR52xpf3/nXW+76r0+PFy+dmeH+Ka6UTvb//TLn75SjZ566smzJs4WM5FE3IP+VHVlfF/pYBRUBQi1d7wjggqswm7fvDzMxhBxCMESWgZJXTUcPnbl0sbasKunKUVrcJYaRNq6cHEwLI3h05OT+w92ZtN5CNG5XJRcXtlIy+n8bDoFJkqi/hBUn33bs2uj6vD4wJJxg8wjNE29XC6RyFhrDDdNkBiAXIqxa1tm7lM8g8gK2LMada2GYucRYOnN20tWR0cVSYa5UyVVRpQYgZGAow9F5vKcVSXEyISqQszGmtR5EMlsVg1HyYfAVBWu4tUOVFVl/4SzCkxGhNZaAkogxrnH/uzfB4Dbf/fP9F/z8iuvfPmP/ofveP87667tX0lxpVLavrDdP7Eub9oFiDDbwrnr164cnc5mszMAsJBckWGKD27fXhuPANQwG2sNMiQNkprQuTxjdqFpRRlWUX/SX2uAHk6KhKgABKioq9kWEBIwG1URJaLV0aTvESoAEyMioEhKMSUAskwqykzOmcceu358cBslTtbWjo/P7j/Yeez6+dRvWfdPnLFIphwMhpPxYDyyLvvt+3H/XwXc/9EfIMBz9PxvrRNbX/E/AsCjH/kuEenzdomIGPLMrq+NR8MRABA6VB0WawOuThdH6ayWtp1kbiMvh5kdu6xUQUiiAgSiAoJIDAAikkDJWmBsJQ5sFrxn0dB6V44yY7u07OewbIymRMQWjWOc+wYXIZsAlTbPDGCKkIgAiJgMSo/QFkwoIGgJkUFJojbz1ghLTAaNiCIAWBKRxXKZigIzk2UI1iQFJqoMrRX5OLdVaXvR25//9RcB4Be/4cu3xoPM8jN/84cA4OU/+zVgHLO989e+5bE//923/uL3AsDOd/xpYAMAl77lr/bv5OEP/nVz/oZf/qa/troCxNLbJ5lBACAg82BUbm2undV7fYMtoQJgUVWHh/PhZHTxytX57t7Bg73n3/HutpEPf/TjVx+77sriZ/7jz1/avrqoT3wXLFntlhmwI9OFEJOcnU2TCBEDYAiRibrOd96X1UBEGVkVfegAxWWmn8uzcUnazDogDwA+Rt+l0jKRZZMRkih2IUYVH9Pu7n7b+GvXrxo2qihRFIFt5jsvwIPxxBaDLsH+4eGy6cajcVkOABFi4C52XYxB1VpTVABAbFMQ6DoJTUiNBEyilklCkBBMpQoYUiAAJGjahhGdIb+o1XtUIU0gSgSg0OeV/vTh0X+5Pewe/rZffOq//N3/d48v+23PQ1MvZlPftNzb6gSJCYRQVWMkhLVxub5czuslgolRvVcyNmqkpcQUQgywlqJ6B1lFmWHtXes++N7Z3Y/FEwgSJkJGLEqrGIlAIEzWBxfe+xnPxAi/9rFr124ujg+ak9M8G4mYQYVtM/3YJz7xRZ/97pPZcmjIErahjQpkJSRPSVD6mApCxKQqKjHFqKJ9wzooGwOEyHzux0CB1ElcShhMxl/2x7760b2HqumDv/GBGYZyc3DxxoWscmicKezW9rYSTWcdoSuKjfG4KIoKAEkEz6MnQBRRiMg6C5iZrIQVPo16OiFIEhCFpCkmTYSkgimpiKooAqyPKlaPEqwxUQVRQ+yPMOdSWu1VBvpfd4KtHtqfvfv/92/Z4CUSIIfgrTMux9Ozw0VzxpYGo9Fi2a5vTbIMA/mDMH/irW+fv3T//usPmkcLVxVrmxcezpdTikU1mTUhJmuMaZbzB48ePf+2z3j82fe89tJHf+n7/jI3AVXVGUQwRJ33SSWlNKuXrfddCHXjgwAb7mcrIoKihEhkiRwk37SLaVMvW5+6OLCFy3MclS8eHP3Yv/q5/+lP/+Vv+pb/+97JPJj2d13dev3Jm//m5z/c1tZluLl9gVN68OAY6qnbLEbDNSBsmuBYUtst5Gx9fTuUfrqoFazLXdJIxIz5bNFlJEXGl7au+mSyyiUc83gzzE9n9f3s+PD2nTc+4zMuVpTVy0VeuBB8n5LwW10dEFWQXhlNq6wDUIFVgC72PK2+EUDMRKQaQ2gg4dba8Mbl7fHAzU8PVaKqYFVmWbV5Ydu67N6D+0cHB5lzF7Yv3rj+mIgu6+bkbHFyNq+7UJaFyey86VIIklJZlMOqDIuuyszZdFblZVXksZO2bW2WG8JemN0DihaLOqVUZEU/xZGUlEgQHFsA7aHPfaQD/BZXquc2oqoykYoYNr38VVQtEZMRUWbumqbICkI0bIAhhd4pj029dGiLIh8U+cKxt5QRba2N+q3oG3761wDgP/3Jr6nKCo15x1/9bgD46J/5usF4lFXVw+/8C1e/7a88/qf/NgB84Nv/6NnZGQD8yV9a+cJ+6Mu/6Nln3v7y3/nzb/2//bV3/MW/BwCf+Cvf7nLn3Dh0Xc9D3xgN3/rE4598+VUAmJSuHIyTT9LUrCopkqKxZNAwsEFoai+KnJV5nrdeYogpKQEbY0UD9BKp84+VKmrqUV6MwAoKtMqd7D/3qlGTAkGvvlJVBFWlPrUNLTNgbp0P3enZcVUVKDqbL19++VUVuHDhQv8zHh2tFn0NWlV5UZXV2lo2GCQiBj78qR/e+oo/evkP/LHVlepvS6ALX/X1AHDwkz/0Zm2095M/ePErv/bKH/7We//079AqsDeVzrQMllZKrDZEY+100YazvXjWGltuVGPRthpUhJQIlKiNgQGRWZIwkMF+g4hRkhALciNSMVtrDAglNStOpGW0AIohASITGkQGJi7aacfrYTCqmtiqQ5NlRBBD7J10hLrKcFRMITIjubxp2m7e5OpQUZhUooAmSUJYFIW3uIwtUKkAQQKKODabw2pS2Y0qB4Af/32fvzYcWGPKIgOVlPTF//mPGUZymbEZsyHGR3/n24EAEck4JN7/nv8VkRVRkfr3bud7/zICKMQeCv6mU4mQ2UKIQoiDYbG5Ntk5ntbLAABn9cIYHmhxeW2j8un/8vb3fOjez1osfs/b3v7SS68fW/PetzxZh0bO9p98/NJvvvR6zrHA0ELw6sGrqqYYF8sFAPkQBVCTOGsXy4Xt/9qIBAwCRCYk33QemK2ib8LaMK/KDGYNAKQEddMVtqgKikGQSUGl810XfQynp7PxeH083vBdO58vAMgaB0pN3Ta+a4P3vjPWjUbjo6Mj33Zr46DWMKDMm86HqFpUQxpMAMB3vqsbWCy6Zh6hJZOREmlQBW5bqoGds6Do55mrpOnmy4X64GKbpc70XQyJoAYAFPT5G1cXPgbkKmeSOF8sr12+9Ad/75feefWTFOutyeT48JDZla7Ki6KqBgqp860SlGVlsswam2eZYQYVY8x0On/1zl3Oyp39w4+/8Kmt7cuDvHQutl3btK0xFhFiFMvExqimFNvRwF3eGOzI8bKuMzKWLRoCTaFpWCIQxHahocGYaW4wOXKOgrGigCQpJO8tEZrsvP4QZxBZAnRkgRwZ4vVqDAB/5d//8n9lZ//0bfj07f/XG///Zw9LZJmNMZDxQkMMOr52yTf1xRuX8Tc4G9ibT163GQ8nQ3ZuvuxiwrwYuWxUZoMsK411CACS+nNQSEFjIkZmRICyhBijsQ4RUkxm9akhRhFlBJSgIMLoLHPElBIY9AGa06OdEXKxfqX1nbOlJNCUaLWyrbhrIAnOZ16rhVFXGQb/Jz+vSbF3FUbv6yTtyfEBMl67fi2JHa1vnk6Pl128eevK/KxbTpfE/tLN9dO9k27ZXhzdXN+4FjqtgwiiYozQeq1/81Mf+bLf+dl2ePHqW95x8MaLFUMGUqfIRY7IFAViAoZhNQBYIrHNiroJy7aOMUjUznfRBwUBMSkZhNR1i1Yls9mgGOZojLFzH3b3DpJq5cqCMXZaVdX8tJ6FZEaVEX7i5jMMsJgdxfRiaLoTS8LZhe1N73dBUaJE6aanR+uTLUU8m9ZsbIgCiNYWaxsX6vr46Gy3mTc3Lt6caznVQRPj3Z0TBWrb5d2Hd69de2LRQQjeWtO20bJDJEgJVmLTc34g9i23vpe8ulZEffou9kLY3viugCpQVvnli5uD3E2Pj9p2bggQcX19nOf58fHJdLYoqvL5599FiMeHx5/+9EtHh4eL1jet72Jq26hISujBOJs51jzPDcLi7Kxdzg1DvZhiMgwOjRsUpXadihIRIwLoYrkwhp1lTYoARCSoRNgb3eXcz2YMQ++Qf/MOA0QCIuwbGgiwQsIApBhVMMvy6fz0Hc+/Z23D3dl7wRqbJEkCFA6dH1aDMi8QxDJWWcYEk9EQAL7j/e/YvnKpGgwBsQvRKHzoz3zjqBpMNjZdlqGhJOnBd/6FFOJ8Pu/adjgc/sjv/wKb5a4sRqPRW558gpHPjk9+5U98rahGSEXhqqoAFGt5UJQhxGUTrl7YPJ2eAEBpYJhZzvONQdk2XVvXKWmKES2HthPb224hpti0XUqISMykoDFG7J1dcJ7Lp30ArQAQEgKwSEhRrLWqSRBREYQApK+ae20VkiAbAywamQ1pKrKMGR7t7Dz7liuL6fTll+6dnEwvbG+eRy7D9OSsf4IKk/G4Wlszw1KMFQAGwKQH//sPIsHWV38tABhQ7CMq+gsHAoJ7P/6DAIAob/45AAlBCCRBsBby3FhnASAiibFHy04XrV3C5a0rJ6dHZ/NTzSFkFoyLAJYTJjGJHLl+0EcKBglTRFQg9JoawZJMaFuLpsor730duhpCYZzTfpoPpIgJcmYIab5zpCbllyZQuSgRUyKllBQBGalHphJpTCmhAND0bNq2voSM0TbJK4KIeEmIvDYazcKy6UJubZ+LXDCNymJ9VF0cl5PKAUDJWDpmQk0pRU+UGzbknLGG0SCtqkhQZCIBXQFqGQCZVvc9iQqKilKSBIoRQLXPI1QEtjZr2iamWGbZxmg8784AoMyy2enZOC+2N7elXr5057Vl04iEN1578WB336AUjE3j03L5zK1bdx/siHgvPmAKrEiafIpJpmdzZg4hiKi1ThW8j1VR9LAKh2CccZyJJh8DSGQkSVpmRZUXBs8AoPPRiHTON02AJEWWG2NiArYOIozHa/Wyvn/nYb2sldNkMjFkEU2M6ejkZG9/fzQe3njsZlHko2owOz3VGEw5MDaTZtl2ISJOjw7jrAWAN1673Z5N10jX16rNjeEgrywyKThrQwh1U89mJ20IwAhNhQClCBP50CGAQaXVKqvQHyyIRVOXko1gNBLRdDbtQvdFX/xFn/zIB0NbX756zXcxJVh2ftEeI4DNLBnIEIosr8oqz5yKBN9NF4uQ0vve9wUR6Z/8wA+JqkVDAJkzhsn0EVSqPgTjTJKkKsvloizz68Picnnt6HhxMvd1E8+mc3YurwoWMZayepnnWcFoljMKlmIuoMQmiBbDEUeNGkMIktA5i2wxL4ajjSZMfYKoGhFUwg98/98wbIeotz/98g/+yL/Kq9G73vnOiOHV1z/11sevvvPJW3g2y4EQIBoEZmQk6VPIQUT7UGdDZIwVECQEwizPyBhkyk02HIwG44FNCiGAjSlGm+VkDaPJnXv3c+/cKMvX7r0wWR+53HW+M0iZGwwGozwfZ9kgc0Nic073SAgCpIpOqOtNTQrKzCEk6RFEoAi4wp8BKjMhiEgIgZGJrENVxmhjaBbNctomujHadqZSwBCDJQKMsELPrcog+K+VOm+WRG9WQuduHgAAY7NsUS/YIGU6MFnEvPVhOp0puKRzY/Hw6KBrmpImj6b3kpHhKBvllw9uHx3cP9x+9uaya9sQkSFEzwDK6cWXPvXGG3c3H99eKx0ATl99hdq6B/wFFAQq8ixC6GIYjkcDoJA0L0MZBm3X1cuaUANi13VBoioRQ1YVzrClzAnbBIxmWS939g/Q2Ygxr6DMs27us42hzWtTZJm386W2dYDERKUCeU+nZ7XLFk8//dxvfuxDvotF4ebTOZPZWl/vvO98lxWFqrSz6eDmk8ORef34wcPD47esXXJU5Fx+8uMfXzbRookpzGp/99HDB48O5ssZUO5MZlwe27DKrF1BmpBXbGhNKr0Css98lxXSEqDfIZGdYfV+WOWPX7syGebL2clidqISqcg21jcM8/7+gcncjevXY9Q7t+8/evQIQKuqqoaTfKiqKIDzup5O59PFEiRhSgJqrSWmlKIhMkSLNi4XixA198m6fORcP5FLKQFi8GE4HhFCAkUiSAnSahqyGnytFh3BFdIw9ra2fsqzuv1Uod8HoBeluuBVJADjF33xFz7ce/W1R1I6K0AASgLWmSyzKlLXTYzJGgsimcsAgI3Z2dvr4sOmaXJrS5NfWN947Pq1ixcvqIoPCSBpFAI0RFVeyNrYZFmW54u2nc/nO4925/Nl2/nMuKqo5suZsXT16qVLFzcHRZnlzlrro5C1N69dBYBRlVe5A6H9R7vWZYPMVXm+bLtk7GnbBEViIlYkcM41TTy3yFESAKQ+kAbPPYyoIggIxITECQMDEBGlpJD6PGIiRGIEOn/L+joEQUQ770dlWdeLx5668uxbr8cwu/dgt65bBRhNxlW5mgzGuFKLO+vW19Y3ty+aYiAIhACqm1/1xwDg8Ee///xOA0Dd/KpvAoCjn/xBUkggF7/q6/Z+/AfgnGjADKgqAswGQco8H5TFeDjoiyMmUNGTxaKk6qW9XUl+88JGcXG8tbm2XRWm8+xDN1/WZ/Mu+AyTlWjYUmYIxIcQJIHEWqBwGSTIwRRsYkiRQVPfPCEC0KToOMXECgNbTBfz5f40nwyhAGVCBU1RNDEQKjIDEkYCa4qUALzOj6dGCBi76JNRVQEicllSnbeNZ6Qss1lGsRONmc0310aX1oabg2yYWwAoc4cgzmUKwIZt5shkYqwwEyASMeGbOBIkgvPgagRQUSQFpFUQtiIR9YZWYieikhIgIBMSpRBG1WCtWt7dPQKA3FlvXNf6w6MTpjiVsDDJXVxvCj5Bn0rz8GDv6PTI5tmnPv3iom3AMlqTGJbJS8IoKQQ/m02NMUTUx1x3XasiPYLVMJOSpBSSAGBu8yQcfJdUl63PrCNrAaBpvSIYXRKa4FzMxVgTQlLVjc2tjfX13/zNjz04POy67vjseH1zY22ySWgWdc3Gbl+6srY2yvLcMRXWlc7dv/9A63pjc5tU580yZvlLbzx4cDr/SwB3b9++ujF57MqVa5c3XAa5apXnElKeucw6VPAxnixmD3Z3Dk8PRaSqBj05ggBFABCZmBIpgLJlRSY2GvtiaDDIUOOvf/ADb3/6az7nfV9w//Ybh/uH5ajQREXSrgu+WSpolpVZVmRFwS5XZp98InP15q3HHnsc2P7rn/7pnf19RVRIoClzBYFaa4jAOsuExhhJiYhiaEMnBWUb5Xj7yjipfbR7/PIrr+eFuXH58ngynEzG5aDsiVyFy8g5MpkHbGNadu3R8Vk7rYu8rKxroEftkw+U1Km6LCsEQECTBHKu9W1uzeH0+PEnrr3nvZ975dKVD338g3U9Ozw67G5cG2RWfDLEvSCB2ZIhVQJViImYgQhVQwpEKFHZGCRKMcYumpKsMUSoIikKKwEQEBUu65o2Q8yde/qJxxOceu6ITUrKZMti6LIK0RI5NpkxtvcLE4ukJBKQlDED7A34EpNm55RdQ45Qe/+WQp/nlJiFgBSEFBUwsxkVYCAURX4480wYRBLElSZQVhJKAUiazG+VPHjuAvsvoS29PPf/III2QxgU+Xwxz5wl5zIdLf1xTPH48HA82RyUG6Pygm/qebP7xK1bbPLXXrqTWlobXa62x00bVcESphgNECiV+eb9u/uvfPql609cPfbN4NpTZ/M4ffTA+blpfJYRGyZDCgZFHSIYi5LQuAJKSSkMW/Eheh+D91EDUExx0SyAOPmEPjDY2KWN8WY5GKrZ/56f+P4Pf/ITf/Jb/uzFqzdDTOyRFaKjBjouQTqvQCi5TWJUdg/3hmvV029//pMffcF3mjmql9P1jXFpbVt3StGHM030iY998Jm3v2Vt89LH7jzYeOIZovDipz50tPPAoChkS48PfK337qTQoUVNqEAQkMGoRgAVCaoAYFYWDBRVEEmAgAoiYFyWtIkpWjYIwMzq2/WBu7g13hwXbT2dTU9iClVZTbY3o8DO4dFgOBiNRo8ePbr/YKfp/Nb2haLIOh9chmR4NpvvHRzMZnMRBRETkyOylttY758eRFFC03ZxONpo2qOmbSD4h/uPbmxfHFVDWQgD1m3rrLXWtV3oqVKgwGSgj+Xo53mwUjn1eOhz1hGuyiBCEbVs+8A5JEwqmBKySeLZps0ra594dV8ptdFHSLm1BoFQEJJzdn62LPLq6OgwE0DKAOB02Z1MT9iStTZEWYb20e6+JImSJuujapSnFMWrZXaGysxYHiLi6Xx+cHAILt+4eNmN/QsvvrSeDT7juXel0D3avV8MR8iWXY7OSYiuLOq6K3vuS0wxppHNRq7w6kd5fm17FNp0lvS4axKycVzk4LKsa4Nl7flmSVJczZSBAKnncUkAIsMmxpiSIAgSqEpKgfqzjgogEHFKkqRX5wGrYRSRDpEEeN60BXqU5XR3b+/o6PQ0DkYTZtpcH1qmvtj8Sx88AIC///4nb928tXnhypN/4m8BwM4P/13QlGJ9+L9/19Z//61bf+jrAeDwJ78XCEDO14cUFagXuV88N4Id/LN/YIhUDajGJFEt2LIqygvb6wCwXhiJ9Tvf9vT+lau/8Ku/GaDcKmlj7KxNUKRYAQ/zPBsNYTPWbX0yW57MF6d1OzuDpIoU2XiQlOJaOYjEIYTNalAmmaWmkc4KKbqIFEJnDCdRNYSoMcQxVvEkLl8/Hjx1UccUUYVFVUiEolgkD9ggJcGSCjnxJ7cPhrbsQkwOoyYEZGe6FOZNa6KeWdLCzbvl4dmJMThcn0yG+bgyA0e9CFqAEpIwWmKDSCmh6fN9SRGBWBGYGWhVAKWVAo57DEnfBGUiEVVEYBSVnlW7irgGUYFqUCzns/l0mjmzvrUOAGfdMq8GIYTFdFmU3EmQAe1Pw3R3v8vQb5Xm8ji0ZxmuN9YuAYrxEBAwaY558EFJ58v5op6zYQAwxiBS17XMmFKKMSAzWYia+tR4UQEVJqi9PprX85X4DAy5KOlwNo8KVZHLSbDMxvB4Mmq6JRm9eGk9y7Fr2vWN9YQG2Qjx2taFLM+zqrBMyiYoiEI5Gt98Mnvx9den07PKOmEKAqd16NQBtGzo2qWt7Uuj3ArGhIjee5sZtmowlda64Wg0yIfj6t7u3r37DzsfJQmwKGECJWYA6dmtAKyKhoRD0IRorSOosvzs7PTf/MzPfuEXvv+5z/od9+/dfu3lF4PvKCEJVNaIhhhiFyUXyl1xOJttbGy/5dat8XBMSL/xkQ998CMfF0Ah8RAcOiAlQ8lHIkXUKCkqqfc925PYHnZtZHdpsPn4E0+85fFwdPeNbMA3b2wPrXWFdSWNclofF4UjWxScjygbQJ6jwXo2fXTnzssvfPrgdGFGkxnghRtvNc6lhOJVoucsjxRVUNtgXTlr/a1n3vHEW5/P82xvd/eFj33k0vrmWx+7FX1M1ioJQkJRBiVUpD5Ek/vMLxRJqUeBq2q0ziTf1U1TlcVoUCFp60PmHFkXyQKQIQ4xGEtKXggePHywCJ0tMuTMsSmzoaNcvBinzKSUoiKR0QRBIkDseT0giMBIRvoFSAEUqD8fEABqiqSASQGoXyq9NSoaU4oqCkguH5IrtnKJsWPOVAAQCEV6dIgyQCRNyEaBV5RdBETu0bJkuCeSKBECQHozxRIBwIhduNyC94mYTXF4NGuaYNlOxuu+9fWsxsSOhtmwZKww2JzWR5vrpLlR27XRsAMJCkpgkiKgDWg+8Bsf/rwv/jxypu7k2luf7dbWT157qT3doySUmaBJGF2RadIk6kSd4RgFGKEaQqUh+q7tfIwKHEIAgsZ3Xj0jkrGLef3ku975GUlefLSfYvr5n/rR7cmlv/I3/ubxvCssptbPF7UZ27Zr4+K4DYGQUYMkzQfDF198+a1PPXXz8Vs7D+9nuSPy07PZzRvX5d7uydnM2jKpJ9R7d+49+8xbXn3t5U++9EoI8fT4NAMIkgzbBHT92pWzsz3CRGxEGSP71gMQ82rqpav02tV0EskAABMgk6imlLLcxRAlRRJgxNzy2igfFnY5Pzk7O0GUjY3NrKpmi8b76JxdNmFv7/XW+8FobX2rSiktlrVz1lp7eHK8s/MIkdfGo7pu2qZTTTlTWWTD0eDw6HQ6m4UoTR1SbMbjzfniYd22zprd/f20kdhaYlpOa2sdE62mOL2aDFXlza7Wmx7/3iKfiJBoFYkqIm9uAIQsIIpg2Ypoip5Y1zfXkGS+OFMRicEgagqT0db6Y4Wf+q5ryHBQQGOPjk6alACAyV67crULrTVmXI2GxdCScUzLRV1VGUsWY+jDKJw1UJWwWC6Xy8V0WpXlYG3zuc/4zA9/4pPD0SQC7OztXbyw+eSTTxGmwSA3BALA1lCMCpoZCwCOYTQqLo42/XRWJ4ndfFJdySZVe3ASk2SDnIwjabq6VUU4n0IJAiqSYVjhRQH7GWffccXVg/sYOJHzs4kAoogoJkTqjQqIikpEIAAppo2ttRKbnDHWdTurRbDr/KAqCMTXNQD8xfdsXLp4SROWZXX1xvXJ+uYca8iyAAEAAElEQVSD7/tbmGVMTlWIjRLt/Mh3IxsgRjL9tdz/se9FRAUm5zTJwx/5fsPEBKSqZEAA2QBKjAIImtRl+dbWFgBMBsXp0fxLvuDzNm8+8/Mf+LqlD5eLobNoWUV8p11SRIDSMo/sZHzh0q1r0MrZ7vH+w/39vaOm8xESInjQpe+MyzJrQ9e1EoDQKKMSMhm1/eSULBrjHCElZcX5Sd3sTatyayaNWkw+WkJgiAAJVbmPQab7t+84NG3dJZdFjSAKiL5tI6Nxed15zzYJ13WjoHmeV3nmGBiU+yiOflBtCAj1vNFjuY82A+JeRpp6wx4AgAhAEugRqD35gfpEpZ6J0HdLFfro1vNjJyspjyaT5aLruvmgyAFgUddi2Ai0bbO9fWXRNI+95anJ/ul//sDHnnvn24Nr//1P/4cbV29mefWp12/zYBSURIkg812dNAlH733nQ0oaQszzMoQAfaOEEEBTisRIZIhAAWNQUDHW7B3P29yN1saxXQAAKtq8iN53IcZU14vZaDTc3FxPQG0SbTt0+drGljVGqPTCs/lstlicLJqJy8+Op6A6mYyrMm/apKFDpOFwwzeNBe6STDs/a6O4CmAmSEWZW2b1scwcK6immNRHyHJOGQYjwcemq7PCDQdlPWvqxTIb5mBsUkTDzKZfbkISTSKSIKWeTpQRospkPI4pffijL8zm4cmnHnvf1cuHD3fnp3NKWk8PH+7crevm0fFpG16vJuObTzz1nrc+U5bVyXR+797dD33048uua2KcDCrLFJPHlBnUzDCoxBid4eA9kgYvBglYCXg6n1Y2L9aqa9fWL26MpqmDWLcRfaQSywLiMtQwLkRTpgbUEKAamJT20nNPb5XuR370Xxzv7BwH/c8f+dQXfdl/N9nauvvKbmby4P2KV0ImdkFjqsoy1Iu2WbbN4vM+57Mev3lj7+G9+Xw+WJsQE4oipNXxWwUEJaXewEKIZFhVu66thpWILOd1URSj0dgwJ0kMBggBqUeTpZgYAAkUpOnas+WZEPy3f/jvwf8fH//xx/8GW0ZDYJglIknfdJXeRbIKICDFtFJWA/cftD7OG1cAPtVeepkSA//2iZg5Xey1bUiRxpk7ODg82jsx7DinC9vb0+msOauXi0aFrly71S0Ka/L1cZabMjSpaTyqPZf19jlAkjRZZz7y6U/fuf/o8uNXCKIkzYfDx597++5t9+j2q5WCy0zovHXWAlokZExJEqgiCZMQJcvAzF1iUUhqkKNIVGVnaxUYlMVkPUR8+unnR8XkcHh9b3f/Z3/u56/deqIYr127dtHf3V0ujsUHi8lYDkGjikYAn1D59TfeuHH18nh91DbdcpG2h2vPPff20WTyyU+91iyhhjrGtl3UIHBx68Ld1+7cvHnjiRu3QOXFFz61qJeq6ZTZWJnXcwDuQ6+QkJngTYU5rc5YitqDCt5EEaBiHyGRojdAqpKCLybZeDwwFhezqaa0trFWDQens0VTd0TmZLE8PTmuymK4vo6UzWa1SFgbDxH19HA/ts3ljXVCXizr1ocMVI01xEVeXL5w+eGjhydBlssG0aggKqyNRmfTs9iGRdcRwNrmps2cgGTOqiozCgD2OTGACBBjOi+A9PxnWOEOeyUQERIZUCAgVSIyKJEAJSUAyrO86xZVMX7xxRcX00VpcxYKXbc2nrzr2bcvT2YvvfAqkMmc29k/QGbPdDibAsBjVy5ff+w6IWR5EX3qutgslikEwpR8bGa1K5wrSyI2hIjUdX7R1NVgIMjDqmxms4vjyezClrXZ1cvbZZlbJjZgmRAEAEQiAajEvuRjSpqWT956x/x4b/no2CAMijIfTtq9Q59iaTNERZWgGmKMSZRAAKGnx/chez2gdGXoEu2j3RAVQPqRKPHK996HYSj0ExLp6U+iqgE0sjXWOQPCIE8/+cSE28Pj04wkdg27fFhV7WIGAOPxGir5EJ584omN9a0Qk7pMwfSq6oRIysDQT2VQEICQURFSElHFIKoAbMkaAPHeE2dKViQmUCJRSQjqrAObAUCRZXEwsNaenJw6Z3NVZw0bMoSWyCEbIiYAJFFtQycoVV5dfvLm5tXL27tHL7/0+tHdncUilOi6NpXOsct96IImIERAhQjKvagZEa2iUzSIiVQULbI/mmaVHW4PztpF8NFbNtayITWEhjmZk8PTo6MTZBYDCUUVCYCBfGhjQrKOEIP3DSYqbJ4VIBC7kIIkBEUiu+qgGzIACEnAcJ/uBqAiUXsIq6gA0Qpb2qvaRfv+KDATK5AqsEEVUg2/pQRczfkQgCKKzbONrfXjxTLNpwCQE9XzeV6UripPZ9Pt9cHmxlZ97+RxHv83b/ucF17+1GG28bnPf9ajg6OXX7v/lsff4lyREioQIokggTk5Oegab10OSilJ23aIyGwIzepMI4AEKWkSUSUgDkmXTZdiSGk1Be2Dt3PnCIGIi2qYFVXdRa+tB8qcIBhNsGjCMkwPTufHJyd5Udx/+GBtbd1aK6rl8VlVldYaRgSVMhtAhGXTArmTs5Mg0PfMQhAkQ+QwgQZQ8WwIMsds1Dqsyjwv2OWa2bC7O3DGg3cORAQBYkqrs2ZKRFZjAkTLpkMvMakKqrHE9Xxx6bnnbtx4vKnrT37ihe0L6xe3LmxevDquxtPTvfLe+kc++ok79x5kg8oOB7eeeOrw+Hj54MHx4eGD+w9CChcvXb57/35KySJo8AY1M4TgUJUJ+m01qrYxsnUm6dCas6Y+WJ688ug2XoWNC+vTh/eX05OsyCw5G0iiNC1phujKIokNiTkCk6RYR79x6cK7P+ezf/Y/feDi5vbP/j9+5tN3H37e5793YOyybialtcimP3YyhRQX0zmCjKry4vb6pQsbh/u79XK5NRpZZykE0NhvOH0aIxP1PRdJ2vN4Uko2MyHGru2yIltbWzPG+OitQVKLqiRKKVIS9V4QhYFB5vOz2XxGmQGAD//dPz4sShFAMEVRknUmy4HMynSqqBoRgfBcFQqwsmH0fRfDoKCSRAVAk1Af7S6gAiFJhxJFg8T4xNf+JefsdH4WJHCeDydF7lgEk8ibk6y++gDso7gBQZFWOV8ISkT9BgZ94jrRild7/jBJ7MnZaZkPprPT3d2D9Y1hVQyW81qDbo0vLbTdLNxouIGuWNZtvdTQQEhNnpcaWxGFPtpzhQlGEU+5m9aLX/jlX/u6p/6HEBbkyA6rehY2HnvSltWrL79QSBpYy6H/SyRVTTEgsyIkkQQqgKgGEWLqmrYJbRs7z4RkbNvEfLS2eenqw4f7YSnlYPjsU1fAmX/xkz+FWZGP1peni81J2TayXAQWIYyiMSGmEG3ULBseH+8dFsebm+t37tyzWbk22QbgyXi8MVmH4WhzcyNJvbf78PjgeDQsHeIzTz6JSo/uP5jk1cODw2FV1MdnagVyjiGJ95l1xtngPRvusQq4koRo/84gAKKmJIq964uj95CULYIqqU5Gg7KwzWL2b3/pI//fLJ5/7f/sT7t19dqirXPfKgKzsdaGlFRUzh3evbW9b3aorkrm37K6qbxpku95uAoMiswmxv5ITNCH7bXd2ng8PT31nbfGaddenmy+67l3bI0ne3cetqlbzhcxojGWjIEsv7e3CwAXL2zlzmXWtj62nZ8vGlBIAPPF8vTsaGNYXLh0AdkZCyK4Yv4zl2WJaFLXPrxzOy+rtz72WJZnWZH5rgu+LfKBpEAEhtj7KDEZohQ9ADzx2LXh5tqgosnAlY9dv7a1HRpP1h7NZ7XvRimKj0xgTW64S5wEAYBAVVGT9By+lfhJFUFRQd6cP6tIOs9T++3BxQiAoEkSIvXxt4YYDfmunZ21NscL6xPTnDjSsFgOyjxzXBh7fHYGAMNy0NTdZLJ+5cp1RVYwNiuCIihaY5KkEAMRCwqRQULqTbshrILLlPoW1ZtZb5KSJOlpjYAaJIECAGkSADCWAFJM8d7d28t6bvPxYJQzAYFCEk3CmSGmhAoQ0aAaqlPbdF2W5aPLk6fs0zXq7TuPDmYnI8zLslBmHzBpn5uaRNQYUEViMMwWUGNKAGpYgSpr22XbPTge5VnuTIyhVSGDbCwa0oiLk9nu3UeEJkFwZR5a3zfeVISJiDAmQaJ+eGHBBu998qEcAqBPErX/bAJxDzIHNmwMq2qMQQESicGeYtrr9s7dJQhEffgxIUBCZsx68RewAiIRaFKFJHLO7teETAxalMXaeHTv0QEAjPLcNw1Zo4aH65O1jY2dnb3D44MAzYsvf3x/d8ekODZ02C42LV8dDUZM6JcInYJv26YaVtOzRddF5wiQu65bLpd5njNQjAkgWWMxJQRQwBgly4tO4vHZaYhalbkCKTIAxBhza1USkRkNh7PFIiKSzVrRelob9rlxsQv7e/tNlFZlPl8OgYfDCXNmrI0iXdCDezs+tC5zN25cHwzy4Ns2ALPdPzjUkIqsAgCWCJIURR02scuYEuAA3JDKcNIc7pydRF2enM1CvdToMmuGpfq2bYMJHEWQTP/+9+I5YuYkqiIaYgrGZgzKACcHR+94x2c8/dbLP/fz//72/Tfe9vbnNNlBObRGaDC69fQzW1eulqMRu2zZNafzhQ/BOvfYE7fWppu//oEPhChcWZAIKaIGSyCkCJQbq6p9EzemBMSKyAgxds3Uv/z6K4V1T73jGR45MEyS/GIWFqdlNV7b2mRmQ8wIDAnFa2AwqfMdCGxubj79zDO/+uEXNjfWT2N45ZVXnr51tfUBy0x9mJ6d1stmUA3A0GBUuipfLmapbYMPsWkubW4QpCJ3RVH6ehG9jxJFhI3pOxNEJMxMBIgxxrbpYopZZofDIRMRMxmSvkZHQBGIQULLqgoqCZDSdHba+dpAAQCf+e3f2S9hL3/X/yqSSJLEgKS9wYOAQfXSH1zF5B3++Pf0cU9bX/VN/Ssn//L7ATAhXviK1SuPfvQfKyoCEAgg9rKLHs9blrnvMkqAzEz9WWJFC8KV7XZVzfSzF1xxoQBXK6wSnCduiiLTm4Hlqw6Q94rgRFgj5aa4ef1m8rpebTssMWamUMeDmHBx1oUEuSsUQEC6pjWGY4yAgiw9609UyRKgSS7/pV/74Fd+xZcPR64Lfh4T2lzAbt140g3KFz/6IdN5WxY2d6opxA4NCWjUIECohkUpSpQUQWJKEpNNStYi4MmieeyZ602Ms6ZtOljMfLM4NmXmMqsApwd7y1lbt6nIh6meiQZJ3hijEFXVdy2gyVx1eHhalNmVqxf3909Gk3Hw8c7t++L1+pVrbbs8Ozlrl61IcKiZNXdfe23n4V6zWH7uZ37213/N12xOxhcubDUYDhZn3/H3vvvh/SNndL6Y5S5LKSgkXB3tzx1gon1F10eEImpKERSMZU3RMY4GxXhYaoxd0wDAn3v/e0KKp2eLYjBatt1stijz0hobQ0BrXJ45BoJgJEwG5XiQd03j2ybESGxUoWljFOh8KKsyq6ooenw6jQm6oMtl41zGhEnST77xhoBKSk3XCRAQphQQOKWkfaNK+nHsSth7LpvvQ7ihn930eUO91ZmNQeiRgNTn7xrDEgQ0GcOXL13a2tiIMThj2OY5Z5nCYjYV0C75Rb1EsTFqUkTERdMAgMktgtZ1vXtwNFs200VzcjYry/zGlYvYytHZVBG3lYpB5QyrCgBkmTPGAKCEaJkxeFJIkDrxClIVuYRget67Qt9ERQTQAABvfeqxYm002z88Odx9/m3PP375xv37D5NzB/OzTqVtWpMgYGTKjHE+dnheEiYVIgOwqoBUVZMiARFLSgCARNS/lasPq8K57qffSunNAQohMYTojSHSaJHXhwPQ5YX1tZ2TEwK7MdoIbXt6dAoABGzQXLtyg40j44jN9OS46SIhjkYj6xwiEKhhBokpSlJFZOo74USoIYRAhJRlKtq3rNpmWddLJirL0mWG1QlGCQkAyiK/M50enRzv7p0YhLKwltBaLjJDApKkt0AxowCmKF6DYaMKIk1IyQzNlcev7J6e7j04GG7cYJt3MXIvhupHSqR0rgwHBEmiIuQcEhsi6XymlBbp5I3dyRNX29DVvmud46QoEmbd/u1H88OzSgtGG3wixBgjIgcfyJJzLqYUfRQDSRKkqIpEjIht51tPXZYFUQCw1opKkGjZQa/8l0RgADGliCtYooCCiiooMoOyao+xJCIiw4gECCSKpr/XEvSnij4pt5cogwrIxtrk1vVrAB8Ni4U1thoMIqaYZLGsN0ejDhKvF3ZzMN8NPK5evfvG3uFBF9pHD++CREZgFULxbZPl2XJZE3EMyboVfomZkTClpJCcdSqixGwMEACbtu3my66Jspnl+XDYLk4AYFE3o6piyylK6Ot64GbRzJZ13dSoPKlGmcmisKhuTtYvbW1XxaDI89lsGkJsgzfWxK5r2+Xp2fTCBS8bOAt1lFRZeuZtb8PbD3b6uzc2ID6ExlkgEkRnxMSZf3jnaOfuw3q+GLiiYHPWzJdOebNyV9Z0CaGJoWvbEHNnkA0zCpBhy4itelExxExskGJX54WbT8/2Hj168oknbz1x68HOg62Ll5iKugln81MVP1xbL4djZapGIwHa2FqTJNH7k+OTvd29R48eAVHb+lhmrBBjtNakJGTIGBLRkKJBTEkAQFLqpEOEEP3Bwf798dpnve359z9+M3ZNO5sul4vZ7GxjMBhvrIvLrLFEqCgCUTXFps0zF9sUO//Kq6/cffQAUDbGw3GVz06PQK9KDFmW7R+f7D/aeeaZZ65cvZZI5qEmlT50ZX08MgysygQb6xNfZPPp2bJewvnkgXlVL8YQ2qZp2hYQh6NRNSytc9ZaNqyMZIgNMyqkmDyggGY9FzFFTNOzsygJU+wL+Re+408/9yf/7lu/9a/e/v6/Cj03BPowb1JIl77qWwHg8Cf/8dZXfvPWV33T4Y/94776OfzJf7L1lf/X9S//+qN/+QNbf+AbAODwJ79r6yu/9cof+uZHP/bd/UYjKSaJMUbQCABJApJm7DjPENH7DsgYa2UFjV6txP+1h/ZAln5S0T/pgypBIaXkvU8pmWbROsqG+VrhhgNzsZ3b0g0RMHSiHaTIXYhJ0FmnEKJvQ2iZCDQl1T64gkCABVAlRQTymsDag+PpL/7cL/3RP/IHdpdHHYotBjbDerkYbl567/t+x71Pfnp2coyhLsss9SgZgJS0t/KjAPqYgl/GRlQYIFN0aFufxuXgiVtPPFrWs6b1ShGIgNq2dZrYyMC5C49tLZb+5HRqKodE06OURJmsaOzatqrWu+iR3c7u7q0nr1+/eSnP7dHhtF0IJHvvjdd3dnZCqIklL+z6jWupzA2aL3z/+0ZFNSqHm+trw7L0bRcNPH7zyatXrz+4dyRJsiwjMiKhP5D0DZKIYojeBP8CEiIQU4pK2KuK09r6ZDwqDZJv614x9td/8Tf6q/cN735H23TWWudcXTeOOTcGJHZd9/2/ueJ6/f3f+a4c5M/80id/+2X/zi/9nG/7dx/47a983dvfWuY2hSigUcQHDwBsjERp2sbYrCzKpu2QdeVeAjhv/Ky8pojnsa69wExBeoCx9D4J7ElvkMQweVBASCmoKgENhsVTT97yvgmxE85C252enB7uH1y+fEUJQ4jD4Sg1snewV7iycG6QOQAQ0kVX37/7YDpfbF+6ukjqZzNDuHXtqixn80MyxrZNXWRZEiVGAszzEhH6m5xRnCUmcJmJKMY5azgGT+RUNMaICgjADD1Kv8htaBbjUfX882/bGE26LmxduPzy2cnhfJoNRl3XGrJkDBH50K2gqqgAQCsxuGhM0s9FaNUm66fUK+JB7xpDfNOfQIYANIaYlIFQNfW0gZRiWWSDYpSbqFE2xpOb16/eOdhBScOqODs+LrICANq6vXjh6tb2RWOypunqZrpcLtqmPp2ezaZzZ93W1uZ4Mh4Ph5PJxBqbVIlMT86BtIKrI+DsaH9v/2C5WC7rerGYicTJeDSZTMZra1WVO8Z+prY+Ga2vj+fLxcuvvrK5vc4mHw4KJC+qTOyYrTGrQxeRQPBRhPs8YxKS1nuTm8nm+unBrJqMmUzXBavAZASDKhCBgiSBfg5LAAAqIgxIAohsyPjg9dTPHxzbkRMQqRC8hs4vdo7nj46dJ4SECiElAKWUkMiwSaA9zdxlDjWIaGayNoUU1Yc0XyzPKimdGfkcALI867u3STUkQRVWCwCaRAl7CFb/DyJq30jr1T26IjGCIBryMYAq0ypDBvpCGLkP3VTQKMLG5A5uXL0MABlCLanpmmoy8l23nM7OUkLLMTOffLh7KCBFGTY2Tk9PFrnhtfVocoHMEMT2mJFC8EcHh85aREwped/leWatUQJUJGBcTV8ZgEV1Ma/P5osowCY7mS6yskr9LkI8Wy7XJmsJ/NlioUgM+HBv7+DwuKoGg3IQYxLfVEU1tugy1iSynM6mp4bIEV/a2qzGw3Hh1obFyfRMU7d/vDtrprkr1y9t39q8sH3zxosvvwofeUFDbVkKi5wChSiNiufZtDncP6qbWNi1nLO27WJniOnug0Py9fqVi8bF+clZ5wOiJSY4TwA1xjKBYXSWASTGbjIojEkptQ8e3HnhhYm1dO3a1YsXLijkPuI2XRTfcIgpxqipGk2AcL5Yzmaz44PDw/3Drm6vXr52dHzWtMuQMKk0TWecVe2YEFVQBCWxxZSixBAk2dzGFBfLJWXZ4eHR8cnpKCut0HBt4/LFS8t2oZoU0eQVGyeMyqqcVBODLI5Pqmy4e//BC5/8JA8ngwKLzKXZ2VK79uR41i5v7+08fvXau9/xu8aT8Xwxa0OgpjUhEKLJs7xweWZQtZ0vRKQoc9AhMYcYWu+DJGLbe+B952NKeZZVo2FZli7LkLG3rYisMttBNYVOfFATMCZBQFYkqZezntrTP1IKb9YZqgJCSgBA8FtfsmK/AAAAHf7494oqGTr/ntVviOj+j39X0lVjHEFSjNBbb/ppadugRlGNEVClT1xYDSh++ybXdxhW+gxR1ZgSAgTfnZyezJeL4JOPIcbYSzlU1fsuxmAqs2FNlvHAaoECCFZaF0MiZCVgwxJFdMUCVxAiRUpIkLzXnnWxgrtBP+uJIRpTEGe/9Eu/9vu/9EsEYz4qAnAiyopquTzJTPHEu9+7v7vz6N6dvZPD9dEgtwQxOZZFsyBWEU2+kxiiDxoSRGHFwmQhhM///M9HY2dnpxGx9m0bPLElCxISaAh12y2aYjC6tD7p9/Fmdnjn9tEyis3QWtfHGRjrQmgfPnr0xOOPLZazbqGpg67289lMY2eAMusYZHtrcz4/W8znne9OQ5jPZ/sHO4ZM4TI3GZm7905PZ0QYU7LGhdAf3AkRkiRRBNUk0s/DVhHpiKDIiIwYJDiLo+Gwyl2KKUUp8kF/X3zTu9/+PR/55Pd95ON/6OmnrHExBctoLPpmKSn88MuvA8A//LLP+RM//YE/9bMf+6k/9AX9DfAL3/R7v/h7/jUAXN1chYn+g//mM/+nn/kwAGhsVDXL3HQ+t3nW0/dtlnVxmZJwhlbpzHdstL9vmGkl8el796iIwkQAyER1XRMjM4kAEqckxEZBAIgMKSSkPu4ejbVtXT/55JOf/dnv/dUP/AwxgzMQTVUMWx/PZvNyUE3WN0KT5mdnV9Y318pxlyIYAQAkmJ6c7R/sZsXgueefe+n2nZ2jQ0BYNjXH6JxTBQiCqRe6kWHrrBBTljlQYGJJgoiGAIkZNHYtsZUoohpiBFVElCSrCbWCxtSFJnNusayXMY42L9zZ2Q0gziLG5GzGVdEkbFqv+CZ8i/CcitRXjHg+fU8xAgARpZj6FouI4Co7U3s/nUD/qgEEVO6dERJjjIJAIcre/uGtt90KDE/evDmfzZIP+zt7m2ubAFBkg2tXr6co09mxybLxeO3SxQsIulzWDx89unPnzhuvvcYEg7K4dOHC47eeGAxHAkpgACCmiIQp+r29w9u339jZ2wel4Wi8ub15/eqV4bAi1elyOT09K3LbG6Q31tcGVfVwd+eVV1/1HYyLKnatKzNjMGlKIiJCgimqgvQVAYKAomhiJHSYgrjSDdcnwtT6kKsAADGu9MYgGkFUQVkhoSGXGQDEmAiJiAVACAemWB7MQ2OhRB5AW9exC+3+tAo8MqUkaH0orUFFLwACbIyHpJJUAZGN4YJzH3yIAiK175ad9aloutCFCACZywDUR09sJSoqdF1gRHaW0AAAsVEg4t4wrIDE7ACSiAJQ3+jxIapoFBGiru2YAKiPBJY8t4QWU9DoURKAOAIAuHph42znMISOQNdG49K6B2+8sTUeW4VPfeLFa7eePJnOfv4X/uPVa1c4z+892m1TioBNiAlVEbwPi+UshK6sbNd577usyAFBJakKMoqKIZNEo4TWx9PZsu58UjRZcTY9ns6WrqgAANgs28jL1lkXJS6bugnaK/nW19Ymo8nWcC1jjm2o65k2nhURMCPeXNuYTEZrm5sP9nYwhovr60Xm2tAtjqeKsH3jymhzuwFYv3rhvRe24CMv/M4v+92VRK1TTiyLZnY00xpkFrqmAzIcueuCB8iywSIsj9p23a6fzhbtovYxxSRdFxE89Rk1ClWeGSbLxAilY6NS19OSTVvjfHrCCDF0g+FwPpsZpykasGKI9w/3UvAnZ2eCuL6xMT2btm0bmm5tMh5W1f7eHiqA0qIJlrGdt5OxSUmDjzazDJhUk48MEVIekyRmIdMmzSLWp/XRg8MbxdZwUDVt20qHLreOJKUyK43NhBAMhhSSJk6BkWLnX3vlVUDKyqKra63PMLaXtzfb/YNPHe1+xrvf9fbn36aEs3auKFZ0IIgmS6wAaC3nWRZ8m6zpfGOyIstzUTXRClHwvusa33VEzJbzssjzzFjbG3UZOMakiExGgUS161pGZuIYEvZ5fqTKAVAIISbfby42W2nmVDSR0GoRXekg9378H1/8qm/e+oPfdF6drETCW1/x9QBw+C9+MMqqernwVX8cAHZ/7DtFBIkRlZl69XbUfl2NXdcGSSCOsmBzVMGYErHqedkEcM6hQEQURJSQYvTLxWJ/f29//8AHr4CSRAH6UxYRikiMwWAzKoaj0oxSIFUBQSByhvrmXkoShZJKjLHHhMQQDBMT9awtEEUgQiZKhgglWmMEwWbZw4c7H/jAh7/4v/0dD+fHWGYhJAZwWel917GZ3Hxi6/qN1z/1ycN7d2JHBSmDGrIAmELby8w4QdeGQTFIVs4W9Wd+7udPLl54uGzVmrptDVuNQQQIjQ+BOZFhTamdTQ1b66xx5pmn3nJpa+Ph7oP9g13feNSWIEUP1WAU2/Zg/2BrXeenvqvRN9F3dehaZ5wRKIvi6uXLH/zInd3dnXsP70KCzFlLZlhWX/xFX8TG+i62TYdEWWZTFGKUVV+AViEI/bgBSKFXCSAIJFGiflwijm1pySCEtotBnbW/7WoCABhjmTGGzhCk4KXr8vMKeq3K+icXN8Yf+LbfQ0jD/DzMaOD+wzf+rtaHrUnRv1I6mjUNZ5VxJikQrzJfLFvoPfqqlk1fHUNvRkLo5dCCq3mqSCKCrm0vX7owX84XywWRDcGTcQkEVfv4O1A1hpKEmLS3hj/++OMPH91dLGbG0cI3qKmVcDidHk6nQlRWg6PZ8aistouJjWCI6zADAENcFfnWxjobt/Pg3qgsn3nyVlEUDnG5XGaizMwAKEC4ik1lJFWIUZhJEWxmQEQ1gkIIqElZIa04IpBSjDFpEsP99yIB1009P12yqYaDwdTHl964bVyuqpbROV767mTeKlCfwgCyCtaDFWiLAET7SWevGae+GpbfMtGtvJeo2ldICkRKpIJMgMiqkmVFnuchSe398dm8qIY6O8qMpcHo/u07zmZFXgLA47eeKKuhT2Ksm0wmw+GobZsutCnIYLj21qcHbbNcLqaZ4dzatq1N5owriPttW30Ii+m0Wc421zc2ty8am2d5ORwNRGLwKc/s2mQyXUx1ZTmGyWhY5NnJyel4Mjl7dNwu58NLG5ICOAOEQVKMwsagKgEQsqREIExGkoIk0QiEitq07ZTmpR1HETzXcPSdItBeGMsi0klisgYRfHRsvWoyKMS54DqVh/PagW33zvbPjipXjqLJs1GWrBjtOI+QQFIGtkkaNYEKolDSNiQ7yp2jxWKZNGaZ8zElxACwaNqQekiAoiWJoARB1LCx1pGxbAyyAUSylhGZLSCgrGDffVOdycSkgpKCtG0rCG3XhRBSiCohpWBIibEo87X1NVANlKwljBEAttbG5dHZUgIDjvJic1hikb/l+uWT3YPTMvvsZ97+6ht3bdfdunxJH8aD02MNiQ0rSiRtQ8fKPvokMSbf+RYIgSCB9IG7ihqTEGHwsfWdTz2agKMPQGCy4pXX777/ve8A+BUl67tm2YSgDKqKtFwu8iLP8qxwLtTLhvjKjZujcpA7A5J86w1RmRcEGFPaffjwYH/PWaOgkCT5iEGNzRiLw7P6zPulb+plDQBN0gIcSNacTOuDs5iAPXBQZ10kthEEMGpSUbXUerl07YoE//qjfUjgg0qKRBFJk0qKyftOJTKI+pZyQ8ZI9F3njaOd3YdZbp64/njQ5LJhvUwaU4p+Uc8X8/l8NvMhjtYnkmQ4qC5sbZUuiyG+/PIr87PZhfWt1157bS+mrc11AzCvu7bpCmcNm9R5gwAa20UbCmutU6EQybmKI3FL9z55e/nq4fPvfG58bdNWg8TaeZ9lZVQwiMxcNw1lBkR9F53Ssl7kVeGYj0+OQCXXMMjsE5cuZAaefPe73v/FX3g8mwZJnBkERJaqGCSRYEQZnXPO2eiYQSSk3olDRFmeu6oKvgtNE0KGxNZkvROciKKkGEJhDRO3ISSMCVGSZwLLxhlHyF0rxlqy2HR1CiEGH89FoCH6N5svBEzIACiKSEzMMcnOj/0TBLz01d8IAFFRFS5/9dcDwMFP/SAAWLfav/Z/7LsvfPW3XPrqb9v7sX+IBlMkAvQhdL5FEQBATYMy58wGpKTifYucGTZRIsBKyAigkhShx8qKJm2b5aJeHh0eHOztLesmczkgCMLqNKXCDAAGEcz2+FaMqZspElsiJOk7BL1wKCqlhEkgCfTcJwAjSoadiqoiAYtoEgQlBJYYOSOJgsyLzv/8f/rF933J+wdZddbU1tqQhIiL4XjatCDklW+85W03bz7+yidf2Nt5MMzdsBo0i4XvQp7nQSNHHOTD0MXd07N3f+7nXHv22RdeuZ1tbhs2bVM7Ksm3aDRCRDYhJatkLXfeKyfD4FuPqBe3LlzY3p7OFw92Hj7cexU1GHK+FmuLxWm3PSFEEU3Letk2XfJxVFaI+vjNm4Dy6OHD9a31PM8PD46MMb6Lo431TlI7n2JW7e7viWjbdSpq2YqqiBD3+xol7Wm4K5GWruQXvDLMIhaZG40Kg9h638+5+nvCt+G8AMLoW0ugKaDE0ui4zP7+l7znT/3ch77mJ36x/5pBVfR9hM/4u/8SAD787V9RODLGZI5/7w/9RwD4vt//ORujsmnPQMKgKBZN21/8lEKWmbrpiIzJs0FVnUyn1mWErADJe13xo7gfJafojeG2q7/hG7/eWvtn/+c/Zx2/GexKoP1XG8OsJvmOkGIMw8HwsZuPnU7PkqqCRkkEcjCfTmXu6+7k9KzIh6mOT2xdnYyHG7ZwqnsHNQBgSpZoe30thhQWs2yAj128aK2rp6dqbEGGYooh+q4rqrJvxlBiQUXshS49ggkAhMEYZkEh7BMaMUmMMaWUiCnjHACIjCK6rCxKbMWmvPrQx1+4v3+MA4ciCaPJs1T3PNuixwpqL4o6Z0WKJgZkxCTaF5EhpTelsudGur5VCyKCSRVVgEATkXkzVcQ5h8SKYLJsVjcRmNAszqaEPBwMDbu2iwBw+eo13wU2phpVhujk5Ojw+GxRt9P5ouuCMXZQZhuT9cySY2qjZAmIbACTIEpC34bGx6waUkiLJswXzXz32IfYtcthmW+tj8vCZbm1zmXIADCs8ueee9v+8TzbOS3LcjwcWsO0WqKIDeOK/qhICEko9eciRICQEiEjpOGgCuKbtkE3Xs23FBFpdXTspWaoABAltb4lMo4dE0uMyXBUTSGRwsDZZSfz+Yy7MBhTqZlTBQFiU+auS953bbIYIIFQkkggrOCAIlKoG0KVEMVygIRs5nVrbB/lBlGSUWJjFRkMG+PYObImISA5w6yqyBZXUZ+gAOcuT5CommS5nD56tHNwdNI0TZ9bxoYR1BpE1Dx3hvHo6Hhjc2MyqnxIbAgAtjfXqke7i0VLwTcnp1/6333ZMzf+8KNXXviR7/t+2y4GIFnwMDt7+43Pa6bH7WKB7YJSUIqJAhhpuzCfzV3mmrbzoXNZpj3sB/uJAEnSLrTBSxIJSUMMqmytjZKKorx3/4F53+cAwNm0Hg3KRdvlCsawDxEBCCnLXZVl4rujo93l6dH2+sbF7Suj0dgYJwptiE1dH5+cnJyeRtRBUTYphJSWjTe2FHC/+anbwWYdqY+hbWoA+I0PfvKLP/NzsRjvHB+nUxk4yAANImgiZlQU8ULelXmWmTLRjclw/879iqzYrFmGEBKzAAobIxoXi6UhHJTOMI2qfH1QMZUB2stXbkzn7Wuvv3Ht5s2MXTUYDyrTtRBiA6Py4uaWj6H1bet9UeTR+xTCydHh6cm0WdaXLl6E3b1yUDVdmC79eJAnQGOzEKP3wTJKiDF2jimpOuZlVBV+9ubT9z71Wuq82vLkbPYbv/zhjZuXH3/2iY3Lm6YqW5+KnKOoLFsEUUlRojUOAQ+O965cvTIevhRDLJmeWhtfv3GlnIxeu//GO25eayQwY2EdRCVDWlAyliRmjthZUSGD1pB63/ilj0FVwXBW5Gxc6GywFmTVk0YkVWh8bxJkAAgxdl3HYpOgGqmqIqVUh7rMSyRp6s46YwyTkK89Fq7fd/g8PLiXXQEgkSG0oCgJL33VNwLA/k9833mFBBe++hsA4Ohf/ND2V3wtAOz/ix8+PxCuOklERpNKTASUooQ2pNQBQFcvjbPSiUegrHTMESSm8NtYhuejMAQRBYKua+aLRdfU07NpXdeMBKQqYJAUSUEIlFYIFWsgseNMCGJIIuBspioheY0SY0pRokpvV5Nefg8MSiJGREABwPaENSIgVKDKSyTUTmI2Gnz0xRd/+Vd//X2/47NDCsvlcjAckJoQoMwHi8WCCZGMrYbPf977Htx57aUXPnF0cLxWDbJqJCGJmvF46+xsetws3/n573v2Pe957f4jyUsuhhwXg6I63j/2azlG0TzLjSOkGFU1MFOMcbFcZJlj5tOTmcvssBq/9cnxjRvbhyd7Dx7sHhwcN96vXRgs5+36eHLw8I0k6rLMuDzLMzb6tuefffGlj0cNSJBA8ipDoMxmN289Nl8uti5d+dQrb2xubR0dHKGSMcY3ob+3NMFKm6X6puXnPA8eVTWpIoJjHg6KYVlC9CkFa6r5fN5/cdIVsU5iBE2mH5Ggjgt3ZXuyuTH+uW/+8smofM/f/OcA4KxVlTezKdigRmZQ4tVtUeVuMiim08UiBGcsM/X3PahqSqiaYsixSCCGiJGIufM+pmSNIWJVBBXRhIRt27zzne+o6+VTT73lwvb2zs5eVgz6glqSIPfOxz7/gYiwa8PTzzzr8mI+Ozw5PU2SUkxI5DUBYjEamdYfn0y3J1s7p0frRfXkxUsDSZW9DACpC5NhVVjuOp9lmcsyROiWc6ea5bnEDoykIFES9GyyPo1CtIsdM+V5YdhE8IhMSEiGCBAoSSIghXPrGpq+iSOCInpyfBa8zjT88gu/8pEXXoaisGBJpBpWNi/QA1GMuuJ79ZvLqv2j513ePpRG8E27HL1pjO+BSdKzMVfkaEJQAEI1QCRCCBpFUdCQc/npbF6H6NtwYW0bjQmdgMLbn38H/OSviQIYw4C+a48Xi4ODo8OT2cHpLAjGmGKKN69fybKsa2NVZs7Z2XI5zgd57hzYhW/P5tNuWbdNc3B4Mq+7ZRf29o+zothcX5vP9h88uHdxc3Lt+pXx2np/566vTTjL7zz8zbpuQdWxAVHOWLUn/ZECSBJBoijiIxITYA+AVVWJGppOk7Ll+Wwxi6fjrDCGdcVcIAQlgCQYk6IKoxJokqhk2ZDE5H0EImCKXQx1MI4q4VExGWKuwTtFYo6gwbd5Zh3Yedu6/nY0RoGNSBDoYuQoKCnPsp4sXHedRR0Mc1zpjiD1Q30Bax1a10W1Dqx1ScEgpX6ip0jIigKqfZix96Gpu/lidnCwv7u7ezZfnp1NuxCtdXmRG6Yit+WgaNsaRIw19bLObt00vFr/L2yvb62PPdB8f//d73znpfHo4P7dtz/15Duee/buzn9+5bXXD05P3XDwqddePV3O2xRny2USBUFQVMW29b7zzDY2HTABG1VICRIo04rbGKK2MQGAIhAxMxs00HWqYlzxnz/4IQDIB+O6azLnFJmNBe9DDGwY1RGBKzKSKjTN8enh6XQxHm9ORuNe7hi8Xy6XQVI5qLqUuhiXbeeKwiect/Fk1iVH5DImnBQ5wO3rl5+cLfXOclF3BrkwhZXgw3zpQXKXhRia5byocjV6MDt8z2c+/5lPv+XffuyT9emi3KiqchhSUkQBBZGEYgizzJR5XmS2sEa6Oqsss40xjNfWH7v1xKxurMsEG2fLGFViRNIuhLZt58vZ3sG+Yc6caeY1qjb18t7dO/Nl3XXd+trmzsHhsmmtYWMot1nT+XrZDsui84EUxPJs2RWj9em8WavWLhWbUkwPdg4OMG0Px4vTNsn+4nA62V57+rPeUWwOoo/iAyXICycRBuVgUS8f7h38x//0S2/ceVjY7NpoOM6K569dxYI/fffOp++8/iW/7/cAm4xtCUwQhCEZ453EFC0jG1ZUBY0aTJ6bEPrViZldlgFgjKuO9fnhS1NKvmvLwdA660Nouw6IDFsgNmwMmgiaUui8JyRjLRN3XVMvlqRAyL2h57k//g8A4I3v/YvWZobo8tf8KQA4+LHv7U/LBz/5/dtf+fUX/uA3AMDOj3y34VWVs3keTeiITv/1P1v7vV+z/VXfCACPfuQfiUbTQ8kEnXWRTFvPAGA+nbrMUp5RloOmGKOQAPKbBdC5QUcRUURQ1XvfdW3/Y3Zdw2xFFAidzQgxgkqSGGP/jSZiA2pRDQCBsogRScFDEk3JiwbR0J9dlVkRBJGAU5KV5acf4EtE7IsqBk0qHp0TNIv57N/97M+/5S2Pj7dKLEwMLdrCopUYS5MlSIkBDZ4lv3XrqWpj+96rrzx8/Q3sOgaMCZrpXMB83pd86aUnbz04PhFTZoZiRCYrkowhFd+JkLNN2zmXIZmgahTJmJhC54OzqKDoUbSJSdhm1y49cf3yk3u7+7sPH0Zt9x6cbL5tczwa7+7u525Q5mX0/sbjN23mXn7t1cFoULdLDh0opJguX75RupwIm6bb2dktq8Fg7Pd2dnNXMlsCSqlnUyohEFBfNUJ605vXy4iVmUxmh1XBBMt2wYba1Dh3Xi1J7J8YQiQnoTWohXUXNiZXL278vh/+WQD49F/5+lXFk2UA8rY//0MA8Mm/8EeAmchyiu/92z8BAL/wzV9aZS4MBtPhsjtZikhh2asCACNJSs7aN32HWZY1jWen2iOzViHwpCIpJcsUuvjZ733Pw3t33/n8c2traw8f7jhruygxRUM9BpEAQPtkuKTW5WTdL/7yr929/9JknS5cHlsMSYTZ1vNaJGxsXbJ2YW0GbXcWlrN2VjBvb04A4OjkeHtrPaQuQyIUja1hVxkGxNbHLibs+/uWFTX1Seox9f6aFOISllVVEa4Ydb/FqlrBWJDZJLYphf7SsMkMsABmZfHg7sOf+/WPDSbrpSsN8nBUVGV5Op2dzbsgoLgKQOCe7kvUt3T6eXkfCgLnXWhYXXU418++OQoDwwwMAgqAjEwqrMlyH44qzJYz03q/bGpRvHThChsTOhmOR9VwDAAJ0WQWVNqmbZbzw/1Hx7PumWc/o4vx9t17PoT1tfVbjz92/41XlvNZtj4JvkvB90PKGEP0rSTvu3ptMrh287GXX7t7fDLb3rrweZ/zWfX85AO/+ou+bQnYWNf/OEVR3t/Ze/Dw0dr6+tlit14uaHuTCAijYcPIAD0WfGVRJaIQJWhCUAQm0NxlmhpLphoVhSmssb3UEVbmSFq9VaqE5HqolOgy1oBorDEhRO+FraCColEcsbNkYelZsciymBJISgr1YgYQcusAOID4JAmUAEklU1wrK79csLMxBWO4rmsWuTDM+8OcSJKQErJ1Ftn6pEiICabHZ22ImXPEVJVlXhRFngH09Cbs74fOd4vFvF7M6vncL5rxcJQUhuNxURaWqaxKZhlUZZaZ6IPtU5MY+6i1x25cq156pZyZtXH2Oe94hz89e+kTH917I//i3/27P/jSTsryWA2Dw7Q+OT058Hlx2kpILMlSNJDI+xAFfEhJANmkKELIZJgY2Spi8oJMZDSEwETOGQX0MRljYmgn6+svvfI6ALz/i37nz/ybf8VGCUUEqsFgMZs2y4YBnSFb5IPRKOXZYjprQ9ceH53OptYyKogmQB0MBpjZRbM8nc/BYBd9Mdg8qKeUlchF7GLwbYAAAF3AVx/sFibPAIpq0GLMXIYDhC5UEUKSnLOC7O2Tw3f/rs/9H77t6z75y79Sn03bZZN4AUx5WSKbqBJSVxU2M2hALClr8stlxgYCpCTLZfP4lVuTta0oXJUDIG66YNCSMW3XJpWmaxVxa3vLOXu4v2ccX9ja3sP9jc31umnfuP2Gou1CdMYgYNt2DDYvsty5ru3AZCKpjTEbuE5Q2J4dTT997+PrKa8gP4mhi+CU/WlbeT493fnwbPnke569eHOrKArreHY6m3ftztH+B3/jQxJl7+FeW7ecp/WN9VtXryvg2Wyxc3BUjdaKwQjREkQHRCARBSwBEgmRACDYzPQSC2edIU4x9MAkNiyqbNhaEyEiWRTtuq6ua+cy51zfmWZm45x1DoAZyfuoIn2kHbEVgBhjTFF6uJQoAHz07/+JzORVXhQ2A2QFePTPvgPRIAICMzCCHvzE9yBgjBFUVPDwx7+XCA2zKhAxpHRyNH30nX8djc0y4yyz7at2ZUBGUxSl7xYAMJ+eFVVlQCCl3Iw4V0JMfQbyKoDovAGEAAAx+ND5lFJKUVcehIiIDKYXewDj+fFUVcUgmxR7ti8QQO9AE+lAIkpgUFVSSF4DESfRmKKzLCAxRupRGxqTBNCUEiNYYoQoEaVLScv89Tduf/xjH3vfF767GGRnTa2BBQQ0ZXmOCb0PMUTnTNdpMZg8/57PHY437r7+Suz8+nCk5J56y1uvPvb4S7fvBswiUOlKL3Cyf3xyeDAYjMAiCHXRo0pQcI5slnmJWWaZ0HdNSKko8pQ0pNpkmYZscSrOwZXtK9euXGyb5t6DO7Gl8Wiys7NrHBGjGnzunc+9/NrLUcIwL4mQCQm4cMX2xkbyYbK+fv/g9Oj45PT01DLnuWvrpsi4bwkgEKiAwCoApe//qJ5XRL1ghY2zRZlrjKnzWVkkia5wfXH9v730BgB8w7veDgqQ5AdevAsAf+MLP/PG5c0L66NP/aWvf9tf+v5n/8L3A8Drf+db2GVy3jFC6/os7d66DABMJncwyGBSVdNp3UgsXKZBAMAyR0UkEqDgPbMpssJ3MaXet4YxRkmJXaYgiBCjHw6qa9eu/tiP/eiX/Z4vGw4HINp1HXHOTKhBAVf7AaAgSML19Y1PferlrlvmuUjqb7PYdY1xObLxPiGkiNCkOBgUx81892z/5s3H+7ph5+Dg5hPXbZUR2Nh0jEKQUFMbvKKAYx+8zY2tnBCIpF6EYRhjik1dn9WnzbIuijzLckMWUiTDxuL/k7L/jrY0S9P6wNfsvT9zzPX3xg2TERmZkVlZWZlZ3nZXdbUpaDU0jVFrNGJhhFhIa5C0hMwMC7HGIBhYDKiZmcUICYYBNagddGPa03S1LZdZNr2JyPDuunPPOZ/Ze7/vO398JxI0/81d8dfNyMyIc8/Z37vf53l+DxEBoZrwqsx59fkhZoC8vj4lV463NurtCRVjRVe4IlBYLvqDk3nmETnWR/a9gQWymnEfsQNU9BH0d3UjMbPV9GMrNPiKEU1D8bMimkNjUUdQOpdNNRqVBTNl1aOT4zMbm++89uZjly+d2TvTi03XNgCAnavKCsFApB4Vm+trmzvjS4+dP102D+7ftzKc2999/LHz0hw+vHurDozOx35hecyEbCkQhJJZi6qenLv42Onpou/j+bO7hYN5bJ996sqkLje3Nqbr64MgPq7rvm3btvWj8Xg8LhBTyj1oUTscNlpq4GgFGSIWMxMDMMeMRJAyGzlAExiPRhvVVJvOEGg4koAQB8YHMJsDZAOnamSZsLVcIo2LMncxgmngEr1KBtUaHBAnSYToQgATA5m1x5L7jaoqwTEImRogiwKAVxv7YlnE474XECPXtW3JPDAdAEAGUmwIZrZYNrHPznG2ePvu3dNF47yb1KPxZLKxsb6+MR1Vo+Gd450nZmbSlLqmPXNmL4vNl0sXKu8LcBS8n89OR6MihQiSL5w9h0C9NjHnITS6t7+zt7NzeLDcXdt47sqTWw7GH3zhnbe+cXJ098qTF//+P/nVS089U5J888svbe+ulWsTaBaQE6IACiK0bczZmq4zpOEEQHKEHonBOIvmbBlVkTkQgaW+R0ICMAPvg2QZTdahOZ5ubn/4Yx/7+otfplAIsSO/vbV9dPiw77vGs4HWZVlV1UYoYyddF2HIQ5KVRVHWpZkuu1kXO4WkmkXyd3/3p37qn/2r1MQUAciF4CwmADjtugSYUeexZ0mAWDhfjaaTManZYXNaLHTP032C7/34Cy1oczqfhnIS0vGiVbIuZnOkZERU1SOViGTBcV04H3zBBChV7S9ded9zH/nE+vZeMR6BcyJY1UWO0rfRV4XLumiWdV04T4vT062dTTaqy+ripQuXLz/56muv3rt///bdB+c2z7Rt07WNOnCgEFyElLJUVYVowbtkcHA0u3Tx8nde/ep041zhggU6ms80WlWM2tPTeXt8fm/33tX7Xzt4+Nx3v/DUs+978/q7X/nG1+88vBvKqpk3ZzZ2Novxuc09LUMs/Lt3b2rMx7NT5+sza2NYaBHYyJvHzJYkAVMJpCjABCsZHsl7BoUySERJScyGaIKISM5m5r1Hg5SzL8J4MmXmmFNRFCWRITE7BD+sWJhXyfmcJQz2ZgXLenRwFCZTANAEqnnezWdiiMihrEcj5wMTM0GSBGjkhnkIwEwlqURJQkw55QcPHy4Wi+3t3Y2tM2KYJMY+YtLCDzJOAoPg/LDKKryfzY59rqu1tbCiuA5MfTUAhGHZrmo6hI5ijKrimSUpM4fgAJCZDCClbIAqq9Ji55gIXUqDUk2aRaQzM8lJUlLLWdQMTUCGrmtSyZolFWUBYEAyrAnQAAlU1dQAAwB455d9dCH4evTw+PDtt69+6EPvWw+uCpVBaJp2XAWVyIR1FWKKqc91EQBxCTor3dqzz7R9+/rbb757/eb/8M9+5s/8h3/mqSvPzm7dK8KIgDR1t25cz1FyTEvsediDlGXOGaB3YfBRGhH6IuSY267z5Jgx9T0pE/nc5XlcoEuOw/uefC7lPmkXox0eHfcpX3zssbW19V/45Zenkw3pIwY24xj79dHG3s7eeDwOHG7f+Jb0SVOerq2Z6P32YZYkQIjs0dmAUrZVhxau9nMAGZCUmUDFMXl2IsJEqtkVVR8jAPxvrzw2na4B4uAFsxT/y48+O/L09MUL5/b3JnVw3r/z1/9zdpxNgZjMVOHVv/ofgxL7ghiSAEn+6p//k7FvBvplWYStjbX7B8dtmxgCaB42QMiYVAEhxn40DgToGGM/pJxQEc1xFlVRz9zH5fkzW87RO2+/NapGqoqO2PmYEyIRs4gZqHOE5FUZmXwoRqMipTLlU3ZBFXOUwoc+RRX2LjSxQ89J0nHXrpM76ZuGdHtUAcAoVPNFs74xAdSiJo2qg+bqkNEHoKziXBFCmbMiAjl2hXPITbN04wkRnhwfHTfN5uZmxAxg5Lisi6FFZphDmNBWj13w3kNOBhpq/9jF86NxtehTWVRi1EbpYpcNACjH5Iugqv+mWGsgACGAMxUQNAZCxGExoGrDqnXoSkOEQfAxQ9FVsbiRmKGiIiF71ASIVjhm1CTx6o3rL/zAD/Tzpo+pqsYFswsBAHxRKqFHHk0n3vu6Gi07PXp4J5TV4xfPesfTuvzmN1+02Jw7d7Ysi3nTkjmGTMBMhGBFEQrHJyfz29ffPbO9URZFVVXHD++Nghvtbm5ubYW69lUxWAcMeLboFl2qQyJCdqQWEQrJFqM4lz2TGSCSqSVJDpmInfOElEWIoOsXwQfHJCKQRXOmgsUU1AgUgRGBJDMhMfqMpISFF4SjZin9yZnp5jiUSZOimYEnJznFpmNi7zwy+cETLzKu6xQx99E57xwHVwbTNolDmcXosozK4mjWIrMIRLM+q2p2ZgDQp6TATuzo9KhddirY9V2X+/lidnh47Nitr0/Hy0WUBGgOmZgKHzgUw0nvg3/80mN9SnfuHoRQKdHDw6P5YmGan37qSuzSrcODc/t7D+4/mK6tgzPnhwJBWBvXT5w/+/Zrbz/zxMUnLp7vjw+6lvfPnleV83vbW2X4wMVLbTeb3bz2gfMfmAM7AGfZWUbLiBBjjjGmKEVdE/lQFECEQKIQcx6q6QcHHqh473wIJhZzIqaUExqWZQ0Ar7319vPPPT8/OXjnjTerUKhojmm6tnFw+LDpOiAiFkB2SFSEkfdg4j0TEoAm7QdRqc0REY9ODr7ne3/v5Seu3L79D+uNPVGIqXOB1BEAzJoF+cChYMdZsxgvlb1Yw1gz8Ob6aFwfqNw+uvv2g4MfnG51HTRL3VzbtKiT9ckixoP5Seyz5Jj7xbQuphtrRQihcAMJAMjVo+nu7v5ksuY9A4Dz3nlmdCH4ImjKrYieKc+mnHKObdOhOVClUKbceofve+Z9f2Zv99VXX5vNlzdu3Hjn7bdi186Xiz4xIzNTl2Q6naSk89P5933P5zbrycuqkCXGljmU3lmMKUNdhDg/nc1O6+n43vL461//zrt3bvc53X34sFGabu6yHV/Y3emrykJ5Zz5/8403tQgicnpwdPnCRV10h7duP3nu3LIV9WQOIZoDQiJRJGIz61MCNGaWJM4F74JmUTPR3MWEIuQcqvngDaCAqhyPGBmYPIKoEvOKRioZ0Zg9oqmIgXkiEzR0IRTeheOjI+4iAJjA8ewUBBBhNjtddu1oNCmKUFXFxtrGZFSjYxiiUuggm6hoSsfHJ4dHR02zLMpye2d3Y2NjbX3dFaVIms0O5osZQQw+qIIjBtW26wFgMhlXkzGXpRUlFwUwygBLhMEuOCCfV5t1QpOcRUVyapq2i13OWRWcJzNl9L70qiYmqjLw+R2DMzXTDKImkLOoQVZIacBXoJiqAqGXXiSrQ4dqOaecEhcBEBEZFLIImDlKCMjKpREkAtSocO32g8OjZjLd8iVnsvGkkrbzzESUpKPA3mHfLEZbG28d3P6xn/+pmcX5fHnj5jWExCex+rmf/q//5P4olL3ZcjE7mh+7ws6f2V3OmsD18CCJXVNXFYI2y9PRaEToc4pVWZJJ33cGko3ZUK2xDETEjkG8MKlGQPR+/NzTH2v79tatmxfOXTh4OL907sr6Wp3SMkkLAE3b7OzsrG9vltXo2rXr9+49sGVXI3/+059eNPOf+2f/wns2pGHwGnohCDAjJFTLQOTRMKfMDoGyI60r7xhTjM6HoZLg4eF9APBlDeA9udS3EvP6+tQ52V0fXdqZTOuqmNRiJghcFCiJESxrCZBFQAHAiRliNEhxFTNmVQPMVe3rkT9azEWKgeDsnGubNokUlUeiGPt6VI9KSr0IErBvYgZkQkwCTMRqF85sLxfzdtlQ1lC4bILgwDKwCQ6gm6DEse/RcShCyqnpusXiVLWtx5uIa+QsS2c5o6ESZBX0OVvHpuV4fNh1L11763PPfQgALtSbepq0RvTeTAGyglHBkjMk9eAKCIylJPIuqCoRsvMEqw5XRKtCeXx8BNlcQUg2X8yWc/XBVXXlilJFh7KKnAUAEF1BvnMOSXcmxbaj4/snabPoNHt2IslItZ8TsKSEyAC0IrqoAMIQmRvQOjLMO+gGNcc7yElAAJmQCQAHJj0SmzGgAlg2QRRVIPWh8JXjccC1wq9P6nduvtvEfnN763g+4wK7lJlXfmEiBkKw4Ctec2WZOhER1cloHRFFuqKu/KQuRnXbdYKuKiuVjODZ164YAyiRbe2MFDBl29taI0eSM4GWYRQmUwtOWFPXAcDNe8f/7Fd+K0zWjABd6lQEQlGMTcUMRSCljGguEKKQJiBgcqioCjrk7wuHTUZHj5ganNGySSDzxoAChGM0HRIa5BSpidITdEonktqTwytb+2rqmDyxpeTYxZwTmEcjNAfKObPYyNXCQUXZoylIMkgCosxuCkbID5ql90WfpRXsFCTmsgzUzwEgIQoUR8eLPsamjfOTpm+7MA2Tza1RvaY5O+cYYXF8Ujo/HY2cc4P6M1gKRlUV2/ns5LhL3f6FS/V4/c133j3t4pnd81u7O1cuX/ra7/6GxN65SYZc+uAYLSMAcE7vv3j2JW81xSbOG03Jl+XG3unRw1FRVwZFtn5hIdGI6kYtqfX9kjVXrpppL6LLZeNcWZZj8sEM+5gegcdZQcSSiJjqgAUWMXbOkpoAgVdYMR5f/Oa3P/jC0x/+2Ie75fLe7VubkzUx78swmawdn54oOAXX9DIqq0BMZlGjJfDoEVLMqVXJktSsb+c7Z87/4B/40a++9PJp0063wcjUrIuxqioAKDhotrRYUBG4CLGPJpmi78kLIyRYEiwKP9m5+NV/9Y1bH/89884fmSs5nN+sfuD3/9BbN6/fPz5KOU3q2jtEyefPn33pWy+++/Cg6/vH988/8dilui7vPzhO8Mpk7baFcOP2nTv3703G0/NnzwTPW9tb07XtoZ8hhHJ39+xiscgSi8nUV5XG2M5OYlxevnx20c7YxYJhsVieNqdR42hUXTz/+MWzj89mp1/87d8sNyYf+exnfuEnftIhcEx1OWlMFDrnKpIOlLGgB9KM19YOZrg5mtw5mnuC3b0L33z3xtGdo+c3Jusjf6+dp8CHfdzauyiaMDdXNjfHVXn/5P7RyR3BngIbIFqo2JNJxwk9g5FmHbpviQi4gIE47oQRAwH3MfvCyqxp6L4BYi9qnpyaMbCoDrVxCjlJQmMiYlCA7BwwmSZjLhnJUbFcNmVRAcC8beqiXh9NHfv1tXT/4MGDB3f7rh0VrhkfnNvbr9dH6rEeTQEgC5BaaiOrTYtiWteT9XUO5fFiOW9vr62vl5Vnz/WoFhmoJDyYih0zADTL09Fkg1xlbiQY1NQYTNQ9IvYaqqAJgCewnE0lx26xmOXUm+RhGc/MiD4rIDmHABkMshnEJG5IcqiaquacU0rD3kxlQBkP6wtSNWavmlKKqsxMAKoqRE7VcpKUxDlC1MENwEammExc4e8+fNh2uVm0Nddu5IWRqkJS1j46AkLlIrSm92Xxt3/1n/7yK1+dbG70XfJjN1b96PTx+ur9f/33fvxH/sSfuBXn7fzEm53Z3dnb333j5FoiMAUSMZCut+AK8q5tG+dGzKSScpa+74Wy94UIDe1LYAwCq/YOGITDLNkA+cL5x9umu33zwROPv68IWFfkvamqK1w1mSKioXvjrWsxpth1n/zUJ648cXnZLba2No5O5q4ohpebEFLs66JMoquCcBVCj0hIgGhVWU4npXcux27oVM9iiy4BwKgagaCIZpEi+EkZgnbba9Pp+pgDsw+rwZfJVAUEcXBY0+r7q7IFBRUwwQG1kg1BptMRPjwysHo0AgAffNv1bNB2bVlWMbY5UVmF0HRtyoKIiEZsA+e38DnF3Z3d49lx33UxJgOBnFSMCA3UUu99KZpQwEMGjbXzi9kD78pxyV0vngw0DZtEMCMARHDOGSXyWBUVOs7J7p7MTroWABxxO294e0skI5OIDd3BPKymshCyZDHDUTUWlQF9u1jMs+a+aWbHx47Jh4DM7JyhjsaTPjWL+el8OV/f3GJfmAKYqQkMeTfBqi6z5roeXzizffXmARJwEdoYY4xoWnGNgFnVOUaCAQGsoI8YWCpgaAiEIDbcMACRiJh52EYTrfJqj0RoJGQDRRJ2ntDEFBCYsW+XVo6CL+7cfPDtV199/qmnqXFiACzD/Go2dCswI5pjZnXBG4jqKrMwuB6RkXzwRtmG2ElirnwofChVchmcD+XQZtP2iRCqeuQZvfcaCqOVtx0AmigHR6ebvi58YkAqHTuWnFfks6E8F8nUwGxAY8ccUYXQsXc5ppyjgHHgvul5HCAmyRltyG3AEAZDIiQQRlNU0VmKibEHiGqL3M2XC/bk0EfJhSEzKZE6yiqasCzrZU7LxRI8TUeTREnIEIzYlF2SCAAl0OmiKTwSKnmOMSMAJkXyzjsAMKRF0z58eBBTnC3acTG9dOnxYq0YT8fWabtsDHKMHajO5/N79+7t7e72XeuIkJjAzPLx7NB79/jFi5euPF3U0weHJ4vFwnk/Gk2Oj483N7dGpS/rmoPzzhGZCQNA7LrHzuw9fmHfofapFcjITjN2Ta7r0tfhzvz0xr1bffBvPbg3Q3dhXCU0dnzSLEJd931fFHVZj4EY2aeUgTibmQmqigwsABjea/aokonZE1HOse9SUQQAuHbt2ndefu37PvvJbtm/VpY33r5WBj/hCTs3Gk1i7E5OTkZlqVECu5T7LrfM5IXITAl7QnIAmtmXf+AP/pHN7f3rN39V1VLOvqxEJSZNSQDAdCBIWs7ZoWOHOYnELkJOzjtPWvg2ScnlfNH/lb/2//B9L9X6bNl84Xs+deHy4zoqnl+fMFMVAmY5OTrY2Nw49/jFb7/26utvvvnUc89funChKv1yMR9NJ+WoVHJMtDaZ3rhx48H9O3UVnn76fYtlLwre+Rwzs6/qCh318QDRqlAg4XK5BJSNre2Pbuwvn4ht1/cSsURk3Ns488FnP8royunWT//8T//yr/7apz/zXV+5O29vnUCNqFAWpaZkyBG1xY5GoxaTHwWELLm/d/hwY3eva7u7D2d7pm/EudJy0cr12w+dr86dOVOPq1EgkT6U/vT0RDQPqB4yAI2GQEiKwMCIoARgTDDsoR0CGJmpqAoyu6IgdupdzqKiZOCHEo++15yHR4aqElMRgmRANQXN0ucsVVEZYIxx5Ec7O9tr43GPBgChLB36pALgXFnunDm7ffaMSezms9w2B0cHY+smW2tA5NAhosYMiHU5Go9GfU5m1nYp1DURPbx3n71N1kbMtHpnEhJR7ltVAQBXcM6JkhiLZHEGaJKzERAZ6YAdhiEBr1lSH7u2aZqm6fs25YRg7DwRDyXVORuboioBDpl9l1cYM5UsOaVH7ujhXbqqzBg6g3K21T3PucE8NXzZqlweBinEEuScDRC9QwUkvHnn9r379564fB4ARCQjJoeFkba5cK5wvu3yaH/3p3/z5//Jl35ldH6LukwYN5CeG60/99C2+vDKb37pjQ8+f+4TL9jspKrHDsf758+99J3XKzMm0pRMYQD3MViWiAgbG+v37945Ojra3z9TFFUfIzMP0A4xVUumZuCGV1lVuq4LpfMumFJK8eHDk7W18u69k92dde+p4uB6ZRfuPbh3dHLa9HFja+PJK0/Ol4tQFB949gO//btfBoXgnOSsAsG5IZfk2KXB5wC68gdlASPnXE4ZwIL3UfTwaNYMk3geGsWtye3WuIKu2dta293cEsfmPTp2RopDEdxgUh6iyGCoqqgmWaJqUlAiJjUZKCUAZREK7zvU4eHrPXvPCiBdZKbgfc55XI9D6BZdnw3VmMAQgImYKIucOXPm+PDYBsCgD0DMSICoaMMZpn3HdckWU1xSxkmBRcEi0bKgdWWxBsKYHKMn8kyF8yDoFH2BTs2tb274HO+enADAaGuduradn4ZRKUimSkRk5oCSSNN1gExkklPXNlnFe980zex0tljM7929k2N84onHpxvrRpzAzIAcF75WtK7ru5g8IIFTExUDgOBcY13XdUpWO3/5iYvffvt2GNdLMcm5qkaaMoJjYKOMSDYMOwMLEQ2GVhpDIMBB+BwMesOLb2qmRI4GccyGsILmnJ1j5wkRPTOhgWjquwi+qkJRBgAUtZdfeePKxSvVdEOXC48wiCZopipEtCrR4DB4zRhAbVVMgwTeOZEsjtmHYUlMxA4o+JAR2BdFWZFjMfT1qjMIVQ3MO5dzjCnllABg2beA6A0gZW8IQCKGHgFMVJIamzczAFZREWUCUBRVRFmhscRAxYVwcjCbT7I3AVFTEzADZXSGkD1H05RVUhaBpcZWtM2RTNeqMTPH2CfN62WtMRfkjN0y9qLi60L6LEmQuFdJokguoxCCRyKfERwirNejxXJeGQWnjjHLgOvGNquwBwAwOHz48HQ2Y+fOnzmzubaVurSYzR7cfzCbtTvbW5O67qJk6TEnk1wWPng3qkpHbJaypKqqmb0CPrx/d2sXL184D5LP7u+Wno+PDyfr65vTiQs+gzkmsKysAGBoKfUf+uAHJ6Pp6ex4bTzZqOvDW6f97GjrwiVaqx5iitt1F+bz0ouryo21RgTBJju7pyeLw+MTZMZh30goqilnUyXniBhRh2sRGQ248eG6S4Q5JyIKIbRtAwAbG5u/9uu/8elPfOLZFz5SlaP93bMvfuVLh4dH6xvTyajEcRXbXkUgxZT6pGpIOWVG9r5UBe+dYVq28ff94I889/yHZ4vTruuY3VAoSOwQZWiteXQlGDzzOhQF28BMhyzCmlHRTCGQv3b3wZSL4EZScB9Gfn1nbJIxh4IVtCrCTrErImf3z2/v7H32uz/nnPPeOcSU2vF0Uo5H2ej841cUYbFYxC42i5lzLIaiFpdtTlElz2ZHdVV3fcueq6J0CJvbuycnR8su76xv1yGEUHDpzYma1sUY2fed/JE//L857uY/8RN///v+8kc/+KEPf/nqr0QAA7QkOescMxdhvLtdTEcdyZSQ4yx38ysX95tsGLuC6N7B8dnti47Cwf3jqhrfu3vPUlybjGaL49Ek9IvT9a3j5bKpJhNTYGJ0DlAZEdXQzBHBKoJgIhmRgBBWT2RkJlACZ6CMqiD/Vo0dDMIzMRGJsiNAzCaOmJCYCoOMxM6XmslMR3W9vrGGozEAqOR51x8s0+Hx6fFstuhaY3jy8YtPXnqMp+Mb77zTzU6nezvBByCPGbqY2fmY25PDk8Vy+e7NmwezRTUaP3Hp8rn9s6ayPJVRXRmAD1XSaGDZ8vDYqurauSohuCKUk0mTc5ca50rJ2ZDBBIcHIsLApM0p9zF1XRdjHHg0SJRzBgRkryakOuRgAJGJXEpJRHU4t1Y0sFVYxR71aCBi3/fD8c3siCilNPyj4T+tIKuxyVaYRQBGIgVkKuaz2etvvP0D3//5mJuh+1HNgjI633nsQIqqfPnWtS9+4ysf+9jH3r7+doImjPASlB86gfW7J7Gnq8e3f+VLv/5HX7gynYzAubUqPPHY41NflsmQMA04SgqiOUcl5qZpJOeT49MilCGUKw7hIyj+kMZ6D09Hq4o1lYQiMWcLzh8cnMRYVrV/+9ptlWho7Hhtbf3h0VHsc4qpWls7ODzs78Vvf/vbJ7OT6Wh8MjtFD8GFbGJGfYzoGIAQ3mtCBFMLBTOBY4q5C4S9pD7bw5MjpAAAfZ9CcN2yif0yYcLAexuPbaxPfVW5EIZC22G0AmLU4YeVAUxW7bqKBMxcIIgQMVgvznEUDd57z31escpzSsG5NnaImFIKIbRdBwYh+OFqZgYZEQEcc04ZwcqqPLh+YwDtwKoHU2GoDzZQtbIsc4zB23/w7/+R8+fOqEJRVkkSOP3OK1+9f3AXOBgoEbghIq2KjISUknVNQx1vTkZv3LoDAJGsGBWOULseAospEzljBspmOWdAa+fLO7fv7OzthVCoapZ8eHSccz9Zm04n47XNLXacVTUpgKimPjZIuLWzM8yMkjX1SXICADQgphAKQUmx3d3Z2tlebxFaHdpkAIxFEBid86sevUHpQhrK1wGQAFeFDmBIKDKYg4fsu6qK6qopAwmZCJCZGMBSSqiCCJ6gqktCm4zH3jtEqOv6nevX520cj2tDIuKUMgw6vKIJGSMOzHn2gDxc/5BWlXQIw6WFvPOooo/K3JgZKSiAmCJ6RSR2CpBMiZ13DmJ0Bn3KfdsDwLs3b3V9j2Jx0boCU0o9RDfyPgCRmELqc49oWWk4WRWI0Q2CV84Wk8aUcw5FaCwvSSdMLpoRipkiGbKgLSRnUMkaYxLCDqzz0OZcpjyelogoosEzEgFzt+r2QUbiEJaLRggo+NznedcC0RJyRewzRhR1xIiW825ddZgedI0rXVH7dpmA/GkbMw6AEwzOrU8nj196vO36e7dudX1UB8o+K/hy8onv+vTN61ffeOU7ZVUHz4v5Ym06FqmZoCi4WVrwAdllsWZ+mlIGdGf3tyejOqV+e2fHMwEjkHOEBKoDNBVAQZtmfv782el47d6tO4ujo7M7O2d3tha3x+3iZGdn49dffnntzNp4Y/KVF79+4cln1tfXqzAKPjy8ef3X//UXX3/zLeeLpIZ96lIzOFoVYTgpTE1FyCERDfwrMEw5E65aIb33AAIAIYT5afcPfvyn/sJ/819feR9vbWxeevziN77xtXfeerOIYToaT0c1KqSUAKEkMsemUXMkKzCjghjAd3/u85/9/Bdm895VTOzMULLELnFwRRGGRwwziWREYM9mliWjCgwQcQURNcgcQq8mStP13WbZRSA3Kn72137rd9964xOf+cj7P3BlMvbt6cl8sehOG1AUxaIcOfbz5WldVRvr01AV5J2RJ6JQjW7fvlOWxdbZ7cI91vedqPZdZ1m7vmsWi53Njdl8noUBcdEsR2UV1crJNFs6bebOii61Jw9OxxtjZjQVyFKEqs8ppuV/9V/9ueefe/5v/fjPkvfI3Hc9Gfag5SjUm2O3UdybPdjZ2ticjBzmuVNi2Z+unVkbzx4skveHSSdICYpZvzh/4ZxX2xhv5gJni+ONetzMlzffvfGBD3+o7zsRdYiiIKZM+F64eDCaDoFNHapgCAcL6qqzUJGIMZhmHSomHDMTDS4iNiMw00zsiJ0jNGKAbAPdP5BCTrENnqabawDQLhb37xzMjueixL44Pjn1pb9/cLS7u1OHAKHoNbEv0HvJMJBAkbmN0QC3d/Zeef1NQmJ2i9nsnsr29mZVjJummU6nKXbMLJqJAT0BQFGVxGFcT4vxWlQYxtbURXROQGCQOwxMwcwGCavruq7rmqYBMCIekv+GQEYGaqBuyKAAIZgbkLiqMtQ+D5Q21UcDDQwHPXjvzCDnuFg0fd/Xde29FxVYnbOraamJ2TMz8tCMmVMmh0h0/caN03mzvjk+bWeiRoWLmkdlsdTY960f13//p37iq9/82g/88O9BirduXd1N+P5F2Lt3Wiu/uZxtP3725Ve/c/U7L3/8M585aE6V4MyZ3Y3pWmxSKAf+zLAg0FUFLuBisWTmjY1NQk4pOhcU3kvMrb5Usw29IkiAlnNC9oAOzYD45LQNoZzPe2KNOSLCyemCnW/brqrqew8f3Pj5n1cwVe37fjqdPvfsB954/c3YdVU1BkTpMxmJyCr9M2QYwQgwOFcEL1GIqY/9SZMWMa7V6wCQRVPfHh8/KCi7Aq5cft/umR1feiIm9sRsyEMWkZiQRCA96tcc1hBKtNrGAYqaAhqCDaZXIswpVtWQ2u3KovLRDbJmURRkJn0sfPDOx5wAQDS7oXhZtCyqqqzuPzggF3JWedSKN+gtSdG7MomJ2AeeffoLv/cLhMpEAi5KDhVeu/3WtdvvugJUI6gAoIgmwax91J6xyI3ev3V4fnfn4v4mAMyh3yxGZNJ1MfiAAGjq2TMSFqWC9SmfnJ4ez076GEfjSVEUzjkCrMvx5tbGaFRJzilF9iVkSKIKulg0BjYZT0aj2owjRIj98C7Pj4YDEUG0M7tb+2e2Xr12NwuVRRmjeC5NLWchJgQmMlgxvoe4u+Lq3jWguofxWs1WdmlcoTgMHslTBuicc45FIpipWuGx8M4TlqUHS4CenUMgBfeNV177PV/4PjFbLk/9ANUwVRFGxeEZSgTENmTyV/KXGZipEgIwoVCGHGMsqgTA7B0DZ8lZM0PhvcuAokDskUlFUTQ1LZo55wHgG9/59ubmlkN2YGUoFJMYiiKrDEhsU+NI5IgdMvJAw16BkgA0pyET6bw3xlnuJ35UZcjOsomCz8wtyL35nJmdYdScEVvLvVpnMgJX+QIkmwmAjzn7MiyapaQ8GY1TH5sclxAJXZ9zlNyRLbtoSNkXlEXIyqp0RCjZFKbB7VZ11i7G5SiENlsXTTgMH9JzZ/fHo3Hq45vXXlvMm2eeebaaTq7eukNkKjnHCKAAWlej0lPsW8mr7zgmJqQQxCz44EKpQM6HsqpSzmtrmzrcUED7nAvnYPB7Iw1vPwONGl3AJy5feP3bL2szD+fOTnc2OKXd9Y01f3BpY29nZ/Tw7dnZ9b31evzG62995WsvvvLWq4tF67kkT33K3jkRIWZAQwBJefW0Iz+8IYdSZgSUlNH7IgQDSTkOjW+/fO11AIAv3YE/+JvvHZI/BP9/fn31Dfjb/8smAAD8OYA/BwB3Tv5/fgsSMrNqNpFkioSrglkZsJKM4PrYKaAjx6SAHkUJAIvq229ffeX625cu73/Pd33i0x/9kLhw987DUShcCEVR9CkVVS2gi7YlQm9B2XEIbdttbm4P8nPf9YRkCEUowWkZQmyXt2/e/MALzyfVg6MjVVXRpu1FJWkyxOPTGRmps5Pbh4pGghShrOrrt64vFrPf/8P/8fzu/aoeLfLDLiVRY6CEsLm34Qq8e3wfnE4noTSYH5+eLk6P7y8/+P5nP/zMUzcfvLTsulmy9bWNg3cfoCt9EbaqUXPaYvDb586tqea2Pbr3ECSFwg0dvIJANsjpOCzShhPGO6dmklc8el3J4auNNA27HhJJ2RMpswEgkoqoKpkCMiKB4YCEMGImVgXvnPO4WGTvaW08BoDKhboobQz1aLq2uQWEp83y8qXL588/9tJXvspkG5vrvqwAyEBFlJ1jj2ZY1qO1jc2zj11698bNjY2N55997vT4GIjGo4mSEqEP7pGXg51zAMCuKMq6KArPbBmimJNhWQWK7x11AGpo9t700/epaZoQwnDVYCYFVBNVQ1BkUgMDAwQXY6/vbUVVzRSRVtVFq+XpAMwzERnK9ubz+Ww2G42qqq6QiJlSGnaqpKZsxEMgWgEIouRqPH797atvvvXWxz7+waqsmtxgFvV+LjmYm04mX3/1ld/4rd88Wtx7+5VXzz938fTe9c+6rUu3Tvg0Lsyfmn3muz772y++9K3f+tKHPvlxHBegsHV2b7y9cf3du2PwasLMKUcEYnYSe8e+CK5wflhWZVG1DACPCsyHB4gOoJYhn+wCA0Dfdd4Xgqvu5tNlN55uHB0/zGJlFVSzqi2bxbisADGbjccTZjo5OtqYrl26eOHerVtHxycxduSCIIhk7xwygCE7tqxoklNiKoaEYJLc59zGKEKMDgAWfd/1p9J1myP3/ieeeOrKE/W0osJ7DoRoauwJ0ACQgUwTIijoqtHKDJElZiBmBrEMq+ewDk0NVVXiciYpAkDOEcrSOe5jBBXN0XvOsQ/1ODC3mJlQ1chB33eF91VVra9vPHjw0PugaiICiACimpHROERzCJqUouHXXvrm8dHD8XSsRkpolK/eugXeZ8k59ghqZio+ifnCe/RtnxW4ifLqO9e29zcB4JtX3/zUc8+rQlQJBoxoYubAELjwk8L7GIu6nq5NY0zeF3VVE9Lm2joxIyIqMTkm0iQEFDgcHB4dHRxt72yugDIO1QyIyQ2j8Ar1aWaWMwJ+5pMfPVz81rffvlWMPQgYQRYdFKXBjQRIBBaIEsgwew65+FWRCA4k7SESr6qCaGaDZEarjaOapIymRVkGIpU+55RYHfuubx1PFoulqAHzS9/4zlPPPHPh7G7su5QzAKhkVhscLoaIpkOcHwcA83BOmqmqZ29gjfSWBJlEhYPjwClGQAC0lHomZFfYwC1SyEm8CAHEGLkIAPDW1Xemk63Se0rqmdCwHo0EsU29d+IogGEWCw4tQwItBq+hiooYiJiiY9VohIJwtJyfGVWefGYVgFat6ZfHXTPLXe2L2tw8xaQgCB0oEI6qKrBLKQ685rZtlpB6D4Ur+pxVZCnp+vHBpJ5MR2Pru5PYLyR7DFxw0mgqHmsHCKox9pitovTM+TO37t6d9ymCj0mjEQAwUQiVSRbJk3FtOY+qsD5d6/akj7a7u3P31vXZ8eGZ7S2TZJKCo5yi5ESFF4WiKLrUeu8BkFCrUPgiOEdVWSGRMuWhjsgyIg1DdM4IAOS45Hoxm7fdYnNrb2dr7fa7N0IJa5sb1KI3zLNmM/FGxDNuUkT+u//D3335zWsQCg1WjEYVV23bqEgmcN6pKBA458VkeJKISJaMhqDgHAGQWiYwAtAhEApy4ckXiACIm6ZBlb/2l/9PP/R7P//g9rvzk8OzuzuF47s3b7/5+psHDx4sZsuD44P5cvb21bf61JzdP7e78/S585eeePbixz75kVBUomGxSOTCX/w//qVf+OVf29zZZe/JuV7EsoAY9jEULmfuYkueHZerTkkd9GKzrECESAAccyLyhB7RRFM1WQeM71y7c+PGz3zrG9/+9//QH3zhwx9LXTuux1kyqasYzExzFpW27YB4FIosAqCSEZma5aIuS0F2xKD2ta997cb1a2+89hqyffxTn5murfVZuj4i+qZdsBPI+uDOfTAcTUcPjg+aZpm6/u79u8v54nh5evfk4Oa9Oxe3tmbLxeCuYHLZrFof9yTeuar25cgfPbj72Jkzrho70RrpcHa0s/vYB598/KXbt2/cuxdPlzFDVdcueMkyCdXtg5u2sJO+ubS98/DOnTs3ru89ds4XXpNUwZOFGKOZwMB0JTQzEyUkZGcmACKqTDRcjfBRFQGuYHQcY2+qzAzMkkUlMhKAz6JZh6JDNgBgVgRDRIfjtcn6dAwA09E4nCskgoErqvq5Zz9gANvbW928eezcuW653Nja9KHKqgqATJ49KNRr06ZpD2cnT1y5cubc+Y3NDULev3C+KIJAdm4ghFjK/SPGPACA49KxB4Nu3nSdyxqISyBQNcGh/QLIgJBEYtf1bdvGvn/kuWREAgV0xMQm5pwLlokxD2hsR25leVYFWz0AAGQwNwzc7EezDDAzItZ1jYhN05zMZn3sx+MxYvHIDIEuBIcIogA2lAMieYu2WC5efvWNj338Q0w0LSqJsaHcIK4XxWnbfOXLX933E1yHB/fvbW/VP3z5uae+/UDuznsu3jw4CI9fnO7vf9f3fv8br7z2ta987cPf9UmnaXdjbf/C3s23bhRmjVqGDAaEgKhELKoE4Hl4VOehh1tVVfPwdhEx0TTYVB+tf1ak8CQJAQBEVGan8/WNaVmOzWLbzEfj6uTkoPTUdstl26jZcrkYbDCnJwexWTx2bv/05NhMFAyDJzNGRKQsmlJvlpxJ4aiuS0mpXTYhcFRddj2hG/rh2m6xnJ+cXZt87PlnPvKR5ybT2hyO6lHBQTQb0+C+kjy4ZT2YkHMClgQNCAmRDTSR48KxAqYkCESozFCVgQANBABS7GOKZVX1fYySNMaiLEVVcxqN6nnbDzQ1BjTClNL6tFDA4+OTARFB5MCUmWFISpKTDGjIzh0dz5B4Y2vzZHZ8crI4PJ11uYnWDWhFX5aqvUQAgsIFA227NisnQWDXqR3M5wBw5/TgN7/51e/+4EfHG2uL2UldVI4towmq4wGhYzFHX5RFUSFScKH0BdOAolEmIsKUctvllNLh8dHJ4mhvb3tnZ1dAVEWSJtUkWSQDwDL1fY6AGNhLzuTw3JnNH/0jP3L1x/7HpLksRl2fYXBtD58HUeeYmWOMNPjczRB5EN9pqGB6pLT+ryXXf7O4VlMkJqS+742ZTEBTOV4TyfV0HII7nB22bUtcRut/+mf+yd7u5sdeeO7smd3VmGJilJCYhzp6ERxcxMPYhQamZWBJ6XQ5j23nmQpyYEZM7Jxqzm3TRRhNpgzKA+LUbGA0pDY7x9Lo0B+fU0I0RKjq2lCKUBhhFHUMWRRBmR0gZTNRIIQ+Ze+IBnxT1CS5F80mWdQMlm2nlfUpRsbDbnk6X4ijxiwZlOxmp20iy4yiKmgOoS4LS0lFnfeqairzedcH3qzGhsDk2pQWkiD2a2sb5HzKuTOLqY8I2cSpjdVYTcHa1PUxve/K49/1e3/g1Wtv/eTP/1IiRqQoGQb2uhcEVpX16WRUlm0zD6Hc39oCZsdIoFa6ZtkBKhIQYte2XdePxmNy4Hwoa8qSEZHM0DJkymCeS5HM3psYAPlQsAoCqCgPbwYwA/XBiaho2t7d+ebXXyIH6xubWWEWez/euLk8vd7cz5sb12bHD4/n9dqGI6ekses76gGJHIrogGNXVXTIzNk05TyoJWbG5ER0YHCbmagaKDEBDFZOjn2cTCeHDx/89b/5N555/5Pn9/co8O2H98fV6PGn3/fE08+aYowpdW3fL178+pceHj54+pkPet52RXHpiW0uyrbLRCCS5ov+7beveu9zTkboH9mRDCHnBFFDERx4AUiqasCARkaGCKCDORxQJSUx4ly4kEUBxfmQso2rzcLTN7/5zu13/85/8Wf/kw9/8NnZyaFD9qu1vs27tu+7ZbNcB5uMJyDiXECivm1zHyORAELwxwcPf/mXfqkqw+c+//kYsw/hZL6oJ9P1zZ2+T1s7uyLREV26cCWnlMHWT2fz2aw5OXXJ37t3961r115+482/+d//P/+v/5e/+IEPvfCV134RRAEgobjx6OHJ0ePnn7lx8+j+rQefeeGDy6avds6e232s7+bz5gBRHtucfOd6P7N8mJXJ67KB6Ro59gJX9vcfLI8Wy0XhvSzbozt3L1y6kDGlHMkKRRATAhyELLNVdzohJjVEI8dsw40G1ICZRYbyH2ZmfATpRRggCUPl8MCi5xBINRmomHrmEMp7927ef3CzrOqyqgFgfXsTlHKGlEyBpqEoy5IQ+77Vqq58KELJ7AFA84qi7IKfrK+VdSUKZri9u6umIZSOGcwIfNYIOFzUGUAdcxlGAMBYkPnC1zGpZmFiM04xY1mCkZiiAiOhWs4555RzjimlGAe4P4AQo6qowgDeJyY1JaJkOebshtdluKvqo7nr0bigMHyWcHVqxxjNrKoqZu5jl3M6Ojqq67qua+d4gO6qKaoaDrs3NYHgfDZ7+62322U3XitzjAXwIiesg3r/5mtvsNoHH7tyUvQ///rv7D955Zn7Gt68H6x8l/Qo64eeeWZtb78E2tw/9/a1N597//unozo5t3/hDEN0oEigZo8kbXGODUxVk2VZZfmxKAoi6vtuSOUggnP0aC1sqiAiNiRSCJ3zzjnI0HZNTgkQUh/H47FZv5zPkExyH4IbRLf5yfGF/TPd4tTS4pOfeP76u28ezuaOSJEG/JoARcmm4ggYBcwCDdQlMWQkTlFFscsRAFLqpt4/c/ni9tbm7bv36kXl65L1aG00GY9HRV0YyOptDYK6KmVwzlfsk2hKAkboipT6GBOicy5gTGa5j4kAgncraVM1pVSUdQgh52ymhCAqsWsLHwrvclIiVMneu67txuP1vu26vnODWDDg/lbWqgwgqEhoRLBcnNy68e7Bwd3rN26g80ZoJNOtajj9mBnRmUM0h0hArKDOQuy6tos566JtAaBDu79c/MpXf+f9Fy5dOXNeYhKzbAJIaopZzZS9E02enUfv2DskVLRsJtrlLsY+xigqxFyHYnJm/8z+GSFTMjHoYp9UmtgNJuhkAgSIDiSBasHu4Ojh8x/77L/3R37kb/2//sHZi1cKj5KzSo8I3nml1ZKZiIaJCFewaQK1wRI1vMxDS6zIgJ3AAfNoNohgNCCFqqIuGCRBCOQdj8uwvbXRNA0RkfNJBNRCVb7y8ut3b9z6z//snwYABTCwnIQ4Ezs2AzQeGNQmiMNlwFLsjw8Pu6YJzlV1yY6SZNEMpo6Qq3K5XPbtcvhZMjkwNFEzdYSL5RIY2rYFgIv757s+F3WBltk5ADmZzadbY0BOuSNUQVAzFUADJMymljPb4PSyZNbn1WpeRHJOaqDMs25x7/R42Xbl5kYPkGNMZojQxQREwKgxeudGvhh2tZ5YVB37TjVGwaDsyqzaxsazV6AupaiYs+aY0VDITvpujH7WdC4EcG6WumIy+uQLz/nT+fm6+gOf/+zP/eZX+sXpsFdjIu/Ih1Is+8kEQdF5XwTQXBdEoDnHAhU8EvoY+2FhoSvwASkNl1VzzoGqqqQcCQwQfShjSoiIxAyARGaiMvBIhqUdqWSR3MX+1u3bwHz2zDkPoRyFhhHP7iymOF+2gtwgQhj3EXLKiNkMTQxohVQYdjpqmlMCWzEqyTkiEpXBQ4bvcd7NeOi4RhpG9CKE2HXT6eT67Zt/9x/8wz//v/9zvhrtXbh4eO/grRt3zu2fzymxc1iMdrY21m+8/i9+5Rd/9Tde6vvRhQtn/5s//6dGxTiEuulnhvrw4cP79x/yCs2jSMI89CUZmKWUi9KH4JsuKtiAowcbnPhABqKKDKQCoGSWVZgAmTUlEsyilmxz/dzp/Ohv/N//9h/6kX/nC1/4nAuW+64uypxiH4KqVFXpHCMjG3dty8xF6cflhpmKc8RcVvX3feELZRH29vb29vddKMTmzC5mcT4wO3Kl5UhIg6o7Gq1XYWIb6YlLT96/e/vodPnG9TtfffGbv/3iVz73he+9+cVvxKZF75949srbx7frUVUV/tzu/mPnzxDC1Zu3X/vaa0Ux+sD7n3r48IF17YZfm3ikEPb29kbF2vxk8e6771zY3ir9yPWyW47H24hodVk8vHMvLpc0LX3hNMnQAU42eJ+FiGgooUTA1WhOzGR55TqHR75eADAAJnLOrZSfbGCgAEQoAoOxkR2LmOfCO//O2+986zvf2N2bXn7i3HDEoCeiwOBrCgaOeOBNJDMh57znEIKYOqSh7Xj4v7JzgxEFVlEvNiRdVZkqOm+a1TISalY081wAgIdqWo/YeS4glNXRaWqjkAtJQEERkRFVTUVSjCnFAf4YU3rP4MvMZkiARA4GdKxatkyOR+trLuesjwi+j/6dR2f0o5eMiN4TGg0EiXxwoRinlJbL5fD94eUTUTIjVaSBg4wAaIgulK++9vq1a+9+4IX3JVEoXOVqyHr79s3DO/deePJ9ZVW8dvTuJ5774FNt8F97e8fKHnO5bCsod7b2N9a277bzclRdCe975403P/LBD/pRmOxtWu0a6YE9yqoVFgBUBAeHKhsMwx+S9u1AajOz9+QwGqxf2WzIUAGoiGQxy2aFAZpB2/aa4nRtihgPDk6L4MgSOBSjoghqeezXA/br26M3Xv7yR56/8n2f/+Q//ul/Xrhpl9rKFWAIoM4ho3eEJJFxsIUYM5uRgkk2BOo1AgD0zYW93TMbm0cnJ1G6k9N5jtGzq8vy8uPnL1++tL6xMcx3iCamaKo5dzHNThcnp/PFskkxx75PKTrmUR3qInhHopZTWqWDRACAmAfGeeF9QjYRRgTn+xwNJHjXSy+gWbL3wUxH43HXtTGJK6jtYtO0QGxmOhxMEGPOzA4s5d6+/Du/uVyeOO8na2tFVVLggJkcmJCZElFRBICQsymo9x4TDSAhDgGHNgjHGfHu7Di/0+9ubE99EBXIWRGZjMxUJYkwo3ceBS1LVktdkpQlx9j3YrnwITgHhJubO77kwbDFYTD+S59jjGkQvHPOAMZIWZUFGaFkunHtrT/8Iz/867/14mtvvrt39nzGzIRmw4MHAfGR5oVMpCJiSsxZREWJ32sHg1XuC02VbcXEBFPzhYs5xj5Nx5OqCBE1oBDoxuZ6jO1idlx4j8iiCUQfu3jx0vlzv/5rv3Lrzr0PwSrnAWAqOeeemBx4MAU0MKWhfUP09OTk5PhoOh5XRRFcQCYKBbFTA9FM7ItQLBZzzVKPhEJJwKAGIqqZHKYoOQoArBfV3fkBoHrvxmvjbjZbxL7pe1cBAIOhqImooCCA2aoUNmtSVTRQICBChxwKRB5Vo6hy3Kd7i+N57MrRqBqN2qYhcm3bhZwn47pYGx2fHJdA+6ON2heWUsrJeXbMDmmNqDZjoyZ2fRZTGHMVk5zMF22MILZRjR6enorkxswRLnIqfXE8O1l6LiqPqC9/7UvFqPjUJz5+7eadd+/e6JolADgGMCHG6XRdiyWhkveqBRIxJEdkKgxSOjKRDMjkyAUDFEN0wTkZSoF1IG0yO+fFIOckBsQevR9kY1IByKo5xfjo4q6ImHLq+ri2s/W57/++ST259+Bw4fj1+w8eyqTKTsyRGiJqhKFwJzOhmhMEHd5mCKjAOvAnwYiRgAdbpwEM4iwAwJDkFUuEflVxrbLCl4sQw3Rt7Z/805/9vu///Cc/9mHp+829/aMHB/cPD/fOnE1ZSh++8/qrP/cvf2n//KWXf+0r80U5a5q/8z/93T/9p/+z6XT/3v37Z/fOzU/eiH1PvmDiDJpSD1gws4gOE1iKAsyrewPio+bEwZthzgayLpvlodkVDNCIqQAgMrYEs771vopZ/94//EfHy6M/+kd/1DOxUHBuVFd93wGiDz5nDYEHYodjMtG+7xGwqKrzj1184oknU+wRwYj6LDu7+0CcowTnY0pdjKUnF9CA2JAxIIClvDg+PD4+NDJ0VITq1oN7i42zXW5dhvXNtXp9fO+Nu+sbo9dfffXs3s6oHl9997orR0Wlt08WD1/65jN7tUfHgSoPi+Xi5Pr1brJx0rROUoG6sTGyLrY5ZaKT45nsnTs9mb179drl59+HTIG9pKSGOWYTY+ZAhIRiSgQuuMFoiIhKZgrITlVU1WxVyiRDSQQYMTlwTE5JUup84XMyJhJJnogdv/i1r/3O73wNKD/x5Gcma+sZCAAyGTmkQcclBkQUBQDKiGIyxKMU1QRUh6HXQJm9DInl1cE4oOqGnznqqlTRcsqgimreeQCoikkAF9CT584KsdxrHhhAmoUIjchkRXeIMbZdIyoiklJSNTBOSZxzgGimhGSAPgQDHa1Nt8/suiEXgIhMQ0n5v1n5DNVOgzHIVgOR0apHUlNKzLy1tTVkGmOMBgRGpgooj+ofEMAlkcl4cjo7+s53XnnmA1eISBU8ukW3vH/v3tp0bWtt8vhmce1rD84+BHn3+r6NtIZDPW2sunnz7aPT0yuKG0Xdsu7u781u37514+bWs1cu7e5NNtbnJ22xosPg8OdUeSQOPlIfiAjAZHVfV5X8yA5NK/kPaBiADEUtd10GiM4XKYuIMtHs+KQquT2dO85r05HfWF82zbJZMoovVLp5SrIzCVsT/PS/9/u/+vWXXr9+P4x28JFHGBnNLKUEqdsarTvHGjMiZoOcVQ0c+z4uAeDc5uR7PvnRCxfOc135enQ6nx8/OFiczrp2oWLdYtn5EMogJgPpxzsXY7z34PDdd2/dfXDY97muR1U9no7H02nNaMtm3ndLAnAhOGJQGFwvzrkuZs1SFlUf+rZJYOYdqbECek/QG4A6T8QofZxOpotlk1PmEecsfRcBQCUbKKOp9nXwOWfNCRxduPD42f2PAGFRlH3uycPde++03dL7Kg/8Y1WxnMXMBAH7LnZtCwCjuipCMaxtu9iX49EyycPlbO3MWekiDHotCiJYVhFh50WydiJ97hZ9t2w8+3pUj+qRLzwjChoFJk/giBiCcwkti2aTmFJWHThAYuoYTY3JMyiqlN4dHz5YH1V/9S/9pb/813/s26+8Mh4VBj5l9S6ovrcuVSRbVYwZMIEgruxvMMwo/6tf751BBhBTct4xUtu2DsAza+qKokbTu3dvb65P1SzlTGaucE88cYlAv/Sl+vqt2wAA5B4lWkE1myYTt5LW0EwRLMc+npwcO+e99yKwbPvRaOQ55KSOXc52ujghAibqusZ7R8iMQz+uptQmSQPXAgD2R+u3rt2Q7VytrxXBFd6NR3XX97Vnh8PhQcMKfhXHJSBcmcSHaELK2sWc1RCpLkad6VEzW0iqqqoKhfRJmt4hEjpE3N3ZVoKH8d7uaLLlS9DcpSiqOQuY+qqqqVC1RU6z1CohARnAsmn65UI8j4pyc2NrHuPd5SI5XmocVdWJ6P3Ulxv1QWqb3Ndlsb+zuVuHz33o2atXX+6bOQCktiMizuIL54IjVHKM5r3zKq1qMhNmBlWx7JDQOUQGRQX0znHwkpP3HhAtZ0DMpsEXCkP+PGMGIh3YAbDCEiIAoBqqEbuuz02M0+lkfTJNbdo5c+H29RuHy6ilP+1kXEysY8zI6ghhlfJCsmGvYghgYCiiK1omqAEPR98qh4orsgkRpRwNHh3sZmZAhJrFs1/2i9F4tGiav/v3/sELz3+IBAvyO2f2Dw8Obt6+ubt3ZrSx+Y9/6mdfee2tP/yjP/qxTxe/+Atf29g589LXv7H+Uz/9J/7Unw1FETyfHB06JkFAwqH0TnJmR845ETGAlKTwwXufRXBw7K8anVYfITZ89LcSFQMiNEPLCMPFQL0vsnTksJqs//TP/cvLTz35vZ/7bu6FFQyy94WhxpSR0YcqECIamXWL03m7bBeLXXbFejFfLouiEtMYczUaJZWcpa7rHJOJSu5dVfb9/OrVq5s7O9V0o132uWuOD++i09PTo7ZdXHn+mccunnv9nTcgkHRRWV5+/TvHhwePnd+9dP7s7Ojo4MadrBhG9bn96rV7Dz736e95dszcnsxze/nypTNt7maLW6cnWztbL1x+wWm6c+fWmfFWd9Qsj+dNbF+/dvXjH/1QO+8ggbIKARKTmhGCDU4yAYThk8Y86JtKRGakaIQYk6oZIhETIQ2/bZB1BFTRsmZflGhUIEuMtQ+xb778u1/+xte/szxenjanBw+OPvCBZw4XJwAgIuQAaMhfCQKCKUAGFEBVyEjA6EATgpkogBIP5vuhNnplwjUEUMIhUatqmk0FyYZTA4EBYD5rmqP24oULjv18tuw0mXNtjuS9YwYTUACUFGPfx7Zt+65bDWCPvtKQZGc0U3LsHSuiIYHj0+XSvbcWG+6p7618RETfW5oN9qBVwohUdXDMOOcQMaUokkSU3BAoX0kjCoardz4qkKi9+fZbg02hoNDG/PLLr3SxL6drblx5QsqWvvluEYt70r6eHt6Q5ubRMu6MF9aRWEBsUObLbv/iY3euXS0fbr5//9LW1ubBwbUqTFTMFGxYr6I5N3hQRdVMQTG5wRI7QORAmck5UlWRIaoz6IWGqAiaZdBHnWaNfQ4MppbbblLXjDF1jYNwbntjffPi0eH9vj3Z397Tfr63tba75rYn/L/7j/7YX/yrf2veL6D0CKRmZgQ4xD7IeyKwPuecFci6mJNCn7v1CQPAua31zfVRTB0lf/TwqE8aqsluPVbrKbaa0vzkeDwd+8KJJkkpRcspE+DW5s5kbQepXN/a2VjfCIV3aIy5mR/fv3f74OF9MwjOF971IgBQ+DBfzGLX12UdvO/M+r7zwSGgSh4G6+GQUlWQvLmx2fcRRIgcmMUUV/IoIYAF51MfU9YiFMtmcf7iE7/n937f4eGBiBGZQrz/KzcQOWcTECPJqjFngmCmKnnZtLGPTFCGENwgHpt3oelaYL5zcnRma7seMgmiaoLeoyOLcTZfklI7b9vT1nM4u3d2Op4Sg4gAGjA6hsyQwQCVmZSg7bs2xagSRRQQkGHI6CGaaXAeVCRLUYTa3GI22987/9f+yn/33/2Vv/Ibv/Wr48lmKCa4SpuTAYiqZAE3VHoCGgRmMIWV6WeYgYYF9XCYD78ADEQSMgbnQDTF3nscjeqqKueLU+epCMX8dE7Abb/Mme7duz0ZjY5nJ9dvXofhqo44QECIAEGHPTIhGJqaDkWdG5tbpjCfzZrThaiOR+Pd/XNG3DXzw4P7pml7e9MzDZvt4RwSs2xZVUUzMHTzJQDMb94dkSfGmDvuBVL2SI79UPUrDhmMCAkHPwuampGtsFs5ozFYFlND9mXpmXvTh7lBh+uTCUVt5+1YEZmcwdbmZlw0s+Z0HMqNUJe9GgMghrpk5Nj3TdfVoSSkCNqBlZMJJEOIYTIWzUDUi54ul6PpeDO5w9gzF3PTRdd0ZTHr28pLqtz6mc0ycHN48NS53SuPnblz510AEEk5ZczJFUXwwaA3NBqGSsK+zwBASFltFf4z4MFIr+iI1XlxSMZD5gLVQIXJyKEntkcHPyCsCmCRvPfDAERIKopExjRvG/beQ1jf3Dv4xqt9grAx6mOKMfpBOzVHlgHUqZmumK4DHWMgNCAq0UpcsNV6H95zwqqq8zyIIyvj/+qLwMAAyqJuuri+vvP1r3/7i7/+W//uj/zI7OCgLvz+3t7tu7fA5Cd+8id/8Vf/9bjUn//lX+3EcTk+XfSx6X7mZ37q+Rc+9r4PvC/nnLplWfjTfmWl4NUfJzkMwzV7QKU4DJobM320GV/xaZBWCj+sBsYh76OWZChzISaxbKBJLXjX9fILv/zr3/f5L7DXbj5XSVVdIBAThDL0WTUroHlC8qEej0ryo8k4C4R6LGpdTL6ooiggisjJ8cm4qph0Mq5V4nJ+8vIr39zcPfPChz/BjMq4tj51bMfHB23b7mxtoWjM3d6l8zdffjNSXtvZuKwXzuzsHC8XD+az4MK9w9nz5y82D+4UTo8OD0+l6mYPN8/tnJ2M2nk/uXBh8uBeixBnB+/evekmo+nWVLOexjSptg9OD28/OOxi3Dmzd+HpJ0+Wi7VqErtoA9kOwMQAlB1rjsMlaNU3SGQiIoJMjhkJTVRyhtXpgQAMlFUSIYcQQLA5bdbLslme/M5vfPHw4XGJXLmA1bSgksxBBADQNjFlR344/BlQQUQl52iaiJQJh5UMqpkKMSOyWjZ0hoArjoux6aqqWoaCCtGcNcWB6xF8AIC19Y37Vx92G0uchii5kZQ9G5Bajl3bLJY5JTVdLJc5xrZpRCTF2DRNzmnYgDjmgQZkYEjovB9uzka0aFq3EoMR/22j+EoCUwUaNpM4gLP+bZROVZXO+a5rUkqDELDCSq5uEzBcNAwRiGKOhvjOO1fv37175txuC3rn5t01XxVlsTaayGmze35jfTI9nNSn9zu9f/zS4TvtWuijfv4P/b5+je+5JVcjM97wtbFtPn7ulatvP/X+Fy7snnv95XcGXjXCEEaGQXIeOppgiOYgi6rkPJAb1URV+r4DhCGmPmhhqmCQEbMBmYGoSJKEWUlN4n/yn/5Hz3/gKU0LxjiqyroOxyeHV6++cfXtVyifbq0Vo0AFdLE5/uynP/qn/vgf/Rt/+/+Tcu8pmKGRAhqgOkI0tEEvyEoOmr7LniWJ7zMA7G1MD47unyy6d28dPJwt+gSTUQ2QJ7W/uDW9sLc5XZv6wN7XReBssmyatu1jL4gEBm3Xz2/dvXHzrvMwqetx7QPbqB7bjs5OTp1jx37wewYfRLRtu7U1DT4458AADR1zn+IAkhFJK4wi4XgyaboWAE2hizHFOID/PKOCNF1HXPhRkUQaBVdPx5t7vfmyrMbjark8xlB3sxPPbqiyEx1KggVMm67p2w6Ry6Isi2K4vCKgJPE+RMl3jw5Ozp4vilEhQAqCSN674JuT07s3b4HRpJjUdT2uJkOlUUpZCZg5g6QYseQiFBS8sWXIBppNxEzFcFWDCt67LL1jh4pmSIZkgKY5dQ4hMP23f+H/8ORPnf3VX/vivXtzQDceT5Cw73t2fvBeEIKa5ZQAGIeqmke9p0Tv4RdWYcnhI8bIYjklY8BkWX1YW1uryqJZtvWoijGKqhqklJzzxyeHuzvb58+ff/Otd4YBSMwIbBjcQAXIQM3YTE1NTIGdn0yCinr2ZTlKbacG9+8cICKROOTRdFQXdTZxgcl5AxNDNU2azTTlRGU5tFd+/NnnT7/xombJIs5VFXMz7zLjOFQGkHJGpOAdMoKqoomKChKyGpiipjTU72Q0YH54eLA2Xaf1iTetytK6FpKNfJEIlu1SR/X8dN7nrp6MfNahjliICQ0N6rruUt9azmbHqZ3FNuXCOQeVg0AFMYosT0+Xs6OiLovKFyrkikWf2q5pIKmLW3V56+TB+7Y2uG+hbyocf/ojH/rqK9+AwQlsWU2BGR2ikqKRYRI1YnRBUjId4goISAaITM57MJOshOiYVSSrJJHgfAilGMBAsSIGQAMTMBje4zKI9gAGhFiEsGi6Psv6xoaym7URcvrGq2/6MFq0iTmgmoIIkyATKIKwkgqYEaChARA/ijPqyskwnN+GzADvFfkCOMcxrvb9j5b6gIR924eiIAfGXrKEMP5H//NPfv5T3z2pKokNkr7vySeuX7/+N3/sv58t27P7l9T44dFhOXqsT/DkE0986xvf/OJvffFjn/rE4d07Kbbr0/HyeA6gg+xhBipqzlbVe0hdjDmLB2XQTMP0QwPXlZCGoQ0QlUlVAIiQAGmo8BhWB+QxSSL1zo9fe/Xqm29c/+D7n27my1DW5LzkpGgxKjoKRakqkiOyX9vcVCN2Ho26mIhcWY/FrI+RGFStWS5LJjDoux4h19X4yuWnM1BZTjRbatO4Xnv91TcOHs5CMbl5/c7lc48dt/m3r725PSofe/yxt+7f3Fyb7p/Z+7lf/aWmjz/4hR+8M3vpZH5ahVxbhGUL+xuzoxwfPFjeXyxOm9HedDyddPcewvbm+ubo9unpg9nhpByB4dFsXq5vPDg6WR6e7G7tPvbU0+CKHAUNkf3w4CNPYIRgwDzQWIFRVsluMzMmds6bWZQ4uH3NgMgjIjMRFYawbBaVr8/unXn5ay++9cbLEruK3KX983foaNYst9d2IEFe9ACQZ8ts7NSTZ0NY7RdTb12XY+O9c4NbRh+9+0BBM7kw3AYRhtNfEYyBzRRUUAQ0o4hpHgKttupbZMuiMbKZEUTN2TL50DXdnes3jo8OCImYk4lHBjDvvfOeiGKMbdsGX5Dj4bwlYkBomi6b1MVYwbqUXM7JwNDIVoDIVXn1kAKDwUQzaHeEACCSzayu65Ry7BMieu8AUIfmVCBTEjSyQemwAaVvBqEsbt6+8+qrrz/zgWdfff31115/9cLF8+ubW1vjjaPbd2dHh1KiPXduMTpK7XKj2Nc4rwPj8Xx+spxdfLDzxOXY5j6jQ7d75txrb1+/du3dp596+tf+9W8NnQ/2aMdLRH03uF998IXz3rGHlc9jmHgU0IhQRfRRXekKGZYBkABMJJlpTsDIVV3M50dn9/YuXthvFsdV6dpudufujfEofPLjL1h7//Swm5TkTOoCtJv3pw//gz/8+w6PZv/zj/9Tv7aD5ADRFLOs9t74KCUEBpahz+KJ8mIJABf2dxapu3Xrxuxo8YM/8ENR7bW33uyXy/dfeRy6edd1VV3F2Ds3rUJYxoRIOdty2RycLGaz9nTRzXvpYm4WMzK5dGH/qcuPTWovkrz3IfgQXFyBsJAQJWfIVvhQhFItAwE7oqgeyQeOvTEMvQ9EzM2yA2IiQBUCBqRs2ZGPydAX2bCLkdgV0/WvfefVo6ZLUVFJrJ9M3LzNGAoyyzb4bUlx1UVCRgrmPBESsabcAgAPpGzEUIaT5eLuwYP1Mxc4oxMxJiIoCr9/9szmdNo1sW+FgTyHqJ1BQYxJJWVhJiicrwOXXhnELGZNOhjFVFQQaYAqiYEZOmYTNU1EhRoAcl3VBtD3TTmq/tR/+Md/+Id/+Etf+ea/+Oc//+qrb25sbI7q0Ha9wSCuEyKm4WZPqKu0vP3b7Cl7xBcdPlxZspkC8/AdNE1dF9aqzNg3HZd1PZp0bV+PJs7k8K07b8x00fRXb9wBgMA+p95UDUkJkqkHczj8XVRFh0uPmopINRr5oqJNzFm6NuWsaNFx7ZkQ0fuAjhVQBwu0qkjOXWsinvy1a+9+AmDv7L59XcG0CIVDdsTEuOiXBiWhMx1AZIBMBiYpARioDkEeJp81IxA6R1mN7aCfSctUsEf24Kqq9qEOITSSdDQK3lUTzLkUtIqIGAUg5WiqDmlUVVz4NqfTtjnquoNm6UQoBM1ZsxF79l4AEsKiXfZL6wyi9hjKlnCR8vrGRFDuHBw+c3a3Xcy2/Fq/OC0RPvmhD8Hv3IwqFOOIGVNCoyGlx46ziERlCmIqBuw8m6Q8/NQdkwPAFDOAMnsmZ8ZoaAaSclFUxDSsGIkQkNHE1JAoq60kH/ISe0IgU80Zjfqsxcbea7cf/s43XsmGHsGyoCGxy8Ndb1CIdNWKQIOLBkzAzEBsYDAwDWZ4gdWac3DaMQ85DxmgnbDq6AGEsqwAB7Bp8iGY6htvv/0vfuEX//Qf/6PLk6jSMeIv/eLPL2fHVVHM58v9s2c96/VrJ6ct5LMbH/v4x+/dvnX08CGahuDX1ycP5ktmZzoQOpOaxtgVRcngDDGnlHLvnQMEUtBVyaUZUlZDAyYkWv3xkJhgBZEYpimk1WkKiEVRHR0cvvji1z/ygWeCozL4LkVVKcvy1t17Dx4eTNcmZ/bPBHZ9jBpzUY/6vgEkM3CMKWUEImbNiZHW1iYiAuAMiRQJ+PHLTyUj4gokkzEbvfPGO4h8du/8m6+99Vu//dt/8od/+Dd+5l+e3zo32t588Nq3n3js7Jd+57fXR+Odncn1m3emm5uz5vSxndFH3/9+cOP5fHkyX46rrY988Pm+7++cHjz9+BPu4uV6Unz1te/cunHrqXNPRIkE6g1Oj2a9AcSuWKsvfuS57fPn0klXFWWy/t8cLggqeaB/gaEB5JxNhkGHAWmYfZnIIWXTofILDRBICQylHlUuwr/65V/86le+Ettmezo9s7N///7h5ubWeH2tKqsuRYkZAKSLyUfHnanRoGip9s2inZ8Cma8rH4rV5Q8AEHOWbB2pGXkgAgM0w8F6bWYr8SuDZNBMasZgjJkBANrTEzCDUGTFPooBq1gXm6ODgzt3boHktY01H1zFhQKkGJl5fX09hPDgHuckWXIZvCHikHJFIhIABKbYxyTZISgNyUlTIogxMQ8DHBCAChLwqusoKwCYoKp2TV8UZZKoYN65lNOKvm2G5ABJUAc/oHeolvscnXed2L/+za98/COfyYftYxfP328O9kZhY7JWbq2/c/T2Nx+8fbJvk93H5t1i+epB7YpF3/TfeuvSdO8IvvrC41d61QQCXPm5Pr13+ZvvvPnqW2+AG5iqg8iNIsrEVTXquq7v+9TnoihGI/Q+5GRm6p0HCAYKCqjGw4AqWVRElHJAC4a9ac4gBjw0CZLo6cmRSp+1ffvde1evv/H00xdPl0df/LWfGzvdWR+h9hKhnTd13bmysdnd//SP/fDhvdu/8MUXR9NN1UBcSAZiAkbDBJic59hny4PvIpUOAGBjbTyyUvNjZ7bamvu9renRA6LJ+vsuXVTpjk8O6sk4JTVFFUAsUmxF0ZdlVeb3PfPs1vbZL371xXdv3H76mcvS9dfeeh1yd/nC/sbGyAcqHNalX3YdAHi2wtPgGK7Hk3FdH5wcUu0cWkHO+lwQL1EMwfsAAo7cUdMCO9VcEBRcgLGS9aLIZZSenSu9r8ajnNK9B4fLRiVx8BVCdKGdrmFZV5A6Fs6aCbRwZEpqRPUk9cOmxKqaFHoA6PsWPWfNrETsrt26fX77DCCXntHUi2KWovRMYwrZj2S4TJNBskQK6FkVwHOog6+QGMUsp5xjzkktY+oSAiGSGACAZAMlI0PK5AQIkL3zFRejDBIqH1MHSHVwn/vUC7//C5/98X/0kz/7z//l6cnx+uZOEutTBgyiwo4MMEvybKYCZqgZAZBIRQadDIkMcBVJJQ+mjsmxmaSycOMqtKd5CGF2fdt1SdGNoDib1t748hsPpW0pAKSSXG/tI1gXZfAIxpAJCQaXCYgN1grCmCKQA0IqiiJ4lN6bN8mWBRyrZcvCjtXUsmhW7KIlcYiyjPMuAcD/9E9/wkKoM2APmSCJuToApC71SAFNg/dMLALEDLzagJkRCpioEfcSDRQ1I6qWrndQJgTAiP16VZWqHrT2zpMnAKgLMx0sGAuJOmxQmBxRSslRKIoqtV1ETuSjcTACCkbSJ/HMwNQqJqHElMmBYW/WESQkM6rILU6Wiy7X4Lms42I+cW7n4nkAiIQOrD095rLPrvTeg/MpRyYmo9xGyhrIK+QUMwBUdZUNVazwlRiGwjXLWds043pcckixzzn3TYNEoSxDGXTgYZqiaU6g5tAjABh6xEi5JWkxljkCFsXbN4/+3v/y8/eOUr22ngEy5myq6AnMWwRDQEdIhgQggICEklUBkBgEwAiZVwYLsEepCxv4cipWlaOU0rBfHMyRfd87YHYIpkQkORd1iQT/+Gd++nu/7/P7O1sF+Ht377fL5bOXL75z4/bNOzc+/Oz+j/7+7/25n/3yb7/0ysbm0z/8Q7/vzddeu3/nxvb2xmRjur45tRu3JWUOtZnF1I9HVUpRUmYOXUwpxcmoQoMseWCV5SHThDgsANQQVIawDyNLNgMbOp7NlI0d+8AGWUmBmF966ev9v/vvoHWx75AA0FKGtXH5+mt3H9y7eW5/D0QcO2QG6YjgW698Zxm7Z59/vi5GbJ4ykqJlURAkOJwdbWzsMRBDBsTx2manwmbeYHF8ePvG9VEVNqqNk/n0Z/7FP/+h7/7Mn/jTf+In/9HP/ua/+ldnzu5fv3937OwHP/7db167uSS+1zzo2qO96cVxGcqq7toGOn3mylOb4yp1zeZ6NXv4YDpZW5z2wdwLV54lxIPZw3Pndi5x2Ru9e/fmvdP+y69/e/vrj3//xmYRRtmUkQ2H2kEjAgEbgs1CQIZMzlAJHaFLoErIZg5AJRqDMSEaGUvKPdpkVB/dv/3ml196/fU3WieHy+XpMh0udLlsrqxvk+MuNuX4sWo8AgAjFMtZk0V17ElMYpwfnZjDtfUNcOS8kxwJAZCDI0Vtuhb6PlS1cx4UVIzIgXE21ZwNMrISmGVBBStDy0BDJ+p8vn/hPK6vnyzzspXAtarFpn344MHR7Hh9WhuoZAVgxWyo6JxzxcQXRO7w8HDFHWFQFVFgZARzCOwpmrEjB2AiKiDvQZIGG+Ojlf3KWEm0WpY6Rzlr33fM5IPLWQyQ2YmIihEBmImtCm6YUFICAPIUcw519ZWvvvhTP/3TP/QDP3Bmc9Q+6G7fuWWdlnXN7MiRsH2nO3zfZ57KixO8/mDLj07fvfXJj166+vLb91/69uiDTx4ezDa2Rp1oqKrd3b0Xf/wfOiLvQ4pNHlJIAKIiuStCUdd118UYY9/3wxpm1cr1aLMlg4UK4L1doYCJmToTHgIRmi1LJss9S8e57WcPKZ5+/6c+dP/e1Re//JtjT+f3t3NeFmEqql2KYbOEImedjSf+z/0Xf+zqzXdff+vheLqFELLoYENGZFXxwfdZ+tR572TZbO2uw8myLBwZnz+330y7+clhjMsz2xuO/IO7t9nj1vaGiiBg17YmoqrLReOc35jWha/Q7OTkYDouJjWPgl/f2qxIPabJZFRXlYIWRfDBMREAVGUViqCacpacUnC+qEozSLEvnCMsm9gb9IRIImhpKNsA0xwjpH4USlAgFDJHBuNQTCeTGKVftojI5M5s7FTV2tp0y7Mczt5dtrdJTYZ6Shyi+GhIkkSyMjvvPZERAQx4SgRQI2AVZfLzpvvmG2988vkXLItTo5S4QxBvw+XX4UBBUFVS5NVlkTh4DJRzRGDJEnOOogaY81ABNqzkBQByyp4IDJjAAIk5Gm5sbPmiHHLMhMwIk/Howf27qSj/yz/3n33q05/6O//j//t3v/y1tfXtwYtNiEAoIgRAwIqGYIQEJqZGAzF9aJ+iDGBoyESpz+W4NGlzinVZDja6oetWxE4Xzfr6eu7FymK8tdXeOpnWU4Bl0zSIRoWzbCkKkLrAYJqyZhUAMLCUxQQKXzCzGWQdYInqDRwS+yJb37edmHLhMqiIkhrKoFEqF/5ksbz28D4AxEnpitCSjRHX67pru342q4oiZ8GKbCDJi3odvCgwJIrcUFlmlnVgigkMSBKiITWCiiqQc86aHSIqCmTRIZFDK4a1d2jZVt3FSEySciuaByctM7ITQFwJ/GwAWUUMjVkRMyIpqGJGQE9qyuCaxXK2aKZlhc4t+iZUwRECwLCTi9BHJEhmigxOSdFWgfLBD0BE3rvAHoYaoJj6rh8c4O2iUdGTo+PZ0fHW9pZ3jpBSFu069g4cpyxo4lA0W9IVGZy9zxHUsKzq016/9MUvXb1z9zvvPLj+sB1tbLUxKiqFgh0PahetqJsIaoiKAwnm0XYH34t4rDzWgysgD79BRPq+zzmHEEII77mCBgfAwEZcOenBUs6hKN69fuP/9mM/9n/+b//CuODj09NPfuKTUzf9nd/9yjffvXrnwb0mdx/46PNfefPqxz7z2Q88/6GSwtU33oztuY31jenapCx935sDSpqLokg5MRMoKoD3YVVjJYAwBKyVV4V5Q5YOCAnVkBCUUko0HOOqw7p4WP8QuCy9iE5Gk3feufr6W29trdXLpj2zf8b7MPwVPvbRj+uwZwU3VDIGT1958cvfevXl/cfOfflLv/sD3/sFjdlTcXJ8ggY7Z7aWzXI0ruqRC2aloi+50ShCljISPHx4cHB4CMQcyul0vevu3r11a4eqt958+97JYvvShQj6uc9+bnm8vHP7zpnHn8CcUaQgnjXHdQgV5if3d2w5P+mXDx4eLZrYLLu1SXdub3N7ff3ylbPf+tbLN6/eWmz2u9u7qvr85ctrd8Pbd2+8+Dtfff65jzx2YZRT9oimNvTwimRV+zfeG0R0SEZMrGqSkokpYmDyGNRUzBC5bbqqrH1d3njr9a/+2q819w421tbcaH1juldBWSd6bfb2l7/19SeeujQ5un85X97c3gKAbOoJAcEIRRIBxdSnGAMX8+PToi4jN0jBO5YYjdB5YoMu9ogIpXnyxGCqZgiiZFkG+QUUiZxzvYIv/GDbv/D45VjQTO2k6bNCRu1jnJ+ezk6OVXLOEmMqvNP/L29/FmRbdt53Yt+w1tp7nynnm3nnueYqoDASA8ERpFoKtqQOSqYsUWFZoZa63QqHI9xyRziiX/zgF3e7KdrRTXXYkizJsgaTkkgCBAmQIEgUpgKqUHPdunXnIefMM+1hDd/nh3XyArLDIT/5vFRV3rwVefLsvfY3/P+/PwiSLGzgIow8HI6YuZ7Pu9gZYOtKUfA+Mlq0RsEqegAxT8byqopoMuVWZGEwyTdPhlNnoQ8RpxS974hwOBwCQE7Uy+BFUc3ZC4vlNgIiS0qk+dQo6vH4/s72cWjOu7Uzq+tNFx7t7EgXdKtcGyx3MbWnBvej6U4v93aOL3hW6nYPtq8vnXrzt7/82et/S5xLklrGYjQcdfVLzz/3jT/9dipH+V08uflN4SSpxlBVZVVVqtk+lGJKlBKzUdUQo0LK3stc/YhK0pAwAfigEYFEEDVExhTDH/3+lw8evrm53rty5fz00QePbr1x/dxyWZWt99XSkqsKH2NhTSyoTrOmaV9757V6Bp944fzuo8etn1hHBVGeb4MSIRtrOYlxwDHVXd3rr+UxdcFYWVfaourKINGoGLIFF8NeORz19/b2CCR2HlJqmgYkJi+Dqsc9M55OuhCHFp46v9nUXTs9PLu52isMQrQ58JKtZc4fTQxBVRV1oaLExUaOGA2bLoW2a6LvUEMdo0KHJIQKhkLXzGfjFDvoumLk6npemsoyh2ktSuI9MIWUPvvJjz/37Ee9T3fv3rz/zTeMU+89qi68L7RAJyfRlBQAjXELG0PeSQksFBOqyqDGPNjbfffe7afPX4pJMCZU77uOjTFsEQAJDDFhTv0lJApJEyQJAphUNKUUVZJKFA0iCVUVFqh4yDvPIGDQMjEpsg9xa2nFWBuFDKNoUhUi3tw6M5vOdnb3P/qRl3/97//9f/mvf/M3/sH/ZT6ZjJaWgogPwbJNiikhwCJ6EEkQRTWJakqRCOmko1gEewEwG/HiXOG9RyKI0NTzohoW1sbg9/f2t+88LvqDol9aVADYfry9eW7dx8CCAOAAkveAlNHtwKwpahBHVrtABoxxSKyqpIBqm1ndhc4Yhhg738ZGi36PDIlqij74LqZUmd7j7e3D+RwAOoOJobAUGdquLZ1dHQ7rkGbz+bDfR+D8ZCW0CGjJBEyQM2BFYgopShJIKYWYAAiUUhQ1mvduueIkAkwIQIqQGd3MDJDyfjAXrFnSKAoaAohCEkaCE3MDoSJxWiw3FYFg4TcEyUwCQECw1ibpDo8PL5y/0MU4nk5L6o9CAAAUMcyCmhACJIaIIEy0CG0DEE4iUaIgUV3XMUo2wxAZY4vJ4QEzzKaT73znO0VRXrl6eWN9Y2llxbJBghAjqLIhSBi6oGpAATQCgO86Nq5p28T2vTuP/vG/+u1xJ260XvSGTQjKbIqiC8EWRYpy4k1RzKJ6ZCaCBdt/EdD7RBR9okXDJxtYay0i1nV9dHTU6/XKsrQ2B2VAWRYoWbqBBIxZ3sG4trb+yp++8so3v/WJl1/oDYea5Oql9vhwdghyd/fDf/NHrwwGl2EwqpZW2uBPnTp1/8Hde3cffuRjL5dVhSoxasUcM4UoekKT3WhIxjkrEBSBCBY/8wmO7kkZl6UUqilrVhafNdns1PHeEwGzbZrWOVM33evvvP/Fn/nJ1MaENnoJrS+ryhUlsvEhinRdjEv9/v7Bjgj0+8ObH9w+d+ECKllmSbqyupJiCj5Z54blcH9v583vfXet37/w1PVo3WB1s2k6Z3l/fDjpWnBl7bvpdPbsM5fFp3/3pX+7vrQMrrKD4trpF9p588ev/MmZs5fqejY5PHzxuWun1zZW+sPX3nj9yvlzVy6dO94/6JAPDsZztFSUtYIx7vSgH0Cfv3a9T6P92XzvaLy+NqTgR8pPrZ4Ntrj5zrubp1eISNQiAiJnx4UxpABwIvRSAgBKCArKhlVS1iYKqCWHSUJMa6vrs8n8d/+f/+bRzVuDBKUdHR/Ue+3sYF4Pi8FHNi+tDUeHdftgsk87+GeHPz8bT0/+z9CFYA0a5kgohgajYYjx1o2bw+GwuFaWxTCgP9jfm81nyytLSytLRVEoYooxm+dVBVUxX7ggipBIEyqLOuM0cQIFABqNfOwmk8l43ngBL346n00mk6apQbPeuTHDorAsiEzEyCICkpDYGDaWU0gimBIoALFJiZ0p2RiCJBLMj0yQJy6Bxa8vLxMXNZCGEIngZH9srLVN0+R/WeRPgyqoQKSc9ygAKCo53TextQTYtI0avnX//u7+wZmtpVFvcP7suR3Z2z16tP/wICHwoLeytvLw9oPjHqwPXe/YSL+6dXD/qQtn3Lsftr//reWf+8wuhAKp6vWrtl5ZXzUFK4Bzznuf/fyYyYYAqhhjzGk7vJAiLR5IoFmltTgyFuIsVMpME0wgqqQCIJisowbC0dGuprXZZHrnw8NqIFVfFULtg+sPjSvnTWhaP58cHx8dHx0dTifTrvZ1MxkMlj/7iae+8cp7mkqDFQOxsaIISL5tfegQAkawC10sWGvZMrOprBtAFVQAyZCpjCusnc8mBAlBDYFBQBXHJqlKCsPeyBrTdJ33855xMCwrWxCRJp9lTQhkDDJz5i/Mm6brOhEgEMxEKYIIikAxJsM8Gg77G+uoUHLRbq0Plnp3t6fGISYY15MvfvFn7+9sHx3v98ue96ENMYkiWUBlRi/+YHqwM97Z3zsKaf7MR559850/IUwaQEQRBYBUNIrEKDFI9EkLUVBCzdYPRcr0KsiCBgTbK1+/8b51xfWz533jU+urgiWGRSuMZMgAEwBKThUCjaqMTBl3rpjZ5F3qgi7AfXCC4nXMKaQEEQzbosxUxNHyChGDKCHnVMGUlBRtUTKbyWRSFNWv/tW/+rGPffy/+7W//53vvjocLZWGongkIwlBF0G7GdEJuTRBgsUOfPEHRVUlkaosRApr2RghRC5c3c26rusPq8nxLCJOKAwdJdQeMADceOvd02d+KkkQBAbiKCoRCsdEMYRmXh8fHM6OxgUwC7KiJmDAwpXO2pTC+OiobudJNWLknuutjFa3TvWXR4LaCYgAFcWs87fu3KvKPgAUZNt5Wxgb227ifcWGDHXN/Gg27g+Ho6qMmnxIKVlrMlZk4SnI09Y8ChPNFAAmMgIc1SSEABJBlEAJVYEWDGvU7GAQFVJWYGLOiWdEKaQYYgghScwTawJkpPzUxKx8QUwxwSIbDRUEEDQpASogu/Lg6DieP9+kOOvmqVbfdgBggBbPYNBEEFRIEwIVjEDMqKSQgoQYYwoxxlu3b7dtvHjhIiIzWWJ0zrTz7tMf/4kEMm9mzlWITASACMjWONEYQ5CUFFCBJCYASDF1qUtkEtuDWZxrxctLga2qKiEbKwrGuZA0u1IyaBaRGAlzhBPn/Cf4//LSoihEYtd5Iur3+1VVNU1T13WMUVVHo5FzTiSxLmAoBCSgiOh9GFZVMvZ3vvSlp65dPn920zft0unVjUubSwfbdx7dv/+wOzx8T8hZLpp23sXZsy+9cOPm3UmjZ86eV9WicKIp+EhWi7KMwRsmlexcQcT8m82uCCXNB8OPvxM6GUgtEG5ERlXbthWRsizzJSNJus67wt5/vLO6eQadY1dE74GMtUXbNqhknWtaL4oJwNriuWdfSACra6c+/1NfQCQ2TlQMu6LIO4FIoF/7yu++99pr//Gf+7P3796++OxzhoGJJIV7Dx950V7Vm8+8T+np516YHk3CvBuNRhO/v9Eb9o3Ze7zzzKVrZjB49b13yUCvPzgc10fj48tPP/vM1UsuNmv96u33PoDUlT2XJJXWhGZy8OBoeevcm29/eDjuyFWnz21unl1/5923emTOrp3qJNz6wWtPv3xl8+w57RQFn3RQSKhZHHFi20ZEkUSQjGERhGx4RsAEBbuVYe+9997/J//kn+7t7F48e8GtrO/s7vSGg3OnNua3bzdJ3z3Yvnrlwhqde+3220fH01v3Hlw4cwYAFlFIAMIMxOxMgb3+0hJ0YX9nd3x4dLB3UPb90mh4anNzqRsBIdvCGg4Sk2oSWTCfTs4GBBXViKQMBTCE5NgmAACYK+xN5zvjaSMSgObtfFbP6noWfUeKKcQGmqIYkjnJb2XJeicEMYaKovAxZd86oSE2ESI60MwQETJZJZ6nAroACZgnRrAF0J/AmLyZXZh7mTml2DS1tUvO2UXwtaT8O89+2gyVTKLO5HgMBSZrilv37969/+Ajz1xClD7b9Y2Nzvtb2/uT2cSMBseHx5Pj6VhTf1COx361X2AzPzrefvr0qTt/+s1Lz19xVy/Hpk3k+v3+5plNXWQscRIRUcNsrYtpMWw/iS4/oQKoiArqAsSCSLnpWLwvANRoRCJFTQkENGGSVHdN3c4HK6NPfuaTFo6b+W4TZ22AoiytgZ2He0fHk4P9o3rSxCgkYNmYhAym6g1noblwduvlj/L3Xr9N1rIrdMFVQpEEIs4a6kJheDabAwAba5mMZWuLIGokAaM1hQUGSb5r+mXhfQciwKQiItGwAVVr2FpDDJVNRHkBnEO3OEUf5STuU4VOcJHZJ6eaRKJzrrAsKVhj/NwPlpY//qlPfOYXfm5tbc1ZtzRa6tr59/6rvxdnUy7L7ePDv/W3/5e3Hz/8rX/3b68+c/3OnXtd17miSAlEAjLErnvllW+88+7bwQNbKcqkKQlKysl8iJhBuUkkQWaR5/obcnoxgGHWmNnSmgDyCKUY9F975+3Q+GtnzjlG8YFALUc2xrERaxaB1AA5I8cZR8Qn7AMVUS+pDSGkmCRlG4JhBgACMIQiKZs2vdDy2vpotHzirVJGY0gRlRHnXVs6Gg2HbdvNZ9Pnn33m13/t//gb/+B//Jf/8l/5kKpepcJestAddJHHJpTDlxcWMBUVUCJEYwxJNMaUw+FwMIQ4i9GP+oPUg+PJfHV9eTqZ26oyzMe+HvUHbdMBwMPb948f7w23lr1RSQoxaGEj59RzKtGtrq2WxHv3HxXCjMYqxjZM/BgQBNVZu9wbTuqJAqyurpy9epHLQlDn05lvO0liTXnv5of3b94bLq0CQA8L7xvtQmJvelWUGFGLUR8ns/F82qtK1oxTF8skEvPaPFv+yRlJSfI8KEJMIoKKJAoJKQr4mDpVRLVks5kUJceoShZ0Z5pspgMHAERLRKqQme7KnKGnuRHThcxTAWJGY+AJbS0/cZMIGzutm+O6Xhn1Tp87B6QpRoDF1hUWz36IIA4SAiEoooBBQitMogkBA8eN9Y0uSExpb3e3LCoy3Ov1VlbWEsi8rtc3tkzhoqhxRkRC18WYisI6Y9vQSiaSQQcAhkGUYojIro7QiDW2p4ApBiREAu89O6cATDmzQlRBQLJ7Fclko66qZCd8dnUtym5cuL1ksYdFVWXmwWBQVVXbtuPxOPO+i6JgpRgEERUlo60IyHtvjfvmN7/9iZc/+qt/7Ve6hNVw7cKV67033xo6sz7s++msvzSox3vEG8YSkDm3tfXD118b9Krl5dHj7QmbqiiLkNqTHjWvtkA1IUGKPyp3iChLWfJA60fdePavADjrmCmE2DSNiBhjjDE+JiJy1iUJj3f3OhVb9pMka60FYkBDhhgR0Fq2zqrqaGkZID379PNqyLBVhRB9VfSTTz6EsizqujGD4pOfeLlU+d53v3fh+rVrL37EIA77vdnx8f1HjzTHR6iw6M79h7f3x1bwYD4R0r3dnViYEcHKYPD+3TtC6dMf+5jMm4cHh5H50fF4ZXWtiI3z9VK/KqpiIjBaWSuYnO/6o9G7H95htmvLBQ+GUrkvfec73s9funxlfWNlfLh344Ob3/rjb/wnf+WvoCRmq5KnpJxPmkzAE1jA4EEAEAUVRLMiMAgOynK2f/yb/49/9btf/QPr3IuXrveXVx5OjmezetI062dPP//SSw/uPNibHP3w1gcXz57d7C1jwZ7puG3ywzT5UFSGAUFEQW2vQkG27qlnn5scHA7X1yMgMBeDnqlcTJGY0wk7ggAXOu1sXcM86YcnAypiBEnOFgAw65rdyeSo9squjWHWtN63bdukmAwTIUuEruuIXb9fqGL2cOXL3DpLzK33XReBEYFC6IzFosKECREBrMlPiCdzoJMS54lfUok4310nd5HkaZu1xvsuhA7AZhq36ML4RZBAFBXJGGKDxF3okMA4q5Jip+/deP8Ln3jh3KkVBAiVsRsrx3fnvvXcBvAxNrGZh4Zx24RVpE3sNZOjrQuX3n388O1vvvLx85fBiIRoHS8vL5VV2YVQOlZYcHmTRMvFk7eQnzeZxqIECRMo574iiyI0W1gQRIFUKYkR4AiCAEkSRkUL1rz53rtH85+ldNDVB43Xw6OurveOD/YmR0fOmNJaF1OPLRmuZzURpSRSMHJfkZ95/rn9OX54836vVwKpNbYWsdZS8IxUsE0KR5M5AIQABNHmoClLFiCKFM6RYDOrc4Ci5Px3FZWEAIggmmLyZdkb9qsUNIaW2SAZASCEroPYeiCVFBnBWQMAqGrJkUEAjdE7sMzkyBhmYY4xHh0d3rh5o9wfLC2tDkbDncf3y7XljauX97cfH0f/x69+Z38+86F58+23BAkVui44V+UgrKooGMWRJvHShiCxLNhHYTbAAIg5JIFZIgkRMVNVlaI+ppCRNAaxU1EBIExJyBLmOZ61H9y7E2J8/tp1CRC7zohYSYmSIhpjCQ0iEXLuGlPUpKqAGfXRxpA0BYkiiUAJyWS3cAzWkvcxhGgEQpCzp7a4KLsoRAZ1MdVUkCBS2CqExCa4wqUk9XzGxvyXf+9//fnPf/a/+7Vf++EPXxuONspylLNHlJUA6Mn0EZnZYJYuKhhjISbrbF3X1dA5Z7ogZVFaa8rSFW0nIZ49ffrD2/dU1TlH1jT1HAA0pLe+/f3P/Pzn05JJAKqpi4nRgFFVYOv6VdHrl8N+rxvX5KMFywAMlABs4awzh8dHwaX19aXRxkpk8dLFGJvoowTDNkzbD77/Tpq0tgcA4BJWaK0SiSJAiglKQwTloD+bzmOKDOCQJapyQgBGFtW4sI9iPifz0jGFCCrAKAhCHCFFzLMWQcy4NGU4QYWgIuAJzn8x3CUD1hoCcGw7TSJCSKpEgDGFDPqMPuQmRwkhgUDWii7aHTImprB7fLSxMjx9+kyvV81z+wFGQnJlgWwzxH/RCEoENkkTG1tYpyrEZFwxXF6ZzdvJdKpRg0ajlFRr37miWFpbA9AERGxbH7Oot2nnsbP9njXWadAk6YkCAVWj97aiuuka74uoyOxcGWKIUawrAVEkSUgIyqiYF72YKbgLHc+T0idrn/VJ9YAIJ13u4gGWFrvFoigGg0Gv18sbJSYmwpS7Q2JUIYCYYmGLsjf4N//udz716U9trK9ODutT65dOLw1upskv/7m/2HXm9/7wG74+dIxiXTttL26uvT7dO5jXw8Fgh+bMrKLW2iQeVWMMhh1gHiQkkAVADhgRUROCorGcKbVJJFc/1ponO7K2bVW1LKuUhEiMMdNpdK40aLa3d4/Hx0v9QWq9ihoEDZ1DlSgCYgiDJmLTda1hXl5aEZAkYI3zKR4eHa4urwFqDAEBQ+fPnT8/dNVbP3y7Wl5iY6ezGUbZ39s7Ho/7/T4RDXsVr6+no9l03K6X/YkPMdT3H9/fA+gTXt86e/rCWTMdN3uHl06fvrS59foHN6PoWx/cWSno2XMbq/2qsPbx0bErTFUNKKW5Tm/tvPv0+SuXz138+g9ee//mway0RnEOelwfrixX5zc3br3+1qOP3zp//iIIyiIKA0KIQAhoEBVOKKkngaGCIKykRGjMhx98+Cdf/trtD25eu3Z1MByu2cEPb7y/Nx8/tX5GCN688/71zQuXTm/VvvEq0fJyORjPx7cfPjJFAZDnG8KCFBeK9eB9UjBE4Mz6ubPGlbXvQgiN7wwREiVQYGSkE9uXEhAICGQdnKLiwo9lcHJ4RICD4QgA7t27M1eObJLqvO1a36UUvG9BRYUENKbou8gm9kqHi6QZUU0IpABkXa8/EJmHkPLSxFp2lmYpBKGQwPx4xZOZzriA6cCTmVAO1MATaES+i3q9Xtd1bdtmqrpCQsrFnagoIxKSJk0a2JE1Jkj0KYGkIPLBrbtH++PLG+stKRlyVSExHO7unru0tnM8nsxmpigitnOGOqTBaOQgYPAX11ZfefX1q5/67NlP/URDaq05t7q+1h/u7M+tc0wUo6RFWoIQMZ3M/IiZiACiMWzYPBkInbwjtGSDBsgAClBQZDWgJJKYqem8Gvd49/APvvb1qxcG06P7k6MZUxVjTDEOe4PsqA8IQRMRSa8nQAkgAreRD/aaiIdbZ8/Pmrj36NGp1R6RMlHXdiCEgQxCaYtpWwNAVNK6KaxLKRGiKyqrGkPsfJskiiQfvIAAorEOmbu6piRWtetqV7iyKLDgmMoYIYmQoqSQBKyrIHhjDBI65wBAFYnZMLEhVclpVikkNEBMPnTvvf/OD26/P1GfiNkWg0Fx+tTWZ37hi7vbj956dOf+V+ZLW5sXnns6Kk5nrQafgoQudm0LTcsOLw0uvvSxl2KbjMWmO3733e8RsSgKqMSIhEiYU0hCDIBgDLQ+ZhMxABhDrZesTlISBiKA4GNlHSrcuH+nC/H6hcsFuyRBoiT0AugssEHDyKQkKDFb+zCIdME3MXShiyqSxDAzggHIEyBUkaSEmJR8VOVitLKevfHEqMi5R1ERZpuww5z6ntOUDKmkg72dT33y47/x3//6P/m//ZN//E//xfHx3vLSclSlkACFGFQxhGiNQ+SUIpFhJFX1MTJDCh7Ree+JsCwsoBBqWTiJfnll7elLl9++fTsxtc2cDAEAIe8+2Lnz9s1zn3jWQ2hVAbidTLnfY2eTBAVSFB640lKctU3rNYljy2x96uJ8lqwsnVm3vaKjlHEMEmLXzClKSnLv3bvTvWMEyHanToB7vWSgDl6mcanXK9kE38W2S6oxJUcckzRN66zJbXFMUUCRMMYEGUFLZK01SIaYiZJoXo110fcLA8oJ8tOP8io+YzaRKOe8LjzPiKCikqy1GDpC7EIebiNEtSaXg4s2E57oYgAx0y5yljCgEO5NJmJMm9QmzTxMJtslj2DyAEpFRJJGBE4xJCRCFSRjnGtDQEMiUPSrIVEIURWdc0IExIqURAFAk0BKvm1BkzOGEX1ThwBVVSYwAnIijA+xa52hlPxsOiaC4INQdL2SiIMPoFg4B8yYuSRZt5di0MRcAGFmoBmTv0FSTFkKtyACZ4EmGMQFxe2EzCneB2sds6UcGJ2e/CmmzPMUZbbT+bywbmf/8Ct/8LX/+d/460nqXmFSaK8/8/Sp89e+8c3XHo3nh3Uce1QxZMqyKM6dPnV48/by8ohpB0BjDMB5aEKaMEpuwQEByFCKYph9ij8aX+kiSFhhsXBBYOJFrDUiWuvyoydb2EJIAICEB4f79+/eX3v+OTZMwQ+rMtQNgXjVkEJV9tsYRQOyCTEW5EKIZIyIWuPEZT+aIuCw34+xI+qtbp37udOXlcz+dEzWPn5wf//R45SStZaQlnrVmsW1ZYt1+/DxzmA0fP7Spe3Dg4HymaXl8Wx8Z+/R/tHBz372c6e21h/euXlxc/VK//LD7e2Dg12+fgFI2yDbu0dHNx9BUY2Wl2ed7w+XyXIibVIz901nFBV6rpzV0z5VF89s0Xhy770PNtfWbVEQYddFhRIYiUkVmAg0F0aMaAACBkTl4dLo1v37r776/W9/7Rubw5WrV66+eevG9OiIR+ur1py/cPnymbPTdr733t7eg3tLgng4KQe9vf39ZjwpS3f3xv37d+7/eQC0RgBSCtCJYdbO+xQFiI1j5NKWxrrYeQjJOjRIPgU2DAsSKAiopKSkZFgSiCKQIRASFYmJRDiBwu07N88AjPe3ZXkrEbdd56OP4pu2TSnGGCFH76nWTWtc4YNxllVy+Q+CoKIg0u8NYkiS5ijBWGvQ+kaCpAhJVE2+thYD4nzoLC7LExziQiubsraOiPMCI99CKaW2bYuiUBAEyNmHlMMBT/qQGAMbRiKNwERs7OOdvft3H7549SIMC0DtsVkmC7N6fHj4aHe7SSHMJ32D3aC6d7h9fTh8Ye20i7q1vLy8c3jvu6+efvEFHg4JYWN1bTQYPNqd5psWUZHIZHo/KGbpy2KYnkRzGuNCJyg5AjZjJXQRjauICVWUAHmBfOSsEuGm0Tfe+rCiC6SRRCDVjlgcR1WfsBMTyJIxSSmozJvWhxSiiRECFYHYFO7sxXOgnbEoEjgnZnPZK103rYnNbOYBIEQAIe89GVYkTImQQIUQImgbfAi+cM6VpbOO2bAxXefzcwIgJxSBACmBYScpJYnIqFFjjFFTTEkXnyykJEygAmCYCTIRh9Ck1AFxUZbQt2IHLaFxlVf/cDouh6e1qh482rl0/SO+9c989tMPHz1eFjIqzWTOxqyvrhUW7927WQ57O8d70WuKcVYfqCsBMPpOJYEmIM7iVGICSHkoklI0hgkQAP7BV9+H/8DrAcC3/0Pf8//rC0EZScm4smq7uHnp0tLKWi2AhvIZDCcaMc1E+ayJhUWykoJWZXl8dDgY9P/u3/0vfuJzn/8///f/wze/+a1eb9jvj0Ri2wZEUxhLiBKSsQYAdRGESSqqMUUf2LAzRTOF4H3GxjFyc3x86dylNoU333t/eXl5llXJCj20733/LbM82Lp6rm0bEy0QBADWiixjHqRYZsPkDHUhxpSSpASM1pK1qMAgpIJqCFJM88kU2ohR731w8/aHj8eTaW3YdgEAOpBy2FdOqavbrlsfDQeuKqrerIl7h8eT6dSNlgolUfBRXMFZ3i4qzEyGWNiwYWSDyTIRQpJIaBKmhCiKSSFrYRTJkCKyACCjAiaJIKKQQiIkJGNFJYVICJKELBORAqiklBITpQVv4IkiBhfYwsUAjhA5D16OZtOjut46vTmezjMqrKj67SylBAUwoKpKSlGIRVPXBlvYlHMwREJSJPQhAqIti95gmGugtuvAe1sWMUZXliDaTGeAgCrTZkoApbOStG59URWKIc/IIEl2KAat55NjDZ4hAJi2aawpLBtJ4jsPAEwsEnO7QiC5hpYTh1fGuJ1krBJnP2X++mI9gicdr6hCCCFrdJjZe58XZFFSxrXmybiqqoBzpWoKMX39T/7081/4yStnLjy+9+F0dvz2+3f+9//dP551eHAcbt7efnnWVCVTSuTcqbPne7t7/X5PJAGIsSYkjwscEaYoiJg0gSaDlFJizjomPUkmlwWd/8ktqrpQLyy8vJluRzn4qSicMSamtp7Mbn344SdeenE2qcd7Ox8eH3ezyR9+7Wt123zxF//My5/41Hg2XVpZAzJFUTHB8d7YWLO6sq6gZVnhSXLIZDKbzaa2X456S6Ack1b9JYC0PBzupvvj8ViJrWLS9PSVCzvbt7T1veFAgzex2Fxf6XkMjZ+2nUg6f/bMYDB8+Pjh9u62CF24Ngz1DDHdffTowZ3bvg7PPfdRsfHbP/j+6Yvn2Jhh6ZZXV2cQPejLz78wj3779l2dTZfWVttZvb61vi546513l1aXXvjISyJIjMCARMaakKIkIATnjETpQkegq9XQ+/D7X/vD3/nSl0pTsECSNKmnfWvWl5fqg6OLm1uXzp9vY7e8vNF1l31MZzY2+olu7m7ff3yMxL2lZaP2B6+/DgDgXMxUPdF2XpM3bC2itvW0njZ3Z/VqfzgaDv1sPn6wM1gajdZWLFkwHERC8ipJQTSjl1GECBQhqUmAxraxaX29sbHR1DMAwNACaNt2bdcmSSnGup52XZcVzwKUNMZ2DgRlYSz3wPxIO0/MzC6G1Ov1QtskCSCSPEaBxKiMMbTmyS0BC7s7QcYULe4dQCQiXFgI4UnkVv66UdW6rq21OQyI8upfF+lIAGjQpQRRgA2xokgyxs3m3dsffPATn3iJBxYYTdJ1T25v0o7HB0dHEEkczxAfdaE8tbTdNoOGqrJoWK4MRh98+7XpT//0yovPdglwUA5OracPHgBiQk2g5seqmQVxSRcxw4sAOBZiRkRFkhiMdaDqvQcBIhaSCAzACU6OFdKYUorIUI4Po+/KknspzRGDUBmQPbgm2bngzEOoMXgJXhQqg2y5SkwdJC9K3ldVefXaZW5qCsEQWKaYxJjSYCvOeQEA8FErV0iMuWlNMQGiQRZA7/1sPrNsB4MRIs2aBoiYTeenPoSyqsqyRAQ2NgEnSYIiIBlsF1LsYvRRQpQuRAAISSQpOFQRawvnbJ0CszlZG6CzLlouByW7MijO511J5AFXT5/ZuHzu4HjeTOd1mNTJJ8F2PjeGP/Gxjwx7/aYeXxpRaU0Icjif9soBmeHB8WPLoViY9JiYYxJEREVDTEyLhQMqoPzkL1wBQmUz7XwGDJdgC6HUemfdF3/xF/7Sr/yl5eV18Dw92P3D3/m3zeFOz2Q3pXGudK40bAwCxRhUOk2Nb+u2RcMCCiBlUVSFLZhRVaJPwRsfkNCSU3ZAfOHyNbBOgwKZDLSBEzSpLnzFC9V6fguI5IPPM9GubT/+8kf/T7/+a//0n/6zf/gP/9HjR3eHw+VeWfiQUoosxjiLADFEzCkxomwLW5Rt2z58+PDc5sgag6SJoYiKaHvsQj07vbU+bWbdrDODIcB2YAoJC+V3vvUDVt28sIUZcd14tQ4RkwobFkIVBSQuLLKJMSoAk8mwC2QAVEQFUT+Z26Baxw/fePdo77AJeCSBrJtrAIBWRHznSjKuINWcomaKYmm0dHw87boOAIIIE03reR/6bFAJJWUwmyIgMzjLKWmvZ81EWt/YchA1hkRYFArZdwR08qyThQokCQjnuEzVJ/UmEzEQMyKoZT7R1UUVIiBioypeAmiOY0ZdrNHU+5BEoigy1DHefvBwY3Vt2O8rMwBwWWnd+CRlgixEEEzRREzgQyco1pWg2gUfJKFAZr/mLqssSmtdv9evm9Y3od+rYt1Fkezprmez6fSYGUejoXHGDXo9Q0EpZ82KKhH6plbA6fgIU5SuFlN2CaDkonCgkmICRbYnGkvUHCskqgrI+YKURYOXSz6AbE15omeAJ+LOdPLq9XpZIrrYAxBg3qnlIKOkpCCiokKMRVk+fLz91T/8w7/7d/4Guvbm7Rsf3t27+vxLtih6Ft5/7Y07L199+tkrqjzu0tr5q+WNDxgh+w2IMspbKScxEQNKEgREWfTYuHhHJ2GUoASg+aGTn04ITx5Pi+onP49ijNnLxsRE/P1XX/uLf+7POVcaa99++81bN957+803k2rju72D/VOnz3zsE2shaUjBGnN6cxOZ5/NGRPuDYZ4YGkIUSTGwVmCcgmFyIJ2kRJjj8xq2JaoSuTA+Pn70+MzKmnNOLc6ayWi4FgGdK5+9dkFTq76Z7e4H361snB8trYrqaGkUjtsmKvWWnnrqakyuqOSnfvKn+iObuubxrfvzdn738TgBf/qZ56lr+Oq1+uCwgsL1+6HR3d3dzSvn337ttdFgcO2ZZ4Im60xIMm9qQOyVVTOZAqFlu9TrS0zvvPrG1/7oj/7Zl/74yqX1L7z8iTvjG3fv3f3k5z/91MVzLml3Puxu7zzcfSgauXb9pXKNy9A2WvK0a0tbXDp3cWNz81tv/GCwugqwN4+hR5yYIAkLtNNZ13QHe/uT8SSEZNEeAg1twcYp4fHjPSqs7VfDjRXTL8myLSwzJUigi5h20ByDQpZpfzztuk6CXxn2AWB2dGSHp2JkCSHnuKeUYo7RpsxtFUTwXTevG+ssOQeZh5JHGDEAQGF5NOzt7D1khJ7jyXR2WDdiXNnrZ+bhv+f/gh853hd4iQwwBUXESISyEDNJr9fruiaE2HVdr9dDEWQGJZWUQCHHwSMIQlLRCMyMogCMrO9+cPvR9u6FlaFdqsTSKS4uzVEmcDPhfjcjKsrh4Hje+qtbs2De2++ehrL0enpp+cPD2zf+9E++8NTlUA2FaGltVX7sJ1eApELZH5pFtRlyehJ1cbLUoyzHIMKcyZmPhgQgBCkJYoa3CmhMqsjG0GA6l6Y15XA5okRMXcS5h5nHWYA6aAKDaAgZMp5KsRUTVcFYwxBj631XgVRV2dRzQiWCFDyDMRZVHJUlNPW06Zacw0zcFqsSABVYY/LBh35RurIy1pZlryxVFabTObMJPoyPxoS4tr6WiY4ppqSiMYpE0GxAjgLYxHQ0bwFgNu9inhkTWTIIkFWPMSQAYCIkjCnNmxqJg8CkrrHkleGS6bs3b77FNTk0vaXBuGmB9Py5088988JwMPoX//d/fvHSmYvnT22sr3548/ZkOj177uLRkR5MZpS6zaV+aa3E4H0CgRQlxRhjsswiIpos2lxvlEUZAXoKKUFlizDvlN3nPv35X/7lv/Tsiy8cTyd7u0dL/ZXJtE4KZ89drI8Puvncxxi6NqBxqqQRYowpdrIQ/RjFwhhXlFXhLFNhrGr0smjiQcRW/XGXzl66urKxOWkjlhUqopy4jnHhk3xyd+QLKUlCZAKNURApappOJ4j6X/xnf+fzn/vcP/yH/+jrf/ynOzvbtigGw6Vez4UQRMA469hKUtDYNW3hsHBue3t7dWhOra0c7u/G4A2jZXtqba2u66PDo0sXzj6++yhEBYCWaNbFylhs0huvvPpSenn99IYa9po4hLIq4+J9lSBADrKFzcQUAYxlAhCJORqo841vPKqZ7h288c3vUR0GveHxeL9TtYx15wHAsG3nbVP7tdFw1Bt1XZvhNEVR9Hr9bjqJMUlKzvRF09w3JRaMeUmoeREJoIbQWRr0XFmZNtRAEYBT5uQLKWWComRlQGYgiIpqYmMo404RgJCVmMhaY8Vq6KJEMsYSiwobI0iKxAIMBCoLlILkEyFzPDhloo/hvePx6++8d2rjlKL+NMC3f/jGymjp9NapLsYSTY4bFdWmazvfVoaBMIF2PnSNl0UUjDVMlMASO2Auin7Rs8Yg0nQyA9Gua3zwXdcym16vQKaQYo8NEef4CsjgIlEA9D6WVaEpFpY7EUFIKQA4Y4ykmOfuipRlFLLIGThJ18asg84bZJMb1jzgzxctIp2oqU7iHU+M8W3bOueIKImgJZGEuhBAiQKzCTEgWltwCOGbr7zyxZ/+yRefuj5wtNI3n/vUC3duffjLP/fF773ylVe+/JvPXfo7XWfHk8nm1tby8kqO2CZEISIh4IUWKf9ITJnfRXntmZOtUopZcWEMi4gkQSQmQ2RwsQfVk149v3NWVWKMMVhHZTG4efPu/Qc71y9fOOb9n//FP/Pd0RANGVP0+8NrTz179tyFlLBL0boixpQgIlJZlkCYjTIG0RCMer1eVfjCImHXJevAOdfWc9814/GxSooSm+P5s08/E9p5jJ6tefvddz/7+U86kju37h5M28HS2mw+L5yc3lw5e+2sD3ownbvR6v2Hj6rl9fWqWt9YXd+6+MF7t9t5kND1CiiLMCjsyvLocDKrgEe2fOUPv/rRa1d6Cqtlz7jq0d5unfydOw8aiWW///1vv7qxuTVYXW6aFqxjV0iM7by2zA6ZU3rwwc2v/N5X7717k4vi0rll6DyGVBYFoKTQobWxqWehjhi2Z/Xc13qURsNRSa5r4p3j6YODg2cvXzs1WN3bPTyazpbLIQBYsiEFzzKqCoxCiLuPtx/dv2/Qnjlzem1l3XSJQ7Ku4KIQwjqFVtPu3v5QlotBBQxIlpEUQSATvQmIQcDHyNaWwcq8GxU9ACiK3mQ8VVtKiCH5rm1jjIiMjAAsIoYZEH1M83runCGT107CgiqcQl0419R14XDY5wvnN0+trPzgjXeOxrO15QsXLz9tngx7cgOgSllDRGROdkMLudyiRlJAZGtNCB2RElnnSu875xwiazbhKMCi49KIEZlBVFIyhh1zSORs8eG9e/fuP3jq6afapMWg11NaOwrxrYdPnymPbJBp2NhY2W3am+pPX9l6dzmaw7h1nIzj5VF19/s/qP/sL5Rro4EbLC+vAEJcaL8XMgHO2faKJ2EyIJBVg7jogQAAgDjnKS+iCSSlPOsSEVIlyCoSJbZqDADNfXh81CS0R3MzTzZEbaMIItgKyDi2OYxeJJASMgmQl4gp5gOHQBkgBh/aFjUxIZIoBePId7Ho96Cpd/f3N6t16yQm4mQUGEFBQVICVWuKZt741tszrnI9FTRoRv2lYLuu62bTWb+s0PEimUEVNKGkJCGG4EPofGiCznwCgHkTjHNE+eFCIYasQ+x8B0IARESWsF+6OkmM0ivKqih2Hj4+bsephNK60HgUg5IuXbj4zKVLla2+/LtfCU3zmY9/cvPU0nhyVM9nK6urg6XR2zfeGyytHx88OjierC/1U4goybLxIYKAMdZYl/16mnMlmJKCb7te0UtB2sP5tcvXf+Uv/8pPf+FnkPlwbzqbz/v9IYJZGi3Xdd2ybmyszUp3dDTtYpo38zkoaCJJoklUjTVsyDIVxvTLqnSWmRhRogqxLQqX8bdsUejy9aeFDVqjaBQUc1S3iACIip5E5+XegJmJTUZCZK+SMZxiMMy7O4+funrtv/0//Dfff+313/mdL33pS1++9+BR28zWT22oQgidIoiQNRxb76wx1qDqmTNnttZGzXxcz2pAruezdrkbrS0f7TXNfLq6vHz//iMAUMJJ8DbFzdEoNfUb3/jOpRef2bp+yfV6x8ezHmA1HEYAjerYkDV5RVogBgUlUBDwXYy+9bFtIyveePv9t1/5funpVDWCWSq4cM7FlKwiAFggQnM4OWqQlp1r286FUA7KsugP+/3Z/r4PvnIuqhBSUggpJRAmsshEKCxJlVk5alXa9bWlzndtO7Our4BJEZBEIMaoKgyASln0Y9BkVlXUxKoMBKiZ6kSGSyzFtylGIoLcpRETUMweEwVJKRGCQMzlwmJRDpIbHsNe4f7O3p1HO52m/wXAGzc+OH/mzNr6OiMLgzGExiSCumslxlIhpqhJQkh1XaeQyrIqy6JflAbZsWXkFFLsQhdT1/mu9VGisWQtlYNh0St6o4qY6q62hiTFFKIsNmDQ+jirG+y7U6e2+oPdJqYIaNmlFGP0BlyGSsUkRBn0kD3kP+KX5GpgAdEhyjMTzCCGrLwByvFQeoJMDCEcHBycOnUqExEXMyKEhYpWdaHGUXGuCN53XTTG7Gzvf+0Pv/XitWvPXb/y8MF2fXRna0nOrOKv/Pkv/uaX/u3rr7/2wvOfmU4nly5d3NraLJ0lyqeRMrNAUslZvUAnq3iEk3M4Z4ZAyE18RlerPNncLd7mEy9OPszbrgUEa0yMoetir1/Nm/C1r79y8cLFMxcuxzD/9Bd+6ie+8IXoI7O1ZdW1QYOgMYqgKgaZAFSEyCQQJGQikFAUtmI3xeRDKIoqaWzbtqrc6uryzs52VDGqa6ur/bKczo+HK6NZbJc215dGwz7pqaefnajZndS7Dx8888yl7Z3t737ru88/+9Lh4axOdxvCiGIdvP7ujXo8u3T+8sbpzeV+740fvLI8IJZyNo8Ero+uXBrWDczn07XV9bqpR71+Rzjx4fmXPn7v/h1jI8T01a989T/6C/8x9So5iRlFwKXBcLx38P1vf+fVb30nBjl7/nxUcIMBJXHWnb90UY08vnePhsNLZ7ZuPd4ZN121vD6r49LKyLnSz9sP795L6+s//cWfGnp77/697dmsizHNOgBwARKAqnDhujQHSOcunFsZLrXz2tpqaXnUN2XqPDFX/X4XE/p2uVf1V0dY2i6FGFrVFJMYYzIMAiFXxqJsnC0HffJHk1vbD9YA5l0ol6t522FK4n3b1F3wgISMKanmLAdE1dS0tZkzkLJBIqSgTCBR5n5uWHzbnL+w9bGPPLN972ZBs6evnj515inrlsyPJTWeXP+4sEf9aKyiC0kaKKQEqhFQcbG4JeeMSOy6rigqXdyWqEgIKhmDggyoAJhiBEig7NywPd5/9533PvOZT7tqNCJU1B7R4OH8wHfnThfbzbzoV8NzZ+6998739h5Ol1eqU6faDw96h+36YPBof/+9H/zgI9curw56p3rLhijFiAvgaSIiZc0xkYvRlqJK0pSMdYyUUoIF+Q9TjKhgFlY4MAqkgoqcQGPS2IGzSTFLtgTg7t6kFldHITsCQKVoCIhIUvRdbYxFNkIsom0igSDoDRs2DAlJIPlIIUgSVCFSoC5qskVffTSFBYDHO9tPby0ZiJRQAgMZ0ATARFAVbjqezaYTy+7Rg0eo7L2fz2cZ8tGrKuuspEgxA5kyHium0ETvYwwhr8BEvRIAJMVBUbHhonBEmEKETEeMUFirkIEIVlpvrDUKHBVC1BAqV7JJzfFs4MrpwRFK6lfF5tbWK3/yyvvvvfvs88/cvP3hB3fD0fjwaH589eo5byk4E6sCej2ZTwgMOTKg1lhny+AjATpXGc5EE1bEVrwB6Jf92cF0qTf6a3/tf/pLf+7PD5dWuxCbeR1acVqoh067qiyfvv7029/709MvvVBWxborjsbzJiZRRQmoTJCsNaUtDLNj6wz3yh6RMoCq+hQLaywXRMTI+5P5pUvXBqPleUxoXFyM4k/Ac5oWxChMCklV8uA2heCKUgFD6IyxCMgGUopl0avn87ZtX3rxxeefe/5Xf/Wv/t7v/f5vf+lLH96+yUy9/pCZKDCqFmU1HBatnz5//fLFSxfu3Xxvb2+P0a4srdy59/A7r33voy9/1FkzGvTv33ucr5POB2c4AE3m9XpZSDP/8NU397Z3L1y5PDq1ntAoFmSZHKuCmhNLUA7NFCEVSJi6lJpQKH/w5rt/+pU/XsXywsZ5GDcWaZXKlVQf195aWfw9a8jYaT3vF9YRdfOmv7SUuoCibdfGFK0dtF3LxjgymBKKGiI2zhh25ECVHCooJFpeGjSdPzycxhhDUg8GyyEuCEByArnJiBjUrHoGPKlygAhjjMxlWVU0ny5IwYhZ44cEDItbW1QAGejEByyiKjElQ8pEcZHJbnwK8+gBoFpaPhiPJ3XjhhxCMGyRKYA0oTWKStD6DpRTkrZp5pNm1BdtUrM/8W3b7/WrokRD8+m8qZvNzdOjomTLRa8KGoJGNCgAyGALx6qha0MImbkfo4YIs9pvbo4uXrpy7XH76s07yhAlInEXggIxG0YTJTLkaCdFRAGkxYwL8kqIjcnjITnZdsH/hyV+0SUyW2vn8/l4PF5ZWQk+xBiRKCQgUEBRXMDDREBSUlVmYwwLyNe//c1Pfeb5y888c/HB9PaDuTHm9X/0pYvnN9/d6d75zd//nxXnLp45O6lnFy5e6PUHSSTFlEDIYkqJyRARMBKDaBIAhKxgPFlx/tiqLnenuHCrCACBMiiBkiRQgSiha9u8/woxxJSU3WAw+Je/+W//4Ktf+eiLz3zhc5/62MsvjYYDSalpuugT2zKKpBAhBkYFIESAJJCSAFhj6rYd72376eTgeK+3uXJq8/yp9YEA2V7vYPfhl377t7717W+SMZ2kcjC4d+++zA6X1svt/YMrF69IDHUzP3Pq9Afv3nnn9t2r168C4M69+xtrG0bkykp/pw3ff/Dw7uFxYSyH7lMvfWRyePTBh7eeevr6Uy9/UrpZ7OqKuRDkKOura/2Vldfee+deN79w8ey93R2P/vj4aPtgXBbGoB0fjf3x5LvffvULv/gL07a2BZXVQNr261/7oz/56tdS3b5w/ZlHD7ZffeONS5cvn1teP3/x4q27t3/47ltrS/1PPfds6upW/Nmt9f5R11/aNK0ymIP944Etf/ELP3fj3sNb794YrW+OVlfKmCrp9YQBoNs96q8vS9K665IKQOy5YriyxNbU8+5wOpnZxjmHKJN2WvUH/eVVtKZjoMyZcEaikgKCKOCCcykAhhVTTNLuT6b3t9MsAMDdR3vXNi4USFEDSEIREI0xta23ZJkgiagkMhx8aNqGDRaFtdYkQQEwbBREJCKFo/3H3/nWrp/MLJjNjVOQunZ2ZPIoMtfUiwBhfTIjXfQVeSypoKqJgJMIRLXWpZTYGAAwRrz3RIGtg1y0Z30DirGckoAq59US5Cd/4qJ49+at/d3D8+sjxRTb2TDJBSzu3Nu50DtlR6t2UG5srd59+63be4dxVJ29sjKpzOb7Oy605lhvvPnmM1/8uV61tDYYuqJAQkJWjXkElWICUmSz2JarimRhYCY+KypkaauIIAEhxsU0GlGRSfWkVQIFVIgSo4ASzoKsuSGQRLIgCYAAEqowibMEICpRVEVJAInQAoqk2AUitcyFddK2GhOgLuDvgI7IArRIALBzcNyGiNJhoxwTskN2CAIk1rnRaGisyd6Uup2z4eGo3zZNUbjhqO+sRcB8KEDySghIUbQLwfuQYupi6KLWnQAAI5eGHaoxkDQF0QDYhWQUncGgknygwhQFI+E8BO+7zeVTly9dxsLs10fLZ0cOKGo7T37j1OZ7N25859XvcmlsVe4cH839xBCWRX/UH0pIAOgTuN5SmM5DAmcNgqacVowaYjTgAIgUjZIjA0H9PKLiT3/mZ/76X/3rzzz1fN2002mtxCDku2CZrbHMrm0nz734kQ/ffX17Z3trY71pu7XRaBYCWWMNo0RDUDrHzJgNKIoEyCCIEHxnGC0XxGyt8T6oNZeuPx3JKNiYD0aVjFDIo08FYCAizf3AE9OASkqSClcoaArJMAAZSeIKF5POZlNV3NhY/0//9t/85V/+i1//xtf/4KtfeeOtt6fT47WVU2WvAJXYzPqkn/roi/XhwezosGt9jPNer3/92lNvv//ON175049/5OOlrWxp/HEAgNgFK9hEDyLYhc1+b5Xg8Pbua3d2Ni6dufDUVXPFlMuDqBEsnkwLkBAllxhJIQTpUpHw/s073//6t88M1taLYZg1Lol1sML2Qn+p6uq8cYPos84stE3to6mqeev78w6NZvRkPZ0Pq4ECGkTfBjswAKpRFBNkP5Jhw8yAJiaRsLY2sr1yvD/xx3XbSCLro1oDhkGBVEUhEXOKMaRITMbZSJSSpuR7hClEcskh2xhtjJWzljARQdIkKSEECQDIwI6tkgnREygxlYUlYuRAAJLER+lAOx8BLQDUCds6TFs/Kjuj6BlJHDnXeVEkAfAxSsrETmLQ0LbStoUpjCmqwcC5EgDOLK0VZVGWFSDEFLroU1BBNYaRQARAISaNqZPkY1IAaJN04skwRP38Zz772o2dp4hv3n1AQMaYlLTrurJazLABQWBhWAXVdCLyIVTQHMjxIz3Dk1WXar5+F7uj/JWyLEdLo/HxuChsVVVd1xIZFARCANSTiF9CVdSqqhSSDx0T7e7t/da/+xI2ex8+mnbJjUaDgOVr796Dgo8PH//GP/iNv/O3/ta5c6eunF1bHZYQO0KURMQWVaMEg4CEiAzAmLNYESVlrQ88oSDmd0ELaFDWM+ToDwUUJBJNIXhEYOa2bUOIZE0MaT5rq6p4+Gh7Z+fxH339j5556tpzzz793HPPvfjiR4aDAQG1wYMkCTHGzofoCudMEVM0zg4G/YPd+vB4cu/mh1/7oz+YYzhz7tLLL35yfDR+7713Hj6+Ox8fSUhq7FJ/uOGKG/ff7lsYDl3hyoc7u6X3105v3tvdDal56YWnXK9sZ8drg9GpzdP9XsneV8z9XnVl0C+MXSnc6Y3V1Mx9kvdufFiVbqVfsPjVQbm0PHLM46OjH7z1ZrW6vrS+8a233qIUe2hGg+HF0+cP9w9i7R/tbV96/qlXXv328MzaRz/6UUhp/9HDr37pK9/48tcubJ71Xu7c3x/vj/u90dmzZ8/0h91scv/BnapXLo9WHfdw1Ju3U1ctXV0e7W0fLVfV/ccPlrdObW1s9fsjiPfr+fS4qz/zwsfO4SrWXO8eAsC07RykznvTMQOKcEIsKjOoVu1SIDXWmaQJkMpen51LCmwRmVOKqolODOaqJHlQAlFBDdoEzOi4GvbOl5nx+ODx7taVCbmi69qUYvyRnUk0hw0mUUkF2giQYopBrFEhAtAuNJapZE6huX79zP277917tLM8GnHRPx7v+nh47uwlk3MgYownWUU/LjcjBEAQJBVNmazKTCJCYEKMxKwKxMhGWKDp2qFhRIwxGsMASgCoYvImSoDZqIqABuzMsPxwe/fOh3dXL67zKpTJF3XDDs+ifXjvYO1j1+dds7I26A0H9cG4xeJNlrdX0+de3Fo3KM1kf/vh0f1H1db5/vKo6he+E2etl8hkDHAOHwBMCgt+YwyBGIhQVTJ5VCCJCpAqSARBRgXKwfcCGjSCJUqFCKEKSjQMeYQSPCuBYlAWEEmiMQnhCTWbFBAIlCCqqCGXQBTFGsiCLETUCIBg2KGGFJCJBtZ2CgCwezw7mLanhojzaVEUbEtbkE+xCU1lCwIsegUSWmOqtnSu8CH0Q2XYLNBowCqYQiBoRDEo1QFbrxIxJmmabtZ0R8czABj2+n2LlcPKQhNlElIUQmMhdIjeIkISTJREGlEhDYIC5uHOdr/qr22u9/s9Zm7aWVc3P3jzrfdvvNN2deHY9u08dFpWEmTF9ddc/3g84S5iJ8aWc6VWkCNoioqxiT6hVkVBDjQFA9qzNtQhjv1PfOqzf/kv/eXP/cTnY9CjSQ1I1pYxJR88GlAUZFbPCKUU3ad/9mf++Hd+a2NpVAElUeuKDrRwhcXCMTIBEUUBQOZsaFZg0OQ9I1tnsjD4YHp88amX7Gh1kjiQU8D8uedpRARMYEBRRJgcIuXIDomRmRGUmDHnyDGBCooCQkwpIQKCgvjYxUnHBP/JL/3SX/ilP/u9V1/98u/9/re/893d/Vvrqysq8WMvPiOTg/l0j0KUmFzl0IDv/MVzlwpXPHj0cGXNBwHftgDgEEnBsAGJ065RkiVbrRajNoW9Dx7ube+d292/9sLT6+fPBERIagxbos6HxNDUdWULaCJ08cHNO9/52jeWpBi6AlovKaqlwMkhrTJV/f5YAwCYtkYQdIbYHc0aH+Jo2BeinjWDorhy+fLx8XHTtmVVKbElk6VrKDEiIKo6RmKM0mNbApFCItUSi2KlZhx50ze27KQfUt9WUhrvOx8CRyjLnpAeNPPJZCqqlk0J5ME7a5OKjWmjKufYOiBMALbwiIGoyQY4QCdiyEZEFC2MiakzhFECxgTMRVl60JBjEFsFgFaKcahvPXhwbvWppp4BKcdqUFal6wc/R2Oqqt+1sSx41BtMj8bqOyZjXFlUo2q47FypMQJRYpiDhBh86prQWUPWVcYaQJWYomKIqrGN4nOsQBO6eTctSydtfO7aU6c3Vg7SfHNrbfvBgWU0hAnU+9ZaC0Q+BkAy1gqoihAwAzNRpoOJCi6GaYuGLiusFbKhnbPzK/OpVaWqSh+6w+ODNbtqSyNBCG0WvOVxfj6xrMEFRRaAEAvBW+/e397dPpw0L3/k0tn13u6jo/OnL8RmLKGY++43/+U/29pce+bCyoXTaxqCChjb70KytiRVlAQqSQwAETrRKBqz6nKBlJPstlEiyqgYYmKilKKoICrSAqgokMhQSD6E4ArnbJEioAgpV2UPMVbOvf/+7ddee2sw/Mr58+efe+G5z33+M1evXulXPa6qGIoQumG/F0I42j989GgHRI+PjsZHk93He48P20k3u333B9/42vdsYls4GBSj/tZ8coyQNox7eWPDby7vHR9qglCH9a3Vg0lTusmgsvv7jz5xebMs7N60WxoMHm8/XNk60/lQR11bXRkO++LrNJt2072VUX/vYNzr9VPTlD1aLs16YUEjuLJYXx3f+ODSytrew70wCRcvX5zu7Y+Gg+n80Lf11tpZpuL9d27oZvHW2z84f2r5nVd/+L1vfW983JxdO7s82Ppwe2f26Jhiun7typBM3c3eef8d0LjU609n7W//4TevXr7SxhYoPXWhjBDcwJrSkMjR8eT7b97obayun90wMdYHjy5euDS7P2uHAwD4/Te++/nRp5ZGlW+6oanA9Iw1aBBKLqFvxBKiSiImZgMI2RHFIoSoQKBCZAA1ACmRaERIbCwiYETrBuWZFUat5zUAXLhwdnJ4vLSxoYBtjLOmFQVDANZ0EpOigjhiEiEByNmCgVRVMYKmmMI8dFfPn3r22mV/+BhmEzCmUV9PtkdLq0kPDVEOmSNjrGpGKJ6I6fSkdTgBNRJmmO2iVF/gGRCZ2TlI4ruuK8scvrgAC7V17aw1GaKWkiowKgSxRTGJ4+/98PWPfeHlPrmy30t9N49xSehyg6++d+/KC089mM88JmBqj2bDgOMmfrDEh88tk867m8d+PCmcXVpd7vV7TTuJizZ3MVEVkTzXYkZmQkDVtKAc4QIS8mRYlTVLopREQgzZNpJxvSmhc2wkx3hp23WIllAVIipqXioAqMqCOq0L1REoqKJKXssqJMwO1RACOwviiagqe7PjsVqMUVQ8AEym04e7h2uDzdbPUpL+wNV13cZYViZIyIAHUk4pETITIUAIIaZEgD6GGKM1hWUOnVfCCLaZB0BKoD5IVNw5HHc+AICxWFWFc4mNDd63bQfkWJEpyw8NG9NlMBqIqhCAKgLR7t5eQJlWxe7+/uOHD4/ruhyUAhnNRkkSEUUQVeiXvcqV947vi0RiQiZ0btZ2RVk4RAaqrFMDVVmxAimQ6PH+0dPXn/nL/9mv/NxP/3yvPzg8GltTZCRBtotn+082/xKCde5oFs5fvX7pmefeufnBC5eux9g6MgqKklyvxBSsMYAECAkWkn9JkpIvirLt5upTb7i0d7jv+qPTFy4mACEWXTggVeUkV2khjkBY6MyerBUy3DYnpp5UwPm7Fv9UFVJkZk3ChNPxUUrysY985DOf+NS77773W1/+za999feXR4NTp1bG06MeW7KurPrA0sxrU1YawsryMjDWTZjN5mVVAsD/8PjRjy+pYfbv/RccA9x/CH/wx/Afel0F+Kn/4DcBnCnKu0cHNhVUFS0RpjQ9Ploa9QtrQoq9Qd9UBRM5VzhnVZJvvUoyTIoYUioT2WylsJgMgYVBRBelTWGwvmJq1cRVWfWVKmIg6BMlWxhichxRwXBhrU+RFRxxn61xbpa8Suj3KmMZlFNUL4mYYkqN7zoQycLGlIIIZ2+RJAQhg0XhnEWD6EFFEuUzGsB3Edjcebz7/PUrQy4giA2hq2cFc5uC79rRaBXRik+gQowh+9VSDPWsSeqKggGCSNu1CuqcAcZevzKWCFEpgzVySAF4CZ1vyVYAEEIHIsury10jgPjMs89+9+b7165cSQ3s7+9X/R4DRYkxBlcUaDnG5LuWiK21jAYEJbN/DZGCnCB2siVMVPOejYl0kXSRhytore18OxwOx5N4fHR05syZNoTcDDNzNsFkfrSICEREBKAUBdjtHEyoHFxeWSr8o09eePbqz/z8d995fPPG4U985rOthH/+u1/+xne++5M/+dPL5z/isdCuGdieeEk+llWVtAZSFIFEGpVspmDIk1cWQeefJMfXJ5FsRMjI6/zciSLZjm2MKcsqr6uddaopxTQajbyfp5h6vT4SI9L9hw/fufHeV//wD65dv7o2Wj1z5vTp01uWaTI5fvvtt7cfPT48PI4hxKihS2VRKiMC98qCS2OV0XLLKGz2jw5OrQ1Lg35y/PzVy99746iPcPbi5TppXVLRHw1K0+uVR8e7z1+5sp26aYrLZ08nod3t/eH66fF4fjQZM6VCZG/33uULZy6uV1unVpZH585tra71eo/uPbh3sDdcX54/3n/h6WvT+XHnuzNb6ybJaHV50kweH+ytDZfH9aGqX+31L155Rqfyz3/9n4R5R8QXTl1oJ3XopmtrPcN4afOyiaHeOxw309HqqY2VJUHeebR9+dmnyrL34P7hB/dv706aF648vT/eTv3lh/vjNhxPmlDZWeXsqeW1WHc/fP/ObtPVoAAwadrH+/vLS1fmXWvJDrgA0GSwsM6QJTWZt06IecAHgMiECrigDktKUVJSEkBGQAJLGTzBQMYIGR/jpO4A4OWXX9jZPYopVkUxix4AIUnwwYeQEBBNrtOTgIASqIiEEJMAG0SmLnhDMJ41TSPrp87fuv1w2nnq9V1hucNx482PLYXpRLicb5zcJZCSIpHGmOdDWWP1ZDX7RE8HAIat7xpjuCzLEIK11ntvjCFmPQkczgplKxB8KHrVW++8t/Pg8fLqxd7a2rzgJVDo4irR2s6s/sH74dyw6PVUuD04woP5hY31A54drmjc4gu4+f7je9dFVpeWhsPh/sExMiYVPNnnqSqigWySTDGlSHRCj0D8cc46AJyoojXf+QCQidpPfmxYZMxS27RIua9CXjA28sCZIRPXFmhXyDETmgvgrEYSSSlZY6g0oUsiKf+wMSUyBn0AAJ/k7oPdZ6+cL7AQEp9SCPrw4f2trfWl4QiZGBkB2RhLhhOZJBbK/JF1ofFd2JnsXrxwhrgY13OyJCooiqhedO94vntwaEwPAMrClWVB5EWkadrYJVu67BqOMUqeUylBUlXVKKBgDY0Gw/Hh8eHhoSnt/v6+qA6G/U5DGzwZZrLZvowA4lNZlj6Go/mkSyEnNxb9kR8fJ0UA0uTZICYt0Q5tebR3EFv9q7/6q/+Tv/xXtta36lkzPp6URZVLcVoEXiozGWMEEgKIRtVkbVl7/8InP3Pj/ZuH8/n6cBjmbVmaEEMXsN+vGBAQJUgKPqmiCILGEJMRJiamuq6bLj311Iu94dq4A7JkiEJISNlDJADZegz8Y3XPj7/yFUL6I2+8LnIggAEBGQEkJkYkwqLoi6a2bhtfP33p+n/1v/p7P/+Fz7/x+qvN4e7mqc1mNt0+uDtv2l6vQjFLw/7u7u5sNq0G/Y1TqzHF0Mw+e36jB3arvzQia7oWu9bEMGsa5/p9V5TEo6on0U/ruToerK2snjnVWxoO1paJKDUNdOnurdvzw2loWoMWutjV86p0lbXMhKAgWqBV1E5CsMyjwcUYuepa4nkXbAqCkkiwnnljQGV3b88Yt7axYZxBY1JULqwmzneJMYZEWJGYI2MCQLGl4bJLVUERbKvNdNLE1HVoh8Ijti6piQIEIfoOpedsvz+UvMFRIMCAGnxsUgDLIhqjVyUFSCJRUpQkqABAxACaojeF8zEVlsvSFYacJcukmiAlSJBijuQCkEhkdiaTH9568IWPvzQ53rPzeWEUpGOkejZPK5HZBg2SoqsqZEpdEJUQapQEOCCAxnf9fq/q9YCAbablASCIimJUIZHofQwpZeYjAMS2Wx4uA6AaFIILl68gGEfmxReevffg4Z07dyWlwXCwiP0BRFDOoadJEkRCAycQf/hxKTQurG+wiE39cQdIhqOBc84H3+8NprPJ8fFkNFjyEvMl/YR5i4to2SzlhASAyLY0gmnQM1ur7rMffZaKwcOd13aOpu/dujurZ/O6/de/+ZsvPP/Jj3/0k72lNRQI3ZzBWnYQRQGy8IDQJECAjLxcQLHhpLXOnMMYY27JVKKKKObGElJSjUFEjGEicq5Y2HsBrLUxtU0diKBpGilcVVVHR8cC0usN67p95Zvfsci9qjKWJEbD1PkOAQb9Ua+qjMXBoJAk8/ms6jljTAopQjKGmbXpJv1hodKd2VxLbbN1bv1jzzyFbRDw864tCnP6zNre3dtsbNv4ybQt+0uHYfrmB7cvXrxsXGXYxijT1sfY9q1s9AcbK6PLz121DHfvfvjg9t6Osb3eSm8w2NveqbgsV0aTg71eb+jrDpquGvVvPziaHU6fvnJ9Pj7QGFTCg3dvLQ9XTpWbN+5+MGlrN5xfvXgeQB4+vH3hwlbw+2HaDspRA7xzNKmbJhmngKFuiv4ADJW9KpnyxqPDg+P9pj74xIsvgvJ4PCv6g1FR+NksdLFuupn3YCwAjAaj2bTd2zlYXhpMw9wyOFshGg2aNAKCcQUbPrngFnbCTORHyREoCGQQIklCcAt6u4pPoewVZTkcHx37EAHAx/nysO/VjscHEsLSoL8/axAgpiQIxEiAAhIVhIAMKKlkIUpiAiRyoun+o8Pv8o31YW/S2t021fvTleU+uf7+rQcmJTHGiSQRYc6UBc1XHgCIRF0kgj2BUy3k9ydy6QWzIc+Qgm+bpjPGIbIIiIC1NpdN2aQFACJABJK0b8r6YPLuuzfOv3Qh9ioonJv7BpAMX0rFjW++dfZzL177qZ/8yquvtIfTdx7c/sjTn1zpsIvm/fXJtOsqnf6ZlIboirJYTAh04bw3hExERAKqhCf0iBMOaZYNJoETiLwuaP2ACEwcJf37e/TFp4iEPvgQAjlEAeRMwztx82WdOCyekZRAFg/BvEmERfa6JFBlw6BEKlVRSALD1hgFgKrXv797sHM4O79VqbY5ONRZe7CzffDgABP7LjCZleHK0tKy78Lh4VGUyIZMaTrfdb7ttD61sWxLo2iCQIzBEHkf50137+FOSMREADDoOTKYotR1OzmuBZ1FA6QWDS0e3sKoOTqjwNSxWOaidFWvPJwcx5kim/wb6LqQbaqIlJIkkPxBl1U5nk2CpACaUEISLJwwJ0UAyIofS9YEaabzpy49/Tf+xt/8ws/+zHQ6m81aiUpkVTHFpIpEjIAnRBAAAWJMEpDRFdV41qysbX36Z37+6//ut37uk5+0FmPogI0PqnMhV1jniAhSiCEQAUo0hkUiGxNFDo/G/ZW1rYvX6kRgOH9WWS2T718VVV3w+klPKOknh/WPl0G4gLNhjmLOAGJcXBRoiGOKosFaZy2IhPF4XO/Nn33qqbOnl/7kD34/1s3t+49C1LLsxajAWDCPhv3pfNa2bdE0K8vL82mdUjfvulhUXNrKupKRoiVXTFt/OJsOiiKl6JBGgyUEDUfzw6PbhwBlWaiosM6bpjCWYnIJutnUIA5cYdmQosSIBNYaMighGUQGJd9tsFtaXm9UOxQszLidBgkYdT6edW1jYvBNN2HqjUZd8M4YA1SSLdBYxSKBMQwGokNR4QQmV8AWWTQlMZWbE8w7D523UCwbLolBfBQBIhFN80ZBiQgNKZFXnHedTyFKTBLz5hqZmE0TQ1wM5PTk4JUcJccky0vDpdGgoFQ6Q6ggKKqYtXEh62pINJWj5fcfbJ87e3Zr0DuezBynXt8ZQ/N6Ph4f9QZLKUkUcYYNFtYWiKQIbFxRVABYxLLqV4ay0ZoXbvfsPRMQBFENMfioCtD5FgBK5l5RJEBb9RMxG2vINk3Tq4bPPfPM6c1Tb7/z7ng6QcSiqMgYprzJEmtKIlIVZoYF+H7hjQJEID7hufFJp5byrPpHI3w0IlAUZYh+Mp0UtjBc6Mkr10AphSc1U56WG8Awb11J248nvfL8v37l9s07j99/1BKsbX//4Wx+WFSDAcX/69//3239l/+b86dGN249HK1stTExB4CYAf1AJgHmewtOSrcfv7l+/P5CRFGC7PmH3JGqKFhXOOt+/H4USW3rrcO6boyBqqrmsxkinTp1ajqd+s4D2aLoqU8ilCIBWEUqnXHOOle2XYhRRLyIMmEGTItmsDcBoEiwFldGfUeivtl/cH9jecRFejw/WL/QX6qKOze+Mz5uzp6/bLi3N+XOD5xAOZAaYU7YjveuXzq1/fhhYaqPvvTiqLR3b7z/+GFixI31C6asvv/mm8pBQjx76sxx0956cGfz0sW333jnk8+9hPOQpvG5tafsafdob3d0fjNM5/ce7fQi9Gxv9dK5tfHx/r07vVG/czgdT4Wwv7r89tuvX11ZO7+yYY3Mjrt72/v3pq2IGVo3PppfPbe+UZlHD4+0j6v94uoLLy9Vxk/rjfUeShJ/VJU0V9xaW7s+HNx+fAgAVW/06PHeC88+e/bC6f3HD9rQxAZQlR2VbIEkxaTGECESZx6yaEqS8uQhnexdDOTpCSlxQgRIyJAAwTBbO5tOASC0teNRYcz60tLhZBLarterUlKABYUrgRJoElHOUWKQp4SoKBHJMKMpe9WH93Z3q6K3fOY0VTuHe/XsqJ7N69m+UUVC0sWwghZ3SUonVc6i1jlRQ+OTy/TJ1fnEU2CM6fV6TdNmLFCM0TkXQsjzzHwviQioJABrrYTYKrz+5juf/sWfEKWi6qv4slcxpWGrl6G/+95j2txYV7tdmgd7j1cePnzp8mVpqb+2crD76GZ7eOPhncsXnypLl1LMD0hmg7CAa4GIgCAA0QK/9WPdz7//OtHbiSxAqpqyZyTzM1AVTK5SY6zrelAM8p2at4P5lyKSYLEGOaEqKQIRojDgiZ80Bx1L9lZoUEIMIQiI5qandOP96Rs37pzaeM6gMYq2MM8//9zuwwf7D48q018qnQHT1P5wdhxDKlwJ4n3dtk0LhtbW1vtL1hWuS0nZdl3IeVp13WzvHk3qoGh1UZ2YxjcphNm8rRtvy8KQQRVGtYbJMmjS5EmZM0BbUoxhNpuqalGWBVPbtSJiy4K9AWLRoERJVZMoac+60hVN20YQrymoRBFLTK5IAopggHu2UBWb6Itf/MW/+Tf/05Xl1eOjWVCxwNYWMYQYBZByAOTJS7KuRjShyTWHccVg3sZnP/rJW+++873XX/+Fn/jU0f6+aCTBZj43MZWiSJw9t6CYUrTOSuSgMp5MBensxSvq+t6rKaoQM7IBISqBAIhArmXhxHH8o6voyQGtP5ajdxIzCwzZD4kKaI2JMSoisukkKSgVDkRKU/kw3999aBxtb09ObZ6xrnr8+FFXp77jmLqisKfPnHm483gyPj61dfrCxXPtpOnSfF7P+0mHVa/HLjNyCld5YIlx2raE1KkAgGU2ACWyzjyoekhRg3RRBdp5PSh6WVEOImgyPQIXTnNMGRdACgURGns8mwcQa/ns0gawzGPXAnnTm7c+gE7GNbST5cKN23FANYOh7fe95aCpJM7z0hxQl2lgyOoxNgRYoem52OjssKYARSSGsmRiJkIkIQVWiMgoqBHBx+RjIMTs6FRSa6xxLihoUNWsUAZBzUtnx0Y1udIuj3qVQQRgyh1QTh9PPkYfEwAIYIhpuDrw7fxPv/v9/+jznxmYajxvwCggadKjw2OfwLBF4MYHIiyctcYyExFjjvtF7doGyqLslQAIBIgooECslFIMUVJMwfsQwYMkAOj3SkZOYNQ47pWmKlJKCBh8O1fZ2Fj7wuc//+GHH9689aFvW+ccW5fVPAQBHRERcW6u8i5+Mft5MhBSVZGomkhJRPN5DADO2pBiVVXZtAjKx8ezlWWTM5FOxkg/8mTBQkTNKbZkEJWE+699sPto35NCUfTWhkZDr24MSDh/etjn2W//i9/opgeuMG2KyZCyEKSMHEsAkjOlVPAkjVtPeuV82CKitRazvRcJOKfqARJLEmJ2zmXFxZP9IiqGEJx1KaWmac3S0FhX1zWzHQxGIjHEELyNFL33XeuLwjETEnVeFSKzBYgCgmSIMQ/ogUlRkyb0ySH0B4OB5fWlpaP7D4fLg6Pj44cPd+/uP/zEZ15e2lh6/+jd4dJa2Ru8+/6dJAxRHGFZ4cO7dxD6NtYT6n7248+Pj4+aw20oq5de+sjNG++L6FIxeO3mrdvjuoX0zMaZjfXT7333W4JqkTeXV+59eOvy1vku+MFoNPZt1e/tPdg93ts/e+o0Mo+PDx9tuzMXz4QKDqaTg739dl5vrp2a7483BiNr7NF4wlywmKtnLjX3tw+mLQBN5vODQ3rx+kWDvd2j5tq1q5rm2zv766ORSWo1Gdae0VFRHUbxvl4aFAAwm7ZR8MyFS85Bv1eltg3NXBuPPZCyNAgUExjHzMDERIAgIKCQ0SxZli+qhqw5GY5GxYhsyn5Z9cgYsriz9xgAjFBR8uFk7Kri1Orq/s0PwRhn2RijIqCIpJjLdJCgwag1yqqkSYjYkI0pzdoQI1nNNyosjQpnlz728oXZxBpQDCGnqWEICUlPFDzZR0kLP9cCxpAXX/AkZZ1+zGPJzAiuKLRtW2stM2fAea6QUkopiTGcsUA+JWdtW9m3Pvzw4N7+iEpIxNaIxCRJIQ7R+sPmzu9+8/onn6aNjTv7D3bv3B+f3nK98oysmU158O72BwcPn37x5X5VnZi8ANEgaEwJEYiIgAHyGkcIERQyYH2xtcraqZxPjqBKMSaR3LARUF4I5pGyEpGmmN+IIYKFPVdh4eSEPCMgpNwxiIICLZ6ZALjICRGCpCASEiA7awyRIPiua+o2H8H9peUbt+89+9SF81uDWVsvj1yUuL6+wdHVx+3K8ujy+WvRR99G7wMR7R8fzLs5OSCD/eUBuhC0U+WUUkxqiH3bzubzpotRWQCLnAUmvpnPkmAXAcgaNgVbQvVdp8D5GjB5XiXKCs6wtSbGaIwxoLNu1vrWWtu0rfedqkpabOYVhASt5bw5qkMbJAIBRBVEMq6ZTUwKxtBxc7y1sfGf/+3//Jf+7J+PAabTBthwzpNLSRGMcTGEruvwxB4iIiklImSmLnprHEZitVGgC/qLv/QX/vGv/zdvf3Dj+vkL49kstm1VVT74mAQQIAECoDHO2pRSktTFNK6bzTNnt85daiMpc+sjskVImLIGLu9SFkgVIoL0I4vK/1uH+mT/lVRyaYtABJyRECEfAISCkERSSiG0xETIIGodHOztzKb1Fz7/M1/5vS/7kKyr2hAe7D1eXVk7tbH14e1bs7pxrmQu1lbXDtqYfPLeoyusdYWthqBqKFBsUziqZzPfxq5RQqc2dl2FbBKUtugoeFTpEimaokisxqCiGiZmUk2SIiGTqiFTOmctkxIBhrbb6g99TNPptILKh3a9dNaW1rqIogA1DrAs5hp3CcaY5j7MYRIKdr0yotgIRd4wIyApi6IoWBbrkib13qqlUa8+qre7mRpYJlfmVC0gYhRFBSBGtlz7uSFmRklqmIUIkJOA71oVIQQDhJZBJYaEINaYCDLolSvDnmERFSIjMaUUfYKmSyFJUgWA393bBgA4Plp8qL/5Zfj/y8sZq2K80nBtQ4xtQgBBo2gMp+THx8dLS8svvvTixqlTN2/e3N/fb+ezstdH41KKMQBRjqNedKoZiywnXZ2q5uNaJGWYjghm7wsYw8x54Y/IRVG2TVfX9dLSEgDEGAEkM4QyKpoNIlJKMaEvChe6FNWtbZ52JM9e2jRaXzvX65cb33nttsLg2sVzn/vk1ddff+0b332v7J/pCAgziRYIst1Y81MRAVH+PTZjLmjyUD+XQcxMSLmrFVEQEBE2Jh/IucgriiLGGH3s9XoxNN577/1kNh/0e4RpNp3P53Xwfjjsl2UFjlKKkiISae53AVofmTQ/s1QoAVgyIctEWVmjEzm1PNRQ94jb2TylpKjjupnb3mDlPMnog1t7q5tX1pZX7j5+jCWWzKGLbeywDVc2T4+nujFc/ci1M/v3P6zrGmxvNBxO5rM2pjbFb//+VxoqaWUgFpZPn97b3VsdjsTy8aNHz1w4P9s/slYed4f3H223Dgdlb5n6W+eWO1+zsRfOnA2SmmbWd/bYh6eeerpfDI+Pj0oK586db9pu5+Co53pVQYf7R+vk0MblU2tlgXtHB9/+wTur66fKpcF7H9za3du2RJfPX3jx2rX5/mNopuiQq6rq97ZvPfhg9wgAfOef++gLqxun9+++v7+90+8VletbNMHHmdSVY4uEihIjEKplIlZQYkwxxZiiREJ01iGZPD8QAwpYFCNbDhGh6hW72/dDaACgIIcJ1leW7+/uFsaujEY7h0dgihhjFCFRJFDHC/CVYgbcMBIQKkDoOrIuxFRUlbDrICRpfDoejOALP/2Ri+d+yuQyRVWJ2BgElJPTfMHZ1EWibNb9ZBMAZkftiWvsRwOV7Eg0xsxms+Xl5RzUkh8MxhgAFZHCWMXUqbas0C+3p8c33v3g0xdPg5fK9uuuQ9C+tfM2LRm3Vcfp2w8uf+JyvbJxcHg42z86s3EKbbl8evPe7e3t/V3nzMraarabMbFIMmyMgSfCHUQUiTFGVxaL7XjmISrElCQlJpAfhXuQKnnvQfPQnfINdqKeRhWYzesNXEXSmKJhkyDrPQQXqiEFAIUEgMCch8aFYdQQfFegqor33hKpSq+wEiMRuoLTBAGgcDZInKf4/TfeX1p6uec4Jt91WpqqWu2p093xzuH7B4WpGG2KyYdOGIqBc4NSSOY6IS9sbUrS+pgDOOv5rPXeuDIlIDKjfg/2YF5PgiSgoglJFAGyARFJnagQUdIYfJeiAUNdapN1cgABAABJREFU1/mggDgY9gGxq6O0Kqp5naiLgBQgZ7Ic2yAa5hhD0zatD8hMIowqIoVlYkOiR0fHn/rER//r/+1//cKzL8wnbfDRFlVQyW1CTgiOIWQxVh6/qCozxZT6ZamZrJBDyNX57Awvql/65b/0j3/tvx32qvXl1W46idoVvSqECADWWmOYNHtxUufjpK5F6fS5S7Y3mgWTgJIkRrXMKUYAAMDFB58zB2LIGfI/3hOfwCP0yRAIsyM5aR4JqAA7A8wJFTK4AoGsEY3AEJp2WFJXzx4+uL//ePwH8z/Y3z8OMa2dWhkf79fj8cbm6dl0yuiWhu7+3fvra5tLo6XmeGogkmCKCY1yjhoA0qg9Y8rllXloG995kBgDIHaogdSr16QhRctsiB0zIxdlyaCWEUVTFAWxZHtoUKEEa9Eo6Hg26/cGzDQsixi7vnXDwoWUZ3RQItXTemRMIbjhqjVgqQpfmIOu3pmOJ+NxGlopLbkSHaNBso5SAh8QhEAtcikcU9L/F2d/Hmzpdp73Ye+w1vqGPZ255+H2vbfvgJEDABIEQIqjJJOSIqU0mbSS2JIsS5bKUsqOhrgS25WK4oqcUjlVUSV2OYk1mKqyLMkmSIIkSIoCQAwELoA74va9PXef+ezx+7611vu++ePbpwHZ/7hy7q2u07tPD+ecvdd6h+f5PXXoEsysWa5O99xwrxgW0QpkRBDLxqZgbduYmUMUtZK8MmZVNcgiaOAAA1EvtVRVRuvXz45xc2Nklpmo4EJyMkMil5N0YmpgBLeuXI8UFsvTa3v0Qx996a037n7rWw+vXr/5yY/dvr5dXtkYlM5NF0tFJnaD4Wg83ijLogy+LgtPqDkS+boc+VAaYpu6rBqKoASigEQ5p5hi7NJiPp1Pz2bNLBS8Mahq8iW6TtCKwc7l69FgOpt3bTQxyRmZAGCxWDRNO5mMPv6xj7VN++DRo/sPHqBZimk+Xw4Gw6IITE5NiMA5n3IiYhUDA2Jm4iwJEZgdgIL1zhVSVe98zoKIRVGklAbDwXKxKKvKB9/nsYv2VwqZqogxkwF6dqlLWQvHKqunFy5tF7LY3NqoivADP/ChlW79+r/8yp0vf/N33/hOFUKLAy+p8iICZmxASGCQSfEc021q61y8Z7uCvgfDc4GpiCD1UIB+hdKXSta3ZH2dlFI2U0Y2VaAe9E8xtg2z96GnBBZFKWopZTTKOatKSk3fqIfgkSirAhIxK4D0/R9a6UOSVCLU2UKX57PF5PqlvZ29Yr4Eb5Nq1Gpadkdnpu/fu/vBF2+bucnuxebk+OaVG9Y1TbNspO3a7qXL2wXJ3Tt3BqPh5NIlKgePj0++84WvXLu068qqE73+4stfefvNzN17xf71MLx26cbRYirBdSoXLl8iyRdpr7Du/v7j6dH8ox/6+HQ6Y6pdVUzny9P57Pj49Pnnn7+0feHp4yeXLmEbmzamo6fHW5f2pKgOVsvBYDDp6tX8cMiAqZ232ZeVKO5Pp4LQrLq9q7fB3Lfef3iyvPN9t68Fz87ryfR0tZBbN24vi6dw58gV4YUXXqqHI83WTJeTukK1rm3CyBmiIYhmBPDsTDCb9MjuBJpF1cQ5x8zIqACGjB6b2I63L5EfiTlEIi6qcqg90SbqYjmloiu9n80XdSjKol6lnFQRiZkNNOVEzAbgkckQzZiAkAwpalLNxEieBAWQfNgQpruP3/nK19/Z2fsRdy7iAdUMgP1Otl/v9GYBMwOgniUBQLj+ACPqR6zn6h5CQoxdS0T95msdknreKKeU+lFIyonRyGEGhOCbmX3129++tTWqx5tptq8xjusSxIxt2XUXigqOlwffuPP9n3zlG4uHFKUOVUE4Tap1OJgfR4lbW5NeQEdoWUQMnKNnclUzW8981mgfVO17CyWifvba+3z6hByz8/rPFAxExDnXh51JFjXJKYuZyHoU8Uw5vl6KqZ3nUAuCVyTU1HXiMYOKaHZIQJBVAMCAQhHmy8YVA6QAsKrKQkR9Vbz36ODSuw8++vLltllWo0knah4nF8b1Zp2aZAlzzGQ2KGp2iN4pptw7lpFTzm3b5ShZsnRtVgtFSKdNTrkuh6NBBQBtu0IumjZ2MftQlkVBoGDKjBnwPMPIHPVS7x5LL4bgqwLiatk0zXJJTCKacwaG8+ghZUATrYvKshydHCsaMS+Xi4DsyNXei+pqsfzf/MIv/Ht/5S8PqsF0trSMvqj6Y1nXc2xbz/AR+6lQTskMVM1UPfte1mBGCFiyt6SZtEvp4s3nf/xn/9Bn//E//l/8/j8wCPXpYqZIg8FAckbC2La9+gaJzhaLZZfH23vbF6/OuqgUDBEdr/m0z7alwH2AEZrBuU2y/6VnZdC/MgoiQjPU3pUMKGAIopYhKQGzM1CR7ImCh7ZbVY6sTfv3HlOCjdHo9PQUAVbL1cnpcVUX8xUeHJ/WPNjc3FSV0WBsRtPT043ReNVONeecNXWpYqeEgNaLez2xtzDkYIStpE6yQe/IIEZiBDNjAEccnHcIjKYpqfSici68H5VDi+LYSZZV13ZtNxiOkuS+i/fkyiJITvNmgWD1YKCBJKYsslFtsXDucl3UL2xtzMvNg+XsTns6l4SKgirAPngMBOxYyOdMKsTYOYodlJOBBT7qDqeLowx40Q8hKyoY94guJOPgiYmyqQFmMASNomQQyPWGTJOcVRgxGzjmbDKoizIQo657H7MsllKOWcQgZRU19iUYMsokwHYFBQNX5b3jdvHFb/3UJ16xVXdhdwNdkJSaduW8T6qUBQldduZAJXujLolRRiJkrsqC2EUVAjOwlKRtU9d2TdssljMDKH1RhqJg3zbSCu/duFYOxoa8XC7AoIuZUUNZEHF/tLRNE1wxHo8/urf3yiuvxBj3D/bv33uwXLX98ZujqGioirIsui4SEDGrqmjqRYyq+myF2yeqijyTSwMiOud8CIfHh9euXs1ZsmTn3LNsin5zQcSWhIADB+NsebkxuBQF3nr/8PU3j3/nK99OuPHwYA4B90/PHEDUPus4WzLs7YAIaghgBKiCzKxoz/4N3ysDevYgM6/n96pExMTZcj80appVzmKmzM45x0ixi4B5zb82MzNi1iSm5hxLFlWVJG3bOefMRNUICRCzCgIaWYwRAMRMxIiRVQAht6kE2h1O4vR04ItHDx+283k9ro8XJ+89OMyB3rt758Ub10dV+Y1vfvPu6Zkbj/aPl2NflKb7Z/u3b163vILCv/Dqq08Ojx+ezB88/s5yOn3lxVuXd3eK4cCN9/7la2/nJg03xu+/9+DxMu4MRofN9EiWl3a2f+gDH2qPT47mJzlQmezixctn09OT6RSCd5C/8/5d8m48mQzqARPPV80b7703GI0kwXyhTx8dlpUjzE3siOHCld3u8QEJgpIZDTbGq2Yem+V4ULer9uBotYj0nYeHly/tXqjdwfK4HNQTGj7cP9ocjgFgtlzcuPkckbv1wkvd2XG7mFeTyhycnBxWo7prEYEd+VAUTIhEyIQITM4IhvWgLywQ0ZiBuBwOWCcGXgzqwbDrYhLwvqqKMQCowfHxkasGfjDok3JGo9Hx430RdYQgyozZLObkOJA5MFBRNUUCX/rYxpwaZJrOTsfjofMFclkwO7fxe7/37tOnR040MTM8Mw4Anm+1zvFv52ugZxqg/pHzldO5HqgnAK7j4tH70OcD9Otk7D2NzI4ZQAUElDyBJiMXvvruOx989TktQ6M2KGsCiW0zqssjbBar+WZR+ml+/Fuv/eCPfrDe3rl7+HSv3AjeFWV4cPjUAk1GYzBVSQ4ZCcxIsxJBH1rQi5PPAxYNAJn5fFVluEYzIjGbrW2fqmpqqAqATKyqxNQb4oAMAVT6YFVQM8W1R2gNJDu/HAk5agQMbGaa2QExm/bYJJ9jlBhzkQdlvWpWITD7EgAK56VI85lEgNffubNZ20s3NnMWhQwsKFpU5aAeWgZQY2YxNbSsqUmZeugKUoxd7DqN2nYtWnahYJTYTVFkWJbD0vfzHgzF9PQsCg69B7OUWl96ICCklFIZnGPOBpKzmXnv2647nZ5lsdOzs+VqLpotSYwRHDP0oYfSS94gy6CsHbusoqq5i06p8o4A8mIxCsX/9m/+7//Nf+PnF8v5bNEyOfZsSKIqKn2GHPfCmfVRqIiQNQGAZEFRzx4Q0bj/GGQMymJoRm2SH/p9P/XNr7/2K5//rT/w4z85Ho5PlrN+MFmwL4tCcjKw+WyZFRZNfPnG8/XGzjJTH8YEBmq535+KnKse+u+twTNL37Nhz7M50HcfUQVG6mPvzqf0ySSrElHOHajVwWPK3Wo1rvwG+yfv3T99cLw8me3sXRqPQhvTYjmdz86KercoB2Y0my+K4Mqi3NnZfeP1t1aLVahGIXCJrnA+pxxVqSjQkyl4w4DoyPVP4wGHCGQAwCRZ0YzJiQqAVcE7Ys2JCDoRVC29L6oQQmHAgoZMXeyWsVXCJsXCV8EVdYhOTZftsCq9K5arJhQ6KIsldQrQQcaC8mJlSzdy5aYb7NZuzO5+nB3F1BJkzdnUl955Cs5VhipAqOCAS+oMRJ3fGa9sdn9+aqVtcekBuS8rTRHQOfbsDCBLjjkjsJKKIqEyGCMGckqYVDvLzrFZ3hgPGa0sApEBKDkHKkksKwCzGAA6AMypReuev3bLg7Zt0xlFCg+OTh8czG9/5MUn+4dVWVR1YaZN09J0Wg0GCrVz2YxMgQmN1oZtYFKxrEKODUVEUsqr5Wq1Wi0XcwCbDIYbg4kna9qEXGQLm3tXkzgCPDk5KYrCO2eIKUqOLRF57733CfLx8XFVVVVVDar65Rdfun7tets2zvmc0v7h4eMnj+fzxWqx8j4Ag+Tcq6J7mYuqAmK/SzIzx87AmBl64gNRn4nRdc10ejYcDokB1mUPntf2AEZiwQFV5DpNEfjbd54CVMaDMhQ+66pLe3tXR2Xz+NHjwXDURp4vV51kF4JavxhHAlpHnbpnP1lvwb7bT54rtZmZmHDtMoFnmJWu7aJkx+ic68VAhNSuWpVMbMT9CWldbAGMiE1Nu5RTyjE67xFJJJlZCAFApXfmIYKpqjjnQdU5Dwg5Je8ZQa9duHLjwqVmfgrZHh0/HTmeHZ3mgsdXNx1bZbJXeF0tFqnd3t7buvbcl9/8jq5Ohjm/cPXyRz74iZPTJ2enh/de+1ZRFG++8dbW1vZP/Ninm/lyNl/5ZG+//rbM25u7F27dumnLhjrxVbn//tuW6L2T083Dww9cuXr5+vXXv/GNnWLzpVsvnzSr49hmkxy7re0JB7+1sRVzc//hgwbh8elpHfPJouvEVY0MQr68Mzw5eTqqx84NLt28cTpd9pC/g4Mn3uvOeBCXEZMOSt+pNk17//GDnZeudBqXs2WALs6bt+58BwBOzo6/8c2v/9zVP0iDEVejeHzst1ymXGPIXQvelQUHz2Vw3jEykyNA8C6gI8nqXPBFELWTxXy4sV3UWx5IDFwo1LKhxGjD4c6nPv2T8Pf+QQfamXjP49F4tjpmciGwmBAxAWsWQsceJfeDGIdApqAgBoa5Q1JQzZK6uHr69GxjslkNcTQeXb54bbU8vPvevuub2P7Ef9bXnje1/flPRJjl2ZOyD6XBnAUAvGdmVjXVJDkDmHMcYy4Kr5pj7Iqi6He7vSCiL/uFEFrBLjv2o2p0Oj965+igHjFfHQ/2YxHV6jDNsSqDgpnIMOLVrOn37ltdH9PyO6u3Jreec4iYYlouLu7ueiLJ2WHRg24B1AAVjYh6xDkS8bqR6j87MdCeUaAAOSUUQfTP4PTM9Mw2qv2C2IAAnXdZRPswIXKIxMCKCrg2CvS9Wl899tQKYnDkCHISpd4ejxBCmK3mMXaFr4vg1RI6BgCHrgqeGFztz1arg6P5tY2alMPE1eQ9eUZf+BIdqAoRx5TURDWjsjPIpm1OTdc2yyZFQQQXPDDlplORwvO4LgpGAGCiKLJoWl+OwbOqaJa+5lUkFakwEFjOokSGaITL1apZPJwvV01ugYE95ZwAlZDB1u53JOwDBybjcey6tu1MQXIecCgV28XZ8xcu/p//5t/69A9+7Hj/ANgVZdUztlUkS9a1z8tgXWn2R6Laud+wp/U755KoI0YEIe1VBBgRjQ2xk/QLf+4v/D/+zt/53L/4Fz/66R/e2Ng4OTmp61pyEsnBUdvFVZPO5sudS9cu37zVCEQDJlSzHmaoBuwYFE3PC2iAc9TlM7PJWgz0vSuwZ+8QE50HUoFhzklRV00XHKPo4ixtVPVFH4bsv/ON137pn/yTZrUYUjWfziZ7u6NycOXylaePHy3PToCJR36yPTo7Pp4Mh6lppsdHFy5c6mbtsK6rtPY7mJpTdZlQjQwIFcEIIasGDv3Mh5E66TQrmxS9blYUckZTFWMz531VlUUICiCMhq4zW6ZohMzOzAZl6ZAq9k5JY2tEBZeNxdhmICvJp5zjYlnVVUmsIov5zDvvvd80RjcYszyJy6fdikYVOjIRY0+OgTAktBgbUgQA0mo8AMNVOnvYnsVivBHKYOqzOgA0QfZM3C/juU/xA9Rs0foxLyAiI1sWUDPL3mFVenZApGY9BtuJQRJTQLMshkRsknMzvXJxcuXy5dVidjJvM1Ko6lVavXf36SdefiGU4/lqvmpb7zmLKhI6cj60SRCgKsuyrE1ATcyQDBRBVbsmphxjTovFYrlcdG1U06ouR1XtFHIbXVkczZoLz70QhjsLkcLo4cNHasrOKyEx9+ewmnUxeu8lC2BLRE3TxJhEMjNBYaEMLz7/3M3rV89mi3v37j569CR27aAe9s9ho34xQQZwPs6HXuKHRERrpjkiee83NjYODw+dc1Vd9JQ4NUWg/mkQk0jpxQxXrYKFwbhZRQezV16aFGH16PGDj7zymbxYDGz+R/70T7/53v3f/OI3zNhcaFGJjdf2SuzD9QSEFZ/tuJ+tlXvT8bO+QrL091P/uoux67rWeV9VhWPHjKoaY6eigYKiI1YkSznlnAHMm5eskpOJ9FvRtmt6ElIRAoCwc967LJkAEYQAmAAU6rJIOcecMwkiXNjZjqlNkgd17SSndrXsYuFqappGZOPK1a/deXz98nWAYjCo59ODujvb2dreHI8vXL78W9/89uH+yeO773/o5ZuXhvXLL77wkZdv3717d7Fqt3cvvPH2G2Xhfuj7nk+qq+OHFXhPru3i9csXnhsUb73/7tvvvT0Zlc9tbf/gx77vyZMHnXRPHj7ZP3h6+fJlTJ0YNm1TlcV8uhgOh6mNF3cvxiaNPDrIIHl3e0+tKYfjJueKJHhZdNNF13FRVONJUfCybZzxxmQcF63VfgTDg8XZ+wdno1BMNjY58zZPXhxO4P7vVkXwwRPzrO1e/uBHH5E7PHo43ByVBSVkNQzeB99HLBIgMDE5l0QsaT0YNl3MbVvXo3o0CfU4GyF6x84517SNI0alLuXN3SsAIFU1Xa5OZgv21XgykSY+evJ42XZrMJuY5YznOmNEQCaEPk1ZYkzI1LOIBsP64f3j1OVdCMM6bE42c+udU8dM5+c49hKzZ4PHPqiDiBAYUc7NlT1RomdsrJ+Raw4KM5oyE6J5z2bFYjF/RlYMwYNZ1rS2UaJ5AfHoOXh137zz7t6Fcuf7n4N3qH33ASs4o1owAmRGUNvFcHb3+L3pF3Y/9aGp6Xw+G49Hi3tPU9fu7mzXdZ2ikEPTbIqI1t8KiOt/n+ceyPtdNQmgpZQBrA8yAFVai50RgJlI89oM3wvORYTYEVGKKaWEwYFZ31D1EkLqc0t1LXTv9yWqmlUIVDSJJN+vzAyIGZEkgzEMyuqsbckjAOQYC++rqjxsmopgsWoJyvl8WRSOrfbGjggL5/vEH4CA1MVOxVAJDUx0tYrzxTIuF479YDRWhiipjSl17agKk0HhcN1jLZqmEwvsyTnEiKhZumSQswODfhmoqoYuSzaUZW7SIrYxUslmJjEhGjuXNAf0atq71dXMOU9Mq2ZFSLHrQLTkChbL73vxxf/0//Af3b50dX54NCjrZJgFDCiL4jofTYm5z7k2M5V0nmtkvX1XVL1zRETJ0EgZhCCDGgoKkjowRXa+pn/jz//b/6+/+5/96uc//6lP/vB4PF4tl977tmlWkgRo1XVXblz/8Mc+VY825skEgUEJEBnBMImmnM1AEVCxzw/FdZK2O9fQf8/U57wSWvesqHL+OfRprKIZyQpGUqWUS4GqE51Pf+u3fvPL/+K35qezjZ2LhbqDo8N57iabmyG4jY1h2zSrZTp8ejC6daMcVE2zvP90/9LFvclw+Ph05quy8h5WDTCYCScpjNAQzAjB1oJrUVJTQVMiV3o2IoB+VUBd7NTUM5uqOXCOg/O9zIKcS1mm89OuWdV1WRVl4YNDIhFHhGgueAPIahQCIllSAinRmSl24oAILfdDMBWIcQQW0CFXaHDWiUnD3pmH6B0FR4TBoEttQCzZVkl94WVzOD9e5G5qqEPAmtgRmUo2NDImsnU8/Npkwo5JAE2lV5uYMWFWGdS1I3JMaoZoqiAmMWsylJxBE7OLERCTs+YDL942pCen7So7F8JqOR9Wgzamo5PFjcvbTduKdt1i4RypApFnLpkdmCGhcxnlnJpDBBly1mzadt2qaRaLRdt2jFSUbjQovTqMWvnyZD4XV1194eUEjn2xXLYP799DxJgTemZ2hOc+kvNRdIpxLtIbwZgxFIVoOj6aOueGw+FoWH3ogx+8dPHSnXffPzo65j5AHo0cmQIa9IqAvqwxfKY+1nPaFiDiYDCYTqdFucPMqiKihMCMRETOWkiEVHvHQIaOLAZb+fjwM5+4deFnP/L1N+OjO0cfuv3c89cvff21144ODoqNi+xDzJENPfffOCQAATNU7dXu3/O3Pxuy9pIgMxMRdnw+EjYAZSYiRDPnmJnVMnticA695iSQxZKhEqEBxJQdIQIC9rBpdN4552JMWRIDt8u2c673AeQIRJijIDB20YEJmlji4NXyweFB0q7NMebUdWk8nlSh4JX4Mnzn4dHTWbt0Z6m15uRQZfWjL9+8sL13GvNX3v7G46PFyG298uEfZMpI5Q//0Afee+MbzvLu5uT49PiF28/v7EwWsyMHDOMJCs5mq/nZbDyalN6PnZ/G5ou/97t36+HtC5deeOn5g8MDk25nNEqL5cgXxXAyPz64/+RgUA+fe+E2PnmC7JrT+WaIZ4upcbUzHr93Z388qFIXhxVmi1jAaDiuh+P5rD04WhbObTApGGAk9qJ4ukqPzhpt5xIfXb9weezrvd0LAPBP7h/D3/678Lf/7gYAAOzB/59vO/+TR8r/ySOf/qk/GGM+Ozys6yGV9f2je0nEANvYsS8C9dA+62sMUWFi9ITASXI2aZvGeVeVZbNoHbvpdEZMqo1zVwpf7h8cuJzP97sq5yofJCJTXMtjtJc60/lGbD0hWhfmIuuboN8orbXSDOsqnrsuFkUIITzb5gJZgsSAHFwyFLWiKB/ce3jc+fELW89//Ka5tnzryTjDyLxIN0cxhHlu/LC+skqLL777I5/8yOMwOQkmtdtfnI7Go+GgPllNuWCA5NkZCjGaSS8JQBVy3qwHWvcvIGNilc5AERUJQwj93QagKSXJCUQRsZ8S97LW/qTIKUNPPTYzFaL1itD6Ke6zRB41XcduaE7ZrwMZoiNlRzEm74OpdV0cjAYrk2AGAKtF48elZ0SngHh6PHVQOU+ns9OwgYOiMEedxaSyhkyDJhIhy6BJ0mK5PJnNJHal94Oy9oVvTVEkJ5WcNkaTgkhTCwDeu7xKQJzVgIgARZIoZ4Foyhyy9JsJM1MDVcS2aUAhlIWxZhUAE8uqirZG7jpH/Rc8+ABmbdOKCCJNhpur/ZOP3X757/zHf/PGhb1uOq84xC5b8CICyGDg1qAlsB7hC30VqaICACq23udn4aIEREJGJWBMnDMomCIBZCDgzoSJB1u7/+u/9Bf+y//8P/+t3/rtT3ziBwaDwWK5ABHvKSUZDMff/7FPDLe2513iajSoqvnpCSMyc7Z1I2pIBtTDIRB6Uh6sETPnB/SzF+r3ahcA0MAEwDFDFsmpn4sF4oJ5wMXy6cHvfPHzb3/pS3H/aYVQuUFz1mEABFi283SSB752CHsbW7HC/dPD+w/uXd7dOz08il334nO3zo7PvKe2W21Ntrw4BnBMOUp2ngGhz9lWQDJUA02oCqK9PyAhKBqwiooxMPXbBUdkhOQASZSBV4tl23btYl6XxSgUpQtlKFLXoA/gcNm1RVWgd6lTJAfIrsC2WaqJdwwCYEpGjoxMNErJrk0Rm263DqOietJOD9tOhi6SGQn3RUxwAb0su94z3waSkbUpNfPmpFuEUNVAqhLYATE904v0Jtoev0mEQGCGCirKzIHJxIbDETN7RqC14TMnEwUABsigCbEQpZzmNy9tbY/Lk+ni7sF8nhyFaqMOFze3qJlv7V4cjgazs5PRaNyszEym02mbNJuJai6LZmFN1dRV6Z0jJgNIOTVd16XYNm0W6TMoXFGFQKEg10JwBYLOF81HPvMjxWhytoTBaPDmm68dHh4OBtsGoNkSCID0/E9EU7WiCF3sVssFM4/Hw9Fw2DarZrEAROaQc4yxLavBxb0Luzu7T5/s379//3Q6F1MVRSRiBlyf24DozueX54xE6muj8Xh0eno8nU4n40m/DDCwnkDBSLWBM0LFBDHFxaD0ugSgrduv/NjZYvatd762bOnJa/f+u6/effT4gAa7BgRpNeZaxBx6sfwshJsN1aQPGfhe0Q8AICHCs3XEevYjkoioxzwxEzIgGTMSONVsYjEllYRs7MgxZSMkMFPmoh7XVfCrZqk5xxyLEJBgYzIuQtnFdjGbVyEE72Ps+nXIoK7yvCOH3oMSuIKPZyen0+M2d0nz9t7O2f7Bcr5YwJLAf+3112ljktTKutgaXzl+ev+HPvqDFyfj5dl0iFDl/MrljeevXMuqByfz956eTpenN3YnaJRyvnrpCnnfzlsnPK6qZrU6a9vTdhl8sKTLeRxNtkdturS54Var2Wlzcu8IrNveq+4+PCv8wPlyBTzV8Nbrd7a2NydPDwzkwtbGpMROlUaDzjrpZi/duBTnS+UgmeervD9f5XhW5icvbl0k84+nsRoVDpaDmh8/fXLaiaP60eHs6uW9xenx199+7/lLV9zRyf/yw7cfLk9+5k/98T/7V/7q9OhsCHRhUjx49+tf/+LnJuNBsLAz3NNQ8qAqioK4R0EzErMPRycnZ7P5Cy+9BMhJbPPSTfQDANWsiEzgY0YfyqQRMCJkkzgi/Inf/6/Nj/YPnpx8+evfePe9uzAaMhExSxZj7Ll9wESOBSFqNPXOORUFRAqu6WJMqVt1VTHQbE9OH0/ltHNxa2vn6ezYpZSRCPvZD4DjdfQurImj/ShIVU1FeqDOswkqEUF/Q6x3Yxa7CKBE5+6nIqxWTUpYFGXOuadlZFNQbySZkqFmNe+Ci+F01vzek0ft7Ws3P34bMMg3H+wkGJTlrJ1zETAadvkSl+1Mn3zuqxf/0Ce3PnDtYLQ4OD354M1L9aA+OZqRQhYFyh6gR43Ael7VHyDcm7XVsojGaGsKlyECiJhZ6n0BZkJIRmBgvWevL5tExQAcgGThsofmkvUhCAj96Ad69CEhISkRMxKZWUIzROxiFypP3rWLlsnlJAishmVZD3MDAL/4+AH8KyEHDfziP/2fWVD/z3ibAzxcX9FcZenIU0wNwcARm7Jy0BwtiUdTUyWfDLJo4YIQzWNkcExgBoVzKapkNbReS97j1RwwZHHOGbmlpkZTcLg43P/0Bz7yn/0f/+OL25O4WjFxVjR2OWsvoyYApF6ErYqGzGj9MK9nCfQMYJAsquKC78MEepExqAEYgesRtQDo2KWswZeDzYv/q3/nL//9/+ff+2//2S/9yCc+fmlvD4HaNjc5vfzqh4fbO7OY/u9/779ohf/Un/zTr7766tHB/mK5KqoSca32p35BDAhGtuZpChCpAfV2NQQjVMuKAEhg6JU6VSHz6xSCKBKdo42qxKZbPXr85S999c7XX1sdn7iu23KhaZfL2HS+Lkbl5a3dM10dnk7Tqh0XhYVqc2srQlysTtpm7lAv7ExSuyyDGw3rxelCQZW5I9kYjK1pRQ2NGE374lvBszcwR0YOVZQIvSNDRKTeEuXIA5hj9OzUrD+olqumaWOMufDFzuZWEVyOEc3ILHWNIRqg86GNncNgpilLVQUg1hwNWEyoX3eL9rkzOQsiMKC1eSB4w40c0MOYUsCcJETh4IzQ2HGwoSNuY5bWOxxOqkZjcxYjleiZMhIxBzZRlN71ilmF0QIhmFKfAY0ePROkDOI8lZUHAmbOKqIKgCrZrP88LGbIkhEtxumt578P2T14dHI07YCLCxcuVEXVzJepjcn551555eDgQeraUVWDiaRF7Lrjw7O2k/FoUBfFKiU7OyuCCxwQIMYYUzqbzwyxqMrCu+DcoKqrAEEyEyIVd588ff4jP7Rz9cV5p8Tee/f2m++0TRyNXV9t96GKiASgkmStWQZw7JipWTW9rlmJRXKcL8vSV1UFZjG1JnDp4t6lS3snx6dP9vcPj49ns1mbkvOBiUR74oma9KxWMOsZbcDMkrWqBvP5ovBtUdZG0pvhich7tmQmYsDOkYJl6bLh01P5xX/21bv3754sfUJwXqdHU6JSsDM1zCKQTSlnEFXqY1vVsDfCf4+loOeV8Pro1N6EC2thxnf3zuzYOSZHIpqlRUA1VekragvBIRpxgCwqIpJBrbbAHEZ1hahF2JkvFsO6vnnz5nR66horHSNiVZYipZm2bVcPKirKogjL2LQYR3W9yG0Denh6dv1qprJqRDMQFeVCYffqpQ+88sLFzY1mtXJ1cWN3vDibvvlk/9aVa4Wn2rlhUYydfefRQ/T1qKy8Kw5mzf6jh3VR4dF8PBjvbm+ZVWeH05OTJ10WRLq4tTfZ2vnmnQdvPXw43twaj3c296rubHbUNKPaDh7c2dycXL/6XFpV7+wfPz6ebYxGg7JaLJaauxHTzes3FrBcnZx1KValryfj4VYJyPeeHKy6xKtVyfzhF2//4HMvfvU77z88fIfH295zlG5nPBwKAPjlYpWbxfbmZFwFV5SOcGNj9MFbn/yxz/x4s2oQOCE8nS4v33jp5PDJo7vvbu+NQMUzu363beqCyxpnTbv/8KQebNz+wIdCOanqsUIAXxqz5NYMmKhnnQIaI5DntovOFejcZOfyaLi5dylDNT7t5PfefNPXVUmcc4oGDGLMBuaJPbFoBrWebKFoDp2gNk0Dpr6stuptm7UG+cnTh02Kq9i6voFTAzUkIkCUXtxgamqEDvswIwJbr4esn/QQEbPTtc8XVdRR3xnjeZdMABhC6Lqu61JRBCIWUTNgLok7tWTUAbicXUGjxSov53K/7WBv68JHbo3Y52/fs1UmpuWyKck7UVdaneRGord/9ctjsVcuXIK2mwwG49EI8KmpguNI6AxAhB332BiHAdEZqoiJZCImshgjOtePWSVrF7tngFREMtAMYoyiGpDWgThmAIZEq+WqqLifvraxZWZFMAQT6TkEZNSPTjoRZxqYmIggdCtR5Z6Q6ZBjTALaZkXiMdEnXrh2dHw03N0J1ehk/2xlyWT5cx969Sc/8YGo89l8QS5sbuxsTHZ8KFWzQWLS1Woxm06bVdO2UdW8C8xYVo6ZDCyJThfNG+/cPVumhNXpvCvrYdN13pyqUaC0Wkm3pHKoWJivtJNCxXfJPDceIwQVCAhKVBSup3h7cpKzdNEUXHACIKhm4kPJ4GJsi1Hdqk5T12ru5tMffvX2/+1v/PXnJpPTeQPkMpoAKCghqVjPeBYzMOgHiaQOQCWZJuldO9Qff6qAGKoyqRACsKFRUMCIRAxIkaIoSBfJsQhHGAx2rv6Zv/jv/dN/9A8+/7lfefX5Wy/fft4Y68nmzZdf7pz71c/92lvvvvuNr7/2K5/91b/0l//qn/jjfyxW3XIxNxUmorUq2gxAAZU4gJHmhKhGzvr8STGUjNkQDByZA3EFheRE2yanrvY0Ho5lNb/3ta8dv3vnyTffOHr3vb1QX/LhLMmy6zJYJLUqX71xcY5Rp4ePV4+E3RLBlzIKdPnK3slhmh4fXblwMS0bgiyiq8XCVJqYEV0netx120UJXUxdcq5AEEZjopyEmMTUhUJRVMURqSqDMjsT9WrO+d5h5ZwThPmq7XJexQgGF3d3B8MBo6UYY9f1GDPvC4fGAqzIAFmVGXJOakpMQKZmiJBB+jbKzEA0o4Fny4ZRh+K2fXkKNk+ijp1A1hwdFL4sBqU00TkZlJ4pNYZYF7FLJ92yRBfcKImgGJk5WKc3Z8SAwIAgOakJ+YgeIIu0q3Y+2d4gT2aa1dTIFLKYKZAqqqgq8VDzqmtPL13arEajiFWTSIxv3bjWZHjw4NGgqop6cBbzpVu3iq8Obd4Ogm9WaVIPWuNO+exseXxyVlVlKMgckWhBrnJeRZHZlVVRVy44ExmUVTBfaC4MeFDdPVpsv/SRKx/85FLQED1jt5p/+/XXQ1FlM0bwTAgq0jM1aG2bSgkMJOeqHIpIs+rYswGu2ohAZV11Kee8ZKLAHh3lLHs7m1cuX5gvFifHxw8fPdo/Ouy6VZdiKIIPBZIDQCS2c0CIijp2fjBG5dl0vulK55wZmGUizDk557NKp50zQMCs5Or63sHZg/1ZUYRhDRcmgws743uL6c0Xb33z7nsPDw5dWTYpFq5UyroWI5iBAKEamBhgliyo5oMHQNAeoUKI3A/u1fJ686CmpkCYVZ2QIWTVfnORJQX2VVkRY5caRA6hUolVWW5tTES6rl1sTEYmWnjvNyaiMpuets1ytZg7Ykn5wvZmzElByfF8tZCUxzQAgJDVE88kd0TPvfhyMdp49+HjrCjgHPkVYzUor46L5yf+S+++PSMOOGgWzWRrcxW7oLQ12ti5eOlstmijbI+rLS5Ozs6OLI0uXk5iT/cP3bRxxUY27IS2r93MTRyV5WJx+HD/XhNXjrkswr1H9w/9IK4a4NX3bV159aXb3uGqmS1au/v0yWRn68oweLZVXTKyMzo+We5t7zadzQ4bUN+2trmz9frbb1zY3buIdH082N7dkZjee+8dzt2t3TAowTHX9faO98gEqPPF/PGTJ0DVq6+8cuvF25ev37j5wouXr11PCotljG3q1DYmg0j+Qx//yeU8H54eXt8ryuDRXE5JMc1Wy8PT43nbXrh68/bLH/TldtYSiu0YIXed90oUkE0R+vxkQECyFMWRZ3JgGLUAxxnkY5/6fTdvf+C/+v/+v3/11z4XqmK0MYkaW5GCPZhpFvboOHgXCFGTEEHKEoiE6WwxDUWoq3rHNtjzInbTxczXtVMVyWtkAvZQKQBiBlij5EVEVdbZeNpLMVB7HbGpqiIhExtIVnDEfaqGra3y7BzknGez6cWLF/u4OwIKXS9VMCVQBCMowVeJ3SxtDbYWDr/26M0XNusP/PAL9KV3ho1477quQ+YWYmJzRXExwvyzX+2uX9187geCwebm5jONNjlAATDqcXr9axvMchKAftCqAMBMMWd2TnLOWZxz50toUhUzMDWw/urVZyMUU42xy5IMz0HTvaVC++XIWkxuBiqKDhHsvGeKpuZ9iWiE5IJ3XLqMq1XKlKrSeXYUihBCzopJUElVgvf3Hz+ZLp+bjHxVBTFaNcuuS/3omh2QpS42XWyJXVkHMCLksvAheLMEhJhzTDGEokh8drZ0rmi6brZoJqNBVVanyzkT5ywpKzCqAiiZiSGJWIzJF1UbNbUdDogQjVFQY0wpxj7jV7OFEAwsKVT1MJkklfF4mJsW2hhPpx947tZ/+h/9ny4ONufTKYZCzudk/VT73GLVc7O/q9E6fwatI9vWUptzQQABWS+4tt6WJWbC3jGw5Vz40KU2i4SiSFHL8eRf/zf/3O7Ozm/96i8//J0vPvf88//6T/+sD4MvfOGrDx488b6oquFsOvubf/2v/8avf+6v/+/+/ZvXr5+eHuN5AEqv/gcAAjIQ6NMFqA+JBzaKmtmHbOIFSSFBBpXubOk9bdUlnJ6++5tfePLat2f378tiWRTu8ngi/dEBYmKGiM5fvXEdCM9Oz1R1WNfki/t3HzMVdbm6cGGDtnYqF5bL5dULF0jpzpP3u67xFJbLJXER2K+aduzCwPskamSgSEB9Fhb1CWTU57KuSSvcR3UwIxAQ+CKA4TJ2UXIyOT47A8ULu7vDwchM1HIvFVTNz6IxJQsBr/3UBqJruKMIO+8cY5Lo1K+Zk2hqZhlQhRhVchV4NwyWsohkPSifgEQTEzlmV1XOO+JOVbUuIMmiWTyenuKQdsthu2qK4I1JVQ2VAByQWFYTICRGlmw5GZgx+iIwM3qnBkScc44pZYWkFlWTQBtzFgPi5154ETHEhOwHwxEeHJ2cnC22d/d2d3aODh53MRkVH/7BH/nab3/utI3DaqQxDpznrEGt7WK3mpsV5F3pAxAZIXtflhUH54Nr22ZnMinJVUxlKL0r7jw+GF56/kMf+/giKboKNBdlee+9996/935RDchz/7o4P0vXYw8AQKI+wbEn4oTgDTGlRMRgJknIOV95AMig3tQ57rq261oAuHTxwtVrV5qu3T/cf/Lk6fHp2dnZFNnV1SCnDoyYfc8LySZsVJRerZ5Oz7a3t0Wycy7GjAjeEfmkahlNjDMSKlFVpnbxyY99eHn83sc+euHiRvX1pjo7fTgaGR53XlOpwTrNFaVeJiWiltQMjAF4bbtZL5d7xSacG3F61Sb0bjRYRyiwmeWc2TkGZCLnnCfnOfhQpNwWvojdKqWuKgsCaVYLx7gxHg/qqm3jfDEjdFVdPHz4UCRd2NsLzIUPVVVD207nsy4mMfShPJvNTcUhFqFEFVE6WzQ+LFOSmPJsPl8dHZejMWH3/tHZ9OTYVwObza5fv3Hxg1d+40tfHNaVCowDN7NTKYua3AVf1IPBUtoB+Nr7s9U8YX58fHJ0Oh+XFWvmF68/2t+vNyYxtQ/v3H3u6vM/89EPQInv3b9z7+49S3b72sWP3n7l6aO3Du8fXbj43MzJ+wcPcGuLBbc8EJEvJqcn06ft2eak3Bj5KENVK0P98MH+w8dHWfjq3t5LL7/89nvvxNRs1IOyKraKXfZVE+PZ6bSLXdOtmGg0Hv7YT/zER37wYy+8/Mrmzq4gxQzT2UIMfVkPBuViPs/JWmf1YPSh7//EFz//y7M2cZVTt+wktbGLJuXgwpXnr9x8/rZi0UZTduYUTcj627Zfm6xFBKp6jrMKzjnJOVTlYrFEdvtHx5PNjX/nL/6ly1ev/rN//s9ODo82tjeJGZMVZY9kd6AgktF7FwKiEdOqa6MkYDKCZNoadyuZdUkcKxSun2ris7deir9WM2AvglbVnIWIRBQR2XEPBUTE/rcSIGKvR/peNm4/NEFmFukWi0VRFKrGQILKYGjGyoiMQKpSoZPjZdWqbpRpVNwn3JxsXmlunf7Om8MIRQjkKGniQMI2mMUb5caTNx/d/e2vfuQTn97e2jp/XYBk6aJ4MO8dICJqv80QNeb1Rrnfc6MqmBGR88BrBSv2BdAzDMwzZcez5bSYJklw7o/u/fTn6qjeet9/ZP9VIkLMMWGOpXPFYBjbBTN5VwAwEJF3y+WyrrayJSTc29mdphy7GOqSVi2InC7mR2fz8XjLefaOvQveFYQOe1trxqp2ohURdZ3kqMH7IgRmEEM1zZKZnS9CnLYGoABN2zZt4z0TOcpA7GPWToUAqMumIAYJQFKOSctCBt4b2Kptm2ZloSDviQmd75YNs/OuTF1HBlUxaGPnHJtHQ7G21dPF7d2Lf/tv/IdXtvfmJ6eV92LnJ9j3vD0TFH/PI2qmBtLXP33R0/+CO0c8IZCa5pScc+zYQLN0xKApSjbn2AxFxPmgBk1ufuSnfuYDH/3IP/qv/2s/3uRy9Du/85U79x8dPDleLVLTynA49q777D//79/81mt/62/9rZ/8fT+2bJbQu9D6fW//7SfKZtDv5xg4IwIwBu0lUGIoaQUpEG6XzqX8xq99/hu/8hvNO3dvDSY36iHyIIIdt80qdeTIAB25o9nZ4NIOIN+996DaG8O8G40mXZK27Q4OjgMNum51aW/jwqXL+w8fnk6nF7d3r12/+vDBExPADKuuSRlqpMVqCewILAMgKANg31Ip9G2MmRmCrcGOfcwEMbEhnC7nasjOr2J3Np8BwMWdvY3xmNBy7BgA1LJqUQRE6bpWDch5YOY+po3W5mTvGQBSSkrcU2dyztbrp8xIzMzIowFj1o3Ml7h82q3Ec10UXUoxJmDX/weIWdQXhSKTOessztpjWXnz2z5kw6iKRIV3FrsYk5FhYBGJubFEjizmTOzL4QAcO9dDvLOIGRIyqVISyQrJMAp2AqenzXC0/fDx0/3jxem0jZl3d/YmG5t9GSIK81XavHTj+z75E1/5l7+BQhvjjWYxrxk7yMWgJB9WTVMXZQgFETIzOuSCHWNwWI6qunAsVhauHA3eeve9avPCRz/2wxm4x88Qoffu9bfe6GI3nAz7ITzkzMzPYPrP1DAAoKoxRgRw3qtK7DoRMbAYIwKKSJ9IvVwtEckxhxBUNeaEkp3nmzduXrt2bbloDk9OHj9+cnx8YqJ9j4tMRpRzkpyRqCyLLqXFYjEej2OMzGSmsWt7HdY6op04i5EJMhwdPb6yu1EU9vztG7gK/+Cf/PI+RiMStcCcsqoo0LpbZWJDI2RQIiRdK+1MFRAUCc0sa1ZRMzu3qvXyIMLzF2WfldHfYoqAiF3XxNQO6rIqy7ZdxnbFCKt5u7O7FUKYz5dnZ2egtLG5OZ0tl0333M0bptkM25i6g0MOfjpbdDGKWkz58uWLJjnFeHq2cIyo1moUIIlRRYeTLWja49OTenNwd96luryyefHly9c3XaAcfXChLnW23CjDw6PDpqqvXLgYV/HOo4f3jw5cUVzbuYDsBkXYvn2jMNR5wxYO7j89mk1lutrZ3f30p3/m9uWrd17/VpX49t72rZ3NV2+/XAHfff/t9x7de3nv1uZg65e+/JtS+mXbbLgqVIN2duLL4ULbyVZ9ujrerCbj7fHdu/cvXbqy//771XA0nGxu7l185+79leRqWLsyvHP/0aNpC87nJGKws739/T/wsQ998AO3Xrj5wosvKlEb88myzWLEoRqMxSym7IKrB3XXdt7RdKmT7YuXn7v99re/cYV9m1og/8Lzr1y59qJiyErzhRWDmj3mnJp2hp6RUVVpXTicP7cNANeGkpxz7KKhhmEpMZdYzVcr7/hP/sk//eEPf/gf/+Nf/L3XvuG8rwcDi4oOUo6eg/M+56yqarpqV+bQCLPKdDFbdMvlarlYrfxgsL198dH+kQNTQuuFHQhA67xx6JdH65EUrMWD372KQM/hQH28WSIEZs7xGR76uyrREMJgYLPZ2ebmjmMShgbUAwQgNiIF1X4m45v5zC3ERb6+eyWTxI2Ns2JABPIv3wlny9KFKolLmjCXXLicLtejs/uP0qLZ3dpBIjiPbHWOPSIx9HaQ824Czfop/lr05xz3Ji9El1KSrLj+BJ9VP+vAC4A1KBKRASzFrGKw1qbQ98j0evXsujTMOQHmDKY5joIvyRbLKZoRcQjcdLlJuYnZEy/nS7E8qYuCgxvSo6MTQK2LKq5iZH3/4aPLFzeQkQmKkgd15ckDGKAiFmbadk2OyTOEuqhCgabsCdh3seMu+dCDoTsDbNuGXIgpTecLLoJDB8jJoDN1CtSpB1LDDCiGJpLO5n44Kjx2IC6rBgCDnoJE5AkZFdmCA3O+QOZoUg6KsnDLJ4dbRP/hX/6rr169sTw9C+QMEdaQyH+l/OlrbnjG3AEwzGp6zqDqkQOoqgbonFsDqnrqgzPFXhcpvXp9MCxzEjNYU6TJKRbitKOu2Nz9o7/wZzTrN7799vt3H79/96Fy+NCHf+C119+RNsbF8vkbNwHtycNHD+4/qOpyMBz0OrJ+LNWn5QoCGyCYggoRKfYBlKSUUyaTMojPCqez1371t772z3/l1mjbT7ZJokCEmHwHE0FLMM8RMTjksqxU7fT4RDQjYl0PjmazxaodDkanp2eT8TZieXq2yJXf27swPTk6PDm8uHfpBrsnD59mkaw5tpFcORP1g2EBGLNazB56RbCqYV/qMzlE4HOZWlZRky7npGoAGXQ5O22apqzK3Z3ditg0xyikmkRMBBFz1tgl570jzkmDK2Lb5JSKKvSuva6LPTUUTJ3zmq1pGnIkSGhGBpZFnCibtanMvF1RyzwlQLByDSxWEzUwh1hVJXoHi8aU6p2NlVvMFpG6ZVlueGRxTIQZCCgZk/WEYwBAQ8xZNUKuJ6N6OEBSBc0p6XkIUVKLKXdiCViJ580iRT2ZNun+/tl0tVgmwzAcD0NRqkqbowGcTmdNNFC4cOvVzwwnv/ubnztbrHY2NqVdOlEgWqVuVBae0BNycFwG9BgceoBB4Rwhgw0GZVkWb915vwujH/19P2N+0AlQKDQLIcaUvv7aN0JZAmNWIFNHbNpnKK/fnFuja80speScU5EUY+riebeGzNyHETnncn+3EGXLaurYiUruspkhYF0Xzw2vXb9ydT5fPH7y5PGjx2dnU0IOIYCZmSCC935U1/PlYrWioqgMIGZh9aQMKADCpNk6MnJUdebfezBXqV9/861f/vx9lfCwmyxQjLqI7sQ0lJysQyRSMiMzBgPDPjqoz56xfJ4t1LOsclpvvvqzvD8snulQmVkViEkUwFREmFRUezx0CL4IoV3Nrly+NB4NAK1p2q5ru65LCarR+Gy+uHzlclEW3UpCUeUYRRWznZ3NmlUznEyI/ZOnR1VVqGrheDzabJaLsiwzY2ZLkirnTlbLNicH/HQeYydAXFbVfLlsV4cO7Vvf+PpPfeozIa5iu1xY9fDwaP/szFf1aLLbLps37z24du3i9e2NixuDYcnDYeg6ODvR211ezJfjjd29ve27j7/z4OTuZdj4gQ9+8GD/yaP7b66irFbLqzs3Lm5dzOLmiZN5V4TNrZ26LKxNy9xuXBoPAr//8MnjcKbsVijTtFjkeTkZbuyN7z16/+jJ0wtXL29t7Y19uX3B7by6ffPW7eFwdP3mrVdffWU0HLCjnPJsvjACRafs6mElWZNqr+jvb0b2PiWN7BfJLj33cjXefO/9N7cuXnzxhVdHw70kRc4cwqDwnGJMkICRTFUymkdz9j0pioiAZI5dX2l0XRdj8lWIIj74oipx2eSum80WL77w0n/wH/yNL3zhX/7yr/zKnffujEajKhTaR5hI9uyF0qrtgDDF2DSNmOaUIK0c5oFPnuLi8NHecOhyTjkzEYGth+RqPS3U+jqnv5P6LmRNoHq2qVg38N9FVz1rUBDXUqH+l7z3ZtA0y6qqqTdLI2Yk1b58UDVIACqYW/WNpC4rw/Rsfm819xvy0oevjt95Oll0wTMjWdeh5cF4fNisfE6Y8u72TiiDRMH1iwMUTLKlnMzQOSBGSevBj2r/b7Y+qaOPJlZTMUHpteD9/UoiYKZ4/kXof+x7L8lCTKp9dIP1fhQi6oN2+o7NM6Su9UUYlnV7etrG1bj0OWZNiX2BjruUlsulMxru7c0XS0+4ubcZY4dMADioKojLRlb39/c/2t7e3CjUWpVkmsn3IT7rglk1ECBRZvaBWNXYETnKQkCUU1osFn0NF6OWo9pMu64rmCvv22wCEFWQyMTQkQCoigGyoaXMORfOj9nHEDrTmFJOWbJ5X4JC7lIVClBR0VAWq2YRysozlYw//2f+zMde/cDBvYeTjYkPvlt17NY35f90/PPsHUJSE+1pcueG82chQeuw275AVyEmMzFLhIwMg+Honbff+W/+4T/8mZ/+/R/7+CdmZ7OYxIgUOAwnzWI22rt4fHDyzTe/c/D0OAsMh6PPfe43u6xOpQy+bVZ/9s/+2Z/91/7gG2+8sb2zFcoCEHqvifWChX68p4pmRCgEikxCDEhYJpw7UjibPv36t1//7OcXB0eXRiOzztdhcdJ4Z6QYmD2HSiIoqgstMcRV06yqSdU07VCsaZrUdd1qVRah9PV8uSiCm80WkIPEdu/C7nx6Ol/NxpON8WJ43J2xZ/I+iqTV0gNuVAPH7EIgXa+oEQCAc4p9AAGCMhESA2FPo0+mInmxXALieDyuysJTH9glmhTANEtZBHaubVtRrUJA4tl8mUTK3vHUH16ERVH0fRsg9V84AEAkBXPICJYsSRYFIzVcdqXy9ma54tSkVPuCmC2qpaQGyC4E71xpZoDWkZVWtWCLJj9azoauKMrSATQirOrIZc2SMyJ551rtlm1jzurRgD0BGoKYipkioUaJKXUC2TAZHE9nyO6VD360rsrpdJoyIVeEgOyKskSwLB0RPn160MQ8HgyOz5Z7F679+B/4ud/67D97cnh8YXNcFK6L3Xg4YOCSmUOwwKEqyaMDLIg8kSMuipK9e+3tt1YafvaP/NHIpQK7UK66zERFEe6+/97777/vQ2B0RAhZAEFUnp3A/fHbF0BrWsG5c6rvEFQ1pcwuDupaRFNKuE6WMBHrfb79KR1jzDl7ZmIvqsO6+sDLLz137fqDx4/2nzw9Oj7tYiyr0rGLOXrvyjIsFgvvAxKZgDofVdGACECVFAEsN82gGnRNvHf/6WBQPN6fJYPJ1vZI9OD4KTsT1AzGyKRgqgkAkLIKI5GdnwXrmCIzQ1HJIs9OAOoT78/dLX0RtO7JdU0fAQNV884TQ9uszCKajEejEFzO3XAwXMbYtm3Xdb4cTefznZ2dUBZns/mVixcPnj5NXRqPRmYwHm+URZUBvAuLxTznPBqNVm0nxyejUb1KaXkyHw5HSeTJ6bRJeZW65fFpNZiI52FRLufvv3xx59bNG0fLZbCtx/fuDgNfvHLtnSfHdx68t7Gz/dOf+mFbNiXzN95/++js6MrWjens9OB4Na5L5+uHB9Mbly9d3di9897jX/utz1557vLW7ua0TW/ceVwEVLQnx1OPPALK6t89OJxGNC4ube5ghrOT5Ua5dTp7xM4Pyq1LW5eOpgt1tLm18/jwaWd5b2cy2N0oJ4Mf/tEfvXTjxssvf3BnvLmQzBtjF0pDQuLlctWoQCfOuTAYkuOYNaopsECPjCFy2FPTAAyJl03XoXo3uHzrlb0bN8uhZyrn8ySiIRTGTOjYIQiJRTNBIbTvBokCGKD1Mtx+1SsiOWdAiDH22WJiQEzsHajFnCXnT33q0x//+A/9+q/92md/+ZfPjs8GGyNfFjll8+icYyJn3KqYavBBQLouI2YzG47Gm7sXD45OnGoWyarOEZ+jNazXAKkqKYiKiSrLszIo54xkPRRLTfrCKEs+D97qry4lQlX03nddVNXxeDSbzbwPo1CypkSQiYiQFEEECg5ltVjO9/ePrl4YzqbzclBKQvHufVnGbfzUDzzffOVta3KQ7Bnrooi5Mw+L5aybL6pQeO8tAymSopliYAQjJdX+5lqv+JiZCM6TgxURY46S+x61bz5xbbuwdaf1bDtIxIScJOWce4KqicB6N8Jmus7+VjUwFDGLhceSNC5nGleTupzU1dlpbNumIAo+OMeAAIYp5RDCaDQGNYmZwKaL+e5kY3dzq2lx3qZ337v/kQ/dZNDUdhI6C66XoSOYiBBAj3MlIrPMDtihaDaElNKqWbVdA0ZMXAbqVivvSERApfRh1a2UOKkwgaEqYJsSElBP3TAtnCvIMWidhRU9a+WcBk59YGhgUdGcBsPK1BwRSl6cHP+Rn/rJn/uZn54enTiArm0d8TNZw78y8Dx/3859hYaq8kz6gN9bJAEA95JpMABgIBMxy4VzoeAc9Td//XO/+Iu/eHZ8tpwv66J86fYr1kZBNHQxd6EaSE7v33vcRl028eRodvLO3bPZdDze6BZnTuwDr7zyyR/6oeV86Z2rynK5WCBxKGvv3ZojbgaEaEimphYZlDkoYhQFySijgPe+9vVv/Tf//GIKI1fNtFugpJzQwXS5GI/HDSqoFaHS2WLRNrnysW2E/Xy5GIzqqirz9JhAvcMCi8Fgcnh09uTxk0sXdjbHg7IqDg4O9na2nz55QsSXr12dT5cEhuC1TZB51bXSpQBYsxv4wpPr5T9FUVAvTlNVBXLn50vMbYxd7Jh5NBiWofDeOWYH4MACOwFgpH6ou1gsiKgoixij90UIYblaunpAtP7uqGjWvFYTAosYIwRfqGrsGvW+T9+jhMCOVJ0ZKbbZCnbqycyMwTnG/klt2bICu7oKyGi64GFgh81Ze3SyOl2uxl0x8iWpMVEvk3cUskqyvBJtQUeTwXhSqSUEITb2kNqkCiLaZRHjlPRs1YwmG9dv3ghMy/lCwWeVbEbMPnhAFckmsR6Up2ezR48ej19+GcCms/m4Hv/sH/sTX/qdz9+78/bWZDAeDJAwENbs2Xth8ASeKaArOUBW5hA7eeuddxvTn/vjP4/VZpMElRAx+JByYqLXvv716dnswqUrUUySBu968M/5Eh6+54DtJx/qnBNRkXNgqKpITpEkKCAC9u2EIYBjNlMVWUsTVFNKICLSIVJsOiQsQvHic8/fuH7j4PDg7t27h4dHTYo+BEWpqzqLTadn21tb7KjTTs0YrWAGQUDz7FitW80RzTvvScw1H/rgB54+OdisxhzLp0fHYVgTeIa+FBYjMFIzAQRVQ+0HQaaiPaczi2bJz67DLsX1SUyEbo2hc84REsKar9YX9967GFfekwpvjDcRbLVcbm1OEGC1akQ0ZZWm3bmwd3B4mC3v7mwfHh8fH5+VRWGGy+UiZxlNNnwR2jYWPixXi9Pj49F4aABtlxbzmal0KQ/qYc4Zi9CuYFKUw7JOMT48Oq2wG9bVaLJi4q3xaGdru2mbB2fT4271/AvPa9fs333rYlXXZfmxF66dxV3tZLSz8/DO+6oocf7W22+enTyajIaVH3/4gy+NtkehGn7xC7+3ulg/d/PyfHoQyg1OahCkHj1ePTxoVoONzZ1iOHv0aLyxWbvSK8GyqwoTwcnG9tPp8cMnd29cu/bRj33i9/2Bn/7wR7/v8uWrDhh8sWzadtGimTFFySkr+SJUNQJKjpITMDdtAmIEWiwa73qqwLouH5RljBJjNLNOomcXrfHBdQs0jd6XVVWL5CYtAJ1jh6gEtM6FRuh7XSIyQ+pf/udThpR6MDf16pQUY49+6qeDOWcRWS4bQvy5P/SHX3751d/53d95/a1vL+aLalD1Dm2HnDUHcqjWNI2YIBkwltVIwd1/dLjskhNRROgZEaiIyEhstoboICEhiBr3FFUzAmWHa9EqnG9eVXtQBNhaZdwvyHIWZiBWQCDkEIq2XQXmwCyMhpS6NPBFVjPCVdMg+aMnx/XljcVqFZ2Zt5S1DsWTvHptI334My/7L98ZH3fsVAFWkEB1fng0fXJAKvVgcDaf+6JyqihZVYHW0cF9wlePeexPEpGsqkYoqr2su990EOGzuVWWPiS5P3qMCPs/ExFTSv1aGsw0Sb+UMRNTIQAkAxUT8V6GlXNqT48Pbly8sDmsY7NyrAiaYkeBg3cA6DyrZHZ86eIllHTSLiVFZI3dalDXVT0sUPaPzg72jy/sDdUwxlwUCQCKEABRxLIYaJ8DArhOXyHRbJq7rpnP5hIzGldlnaVLkibDOni36qI5qssw76KBpqTmnCiwozZ2pGk4HDZN1zbLV5//YDK52DTTZnE4m7l60AGCL+ZtJ0ghVF3bUuFR1ak6teevXvmJz/xY6lojBSRAjCkVPoitOZHfq2l4Vv3gM6vXufLMzt/paZNmysym2o/uegie9y54fvjo3q997pe/+dprHumVl1/Z2Ni8997dYTHY3N5VtbIqxqNhFxtFyAavv/H2g3sPY6fmuKiK6XLhvd8Y1B/+4Ac3NybT2WwymYQQ1sfuciVFCEXoCwhTMwUFA1MlMNOsoJaJxYHGg5O7v/3FUQZ0yG23AWBEi2bp66KRbNINigpzZmB0PndNSq1nWqWuLibjC7u+8t4RI5SOt3b2YpQyuGa5jF1MKccGqqpaLZfe8/7BQVUMX331lW/+7mu1D6wewQa+yE0kQ2JOOaskRGSi2LaI6tmDqiFK0v74IMfEPCjrqijKsiJCSGIxkWMXOMeOiPq5ThcjInrviTiLqKpj7uMzmcF7r9Kv7XvzXD9qRewZGUSeWLNkBOd98H6Vool4YomJxYUMuXJNjs4MQLx3jn3TrLIKoDl2w9KzVktE0AyjIIhp1q5S9OhKcsTs2HVNKouikziN7ZnE7Glra1IHNtQkEQCyiKjEBDFLzhLFmhTLqn7uxedFYNk2UTQrSs8zZyZCIpCcVXMogmB+5513Pvzqy4LmkNqmhbL4zM/8kTe+/Y2vfvG329Re2N2oKk8pItuoHphpzaUngk6ZwmKZf/db38Lx8I/8/M+XWxdWHZKrzdTE2GHp3HK+/PKXv1qG2hRMzTEhgImhw2fdMBExc1EU/U/7Lc+zhJ/+fxGJMWbJxGQGwEbMItmMRUwNHFOMGcDaNnJZ92hJYibAlNoutUVZX71y6crlS0/3Dx48evTw8aPc5aKsRsPq+Hi1Wi18CIHMAFLKwC6ponMZABmBTNJi2TQ/+WM/vru9+Y3X3nUgW1d2OtL7jx+PtM4pSvCKkEAJAMT6H/uBVv85iqqqsq2bz/5Bs3VIu4ioZO98FiEiYkKDXq7k2GXJznHKCcCQbFCW43GNoF0DhXez6UxyduR9qIpQTs+m89W8Kqtm1RHgbD7b2rxOxHU93D88fvT48WRjczIeVWU5qLeOQLpmNRrulEWRYpFFEHHZrZzziEy+qKpiUDLVQ8lJ2L/x8BCAB1HKyvtBvVB4un8yW8WLm9voyt97cP9Dz91KSbv9w43JuIltOz2Np/tat9//wks/+uLVJs/eePet7fHOyy+/fHJy4Kvxe8PCFzZLUxqyLYU9FlvDL7399lfuvINVvrQ7svm8IB4VfmvAZXH16f7jG5tbv/3k248Jd2/c+Pk/9cd/9Ic/vX3hcqhrYs7iVWQ2m4pladrFauUG5WC0MRgMFFmzSko5Z8mCiN75KCJZgidGkKyMUDgGwByjiZgKO89cieQ2SkxQllVZFArQppZQgVBFFIWASFGQUYAcOke94IscIHKfM902Tc5ZVNDM91nlqoEdIUnORH2SFfdPlBjj0cnJlWtX/+SNP/7oySe/+IUvfuv119tVi4BgEth1bQNJKh+QcDCqx5U3wAdHh8fL9tarr7osqe8bGAl57YRSMezPMQTAXn2WkBw7JKSeiNX3HEC96qU3vT/jJK49PoAmqkRMBDln712McbqYbm5tgLFlKzikpiOH2TSEwFnP9k8Hjw5zLbPZmZtsZVCsypjjPWqHO/XHPnIrvHN8RcPsbL48OVRQ8zB9+lRHRSiDgYEoAxqi9Iu5XrZD5LwHgJRySkk197PTJFlM8Nxe0Vst+w1er1XpZUVotp7J4vry7k+ZUAQ85/86whhTcIQmJqkIfmtve1Rzbhfvvv32ha3JoPIi8WD/cVF4REkpqkCMsZ/4EdNwWO/sbllK03b5+GC/DOzACFQ1o3ddygcHx3VBg2GFgFVZmEGOiTmY6drdQ2iWzSxL7t3IbdetVqucEjGQWOld67sKPSEPhtWGDe89OazLCr2bzldbk0mURL3M2qSLXRuTK8JiuTre3//4xz9W13U1Hr595857jx7NRaYp+areuniRQ/Hk6OBsPgsIYjYpih/9xCc3R8PldIbBg6iAFdAL5BG+Z5zzPxoF/Y/evndWRITPNPhqqlmZ2RMT0XR6+vW3Xr9z5+2u7T75iU8WRemINze2BsNxs2pXy4dlVX/rrW9/4Xe/NNncWLbNt7717cMnx11UYpctyzKaZNG0cWH71VdeDs6rqvOuKIqkiqo5S2pWWXJRlIQIYOvoO0I0ABEF8SV3q/mewy/90q/q46NKbRUbL1AwE0A2l5pUl4VlA1QEajR3CBkhpegCeedHkwEzxq4pHNXe16HcnowePTk0k+GoTqlzRKenJzevXVJJVVV30RbzxeTixqXLlx6//yAoVs6ho7Ishi7U5ChrQQ7BUhtVBAC6rhVRdkzM7Lge1MPBAAxi1wXnA3HqomcqqzKlTABillLqe4YUY1+eMhERN03rnB9VA8lRTYgIRHrJfz8M7hedawcfAIghATBKzF2nWbMnll7X1XTeExC7wksW7z2AiWhZVVlyTB2IOTRfhZJ5TjaDBotq6SjNVo1KoIBAOUNRDDqwmeRZTol5tDEYjwcIGUy9d4jYtjElNXRtyoYuZkFyL9x+0YLrlh0Rm5FoimuoPQCqaFKJhMjkvLN33313tZgWCKhCPiwjrM6aV3/gU7duv/Lrn/0nj/Yf69ZoY1AW7Ls2BecgmSuCK8Js1f7OF38PRqM//Qv/VtjaXmYC9th3l4y5a0ej0bvvfOfxw8dlWZlijomcR0ZkjjH2dU9/7HyPCvO7r51+I9ZLzonQ+7BeHwAgEjpUtZxFe4iQWq9lVrWua713hOSdU1WDPh1Ml6uVd24y2djY3rpx4/p3vvPuk6dPEXkymZycHI9Hk+CYER17y9q/qJNpzolIxpPx6cF82dlEw/1HxxnL+7/7tXbVDCaTNiYufAYxRAUhc6gACmL/yi7PeS8iKSX4ngHw2oSAiMznt4yKWIopeN8vzoAAFM3Me4pRUxctNalbam7LMpjknDUnkazBh5TSql31f2/bdWXh1bSqamI6m85EhNktF0uNHWxv1FVVFQURaBYLNqzrJLmLCXpymQIInB4fU46G1HZpUA4Cu/cPzy4H3Luw9/Dg8N0HT5qo462t5aIxi8fHpw/dvQsXr13f3T05PYXCeRcCV6ruyo0b7cmTpPTqKx+Oyb9/72FVOIXlzqRapfmD9x89evL4+z70iXowfHTw8GiVB6OyPD3ZDLI8meaYKGx2ed4uVy+/+Hw1GYRx/aOf/PQv/Pl/+/q1m8uT1elsuVrG0WiDgE1tGcVQy7IMKm3bMs6rsnZEgoaOmTAjprbLpswciqCqplqEAJp75HpOyYwKHwSwDwhPKQIQkKvqyjnuZw3MjGS9OIT6CHE0FTv3UJmpEQOYLZfLHtXN61vZAntDVbXYtcu2QaR6MCgHdYxds1j18+wuRdN0ae/iH/5Df+gzn/7Mu+/e+frXv373wb3VbGGq0saqrsqyHoQaui6mLjdK7JOaU829vFcZkFnNzLR3dqiKmCIgMDkkVdUk1kfCeAfrzoP7gkGfiZgQkRAUzMw5FFn3+iLCDgoMy2Y571Z1NcJoDikDAoIjAkBvLnd2/OjAbhY5t6ns8qiQ4Aup29n8Gyfvz1b4xz76Uvf+dCNZANqX7uj4LC4WWnHKEQlFMlrvV14rbgnQOU/Eqvl7xCTIzMbAxmraT1Cl14tCT4UEs35lvh5pwXr1YoSYUso5e+cWi4X3zjuXU0eWGDindlwXexe2NifDQcGvv/YepK5gNJHjsxNkbGKXRLNBzn3QFhVF8N69eOvW8y88/+D+3TL4yvMyZXZGbNCmajQa1mVO2jWpKqqEKWUJReghgYAeSQDVQPvgQDVMWVQlxZySAELuYvDDjdEwhHA8nSLgpCo/8n0/8C+++vV37j4IoWKAVbMiAmQs2TsKjcR5G4sCGWD/8PDh+/eGdfXSKy994OZzk9EQ6nqR8v39Ayrqx0fHx48fFVVVqILizQuXn792o2s6JGJmJVHVrOrMzumaz7SMpt8VjT3T1K9PPYNzDyxi2zbeezAw0LIou67zzklMd+7effjwfo7tzRvPTTYmdVn1DUTTdI45uDLGmFK+eunKZDj8xX/4j9iHycZmNRgZtl2X2xQlJTOtSvfS7dsvv3w7plY0V6EkIsjK7Ak1ipgZAzBilj7yFwUBxRxqUkm52RsP7nz21x/99lcvChZIhQ/R2k7FkytD4VN0KxBVchGKQgCjA1TmjDl1FJwPvirrlTao5tC2NrccgANEs3Fdz2eni9nZ9mSoKU3G46OTY8++a7vZdH716pXTp4d50ahKSkmzZqCEFozYsUkktFAGR2x9wBmCGqh2opZTZKDKuSJ4ibnsZcWx884xMTH1T6d+AlFVVfBFrwjPuWNG1fXuqRefSM6iGkJgdqCAPcKFHagF79ocY1YkIETKkEEFDNQ0wgjKeROTGTkWNQNlRCZmQ+8cGIIqOy6GpSNk4llnqtVK83IZNesYqgA+kx4ulzNNC8sU/O7ujiNhhwIcVVJWRdeJJMlG4exsKeyvP/dcKMqzZaOiknMPRw7ei4r3znk2yQjI4FJKo9Fof//pwcHTGxcvmoqo+moEHB7uT4d1+Sd+4d/62hc+/7Uv/ebZPFy+uFd5T0bIFfFgvmz/u//hc9vXrv/Zv/LXGh+a5MiXZIQ9Q9YMARjwd3/3y22bt8eDLmbnPLID/W5EY18cOOcAIOfcFwpt2/YJoGbrjQAYMLt+alKWZY8ulCY7dob9OsmpgQkgc/BF4Zgd9384MyGBwtor13VdzrmqykFVfvTDH9nb2/3266+r6tbGRrNq2Grng6YOgDyjWi48++BixuWK0V/87K+/MRk9mUd2Xjfr7XbxZJ66YlCxpx55gAYKPcoSnPeIfW8BigBmWTWd25PpfAwM1lMTyQxMNKWMiERsHoBI1CTn/mCPKQbvgW16Nq0KXxVMAG3bEbGINF1H5LMpEVufQYg5x2hqOUqydHp6klIqqrprG0BdTqcM4B2rkUpczlMIoSpCs1y0XcpJJuPJlb1LsVus2pWAjocbzSK58eBk1Vqb8/2HOXWTweZsdhCXbZubW7cuf+QDNycx1asGrFtA9+Dp4c6V5y5c+8B82n3pnQelWyBhVH349KCN3eVLO/nkdLKzcXtz78Gjp8HCg8Np0+ValzevXKmn4freqHZ8H+bJQeLcMkqhqZLXDu7+2b/21z7+0390sVodHZx5dSmLMGVU5xxjsCIkEwBwdV2slACCY0NUU0fOOYwG6pMmWyMnENE5RrWs0GsPQmizGHDqOjAc1PViqU3TYGuLBQwHA8cBiVU1IGtvoV3HNikyq6mZhBCcc13X9c+6/tpFpP76lpjBjL2HELBZJU1Zs6IiE3pioJSSaAbVlLKqbm1sfeYzV77/+7/v8eMnX/nqV77wxS+8d3y2vbm1tbm1mM1J0NRvTvYGpR8OJw7WZENQ7NX1YIbOEZKtRd5oRGAqcN6zAIJKP4niZ5sL6IOzoPdG2fqOA/suXgjRzJx3Y6i6+RKhCFyqqiu8QiQzTMLRCnA5mmcvy2ZwKWzs7C5SXmRcxnx2cvrNZnV1Etvvv3jpW/tXjwpI3b2zeV6tQIenZ2fBF6YEYtm+azYyNTFQzZozEjKSmqpoL5HR86hjBCTk3lyp/cf34eSmSAgGhr1KnMyUCbuuizE650rvVXPh2Ywtt7tbw63JYGdr+MKtG2+9/u39h4+uXrqsKstmCQi+KDSlLNrFnI0RXVV6MRXNLzx38+KlC/cfPygLPxkNmrOWCHa3Nx8/WT168HDzxRerwVDEchZEW8xnjrAsK+hDz9QQFFEJCYkCs6ikLETcf2qmWgY3KINjmp4cu+Bdzrefv3X1xZf+k//L/1VEAvtVE13hXBIPjoEBOGVLmurgYpvvvn/v5rUrzWL+wksvX7lxbbC9Pbl46eDk7MHD/dfffufw4f39g6fbRYCUfvBDH75++er88KQI3piBKaUkpr1WqQctrJ14BnheANE5Gx+BBPq28rttblEUXdf54ACs7dqqKvefPL575z1EvHhxbzgYiAoz55wJsaiHit7UjKgcDtsuDkajP//n/kLhy//P3//7iBSzZED0rnaDTI2ltDXeePGF54uynM7n7LgeDGCdjWpEFAiZGADEdB3YAYgKBICaNTWbwR996/XX/ukvbXUWHCOTZGHvICdQ9UhklDUbYSMdJkPHLquoFqGMswWPK+ecDy7Ps4nURV27cOe9ewcn03Iw9kyXL+x1bdsGbgmvXdlQxfdP7rdNzMtcX7t57eqV9998h9CHwsduKRCNA6037FZ439/v3nkyUwRVQaRAqDF7pqKqUKUsQ4xdFkECQTPNvXe83zYSUVEUACg5I6IpECKCtrFbl6hIznu3vquE0BERoWN2em7fccRqlkzJsQJk1cJ7SOKXShBBnFWsjD6USNDFCADOBQYSEc0CCoXnjY2JzRowZRqsGJenS0k6qSZdas7yqiFJmPc2xuNREbhTU0Aw5ATSJOuUu2ynixUV9eVr16vReNVGQlTojbBERA4M0BwTE4kgASNRiuKGnJK+9c67169cyTmL5MILE4SiMLOTafvxH/nx52698KUv/ou337uDkp+/dsMHns+b//6XPnvh2s0/8+/+u1qMsqhzVYzinZoBIeSUirJ8crD/la99zVdVUoiq3nkzUxUiLMsy55xSYuY+UKgfCPV6oPW8RC1LziIKlnMGs6II/egoeM/MImKAgJhSQqSk4sypKnIhKjnGlAARnSdyvt/tE1HvXMk55dTu7mz/8Cc+/q1vfevk+MRMGoziSA08AAGYmkuaU6qKom3bKpRdm0/OjspRvrRRb0RlSgddaxjaJAWwMwI1ZVUUJgBjVVrH5yH2EN6cxbkegfFsYGy9YaUfcvd9uwjmTH2TyuyYqes6ZlRRSZ0jBEvO+bquFvOma1uANbgkODbTrGqaTSF2EdXOpqex69ZhR4ghBB+oKiticoFHk11mPj07izF2XWqb6J3PqqtlQ+CIEBAFsEtpY7TRmgj6jt1JVhS4MCxvXrly987dE222rl/ieRTvUzVZzqZt9lev3Hjz/fePT89efu6lvDzBMZ+dNd+595SrkQLeuXvvhWt7de1mi6OrNy8tPB89Pj6ZnRV1SKsVNs12VUtsrl7cpnoSjd7Y3xdYvr06/Iv//t/84I/85NPDWSu5qopsSh595YkzKoKBNyIjb+QQjLgqC1UTSVn78B8i5rKovZNsampi59wDxyYgairmXBBD0855NxqOGEmkM43z2SmYDQfjsizX0TyapT99EPpYXuf8egjXtr0wvxcQ98mc/b3AfRQDE2R1RQGmhiBZTbUogifuwJTJAJi4x34vFivvy1de/sAHXn31ox/56H/5X/0XX/7qV85OTgZ1HcyWyyUO6tKN9OTAiUo/kQYwUUFzZppzJvesAQcAtD5nAM2MwECsp5MDgJ3bkRAMnWczJWDgtaC4b1Ccc4jQtp1IrssCunY5nW7s1Vmxk8hOPTIbOSaX2/Zsfp0v7uxdJbObm7vzFL8Tu8aHwWSzq8o3XXcWZj/4wghoMVlyXYTVbFoWV9quqcpaI+auAwAgtt4Ya9B7YXpeTx8v1R8ffWKiSm9YI1p7EfRZ2iUCfNfZ1ge5AxBRG7uYUgghd11vywIwk3Y8KG4/d21vZ/L8retvv/H6d954fXdrS1WdC4vl1AevBrETMVJCNE6SFvPGk1zYvnz96tW6qkZbI+u2l2cnx7MjlWiqF3f37i3bp/v747Dt1HtPk8mwa9sFMxg4VyCggjCYc4wEGdCFYDESO+8DAGjOw6quimJzMl6ulqVHNC0QrUuf+pkf/5nXXv+VX/mNknwLGZ0XpRQlGDsqWk1o3HU2bVcXtnauXL168fIV8pxVTaSdza7vXry2c+XTP/DxP/wHf+aLX/vd3/jNzx8fHDx/4yYbsiEIkCIQGjvIkjUz9Ap/XJfK51Cgvv/DZ4N9PB/un5dHveJBVZxjQ3nvve88fbK/tbm1vbXFRG3bGaCIOVebmWouyjJnQSbwBOBI7Pj49Ic/+SP/w2d/5ex0HobjLucUM4Gx2qgcPHf12vUbV/sRbQgBmQzAebfe4pwTHwRFyUiJlEhBUdVkWHo6PfvyP/5v/eHppBpmhFXOKOuIYpHs2HNwq7YDoqRqua2oKICamAVdCEUYjJiL+Xz54O4DAxtUdY6JlTBD4LC3veUdxBW3i2UOoW1aJm8CJ0enOpCz+uTCxtZDdkVwnigDiGQkT4gqIiLBBTMBpKIs+u1wa61kq4pgpCbJcmZ2feIAOmLHomrYL7etdxKFEIgopUzEpkrYR66uvUhmIKJq0g8nnHNIamZIazFjpzlLRiAFS7DGSbOYKqHkIgEumyf3jzZuXC03RmZiqL7wzGCmhug855hEjJiCd1vjEZg5j0XBZwjtLC7jmWTsnHa5rYd0+fJ2WSAqIlBSS2KrThqBzgjL8tLmpVAPBWjVJuthXaBExERqjKDMZGY5pRwTKnr0wbHmaIjf+PYbP/KpzwB4QjAzRkNCyzkKPzma//9o+89g27MsLwxcZu/9N+ec659PV2krM8t1ddHeFwKaFnQjQD0INwIpmCEEGhFCM8PEMAGoG4KRBGJGEowEAgER0kBghGkQ3TTVlq5qU1VZJr15+fy1x/3N3nutNR/2OTezJTQR82FOVGTdd9+97557zjZr/dbPHFx98jf/8NPvvv76G1/9yrtvvPnu/ZPzxfLaCy/+3n/3D/jd/flqrOpJGqFt6nHsmYqYSULgV77ylUcnp+10p0+pqpuhH5jZezLbGDgxExKmlAAKUXQzWixjr6yCRGoaU2Sm4H0ZOjAzmElOiOSIckYzYKaqrquqTjFmUdxqVonQwNh7zaaaSqmRcx6GgZlMqQrhu7/zO1999dWvv/bq+bhe2bg/2cmjspEjkqyeneYUGDWPdeXjOOxO9Td87zeEB+OvfCmv7nSLFIGDKRogKBhnBIHSc+oWnFcV06wbccllC1QogKVBLeBxKQSZC0fWRBQgIwITEUGWXFVVFTAPq6Hv6xCYIY5jzEbom6bJmlVES4SRao4p1KEfu7GL3odslnIOwRHiMPRVXSHSfD6v66ZAnjmL95V3HoxVdUwRVZGcYT45PW2vNljVD07PR++mAzrtHj/cm5i98PhTX7z77k/+zM9f2z+cuGonVM9cufbRp1949/57hrnycjizGwcHw9jfPz/Zn+x2muu6OTuenzx4RIc7dc1nq9Wrb74zH+XZxx+78dit84vz4GsZMjFpliD43qPT97v1Os//1J/+U9/2a3/zvXvzFMk1DbmQUue8AzNPzhmAKKqygTMC1ZyiD3tmlhWKwskQDU2LuxIRuRIVmxXUEQGQWs5qOWYfqlDXRGhmde2qzm28Y9WGofPel7sVEMWMALQ45JFDRFFJMRU2SDnkEbl8S6H5IxAjAYASVNQ6zQAgkh1h8CHHOA593/fNbMe3TeWcI04xjX3frTsk/OQnPvmnf+TP/P1/8Herqnr+uedy36/Xi9v377579/bp4tyJiuTsnQfAlFKZyRkAb+xPysxCiUlFTMAwE7JDMiQDLWcfIX9Y9E6MjhxqMWGzS139Rn0AZrNqvehyv5pNZiYGCuAsk2akCipYrg/eON9/8cp55U/fv3tw69b+7v66G2I/Ok/rmDofXrkK4/XrH/nio+np/vnp6ePTWQheRFRJRJxjQtDNrboRjjJuZNUF2LJifLRh4+qvIp38KibK5mambdZ3AbfiOORxLJvUsjz5xOPf/i2ffvyxa3uTOo3Ln/vpn/iZn/opRj9p9wzsfH5uhKDqqqpmN8xX61U3jmkcAciJ5qqubl27RtMKPTchHB7s+zvvNE2Vcjw6ODibtr6qcpK+E92dBM/sOKW4WM6bdlY5751jR94TsBE6QEoiJTjaEddV3bZWVyEwJqa2DnVod+pZt+oA4bf80A+9++adt99+f5GyAGeFISXnvfMVRFMBVWGH8+Xq0en5C85HkfU47hwdaZRh1TlwyO7m3v4P/+Yf+oFf/+t+7md+bne2o0k8ezIz0SKMEyQxQTDUbR7tv4r6Y5deWICgJU5ESgfIhFktxvj+3dvn56dPP/u09yGPSVSBXQHxDFHBgJjZkzfNElUxhDQMaHLj+o3Hn3jy4Zde0ZgyoBGZCqoFoCdu3Hr8iSdLOJTzXk0tmyLRltO7ybQCzCAOidRIUBxktF2yV/755/qvv3nLNZJSrrwYOsdZs6JlE2AijyCcc3LMKaWUog+Bg8tIk9neKJBiPl8tT45P66raaWZxzG09aarx4f1HR0e7Tz7x2Nmjh/cuLtar1XK+dD4UoHiMcb1ex7qdTltMGQyCcxDFzDRnQSHGnDMBOnZc2he0ypU8vlz5QN6VVR01KZpa7lOqqsoDF/5jIZ+qWk7Zc8mWyZV3jCg5l79CBCJk8h9icpBtBNt5jBG9kzxyBqwYwWKKRMaKZsBClfIMqnzevb58/eDxW9duXvM1j2NyjhwjEDCRCxUZFHt2793ebOLWsDKbHswkDMuz1XrRY87O0ROP3ZztVgYJVNXIALOqond1e/XKQRIUcn3MMad2NlmvOhDVrKhGxM4ga3bsmFlUCBkRwAiRsqSmbd67c/9rb7z98Zc/lodBJEMevXOKqAqunpyuYp3ouZe/8Yknnzs/O16tF1HyUy9+NBv0AL5tc7TWNWkcmIDQRDI5HsbxV770RWBWIkBWRGMyLlF0pKpm4Jxn5pQyETI75zwieh8IUURKhKGWM4oIHRMxGJAZOydZc0pGrBsyDRESAGlhTDIaIhAW0FySxPK2mpmZ5Ogc1lVVqGAxDs89+/T+/u5rb7319nvvqw3B1SKS2AkZeko5m1nlwzD2gADani/s1vXH7f2Ti7duU9uI5hFUOZgKCrACARoX/9/N4RxTzFnKqAG27B+Awkfddk1qquq9996T44IpxJSSCCM7BtWxCXXwAbJH1PV67Z03tJLSWNf1OA5YGTtMkhHQOUYIpBCCRyRCYEIiSinu7u264B6dnM4vLmY7s+CruqratmXik5MzABQzc9pWdRpjqEKYuTH1iTTMJuM6QZ8fO9rrh9V+M0PV55/6CJ4179+9N4TW7/rZ7tEXvvL1M1hmsI9+9KPNtH14dj5rd65fefyXv/I1V0FOaa+eOatyqt64d3/M53vNdbJFqKa/8vZ7Q8adurmxE/pueX7WHyajXK/SxR/54z/6fb/+t53cWVbqfLBQOzINFgYBJGeZDdmzMkHMUXR0VDwAHbM3ywagBs47VEbKSJhUk5p3zjNbTqBmAORCxSzDGMWIyLErjs7eBWanAESsKqJZS0oxMBZuPrJjh2DjOMRxI7DYzIicKz6ihTajqkigouzYhyKjESA0ycRBc7o4O7OUu8VyPYxX68oFP8TonJ/u7eUYQW2+nAPC7/u3f7+BdkPvmhkCOc+Shq++8hVXBvxgppoRmJyWxVQm4sgoACYCGZiJmZHQFGNMvKnRBMuoiwkBN5FAuHGrKxbPKgpmBUh3zNlU2bu6Wa4uPMNu02KGIRlVQfrYej+pmvTeab9cPvWtL7xOp/dJq+nkcGfHK8Zx7RzODvf5YHK7j/rUNHRRpHuucpMqdMvBUeuCV8klkwwJ1YzMVAxRLt2qzQwAVQS2Bo9lnKwlLhGL+6tt7ByLAz3iRqFn6pk1qqo1dZBu9YO/6ft/xw//VseZNb32ypf+wT/4H+/cebeupgQOXTDVxaKv6jCdzHJKdV03Vb7AlZQnxRRc2N3ZdW19dP3qlb2D04vV8y+88M6Du2dnpynGadUEYkLiUNU150EmYeqcRR3HHPtuQXXrqCILRsCOHVGKgoo5A6JvZzuTPibAmGzdDympB7qyuxewgiw65KMr17/r13729b/639bTsO4HQi9iI4g0zphSFgZk55b9erFejuO4f3BAvg5cMzmJMXiSHPNqTHHwIfy67/4ezDbEPgTOKVkW80QAigqb/C8sROZNGbStmwGhuFRuTSgNSQvgrSoIkEV9CPP5wvvq+edeVBUTYGIRIChBSQBgRKxqkuUSPo2i3rkqBDJ88snHfuGXfmlnNuGY+q5PQ8857V47uHXr2mQ6HZOIAjvHxGqmWYCxIIeGIIXBZIxqiGRs0XJghgd37n7+Czvq1dDI8th7dmmMxMxkyJxFIGsIXlVKEZ1zJubgKlGtPZ/3K+7anPomVOt1Nwxpd3//9HQxrRzU/v3X3z7Y3SOadNFcwAfHF9O66ZYDG6/X627Sz1erdmd3dT6H4F3WyiGLOSICC86VqXSoAhKgIgJUIbCh5FyAz5wzOaqqSsdRQb3b2luAGAAjBqZeYozq2okiZrRQVWg6jn3NEyvaPYAxRwBw5EpGCiEpIiIpgJo5Dt5zBBUZmdk0x6RVVYNCN/a7Tfv8tVvvrpdn7z/s7p8cPH5959oBNKREHnC07Ii8IZrFnCJoNWmALS8Ssfl64gM+0Lg4WR1dvX7txpFoROdHX3WjKDuahGDk0AuyIKSsSL4O1K97M/PsYhqBiRFERUXaeoKMtEl6ERXVLI6x9vXCui984ZdffvnjYoroVDORA7CskkVEYTo9euudO3/hL/ynv/23/eCnP/PpIcV1FHIBBU2sqWpJGcCoVBuioa7v3n342muvF54iEqcYg3eIkHPyDojdNuseQ3AlZ01UiAjQYk7sHKOhGpqU0XKWPKbRewZ2qpJzQkRmFEHvfVmHWWJKqW0aU4Xi22HASCkLGOYkKWVEYOQsebFYl4lY30cfwnS6+6mXP4Fit2/frfeCESURY0rjyI5yjqCjZycxPnhw/rf+zo9P6+n8Yp7IN+bY1BALKwEF0CyDFd9dFSkda+FVqGVQhwyIqJZVjbcNbbkaRXJOJeUFOXBwDg1yTAnWk3YmEVfz+cHRXjVp0jjE9TI4v8dAgZLEisa6MueaMfF63WWzysHGI4lAJRtZYPQOuW6Gbo1ZdpvpLLTFmSmnTIyeSTEF9g55SANPWu+qrLkf0zpnQBiTelePY3xwMp/Vh1f224O29sP4/P7+i9evv//oYd22kRI3YQa7vdIv/srX2mnzwjPPnp9e5HX6yGO3wOfjhw9uXb+WEAzh2SefeXTRf+XN95557tl7J8evv3cbm+ba4T5R5XLaPTi0LoPpb/wtP/jZ7/v+1fmgoyDAZLbDIaQxhTrkwWLK5gw8qIKpokpRRThXYfHXVRXVnHPfLSdN27S1gseYUDICOCRlB2QEPMaoOVVVGMaYUmrq2jlniiE0YCZZRI0dF4GUiBKRA2bvwABMx2GQLdOrHNdEKCKFTF2smFNKTd0gUcopjhLHCGQ++FAFz3T84Lhfr6dNuzfbjZ6bqvLsjK3vOgSYTCZoVtU1AJyeXXjPYrBOS+eqMQ615+eee9FdEnQkZ+/IEaomcl4MwSBnAQZDZCNTzAZU7qciFtNyqxmBERJhSf4iRAebpBpjcsVVjYlzSgAAAg6atnIyjuNybkSMDkIlXCFa0jQkuVlNjhY2/NiXrn3b46eH8ezOKU2ms2kLdZhNKqtcU4VmOr2X3QS8O2W/0+7t7JxfPKSqLcJ3j5w1JxMFSzk5duidFqKSlWu3DBlty21Ck81fF/a5akGeyUQBLIMwlig+8ejJSJFyHL/pU5/8XT/826KOi4vT9cnJT//k52KSwyu3urPFuu+7YRz6EcBporiOPlDFvgqsklJKRqF4u0+q5i/+1b/yO/43P/zpj37qZx6eIdiN67e6dZdi6pddYM/em9l0OoOYU5cObxwliqMNeeyrgJ7KL4PARJhRU+AqjgmJdvd2l+Oam3DyaJFVUkzeB2asfEjDMAuTxTB89DOfOPrJa/PXX61RnDCCW6WIXgVRCRlwlPGg3Xtw/+7Jw4eHewftdIeUQbBufZQhi7ZhysCyHscheudyDcQ+k5kpqRFhSfpRVfXFn8TKPHWLw8FlPQQIaBune6PiCZRhm1BdhbpqWlNgDgWTJDO1YiGisLFC2iTyghkqOHaoqe+XjujjH3/x7/6jv7+Yn/p65h2z58rZ7n67f7SL7NOYmJ1jD0am4ogBUQtNiQAI0DAYo0IGU2dp1ANfzb/6tXT33k64mlIOtbPuzDShomk2wsAsUogLwEA5SUnhLiwijy5KbiqXxmVThSsH+0Tu9r37L+zuXrl2dHbv7nRSnyzGO28/cm0t0JwsRs/iTck4x+Sc86ESwIKyrGMKoi0HTInQGMFMkMgQMmQnxMCEaGJpjOzYAMRUwQBUSt67AoCycw6RHUdJDpA1I0FW6/peg1PGoKCSgyNSKdafLri+iyEEIjeu+uC942CAWaSP0TuyrMkhkHEZdoAhQZSoTNlyRWEX+PFqdkjtxWp18c7DxflyemVncrTjJ847m3gHgB7QkBLTali3dbjq91arVUoSVPNOQJ1ef/yGb2rIPiH33HSogCRAMSuRE6RuGCyrmTlGEiRgLdZnpkAYc6yqyjlSA1RMOamZMSAaKeUxH+zuvvP22/fv3bl17UrUZAnZcRU8JM051XU7P5v/mT/7Z1/++AtPffSFX/7q11586cW2mfV9QmTPtOpXtXeARsBZE7FjV335y195+Oh4Z2ffAZuhZwJVYvSuiC8MGYrLEjNrzpKBlLz3gKaWPTGoOIaUQTQJePJEgaNEzMgAUEJidXMb5bzR1QNYLneUKZKpqJlDJBXtur6qAyBmsJyU2atqTMLkY9QUoyP42Esvzy+W5xcXB0dHeRRTZSPLFsgjWKlmgp/2fbLeqslBXq9Sn6umVsBi0GlgGYDQ/HYCjiWwWoUKd8GyZjREs6I+doWzUIjh3jEiFIdPBPTes68TQtQYKsiKebS+H31Nhrq3U1+r272mds5GUAyBE6riYg25cewcIqSY4jCOKfpJQKqSmABEyRoo9h36cOv6LXScLZ0tLqLErFDXbJrrqmoggKV20oq4LGM/RO0GU0wVseNljO+f55RPXzzavVZVN6dXfBNu7jef/9rXvvbW4saVm0/t3jjH5vZw70zH7vadfHL+zS+/dP3g8N7D248/fqNfz7UNoZpU3j18eG+Iq/ce3rly/YnqwflActZd7HDrc8Qp7ATc22l/6N/4wbaubZX7mDg478MwDM57BRXIiAogBqiEzrk0DoYYkxEHBJIsrnh8gEgcTrsVXVAznTZNM2kqKzI6EWZ2zqkZMqmqTyQAVVVLFjNs2qllARuGlAIF5wKz66UHQEJmAFGJfW9Q4tU3tsklOKcAe4XXX2DB1XKJSL4ukeKMpIyICKcnx/P5+d50R81iipOdw+C9iUKWMr7vVyvZzIIdOhBV9s5EQGLNrFmiWun2TApLxhIzmwKyd0RqVqBIZgdFqaYKQIhQLChgQ+AgMFRRhc3fmm2ytMwg56wqvJl4s5mWBMwi18zDsFou93YOnHPLfpiyyylWTbsex7aaXBnzV3/m1evVS7PH994euvZwlpEAeTX0s3Vopk197cbxgA/l4qUm7968Gt+9NyECNQrOzCAqiBqhMRhvSlszo43E3z48Zt6ibcTMBgZQjJ5oC0gAWvk8FB+CGKOlTIF+4/f/ehfcyfFDNv38L/zLk5PTx55+4vXXXp3PF2fz83Y2W3errlvtTGaisjedGSECMXvJibw34iq4e48enFyc/Y2/8Tf/7d/5u5/6yLNvv/Pmzeu35hcXF8eni9XakIm4air2WLtquZjfeuwqOe+IsGkDkkOPjs2xgAGDkBrmunKalX1zbXZ4/+EjFhnHxdCPZrlqvQEp8XK1DnW9O5k+9eSTb7/2mg8urYWAFUFzVjQwzSJNw2A429k9Pz8/OT55rJk6Yik1IhEhgVnsBwSQDGjonEQFxywiOYv3npCyZVUwpZIusUW2LyHuzcf/89HYls6uqogKyIWRo6a2ERUYbKLpoDDUkKDYF4CBgqEpIfZ9P/bd40/c2tnZOZ13Rj4nhayTncnB/v7jTzyBiMWBrWCwMQkzb3PHjMoTtlK5FXW8MKFHev/tt2VMErJ3XvPGe5eJs2QAiJLJAM20RK8A5JwLOwfNtd4n0z1fn3ZdW9fiKztgYH92dvb0k08EtIuHxzuuXnTd2C+TREIdh/VFGiaTZrmat9P64GgPR7l/fLw7mTFQW9UctQ21Ew3MZhpzbprGkrF3lfMGEmN03rVtm1IqF5VjXxxXRRIBswM0ZMEAzI4TADC5wF0fbUieXUYTzbuTCRqNXS9JCAkNY8yMAgBMVOR+y/V6HEdPTdFDCCkSa4qFcyNmWRI6x8Q1V80w1lDt7UxP8/DoYnV6fr9f9Ie3DmkaYg2j5cDMzqNYMKAoRDhtp+t+hD4K8Y2nPtIcXevZC8r5sksUIhASkXcI1vUpi+aoiGgAqojgADTn5L1LKcdxBLPpdDrE0cyk+CZDWUuF6as+1P1i/uVXvnzz2mdzzlVdr/se2bHzQxxDRf/8c//TD/zg933bt3/33/o7f++VV179pm+6/93f8z23bt5MaezWq6r2WgprRTAgwm7dffFLv6JmxF5FOTgEyCIIyOyKDfSlAfSlCxxsdWFlnuWcG+NopoyEhFkyJeIQtidw+UW4xMgUaL8MK1UVEcwAoZC+LQSKYy5WYqK5qC9TiiWR3jtgYmJerxb7ezsfffHFn/35fzkMPVAgIIEPQqGtkCzFkGi2M92Z7bz7blc0D0SQAQEYUTZIoW4mYOVcKOJQdpuIKFFx5LwjMCrSGt10rcTlN1IdYgEvK+cDmaZBNMvOZJpsTGPebd0TV4+eu3p0OJnMpg02FTnyOS/ni3FMuwdH03aSUz49Pl7Mz+M4OnaA3MfcxbSKsurjcr6eL9anD94TptDU00kLru2HwRPHjGnMB4cHMQ3BO/M6jiGl1A+JnFNJVRVihJPT81nYf7A4m+wd7DUNDmNrOGX3lXfeevOtd1986oWD6e63fdO3naZ+sTinQ35wcV7tTKpmJoyvH7+/20zqNr++umeO93d26rY92pntV96a+saNg9D3gRsmPj6ff/N3fv8TH3l6NYwS81ri4WRmaMMwNFRsvwjARLMqEaF3filaV2QFesMNwFaETHVde5EhjmcnJ967o8PDKjRm6hwDgIr64FUFiMTEOSaiZElE6+AUIJsiYaiC9wERnXeMhGhxiCknBiB2xT+5JJEXvAe3TtCX5k9lqYOCakZTFKNgw6o7Pz2dTlrnOGdFR/sHB1nVRC9X+Gq9dsx1XXvv+ziKCoMDUQCQMnEldZfqG9gQZAAQJedsSkzeMyHnnNEIEJg2Ro1lnlXoz6aAiBvnj402fjvFKJ8Xy7lExIP3DgFSFjOrqoAiMckQE1TqDTwROFbMy5wHloPQviTx1Z/6Kr1081u/6zPLncmDbrka1nG9Pk/mxfkWF4G+dHb3G+/duXF0VURRARWMUcszKXuKyRCKX2r5NQu8tkn2uLxqN6/BxtZ2+8WFKUSICFh8FEkUkCyuV9/4sU8/9dRT8/mcAN55/Y3b7757/dq1O/furbreeUcIF/Oz5Xw5DGNV+V3Xuqpar9eq2FQNWC9J6qbNEscxPXbjsdNHp//NX/nL3/Wd37m3f3h+Pv/Mp7/5y1/85YuTc2SH5IEhNB5jrNqqH9aT3WlV1cjsDFBQQbMCMAkYEKMzp0oOG/DYtJ2vhuBP+0XOYkgn88WNm0cvfOoTGXTaTiz4F599/nP/7McNVMGKAEpyLjsGzJzzi8WS6bEH9x86DqFq9w+vNKFm5KyqKhlyiqlpmnJQppyyZdc0lyJeMxMxgA/cPi4PcfhXPTYqsS0hq3yEqFwM4sofL+snAjTED8eslpMUEVQIcb1ar1brKrhuGIOv6lqJnMqoSUzxxs3HDg8PzUxEm6Yuqhm4tD0w/eAJb5wSike2OQTp1yePjitfWWEcpegLAwMYpGSAAsDG4padA5CNZUtKjQ+S8m5dnw2rgJJWvRClNE7aJqututVTzz0zSlodz1ktdp3zrvJuNmnWy8U6p53D6Ww6IwfSx7YJjokToFk54UAVhLx3JoBqCGgihuyCE8628W6WQvjFDd7JVQgGkCV7DEYO1ChUZuJSRqAQfB5iQMioRpwNNmCbARE758u8UDgXsWRSG4fh0hrRCAGpmIZt+g32RFhizBPanaHTqkFw0flq/7Af18ePFhf9eHh1b+/KPjsGVIShQag9q4qCUQgKvBw0UXOwf2PEarEeVHVI1MeOXHA+OGMFTEkkFz6NK4RARSvWAETkHCyXSx+CqG69N/ESnC9cx5RzCRp5/bU3v+Nbv7WtKhW10vup1O3s+Oz+Sx9/9vkXXjo5WT32+DMXF/Zj/+Tn/uu//D/8xt/4/b/zd/6b168fLRdnRGJmnly54B88ePTe7Tt10yDCmJJDcM6XaAdiBlRV857Ky7XlY22eoZmJFlGpiqio6XZvSM7mQznNAdERKxRfEld6iQ+3HABQdAciebXKJkBE6/Uq1IGIhmHYblUCixlRTRFxMV/t7+8//vjjt+/enc0cMmM5PgzKBeEcpTQ6Xx0c7J+dnRFBkeUjk26G3lBYVhu5vghdkg3ANuYx24MiJ2HmUl2Va05Nix+eCojIOJoBMdH9d77yrzxS/v/6eLn2RDh2653dncG7HjE4QufGYWxDqNuGxAxpROpV7j86efzo8Pz0GMWu7O4//dxL0ssXfvFXJrv7zdH+1Sv7/WL++Ve+Mji+Nj384pdeCbMJrvTVd96aU37i2i0yW12cx739w7ZOLEdtQwjs6NH5Wb2/+9kf+AERG1LshqGeTprZtO+HruvqpinFtIoUYZAYAkLOGYlEMztnJY2tXNWIhQkQqso5l1M+Pj4hoKqq9vb2neO+H8rbQ0STyWQYhpyj947YCq7sCo0ftxoj3KSMF04wMiMV7+Vf1QCXJWcba4ZN9RNCULU4RmZq61Y0nj58MJtOqioM/RhTns12gUySMBIRleA/71xd16WpJiJUimOkD1APADVnhLnMX3mz7ADAOdwIlsWUS4lQcnaNiC/LiM0/BApoRARmDLwxIDQjINHInos/abF8UUNEDI4iZHKBWxjXw8VyMfGhCrXEDESjiHdhhTaY7nH10dzc+6X3Waur3/KxB+P8bHFaMz4Yx6UjWi6H1Xh+/9Sddi8ePOZG9cgZOWHJLy3oD0AGAzWAD1Or4FcfBOX1LweGFtcDIEQCMBVgRgAwRTMzVEJz5GPXf9tnvmkyaR+c3Z2fP/rSL/3y0d7BYjW///Dh2I9X6um6Xj24dzyM0TsGAiAehl4N+m7MozhAUWTEECoR26mnja+oop/62Z8lxk+8+NKv+9d+3ae/4Rv+5ee/8MoXv4yS1v1w0S32vE8ygAkxMXty7IHMJCZVBXROBJADajIciZzEHMyOZtN+PT89H0XVqMnqdm/cmB7ujUl+8h/94+nB3sc/+tLubOf40SOgIASWLUv2hKoW2DnyZPbqq6994uMvP3z4CI2qujk4OtrbP6BAquodZcRSEDvPPrih64dhrJt6KxT6wP0Z/pVIz4f2gKqWEgi2rPXNqYh4WYsAgAJsePobXyFFpIL62ObTqqZjjHGM4xjBZDKZItHYx3ZSM6ELgYhv3ny8biZjSgXaFFMxLXtz22+Xn7eRrolkMRGTaV0ND06P7z2aGgFv6udyVSGCyobEaYAqYCWtU9G7EHO2nJJkIvaAPluFuFoPVvvK+4Q425mtlqu33n3no5/6mH/j9le/+jo7rCu6cfXKbjuZTavjs9PQVpOdqZIZqqbR+dYT2Rgr35Ik7z2qBQ7MPubkncspoZmBQwDPlFMEsOD8xtTKs4mKJCT0vlKqMrJFDeRAFYcoFpvJJCs6xJExNFUy9ICEZITF0GWDARsWv+++7/u+b9o2iZgqqYhZjKksBs8MzARohJLzGPhzy3vn0rT1JA/SsJ9NJtBO43r14J17exfLg/2D2e7OpA7B2XzVhcr7qhr6fLoc1DU7Vw7ETbrRRq26cTRlIBOjPCQbMpAD47LqTNDMio8eMTLx5hpADCEkSZciicsHqLrgVHUc42Q2PZtfnJyePf3E410cZpNJVjXD9cVqGO3lj3/8jbfe+cIXvvoLn//al7/81jjitas3//E//pdvvH7vh3/4B7/7e77ZdOiWF+CygU4m7dvvvHN+ft5OdsTAAHJWZsMNzScXaLNYMwKQbqUaZY+YoYhFTQhF5mUpJ1NEI+cCswegco4ROcBClINLtvHlASgiZrmwagA4uIocxKwFo9ooSJgRSSSXYxwBhjhSDE888cSDR8fjMHCQpFLsRBis8Dm8dzHH45NHMcacIgN6F1RN0RARrEBxheenpbAjIiWG/EEYTqmKsmSR8rGYgqoilZwCYCICBEQVMTEA+NcffykOK4SxqtR7+cRLz37qxWeu7+7UjqqqcnUQNTBoqrpupo790PU5jmkYLI6gxem0EKMgp7had/Ouu/fo7Pa9+w/O5+fLjqoQ2lkS7HtNyf7+vXf7vptO2tVisb+3V1fVcrmczHazQqGQzaZNcC6jDmIX676t2rPYzyXd/MgTj3ONifysOX5y/uqdO5jzdG9ndnB03fL7Z/M7x4sHi+5mu3f9+s1rk906dRi4aWh5cjosl9NZfbE4P7l378bhAVfVadf9mk/9mutPfeRRPzIHx65qm3EYJEXJgrY5ObNIqSyJqHSkYxyS6GTaiKEZlP+awpBG7713IUECpaZus8hquUwpTqdT7z0WtacJIkwmE++CqZYiASnUTZtiEpWUovdeJMVxJCJP7LwrZyptc05kyz+5dMy5vBGyWR5H71wIQXLOaTRJOY1xUCKtmkoRpruzLNkzZ1HnXIpxuVxOJpOmaYpSUlRKVy0fyvoEAFfahTHngERE5esurSZSim6bd6gfykgtJVV5XBpzAYCplpmFmQIaEKRUHMY2l1+Z9YFoMZ0nZl9VKffL+WJvhwOSMY/Ka5SzNKamdaNWUR6fzM6+8v7Fu8dXvvn55UH7Xjztz4fH6iZxWF0sNCfIevPm49lzAiBDVjBFKXNk2HQ3+iE04vIa/vBrUe44sQ39qvhRmpkrguYPfgMAsBjHq/tPPPeRp7puterWb739tsa0d7B/58Gd6c7Ondtfn68fTo/2kCoiayeTum2HGGUudTNFpCzG5VRRcU073dmpq+bG4U3XhPP5+Xx+fnE+Pz4+uXL95nMvvvTOu+/vNNXVA7549FY/P5vcutlOGgRiDkgOC5/QMiAzMwiYCmgGk5TGvouaLWsGwv2jw/Pbp49OV5/9zGcPbz2mIYySHz48/vmf//zv+F0//MmPf/wf/ON/VNe1yla2JxJcYMC6qrplt5wv193wzFPPtU2rKa+XSySumsBVKOdXMQ4O4j357LKo5JwvBY3M7pI3BnBZzPwrECBELJ6a201AG/MIMimt+eX7UQRjBltHzg1otwm41Y0ear1czufzZ55+OmVZzFfFI06zgEi3HlIW76suri+XfTFp2bCIPsCriimC5mQKamTT4O/eu6djZGYwyaq0+Q4ANWQCM4KCgipsWUoGQIjMPMZhMplJTLX5LiWyTJWPw2DODesVIhyfnZ7/yuKjL3zsZXJffuWVi4vzWV1VzAf7e7tX9nvJzCTD2A3L/aM9HCAN0ZJkzKQqRfWIUCyHAAyJFCzGsZw+iFj5QIVEqqqqjNzWjYBqVsip8i5nIAUihDqM40AeqHKigCUWxsgQtYTMoyNIagJgxK7c3F0/ZFUjKp1d8ddIOQUfgvNl5gJFVGzWTFq/t3NuWXZq83J6tmrNPIFEUZTjs0U6OXN12J/OHturj3anU1+lVa+GkWqriFy7GkTZEwUyGGPKqkTGzgGSqJohkQPIqmpadLxAhKIqpkPfh6py3plZSbqGD9ARKzopQIw5VnU99MO9ew+efPzxyteStM/jzZuP/9g//We/8sUv7+wdvP7a66+/9W5MOJtdm812Y5rs7t7o++pP/8hf+qmf/oU//Id+341rN89O7gOCAr762msxxp1dZ+AQvWmhrxG7UhyY4aZMISr5jJspvBkwo3dOci7hMMzk8mY3OecIAQyyKm80B6SixcS/qMcRcWs6h2VShkh1XTFxTBEA+5JIIFIkIs4hMysqEaVxDFUVY6yqamd35/T0XA04OCa2DYMespghOEcnJ8fTydR5T0wiiZwvVRgBagEIQDZNKQIW/xe0bSO0AZ+IyAyB0AwVtHA2DME5T8hqheNkmhMA/MPbXy2vw/dfnTz/1JOfevn560c7e03tER07YBLAj/y7P1K+5vhv/ZdQA7vwxP/+T5TPvPfn/5hzXtSe+MN/snzmtT/5B3dns4Pd6bv3Ht57dPzwbC7dcmfv6qQJF8seAFJMk6uT4P0wjn3fsfdATrI4H4B9FlJJdVudnJz7nWnt66995avPPftMP6QxjeM6784Or1679e758t6w+ur9B598+kmuZ6cPH4r3u9duHOxfvT9fGNqs2fUVB0+PTXbm5+cQGIJbrPsQurTueuRv+eyv7RVbbvuUpqFunNectkC7gRluTXcI0VcVEVV1DYCqRs4hEZghoWYFgBB8TiI5E1JwrKrBuRvXrq777v79+z64o8MjX1VFxL6zuxuCH2N0WMx4lBCRkYBsQ1ovWdJIhDkLXsLA2yvg0u48hGBmMcaN1w5hqCpLOY2xrSqHerFaEEAahqqqeh1cFeq2GaOIaI6JEIoN+mVVXYzEENF5r2rlegMoYgLE4gu4qQBg4/yTUgKwYtFYWgHvnfeet+F8ss3p3XyjmojkHC/RWkIkpC2MjJuhhpgpEHFx2SLDUDfVZKKaNSUiiillhcHwLOW5GXqnIsD2RGifvNfh5994hqaHewdxSP3FCgwzEhAdn51N9/dpf9ZZdkykhCoguk3nQnKONm2TFUVDQYM+/FDZOC996FbesHPLW2hWqCWITDmNHml/trNcLQHs0aOHVw8P4zjUdTMM8fj4tI+xW42TyZ4KGjCSu1isFst1zml3d2cyadghMzBk0wQGdd0c7B/u7R2QDznbtJ0tLpYpqRBGlSvXrn/yM9/8Dd/0ra6eCMBqva6rCow8ehHd3HBsYBbQYTKJCozrnM67/ng1nKx7rRo/2du5cuPqY8995LlPPvvyJyF4ATjY25s17fnp6WM3biAiMgkIEjpmE0HRSVNLTkQ8xvj+e3fX/froypWcRsmpZJnFIaaUTFVyBrWSeBp8KM6E2+23aVsvi/3/Bfz2Aaa4oTZspHmX1anhdkZddJJQ4j9wc79S0a0ys2P2npgMIKa4XCzPzs+Z3BDTX/gv/quhj2Cbo18VlqvuvffvJtn0mlvFH+gHNIvyHMqTsGwCiOw8MVUIF3fvpm7QnEsYnnOuEGpLpSxblUCJzSsgf3FzYeZsOkhWAEkC2cY+MtJsOt2bzW5euzqbtGPX3b1375d+8RePjg4+9clPNE1z/9Gj8/Pzru+HGFfdar5eGcK1G9dDXTEjgLLnqMkYk2ZBTCoG5r1PIq4KxFx+l5QS2MbBC6GM+SBJXnfd0A+E6Axrcp6YwAjRNd48jmlUhxmUCPM4BsfIbAXhRiQgEJWciV0STVlWfQ9MdQgbGMVsjFG2SyLnLDkXRSaaTeumRV8TZ+IESHWN01ny1Rp57cIwmXZNc29Irzx8+POvv/lLb7335un8QRcfrmNHIXM7KIOrq2qWMxAGAwDAlHOBLFQUwFQlJQFQZmSHgBZTBIScUsq5nFbOuQ83oNu+R4twr8j+U5aHx8f9EMVQjYKvun747//7/+Fz/+Lzf+/v/tzXXj0L1bX9g8ddteurw529x1OazOf4DZ/+7s/95Od/7//2D/zcz/3C7u6uD+Hk7Oytt97yxadeynawOMYUk2yCKxARVa1kjBRzAfugKEcAzFliShsbaGICLK1IKl1vSbYulKwPugvLOfd9PwxD13XjGGOMwzCoaoxxTGPf930/jOPImwWzycYuL0vOuRye3jsAYKS6qkRFsxQGqJmRcwikplmy96ymzNz1a/jVPiOX26scsDlnMSMkhM1mudx3iJfILkKJ9mUGxGKAbQBAuGEFmQHA9x5eB4Afe7T+zKc/ceVgtwnBMXsfnPeOuFQ/D/7WXwSAK7/9DxpVt37vfwgA9/7KnwWAJ/8PP2ohlOrn7p/7jwDghT/+X145Onjh2Wc//eKL3/DRF567dbM2XJyejH3nKwcAvqqyQWjarh8fPjpDdOcXC0VSQAVerPtHp3MFl4wfztdfevtdcfXJ+fLsbPX1N995/c7d196/8/qde53gmvi9+eKnvvzVr7x1Oyq7ZgrOPzo+vnv86Hy1fHjv/rtvv/v6G+/88itfW0S5v5ivRbGq759dPFx0L33mm1/+lm/pUuaMNbqaGIaxYWfbmamIMGIh3JQ3NOXsvHOOt+cnIqFdQu3EzMTFFNIQDRghjkPO+dq1a23bnJ2fpjjsTGeTtjHTmEbnuDjCA0HMScGcc5tzBrGqq6ZpSnVRroBSYV/ikeXjvu+7ris8BDXNIv0wpJx95ZitW8671ar27mB/LwR/enI6ne0myWCQYmLEnLKqHh0d7ezsbG20uA6VD97MCLlYEDF7QnaIxZIilwMUQZE4q5SNRESmWgZAKlKeYSnGCVkFClmYiMopaOAu6XWXt5pzzgyL09GmIrINTYkUwACdY+ahW7Fkqx0xC+Fa8yOynawMqClns6PJdH2W3v6Hn3/pO164cvPZhxqZmcUAYLFahaau2jotJSsYQc5lmMdiapodMdLGyVG31Z4PrsBXhbqECKJGVGxYP6ACbCu8zccFdBWEg529Sd10fdd367Hr6p39oVtl1ffvvF/XjSVYd1Eds6+J3bobsupuOzk5O59OZ0eHB13XLxcrYAOsHj06vrZ3AHZTVKu6TjG17axtZ0M/zucr76tnnnkeyH/s09928v7tsZuPcRyH0QUaFZCy6iiYGEHywMoBIRNmcMsI0hzsHB5cncyW3bJP8m2/4eWTsyTk7z58dHjl4OxscXpyyszr1bptmlD4vzk7cirqmZ1jRHMudF1HLhyfnr7x+pvPPvm0Iz4/PT+6cm3jDAoksp3i46acB4CU4jiOxbC/0PtLbjB8CH77cBltl1ZMujnoAQGxJFNtsuQRQBWKhO8DDK/gjYVgD6iSyz8Vx3h+eraarx574rG/9bf/zhe/9Irz9XZEpUzkQnjlq18/Pj7d2ZmUW0VEsio5RqbSp16W+8U2nAkBwLHHOM7v3yUxMEgSawrFdhytmKcX82skZkIq0mVTCyEUHNSYVxplVDUh5prC7s6eTvyQo0PTcZjWze7h3uJ8/ZP/00985/d9z7d+y7e+8uUvkfPn8/mMd6umXiyX945P5kozYQYMTXCCkEEUGQwcixmqFjZ313dNUxFyzuKDr0JVLHGJmAtWqlrVIYQq5dx5HWjkyirNFVEWgSgzNxmTkPeooEbDMHhfs3fDMFQYTJXJB+/EFIkVKaYYuBaD4H2RL8WYDNDMUk6emJwTAyJDAMh6vdl5Z3GiTJkomyWwUNVBtUuD40rEAgPXbRz6V9578GCVPv7Sy03dDuayApDz7PsY1TBrLnACMErORsrsyDFs5tpIaKoZyQjAEGJOQFjX9SUHcxukhWhAgOwCO0QEZm9IiLSYr3KW7ERRbhzd/LF//E+Oj4/Z79XuSt1MkIhDVTd7CE1dHRwdtBdnDx48fAgI773zzn/8oz/6R//DP/Qd3/5t77z73r2796qmSWMWQCJmYnWFQWEbcbL35QRPKV2C7mUTlUZutVrRJpFaRBVS9s6DGJfXFRGJySBKKhXeMAxl6FlVlZl1Xd80Tdd1dV2HENbr9aYT2Oy70vr68uNKc6u6UTWmmBSwDEHqOvT9aGZ1XZtoHEfvvYkSE4gx0yc++fEvvfKVrAJW+v4yPSk+M6BgyIREKoK06UbKpvPsECDFhK6ksuQYE26dYwCKumUzL9Nt61oEjQBw9WjfZAQlAK9Wgmb95ovSWP6fQe//zT8PKt5tzxPG+//tnyFEvzPd1Grk6oA3r16Z1e2smRKF127fpSK2BBBDH5rlcrGYL5B9FkX2YpjEzhfLnCKDnQ9jVKj68ZA5OffW+w98U/eCY7azxfwi5qUouko0n4+ZBSa+ubF3dPrgXspRdQxYX7954/07d0Xh4NYT3FT9ybjq+9rII907fvhb/+A302Qiuc9jJsdJJBCnGB1xCEFEHBsH570fRdQ0SS5wS44DIoroZFLFMTIxBVcWCRbrQjNfhZxSjClUvq3rmGJb1Ux0/8GDfmfc39937KwAekjeUZGAIIAPDAp915X1oDGKal3XlyX1Jc5a0jBKE7IpG1THnLz3SBjYTZxbnp/NF/O29inb2HeDaN00TTvJAqqmOYe67rrOe9+2bYnsLJAnMZmIQ1IxVyo6MyR2JrmYMGzxDwFAIi7Yh5lBcVhBMATHvPkDlLKwUCRKSWFmVpJoNukSALSN9i36cyQ0UwEjg4KmMAIgccBmUks3xDg2jUdXJZNo6Z7Fq4DXXOUksgqKXDPHS3jzx1+59Znnbn3sidtsQ1OfqI19d+3g4LCeHp+fubod4jqCmUnhYRf6RcnQ++CixV/1BpR+xFRFsple/pqXpc/lo/xRRW7dvBl8GC6Gxfk89aPObLXuHhyfzM+XKeVxmaY7TUrZccWu6lbLUHGULGr37z84PDw8OjpEtNVqrZKj6u3337/52K3W7YxD770Lwe3u7ZwuF1/85V85unLlytVrXexme9dvPfH0gze+HGOUnNlpllF01NyjMyA2SUSW8oAu3H14cXjr+Y9/6jvYTbORmWRLoWnh7Xvn8+XVa9diSq+++noW298/mEzahw8eNG2NLngW7/yYMyLGsZ+2DREXBm1SvX//wfvv3/mmb/41Z+fn6/WKQzDkqlbJWQiBi1P5hsNfjs7iALHRfmOpQbXwMT9c/fz//vigqS0SeAPQDfXYirF6v16fnZ42bfNP/uk/++mf+bmsuFwtdw8PVURViTBmuf/g+M233v7UJ19um8YKSiyZipnyh/yfcBuViwBSMnH71XB2woLEjGiq2Ta6Myx2yYVwp6ULoZIbXHLmABAUYRQBUe+DpGwMqR93dpu2DVVdo2Q1W3RdleHW0dWf/uc/+exzz926+dhiPm/biWfH5B+7caMLtRvTDMLqdJFExETUkIIpoMSi9SjwKxCoASNsWC+iTFDilwGA2TmzJHkcoyEmktDAkAp07NaSE+F533Vm3vyEQjuZdOtu0AHJi2ZTQQBRHfsemHxd98NgiOxCP0QMjhD6cUwptdMJMzOxI05ZmSibqVpAvO4bP6RBs5kZYW/JAI0ZzcWsAMTIlkmxme3e2N0/JD8ZhQEAnSNyCSyDGGlGU1DYYoMb0NrUwLwjQFTJYhnQkHiMMaVUVdUl6zbGeLm8cGPIAACWsyAl9oGIl6vlxfm8uX4N0fqh/8Ivfv7ll186vPLUz/7s19Ua0HB178mdvevv335wNszv37s9DI8WF7en0/yH//0/8NHnn3rj9ddM7eT0uB/j/v5MlSRnRDbkkksqOTEjgNv0jYhlOuC93y54Led7mTLDh2gJYMDMuIFtQETGlBW0CP1Wq1X53pwzADrnVqvVOI5XrlyZz+fFsj+lXGAeRHKOxzESokguFHLvnamNY8wpIntCzCKemJlUJaZooAWbQcIUE4oO/XB2dk5EkqLzDi9VoKYlX0G223a7qzeoPG6PX9pcHpJTlpyZCcBfNtRIbGAlJqw8Yuo3pYwmUFGfk6gRooCp3Plv/sRj/87/7fq/9e9vvsZS2ZFXfs8fBYAHf+VHkAiZrv2e/6h8wft/8U9SCCTACnvTlvj6YrV+eHo212TAAFCmGoXcoYailsUsZQNKKQ9DX/nQD6MaSDKXpHKmrhauRsjzHOdx1RlEALJSCLLnMGmmi0cnq8U8NM4DPHr/Tlytrx5eC3V79/zMibXVrBfc3dm9vn9475VfrqbToYwG2Qmjc84xxXHclIaiWTIpF/NMESoCF0TcCHUJV6tVVVUhhDjGooYuwI+qlgwcJIwxee+auo5xJOQrh0f37j0YhuHGjRt1Pbkk4hftIRRpbXmXzMAs5xxTKv1wWbGX84Eird8Mp4oMpZDPmJz3HnGMA4I2dR3HdT+skLkbxmuPPwWFL6FiaimlGGMZopVdU5JkSpCDc+wcFX6FmgFYEVZueDKle96c+Jvme4OHqeUyHyt7rLygsn0UpQwhalbLZkkumXaXZQMxEbORmRkyGyGYkYCIRBldYBdYQVOMJgKGA+L9GHti70KTqRJAUJO0l+HFIbif+PLs5998yirsBst5Pp+byJMHV20cwZF6TmAZlAAYeePfaB+Ar2XgdUnOhS0fsKgsi58YEmzERZshyIYJxEwIKCJXrlxJksdxDM61oVqvu/lq/fDRI0cuDpmqsOqHoR9NEYAU1IdiGCUxyvnF3Ex3d3cnk9Y5qpr6fDF/5/Y7MQ7rxXI6aac7UwW5e/f2w/v3P/MNnx5zrtqddnq4f3htTDnGIcdYQj1yGsWyc+zYgUGSURgu+vTMy9/47Z/9LW73iY4Psj8cYGfQRl3z3MdevHrr0HmO/aBq12/deuqZZ69dv+6rEEJ1sLeHHxZYmXrHZpCyGDoO1enF/J333mXCOvg8xoKLkxmKQQbLplktF1szZHYFty8LGmBjoFAmULCl/V8WGR+UNpc0n81iLM9FbROWuvmqy/OyvKtESBvhACBqlvjgwYMU5Stf+fo/+/F/LkpjVF9XJcedHRM7ADhfLL7+6qsXF+dmWtj68OGfvVVJokFx2S0Xagg+d/1wduoNiZjIEK1QP7FAvkRlgrA5yovEwkxTLt6hjh0hDzEbELuq5pBXfe6G7vzi3ddfS92qUpmI3pzuTgQPmtmrX/n6cj4fx+HOe+/Fda/9cPbgeNa0z3zk6Ws3ru8fHYZJLWyZLZMmyNFy3pjcCJAF74FKEjh758ZxVIDCZMxW/D8JkdSA2DUhQIwo0tR1l+KZ5o/+0L9+8JlP7b783Cf+zR+yo733jk+XMfWSBLPzFNNoJsRAhFVVieoQowDGnAuoLqbjOABiXVXugwF0VhATySlDStfbWWtgmssrmUET2ihZCZNkgxKrK49de/zbvum7nnvmJbCKwLGvDb0iRrMElsjEmTAYiOFl61LsgwUQmVlUxQwZkSDnTER1XV+yL7V4gBsSEjMRb07vMuUHwOCr1XJpZinGvZ29L/zCLzx4eP9Tn/rUN3zDR196+fq6e9jUNWgzdLy3e7Wq/WJ1f4yPrt0Mv+/3/7bv//7vee75j3zk6aeHMf6Lf/FTYCwKQOidt+2/7xz74AGgvGKIOI7j5eBYVcdxPD4+vnPnztnZOTMXE/zLEx8ZS34SbQMusuRxHLuuW61Wfd+LCCJdDveHYdiZ7aaoTK5IkVOK2x1nYMjknPewJVXknLq+XywXXdcDQNu2zjlmqoJDBJGkZux9SVokwhDCMAyvvfb6crkEM6bCQDL84EXdjMUv6RNQ0jANEEruRN70IKKaRbMUnSOqEQABMKJH8uSC26A7orl8kIeBS/CUAQAZYBYzgbv/rz/x4K/86ObkEDPRq7+7VD8/isTEDokf/M0/d/ev/2cA8Pj/7o9zVZN35D0S7Uwn169d25lNcuxzHAAAHa+69cV8mQppBkqSmpV+zPuqqkMVqsN2D8hf5LFH4no6X/an624ekxA3oZpUDThEBs3ChLX3ad2RauXdtKlLLDBovn/nzjvvvrVeLLySh7A729UhPXbjxtHVq8MwZJURdTAZQSOYIhoYqnFhgKgG782sWGBkFQDIKkyOmYdxKNUwERChI2Yi7zwzS845ZyZH6FJKIkLkCImMrly5wuwQWURSTBvirRoBeCIVA5U6MIKAaU4ydP3QDWibagM2BVMuSahljTnn6rqu6zr4UFcVbsRkNo7jMHZjHNpJi4TM7mD/QA2ZPYiAFRW85JxzyvChg7wsdlQ0NVPJOeYcJSdXVhtsqwMtz92AjBDQSKEIowlVbTuWJhFlcs45tbylRasZEDAAFtYagCJQoYiz8yYbnSYwZBMDdOg8mIGR82pQtZVwimn0GX2oxHhMaFUwyArgHEVVIUsSvXcfaffv/OLrqVtdv7Vztr/zYFx0tdXTWiQDKmbhrZQPiEuZx7jJwricgMKH+vvyGdyGkRe5JW6/xUpAPDgiKKwp73zdNMv1KqZUVxUYrPv+YrU8Pb+IoyI49BUJSc5gIhInk4ad64dhGMa6nfR9f3a6ODjYPTg46PsIhoPG19584+DoYFytr127Etr69OL8c5/7qeeeeupgb3exWj/1xFPKnkJIOaU8xjxUNjErCdsMQJpNMvV57LMd3XruG7/z15+ueVAfphMTQ+cnYR8pUTDXhHfefHN/9/CF517wvhniUE3aK9euVcHfvHbj9nsPTBQQRaVmV6w5o4iBsQ8W4/3792/fvn31ytVSDfsqYCG68gbgERXeig62FUDx26QiAi9bqPAtYMtL+HANZFuuPm7zSsr6tKLE2piXFGovGcjmljN1xGpgqgi4mi/Pzs/PT89+5md/nl3Vx5xFqskEiZlNMCMjBT+Ow/t37tx9/04Vqt2DfUnZhZKafukBdfl8CvUXQIGJ4mqZVkuHZGrJMmqZDhsAMm3IMYoAQIjG7NQyEBA753zKuXKsqmerLqbcTicOXJfGxaMTayh45widyGN7RzZC7JbXd/cm07Ybh8a5mGR1fOYOdmPfnffD4t6DCftJO60ndV0FTjqcL0RTUzUoRoSgQIDOsdmmj3GFgyegBr4KY4qqVmhMCoZJOGvLbEJOckvVEvTaY09dAP6ab/vm/Y8+Xz33xN//y3+1FQxnF/3qYreZVnWd0wrAQvB9ihnBEMhxVhEwZBr7UU2bpqbiu2Eb/a0ZMDmsDET2Q5gRn4mwkpiQUiBOaoYQHJOYZtvZO3juI8/2fd93q6qq0LFmI4fAmzQeAjJCdgwJQUGwzOg3g1MyS5JEFZkRaYxxGIaqqrBEmCEiomcnWQQBAC7Dp9ig3NioWAUvKQ5dx0dX1qvl2++89Z3f+R0vv/zS/pUDCvDGm38bTBHJBOsq3L57dzbF2c70t/2Wz7784tPB4/xiMZ3MFsvlctXXdZ2TEKEPFYKJgGZBBmb0PsSUhnEI7Kq6rqoqxrhYLJbLZdd1Je99NpsEX2UpPCdDBChApIBmzRuJjeaU+6EXLbaHxZRfzTwzn59fVFXtnF8sFiUt10ydC977S6tSVU1DyjkTFQxpmZMAQlVVjrmqfElYhA3kLyrGYgikZkwuxeScV1FjAMScRUBgG0HPRMOQ4EN3oaoRokMe7ZKjbSJCXCzrpHDqcOPnpAYF7AMzRdgQBr1z2+Imeawtm2TFIGBAqo//wT8FAPf+8o9s6x+88Xv+CADc/2v/9xu/748BwP2//udu/K7/AADu/Y3/x+YMqAIyKmTNikBNW+3s7NiD437sAGB/ttt3Q85j8D4VPxKiPiYEIMLAvqmCQ5B+bH0YLJ2P686qCOZ91ZqMqlFzM2k0JsgaGEOO3fKikE/Terx16/Fre4eq+vDBQ3T88nMfaaspjzAfVjkN1KVpU+8f7PhyUjGS4zFnFGucMyQwYMdZ7XK1Y1EGiLJjQkYiE3PoxnGULJN2EoKPMeWcAIG9h2JVoOqdA6AStet9yDkxO++rqqpESho3Axo7ZkJmjuOYFUJwoLBcLLzzs9nMVFVBTEv3a1s+YiEMfZhejIgEmCUrFNQzI6IPLsacUz46utaEdjmkUUqwHTrkEAIxjzmSEkCxLWHbTLlkw3/YIjQEZqXZpk3NDcV2nYiQLlHkMg9WxG3XjpdwCJeIjPLfAg9t7zwQEdNLroapipmaWhYxMzJkQDQAtFFGI/SVRzTLmdQch0R+bZDZESIwiUcDC7UfMWFOT4TJ7tfv73zt/jcePHZ1d/dsOZ/t7obgQU2GCCkXnSWqmSiC6baDKY//2fBlc/tiIUHDdgpWGJ6w/Z9tNqTotJ1MZtOs4oidEQFm06gqhpZVk4wpZ4negUECy7PdqQsOicYxdd2YM3R9XK9HANeGhgiAYL6a337n7W61aOq6H/sf/4mfWJxffOJjLy8uzo+uXK1nu8Ah1MEgpzTE2DMDMYXgQwgImCOI8GBNffDEJ77l1573tM7ITUWBBJIPHoHHZGPSdjKbny0C+OtXr+4f7AsYOg4hBBeaumqqEJxHhJijguQ0phxFTcRy0lBXWdKdu3dSHtmxaWFrlrJlwxsA2HxQVkjhzpfXu3ym0CwuV+H/t0EYfkD0gf/1L9swQrcVv4jklB89erRerd54483lYpXF1l2viFm0UHlEchxHUTHAu/fvvf3OO6v1yjmnoIXbu2mpYZNLv+lXcPukiPr1kuIYiLkcu6bFR6Ksr7LbREppgbopodBKdGhWyhDQOXXreUcZMGswqpFS3926cVVShJwPQhWGPAO+vjN78vqNwKwpHexM02oti9X13Z0GmU0u5uf3Htw9X50PaQxtfXDlcDKbGChS0QYLbYbY5kMYYxzHFEIYx3GxWIpYFil8xzKNAty01LUiKzFV3jd/6S/+1+fe7X70uYtxfeWbv+H3/aX//Lf/pz9iO20cRzPNOTVtA4Dr9aogf6PkMSVyTgFUoB8GQAyhGCblMmp0G78NNLM4Dg3SrK5NxROxAAN6QI+sMaMBqNV1feXKUd+tU0rOOSZKKTOgI2dimA2SaUzaZ8jKhTJcUjS1BF+iKKQoYiZqY5Z+HMtcqZTj5QL+4B3fnItl+RkaFjNVAMwiJ6en5GC9Xj333LMf+9jLKfVjv96ZtgiyXi3AxKQPAXJcPnp4+9mnH3vh+acJwQFZAgR37/6D1XpdQr6QaBgGESlJ56ZiIGqiarwd8qxWq+Pj45OTk2EYZrPZ1atXr1y5UteNAeSUi7Jk61hbgBMT0RjTMAzDMA7DMI7jZehhzsUHRBy7STvJZeJmWHYkgKaUUsop5SLGaeqmqduU0mKxQMS6qff29vb29kIVvPeqqiKAeEngKLHzkotk3ZgdO5bNWKS0y2pQQofUTC438uVpQFtbDdu44UHOuZDaC9kZPySVQEQwUFHcZnT/zNkSAH78//rvOENS++Qf+69e/g/+MzBBFAR597/4PwLAzd//fwGAe3/1z5bhBgDc+L1/dHOeKN77a/85ANz8XX8IAO7+d38enTNP4gm8SyDA2DY1AxeXmBzj2K89kXfF2kEsp0Cw09a1J5OIJpqjSjRJDimbjZpDXU3qyaxpa+aKcG/SHFRuD+yx3ekLT97anTSu8t5Vt67cIKDVMPoQQh2uXz948urh9dlkdXEyjOuYe2fpxrUjx4DjaJIdcfAVG1FGVCpwu+lGWDcMAxFVVbXhlBMjWlVVhag+aSegsFgshmEMIXgfiLm84OycD8ExmyGzI9qoeuOYmqYphQsiiqgZFKUhAICKiqQxScoIyIQqMo6jqXr2wXvcDr8uF8DlGR5jlJRzSp6d5DS/uMhmddM09cQH70J1dHiUs6KgJQDdjICbummbBgBiSlmK1iIXA2vZ8Jg3cCkzuTLv2BQ8RLYNoFPchs/hhuajakxbP5YtZ5sYNi35tl0gICAq/EItrrwAatlMmADAit0yKIKZZMuYJatjFsiE1NSNZbWYteLBuwdxfLapfERHBCoNcc5CDEaqY3ostPnOchHfPXj+o7sjPHntWr9Y7DQ7nFWykWciNLGASAZ5m7hXrLdUlRBLMvxGa2AblenlnbylcSBu7SgA1AxN1ZEPVdWPY0wpmFw5PHrjzdeX65UheBeyA3Muj0PrvSKFyjsmQxjHUQBzzAxukNT10ZTaJrRNQ5V7dP/e7ffefezGzfn52S/94vmbb7/1vd/1nYx47erVvSsHyI68z5L7Ya2TCYFyMXIoSLJozhYTRWo+/ZnPWjjsloOrGw4Q0xJJHE8kZQLfdcuHx+fXr94Yu/7g8MYoxo5jTC54kXzv7l1NmXwoHhu0VVsoKDtnaN45M0g5rdbr68xGpMWcfjM8KC45WGauW2Cm7LQNm7ickuU4K6yLy0X/q+qerZshbO9I+1+tgS7tDFhVyhyj7/vj09PVan3vwYOsSj6EukpdocNs+OxqRoihCg8fPXr3vfe+5Vu/pVzMG7bYJXy6iegARN5ghIRmNnQry9mEwCF7JgQCIsDi0gabqhrN1NDKqIWBsqZk6r0fkzjDnXb64PiRqYHYpPLzfklB6irsTidDMukHXXdTYifades8DkzARnWotRvSYu0C7+7u4O5OqFrvq+XpxTh0TTXzs8l4tihqmhJBweXyYc+EmnUYowvOxPp+cK4qNhxVVSFhP/ToPZjstPX5cp0c31suf+sf+fee/IHvm8ceZjuDpokLX/4X/+Te++8/OWlc7WMaPPmmrszTIOWmszEll2TSUpYcU2qaihyXsxgIvPeiagCqkiUZOgfUhpDzeuqno40AkFJCgATi0NAhOhcZqfbYSd8NxcSZiVANVMmIRHMWTmJS4lGMiRwwImU12JREyOSNMEs2JKONa1EhhPZ9X3RqtjWhKZhxARs8b9xyU0rnFxchhNBWITx1fHaqOa9X/d3bJ2m0nd16GOcpLdc9VgF0Wj337PNx1FkzyyPlCCmne/fur1edPzgAJCu0YrBit1ZOoJSSmlVVRUQ5p7Oz0/l8vruzE0Jo2jbn7Da/OhlttB2lVtikuamaWYppjGOWpCXvy6xgXYX9M5/P22YioiJJFdp2ohpDcACYkzBRIRrnnBfzxRhHAyl3JxFP2qmB9l3X971qDlUjZX0RQ5aU8oY2ABR8rZpFRNVyzs5T+RUBqJCAsmo2ISsuqZsmofx02XD1yFTBBAxKMDhtCBE5mxFsxtKARZAB33ftsRRPfvsPfPalp646RjJ9/c/+e9xW7D0yekIUe+8v/p+crxEdECPgg7/2n3B5NgpMDg3Z8Pi/+3+CmpBtjAJMEgg4EDFirpumbRpNRWzRVZWfNdU4jBwqBRAFMfPBrfoRIQdn3uG03VleXFjKtQ8IoGPq+hF9aHcmbuianL3Y0ZWjSVufzs/OFsu6moSq7lcjTRwAjSLtTkto8+P7hzuHN29eXZ9Lu9PEuyctyrRpIEYWFpcNyQk2VBWPnRB8SsnXtff+/OLCOfbexTiqalbpx7hHpLoxn6zqahzHxWIxjuN0OmXn4jgiUQhB0gZELC4MAC5pJoPKBzVQAXYcPGXNKsLIYqqqTFSxE0hN5RFIDOqqBqRidF5Mw4lpc0OrllVXprEhBM1CDnLOKSaVhAp149swmbALVVh1I2AAIBVVEzMj5hBCH8eiojfVos8y3cRbl/1eriGnuClcynSrWEqBqIJSiXw3EDEEMCBRIwQjVMxcMuq3kcXFtUVMS4CyGhoaEjOxgILiJpamYEJltAtOHBKyE/PEpEDOOe9yzDkLm2s0vDOcPvPC9dUihYdnVzWgKaM1qBFFyTDrY2F2fDLMj7+4+Jav79cBKsyUYxpJjYSVyRxzRgPcsLlBYTsoF9WCEIF9IM40NZFsqsybc0UNEXgTUY5mpoTUTnaadjoO0RHH2F+5eePR6RnfvUvo1rEnZhnipG6RoK5qExCBfohDylEEjblyMOpq3Xl2Q2ICQ0amsFz3q1X/xpvvdOP4Xd/9PU899Vxd10fXH3dNnQQYYNEvu5RVAkItAuYBACVZFhgEV+Y+9k3f2+w/drrogX3wvutWRFCHSiWrqWY9vntfxvjUU8+8/+57CkpkDNk0S5RxkJwWWbMHNsvecR2qpq7zMIBZcQ0n5r7r45iWi3XwQZ3LWlomNLQynE+S2JiBy8taZOFEWBY9fcjd/1ItuJ1TgKoW2oWIWCmbpHCzNl+3uZwIwBRKeY2ogIrIaMUpCyxfnJ8tLs5X6/X9R6fmPBPnGBGtYufQjWlg5y0l70PTtKv56aOTU0BQMGZGVWIuxVcJq9ECChiQOgMCVA8wLrscEyqrKAHQJjglO0bNRrjxElIDJhSTy0KtTNwpS9Zc1dUIejquJx5b4r3ZzsE07IWZsizWZ7o3TQSCOCzXaxln4IZVX4d6t2qH1dLmY7U7005X3ZpxXbtaYhqWa6vTrq+ZHSlpFgDGwIrIzoFa8MHY1v1qNp0Q0MXiAoBmO7OU87rv1JTZMTvNuZeEleNJwAF+/nM/ef07vzHstdnjNMz6Ow8On378e/+tf+OX/t9/bzLmiQ8GNKSUJac4CpD3Pjpk0yxgmpxzoaodskpGA0YUySKKm9AMIudUrWHvoiYnguAFCC2jEmGxzmt9IDFEGGUUVO+8gsWUidWgWJyAiCgCe5dzNtzwJghKI2ZmgFSMmdQTc9Usz+dLXe/sTIlcjAmAAMlQnPdYSmSiHCOgkSM1IVMz6rpuGLq79+488fjNmKJlbesJUnv33nLI7mq7J1na0JAT1+TdWXNw5UqOMCyGtV+enj3qUn706DiEChRKXFFV+S1SJarqkIEhBCeSxzFXVT2ZTES0alrvPTsvqkBkAKCGCiIqqqVBFZOY4iavwERVNIsqsHNgZGYxSdM0y9XaEHzlJStuNlYuaZTOeXZspgaak8zn867vwGAybdu2mU6n4zhezM+HYZg0zdWjK8cnJ33Xk6/ARNQIwEBj3zdti2BiYmDkmcFSis4zERE6MwJFQgRJKKjbvWZKRqCGzA6dszFmVTJkR5pF1Zx3SJzFJMYym0YEInTOsXMAkNl8cHUgUiEi9s6QgF3xTQRiKLQ0gvJMkBwYatE2sCmqAUPJQSE1ywBiliFnUGN25iBUrvY0a6oIGQBYcRpq0axE2dSgJD/wouvMgF0gdM1kJqaureJ8WHf9wf5+33dR0rStau9anKShZ8Ze0uJiiHGMQ3/z6tVp1Zwfn6TMEPxp3+c8CmCjru+Gi76zNMY4VIe7VgU2ZGLmAGDS9w7YeRBT57z3wSyWfO88DmjVNkkIY8yGlFXRkIniOIYQJm3bdd04DKY6nUzaus45qxk6RibAMIxDyqmMSNgzMauKC6SWC7hookRuzJIQeLl4+4uvnN1+96lv+OjO88/04pIEESxLFAvQAOid2xoiaEoxpaRqwXsDLNBFVTer1ThE8SFks4PdvaQAiCnFmKRETYsZgIkZmIEa0kaRc0mc8M6VfY1b5wRWQkUwQzM0AwIsH5kqESKQKTlXe98AujKK23rvlqR3AEFTICBVzSZimlWyaIZixA+GCMSGxegKWTMjIUp2gM4FZYpI4ixzFgBi8g6SNFItvPsVNzz81FPrp64ndAjORINq6lbIFNU0yo26vdbp4pWvtw59w+u4HOKYRUxUDIScklODMvQyJAUULYZEgMRqqGWvF+RV0QTQgAkYERUQSKX0K8VRyMeUqrotIXN1qKKKME/3dmezPVOiuqLgKnbB+5hSzpYzpozDoADByK1THCX7SYVMfexD2/im6ddj3UyQ/bu3765Xw6//7G/4vu/+tdduPPHEMx/1010O04prFF2uF76aRAkpOwAWlGyWFcV4RHflmReOnnhuldDVTajCOIxMznEQtZRT1nR2+mBcrQ+n+/V0Vs1mp2cnKuPerG1DOH74yPsQU2TPSaJqQtDgPRqaqEcIrN7xzmwSqgBGogBEnll1A9kropgAQbZc/PJBrVSqJmjKJQSzdHiwpQfBZvCvW4plLvC7mQEh0IaFrgjFTWeDNBmSKqIZghkqMRKpmYGCyrBe33v/Nkh+dHI8iJhzpxfnYxxr7yofSsqviCE5RM5ZDKjrB0MuoilCpOJJBx9EcigYmjlwJTu3Rox9n8Rc8IxMQmRsKACZsASQgamCCpiiaRk8q6oBOufjmIlIUbJl8Xg8rjLKOKzjMHTzIc0FV0rZUVWtJC3iMA5xQtVU3ZVqdmNygKs4g2oqlSwSdthA01pVR3RRMUpc9pbVObeZWHsHRFnNkJgITLwnx5TG0UwmTeM95ZzAtGnappkyhzRmQkIDM8ljVwc7nFXzt9/o3njV7tx++IXPf/HH/sGVxj37qZdkpwGAOKTizuKc29vdnbatma01ZefMqOv6EGrvPAGSIiuAmooBQOFHK0BWyZInvp6QN0KovAduq5ocMWPWNEp0wC6J5hHQsuSUBZ0XgGxWJnyCqgRCKIRYuA2eybGCbPwZism4KqihgSc3neyMQzw9OevWvSmqGCKz8z4EIJIyUkFA1iSpCOxVdDKdAsE/+if/cIhjAVBzzOsuvvXuXcE6KnrGiujq/mGGcXZlxsE7DrGPr7/x6unFqVheLpaE5Nih4eV8p0DNyJ58EJExDoimqjFG78OVK1dCVSM5IAfIqiYbc5ICXDICAkHWPOYx5SSSDTeKDhUjCIgsAkic1dZd3zRtIZmwo7YOoNkxp5SHYQCwlOJ8fnF8+mixnIvk3b2do6Ojum7Ozy9OT09zHidN7djXIQQOgAxqClTUhZ7Jco5DX+Zcapo1AyqAIRghMTEZmrIZmwKhQ0BTKCMzVcxi2YB9QO/FQJkMsbSshaRcJFMGJCoxxT726361WM8BYLCEZEiimJEJvFdGMAAkMlJzigHYGSKQQ/ZGXpmNvTqXCROCMipjNMlghoZkDpQ1O0U0AkQmrBh2JnWJNLl+5WjaNB5xd2daN5VzrGBJVdXqpq3rScqw7oYk2TUhmi7W6z5G8g4RGudYJTB677kKZ/3QocNQPf7E4/uTRofl/k4d0/jg5NHxanXWxTuPzjNUvmqJcb+Zvv/u+68/uF/tHliEUUGYyovbBBYbhzgAwEbYqJrGEcFAcykXiDmpTmZ7SGwqZIZmcRhyjLX3s8nEEy0Xi8V8ToieGQEMAcCc43oyqepawDgENYljbyBAamgASIBOmIAB7eT+3Te/8NNP5m6yftSt7y67E0OrJ7ttO0NDyVL8RSRLMcEahwEM6qqetK1nV/waELGdTkJVk6+iGIfaV41kYGbRKBrJsWsqX1XoXFYFRQTUvLWdM0UiJCyjwKJHSyk5sWTbBJeSjqeK5JiKCGpr3ZhiKqq50ndvhhpI6JCIgUw3ro5ACIDkEAGsUPHJMEMhUG8F9YSEKApZBNGYfZnkbppsQgbGilJSiPj+gwfdNfzYM0d14ua90xlVQ0pVPVEFZAYOYDJ1HM8Xe5NppZi7gZiE2BUdpxoRGBHodp6xcZmxzfPZTjtgexVvhyobkREimYEqMBNzMafXKgQASGNsJm3bTJbLedPO9vcO6qbuFwsDjGngxAqwWq+uXDlKYySgAvcTYErJMc7aSbdanJye3Lx1C4n61QoRn37m6d/0m37TN33jN129cWPRd3UzRSJih8xm6eTRoyqEXFSshKYWU1bFKNjs7n/sU5+JalnFuY3EcWuoo8Mwnp+ejX3fNPVsZyfF7EO4OD9znnd2ZmcXFycnJ9euXv36a2+GUMUYHZFnZufGPCIakyFa7dk7x5WvaheqIGqF92UbYd1GDwiXjvtYau2tPSJsYZztlHc7J9owzbfQveacqw294JJ2hpcsojIZQ0LYqBmJbMPhFcmEdHp2dnJ60rTNvfv3p9NZP0YFKEQEQ1HZCImdc8MwgIEjTCLsmIiTJe+qghRun9hmeeDmOSAoqGgcRhMFQsOiJyczK+RxAwRwqqnAXbqh3iMiOi52JuqZA7sRqQp1BKvYgYyNq6Pp2d1HfddX6KyXg9nuSlYxp5TjpK6mdVsRN7OZjLGta2FcLFft7kxiBJUAZBxqF5yhJUHD4EJwvhz/DtGzQ8BiStR3HSKycyi5+FKMw6CAOadQVaYUHFuMlYdjGb7js9++6hZv/M3/8aDdOX5458YT17/wuZ945f7Dqzs3JktM657Yp2EQtDj07LyogELOeUzJ1AqpVsWYCcmVTChEEgQTU1UBTHEkBBA1MwUoQhViKiweLKnoqilFZopjZHI5CwUmJDMbx3Fzx4kUkqaIBB/Ke83MxChb8e0G9jadTFozWa1Wy+USAJiZiC8nroWA473PCjmNVXAIGMc4nc3Ozy9CqMdhbOvGe0dEb7/+xtvvvDZpjuK49m4IiONQxw6Zmt396bSqKPkxaTPBR+cPzs5PnGeRVNJXSupOStG5oidXZs5ZUxLnvKr1fd+2be3rYRw0jbzdEQKKYMyUc1REAlIDFM2QiUizjWPErb/rGJOI7B/unxyf1HVdN00chjK/LvPocRiJCAlXq1WxRhyGMQR/dHRU7IJWq5VIZqadnR1C3hqeGH2I5Fd2gw8h5ohpky7M6ArtD7YCFCZHRFlURRGNmQ0gayZAImeGoOCZhbmgYlkzceHJYsnUc45VxYzNTEEkp2wCANInbMiFGn2FyKLgkEDViZIjA5UsDFb4AxkUoRTjhozsvZmBll+C1QSJQUWTWFY0FJXCZQlVxbyxPZvtTFJOhgIAQRIYQLaxH/baiaqImnNufTFvjw5cqDKxa+vlcrHXtIftNA0jEESGvl/vz3aePLj28NEx1bhYzA+aylLyvp5Mq/M0TNsmj1GSjGzrHG9dvQ7Mw1tvQGjee/ud9Xq9P50mldJfBM9gBsqOnYEWrtug2cCqOoTgxhhFFMyqqi7HXBK5PL2RGRGd91mkrITiHuycM0TvuHhlTdq28IQMUVUKGUtMm6qi3oJoMvXXd7/xd/zArcNDiMuTOMrQ7e5WIJbyQIwlKqDsx0IP/fCloGYgeRz6osJup1PvfYpxMp0IoG7raYS04XozFZ2/wsZtlYnRgJBKCHrOSZW2lAlyKhtfaNzwfzdjn+KLqArFMxUuq6Etq6M062XzwDa1YBOlbttKR40JjYgUrVibW/nyEswOsPEaEpHiUFncoxEBItgaYvDe4uBnO8fTZjbZ2d2bnL3yxj4zZ3UuoDCa5pQz5AfnJ5+ZzdrQPJqfh9ASFPIKGAgAsiEQbXAgM/zVhqQbFtOWAAXlMi2A0ZaDApvZ/GZMVtcBAcYhIXDwDdNw88YtU/v6m2+eLxbIoCC+9t1yEMlZUs5ZkjokTwhluJaVJtjuTE5Pz1NKDkiz9F3XtpPnn3++apskGYnqts5mzIzkkqwvjk8YQSWLSZRkJmAcxSKHFz/2aQxN343sG1XNIshMiKYyxnh6ctKvu/39fSKKkjVbO5n1Xdetu+Ddw0ePwGxvd9dUzNQxDSqhqrJKocMDqGesAjNs5FqTaRO8F4Gi+CsnkWxHWpe69/IywoZyY1tOza8yQrzEgWybcQ2QU4qw4cTB5VtQLgb8kPZ98/6RYZkBZx3G/vjkmL0XtQf37/tmb4zRVEMIxTGl7LfZbJZT6ruubVuJQxzjet2VildVynYoI+TLog0AN2YQaGg69APARpxvmxndxnUHgba/JxDxpc0JboI1i6s4sDGjq1zo+qU/8JhiWg/g3PziVKKExtdGITTg4ihZGHdnu85ovVhOfbWKnVgMk3rCnqI0FJAsDaMht76qySmJA6ydc0hFH+fLjQUKAHVVxWGw7RM3M+ccOw7s1DsGyHEY1XvnUtbdZvqzf/1v37v/8Ea7e3hzduOx56595Nbexz7h3rl98otfJQRmn1Ii9klGIkKkKlQEmGPqZD1xWIKjS79eeSc5l1fgshsxVSWtq+DWIIDMhA6ATFN56ZTZsSuiaOHgU040jkTuwzYKCJf+ZJvjKOecUqnLebMsEU1NrQShm5lOJhMiKrf7zs4OM5ohoNKWXWsKKUrwlYgBCLNfr/qdaXt0eLBYrg8PrrAL45Datp21ExemdYPXj9yto6tf+/rxcp7uvnf23u3bL333t6fVyiDXs/arb3xltVoeHBwgATGqUFmTOWczEsmGUKTFZfeYWs556Ie6pjJaNQSRzMzMDighqNlmdgxmG0NzQgMtd4B33sByjlVV5Zxjik1TpxgBoGQnlcVNjsdxXK/Xl69q09RXr15l5vPz877vp9Mpc1PoruMwFDvNYv0FCEQARmWOwMysXDx/vXfbV9tUzX3gBGSmAmAAaqAAWuSkZhteJiE65oy4FcdvunTY6nm5jKqRkEy1MlOYP2ChpmpC05KvgUgMc1S0DKAetdwDjA5ha629uQPAjFSKnHkTUIbFQzklyAJGYCZZytyWHffjOIwjADw6PZ62bagqUOv7npDI8iT4yaS+uJhDzp6JQlit1pNComKCmB2xA0wxjjIiUVOFNMbZYeUOj7725qvmZL9tD2czS3ns1qySVsvgvaIMqbNmd7VcHl259vyzL7zx/vuL8/Nuubpy67E4jkjOkNdp9MTOMbkS0AlFqU5EIVS2IbwaMVdVyHHccP6ZNxMeRAMYxzFUVdM0q/V6jGNVVZRIzJxj70M5FqsqAAASgdrWDCcLAQWwSJwAHUfT137uZ9+9/ebHvvd79299RLxUfRSAJHJ5WRCT824cYwkk5sJKJhqHPgRPxDGOpdNm5+p6GmMcx9EEsmRGUtGM2RFZEaxlKe8qfkhGY1vZzeWd4hAR6INT40M3UflYEZUQmdhUAazYcW5UGMyFOFxMJbbK5LJGraQMlZ+KCIxUDhMjIFQ1YCOkwtfbqgA265GYmT1hMB5iWi7wbGhfeOZt6Q8mdIVz/sptp+ZD5RNqN6ClwWy1PLOc61m7PDk5QmIBQBudKcFUgJAN0RRQSvmHRKxb+7xtzGXZw1i0i0SoCghkpkRuM8IwK2MSRyVG2wDQ+6aqBsxy4+ZjL7z00pu33+mWy7atXMXdST+pq5yzSe77zrn65rVrZ+fzvu9zjjHFtqlnsykp7Eyn4zCsFwtJ0nVDqIOohrryVdCcwZEhjutx6LpWzTtnbKZiBoa+z/nJF166+sSzD04HrCbonImgaiAaxxiHYT6fD+vu+vVr5FxKCRBVzLNrJ5Oz4+OU8oP7D64cHi0WK0J0hGLgHbeTOmVpvM+SNMfaNXuzZtr6HLFp6v29g7qu5+teiSzlkvYuUlIdsXR7H6w82Fw4Bee+lGttv2YDKF7CJCGEcexVx6oKzE41wf/iYZf1E1phBklOprpYLI4fHe/s7L351tvDkKJ2eRx509xvYrTrui7PLIRQflxK8fT0VLUop5S4xFf9atJ1sfik0nNoHMdNb21E6DZLBUjASr+y9Y6iS/0gEoKCqrJjEBNRDhUD9V3Hhgwco3pCVZyFiWruT+ZN08xCret1QIT1SOT264kMcRZqQkzrwRE6Msk9iE6bNgOzoQ4jZAvOsaFlRTB2nFMm3sr0COuqCiEAgPNuHJNtW5s4DDWBI7QAg5mB28/1o68dD4If+d2/sXnx2d2nH5s988SsCd/1xmv/9Jf+zzoMwYXehIgt4/+HrD8Jli1Jz8Swf3D3M0TEHd+cc2VmDQAKUxUKhaEJdLNHsqmmTBIlk2mjnUiZzKSlVjKTacedTAuJpChZSzRqIUpGsic2hkY3gGazWQ2gGyhUoYacM1++6U4RcQb3f9DCT9yXEMPSXt58ed99J+L4cf//7/+GpuvG/VS7HIoUYnSQIiUSEaGI5ZwBkRcHaCdCqhKuMlOwjoMiAai4AUBkDszFCyOCWZ7HprSxaZi5FElRfNEcLVWQHqKOAaDm7ZgB80v3KSIyN1Uj8hAjOG13uznPXdd1XVdKkZJTSss9JDR1IkwhursW4RiapikFTUHFxiGLWLdaXV09LrM1YSU6/a1/6y8zP75+vh+Gx2cnd1+8ePwf/J//bz/59qtff/eN1JWYug8++GGtrolAVWqsKR0iemrqTr3apm3MjA3b1BDRNO4BIMbUtg26l7lUBFTdAA2JawG+JMh4pcAaYQCkUoqqN01zfX0dY4wplVICL9U5MxfVYRzLwZXH3buuu3Pnzq10qKtOoYghBHdApKZtRVSkWLVPM66Ib02+izFMOYtI/X53RySzl7lm1XoWQAFdrFS9EUAtUNUdiCgQxxizFDAwU7MCSFyfLCAiRoIQOIYYYwrEALBpVyfHq5vdaDKvOZ2uVusmESHMAiYxBnfQSo0lAmYANUBA5ERMVHIpkisT7gvVERCgFKmTfZmFKISQHAcAuN7eOHrXdV3q+n41TzO4r9rO1UiFI6uVGOLlzZ5jXHGcpsxI4zx1bUuEm9idHG3M/KNPPvwQ6c7R6aNHr8w2Pb28GqbhwdnZCls3vxpHmYfVutusu2G/e/Tq6xdXVx89fpzW6+eX1x9//NGXv/713TgSUd/1eZq1CAByVai4lZJFhAjdLM+ziIQYUkohBpOiZlCV606lFHclpNDELIWc10cbEZnnyd33+/3V1dXZ2enduw/qeqg8YyauW0sTU3bbknLUxnmV6ZPvf9i8//lqLEHg2qdNC7ibZtXZxcxiWnKTSlWKBI4pMZMUmUsexyEyiUrXr5iTiK42G1ErYuAkMptKCPHWs+tl+WLmak5U257azNS0gMpGQPRAjGhIi4bLAIi5RgahuyPwUhjZ4veDwEwYY0BAd6t+yosDudMXpDMKB8oPEFWKR233wMEPoWs1frS6ciFCtStjYjefylBkjHnK0zxc7stugqN0ebfLXz5NmxT+1QfNVe49jRH3iCHw5dWLx599etz2MbsHELNYrd2CKZJX5WWd6B96z9vjuf7L3AjxpfwZEPFWlfDSlsDBqopbcl61UYsxc9euyjiaw6/8yq9+74ff/1d/9Af9utmPe+RlFBdDM08ZXEDt+OioSc319mo/7NE1IH7p7S89vP/gD7/zLwLFbt1PJbftSsHbVY8V8WAg5t0wkDkDhIBzmcUUiLPS0Z1XvvS1n70cNa6OnMNcZhdrUiqlXL24GLa7tuvu3XtQby1IwchuPpdS0Yzdfr+9uVmvVtc3N6bChPOcA2GMaZz2tCIWDwSI2iVuU6CmPT4+6rqeAheTGFqptHHAojXOsd5wrc7gdUIBAEheURx8+apFxcsyo94TIuLFgkhj5Ns7dSvZc3MDQPZFwYpupq5aZL68vBTRO3fu/df/zXdqaR8CuzMi1pMSzDm1u92u3tB5ntd9Y2bDMABAitHckL7oToRLDBM6gCEyO6BbyTM5Bgrsi+suOAARooGDGRAzmN4OU26/qMuwEiI4hMARDdm4oWAmOkoQSpHMSbIWnfquT5uwG/ZYNLUpOiqSAqIjOQGFMksCBEUyL8PkxCm1q1Ur07xgCwhENOecuKlWTPM01XS8krMhVAYiOItbu+oATdEByMC7JnGm1Wp98urDr/yP/214cAafPnnvt/7ps+9+/+Pf/+2jbOt2tdsP3MapZABQBwRMzE1MTFREmM3cQ4gIHkJwKdWbdFFlAhIRmrkJqq9SyJFgrvaaC6aNhqGOpgxymRtfdV232w2ictuMMbMfxHc1tKti1iEswZ/19wERFmM1cPdxnMZhWK/Xm341z5O6REyIaOCMRIDZCxEykYpEYmZWFVWZ8kwhlCIhBDPpuvTdP/4OW/f82ZOnn35ydDJ957/90+fPyuvv/EII/Ozi8r/4L3/jZ/+3/6u7XfizH/z4ww8/6voekYiilFrEYCmSUkIKVBsr0BCDFgP3EBKSztMYUzLVPA1MUM0Hx3nOeQSw+qyZaYyx9rdSNM/iDkyc8zyMQ9OkUrIW2WzWTUzmBO6lFEbMOeecx3Hq+i4wl1JOTk7W63U9map/TNd18zxXtA6Ruq5LKQ3TTTV8WPID3MEQ6+6OWJVcpRRm5hDhYH4BVWqMJKpORotPystghFosFcmBYwzRTdWrt2G1rbMKYLgwM6pSKaWxBmILAH3XRw4/+vH7pCUxv37v/qN7907W7aqlVtnVzRSsEApyMZjFQAyHOY/TIJIZcb3uU0wmfnR83PUJwctcSJ2QEXAs426/3+12HA5ib6L9NE1zkbUnjo7SxIaJnj9/XnLu1msKbWq7ME67m20oGgMFosvdVc7zw7t3NqkteZJSjo42hfyjF8/Xm/XJyZ1nF09W5+dptc4X16vYENPosur786b/6PMXP7APc9GbaXz1/oOzrnnvRz/6lWEXkVzUs0Qg4lS3u8pMqCMqRMZDEnCtFXLOeKj18ODKU1tBd+eDJOW2WV1v1iGEYdi/ePH87t17FctT9xhCKeoGDGCuMTATTtub4NBS3Hi6d+eNZtTiZDqPWru/dNsJE2INTapdymL15LbqmmG/3w1jTI0Dc2qabjWNo7nFGBFUijMCh8AhIaGI1gxWMSV+CQgToiGp2EGX7IgQFgQaDMAAXuaALnsTIZmbKxEyVxGpGhw+zTo5W9gY4GbktYSvwp86y8earl7vQSDyitYi4eLJbTEGkVKKhRBCCOC+3+/34zZ2LNOUx7K/2KaMDcTdKj4+J94cv929zd97AZ9vU+aAtvL06dX2yYef9JxQoUKx7hadFNHYK8KKBw2R+5KKDIexVt2I6++rqblC7YJqLKi7e6Uv1DcMcx7znPs2zbmkQOAEzrHhNYVf+/Vf//EPvz9Pk2MgRrFi7sTcNk3O4maBIxH2fY/k5tpyc/Xi4vL5i+fPn6/W69Vmc3J8kotQ5BDj8qCrhgZKmQJSAFTVYRqLGThmo6/8xM9m7sfJ2r4RLabWd52U/Oknn8774fzsfNX3WaSiiBSCuasbMRJSaprt9ZWorNab/XbHYRHLEXIMYZzG4+NNSnGz6lqmJtJ61ff90b1792MKVsnLuERlVaCj+m/WErs6Hd5uarWMqA9SFcAvo8c//6qPWUqpbsrMDR4IQLfIpEO9X7dIEFQq2263u7i8bLv+wcOHu3EcpuGk39yWsLXJjhxq5pGbiWrf9W6acyk5mxs61bKev1D13l4auCM6EoGDlYLglbJSZ0s1xb7iWQ5OyO56u+MviCMgIqiogQCiVtSIyCpxDzEgdW3vWQgpMJv6tN1xDEddrw6exRy9iKullIDYzAk5EGbNKBaQ29gggORCgIEZGdS1vplclhylQTV1fZ3vtinV+E0i8ixZNbtyDF0TyUHz3DebxuXq8vO/+3/890eTJz94j55errNtzo44BM3CIWz3Q2wic0AEJnJAJhQpg2lqg7ubm5SSmOEQkqOm4ooQEN3VHBG0JAMQFVMgIqYFpXarKgYzK6Lu3jTNzfVWRCs5ZjmHoHpCmLvHmMy0Rj++rJvrfD8wIlSbnDrWSSnVkNoa8OnmVaMLSK7mgODORFPOTtT3K3MYp8Hc9+POXLuuff9HP8zztL/aQR5//7d/i9O827FIn5iOjk73w93PP9++98HnX/+Jt/70e9/fbbdn5/eYIxMjKgIg0DQXt2JaW1k2RYKAwdxcRFVLTKmIpBBMUEpxs9QkVZ3y1KSGmSp20zRNfVQki5RCxCFFmQQJuq4bx4EAEDBPU1Xmmpk77Pf7GONms8l5LiI1S7KSPwDg+Pj4to4ppVTJFQHW2I2ua6ZttgrcmKHV/Rdr8l0pMs8TM8eQTK0q3fDgPOmmZsoxYg2FV69TrVruqiohMzMsbvKVv/XFrsnMUFXdtEiRqACgrtNkjz+5DOQMcH2xe/z55cOHZ4/uHN09XW+a1ouaF7N5nuVqN15e7a5uto7Udh0CzGVGgNV61cTU993rr79yfNwBgIiGavACaKrX19fzNFZINTUNUZinvBvKpk8cG5VcRImp7VsMRDFMObdNo/txHAdqGyJqQ3ApBDjPk5uuV1237mbiP/3xe+FoxeqX24EwnLZrcSL0onp+ema5UIZXHr36/vPHDx+++uitt8zh8sln/+Dv/r1f+9f/9TffeZcoWBEyIAypSeJSxAjJVBHQbAm1IGJzrRT7dd/7ISwcmeFgPnlAzV2kMHPTNKLZ1KtTc4XPKxnYS3GvPwGY2dUgS9+kbJqlYEp/+t0fvPbgbmzCg6++czVnIUxti8A55xDCLTnBzDiE6mNZaTZmBRHW67UDMnPXredc1CDPxRhdwdzQAQ0CopurLCbgC2enHg0IqqgqX2BemJkGFQUzeMm9qHBRCIFqdYOEjFwFvjVVEZnqHoS4JA9UXnBFsyvVoy7TWmOaGnEA04oY3dKwa70fArvXn2YA1R8WASAFtpI3q9XJpn/88TMd5pb7UCRF/hdPPvysT7/2q291//zT5oefvoLxKSAjDk9ehBhyRAeIVdDvFrLUKCJgVteaKVjfix44X4eW0ZBqipsz01I1qxUrRMQU6nNX79PN9fU0jnC8cndVaZsWxZwdEL/xjW9+709++R/9g79/du/+MGci3O62uNqYedf1SGGectM2agXc1qt1HvL26nq32yHg0dHmjTffePjooZqouLlXBLN+vGLZ3GJKZS5vvPnWpEoczx+8vjm5vxNPq2MpLpLbNhWZn37+pBQ5Ozvv+14q3ZjIDDgwmMFBD2xm77//PiLuttvddhtCVFWd8/nZWZfSPA3MyIjQpjaFNjXHx8cPHr52cnrGqalmKmwyzoWZ1LKquDl5VafUU19xCQNGrgyYWjWrMYIvHq/MtaRQperLsgjjKymt2mpRKYqVKQ9ewxSxrjST6nWpmnfbXZ7ns7Ozrus++/Tz1HSmdYhfmBkxgHnTNyIyTdchxjZyiMFERUrNQjJVBGBeuHiIUFNSCElMKDIBBiR2lGlGwKZpyijI5DXZyoqJtk1T4StYps4Lx87MkAMTqso85Xaz2k/jNM+x6SgEn0usCqDiEUMgn3RqmtYNpnmqlr5EqA6gvlmtSs6A2KRYRBAgEHuRFEKTUs30CCGKlCY1WmkffT9M+2HY1bKAifb7fdu2IYQiAuAcagKFrkOnhnO2PnJEyPPuiKnN5fof/y64nrGtu7g57oyAFZqUzIRkYfSMMnaYpAgZXA/D8eaobpRqVk1cYoyEWKpzKwW1Bdib9ntOYc3x8TylFPb7XEqJyzIgN12o8gA557r/qkqlhR2eYrod6Khq7dnmear9bSVAiEiMwRF2uz24900bOKB5SGyKJaujV7MGBxctCzIBMEk2qNOqQoHArJQiUkQKgbVt+N/8r//df/Qb3/nt3/rPHr3ardaP/t4//D3xdZHnKTSr7v7VhXz0wZO337r//vs/MocYG0TMWZgiOozj3Pdr1SpvR8lKBKZGAR28vk2vqTqBy+g1MmwYxpvttmk7cKuJZnV3KnN2h1xykbnv1u6epRCzghe1VdcBgOgS3l5jLzmGpmuHYWDm082GmWsMWe3+iaiGacQYU0pmambMoZLNQ4gAEGPSuj86uAMzIYOoEmHXdTlnFQ8x5LyYT7q7yIwEIcQK3d0Wqe7gvjSouUykVEELEwVErolR1dIAF5yPQnCFQUYA2JfpXnt62q/Jdb+bLm+G7fT0poxzmQGA1hTVnUhULi+uXlxeP7u43O7G/Ti1fdd0KwQoJa9W6+OTzfXl5W57ef/e6Sv37ydmVSUOMYSj4yMiHPZ709pFY0rdOMlqc6RVVAykNh+dHd/sdu2qb9ebxx99cndzcjNOBXxWeeOVN1qEPE37cX817jfHx9ur6xSipwTIO5GLZ0/RA2S8fn5DgW7mYbu9Cal9cHw27YcPH38yRZzm6frq6smTp9QEAfivf//333z7bSJAQs++2K2ZfEFk4pWSaBWKQ+i67upmKzl3qQkHPjIRxki1ia1PVghxGWIujY24w9HxMTLWtUkURMQBIFAGU/Cgnm/2q3Y1stx59bWLBw8z48O7D/Ll/hrH1cndWZzBOKUQ4220LSFaHUURzarIgRBAyjxPRe3evROrBD1VJK6GNQBgbmhambu3ySr1KFl2noPxCoDVnqqCGqE691JgWObxdDsLq6wXBK8Jl46OQOpGBhVMW9rWqttCAkQ7xEjVn17ZatXLFABEllg7ILg1fVFVcHcwVWC2EEJK7Xq1vhno4vqZIKiYT3rx+bOTeym2yEzQpudEH99t2p95cMLafvDsbmleI3vx9GmJRIHJzMELYTJISARsyHaYzh0A2KUFqbe5FkNEtJywiwc0UUDCUEmISAeRSKDdfr8fhuoGUDngXdc/ef7k7OGd/bz7m3/zv3fx+PMfvvfeerWahgGBStFxmFfrSG7qTsUajsTOzMN+h4br9doB3n73nV/6pV92IkVYYkXBCNEI0E1FzI05TWX8sx/+8Pzho/MHd84ePvLQmqEWJcQYE4F/+tlnecqnpyeJQw0/qlggMQdiBaiOpTfT+PzZ0xhDjPHjTz7LJR+YZ4SIec5921opx+s2Q+kDb1arV1977d0v/2R/dBxSa+ZqAu5FpE2HJ6Ta5wDl/DIHHpEryo1Yg+IXGnSFeVQEQ1iQJ4qLmuDwqnItqqMleAn5vETLzd3U1cb9eHN15e6vv/HGk6fPLi4uAyc4DM4qyoqI19fXOefKr3R3yYUqHlDKLdctcPBlqWCNggIEJgIEVQNizaK5EEA9nBSBzDCEQKy+QGLglUjy0o7LzMyNkELgELmoxbYZno/OuN5s5jyLaslDhNBy675IbBCxSZXOYgicQohtrB6ebdumEMs0E1MkVtVcygQYiasUywErmSISFSkxxOwmIm3T1v4el+4FwB3UiShVwCCE1CQAmzQnDm3gFjH2x7OVHIADMmCZ5hSDWJnmmZliCKWUiMzEmCVQCNEFqj9JICJAA0BVMUQ0V3BiAmJ1M1VmCgAtYPQl0aKINSmKCCIFCnV9zPPcdNJ1xCGM211Kze0ItRZD/DIPjhCXmBY8yFtSSiKyH/YhMAKmGA7DWFAp9SfUD6TygDkyApgKM5kXdxEt1WF1Gkc0lHlSKe+88+av/spPf/1rX/prf/X+b/32f/kHf/Dez/3c6+3RPdfxON65eL57//3Hv/tP/5uf/pl7Ly6eIlApBYGYg3kdOoTqpj9Pc2VFILmZV9PA2gDUHIB5mmOKc85d122vLpGIOUieD4xgVJEYY81JJaIQeZqmXHLqmlyWN0hEKgIGRFQ1em3bXl9fE9Hx8bG7b7fb9XrdNM08zzHGq6ur2qnXoiTGuFqtwez6+ibEULO7zLTCm1XyWdufOh+g+k7VRbQyHGAZCrP7VC1XF6O1gxyHiBceIREeDnAKNUXu9mBeNoEQYtM04DiLwAC7eWi7R++89fqzx5/tb3IRuJmHoeSSp1XTrrC/s16r6zyNRcrRpm/aNE7l2fPLLJpi6vq+W6/ELDJG8DLNn3zy6XB99dbrb67XJ3PJnOJqvXnt1df+5Z/+aBomAChzRigpdRybaRwCISFGTinxujsTCHOeTo82w802hnhyfNw1IQbK+5ERz09POcVsktrWisz74e7Z+eSax9w7PbrzMAJ88PkH0IUHb705b4fvvffeJrb9aiN5GLe7eZiOUhPaNmz6v/Nf/OcP3nj1r/+bf3PYTwjYBKwpnQS3zaSiLik0IhJiDCGsN5thu9sPw/n5ORFN0wQAtXiqJ2O97yJa44zUBQBDjKr1UCUidITqdEaE7oaqTUjF4en11Xa6ud/3+f7Zb/72b77K0196+/XUpCTYdP0C7x3OgzoUql/UaDBCCjHmQmred32IwdxzkVJym5I7T8MATm3XQfX8AYgpBgvTPCNiE2MpxQFCjNXC16wczOGdGYNX7+aFniPu6VC9+FK61A8OlwrSDs4ocJhH1P8gIl+8eyuPp4pX64T/dofBRVbO1XXawRd+TsCl8ATwA54p2ITLcbIxG9Hl86tVPk99Ol6v7uRzc7/uwx/ehdd+8vzNNjz44fiWtr/95OnNuulDSICKIJEa8UiEFBXB4OWA2Q7Jz/aFNAY6yLkd7NYLnxYPpeUxrOyWxDwO0+XNNRKKKZvNeWq7dQxxGIZuverb5n/4P/h3/oP/63/05MVTMCgiYCMSDePYdWs3H4b9+flp36bd7tpUYkhE9Pbbb3/jF7756NErGIMDiFa/G62KIpXMjE3biZZxLH/hp3+ejzdPr8ej83vTbP3R0XbKBlPfNB998N6c853zOxUENARA8Oqmioi4pCKo6jyN+/3WpASiJ58/rpC1mTOxme33+z41CWGz6kedN317enp2fufeK6+9ebPPqe2rw6Fp0Zy570opIrmKpyiQqIqUpmmLKlVbBsRbovvtml+KTbcDQ6gg8oEWjbe0ZSJGVDM7cDsOA83DHVXJu+3NNI1N2967d/+f/+G/3E9zpbrXYw8NYohmUocdHAIBFhF3aSLPOaeUUkoiBZcMuNsaDBbkiYgIVY0INeeSpS5oCrwc7aLO1SbCAKskBg5tdAZAdzM1gFCx8av9IMVKKe3xWszVjUNIbSxDFtW+bYZ5qu0yOatqPSiI0EzBvW2bxAxmjAhqxBxSwxYW7eKCAKMdMneGaWTGpkl5rsCG9X3v7kQhcBApaqpFzIw4EVF0IMKCVKohKpCGtmh0M1B2LU0KMo6TY4hpLKVkDSG4ax6nFBMTD3nfHR/N1XIDI0BNmlg+z2WyWSVzCORIYi0SIy3lpntMLeBN5Bg4iBgAhkjzPHVdv16txmE0s3meK4pe1xUi2iGXzQ59z20vi4CzzGbW910Vxy4rDamuigquLEOWep2EgaKCqYmZmheiZs7zMI6ACEhdG3/wZ3/y9+ftX/8rfwHh8z7t9tvP3/36z3371379//m3f8uHpkmNGf7u7/+zX/zWo+ubq6PjY0KWZSpdHDClqCq4cCYB2aUIV/nqMqa3GGMpZc45Ncnc5ly226Fd1UBAYqScc992hx5usZlQLXOeavjuMAxt0zAzE2EIqmU/DE3TINHNdts0Td/3wzCoatu2TdNUAtB+v6/AeX1AYoxLol8utZnZ7/cAbip+EDHAsvCq/SmAYQxJoC6t4AshFMzFzJyJkHBJ4bhlkR6cK82kuocQN02qAEYISgciS4wNEbuimqYmAYAC3NzcfPbpZ59+8MG9B68266P3Pvno4mY77i7P16s37j5M7aprY9c1q1WXS9nubsBs0zXZUZyQeL05fvTKq12bQhlfvHg85cHyfHF50XZrRQCzSPj6a6/eOz//6OJDANisNvupFLXnFxfgevfkiF13FzezluOjDYizYQLcytzE9ODOeSL8/PPP91dXb7z2aqImELkxOF3udsDBVTuOTvFkvWnb9vmzp22/miB//uLZowcPssiLZ9cP7999eLxpiMLRaUDYjvuLYRhBuyZ9/PiT1eqoa1aTK4IFPKiRlgggRcRKfo9NIqImRu87mfPV1VWMsZqP17qnjoZzzqq63FQkc+QY+6YJIRCymjqCgYs7uAcA9Co7gL1ma0OTjrLI3//jP/gv/+iff/Nu96spPbz3SvBWzLBLVTNlh5xRP4j7VIQQmQnQkAOGsFr1ACBF8jSimarUogQQxbzrGgfPs0B9YJlrL0dERUREYBEtAVSqAiJRZT5CNYCrodYIQACLxD0EWqYYVedWE3oRmVgPzuuq6lpdJV/yWx2gmlpVkeSCPtXfdyMIt5XH4RQ8fA8goNrikxYUEAOmJl5d7062u67bxATnm+NtKddmsGk/H6/1l15Lqx1+96J/8sLHKTDoNCNFMBOmGcjAuAY8m9VbW49MZFaRpYKtD9vi8133yoMizoxqfMeSvqdAMRd5/uwZMbmrg6NBzuNmsxk1m7ip/9RP/MwvffuX//5v/FfDfGNmWR2ROKSitp/Gvm3GYXQpbUi/9q/9GnPou/W3v/3t+6+8EpsmS4mpLTqrWYjVBkO7pmtiUHBDPD+7+8abX+KT4zMPgrFJ3bAdmi40Xff886ellPPTs6ZJpZQQwzzNgMSMUgo5oIMVI8BcCrpdXV6q5Ovr7bNnT0MIwDyNo4FVWCUFJFMSuXt69pWvfOXs/G5K/Xpzcj28CKmdZQKwkkfRQojDMNbeHgCYuA6emqbhJZRRKhzyRdJPxWY4kC0EMjRTX8plPyB25r4YDt12frCYNCwUZXObxmGaRnc4PjlKKd3c7FQ1hIRA6MBInLgGU8cYCUlKqbURHV7379+vy6NtGiI4OBAhHJwbkYAPhX7JWYowsZTizoBKjDVBjphMjOqVV60AIBIQAgI6aL32ECkGen5x5eZH602eMjlO02QwsQUMseTMAClEM0N1UEsc6lNaRBiXQB8rkiqFEaGo1oENcQSEytIAcyJkZgKY55lD5+41dzkwzdPsUrFGQMQQg5uDsxeLJhCxoAMZutcA8WBeE7dLYjftusayzi6BCdRynj1Q1zTqFEKkGGbTfKglVQ18IVfVU7jUaB7wwEwImKUJKSxNU1AxcEDAEFIIDVXSPmApJedSz+NxnLzK+vC2VoAqAz/M5fkW5Q0hzGUsOXddV/F2PDhNuUO1qMaD58LiAQag7kgMSA5opsGdiA1gGMYpzyXPqQmXF1ff+5PvfPlLmy+98cY//ofp/vm7YJu2Obl7/uCdt7/1d/7BPzu/e/7GW2/9nf/896YRm6bhQGaVb2fErJbnWWKMSA6IKsXdAHEaSozBXc0txIBMIYSSte37q+utI1eQBhEM3UTqfnqIPTIiLKWIFg6sJtM8HW3W5io5M7EZNE1nZlJKDKlpWhXd7/dN06zXazOrwavu3nVd/XhvW+Lr6+t5nPq+q3Y+xLWWrcrZ24LSEaGOJircnnMupRABq0qN+zAjJnA0xIPvKLqbyEw1WUyt0jKYghvXvjxyqGRTZmqaxg0mzUtjBBBjc3F9HWU+Pj758tvv/PDDD9Fs03bT/vLzJ0/bo01/cpwCpDbEhl88fz7st8+fPZ2zFA13H712vZ/+8T/5/ZM751/7yrtfe/X+a6++plj211eM7ASMjISu3rfdl9586w9+8AEAMDoTZPVpHELAcdyuGdeRUPVB3+92w/PLq9h2q1XHQMPVtSAGxjuPHjy9enHqpeXGxDAEbpp+3VkRm53b7uzs/Nn26vn1xdnRukP+5MlTN79zeufR2aPodu/B2bS7+fyjT0zz6mhzf3X6zZ/88i9842e/+/779x/iql9XT56FcL60jl4bPA5BVZfRsFmMMRBP0zRO0zTPlccYmNebTWoaAKgkCkKKMfmEzNw2DQAsmT+VHAnVEAQzmhOEIuZ20q7nPJkM/9b/6H/6K3/rb33z13511a5EiLrWS5FSbqtevU0OrRps5kgEAFKKU2w7Sm2rUqTMKoWRtRQ1VQdH0JJDk8x8nqaajAsOQDiV+baXNTNHDKHyrK0UEbFgpohUActD/VV9qA6sIARXWPS8iy6mzl7xtkevFcPtVAKWj+SWz3+AjAAOdgvw5/7IQZClqgAYI6WUQgprXAuw5mJ5K5NFTqWU2HZlvwcDCgxNCK/c/9Npar52em91MvzjXZkHDyhkhAbAjmAAIAYYOJAhBmZCrCypwGyq7s5Ls1jDROBwsX7YTOnAol1yxBzczD757DMzYyRzTakxdyTYrI+24/ZotfJc/vpf/RvTPP2j3/rNm7wlwLbvVBfLC3c82hxbHiLSz/7Mz7z62htS9PzevfV6Y2Bd1xlUQydpKOZ5NhMv0dSy6pilZP9P/5P/1+tf/8mf+9f/qnLIagG4jeHp88e73e7BnXvENOdCTI5AKSwzBzMm9toEsImU/X5/c3O1XvXPnj/LuYQQpiJmhiFg5C4kKLkNjKrHm9OvvvMut6vV8SlwwhAxcBlLjAHciVCkzOPcrlrzmoviCFBKEVXmYNW53+0WI4SDMIqI0DxnFdFqtCV2GKUhIpLZol6m2/5yAThu/alctQzDfppHZjg9PYsxvnhxMY5TbHrShVtW17bXQOkDGx4RY4yIvlqvHj16VF11oapB1W6BqGXlU83BAxOdxtlUAlQQkYCMKCC4mxJGA618XAByqBqoAACOTrWrVTOAtm2aOME4EhG4IAIhpRBBAMCZAxkDAIi5OzlUskUg5sRznqsuKcVUrIgUICIT4lDDbqwIhIAGSIvsKRI7BxUxs7aJKlqxkwpvuNQiCtVlNkCkBonMEC1SSJGnIZMpAwbzYs5NyNNUIDAzOuQps1rf96MVn1XBzSyXHBejJLslvB/wYKjGGGZWKzVmRi8JKTiio4GruakTxxAjYlWkg0iJIdRQw4qfq9k8z03TMIdDeY23+GItag+4AopIznm1WuWc0SBxqD8B0BjRAVSXKDda6G/o7qKmBupVeUiqHjgO+1nFAkcE+JVf/KW2/caf/Ks//tqb79w/fpu/2jXnx2++/uWby9/+9JMn3Spuzu40LX34/WcnxzE2gOgxhVrNm0mV5Ve5hZkict81Ous4DaYhNBGRioiaYghFZjYfxjGkFFOTcy5SmphCSAA+l5JiEMml5LZt1aRIWXdtKblpYgjs1cItvtS7VIXXfr8fxn3TpKOjowr81CHper2u3Knb6me324lIjNEBQginJyfvf/Jx3/XiX+gbK+KOB43Ckq3GFX+tZToihMAONRIBD1IwN3Pi6gxHeRnUAnOqZ0c16QXA6j+paojYNI2bztViEZgQYkib1fp4s141DYs2bWzW61deffjglYdt2+JURAo49E24f/fMStkP5dHrX3rlzXff++jz62GCGL/zL/5gevrg7bdfuf/wznq9JkRxJY5ABK6qcnp6crw5gmfX87gPMbHW8QaUccpY/tIv/Nxf/MVvtcRH69N/8Pf+4f/3t3/HuvZmuztfbxzx6urqlUcPN/fvueruepvN0dSANJfTVRdOupthyl6GPIlol5p1v7m+ukoKLacnT5+iySD7y6efJ/NXHj5Qt2dXF//a628weBPCxdOnHbdnx2eghhxumT0V6FBd4voCL71B5fj3fS8i8zyXUlR1nudpnuPLV9BDXlgI4WBv5ohYe0I6RGoGpCxlngs5oDgBd0en3/r1X4cmXo0jSGCKN8NE6Fi0hrDWK6w2cgRQF8kC3CIC8artGcnNCaoZv1NIqmQiyCHEWPOtsaJHqmoaMFQ+XAUvASDnbAeC8jLmrnQ2rYFkRNWE1xfjWqhgCTIuORlohjVVvlQ0x6S4KXO1QTJkAkJ7uQdB/XQX7MeWsRoeTLHq16ZSZ3L1e8EcgAiohcQQiBvKGGb1WYrroFkNWbDN/KA5fbQ6Pz4++d4ZfPeb5/u//NXnpwEDGZMwunsNtUhKodYspvXAq3DC7Ua8UJGgdo239sR4W6jRwbhmOf8cKMbHjx/nkplJRAzUXOZpdADEME2CEI43x3/jr/+Nr//0TxcRimG32zsABV6t16o67HcnJ6fHJ6f/8o/+5Ycfvn9yekKE0zRO4zTnTERQc3k4mqmIIgATN12HTOM4PXv27MXV5SyCgXfDwADjsJvn4eTo2N1DYA5c8xTVTEwreGXurm5FTMRUPvjg/aOjIwR4/uwZuDFRyfn05OT0+DSF2PfryBgDPXr48K033nzjzTdXq/XJ2Z0sjiEihXmeCdGkENE8zbnkk+MTVV18BRCrn6+7a/WUv/0AzURESqlfI1IlA+33ezf4YpEEAGZ+my2KB6DCAZbDT7SUokWmaaqKntPTk1Lk6dOnlVhgbqt+1bYtEc9zNvOqU1fVGi5NiGYeQzg+OjLzGKOWJQy7Rgmb3kpOltprGsdhvzc1rIEyXA2s60DQKsG/4j3EhAAAZKqlZDWxKutDUxUCOj0+ZqDri4v9bsDqS+VeSlE1YjbVilQtfYy7lFKKgBuqIyzO7kyoIq4G5uCmUg7NGGI1rnCvP0dVODCFhVnlVsEMr3kCXmlSzLBKY0dXQUuCFKjMc55nQjABJ84Nz2CI2LadqOynPTeh7zsH50BuLqqBuG0arV6ugKJWpCBiTKkGhleIwsGrskJVER3MInPEWGF7d5cizAGJ660ERyBGgHmeAWCz2dRFkXMex1G1HFYOHk5cqsgCAgWO7lbJDZXa8rIQN0OAmOJt2b3EoKirm9zyj0MKqSGOpsYU5zkHil2zury4ev+DD85OzrdX09/+j//fiY7zVP70e3/yB9/5gxTWP/jBD1fr8PDVsx+9913AabVu1FUkm4mpEC+PBSKUMhMBsRHV9CDcbFYONue5DorNEdybptnv94AYY5NzdoBAMcWUUgJAQjQVcCcGR5hzrrvBMExt09WJQ7Ujr7+2TYOIz58/v76+TqlZr1equtttS8nMvFqtamhAFQGp6vX1dRVRrlZ9dTN5/fXX29RkyQ52a/G1bK2+IKxmJqKImFKygxT0cA4hYmBi5GBIbrBoPd1BTU3ca9Q8VBpfjLFq4SuR9BazJwpdagGgSY2JdX0XUnj6+eNN137p9Vc7xlUbvvkLP7866ZUdFsKDEfNm1TeJGf3q8iJP0+ZotVqvAPCXf+lXmOn7f/LdixfP3bTq74Exa8aa4glwcnwMAFgngFYYrIy7/dUFlenbP/9zX3p4n6fx6Q9/8O/8tb/21YePpqvrRw8fro+PYt8+eHB/uLpax9bFnm1vnu+218Ow7vrzoxN0/fHHP36yf/7pxefTNH357bdOjtZNSj/zla/24vOzF/N+7ww7nUfTuOn305Ql96vuy19+x9U7jpBlvL7xYaZqdOyLC8yyFQNUNR4HFlVVWdyTzWKMq9VqvV53XVdRVVWdpunq6mq73dU9pCJztYBwd8V6r16GB4dJVhlaCFAwUAhtKyE82+2fXV6zMxfQUQInVyBerCz9C5yHW32SmiFCTA1Xt8Yi7k7gRFaVW7WKJgrMYYlCYqIYMC6qiBACRQZCMc1SRFXV6lDPzJmZQmgQmSi4gWr1S3XVJbzXzMwFERDYDU0RnRGDAZuTOYm6GTqQOZnjIVRj+WS8Jm7VX00JHdyqEo9o8eeoDLlDggghk6KLFTdHQ2eQYKHvQ4bTDFcXFy/KeE2mqkcxSSlduz7qT1b3Tj/mm/mrJ3Yn6TAbcgFwAkQjN3BTr3GJoUqViQMsyTILKvVyLwZEIHQGqHp+Ujcxk7r5IKvDrKZI01QCBhNBAnVTsKIlTyO6jeM+iyhi2/e//pf+8r2Hj262Wwe4ubkeh62VsU3Uten68qJr00999aswzx+//6P9zVWXkrvNcwZwqsYe7kSBgIyw6RODS8mzaGpXJ5t7J8cP99mwiUjl5uaq7Y5qXBIgV8NDhjjuZ3Jyc1dDM83zPO0R4LPPPv70s0/u3rv/4/c/fPbsObqXPJ0frY671DMcdV3Zb1OMP/X1n/upn/v5t77yU+noHLv16uTEvDSR0MWtoMM85RDCdrcj5n69USc1WHoEN3QDV0CnuAQOm3lFOIvZlOciYubVAG0ah1wmJiesBYQz1Tp0IbTWV90HffHgsgA+D8M0jip2fHwaQhL17W5LgdW11i0VP6q6N2YCU0AgJk4cUqpl2eKCisgx3jpiqdtc5lzyocTBcR7FJpDZsgVozcHNowdzcGKOjaghQVFFpmxmwO6kTg7BHAmJHKhOCVWj4dGq/fz546f77RAInE0hBMaAokJEAQMZBYopRkYKxC5qWQlRs5qRQVBjjg3H6ACAFGLDKXFqfJHZYwHPUpCRA5saAk/ziESU0n7O2cAxAAZxcCBT91ICCNLiUgfMhjCWSUAdIasysQuAU0ytEo+7IRJ3fT9OMyCnrgWCu0cnr57fgVIUKRsWg6oqV5HayNemqOalmLlZwQROGlzWQNGQQxgkg9dJngODsTGwZdNs0zQTcWqaIgKEUzWKrUpDXKifdWcEcvEiXg7tJs9zDiEQcxbJUtRNTQ3MCRdTVMca6UYWAkREZCIwDxXpBwSCLPnq5lrRr7c3L15cfO+7P3r++KZfb27mi80pEA7//J/+k+urT2V+9vM/89pX37nz+qOz0IFAMYMiLmrFDEOoskhzmEqeppkoEvA8ZyCOTetERSTnTEyAZm4IPg67dd91MeZpMpHEdCsrMfdxLnNWpgaBxyk3TeeKaDUtHd0BiYjJ0GKKDvjZZ59tt7v1etOkTgWGYZzGjMCBY2WMElHbtiJydXWV88zMBiDmiDwO4+np+aNHr437yYphnUtTjThzdLoFUN3rRJIQSMVFQM1EzETQq1OJR+YYEyG5Qi5lmCck5hg4kKoQITBZdXqM0YDUHIDcoJSsVlwUAAjixX6KbTo77sfti8snH5fpGmX68ltf+uq7Pwlek5oKE8TUhNg4xaZdNSlBmT/+0fd8uPrJ1x/90te/8tU377/15v2z881ws5+mzKENMSF4qlmqCNtpBK5ClaZpmhamODx90Mhr6+bXvvmtd954o+R5vep2F093jz/9mS+/A1JYhcrkZYQy3Tk+udhuw+pofXSu6oFx3YaLy6efXV0aMGanfb7b9ePV5bi7ubp+JjocbdKXXnvwK9/86dfu3Z1v9rlotz6h2F6O5f7r77zx5a+JU990fdPmcb+9eKYl40FESeDkblLMxMGQWVQrp2fOZcEjqpqSqJKBVn2/Xq3atmXmaZzGcRCVWgO5V19lICdXNxE3I0AzLVIQIcbQrpuQEjrkYW5S18YOFMSNGG2eGCBQYAoIjDW4uKZk1XQhx8jRHdAtcJUBojlkcwMy5HGapjyrimnOeTRRRtSc8zRpljqUGPZ7V3dzKaXkoqpEsChq0N0tuKOpo7M7qHqMFGPjXimrRMRE1QUHDwbZCw0KDRwRgBFJtBbylWTkSBXiNzMhInSwulnWyfySsYxEUHVzAFTNT+1WgoXOgcGQXBBNA6V9yd/58cOfPf/8xc3HeT5WvLderdcPwBEV1k2gs83zpqTTJgAYoDEbAZiTmTEu3qjImmdzr4L/eoIufAEiqLaH7mAIXPMwFqMgJER0dajBRRyTu99sd9M0n9+9dzlepi5mKchsUooKEV3vbtpV23Srt9/98jd/4RefPXtOhMGpzCMG3k+ayFZd/+z5sz/8w+/85Fe+3N2/c/n0iYnFfnXnwYOKiwByFRgRsZqFlJqYBgBgdMWTzXmMa50YEJw05xzavswlcZiLSPaYkqkxcpPSNOzBNFC8uLokIpXpow8/ePWVVz784IM/+7Pvm4iVzFba0ILM50fraRrvPrz/i7/4rbfffbeIn969582qPYLUdcN+DOyumQGJYx0Az9OwWh+bYUytITEaIzsU04zOMQYANEJQB/Raj4Q693UzEwBqu0ZLmYbhwMlBJgSnwFxySak9TMEO6EUltZmC2zjsyzQ3Tduv1kCcVS+vrmQB/EIFdExLWOz+DA5C96Ztu77baUasoS4gbk1qwaXq4ThwEa0tupuLlKxzm4gJLLtJRHJGDkQK5oCALKqxYcnCzCYKTBW9q1kE7O6mHEgQRY3MT7oeHErkiUMj0jIqSJY5RARHFcAFvQ6qJTJXl/fAQdXcNUU2CMUzqgKxqok6IlGM6g6ECq6m5pY4RIqqEjgyBQMgjoZ2sx82m6PUruZpzKIcUgNaSnZwDY4hIpAWKUViDIrmahwiqIk6MafUjMOA08QhVtlqyabFNl3/ytnZ+PljdxJgpwCAAIJUHYvRgQy0DsaYqUnJtQjJOnHn1oLPCN26A/dpHDcnR/thUFN2BqRAS4nQdu12vysijriEGVXfID9I4hEdnRnNjIhd/aCJRUASLAREoWoVHQlcAbxmOAMRBghINOcRwVDM3MnB2TkkB9kON2rl6uqqbdu7Z/c+aVfbm4sPH/+oSHjlwT2j9o//6Pd/9df+yttvnX36+ZPz89XVLjkSOBETEIoIm8lCfUDm6AAqBlj3qHoyITM7QlGtZq3zsI/MKQR0C4cwJPBKsqz/UC7KHMAQMHBIw35MnCJGKc6BY1xCKvbzfHlxBUAPHjzsun6axpwFgWJMdWirqqv1CoDGcZznqjVDDoFjBGIM6CLTOB/1a1c3cWAnBgdQMHAgoJf0h5cMLTJzFTVDgADuJgUckZBSohgqJmcuSgZYEVMPkQDA0SqBdUnvBqpauQrYiWYAEDUhPjo6WnVhvy8me/R8787xT37ta5E7NrCSXWcHIQ4cO1I6Pr0LRvM4Qhnl5uLBvXtNv5Zxe36+Ojl+Gyx17QYpEAOCIIGLZfVhmnImn6oAAQAASURBVIY8AwCGpm+xd/qJn3jnr/2FX7t7dO/NN9/pV/3ls88g8puvvnp2fGyuCkbgERwJqmWfxvT85mad2tPX33x+/YxNUttsR+/a7qTpzrt1Q3Rx/QwDrNdrMVkdt6Z7n/GkjT+83heRWXQW22UpIWK7zlrOTs5D2k3DNI8DhWQptU1SKxERQYmQGJExNbU3YCZQmQEX8gcRUQh4YJKpKhNtVit3GKZhGPdd09+CPQAIjq5WzXpNxFUxsjIjQKCoZuTQpUSAAOjgFgjRY6XH+2I9TMSVieO2iI7Aq8k+ujkhmNVYQFJE4NCEpNOEUkIIMQZRgcpUBiBEUXFwIgoUcskVd4wMuZRl3AXupgoebskW9Uj64uiq2uXUyh2XdIjKHhaEmoEhiHgYUPhhQFAJ3Qa3qquFTLPAngDOSw12OwuT5bk4DD5UhYlUlXM5adOE+k57/PYH2+np8/7nHt28spqTWYuyvUltx30CmY85KRIjlwiMXBSUfK0I4hKIItU+El8yteuWR9Wq7nC4Lpd6kPNXlA8jMzNL5RUyV3PjcRxV9PTk9Gq6LkUjx1LydsoCttls3P36+rpbdTGmf/Pf+DeePvn8n/zO7xyt123bEngVk8y5iKiUxwgmjq+8/nq36p1DzgKAzJXBwMSEFBE5hNQfnYwvrhAKULjz4AGFFAMyh3Hai0owxGoEUrT6gucyMQMTxkACmMuECE0KH3z4ozbGJsR/8tu/nYe9ZOnbRpldNKbYxPCzP/2tr37tJ9566y1Hutru7ty9l1XbpkfkYtqEmMtUlXRIYRrHnPMKQUQ4RSKoAQJINE5ziCmGRs1qm+russiMqRrFupWiEkI8OT6+vrnZ72+Oj098MXKQAzVAlnHGF8hDKoIIw37IOZtq33Vt28YYtuN4cXHZpLTqV6Be8lzxG1wEWWKmleQmRaZpMlVnrH4ntAye4dZRph5FrtXu38hBRedxUCuIHpHhMNJVVzBnwoPaH6o7Lhg4KRjw8jB4ze0L6iGFlvBkfZRSQ8xMXsk4dQhLyKqaODhAkUIVfSB09xAjCUw5ixYDrdntgNCkFA0BwUQYiYnB3UTrESFS3IEDModcpMylb3uR3W5306YUY1ApAZCYVVm1RixUI0CPKSKgqhJgdU08oHG0HJYiTgjEqqVOPawUU7XgyzQDCeppDeBmQIiES52BYZglQZQsDgquc97viw7T9sH53VWbrOimP9rvB1OorodVnV61S9vdbpNSLiUw16kjYo3Cg2oWsujwAdyXiVspJXCoZTYTVS6Dg9ZqQ5f0lQXfJ0R3jDGKV/3Rwgd7/uzZfrfL87w6amOiF5ef//zP//xf/Ct/4+OPnw5zHsXe/fI3r/bTi4sX2+3Nxx99Khm8IWImpkX2spiFoIjEEGKIkjNzqEl8asqB2QGZpdY07g5+enJafbOqGRIgqlTne3R3FWUmANuPY4wBEOY5MxIGSikVnaapuLuIPHnyZL3anJ3eXa1WOcth68YYa0iRhcBmDqDzPKtq3/fLFi2iYlJk1XXu3vcdIpqJgTJEYjI49IwVeD3wQW9B3Ep4CMwhkIqYOSKJCLOHEFQBISSm/bQ3s9g0SFSKEADHVBO+AchcQ8WGlzgcBwBzTYm7PjUNwSox37kX6ehofffOOZhy4CzFTCoxMaRExMzUts08DLvdoGrbYSfIqeGQmnV/1LZHRqG4AXlgtFIDfzwENlEAiJjvnZz9tX/717/21itriNPF2LfBQdOq2z15Ck6l6f/oww+O7t+FJj7+5BNu4puPXt1f3pRSTCQyrThYvx6vdyd3795Ml8PN9l7Xx5aePnu6OT262F2Nz67R7LRr1yetz9M8S2zbh8f3Z1FSu9ntL29uKrDjyN1qE0KDUxG1UkoTGQFqBpyZMQVVdUAkclMGoBjdFsvWSvFh5qo6XMTw7ggYY8ySiajary8kd9MipWkSIg77iQKmmPBQRVRGROWC1fP9gOMfaIHwkvNw2N7Rvc5MpaZwSa5ECDVbZKMOHmIsUg/KoLoYnVTlmqqWIik1MaU5z/Uy6qkhJvVsd0IkDEQMRCFWo/nlog+K5SX0FIGrcw8xiQgCEB1SRXEp6hGJq2QNFkEpgBPVFr+uy+V9E93KzepTAe5YAzFuSXaIWOkMIURytCJofsLpdJDv/96PvvVXv9F9+8uf5uspJQwe0VBNVGXOEMMU4UioFRUCQp5JFD0iLZFlB0ngcsAsZWxNcTuUtH/+VXmJla+EzExk5FbK0dEJB7q+uTw5OdvPw2LTQpinPE3Tqmt91DJnNz89Pvt3/xf/3oN793/7N3/z+uYmhrBqGyDOIqu+R4Ttfri8vn6r6R48epS6nmIjDpHJK4UCMYYoIm277jcnT8wBODbt/VdeNwczSwy7/YAYCLGGTKoWJDRXKRJjnKdxGvervhv3u2ncXTzbBlco+fd+7/cunz6xIpGwiZGbdrvbxdD94i/+4k/8xE/cvXf/6OTs4urm6OhktdmU6+1ms8ql1LHCPEvb9bvdFgHmaSrjHAMj4TAMMW5oudfBQeYixjlQALdK8WfCW2NZREQOJef9OKUYzOyHP/6zRw9feetLX9putzFGQ3RwFU1NZK5ZQvUkM3V1t2ka5zm7+3q9Zo5EYZ53wzBU4lspxc15MfGsOyy7S9PEENNutxfVQFBH3XCgMBCxutaRuTsuyjMEVzEVQDMVNK89DdoiPIdKNlkcbEP10oTaIhgSUIxhGS67vxTyV4ugoqaC6OBI1VmLqJgyMXNQLWYam1jPiYqwAgKiTdMYAhMSEpphnvM8l77vmqYtORNypTQ2TXI1cIwpVIFdDGGei1lc9e319fU8a991MbK5LU9EddGvju7uTYqmbqaENYXbkUnc6uBJSqEQcy7YREAMHGaRp0+f1ki1LKUhUgxWE7YR1Bbv9QXzRQqY0HV3c/Xtv/oX/9L//H/23tMnP/z4kw8/+vj7f/Jnz55ejIMebfpNfzxOo5rVsZcUabuu7/ur62sVqcN7AEgpuEEIARGklrt+CLgFqAwGqcsPqA5YzUTVkWm5p1XoQYv0geMC6ZUideNwM2a+urwYh33ft8ebzfbmomn4K1/7ic3Zva+fPMDYfPL507v3hw8+ef7Jk4tZwtX1/u69U/hCHP3tFxWPCSFUTXuMkQNPY3F35uDmSKSlAMA8TeAemOc5u9kyGHqp0kBErB6GZjbs9yenJ7XpiKlzs7lMIgtz8bPPPlut1nfv342hmefZHWMkQLqlS/KS5BP2ux0AxphUtO97R9wPg7uDQc756Pi4lkTEZDXhjhnDYv99u5HezsLqu67/GWMMjAXA0NUs55k5HI4hFzARDSECoJRSQVlfYsMRD+SRWwYJkgMAoyJhbKhJnNaro2OKXR8iNTE0AfM4wCLUMCCu4G5LbYih67qTO3eKmJiHpk1NgyQIaBgopACqXtRUREkdjJgCGAJAy/kv/so3/sIvfnP74qnN+fnjT46ON3dee9T2jRmcnz/83udP/9mf/Glz7ywCnB6fpbYdx2JIiHDnzumn3/vhq6+9FmKcm+Z6nO+c3X//4mq73929s+mPGkEpgE6Ng+wnEdHtsHv/48fenFTOYpvCOJfYdE3XT9OkgAYhtLX0dUes3V99jrkaIRIiBzOlEMU0MFFYrAL9kJp3ONlr9Ju7eQgBCUMIlaNTkZul91MFABEJyM4L9lGtg+r6JMTDJlmhoC9Ipg7eNHAww7z1LQyRRcqBMeaq1e3Q5nmh6qpqznmhLoRQJQ41qb5KDqvvWj1uACCGSIFhEX1hcDdCXtpSN+L6YFc0yKtuiENQK+aOlRaI1Voe+SUHrTIZoba2BxDl4KVx4BTXEgcRwWmxeFvKdigizKFS0mv56e7qDgGdvElpP81jz6+M8Sf33cf/6AdF7LVvv/XDvM2CR9C2AbNKRgtnK2kYB9kIZ3SNoAHJAdUPAShcu4fbh5CI3QGRFgh5eVYXCikAIJGawcE2WlQZo7mriYhN0+TOIQTNOcZYstajVzjE0AACkoPDul/9e//u//Kv/pW/8v0//Z5KaULMOf/whz/44P0PipV+tWq6Ttyvd/vj2PQtkzkRFdWiUp0xRTR2zfr0zlwcFU7O7x+d3rlRD8iJwyzStJ2LErCZS23BHRG8TcG0ZPDd9ur66uLZs6d3zk5/9N5Hf/jf/vOPP/oAXNHl6OikSWma5pOT42/+wrd+6Zd/5eT0eL3eALdhnNdtK6KOGJv26uamSUk0I2Hf99vtDRGLFjVNKbWpefr8xXq9ik0y18rTFDEb5riOWDMOiQgJAh/QPnUw5IBFxnmay+wAu2E3jkOMXA24zExMoztR8ErrAXIwcFeRaZpzyY6wOToiYgTc7wZVMbVhHFArSosHAxoUkRA4pegOIYQQIrq6a+XVLqC9vxQrLdCmGahZyS4FA9QxcSXPo4MDVwSTEAnJRKuiepmCAS5jiuVxYCJTVS1KsKgqi+Q8x2QQ0ImxCq3FNMZo4EWk4pe0GGv5PE8ptU2TpmlmbhAADRgxpIaATXTUYTHt1XoBWObCKfXdap7FHdq2NYVhv2va5mizUi0iUy3yVUFFTZSQMBKaqy4By5UoIKIic9N0SKReg2+ZiGQWJGo4TtMU2g4qwgNQ222vPmmLy4QtSiAmtYIABJRir/kZI37zl375p7yM5uv10f/+f/d/+I//w799/86r435Kbdv3/ZxzfUrrntik1IRQcramUZF6m0WttjoiaoYpHlJgEWOMZiZaWmiQqLqW11ekqKbgTvUsdQAyM1BSB690+GrI1LYtIY7jcH11ef/unW9/4+ce3F3/5Fe/9Fu/+bvf/ZMfr0+OlejZi6vvfu+98/tf+tI73/iN3/xnRAEIENFytStwjuG2Pa2kbBEJVMPaZlusO6FW4gub2H3V9X6AQkvxECIuKsWFboyIaiqzIELfdxUDa5pkplWRLlKeP3/ede2bb76BSGZI5Kr1BHJ1LyU3TWqapOrDfpRiXd81TTNP83Y7ZM0ipW+bvl8TcGB+/uI5mLotkkxzS0AV+qyQUuVOAAAs6X3V1RPdXOvYhcGz52LuL/0yylwQKMYoUsip7VpAFNHKH61Pk2rVHWhV2gMAoBF7YAyJZbQYoms5Oj0/OVqZFFwkGGrqjA7EMWDARqVU49CIBByJIzJRqDHaNUEbRRWBYmBTA0Am7lICgHfeuPcLP/M1zCOZdyG+88brQLq9foHMMaZ2ffK3/6P/u6TmS+d3h4vrdewR4jiOYuoRnj/9/EtvvZba7uPLF59fXzfdeqP85a98dX/15ONPPjw5O56mScVEPcU2z/ubYf/guH/lzdcvx/De48/Wx0eP7t2PbRdiC0DmSBwNPYbAYERk6KVkMKPa8Ydg7pUFu3AJVOuhfTvYqtUzHzKg/GAdqK6Oi6PBAbNhIl8qJPcQGBFEhKrbslWmZTiUv0vOEnrdCxdZbv1pfAjJ+XNVMizK9MV6qhR3Tykx4H6/Z+aK95iaujWpoRnHeTZVPiwGN6dI1d1jIZYYIhC4q1pQMeCqPDSiAHaos24rNQdbkJ4KRnj95wDfVksPdDeteCdUz0A0u/05f05YjoiB4sKpQHN3dCSo0csIDq6m7syh7dqS54JmZBSAihbNm7Z5VfGz3/mT9OLqnV//iYsNZFASLaXMltt1FwObqQXODKwaHakOjQGBFyWRV+kMLdz16v1qCLGOKw7Xu/xfWFwElg2UKJeM7vM8d23T9/1nF09T1666dhrG/X6Ypql2iqXkBw8flpJTSjc31+Mw/vRP/8w3v/HNnLOplHm+ub6+vLx88eTxZt0fH5+sj0/79cYcqsCVqj0T1LYJiNgdT++9Ik5e7I0vvUNNm2eN3ICpOcbUSKmTl4VLP89zmSd33W+vp3FwyU+fPmaiH/3gB9/5zncef/Y5Uzg+O26bbj+OCHD/4Z1vfOMb3/6lXz4/OwdGbppptqbru9VaRJumzUUJKcQw53m93lTWLyJKzlXxigCVQc8cdBbCxdq8SJnn3MeAAA5uqniYf5mZqTFRXPU5T0zwsz/7s4hwcfni7p179TNPMeVcUlQ+hFcTeY2tzjnP86ymsW37vjNTIrrZbs2dAGmxcUZENF0wgOrqNs95zoUoVFdfRJjm2c2BXnYkt4/5sgDcAFwlF/VpHEA1xSBa3IHJkaEiPYfHo6726gQNBLUdrhJfqvHDTESONfCcqGZbA1fdFoCBVZWNipp7NYOGw3zH3RANkKs9zaK2chSTnHOMMYRYeW2IiyUyIBMSWB2Tq6sRgZScEtc0EsIIrkUyhaZruyLqIlak4uE1qCSE4GJLlEGNUwB0hxgCIBAzEqKDmiaE9Wp1fX2lrGZYBIRRmFA1cABicEcCwmpypGaoYqlpn7+43j55/kLn0eyVV5oYW1WXUhB5nmfihgMjoBOaWZ7mkOJqvb6+vp7nuQL4ZhZj5THUu+C3HeRL9YqqmgGwm2Ogiqsh1SxzD4ym5q6VMVjjqQwsVVoDQJ5mJr66ukgpbnfbf/Q7v/no/p3PPvnovR98+BNf/+lnLz797MnnP3r/syfPtt/YvPZH/+JHP/7BJ+3ReszbQNhA6+7qSs61526aJsaopq6L+Y1IRmJ1R9EDvsLjOFZsVXJ2d5FCxEwRANTVHGqoy0KVA6npivv9nhgNHEH7ttvutlcXF+5+//4DVV2t2v1+FBE3nPNYq/YQQoyp2gqs180hKnUUUTMlhvVqFZhVhQJ+9vjT93784yra4GoVaiZa6bcLZ8cdELSCpLV7rI8WOYAREYEBEobICCRSOFTKnXCINfc4xRRDMFiiaW7L2YMb73K4AAAFJATXwhTb9SpQ2M3T8XrVhDjthz5FBCxq5mBFkKBrWorBAejAcTckYMIQHZCYyUEWytLCAFGzeSplHPu2AYDXXjm/c7IuN7tVaoP55t7mYnc5DXJ8dIabzW/83u/+zne+c/8rb19tr49WrWbr27aAk5emC544efEJN7F56pSzWGNzHqcyN4RouGn7eX9jc4nOTbcCDs/2O4D29PysuXj+5Mnj85PT45MjcdkPO5mlNESJiQNSqVOenIubEXguRcFik+qe3KhO8xSQoRJzD+c6IlKNDb49BREjB5nHujHWoL0aNfNFbK+aCNaaoYriK5yxTDy/QAKrX9z+uvCDDxvu4tYYYvVGub3dtzTQ20lRnSHknE2tqqQNcRxHRIoxMdPowFW07+oOOZcanVyvISziGnj5QsTbuuwwk3JbRBt+e4lmIkaAlSSBB8DMD7OPOlA7eEIsIzC65Va7e+VMu4FVviEgIXHlIgVCRClCgEw0SUkccJ4NzNyTx3exf/yHHz7fbR/99W9fHXcjZ+sCR+YuchsMslGayJtirQcGAgVgvKUlwUuh++LcWFVglVW7AFiHi6/mMzUYAQGYiACkSNM0qoJAMSUx2Q8DqG82m/08juN4tFo1MZVxSk2SIqcnZ3Oenj+/OD09FckpxJDa8zvxwcOH9uV3U+QiQhQpxTzLLGXKuUGsEB8RqVqKsaicnN9zigXg4WtvKrC6JsJxGFQMiYkWeL8atuach2ncD9t5HKZx2F1ffPTBB5cXz7fb7cWLKzV49MqrZ2fnZrbabL78la8+evXV46PTu/fuqWoRwdBanmLTFfWiFkKc5nm1WSMCIa03R1dXFxyiqE6TVHu6Ohs2MwCrNTaAk4OryTQpdjVDUcGq3zce8FWREhiJeLXalDKbaUrp8ePHjx69wsxFqoRbKzxe979SskqZp0m1gEPfdSHEYc7ufnNzPQ2TiDRN4whMTIRuVh14+r4vRUQyANTpSAiss1RbtmWFH0g8tvhQIzGbSclz1SdrKZUTVLfgA9Ongm6L5uXQPenyBDgg1YoRTQ0AEgcTd1M1dVUm0CyECOQEROYUAnPI08iBQ4pVZ4EIZofL86UW4cBgLqKEmNJyemlR5BpKbwAQYwQDKYqEUBXmgUPk2vpDZSQu2QUoavM0MWEdxfrielrd8aUKQ/bDrCKGlbcI1cSjqKBB00RETHFxujd0MSsmZlw/L/U6CFxQZDUFCmJZHZ69uBpnbzfn+93uBz/69JNPnm6OT0PTzsPoiPtB27aNKQKRVqIAU9u2l5eX8zxXyz4RwcV8b9ltqw/nrcL2sF979V4jrAqIZWnhy6uS2oQYIAcG8UrPdPOYYgg87PaXl5fnm26aZjX7/PPnwyxHJ8cFwPnekxfXjumjjz75/g9+LEItUIxI6KSExK63pAeqY0oiChzwC0B07c6RlqNiHMf1alWXExEpYAhBRImqiUwFWqASV0MMWZeJgAMgk6M/ffbs6ubqaLVarzaXl5d37ty5vr5yBxHLcw6RQ+CmaasEep6nUkSKzfOcUmrbdhn0I4RItSo6Pz/bX27nPKWYFr+QgGCmVXZEC7Xg0APD7SdfD5JanUPti9xCYBWvDFU7cMNVLKYUYxQRIAqBlz+3kALRHe0Le3u1L0DmvuvQp1yk7/s2ta7GkMqc0TRSANVS1KAE4gN7j6ECOxQMUMU5RauhJMtJJiJC7io6z7mUed13APDu26+Dl7ZpikxHx0d5HK+vLk9OTnSchlz+H3/v7/Rnp6u+H66vX1zs+rDaTfNu3N27f95HtgKNIwby1L352qufPb88OeqfP318dfn8q2+/td4cXb54cd6v4ybuhwGYYttibE1JS7lzftau28uL5xIY3LQUdJd5Ao9EFB1UBZzcrLpI1I0iNc2Us5QC7vM8h6ZLTWN1HzKzQzmy1CVENaVWXQmRQyql1JsYAgG4iJhpSrWbrQOvL4Aef66ZxNsF74sJzsLcov9OYnEtPcyUCCqqBAd6SslllhEAqltV/Wk551wKM8eU9sPgplTKPBsRVejOtE51a3Ef68YeHJQoAiyQPgcSWbifvvCdaWEVAlSq0dJQwi044Qd0BJm5lu0hUPVZaZrGl1zZUFGYSjwUFXBj5vppMrMfSrx66gM6UgAknUsX2LJww8mRZ0sRssndpo+fTJ//J79795d/avzWa+/pLkAQF183GvIsuQRsQ0TlyktygICLK93hNK17syi4LfyAqiM2JAT0JfsdAAEYa2UE5KAIKQbVUqQgESGFppmHoaEUQmKmkou2asWwJzBoYgIAPvi5xdhwIFBlrHg75GLEEZgAgJhXKe2nnHOuH0jf95U4UtyOTu9Q6rmR83sPsyCFSITjsO/6FRghQtumaRyBQw3sffTwIRNeXjwH00+8FNNJ8vHJyTd+/hdeefSKmx2dnB6fnB4dH8XUTDm7IzftPIwQ06xuwBzjPM8ptcSMRfqu3+63bdtWyW31BTHVpm3VXUVXq5WUEpCAyF2bGFVtKBkEpgn7vkfEGKKBT1JweTYgNclc0VxFq5Nyis2L8eLp06f37t3HLDXnchHyuJuam5ec1QQJSyl9v3Ko2U+83W4vLy9iWpWcU2xf9h+mTRNTagBApKQUHCvWqrXBrXW/qlLAwxTsZW/gbgiuJqPIOA2xSRicZAl8B3UHD7zoF+rsGcxVLMYQcKH1Lex+5jp4EVEITEjjNMFx3dchS27bfp5m4uhgxXLyRkpBdyaMMbpDlcVVeyszI4C5FOYqea0Sm3rG1F+oFAmEUy7AHDAQsZo2oWHAyMSBp3nmQ2yWqABy27booKpN5Pr31GLLCaZ5iiGu16vr3S6rJGYkzKWIqbojx+r4GGJQXwKh3A08ZNWmthlmxLFWh8xs6CIC7EB0fTP96Eef3XB477PP3eGjT5633QaIYhOQcRzymGdgCoc0N1BnwHW/mqapGvxUxhct5p/LrlpmSSlVW/AmJi2iRVLTO1R2pRNRNdyyahS/WEgrclhmokSmioTuUKQ0McaUXlxcrLq7H330wX57uZ+GV994LTbdsLu4vLqapqnvN+vje3/8pz9wkKZNyIHdwV0PrqS17E4puVeyueWsATDGWD1GYop5kpTaYRwRGYADJzVRLTW7vq6iIgWZY+BDRZVLKTUy9vr6GsFdy812N4z7o82GQ9iN+7unZ3VXN3ViiimkFPu+Zw7DMNRMDDeIMa3X6+qfVKUV0zRsd2NK6fj4GJFWq3VKDUFApllmIiJmMWEnd3c19wNJDhdRbeSgquaOAUyNDhaQTuSgIXKloVTSCVNgjrWlALMQ2B1E5BYAOHjCLy9TQCZCyqUExZKlb3tRy7kkbiJFMJ1FmphSwCmXaZxijMQIDhxiJYoGDgIMyObI1RNKRU0RKc9TFTqkJh4frQDg9PQ4pnT14jJfDUzxYnfVbzYJmcR/77/9F//ivQ/e/sq7DViIqTlf58k7Cq+99s6njz+8mbf3T09knMdh99Gzy2vA49OzBgxUj0/vhH49infdUXJrkJtVKwQfffJZd+fMZr16/H53eiRgYDbP8+npMYHWbr4OvACgbdosM4aQp+zuOUuXegA+hINh13b7/QBfqAxqLY4HtdDS9nMNJDAGrtUDHxKIq6EOM4/jWDVZJcvBdPFWUEVfqH1veZZLzBEucuCXEqVbgQUi5JJTihxYRWusaUicJ6hBvMyUq7WmOwBM0zQMQ91+FbxJyQ4uqV3fz/NsInpgs7h5pZs5EYVQicn17nulMLsDoKkpczWt0gNEtBgG3LZKsEjXvNq91vdzazV2ixKBg4IZzADoYKqiKiKlIkO3pSKA1+zEYkpNQNOAGNVb5wiqDk2IBHYfQr+HT3/nj4MOr//C69/1vSeEABOWNYeVoYPOROQe3NJBfR+JBRZuIxICMZrjgZSKS31XhwpWu8bbCyMi9+q+BLfQUc65iUzIogqlmIFY3u/3IA4npzFFBxBTZo4x4fKpMqITswNSQmQwcQcCBwocYmoXv/88TdOCkagywenp3dO7969npdQCBVfP86wuKa7MrWlSba2YqB5XKQZTvXPn3qpr79y98+477yJB27Rt7Imiu8UmDdOsqsXRKSDxLGpIyCQGwAGQOMSmacy971buHpCMwd1LLsOwn6YpNs005VW/MrPLm+vNqguE6gIlb3dXTLBO/awFjGqkYvWaSCmZKjOLlPo2YwqVYBE4GlqMcZ5LKRJjlOWgNwBXrTBEqfSCaix0mFij4zLGZiYK0QzmOSMCE8bIiLjbbev2GonUtZRMYKWUm5sbRPSDRLLWMfCFFzGryTQO47B79OrD90OY5psmRnQPFJzcHXURJkRTcVenag4K5lptRQGgyhaAKDCbVJMFJCIM7EUQMVBAR6ghzIAhxjlPMfaVL5RLUZEQanRzhVSrtLw6LWU1DyHxS5x5aS2cMKVmnKZ+1acUTe1me5OaGEIcpznGiASlZACkEKYpu/s0TceboynPhEiARZYsLzXL09i11DQNFFTTYlqkWLX8MgXzUhQdUkjqrg5SyT+VZ05czeXB0dwOnG4VV4pxnPWHP/p4aNc3owJg0YjcKEpqQ1aJXaNFp2mqoUX1nteU8mma5jxvcFM3pSpguZVWwOI1v+AQgUORklrHgw/+cpeJAcBlkQ0iVpG1FpHKTCmlAFIKLRKb2fe+/71f+tbPv/naK598+KPT85NvfeNXd8N079U7n3x+sd+Pr73x6PisW63FBnOXJvTzsLeiyDTnua7b20taoClwczcRA2cmVYsxFpX9fr9arYhwnmdfZLZq5oAUOBAjvnRnqTRhrleLiBzjME37cWialolVZL1aZ1Eo0jRNTMHdu65T1d1uX12AiajWT0xLuwwApeT9fp9SODraMAcpYqoxxL7v5ikTY3BG5rqVutxGR/55NvQyFHM/RFMtGJgZIzJTkVIhUnenKtepc4kqSFM90InA3PkA59+eRO4AZqWYZNOci+g4TjfXN668XjXIINMcEMCQQzTNpVQnbmhSg0QEwREIKYZQEEG8ZpYhOCNJzQJ3arp45/yMmgEAUghF1Q3mqSCnzdlZCzhfbNum+81/+s/2CCHASUoff3rVnd19cPccFT7+8AMK/vDhwzLNN5pvchnQBoPTgJDnlhnb5vnVdh7294+PHz/7/GtvvMHETPTaq2/+4OOPySGmEFNq25RivNrvb26uTY0M3BQUVYQciWC9Xs3jlKcZEOc8b+KxgotZDGm/Hzar9Wa9GoYRiVJKTdPUtODaMS6xiVxTRzg1zW0kEVHtSMXdmReolYhExdQC/znR3+0PgS+UDbVIsIOr0G3Rc8s2qd8QauxJ9ZWqnHdHBBSxzbonpjwLIvarrv6EpmlKKVqUiEKMOc91dYkIL7bv6uJEhIyVzWTEC9xU9Q2V8VNnVQct2BJR9rIIAPhziaFQWcN0+LOAWK1WbkdOdEjdQUQgAndUBTjkS9zWjPVzDEhkAExGMM0zORxh2jDEhot5AEfzSeQ4dLSV937jj3x7deeXvtSsj65PNh/7Y8NmrTg6SOOICG7xAFRVOqqoBCYi1EXTRoB14zlAtYBIwAErh/ywp5AsTsd4GI5QdeMlCjVrrKpvRATF68igaVs01SpHAfZKZ0UCWARzROwkRMFxOUAAoGmaCrEsf3vgYrai7sErr/ucZ/FWEQkNxNG7kLIqxaCmRM7EuRQOTIFKKRx4P02l6Nmde0Q4jhOEZjsNRJSEZilN0wGT7PeJwjTPzEwhTjl3qa/2ZRxCmaYYWbW4KSBsb272u+vr6yt33w+TmsaUduOgpTRx45LHm4uLp0+C+9Onn5+sj9/+6lcHLeOoXbcy8ICx3u6KbTZNm3Oe89w2DQIDqDutVsfVK484IPJhIr0gT+aKuBAFiCg1CakuRZ+nGRxDCIFIioZQQ8S871fTtCQ7HjAdd9Aqzh+HgZjEFGhJLfWF/UZE4GoqpWi+2d+cde0rp3crHjCD1ziUKppBU7A6PTeoCWhQPVqgrvO6lVs12BStx4EDiEmRzKaChAFlIUkLETDxZCIqKSWvoXLVJNMcHQ/KAyAGoujuRZQORMKKAFMVqzhwJDKccwZwMBCRrmuLlCI5tqs6pQOkGnRgZm3bziWHyEVk1bRFdcGUmBhxuxtCSrZ0C2TmyIgVbQpNYOqoB3gmro5mbkVFEEJkVjdVJzBXrIseAMCr7Y1BmAuePXq0Bv7ss8/MoxoywX4emyYRxcDR1XLOtcuqjVZKiUOYpznnzMwcwu2J+4XOalGOAAAzTfPUdKXOxvXwDf4FCjwiuteKx1Mby5zBoW3aopZzAYDN8clnnz+NXfftb/7s5dfeev+9P6OWj9vz7W7/q7/6l1N3dHp6+umTyw8//qPX33oXQPPkpUBfQzbkVq7Pi0zXFlqkWaVbgqqKWopN9dG+PUUWnqVaXQwLfHLYu5g551yyro/a2+Z7nMa2a5l4nvP52Xk1W27aJtDyWdXsi4ocd11XO4raYIzjWA+qGOPJybGZTNMkom7WtV3lgzsa4mLlVicmbi/5OV9sJG6PQKik7xCW5kYVwNs25f2Mqal2fBhi9e1fyBR12PqFkUrdSSuvs/5FTEExqFlV/jrAbrcvcy53UDWWcafjXktJbXN8dl5EMXBgLmWeYUbCkA6ZDugBQVxABbUQmMEhstWhSfH0/CiuOgA46vr9dnd6dueVs0fIdKW76+eXj+4++t1/+gff/+ST9jiiWVR77cFrxUxdLZcmYLNqwSCb0clJu4FVu756cWEKw7zL0wju2zwVmQGUwZ7vtiertRh8+vizjto756fDzbUyjzkX0avt9cnZade2XiQ6eQymktV4wgQtIvZ9P05jXfmLESCGPM/TNPVtF2IAwAr7VTparSRuM+Frnx9jSH3runSG1VU5xsBMIlqKNE0iJg9fFH0frBmqcQZ8ETF5WRgdlskCAtHB741q/JGTqVf3EkBUN3dMMZUsgPVB8DlnMU0xNU1zfX1NSO6+G4fK+611dkoEwGZWSbIAECrmAQA1byFGYq71jVmNBkQG8MN6q28GzQms0n3owJWu1VDNu/BKXKoTwcM+8pJUtDDKvdYHClC9Pfn2qaj7DiF2hqVkU4ghOgtl7zgmUPPSciDwUqQP8cvp+MM/+FiebH/xf/Lfhzemj3/v+4AOiNEAnQqCLWw5BUQkR1suFbn+2xDdCdxc3byO9wzQAAzMFWup4u5qXOMNrAJyepuQrHmqdSAzF4RhGCPyzc3NMI0PHz3s+zYXWtYF3KYiAQKaISOb1x3QFpTYvYmxqpzAQQ1MFcFM4Z0vf6VMwzDPd2JiNwzGkRkpEDiCqgTiylkiIjdUg4jBCENq5mIVPBB0CqltW1WlkAzQigZOHAKr1oBoU6XIeTbguNDkkUsuRYTcr68uL68ux2GsHB0KIcaoJSM4oedxd/H0yaM7Z0GFxt17P/rB8WZ18sY7c9acC5kiohPBIry0pmnMXEqZ57lNiTmZSteuiNANFaocBg8PCSB6ICyqornuoTEmW2z1MedSgYZDfLyFEOgLASwHolJ9RLFO4nIptZzq+lZNDuk2bodsMhXJOU/T/Mq779JUqmXKKiao2daVhAGg7pZLxQihutEAWDWBBlL1mr/hyCJKL88DBATg2gwxMi3kQTUHjTHO88zErt6kJqVUihygfqhjeFUTKyLq6hTrGnZ2D8yL27JqwNR26/3NbhomYmibVtWGaWZiMCiidohJQwYppXI/K/hUHBQQ/EA1YSQGxFuxJIYYqh4wIiPiPM/WBGJypxCY1AHREBAJCdG5Wt8RIQAxYgBEG6epTD7Nc0GkYZhEdBhGJG4SZxlczVzbtkPAcRhKKS6KHMo01xZ2znPdxN2ViFNKlUJnCkTIgXQ21YIIxDVqMce2JSQRcHdmEnUECrxswVAZQqSm0jStFp2nElOrWtq2n1er508/b/tVu1rtP5ti1zZ9UzJxaC4un7dt+/DRo2/98q/e7PZ/9+/91r2Hr41ZEreAlufs4EwsIqpax3Z4EGjUbcQR1BQA5nkexuEWUD/skxXtMJGyKFSImWnhhB18H8xAxLKMdXas5pujYwoBF8aChZjMfXuzLTmvVqumXWomKUsDUEpuu1TlNiKy229zntUsEqfU1NB4AFBRAFQ1tyyHCSz8d163xwEsAxRTkbZt33333T/+k39FjNNul/p+LjmEFEJAJkR2B1FZJDaLlUnFkQnN/dBFL38FsRvmLGYG7m3fb1K8eHHxvT/703vnr54fb9gkcHjx4vJmO56cnd17dI8QBNQBpjxHgki0kHijuWaXTFocDKjORsjdDDBGXHECgA4xOY3jQOwOljXfuffKkxfD/+U//c9uLBydn6+7FhGoW19tL56+/8OvvfbGG++8eX11ub3effj4ybhKR3cfnp3dn0YH8WZ1dHe14jZ1+xszPTk+Gm6u//iHP3710SuRwvV2f3x84gZT0bTu99sBHIZcQtMbEjghBUoJAZidQ5inAQyJaHuzrSUshcQs1TTr+uqaTjDGJCJt25ZS6hy5Sr3qza3aKzMjZiZeglEJ6+2rB7tqVhVVTiFSXCz9Fmatg5mbKXEkZlUVqeFuEW+/7SC9OpTdLzsQZvLDTAkRF8ux4hWpEinuTkwqOuUZe6wdkYiISEypjUlFAG6XR5VnyTL4AgCkCmnj7fDrcD7bF9jZRAfLirrsYMk/u9WkVECzkogXHPK27rsV2R0gLziIMLSaOHCg6r50WwkqghG0WVksNnGOcpl8S8ziKAhZPSGFaK5giuP8ekr0Z8+u/j+/9/Uvf/mfh07U1BUdSJ3AEQ2/YPGDSIHZ3LjWeAvfY+F4w0EC5u6lFIS6l3DttKtnmoGXMtck6qXfd49EABhTAnfNs6vt97vpMqcU7z28F2pSwctXFc0t24TWDtq9Vt9e/doAQgiqxoRjyYSgWV9/863PHn88lUIcyETdQmIGBA5i6m7Ewc2q26SapSYh8TzllBJTcM8YOKtgYCfMWTiwgRt4ahpwjyESoakwE6Cbe4qxTj/Nfc5zKVnynPOYp5mIVKSo9E1rDhxCLvMw7IPNLnPPNA7D+aa3B3evnz7ZvPZWCEEkoyIxpRAQMcY4z9M4Dl3Xh7je3txMY27btn5GMSQHV1/Attvdf2Gt1iyhKozkIFqLGlJVRgZzcUGgnHPTNAi+3d6kFBHtFputlQcRtm3rbszMzl88ZW7bVzcn5nGa7t67t9qs8/ZpbBKESBykZF4aHWCMIYKoEdUiWwFQpQBgjfswq7ai1VLXVUSM1HSpDBDUhStVDRiBgJAppBimcarvixBVD7zCZWbNvthbMyIpGTItHFIGM+RDmHEphWOMKYICgoUQ5nl2s9g0WvNeHBycmOZ5CiGIymrViwg4zLkw15ENuoObBWZRAwZRDUocA4OZwzRmFKiid6gxQ1Xf6WpWtxG41cSauakqgikQhoDAQG46jeP15RWAbrdbMjfD4/Xx9faaOFQzp7Ztm6axImZWSqkeXdWkpA7+Q4gHdKBSxwRh2QTrc1cLphQj8uGZdMADMLsg8CECmwHW6DRTrSY6IURRq84wu2EECsendykQB/z008/69nS7224261deee3evXsAE1J2F0KrbewBSH7Jh6hPvakuPtRLBJ2HEMb9BIhN0yKim5upgUEN+0GsWCNRNYIyd5jnCQCatq1cGXcPIYzz7GYnJyfMLCJVNZNiGqep+gadnpxwiAfq/hKPSExNmyoAsNvtKs2cEKd57jfHNYsNAJrUXMoV1BMRvboU/v8VQLcH2+EcqQ90pajrj9/7cR1VhBjnaeQQDg8gYDVYMQSsPAQ8hBjV7uQwbYFlK0YAMx2mSbRviJqUYtcS4832RuWzgPce3DlrY9+tN03bUYpIISReoRfJpcylZEcOWEMLMkhBETRVrAZeiwjNXQCtAtOcS2wMEokJAZ6sjra7/O//n/7D7376NN495wgxRgT8+PHT9599cn73REDUNHBQN4H4dF8e58/X8RqzSgyK+0SwDraOPOcyb28Qw/mDRzfFYtBmswpNKJo5ppvdlNq+lDIWxRCQYrESEIKjoTcxpRRVCzEHDgDQNM3hcGHznGKYh3nY7Y5OTuv8tI6SVXUcRxGpQCAAMFHXdRUy/2Ipu8AlDohQrRHrS1T+f6z9SbBmWX4fhv2Hc86995vee/leZlZWVVd3V88AGugGSAAUQIJkcAApkgtaohfeyd544Y3X3sja2AqFF5LtsMKWrfAUDimCsiFSFkFSEkUBIAmySaCB7q4eaq7K6Y3fcIdz/oMX536vEqSWftFRkfk68+V733fvPf//b0QEd5jdpVgn1NmyV1OmrObv/9ErpF519yzY/Hyo691Rk1ThbTVbLBa55P7QU+B20e4P+ynnlFLXdWbW9z3MLYelErU1eY6ZpUiViMzPIFUDhJRijS6sQy5RNbdrvfqP9LmbWZEyzy4Ax2EcENDcaqJg/QwzhxCZA4XAIYQQsObDupqLuSB5ZefNFFzvxw4zG01HdovMIR5c3vPD7dsPXr61ft4aBo5IqlISQxuZKcQQQ3gcF+c/vgx/7/ceDK5gxaqI0IIDmYupzoySuVdVk85KoHqz1ogirxwk3puA1Eq1dvuRpwSAqs4rJUupy7cSQtO0iEQAKcWU0lSmrHmchheXL7bb3XF1nt9pM6sxs3X+rSBbfafrxD1HusW2NiG0XSci2+1+tT7pNhviOE05pbjv90xVAoAGToRcQ40RASAXQQoGGFIbm07NgSiEWIuQKq7Dc64DEHkuE6KDSc59YEJ3NwmMw9Dnaby9ud7d3e1ub1+8eP78+YvDbgdqpjYM4+b0zAArFHFzc+Umw3776ccfomoZ+tNVF1wOd3dEgAzqLqJ5mioyySmI2dD3YLBeb4j4sO9VjTlwrNr5ugRUvpkIyXxGws2dmGJMOMdZzdqpail0MWY+OXnQNE34LGBt/qj04ized+8PvZndn6A4lzVW0AiJyBH6YXj06JGYjSKLzRoIVUV9BpNKERFFJzvaO+u4P98eBIQUAs+bgBsizZVYAFrrzYkRyRHKJDlnx1pUDgiUYqPqISQDHHIWc3dU9VIEAM1rfISrmfqMe1UMrFiVb5oBFJGrm2utMSEc+mnMUmKMDuSOREHV7u9fd2Di3W4vakBMTOYuNbjJQBVEZMr1rKKiZmpTzmY1mqXaHahKAxFoxitMrSZomR+Xh5oOYLUhAABUZOj3h/0dBby8frnd3ZorurUppZTM554dYmqapu1anL2Epj53pKhojHOcWO3yRER3ZApEWPWOqsLMqsVMzJUZ73MZfA7sqFWJpAYIZGqmUvuB1LQK+xbr9XK5nMZJ3YjD40dvjllOHqwfvXbxta++DajgNI75w48+MNAQ2U2IkYiaJtV/qzrV66ViZiIK7sQVHFU1dfAiJYXEFEznxbJewDWykrCSCKp+n1+HFZJzR6Io4tvdQVWqwiOXcjgMRBxTo2bjOHLg1WqlZuM45SnXmKUYQ4yRiYdh3O/73W5nZl3XlZIB4MlrT84vznOepmls2ibGYOZm9SI0VZspq6pypTmYo54p7pUlQObIxKZWSt5td2ZAzADEqWm6LqamhrSpWlUFHJkLnN2X7llqGoaZm7rWpk93N7Wc81QmJMCAwzSK2mazfnB+Jlpubm6cIKW2agSzFDWnwCGE2DQco6MXkVzGPPYiE7iom4uYa8XkHB1m8kQB4MfvvHN9+YIJx6kH95dPX/wH/9v/8O/91u/4cnPIdrY5N4NDPyRsFnHxhTc/Pxz6F8+eM8V+zIPaFGIPdDX02zxdj/2Hd7cfXL4wVZB8mkJHnPv8+ptfpGYxAcbVcv3g5Ha/M8Bdf5iyAHERWyxWHCJxQGIkVgMxKyLMTEyAUPH+UrKIENWHHoYQhnG8vb2tTqt60McY1+t1DVCoxOh2txvHyWsh8fGDmZhDSrHi+CmlijLSrGw7RhsfP6YpT+Okx2zk+zm7HDtW63t6nz9Uv85R/PlKesXMpkHOGQxiiGYmUqPbYZomM0spMXPJZZwmDlyfGwDzhFeFubmUgB4QAkJgjke/ItxnzxzzkedQeSTCuSOi0tUATkfAhKrKoaJH7sAcaySAai0grcg3I4G7IDAhqhertZMhIDFRIHRCJGYiyzkDtznS5PtyQu9f8NnXv0zvXrV/+LJFQRAtE4NDcHP0bJ3h692y9dQWC8Cxlo44AEMR9Wxt17qZugChuiOTAyCQU7WakrhULEhV60/qtV3ZwE2q69nJARhDohiHbIgxhqZtWzDPMpF5QBSA1C5sf7jb70R1qdrvD6vFInUtIxuAqVNoppJDTCISj2hwff+qyqx+EDEFBKTlcoli0353mPD84RvurFD0UFgxdt1YBCKbaOJgDuKWAucsTM4EeZoCBzB119TE6jENIUguKcTIrKUQ1oB/YiIzRQzgtr27nKZpv73c7/dapmEY7u5ub29ucin73R4RxnF8+vTFV77802enj6wWGoIruUppAYNMWjiTNpG7FOXqxYOLi33sTE3MccoEpmAcYhMb6adetynFRddkxlxGBQoQHLHOrAQaI4sKUCBiE9Fa1gm2WFSDbu3Ms37Y51KiOHIMzESec0aHpmkrLXsvukREJlb1YRyub68nnRIxVBIKCRwDR3MTyZvV6uMf/GgaD8vlejdM1HbQdFOZuq4TUHFySIbs7lnF3YtYiIEwmCFTUHOVGghNTsZIuWRARkIMKOSiaIieCyEgcW0/d0Qzm4YCqTNHUXPkwzhKKatFB4y1iM2k1DBJMVd1c4gxmjoe2zE18NxiEQOjD9PEAO6KzEisqjQPw8CILm4E7lzVhfX54ArOQEhFCoKGwEBUphEZHR2Zh2HquoVNDmyewojWFBF0M2COYECYXIU5mDryMfB9fqlDClTcp5KzihqD5tW63d7tf/f3frfoqBoSt5Kntolu7upSO/IQgJhTMhFQCGBVfaKm7uSGgMRzw1cJzO6CiKriblXHFEMYx2mzbgBQVUIIOZecpxSbEGs5LiEgUChaGJmISjF3MHA0ayLud9t//I9+59f/wq+dbE7KJMvF2WrpkiUE/urXvuZkV1cvL69ul4v12I+BkoMrzGGQ98A+c5jJLHAggEBmzhQDzvrNFBO6UWUVEJkYwNVVDQznghZTJXQOTExTGYkCIIlM/XgYx/Hs/IyZh6FPTWqbyIzjOKTIy2XngHnKzNh2gYkJGYjcfBzHYRwQPTDXGgBwOj9/zDEcDvtxFMIUmSOl1erE4CNDBwJzYGaGWqtWlVU2FxoTMDHWA4EwcqAQCWQa+hCSEwGG4kAheGqKu5WCYIGZHIDYAVWACSJFM6vvo4K7u7oh1bxCKJpztu224FtLgXyz3XLqYrfqCjxYLwPR7c3NYZhwnaY8xBTdWawEJmAyw9S0ooLMZmpiBFYcTAsSoAMoVmjVEc0VzAHgdppW/ZCubyLQB59c/p/+b3/zH/zz7zcXT/YOHOKUyxhkswgLiu0Wk3iheL27vS357OLhyssXm2SGNmZTux37yfTzZxcbWvbF+kFPVqshwtX15YPHD/uXN0sMN3d96NZ9P1KMIQTPed0056dn5lZEV6uVEaJjpCDiThSR3SwQM1Aec2iRUuq6buqHmKJk2e12RfTi4oKID4e9mbdtU+EiM2NCcJymgRmJm/vx5RUSA+roSTUZCKHKDOq8Uvf5e1znfh5SqV7sWVsMR3t8VR3V3sbKulaHWvX9YY1QRUNErQZcciLM4+iqzpQVUGduXYqGENuQtIpuDMdxRERxK65gFgADUe2zpLobUy2FvIepnetP6O5utaKvkuLgTkco2+boHPDAwbCGbcw9MhWYcEOrQWzIIlJVobVkLKQwW0/dCaqKyNg9ijiiEjJgWLfXK/rRKX3tZz9Haul7+8clrcUP46QBW4zqhRhh6FPEDccVNZGaAi5o4hJSovkn8GN1Htbfojk61wyj+tah2T229SqK6wYq6kRE0Y36frjdHjikFBKY7w47EF21baBAlBQ5Nc3dsDeR/WE/TadujlqT38DMMZKU+g+jHa2AFZ3G45NRVaui09zbbrFarshNXTYnF4f9PibaX9+tFmtX1wBINWAwyGc9TRJCQDAACwFVBdGZKIuAAxNVobtkMZ2RDzcrpQzDOPT9VMYyHQDcbA57mKZhu72b8jRNU0yhlPLy8jLG2LVLADQFNAwx9uMtwCYiRXPXAom0aEDwaegi7R2JGhQFmUwLMEZITWg5+SH3u92h5cVi2VEIY5FxmgInBDDJz19+/Pi1R6v1WTFCNHDGmrsFEmJAIKhp5YjmJlJEjAOb+2G7Y6YUIjnWHJ6aGhhCSik2TWtSmGh/OBQpMaKjMwRAMnApAuAInnN/OOwenJ4Shj4fTk/O0unG0RGMyZ1qQioHNUAlPAqcHUoutZe8eo3MzREMHQHQzRzrla/V415bWplBJTDXXk5VAEQ1VyAFl8p5g4No7a8DVHOqeRbEaiJus79mJvDmWxiklDllNyACNKlVkb7vKTA4qBgAas1EQ04pqWlw8jl12zkxVAYcQKUAAhNlUVGvWpNIjYLclSmE1HFiJpFiHlQ8EtaWnTpSqEMldBTNHNBhKtkIY9NM/SQ5X3766XvPPv3Rj98RmwBgu71dny0Ra35mxUu8LrgxNYCEjD6ZE5h4Ecm5MNXpCgKzitQAX0QPIZRSkJCYU2jGaTR1QLc5BB8BkGMIIUx5qgiVASCFKo8mDqTuXmeXsF4vLy7O8zjGGJrFwg20CNK4zxkAmP3jTz7dbg8xrswhUcpSqqiPAxOSed194bh5zgJsBxBzBp+m0nVdahLMODHUuHMAxABgBFovVQADQ2MkJ1fTIqI1urqUrm1ijBxCinG57CLHPI5dl0w1l8wcU0pNSszOCFlsPAxmxAxNSpV2Q8ZVsyHiaVIdCwC2yxWIuJibt13LkSkFFQB1pmBZOQZEA3DDuU4EmRk51FfSAOFIzTIQkyKpKISESNWWRRGDI2N1QlD1yYLXzCA1VTgGw7ubGhI51DZKwd3dqBBvdze7w361Pms4nW3OztcrM5BizLzZnJYyFclaippwoJAiIla2cRgnImR3q/CSGSNVCwLRLHV195IFAH7q574duSHkxvH6+vaD51fSrCYPuQzLJu52267R3bjf7spr5w9BfThMFLvn1y/b9enn3nxiY2k4qvrl7S1Hhjydn1642F4xH6aUVqnpnl6/LMPu9eWDcigHk2JK7tlkAb7qusWiffLoHOZ5GrTSyVWvQxRTg6JNSm4G5tMwRPDYdN2iG/ohxdi23ZTLy5eXtVkvxjBNk7sHngXoZhaYY4gIVPsZfW7MsMoXiwoicqg6NhAVgKpNPMqHq6T9FfmXqlZXF/1LmjBVOrp678F4AJjlNADmBnTPdoKZBQq1WKxiB33ft127Wq3GQ19yPhQhJgckZDDBQIGDERr43GeGR899TSB8hdiaVRJH2Ar8WJZ0lD/XP0VHRZ7X3wDXAFwCmPuZ68yopp/90irODHQ0v1Va6F4RHkMMTly8zQZ7aTC8POxvaPvwa90vbr4Kf/BcXuzWzWLUjMAFfPLs7qHYOYaPxqmP5AmdSKtmW1RFQggY5r3Z75lMJKuPn+Pn58yKVzNgZubKzUwrUZ3zbrerIRy5n8ZxWrWtmZuW2HWBsVt0w6GZxG9utmengzmWLCmBE5orKoKbg1bX9f2VUUnTqtINIYzjWM2ftzc3gKBlNBMAB8RxHFQ1hHA4DItlo6p1blNRDlwJIyKqeUJQHUnE98C7yhGKBOcQEHDsh7vtXb0EEZGIV8tNKdnMCAsxS/GuW0kxFQeAScprj5989Svf+P1/8Yer5fL11x9/+ulLsbFJbdM0g+swlAxFG8KipWRRMJEQA1HgEHBy8SI5O8SGE8eQvAHww6Gf8tQsI3NQlWlUAgfXTz/5RE1++mce5sHmZDLwo9YSichBKqXVdi0AtE3jSE2TRDIz1wYrYlDVnIu7NU1drw3NmLu720OZlJZJLbs7qDKSowMYB9rt79brxRuvPakh+l3XrU9PP3DLJROiIZoUgmphmDMVoLJKzHOaFDozZxFmMneO0Yo5uJkFDJOpmeci5uhokksIsYash6NRAgAAPUZ2gVoEW58ytdm+ktQ+B11V+JB4TgvMcxBXlRmS1yCZal9AxqLGHJxm/1GVCpqVnKdSSte1MUYpJVdJI6KKljx1TUSmSbUUReJhmnjGZEINTC8cDQBnXBfRyRCQCZhQP9su3F1MMQZlHrIyx7vry++//97LcRjvrjabDVFUhd0wGWIX121M7phLrgKX+ngNyPnei2u1FAzNiiATIBKZuZjcX/xFlQMRMQKN07hYLKsUtEauu6kIumLd8RGg7ioACOhEpOAqxRMvFotpmvq+X69XVgoRA3laLPphf7e/Q6T33/9wHPOmZaIEVtdldayPv/pI0VKsvmigjsSVgUQiFTXTtl3U8O7qzgMAqRLlgOwVeJ9jzHA24gIRlzLudocqA+LAgXi9WrVtY64lZ0AcxzGG0DYpcENEIkWKIbspIGJKCckZODURwEvO4zC6Q0pd4BiYI7hoVismvljGk5MNhFDE3TBSKFMRcCckJEYDBCAHBAOc6hrIUIoNw+BmSMHNmJDIyKeGmBzJkWIED2YORADOWLMra7SQwzyDoiMQOM4uaXCgEMLdbjfkLOP0wx/+8NFrb37j7a8eDv0t4oMH52fr04RJ91PbpvWqK1rUXVWnYeLIeZzaRZeaCO5F6mb+Ge8DUDHjmj2DlXnpUhOpYWAQubq5ut7eCDViAgSEyIguuaHmyePHbbO6urvtVieb1UoG9V158eLp9e3u9PRMzNebk5Pl5uXLp1u3l4e7p3cvk8Hp2bkCXO53il2RqzhYUVs0qSE+adsmcsmTEZ2uN4S+WLYI5qbMXPKkbohRRMg8pYREk2QX6Q99R7xarPJYai1nDXfOOdcm41qkWO8sVR3HcbPZpCaJzFIQM6v22xBnbOaen6r1av6KZhmqaOTosrzvGkOkP3LK1mkmhM9yc47i5XsKDADmPvd6F5gBgPj9F0RQm4YRHeJiEYhHGTCmmJLP8h0EASWRUuoANE9nr2jT0F3doFog66vzqv60ftzLn2cbSG1CQFYRQEwxzqLpKvKtM/P8qEJ3AgwAhmhwdELO1ryZVgN1ExELVm0yy9g9WJ7sl4aLeN0P74By++biD1+0H12dYzONZSiagzcBE+AXHz76/rOn++RCFkBRsT/0ABhDCCEwkqj5KxMbIrkZwr0Y+l6oA5/91DiHrpt7HYGblNytmtvHMo3DuFkuUogpNdy0w3aXUrtcbUx9HMYXL148PD/fbDbMSBTA3FUJsPY31UuqTrj2WeCQp5RmMBAxi4UQwepuRGdnp+M4MZFonusL3Wryh5olblStCm9Vcwih+kFiDO6zwmkcx3pdisihP5ScayrPcrmcqdlc0A2cADBwnWKxbbqcMngAsNOT85PTzTRO3/397zz79KOf+7mfaptwt1MgnIqsNqfXH753mtZexETR/e7u9vmzZ2dvf3VQIyCMHAGLqkhBh0SUYiJC0Lg/bPtxv1yvmqYFcCk5RV4t2suXz82r/oPV5kYZprnKl4hcBBECx+pYqndpNREQIx2lwSEQc0opDeMoUsgRId5e76ZRIkUTNTdEcFT3WrObSxnOzs7adnG3HwmZQ2pXSwgsKhGDk5k6E3slnaoS06EimjU1q2KqgPPSU6dqRAbAGKKVSQwModb4EpOqoAWqEVkAfgRi66wTm1QD/+9niPswe6ixxZVUrRz13NGn4zSZO3NNDILjt0RZhB2YqF7jOAdne/W4VqES1rRSrHoj55CQWUwVXN0YKOfcNg0gFBF2n4zVgqqHOP+wxxtIAQLS8SqvM4WZqcWQ8mGX2vXv/pN/VBL3oOuWD/s7Xm0aZihKkdQ0htQ0TYihhhHXqe4+TgkASi4WzVBzATYLzIFqgWvNJtAa1QGAKTVHlL6uj9WpSaUoQkVIiSk41sHI6iFbc2KKuIN3y+Xv/rPv/JW//BdSalLDQODkqtqP436/f/zkjY8/+rio1FKxCvAAgs2ZUFVBQFCdMurugI5zrRagiqQ4d/pWe1cIoYIPR2R+ziuCOcG7cmsYQjgcpO/7lJr1er052TRtO47jNI2EmGJsmqZpGiZC8FJKIO4WrYNKEWKIKcbQiMqUx77vpzyJSOCmaRoK1MWWAfO4B51CBKQSI4qUvh+QEwE7qKljjEAkcwapmXh1ARJR0WKirnWpJAcAEYyQIgeHjhEQ1AUUHVmNQgzuimhVpgkABIjM5oaAAO5zSlA9lSjEtO+HfsxdTKlprq+ufn/7e0tO2271Yn15fnZBipf2aVy0m5NNaBgCTTI9u3px8uDkrS9+QUqmlErJAFXrgUjIzIB+3BvB3ap4BQASUKRQiojJze5mkBFDyjrFQClFLHmRmkenm7vBXlw/a5v05I0nME6ff/jo5uZ2lRo7QWqTjL2hT+MoxT549sylKHDWcnXYFdHYtsOUDwSP16cbjJRzZFidbIbSH/rd+ZPHj167KDKl0LoZMzYxwJjJHRBynlAtEQHCOE0hxZzz1A8MtFmvD/sdFElNI+JEwMx5moaj5rX+mDnn1CSOsW6eda8updTsKHerR1W99kzsfniCYwrgPaKjcx2N40yG+v3/W7/CfU/Fq74w/6PJ0fVJeL/mmVm9LGpwUYpxGqfSj6vlqm07R1czDFTPNWBkwEShmAZ3p7mjlPyIciBS9XnUtdXhswHoHgDymQJEhGMrNjqo38+MlbqrOSXVVXYccAAcAai6yKqy0meOUGYNtQMQcNsKMtTTk5ADp0UX2hSNPwnDdB6/sd48OVmXd5+RIrpqdCXXKS8WJzFRJp3yRFmW3lKxtFxUYxSagzsRHndEq0blY5wPzYuEE74yABERVAtJRbaq/JCxJvu5Qtu1Z6enOuX9bp+3+1FltVq6rUsp+/3h5cuXHyyWX/7S2zFw4rlaby4ZOSq/7rlSn0NpZ+4zhMBEYmW9Xrs2t7eXh2FYdN1+369XGykSY6i0ZYw1lIiYg8hUd9k6BtUWcSIuxfEYFVilMMMwTOMYmDcnp9UPMo6jqoqJZ1ODECIFAsBFJ1IsPEgVcem67vr66oP33nv7829++vTZe++/+/obbz6/ejnuD288OHvz0WsvPny/HnKByRNklWdPP3ntK18dpuIcmciJQ4gmVh80huDIi0VLgbbbq9vbm67p1st1IkSwhxfn33vn+3kamRemXsXFs0yq+klmr2JdOCIzFZFxGIkJ3JCxTUlUp2msCv3jVQ2EhDH249T3ExiiOQcEgJzHGtMw9gcp0+rB+TBOKtq1C0BenZyERQeHft5j5m2gfkVAq2dTLWqbN4eZnDJhIlC06uQFbEIy86JKIYJBCk0kLTnXG6YKnFUVzGpOq5sBooi4Sb0m7V6fCS5FcK74RTtiJGoqKkePaDEzLa6sQGgI6qrigblSw14KuFf0KI8ZA3kDDm5SFaykal3XiFtWdQQgNLUaqYyMkosGa0Is5iIGwYpqBIpUc1zQ3M20hmIDzd6z5BRc26a9KdPN1WGCUdtw/ug1uRnGscQ2NCF5KaJ5ckT0EJumaepAU0rhMEdzAYCZFpkAUk27IaI6mzKRGxQtSBSPwWMpNTkXVVd1OJYvqlRpYqgyQNEZrSEHQghExZSIpqmsFov9/vD73/3em5/7PHEEVFAtJbsZIk1j/vTZsxQbpiDqolK0OFgVmxMyEMYQjwaN6oTwOpga2DhNq+USXqlPqiaO+pn65ESYb2evJh2E44kCteRksVi4+6Hvm5TW6/WiberJgYg5F0KIIYWYigqAcQwhRBU/DP3Q91IyEXAK3XLBHGNITeogm4mAq7MaqLiF0HRduz/coeSSy0QQQ7CCBuRugE7oDmruYFI1iMQpxAgORkghGtIcXdMm4FBFVl6PH6wN88A1JRLm8xXdCQDQcJaigFp1LxMh5OIvr2+/8NrqS1/+qhvunt8kpeEw3ry4uWyvNu0yAFITrteL2MZBJkPzgP1wWJ9s1qdrL47oWczql6unHdRz1t0hl5zz7GNqY1uTKMxkuV4o2iQjpoWbDX2/bhIx9X3/4uqqL9PpgyfX189CLmftsnt4wk17Z/Lhy5fiJXV0fb1Dg2Ec16vlMvCwvbvbHRbr1eOTJ3D5ctm0bWqWECOF9abtywRqQPTw8aPlatmPI3VEEALFyKyIHIlSnMZRXR0ZALSImaUm5VwG65sQl+3i0B8qlFWB2spVVZVVyTmXAggUuLpB60BTj/hXtKrHtLzAMUSa3Zfz4FKPszrTHI+eirPOblY79q1WKOR+uDkiMn4PSFiFKo6gBB1z3mtEAgCoSCQGCod+bwar9VJVikrCxhGJsBZ6MDnkHOqmOEN7WMGauk44WJ2NGNBVa3edA1o1eN3LtrUKGOo6d5xy7l8UIvJjK2pNVphdKj7bLJmY5mvcjOC+oBTdSVxA3U0Bxob7JWeXIOFBe7KTcMvy3SfhaV59rXnttXe3p9dU6ODqxdXJ1idr2d60gYPAKnS+CIKYmgQA5sZHrOdIw+HRjn4fb8j3Dr3qTKkDUB3+jLCIRIAY026/iwtOKXGg3f5w9ezlsl1w2xITIsWY1uvN9m47jeMnTz+9eHjetQsONcDOEKzOK/aKNakOvFWRc/9bB6jSfVUgohjC4XAwVUIycjULKZQsDNGOvtB6MVXDIWIVANX3RWmOYjIzm6ZJVTfrdR3GK6pZRNAB1SkwaJ2fLISwWCyIWERCwP1+d319eXl51S26L33pyxcPH6qqOobQSd9f3+y++sYbzemDvgzLRWw4GPty2R76QxkOERMhAlERmS8yBDCoBaZm0DTN5uTk5uZqt92WMW+WXUy4WS9TCLvt9sHFSd9PcHw/mHnWqB2buVRlsViEyNFQ8zRf0GbjNN231Yhkqb2tRFX6XRP85laW+vpoAcBp7G+ub5jx8aNUisbYcmhUbX3+QCM7IQGIClGoz/pjikSth0dEisc8sbox0NFlhIgAxOaJIhhk80POHZOWYirIBACTlMQ1pcSYydzcjDnknM00hNq0ZnPvclUXQnZEcyMDc7vfvSqv4e6mRiFUKRo6gUuIsRQZy1RrSiteYuCmZmiJY62WU/XqGVQzCqxWigoSOmCWQiFkLW1qu7abTCfw3dhn1QaDuyHAbAVlrrnYyGQuYIR1tzDb7w/ZwRF/+Rd+7oNPfviiv7Px9uL0/MXLgyqImJtiwHEczazpPHCsGLt7bf+weVIEmGYnIM5uvBoweExEdHc3Jw4ixiEwx1JyShGBAQyB3OfgwZIF3LDWctXwEGJDd3fmYEepze/9wR/+63/lr1UXPSIw03K1EPCb7d2LF5dNbBGRmQzQi5mrmQWeTSPVtgTukZO5aTEA5xRLHms+UG23rdstHcuW6AjXEdZJew4fMYVqp2KO9XoAgBji6WrZNA0hlpLnPR4xMFXCnUMg9BBJVXfb3W43mFlq02K9qu1n7hWhAuLQT3udptR5CEHM6pa16pZ4xsS0u7vJ0z731+QYAI96UCIGYlq0abVcIeKw7w/9Xc4KaQnYAEVxBgrQLCcgR58NMw6MVBUTAlqVEgCobnCUkeF8KyFQ9ahT7eX98OOnr51/6fTkdJW60m1WYbGk9rDdS86h+Gq9PD07E9RRx0eL9uTiwfpi8/LyxaHfpTa2i9bVYEYNeRbz0VwAJFLyKKpW2fZSQygCebG33nz9jUcXN59ch9SZ2jAMq6YR96FM3SI9Ojk/OTvZX9+Y6XZ/t2jby+vn3cUDBhmGnejZ0PdabNEtTpZr2+8n9XSy5DYedts3NqeRWLKEyGenm1LGw2HPXVCEiydPUttM1a1JiYnzmNE8YnA1QsQQkIkwdF3Xj0MCDMRu2u92m/WmbZpJ5BVMFnLOIczPE2Jq2zbFpLOu0e8DOevdJCIOXh1kiAhe6xfnlPOc86sH3Mym1HaU+WyakZ575svnfLh54nn11+5eof3jwX2Md59RUDJRKRI5MNHd3bWapCbFJqAbIUJkEy/TZLV77h5W+oznuXdoOzgogr1C0s0QEAAcPfCIx6gGQqLA+kposs/QDuJR2AMADurza+f3oFl9ne9fo4rDRAAwFwMMQOhoGIiylDFGSo0BfiCHT5c5fPVMkR4wxJuxM9TA63bxMBBcPm/WazbKokyk/kcs0DaXBH2WDwvVnKw2i5KBZppsjqOw+Ryd6T5rF82i6/I0pMWKmV9evnh0frFer9fLTZ9HzVKDPJaL5Wq5ArO7u5ub27tHF4/qs8QNAcBAGeYO3vt31Gd50r0aasZczTRPExGtVqvnT5+WIqvVSWraYRwtkKiSMsKsF7knTY9Xid1fWwBQilSEiY4ilfrb+hIxUjXhImFNhlXTwGwmZ2cn2912t727urre7u5iYvAoMjihiPXDGLtFJ2U3TJnC8vzi6uOfLLsGidw0pqTDNN7dxtWpEbsHRWQiAnQzMXEwRAYgEUlNe3F+cQVX2+u7Mg2Pzk9Wy+XZg9P9bnd+cRxM8bP6Yq/ZDUBHJluHYVDFLjUOihTAzF2JsGkaERnHEarfm4gQXCWEJiXiQABuKmqac769uX15+XIap9dffz2GZpgOKaS6oi9PTyUGJKaqQ5hvBgPHWaDkQAiEFa2f9Z4VXjz2j87XVgIEcwGAGEKI4FbUmhjNtWjh+mUQQwhMTAHRMeeRGTkEkSJmouCqHOZU3yp/rasFVW+8adM0DliKOACHWOcbd1GTlNjdcylmnlJFcAsdrRxFxIeBmMytRq3NAIOjYaVvrJg2IZq7gpuoE0GTSlG1uaQT5lggc3MDrOk1c0B2ZW4aDm3UIRPiT33pC0muX9cVrE+/8+Pnr7/2+OnTS4pNu4iuUDEPM4PgCJCaFELIZcSCKlpN77M5vIpm3YoWJq5BWdVqUB96RBxDTKkMw9C1XWWa6JUKFHMD9xBqbTvA/BDzFGJRxYCOKOovXl69ePnyjTfe8KokJ0pN2nD48KNPb663AFREiALWOlyHWl5Cr/o962MQKU85hKAiw+FwdnpWH1aEtfdUavxDVVAaISMSgttnAWxw5LWrMqPrutPT0/qVTUyPmYF19hJVd28ajoFFyu3tXc6TKbZtk1KDgQDdrbZgxhgSYshlUhAFqTM3hzak1g0ZQhej6/TG+eLzb32ecOzvDmU/iJa2aR4+PLt4eL5aLVKTwK1rWkZ6+eLFj999/91Pri630+6wJ0xpdRoDOTPFqFamPLUxuTkHqqlIgFi9OgxgBna0E9RPkB/jvx2Qw8vr26u7/em6QwIEzKWsF8uzszMG9JK7RRtjJKCTk5Ozhw+4idnz2dkJ7VHyOIHUZFKYaTWYzfaipppzqaEyc2IZBQo4HQ42TatF+42vvP3+i202y0UhpH7MY9vGZrG9+mS5XNogU5/32zt2Wi6Xq81mHLIbvXb+qEzF3BGcGFNkbjoF63Ucx9xRgDFjjOi6Xp3d3t2ul6sY0s1u20t564tfGEXUEZApMiJr0aZpOHDWUk3pZjUFN8QQyzg13VJMcs67/Xa1OWmo5rVazrlin6pShxgyrSeFoZkds/2OIc4ikkupMsT6WzfPls2MmWtfTT2J6ojzGZBzLCrGIwdy7wGCf+Xj1ZOx7pWqfo8VAYATimo0D8Sqfs+f3N7dNk1cdF3XtjHGAmREzBQr0OD3X8WdjqOAqtWwCoSqbsbjNGNmWE0x9eGA7MwcAtUN717FUgGDuugSkR/3HJ8VxrVZes6t81p0Bd6kpkqoRITRwTBxw2RjntocH2m4FZsW4balRASHErLvHf7+4ZMvPm7/2Orii38wNS+HHGhh0BZrHMzMGSKxqIWQjhPejE5FYnCxOTQF6tZPRLWn2sAoEPgMrB03LANxZw5M4zi8ePFM5KuqBoQxpCY1Mkw2c5xIhK7GTXrw4IGpmOjHH336+htvpK5qLdt6YNd4mPvhrF4cNR+28lN1LslF9odDw8QcHLxt2+fPPjzZnBXRkFKtgiql3Cu8Xx136hes8sl7ID2GEENEh/r1K4ZpogyIFQoKoUmRObhrk6KZrVbd3fZOJN/tbodxbyY5j0M/lJxFLKQUmra/vSNKgL4dxpNHDy+ffjxN0sbGQ1gsw+Xddry7Wa5OJ1GLHEKkunSDVUU4gDsCBhYrFMKDB+cR+cWzp+9ub774pbcePXzEMWieInN1Nta7iIlVrVKuIhICD8NA1AGyg3olA9yYkHlOB855AqQQYi45pCRlcuCTk/U09lU7dNhtP/3ko74fNydnb3/+i+fnj3L11YcwSmEOtFp2p2u93tWtyM3mfUUUQkghzOEliHKMUmVmnSU4Ul1oeTJwiEiIbA7IMUtZNjFCdPNsEogM0GGWyVdCx9UQwMz7cYoxECGoOqG65XGoz5EQggGEwOqubhRCSMnETJWaKKr1XgwhlFFyLkRz1pS50fEQ3e13ahZCInBTRWY1cwAizFKyZmJSMZESOU4lO2IxL6LUxm2R27HnlGpZW+BARG7GMRCSAAAAEzu4KAhi7/lOR2cklTBNS5HXHz66zD5d3XSLi9feePzp5ccD4klag9k45vt0GbPiACGEGJsoZV4Zzc19GEdPRl1nYhSJiexYjxVinHfLXLEcyyWHEOubWGuDSilwDFhCqJ1HDlBTaNXVmDhP0raLZ8+ef+c7/+LJa6/XbC+RfDjsN6fn19c3d7fbs/NHTDx3bbtVDqLmId3fp8hcZIoxxRhCiPt+X+G6mssiqlCLAlThCAwDAKDbXFh5TBRzV/BxmmoH5OnpKQCoGREVlRgCgKN75daHYVgul4S02+12+10IlFKiFIi4FCGgEEO3WBCTmbqBmUxZRcbQEKaY6yEAMTB1IR6uXnahfOtnvvKNn3ozD9ctpmDV2AgpBSIopbgXcA88ENHZ507ffv3ndplv9uWjTy9fXm9f3PTPr653eaLYtMtVi9BEnIZsAMAoaoSkDmAGzOpOGAC9ppQgzeadOim5U3H6yYefvPn6RZxG1aJZr8tdBOxSTE3wAGmd2tWiWXZGUGSiQCGFrkv7/jAOhQMTRgBUrcyazvBPKdM0Afhi2bVNBwCCDuZOCGhYyhdee/3N84/f+MpP/5Pv/IvBaBC9mzJT07Tr25eHs/bccigahWm76x+m5XSYdPTYBoC0Wmx2cptLPgz9mjl2cZ/zvj9sTs9b534Y0qItVhbLRdYyDPkwTnfSt+sNx9aGgxmoI5ozRY4NkJMbMSGiFqknbwhh1w9E1HRtdhUtu+1tik2TGmbGGMUVcE4VYGY2rsx727bTlOuFV3fIeoniUUmsqkjYpKbk8uqJhn+UxvJZRu1+dOrU2J66ltyvBP4K/wWvpCO+eq7NA4Z7nfutCJhFZjMrgMyxiSC53A3X6cEpSsTFUsGAQA1SSsGhlvLwvVYTAJhn8OP+O8aZVw7zd2NzK4apQ1XoAzooOFZxIVU7qR8Tol9VEwMhchGpKUzuriJ8/MN1u0IANS0mrpTHKUXrVu3WBuKmJRI1AmxSe8X9ZRkvd7dX1Jx+4Su0euuN777oPhxYgQzMnNwjxSL1yXUcDV7BV2rqNdSCMCRAdJ8zo80N7bNR1Mz8M5DMAHAap6dPnx36XlCffO6NXFskaab/mhTb1JQxM2EM4fT0lBCfPnv6wfvvN+mrXdeO40RETRNrelhBVNUa4mQzPZ8rz1qh+ISYYmOaidhcl8vV2dmpu+dcABlbqlViAHAMmpu/jh7Lb48Hg6nNMWX3r4OqSplPjllPQ3OmPiKaKyJMeUSE7Xb74sWLq6vLw/4gWswthNh13YDTcr1xRADUUjA1k9jm5MQRwUDNKYamDYs2ffzujx48epKWXe/Is3CjiGQVJaBZD4sGhA7OMZ5dPEqpff/9H77zg3cuHp53XTAVQjYkcFSxpmvNzYuomiG0IbVdWx/lgPWcOOKQAER4d3fnMw1EzBQ9IkORoek2TROJwKwc9rvL559KHj//1hsPzx8Pk7rWU4bcIWAQs7Rc8HKRpRB3IcxBcJEit7EuW0zBVNU9EMNxDarLQwxR3UVE3cmJHRxxNx5WCRaqTQX/iVQECEOKjkiVJlJ1AEaiEBzBVEQVyUWFaG7FMjM4qtlEBY63sGpRBSAmZHedaXut0h9gZlGNHKq6KHAIKSGRmiFxYFYzdDdAdRfTmjTKVS0HbAAGyCE4GABMImPCq/2+oVRHalelgCkwgIEDH3UV4ITkiKbiKXBw8GlYLtrVavPJx0/vgJoU7m6v1g8fP3x88eLy+fVw+/D0PMaFqPo4dl1XWTAzizFEiTXhydDGY5i1iFQ6aB41KgMOQBw4VNQTFovF4XA4OzufdbkIs6mKEZkBCRyJaymcu2mVE0xjblPoFsvnn37yD/7BP/zG17728OJ0vWpyzsMwrE7s+ubG3YlD3bQqgG7meSoAc0L3PY+QUsx5QkQrZqY1iOX+Vv0M9q9PX0R1U7O5mBqQiKUGAwJs77bDMCwWizoqxRChZuwipBTBfRgGVV2tVjHG29vbaZqqPszMzEvbxS50IQYOWEpWBSQEx5zzMExNoJiCEyExOJmiumgZUQ6//Es/99UvnJe7p2zj7jA2sVsvlylGsuJikbAW87mrFEEPjLxp2i40X37jG+Okd4dhLPbRs2c/+PFPPn3+cjvmadecnDwqjlkMEVSEkQEpZwUAilRlXrMOpBppAQITQCyar+8O17fb1fkpIAjYKFlMHQjiStg9cUHL4wHZQ4rsLFKK6PyCixa3FFr1ai91RBTRcZxUbbladu2yDsqzZYiwiDD5w9PTR2cnf/KXfvlHP3m/HMZebQB8env92uIkGV6+vEaiQaSoxqYdRR49elSG/KN334tdtz4/XxwOI7qAFPWSp3VKoeh0t6PNmboCuk+TYbi8u1OCrNqsVhePH6eYmiQxJjNiYg6Y1WpxFRAAICCF2DAxE1uR3e6ua5vIKGZmmqexSGYOgQMTzZIaRHdvmybE6ObTlGfsHKBCjHLUxsx1KKplKkZ2j/q8CufUrexY/aamULvG65RTZ6x7hvr+r9+fU7PYGY7y2c+mi/n5BsejvDIDIcaOYLfXANikNFzfnT94kFUw8jBOi24x5THUhIOG6J6MrhRU5RYIEXxOlLm/Ud3Ba8rY/EPe1wgiY8X56f7bmaezI7M2LyiuOZeaMOBmVP0Lr0x2YopoWUZKsV1EyboMxFqyGDthtmITUsjggxnFLm5OPlzR3TJyfP3NuL/9dHu738amYWRQMAcmNNVjxOIs6C6lHHNvCRkCEFpN/IBjVj4eaYt5MgOcCXhVBZPFYkFEV5eXZw8fdItOi+Q8GTkyiVkupeRclZ6LxSLGeLfdXl1d3d7eIp7VidXdY4qiNdv2M1tBvZ5mBTQzE3tRopCnCQlNLMa4WG5Wq03bLfp+uLm+jU1sFy3aZ5b9CgP+kVe+wm6qpgbmBUoVFuScpRQQc5yF9Pf0KiKqyXY/HvaH/X5/fX318uXLnCcgWLQdAMQYP3r/49h2xGQqZycnu8urw3Z76PePLx5zE02Kee241rPN+oN3P7x7+WLTroCDiYNZ1UW6G1EkYHNAkOo2EnNyXm3Ovvq1n/7+977zgx/98K3PfWGzuSAG0JqebG3TgoOaojsGqrhrzTQIIaCpqAB45HD/1h//67lMqg5Ah8Ph7Oxks16L5DyNh93dOB4enG8Co+hUmTVg5hjAiRCmnNvI2MVihrUL2Wt45nzp1B8ZEQnJKziKCO7MrNW6aQroTBwodBQi8+6wf315AmolK7IjQq1Ldgh1w8K5qAvQrTJ/5u41U98cwMy9iKgqHM3zpgo+dwqqWhEj5FrmAPehZE71HjZVJjYVdzRAK5JzFpEQI3VdjDFLKaX4nIYK6m7FGB0ARZUoEPNYMiGHmLZlOIgs12tAqF5OrpJvRzeFurkD1HQwQmwpdUFw6N3dQnz09leWX/jCf/q3/4sCoYnh9vLlgyfnb732+t3L2/1h3zZdt+imXIZh6LquPmdC4LZtzczHUUymPIawBAAVUeK+7/1evoDgAKYaU53yPca42+1UZzD/aFbX+ozWOWUK3BzA3FxUmIO6T2MZU95sTp8+e/bhRx+1bQhkojKN4yeffPLpx0+JAmJQETPnOQO8InmfPSRFBMAAgqrEGHIeqtnCTF9t5vmsNxSRmQOxG4CrqgIi+kyz7nd7EUGE5XKpqiklVXHRpm0Ds6lWBrxpmmmaxnE09VpomFJEBARerValmEhWsSIjMYcmVilQE0OTAjGqozqio5hG8jLt33i0+uKbZ1R2Z10Eh8zBDIisxjiYa60PQEQgNHUDZ3TNB1C4vn3OGNYpnTTh7Z/7wq//6re+8913rg7T89vhn/7z73vsAjcCYCKRyY+47ywAghrj5JVXRRMDBgBzutnv7vZ988YjVRNXK1askKFO+7JXS7ikFRK5OrtSQXcrIpUkrIESU57uHxqlyNAfzKzrurZpAak2Q9SUUQRr2wSO4vntL739+PHDvj8QJghhcpexLPCwiU1ISVWYEVPTdCk2vNvfrNvNctW9uL1Znqxe25x+ePPclIvbZrEax36RFk1Ih8OhnpQmeru9C8tOSna3x0+evPb6k36/Z8PEUdVCSJFxlwd2YJi1fjWJkojR/exkc331/ObyxcVrj4fdLrW1eNuJilDEqllhatvWzYsJEYUw56Sb2TRNVS0KDqUUkQLVj3if42yfATP+Ch1RPyrlEmJk+qwJtQ5A93/rv/fjngj7V/4EVjofARzcKiuKlJrUSSmaIZeffPcPfyj6J/7qXxz6MTWNqzEz1Xabmeo79tH/q//uvSjYZ+KcfGb1qLpD3bWq/9wdEOoM9ur05+CO4AiOsw6RENGpts5DXVu1fuOG6BRQSQ/jDiLEiPqjTx7+wdP25vDB848uy04jkCoXlUMhTJvuZLU5fQnlt86mf/EnHuevPtnl7ARooEUJ2A2qKnke7txrJXjVeTFiQg5EAGjHo6VienNIJeJc/Tr/BwB8sVw+evSo8imXl5foEGOKoa2aLzPr9/tpHANSk1Kt2F2v1xzSJ58+u7ndOlARm6aSS3H/DAwPx4/jI6k5NkZ+lhZV19fNah1Tk7M0TdO2rYjc3W7zJOA17j+ZQv2fG9YsSjdwq9ZIUNN6zR19iQAItWGu/villFL0cDjstofLF1fjkA+HQ0rNYrE8PT3brDdN6tzw+ur2drs9Oz29ODtxMxBdMLKJlEkkt01LDszBkcGhjYHd3v/hOyDCFQU1qHhAjIEpMNXGFCRiihFDhBAUqOkWP/vtnze1jz/6qIwDgePs4OOYUq3XrIGNosLM5jUo1sFdSlFRdwUwEQFwACMOzFFVtbaeAT5++CTFpj/0h/1BpZw/OOkaJsi3Ny+urp7xXJM3K+LVDFNsT04IyeeGG3QDVZnjMQJXcRwx21HrBoAVUwGAEOZO95InNOu6RhEgMMeAeA8qMyDUsLd7kVx97tQf39xqDCIAAgdDMHAMHFKqzGbtefEjUz4PPVU6Ug/REBy84p+MVONiwYGAUmibpktNk2IC8EmKuQcOFFBdpjKKapEiRd2diWITgejQjwBIIb7Y3imjE4NB4tDUflEHAmSswTQMgGpm4C4WlJbcsVoR/fR2+60/9xevQvPBOEqTjKBjHq7ucNDXHj3ebNbjdLi5vQGACsLPm4MDc4whEmIpMk3Z3GvsZKmNSMd0Wj0W+9TnQP1kSmkYhnvEHedOK7vHjquqr9rriJCxriixZAkhDEO+udt2bZslh8gvLy9VdRonDmFOFQFQr+UtfC++PB4qEkIsJXMgIiwlx1gjFY6P+uO9Pz+Rj8/V+tyuz4c62LvVuZaZU1WoqGqeMiBWeVPf99M0xmNSiZkRcYyx67pATEhMbAKS610Dbdd1bZuY0RXUU4iLJjUhEBI5IiChTePdo0fdN3/686z9IgGIetbEcblcLZdLAJymDEhtu+DQEEfmFGICDkUNXNsAXUtdculvn3/y3vvvfPfT99/5ma++9cd/5mtPThe/+se++XDVWukZPCK4qeQRVAkdVdAUzdC8koHzaVM99hREMReJTepWXbvqQhupAYoeIjl4ERlLySpA7MQGpE4K7MBqVNQAqO4ApZT9fr/d3pVS2jYuFgvmgMc3ghwCUiDKeaLIu377Z//8n932/f4wcOpC6EohCi0kfrm9yqQa/Oz87OLkJLrn8eDo22lLDZw+PNkdtqC2jF3ZTVIUzTuKKAZFU2jKpEM/9eNEMYaUFsvF2YOzL7z91tnppoyjjGPp+zIMlidXNbcQQ9cuatYGILn5lCdTTczLtvvn//yf94fdatW56dyn5KCWS8lFREUqUCMiqlZLUmtOStXmd113T3LZvGcCEqqqmn42rBwrQV9N94kxxBDqll5vgePn4/0o8ur88OrF/9/34Z95uWg2WWPkYto2TZdSf3vXX93+w7/zm3/7P/lPH3Rdo+bT2BDO0PEf+UruZl67rCt74G5VglA/KmLsroiEcw2NVXWw1XgdmoES/CzhcM5Gqi5hZg7MUBXHR0YQ53xek6JTySlhMNuVvB3x7ZPVzybq/vG7sX+y/hNf+uE49YYU2oOOvGzLkHMx9nC2Ohnb6Xe3+8/91MXhJ6fDuzsEiBwTpKJq4IR63/rlx1Yvrwkc5Fy5reMD597xX2Oa7xvDoHIIZqaWSz7s903bjuO03e0enJxu1psXwzhNkzJyjDHw7HdDyDnXaeni4UVq0na3WywWHGjox5j4XgNfWYwaq+DuZiIizl5Ex2lCQDCrl3JqmvrdmiFzWDftvt/3Q09IbdtWP2EI4b7HTVW9RuCB49HwdT94EaK/EtVQ2bdxrKoIappuLsly3R8O0zRO06Rq4zhst9uzs5MvfemLb7z+2vDeh3fbYdmmFJZaJgBNgePc0uUhBhmmddu8/8F7X9ptm9U5YyBSAoU6HCgjcLVIZi8OyCG6RYesLt1i8e1f+Pm/+1/+nZub6+XqrMZ6d12XYnQnNXSwXErOU0xcSWUAcADmULtvjveqhcCEPMvbwREphub09BycRIyQN+tVDOIgovqHf/j7HBZf+tJXSlaiCAYqMnmeInfr1S3VvCADc0K0I6nKzFmViewo40BERzPVyhGblmIFnQEQzWKM43ba94fGuTYWVswJ1AxhJmMRwSFwcNBisw2ViEopPsewgh3HMUb0Y+DQjNOqumMR4VwMAECrpNFEmdlUyaGGuxuSO4iJVOUn1TioWo2ncyUkoWlVfDswxJTMfcyTuALAbr+/2W1jXIoqBo4cEjOhYQ29qS88zOmjSEQK4AyiaMAh3Q35ex9+8nf/0T+j9YMMDFNexbaoiehhv18su8VicejHacrVIQX3Vthq2ERQEVEZxiEwExI6qAod64l81tNYscJcu1+wbdth6EUkxjk00vyIec+1mwYEczQaEhJGZDErWdoYTHXsh9V6DTbdXD1/++0vFsXr25sYm+P0YuYKyHQ8G8wq5l9rj7CItG2jKkgeQtCjUeZ+4624Xb0SzKy4Uo1NA6hAUCmSi6xWq+12W2E/IpqmKTI3qTGzmmxZcWUphZiZOXCsOZlSpkAUU7WPBXczV4II4FJKzqUu1jXzhLUaN6XImGj44tuPHp6lhg3dI8UsVSrgRYQcUkyMWLuBzY6x/04G7jZdb28J+dCP+90IhIdtv8u+m/z0weN1Gz54970OpQ00lcyAVqs00KyoqpKakaLDUZkKaEaGQuhAYjBNJcTYtS0swBRIVw0YeIqpjW3r6KIWAQkCEFb6wWyGKQlnhG0cx77vOYTVYpFSV0+PEOZHSjAwx3EqTZueX92cPnzwK3/m1/4X/87/BgNzCKzkqiE2QxbuVrviyzbl7f7Bao1uovLy9mo/TUpIHFQRo6xPTu8++UQoXl3frtcrwNCXEpmXq/Xt7jaskqry2K/Wi1Vo2iYSgpss45LdHUzLNEm2CA6uIiZKgTmwIbAopbTf7c7PHvz4h++898FP/o3/4d9ou2UR4RmJmNuogKgeA5VTqME/Mca2bStVSkTMlHOpfFkkriyVioJD9S1W/XV9dN3zYhVVFdGSi6reD/H3Q9JxP5kHkn/pF3h8p+9HIj9WZRM4ASGCETITELAIIP53/9U/eLJY/6lf+MX/5nf+8Ve++pWf+da3tiVPu/08ALm5gR4vemeuvV3kTuYINqNYhISIBlZj4Ku0FNGR5iUY8P6bBTs2S99/i/NT3d3dayuquwcmkdprXTF+qn8pIm3Wa2+15GkpfnIYvg0nNz+4+wg/WP/5b76X90+vnm8DXpahId72w357eLJe+Onqh/Lyt7Yvnj9kew8MSdDjVJoQhByg5u7MYfOvvKzm7qriVgmkOXDUjtyeIQB8llnpagCO6K+//vpitToMW+BwOByaEM+W68Vi0eexmBKCow/jwcwbb0ouNZBjsVisT052u+0keRE6AECkEEK9qlJKVQlUOVZ3H8YhhaYUA4fIqFZqleOiW0zTpOZ1m09NChTaZZNzHsfxnkS7/ykA3AzUasHTDAnU2RzV1ExV+iL1iVlKDiGGEBeLpUg5PT3b73er9cndzbWWStV5zpk5XFxcuMvF+SkCTMN+tQi+3d1eP3v2YnjztdV42HZMquJMZpJS2KzX44effvrRR19788umNUmdABURyMkU3JRCoFotVvNtmcHCbnd7fn7x2muvv//+T95884vV+bvoFiFEVRdwNSl5KiUGClXNmqeJCVNKMQYAkyLurqZtaFX1cOhrUrOrI3KMqRQhJFMbJSO75fEH3/vu9ubmC29/DUg5kiICmEhxNAderJcVoXEHNwdmDIHASsmKDACEaKrVUoFIzFxUiUilAHlAVrXA0cW6lBBApAiBGJg5O7dtK6gIsylT1RgBCNRBihSROZVYrUgmTQ2limJGYmIGd3QDACPw6u+gWMQQoGkbojSNo5gzUQrBzWuynANwYDGVrEXL7LuB2kVgVdQFfhzFEQNQLTzuD7vb3V23WhOFly9fiGMTA3OIhAGBiagS6m42e+XqdmgInlUptF6m0DRQykfPXvzGv/fv94zYLLQWhCKIOZi7Ft1LjGm1XDZNO01TXUznMFXmEGOTUtumcYJxGrumRQSCqKrqWkFfrxmVAGpSConklBp3JwKRHCPfQwlmBiBQY4RmusXBHOo446JmTMwch/7wwYcf3N7dnZ8tzy/Of/jOO7lA34/g5A5MLCbuEBhNoeKUxwQHCzyHrAD4OPaIUEquRwzOibJwv0DbfWTccZKqC4aBI2KTkpnlaYopMlMpGd1SbDmSldLv97FJy8Uii4QQSs7L5bJru8NhBMhNSm1KY5ZxN5l7kyJXNYRDrXZpmibFxiS7KUAkJANFNGbvGmiSe5mGSWJ3smg6wREIGCv/Cw6sucz2ZyJRNVDRjCWHEA5jvhvyi5vdYcrdYplJMm4/fXFzcX7xC9/8+js//kCuxhd3h3HKjiEgq2spBQDNay9prTQAqJEKtWUOQ0xRHYvZqokUInOISgk84JJjQ4F07gJndQBDUcil9tGiIankUiRPUyklxtB2i6ZJCOTmGFBFITgAHJkwdyBF+LW/8OvXu/1v/5N/HLrOatodpmBQ8mjs14d8e3tIOS9x8fDs0eXdjfiYFu1YhJi4SQPBdr+jEEbVlJrLcYiEiTjEOKpSt7g2aQKdL7qrq8tt7pcvLtwU1ELDAN42TaJQwy3NbZoUEObIpJq9B0zMh8PuJ+/+5Ps/+v7bX/vyL//yryKCQnWRMQemwAAcONQuFUQ82ZyY2eFwyKU0qalh+nXTdpkxgjnzkLj+O1Uh9MrcgyLV8Y45l1IUHIgo8KwSrNh2hXLvAaSZj4NZ2vEZCHpMs6uIzAyOowOgExBTjSFZr5e/+fd/83d+57d+7ed+/s3Hr/38N7/5/d/7/fOL8/PX3jDwwMTM4f6fO9IfDA5q1aFKQEYcVFVcENDBGefofUbiUHFsNXAONU6FFMzBa69ezmWWPqggUqBQ3FWMkDCgqigYugHWsxkIsU0BkIYs0yiN4v7jZ3Sy7Nbd42YF7zyXu/7BV85vHjYnm9Nt06cJxOVm2D9cnzPG5Xr9wacfWVQ0rSGNisKEPi/HELwy0veCJ3BwdeEQHeeuLlcDw5ACIHJtIzfwiiqCMzqBPnhw8uWvfbFrk1JHgXMuu91+2S3axULBA5iriFu/3XVd9+DBWTFZLhd9P3z84Ydt20TkYRz7oiGwqqioFEXEoR/VFOcikZnunPJEGCRP7bIrYmYgUg7Qm9jl5fVmswagaRpiCJxS2zTTMaxzGA6mVRTHIpmQAcykarNQRENI7jbmkYh1Fv+hqnfdKqUIaIsubm9HKePQ76eSS56WXZenATjEdTS1rutiCiHGly8+jjbYeLi7fHr34lnbhhfffyeaCiqpRWjBSBDDarNar599+P7Xf/a2iZ0QFweHQA5sSuS5tsMAEyq5OqiWEa0ctnu0/FPf+MY73//+MOwgrJt2GQICskMhUqJiNg0DuroWCwgBI4Cb+lAmJhIp3aJjYCteigYIIcSU4mrZvnjx0X64RRSZBoqR2gen56t/+vf/Vri9/cbDs7YN2VkgBFO1ngPa5A7t2fkjI5dxatv1KIM5sjEQ3mcA1QoZ4mBiRFg5OWYWdXIE9wmMyUB1Qb5E3JfpZLMokzGYmzaBydlExIWJicOYhWID4GKGPPMdATiwoZu7xBBqxrOpVvUdYk01qOiIM7laVmMHUFAAD02r5rV2nigg+Jh7RwypYQiqBgZqCjUcw4AxBIZxnEJwRypmoY03w25b9szYFs8NvRxHj4mYEaXFuCBMCAEYAcwdiR2g8uYwD0SqMinC4Ho3Db/+7Z+H9ek7H37Ql6moBcbiYIhZS2ACoHGSKW+Xy+Vqtaph0DXDM8YYmZqmLQoqe1UZp8whGoERgFoRZ2IAgnkcSYiMGCpd2TTtNI0pxap4uGeVUI0D1gSaOlurGaCxQ1WbFMucwk/ef/973//Bl7/4xuPHF9v98PzZ1dhn5gCAqqUKoFXFkTkQootYSCylau+UiNTAjGJMqsbEfBSz6ys9GD6X1UDAAIHnqmYws+xuHEIuRSAvUiuSS54WTYPBxXO/3wfEs9V6MFUE0XJysgHRfr/jEGPTAPq236saYUhNiikVKY5U8uTGKQZiFpEoBdEtBAQMDuogZgDUQOg44qoZh8Gl50jdqkupyTBVjK1GIVSQlAC0iEw5qII7A68WazuP/cefXj6/evJ6M/l+HKcfPP308WuP/uS/9vNfvR7+69/63fefbieKQo1hLA7kHghdBRmZuLIwBYyQKBAHBIlSbHfILfGq4XK4C8ziAI0hQQzxaNWMDujmOas6gJsUMy99fxiGAQ3aFAOFBMTO5MCzDFccIwBYzKbWpnZ7p6vzr3z5W7/y7/8H/9HtzUCrlTH6KClEdOIYx3HXpBSRmiY9315ntOu7m0PJ69PTROjuIfJu6Pt+quG6nJJnAJUaHp5dIcbDMOz20+lidfrg4d3zTx8+eBKpHSyP6IwQEIywemwjc6GCAE2T3H3Mwoi55NQ2Vzcv//xf/PNvvf3GJx99cPjmz52cPa5cbAgcUoNEc5K+iTjElICQkdq2UZHaxSYi2LZMKO4mxkSSy0ySUHRHggCOiPWut5L1uHUXrzwGeu3J0drjROhggKigpnYMpkckdq/p/DhLQZzqKluz7hwInBFcdIipKUUZWaYpBR+2z3/nn/z9l+H2dz7+XnzvexdPHgpj+e3w1/+Nv+EUQwVkVC3GcBzWsIocj2KemWbxav0inOHg2RuPZkhEIRAgMgWHzwL5qz+80itYScjKKNU8ByRzqQjEzPnBTIgfJS/cNLGVvBjjatlBRzoOP9Wevrbj/+p336df+srda+uJ757dPoM23YztVd+9fvboJJcGsSGaiMnRIzN5bdYGhDlzB6DWEMIxkg4QkNnAzBQR3GbZE9aeSbRjxK+7eyDSof/85956483Xb64v16sVEuakInq3P5yfneaSQaYCdnN7nXM+9If1Zr1cLfKU+/6w2213t7dmWLHo5XqBhsMwHg5DSpGJORAxhhBrb3nTNGYGjtM4AUE1Z1EgNY1tXKy65Wqpqm4+TdMwDJXdP+7EoJXlJFSRWmh0lES7mTODmUMtW3ComdFt24XAIYQpH25ur4bDkG/ydrsNxDc3N2a2Xq9LKerWNm3bNSklNy3DPtj4/PlHEeUbb7++bLpk6gjFNQExkVPIOSvAk9ceffD06e2zj8/efKt4JA461zJ4TXETNXCvtaUlD8N+Cy5j30sZl8vFkyeP+36/PNt0iyUjmBdVdVDVzMHzNPaHQ6KgIjEyEi0Xy91uZ+aB4zROgVBECLBbdmZWxulOhtPT5effftPZ18tFWC+1i6rjRx988tPruHIp06COjiGg74ftoe/Pzt8uWdNyQTHoWBiMGIFM3UAhBK69Ig4QQkSiEAIgKNS+OXB3KabmmJiIvViHvoppO/R5c9YxBSD0IjmDW+SgqkWk6VJIaSxZShFRJqzlJ4hoopOObnEaJxVJMaYY3edycQwBGFwVCT3gNI7EWLPLTk/PAHDKEyAGZjer2YliMpXBjSpnTUQEZGBcg5Mcm5CyD1mkWZyMWrbDIaOdpBSd7hx2tYsEvGFsGBNBcEdXR6q9GTVnlAACoSIECGLQ50EZLdAPf/LjfrvHoptmYbHd73bigpG9Am7mbdu5eylSFTkppfvwGwB3MdBqT6NSiqgEYKt+4JqUTkyOZo7IWNsrvAKxkDOWUoj4vr0IEcGEmQxR7328iO6goGZiZhIwtvHDDz/6p//snyEWMP/c57743ntPb3dbxEiIRAyEBhXen40qVVpETDLvVjSOEyAjMQPX18jmYj46rrj3UIfXlioRVy0EXp0xZiqSAZwDiypWmRT6ftij2XKxlkmLF0wcIuc8thRSkxQQGQxcVZhrMiKbe/XlmFUBVXR3QKn/toITWjAEwMhx2a2awK0DJGxSIMExl92uj6k0KXpF4UKqVR4INcuqMNC4vSWgcRh3w/Tg/LUQm+9974cvnj57cHJ6dnbaNSkPw09++P3V+vy1s8XLKyxZnayYOiV3MwR1CGpAHGptCCgBRAA0R4BDn7eHvEiBTIOZGGZ1gvF00WVVM4ipcSRxyyLDMBTJCGYqOU9jHlWkjTVnBCuBSwiEQF7pUAeAAiNTdON94W/+sV/++NPbv/N3/ptssGgWjqwlRwpO5Mhtt26CgWaH4l18truJTfSSTSUQ9uNwfv4gpbjffaqCMUVXi8jMAC7DuDcK2TwXA4XDMK1Xi/2+Xyw2TegkFiMKtdVRC4WIBjJlDkjIJU9SlIjatoU2mZbX33rzf/ytf+u3f/u/+9t/629N44hE7uaEyIxMNb1L3WTGY8jc8zCoSIyREEzFTJkw53wvqz0yKtQ2AY7JnFX0b2Z6jAUxMcSqmZmjQxARGWs4zjEfcVYR+3wPwmeqIK/wz70shxiZQ7ffb7t2UbRgIDVl8jbQDz/40f/sf/4/fT7t/tf/9r97+eLqbqHdZv31s8W7zz9+6/NvzyGq7lKPG6JaEjTb2GB2fVcZOSEiAzigYyWwDFmxPmGRAFxU3J2Zq77Jjqms+ErKn5nWZ6PPxkUgrv1WSFgXV2NOichMc0Bw5MCMEJigS1MuDzj9Wbr4R//wx5B9xX1/c4ObxU3Lw8PT3I9tgRWmPRHFoOo0I9nz948AgFbDDana/AwcCSkgcLV5IZLjTB4FDlbVToQIGJiCM5kW0V/647+86pZT05srMQdVCixmN9u7btEsqNvu7mq7xTRNz58/Xy03ly8vnz57Oo7j59/6/MNHF8MwtmmxOV0v1gvXGX5zcwdru+aeCq1vcte1pmLuXdeK5Ngsh3EgovV61bYJgFIMKjaOhZkOh+Fw2N+7E2cGk0LVzeScY2yPb7flnMX0iBm4iKSU+n4iQrPi4KltROTi4uLy8vLBxfl+u2uatnrVz85OzWy7u3vj8YOxH/r9dtk2bWiWbdfEQA5FlJgAwVRDiCkxmp+cnDaX1z/58TvffvzYHYFDfZM4RC2FA6FV0RyOw3B3d7e7u9ltb6axXy5ad2u7TjRLGUHBCUwFzAEgpWa3P+z7oeu69WZ1c3eIcQEAIlOIWDPT1m3XDwfzMo7DYYCHFxc//VM//a1v/+yf/jN/8smbb05T3qzXwqgOoL7fH3Dz4NAPtCho2rTp+sWzu9vbBw8vigsBbU4feBN0kCJCga1KXBGQWHKu2Qp1aq53FuIcGgEVCAFgQFMTV0RaLhZXt7cGoHXoBhBTAmdmQlazoT8sutUwTHmaAhMiNqklItPMIZgDI7VNg20LR+dF1UGnEJAom7pq0zQqUgsymZmZxrEUyTEmBFA1m0MdKTBiiBVqrsyLmhOiW006JBd0h9Q2V3dbE40tE5Ir9VKymyMHx5Zie2yBrmc4oBk4z/Kkyi4TkZvalKcshZh+/7u/f9fn4nj+5FFMYblaSimK4EwqBY7Z+QBYSnGY3RjVaqAqZp6apCb9QXKeBuY2NgbOkRDBTJkCM83pSlbFzgwARFybMZilBmZWHpPAnY8hqH7UWVXxIxKAlaKI1LTN9c3ten2a2paQPvn4k8OhX63PK+/uZqa1CdFVpDLUUjTGmKWvU2aecmxiPUdElJABgdhprmOY/1lEmP+AGgHOpd8cFV3VtdSUg6BigUJouz73u0N/3p1wCPvDEBZt5ctiCGju5qltsoqqEHPbtjEmU58rsL1UdQaAzUVoTPMpNT8vmRwD0MlqFYVGG4qq5HoNm7vNgXBIGEhM1RQcUmhS0yBx4nD14mo/TGp+d9idnp7/4i//0rPnz/d32xeXl02TVuuVme12u7PT0yZ9mvcHjB0jI7EVr5sGIYiZSC1+Ro6pTV1qAi9iFn1+edswlkinywUYqngAm7IlNkeqHV59nsZpnKYpy6SqMuVSpkgptU3tCCcOFBnYkACB2QNp4jlWjSjElze7N7709bPX3/jP/o//99//4Y/i6QkAy1SIGJgIqYCA0VCylHHdNRevPXnx/GUZJ6aIjuzYYJgOBzF7sDndHUaZSiQOkcldiqtKNhEgEUW3u912tV417aJtm7pLzzypISKkJgXAnI2Qq0mzRqAVESbkELLkv/mf/cZ/+V/8xq/86q+8+bm3xmJMEQECRYIa7EeMEIlNgYAIkIn76dD3fdM0oppz3h8OIrJcLmFuZWZEEFERZZ79XGYzrnFPYNWqQeZYj/xZ5eZwX5RxPPXuT79j0sPMcRJVjvNIiiFCzmNMEZFAkZmoDWU3ouAf/PBH73xCpyebf+1P/Mp//d/+1p5Vo/y/fvM3funm8t/60v9kRn3ux52jzmieD2gOECCc99Z60AAdiz+IEIDMzdUQCO/30aOo+xj/imZ21KFUEZMduxjv87vQEcCrM4udyN0IkERbxAXwSllVAIDVz0P8dnNqv/2T9muP3/z8195danp42hnylCGG1fmJt5eeCA8W3B0MA9d59BhKO3fM1Ehfc6/uHVVH5OOO5zlPyuIIM/YGgASMHIjiYv3WG29K0UXbAbq5R/AhT8vl0rp2v78b3du2fXjxcLff5ZxfvHzx/nsfTFM2s8VikUsex4mI1WS7vSOmqo+u/7V778lxdqyvOTOHFFar5TBQu+wAPaXUpmTqpQgAMWNK3rYdcx1bZRyneuUdi8Y8xtB1rdmxcgjA3XMp4RjuWXX4y+WyqkHFcj2gTG292SB4DEFNm7ZJKZaSL1++XC4aF9ndXJf+0JGToZSJYdaVE4TAIcWoWpqYyGEYh9ffePLjd3/ylZ/51uKiG3PBaohyQA4ITvVSV5c8lmnc73Y5574/vPfuj7q2fXj+4PXPxdWpgQti6NqGGcdxEJNxyofD0DRNlSg6SIysMkrJKUUO/PLy08Ph8NZbn/ulX/z5b/7sN3/+2z//9a9/7fziYrffiVrTdGW/j+2ikCOFYcxjkRR93O0YqR9GMT158GBzenp1W1Js2/WSuqVsJ6r+T/OaAGFW4R93cBPlOQJZzYGZKs9LKQKguBUVAQeDRUzqlrUUMSQMZO5zmijH5CqHQx84qQgi1oq4EIObMRJjzSyFypXw8aa+35oQgJmnaXL3tm3Haax5AcMwqloI84yChIFYdL5l3bWqF5nZTBAckVS9FI2RECjGIKKlCCIH4MQpi9/KOLA3gRvABVAgmqV0c1U5YDXw139vfvC4qjlAyTm2qVsu1qcPf/TBB+MwgLeb1TLnvJ8GI6QYVW2aJkSqYCcimUIpU9u2TdOoBhHdpC4glakMw2EaR98cMU8AMw+kBmBqTKAmlQAEAKLAzGbjfdwtEoGDmPnMEM9wtaqYe3VourOq5SyJw83V7X/7D37rr/zlP79abl68vJKi1W9f63Urtm1G7nVdBlULwVUscEQgVUtAKu6OVQBU9bb1XsXqGnM9CiK8Kg2aECs+ZGoIqgXcqKbTcEoOtO8HChFi2A8TMqWmyZYDkFuNFjTJ42TWcEghVZmUiogUAEdkRECo+figUBPjyM3MUd3dhFxBXYsxeJNSG6M33ufCKRDROI59f6h+IlEzNSJqUssUpJiJGSBT2vbbMk77w7BYrj//1uckl+fPnt3dbT/++OOTs7OTk6RFm9i67TSX0LVVtwpgWKN0mbrlErZw/uBB4JaQwY0QJuk/efayjUE3K5UpApUpL5edwrZLjbshoyNud3fFJEsZx0FLAYTEgckjBAZmwhDreVgVEITk5MLzLt283Parh6994evfePHRs//8//23IATuFjIUBEqc1NzQK8+ghmY0qF/eHTA2+TB17SKGMPUHdNteXsdFd3H6YOx7y2NcbdxrSr4DIjOpYyQgwBDjfr+PKT28eAgIU57aNh2BQS8lq4FIUaNusVg0LdUQDfBpyut195t/9+/+e//u/+pP/+k/9ad+7c+aQuRYEQHGe5dC7aRiN5UihGBuhCQ+h8zVuea+P6DuEshcz1U4ftxvC/Dqxzz0/JHPf7azHUelalGs/yfRZ0chWB2b5h4McwVEUzVMBGhmZRg2q8Vv/u3/z//h//J/fvjk0c9+5es/ef+9g+XHj96822+3h8Nv/ePf/st/7S+F++/siCbNo89xQjh+H26BmAD9+JCd70swNfHaQlSTSnx2sFXujmg2HwHO/dKONv967nCBqgOvs1HdScFBAZQRzWPWDYVTSp36ULxtO1WdVB/E9FdP3vqdP/yIpvHJn/mZp2hrD8PhYKfLeLLUhN4E2AkhG1fWy6AeEl5dBAZWV1twMACq81yFnWeAHl3BqGauex1OgRDd+cHq9Pb27gc/+MFy0XZtapcLjrHrFuoWIi1Xy74/9EO/OVk3bQPVcz5JSu00jU1Km82GmYdhiClmAby7qwbd++AfpDlHgY9VunnKqtqGpl7iqlJhcCKSUtxFtbiBqolIKRNzDCG2LaaUamm2u+dcRGobwDz7VvE1AKQYE0cHr+kgy+VyGPrQJNHGrETi3Xb3+NHDly9fEuEw5v3hMPT9brdfLtsvf+HN8bA7bO9a1ywTsRu0TuxMKlK0AFpqIhKLFgBfLBslQreXL559+fGTMRsiAlEWCRzQtGrozTQwbzbr5aJBtDJNKfKPf/Sj937yo5+dyvnF491uD8Bt23CIRGyiJqZiOUspU0ykNu1e3i2Wy0XX7Xf7xbL71rd/9k/96p/8hV/4ha9+9cvr9drM9vvDi+fPQmoIUEVXm/V2HLhrU9PmKX/67Pk3v/H2p/texh4DbzYnHGR/GBfdBt1WJ2er8wf988uGZ3UqoSGjFm1mvoBUFPGI4AIggpnVG8ncvPbgpMSiDSVAHPN0yi1QzbbQWEuMS+bATZPqZkHMtW3H3KutDKp97uhtrKRbLiUS3WdwVAB8HMcQAnOsyXsiBgCVZtUiNIuXnJBMa3lhjbSPzHiUG1YOiSZxJD70g5iHGnVADE24G7e9a0vUIK84JJwBr3nKOXI6PuugwWoIagWbQc19GvvXL56kwG6qkseJU4zrtB5kYqCjHanWqFRuPTjNCSUVyKlJSKvFIpdRVUU1hoAVaIRaHOpHpP34C7f7B3HNYScipgD12D/2YM/qS+JqBQWoxgkkxLbtfu+7f3D58sW//pf/UtMszi8eEf+oBmEzoQO4GiIyk3s45hqimTIHdxjH7A617DzGCMBQC0RrPzVSLVJUFaiwNROouVkgNkcVMCU3LMXQQcU5UkyxaBGV9Xot7uM0nm3OANDUlczdmsRV1x9ijCkFCu5wtKBqCOEYdDK3WhICuGt9HtYxzAABCSjnMo17I2lTXHaLLvCu781tuVo0bazpL1KkFMm5uKOaqZkUG8ZJzNeb05vdbnfYicvN9RUhbVabi4vzGMPV7e3LF3f96MSpbbvbcaLYOQZwQIcQQrtaLhaL1Dbw9N3ffPf78C99vAvwu7//L3/y/38fd/u8fvj6F7/yTe42//n/9zf+8J0frx4/OogGpgTJFYopJ3ZEIAYNISxN5fbQVwtlyb7uUlzhdNiHhKpaxr5hVnaRqZTMjNU6miiSOZMvuzYQ3NzdHqZxc7qpVuW2a1GdGYFQVFQhhhBSrPeKZKl2VPMxZ10uV7/2p//Mr/+lXw+pFa0yFaxqcv9MXFxXFjMpSmigxNRQ0zTNPVpzX1sJAA5OhKQ1J4Lu54T6B/A+9BznjbqKeO5XfTpao+qrOj+2Zv3zZ8gQALg50BygNS8q4AjMwEaIXjZt8/H7P/7f/Yf/+z/363/5z/65P/ebf/M3Pvz40y9+6xsn682LT5+frVZI8Df/0//nMVbLqrELAHimd4Hd3QkIIziQVlPYLKXxoz8eAOpc5gCG5HMSQCCKcwwJoKozKXOtzfPqKkS8j2X+I4Ph8bdkDgXRpIRSzlPTcTjAtOyWh0Mf2pgIZOop0M9tLjZPt9/7W9+5+Kkn/lNv3ujEOSJw2zbTohlgjLEL4Ca1WtLdHcgAsOrPj3nP8+THHJkTVMICLFCweTp0JjSr8gNwjJ8+f/pP/tl3fuVXfjlGmob9fr8/jMMkxcw2m1VKYTjsD/sDOKlq06QZq3cIIVzf3OScv/zlLy+Xy/1+r2Y19QeOwXQxBjsG9QJAzThRyKpq7vv9bprGLFOIkZn7/WHoe+YoWExdRJlR1ZsmqOowDHbMV6yhIO4uIqUKKh0AIKXUdZ27cxO1SAihCqRSasY8IuHd7X4c9jfXV3c3tyJl6IdhGggppaZpUtd1MQa1CV3AJSGgab/fMWFMi0BRVcFUSo5d62ZI2DbNkOXsdH199VLzlKjNRbhJZmBoRM4OiAzkhJBSNAY1YYBvfP3rX/7ql59+9Mnt3d0nn7zPFB14t8OmXaxW68CNqu/2O5Hpi29/YSqyWa9/+utf//a3v3Vx8fDZs2cnpydf/tKXFosOEXPO19dXFJCJF4uFWrUcw5hzYB6GcXG6vLh49OG7v//Nn/lKG9Nht33w+sV+OJQsTDFyQNeuWS8uzi+1bLA1NwAXLQmjm4spITEyVLFLBVnN3F1U65JQ+4bBDYhQS8shhDAV4VVyV7djXxgxuEuRGIOKAnhtUeYUvXa3ccQilWiPMSKRiUzThIgOoGbscyRpvcDs2MCccwmBc9b7Ch4R4VA7xICZCQM4uJuKIEIt9DYkipFC0MEcVGprnnmKoUwF2uZ2yqNb4tABLgADzAPAPAge0SmCitbPfcNFyiQFmYFxmHJsw6PXHr28uSaCYXS31KxWHXVuysgAqGoEFDmZKYBFToSkWoho0bbTJCGE1Wo1jIe+7zVnSKlqvwJXgt4cwGGe8JipzoKI2LbtNE3jOKXU3EsNzAyRCQNCrRYmdK8LESAQGADs+uG1x2842Pe+96Mvf8leXF5CDYJCcHcVkZLn4l1EoooUhorAAYCqdd0SjutoPWPA3UFx7jmX+zMAau6xA4ApkDuY0TxQiUYiBGViJhyGQ2RGh3EcQ4pONE3FzRW0aWIRdXBOiVOo2qKcJ0KuDaB1y60ilPo8B0BHNCcAJwYCJGAQOOzHvODEKdBcJBBiDIFMFcGblCr6xRSmKR8OQz9MRcXnLlW+u7sprhAwpRCJAGUax8thbJp2tVptTh588OGzZ9dPvcEmNiFPRUpMHAO3sW3bdrHsQoxF5Rs//6uVkDCvkdkGlhEKu5BJJN4sNw9O1kHHL3/xc8Nu1wQHyypjTAwoy8Xq/MH56eYkUnCVJjKzM2HAhiklbkJEYoscY83JhjyYnz5648lXvkHt5t13P/mP/x//CW1O3SgiiVsxQ3WgeuGju+UiIXBsFl1oyzAVGXaHA6I/Oj9pY+yH/vbuDhDPTtcvrq9zyUiYQquqs3vZtIkxMI/jAEjtojs5PbvbbaNBKYUdKLYhMBlhwLZpkHCYsoiCQ21kcsCp5D/+i7/0i7/0S20Tmenubi8iZh5CII4EVMuzGVHBAJwjpSapihyjequj+d7EXiM5jlK8o8j0OO7Uw51eiWKvJ25dv+//OryilnkFi6m7x2efRER1Y0A8PtMQsR8P69Vm3GZHSjHaYfd//Y//o7/+P/obf/Wv/5v/y3/73/mD7/wLS/zBRx/wVFapA1WO+N73vx/wlSZ6xPvJps5ccFQcAVMgCiKl+tuBwNTMakzqrHIwk0DN/QRXjdzM1Rc2Z0v7zLcrO93DX3UYwldIPmY2RpHCCI42Bi0JTWl7GJpll3VsOZDDKEOr/M246Q75977zcbM8ad5cfjD0GWmz6mCzHOmOmUzVa0foH5mxavvU/LlqrKov/dwUAYhIbgpQU5Hovn7HDJrl+u/8vb/ftvHf/B/8td32rhLVi7b9gz/47n6z/vxbby5ifPDGm/2Q69RVne3DMAzDcHFxIaVcX1+fnJycn5/nUvDoV6/nUNMkPOJwKSVEjDFKzgBCSFmzuxdRBxjGcZomcGDmEONUBuY5srL+ra7r6phVHfV6bJgvOgeKzA6aUqQUc7ci9RQ0VSAa8wDgu92uTMN+fwghiJT1ZrPGtYj0/UhEHENIwQVTZBgnN2GmYjqMAwdG5hqOoEU4KjEC2jT1gbBNsd/eTv2hO2mzCnqkgOCOc72LjVO/3237oXcTKQXBEKGU6Y3/H11/+m1Zct2HgXuIiHPOnd6Q7+WclTVPQBUGAgRAACIJQhKklsSmZLlbLbVaXlqrP3j1are+9ur/QMttm6astiXLsi2J3aIli6ZkigNAggAHEGNhqAk1Z1bOb7rTOSci9t79Ic69lZS676qV9fK9l+/de26ciL1/+zc8cv2i5Bs33r108XIz3lks25zUAEIVLl26PJ5Nm2b00z/zs1XVNPXIVACgruvr168751RzjAlxYHuIRoBi9MkARmQx9c6HunLehSuPXP/qt37nbLkM9axfr0EzK2AIWYUJ+k67LGE6TQX9jYLegyYAh0yqioRbr4EinGQi0cFvg5gACbJEkAyiop6JEdu+S2MjM4IBJ3VA6LDv+5yxhNqqSiFfAFo50QkJ0BAxpRRjZKISpFAE61uXqZxSsZiKKW/c64fdipmRB8xZVFLKKQmj8xxw8JGF4k3sQkAkzaqGKpl9XWYkFfuYsqCtNWUgRzzhEBAQDIm8I0IaBMslrN4IEFAhl3ecEB2hcDEmvn//flUHIlQTQpe6PiNUozEReecAKOeEyFVVSRa14krCRIPriPell7MqVMvFMqXi+K/OOULNmobtZsNU2G4OpYgs1WGhWm8+b4gKXOZWUkQSRXFNZCooWV3lc5bLly/+6JXXCN1q2aqBWFaVnK244BRe9rYz3tSjXLod51xKCcBiTETFhRVgiPoSJELcHiRFpkuAhMhGiICBOKWkkpqag4PgACyZ9A4xtqucbHZuFmOfk4xHdXA+p8SM7DirOkBT7VKSnNk5x1bicwZ3kmKXIoUgr1Ickgq/NWVvYEDLLs9qtzsde4IYe9XofRDIfRcdMRKBguNsSpWroMLTftGvO8lwbn//ypVLCURMjk5PTo9P2vWy8nU5iFR1PG1eePFFc6M3b98jdsgiOTXNaHd3dzIam2qSWDIELQkAEhINASlZgB1iF0UFPeP9m/def/uGg/6xZ5997eVXFg9uf+ZTH2vq8f7elNFGdTMdj0ehalxNjCm1REqIbEgmbMqK7Lgkw61BzGzv0pXLT7+wUud59I/+8S+9d/defe4QFCmZESpB7SpDiJJCcc4bfDsNkZrxmNlnx8cnD7Kmy+f3yLvJZNz2fUpRciR2xOycF1UEMkMFCEY5ppSzSt7Z2z9//jDFtFqtM+OkHvkM7B14JtX1ag1U2HyUJSMgOa6QU06hqsEKd40n09npyWnfdRpcqBwziioYZhEAJTIw8Z4QuRg9F/fCcsSUQwoA2rY1M1FRUeQPjtptTbO90TYlkcHmqNoW/ar6J78HNj/hYZRkqB22PoKq6p1bLhZEtaky0Jd//dffeOvH7a77a3/9ry+OV7725kz6Li3WNoGDg93Pf+6z5y+cd8RoKs455tKU0hYHLjsmMeYktjEwJKKcoxo658qJqQM/ZhiN8VAmKIBu7ZKIKOUIIEjIwCoCNqjIhhdsICrB+W2RmLOYAiN2Tu4e0PKwmdzugvfMzsBniWzAyMzmJV/3YZT53u++mZ7bOfvIYXQo3tUH+8dyE9qIwQMNqrbyGjckBCmTxTLqI+cQgZhijibqXEU0pHUiQdbskErqi5lj9qjhX/7qr/7Gb/zaz/3MT3/605++/ui1p55+6uBg/5133l4tFvt7e0zcNPV4PI4x1nVd3uBbt26VNzblfHp6GmOc7eyMxmNCjDE657quOzk5mc4mpWAqUHxKybuScMnOjRaLrABt2wbvQwgZUzG2994bEDOVcmpbWZeUn8EoBbHUQFVTY0l9GujebGahrnwV1n27M5m1XcvsQ+XPTs/KbM5EijpmuVgiU1YJvnIuJM2jSbOu69yvHSKYEUGM3XwBzaiuKg8GYCoSzQgN1TIS7sxG7987AekltZ49gjoCAGCg2Pcnp0dnZyc592aGaCbqK1dXTTMaE1Hfx5OTU/bhajNzHHxw09keIIwnOxfoomgZO1DOab1cNU1TJMQiwoVRP+CrwBRgsIpHAxNVDl7ULIklvP74U23W23fvXXlkVmzCvXPrviXnNOV+1cooTA/Pq3OeGAiRWAc7KwYVdixJwIxpEIUxc1rHuqn6nHLOAEQAPvgMyKwJ0Tu/attM2qBziijqmEWNkYKvU0pEAISWgIlz1joENIhJsMRkAjJzPZQ+hauXiAiYFAwI1Sz1ffCeCLS4NcZUOr9ht4Jh1lOFCiEhkIo6XwCAklVrwQcxW626Qg4evt87S+LYCXtB8t7X6HZHEw+glm2jrBAtiW9Q3BURUQHMlJidD4YuW4fezZfzVR+pqppRQ4Rq5h0hUooJDUejYGbl9iwrfINGg5Xs+lIgqILZbLpzcnKWYkZjZiakUjCFEACRmEgH5UcRBCAWLyG/XrelUil3TV03BUkttw8MebEiGzqEc76umi6vju4fvfjhF6Y7e/uH519/810kIkOiTMQ5DUE327MhpVy627ZtQwhd1xUuYIwZEYpHPBEyEzMzuZyjgg6cegAuZ1tWASpxyCZxFOjo6Ji1CjvT0XgvamJ2sc/j0VhyXq3byWgSnKuci1lKfdpUQcTKJKGuRi44IgtWcCkRSWbqiv4UMaWMiJ49KCQREwnMi0VXORuNxl2v/QBgRwMgoOBrRuzbbjIZm8JiuchiBuiIm6rqIS4XywwZicjxxcPDqxcu3b//4M6tO+26syBmcHIyF+h8PUIOGpOo1c3o8NxBqJsUE5XgQkBJyoVlpqaaBIEQAKiN0YwUXd8LuNqIo5g2zfjcwZtvvZaRJjuzqgpNxSPna/Ye2RmSIVdBkqIQQkQQoB5hAlCB92e5A8+PPfPC3uG1RYTpzt4f/uF3/sX/8uthtpuJKIMnNraslkAJ0DOhKJJp1pgTUW5G46TGPgSiMep6efbWnbuzOkybsTdQtd2d3S4ldj5mafsUPDqyoh4X0SqE2FvwnphzSn3XydmZpcw++bqqpmMQK35LTFRXXk0BQMA0ZkQoyb4RLJsRwHQ6cY6Oj0+69aqZjAq7vSCUYJJilzpfBFkFmCyLHjbYdiFOiAgJ4TBh/iCtfWtvuMWeAaAIk2mrcNwoG2njG7Qpg0qlUHozMrOcS/8AXddVoSqNvSOKlqOlBqmdz3/w8g86Sb/55a9M3KQZjXrMjtE5Cvt7veaV5pffemPv0qFj5qQac6ypIkQiUy3PT1WhtCDeOxVTHbCBssOryqZYARU1AkZEUEAiNxh2iSTY7KcwwP9aZHG4cZ8u15E2aRgDBwiAehkr9JbaBlbPX3z5XLOu8/XbcdwCqQY0IzQVYEqgYHbg6lHf4+snvuuf+OSzb43DG+PeNyGfxdpXSTI4GtxdC5RNZIYiYqICAsSMjESOPVNOKeXU+hBCCMhMiK5M8EVNQVBzamsmI7hy9crf+lt/a39/D8EcMnj/3JNPI9jZ2RkSs+cY43g8LnOoku4+GjU5RQMYNbO+b+/fjwdmo9GohFSPx+Ou74hwPJ4UKXvh6HjncspZsncuhCqbOO/IsTdEwL6Pfds7duWKbgugog3eYj9mBoDMjkqLt5EQw2RcbP5LtdTUDRAyu8KpUy3Od1A3TYGpsmZTdOSdrwwxq/iqiTml2Ace/Iuc46xptc4ioXEevBNRUUMwJHNATe0kdnG9DM24qkKXOyMHRMcnJ+16JSqj0YioqZu6rkIf+5yyGcQYJRuwO7h4aWe2F0JTVd6FyrkgoKqpcGmJkInJkTWjEIL3gYjKei735+CHgFB6CyuEFAJFKd4UMcZr167vHV547/3bVx55+uDcPiKslmfRdDKZScqSUxK3f+miOMoxMdVmDgbJi+WUvPNmhcfjLUu5fZCwZIyblfFxoUYgAJJiE6qz5arNQmQsBgA5KzlWsJSSZiEeOqq2a5vQgCqxY9FYxltljGWFu1NwHQIAyRmYiWiwqB82HRAR59gMV6tVXdeMZACl0BERyYJgAGRGznEhhkwmk6y6XrcGCIQm5pGEnKqomhjEGNXME0+ddwSqiZnAMMUsIAYQHJmBZFGC4ouhqpksZkDnU29J9Oqjj7719o3aeQQjYiIGAxUzUEZKKW+m51jgZUdcPgYwZhsuNYIBOudms9nZ2VnKKYSQRRAheGeEZiZZzRTRAAYZLCKWEJWqqrqu25ntqknxc1dVYHNEnn1KSVXMFBGJWFVz7pcLratq1bUvff8Hly5fvXf3ATKpac4CMGDeqoLsCLGAK6W+SakXySKDnePmiClsicF+A8BEsw0SAUQkVSWCnBO70HXRs6lGlm59dvenPvbsR158/rsvfffo9Cgvl4TBYxi56Tq2zahqmgoBVbLEHMZ1CHVKOcUYfCiCl7LXAQATOzcMHE3N1JSVi49/0sLsDlXdtvMfv3PDVdenCSzLOJS8F8cOCbBdrsFEshytjx15KMRlgMpVNKKqahSxj13bx7P5YrKzg4CHBxcODy6/996NN9+5cfvB8Wiyc3QWl51E4AS4u78/nu6Op7PY98QEqjmDgqkaOWdqphmZGDBlMVMAijmriRkyAoWwWi3WIo88+dTXvvqVm7fuXjq3J0nQewQiQ1esigREPYAwC4gZCLLjBru8XK9o//JjV5963jfT02xVMz05Xf0X/8XfW2txv3PIJmqUjRgjZi/oAbkQdXM2USCOMSqbI+c919MddLicn9w5ma/aNG7CzngaY699z0iiWYA6UZRes3hHqNA0VfDBITNymYq3qzWrjSbkahdjV1GoQsh9l/vYI6aYNmiNqVpOmZjAyBQMFcF2dnZCFd59973bb9+ZTCaTyXg6naqKWV6tV0BQVY1omYd+QBreFCXDDN3Uit76YTbPFuMp/3aL7Gwn8lucdfvX7c8X2focDg8m9s6pDfyhoaIycOxWfTurx9//4UvfffX7N4/ujsbjruuJXJjUAAmzusr5UOeoP/jeDy4eHAzxkJIzhGojLi30QHu4IvPIMWciEsmwyUMtUkwRKVw4xLLZFsOc4YkhDgQ6GKi7AgDsuNg9b2ZnWv7VlsJpoI6QzHWSpaZ0Yfz9qpPnzzEt7e2zc0KBQ4ZsQJkQTME5Ed2tmhn4yRsnrx1964mPPN8343eaar3oU1YDFFFAGjSsMBSnBmVVIoCppuLWxc6DDYzIlBJxCYFGEc0iIooOmCjFeHh48Hf+zv/tqSefPDk+8t7Pz86Wy2XwgQg1ixTZutl8Pl+tVg/5O6f1arGzs8NcIDC7ffv2ZDKZTCZ935dZQ4xdWTzb4QUihxCYmIjruslQbDQx1EGcH5pjor5riTKzL2UyEQ0KycLwYi4ggfNsBlVVDUrocjrmIesOALKIqHRdV8KtTLTvY9/1KfUGCEhV3TT1RA37tF71/bhx89WCYp6NAjOJlmx2U7CcLJum6LxjNVPNqlnE2l5OT+6v5icH5y+2ce3rep27+3dPUM17N20m3jOAOu9C8Lqw1apNWZq6GY8mzHj16nUVFQFRJO8BsdQ8qiW6mYrTptmQl1Tabiz+Kw8R/Dd+FTpokYbUFspJZ3vnHnv22be+9611u/beLVeLB8cPlHi6sxeI54qLdVft7lbTabo7h9yTh8r7HLOCMlHXdQjkfRgkkJtmyEw9u0KY0wE8HVyqJqEWlZWkEVVoiuzUlKA4soipsnNMaETBewLs+n4y9gXYKPFVhWJT1HzluDUT74Nzrut7733wQYohEEDf92WUI5JFxAfHxFmFXRn+lhXiVEQliWZkIufyus8ixAGUkDA4VhJVIQN2LrsQyHHsOYvlXslAypyeSqVZTncos50hfcYAVJHaGEPdSE5/42/+rR+9/Mqv/9Zvi4ovWbCG2UxNEWCb5FXKAjDQjV0IQBmiarHtB8S+jwX86/q+5MaXrXdrhlX+pI1ojpnLLQOAKbV93/vgiDnllPPAbY8pUokOVDEoIDfmbCXEro/56Oj0B9//wen8rEQdi6l3ZAKenYKl1BPxRvxhRFzGBwDbtUqFMw4AzEQ8CHOISKQoZT5IOFYxYvTep76dBHf/7p3L++O//dd+4fL5c3l+92Qx+VM//affeu3tX//N343LOfpKAHKunK9Wq5ULnpBTyjFGh8xIyERYILGND2Rx1y1DtyIQNjAx0qyGGbUKfhHl+6+9oU45PHFYud4hOxiNgiUjgiyqWQmpj30iqKogqjlLynm5XPZ97FKsRyMxnO0edF1ctut1d+f8+YtXHnnKwuQHr7x8vFyvMx0vO2rGrmqanb1QjfoYGQc/cgJStGIGCkWuBiaSY0zbIS+SK05dZtqntI75+Q8/P57O7t0/enB8dnl/5kMVfCBAUWUUMCYXsuQ2t8xQ1Y2yP2nXEKpHnnn+8Nqz5mZrAfTOV+O//1/+4re//dLkyhVhr1GzGqE6MWbKaEDEAKhS7mJCDM4ZgoFmFcjoHFWTKXnXhmW7Wkjbu6pnQmJnQMgOsAR3Y9QoMU9H48pXXbfuu+i9n9UNZ+1BvfdE4Jxn71OXijYq9n3BIRCRqspVVdd1KSXWAnAERIh9K6KT8fTKtWsuuHa93tnd3ZnNADGndPvOnXrcjMcTmS8VhrnPRoP5AbV5U4ugqjH/ScrzpsrZfr8L3pGDze1cDqltqQB/8mGbYdO2kMiSoNz8BmaWknY5meZR5b7//W/fPzvePTj34P5xM91pZhMAYfK5bS3rul12XTdpwv/yr/612yIupfkpkMDDT3RDYjBTLRNoJFAteU2EmNU0A/IgsQNTExEWhhLQCDbIX4kKz3u4TCAyONVSSR7xzgXv1BRQmUidn+eY52lq+Pily2ej9eup61441+2M8LW7OF/WTOirLBoMImUxzEnYw6OzvXNRXvq9VyaT8cTgmCEwkiGrYLGw+oB8XQC24m2xJQYZDhh16epy5SsgAig8h9L6SPDctusv/dVfuH71+p1bt3d3puwdsSMXXPAp9o5x3SXp+/G4Pj4+DiGUgK2qqk5PT1Tz0dHxwcGh9x7J1YAiMp/Px+PxaDTKOanJarVS1dIRjkYjwux9cC7E2BWLqlKr5ZRyzsUBq6qqwfmXKA/ovPR9v00EQ+QYYwhZLXddV15yTklUQaEEHSNRIQb1fW9ZFotFt2pj35X71vmgZrvNlHzIYut128buouNONYo2jMjOeZdVkmYoWrYNa7eP0QjNRCXFPsZeNMe3f/zqpSvXmuls3i7uPDiaznZ3p3uxjyn1KWZyjKZ379+/f++er5pLly479pIMCPqYmZ0gAgMSZ/0grm7gpDIyOSEdlKFIW/epYgte+ory9m8GzpvEUMCY83hUv/gTn3jpj37v1p27q/X6rLcu9bvnzhsgoI0mo65tadSE2UTvnE4m0y5LMiUwREBmUGNk3BDKYNP0qyoTEVJh/YHZYO0FUFEAw1Xuz4W6vBBEKOaKpWxHwlBV3nky8s53fbuYz+u6Lq2I865U9gWOnkwmOcMwZN6k2ZRBDzvHjnF4yeSc7/veUUHNUDQ579EYkSRnJCMkMigLKcZISKpiUDJBiQyksHRVJOeaOZLzapJSDObVM3kqUDaYKzo4gmISA2KKZmbrrgWi1XpZ783+23/0j7KYD0HBfPBEbNmKzX6pWMqgajAms4ITITsyNUQ31BaIomIAHIKi9SmOaSIimjOAsnNVVTGClTRALXyXweADgEytrkbL5XK2M3Xk6qYSETDLOTE5Kz4kWHjlqMkAMEuOkWfTnbt37v6bm78+nk3qpkICx8PvYWYEU0MDNZDCwi4QeVWFqvIFCkckdi5JghI0hGhgqsqARjjMKpFFxAMhWt923rtpXZ/cuTFx+jf+g7+4F6y9f+NDj5y/dv3T1x97+mc+/okHt+5+7aXv16MmeUcE8/lpE6rgK1UQ0MAhOF8GDoCwqbbJTHMekixVycwkZxXh4p2KltWyQZ91nfR7r/x4Pj/78LUr184fjiZeIWruSo+fYw7OAbksJm1k56a7u5PplIjOzs5effW1d965EUVHk70MYMIpe3LLd28fLdbr6cHFG6++tlwJhUk1mSJQyuaCSRID24i2QREAoSwm0Zz7lHMqd7sOB1u5diWVnpp6vLtz7sUPf/xbX//qC089tR7lxaINU4femZqZMCqkZIiummTIp30y0XMXrz79oY83s4NOyBRypr3x3te//nv/5J/98mhnN6sBKqoRldsaCI3LTI5YDFLOIkKeiUHUnGMAEjETdUjkmmY3VHWTurbNSqZ9zJDNwKUk6JhrbxGNqR41Dhiy5pRMlImaZlQFqH1VoxsQGrKUexFDJucdMce+7/t+2IKYCx0wZ0FEIE5ZU+7A6MLhJR+4Ho1DFVTN+RzqUdeWPJBQHFVKTbNVcMOG44yEqqaSmQNu9F8P4zoP1zTl5wwzn01CX5mEbCuQ0rSXOZKV8B2EnKV4VkHhqYm2fWLCS/vn3nvnjW98+xur1ENfP/v0c5HtaH4kfd+Qq9j3IGLG3vcZmvGe00GWkgvrGwCKAXE5Rj6o7AjoIY8fESk7ZRaQpDYUSiiQEc2AC1xsG4uPolgQVR10cVQ+lyVrYRmX6fMmoAoRctacBJioIj8K432/bumNFOnRmVp37d147rgLQJQFGZ0haPn5Cqv1eag/VO+8fPeeni0c1qJQrlSp7GiTTkKICpqHwRwwITKCIiKKyYCuo1MxZQUAIiZy5cDFKOdmu1/6uS+yWQhuvV6Rd4ZkzFR5NDWA8dhPJpOmqZjdaNQsl8uzs7Nz5869/Zbeev+mDyGlRFSZatOMygw1pbRer+u6noxGcWOsWURblnU6LT09kCv3F7SrFRODlmkOpjREkauqSC4A+5ZWpmpEw+zWAHLO5TeWhjin1Pe9dw5ECi8KAdk5Fa1CnVMajaaqMYuawWg6VYXTB8fLZSuWezEjHE0mctzFlFAFAFzwCkZkjIglS9M58t5ALBMSgKUnHr9+cnp888bb1XRvHtP5a1cE3f37d8HQORqPR+w55YSIFy5emsx2mUPbdsiOnANNZUZbbix2LucMKFTOByICh8jMqGbF86Cg+zrU6sOKsEIxHUqBIaQKzFRs1fXPvfDi1evXv/2db1974VOPPvPi3v7ewcULXVvgkGBEs4ODC1cun/7wrdk0SI6EVFXcddkkBxdAoO/7ylfb27ss8pyz4SZBCJHVkNHEKudDCJ0kRHQU2DGRJsnFxRgGJxEWg9j2nji4sFquC8crayq3s2yyl3PKgFBQwNj3oaqIWfKQCQoAzg+BD3VdL5fLvu+rqnKOJeXY5a6NIXjHzMhWFA/Eq65TNWZXLBWCd8WPwzkeu9AL5ZQpGyZ1CszkakZh4mJLY0xMDkEVUXHY17BEALoQuuUiqZDzvgp333/fV6NmPCZ2hKRkRgBIJlGxwKKlmQEAMDUtNzNYmfn64LNkVS3OfqFqVqv1ZDINYTjmy4xMhjjnYUkQUdF2ICIxBV/FGHVw0oqI5F1AFEkiKo4cETMBAmQAJBJVUWnqGhCTmPNeVQFLV2igCApa/EBAy7yyECUBrEy6txAsMhU3r2GwoPrQaGAQFiJa10Uyq3xVhAJnx/d+4U9/7urBdHX0fjC5uju5OK5hdeqhevrq1W+89FK7Xjb7o7Oz42kzm0wmBpjAnPONqzxwL5GG7A0FV8yksK5DSsXAx5xjYg+9QVZUQwIhSALLde/qsUB86+YdOVucXji6cPHc+cPZuHFIyIBZVLRHgyzSd63zvs95vloFH3b39r74Z7/0zrvvf+Nb3/nBj16f7p2bzPa7ZTpdPrh/enzn6N7u4bnDK9fPfnwjCTTA5AJ6n2UATQkVzXLB8ggInRSgPSU1YWIgBAEzLfmUSIaoIbidyXTcjP/SX/r5k9s3X3/tjUvnPnX79r0c4+5s2gRvDEDoIALyYq3ztp+eu/D0ix+7+uizWf28h3rUrNftdDw9OXrw93/xl1Z9P9qZOKK+iwAUqqCSDQXVgkEiiyB18Hm9Mi7NjjITmQIRuzKKKZpjwGpUO4c59utVjIkYyaOrajWU4iKzadIcu9oHialvO5KytkxQpe+FwAEGHzBw33cpRh88DniEK1LuYapbMryARAXAGF2oQzOqDdGUVJIZHRwcnp3Oj4/PmqaBjSmdbcQ9D1HicjFKLh3F5tzRbbhpQVgHGbhBllxxNcRsq5pZYVVvH2ZW5su4sSYefpEW2+uh0lDVUI80RZfib3353946e3Du3MFf/PlfuHX77m9+/cttXO6MxzlJt4pd1x2cO5ezkPHxg6PBGjinnLMSFQqOK+xgACzIMCEbSnnejjiLoXOOHRIaGWrGwV5MDcQGMvXQh5eOm3mYY5e+zczYBcO8gVUHYyDJagbEBGCSpEJc5hR296TybbdquIn7zSsPTn88a7/4wsX1D+5cPJYZOQCrBBtXJUpiXcXeKzpAbOMsNEedKgKIIlMWI1MKxe4HTRQQHTsD1U3QETL7om6QMsvkTTVKxQ8UzNCw75aHe+cvX7oYSggfKwXPLvQ5S5Y+xrppUswIuZx2bdvmnGMf27Y9Pj6+e/9eVdVPPvkkEpWqJVRhd3c353x2drZardp+NR6NnXOFrWmmgiV4pFA9OGp2zKU4zZpT6sxMgPq+977s6SWxleq6rusasZjZOwCo6yrmGCrfNM1qtaqqCgCWy2WoQlPVfd+ropklybWrTCx43zF577s27ezsOufP5sv5aj0/m/tQ1dV4tVrT/mS6s3vv/r1IiipF8uPL/0xBLIugKhMQMbqKnPPedvarC5dgfnq0fvBgcniY+lWblICJfFNXQND1nXd+d28/ZVE11cTsmbyqGpCIuWG2YoTIVOwftXBbi3qbnDOJCIBoRKhqVMLV1QANS3dowEhmCFBsWFDBiHndri4eHHz6cz/7K+/88t17x49+iBrfrLvOgIJzy1UHjFT5R558av4731y1rQKh4yjivGPknJIjDsEjDDnYRFRkSqoKCDklYirk/HLcOVNH3PYxppyNBYGJio1Nw5UZaAlOQqRQ9TFWPjRN0/W981wwD8ek6sy0XPyUcpmgF8ozmKWcqxDYOTWpqqrrehEpbP3Ux5SSmhE5V1Hx9Co3qRYnaNGUsgs1ksOUEYGJ0UyikEcgtKyimcAqpnHwTJA011hswga9p22wkEHGXSxOgFLuxKBMoHZ3drPY/eMTBTBgIgekjGaIudijIZkORjRc6H1DYTsIWVUEkRxDEhORumrW67ZP2XtHRORYs8Em3rjsVyKSczIbyNRomHJuRqPVauGCA9jIYtUMxTETo2QVsUHeDZhzyjnHnGd7e/ffeKCyE0IFBmUw4503McsCCCpWNnQz62MPBMRgA+mHNu3v8NyINnsnk4jlrKpKAIRsppWvshqY3Xr/nQu70xeeeoK6tcn68NJB7KK1KyXu0/Hy6L5nUO/P5mchjGfTqakKAhIjYkypqrwDB2yDsBe1LNSUrNDkS7PardclpCylrJUvxdm664iDogWExx9/ar9pbt5877XXX7169WA2mYzrUXA8bkYI1vXtuos+2+li1ac0m86OT0/v3X/gmumLH/1ENdn/429+98GDxWR3F109X/VCzdG8w0ouXL1+//g0GapoU4ckQkyoBkgKhqKAgIpRYhFPenYGNIycAAv+P6D8opYtuBCYn3v22f/kP/k7/69f/M+Ojs+uXj5YrpfOMUBtlbk6xBjv3n2QqXn2hc8899HP8PjcOoIAsverdQxUoeZf+sX/58vff3l2br8nwiRoQN5LSkigiCTikZUxgypYn6KairFI9lyDAYiVgxKJSz1nDlCocMV8GBlYNquqpo0pxl7REDCrkidNKTDVvmLn1TKo9uuVD01TjwExJfUOQ/B918fYIxb/F6n8KGrMJgXp996zc30f+5jqupmMJwVacuxEpOgMqlAfHFSr1apAMqWvRsTCwnGD4E7L553zZoXcVpjUukWMtvyh8ntFpSxxMyMmxuEnbw2EdONHpWohcPmSd86guLaCJi1s5U7y4e701svf+/2v/+65K+f//Jf+N2+88c4ffeMPGeHaxcvL1ZyBJcqkM39n/ujFqzGmz3/i8y4raBZ2ARRMQQFSnxGInENjx2zocuEIKiCyqAxOQGCmRga1r3IqYKMmMUMicGJKiCYqxfNtmMsOwi+RDKxZU9YECGBkRogMxGiGhiYADqP1XeqmTQPAjqukAo77UXN/Nvn2ePdqb9WbHd2ez6pasvTdKlQOBVBAqypl2B1Ptb+/yutxCBrFwBMAqGlGdsjsBdPwBgCraOozYnFnUvRskEVzqeqyESHmDIjoPKfcY8NHJw9+67e/8pf+/JeW63kzHqWYrU9NFUCl8U6kOBPm9XoFoH205XqlZHfu3yPvZ3v7Zyenq64fjSZZckp96qlHJKbJuDEAybldrcvyquuakJWM2IERGIkKqgJiYJacc445pRL+XEFV15WqpZSqqipLvHRyzGUn1YGVhVY+uZmalXiXnHPcMIdITTiwc875MJlM6qYBgNj39+7cWrf9eDwJgaP0p3fmdrhXhypUTUw9kwUgp2Z9ouAQQRCiSeg7JeNQJaUq1MQKqk3DRBI8xsX99187TkKnZ93F85efePqpUI+WnYnZ8vSMQl2NGkpQAUGh0iNqCZuAQWTGSLqZjyBi6e3REI1UjAKXKrcgPwSAUMTYAxlaVACNiuEnCaAS8OnSPvTpLz3+kZ+e7pwz5BhjFp00DaaEkpBwmWzvyqNazWKfq4r7FCvnQSxJIiy+LC6LEJEjdIRJs4AAg2okNi6WG4ARRDRXwI1xawTVyETMkioTISugiCcOzrvCDiHMJtkSOwaBmHpGdCGAoYqlLIRaVZyzOOc8O0Y0zV0bHTsCRFEAyCkF5zrpc0yOKSP44ERFBWOOZsbOoQExKZgJioAappSYTVLfVFXwgx8JGYOU41KixqYJDYMHxKRK2UKQLKDG7HQwkjXnfRI1ADWLkgygGY3kbDndGc9mk9v377d9V0+n5FxhKDtEQwByQJAkG0IV3MBe8j6rDokFjEkKgdzElIkYoKk8oqW+s6ZidqpQ3FuLL0e58bNkQ6xCnXO2XCTrWC5C2652pjMz6LsOkQi8apl1QEopVBV4l7reISOiqYhm2hgLpT6FKuQkyJQtKhZVIOSkRKgCkrSqqhSVCAqvAgDQwKFXUIkiCOwcEFoWyRkBCAzUiE1U1aDNuG4Xy/bBZ558dmZdFbGqq9neDLrU9bJq56+//foPvvONPnZLX/XVdDzeWfe5QuSA5k0gKWAbO6QCC+DACjAAgJzNOZdTLveLiBCqInHVpKyhvPExAlFs+w8/+9if+tjHJui+erK4fffmWRuCSn/aomtu3ntnf39nf6fyyH2XM/tl1561dy/Mds+OV2++/716OvvEJ37iycev/tEf/cGPXn1fXIjse6gDVXfvL5rJzt75S2eLRVNVaBqYTAwB1bAsJzFA/MB+JUlEACrXUITJgQFoBoMsRuSmk4nllLP7xKc/8zf79td+5Z89eu0iu0pj1gaV5Ob9WzfvHj3y1HM/+8U/t7d3rVNWVUfYMCeLZDKqxv/0//3L//xf/lo928/qCEm0WP4oOZacRYWQFUijIIKgxJxVIPhA5BWI2YPiYEKohEBCoqjOOV+PPHFv63bVAWm2RGQ5p8Ley5qzJtU+p2W/XtXjmTjvLHkkyMmTB+c7jb0kWRfrE8cUDCxlXXctEZlCCN5Mu64tRuGj6cQ5X6QJSC6rAaAoAjozYabRaLSJc3dbi9Ry8YvghtmllOwh/sz2g4FtXIybC68m5+Jd7krICgIxKkCZ6CEWm3IsZiDoOImIKbOLMZplUpVYaGpIDjEk4PV3vv416+PFp6/+8fe+8dqPXmuQx/WYjHM1WpwsPv2Tn+CjsxvfexnunzD7YOxg4CdYYSoQoMnAVlITIm8miFp7pxv8hrm02YMcdEAbVABQFdRUTEnFkEoqNdGQ/DfAQmCAJpqzZAMjJCJXsApmX7yl1Qw0gwkxNKMRKcU+ceUX6/bO0XFG+s333qrev2OHj37Iz3aO1tMuNgUjAXO+avukPoyaGhjCqLIcQdAgoQvF2LSEJjJz6X5UDYEKS6bI+xGRvbOYiVElA1KxijYwVDCy0bTpTxd/77/6rw72dj/68Y+eLZf75/YCkkOQlH1wqxR7jZZyu14jYRf71Wo9mc60GL0CjiaTtuuiaqgqRFBTwNJpGxKGEGKKxFQCkkzBgFKWDYsTsQRwmIlkImLHpZCXJBubBNsC+1toHTeGBWYCiqqiG/OhnNKWru69zzkToiNGxMlkLCI+VNLr0YMHR0dHKaXZdLxczmPvR5M6Z9UMk8muApH3mnPOQipgKqDAjM47FxgBRTUrki+22zGtAyhZhpTqUL3xzlsvvfz6ySJp1HN7+0999MPXn3pyMpoksSuPPSqaEAgUnfNRZcOi3dgwlDpmI00sEEsBWouPVjHgh2LzvXmlG+zHssZSNBXXqKKEYuYspGE6Gu+LmWRhVzkEif38wdHp/Ew9cl3tTnfq/fP9rVtBzDnHRCpGBK5AE5tWpgTxAm7iH9CQDBXIsERFIVkDVCFrzlFBiBgYywzRivcPEWCOqfFB0Jho2FkIPDtQRUBC9r5idsyckjgerCUGqAMgeF/OieLHB2q0uYKIgAjeOTEUEdoaeIDlLCkJB3SujBgSEzZVpabJxPng0BEqEoArXsuIYKSQVdlZjD0aEmKRcg1Ecx2cccxAFEKopVu54NDAQHLshhxjNcfEnhRITACLb4VmU8ppqO83yUOSExcqdFIAcMTkHBqkqqq8j7G3jRQDACIUy00gAmLy6Nn5gu0zsxS/brS6qVars/V6NRpPhvUDDiCDESIRO0Ur7AQwiDEWanPd1HVdl23PtEjoyoBSJdsmSsjnnIsNtG3s08qXylgTDYFBRGJMaoobN2omEhNUc87161aZ1+uzg73Jh5+5zqlbrNewM1ktuoPd2Sou+iyPPf7Yp3/y42/9/h8Zc6inCI6QGMwRKikgExKasSPFEtdYkokAANi5TRKSmRoTiyZFK54paGaaVYS9Z/EvfPiFR68/+v4rPz66c//5Z5+99vjhRAAsvPHO7WYyywqLxVr6ro926+jk4rXzo8ot5rHrlm2CdtX+4LVXHrty/rOf+/T1R+9+/Zs/uHnUCvtWIzBDyiQior4QqgYaOG4mhp5UVTWnLCrMjMAlRGLLMgEABDJANPU+1FVgtL7vztr2z/3lv9q2y+9//Xefe/xRkXi0WNx/6/1mZ/TZL/38Rz/52Si0NkZfgQCAMFBM/XQy/ea3/vjv/f3/WjlgVZcrYwSaUy4k+iJQLASXDECYco4pMjlCRnSmRdIHA+xXUjWQDRFBiQMG10x81Uzm84Wa5q5rAhNhSh2BrNZnxN1qnt768Ssf2b9wcracMlQ19bE9OT6anjvIOYPjOvicsxmpipql4lhYBQBIuczGU1U349nE+ZBzTiqOnAEE58vNIqKF3Juz9LEHgJI5UyzHytBqGJL4cpQzGBY+5cNsnu2seQtz2sZEp3xsRIP/HhIzF7V20oJ5U9KsZo5L7w/syxzAEDHlZNQq5UsXDg7r6sbLP5JxtX+wo60yV/N1d3x0dnTyIH3MmnP+8lPn655v3D/+ne98zWFh9xIgAbIBGROpGZiYooKJIQIm0yzZDEpYlWg2tZKPuxHxl/1nCHctKpuClZkZbm5sRGSmgswP9Cjm4hFHhKrZSmsPhllrtQVA9qRooBa7ruva4Pj4/tGqb48q/RW8t3z6iafeo8dvridRE0n2kKQf+1Hs+0efffyzTzzy6r/9coCAQGqQczbDEKi4C4pq8F5MkyQt2qGcR6ORlDQldkbsiMwVEq+JqIoaZPQcYxqPx9r2v/SLv/gf/1//L5/67Ke88xIjIohoTFEZc8pNCITUp3gwnZ47gLpuiNytW7eaugaAvb29lCOBM7C6abYcAkfOCHwIzBxjRCYFBbWcooZgpiWTpuCEhaJY1pbkLJJFnG6CWh5edvpQxm1h+ZS0+bJfA0Id6lJgheBjjKoSOIQQ6ro6O5PT0+PFYnH37l0zi7FfrRbj8dg5vHP37sHlw+PFundcjXfmd9+fVcwKJsk5duycD+g8EwMO46Uq+LIqxlW1Xi9zzuPJ9MHJ/I033omdrFc9Zn3rwWsvv/r9L/2FP/voI9dDPTqtKIf6YP9iFszIScRvWDXw0KPMWrZ8Dtq4aTOzqBQazfZq4DDfAedIFYoUnByXdRtjb5vo0rZtCwtjuViB5LRep/VKCMmH3Md6Ntl95PKN99+bgCfDmJInh4CAqorJgBEB1IwUCmALaPCQKQMiMqEwmyZgpKy5j21ynEFVRNEcUNkVkMiV856wEMULTOi915yKsEBVY0xEOYQqBA+oknJhzJT3l4mTJCJyzG3flVu41MGSxfmNJ9BGc/FBGS3CQwGUm6bxISxXy82cvlAKxLKhgKKVoauKgVnqYhUCIYEaE5ViyLTAGIhGoLJuV0lyTN25cXN2dtK2ax+KS5MYKTEZKBZSJAIailkfY+W9mcUYFQbOFyGBSKCQc06SY9cZQNXU48lksVhsG1AkUlVfnPgJjQoV0FLuRYU4qKiBIiC7EELoc2qgXEBEKIykItLEIgTx3pdI4+3yyzk5X1dVXcYBpUsGQMJhYyxQq98wsYZDGrHk4Wx/VOlSgNBvfRzMzCyLBO+ZJa0f5Pm9T//UJ566/lic32NnVQjO6nsPTh/MT69cferRS9d/8tP5t157u8sYyRjJAREoGpCBWJnS6RATVN5xHBonK8kAzKJSdvU+ZxV12CMaoEVJfc4uhKDNvZOzm8cnX/7DP+i0/diHf8qw17ZNUaZT/8zzT053xu1yfvvWnbffvVmP6osXrty6dWvVL7NAQpfF7p2t7x29ulNXFw7Of+HzP/PaO+9/8wevrXNOgvVklmMeuO2ScxYEQnSbVpzKaV3CcTerl4yLxPgDQQ8AaM5NVY3qitCcC0noldff/Wv/x78t7eprv/0bdVNzXX/ykx/903/uz++ev3I2b9mNzDkwqNFRRav1an86vfPg6O/+4n92PD89uHCxz5INAJSJkcht3iBmRsJB7MMcY1S1ui5vowGbWbE3LDAkAgABohEYmgkQQvBsPKLJYr4gtbicM+SR5wkm39D+4eH+/t7i7Gi5OOnaCJa8VU3N63Y1lr3Ke1V1ng00pr7rEzETY1NPRGS1XglYCGG6s1M3DZDTjWEPIpatsiw82WRys/c1YUqp7BXMvPW3K7HBwQUohHPgrYxxu1wfroQ2fhPy8FazfYO2C69MuYs4nJDKWBYRxazwQ1QUDDQL53RuZ/+L/4f/3Y+/9XsPXnq79bN6Z7dDPDnrNOMYK9jbffX91y9N+fy1aoTTm0c//rN/7a84NMMhZUMRjAjYIUP5HOoQgKpZh4F0eZ2GgoZlWLSVWBeVE5EhUsbsnDMb2FLIDjZTQ4AtUWPILgKwonUyU1VFIEBAxgzaeV0GPcPYk7b9qvGuM7h8/vy9I2bnVrV/aSzpscnK2fpue+0kTchFhhXI7bS88vyTn7t67Td/9Pqdd4+CY3YIA9w+KEhFte26mKKvfNM0Kce+70HNMasIA0Q1MWPngAytiFDUjLJkIY1ZaiIivHLlUgghxdQul03wCNj3PY/qqqqYMCat6sp5H4sRUOoWi8VqtULEpmkWZ/Nq6pz3KaVCQUXncs4OBiY/EQUfhMQUAQyxYL0fYDxlDYlYcSfbui5tH9s7f4PAlU+WN6IgFMVDpVC8afMxE7lsoqa3bt26c+du33eq0ozquqpXy0VRAx09eHDlsetv3rz1n/7nv7Q38j/zyU989mMvxOWxw+I7wJW5EGpkp6DomB0XT+C+6yUnRnNI1Wi8WvfvvHtTBLNSSjb1lQB+6Ut/+pMf/fBifqa6vvvO64ePPzMKIbYaRQ25pLPZxmN0eyP9CcDjIYkmDFx82y6AzYIEROxjd3Z25pyrnCvfH0IFQAUprEPouo6Zp7s71vXqAs9mmWElUVWCHx8+8+hb3/wGMZuKwyGkCcGQoBAthtubBopKGfmjGRCC4fCHKjPXTe2lV1Ukh0VJYsCOvfOmKpKrMEo5+RC2pyMSldpjkAcRVJVHJEAxIBVRUedJdBBZFJE8ACQRUfOVLydHuVw55YIiwkaFgcPJTakgLoiIOMSHiRCR9y53YobEniQVHDejKQEqBeckZ8/s2KOac6xSGNDqkJA4azIzQC1X5y/+/F/41o9e/uGPXq1nNaKW/0zA0ADBOZcll5Yri0SAUgISADvHRGAgOccUDUzBivKYnKvrej6f6+BEYENcMGYmQti0EJIRQbIqCYASgqqK5lDVKeXVatXUYzDLOTrHtpXvqThCVWu7brsZEpFqoeLBtlIvSFtpW7e8+FIAlb4LBq8KEJGSXEublGIXfGw7RCRGNEACz041dd3p8uTG4+d3f/ZjH6/J8qgee26qSmM+W69cqANX9+8ddUnr0RjOVhV7QmDAyjt0lkmdAQGWYDnb3ETbp1cyVcrmT0QqIoaixi6TAwBcxV4YmbkeTb/zvVfe/NGPFrdufuEznxhVjkz9aHTv/v2PfuipZtQIaODRybHbPdj59HMfmS+7+/dP5+vFveOTdUr1bLzqE6j0Y1y2d0jvT3f3/8KXfu43fu/rt4+OmTmm6Jwrbx0ODyUgMCiT0JyjbOw6yy2FwLYh4eoQZQdZkguj3Z1JjN2ly9f/4X//z3711/7N3/rr//ufeOGZav+bhxfO/6W//B88cv0xUT1e9ASBueqT1MEzUhbhyiWR/+Yf/IM//va3D85f6lMmri2LyhBwaRuEA7ZGdwAIKDkzo3dcNh/nHCCUfKni+QQDucSIiYr6D8FEwbvJbOQhPPXIc2OCRy+fdw7292eN152dmdbje3feC+NzarJu1+f2L3WLdbteT2bjvlsvobAn1XuvZqv1uo+ZkFyopk1dN41zrEhbfjGYSckD2DTP26oIERyHEEI5yWDDhi7eDcMRwwQ6aBMevgjb6mp7JOEmbuyhuwO3n3/45AIAKXoOLIlSZmZFHGNmfYxgdrhz8OZLP+xu33n6yiNv3vjxWxzPFqex5ZQsOEdBP/7885//2U9TXuB89dV/83svfOyT/9H/+T92NHhllmLrg3u1yCAQkc2GcILNbVmsLzbWI8MBXOrBIs0Y4jy30FbhC6mWF6NqgB84XhRgVUSGq8c8gDGao8ZgMCZerxbHckYed9Ff3N09UlHVnTRdxNVphW+NHc4O65317JVjO2sT8z2UJ7700+Gpx8xPPvTs87dufV2ZGEHNJMWUBrtq2xYFm1I0pdR3XV3V6EFEwCDm1DhHzI6pNJoxKrHTmFKSC4eHf/fv/qfPvfDcg9MjJKjrihFNrGnqaIOpbtu2xDxfLvu+77qu6+J6vSaiqqoIaTwarZbL8WRcntJ2sPjvGycQkZoYlCNneJtKJV5crMtlL34bMHgOED6EPW4LILMP6J9lmgaF9KiqSojU97Ftu5zzYrWIXRfX7XQ62dvbVcsicuv27fVyGXzY39+/evUKhVCdzFdR2PR3f/8Pn33skXOjqmtXFWNM2cVUiVWOiZyaOfDBB4YiMDADFVNDni/WP/z+K8uYO6W6qtn00UsXP/LM07KaN5g5NBz4iccfJVehgXO1gJH2ZYT3MMq1bSO2hc7D/QRszMqHLmdz04roer1umno0GknOKYmvAgDnwa8ZvPfB+zb2ohaYq1AhKBJUjqXve7ILzz7udqfd8aJ2UPRHCFCcsbT0N1rMDoHIIRkiaHm+iAhWZlJmigjeO9G8Xq8yEzjjAo4jMlPOORWcz6woQZm5GDcAIhIzIWABn9k5p5bKhB4JmVmhRFgO/DAR6VNCpgGqeujYK6MdgI37qlrJnBciT4x+6KdjTFmEmAidgSiAY2IodvKmYKJab/cFYmYCUx708ABIjh0wlqhEYidgKafD8+d/cjz+zd/8yrjI9gDK3gelshwCqdDUAJOalSK1pE3lnBHK6AENAEhVtYQTee+ZuW3b8XiMJUZkqEVhu1OJqHPleZobbkMxM2QMGNrVOvtcUlMAqeyaUjgKoAAUQgUwVJkA4Fy5hlJOkfJelF2oXOphEI+4TcLZ7vtbJyfbuO5qLJJgG3g6BtEgaztfPJh4+yt/5qcPa9f2i9FscrA7GRvfvXGbZuOm2ZUk65h/9MabR8cnSPW4qXMnAhBlewHYQDcrccPVByi79NbupTy3mJKiI3KGicBAYbleiXPeOTYfo7x+/87Vvem1J66MPJ08ODs2nc4mjlS7M+e8Z6aA1x+9itZ3y8WlC5fn/bsRwTFhyifzBblm3amJat9evZaf/vCHn3nyqbsPvllumWKjVUx6y7UhcpJFVQrmLTkjEyICYbmkpmVeh0TDkawmzhExTJrpq6++/mv/+jfu3F++e+vo4qVzn/szX/rwhz989foTq3VUsVAFJt/FNJpMUDTGXkGns+n/9P/557/8K79ycP5CMcGrER0zkLNhZiTOuW0KsaoW24i268r4rgzBtwUB2nZURGCAija40yN5Ms8OLa3zOIQXX/jQExcO4vxkMgliPeZVvzxtqtF6eXay6M7v7Ui0xXIlYicnJwZSHFWqUMXYmyEgFBPYatzszfaANyHEOjhLSc5kQzwwbED0h959LcsjhFDECsUxq0Cb23VriCWkYnO6/gmQfnOjycOlz8Mt64bF8EGTAABZMiEzUZ8FAIgpZyHELJJyrp1vfPW9b770a//4Hz1z/fLZcSs7qBrny9X6bD2ua+T83hs/eO5v/PzPfPGvIk4uVOffvHu2O9ov2QgEQAqYFWhjbl0qIFMjQu+DZCr54YP5KWA5jMtnRDIAhBBSimV7RSvWF+icK4E55RqVAzZlQyNCos0rZy7ofhkKAKJpVFJ5Vptn7wuexbTr7+vykBvnQ0V0PpzDqMeLqvIMDK/3q3gxVONrO6/db28fX/ziT00+/fEHXfZJX7j+2L/l313mPOWm4GiI5ENAxBBCCMEQYo597EunG/t+VDcEGEWqqjKzKJmB2BwRhVCx84AmHXfLB5/85E+++OKLy3ZRV1UXW+SB9sDBV4hHi7OcYsqZVLsYC7Fmk9AEnvjunTuPXLuGBOv12jk3Ho9LF1i683J7FARSVZEHTbuqADjVVLzUyi5J5ACQyRPFTbDa/49l9+8UVeWRZeg/kVwx+++6TlVDCCOpZ9ORqR0dH83n8/nxCSDOptP9vV1EjDE2TX00X164cOny5Wvx7Dim9R9841t/6U//qWRrUjPTnFLXdowMxPPVvKmbyVhMkoo4ppSzAaYcX3319fv3jyd7B05BFVanp5/90CcdCKpULiza/uJjT45H43mroWpaRWZ04E354RLn4epn++e2wC1iy+3nH+5xRVKK6eBwnx3FqERMwFFSKUb7vici7zipJwDsk4iASXbInjG7ZYzTqxd2rl1c3nvQhCbnlE0ckgKqgGUJLiCW0BVgpmJDUCgjAFjivkRVJDNK8J4dW1F+VgGSMHHZMpz3ABBzrkJIKW3n5abCjhQUAEw1Z1FJgOq9N1NmKNZkZghmzJxiVDN2zkw9h7IMCrlne06XH2WbXOiUsyNPSAVQ2UICosqbyX0pxBiQBDgwIIiaqys18d7bxhEjWy4SMEJCUQNAQuc8RACkrPbtb3/33OUrwVfe+2yk2dAhEm5sMtB5P3QICJJzSklS6m1QkiOhmYXgyoFooGbZDLxnZlyvl6OmJkJybjPGKg5sYAZq4oxBwRBEtZxKxKwqzL4aNX3XT8YTQpQsWABXNMe8MdAvrkIKAFVV1XXNbpgOOOe6ricCJlIcEhz7vg8hlDbGHprnbluyYYkCsiM1zaLFnaSclqoac1y2Z3/hz/ypD12/ur5/l6pqf+/ydOKWd97vutPLV65Ndw/W88Wd08X3Xn1t0Se/uyOSzVDAUnHiZGYCYmZwBghsWN5lkZJVUkgeMcZSDiJRjlA3Aaw1zWa0aldADMCgSBTqvf29y9P9C7ucVsFjBw4dL1ZnDZj3VUTfrturh+dWi7OD/fF7t056bad7o5949rkaw9vvvv/qO3dPFzGTMdOd5fx3//APTo/bJkwZGAFCqMseyOwLlgkgalmlxFNqNkFR1QQbUAGZiRhNSm5msXj1gYhgujP9z//Lf/jgeDHbu/CjH7/FLr395vf+7/+PJ1dJumiz8U7sO6iAq9AvV5Xz6nBajV/70ev/7T/5ZQgNQgDHMWbAjIgMxT4Ey9atG4BdVY3QTHPOTE5NA7typzJ7eIgoA6DE5JhzmUuWSp9IJTvfqMpv/dZXqp/7/JVzO+vVgkmmI9+369S3VXOgxqvVelxV79+6e+78xb7rTo/PfGC1HHxYr9fkaDqZ7ezusa/YuVCFdt3mLL4KOYtmBQA1U0KmP+ENsfkYCIebqxT0zFzA1wI+lx6egIpl3nb7FfmApPHvnEfbLvThJhY34q9tbcREDMQwuFQhQkltSYXLSzRu6rTofvdrv38L4NJkpyH82CMHX3vt25lXH/3oo1/8qZ/6jd/8N2m1/LVf/sdMp49fe+ydd3944ZHnADqH6MwSQHFGKpMRIHKIWAZYhGUeaapWdpBNRWalVYhR+r4v9gAwxFk4ABBVX3YWEcNBegQARUX2cPRpacE3rVJxvknZksTuohtdu9f7lx5Mnp92E1npsqosgHM+sOdQ17WndnG8HoX7EL6F8MhjB5/4xCea5x6/m81h5Z3b352QxVA3zti7QMyMrvxexywqoloGuCklS0k49H2fRVS0bhrvXB5Ywxb7PqYERCJ5NhpXotPxzMxSilFjFXzqeufIe44pcV2R427ZVaGqmyaencUYvQ/rdVso2LUPKcXVan1weG69rtq2K4p0G6LyhnDHh1ZhyVLJAND3vaql1A8KcOINIJQAipgb/v0CaFv9gFnZlHPOpVWNMeac0RWnPiopqoXO28f+wdGDu3fvTieTp555uuu6+dk8pbher6uqms/nbduHnf3Pffazd995qz17UI3Gp8uVdN3Eexe47TomBjVfVcyemCXlFDvPLKoxJnBu2fbv3Lg93Tuomqm03ThU5GxvOpOUmqZKSQTczrkLXVJA5x3HpMRoAlBiTDfF3mau9UGqcHnhhZdafBy20Nq2xy3XLeWeiGPsVdV7l3MmJCQKAdu2Xa/X0+nYUBFYszjEwsHu+1ghJ4g0Gx0+dn3+8o8BMYsUN+YBpYDBCZGKE6OZiiKSoakCA6pZTtkkm2iyWE5dMY0p9VGrojQwM7OCRLbrNgSfUkIqMS2AXCxkDBEKuFgA9oL5Wwk5A1VVz855Lypt14aqKt1bOduYWbOoCBIVfQfykNCJw2sAdqyqtgn4A4MNmFbs70nBArmGXUYShGwliYiLshwQ0RU0CFVV0MxQwZAYELrUZoWqmbz00g/htTdiFLNiIoNa4mepOEYP3mumxkiK6J0HgK5twawZjQCgi1FyRkQC8sGnnErQHhGt1+uuW49HY1UtGnxJioSDo48VXRgUpnaJx/JEKQuABBeixbbt6qraRkGrWilics7IkGJUw5SiqMbYBwxZxDufs6iIGW35zgXML3X5w4eBbuxPh9WboqqCQtZcOT+MCYoZbuzn67mv+NMf+WhaLnJa7Z87Nx5PVZan81OmHBfL7KajUf3uK6+/cetuGE8tVCkXAbZVoxoZS6mBikRuW/PBML8wMCsNQIlFSymVzBUAQFHQnBOKqCNGQ89+HVdd7K498tz+uRkdr/vUqW9Gk6mYdSdHke2N2+/uXzp/+fLF+fH9+3dPpT/TtHjh2Wc/9uyTt969fXn/8Giud27e6BiQUncyv3+yzh1NJvtRygkywOEGQFymdrlMgcGsT13KKXivpuUUKy2+qoIRgIqI5JT79sL5w9ne/q1bd15//c3r1x9fCX/3+z/64Q+/sT/zr7/x9sc+8bn7/ZGp+OBSTuh4Utc5ZwPr2vhf/zf/4O0b78/2DnM2NQamcpOLmumQ9TY8JfiA7BGlLwyqh6FW20zwt0iJqiVWRHSDwhXLGJWIvIM+dr/1tT/6wud+8nBSjZhW81MDrcmNmubspBPEyvn1al1PdgFwfjYfTerFMnZtN53Nzh0c1PWIvU8p931XzjhA6GMCM8/eTGNKaEiDTGPoEjf7ZOnWAImgpOBCYSZSOU1o4xhOSMVw7qHCDrahTNt1vu1Ot1epfHLjTrRB8W1oxsQMspVkjGRZDVLOZtpU9Ww0ffUb33zpRz+KY/fVV370N37hf1tVMLn5qnj82//Rf/iFT37q/F79U5//4ld/49f+yf/wT/t1Dm24FEc/tWydI3bsVEqoC2VRJHLIRZXmXVVgXmYud8XQIEpxDCIzQEwiuapC30dEUk2FcV9Mg8rbzM6lnEv3KSI0OD8iIgFoQYicc1YA+kJtUkW0TuN5Nzr/1jrfvf3RP/v06W5zZ7Xc3zk4TV3HblTVIhkDO2Xk6p2jk+vPv9g89uKqk7GvuTf0tH/h3PNPPPL2u3d98GbA5JhKqqgrVUIIIXcZEEIIK3I5y2q1JiJ2DgxE1AXPzMWocLVcrvuOiiU2u7ffffu9996b7DQEpMWXgqxyIXatqDrnq1CNRiM1Wy4WZta2Xdt2fd8776ej8cHBuaapj4+Px+PR4eFhubHLaWQbrcq2HHaOcy4+zmG1WlWVL3t6SobIOWvw3nm3LXe264k2vpa0YQQXJImdM7PCZi1S3tlkOsDIIl3X3bt30vedr7iqqscff9zAzk7PTo6PJWVE8N6Px2NRXXR97voXn3vuRhOeuHbp4x96+qVv/sHZ8RGZ9r00zo8aWy2XtaqrGxFJps45T7jqoxqY0vGivfvg9PGnnxVw0x1wOeWzGBw5dG2XDWm0d57CbqZGs/QxMaMJEA75cxskC0otuCEXGxEQQbFZKl5HWwxsaNE2F1bNCt8CNj5dquC9k5wBoarCer3qOvbMScV5l9tWC9xLzpICUES4+OTjP66qddeP2A99UpGQeodIJprLTWVERgaQSrXBQbMkS4BKAFpCzg3ZeSAi9giYc65CIERVc5Vjx+uuzSnXVYUIIrlpGs0l9mswII0xmplzREQlHC14XzAkZA5YJxERaZpme0GIKIQwWCpBHvYmA82CiFWoVCGreO+BUFSJCGGYtXqmbICEmrMHHPuqd4zEIDnnhA40KiMKZQaQIQ2+KPktAzjnNWuoG07RQXzn3RthtjuZ7MQ2VePKu6AC2cRVgYkQh20UARyzd25gz7CZWuGpMPMwYjR1zjnvs6qZBe/VbD5fjEdjgEKOdZKNGAmQ2IEVxiqqmveD1peSwcDBhMlkspjPicC7SrWQXmFgPAz0a1DVLJGY2WPfRzBwVVivV8yhjJzQYanLB/bSBol8GAHCjYsuE5XaHgG3XBYmUsk5p77vH796LaguTh7sn5uNp2NCOjk6jjnt7M7IxHJ//8Hqj7730hKAyOWY3Khh5wiwywkNs2V2Pnep4oRoxfvUTOu6ZkRmXnftUKjlbAAiUocxDpFk1HVrQkRDxy510VR3ZtNHH7mMKkAgKKGq+hhzl1Q4rftunR599PFR1aTAjOn+vZtPXb38hU/9xNmde2fH92/fnc+Xq2yo5MCsy5iNQz22MMpZkUgNxMx53pLHwZCY+9hLFlFpmqqqKxeq0uoUvEIkIxoR5ZJyzPjCRz4yGjXfe/MtJpeSzFft5atXR5Xcff/Nr//Bt//KX/2b3jvVhI7YI5jG2APYdLb7r/7Fr371a384Gu+JsSEhEKCYKZRjf3Pkl5FQytk20oHBoYPQcQlqxA+4NRvcyMzEFMiwlCAGoCXlhZn9um9H03OL9ux//do3fvZTH3/h8Yttt1ARl6SuKnZpfjKvfeVcuP/gZDadgUFMiRyFurly9Roit32HKUGRLORIwSFRIM8DvlpYx1Cir9u23R5ABdEIziOiJIFNlczsVJWpyG4MgTbRFPbwkuaN17Nuw9Efsnsu63x7SJUvldNKRKCkmG1adxyawwgICuqdq3xg4t/+nd8+65ZL5/Z3pv/Tl//Xw93RRz/ziTfvvfGZn/ppOTubNKODa9cff+a51W/83u7k8qNXH7m3zogTl3NmpD7GpkZRMzXvSXIp/RiNYUhsNrPiwVamxEDIpoBkKSXvK2bfNK7rWsScUiLA4D1sRn1aDtUtE21Djyq8BwCsKi5vdZakqkAQFGMb75+vf7t9/2dp8iHZufGvXzv/k49NH999L66zYwfSz8/q3clpyrdPHjRH8n/60Bc+89hHz+atC1UbzSHm0+Xhzs5f+Q//8v/4z/7nO++fTuqpmQI5drzl2SgAIbKhMvuqKqYyZcxZEPXAbIBmOBpN6nrEpyfL1aLve4z57bfeunHjxrOzp2OOVaiaupI+snPOuV41BO93d9XsbD6fLxZMtFqtC95ehZByruvGew9o67ZVs9nODjNn1arkVBMVNKiIbrwoEXVdV+JRRfLGhIratg2h7vq1V8/oymCi7/sC8CBizrnrurquh+vvPCJ658qAvyj7uraNfexjXxJbq6oajcbT6URVJJ11bTufz2PqQ1XtnD9/dnxcDDqD88Fxn/snnn3q2Sce8QyPPPZY37VfvXtvHtPeqEGm5Wo9G48s5YwRzVWj2nvuuh6QXVMdzZe37x2ts5w7fzkbHt29vVqeXd7fmYwbNY1ZuKqTOXW1gBckBwpa7sDCmvoAVqWHdGEFqiyD7TJ23N5mW5LpBigCQkxdn/tY1XVSLVREEXXepRjrqko53r5968qVyxVinzsFFTRVYXIMlA1XbX/4yCMwHfVtN0bHRJJTmakQGmNpEAtmhUQUc0Iwdqxi3nsjEkvrtnUMkFRAnXM+BEAyVUa2DZdO1Ao9R0mABgvHLdZHyIoGYMybZL7yMANA54JsApkLIabU2d57QmLADABl+KKWUgI1RPQlxUXFuZD6VBqYmLOZOSY1AjMQQSjOUuCNKmQBVLA+R68oTsixZyQEB8hmhGQEZKwIBig5i5oZ9CkB8zPPPHPj/pE4080RwIgAbIpbK0IfvAAWCoIPfjthzykXMMpUAFDALCXeuP6zc545xbharabjCRKBqi9wi4kKPExPTmkYo+SUlRScoRkSz2az5XJJxESYJFZ11a7XVVWbWkqRiHOOZuDY5SQICEgpRRqSaof3qnTDpdouXK7tLKAQ0nljGWfFZmRIGtGyZ5pQirHvW+niE9eur+fHeTnfe+aJZjLOcZ0kTWd7TVW5bIvF8Xd//OaPb9xaQzVm70NdJqpRhBwQGJKrQw1cOXSqCbSobpxuftmwgRdnCETvmQnqqk4xQNaUkmVh5wGo63vQeH5n9vjFiyBzkRzqcHjp4nK+pnpU+ckPf/ijw8MLh/vnz5YP+j4fn501jf/8Jz6+48Ot5Wop+d3je+8+WGA9DexdaIJzaqQUbNRIu+JhVIllBrudEopI7DpRnU4nrvKqKprMXLl6KWfHXJIImGjRri9evfTJT32ibdfv37g9P1nkCp957sXxtErdvFutvved126/f3RhfxLbuQEQoCfsZL073rn55rv/3f/wTzuDqat6wWTgnGNVQ1MDMqAh+cdsY2fAzAhQhGmbKTAgcqnNnAMiIsDyphM5JDY0BWMFVEFkBFIANUJXZ0Jsdk4WJ3/4/dd2p9MZVzmlYHbp8rXTePvu7btd182mU19X83a1O6ly0v29/euPPk4cur4rMwCD5AaMP4hsQrDVDIzZqamJGmodqhLgC0M2VAGvoZjXPIzfPNxvFzneFtYqiMl2HLbt7bdtuQ4yWISHZhQ4hKmLiBgORDU2KN8jYIZgAMGHWTNihcVi/sa7b4VxuHJhN6eu0/5G39O77zil//Ef/PP10YPXXvnhG++8/90f/mjd6qXpuObxpz7+HGSkvu9TUW0Uzx6mTbjKEF44CEuGXbRU0zpgU8XGtO8AsMjZcDP+LH/RDYxBf/LxEAN3uIgppa7vNqeXIYL0XQD3/Cc+Of7wU3cuzTofHlnV9e+/OfvWexfmUrXdan6KliXn+/dPj9978BMXn/zI7JFmoSPzjYWxr/sY122buvTYo48//fRTJaRa7YP5iG5CWJnYVFPOA89yUxaUGoiIiyLdzLz3e7t742bcxzSdTt+/+f7v//7ve++KrUI5olJKhX7ctl1KqYi/nnryydFodPXqlf39/Z/4iZ+4du1aTsk286YQQtfHs/m8MG/K9SUi5/1oNKqbpqprg4K0a845hAoAnXOFZ9A0zXg8Go/HTVOrqWxIlyGE8tViBj3aPMaT8Xg0Ho495uVyeXJycnZ29uDB/RhjVdV1XU8mk7qu+z6t2261WoloCNWjjz46m82yCLGr62a97tT08PCQLed29fxzzx4cXlh28dqTz3zqp38uoltnsxDAhSyQRLuuQ8QcY9H2kw+LLmbwr79789r1p554+hkAaNuujet6VPsQ1KwKVRZtu4wuZEVR0oG4aaDwsBoO/r0Z8/a+2r7dD0OyH9xpmwXQ993GxXxwDZGcvfcp57qqvHfvv/ee9hEBFRWYEZDURKQOdY4S9nd3rl/rAZJZEkV05LwLntApWJSMiGWEBADB+6qqvHPMRA4JS7cE7BiZ0LB4Lnd9zEkATEuCqOg2ddl5VzyHnHOEG5qd98UBiNkxD5tLmdVvd6jtpaCNNRkSll5Fcs45S8pMXIVQrGhKnZ1TFtGSFu6JESDFiAOxyUCH4R4jVs7vjSfap5h6QGDilJLkpGpk6JlD8D64qngkEJfmMqfcxn61WlZ19dxzzxXXCWaWAV1HwmL0NBg30KZfRESVoaQrl3S4PsX9cbCNHvalqqrGo5FtwqsJgMm2QjMwKXEo+JBYFwCSJADQLClGAGPn/MZSCBG6ti1CgryxF3r4wc5vdbI6ZCFnVU0pldJz2/iWZ7WVvg8rUMrgbNhviYY0RVGJKS2Xq73R+MrOrsWuGgXvfBXc/bt3JOOly9frZsoe3r319je//8pCEOtxNura1K/7FFOMEUrSGBNgga/Qs/fMzrnSFAHA4G0dY4wxpWQGwARoTCiKSbFN2QA8O0ACQkY5HPkGtGF/Mj8bT6YjRzuT0d7+uQR4vFw+8fSTsY+L+fr4rL9/svrJz3z2xec/+tYb775x4957x4v3Ts5wNpnu7IyqpnYjpgopgHPFAWl7akoh8oiU7KCu63zwdV05NzBzRaTUHFnVwArUQgwGGhdnn/7JTz76yNX1fPnKD189PHf42CPXb95695vf+fZ3vv8jxcmNm6e//wffrasm52imrAYp13WdUv5n/+SXf/zGW5P9c0kAgBVUch8cb/t52DhxlM6zNJ8hBOcLA2ywPMRhCvaBKgo/IBrDEFVoBmAEisXdy7Gv6iQQFSc75+atfPkPvnOyktN15lD7KtTjZmdv5+jseN22KcdmUvexB6bpzi670OfEHKp6RCVDBkhE+q7r+z7FWM50SYWImAvxdCDAPBTPUhZmOcRxE4q13WkfrofgoZ1ZN5Fh29pgu2Nvd+Ptv93+k4IVOefIOwreO1cCQ8qOXT4o4C4jnT44WnbrMK6uX782m41W3aLV/Ppb79189/4//u9/5dd/+w9vvj//pX/wy9985U3kSpL87pe/opIdoysBqM2ozppRmIijZg4BABDJDLKA48ETYvvsRQreXrSasa7rlCIMBKBhWCZZcIN6bSJ/kAjBCLl4VhlxiZRXVTEteeylRLV13187OP+px1987InLNNL5a68e/fEPd2/cdd+7R8s4/dxTrzeu7VpahfW7pz+98/Rffv7z/SLdlbNmPIurRTOZnJ/trl1IKuv16uLexclkGiWFUJmB5Gw6xI4MxygYE7ngTdEH70NQQjUgZCJHMBT2DMCuGtUjTen05PTK1Uc++rGPTqfTCImQUmpd5VZtl8160b7vqhBijHU9SGFGTQNAKcbF6RkhVlVVKDvl3S+Naam6Cj8AAEIIBZDUrKO6Tikxu6oKqqlc8KqqiLjvO+9cVdc5KZMDGMr2LeTYNE1xPyoLN6WcUi4j25Ri23ZN04yaCRHVdZ2z5KzzxQIQDHB3d2c6nd2+fbvvkgoEX0lIphKC9z6sV6uK/cn9B6vlMtR1G9OkGTe7h2/eun8wHeUsl3enCbAi8g5VkphDsGwWIZ+t8sGV681sbzSZrft+srtzOj+Tfu2qwJ5KJItmqB2jqJGCWUmwwGHE8cGN9P/nYUSY83CEPDxbLH9FHEQZoaratt3Z2SvioIIYDd2MASFfuXz5xy+/fOvGu5euXCHnshkBenTqGACCeWU+fOL6vW++pMiaEvJwcxWVFhU7UEUAYMeAkHVgfqholpjBzCCmBGZEaAAGWIXKFUZuuf8I1bRsr0VhVDjIOScRQzQRyCmJSde13rvRaEREolLKBt1k0W+vW9l1ULabkjnnnOO2TxrTwxcqhFC4Ky54VY1dx5OxYwdmgkYETCXR3izn2XgS797pI5jzmpN3zrEPzJ6IibHo2Yv9olkRN4qYcw4JReW1118XyVXlo4onP0RyIKilwUWUIcWUJTt2ZFAsLrf9TNlJCUlMitmPDcWEMvNoNCrjTis0VBXU5Jid91xYLyXSA5WIfOAuiqoGdMNBZZpjds6ratd1o/HYAJ0PfZaCzKVNhaoPSXy3QPgWsSiFznY1fnB8bpRB5eNCB0RCIpRBA7EhsuQ+dt2Tjz+1R5RTf/5wHyzdvXUz9t1sZz8ri8Cde3fHBwejg4t2mse7B4yMit55Ilrn6BwXEbNkAyuOfSYqOeWMKKaMhI4GRkt5s4iYyROqpb7PSXSd1cDAtJNeSc3664f7teXj+0dtlx+5dogpcrJmOv32jZeEYTRt7h/dny+7V9+8Vc8u/fmf/2vc6c7BIyev33755kmsd5rpLGUJoTJFQCYmI5PcmSliKBp4M0Xjgkmp5pTSqHC/uo48O1fO+MIWx+AHorGB9V3HIXzu859zZMf37i3P5ufPHd5ZLheLM0NinvjqwuNPPXH79nLVp9BUAA6iqtpkNPrqV7/+67/xm/VoEgUMABm9sUpSFSIyQBUFASYCxDI9kE0yY+6l9A/Mjrk4eRVWouWkXP7qSMsA2wyVABUBjJRRkSnlxMjeOTUAyS6Mjlfr7//4vc//5IdcM3lwehIqf+7gXIptJz30a1dxVfHewd7O3jkFJPZVqMEMoKQyulJGu43tOKiWk0ZgcIwzM9h4fw/FCg2Egy1U8+8/tgUNb80nN4fO9qtlbYuoc1Q4cFt4fltR0UaiG03MzCHSEKvFphkQuVht9TEonh6fHJ+eHl65Eg3O1lE01LkG76me9J1plw99df78Y7BTnS2W33/v+76nr3ztd574yY85MA0++OBiEtMMxohsplByBMDQFICJuDg1bfbNgUPax37bkuacAWRwCTEY6OREVnJ5hqqNAKSoS0yLPBFEsveOHcfUl6G7qHRRHn3y6acefzrUhPuuevGFm+v1ytJOm9tXbnZHZx/+/IceXNn9wWvvfX7vub/ymZ/DLtXn9lbtml2sZqHv1iCa+uTHo/1q/OFnX/zO91758ZtvERJS6ZVd2QQLJkREla+c95Kt5D+WV488sNWIkNAhcMrJObcz27n14OgLP/Mzf/7P/rlkfcopS0aTaV0bEjArcVNVjnDdtnVd33jvvZTSnXv37t29n2Pqu+7pp54KIfR9HI1q4KI00UJGnkwmhQVZZliDcttQzYq1XdlGc85q6r3zHmJsY455lXMWYAT4YI0WkMnMinFn27Zt29bNiNmJ5LquSw5U2HgRFUds7/24mXAgQjw5Po4xeR8Kx9aKKQKzy7JcrDxTYI6xX6/bg8uX02Ktvn7/6OQ7L7/+4tOPjUO4fzqvQXfH9d7etFu1s+nEOy+isU+rvrv72uvv3Lh5++7dL3/lK88988wnPvXJQLK8dwuYGZNpblxwZB4BNJtiyX9CQy0Q0NBtFKYgPHyPla9sY/m2zLst/jGsW8mIOBqN1ut1zhmMN3bD4H3o+66scx/4iccefeuVV995551Hnnyi7/tRPcJekCj1yRklsPOPPvJKXeVkjCxS5nNooFwi8ERVJTjPxF2KYuIdo2FOyuCQ1MBnZYdE7LJIjCmz92xGoAKOsRzng4Rg2OGNCIeRvCEhOe+CCyF4IlSVnE1ECLgYS4kJbkj9hbpYqiHe5PvoRkxXcI7NViVEyOxTzpUPbd+JqUNmBKPyshKoFs6sA2q8b0JVVZUnZlMkcuSYmAk8MYKqKEohQxkRg4Ej6PuVr3zKadkuQ3AgAMCDaTSaiQmo0tAqWjFfJrNiqIEEVsZoQJs8c9GCtINZsbs2RCgFENggu/OFDAaWRREZANWspM867xWskKO2ug3Y7BghhNVqXQgABep2TGaENCD55btTjM4HEQkhbHf57fxr2+nKJjSbNiT9bcnOXCyv1ABySiKSSvqNiPPu6sH+LpP3wdVVvz4+unc627tKbnR6tjy9c6OZTSeXHh+9ejSatVSPHDmvGNgBk7NaUQERgTRFUBFLqplwY9+naAgpxoLlA6IraYLOheAlKnHVd30yc44RMav0GqcNP3b50KV0672bYRJyFlq3DK5dnr11452nnnnSj9z89uLByeqd90/X6cE//1e/5cXefOv9b/7wneMOd85fFolGUUCBHZFjMg9iKmkggZQjw5jZcs6St7WjbJLJS+rz0ARSgXczAqacVovlCx//2JNPPpb79s6tm5Bld2fnqE8xtuO9g8cf/dDlg2cef+zp8dS9+/69Jx6d9fPOo3PB375x+3/+F//ywdl8dnC+zWLOZ+kJIXgtpl6AMBxrmyq8NLGhqpbLRdt1IlK7AFAmYcWFyphZQTdnP6gYIDIGREMQIwUEYc2mhuBKaIGoR1RgqGY37x+/ffP27vnzhnbu4JxqOj0NXbeiiu8dd5/42IcPz19Yd70aeu+174upmG6KDBhI5YpqphYlmhk63uJ/D83sNghNmZVtMJhSo28Boe02uwV7cOPqIhtj3i3kWbpTeCilYPul8igHtCM2QFIrcLuIqKkLjhwF9tb13tWnJ6cRcdGl7u27D86iWjWVCeQkToxQKtK6sqQTHT84e7BXjVanp9/85h/9mffecogwHtcxi3Ocs6TUO+ezZCIC8AhICExYYJmiBAHQ7QsewEb7ADQuKhIgNoDixyCmpWzETUoBMQegjCCat2QXNCyvTTWv12tEe+utt3787ntPPffE+sEcrKfLFzHw2Rs3rgrOzubf/9U/Xn76sY9fe/JLz38hQJ1HGtFwXCczcuzJWavTyWzedVnz5UuXR+NR17aNr4oth+Rc2h9EIPJMWcC8C84ZwQDxbZFJIvK+VpGccplbIbnxeLx3bv/O3du99EpiBNNRk1Wcc13M5gt8bQVA9iHcvHlz3bbehcqH+dnZdDp1zCKSkrjKFSPs8WTSte3JycloNJpOpyEEs+KkB2Wm5gM1TdO2a2aHxKZ5uVr1Xee9L/5ydV0TUsEwy5qLsV+v17gxNHPO1XXV1E0zGsfYF0bRarUq0nfbOLM55yxYtqQANsxWvFku6BSRa9ctGDr209kUARar5Wq1/uHvfG12cPiRj3z06HR59/j4zfcci3SzyeFsLLYCMFfiittg7B8s1l/5w29AmP6pL/zc3rnDV17+0Ve+/Ntf+OIXJjXffO2Vtl2PR0wAy3a5d4DMxga6Kb+LLf9DtY5tj5yHwVWzQVNQOp5/p2spsmdTY4a6rubzRSFLWglOVGvbFsD6vieHfdtPq/DEE0++9s7bb7/z9tXHHsNsiGiKlQugGDFdePz67OCge+fW2AdjBHSkSsAIKkm89+iRgLIJKQCUvBdWywaiqipKgGzKqoaqgMJYbFDLMe+QYuqxVD/IZgiSKQRA9K6UhiZZyvG/MSwkRHTkvfc5pxyFiNxmMF8eWaRM0/JAUsEQAhKJfAANpZTNsFTJOaWmHq1Wy9l44pzvu6SqBkZEqIjMfd83o2pcj71JzWxqIXjP7MvhKgXGLi4aBqKGoAgZrE/RTSdt13kfgEliFpWsgghgaoDEXFT3zvkSzxGKcNKkJIUVkkIx4jYzHxwnFhEELJpdj9gH17crW59K6tkBEykVErejKgAyGKtBRE1S/Jcrx87U1DSTOBfKMReC77tOAcixd9x26+BcMadQlTL5MhukarYhRAJAgaDqutrOKLeNb0opSfbOg4iqeu8NMPWaVFSUkMSyZMl9ApPK8zTQNPD5ixeBusXyaH9vR9BULPUxq1k1+9Xf+t3f+cYP6/OPGbApqmrU6DBU3vU5qRp79L5ioKwpdhmInHdZBMyIGRIYqhV9wAfCJcqSDLnL0mepmYEAzLq2vXphTKDvvv3W2eLsyv6VdtniYuVC/e2XXl5062dfeP7e3bvLVXvvZH7vrLv14OTtf/hPA3EyzzsHs71xzOaQQ6gkCxBFEVKpUINDI9gkFxV7KkNCMur7culINYUQtsBqkUeIpiRCRFyEh337+c9/dmcyke7s5OiobuqSgvDYo4898uRzIpUC5px7weOzxaMyY/AE3HXxa7/3+3/8jW+Pdvf6qESus+yc85bRMhCJKaLDYiauNqAmiCnGs/l8uVpWVRUGphpvzMQRDCWXNFAwBVMr82szYlQDlLJLIYpqSS8GMU/sDHtFdRTBfecHr9GoufzMh51I09SPP/74ycnJqu+ff+bZCxfOI1BUa7teFECUuGQBoZqCGW0cuVCt3GFJMoE55woLTVSy6qa/LF6BikRuI08uTdS/89g23oM67KEUsG0BZGbFd7f06Y65CEmJC3NGy2jeEAUAQQFxi4OLqCVrXB1c6KRDh2eLsxv37p2lblLN3GQ/SXZWBfKrxVyta2O/OjqZVTvnZgcewpUrj7x2b6Emo7p2VT2OGUShGY2W65VmBbCck/dOLaFlcmAgBBUgqSmAUNm9UEPlTs+S5KxZJGXHnETBIRJKia1R06Lhh2LxhGDI5A1jofQ7JBUBHBjoxLRarwDEB/Ls3793YyGLaqden63QwpVHnr7Po/H+I937d89+/GZ8V18MT/yZz/5CFJ4vV7WvwLusisTTybRfd4IiQKuua9ftnQcP3nz9VQYBzQqkYswOrHg2Ykl4NQP2Xk1VjJCYvRkQIftKc+q7RFTiQkBF2Tnw4WixAB9QU47teDz2xAYEyEli5QICn56eAEAI9Xg8vXDh4t3bt7qupypcvHT+4PBQDJwPAKBJAWg8nrDRuB57cl3sju7f293bRQAmQtCcMzpHPnQxAbli0USuXizPyAUx9OxT7MASGqlqCLWIqGEVKtE+hFDVo5RSYYOaCbEhGpJlSUOMGyqQkUMSNFRgk16qqgrOgWjFruuzI5ckOWAQ8CE0TaOmo8mkl/TDH/5AIMzn7Yee+VC/WsW4vnXvVuV57/Di7d7qtnPoLh6e01DP1+1Zd/bH3/1e4ooc96AXH7m2NvniePLdl191qxPfd4v1MviamJXJHCYVKv0HIINBUgNQ2rLJcPPfB2YSgFjibGEzt845G0CJXhl2GC2hNVaPx2b3Tk9PDw4ORLLrAIuQAAEAAElEQVRlQEMpeYBqkMCQzpaxqSfXH3/m3fffufv+zfPnDms3slyCujA71+zNRns7J2+9B0prxnGoeJkJCRw5UzSNpkzkgcnEpDhEG6AAk2ZTBda85/04Rqtxpf2axrVDkIjskqW+S86QfKVIAuo5YFTrheoQcxzAdyYTACU1q+payjifs2YkUAeKYt5zUmFCIqzrpu/juo/eeyMXqjrF1PetbJxbLSVmj6hmxs6t1+ssWoUqpdwnnYwnqqgAXPmYogMP4E76eZvWTqae6ow2rskzIQCRAwBzXAbKQiBJK6UF25xkoVGIJenqdF3v7rEPFlc5q6gikyJ4ZjJOfWZ2GRURjKmEtiqCGA5cIUNJ6hCd91EyItXe9zEjuiipCnQwco9euXK4W2m3GFXekDLgWZdvH589mJ+dLFtwvssQJjvZmF1gypNmMm5Gy/UKHZqYqXrv2DuUXnLnXJVS6wMXVi6QE8O2jz7Uvvr/UvWnsbpl6X0f9gxrrb33O53pzvfWvTV2dXX1PLFJimxSjiQqcmRJphJLiRUmsiLEhofARhI4+eAEyJcYAQwDDqBYk79ESiRFNilRJkWKZLPZTXYXe6ieq2u683jGd9h7Dc/z5MPa76n2AQq4OF23+pz97r32M/z/v3+TTdCxIghYheMVBcdcinq/vS3VnHexxFq9jWtXQCkJCJBBRQ1tE3NOUYbYsaV+efXC7mLeQMu+C5vVOmduWnagsj4+OVn66cF33n38pW98j3fmSti4htDiehO8yyW6QK3nGGOpJ5vzxNRNJ7mUmOuZTCkVQyxF27YFhBp35ciBYL8eDC2nHgCUfEpSYsQss3YRFvvHDw5jiZcvXsQCZ5vV6cnyjR+++8JHPjz0dvpoFQd7fHz2YFiGi5fZQlENbYehycUYDIFAgRBLkRBCSaLsjJyxKEqUVLn1JSVAIHQgFFyDwMS+KAB4ArAiQOCY1YEJFlVAHmLev3TxEx97vWHssz559HRysNseNNfby4NMYYMm6eBmeen55sOvfuj+/R8sTy/MXVC1t95+5x//2q8vizZIQjX4FyqMRs2BmGH1nJKYxJIQseQ8xKEfhhij975t27pdNYCK0XJMNroiqM6JgREItboCrGrRqK7DnBEJmZkJZABjQvIopeDkOJavfvOdL/xi7GY0mc5msxn58OLuzsHewfIsth1739S5AzNxpVGoSBE1Jceo4+SsckRbbAAh5eTY1dNSwRzXbD9WyWQWiJk4m+o2zsXMHDsDqOx13EplPtBsbeVu5ScCIdRIBcGU0Tmq06CK4RmTGs2RGTEKqJkqOQYDE2ubNouyMBbQYtTC6elxXm329neUcCiDWlku486sFdO4iY3xQZgPZm/eeffqwfze0eE7x0/+T//Z//ULn/8ZF5pJKSnH5IInojHFED8gCGOlBEtBYCIgdoigoHWKW/dflQqfc2bH9fcfnWJE9fNWkcoTImRkIAKt0Ki6A6uHK0ofh75fq0hwZDF99qMfvXHtCorMm67vh66dv/DyRx7eufuxP/fp554efuZs9aEXXsqMRxibaff08DBmibmsh3j79p133n4nxti17dPHT+7cufP05Hh5fLR/5aqC5JSnk2nJoiKlJBJCV5uwYgaMntx4TiEQIZsqs0cErUkdSL5pzEoSfXZ8UkzXq1XTUNc026mdOWbNEpwvRWKMk64rOb/wwq0ch9u33z87k49//ONd18EIoa3zHWBiIjQzHwIzLqX0m02V75hqzQ6oTAtmFjN2HGNcr4emCURkVlIqs26GiKXkEHwpWErx3lVmjGOuZk7YisEBR9QvADjHiC6ltJ12/gSWbXQ8Vj4mM6JzfjLpEFHV2q4pOU1n0wdPnnzo5Rc3g9x57+6jRw9KSbeef+X/8p/932bd/NH9B8EinR3fe/89spyMn3vlta9+54evfuT1n/uFXzg8O1OCrGWV+uXypOnX1xaTx4fPdifXHPqSJKWsCgUKVDK5SlXCbS/guNMxQIQqE4IaqAIwLhHgPFxG1Tt//nw671S1aOq6bjafP3nyZG9vD01pJEGgSKlZqsCE7FZ9NtJr169vzk7OTk5xwWSe0DlmY6Om2b9y6RCt5JQdF3OINbW2egkBEIGIkX0AKYaOVBRHFo4LnllQmV+8du3e6mSV+tMYG+M9x4aWcg4AqFCDJwGMmV3AlJJTHVPc1Yg4OF+VIiWNOxcTVZJUhokL3oUomRCYeBhiO5n4JuSUVJXIiQISt20rVo3uBGaIdC4LGJc1iE0IVUuHyKYZiADQDIEwlXi4PHx+togckCkDSK5RkY4QjWrWkQrXgs0Z6aB5MDMmVSBFM2QXutZYCjEWMDXzQAxYjMBQVepKU0ShyhjwvBquBfH4DzM7DNSEdckkJQ/DnqfXX7h262LXrw5LiZP5QswV9L3Qo8Oj9+49vPvo6aOj5frpBtt5QVbD2G7o4sXgGWuQAnFVuYbQrNdLM+m6puItR+uUgYiKqkMk/ICFqKqbzUZU2qZBgEo9Dd4DYMzRzHzw/TAwm+PGREWLgRWJIlpUcxYpamKbfjVr3Oc++fHJdLrYO+ijLHs1C/mov7jXDetBlOezi/2j9eHJ0F7e6VwIzrEjMC0pailBfHA+OJdKFpV+yKaAiE3TtN0k51SnyIgYQjAz7zwHFhETWQ+5lKIoJceaalckgYEHeOH5lz//Mz//ra/lwBJTkU2eTC98851vPTnp/8Yv/esvXr3xtSe//aN3fvTk8KQgOue9mwFgNoVcAMCN4dpEhGwybjXJZQWFqo2rz3ldi1oVLZEFU0BgNSNiGtOUShXgISCSA7T1av2JL3z6lZde0FLWZ8uzs83lazd2Lu6cvX8/LpfPP3/jtY+8zl6uXdmPm/U//H//g8u7/+uf/tSnbr9/+7//zX/5zp07fjIpquh4RNlZFb0RANCY52UGVnKpQuxSCjFXtBsRNU2oCHGtdC5G5hpGVEsdghFhTnWnV2ODSiklZTD2jfPeST26qwQY2KjDEJ4cPf7dL3313/orv6ymDvDCwSUmXp4svfOmVnICQPLODGJOoIoAZmJgqEJEznMpuaxz27b1HTQemCLIjAh11UNkVRpSRXWGY5ZDpdYULXWEwcQ5Jas7ym0AZT2FxqyC7ZJdjUzRoApRRiNFMalhh2qqimrCxIikUMzU0AzNeQdogAwKjl0q5dmzZwe7O9n50xLRcUAaQPqzo+duXFMRfzr8/GsfudefvfHk/RdfeuWtH/3gL/+1v/bL/7O/MgzZiZSKDKkLwb4fEF3TdLnkKuMxBa5vEEKqpzmYmTGxqqWU6pLeewLhqmBWVd7C5auS2szUlICRoc6PiMYQlKrCURzPDk8uZdGUX3vhxU+9+tGHb783Mbp24+p8t/PsJtMJ3HwuE84uX5pfunj79MS1jRAeny0PT06z2A9+/ON/9du/84Mf/khTBEAgrmBp1zY8nZytV/u+UbV+0xOQohbJRNR0LRE5ZAQEHHUHBEiEnqm+casFF6sBAZQZppPuyZMn69UaERm5bVpByaWQITtXRGNMTdOcLU9PTo4RdGd359Kly48ePSDiixcvApgoECpzlZzXtzVXZRQxHxxcGIYhxs16vWbm0HRFc908EpGZIHLfb3JOIVRHEGPX+capClllaCmgVk+3KhqjgWLtvvNYAehPRLT8JB1H5APJFxE5Ii3mOTNBcsQenXINBJ7NZofPnuWipvbgwaMhw9e/8e1vfesboPAX/sIvP/fcrcPHh88//2KA3JHOLlx66913Ht+/9/YffU2RPvv5z01nU9+1R0cnn//sp154/uY/+Uf/nzXJGmy57jVbyhGyaRQ0FFAjqoNUhkovx/rsjGPkmuUy1kIGH8RVjiuGEAIggBhvF7h97omIHJjy3t7e44ePnz59euHgQsmlaloAgYkMVMzMRMVEM0qZTKaq1g8xePCOAamUkhkOLl961wUSJTNREa5uD7JcVMyx23I4ldkpmKgVMFUgZh8cAa1jmu/sNJIixtN+02ba292RnCHrpJsYaFEJ6MUE1DgEywnURLXmx8chxvWgoBVXz47JEERq6SWAqJJSQmIir5bMjIGyQYqJfcg5E6LCCNSBka040gTMTFRdLb8IBRTZWKGoAQgTmhZkVMmMgKYlbZLjqW8RAYlp9IxZZTNmMy3GwAmkT0lAAQkABFSkAFjXdU6KIFTjq0MCA+99NYrCmHlJFWKGo/RYwGirxhZjMNFkAxqZ6nTS6WZoiAjt8OiZyvLarWtNO3HcgfmSdMq8G8KV6ezp5c3b9x4eDcMyC2GIm3z4JE+ns9ls3k0mJRfnvIgS+dl0Z7laqiR2zjWhlJJLPt8w1hbxnHkY49D3G+dCKTUs5QMkKTv23sE2jFREar5sKSlryUVSlpwkDwOBBec+8alPdju7zWKXJwdPnj3uB5tMZoenR5u8TkNeLvuFTp8dr4dkJw8PC0yuTHbMoOsacZxTFJFBlZicY8toAOhIRCr2k5m7riOi2hEBQCWmNk2TS+5PV2aachyG4TwyJcVYUl7s7G5ifnZ0Ysbv37m/1+0Mpj969/7P/NwXn3/xQ4/vPrh47VZ7++HJyTtdO2PHKUYfGtvCqPQnIqLO9SXeuRijqjIRGogoExmhiVW6igu17RmvG1T9iVZ5iwEggZooqHzus59bzHfWx8+ePn2ys7Nz8+YL9x7dmXTtxSsX5/PJ/Qe323bWuJ333/nO7//elz/36Vc//4lPvPHGH3/tjTeKCLvAzsWa9F6ra+MRSoyjc8I7T0g1I72i/8tPRE8yjkJYqsOGrZjEdEt4wpquhaMGtFZRxGCj+0lVZFtiV1uVZ7dY7Hzzm2/+4i/+/I1rV1fLEw2KZtX8m3PWyvQCdcQE6LyPaWBHjl0dWyyHjapO2+m20KHq+9F6zAKe38wIXFeE47lKbKSxZAMI3luVZ457KvyJV4nAT0gwt0If1BqRJbVMGs9xJlJDFVXAquZD8GRVpGQGBkRKljQGMHA+hDZuNnfu3BfRPq0zwLyZSZEzLcQ0xIzJ+qNTv0nXQjeL5Wc+87n/8N//D28+dyvGPEraNhsBAtjm14w/N5gWSVYSVoCBOfZEBITsXdM0QLBZb2qChKqKqGPOYmjCo7mk+sjGMh3QGVVAggDINp4X1MzQRMVMvfceJyiCRX/h53/hw8+/cPjkUV1/boYIiEAMRGebDQDGGIkdsNukmFUPT85+98t/8PWvv3G6XLm29YuFGSCA9z6nOPQ9IJQsKafgW1MrWuo6UgwpIzIjIRMAGCoggXeEhHXZL1JMjZ0zsCK5zjCbxt+9e+fNN9/8qc98cj5tsxRytVoycmiqWmRnPjs+fHZ2duKda5rQdeH11z8y6aa7i91cspkJILMRkffVAlOk0pbAasvYtnsp56EfSik6Hov1qVfZ5mawYwAgZivjX9eRQlG3t6PxZJs4C4R0XpufszTK1v24/ddslKLh+I9zWDyRoffMzBlhOp+mGE1tudkcHh32Qz+Z6nozrNfr9bp3Prz4witDnxHDZtOXQE+XJ/s3bv7UrRdfX57dvnunfPUrxyenV6/fSHn9+PGDTb988cXnf/F/9Iv/4jd+/e1HD/du3lyuhrlvrVjuk3cMCkpoIoaCVZgJaAj1rVnfhx/wNhBrxA5vHaqqGutXPwx9Xz35k8kkBO+D58CND/sH+3fu3FksdggIqqgYWE1KkShFixIykBaJ2ZScQ/Y5pk2Bxvk+9cunZ6sYo+kOM0rOlhM4BHAG9YqTqqkosooRk5H6tmHGoDbEnGKOMRX2Zydnm34TiwK5pJBLkVwgi7YGVbkoBcGGYYAWgCkOER2RZzMMwXNbYzhrxJioKpqWot47UEslV1etmTjnhmHwLjjn1mnjmMgFUTUwrLQVAHa05ZjVdAhzbmy+HQOCimSVxOCrx6RqZ1++enXqXUBzAMGzIyJkR4xginX4T7X/KaKbnM9Wmz6mpJoIoRTpe8AwnU6qXqC+L5gYxJzzCjoGeRkgawWfb6UGhpW6VBQR0EayoxkQAWKxkqY7Tdfw7mS+s7vPnQ+Nd0DDeoirlZd8ZRamuHdD91+5de3Zerjz5Nndp8ePjlaPHt7d29vbrM+cC5NuBkghtAjIzhO6Ycjeo9kgoppLcI4RTdRQ1OqIikANDdrQoGPJmRCrFSMOQzeZEuHp2emQokgm5wiRoWo2wBGTd0Q6aV13+XKJw+60AxduP3j85NHTN3/0bpZU9Xx56D06SSKK8t6j01S6y9cfPri/efDgwqUrDXnTMVItxzSZTpi4iIoMJQuyMZGYnA8wKiyqflUVXbWdmyk77JebUkrThvpkqcFkZ++3fud3y/podwpf/BO/WNbrb3z1jYaao9NhHfGd9x/JkGfT/aN1XPUlzPaSADOriI17ExApPA6BrNaF1bsKP2FusO1XHckb1HkPcnV04ggRRCBEc45r/9f3w3xn/slPfLzESIgpxk988iO3Hzy+cHFxtVm8d/v4/t3buzuXP/Pp1xz5Rw/v7S7mP/j+93//D7/6xpvffvf2naabNl23XPfsvBrW/0cDI2ADHR+Z7ZAjhJGKUkRUNYRQo/fEED16P2K+a771eVVAVHENBGBDjAQjkFBV644lpSQqsIV6VGhiTjqbzk+Pj377t770l/7Cn3/29BRRr1+7gszZoIbTmYHEVNACe0maS9bi+rJebTbVduOYeZ+C846YvQPAkjMin1u3Rsmvam1EmVnBpGQAUNORrGYmJbMqExF+wLk+n8puf2wjqmF9aiaAAIaiaEUqKbYSDBDBIZiiJVVkNEYwIiNHYIpU14XqyJ0s1++9dzvszf3EHb9/p1du2gkrYWjvHh49V/jalWu/fu/Ny7eu/Qf/5//kp77ws/PF3no9iJh36Gr6cWgaBBMp7Mh755xvXOe9o7GvsizZzHLKfT+IqWPftiHn1DShaxrHdXVC5P04oBw/JKlpOwAAoGakpoBKaDjSgBSwlr2cpZRSyMwRXb9+6yOvv06mN15+6cZz19H7gABMSKRAKSs5v+xT358enb1778Gjb3zzW1/5w6+uNr1vWm5aRKq8OEBcDxHNyHszRZTlcjmfkffetqs6URlSBEIm9uhczS0f95maSwGogfaYK5MewTHHGE1t2Ky//e1vfe4zn5wtFsdnRy2GEAIQI1IpEoLPqa+Tw7pCyjlfunR5b3dPxUZRBDoEYyZmNlUDOQeBVBVz27ZgEELIImY2DEMd2+A2Y4WIPHs1rSIyU63Q8fPZY13xnlO5ZJsGWg+X87MGtjq1Wt3XAYAjZsJxeexqOuP4PNfw11Ly4emzPvbL1ZmCbobNfD6/cvliPwzPv/DSYmfn6PSsdW3wnUiU0J5m2ZvOO/afvHSlnc7effed1Wp1cLD/wgsvbPr18dHR9RvXX/no6//wb//Xl5v2hf1LzaxZ9VFXGzBDqNo9NUQB+8AFNvq//gfRenXHpyJ9TJUUUt1w9bJMp9PFYlHNDinGVLKiotmFCxfu3r3z7Omz69eubzYbQCxiJWdVFYBaFRmAd0FyHPqEpFZg2a9U5Uk67k+P54zNYlJOVuxQ1TKZlMQIjWtYUKuixQETGZGYakk5SjEc+lRSESUjOD4+iSYYgjlvzhU1VkDiilIEBI8IzENOWSSEMMS1FW2bUFuXypoBsKYJtfJjGGn6uSQEDE2DSDmV4P16swEHbdumlAgpOBdzIRfYWRGxUbo4hlqLaUXwmBkRMnkzKSVRDYEWAM/rkkzt2sWLfj3M2yYgeTAmQmC3DcQwADFhZiXAzKmP62GIYmJQ+QKSJecEMKm3NKiNEZ2EVRKEOPJxEIHZ/QQMst4KUAfXxmgGCKSoZGZapg1/6KWbz1297HHjWxvi2gGcbdbr5VqzoZoVnXgMQK1xF2ZXL+x+KNqTwV589bVrV6/1m3i6XJ0cn5nR7Tv33nv/jiiEZoKY2jaIlKZr2i14s95vquqY2blSStc0QFRqIiyCqtV9T2iap0+frlfr6XwK2FQaLyM5z62vBaQDxLadIpPkyATHZ6fB05lmAEAmBUaBxi+klNCGlDL6gA22TXfNN5vTs816uXv5aoxRNZlZrb3qOAGBmJ0LXqQgYtu2qjoMQ0qp67oKAaoY1eVyiQiTblJE+r6v+S7V58HETduero//4a/+6r/3K//z5195/fjxo+svnP7gzbcGta++8c3DWPami83jwx/++McUJrEgOQ8COWcb1y5bByLX9308T+FAQMaRMnzez5hZkWJm7LguJQANuCZ4QO2xbQvU2axOX335xeeuXy8pk+Kt51763ve/1zT24ddeevx09c7bb+zuvXTxwo0Pfeh11eHk+HBv76DpFl/68h9++7vfV0RgTkXYeSSu4wlQQKoOMGIa3ZR1aVhtJWbmmM2NUbLVWTLO+gHAYKuOxS2Poh7CKpJ1m9VzPg6sv3Tdw6hqFUuIGBGenq3Yh2+/+b393YNrVy+F4I6PTwldFi3eo8r2jSACSUVC05Sc49CDWQgh+FByTjHGMDDziLSGyloTAMStpUvVCLZJ9WYj2XULfRApxEyOq1ik/uTnFrDKLN2Of8jAAJTq04kMCAKEolmNqsoTlRRMSyk2fvJkI+MUwXmvokmyI/f4yaPT5ekqxBvPvzgMZX28ZFWOWYEU7NrO3sdfeeV3T9/9lf/jf/Lzn/r85mizXg9g5H3wvnGr1Tp414QmpQGkON+QQV1gmQJWmxQhOixSFHXiOzMDIJPikCY7OwgIYsYl57rLwkoaGK8XjdQ6ADM0RUbQ0XKiVV8OZiA2nuwl5rjuL33k4nK1GnK/WCzuPX6EAMNmAwCXr1x+cP/B7bt3f/z2u8+Oj54dHt1/+PD49LSoNm23WOwmMUN0PuScVc15blpvqqY5xwhQyLFzHgDUCqNXNdFC6ExBTQakxvuqJRDLaFSKEqEKIdfRdCWOCDNLhhjj3bsPTK2OW0oRBHN+NCgzIhFNJh0irNfrhw8fDkM8OLhogLHExgUArHwB06ICCMzEUsTqYhu5ZItxaWrBewU1k81qNZ1OKzjAxILD9bLH6UxLAdDgXM6p5hCLZO89opWSnHOqJpKJqJTsHBB9QEaudypt/bfjyVJK/esIwICOGUy9IKI36LrJBAhEZRP71Xpdipwul23n+2FVRNeb1aPH90OAk9OTi/uTfohh1iUt4DirbmJkoDv37q/Xm4999KP9un9aniHApJvuH+yH6WSzGVK20z4/OD7zoVslkU0ahozeE4yhLaZWc+tMrW6+9CcCqkaYhkHNmKtcRyKSnMXMSiHiyp9IKQFiE5qkKcW8s7Nz4cLl99+/vbPYNdNSpOh4+/I23lmtBlw572m9iZKLFhUt7Lz3odlZdLs7droMRFlVWLMIEWfRFh2OMGPSyrgjjFlUNasxUui6odhQRKSYCjUYSy5NiGYT5C54AzS0ugkiwOBDBgVHTQgxJwBgxzllKUVNgx8TWJmJDAFABWIsk8kEjGwbXhicVzNC7EJTpORSADXGXEQJEaCCB0FGK6fVlr3eNiEEQtIaMUYcY6QQlnHjAK2PnpxHRwSgYqpAUl9MyAiKoihEBqCAxgTOMRGqGKIhiqmq1rxkZchSSoqbrGBEDh0G3tJ0nCNH56B8257UyojOuyxFcglNqC2FSXJW5k1AyeqKZZ1yWB6fbYYkaojgG4+NF5EAHM/6g9meIF29duUv/uyf7Hb2SpZhKCE0Q8zvvXf7x2+90zQhhAaJvWPvXUU61zFqzhmRvHd1tQ1gzPXko9pdEJFuLYrOubZp5vP5dD5HQnTkmAwUDRvvURQEQtekmBQUCVShmc21lLYNYFhUmIidYySFBESzya4RQYytUse5eD8MQ5FMjB7DIIPzDEDnE2JE1CJqer62q2VQ5R/GGJfLZb28XdcZaMzDEGOdr6iKqfpJtxmGxnWT6d69p8fPTiO6ye7lGz+48zuJO2imf/Tt78uQmgLT2ZQnU7ECZiUXAmMi0KI2xt1LyilnESGA4EhyBERyzrQgEZJJpSiBFUmASgxmAkR1I66qjMDEqlikAJiqlFI+/ZlPdW3Tr5ZlGO7dPcqJnn/++cmsdWerC5d3PvXJT7z80ieaxn39a995++13bt586WDvuR/++Hvv3bs/XeyIqEpxrqkhMCPdS1hZ6zKWR06NIUBwXpt2tVohWVOhegbee3ZOpNT3YxX84rgY+qCGMDMiqDV0pR5U/q1p9Zz+pNdVxcyhB2RE3Gzy19/49kc/+uEb16627Wax2G/qQtl0dXLinIMiueQQgomwd6FpOnbOuZRSjLH+QURc33MI5Ng7Y3RViA1qoMZ1BlEnb2oAyEzFTFUUK6eMVFVSoe3Oy8Yd0GibH7+jpiCMgOi2i2xHDpHVGxCYpF5zES3M5BgNwTSrVO8cEZMWE0mOwTl35+47y9XhKWS4+4Cd2znYi2eroAUziKSVnf7orR++/qnXfu7jP3V2uCTzk0mnYt4FUXE++KYNMefKda3TzlG1NEYPAqJBra23lGuV2l+xcywiCgqAxFBf5z85VNBK2DYY4QgEjGBqdWRIREVFShbUUpKk4pmbtnvrrR//3//z/xy53tLwU5/9zNe/9vWjo8MXXnqJnO9TenZ0TN7FUmJKs9kOMKmAAToGDl7FQmjAoJKyAMCMvPeAUHJerZbT6bQGssgIuBxZaXEYJJfgfV0VgaGKmZGWDIiOHRKqqm5HlsvV6vjkZIhD32+kaJHMnhTQOzSQ9WZzdnpspk1oUi5/8JWv3rp186Mf/3jOpW06E2WmnAsRxpgAwHvvgw8m9XzMWZyjGvgdY6wiuRhj17WqkpLWUep6vWrbloiXp0tR2UpeaspVDchEZtf3g/eeiGryRw3Jwi2qvLYI9YP7SSZVJWDimKbuSymN98UUEZrp5Oz0rE7FU07Xrl0JE7dexVyGbhL+2r/9v/jUpz76wvMvpEEYw5A3Rcuzo+NhGG5cv3Zh92CzXrehu3Ht5uHR4eHhs529nT72b775vTe++c1vfOubP/czX9z17v3jo5M4bNbxotrPihKbA1BCGl2bYGpEJKYlZxyJU7Ct6saWpf4656vDXIrmMUxq1DyJYNVNgsQYr169+vDBgx//+EevvPKKmXZdG2NiYkXUImamJmagJZeaM4VkHjZx8GbYdNgWt5gPqA24VKRQxSCiimGlkri6DYPNMBgrmjnnnRogKaCQdQGvukv94bNBzAcvVa+FjpwXVDUFRDVlYwATVAQkZlKnYiYCBk1odFT1WVUpng+xAZGdK9sgHjMDM0dklY2EVO2ubWhkK6YiwnrhwI3ndbX4qpl3oUipI19QRCPyzaaU2Oe0zq2TpOBYgQmAUE0IAFGzmlZPq6lBqRbrtoGoQGAqoorsYowiZTqbQC7kHHFGIRPLpSCRbt0ARGQKuiU4n+NGgB2WCq1gGvdkhiad40XrSxoaZ0gUN3HYpNH5j9S0bQg+Z1mthsX+fjvZ6WP59Gc/P7l49awfCHA2nZYibRN+/PZbx6eHk0lbsiBSCA4BONSxClTTDcA4JDATRGRGrcqtbTQSb3XlZjabz3MpIiW4pgkNe8pSLAtUIoIZGThHyK5PcZx7IiswqBm4mkifxLxrs8iwiRUb7QknIZTAOY0BxnW0vI3ssMrl24p2sbpEq1G/8sNqMdT3vYhMplNmVrPlaqVmjGxmkkpVC3lGdEzYffkP/5iJP/Ti89/79nffvv8Yp4tCARtu20UoJkzrnMWTlOKcG5XAOGYz16qrfrh1B1dKySl1zo0b/e38BwBq2NYorTWroCzCqjFFRHDoDKSkOJu0n/3MZ7RIjMPZydE6nhxc3r1y7Uo3mTFtbtx44cmTZyrvnBz2d28/QuSm45jO3n7vXXI+FbFKBUuxapPJsUgpmr1z9TVXr1t1jxNR0zTr9bofhp2dHedcHfmIWPW7IBCgwjYb6ye6UGYmZqxFRh2XlFJ0NMTXeUGtgdRMRdQUmtCklEzt8eNnq9UbXRtCQyFw14ZJ11w82Lt+9cp8OkMwJppMJpcuXprOpm4UjFMdjRPhcnlmBrPptF8tRaSbTNqmbdqupqHXqQ+P2bIV7GA1MlNE6tNXJGtWKxpc9fPbeahLvQj1Vq+pxobbTT0xIjEgOwZTkCSWj5/eD46axhM3HDoACCEYVDS8Z0AjBBOicvv2Dzb90Wz3YlwOKqXzYTJthVKTyseee0VyvPLS83/63/g3Viebhieeg2m14AGhdzv7+0O/XvebLnjbIuNEBFHZGBgACUxzzvWKl1IcO7+NtK2v7QyomtkF235V5hhsEVVEbkuzNQVUMM065kcDAhqo1UDmftg4wuVms16eVm+hqZjh7t5BEj05W03mi0FUnVvHFIsEFxC9FKV64xCrKaCNL37C6u0iItCK7YdSSsml7VqzjGhErkLVzDBL0SKgyt5tR5WmhdWsKsCr2h+ZSkmOyYdgZinms9UaCSbTdjKbsAvOeQALjo8On5yenp4ulxcuXpnM5yfL1d7+wYP7D/s+IkDbBFVr2oaI2rat3Lm2rfZ1ZSrMTkTYOXDEhoSYS6z5BDEOquK9r1Gd0+m80lOS5PNX/jbmxRC5EkhLURErRUU0hJBLOZf71ETr2vDRiAGFnMWzhhDyKP0jBWy7LqYMCMv1+vTsLJYSfPi1X//n/+b/9C/88r/5bx0dnVy+fH1/fxcAv/HHf3h4dHjpwuWUo/d4/erlk5NTj2QlzyezZsfHPs1nO3t7B8v1KhYQ4ZL0L/9P/tKrr7z44O4d1Pzk0cN0tn62Xi0364PJrE8RDICrk8IBGgLVOyQN0Tlfzah1b1tr39pw1yKvBhfrll2xPX0ArG5YcLlcLhaLW7dufe+7b164cHBwcKBgTQilSN1+Viq9qiAiA8u21mdHAT0kFw3CzmJovEfvc+krFMRQjXpNnpzhmOPBTILoHLIhOzLDDBbIxVQmPszIiagRrjfrTWg6zwUQgMUEHDpkdm5IvaioVyuZiJidaBaVJFKKIELXNQCVxoEheAAgpsrlqkqCUQNkIwGfmZhdqbygMXiBVcEBuvNEdzUAKCJNCEyccibnmRwaMTkFGorGIQZyUAp6YGJC8MRS31lmpeTaygESgIlqUQWkrPX7ZGiO2YodHR8RgwvtEAciakJnRbPmOqIYywhkw9qo2XbuUqdWmEsxUTIyBUVjIslxOu/mXWf5JA2iSiA4n+9lFWLHznkfUoqrdeyLNLP52/cfXL310q3XPvLoJE8n8+rqEIOU8/37d10Vq6B6hzr2UcbMDgig2kQEEUWFztHAKlWehlsyUH1PbCUg2LYtuzFF0URqEQDkLZdSCgavpbQhGEApAmZqyMQqRQ0FzBAVTRB9G7SUYjkE5/xk6Fd938cY61zHuyBlC92XysYTMzPA8125qtZOrD7+XdeVUoJz7WSSNa/Wq/GUUCs5OwJjEFNBDk2X8/Drv/X7vwG/a6JdN+fQDiICjtkXUzUF5wHNAIqV6gGuQbZ1CFGvQxUj1jfoOU9/rH5qNjhAEQkhsHOkKqUQsyMU0VzE4Rjxxoh9v3npxVsffvWV5fJsvVpv1uvZnJ+7dQ252/S8OoM3vv7d69dfffmFz3g3OzxcPXn25GOfuP7unbdOV2ddNy2iTE5EmStYs/pnTUp0npkZthjAet22DsFwXqNTxe0Q4Dh1U9oqllQrjKyWOwCAqjbexlg3wLbl5ZjayE0kQsCxyUlDHiE1yKt1f//B/c16ebY8khzB9MLBzt/46//OpJuG4NXk6bNnZnaruzWdzrqua9tuajjEHlGfPn26XK6appVSTPX4+Nh5N5l0k3a2ZYNVx+poZlW1UrJuvQhmmlKq8HBTqMJ/2gKdt/XcdgVWgxoNmLxzwaA2b8agKvno8OFqedgFFzeqhC50nrvpbJdcg4KemyTiVIODw6f3L1ycvvbhW3eP8mkUROvz8uj0SU/pVpiG9ebWZz767/yn/wdxjQ7ooQWrbwQxA2Z0wyZv+th13aRt18szFQMzx1SX6vXQB1C1YqCm6IgcOmanUlmdTqWoSk2VGvqMVKXbZKZ1o3xe4Y6Jxgam1V9LBDjuL0xUBNAQqe8HUnFdw42LMZnkZYx7ly8er9fr1ep4tU5FRYybZtJM0BAN6lartoEIjKpkCjZG8xoAIKkzBnIMueR+6ImQ/BZvj0yAAiNjN6uUVO8yruv1KqwtUsiImaWI847UppMpIHSTCRMbatd2s9lCVBUgNAFAr9240XTt4fHxu+++3bTd7du3f/t3fu+jH/loP5yR4dDH2XxShkRMddPCTEWKjXGVTk2BAcga7xw5MADUtm2ZybmRrbm7u7vZ9M45BGzb6aZfqkqNXE0p1f6p783MNpvNdDb13pmZdy6njIAuBFFzgWtceXAfYKbRYD6fpiGi9+QgifqmYccxxc0Qz1bL1bpXJCD/3/7qP3n9ox8WKarptddeOz4+OTp6dHpyrCJXLl4ipBB4tTyJQ3ruuZuTdjL0m/3dHcdOAXPOhri7u797cOnWrRd/+qd+Oq/Xx4dPdw8u3Hj+xovDYNlWZ2sBWq83RYU8mxmgVbZCSoOqeudMWSXnnDwHRKwwglIybCFAFdpZL6zZ2G4CQPCekMgRiBK6YRguX7787OmV9957b3//oDIDattZ76i63Ear+39jYlFxjklhk7KfTHdvXD1+00uvDYeMUkCqkloBC+SczSFpUQ6eCB0TqbrtAScowYGJ7QXfL88ym5n1RVJAc47BICk5UBp56gjVQuZMtRY63gVEc06cG2mHTKQiZrUnplIKjtbSMUzUOad12rtNbzBTRMOqVlaVGlqklnJq2lbBZLNBxCKlFDUkg9Gesxn6TSk7i92O/bRpG0+AAlYlohWzAexgXGKKyTavO5ecSk7o1I/qDSSyLMvTs25hTdtVP2TbToj+B558IkSo9fq55xbMrKgaGiGaWlEpVookiXH36kWHFpizlSFnx40oAjrvuuAIgdZR+03GbrISnF27+bk//Wc25JpJA5WaDcgAxycnx8fHWIW3TKKFRnQ+nP9gAFAfQ8db0asZIRGTiOLYz2NVh+CWs0xEzFS9jUSkonFIDn11eaaSDYFGIqQDAQUULEo6SKoHb1ZAogKqJCZWJDHR3u7uMAzHx0dNaHxoDTWlDQA7x0WylMJMwTlBOM+BqtVkjaz/YGdnpqar1bqoISKhUzUpNQcciokoKbMCu25qRbpZi0SrlIQYCGPOgfkcR2qgasJKRSSXMXql6ojrW6MKIkMIoQmgVQsC53vY6mNomxYQ60QXAZxnVQNFx54Qo2R0OAzrL3zhc23wR6cnOQ5a7PKVm95Pbt97cunKi+uNzBeL/f3dh08ftHz2ve9/OwSeTHa+9e1vI/uaD0eohEzG40XQ4h0RhpRS07bn2+FxTMLc930dC51vZgkRyZ0vheq42nmXc0pJvHfe+6o7Fsn2QZQ6MUOtVutf3BZJqiqjBQ8EDQlpMwzsoJlMZrPppauXT46PNuvl6XL1xjfevP7crcaFWdfu71/w3h0dnxwdnuzt7YXQIBIxeM+TyeTo6Oi9d9+ZLxYPHz7a2Vm0XTfEOLk2lVLWmzidTks2773zvgKBKyvIMZNaNiWqhmGuwfLnUxLd2tbONUNmIIrMjl0AUzVBFQILTMfL46PHD3fnLaGoZEAYNkOvZ/1q6Xzr/MwmBYgJ1TRPZs2//Tf/V3dvv/WDf/QvdbqbAsWYb75w4z/93//Hr1+5sb7zcH79ahYbhrg3PfDYFCuGNbxWTdWllJumnUxCGoZhiJNuPF+4QeZxBVUlV6JAgGp1ZIOETEzVLY7VkrMNm6wfVLWfjJYiQEOrp5KaYkHvKJBjcnXhj6IlZzMQM0VDx4bU5+jaRgv93tf+MG56RmLnTKHrphU9x4JqBuS2mixANWAiom3+z7l/DwEIzIgZi1StQ6hyLYQaLlxXKyNLBrZMEUTdSmvHaRYzEOZcJEVmyikjYjfpREQMYkoVH1REcklDHJDoxZdf/vZ3vnt8eqoKf/fv/f2D/X0TvXzx0sH+/muvvvryi89PuslWOEYIyMy5FGbWogYmUir+cqSolQKAVeTUNF5EwfrQhIzFTLu2E5UQmppi2DRtHW4z49APq+VKVZvQzKZT1SryAFVdLVenJyc1ALaUwszBh1IdGUhFpOQymUxiis8Oj8Vg08csCBTe+tH3f/M3fvOtH/7gV37lr372pz75X/0//8u/+ld+pW0nfb9eLU8ZPAeOQ2LPi9mMpuyQS44A6IL3LphalpyzhBZKjENMWMSTC03LvjFwLnQZi2/t+OSEyYnKcDYMJbHnJnjvQ/CeGKvLDwykFCaiKr1nVpFcch2kn9dAnpmA6jdVtYigqiMCkRBCLpGJXnrppe9+9zvvvvvuqx95rd/E4AMhWLU0m2gRKKZSsqmvkFJCSwIK7Xw2ufXcu9M2ny6nPnhCVHBIhgqMoqYISfKEHGqd2EvN32aEYkoIDbMzu7bYVYN7m1NjEh9WOc0RZyFgv4kxhW4iUlS1jlCqTL2ulNS0lJRzbJqmaZptQTPezIiYS/He12+UUkY4R73f6kZYhT2PoPwPlo06PsMAjp1zroJaiuQCWgAdOschSckA+7u7rXOeCSsYyBBhNFTUSEpiEhRSw/PXgZopFjQwPucX1JynzbAJZuQaajmXbCZ1JlHNxqYWS0QkdmPaqGoF1hqT88AlF805QXGNMeNiMtEUAc01zlD6IXkOHj1UjVS/GfoY2mlxzf6VG/svvDK5eLU35zyDGpoVVWJ+/OTx2dlZ13aqCFxVsduB8Ra8WbGUuu3cz4O1a61WBRPnjIGUUhMaZs4xETvnnJoigUNGRVeT5zUToYBmLVgKgQdgLQVAEADUgBEJTBWZhyESgA8eDXMsIfjJZHJ8fDybrXddW/OMS5ZSjAjqZKWoVLhLdR79JLvo/PQDgBjjcrVSNccOEVVKKdl5RkAzLVpIgRAVsOlmUURTQT+WBsBoKgaKBmSjaCaXDEVFR/nweRlhWzUSIjahqYyS2o3UCXdM0TkX2rAtLhEBtJTgGdhp1qLqfOj7s/li/rnPfuZseXK2PMGii92dCweXv/ndbxtwjKIaDg5u7u3fcK75+ht/tImnFy7v3L5z++xs4yfN9p2NY7KNac2zqxVhnauF0DjHFRkQQkgpnZyceO9ns1kVwgOAiLpxbFMdPcbEOScRHa22295j+/IanQd1b1IfYURU0fE9OcoTxtparCACAKlClOIced81rQrAv/q9L+8eHPziF39utVofHOyJ2s58QYB9H8/O1k3TtK038xcuXNhsNl/5yle6rtvfP+j7vh8Gv/bB+aZpXA1ZJq4a2Zxz3cPV+RwikmNCJAVTwW0Ael0o1UpgrHq3vyRxcC4gQs4JJDOCZxzWZ48e3l1MGgZFE2bMKqSmUkoWi1EoytAbITkc4vrJo7tnyyf37927Np1mdCc5/eD+0//yv/h//Llf+rPHd+7dvHozMz3bbHZmu1Cshv4qjoJXAHDk3Ww6JdJVWkoZDZBNcMzETAakWkQTgIEoVsCGVsghV9kXE4NvsmYpFamHZqYgiFhh8KUUBFa0ggJGBGgIopazIgsSOGZAF3PKJYuJERoiMIGGpMrshlKMXQiBiS0bEzlkFUODoqCEOMrxxYxIyVAMQOtubZTYIwEXEABi51Ul5sQ+IJJhxQsjIiuoaSFwxEjI9aavep+K3UNkRA6NH4a1lFLn26nktm3X/QYQkAjRiNB7h9gOcXh2dLxe9+1kJvqEfWja7tnhEagdH51MuvadH7/9uU9/5uWXX37pxVs7u3sZtKILVZWdQ2YHUAfpmoXI1QV5ytpv1mrqm10iYEd14VMnYWXoR+I2IZMzBjCcTqdMvt6Ay9XKO390dMTMu7u79+/fzznv7++vVqt6d9bGJYTQTWaiOJ/P1uv14eGh94HYq+qzo+Mvf/kPvvHtb71/+/ZsMr1541YTupdffOVf+4V/7d233/m5L/7Cu28fE2BMKWeVoof37l25ctB4B4AiikAKKKC+Dd6afhjMtAlBchFS1wRZASIROgbYxKEU6YchlpxTcsF3nk/PToZ1nkxnibnrOiYYhkiEZJD6DVWRM2NwTk1jjMzcNA0ArNfrFBMh0nY0rSK5lGzmEKuhrO83Xdu8+OIL77///qNHD69dvTEMiYmobcwMxYEzRmHNUbMTzVKKRAbYm+/6ppmiTPf36PE6IHtCVNFcihRhrjeHZ3ZEdalUilDNxEACMEdEapDSwnfP7R9ow2fDEHPJadl1zazZa5o2D+sMoiWLqgOUnNGhiozbTAQcLSdsalW8j8hmlbRBalpyQvYViYYAfd+f92cAhowiRVQAzRE75yvD3blgSClmYmUKRCxS1AwdYSVpEPbDkLS0TUMFDMXQ2CNjNTnWqHU1Bd1KqeoWhre5QmNzv91dOiJRSf1ALjCpATZNA1Ydjk3OWYoImJo6T4RORXPJONIiixGolGE9CBoEpAYnIcxnUy2iKCZmHtgTmZoVNVakVLKqKeNQ1Pr0ocvXXLtISXlsoLDmPj19+jSl3HZTUUFyzgUar3Cu8iZGRkAVZSQxAVMiB4BqdRRY03ao7rkkFwEjpknXHR2fMhfnPBOwYys21ugOAVG1ANpI4DNgACkCJlU/7swBqWhBtWDAxCQgWUkslTifzlIspyer2WTHCIsaIqUUnWNCyDkRArKrwKtzmxVutVZ1COS9X2/Ww5AAGZEMIKUEpioAqERQ3UlqgOSGVAiRQ2soJUYAYGI1YEeutqwl55w0KyHXQrwOw35StNc0TS3FsNbPWiNsR52QD+G8RIMK/zEzExCqiRmstFquP/np1/f2dk9OTvp+Pe9mN567/u57b//47R9+9vM/u+7l5FiWJ2H+2vXrN67+0R99zSjO95p7D961mhIxYv8A1MZFE9UKIDnn2JOqIEI1rFU02qNHj0SkZhmd74Aqk6IOp6v6DUFTzIjUde35Xua8hoZqk671NHKtJKrfHj7QFNdtL6tKKQKIm03PjhHh5HTZNGH34CKc+M06fv2b3/7CT//sreduHT574gD2dg92d3ac81XjrBKDp3fffufu3bs7Oztd1129ekVE+74vuTy4f38ynbZtm9IjA5hNpwcHB13bIlHOuQ4NmhACkagIgHeeqD7TH2SgnvvCtkshQgIlQ1WCgqhkEtf94dOHWNJk2prWYB4VNTJlJCJwBE1DQKUYqGDL1Dh/5717F3Yv/uLHdp+9/+TxavmJL35xf7F7dtZn9ctNXjNiM0lDPJjsalY1qbM4rOfttJsS8fLsNKXkfCAmhOofx60NvORSCFS2WlECJiQDEKk5cAaEACSmfktkqRReYqo6FGRkJGIGI0MoKlqKqChCJUKbGRqoaZEtwCQrKzCASPbeYfAGQM6zp2IgYOSIAQlIDOu5hOSqN0jHs94Mx5u1/raEDDga80UkxhiahpBKtVfWuht57FeZANGqENiAz2vaLTLHOdaCpjb0Q90smAU63wuY1fTp+Xy+XK8RYRjicrVq2i6mpFLmO3MCGOLwpS996c1vfevlV17+6Z/9mdc/9rr3XAOl1dRMkEZ5fZHs2RFicA4JshvW62F9tpxOZ/UKooFKcd5XEz4iimiVVwNgVZqu16sq9jw7Oz0+Pp7NZk+ePJnP5wcHB2YWYwwhhBCqfZqZh5iZ8c6dO3fv3vPOX7vx3N1793/tn/3ad777/ePTEwGYTBeqEkK3szj4+3/vv9nZ2ZnN5ndv351OpmatFlythkcP7j19+uTw2aPZbO9zn/2cAhyfnhrCfLFgJg4OE67Xy1k38USu9cokhKFpgwu5YMcNODs5PeXgJ5PJ0G+YuWvC6ekZgC6Xq52dxcULlxazydnyLOeSUq4Yt0Gl8s3rGdr3vXNuMploKSWXKvNkZu8cI8ZSiDknJY/MNAzDYjF/7ubNk+OjncVeE1rFOnUTNXBITM47RHDWD6VkA21DgwRrKWcxJlMyw6KOkNApirAZIrja9LNlA1BRq2uRQIhMohpBu9BOlFPSAvbcpUvPhvTo2dMU+9PVatf7/aazOMRSTIoD8uQQkLwrZkSMCLUSQiRANBTnfM0/qVNNYmLhkjOhWtHQeN5G9njvtcYLAHFgNaqmznpeiwiiEDGN/bcOfQyeiVAJTQwM1MomDdigVlFd7XkEmUMd6uC4u1FTAVF0xEzg0AN4HyhnEkEf6nmCgKrivGPvUikgveNgok1gEQmh8d4PQ3TskVBUS0m55JITOzKq1Dh14OqWYRiGPic/Ja5GAIOkqmIBELUIlBilOL/K62QQo2Q3I4XGtc5ctoRgQGYKYtmKPnnyhJkQiInEEMyJIlItNAvimESmqug+yLWuhYtVHRUBVoMeMAFpSSnn6XSyXm/GRaRq3CRHwTkHgqqKjFlzpVsBuKoiEGAxEVWCSk0BASslETsjLFlKNkZC09D4xWLx6NHjZ8+e7V88IGJEQ6E63CMC5xyxT3kEQH/Qvm5lDHVbWnKRKoJF0lzSEKm6jUp2bSBGqxOeop6C976olJg9j8FHSuQAQS3nVMoguTgO3gc/Wk+sDp+qGhoAuq5T1RGRrOOiM9WpNnFTD3AZtYwIxo5LFlDxrgWAlCOC3XzuubOzs5L6i5cuXti5cHx8/IO3vtd2bRMWy1U4PBwOj0/aaXhy9Gixs9jZ3bt3/8dp6EPTFtP6RDgkJSWo+Gbdmg61bYKolVKYXds2m03/9OmTnPNisei6rg5ZbWtOtO2KuW7wi2mdt/EYrSXbJco4/sHt+mykH6oCYkUsVjg7jmTFuhqzmCKgGXAcMpJjbpbLfjKdT3b6+w+f/Ppv/sb/8q/+1Q996NVnT55s+uHSxUuLnZ31ag1ABeStH/7g9p07t27dujbpUkrr9frKlauXLl1i5iHF9WazXq/7zaak/ODeva6b7B/sHxwc7OzsVLbabDp1PJKQAwQDK6UeROPNk3NGIthaDglRQEWTaXFo3mHaDMdPH/ers3nXSYzesQGJaOvnSlkll35Qy0DKzjftJKsZ8PM3b7780ku5H3R5+sZX/jBz83O//MunRPEsds08rvsAzJnZU7GiqDAWjVAfSsfOIYFoXbiUkgu01ZyG5/M3BBRRESNGhw5x5CKyY1GpJRURksK5P9ZGoYQgIhMD0khuNUDAJgRjx0CB0CplLsaUU8VI2/iagABBoYgBk4spOe8BwJikKBKic0POjIDEI0YbCBEU6tOCWwK1ndOCmVmlII4G4BQjMfvQMMBWgWZ13AsKRjq2MmhqNbZ6NPLViVJKuXPu2rVr89m8lOy4ZlUZO2bgOuj2TctuQ+yIuG3bJ0+fphyvXr36ox+8dXR89PyNmwg2X8yPTk9/50u//4Mf/eiTn/7Exz/+8Vc//GrXdQam4ExVBdjQEYfgEazrpswwDNG7NJ8viPjo6FSFnAubTb/Y3WP2ZhZCs/1DWK2WJydni8V8vaa+H5qmefb09OTkZOj7quN+44/fAIPnnrsBwI+fPN6sNzHGJ0+fPTs+Oj46Wa9XTdO2bRdzefvHPz48OvJNC8jOeTEb+jRv83e/+73f/4PfYub/6D/6j7swqcgeQCy5XDi4ILJ+5+0fbnoZYmy6yWwxG2I8PT2RkqezWddNzk6OV2Jt45FYAA0IgBiZPS2PT8/OTtfDwMH7EFRFRTQPaOTIg8Lpyapfx53FTs1zLSJd14FZ7HsVqUmVaYx6oDq8bBr2wZdcUh6GGAHAEZVSvHNDPzQhIFjOOp8tiN1qteQFA1FTdeKVGJlTslJUKCVAmISWCi43Z8ucwmYdNXdMYMgIHh043IgaAqMxOQQzsmIFwFG1qFcqhCoFV3LuOHDrU+yh750BO5cTHG1WU/b7V6auCVGjqgBXUb9SkSwSENWglFS31KIjsVBE0KGoqKlj7xzGmGrz4pzbxquPu3kEZM996kULjS5Mz4zb+ZAQkSEimHfkiBAEDHPRvP3+wgeHFjy1nonNCBiwbqUVKwpMTbVsVepjgCQIIgABMSqz1j7YAA3RFNSIQbVsYhIh73zVbznHzrEBiErfD0WTYw6hQaYhJSklG7BzHTOTPzy8vzGOqfQNquUSMxRjcljJ16KS8+HyTMhduHrzLGLw7axbQDFvBCBgKlpSHNTw8PCwzgacC1KUENQAEUQ+yIas5bWNNky2rb/SsauOWNVaD6CahKaJMTaLRdt2681mGAbvxs6HHWeRXLKrWC9QLYpq4JDRAUMGNBMGElMyBEIxSFqsZARi72vF1PdD8H5nd3F6etzNJyGEmDNzjfgRJvbkxtpm+/OPK1GrL3iu+6/VeqW1klOTojkXF5yhoKKJFiiEhOCIUGuGLggCWBFlJceOuKjmlFNKCubZs3PVWVXlw3WJWV893rumaVerlRVzjZNqezJTEVN13le2+3mFUScGCEjskNDUhtTv7O4wUd+vL+ztXDy4GPv4gx/+8PT07MOvfaKPeLaU27fvHVzeLWU5nXX37r5/cng4DLFtm6Kl9iaEBkSgpmAOOZdM7Lz3IlIZZMzIDs6Wp8+ePYtDms1mI3dD5LzwRUQxJaDtEAjVoAu+mnw/EHZXCdv5ZnjM3kZE9t6xY2KumH8aI8kl55RSVC1AkFIi1Kqs3fQxSVqnuLO7vz47/e3f/K1333rrz/6pP/WLv/gLu/sXposdKZJievzwyXff/GOi8vxLL129cX11tlRV5/zOwd6knZSY2kknZt77xWIhpZhoiqlfrx/0fYxxNpk+fPigCc2tW7earrNSogAYiqlvvHO+Im4YR/gPQJ14A5Iz05IigpjDYX02rM4aZtPMzlVJCJJTVRFg4JRzioMhAudhuZnOd5pu4kJw7KF1A8on/8d/cv/KzeO+QAKHTByamYc+lXUsrU+ybnxwNd2DEYANzIEVU2mY11F940U0l9xVSCBQLkUr/t+AnK/jtqqPc47MBE0IFQmhnrZUZQSIyNsytlqQGMCIgLg+oY48qxRG8CGcnaVcKq2hEMIYi0IoFd7mSAFG6CoyAgEiAWkSRnYAQxy8c4gIJsxOVUyNEQBppKNr7W9GOwyTAwBFE7QUo2P23qdcGx0wSASgQKBSnTVEoApGWAxyKgGoYn4ZkQhn84n3BAAGEEJANlA0NVEtYoSu62bT6Tyme6vNmaK61rPnF1689aUvfXmxszufTJUdtK3GeNb3//K3fuf3v/yV52/dfP75W6+88sqtW7dEtIjsLnazlM36eLlaxqxt2+ZEbbu7PEvrzfrO7Qc/7N95/vkXDg+fxVi66QSREDnG4ejoKKW+X61OTo9PT0+7bjoMUVXXq9McBxNNKjknchSajqCOLdT7kLMQOUEqKknw4YNHR4eH683A7Kez3ZhLTgVyUtTFfLZ7sPN3/v7f3dvd/Xf/vX/3wsUrWQxMEfDx08chtCWV3b0LH//EZ7773Te/8tXf/+mf/qmuazlwg6HEvBqWk9l00s1PTw832fb29nQwizrr5jkJMW9SXvX9dDZtvU/9Znl26ph2Fov9g8snp8vpdL9tOiICsNm8M5N+vQmulWw5CZEZ51xyHpKBrVOZTDpgzqUQQWic820Wg2pIMCNCBK+iTRNylpxycI2qDv0mhEYUvKu8Cg9BnZScU1IRlbjuV0OMMZpKXJ2WEoszUQ2eKRYVdc4RUxDgLIZaHDhyVGcB7AYwMUXn0UDUltIDctLEKh16lpxBqWlPi5wl8QZqggENTUyIGlQHkJHBpDiHbdNKykRkYCVmBsyaiRkNVYtzrvFspt2sM7DVau1DQMSUczWcqBmhN/YqybsASIYsoGDZrLLqlclKimHSOAIoQOzBh1Ue0mZz89KFGSEDdMTDMLjOkyNjVVNHjABiSM5bzIpooBXrbCClJHbePCkCEwMRKhQxR0SoDgswqgckLip1IiumWsow1G0IdW5Wg6vMbOqn6hQB0KzkEoib/ctnzx689eBhujC/tBcWxFqGbLlrWzBs2+nDp8+A/IXLN057KdTO9/ans2kUVVVmNMWSRHLO2c7OTpkde59LYU9gZYx6JgQzVSHnDCp+2gFYysJEqsAEuWRF8xwAkDioKrIXNUA+PVtNpt3p2UkQJt+KUhEByFny2LmC0wIgomoFBGhQguodMQBRkKLOEQNryQjaeGa2HAcpxftQclzMp32/Pj4+vHTpEhGUXIL3hs5UhyEDguOazVlDzXXrVBLvPRAOMa2HwYUmS3HsomatZq5sITSqhobIY9xDllQZsNmKIybnC1hJOeWsMuaAsgvTrlPVGIeSRdUURBUIvZo03TwrkAtmIEhqmg2LQkyF2HkfPDtVrXb9iimVpE3o+rog824ocbqYO+bdxd6Ny1el5Pfefffw6HjaHaiEd9677cJL3//h93/li3+5m6DlYVgfDpszZJ8N0LmaVKCKKkKASJSKEgVGKkUdB0C0kkLn1pvN46ePUipN204XEw5O1ch5EREFkeK8c1u5TC2MGt+kJKqpBrxVJzlso9qhElAYAY2YmNEhA4KN63JUI1OJacgp5ZIAwAdmZtWipt57UwAB530akmc/n+4+evDsb/2tv/MP/sH/97XXXr1wcEFzcgbPHj1xmn/5L//5+cGuBsfer54e7x4ccGgPT5e73Sy07SRL2my6nYnzIYiVPh4dHmUty+OTuNpIKveOjlLJF/YOnLGmDGbioduZzff3CREUW/ZEgRAURciM0VRJ0BF5s/7s+NG9O/Ou8Z5STC54ds6KgGpNfjSi3rDdv3r1lQ+fbXrKtrt/gGhk2hEdHx+CuzSb7w4ChDmwiSoxeHZRRI1VxJMHhSIZ1Sq+RFVccNz3PQD44IZhEFHzVuUXW9eMISGNmZJVa4layUe2TaVDRDKqjANl0jpHATNkPpd36TZlDSvrjxCQoIjEnERLVbHZuMq1831h7UrrRpSQCQhMELbyyeqyRduqqwoAiBSicdeFNsKsa9++ldYDs1NQERmGAWoEiY458ABG9QgQUyykTKQABCCAFtPQBmeiCCgqN27c6CZdSokYwExKASBEcs4BoVkWkyK5SF7X3C7nN+vNKx965Y03vvH02WFzpXWhWx+f3L5377XXXiXvDfFHb/34zTffnM/me3v7V69efe2112Iu3/rWNzd9v1wuu0nnmEspTRPOg3uqd52Zh5RqEhEiEblSIjPu7+8R2tMnT4l9CM3e7q4PLTkm4r2mqcotRUCglLIanJ6titny+Ox0vTk6OVyv1r7hSdvt7u8LwHrZk2dkSilmyVcuHZyeHt+9e/fn/sTPf+5zP2VmzlVrujK7vt9479tmdjhsDvYOnjy5/89+9b/7+Z//uStXr3gMFvwwpNOTM9/wfGfn6PTJk6dPWppKzl3TkKNhGDZDH0LYWyw88533311vlov53FT/xW/97j/6x/+0dc10trh187kbN66/8OLNF198/sb169PJVETjkBR1KHG1WpnBbD5Pw7BarQGpaXxgP8SYUkRG77xIERFCojEQDULTiOowDCVndlxEzAyNq+0WwEpJUko/DHEYYhzquDEPKZ+utM8OiRgFTFSa4KdNKClzFkIE5yCAGREwAsmYWkKSBBFqJ1hyVFWHGFgZ1ROJ2kbyckgHrc9rcQhKoDAanSpEFxFKkc1mA2rTyeQ8hacWiAaW0+hNrWxWJhKwlrkaf6CO4gFyzk03MccpZQR1zqrQgYiHODSVCa6ipuy4IqKhwY1kYJo2jSEUMkFD74RATLhitZAIiQTRwAOJmRalouQgAIGI+UDBbVarnVnrySlaVe0xoYmoCY4s78oUKcMQc87eudl8XsmW9RdpmzanbALE5Nix9yXFbr7TOr7z5OjR4/s3L85fvXVlMQkExQvuTBcxZlTYmS0cO88aRfcO9sXUDJ1jNdOSJCZQyzH2fY+AIpK1MBAieqrxnErIlailakzufIgCUGMZVFXHZaVWNYudjwo2m9WFCxd293YfP35wcHDRFEkhDrFtWzPLKY+xUHWnbZYlew5N63IqUkoRbb1vQlskm1ZFsoAKoDGzlDKUTCVfvHjx7v37FYemNMKizFChmCiOqO4P5BpDjFCfC6LNekOEdVaRSoo5VmormInWw1uNSEFMlMhECwA475zz9ZYb9QEICMAcJpOpiaQhxhRFlIiQ2TkygabrQtOoaMrZOW9mYtUqn+sowfsAdf5TLXWIAOydjzEaYmhCHzfI1jT+5nPP3bp+IzD++L13nz55gkaXLl75wQ/ePt3QdNGcLg+fHj76c7/0p9584xtnx49SGnb25xlS1OiMYUTYISAC1AwZK6XilQURg/cnJ8eHh89E1Xlu26ZuD7dKJqtvMBFRLURY1yPBBRXNUsAMAB15w2q9BMOAI1yrikqxgjRVBawmNpoalSxDv4kpbhmbVCMBcUt3U4FSCpiilInzwftArvNNkfi1r7+BZoHJsuzN5geT7u/+rf/6Mz/60Z/8pT/98dc/1q9iyrI5WR49eZbm690bV+YHuxHw9Oik3ZnOdg8kl+vXrp1tVrsIm75v51N8xvFs9WjVPz06dOAO9g92L+7OHIukJObQZ3NAWjG1zOrYpRRVsGWTPNy/fXsSHKEioAseDOI2HJcApWQiXuwdTHcvKDtqZxcv7PUpmUrn/clq+ejZ0c6l60YtE028pZTGpbOZDx5pDONjdmCyXewCADowY3IJIgCG0Az9YAY1KaJuYdkhAbVdUy8rGKmaqIBUHoIhAmitWY2IuIa+41gA2TZSqoqIR5eKKoiG4A0hxqEitqoMqHYe9chA3cZRjUvDSpMbh4P1xlIcaVEI46Zre+LA9twZ9WQ6vpJHNRkROuC8ZTa0bYuIIoZGWO35iLWpMzIDLCVCtYCBbfqha5qcB0b3sz/7s8yompkZ0LzzVvNfaxgFQxN824YYh2G9bn1IqdRj+pVXPvTVr/xR6ycvvfqh9Xo9nc9UzTWekKbzuW+CqT07fPbw0cP3br+/XK7OVmfXbtxop91qtVLVUrJIIa6xwA4Imq4hoqZrVYHQETnnPICY6c7uwsCKwnQ2C6FNfSZPhEHV+ixxWK+HIae0XveHR0f9Jl67fv3o6OTZs2eGRA6bLnSTtuu6YRhSLkaWc9r0667rLu7tb9arvDz7wk994W/8zb9R7y0iVslS8mI+r/XBqh9UbTZfOM9vfusb337zO2o2DPnihcvBt/v7O6fL0xgHKVpy2eTe1MhN4rC+d+feZrWaTCZPnzxRKdPZYjafTGfTr73xzf/qb/2/ED0Ypjv33vjmtwyhbf102j537eoLz7/0wgsvPnfj5v7FC8/dukGh+863v9P3mxs3nrtx/VrbBDDNqm03nc7mKfcIgL7JOQ/DsDw7FZG2aduuzTkXKUWlJEk5m4FzIZVMRCJl6Ic0RIWSSy65VLfw4cmJPjtpxHnJolY8a2BGdAYoSEDmEDwjaEkF6w2jKqqoVrbkDPYO2YMDAVPmg/l8eXiURArYJg873QyQAxESEDlCMrWaoAWgde2ipiWPYpQPllwKVVxCzCJSSvaTKTunW/TlGGIDQEzrzUpUu6Y11ZxTfQaZERGJPACnWIzQuaDBiQoSCSg3rgBULWq0gp4NzSGiqCkYmJiIKAM4IG+AyGAQipJgKkptM93ZPU1ZwbDmvhEaAXmfo5Ui3lcCGVZRl6rOF/Pqnzp/3s0slyxWxMSUCB0gGvF6iE0z8cGllf3o3YerZf+JD7/kIQZq1tafnZ40we9Mu6QFpcy6ndls2nTtsIoqAKAx5yFGZl73/Xq1qb0co+NxtI8jqW4sTz6IAkDElLKoOiZmp0nrEqSeVWYwhhJKUbWzs9PJtPM+9H0/ncxFSkX0Vh3bOdn1/CuXTGCOiSlgkVJkLZumaYhJDFMpZkpMkksX2ibg8fFxETnY3x+Goes6z15VEdmgIKIRFTDamq1GJ20R1wZF0JRWmxUQ1tzvIW5SSeQQwIixNp9AaFbq32T2Vfbr2CFAddggouZMzE3bOudENfZ9ZZOOAMN6rxJNuo5ghA6rCjrcspMKERNR13XMrnqLq8YWAEiUnSOCnOPQr+ez6cc/9vonP/mxrgsP7tx5/PBhSbkN7Xrdf/tbP8owP16+v7gwX6/jwwcP9vcXwMqeUhR1UsU1iOMmuLKrxjcao6oSIwBshs3R4VEpUn+q+XzqvQc1G83quoUgVIGPGQgz+8ajgdMxiLpqn0QVEdgH3NreAWpACMCYoUqqmlIehtIP2VSIawAZgalzLJJr+z3avJ0TqKlqgkVLjkjonN/Z2VETBnTIYFgItE//6r/953/85T/65Bc+99rHPvbizReuvPzh7JdPD59tWG4+d4NETp8crlbLzXoTiP1s99r1631JoV/nmKcu6BCPlqfFoxQwZB8aMrBUAIBcyKIAxogMrEULZA9USmTiw6ePytD7nSmYpljIeSIXmABBi5QKOSO2FJenR+Scn+3EYUXkkEgNhlx29i/tLHYUqFrSoFITtxhGZq6a+noVxcTqiUfozJDZESITBx+kFDNQgArEc9UhgOC9VzVTrAoMQCi5egTsfF9sYMQGgPVgBkCsDiszHJ2fVlRUlcApGBCKlL4fYorbqkXUAAxq8joTI6FzDoEAQK1mRHPdam1HPhXZDMR0fscw0znlvX5ne7bjdlUMAFAdBzUNbptUQgo1SlqxVFUjoAGqqWQzI3SmysT90JOW51956dbzt3IpnqtHQ1POMAKsSFXUhJirUtz5MAxDESWg1dnyE5/4xDe/8c3ZfJZzfvzkya2bz7mmmXbtennm2E2m05oX7XI5Wy0X8zkQqshif1elBgz7lHLbNvX6iyiA5pxzFgAKrhFNqpYlO8bZYqaqz46Pzpbr2XwHDDd9H0tl3MfzU/v09PSLX/yTf/Ev/cWnT5/97b/9d+4/ejyZBkNQrBmexUCHoVdRIr5+9dp02i1Xpyrl0uWL/9v/zd/cm++UUhbzeSmp70vMGQAm0ykyn202CjiZziXnS5evHj47MrXvvPmtELrnn3/pwoVLTdfu7u6KlGfLpzEOy7Pl08PH8+kixo1a6TernZ2dnb3L3rOY3L1/75/+2q+FdtK1s74fbt56+eTkpJQMKDEO79558ON37+b82z6Erut29ncnk8mjh49Xy2XTNPv7Oy+/9OKnP/mJl164tbe72N1dTGdt23VIPJ1PY4oCcnJ8MiyHXberolnypt/Uh0oLmJhoJf96RFRRIkwxVflRSnl5urLNQObAiLKyGjJnFUnqjZCo1JzOLXE0p2xqoMLsuq47x3CjD6ICpTiw3ba9MJ0+Wa4NbGMlmiIwAaNqMUEnBMhECgUNmZ2hgpmAIiACiqrf9iHsK++0vqSB2RFyEu26TlSl5NAEUSPS2WySc9YRhdfWFqoUnUymnljVnPNlSNxwoFApopBkwiEYBuIWIQh4cgbGJZuBEBpCARuciqmiFCRyxI4J0HEw5MlsMVssDgBXJ6ehdVmKaMkF2TlAMnAILqWU08Y5tzNfTCYTQEgpSy7VPRxCqMkMROiAAEisAJIRt5MdlTwUaycHjO7ZavPoJB50CNisNj0jN+xkiEYZBUPgpnEpp1QKEFvOORcx8OT6dR9jYlf9SgRQk9YAwSoXB2pgR9V5aG26tnEBtcHbMuEABWysllSkaXzKsdXm0qVL9+898K7xfuTnVmXMVok1fjGRgmmONX/QAQqOse3EhOTqaadqhFRKoeAWOztny9N2MmuaLsbcNRXTIrkUUuDG15ytcRKvmktGz977IrJcr3IpNYcSCaSIijCTaZW7QiX8gxpyVY6WKlWpP3+9hQAAmZ33dW+1Wa9zjEi1UmQwMFAAdN6H4PoYPUATvKiY1bG/AlhdJuDIoamKl9FbxKRIkHIxUybc21l84XOfvXz5wtHhs4cPH8QhGljTtu+++/jkNK4jPDk9vHbj2u58980338zxDAkaHxA5phw6B0YMtA13gpogqWoCGQHbplktVw8eP1QtTTtRldl03jSd1U5epZRcK+Na5YiKihA5IlMp3jWE1S80ioMrIkmBqip1O74d/wumklIehn7oh1yU2Ldt23atc9UFlqvdNARuQiOiWqIVRQJiliE5hJpGLFmgdllEqYiZ0qbc3Nn3fpP69Ae/9Xtf/q3fe/7WrT/80IcXB3uL65d2Hs7o6em0m+zsLqDxu/PdvZ2dRw8eFtDF/m5ciwdYTLp762VhmLedc+H0dPnk2dP5zrxtuhizIzYA0wLOMTEoQFGVNA9chnV/eryYtrFfOe+8bwBRVdSMmAmpwrZUxRNmkc3ZSSO2uHBZALIUVTJk3wRyHj6oCkajXKW6IGIIYRwPo9UUcUBkIudd6PvsQ+PB10BT50dpo/e+bZvaqaSURPTcIUnMaNu2Z1QYCwCA4Fb47ahigmikBKkKEtSZKgFU1GIaUs4R8bzZqKOb2mVS5UxgFV3XogfhJyuYKnH+SQnn+bxnpJhsm0IRQ9Tzv3vuy2DH3nx9OBGRuUEi01q9CxgCKBJsPfAgpagVZ6FtO5Jy7cqVg/29s9NDIFKViruq8Wkm1nah7qcmk8kwDCmmxXw+DPnpk6fvvvPOiy+9+tprH2mb9vTs9OjkKHi/Ws2mk2467dA5ImqdKyJt18UYuuk0qxwePq1T9DrNWyw6kVJEwOp9RSGEriPnQ/ANgEsxn5ydKmjKYmhDnzaWN33u+7jJCQhDcE3TEGKM8fj4eLFYHJ2c/L2//988fvz03v0Hk2mXclLQ+awjhOOTYxOZzxaL2Xx/b9959+zp41nXLs/6P/tn/synPvHJTd8752LfF8lE2DRNybmIeO93d3f79boMiTg43yzPTnIpBxf2nzx5+ujRPXa0xwcPnzy8cHDw8kuvHB4/BVQVDZ6ebVbDJr7wwguXL1/Z3d9dx36xs/Pbv/elt9+5vdi7HLN0k/lqM6z72LYNAC12uhpVq2o5F0M8Olndvfuoa9vpfGezXt679/DB/Qe//S9/8+Mf/chf/+u/sljMHj141HZt6Nqmadq2rdaGnPN0OjWw6haMQxSVVIcAQ04pplSWy+VqtezXfa3ya7eXUwoi3Dgh71gkFfBmBKqmqGCQsmbQgMwINU3QBw+FAIAQfdNIJfCaEWLwPg+btmkvzeep2KPl2SoOg8wmQA7ZAKJkQGzIqxYDRaAYh5wyO4bq86lT13rbI2YREeWtC7Q6erbj/UqZq8sPqKAdQkQbKa71Tdy2nUolCzgAyyW3beOdiyKllKZtGuSWqAEICt6sDlXVhDhkrMhtpyIglsVAChXbkA0myi40IUvpJs1miQjaTTwVzqolFxXLotony3E2m1ad+9APRGgA3jmo4S2q1VcPWLG8FTwMzE4MxJB8N+TeNYvlenj3/uHOqzdXCSHbomlTHJBwtncAAj96/51P/fTPl5yldua5lJyLqogulysRY0ciWqQefUieGGtyztj0qxmYihRVh0hMWP+neppJESTcnk45hGBGw7DxIazX693dncl0Uv+w2Wxms1mdx5+3cOOsCwBAVYuqMrFzgcgDYCmFjZmdD6FyZVRyHAaPFkLY399/+OjpdDar074KFSQkZAMARtTRswaqWnJxTUAizTnWNkAN0KQ6ZswM1FSBaDsCM0ADBaQKZfMAUJtM2A46mq5jonFwKhm3dWGdUNbdT82hr4hy7z2hiWTJWaTU37sJ4Scn/BV4ywZqmpMQo0mREp+/deO11z5kKR4+eTL0fX3HXbhw8Y1vvCMaRNxsNp3PJ7PpbLU++91/9c9yHpBc0dJNJkUGBreN6wLYTvkAjB0T4snJycnpCZixD6VICGF3d68OHhAo57J9cLYkOSiIFEKoXrZSMjNvzQBVLqYAyESwbfK3n7imlFIcagAAO9e0wTctEzvnanlNRDEWAPDOh9BI0ZRyrWUJsGhuXEBiNCXALGJMghANAFAcH8foyc+8azkcnRw+vX//t27fTTkudhYv7l/eXczSPEyuXb5y69arz7986eKF6d7uvUcP5d69vYsXXrx1K63WzbDmSaNDevr02brfUOQf/fBH1649d/HiJTBgFIViUoQ8Ije+bRmCpR9+/ztY4vxgNzOlYci5dJO5cy4Vy5q70CBBKhFNAYEVZNj0ItPpHEMLAuh4MlsgYCnCY+h4NXqOX3X2U3kEpZSSUyWo1U/EiWj1xCOic67GS5mZGwXnuF5viKCASRHU6o1XkuqVV6wTG7Dqr6nTKhzjY7Eq4mCbCIZGAKBS0Jn3AUBjHFIaAEk1IY46o+2HPsKj6/1BxER+q7D+4Gtcdm4ZA7CFkZ9/wQdmk7F4qtXVeVJEvWq1xW9bX0nWZkh4fhFNRIixppF7F4Jv9xaL1enJKx96Zb6YHR0+apuOXS3VtQYl1XJ8GDaT6cwRLlcrrUoP1QsXLizPll/76lfAaD6bLterrHqyXKaSN/365ITaptnb26soOu99CEHNnh0ePn78+PqN55vG11U6ovONb7ZUhWEYmNhAl6vlevVEijXdJKeETMjEjvucjp6dmKEYNtNWpPSHfal4mpp7u15/9StfUdXQhDjETd83TZh3k0nXeO/293Z25ou2bUsszCxadmfTZ88evfLCzb/yy39ZzSaTifOkqiJ50/c+hLbrYor9pmfH88XOSTzSYmBoyF/+6lc++vpHNnGIeVAQdvyr/92vPn785Od+7mc/8/lPf/aznys5Hz453Kz75lL3/PMviNjR8Sl5v+7T7/7+H3BonQuD5CQypLVrvICimpquNoMqNKHx5EJoRZUpOE8lpclkSgglDdP93QsXLqhIcN66zgByyjGlvu+7rptMJiGElNN6ta5R2DHGvu/79SbHKvgZitRhqIBpCI6IRBXMtPGzvZ3jzebZg5Md33DORipYYfd1FAAO0REDGrNnRiZCYtgObKne1WbesWhuvS9qM3RX9nZPY78ahqPVqvMtowfkaKoEQEBIZkiAytxO3CgLq9Gr555dVTQIztc5U/1m3a1UVBJ5V0y3B0c2Ex862BLYzCrdCkU15+JD8K0722wADQPHmPuSHYdCkEwZMaCpQQFIzoqBZ9CsJtr6VovmAgogSBklgq41FzR0vOrXzoWdxSxt+nYyFVRJUIqAmkNm53cWc8/1NlNmZiQAcBWJq2UUhAAVLcw0AmIqT4U4NE1O2YUJWJ7sXXx88uStuw+7yUszNzFPjXfz+SRJCU376N69++/dufXyx0oacrHUb1KMJkpiq/V6XEggM1J1f43WtlKq301K1lKjnZyZSSk+8PhJoImKFmHn6joPAUQLMfoQaid2dnZ26dKle3fvr1ar+Wze930dV0sRdkxIYlVcIoBiZmaiKoBG6GCcUiiiOOeoFmaSyDtRsZyb0F26dOnk9JRq0IRvzICZc4klCyJXqqDWtG5CRCwiQOQcqRZARMMUcy4ZedQ2jFKcbSVCgCJKwIwkRSSXmiBR2yEG1CwpJwCgSgYkRARFMwOCKpwAR9w1zWqzyTlNp1MtuaSoRQiAAWfT1hGK2LZWAwBQrMxxQMK4HlrvfuGLf+Jgb3H06OHx8eFmvQ7Ozxd7znVnq6jGe3v79x4dTSbt1RuXv/Ott5erQzQHht6jSGLyKKQCSDqO9ZlEinfEzGdnp8enR2AwmU5iLgg0m85GYqFRHoGc40xidPiLNo1DUinGxAA1hvhcMWJbYBAhYSUvmomqppT6vs+xR6K2nYTgnQtIruo6zCDn3PebIfaIqIp9P2wHHlRTtGtnnlJqmB2zAeRiCgbeZZFTlNC0B9j0xydhAvOm3eQ42Z3t66xdxesR85PTb791773fO+XJbGpOGabXL88nE+kjqH744x/5pT//r3/kw6/utlPI5ezsxA0ybNLJ0xMonPsymbUXLu2xAyRMRcx4MplZWt9+5wfr46c784nm2DUNiBwvV2Y8mc09OywiRQmIwTk2lZhK9iFISaeHj3YuXHXcJRHXdKBQi5Bx/LkN9q4HV7UA16VY1XMZjMoxB9WraZzzEJogIsOQzCznVDV6ZhJTYe+ISUFLFqzS9LrkrJ6RmlkCRsTjN1VLkap+rj8QI5ciZlbjI0VKSsMwDKXUj9C2k5vKZjsfZI2En1qI4JjvWNNzoEaT4hZnfD4EGt37Hyy8cLvE/eDfJyI1Ob87vfciJeXBYcNMoMZU00ABa/kFqKpNaCqyYrk6I9SPfvSj6/U6p0TzaTHpHKma92SGIXARuHbt2ltvv/NP/sk/uf3ee965fr1BIDVbzOezbvr+e7ePjo66+XR3MfeupkykjLBcrTfDsLezs1gshhhX63UIYTZbPH/rxXfff7/frG/cuHF8fPLg4QPHLue0f7C3u7t76dKl6XT64OG9CxcOLly8dOXK9du37//3v/Evrl+/dv2563mIlfgHwKJW1kt27JjrbA2NShmerZZd24KZJFvMp5cvHuwtdqazCbExUa3Dcsrz6SylOKw2p6dHkob/3b//H+zsLoahd94jeRHBej1VRYSJm9DGHFMqbTtRJAHqh/S9H3zv2eHh669/JGuOKd6/f/f+/fubfvjH/79/+s//5W/89Oc//+EPfehjH/n4z//8L5Rc1uveACgEBfrKV7/+9tt3ZtP5zmIBJ2cpFUJi4sAsmquytC5zUxJG1/e9qDoMOWYiZc8ly+zi7PLly1cuXjZVz1zU6i0S+5iGdHx07J2vdU9KKeVUi2lJhZEmbbuYzb13BoBiBlAF1JXVAaaTbjJz/q137t1b9pc81+mpZ0cOLavzDhFd1eawKyUPQ2y8R0QmSimFEBxzle0boWeCol4tAHgAIe1jXziIgUdCoJIztA4BpUid61b7AhEhE4B557dGhDH58vyRqQ9CVad2tS8XQQQTaZqmbZphiAjUNAGR1+uNdx4BnOOmaYgZQDvm0g/Tbn7cn8Q47LudrIWYC4J6VOfIoZMMYqTqDFWRSpGcLBduPDGTQ8wlpzRbzHwTeohF4qxtTo5PxDESeEZy5MyjC+RYpQxZz0fLqIo4ihzPOyIz8zU6BqplG4gqHMgALUk2ibPpFHD/7fv3m7b7xKsvuWmHeYhiSri72L929eaTx082y3Vc9zFDjIOWklIUaZarDSCpWSoZMDgGMSkxV6VHvVUQyLZhc2amVnLWajMcpQPbILB61KUUaUQUARFtNn03mVy8dOHhg4cheAAzqORfKyVXDP8429qyCmuEhXcNV5B0nUeOuX7qXWNOYkxETlQnk2lMOeeyXm9oguQol2wVAoI1CEyyFASoel5VySnWfK6UoiPOOdYQUx2DaFRUqOpzVRWMnPPkxrK7fhF68rU0H68S1tAkAwMkBhHcylycc4DGTN65cU1fjWlmiBiahoh1+x+HkfRW0QOOUXPJqV9/5qc/9/nPfnp1dnr47Gm/XoNB002vXL3+5nffJTclHpgpxgRi165c+h7Lcn2yN7vOxEU3jun/z9Z/xtq+bfdh2Chzzn9ZZddT7im3vNte4Xu875EiKZKPlOTIihoEpcECEiNIZMcC7MBJHCGwEQgxkCCAPxhIPqQgtiXBUbdMNYpNpCjWx9fJV25vp5+z29prrX+Zc44x8mH+176Pcs6Hi3v33WeXtf5zzDF+41eyqpl65wHLhQqq6oOTnC8uTrbb7VWwiWRbLmdV1ZQOuDQfVyN6+cnLXgUMU9zFUwLu2HVTtmZ5NbQ4vJeth00gtKqGqgohFMYPIpYIUgBIaey6bd/3UzAZ2O5Sq0aJlrUEjWWRYkna1HVcr8ugkNUEENld9P0+sXP1mYzHTRPWm2rdv3z7bpfPH54+mc9nn9u7ueT5KZi0YR2Hxx/e7/cO9maz7vzyn/yjf/7f/NIvvnbn+T/2Ez/52muvEMON2zdb3/zOb/7O1z/48Id/+AsH1w6blqp52zS1Yxq6KLHbnDx58uDe8cHCEXbbjeZUN+0ButW2N6TlYs87zikDc5k1EaQmNM0pxV7Uhda3hlULZjFnR+yssJ3yFT5CRHVdA0DXdSUIz7mJSlZABFf8cpqqBsg5i/c+pdz33XK5P46jmhR3XTMlR4hYbLuKhKFEJxoYFrs0K9zHEv9eYjgRALz3zCgplzmDXbFFGrfbbYxFRKDMXLDPHVw09W6OPFCp6lMQ/RUlvyBPAIY7dtwO6TG7Mp7aEYCuPviDn0CfxAmVwD9MOWZL3nsCRkJRMcMQAhOVuCAEjGMc+j4w3bh2dPfunXEYmJ2Z+sqNcfTOp5wJqGlaGeLP/dw/+tVf+9Xz89VsNq9Cc3p6yuwd8zAM3lWvvvrK2cWFIszaVlJeLOYPHz0M7J1z680mVFVVN0Pfr1arlHPlagUG4CHJ5abf9sOnP/tDD+7ff/3555+7dcMUvvilN64dH19cnJ2cnKzXm8ePnn7vu98dY+z6oVQQM4speh/MNPURsTjcW/BVVbkQFsu9xbxtFrNFVVdV5R17ydkRjWkc0zgOAxF7dtv1eui7frsh1f/g3/srX/js57phaNvGV1VBfUuAK5rlQnsk9qG6vNzkmJrZbBjGbBCa+flq+6lXXuu2677v33rzva7rDw+OsmoX+5//hV/+xte+dfPGv6p9eOMLb3zpi19CdvcfPUqiv/IrvxZHDd49ffyYmcEMwNXBxziqpsKYn89aVVutNnEcvGdWlBwRdT6b5ziCwcsvv3Kwv+/YBR9StDqwgAGir13OQkxgpmxhVllbskcMkQ0Eci5AT85JkqA3Iur6jgDrypWFgCHe/NQLy7/4Z3777/2D9XZ9c7HEcUQBcmiFRIwUY0RFT6GQaZg5xUh4xX0sxyIj8jiOpgZAbNB6lqxiedRkNPNVcGMa+8FqK8JldFNlRMSS+112CqUo5Jyryl05iGAx28xW8mq6rvPOhaoqnL9h6FNOBNw2VYwJMTNz1szGOUYA1CyOrAZex4FqyDmzd1D5TjM1Pkrapmx5lCgzpRl5KAttAgEFAiMQVREFARMF1bqtfVvFswtid3h87fmja1//5tfb5X6JIjZk0qQp4y5uyXZ+MOV3KaWm3B9mVkywsNQiycygiEmECA2M2UUbqQrt8c0/eO/DpPL5V144nreLEMjT2TouD49dqNYX6+3l0MUsoCoyDr2I9n0nIhyCJVFM9EkwApZtFAAgMsKkNykioJwTAjJ7JhJV3mnWSmQQIjrHKeUC1IcQNuvNYrE4PDp4+vTptWvXVKXYyagqI5dMhhINAaClTRHRnEuZ9cXMfRiGlBIzcfAA5Jw3A0Tqh7FpWnZp2HZd37dtBQRMTnOhMIGUbNHCG2M2k3EYQl0tl8uTkxNVAckForaci0oQDABMqezIMDhnWuxhJ/yjwPPlIztoBIqV3/TI27RjKr7tBd5o6rq0dwQ6AWZIVVWpahEmX3011SlSFFBVhBB/9md/el6HDx6ebteXOQkh37h+m13zla9+6wtf+pP3n/z62fnTnDIAXpw9fffdN73zqqii6DSLIjjnvJpY2c2BAmBKueu2xUG7DNuSzTkfQlVUzznncYyqWlWf2ECLJlVgdoiTRVzOWXaSnXLBFff2stLdRfuZqo7jWOIBvJsi0kwB2JidSN5ut123UdXZbJZybNvGcdi92kVnmkQERZONDbti0+CYYxEeMROgSlYxZQvOJUsq8vz+sY2DXKyJ8CR3mPnl+c0ZNH9w8vQj20ZPNw9uKIEqHOwdWhXWkB88fPZf/o3/r4BUs+rO7Vs3Fou8WV9b7h3Pw97yjXGMmbmaLwLCck42Xtz/4C2H5og0RRNRH+IwErp508aU+8161jaBQVXQQHIatpeOyi3MCClut+gq5+s4jqKgmNB8cUwq1aAUPedcSaUt02xJmSu06JSSA0TnXJZIiORLBBVtt2si9N7Xtc85eWRgAgBiqoIDwCwZI5qCOWUiVTNUJHTkdnRrLWEDpdMoxOqynMs5k+eUY4yjiBS45we7H1Wb1PBMBkiFDsRcfqUCJ5kJADAxAKJRwfihyE9gijL+13Cgqwbo6iOl9bniFTrngDRrTFFCqETMeQ9WGj9gRjXoui44X9chx+HHfuyP3Llz+969DwgNJ7kCVHVVV01w4Zvf+NY/+Id/7/T8GSDdvHFj6MfTk2fz+aLbDmpQhzDmlIZxPm/X281y3q4v18v5jG7eevTk8eZys1jsbfshVL1jt9jbH8ax347f/f5bP/3lL//R27dffvnlX/rFXxSVZrY8OLy2Wm3v33/wW7/7lTgO49h13XboB8kQ6qquG1E5OzudzWYpxXHYFme2WRNms2axWMxm83k7b+o6hFBwxqkeiaaxZ0BVYASHpCBD30lS1Gmv+eWf+qk/92f+7Oby0rczmwAGUuWC2QJiCLXq2PedAdRV9ezy8vzyAp1bXW4Xe4d/9X//v7tx89r5+bNvfvOb3/j2NxeLvW6IIVQA7uDgqGrm5xerk6cn//Jf/fbNa9evP/fcs2en7MOzs9O6aWKMzKCSi0FUHDvJYqBEQGjjMIwxmakPDlRD8KqEZMQYc6raer3enJ6v33n/o8Vy2TaNmgbHiCSSnYOUYj/0AKggIlI0xzmPxeQFJ4SSkLFIr4E8OlfCrwCQDEXk+POf+e/f/He+8vf/2/v3Ht30dR0VBUt+HZOZA0IqUgBkVmJkV9xWck6EMKboQxhjZGJAc+SA+W517b3Hj0w0ma7HHlErX3vHCoaaiw4ACau2NrUkGQDcLlZpQiOk7BmuCp8SYTG0LHddztk7r2jeB2bHyCUUU6ecUQSDlIqbqFewqMKzenSQGv9k6Bb71c/8zJ84uHlYB079cDl0F6tV/+BZOlufna1sMzTkGAHMXOUdcp8HA8wV5UDPLi827w7JI6rirVvri1WKMsYoBoIGBMae3BQsJqBZMiIWR76p6ikilpALUIFiILe7XwUMCuvGOwIwBIxJXNXOj577+MnF06cne024fnhw7dq1/eNrXbSZ8P2Hj2OGbDhmyTmpZFUtXf5u4rJiOo8AqiIyxWapZZsCdKHM5WU7nlMCQrMC91DBs8uabNrdFUwuG6CenZ8dHhwi4unp6WKxQMSyNvqB7w5mupPmFcKTmuZxTE3TlFyt0n+oKqARYc4lstsRY3ABW4hDP4zDbDYrcidVKCmb3ldmU1h9WczFMS7ni8uL1eXlyjSrKCE6BCpCMy3RtkjEgCDZ0OTq5yyTZ6FyX9XhqQ1CKBS0UFUiogpt23pfjeOoCs5R8N7Msigil6AhZkbgYle366UEEcorYaB939+4ceONH/7C2enpxdl5P4yIOJvvfeqV17/75nvfe/uDn/jZ5Wuffu1f/MovOu9M7Z1333z7nTebprZy3CcsqtiDQEn6ICIkXF2sCkw7TUGgirCczUIIV6sPM9UdHczMqqoys2EY6trtejXVknkwjeIK4MxcgQ+yJkYC0JzjOMZhGKsqVFVgognZRcxZkCDGOAyDmZW3GwAW8z0R6fvBDFTFO6+WJUVVLRI/kITRquDGLqshGFDweZuc0aXFpm6vpxC2ae/28ery7MH5s+t7+5/av7a93FwsR8/+Rmgv5HJoqgw29uNmtW6qen+xz8N22GuoreOm2yb93rsPXv8TX/7CF99oSYe43ZyfHt15QTOvVv2rL9zW9elXfv1X4/rypRfulpSRnHMlKiCiWtWzAhMO6xRC8FVNhAIWt9s+DlVdtXuHOafYb0MzwzoDKQKZWNRJ/V4Q0PJajeNYeiAAiDGqCiEXemUhQTvR5JiYQz92hFDXVYzj6enJ3t5SVELw3ntDRZsa3qKyQ4ScRHI2mpwjit4MAZVUNRMSGATvVFWyBR8KIZHYdf2mW69jSgaqIlSGhumUwNTETSaEvNuLQbmHdogOTCnvZZAV2+1Q/9Cfq2YQd+EpVyDQ1SLMdoanZTR37CefdcRAJCLrzZYQ2TuHzjFVtQvBbdf9G1/4/NnJs0cPHty8eQ2ZAc05VzfNk0dPfuHnf+HrX/9G3YS2bcchDcNgBrPZPMU0n8/X67WqMiF5H8eR0e48d2u73zG7cYiE2DazzWbb9cPq8tIhOe8kS4w6n82//73vfu/738df+qXHz56s1xvn3Lf/4Ntl7+NC5SuWNNZ13bSudIp931WVG4chxTF49/LLL147utFUdVW7UIXgKwNTmXKZcoqSpTSRE7MqpqZp2tlsu1mfnJ3OZou6aWfN/OnjR7fv3Pm3/+3/uWNvlTRtK2ZTLowZEoVQFd5Myffpuy6OkZlijENKCu7+/cf/t//7/+M//k/+6mJ58ODB46dPT28/d4ccp6yb9UCEMWhb1zdv3ama2cnJyclqtX9wpJJzyqC6XCxy6jNq8eYvirl2PmPCYehTiikm5yvHPMRRJJNjVd1uO3JuHMff+do30m//bhY4OT9/5823b9683syq68fXl/t7s3ZW1VXTNG3TGBonIWYDAwNCGIaxIM8OLcbY9RERDRjJkNiK7BwcU32ekz/c//N/5X/1lZ/7p+/+q995mWd7yIaGjqMMHg0ARI2IckpGRgDBexFRUyBkdohIiKEKUsxtVVrEpfOrrtuM3ayqMiAlQURfORFVyUAoIuRK+IHCrmUp+28mTjEW8ReCAQATmdkwDp6dZ7aiJ0RUUCLnPeWU4xgBoaqqcRzZUZbsPeeszGC7EcKFkBlONqvP3zi4+8Oftgp97ReER00FjmgQirY9W51/9PDk/oNn9x6sHj3Nm06AXAhkYGmsXJCYo4gQaUpf+71v0hjn+/s5izkuw5GBmGFKCRBTzmYafBDVcscjQCEMlmOeciIjRmUqJoJFGGc4xcUDk/MeAMN8b5arJvebe6dnHz0957c/XuztkQ+HHzz+C4c3mfx2yOxcytkRjGMCYMSJzg0GZqIgKHJVSXaT2I53JbscWEBRASX2HneL/Su+gu6ytwBQ1UIIXbfp+35vb6/v+81m0zQNTwR/bZqmoCA5a/Et3Jkpg4oSYIxRRKoqeF/nLGoJAZCYHYqYqSZVQqyr2hEOQz+MQwi+ENtFdkZ8gETYd2NMEQFyzkw0nzXr1ZkHIZDi7a+SER3h1JsagCnkLLyjUV614P/d+mxmgMhMANNc7pwr8ReFo6m7+AgVZWJBdc5770uS2o6uPcH8BdRkx8MwfumLb+zNl4/uvbdZbzTLcnlw684rAu7x01US+Mo3vvqlL/3Iz//8z+3tHW271Te+8bveeaZAQKAC6JgNELImz0FNmQgJL85Pt11XN00ZlkQEgZjROUeEIloiqFXVe0/EqopIqlb24ACUc7FpnnirhfDnnKPiSK4qmsWSKAzj2HcdETVtE3ZbbGaHk6aZhmHYbjeqNpvNiCjGWF6TcRwKGtr3PSF5doJOMBsYmAEVRZWvK59ispwNixQNNykdVvrCfH+9OX9ydroI3jGj55lv4nZ4/+OPnju++cJz16uu/f7q2b18sawXlauSgoA1Vfvw/HGvqa2arDJb7L/62S/cPJrB9uy5pr1YXb735ls/+uU/BmiPP/zon/ytv7558vEf+9kv5ywEUPlKoqxWq73DQ+/dOG6ZvAcF1YABTWMaLUtTVeuh22431WzuPKtKHDuXmqqZZVVBEtUyqpXMlqsrvjyB5SMpjTnnyVuJyIlmZir7ysqHzfoyq2XJ81mLhNv1ZnUxuODZV5WvmTkmMQPveW+x37RVjCiSS/dDTCDmiLTIcM0QSolkBFIRdp4RxzwMXbftu1Kocs7Mn3C2C/uL+ZPoLZj2uwh2pRgsmKdNy06c5Ae75kZ3C+Zd54S2exD1Xzt+/9pSzAyJvXdU0NdhGIjo0595fb2+PDs7HbZrIrrcnJHBl374izdu3Hj3vXdi35lpluSYZ7Pme9/93s/9w3/08MHD+XyBBGMcEYpXqzFh0hzHcbFciuSu27Lnuq4QTdIIIkDoHccxOefn89l6sx3GEVSd86oZ0W37TlNC5yGnejar21pVKl9VVbXdbouphhoUDM47F3yYzdrDg33TjMR379za3z+ofJAsMUcwjeNgWtJHyhXiGE1hEtcRUb2YpRjHOKAjJDIAF9z56uLs4vyv/JV/7+atW/1m1c4aNWPnSotd2H+efe3rfuiHbee9r311dnbaD92QxkePHs/mi8UYv//WO//4n/zzP/Wn/o1/8av/8vD4mhrmLNttb2JV3YDhth988HU7W+zF1Wr1+MkjRBqG0SHFoVfLIdQqqmJ11Y5p8CGAmZgxuapxBJxFiFBUxz76UPsq9MPQLPbGDDLK7339W7/+G7+1t1zevPtCN8a//9/+3LvvvXf92o3lcnHr1nMHh4cHBwc3b9zc39/zIRASEXsXANAxESD5dta4KwWVqYlkMyAlUxiTjCCPpf+Rv/DnhNyDX/ldFWwqTwAKEFNykx9nUfOmyjkrIDuiEVS+Sil5z8VWAglDBjS9ub8UTVHjOo51EfwRjUPMOaIBIqmZk0KsJiv+HxNWCipiIo7ZuUlZyY5UjdScd+XKbIIHxjGDmnnyTVOBWd9vC5ukuA6CGaKlGD0iA4oaIeacgfjGzRtJJCW1hgUgjpusjN5Vi1l9ff/2a3dvDeP69HR9/8nH33nzrT/4fn/SLczXQC0yO3RN2w0dAxO7qq4MnBgiOkMSM5WMJuwrUQEEQlK0adQDJkTInxjWmSMFA1NQw7I8QjJTU7CsWbM5JGJF2g6jZXN+Bo3lcRhVnzw6I8f5o0f7N2698YUvIkxsagHMOfvgylVdFjYARAgKoqpEkwOewQTwmJqa7N4FYiQzmpAiAHZU9jtY8ms956iSBZFVJIRqHGNK6fjo+PTsNKVU17X3vmQRlhMKhNnURJkce8dqAomrkFMyNcnJiDQLMhiiqAISsiODwv4TFWNE75JkFA0OGKi49plI0emDqGVBAlAdh2F/by8Pm5y6GMfia5izajZEQmJALrp0+gSbmarrVbH9QfiHEInd5C4oaoZVVRFRjCMzlde5oPWlU0IQx4HJX22+kIxo2iWpKSIP3eCZf/yP/Nh2u71cbzTnpmlv3rh1/fjGux89ePTkrJ3tv/X2W8+/9Py1G9e3603fuQcPP3bOI3pgMTNGT6hAEsipCjPmnDarzfrysqqqKgQAyAlLUrZz3jk2ExFJqejd0PtiUIIljG8ck3MeAHNKhaYNYAiKROzI+4oIzTRnEUlRhjRGESGmuq7atgYjETUE57wVVxLVcRwBsGlq713R2ZUoVrOJuUVEzrEOiZlVScWUlAjBVFIMznOKIqJQ3MgAEfpxkDDD2l1uLq+5w8Prz90/faLVuLc3P0TMOSqmm0obc+cIXjVwnVDuX5wi42w2t76PMc8Xy83l5r/4r//WS9f3v/DqC6ePniDSX/53//31vfunJ0++/dXf/bVf+Kdf+sKnnz27yEr7i5lnVzezy67Dy81sPnfOM+B6dRn7rS7m871DD7gd+jz2aRiMcOj6Zq8lwjj0rtv4ujI1xAnvTDkVdl0hY5UHoyzHY4wqyWBavCKgyzmPYzo62hvisNlcvvzKy9uu+9a3f//4+FhEQvBx2PSbgaqcfA4+ZJGcBJEQaG9vL1RuHKTwnU3AcSjnXnVa5aaUKsdELqVkqjnpZrMZ41iyE9UMmc2UmKEQ4okmIHOH+hRONBGZAkGxO1NEK76rO8b0btAAK0D0tOeaBPT/f45f6av+9dUYkBk6diVhMMX44kt3/6P/6H87jv3F+dnZ2Wm33Q5jf7h/7fWXPz3G0XJqZzPVXHa3v/zLv/Rr//LX0yjLvWWO2dQKOB98AIMuD23bbrfbOPRVHfb2Fn3fZ8m191yzI+qHFIJ7/vkXVqvVdhicDz5UOScVZV+JpNm8jSmlYZgd7m+3GypTvEE/dMfXjpDJMy9ms8o3s9mibRomZofeAVj2zsU45DTkGJ1jBFNRAC55lKo7fhUxKnh2xc3eJLNnQ2tn7WwYtl3fPRtPn138T/7H/6Of/tmf3XSX88U8hNDnKGMiIHYcMMQU+753xAU2KF4AVfAfPzx58uTxGNP7799LWZq2/v/8F3/9t3/nt5GYyJA5DUPX9aZIxMVZJaaEZM2szZLHMXqHCa2qK2IacxrHiOiQSUyJaH25Lt4MYirZQvDFyCRUlSFWTY3Orc8u0sWGnfft/J0P73kmRf9rv/E7B/vNdkz7R8ebftgOw2XXq7zDzKEK52cXMY513ahaVc2CD3VVOUdt084X8xCc876t6roOVVWFEEJVO/ah9ntN6FP8CNPis6+9/7XvnV90IugUPKNHJsIkRqau8HYRYk7BeQMr9CxAIOdSzgAEqoRWGe1VzXo++/jstJJxTD4rVE1lgOw8FvIpYpkuicgzJ80ImHNGQhEDMwREKY3ARKxV0VHHkkY5jKOvAgKYaCq+0WKi5r2b/o1BJCGCmimiGLqqGjVfdp0yz5dLdiyMiOiYyHFyjBR0zOu8AlFCc4tm7+U7X7h57fYPvf7m73770R+8v9qMW4U+6WXXYfCs5ChgkpSNQjByiKBS4tgRVM3MsVPVFFOJF5WcdaKFAiICuwQAYCgZcsJJNI5ZDIkNIKXkCJgJyQ/doColgiGJiYGf7RGBuPiPf+EXstrzd17wXAfP3nPwVEb2pIaIorl43AOC7cQlADBxwXCK17la8OecVRE5TARtALcjduScU8zMjjnEOJiRD04kxzEDwPXr109PTws9yHs/DMMwDMyMJbaZ1CBbBkZC4h33C3JMCIZEhbV9lTRd4oaIKaWkkLl4jhCaGpEr7glEZCYxxSyCpfUATMO4OD7Y359tN0NdNSnlMYoqjillNc2SFaake0bLnxRbngzWJ2YC7CD5cvLBSEViTFVVVaE2BSbP7Aw0pWFHKKYC03vvylNAhID2AxQiLe5xq23/wosv3Xzu5unTZ9v1uq6bm9evHx1dN6QPP3pwdrGZ7+3fe/zwm9/8+uuf/vQ3v/bVrls3dVBBUwLKgsBWIw2qidmRcymli4uLzWrVLhaz2cym5qt0ueTDxLhClPLyel+V6/bqtwbD4L0UWfouu7TEoDrnADVnE5GccpIx5sExL2bz4CsASCl5XzFPSaKAlOLYdV1KabGYhVCN41AaoIIROscipqrMjpgq73McI4KiiUnMUHE5y8REhJN2IKMY4kUcPrh8emvWHlXtKOMcm1rxYr09WBy+cm3v45OH7997787+tVevXZtvmne2qxMYziFCU/f9sKd+2c5Wm8vUbWZtFZF+/4NH333n4xnCZ16489a3vrGsw+mzJ9QPP/NjP3X/4cPvfOftz7/xmabyRNiEqph/AuCsbfcPDrcXp++/805Kwyuvfvbg+NpmdZHH4emTJ3uHB1zSqVRzHrfrSxcqcCwE5KiIJYsgoDx44zhe2SHmnKvgoKh3mb33DglnVb1enXqCL//Uj73xYz/2a//yN5q3361Dte27dbdxoaq4BWYzVFAmBmdm2PVdXYV6uSdOcs4qCki6a1qKywgiew+T9Yf3w9BvNl3Xb6PEEm9uZs47ECmseEaegmSKLPKqC9oZTNiOfgFghMWwsBCItPhnmarID6JBpqAExaXQroCi8qfYtF/t3cv2LasKCDOpJgB88YVPrS5WOY3ztr5x/KqZNm1jyuuLDhQcQTf01/zx02cnv/RLv/j2O2827ayu65wymGYRBAzOa86m2DaNiLZtK5K7bde0zXwxF9E0xjhGJJrP513fPXfjWtu0l5v1s9MzyakOdWHMeaY4dvP5cu/m9dPTs+duXBeRcsauX79+dHTUto3kbNkAi5WRZJGYNDvwjiUPIlJu6Jyyd06yqhkhFQ8BLQHPiMxlxYmIxbjCJVVi37Sz9WZz+vjhFz736f/Z//BP9ycfObK6XrLpoqm3/SiSY5+AyDvv5n672UqOoa5EZH257rtxu+keP306jvHe4wcX56tx7A8P958+OZm3tZpptnEYzTRUFbvS6YKaEGJV14hogA/vP6zrmp3LSQCwbWdq4L1v2vbs9Ew1A7GpMLsykElOpQcm5phSv+nEAJicd2OKe4cHTLwdBj0/Xa8hhNC2c7Vt27bz+bw8eDnn89Wq77u95UHOYtZLErNCeFBApJ03CJgREwIocfDVogmcsgcdvHnMf2x+c8GUUkJ1Zhk1U7FYMzBVRgIgtQw47cXKoUVDz0wuxDhoihU7Qdqr503Vj0kutA81BXWq4miy8HGeFSZnLdmR41SEjECNmZHJCE2xGHWJ5KwavI8xEpF3jogkCyEXExdFlVgeEGXHhWwBBr4Kihpjcs6d991lHOaLeTufZ1NyLKJmSM5hNscGykbOUGMaxjRaitv1xUBy943PuNnyg69/6+P3Ty4GG6RC1SSQpQ+Ai/29cqgzAGvxITXJucQ0FW5KYXBfgb5FWwSinYgjdDRJOGmXQ0/ssIAiJYPM0M3nALDpRxQlBGA0sPV6hQihrv/ZL/7S66+89uqnXpm3bds2y8WCiVWuhsiS2j2pTQFLnA8VD0DYqU2Ln02pi6GuEDjnnJKISJ546mV+8YioakTsHKtq3/flYjCz+Xy+3W5LeivUOKYski0rGZBTURVQz96xY6bCMZk07WYiikxlw1WMldWAyvLDEACYuIReG2rpzJhJRPu+TzkFz8zsnEqWFJOvKj94R0kZGgdi1nWSDDeW1bJRIPAoZKCTQHiquj+Iv1sxFmfmnCebR5AcqnkIlZnVdR1jLCYaSFjXdclSL3+t0CFwF9lxNdYyc8wSJX32M687ovPtmpn3Dw72Do/R+c0Qn51eXFxe7h8cPHz66NHDhy/ceeHG9ePHTz+a1agKzjNg5tIfApqhiIrKyclJt15XbetDKD99TKmgeM75qq4LzFB+C9XC0Ncdf9xyzqJZREVSAR4MlMl5F3zwRdCXUkwpiagZVHXbhOC9F1ER9S6ATW4WKspMMcVhHIu3zTD0xYW18F3MjNmpWlXVzmEcY84aU1Ix75iASYSRmTmmXBOb5bGQYijEsWdHT+N4w+ZH8/37Jw/Hfry1f7iK/Wp13lZ57nw3bi/Gbn+x/0pz8Hi7/Th1Y81jGqs6rC9Xe/PFwcHBMA6imAGkqqmeG9qzVf83/9//1Uv782UTnnXbLfAqpncefmzevPvCSy88r0CVb/IQN+cXMkRNKUmmyj199PTZ6erGc7evHezduX7t7fOViF6/fTejah7JWGM/dqtqvpdzJvXoIgBlBQIzE2Zo23ocS9ysEZKmTACBGczGoXdcuaG78LL5C3/+T//kH//jfTP/p7/4q3t7x6y03W4hOAZfc6AQsontdLNk4NgN2z5wNZ/PQVlyRmRTFLUQPDKkFEXNeU9EYx6KDi2llC2pZZ2MpFEkIyEDI6AaIBiiIyAVRU+4ozMTGTsmwizikADIABE5WwIVBMjFpVHEsyPUrKJWcnSdqoFoEY9daYDNDAwL8oGApmAAgkqOckoOHQLNmupgsffm994GzcFzFbyZVnXV1LO9/YNq1vR91/WXy9XiX/zqLz+4f39v7yDnLDkX2Y5HQgNUZCPDia7onCNmcj6OYxZ13jtfh9CISIwp5BDjcLic7y9mx3t7KUUiR4RxHM00pqGpW1U5evHF+WxeQKurEADpRhUhJkMhAyb2vmL2k1aOwAdgxixqQJPBW04piu2MAKqq/mS4KdwGzTGKny37UYib7vy8iZc/8eLBh7/xD9KwNsRkeHz7xVfe+KmD63diwss4ELm+7yk4X3uL1nf9mFNM6enTkwf3ng1d3nTd6599fbFcDkPPIhazRq19vd1uh21HTOzJUFW1DKbjMJJSU8/Oz9YGDOST0nbsPBNR4Zzmy9VFStE5JgAXgpp5zylF9nhwcJRi3vYjkhvGjYr44LPmEFzRzcyXzf5yPq9nBfkndmaWUtlKBGZoZvODo2vFABAFxERFxMQxx5xVzUSylJRzi1lAZUh5PW5JlTNZzb677K43871DzmM/xKoJHnGMkV0AAzUo7KHAlVh5EomBGUhjDFU7puzJgUcRJUEnfNgePFmtTmWc7y1k3Ow7b2LI4ICLK64BKoAKkBHhxGJCLMHcwIDIbmd7iI4mzbYh+MrnlB26bKJ5WjyQ9wDmPSPI0Pdg5KsaECGtA5JTd9GlleB8ttxf7gmqMTtiIG+K7DGJESER5ZgdOij7HbJOhotxGA5ml01zf9NFrtFEBomqoxoZWPR77b6ZQuk1iQyhKC3iMCIiIxHBJGNgJ2qEbGDOhYWHgoE5orIWKw1iAZjBGxMTQx+HOI5mUFUuxthUoYQGLtpZzpkJHVcffvTR/Y8+Oj46ns3mhweHh0dHBoQAltGhc54kJ0VylVMpPvAgKsxkKKAqmtExsWPifhxUUuPJOYwxO+8la0oSvDcW7xnMvCdESjkrGLlQQNm+G0FxPtvbbLdiGkJd8cS3zbGPw0BIzB6Q0LGWd86sGJaQQdacYyzegQxkAEgomjVLUVbHcVRV74JpzirOcc6pHwcB8ZUnopgiEkZN/bBtZ3t1k3D4yLu4XM5zTmnuovl3Ty6HZAAJ1OPg2YtimiqKXqHvQISOGIlMJcUhT4FoTJ5ms4bYzKDrN5vNRrJIzsGzikhZGAVGz1GyIThiEFST0qUbgBEOsd8/XLz6+kvn50/SsFm0s5s3npvND07PtuZbcu7+/Xuvvf7ZmurhcjNsV4f77bOnilQ7MLSMxuTZNGZR5iqO6eTkZOi2XAXvfcFm1QyQkcAJOXKVqxip67uUUzY1ArVsqoTIYDmOOUdFFRADTTkDQBXqtp0REwCNMecsqpCyMbu6CkzIRJIBDB0yGiNSztmxI+e6oe/GwXvn/W4/qAkmqwcKIRC5cYySDQC9D2opqgF7RdSYA1YWlSpiwwadxGHLCcQW2CCyEGhbP+q3FVLTLvN2Q+xuLPY/fPjRR8P2tWu3jtv59y+efnh2GsQ7ro+CX0sPBJbNsxvGod5vG56dnJyXxNNEuE4AXfpMezwf1S5Wp/3JI9LR1X7Q7l/86na1xZ+m27dvgVi32j5+cH87dFT7/RtHvaQuynzuk8iYMgi+cPPOr3/lt+a3ru+9dHcGGsSZyerp48qsDnc0QQxrZKdWq3lGREwqWtWOAo1dDljVTvvt5dnm0js/puguL89eu3vjf/2X/8MffePzN1566R//5tfuP3xU1TNm58ghkCOuQg3eO1SRPMUGGRASGJZiwUgyNRJYjC7QgNgbiJnFOA5jPwz9OAwpRzPjT4wadefxA7iTuJuW4Hi8ojRPVgpXVGXC4k0OADYFIV8hRVBOWwGRJnEkABLizif7inJ4ZQmAO6J0qflVVedxdM4tF8vVxWW32TjiKrBjJrK2nd2+e7dMNklijPEb3/zWw4ePF8vllHtXgEpAxpJ2Pf3YxbUiBB9TQmRuGgAY42ha+Fkl2oYvL1fD0HlfHR3uFdWliOB8LhIR9/p+6Lr03LWjlLKqee+ZXFGUlC9iJgaKhLALCVEDQs6SUkpqeeiHFKOpFK1pFeoQKuf4ykCSiJwnAAQRcgHZYjZiR6qk9qNvfO6Fa4vx4tH+zI/Zal99/Oa3P7734IVXP/fpz71x8/pzj08vgquHmJGQOBBlTX236R49evzg/kNB9HVlDOvNGkVVxCMRkYrEMZZrAyYxoBIiKpooBU5RUpb5fDHEBCZ13WoamRgQc8rDMEzPHxIAXa4uQhWqqhqHoe+HlMTUine5qpoBExGCamZCUE0xXabVlT68MLR2BqHWNM2stJsOHXGp4KJZAcZxnESOaiKWs4xjLI4hGSvvvBOXNNfOHR8eeTD2CFwlyQGNmdQsoTogZCJCx84kM6ImoeAiGNd1FsWsGaydVdv1NgvM6uqQ/cVqfdl1/TgcLhcha1mVIiECGWGRIIgpIhU/awQkBEQuARmOMGcBKakzUxudROIQgcAhFB1DMZUZ05hFCKbMTkPMqiZmOflQA9p2iF2So/nCB6emhRdKyAKmiuycGRajgXJoU0wI4MgZuSeb1XuPn3A9W7SLwayYGJWVRtac0uiQYKLBCgoCc/HgKMHMBRS4ioxEx4jE7ESkpJKXOUdNCr5V6DWqmlQtCTFVVbi8XCfR2XxmqppNJRtgU9c5Z1VrmgZNT05Pnzx7+gff+R4ivvTSy9euXUs5I6KK2qR7RwPLORGAc44QFShJ8uyTZhVTZyFUQ987wqqqa2zGIbJnhbLLN1FNOVOhaUNZpngEFFRR2Wy3RL5p2iGOKaWmbZlFcmrCbBzHgqPknDnGEEJ5ekvTIeUyZi7idkWiIrwmnDAnkdJfFmtyRBCR4pmLkyFtkaCzZwdGKUnbtrNmtqj8rHJVaF1YbMbw/tPfByUIbIOB6pUpAFl5yrBQnQrDUiWLiqkBmA8u9eNssdwpltMwDOM4gplKNkciOZsRAk+mJ6qiWaezozr56pjqOMbPffbz81kbh2HetM/dvDGfzbPYyfnq9vPXif2DBw9/6PNv7C8WJ2P3ve98mx3M53PVojk3yRIqcM6JuDGOF6dncRjKASkWG4VWUkT7wfu6rolZUi49q6hWTVWM1B2xFqqTgamlNOYxulDt7+0HH0SUCUVlGGJJGnbeee998KATYZyRkNAMRJPzzETjMAx975zzzhXet4g45x27rutTyuOYQ0XMDpEK8wykuJVBUGh8Vao8gGZNkGG/mUUbxiGK986xIkZNpyqzcfzCjdsbOPng2ZPnFsubxzdOu9XJsH1u/4ZP83eePfZ7ezf3rz8/RB3zUxvH2lXzhcT45OFJ08wWs+W4XY+WMoHL0FDVKchisWyrT8VWz56epuiMx1X89d/6ysPHzz736msthe368uvf+/aNOzfv3Lnt/HDcHr5/9o4sPc5nCfls082Orn3w4PH2N37nz966q43PKpXkYXX6e9/46gsv/ZEbd1+cHWPOSOiQSGQksuoqldFBt7447S5FUjtrmqY5e3Di/uKf/hP/y//pX3rj9ZfW3eXf+rt/72/+w3+exzRrF0PfmUHtKk9sCAgTrGdZCNGoJLRj4Xw5dohCzKqKhAZqis6hGgxDPwx9oV6rZAIg5lH/0BoYANAm4nMZOKkEoYFedQ8lWoumzukTNg+AqU25X4hT8KNdcZ0njg+Qof2gg5BdbY4/gU/LA2cEmjIBpjHNZ3MTGcahCgGNpXDKakXEtmkQMLjwdLt96823ZvMZIY1xJCIRIwR2fAWIw0T6UzGLcUBkdm5SSIaqQFzD0HnvQ/DL5d4Y49B3RYwagidqEGEcMQQ/jrGqqrpunUulUSjWdgCF56ApRTA1wJylOE/mnFOKzC6lWFaHbVtVoS6oj3eBdsYqiFgcgREh50xgMSYjFhNVqTx+9tOvfvb128G5Gr0pACgT3b55/XzTff/rv/6db/zul/+NP/e5H/2jD55c1C50YxJNkmXsx4f373/w/gdInCTFlBQNTRiICBwRIcVxTJIEwXvnQtgphImQnHNjHHPWbrMZUzaDuq5NxYWqbWeXl5fjMFZVhUhIUO6Ptm2JCIGI3Ga7RWQXqnLs2TkkpLJRNynGbeM4eiID8CF458q2uPTHQ98jYoyjmVUhiCigoaKqIhd7KkVA710IqAoh+MI4HqUzREygfZ411axpZLuhHZvNAAkYiTOYoGbACgxVHAAbKqGaZYeRzRlUzGJ53W3ZY/DUjbFy/tpykcch9720bfF5JaMyAoCqmhoiO0cIZftLhIyYVL33jjnHSMTsXMkoKAZunjirELFKWTVQMolZAazkDZUzqDD5uzBTNrCiBtW8f7Dng0cCQmZiJC6QExXH3mkHrWaqaGOUoU8pw8np6vGTE18tlNkDeFekwoWbDyklDhUVB9ey0TPd8QOLI0HJ/ABGVERAUp2E4mpGBpPVMDAaihjRLhiEiIguLlciqWnall3fDyWM0zmHVkSzysyAYAYZdNv3vq6CD4CQVYgRjVJOWLxhDQrLpgh7coySk6u8qpIRkKWY5vMGayCGMY6q1rTtZrMpfoZiGCggE+4KhxVVv4iZEVKWvLpczeYzF4IBdF0HYN4xE9d1rWppzMM47GINS8coAIBEBio6ZQUUs7ZdXcWyuClxkAY6RQ4BiGiJEyl0byJyjkyDqiEqYHrjSz98vBhqjmC+Dte/9q17qc+gFfiAQKGyRFCsCGj3Vk3wsha/op2Sf+c13s5mqjYMsbzyE1MBuDg/WRYxcBUTgNqO+olQVt2ISAgxjo75U5/6lCNCk5s3rh8cHCDig4cPhyHWVQ3AZvTw4aPnbt+8uHymKuuLy+WyzZKc86qGgZlZTft+u91sh3FQM3KOmYuDMOzWeYiFQcm2S2rLOQNiYacBgGNGIolRRESFlJz389mMiNS0FKuUokgurIOdM4IiGHNRhCW0IjFjABhjP4xjGcCuDKBzzsGHqqpyFjMUySaO2JWZngAtC5g5ghpob9ZQGrfrYVKIMs2rKo92YVFNEIAQVXBgOMd0vtkuZovztD0bx5euHV2fNR8/efpweFC3TX3t8GnuafX4TrX/mWq2NP8hjJvYI7jat8OQq7o9aObnl+fO56PQLl21TsMfnHfPt7Njqb50/OK2sjHl+0+enXbdfXq8fdqR2aPTZ/cun335xu27bmljha669/HZe9v1T955zmKWdBF82GL1/bfu/eTjrTtuZkyQ4pP33g3ap/Ts6ZnOdR7qg/lixg5D5QByjppi7sdVVTvkvH/t8OnpyW9+9Xffe/edR48fuf/s//Qfc05/52/89f/q7/ztr7313vz63dn8OiiOKatZRc45R4ywu8hL1UAE0GJALmYZ2RMDMbBjdpRyElFNOgxDzjmlMcZRrzKJpn9Oqqvypc1MUR1/Qn82NaArcGiCHneStuL+bhPfOqnuTFfLLgh3PNCy85rgBJjKZVkbfXL8foAiDQAm6nwQM+/ccjFvmxY0V6FIRL1zXNW1d8HMjDCJfPzRvWEcQuWjxEmngAqEzgdNSS2XZ9dUJ8ulDESMO3UDsxMdvGcfZpIlxly8v2ZtG2NMKTIzAPV9b6YnJ6vT07O7d+8QARGlFL33ZlqyzAoPTlVgZzJWugfHrl0s6romojKhTr2sqYiojhNLZgI/hIhL9FFw7AhijL6eOcOKwDcu9WvcX3pG0ViH0I2dxnHpAWp9enH+d/7L/+dnvvWdP/M/+EsRcBBLWcZuODs7f//9DzfbzQA85AwIoMDMGiM6b2SmElOKO3akqdpkKKsF0SOivt8OYx9CZdPaH2IaY1l+M4lICJxykpSLE/+8nWWVYeidc84FV9WXl5ucBdkxEqiZivc8n81mbe0cExgRAmD5lk3TOOcAoBv68lSLSJaseXJfLVcjAhqjmWkubiuAaEhmWRlRym8gua0D5SxjBFFDKewfRmbkBGIEghBRDNSQUNUxqRkD5SxsTkTIYcExTfKs9r3I/qI53/pBxqeby5v7BzUS5ozogLCgPgXTLLHehQNoqogwDEPbtsuDg816ve27tq4JuLAHCqlFYipGFABYsJBphDdTU0dMOOVFEfsC1hTL6f3Dfd8EYdjtfsnQgMHEpms4m0oyVXIeiKNBVPjgo/ubIToP45CMmZiIGBEZi2yt8FwJbQLorBSMkr1gADxZzFMIjpmIkxRMKAOAaso2+cg758dxNIPZrMmaL1eXItkIq7om5xGxqGkK5KwpI0CoKhXZbNd93xFzPWuXi71hiEpYkgKhCPcAGFBU2BESeO/iEAExVFVKOebU1HVKiYz6bjCTLg9NMwPA0mcDgOSSNhadY0AytZwFkCiDiVwdT2ZcrS5C3czm83KPAljO4jw7R2hUXC1KIAAATEWGCIgUdoEMqpqlnKLCfAcAMUs5MyEi5BJNjVpiHgs2X5IgnANJWSRvx81y7+XP/9Dd2D/y0Ayb+cmTEzaP6CwaSJ4eECTYZRCVb51SKj82GuyqLqUxNbO2ruu+H1LOV/aJiJP7s5kqCIiihbLg9bS7LLIWLbqI9kO8c+fW9cOj3A8Hh4tZ27Lj07PVwwePbj3/qhkFV81my3fefv8nf+JHEIAQ9vbmcRzQDE1N1DmvojEOYz/kPCKXx31SyfDO0bHIipkc7MxLU4qA6L233YgOiKZa6OrgyDvX1k0IxQ6mpAkJEtZNXVol1VxYmGDT3qIkZxaxjoiMY0wpO+evRndTq+u6fKmrMbjQ68Ukp+x9IEQGJhMiq4kqYiEoQv1ApGOaC2XiC0lomZgRwYjONX5j/fiz8+OX92/f35y8f36+74O6+nG3XVRur521a3saLx5W9OreDR7ddj1u8pjbYt7hTk5Obl47vHP9ejq/QI+dxawyEL+32R7sHe+39UJHET2ee2M46buzYdPN3BrpaO/Ge996p7t/3u7tbSB/89771/rF8ffff/XuXaqaIebVqN//8MFvfvPNP/0TP+mH/ttf+81vf/ztV3/2S8+/fPP0ohuHlQ8NQjSx9TalOFaOJG+XB7RcLt586+Pf/OVf+fZ3v/P2298nBkNwv/JP/v7f/Zv/9XvvfaDz+dH1m362BKOcxBDZeVJ1xD6ElFWymF6RiwERdrsbFMlmomqGkBPmlESyqo1jV65kkat+X0UB4Qf0EjCdLiaeThrRREIBK+xC++So2NXzdwUClf9VQF0woOnjdrXbmjqdnR/0Dh2aHAI+QaEQy/BUBpRrR0e3bt1ezmeoWlfBe/beO+dKGMYwjrdv33z4+P7HH398/cb17bYjBF98XNRcMQgBK0xJADCctCDMnFJGVTMlJlPdeUhkduy97/thjENT18RIghNcrHkYxrOz06ZplstlzllNVbXruiIQLVW7aeoi0Sz6OEJy3jORiKaUsqQQAqLXnQk9AIEV4xpXDNfLD4PknWPvHahUrKFuUkqkkUA1jWX0sWh91/lmliRvzp5J1v16RjcO//k//Htf/9o3/51//39zcONWf9ZdXFy8+8F7Z+vVZT+scyZm7zinqIgOrXKe0LJIVmXHBF6nt+mToomIBpBz9j4QUdvOsuj6cm2iBEBIzgdRHYcRCRFw538VhzgAgKg6JjPth85UfWAEcEyzxXw+q6uqYkQAQdMCy+WYDaxcS0McY4qHi3ld1123zUkcs4ER0UTbBAAgFTGUIr9CIDIPoM6BRkVASVEs22y6+EdVxx4RhKi0qmxIRAxGBmLKiBkUAC1LQEAw73mUiAh1HWIcV+OmY9h78e5eI/c/vIep30szNqqB1AwVjKYIxsmUXZWZCDFBoSVTznmz2cQ4IiISXeEBhVCccwYzkWxKgMjO5zSOEoO7iiJHJgTilMYhi8DYj0NK43w5JyKbFoXlDiAiKIFFyFCCjRBBxLKoGF9cXr770QP2FTpfFjCSRFBK7S+AEeyOeVGJyh+2+7KJ7i5IlLMQUVYrObBTiTAre/YrbVTXd91mk7PUbd3OZs5PsSe4c00sjgDMbui6y/VaNDVtXVWN9x4QRPI4jiLCXPbdBXWeRF+mdn5+vpzv3bx586OPPlKRmzduqNq9+/dV1VdhsZxfPDnvu/H4+LpIds7lLKGqDQazYn4DOywby5tSKp7oxMLcbDfDOM5mbV03iGqgZUAlplAFMOiHgYmKMaapaeHrFjZueRG0NJVYWo3yjdgVyVK+EtPpbs6EnXCdiAXF1Jzz739478d/9AYB77eL73x88uzJSWDv1CchMM0YTV0JA/jvYO2f4E/lu5Nz8/lCVXNhvhTl1O5hK4ALGWQTQirxYUSkUuySoYgeCjH5zu07lgVMn797p27q09PTP/juW/0ATdOuN13bLutqcfrsyZPHj1944c4H77/bzAIROu9zEmYSycMwxDhkSVdptaq7XQQRTPAVOOecY9qtFCRPnljFFLs0TcVuGBGqum7a1hPnlHyoSuiNmjEzlSYvJzMhAqRQlglMVFcVABaY5wee9uScLxMBM1VVnXMuT6xz3jlfVZUpaMpT0+YCAYmk0bKOwwKdONenofKuRELMuYGau3Gb1aacBqKNxD7H9vLs+rVZaOYPzp9sfNXOlvstr9YrZ7bX1Efzw9X68v7ls9bVt3w1mD6LMQLSmA+bZrvd7u8dXDs8vrd60mlu1KOvRl+9s92s86bVyKMcNwdHzfJgf//7Jw8enZzODvcaDi7buE2Pzz/66PIsBjhdbd78ztt0vr0e5m+//c7jRydYzX7u53/l27/zzWOApx9+79U37qrl//w//8+u33rhp37qj372Mz8U2v31ekxDeuH2C3Wtb735e7/487/y5tsff+P3P/roydO9owPnMUnMeXT/r//8/3Lj+Naf+9N/6je+9/aTx+fByMQQUQCcDy1yhlxsoNIQEYm4tDvgiEU0BGLmGEdRUQMBm5QNqqAiOZcHuoggmJmJU7HWBQAwD+zIIV15EtKuXSluUQ4m1s6E5Uyj3s7aqKxjiah8NqsUv1szQ0CHqGBiUsQZxZns6kjRTgMPOxV94e2XYhGcOzw87Prt5vIiBD+ftU1dN3UdqirUtahcXJxtNqvf//bvZ5FxHFPKVfDMLg4jsXPsIQsqGFi2WOBZUyx+uyF4IhpTBDBmbyBEWIBcYGaHBpglihSehXnnnWfpkmg+unZgIOwIFd2sMQGiqUROQYwiRadT7rYsOQt47x26HX/DnGewyWfyKramfBHnGGm6CFSVCDxXwzgQETMx09TRqjlmBssp5pRSHIlcHLq4sc++/Pzvv/32f/qf/NV/9z/4D2996tXzi9P3P/7owbNnm2FMgDIODpBNFaldzpxjUMt5FCvpGZpEGiNCssk9DpAYEbfDVkRylqZpUxxVUu0bU530jWn05KPkdrYgor7vRFSzVXXdx4EIiUBBqjrUVQAA7/x81s5njeSo2YhAQVGVmZuGRU0AssgwjmbmiEHUo2NPJU/HOWcGzEoEIpDNgIkRUzZCQFRQY8RMVs0aiHUjGpAI0FUhjTGLjKJQYTLwgE4h2GTfhBVbQUbRUCAgCag4CiEA2WW33eo4v3PtpS989uZnXpm9/e73/8ZHLQIDVqHSnIqr5dXMXfBamBB7JOKUM3qnquvLFRG0dZtTHlOsfXDMV9sQKSnEaDllBGDCEjjjQ8AJgAXJmV1QS+s4dGlY7i8Ojw/EFNERoREDM4ICGBOqJMmF62IqaoZD1Jjs/r3Hm3VPvolJxADLzqVgk1nMDCtUM97NNKomqhMTZOfnXvq2q0YfAbzjKLoDL6ykGYgIM+Ucu64jw729ZTNrC0WmPPHl4jezYvC9Oj8bY2zqpp7toaMqhGEYVKWd1WCKaISMqIEDgEnKyG7bdY0PX/rhL9ZtHfv4ykufuri4uH58bbMd9pb7q/UKFBy5O7ef77v+0aPH165dc646Pz9p29YmtIXMgJkJiYymxFAiAAg+9HH0VcCcuq6LsfchzGZNWzcGQMTgjI2QqHV85XKWyx2sSlbCNQ0AlACZSS3mWPq2nEXV0HOxMC4L8YKxWGFcIqqq4xKlwr5q3/vo2bPT7oWbB2nQt958J8ZUAH7AAEyiuaj3djXWJmBkN21qMYoDM9Gj4+OqCl3fI1qM+WoiLcgPwG4WUiNUQtiBQnrVXcUURbWdNUf7+2x6cHAAiB9++NF777//4Uf3777wGSPfdUMI9fHB0dnJyQcfvnd8vPQVqyYfKKWEzKA0DJtxHA0EAFRygdlsRxKViaGFDrGpKnZOsxQOAxLhdDJAJ/4ZFkIbsyuu3KDARFDYT1lzTnmy0MNiaIAAkqIQlf8cx2FKbNgFpxAaExFP8BgAxjQMfby6H5k9ABTfRSQjRwCBzKLkjiWnYa/dX+zvn12ukHiTkkeHObfetwqXms3Ym4uVy2xOdQX29bPHt+r5vFqcjB2Ow5GvXWgv0nDm4gvNvnfxYXfeUn293n+tXlTri1NMhYadQvX49KxbziQ4l8QxAdig8o5snkW9FXjmJNtKmExgf1a/Fo6eduvRemvbveW+T771fjDdpO7046f3H66xXuJ6HTLOlk1W+sZb7+zV/sZyuRFXW/vOW+9/9gs/8k9/7h//7b/93/y5v/hvPf/8K4f7195573sX5/ffe+f3vvnNX//eWw+fXrCrqyEPlKWunPfk/uwf/3Ko5m9++PT9D+9Xe8cOK2OX4pjVGl9VhmYWTWBKp0OaXJiBiBvPVeVTjjGNBXMwMJm6nVxiegxMRUpvYWZ5UkhNla5UZ2Z3Nc9pWVGDWSHxTqf4kwGiPPnMVNjMRACSaZoqsKCOSKSqSEUxXw6PEpLurLdwF1tY/nPXGBVeE0vKPlRjGt9+5y3JKThf195539aNC8Gx88EtFo2ZPnn8aH9vT7J4F3xwWPCkkgVd9oOT0wpkUVExg6qq67o2s4J4IYABGUxLitKLlNMiIsXbqvh7OubKh1nTSs7ITkUA1TufcirM9KvxipCJistRwb2AzByzgIkKAQb2UtBt+GT9h4jeB6SpAS1+/8GxKagoohFYjHGtsRvGw/mCgTkCIgTXyrjYbrbr9aDqu3X/4u0bj87X/9f/83/65//Sv3UZ9f7TR/dPnxo5AwRVFKmIDheLeT0r+pRCEsgqgOCQJGf0jpltmtrNubCYL1I6D86Pw9B3/VVWsk4DmbIPqDkEfxUFSlepigDjOHpy7Jx3bGDeEyPklEC17N93WYemVmZqUJHtpnOe67o2EfNM5GMcS+tcLggzC4Gdcck/KjL4ir2KAmVvjplmTXNoFIDIDNGyqhoENFJARQfgmC1nA7NAJUrAEesYK3INhRyzIlxCepo21a3DH/qJn37hs6+Zd5eb7tbdW6+99urH33rzwrezZXBIhKSmpoKAjl1J1aBJ1GfMDIQxJVP1lQeDMSXvuOAkMSfHjpFyTlDEVgDsudAwrVyMZRM2hc8gh2oY4vnlpTFw4NleKyhMXhXIoQICIZgyFoOJjAREmExzFstmAu+9/3FKKk77cYg7Y5Xp0i2LbNW2qtF5BFAzJCMHqlr2peWTxzESUQEIy5OcRQwUDIlYRVTEjFR1sxmypPlsvrdYAto4DlT8uwEK9DXF38bYdR0ALJfLIk1ImnJKlQ8mBgYhlIWTFg9dAmTnSmL4Zz732Z/5mZ/9Z//sn16cXfzw53+467qPP/74/sOHt+/cPTo8fPj40cOHj28/f+fwcPbOO+9du3ZjHNJsNkek7aZb7i2mPA00R6g6NWSlgc05h2nDAm2LYxzHfhiHYe3WVVUvFnPvnRmgmXMEADEmyZmdg/LWEYJO5QhNc45c6DlgBgKgWTJhsdCdGAV8levJhZpUoq9ZEbL6vuc33z195cXX33vrzYcPT9AFtW2WSFVjZtkmj4ir8lL+SJayUKadfHWxXFZVlWJOMRvgTqQyGRGZWUq5QJgGQJN60cqdUr7yOEYASGPcv3bkmKoqOHbf+973nz59fHFxIUrP3bmrCjEJEj936/Y7774lOT99+rhpayJIaUQiBOz6rmzoCGHyAiC2klxXSioRAJRaPXEGTHc/sOjkPejGnIvvrqjmnJvg67ouDt00ZRUrUWEWFc1gNiPnnIEiEBBLzjEmSRlLaANzYbiHEEIIUChIYH3fd13nOLTtDBFzlvKZusPOVQ1AqioMQ5/NMui8qo7m8yrmp9vLGbCaKaiN8VYzh369iuPW5T3ed4ojjLGpPt5sxm2+Nt+rmr2Ty3PifPO56/M8fnDy8GE6OazndyicrFeP0vlz7cGPHBx16+2Hsnnsc69moX1wfnFz0Rwt29OLs+3YY6jNOzR4rj28zU7H4f7pk41Ks1yEtnq+aVabzahwcnGCwYe6agQWGVnSfj3zlT8O+2/E2dv99n3r964dYUyPZZht0je/+vbe4uBrX/3a048fPzy5+Nq33pwv61nTasYnD+/95E987tUXb773wVOBwVOwmHzDVSAmcg3pMHTPzs6SIWVUMtWUcnJEjp0DoiyqwjuEwAwKTxSgeMrrOA4TQGcQJRcQR01FhWCyZcYfCJ0gJjNiIud8OSAFhyilr9jzISKxK33KbvkFV2NECQIrmE05CvwDn6Rgbse9/+T7fmLbOo0g0x66mCVCKaZoCkk0eAdk49jnHJumWhTKeNsEH0SEvG+bam+vXSwWfbdVUzEEsZRACuUTrPjksyMAlCwxpzRZRGjX9VVVMXMIoeDVUhx7REu6XpHRXq3nnHMlc7jbbOfzeeVDyjmO0Ur8kEihuhWcFnMOzmORB9gE25a3qQT3sPNFiIpgJf+iAG9MTkRyTrSL2ytzMAACUFXVollRXFWr2WbMuZA+MCFgzuLrRXfe9dlSTn3fYQ1g8vTZ/a997Su3Xn793qMHqz6OyRigcs7iaC6Eg4P5rO26bc45gwIiADriq50lARaql3MUYyz2EmM/ajYECKEioGEYvPcppWL0yc5tt9u+70suz9Q0I2y323EcHYcQAoA1dVXXdXChmL4Uf3FCUiiXD5kBMQ8p933fYD0xYSURQlNPTgHO3E4MolggJCZiUlEERDMmNO8MsKrCAl1QYwA1SSl79kgAST26pg5glhCQQUCZXWlnywmJohFsnQa8vveln/7yc196vTqYjTHmsYfEVV198YtfePzme6Pm9dDPfWBiAjIyE0WmKrgCmnrvkWnCdUBFRU2ZWSQXgbqaiYojT0QGGdEUNScBckiWVUwlMJe1mpk6F4BdAhuzbjVm06quZsuZsRkCAJKiFSavgUh5kU0ka85lcyEq5+eXD+49FFEX2DRN8ebT/A/FB8GHKsXEWFRf5JCMFBDBPlEzTKnMO7ESIpopO06xuCFqFkkxDUPvvT8+Pp61M1MtxPZyLAuFru/7QltExPl8XgYVESm7bNPJONtMmdAzB+fVypcXVQVmQPz43r0333rz+rXrdag//PDDJ0+efPrTn352dnp4uP/uO+8dHBxcu3794nL16OGjtp1fv3YTAVeXq8ePH7dtq2op5ZLuAsWdBbFgAFZ4Log6cQe5qRvxUvh/w7Bar9fOYckHLckSZeFV17WIZBEgQC2T55S6EGXEXZF03gWuwIwQjabW06b4Rbh6bUs9SSKAznD5wcebflh++NH5qD6ZSVlCgxbGI8LVbPnJHwMDoJL6Xt6+EnNW3Gtz1mJY4DiU5JMy2TE7jeLYFY4OEUmeNmUIUGKXRWQxn5vo9nL9/vt9313mnGMG59vbd148X40qVd91165dq6vKcJwvZqpJTUMIKaX1ZpNiVhUEQgK00kyomZa+nIl4YugDA5ua0ie5ZrDr8qZiIhpVrKwaqaDUCcgX8o339gM9IbJNNAzJopqTavmLLnhHFHwo1LTS/TBzimkYxyEOBbmftbOqqmNM3lF5Tbz3ZX0CYGMcowg6Novn3eZyPuytcJbBiV07PFhtthtTzrmFcFzVm+EyBjf2/dLPEslFjNxUz5L2/eX1/b1qb7bN/eX2EkQPqLlEWeV015pbi4OHm9N+dfa55148rBZw8fHj7rRqDwaT+WyRh3G9XTXzOtOoYOS8bVJ/PuoyhDDDui+WBzzK4Xz/eO94k+KwWQ3j1kJFSnfqvaNFvV2fPzh5Mt9fvHR8c3gsZzHFnENTbxUen/Yv3Azowny2eO3HX/n9778zeurjM7XeEy0Oq37s15ebJEKeSwGvg0NJdVW5ilBc9fDsLIrWFJAdWHaO2ZE3kixJRFS8dwVko90JM7OU0hhjSslA0UzVVBQNzRRV6ZN+AwHRENSsiC9NS9GiMkOXDtrMjEp4swAiAunVX4crELUsu1BEVVU0Q/FnLLtkAAWTIvwk4502Hj8BX3dM5x8gD9mOUlAugByTgt187u5nXntl261VUuU9MVRNO5/PRNR5f7i/PNhfHBwcvPfeu0Pf11VwTM4xGoIZAQFCzpEdIRM51wTfABSegVnsum0xyyqmruw8swveAwJiLtrX8iOVTBwXHBJVVbVcLuumcTlHjsyESKpTh1dojwWlU5h0zVyMs9WiyO5uKFNXAigJO2o2MezKK1U+QlOBIvhkb4hqhOij5fWgqz63LB6cZ1bLXewuu+iq+apb91n71ebe46evf+7zf/4v/IXf+ua3T85OlIMhm9pmdckKR9dnN29cG8ZeTcixjgkRqxCkZCUSmpkU7BsAAHNOdV17cufbc+8rJCBGE/GeDERB9g6PU0ppsymgoHdUKLzlGjA1z8wOmhCcr2Ztw0xY2l8DAxAVU9nFUaMZmOgwRAOQrH0/tHVVOBmF2uWcM8GMgkTFehxYmREJBUDz9IoRATC6hMHQZfPEgggE7NBEDU1RL7stMZJjYkAFNpUcqaqE+dHQce3r56+9/uNfeu2PvMGL+jL33diLKlUVGPTdePe1T9196YXTNz8+9E0mNURPSEZiIpoBuFChVbVYuqkqGrpiFkwAiKKKACWEOqmAZDElk2JqKpLFSGH6HCIcx0ENnSck6oZtn1M02Iz9ncNrs+XcEGgXLTRRWVQKC4eRs4w5J1CxlDXq4wePNqu15wqcdyxS8mIAgREAUkpN0+wt98yMg0MDNUg5o0fnPANnKcma5Jy/0jogIWRNkiEXLAHiMJqa43BwcDCbzQBtu93AbsvTDUNMeeh7yQkAvPcliuGKeUNEhITFrV6UCXNWzSJZolqBxMu6GRAPDg7Pzk5/57d+y1dVSnnousvV5dvvvT2ft1/5vd9ZLvdXZ6vlYnn96Hh1fr43nz978qSu63EYTKQOAUCrto1xiGkEIl83WVMpjDnlillBsyTNpSfDQjDw3iNCSilGY9aU0uRDC4iIRVGlZqaTDNZQ0GDa95UREVHVyrucLRdcuID6xbcMzcor5pyTnNEQyIlb3HvYf/WbHz89z2Jh1KTIzlHMEcAZegLF0jBP7gdWkG/4AQbCJM7YofuIYEpMJQQDCqZZ3ohs1oTGUQltQLO8S8lICDD0fRX8/nJRVpybdWKH7Dwg7B9eD2HWdeu6rsdxODiYv/zyi+9+8G1V8c4pyDiOm+02RyFk5NI4TNgbEILhRL3f9TpERMAmgkpXN0jxvjYzFUVENVGRLAl2tgJFC0/IZcVpE9NZvPeOfMGBVMuChIL3wYeius9ZtURQOybgGHPf9zFFJKiqUIDPsjoQVUlJBUIg732R/tShqpqq73oGTATvnz55bu/2tcXhBeSaaStZ0jCrZ9L3y3m9lysUzCKX0jnnOKki9DWnUVw/3F3UkIeHTx7P58umnafYb9ebk8o+v3f9x+c337948Pj8sfjmpdDOXf3tzfZixpdDn1J2jE7g9tHx+eV2ux16gzfHzb3LniQd7+/frPeHi0urYJXyk9XZsm5utgfQjxfrDQa3XNbX28VG4rDebjF/1J8eLtuf6Ztvr07OcVyYI+c/PFnrrPqTf/JP/vLf/0fDuBEKy+V+CFaH0Jy7g6P5xcWZiHHTAFNbVZW3MUYmcqwGns76QTkwBxFNlgGFBESkH0chq6qKDJ3zzk+mq2W2KPpqUQFUKFTEIvzAXZTmDogDIBFRs7JBK+ZkJeh0evQB1Mym5I6y7bIrLOKK+7yzEZkE8ABQwHn8xFjok5NWvq6aoKGakv2hz4EdOHTVAKGhiFYhbLvNi3df+FP/5r+53a6YYBxHsyRqRJhFidzhwfL27ZsxRVUJIRAhExXxM07KW/DBiankhEiOXGnVEbFtm74vfWPabreq6kPlfajr2jk2QO8cs4txJKIQwjiOZUAn5vl8LiKIpQct1Gko1xszBx98CDrJcgARqODGZiJKNAkuAAABRVPZ/Zce4+rNunoBC/xezn02MMOEaBDQ8mrUk8vhoMaDeQOE49ifn16wC4buYhtXo65jrg+uf/Env/zo5Py733vrYL545zvfhXYBYMH720fXnrtx3TNFAe99igMSgchE3AZ0xHD1WEz0Z1+4U3VdAZBjX0I6ibmMZZeXlzsbQwpVBUSiUibmYtNQtU1dheAr53yZqksDtHsGJpu2ibeOlFRjSkgMQClFrf0VhGlmRlDkNgxTt1pWYIhYsHogBkqFqM6INTkaRwIYc66qULvK4rBNo69qx1R5D6YaU+O8xeydvxi7rcejz730Q3/0R25+9rXq2v425WEYHLKj4IhyjgDom0ok/tCP/8gvvXdvnca6qgBUs5EJgRGyqjhXOFcGYHVdD31f1JFZJ3TW1HzBBYkQUcWISHOCnX+iGRKgGaacHZOqElfOuSHnMWmfRQiT5dly7gKDA/TMSAQsSABGQKIluAYQAdRSSmM/jv346P5DAnQIKSVPmIxS2d8ZEZNzru+HoRtCVe3v7dWhIkI1LXY7hp8k2MCObaqqjhnMck6aJGYBQDRo6rZt5iF4M8s5iqqJ9MM2iwE7RKybBq0GNEIqxW0i4ZoCEO76gBKKLqpDGg1MEKjYiRE5s6Sy7bvZYtF127i+REDP7vrN65v1Bgn39w9EZbGcbTebzWa9v1x4H8YYN5sVM9+8eS2OIzF2m23OCYmGoZcsJZjZ1bVqjjmKitm0SSEiLkFaPhC2OU8aItmpsolxWoHjpFmBnakPqBVf+B1sgQYgpgRoYuTYMSso7NZMhRJYigMjmWYERFf3Y/q9r3z3uYMwZk1iWQnJgY2ICEq2q9i4GwhsR/tNkssJr6qqAD9gxs4zABgXCLuI9hG0ZESUML6SMLpjdU8lK+doKsvl0Ww2QzQgc+RENI4pCR1dv90NWRRENVTu8nJz/cbhO+8rMSvo5fpyGMbCFgBCJgdgRYVW0Pg/XBWLvt0xkmhxN5r+n6gIAqsaguRcSFgFPysXWQjBAwBMpqOIpcku/jIAZsyhaTx7rwpmciW9NrWiRgQDURVVIm6bOjQVE6tCihlAiNixE1GxvNtvABkAoKKaaQCXUZ/GcYPWIlqSbr052NuTS0WP62HwW3t+cfju5qL3PKTcoAshbC2ZWFVVqzTYyeZGHWaz/TjGbjyfN81ycQhdn/oBl+2tg2vf+eCtrulfv/nCETe+2fzG/Q8Wy9msbS3lPsmz0/O9du4DKmKH+HjYEMi26w9Iby4O9to5rc7i5fk6d7mu92bVc1U9ExqenX5IJ7Pl7LUXX3l2fvLuo0evv/TKAfFLOrdhGwmi0pOn5+0N+NVf+6WTk4/GaNscHj8ZyCk7WS7rF1564eHb74xj5rZRBF/5xbJpU11X3mmWzmInKhZUUEDYk+UkYzJDVwXvmRjYkBCBy4bsSnGtqlL2VKLlRaeic9+tRScXn/JeMCEzELnCpCvdj6hCKWaIxfiiwEtmQOTKIvbqkt5JwQAZwIoYAIF2dIFyj6EiOipDhu7ElgpX8PjVmcdPPNoLFKQmagCscPb0meU8dv1yOWuWs6aufFVVIVR13c7mMQ9V5b/17W+dX5wdHx4CQMHFECZOimQpfBPwZLpz8iByzqlq27ZtSynFvu9jjMMYhyFut9uCCVVVHYKI5qI5m9JkcmYudIfivIeqGXceIQBAyArWd335pUQFwIiYaNLIOOcLyQUBnXMxDwhAxKWxLO/XVHGwNCQZUVDRjATIkJBRAEVpNUh7OVSuPcAwxuHy/GLotnW7eHK+Pu+GjdBJr9Wi+c2v/v7FZq0C1/ePf/Z/8ZfPzldP1uf3Pr53fHB45/ZzY99778cUAa38AJozGjE6T+Xdw6IwFs3MHGNs22Z/f3lyeuawzjn7qj46Ojy/uOCcVXUcR+c9e2+qWXKBtVS0CiGEMJvNmmq30TAp8vArE20zY6LSSyORAUpWkcJyBRGRrIAIaDABFASFjQgsO2I+YRmvsaCkooJqBugd1xz8EAksxiFUC8cOq3qVBmZtmOLYLV1VFa6S5i6n5afu/uh/76efe+Ozsmw3mreShAmqGtVAzAmCCpKjulpv+uuv3j16/c7T7328rJu2qo20JG0WCkWxHiV0ALDttmToyYkpIbFzkopNukHOAOCYC5ZLiAoTuwEQyZGBlW6+9OWEOMYYRRKgBcfe7R/soUNiR0w0WRcS47TREBWxDAZoloaYU95cbh49eFCxiwai6pBAFQGh5LZmU5t0Nypa1L+OuYBzyZKwkBIATEGENjnLY5HBIRqQc+h9aKq6Co2pFemWgSBATokdzmZtUkOa9GkppZyi7ewzvGMEKDopI0yShzhO0AiagGoWSbnYt0jKCgbEmT0geWY1izmO52PwPqYYYzSzorRv63a7ubxcb5zjq1hTFWFHWXKh4CBQHJPzHgBSHIl3whHvmbkw2wOTAopClhxj1KtsH5tU5sUzogRfFOuXchmTo0m0WMag8kEmUrRSVZFQJ+EsqKL3gKBaHhzErA4hggJyP6Z+iAIQ1VQcgvc0qmVVgiuCwU7Gi4imJmQqGYirUFV1nVIu56uMxWATla2Qi3UappXI2+R2hiI7VxRVFe26rvLu6OjAe1Kzs/NzIjIgQL/cO5rN9i43A5Dbbrd7e8unjx8/efzIeza0zXaz3m4ICZFLUOwUDoKIjEy+vGvl9blaIKgpIxNPTFJCFICcxRDVKZjGGItrEBpWVVUwRWYHOaED0OJsoMx4JWhGKkWWytAuIoyIhkSEZA59mVUEzJnHujHQpHF3iZmIOkfBF/aHIU4hQmQgmiQlBAvoEuaxgu+vnhnYQbNcpe1sfw4xPro4qxYtRWCxGftBMjuOORGHylc+iSXZmgyabeTnm3kT3Nh3NKTD5WxvXj8+f7LFuD/C8zfuPrb+3mZzzet8GP/IjRtvbi4IJAL3SGkcEqXj5f46x2f9JjWVQ3zYjWc2rNlubtMc6dZi7yx1z7bng1afnh2/Xh9dzsP3H34wRthfz27mWd6//ezZ2Rrhub1DrP17qY+ipna5Pr9x6/Vj9+Kvf+X3q+Y5qQMTXKwf3X3h9ttvv/fk3Q/Jt7kMAqSGwKHqY3R1U8cuJ4OUbRyiq2tCcETBewXCulY0tVx4yBpTGS9K97PrHkxE1BQRCQgKV9EQJn6JAYCgGYF3jh2RFYKOiSlAmThxUi0hFZczRCqBNbv9yx8CJwwNjcrQjj8IYADALv/0E5wHJxyjmIX+4NrrBzGP0mgXu4ymajarFartzxcp9SCYx6Fuqub4mAnHfiuoOY9f++pXQYWorAMsxqHc2wBGBI5Rcsymzgdmksm6aJKwFeeupmm8995XWTTnFGPquj7GVDLagndS6dWfGPPFxerqR546KvbltymmM8MwOBfKe7WLCZwUrWOMpqBauARskAoIVy44M7MdIfrqqBMRqKWckpIyo9Io2Um2OAZNe7XrZ1mHoR+GiiwNm4vziyHnbXIPTjfds252uv3USy+sTp7dPrz21/7q/yHU4d7Fyf/xr/01yjoMPYKlPBqY8z7mjAgI5JELQj5tNg2I0HjHxESsqzqQyzkyIzvs+i0hmKOcc6hCVVeFEG0GSRMSeufns3nd1MGHMtlPDWVhcpQMBUIyYoKdvhoVQER3wmZWBRFB4kJoYfIiUhpFNZWpL0fbWZZMKl9A8g7VSJARQSeQiZnMhAkCMiYFUUckjk7HbWQ5eOm5L/7kj11/7SV3sNexpX7rkNmAKqfBpZQpVJBRIauKOvFNJTJ+7ke/+FvvP+qGoWkaMiRgVCmrulLB2TEzj0N0zIQmYs4zO8cqaKBiqqnMHmA4bccMVEQNkItfFxSiKFKxDFYRGWLKpmrG3h0eHfkQkGmXxl78b5WneAownczQUxwkx0cPHwxd79k5RQILzBKTFrf1iWjNhU4iKjGnSir03gcXY4KrHh/AAUhGAKx8QERVMQFAcoxt3VRVIymlFGWCvMzAquCLzQQgWAY1SzmLCCGGpik0VdWSm22IqKZd3xfDLSQqDI5nZ6efKCiZoXgEG6RxrKo6jYN3PsdIjCJacFzv3cXl6uVPfeqP/fGfyVnW68uLi4uTk9Ou67pus9lsx9g5xwUQJ66YvBnUTTOmWODaUntjjJOyxMAAi6cdUdHnFTWDJyZmKiW6yLZtV/cKgVdJQXfLu11pRSJHfmokp6UvIhEzKSgiu+BQxFfeBTeOKeWoiherC1EZxwRYg/mKaYwRKPxgNbZJ44ZqqjmXb9q0DRjktDOMdrS75gUAim+1aTY1QyAEIhYwyRkB1FCyqCRJSVI+2D9qqmq7vjyPMadYhWpv74jZhWrGPlyu1+1s+ej04fWjI9H48NE9Zjo/OxPNwfuin3XsECYlSllyXjG4YaJmTiRoVRWTwhA3/YQGpOVxtQlYLfK5uq6rqsqiijK5LjHs3hkqiJgZIOEkxzFUBbPihokiimZqU1kDgCLCBVLRPA7RzLS41riJ8Ac7R/ssSmptVS9htt2s1FPVzoZhcz/3d9nutAfnF93Ti5M7rt4qQVUPDT88PWurJlF4Ng5WBVCZgbfAm24DRDZbPB4l9t3rs8Uri0PYbi5OnqXD1u3NHj94ALPD2/tHN2j53qP7z+zy9eeuv9bUx3Xz248erdgZ1Md717r1xVO7SIGMlDOYCHrWQI9se5o2S8Dbzfy4bY7WiuOY7eyd3KOzW7evL7R5/ORZNHz106+cnT19fPrIFvO+XylbaObrvuN6nO/RvbefrVZb1KFq9hTG+WK+WB7de/8j3bLfbwcZ6lA3s7qLIyhIFtehrJMIBCDuYyc64DbWVagpOMejiICg5T7lnaUx7BZbn/QXqgaGxasUAXXS58jE+DEDnUTNYGSTRyuU/cu0V9bJbHQiY+xUIJObuwESmCGYFvxb9UordtXHGCARUGl6TdX4ioT0ie0E7FQVnxxLLDkZpmCWo/chST6/PL84OXnhxTvnF4m9K4Dk0Hdd1xlQM29E48OHjxbLvdo3jGTFeqT0YMRgmNUUCNAkZzUDo53L40QkLFREM6gqbolyln4cy5A6DKNIdt5z1zuHxfVnGIbE3hUWnikipARd6tjxFaQlImaxtD5u8im2Au2oGjpiYsceEAkDOSRyxaOekOQPj4MpRSL0dXAxjkkMSAzE0MD3OZ13+eRyqHjl0mYcBmZKGaLCejue9UM0jkDD+SrL+w7y4Xx2fnZ694W7v/jzv/D+O+/+6BtfjMNYOtu6qYth0WTaV/goTKoKu5RGMGRCQhqHgZ3bPzrot11MKaYkOZerq24aZlZRM3Pe5Swg0M7axWJR+SA5g6lzruRs7ES4VNhhhAQKiMqAWlAckZwL/ACOi2v0BD2qAmExCJiY945dofdKFgAjJlDNpZ8osTAqImMWcQgl/BCzZUkOEMWyaArWUZq/dOMzX/yhO595lRbNQEQmNo6hatoQVCyJJk2A6OqQhwTAeUQirtu2G+KLr33q7eefu3j/8UwWAZFVyTClrIZWTIgR1My5iVUAZoyT+RYDJE2iguAIQHHiOQMVL0LDyY9HGIANFDHnKMAZYJvyKJLADODgYD94L0AAhUUiu7HClNSyslouktEkfTc8/uhBY5wQNjkBMgcgBDErRCVTIyb0JKZgkHMq4D8qhMo57wCgoJ8OCYFENIkUdIaYmroqztNjHCGXrZkicRUmgWTwHlCHYcyixByCM/OIysQpxnJqchZJqR9GMwXHTFQkmc57kckUjZlNLSUhYiR2hPWikiRU1QBW142hUZa6biSLge3t7b/+2ms//IXPWTbn2ftQCtYYk0iKMY7DAIjr9eWv/cvfePfdjx8+fNDMWjULdVWESFP53dH3mZ0jhunUEJX+zIwdE6KoIKJK4bZNsjIEwJJlxTtz/InfiWgIBExUkkMmyR+WabNwX0hNJCc1deyY+XKzqfab9bDqkwDYFE+N5Mi0bD8LUQEBSoVhQgFENAAXfJYMhI5cUR6IqMLEVisHkJAVFQGzWRH/ikTngmVJMZopghLjcrlQkfXlgI7mbXuwWBweHl5u85BUqOn6eHy4GLa9LofN+qLr12IxpQRgxOh9TUil5JiZlkhtAeQd46eEk5ip6iTU2D3casaIhdbD5WlPGcyQEMv+g0kRRIRh2t+BISAxfcIfAjA0BDRUAITAfrLCAixzSDaTLJqzFmd/yUBFl6neVUSOiJ1zKcq0bcDA5BwBSU6i2oszTqYaI5HrA3ywvmi2EkHAdO/Gc1pXb54+WTNg5SqiJdgI1jNEsD6OzjsfqiHFMQs6t0rx4Xp1p2ruHB8h6tuP7t84Ov7My59ZnZ5/8NG9ata0s7aX/v7Zs1t121D41LVjHNM2Wbfd5Iovx07UVfMFJxm3awQSxd50g3ae03bQLsJnmr1P37izjut3zh9dnl9+/oVXlxq283k/jA8+frjXhlvLw8eX5yf9eqhCn7cuuL3FnsbBB33xzlH73N2P7j86Pz997bWXtuvhctC23d9uYxNo7AeRjAC1D8jg1jW8c/9ht1ZwlXlRG8hk3I6JHXKlWJlGsIzkClRbZqwiif1Ec6Gohgoac3QlqhdEQT05QpKsDDDpUwRES9eBAEY0ZayU565szW3qcAQBoHhxqRhMhmMl3AqmHG40KwQg2y2abTKQQTOZojMka9mDF7V5GSuJGQyMTNFyacoQmDVpJ8Ftxu12u9J4nHLaZjNTWm9W69Vsb58xzJf+4aMH/XbY39tXAVRjIsKpC1MAQIfIaMbEqmqSCxpdMs93LPLS/dSgZpoQCKnyjlPKKeekhAApZ1FWi1XlV5tusbfPSAZmCn56QcExs+PiN+YCEbviec+MCEhYFbMcNDMxYnaOy4ZOQUEUd/uDnDIWbTcDEIliSio4MmHtwTQrANaVWj32NEJ6tkkQhxtzYh9CaNabuBlyL2rIxugAAZxaQofn/eVF6un02d/9O3/35rWbKeumG0IIfdcBcdO0lauFdSRNkgC9J5oidwlVM8EEifuqHscx1N6H5ePHzwgQBBhoPp/FnOMQiQgMNt2W2V2/dn2xWBT+apogRipFtVCFgKjcB2CgZGg2BSIxD9su52gwpT0EZtAMaM55QC7tgYLs4qjAQBHVTExFjdCYCipkJfnTRDP8/7j6j6DLtuw8EFtm733Oue53aV/me/lMVb1yKF8ECiRAEmw0m2S32CGoqWhFRw80UWimmSYyoYkiOOqBFBpIipDpaDZNU2w60AEESYBAFVBVJMqb513a3997zzl777WWBuvcmw/8o+q9l5k3M+9/7jZrfeszHFRqZHTQZRRQRSAYIsxuH7/0pU9/8su/kA5nxWuxogEkNAFURwWgoKohEBFYrQFJABmIkClibZuiw2e//gv/6v0PLsr6pFtZxTmzSTYTIEBGAxUhMBI1UItNUqlkEp24XdXAEKWMAxIxBZUaYgCEUjKAMhKYBYMQKFcpRhlhXcrarIYGMIeWb969zRA5RuNY0MBq8Ag+REM1y0GkCJhArnDx9Hr79GIhAZGurVbCTNRyqKYVLAEzwgi1mBgLZMsjjm3LEotICLJqD4g4JQaDoR99HOxKwqbtjHDIA8h0Avh4p2nSbsLrRtZmCkAcmdSHRKK1FqlSxpIdAULESfOcYoopRlFBQOaoJEhYqiBASNHvaz8CUDEyMbeIVsoIhqFJTUpFRdWS6muvfOJwvgSvVpgBjCjNm7ZpUy2VmVNq1tfrhx8+fPTwodpI1EamlNiApih4IJzMRAgIgDCG6PIFZOTgzpZmikzRVBHdFtImM2kAU9npHJ7bwE4sN6uRw+RIrIGIVZSZxdyf2heCmBn6AcuLjaRn69OxAlAWGUyBQ1OqTBiIIUw2/OKFEDVJzNpZB0whMQOrWCney4iZqLmZjkxMQDMKLFKAO7VsaFWLqQKCqdSc27aZz7th3BwcHMRZ97lPvnaU0vXVumr68Nn5g0FV0zDUVTM7f/jwg/fezGWraIpG/i9ARWBCMJNawITM1LwDM9eLMEEgIEQQ8GoDFBQM1LKKAsSUzLSUokUABQJDICTESGKGgZGpmEt2nSshpuIXaAwhBCLQqrVUIEoEO/yNUEWJUQ3cH3xC+YBMK3NEZBFljuM4gqGq1qoxAhHGGEo1khoLLEPackXTNqRR5OGY5528fHRrffb0w3y1RukRDKBrYl7385Ri27xf+qGhM9HlkA66hSJpKcGki6GX+r3zh5thdcTt5+9/7vL8/ELXKSWxcl0vmtrdWK766+s3Hj9ZzBY3b91uOP3o2eNzHU+raerEeNzmecDD40Mq+vRqoxxiTAb6rB/FLI7j7PziOPHNNJ816d2PPjyH2Y3FjdcOb/3xGz8BPn7p5OS90+szFYht0IgV+mfW4erWzdXyYL64fZPo9Otf/Nr7bz89X1/Njk/OLje21RXyAHZxenE8X6SEJDV8dLn5g+9+T+uddhb6ugXJEVEFEYqp84sV0aSM8FzKLojmEVSyG+34lJlwop2qqns3FSkTpkAEMKWg7nk4+9kqTp2NIzsOEU1ZFuZGBfv6fIKf0Gz/wwmO2mGIPiZDRJrUB37mAfmIwre9qnJgcyh/xz0CFTGgkMa+f/Tw4YOXXuAQtFitNRkAmkmZr46Xy9Vbb701ydWBQ4gESi76B/U4YLG608FNfyMRurJU1WTiADruix6cZLWqARLFJuVSSsmegDYOAxGK2dDnNjWgEkJwhgU3jU8PyRFTAkRkw8kJaWeHyMwOpnj7l1Iyk0jsMtda3TwPPDRvHEdAzLmoKQIRqqs5gJlSAxiAEyBv8jpJWaSUgKXYxWZ7ue2z2FjdEMqM0Qzatr1arwX07//Df3BxcfGp11+/vr5GwlxyUTk7v7jJnGKsMdZSaq1FhMZMkQMROqy359QDhMCqmKWoCggQUdd2MYYqpWkbBLi6ugoh3Lv3wvLgAAACk2oNgVWdLAkOvyGierflYxQNqKpsKpbdCabkfhhTCDEGYlZxmB6RInOwiR5TmaeBhYGRbxVTBQVkMERFg1q1VghZjQyqCFUFRUCiwP0w9AAv3bn9qc98uoBJLpgoEAGLgIJWqGhUPEsJRNXc1JOMo5IQIoJwijWP91+5f/eVe0/e/qiBsKJGqsQQiK3UUaw4wy2F1kpGJFBlDiJTLElMCcZSRRSBfdG6PTegGqpUMEpMjCSiQlAR1mW86IdRFFIchv74hcNu0YlBAFYgQDQ0lVp3eLBKxVpUNedMBk8++Khc9/OQapEImJBAjVVAVdgFimAKVhUDp8iS5fL8XIvNF4tS5OLqipFSbJhYVN3+u1ZR1e2w9TMhhYBmiBQCE2EpYoY7CEFdOlBN1SSXmnMutaiolNo0LTNzCCnGyIwTqYt8srBDWxkRgcGUfO5P5NNtFxMAgoUwadvMoFYxgxRT0zY3b9xkSqmZ1iSgqBoi9NtxFwSrUm0xW8ya2XKxZKbFYqFAMTVgIGoI5PL1EJKByURVRgdpEBBwAhnQ4ROxwEhotcp0JLCPvydN1n7KEwKZWwmp7cS2nvGizn4DJAQtBgEpuoV9rdd93WYTVSbjQJ6FraQq6k/LAMABcSQwA+JF1y1Xy5RSzll32Z+wy7126pLrmHwciUxWnPMwjaVUFdAMdMj5xTv3AIBDaLrmS1/50pc+92nabJ589Cxdjd/+2Q8uLtfHh7eGoRwfHf3hH3z3Zz/+UZESGw7EgEBOrnSBp6mqTOHsE82AzXb6jN2A3lxDZ+A3FCOHlErNkkVEABTBtWMEYZr6maHfZ6YeCozkwSL7b0dETQyMkcFpJLvsPD/GfXYfk6exGiJcX2dfpOv1ej6fX1+vmUKMTYzcNI0ZjGMR0cjIBMvUBuuHnIdSLMQc+InkVSlF5erp05TayNxDbQKvIqvpaja/NVrVnBGglKGsZ4erQwowDoPpkOjRtlxcPP3crRdeWzYHuPjo4Qcc8KV792+U8sGzpw+vH90+PDq59/LV+vrnD98PB6uT+Ww4HwnpWe4tJIt2UYpwN4OEIbCBFLGSO8BA9Gzsf+/s2YODg5dPTm4zP756OJScD7XU6/sv3NKq756faepupBun2xETSeImxfc/enz50dvzxdEnPnvnF15vf/9bP3j40dWN+3cenj2rqsIis9miS1qHBy/c+J/+pT/3wdtvhH//k/eenG2Obra5ZAJBxCJT+pyamlVUZJ7GRrtGgV1u4CS1j02X/J8TMuzlkZoFwr01xW6J605/5LXONFv1PA1Vdf+rHdA4peXtfVrdy3D/izhZZAFMx4/SlERBCAZgSDt+i6K/ZnqxqBk4UDIx8w3BqCiUoZydnZtIHrexndVcie34YLU6PJy181qG9955p++3q9lyzGOttZbcdo1vdmLkEJk5MJpprXnvZe4olC/vXZ0WtAoCUAzTAIoJEIIZhwBm4zj2ddtvBqtaKfujZ2aV4nYahmo7ySsx5XFk5hSC1ErMjDwdLoghBlQopbhpJVJgJkRmUgzkNRMAuntKIDIAjslt2qWUUQoMeay9VO0Sx1og1BRwEYEhX/d5m1WBxypV1BxjIb66Wt85OX7jZ2/8w3/4j1966cH6eu3ExhgjIuZxyDkvl8uUkv98KcWzJjjyzv1AEYHZJ5rEzG3TrlarcTP6QHAYBlULAa6vr7tZd+fOncOjI/8lMyUFVXKWGE1unLKrigEmY0wfgpphXa+HnMecS1VtmGNKqUlSyKS4PY1X8B4c5gcxkjN7mEjVAWszAFBTVFMkJZIIWklAc62gIBRKlaZttmX48R//4N4nXl7ev5WaCALKauh6SVMREkHknWQSkDz3FDgoKiGUEKO0DSz001/87OMPHw0ytEBtaIhY6gACnCIYZq2lDojYhoAIFDhnYUIDY2Jlc0spZCJkpzIYhRAdQkBErCpiIsSDydU4XOecFdC4H/o7L3ymWyymsbR7yRioGZgSYJHMzEq15Dxutvly8+j9D0ihCSEazJukaii6ABzAMqIRKRgqMSIoOiFCxfr1WsacVi2WQog1ig89VVREd+CuqSkjWVWnpZcyEdr8y8y8WnKJV1H3LwZiYuYmJiJ2hjjTFDdFRCFwrbIbW9v+PNzx5qbKSMEzBxERzETUTJGZVTUQlZxv3bxhhmcXlwerAzMBQDPNOdcqSMjEw1BzyTGE+y++GptvquKs6RBj26QiEjkQgRmijyiZFcyMPJFs/w3uktdhz61ENCbGSPSxyQszOyAxLVexyYl2J1yqVvcaTPPQDwBR451gUETNbDZrj46Pnj57GpjRoBogE5o/Ld73twqT4/xssehmHSLmIRsYEyHw9H4QPS/F31IpxdtiqrvBFDmbTkVEagWC1DbtbGZmTdv8yq/8yi9+4xexjCPQ4advPv6jH12dX11fXN0+udsPm9Vq9uMf/3gz9O1qXqUQEu5Y4furxC+1CQ8DqSKI5F2Q1z1EgYimkogZVHV3TjknTM3ITVUweLolADCQ0/u9kHQ9WyD0ywgBJ+IzoBE4l8ubZ791YcdYJY8wJTXTtu1c2tK2bd/3TdMgTKVPraXW2jZd1zVjvxlLOW6bA6VnY9mwKFFReDz2fHW2ALV+vBG7LrbPhovjtr3THXx4dnpxfX1ndURlSzIgAarZdjtrm27WPR7W22whxhzw58N5vz2/E9O9l25dXa+fPnt6FGc3D29dDJvN9TBvF6GdZcyn280M42s37l5th2MrT/N4ncc+8bOrTcR+nrqISKAtpa5oYtzkPB4v3kHVfnhB+aXbD1Tru6cPC9QvvPqZ683ww4/e75vQNu2JyAbgvc2z13/hs4uD+f2bX428euNnj/7pv/zd9WB3X/7k+48errdXi+UqB14zRDK08ut//hv/yW/81z/99j8I/+5nH6TFMRKT1oYRuBn6yiExmpPkAH34NOEzrnBRrXuh+76G9ZKo1kJEzHGPA4VdXPnzUgnNpqMSAaxWwZ0+0+9m70J2aYPu+gAu4d7Rovdf0zkE4GTn57/F/+1HjEsj9t6j/jbUZKo4zEQ1Sw3MCMGMgMLlxdWwXTcNtfPm7vEqWMll+/7bP//pz99++OjDy+trqPns2ZPV6tjHxGPOO+vnCfJqUkgpxkgxpp20zTyO0UxLkVqrWg/mkWEBHRMPyfV2TdOaVkYKROMwHh0eImJgFhedIYQQEHBy5d0d8cYaAjGSGGo15IlDvU8McMY6IQ2lEGKIMcYoquou70SA0IRggQ2pKDIBBdYYuEY1ZLV+GDfjEES0qMp4smi6CMpNMRyrDWMVwRBjrcVCCBjM4G/9rf+hVm3bMI5j0zRXV1cHBwcwOUBOeSZuaVjrlG3IU+8FrhHbffRoRsy0Wh1clgtVbVIjZiK19P3R0dHh4VHbtrWUGEIIodYammAGIs9X7ARkgilNKkX3N0Y1LVi8AVQldBUxIlFKyUeyVcG10H6viKiZoCECIyIYmZihAIGKcze1AlTGykEkA3h1AKVWROxzbUJcb8fv/ttv/ep/9h9b2xgjYzQEI/fIBJHitizOLfPRB1EDEbQAmGKKbK2W8uAzr97+8U8f/vCt1dGsiFCVgBgwJI4VoIqoCQMrYlWlKrUUMzaAEAIyczQAYmKvywGNOAQOUrOZiptUIGWA65yvch7BgElNQogvvfwgtY1Fhkm6jIgkUCe8rRqADrX0eQTRZx8+3Dw7m8cgIoFp2TQ6jgmxUrjWcg2qyIYAQG68qFWImSObaN+vBxuJOcZYxbRKZA57jZJhChEJpQrSpCP2bh5UJsRlF+3kDYNDDkTESITk3KcQggs2q6qb9bru+mMHC4CnnpCzZPY/6f6wCAC1qlR1mbf/gaWUO3fullKv11uCkCWrSC5lGIbtZrvdbrbb7Xa7LbVeX10T8/V6e3Bw2HVdkYpAgYko+JvgnSbEoSAHIN08HcAmSw4ERGKGlAisAk4IPCKKmKlxiPvz0MtrmHB3QySmyOH5YUtTn+lRbkocQormNjxIq9Vh281duYdgYMgUiEl3/bCZF9I062Zd0yVOpWRQa1IyA2c9wyRnARHzSLJSi29YVQUjNL8IQESqQ0oAYx777Qa0/crXvvSX/9O/nMtAORlG1fizN99FDo+fPHn11U+WUra9/eSNn3MM08QAn1c/00N4znB1d1AlQtep7BWyuCsfHdky9CWaTaSKqFXw1CU1IoohMDEiIQVvj2j3EXzsAkNCdL28AOAUBr1/2T5/82PjD2RVCyEwh2EYQgjevcUQVQURU2pVLZdRoVbJ6379QnfjRrOo/WYwzSKVKczTo2F7t50lml30w2q+PFkc5E2fW8Ym5PUm9eVebE3qaR04NZF4o3lN2DVdk03VmqYZ+/XbdZv48EE4OljGn3/44Zu5/+TiwWurFz+8Pv/2B+/gwexwubRhfLq5Wl+Mr966/wLFD8+fvtNfPRuhWSwq6lW/XrbNg/nBCuP15cVF7sOsI4Me+Y+vLs+5mS0Pb0Bz3MwvpH//2WONCZaLp/16BfDJ1a1NKO88ffO/+Kv/0Y2V/Z//9//NxaZ+cLY5POb5cnZ2/tZa8jXYeJ1v376HoMP2vIvlhz/+wfLv/n9/+L3vhMfr0vBysxkOVlwNqhGFBqgxyMTuaghuh2Wq9rHo0H0ZsVu1tqPTTYU8AIQQY5jShmEnBAAQeG7iMKW97GYK+6kN/AdfuJOs73/n8zWxewE6Ro0eve7baXqBvzx8nPu8W1h7YImJaqlMTMwwZimlTaSQnz586/zZ08agm8e+jIczOnn9VQzxe9//0cOPTlPippmbeRxxESkyJZVK35ftdg0wGYh5lqq3UyFQCJMCMpexlJxLybm40zxzSE2DMPoTm88WXTPjEIacnV8uUgK7+dU+Pe351hVRkbEUAYC9J7LXFjHGyfR96GOI3KSc85jHFNNEVxf10YX3MpBaAheUTh92CCEllKpIXCSfbvqhDrcPWw3dttp1X7IYhUjIkWHsB4ph248//9mbr33iVX/mwzB0XTcMAxEZQM65FC+afdzAXhKZTaWkV9JOagocvOlvm2bo2tNnz6rUMY/E4fbtW0dHR7u3iW6kRMS11r1vvZ9i/ufLpLPV3UpAZGCxccyllFJrCIEDqxkAhhRAg4KimlQwm+YGIhICe7u2K4qUgZEgq7r1XDHtRTJQNJgaSzQGLDsC1rKdvf2TN5Ynx9/4i3+ujsWaCGG3rUSDT/yZEQMAu9OEzyuQxUwhRDLRNpK2X/ylrz5654OrcUM0W3ZLkuq5vGDCPqQx8mGi1IqIagAIUtU1Lt6VlFIxkMufxKpWM9ECCgiCtM3loh/WpWQCQxxqXh4uX3jpRUO3LiZCAkNwqwAwA4uBxyFvhr5WYYWn731IY02ctqYM3IUAolWJmc4Fz6yKz14NWFy/wGYgKmwWQqgAnllBiIw061qn87RtQ8TjmCVLCOxhC9OmAJz8PQENLMW4u/8QAIGMPI/QwO8eXzD+mhgjAtRSmQiRwICITdVVpbBTYE7lyMdsYxAxhuhMAB/ixhhN9a233zYAVDu/vFhfb9br623fb9fr4vraUolcnAiLxfzk5MY45m4+H4YRJiNvQHLhADjZNiCDm5zZVGBP2qvdQYoAgOzjWTV3HSb3zfJfnOiVAIgBwURUqloAlaln2J+9/uIQIjE540QV+iFziIcHh2fnF+DdMiKxE+sMPLoLjJhnXTefL8FDtZApBBXb42i+IatIKXkcBudCxxiIg4gHldP+uvHnLDVLrQ8fP2xT89bbb6vZcjlbPztvunmpMRdVxUcffpTH4WDe/e2/9d9dbzarG8tS9z3Mn7hQ1NNYd1sbADkE/9BV1FOi/YUf69ht18179+73jiDulPOq/pHo86dNpmYEsit0YHIkMe/nEZ5XPwBAns33vADyCF6qtQCImdVaDw4OTk/PvNhijmYKoE3TNm3YyFB0vLy6vH9wctItNgWFLKPlgIPWppbjZmZ1iOOQqDk7v+S5zE5WXR2vtlcPDm/e7m6+j9ePrGzYRqlQ4MbBQUz05OzZVoQDYVq+P/T09NEdbF6+d/+s3zw6e3q1GNdS2uXiuuT1ZmhCuLU6Hkt+fH0+D7FNdB9mYZSn1z1EujdbdgCy3myapPPYBAMgZerHHJv2sti/e/TBjRA+cXzyenf3+4/ee3J+lpaHFqjXkhbNktvPzo8/+vGPP/uXv/pf/Keff+P9Uz64de/W8YNPfOb3//V3/86/+qOuXa26EzbuUIyijuPPfvLWWz94S8YSKrckAfJg2gKoWg3NygTNdewItjMsx91p4h+h7MyF9z+JAGrA3KiqyEjEMaQQeH8i+EqbcGECtx71AuhjOKS3bWgGaOiAysePFZgMgdwLnwwAnVuj6iw+8gH4BAyZU679r57ElkhAUKVI2YVOAzhLmomqiOXMMTz64J1/8P/7m6fnH2zLeOPo+LOf/MRqfne+bAAChEip/dSrL3703vuSB0qz4AB1ajpuPSHYRbMO4Zq5yj2XUjx+CJEnQMuAI8/mc1Mcx3HT91KtVlmvT1U1MKcQ3QEdRbb9VsVms9Z1kFUqEZn4k1FkZmNvb73jhF2MIgA0TeM3HyLWWmNISFirOL4yjqMf0JHYbQxCCCbKTAZoVqWWWisgOt/TwHIVBapKdZB20NSkUXBQAwqIIZcSGM2s1JIHvPfCXfOA8136tGO2TgrxQs1/nplqHb333mPv/mmWUpqmiSF4JXdy8zgkNrVa6670gRCc4GWlaM5lx97wy8FTo5/bHakSYlU15hA4qSlAVjHccRHATNWkinpeIQBQpTilLjhdAzHtVpeP1RhBEIEQMDADA5TRdAScM7G5DtgYUZmbkPphwKJH7fwn3/3jG3duvvLVz8mQsU3GAGBkoKpQK1MlDohuT4xCwBgAqzEjRgTFNuU63nnlpU/8wmd/8vvf7ZZxnYdFSIakRaoJMqoqcQAFYlKF/dixigSK7nEETr9RASQRQR8gw5SrUgNsct7kkg2UGAjqOJ4c3jm+cdOIFDFw8OvX1YXqO7PWWjIAlDxuzi7PPng0Dw1UWzRtLTmZMccCysTzUaNZ9g8LmRFFBdCUsMI0HldBQiL0vDjM47ZrV4cHB6WUvh9MNIWg6BudfSjngx9fGIQQYtxRTAFEYNKKOmlmn0U11d9mJqqEHChUqWoWAiEQghJOjgCTftlMTHAa5ZCZ+dHkJ5iXUN/+9re3202uLvjKMTbz2bzruhBCCE3XLQCs1Np17TD0IcTinUYWFYsh+jRNVYFsUreqgXn9CmbIaEjudoGE7GA7iBpMzg24L4sAQggi6tixL/ZSSq05pbRD+p9rvPeHMHNQsFxEwIiBiGstIbTdfCHn50xExEXqlFXCjkuZiM5mi+ViaQAIKFIIIgfOuahVm1w5tZaa85hLkaqARggESGZVJ/dkNwIopagaoY1jJmap9bLf/Mvf/M3/Q8P/x//d/7brOtnAO+99lJoZKj55/LCJ9OOf/Oif/4t/enQ0VzMKjDt3n4/PMczM+aDoNs046SeRIcWASFLNbBrf+/jPr5cJXzbZPTF1ojRNMDKggaog7Spyt5egqc52TRFNw3jm6UYTMwACJGQiX45ubeA2QkjokfWBw9XV9Xw+n826y6vrhlsAKyUT0Thuau6xjdfjpmnuvrCcn52WKyyIJlVit7gcRrXti6tVf7Uea10eHq77PmyHVWy2YQu1vr68eZxmm9N3n8LQNMulNHLdY8PzZXs5bisTW1i34bvr9Rfnze3YvUbp39dH37v68KRbHc7mzZaebbbadS+f3BlRfvb0/adVb87mR23XEXT99gr1oNgS4xMbPrw+TfPulZt3t1frD/qrNsYDCcTyUIYP6qYry1S4UriqNW2ub986Ob88f+fy0ScXR5+f3/ztv/+P3nn0R588DjcXw1/8S1+7d+Pmtq5+ID/IF2qLeLVZDzyG43RwMJstDhfpxuXFKUEbmvmsXtZlO7u8vDg4XnrtqRMNDdFd6ogIp7WyP8/gY1+2m47BxOtx/JN5QimmdtYpJk4/9MAjBJqW0HTW+Ib28wiQyH+0i/yakEkw2Fkbe9OgnpYFAO6h7oYZ0+uR3BgE9zM4r71sd8n57N4ZG342MMaUzp4+fNZe3LjZfPb+K8tu3tJ49vDtkDjERjEKhkV3cO/uyeXVFvAQ0OazmapILZvNpu+3krOCe7BOVqpNE5umBfA3T6U4gwG2w5YDRU6AuFgsCIOqdbMZqOWcyzhsNpvLy8u2bT3erFbe79t9ZUBEgQF2u3rPwUJEB/MdREEin4UBolQZxxHAYgxVVEQQsECJIaCij6YmWM8EVRFE1dA4IDaRi1keR8NYkM83Q6u2LTAW45SyGBGLlBhj7bftwWqxXOU8ootHvAKLkYhiDLhbP4jYtu2EiuXsJVEIrDo58NIOQ3YvuC51i/nCv33/M/2I8OMs7hIEwXxQBfsaG5FDIDEjtBCS91lSHTpOJydHDx+NpMaETDTmPpfYpKgmNOmFn/tnTpYquzPUyyyb7APRFMgAmIpaVhXRLjKIs2UJzNSsjaGKLLktef0Hv/1v2oPF/c98osDITZo0wColGwIaMEcGIAMiJCNEDggVIFpQ6jquhc2+/Kd/8b2fvXV2ec3RQG3ZtOCSFjBmNBOpFijuB6NxEnX7NJB8nXi+DSFrFUOMHCpjVR1rHTyEKYRSaxOSgt26e/fg6LCCtU3rpH9vn6a7QbSWLFXyOJY+nz96NlxsDqjxtikRA0Ax8Tv5sJvR9pzJ3EbFJtYVVhMMxCFoEQQM7rZo1sRw5/4LAPD06RNmDqGJgUqtwAQwhWNM5isT5AMAEENwZDGGiOxWhFML7vUx7Vy/fe+Ys5lgclJGN91SJWaZqvaQc0bSQAHAdhYJFjh4G0NoiLjZbK+uLoexN4RuNmu7brlceiWKbiOEU/LGWDIgmpohxhhzzkQhhGimIUbcd5NmtSoxInqUvSqQVY0x+cyXd3LQWnXHsJmsyHLO7o+qat6E+JArpeRH1l7g4tmF+waSmVVE1JgshhZwIi0cHh09eXY6DJnQjThRwVKMbh23Wq1W86UBqCkZuzNnKUWkeqFcJo+5Iq6PSxPPxgNbiAgMRdStywhRUWr18ONccz48Pura9C/+2T/7C7/6S/+z//yv/fS9d//gm985OblD+KaBvP/uW//kH/2Pi+WcIxORoLhLlZm63GqKkhAxNbc2QFIXHDAxAoGRjzdp5y0y6X7B7b+0ik/rphFZjG4eHr2Tj8QuIAU1AAvxeS2LiIYGgB7/7SF9ficZutm4EYHnBLi+D9EAkSobQKkFkAmxa7uxHxmp1uwTWy8fh1zGWgay0+F6URscRutI1YJx4lipbEwfD9tlG1hqF8JBO8tPLg5m3a3DG+dnZ98Dmy2WN9tu2Iw1hhFR1Prt+uD4sGm7Z9dXvVgAPl7dfDj237s+fTEmJF5wOh03OfJs0Zwwi+jj67MU4kvz4/PN1bDu1zO8Sc2D4xvv5+tH/eYZ515kmWYy6MOPHi3m81vtoo5DgbK1ESIuwuqn11fv5cuT+fJweXKmmwPUWyHOsl6cXWxl89rXX/9f/W/+2nvf+5ff/eb3fu93v7ndwL/4vR9++73LeOeWwhovS2wWl5sSjbtls8FNv97cvHEUTlbdh48fZQ7g5C+OomKCNlkwEyEa4c7xG3aMdHKLTtjNwqZTA7FmAcCY0vMkYZxWmLrPLiGgTR6XQGZOILXdFTLxjZxp6rHtiAjIDjB62eTQn+9Gw8lkmSYhliJM/7FbnQY7wyDwOLEpJZR2sCI40xrJYsAx5zpuX33l7n/2F788WwyhC5AlFIAIEEBEMXJRMtbDRbg8XzNIHYfrq+t+GNRKIg6Bm6ZBJo4hxeQPJwQOYZcVuRvDm8GQt1XqdjNst1skjjEhUtPOZvOWiWvNeRxzybVUqVVA3LbLCxR39vO2jJBUZa/p8ErIOzl/PQBwCMxESFU0NU3XdmoaYzCzWorbOMUYA3EtBcACEaKJCz79E3ezr1JdoFUF15vttW7iVdyUahiMGKyGQFpJcuFAR0dHPtzcu6J5pB8R5XF0JZrnhKSUfLqxc3eyXfP58dkl4C6aFxD8DYvIHkPaHU8TclmKWPU4oT1tuSISB2YOtivHHR4zgBvHR2Mezs/PiQOiiTtUNily3CdgICLTVIb+B6Q0MwvsXsaitRZFCJbNhEgBfC+5dtl9TRCAzIrqYTM7H/s/+lf/dnG4Orp3G0lDG4io5JFiqLkgFSRmSsQA5GFngTGpFgI1NOpmYHl56+Rrf/Yb3/zN31lrbrBNKmSAHMSqiUTPJ3WbbFUR8VLAazdm/JjUAGiPihCZagUdSs2lGgCH2FIkNo50+96dbj7bUqEQlNDU3L8EdsoaRDJVKZVGefzOh0kwIEPAQZQBE1gIrEbDmBeL2QrGq6puPlRqMQIOyEgVlEJkg8DBSXIHq4PVcnFxfqamLz94cblavfXG25thnM2WYyme9asqquztkDfu0/BCJpsiT/z1eeuux9M9HjA9osmoasfS9T/Ez0M/c0Q4hBBYdTLLNlPPRI4heHVORH2/ff31T4rW7//wh00baxUFQWLiHVxkaqqIYGgxhIBxOliJd3A7MJGPXvYA1f4ICyHuu519pW5m7oYadu9kf25PBokGttORMTMRArjAlabi+GMKGERUlRgjcQCpk4GASKkSYlwuV7mcue+fGAQCkWIGBwcH8/lcRXPOgEDGzlLaH1NgQOhvGs2manX3QewmTWDEwVRqLejJdIHAZDZvjw5utV1CxFnXzmeL66vNv/3md374kzd/5df+stjvLdvmn/3m3//g/XcWbSImtyx18x6/z6Z7xMxvK2ZWVEfoPX/Djab24wIAIOYptJhY6yBadl3QlKvoKKDTzG1nwc9E9DFTafwYYxXdq3f/A/RQJd+qu/4NEBjcn8EMpJpUCZNHRuw3m2Ecm9TEEBBktVx5H25VIFABe7K9it1ymRqtQ0whFmKF0M370p+NPcy6WaCnl5cvHxy9dOe+brf9tk8Hi7PSP/vo9M7xrfnxrZ+enW8C9VpjihfX29XqIHE7lCECQrVrtO9fPnsY0wvd7ObhsW2vn12c3bt1987q5OzZ6aPri4Nudth0t7rV06uz/vI6LPDO8rjLWIfhYR7RQIlNNVu9vK4ni+Vi0T09faYBQ+zGamc1h5i01iXHo9ny/OzpIaVbq2NReuPJk9vzo9e/+MudnWKef/f33/3Wd95+91m2w4N01MwSq+VIRrErouu+/8xnPtUfL99646fhwc3l+XsfoVpM7bPzi8XRSYhdRSW3OED2re7bwLeW39sfPylolxczVgFCJNqNtpwmaQDmaYrg/DrYibaBPk7y2mGztsOSYCci8AoFp4kqOVNE9xe8akWYuOruIoHqFTw4CmMEgooATnTY/43OuZ7WNIDWTESRG5MSUe7fWaWEEKWl2Ty0GKhaHuqYq/XZYpteuX/yzjsf5ryBMAeA1WoVIoGI1BIIiIM5m3ciRWEp7tDjXkeVmGqpIYQmxa5p54vZ2JftsM2l5JxPn41oEFOKMTYxtV1TKrlTIjO3s84v+BQjAsYUycWxBGq6R3c//unUKghKhG5BARj8aU93oapvvt0Pxc1W0V2R1dyP0H281TTnLIoKWEXLIAYFODHglOCsGpi3/fru7ZuLxVxUPl4lMPNsNgMAFQ/NnRBEf7epbdyMNeDU/DGzp680TbOLnmRVSSGBQdXqTzhn94ZHQmRA8zVDRDvez5SRRIRoZSj7w0gnzAZEamrS7Vu3QuDNepNzZqKS89gP1OGO9eF3D3qdDUYIkyhs+j/4nVBUgIAUcQQdEQTRqrLntxgEmLg8joib4Sp0j9776Fu//W/+/F/5i83BPKQERDGkKgLoH5EgCJHLCQkAgSIgoYKBpWZeK+IcPvunvvLw/Q9//offa5uWhBJxRxFNze2vSNCUEQlZydwcC5HAFEwIjYjAGACC0wABDUzAxKyaKqACoUEgVitNm+69eI/aGLzCA5p4KohkqJP5OIhoMMp9fvzu+7PYgFg145gIKZcsaIIW5u3l5nK7uTZMgEAYY8NGkPMADBwDqKXIVuvBwepgtcylP3360XK5PDo6apoouRCCU3ZMDXmylVetOWciKnWspaaUak0GFkNQDaMiM4sKIcUYEYNLbJwJT4EVDMFoqpMAwYPVwEsNRPS8hhjjzgfcJdMRWXlHaOPABJCHzVe//IXNuP3D73zzwBZd14UQEdBMPOXK6zDXf6D7YFk1RQIkNLfGIcQYgs+/cs5MTEw7wNtLO9nz3lQ9MoJLLWPu3XLWwF3ViJh3nNlIRETu7yCeG7i/pPd4pzvGqwenTCEb6pPfQBhjPDg8uF5vQowGFYEAhbl1GvjZ2YXkMqEm6luGAocQAvGE1bkwYW9evxvM7RpXT8YQV8Ob1TLrutVq0bSha+Jqubx3796Nk+P791589PjsZ2+88/R8TbFZrhZI9f03f9wk9lZ0GLdAEMJEVJ3SR3mydCHyGbqqGe+6xz2r1Y9HIkKCWtQMmSGXUqWIZH+TpppS6rrO/cERUKuXRMEBOdhJxvadhk3s2Kn+0TJFmhDDvoqt1XzK6b+jVi2l+EFqZu5dwsypScw8DAMzhsDGXKuYggXI0bDhRrmrkFKSWgkwpjTqSBDW/YgcDrr2SsuL3epovvzu07d4pE8c3Ei0enZ52R82t1YzWq8fBVujRcCz07PlfHGyOuj79Wm+RoCR6MJkMw4PDG7xYh55e3H9QS6xCzdscZm3a8s3qHvQHc8Az8r5T8/fWUnzpfbwsxC+nS/epnGIeBKXocqz7UVT6N6NkzzWp/32GUBNwfoSAn1ucXKrjG+KPuX+lpTV4qBZHP7k+w/f/eOnpw/xB996+63vvLOS2RdfvPv2MK43myhCXSI15no9Xr/50aO/9l//xq//uT//X/2X/2XoT9856mjbWzag1OSca77umg4JREDAUMRE9+G9Non96n6h+OLwXVdF26bxnrJKiTHqBNnhnsyBAISMzDDF4eJekOwyH0Qfo7owwcsjA8fxiXaiXFJ1NbILF73LeQ4S7NogcCnO/sayHcSEOLV9Ez5kCuZ7rKaUQpNUx3F7ybCWksWoSIKAEAQIEKHjhNC/cOugawC1mAlzKLUOedQqkSi2yXkgO2RrmsrthrgqVTCQ051wJx5umkhxqaolS865H4frzSbnDOq+sYEDIxIPg4/8Qgge7Bx8e1FQk7qzmgCc0H5/FLXWGNjUSi3eaxiYqhEH2tUZDpXtZbQRyMCRYhRQ0EnnQdN5ZBRiapqhvzbEEFKuRVSIoNYCCF0TT04OFbTWTDDRcbwESTGKqitLfF3xLru0mtiotRaz+PHFo2oi5ryC6XwklF3c4JQ7iB9HK5GJ2xD3La/twD/bpc3vek3xIUgumVUS0c2T4wBwdaWAoFKGoWdCDiGm6C2dzzGnkn269M3M1MRqrrUWd98EqmCjyggogFUrgTEggBEAqhAwECmqoyZHcfbhj9/8Pf7tX//P/8p4vU2r+YR1AZoUrQRsQJEVDAKg81ygYgBQYsIoCCilfPXPfuPD9z94drbGhpdErBo4TJUBGBg4EBiRCTDGCGa1TngbT00LuQmKiBhTNe1rziAQOABVc8JEXR4t79y5rVaBCYggIGZwh1JQMVBAGMcxDyNWPf3oaV0PHOZiJr4TRRkQma9r1ll3fHS3+3BsIA19zrUfswADhxA5cOCIYZGaWdswwebqQiy3bbSaT58+RgoptiJC5oAiF/Wl4sIuYiIpUktJMUmtpVQJAtYzxpiS1Go4RVQ6k6yKXK+vcY0A0HWzWUtus5NiElWR2jSNlIKESBSYFUxEUopSvdpXd+MhIlVhxJJ7RP385z97sb46PDow1Rg4hODZ5jFERHIgAQDERKQ6x4QRiafA3QnFceyBOaWkKj6CQXyuxN4BOTAFYLgTkyBAhSkKg2FHNXDzNr9WfV4G4LrY5144MFX2fppprTrZjwAwIVJwoGY+m9+//8Iwjv2YxcxZ10M/9EMPAB7ltvNBq+5EAABN0+JO6Q0AXgAJihMb9p02ANVakIAD1zoS03I5PzparRbz11595Qtf+Nytmzcuzs4CxmGU2eL4avNuP+QX79/75jf/JSULkZFU1NACE3ia2B5nYpoqIb/LRCYovZTq1r77AsiZZHUszgYpRZ1IYFMQjhHzbDFv2sbUtBQFAgUOIcZo+Lyeg10MGACYgff806/uqFcTAcHMm3bd+WO74NG5UCEEZ0BuNpsYY0qxVmlSmsBd1e0wkGlqwljLeuy7pr3ZwLMixlRrhWJtTFWyqm21zEI0oYcXF33gk9nB9vpSqxwfrC6vLq4ePb7xwp07L96fX13+/OLqOhgS9f226drYNZd1W6tqSIXwYR7rpn/54MatG7fo/Oz02Xns2tVycUgdjoW322bR3Lpxw0Z47+G7Ru3Nm6t5mn1qI+PFdrtqM8oGMgIEiEWR2xlVzdt1aBtKvNb6uGzN7PDo5vXm4tn5marOY9pcln/yd/7lNr/7W7/z49vzO+mwO9tcBq0dFdAQF4sVzWecPuxLOLz3D/7Zb7759jujUZjB5vbRwXsZsoISqynKqIAcvXol1w4Y7O7ESUrzfMSwr9PVrEkNAO6UFEGk7hG9aT41dRBToLNXMIi8gwamiCWYdGL/gejMPZ1tIv/ptHxlCnh63jrY8y9HjADcmITMK5I9uOpfjhV4M0TMVYVUZl3XtpGotC1FTFEbRS1gRUYGVclVMdHhrePVk8s1QewLYYjMYT5rmxgigWeLcfgTTJGPKdxwOn8ICY0JLZASgJKqIfDh4aFvxc1mM/T9MPSuiPbHPpvNYgjbnBFAqrhVXgxsRIAYY0qJYwyBgoc1IoGpBiQVqRLF/ADDnSnX9JBDCAjuDGCmGh15MKieEaWCIq5ZAzRmrDWv+7URhxiswnouqgABAABJREFUjLkWpECIoqWqvHD7ZhNDzUMFCwxa1IeVKSVido+NKUPUzOkaIYQgVAndAE1UHXjxamMCrc0A0CVaBuAY28QrQpRSpVZjdgcGcDPuHWa5H70/XyIAZkpgWTMgkKIBBKLDgxURjuOQc6lSxnGIlhDZQ51t5wdkWJ0ytyu7qwd/FgE1R4lYAlcFYwRBI3DZNE8zJjI0rqRqrNYKKcZ3fvCT353PfvUv/fq4HZrFLIZYVLVIlW1q2xDJFBg8u4IAQ2BECLUOHFsBqQ0fP7j7i7/2K//6f/wXV2UbmcF0zi0YGigjgJnbTZFNwDsTYGAgEKlSi08HJjNCMENQhGxa1KpDHAJEMI75pVsPFqvlWIrF5Dl46DJMVbUporjUiorSl4dvvzfnVqsARYosRUAtxdBrHbQ8+Pxnjlazpy01YZbHKmiXebjq1/3l9bDeLGfdwfygDbHkfhgGDpQ4boe1EBOy6ihVa4Gm6ZDSUIqbrAQKohJDMLNAzN2sSQl3VfIkkK+qUmV34SCSCI9lEJG2bWutV1fXZZxMqubzucciD+MoUlPTEIKYMhES1SnzhwBIRU1lF+0L/XZz797dW3dudtfdgxdfevz4aQoxRuehGyGZqVSVWj1rAd1UUI0AaUpZBF/A5HYVADkXA3ENO05qc2TGEIJbqakKEYhqCMwc9iQeRHQvDObkAxqYcBVUdaupAJO9vomomtiOdGjqcnqXOYF5JANAlRpTOjw8ODu/qKqoIqOsr9Y559Vy1XZtyXXMfZXcdomoM7Baaim5jsVlVPsBE4AB+vhhd1y7Xz0YM9c8qsidO7dPjlfL5ewTr7z2la988dbNk1rK4cFBk7o//s5PKM42fbnabm7fuXlx9mQxD4TisEtKCSZL2l2JAdOF87G7Bp1TgUiBGfdmiYBEmHMW050djKCL3byrIQwppa5TtVoK+x/DHENERpV9TTl9OVlnJ9TYUV0/Bn3Z87GYXxnmd2nOBQBijLXWJ0+e+NHtVIdSymq1GoZBRIaSAamldBCbVMtQx/l8Ns/haX+tXacEOedZ1wlAals068eRumaw+tH5xYOTW3dv33/49OH2/PzunZuzsnq2vRLEB9Q0q6M3xnVWk1Kejps473DWoWLpRyoGlK47eiP3p+f55dnqXtucXp6en5/eSd0nj+6IyNPL8589fHfRpV946dNn52dvnT09WI03NP363Ve+f/nsrbrdaDmiWaL2dDMIZm7bGcAwljYlVHx/c3GV4kt8cJxWJ4wN82bYWAjf+bd/NHup+eKf+bWHbz1+9/r9xa3VrUCqUCE2hycp2/bxU5LaRl5fXv7ev/o3D+6/FP4nf/FXf/cP3/3J2w/nt+5tx95y7ypoDnMiRgiI4nCr7a4NAN9gzw0ecs6mGkLgGB3ngIlQaTsF8o4n4cWRuW0YIAb6mMwHIOzEhAh/8mu3GqbCyHZTHgAIOB0HiMFhAvOK2iZYhZxQpgrI4OoxRBMBH2fs3hoiidWARByl9xOhIqtIJQISNAZia2JAzVZKCApm91649cb7P06LBLzwYL/1ONQUm8AxNUSoiu7z6e1OzhkAOUREVHdgNs8LA1UQM1BgpNA1w6ClZkDtZk2IFBL7iIcDi0xBRLOmISQQdZFLihECA1MIIYYQd06jMQSTighMLFLBsFoVFdfMikipambMwQAUlDAyYy3ZB+FVpKgKohqZmbjPM4cq4tO6mUdxrfvJBEUNDGZdc3Cw9MxKVTVm3Bm8elwREjVNQgNA3Dtq+q52QFHVRCQguY9AKaK1Rg4UXEDnuedkgCJGFHBaZ2TgHFi/GAx36YB+6PiROua8n+ECkGoln4WJOrpPTPN5F5ibWMdxVBURKSXzxIpxwwXwJBbPB0JAU5eNqxKpgAEoo4ZQxqJMRgiMasaAkRkNFBRAA7OgWZUGGYkM+Tt/8IdxtfjKn/1l3fZt13FARJQqteYggUCJmYwUAAwIiIgEhFirhjDvpB9e//Lnnrzz8I1v/3AhBZUShSYERkFTrQKGaBaQqs+o/PhGcFcAQhSwCiJoQJBrGbQIQS4ikyjdCHEcx7t377ZtM5pxYAAWUQaaWLpqjrQhcYrp/Gp9/vhpQiagAqRIQNaGCAb92L/wyr3Xv/al3/z33z69urixDAgWYjg5Oj6iG6fvvv90Oxx1izbG7XodE6dAUjMgtyEamEgWwRgtpVBqAcBu1o158GQrUw0xlFKQoG1arx5Sk0QrKGrxniS6i6ofUrVq3w8h8N27d/u+/+ijR4C0XC6GoTeAy8urUspiNW+aNIyDL4biQ7FcCYgiEyEHQkORimAAWiR/9nNfY8BXXnn5a1/56u/8zr8yhbEfYmrQbNiOAGagYBam2N1JMo0AQB51o03TmHN3RJg5pahKBrInAwH4ySf7Y1On/sEJvDzJVAzc+9FvUC1udwQ7VpASxY9Jb03FRKuXBRyZMThePtEJzNTE58mXl5dnZ+e5ZGK6ulyD0eHB8epgUWpxZcM8zWDHv8w8AhgqieheVuyNhdnUVExlHzk0pQhcpdw8PnrppRdTopsnxy+99OLtW7eOD5eE2KTm4aPTf/JP/vmnPvvLq8Pjt99698GDk5RCjNQEdo8GVfMR4O5x7auN/UXgvb8jUOw+uc8ppM7wJhKpItXA6dTTtIGZmpgcc4shMMfIMXAkIxE3WEKvOGmSdP2JOw52dSi5e68ZGSYOtVYwIAMwQ1QRBTVX0QLAngnqSxERSsk55ypVVKpZq8Z9nc2bcRxOLy8Stx3ylRa3YmSDw+WyZGFCJHyWN6/F+c2Dm08uz8BkaeHKhssy3mmW43Z4/+Hj+7fufH55eBfDD548PG3SdeTLITfYdszHTad5LEBbDtd5OC/DGsuLbXd8cBi3PY15PW4ODg5jjpdnZzNbzhfN4uDOm9v3Hj5+OLtzf9Xwa81czvvWiBfNVnmotN72UUGOOttqyWNDoYA9Kzlebz43O/z0YlXqehMuN3lMy/aZPLs35xsvzPvLw0f9OtDhEc5ssx3sbGwrnQh8kNN1KsP5vOnC+jq8cMCvv3br97//QRkHVCJOKiIWAIAAgRhNwdRjEZ1ADAhMQXcSg3HMqopETFRrJnLO13TVTRof0107ATTB9rYvbL2o2n/80zYwMyZ0JqFNElh9HkKpzIREYB485jIWMpzieT+GLpqqASECsjP+JxM8Uq1Ts7ErsI0og4Q6zhs6OOyIgSEyxxSa1CQhyVJylaAEQlW2TTd/9cXj7/6xPb18YinXShTCLKXISDGYShVjiKrT3vbW02dMvp/cNF0NAIkJQK2CqggCBg5NSg4WF7MQo8dWoDv9qKWYalXTAqJNSiZSfVOp1ly01ozTGRqYTSSGkJqkaswUuSERAKDJXs/DR7S6oNMqTDvU2daiaupsPjMwSqkVqaVWMlvMZsicS6mluhsgGDLY8dFhDKFKZiZQsKrknuDkVNPKu7hAdPohwKQcN9kpcdRMDYknknvRWoGceQpqiuDV5b6OQQAIgTi0XnSpqneVO+NmtN30vWkaFRXJpRafKTCyWi1DQaIQXWwSupahxRj77XarYkMdXeKxk8JW3AXb+SHqICJCmnwOVLVaMbki2wocGYIqgqAZczJkRAjIQKhkAUD7QmqzFE+a1R/+1u+tFoef+fqXeh4bbiiEgFhVcx6bprFalcCMacqHghhjNWFICkItoNCXfuUXP3r/w+vzbTXmQmCGAUilqorsdg+BSwpMqlVAAyZSRgASUyWoAEOt13nc1irumcwBajVE6uLtl19s5vMCJaUWYxrGUXd+pEhGKqzF7YWvT8/7621QjoGkSjQOqd0O41rK7MGD1//sn87t7On59TjWC7tMFOpI2m9myzkClpyvr67TcYgB89iLZARDhlxK2zQcgo5uP46paUR4HLOiAaIP62OM4zCmJs3nc6fREJHfKaFNvvSL1FKzh8lT4CbGIvX6+lpVA4emaU5unJydnfV9vzpYqWpMQUS2223XzRDMAMZx7NrO501u/oJEDD7rh+12++lPf+bg4PBnP//5977/g34oi3ljBoh0vb3WorP5nAiJIhMbSDVFcyHPJF93mZovdWaOMYJBMVX1w3N3hjGouBqUcjEpklI0VeLgY+4q1Z13PHfW9wnF6PwuRlfD6f6fiASwy9CYtNrkkNkk1ELSWihw06Tx2VBLKSXLoKa6WC6bNm23GzNIKTpSJVJFjImb1IYQcyyj26CVoqKA7g4nxtMJQASmEJoQOGjNTQwvvXj/8GC1mHef+sSD+/fuHq4WKVLglOLq33/vD99+99GXvrY8PDp45903P/PZe5N9EoKZILGJ4C7P1AubnXDEPUrdtBrQ1BRSiE7/2JcpugvwGksuObuc1tSQHB/ysaZxjE1qQT2cABRc3kVEDGBVXAM8hatMwA8CAAQmQiZHUU10l0NrblJBaIZFay5CpF3XERETlVoDc9u2MDEUeT6frS+ucj8khIP5sgGhaog8VmkZDtrZw/48trMmNlj18HBxls90LAa4qUKLroutXJ9eXpx+4f6DC8tPz891MywWy0/MZtv19VYuFeTO0eFmcxUwNoFxqNlKbJtuNteSr7fbEIhS89HQ11LbxcFnb9yR7frJ5dMn12c3jo4/ff+l87PLdx9+uGjbuwcnJ7p6ePHscrw+ou5P3br3wWbz767OzxPntuVufjVsdVNuHa3geru92ChFDPFsHIdOxyoX63WvJqYX5xcfbR6Vvv+lz35tdtH0P33r2fXAYFr62EShslgm/WB73DRf+9SXysXVk/c/DAc4vP7a8fFtfPxo3fANQxwIKoZxzCFYiA0SEYeqGZz6YUqExJCaRlS2m02tGmMiItGKCJN7JpNPet2oFGzP9XHkeeLJA2itQsRTaeXKWURENEIDQHbDIfOQClXZIYfmChsw82AjQDCrOhm2qoA4zo3oidxGOBFEfMOj6W6gslccmSIBE6hg3bYdIBgUJozFrPKIwQPn5whCVFKwUi+O56u/8Gc+/3f/6R+dno+WlmVjQ4plbEs7iynFLnbdzCM+uqZ53nBoAR/wAXKMRVBUAWES5rt9CVgTgwYuiEwwDIU7yjmLWB2215t1XdbV6gAA1DSCidaSazIh5hiCAbnpmZoNpZhZP448DKVWqdU/i8DsMyhm5sDEFELglPwzyiWLUJFaa6EQtFap1YeJYjCOlSkAjE0MRa2U4rYETJzL0CRezDpkhIqmEDlKFSDrUpx1DaCxizu0RA6uzAA1GSsHQmICjBy0VkW05HbzEiOPJhW1CUFNsGpMBGqADgcCIahXu+AhLcaMomVXNOOuOjdmQ604gR0UImfn91JwZnMeK3EAUydCdt0ckd0h0TXDkw7FR8BegpshuQ4/KhLmakUUgbQawBXoheo9DKjCqEmrGQsQEQUfGpkhQddGELWqoegxdb//d/6ZKXzmz30tF40hQIhs4jVcIAElPywBUb2uL0AQkJKRSdCjF2999dd+6bf/3j+plVpKZbsOszYihtQUUQHIUlJiqSUgEKqJkhhQkFK57arWrDaaZnAcIZChKo1FKcTr0kOXbj24p4EPFovKPJYKGEqVNhKQ1L42jNsxg2oZytMPH040crR502xLuVhv82z24Bt/+sVvfP2hjE2zGHq9PL3OXQWz1LSGWDd1s9603bxtU67bknvHMgBURWNIgFSLqlKIEYBEzA0oJ8EpQNu2tVQz6GKrRVKKjFhFuqbJVYiYEoFZrFwrilQmrlXQAgCePj0DIkLuh97Muq67uLxcLpfTjUhUssxnYbPZHh8frzeXRcaYIgUCNVQj8jRZGIbhs5/+hU+89un/x//9//nf/c2/NfTDK5/8lLNJACDFhAxHBwfbYahVVBA4xmDkd/Heh5RZdcog8vhwnb5XTx10ByA1BdGKFHxlqWrTdjUXD2bmQEUmTQkBmKhPz9GTLpCQPPtdYkyOWCMCUURkpKm0HcdRqrZdW6vVKl3XMRgi5FzW6/V2u/Y50Wxx2HSNEnhHROztqB8+ROCMQ2gXKajWXCSPuYxWxUxzXwlMpVbJgUMt1WoKDW/6izsv3Lxz98bJ4c0HL92+fWd148ZhSoxQAs2vzvMf/tGbCqsnp+c3bxz+8R+/+c7bby/mK4ARmaVW1QFTEFFQoQDucOj2vTChYkFNDdRH+bVmDsEhKWdruEW1iFhVM9EqiKjoHuAhcBNCk2JKKRFxcUQNNAYEJkUCRAqIRiHGUouaTCacOAFeBihW607y7LRUDrtRKXFVHaoQU4qxlJpccA3WNk0g6vseVLXkkkuMYe6VE6kh5ut+fjDb2LAtQ9PM7oZ2yNo0QUTydp2obPN2vjg0To/6NZW8aLumDtv+ejWbX1N4d3P9+vHxnebomdEPn324OVkctItbCJva0zB0aZZjuM59ZYwpzDOoQlQG6gbEh8N4g/u7i/kib56tL4fN+uaya1ftu08fbbbDp+cv3oiL87p9srmYrfh+ClC7t7vNB2XTKxhHAG4MaDtEw9p2vaAqGMKH64smDJvh6kzHw3bGAy3g8Ic/efvOnXt/7lNfWNHsd3/4o9Nxkw4ai0qgt24e3fkzhyc9/S+/8efvp6N//Lf/fkgxnizmd+8cfvjBRbBCDIFITItVEALIMUFKgScBM+3GtDgOY98P/pHsYBufCMDkZu7WMmYu2N0PDvZj3T0V4zn562PGfV4x2f4/dhEZqhVgoh8BukHnJKBwGj8zi9YJIZg4zgYAuGeg2Q7b3U18dxAkkDJyijpG5K6JTBJITXoEJSZGZExtiKWqoJY6ej7NZ1576T/5ta+8+7j+zjd/8OjJ+v79l6FrQ7NYrDrPx0TklEIMwYlpzmRUddyqVkNxlxEDE3XRnPs4Px8CG4TAKTUhxFKFQxpzfvLk6fp6e+/+3aZr1KCbzWazVurUsHq3t5fFmpmqAGD20Y9NTkIikktWVWJCmgiAMcb5fB5T0OoxtP6J1bJTl9RaY2zUsxjUR45eCUAVEanzxYpTrKVQ4FoKAjBz04TYNoDIUzNrHEMVsVKYQ60CNjbcILPnIIrskXz/n6moKZopYSCHJRFCmPzEHJEmQjBURFVTFW8n3U5kas0JzMj1PqpADKro2NY4ivmKNco5E4IgsSoCxBiJ2WyoKlVq1WoIMUYgdC0YESBCtao4jYA5GFTTUrJJjzBCk4lZA6ACUWBGDQpiasjAHIipjCOxBkOQulgu8+XVb//Df8pt+vzXv1xRoAsQgqpgtUjaRLTA1UzZbZeRiMGCmgIrJ1HVT3zuM4/f++h7/+ZbXYgwljbiLMQgJEVjisFEczXV0RQJQwwQWcWkVM7FVc5SqqlirZFCEQltuh62g6J2dHDrxj/5rd96/dHD+6+9fOPeCye3b/VjEctDqV2Kcd7166uiIFps7E/f+eAA0iLOTrfr66B6fHDz9dc+9eWvLW7dO+1HzZDirGm7nEvTNKJS+g0BDdvBpKQmIWE/9KoSXQWHhO7HU0RtEtMBwFSEMol5TNVsHPLV1dViuexmXa0VAXUiF1IgD3VDQKBAHFoGENXANaQYquRSa1Wfd7z99puL+aJNab1eHx8dxRjfeffdGOLR4cqsbjfXfd/HRCaEHBB88C1egZ2dnt5r0l//63/9W9/6vXa2aleH1+vNwWFhosBxtVqVPI5ldNUIxyCihKYyuWHVWv0/VNW3tlStUl1SKla07uxhwXVD5JKtwLEU0YohRJ+u5FJ9L1RP/kFnrtB0Arjgf0qwmPDj/ZBoj3GGEJAmSNuP9BSSoT47Pb28uqq1xpiaJs261tNqXXfi7nHehExIMZh54JYpM8eui5HLmE01ICupSOUYtZQYObWp1hIbvnXr5OaNk0++8trJjeXRYXt0cBgCExpxPD27urzcdt3y3ffee/HBPRH5oz/8QzNMsdHqJ78nfKMpELBTiyY98MS2LkgUeILSp1B2DwFxbLxW91iqtagpoLlfy26qFQJFQnYFzC4BE6sqmDlU65eXn4pgjr9Pevz95Yg71qyzPlQqIrlULZcCiDGE1DS1uNeuIvH+9xJN6UglZzJZtp2IZMlN16yHvklBh9xR/Mzq1nvnz55dXvBsdnV9dbycx6PufBw1hH4YWPRrJzcwr989f5rWV7dPbi/nq9Onp8NBUTOOrW5zmeUGw2th9Qj6s6CbWoCwjlkVl0eH4/nG+vFgtQStA8j3r5724/yTy5P78+MPn330Rn7vcLH8wv2Xt+v+w+tTiPzC/OiFbvHo+vR7+JGE5mjWvljwp+NGoyy7ruF4ebFu2jSfz+X62mpdzZfbXH46Xt9czlYSZag169nFxa/+R3/+i3/qiz/69o9m3cEnP/O5y5/8KKSYkq1Ws//qN/7ag5deePTvfvi9b33/m4/WD8t52I4lHvBLL9z8d3yWZtGqKJiZkAEzaZVBs8DeGQJEwMnnw3aIMc1ms5yzf6IiU/WjO4tMVQ00CYz2GwkA9oSY3QDEdlDqDpncVSXqCmwXOkh1mSGAx6CwIigKTgYusP+9+5HW/g/0Msqea8qmVfh8yj2VXyFZpJpnzWy1OkSKuUhgY5/zFquqmqtFVKqxCUwERpurD7/6+fu3X4A//PZ37t0+OVwdLA+Pu3nXdIFQp7kX0n7pwySDVAAA5p16dseAQz/NKwBMCdeqpYqqieRxzAbYts3xyUmp9fLy4mY+7mZLIoox1FoIphgjFwjUWnckcXQzicleWSdVmp/RqgoIhtaEJoSQc16v103bdil5ZQk7kwzbcb+YabMezIADjbnknHOpIhWRUkqz2ayKai0xTNNSYuLARFSqGGGVSTpnu/LKzJw2i0YhRJj4UsDTiAcNcByzOtaCAGYithuhPn+kiOpvkIgMTFFgonmCv20/yHBXl6uJqKmpAdZarWqIQVT20KBOshoCD3BWNDBTLbVWEbeJQ9rLhikgKVhlJGM0AUVTy6ojWUFqiDOEAtaiEQkSEJJDpwDWNGncbrqm60fu19erecfj8Ft/4++1GF/9U78ALQsgMJpgKRYZEVjR1HUESB6ICRDMqoWgJLFrf/lX/8zZR4+fvvVhF8JaSy3WABJiAmRAAjbEAlUBBRsjqiYW0AyqqgFJrarOFhJEG3IfEmoZ7730yu3XXgqLtpnPfvLzN+6V0oteb/vVatU26aNnZ+vL04PljIAJ46MPPnr29HxW06YMi1dfeeHzr5984TPdndubrE+2NQtFatV0sZrAFWYec0kpoGGpFckNbCCEKNXNDcDQRASJTAkQicmAiZiQzdDvuXEcxzG71bKahSkta9I00eTZB9NN76mzZhpCBEhmIddaHHKjWsr19RURp5QuLy+IaD7rci6r1fLBg5e+853vlHFkWpmDCk7XAPB0jsVy9W/+9e+uN1fd6ljFVGSz3VY3r1IFUw6hVkkUkFG07oz4ESeTQFfUqlcq6oRLDj6+ImDFumPpOjo5tTfMAQFLqfNZ48Qg23ml+mzL49VDiLVWQqMYAFyhuD8SaX9Q70f5hCxVVIRosmvPUmop5+fnQ983XcOBU5PArEr1WVvJI9He8H1y+sEdAA+AouKZyzUXU1WpHIOagQogIgeKPA7bwLZazl+6f+/OnZvHR7PVsgmcmJgDl4LIzcHhwWWfL6+uP9nNU9udnj2MIQAKokUmEauiSuDaLhWFiU45jRoCA7HTNBCQQNTUnC2qk/vSn7infLoBk9LWSyWznRwPJ5osuNGon4T+EZScP+Yl5iC37rRGOws9gMkZAbzLslqllKIGguSdKiLWWkGt1uog0qQbJVTTccwH81lHYZDcW5kzhT5H5k4trre3mtlY8rZmAelLsdiOqhRAAp5afdhf3wwcm66qFKm3F8enV+ufP/0ozWbLo0M7uzx/dnZ048aD5Ulbhovzh4GRYoSqVq2sh5sHK8xZy9imMGQ5U3l7e33v4MaxhuPZwVX/xEDbQLP5/Nn26lkZH8wPjxara5ZvPXyrPT4+rrO7aa5dczpcMcFmMyK3W8O8Xp90qUshAQ6IV5FQ6u2QKHEVaLB56YVXP/nZL/6//6//rzt3XpzduBVTN5934/VpezD/9h986xe/9r++/1c+80eXf/v/9Lf+G0zzcHm9PjjID+6cEORx3EZqU2QrFYjAr0nNVgwseD/tfi7MNF8sa5XtdhtjAkARDSEWzTtLWWYijJ75jjsKtUsjXeo1mal4X75v4p+DQ9MUWp385fOSyWbBLyNyhTSioROEdqeD7Qg2zysb5z4rGAIYTmnKtgupQUTngVotlaQl7eYLw3nRg8Vy3qYAkA0yYiaz0KYRywCkYnnou8Ro47j5MMHstZcPRz3hdgURNAxZAsNUACIaMMNe1LAr1JiImNxjUEEEERUQyWnC5hxtJgKspkMe3RyrH7fX202fRyNc930za5oYbXLVCC502leE+x27f7ZmNs0DARwlMk+7KCVr9naTmc/PzsauU1UpElIDAIgWQhCxUkZVLLUyB+ZwtT5bb/pSa+DgSE/TNgiATLq350aKoSXyjEmp4nTL6ijLOA7EhMhDyRGcOx8Qix8Ek6n89I3scLEdPLZzzoTJDBNIZVdeAxIxGiIq7L7lPe6IE3OZEDXEAArUdoXDnlLqdw/suahqRFMCiSKoqteXbdvGGCfnNIJoYG6jBIoIqEBGCjaijYitop/HBTTQwMyIjGZkYtWI+EbX9mM+CVyq9OtNpISFf+fv/Sak8NrXv1iDpVlCRKmaS0kUOSCLEZEiGgXwwgAJOMYZVu1nN49/6S/82X/0+H/IxTYJr4ZhwTgLLZOAWMsM1RiCApigCjJEQ6wgilgNskEGBARFIIIGcOi3M4T148cvffbVT33x84vl8mZ4aXV4eHBy8s4HP/j+D3/8G7/xG5/8ypd//N0/+vCDd6HWm6F9+4Mn4aX7L3/is3deefXWp17Xxfyi5m0RUdhuc2q7oooiB6sDVR1zjikCWK0lhIZCmMSfCLkUpmhmJmrVaq3ErCZE0Exqd1IgBePARFiLhMCz2dwMTQE5ADjd3l2CaG+a4F3SlITARAaEaECB1ADMYimFcgbQnIdh1Bji0dFRauKHH354cXEhIscnJzwBjYA7oQ8zI9njJ4+BObRdKUKBpYoUHUs+ODiQKqrgx91YSoxhHEeKAdAQuap4sqihB6whIKq5cqKIKKK5VaIREE2hrURhZ0HJRMEpg27cIKpEwdmYSMFMDTAE96+k3U3sacHqyeciMsl1LZopkplOVZQfueM4VplwEfOsIU8wBVARYnbvIudcq+524i7gGBXQnDBWJXuVJbUUjgGNipTVwTLFtB2ySJ21fPPm0ac++crB8mQ1DzGRKRMFJH73g8eBbx2d3Prg8UWWTMT3X3zx+vqUUFRkEqxNcSpokwW9S2KeC439+xJTEvdkQjM13Ttkskjdm0OGEFQrICqAmiGAIlSpu+hEJHDTu93fZQj+zSJO3FM/vcCBdjB1EuGfiH7aH921ShXxlzOHrp2v1+spICgFMGCMgQ2BhnEQqdthGEDOx80L1K4oXlh/GOe30vyy3zJZyeuI4X43f1rHR2W4GAdWmlFKA4zI5zZ+tz/7HM++fHDnqmw/vDh7kkdedRHrYx3MmhvzJRTaSn5qQ1P1y+nop5vzS6w1ctjIsth8zmk5v77sh77XYsvQlib+6yfvfT4tXg3pKycv/mx7+qOrRzdK82B58gLCz04fLfBgzOXu0c3Hm80p6s2YPqVpvTz+ydPHAknDbBhzx2ZqJ918e3ppKny4eDZsrvv+wepYhuHezbvf+da/+xff+f0ym58XefTBo3HIberu3r53tIzf/84P//7f/edf+fzXv/fORffi6+fbHE5uvVDN7h4d3r6xenqhKoZYibVorVWjBQtoJFCNkJDZbZmIcBhGRGyaplY3VHDSj/mUeoJGmbSUKY4L93cxhYAA6CMqBFSFXLLL403NM/AUgZhqleBcITU18UA/E5vM4MC7/OeGCjiZ2vlineCl3V/8vJXZ//zH4CIzMGJUyFnl4fn6n/7eH/77Hy2PD2Y3TlZdG1bLuFyk1aKdNYTNKrQ3Q8NHS9qunx3fTJtSbx+efOMX29//zjuHx0cSQpWRDbFOZrL+RACx1BpDIJoYwLVUisn2oJeBqIDztt0ohQgQnSZCtRIbAGqVmGKIMZeyWCy6rmPXtVLgyTZmCvrwvoSZfdM+x5k+1uGllEytaZsZzmqpZjaOY9/3ZuCfsjOErIqK+GaESc+Hpdbzy0uPPAspkaFUQYxeuhKRigZEEYkxxRjV9y+oiEsqhIkAaq2VgRCzEwm9swm7tOp9ybizqUXb4TM4GYVBCLz77kTEnPEjKlp1Zz6mZlDr3pJxPxlUVRBDx5n9pNvXQM8XMwAyJjBRR8LASy4zcAuiXewAxUCIOqpYIARjAQLMJgWtgAJYQKwGDBYNsAqBetaMMeZcmjYQQxsb68eWcDNKm9rLfvz7f+Pv/NUmfuIrn5dRIAVhzCZQc6ToEzACBnJKfUAwUUPGtMBytX3ls69/9he//K3f+d0YEqrlqmyZDVg0RTIURARD8uwUZFEwNc21olWCbDaiVTRg2uQxJxvH8o0vfe7X/8pf3pLMF4tuPnt0evro8aNbt24OuVxer+9gvPvig5c/9Ylv/v7vv/3+s5e/9ou/9FdfXpzc/PD0/BS55NoPWXJmCvM2CWiRfh4PZrPO6xGHdvw8EBHRmiI7O6WWMjlBAihA4FBzrSodeC+EtmdsgCcSxFolhDiFjE5kXtw5ObGZebAXPG+4p7uZcOLlIWKMoUmx1tLEmPMook8eP1qtVlJKLWW1XBIT7nUeSDZ5p6uZKUIRiTGJioKFlETq5dXV4cEhGGgVQiJCkYoYkImZAqPWIirB8zgBQgh5rF5U2TTsQOZg5nFDO/GdYQhBqjI7JzeVUiavD/PRIX1shWOt4lqnfXzQfiSEaPu941+1ViJg3osApjidELjruuVyeX5xsed6+n6UKhy56TrX2blWfw/6fgy4ReaAiKWImXBMiAQogWPbdjHw+dV1Srw6mL/6yss3T44abgm1lsLcGfC2Hx4/u7xz9/58fsghkWrfj5947VPf/+PvULDAgU2qiikwRSQsNTsl2Y/+UnKVuqtUxCflCEhAClNYd60V4LkP8O4hqWtJgCilFGNUgKpCxhyYkUyNmJjYwYPpW67qFuGOU4IhM4MakOlO1eUdn2fM784lmY5rAzDbbreqCoC1iFZt22Ycc0qhaRpAGMdh6AdJvKU65nxrtjowCkPubix7y9vL6zvLIwa+lAKzNvZ4uRm3qdfUFHW8iS65vln7I8hNSFvgy6ur48OjNJ/htjx9dnrr6M4LN1544/Sjj558eGdx0hLeny1pWF/mIVKDKT7bXs6Vu7Ytm7EJjXbNpRQDe6Nuj46Wc05d7h8/fbg4uXOynDdK66unb3/w3vHRYQrtC4fdB2dn5+vLT9x5yTZXLzXLut1uh+s4a5NREFpvhnbZNTVf95shV6X43vnZq7dOcl/ffuNRvdMRpaePn0bu7h7f0Kqz2YFKH6j923/rH/3f/i9/o7/Mg8VmcRS2/bi5XHez44NF8+jZNoWl1GxsQAxGHCJQGCSTTomAxAF2bt8AUIobcHkl/zx+YVr6pRAAOXfORciTXXNVq6VMpuz7jbe7bICIDUF2Vg2AACCubfCxaK0gWgNHCNF0ElVO2Mb0fp4jH7CTUexPtl0NpA4SuDIRAICplgIIlcNbj85/+u5DAkRUBGCEJsGiS/Nu1raLtp0tuni8aG8cN21L84NFuyzna3v/vcfna+oWq+Pjo9m8rcPgjtUwnSISQuQQCNHbPm9B95fuhKAqeGIUAxYzE8lSFWBimgCGhpudHW3XNeBOEjvP+L0T9A4qmU6i3YVtZsYU9r8kIhVc/GUhRGZumm6xWKpaKcUnhszU92OdDMFrSvHq6ur6+tpUqwoQhRQRaRxzqeUgLjmEUsYYmQgDh1zVfW+HYaApIdJ9m1AUDIQDq2quOXISURENgYgYUfZ30tRPozdzRsg7D0WAycPDS+1pGSIiEroOY9e0kY84AGBqWE1rFTNU43Ecicg5Ut6q+jrxp+oJkc6Cwgm4RuboPFOX+Ho9BCogBorGqAbByxOFjJJV0KwBJIWI2OLECkA/ZRFTbAGJ22asIonNGLDWqrPY9v31//j/+e9/A/8Xn/rq53PVkKKZlZqZIAZC5jqFmQYBIzCLplKySpg3muWrv/LLP/zJj8qz/iQuECgPOc4ImAtqiKyiYIKmhMB+LouqVCFQJiHclBECjyolcS9VZvyFP/NLy5NVREkxDqVfLLqHT5698uon5ovl0ydP4Ec/ECuv/8KXNTZvn1/88jd+7aqvj8+vr7OFwIkpUGhaNhGQXEtOrDSZZPJsPss5VzACZMS8Q/DUnaw9wt61g2q1mhrurFNcCRwMVLWEwLWWGNuP9/deeRORiIcesFVxXSYiEpJbfgARAUWwyogATKgiqW3y6AN476ZmfT8Ow9B1s5IHDiG1s4AYIht6RIamGM6vLrZ9Tk2zHXtmMhEkjJz6oRcVJkL2aDcEs6KFA5WSY2jVDMAteSTn3DRNiHE3AmNmV2JP8S+qCsSmCGBMXE28KSUKNQ+I6FueOYQQc85mbghktbo1IloZeMoAnq5bbzZERHdmFkgYmxAollL7vienW4nvO2y7Dok4TNa4JhBiChyczEk7LzTXgXt0OiIGDlIFDGKMs9ncdxMhiImozGezUsa+r7N5e+vmwfFR+6lPvpoiS6laKkYtJaeu/ejJmVGD1C0PDqvIfL44P7/8pV/66mKxGreXatakaMUExI0/EH1QOJ2BVQQQiTykyTMrEAFKKbBLjdwZBDCh6cTGmAYOqkiBU9d4wLBLbTziq5baEjOzVKE4lYZSpW0aNRUQJECbDH7dXmz3h08nNzoDyR0lEAxxTxeJMaaECKxqHJOW3DSdW/eJSFWpIBCgJD6Yz1/Ag3dO3//o4snhfBFSSlKP5vPxor8o4+dOXiix/PHm9Mmw5a4jhURhRP2I5DefvfNyPDxoZybpyWbbhXB7cVx4e1b6cKWr2ULz5en6bN7NT+KsKfokD1eNbbkUlOvr7a1ucXzj9sV6cyajisxjPCP7vdOHD1L3oqav3Pv0G+eP3+SzwBGbrmF+NIwHLS003Tm5nWt96+nDA2rvzlYUgmyerRVupMMZpcvriz7Ewxur/uGTVWg1NH3ePrq6/sKD+7cX+L6sH12cNrGpfXn08MnJ4fJNeO/1l+88eOVT25+9d3r+qGRo2u7i8jIoMFmJaJ988MJP3vxJ6mL24sZYjdTAiAIlwuTojstKmYk5+GLeIw0AwOxp1fshiwUOu9bKRDRLUZFaM6Cpis96UkrwJ9l2PqFQgBjNVAksMJnqmEc1MYWqMo3sPWlo9wWT2OxPXP/76gucc4YgkwKcAEBNbNKOIQhH6gBLQeVmlmYdEuo0iqVBYej1yVqh9iJrhU2A0jCoQogAFG7cvn1wcrvkHLab8yLjcta2TfIzq3pHy6pWRc0MBMxAzKSOjo/VWtXUTXQQIJci/nfv8SHVnIsBiNrV9XqbB5PnRWQTY4rJN62rZP3+5imJbBJL7zb/x1lH6EnXToL23CIi8sau1lpy7kXcWGKzKaWIo0RASJwi8XY9DuMgVVNsuq5rura6YTyAkxsCh8ViCaopOTgkJtXrFIdPplKsqmkhjKUURI9gjLVmv712K21nQFWyqHqXZaC1+iCVpy7cufmiFKJI3q0E8DbUnIdYnczoGYW+otCfm32MrbWveEop5WPEKdvxorzSdgsyJraqZSxiWsTMdEaMBhSpFKno+Lku2lirjn69mQVmApRSObBliIRQocHYlzEEHodrBDsOab0df/O//e+D/s8/9dUvVqiQWMBKzTEGREYKbrLgDAsDFFMBiqkpdXt49+Yv/dqvfuvv/dZ6GNvYQBOu8tCGgDElAkQlAE4MZrmOW5QaYDTclizIaNhaKKOQyHzeXlyc/+Kv/PInX/3EOAzUsVqNgeZtA3r0sx/9YDY/+PLXv37db4tVDu1v/fN/cXaVv/B1WffjvFtqzYRsADE1omWEWlCq5MCYx3Gz2RIHAOBADCDqyAwikYN8UgWIDBEEgJgYXU+cmFNsDUjd4dCceOvZmc9ZL7VW5oBkqppSUlVE5zi7d4bL8qhWQa0YEIjQsWRgIq/AyN+e7zIAnM1mqnp5cd0PF03Xzefz0tQmtr4HKYbT8wup1a3WVYRCUIDIDAbDMBysDmopWUukEEIoKobq/B7azaT2yxWAfEril7EZMDuIVYhIVdwgzeOB/WVNk/oex3GczRozzLkgUghcq0PC2DStn+SEwRUGZpJz8Y0AE5bs57zlklVg02/NzG1LAQBR3Gq667oYQq218aEwRWd/MiGB7fNZkRB06kJFfAKoqgoVVJVjbCPXmlUlxsQxjONgpi/evfPqa/e+8Aufunvn9jgOdUAzSRa2wxZ76GYHHK7FaLE8REBifvzkycHh8a1btz98bw1WdzE4mJompNT3m3HMCECBHcSZjkqe2mm/tIgZzMT9QdwBdOKlunsWuCeZVI0pkvf4BlIqIg7D0KTkTktElFLMte6OFAL0AGYiInWm4I4IGwjFC1sAAGCAIgpmKcZhzL5BNpvNcr4UsVk3ExFyj6vOsxxG0SpSTSqqBKKe69OyXWAyRMr6wrzlG7M3nz6sF/V4tlBj2mxuxOVLs0XdXmzHoSfkWQvQiMoW9K2aZ1mWyIezrtTC634xb6+36+3FerlaHs+Xl9v15emzo+XNT5zcOBmGN6+fPrm+zk2gkE7HcgV9bGK7LloqzcOz7fZRzuvGjg8PbnN3Y3nru0/e7RfhTnfUEQ8FPtqs7925e5dn6+36/Xq5RT0u4YD5a+3BVT9soF5pIUSpeLUe29lqyLrNo0Q8L+OziytchTu3XugODy9Pz8vYS5FS9NHpWdviet2XIX76U1+9vLzoy7giC6qIBtH0wQsnbbQhb9TJe0qqULWCggK63SzsIiZcY4z72L8JYwDPidyldCFNQkuVOkkH/fT3/JcQom8OEXHfpx05Y6p/OcRJbGAKJjZNMdSTtHewimunZE8lRnw+1rfnL9sBBWa4m7B6gIbCLjjCExzVVdgqQFXN1IhxMq6jgA2gCWkKhkgz4qJaUTFXiKmdH70wX8wXyy5SbGKnBuM4PsewnnvV7JwBAP1h+1NyT97JgMOmTC4GdB8/9ewPAFXLOedSEBCZgdAt+cwU1JBp52H6XG3nRYa3Vs4slioOAPlU3BsN9/tB3BOKDWCKe6y15uwy8OrTpRADEOVcxnGstRJibNvFbEHEnnAU2Lc5EFE3m3kyDhGaKjNWIe8ppyCqqRgzVS01AxgRpxSY2SzUWvwk9ZvAiwZADBzJHclMcecqNt0NSpOorhackDOYGtOPAWOTh/hkpTiFpuHODt+/qlRz9YdN7Z7tpocOiJP37n7CMrGiqgOMWkCTk3UBNJDFBJpJOdeCyDE2COC7ggM31JipqpgCghFaE9mkLmIwxGG9vnl0+PDs7B//zb9LxJ/+2hfXw4ht6kEKjK1Rg4GAZGrcmTk6CaZo5RT7PP7CV7744R+/+f733kBmUmg4QBUWZEA3g0IDIhM0iGFbSgaw0JiBuak5AILWqm07++Vv/HIIoaAgIZggYB2Hrokv3L750eNnVxdn23GgEL/52//48uz04cOrn/30x1/4ha8O6zEiRuICtQBkqWOttaoBlZybACEkoklzYTANt1UVzGotiFylmhL7FSUTlOiJlWpaqxoSB4ohIKp5jBbsb3HHCD3fbFdY4HNXDmLyy42YnVdmqrhDCIhAd2W0eyvXnVV007b9kNf9tpS62WzGcZy1NTVNqMwSmtTMF7Ncxpjjut9OODciAvZ9f7A68FHILgoeDScnQC969gC5mXvBPPfHd+aZGTC7haztmooSQkIkVbdbxyoVoBOpHpWACK6QADAkcM9y5mCqakiEKcUQEuwlS1VyLvsZVkqNj2hKKXWXRYOEIYSmbVS1SZFjVPBnvsPid7zE/e7z0wl3/arvtaoFAVKThu02MJUyDMP25Mbxr/yZb/zyN75+cjITqVqtZkwx9n25uBpTx3fu36XHdbMZDg4OU2oAoFY11du3bz/66B2CSCZgVFWGcaBSVMVU0VN+pye8P0DMzMytWYHVPP/HbxYuZRCpfpmEyABaakVER4jNfOA1affMpkmaqMIUZ2u1VsZ9NhSpTDxUmG4H0D1ZBFFVpKohmE0LFQE8BaWKMIZaq6iAwWazmc3bcRzz0LezVqQiAQNF4gHt/evTm8d3bt+5c3n6pF9vOAVk1BQWJwdxyO9/8IEs5MXVKkT6+bAuDGPJaBxSsi6cD/1IhECa8+1FF0c9fXIeVu3q6GB7fYUVby7m9184tGfr4ex8dbj85Oxgsdb3NmPfxQ3BZsgLwLvd3FJ6fH0eu7ZpFmPFH1+cX3LfNmG2PLjsL85hs5ovVzEe3Lh5enEOMHQpHq8Orsdytr18ZbV6ZXGyWMbf/uCNa4LF8rBQ2F4Nx8dHQ72mIBs0CHy57gcptMTDw9U8dRfw7IWTWwb16fXTdz56PBzV/kq72CqMdTxrGgpdF4W0SeGVe7dPDpqPTrehmQOEYBGQFFVFQSybpxzjntknInvy6VR5OPeZkXcVhoqN2SEfMRMix1rDzh56wvEmJ9FpwIzMgZDVDJCRkBRUVMVEinOifd2gTUG7sNNT7vcVfEwUtuv7P0Z1/Nj227/SzAAERIOCS0MUya82chKch6yaGI4IzBSQi0A2RORWlQ4OT1548cHYnxNZYEiJgUNR8XkKEsHET9zp/NnP5eD8OlAjRDNwI21ERqzqPZ2nAJqBGRPtJHZiWt3MDsAihxSYEVU1hOiiBtxxfveP2tVzzKwCIruqqBRCDCHqx3RztYqouOZzyP1UORk0TTICqwBApUjORc1SSou2Takxsb4fUFt/oE1swCykcLBcIUBMsdYKzKqEYN4WMzOAQ+7gQ7GSqxTnXc59EAYg00hrB2iZGSJzCOaLQxF2eSpEqIKqCt7A7+Q4AAoTB2LCvRDJbw5ENoMqMgxD3/ellJyze8nb7lCs5naVEQCJiXByZNmz0My0qqAgKWiRqqJsgphNuIiBDQRnNS/AyKxLYQYBQTzVQLVWq0RcpCgpclQTCMFEo9Lc4mg669pSckqxv978nf/2b/wG86tf+qwEHsnWkA8hBRHi4NHl7g5Tq4aYJEvTtLkWivFX/vyv/MP3HlvWZTezvnTcUkZGTDEgWK0yiowia7B10dG0Em1ElIOEkLVmJmP7zNe//PLnXy9RU9M4iVS1qigCHx0cEPI7b7759PTZZrv9+RtvaD9uz54lqCFIpYKJhmGYhlWCrCwaoRpWjpQW3YwnKg1WHw8BCZOr9nBiFu61jU5khSrSoCuuACmIKhLwlOMDAOqZygAYAolWA2IKIsXxIYf9ihbHtnPOjlJIEVAgJjWrnsGNCMQG053tVlrelm22m8CBgx+MWNVIZDsMKiJam9AEUFFJKVapbl2vptfX10eHR4E5enoXKRkggstNDHemZTiNPQgnQtK0F4idQBNCFBEiMxAAi8xgBiCu/gxM4zBKN1O34eDgPYKDOmYGqGZSaokhxR3O6mDwHiTen9i2s+zbof7sCLt3wm3T/v+5+rOfy7IsPwxbw977nHOnb4opMzIrs7Kyhq6q7mqxSZEi2aJIybIpg4ItGRBNGraf/GC9+MmA/wKD8INfDL/QsAFaAyiTNC1bIk0aTTXHHsgeq7uqK6sq58wYvvnee4a991rLD+vcG1G8CARy+OKL+527h7V+6zeICnNERC8YDdTsIE8BALBaBBHxtahHRKOAhmSCNVczmbKmFAGBgB5enP/Vv/pX/tS/+SesTmWcxlKauEJrc7WiMkzCDRInJp5yOT8/S6nJZdJar69v3nzjjd/6TUE+ZP8hqlktGUzBbVQVREXRmFzfSWivkguqlJ+9MiSlZrU6Z+bbu9vd7h7RiCjG2DUtzxpDL2YwhOCq9RiT9/kAfv7MdHs7XkpGBohHahcahmAApKZqVStTJID9NBIGRVUQDmHqp7ZDjq0WYw6r1aptEwAYaIihaDWzGFgMxWRby+U4nIaYlL4c798+ffPrm80H188/ubt5Coum64bWvtJ1SPShDlGElKZaDbldLqQCAg5A+7zXfX03rtanJzfTfSnjxWKVtiPd9xfdJp6dPXt5+XK4f+fk/J3zpw+H3ffH3Q7qOjad4H3t1yeLEzwZp5IoouGnMn4sN290J+80y5/L9ImMX+5vv/H4K4tCU3/1Od1dpM1ji22E+zJqlfPzU728e3+xaqk8t0km6KDt76dmmUKbxnG0sW7zxKtw9fLlftyfbNbrzerq7jo04eTBg/tbnkwL37/zlc23v/HNB8t49cXnASAjKoE+PG2fPt58erXrmo1kd9MBCcXdcRTBTH070OHlBwIeJlzeMsHBbFdqzSW7j7MDsyEwB3ZboMPdPDumlFrMLAQPJWbw68wNf6uqVB+pEqC80s/PhctcLL+m3Dmy6OeLH8kn/MdSzfFNIPQ/7QgwmJIpETKKEqESGtk8gVIGRVDADGGUEsSQAEQIIDAnIJzGQthsNg/GYd+mNldrIkfHtzwnSGROHp4h1vm5gRmaMREAFI85RKzVtdkHji6AqkitMBOBTVVFtUuJmbyfi8yIJiIMAQ6tm3NZvGB9HVR3Lxxn7ZWDw6Fr7v36zznXWqZcSq1gighN2wQOMSVAkKpAlIswczDxuOySy3a73e37ZdswRQLkjswshtCkRtVUxN8/MzOlyuSH4hySa967qjPBh2Ek4rZtmcmF/c4N9CshhKDV0Ug3MHQwYHaCp4PFnK9SnZ8hAoCHydrMggIAzxSs4zjVWvthmKbJj/55mcEc2RWMRLTUepg1mFenIYRDXqlDDFpdqogYDCcwVCZARXp5c/Pee4/e/7lf+OA3fr2/vnmjbU4AInPXdkQMtZrJIiUwQVfVguRakVKgyFKB077WE+osxcubu7/3n/2t/xH9J+/84rex46Gq1kkaZjxsTCNQMK0hJMlTqTW1XT+MD957+o0/9b1/+t/986tdZg1BCyEu2jYihzZRChijEgkyM0XEIU/jNE2qRrZaLVYBT05W/86/+8vQgHpyXTGKwBylFpUCiCfr9WK5fvTg4f12++7bb/3Wb//u58+u3/jKW9t+b4DD2EOWrluVkpGcqoxBibhtU9s0Po6DeZfOfTDBHJBMZmjz+BtNtIo0bQfg9rsK6BlVcHClR9d5OXKMBExhDv44BCRrrTE1MfG495lLRCSHVfymNxU1YPYAOkMjXw+qGmPIUwkx7Xd9yXW5WhatzCHFxsm1JU/D0Lsg3AdAgRgMFICJrdSc8zSN7epkBkdeaTdNxM1h5t0yH7DO/gc7DsIc3hJxyo43g0rEolUVAjMgNG3cbrdjGc9Oz3f7HRGqCoK3AjAXloBoWKrUMiJSKdXpht4vOW/P96mZluLF4mwzNvdjaE7R3Q+9qPDBfdRvBHglN8FjReWULzVBwoiMTFWVKks1BM3TGGNnkv/X/+n/5t//9/7CT3/0I8Ja8pRCowLMsUgR4BCjAYFBCIEwLNp2tVi8uNwDwNXV5ZMnb4QY0LSKgDuHGnBgKR46OzN+HD+bz8bXhgjH282P8ZTScrk4OdkAQK3F5gAQUMM4I9wUOMABsXP+PlsMMRhArcWD3GA+PYzYHywws2PtBDArXeaXe2dLrVVFF6uWQxinvFi0KcY8FUTgEALxOI5qNYTQNG2VaZpGUQkUp1ICg7XpJ8NtM4zfXJ4NWLdlQqAJYXd3/603Hr21bP/o5vNPL18UDmuxrcgY0SioSQJ8tD7bb2+r5JDi5dCT2bsnF+e16/Mep/L+wzdrzh8++yJslqvHJ6t9HmTIpTwQ/HZYLKHeoI1UrZRyV588fsz9eLfrLcQBuWiFMi4CPV00b1PaS7l6+XzkbrVen1Ta3m9jSO8s1t95872rF1e//fGPl8v2zZPTFdvnX35o7UnbLa/vb86aNU81AUFMYOXi8cNhfDn2u5r75XKt0bb7O5h2BLa9uTUZTs9uf+GP/Rv/g//+f3z/k98M/f6GMUZpAua33zz/5394OcnIQKAGIJVrVGQMMznr8DrqANHtmWie6WCgWkvO+cCStsN5HGbKPQEYHhRavpeqtw7MwXkqcymFZIZaay1FfaKA4DqOOouc8VCV/4wE7PX/MkMCh1kOgAG9cg1y2MoD6f1fiQhQlcVQDUlN0YhUAYWNcGbjCHichRBpQmQWJINxt796+fLrX3+fKSkKeIbIzBrWQEREAgdEAcCfoYg4T9xT16WKgXEIdogKEfP5nw8iRBUA0VRKKSqyWa+blMAhIgIzIAj+zfWg/wIAH0LPDkBmOeeuXYzjOIzDbrcbx3EaRzmMHF5rd6xdLKJKAAqRgIAMkUhNK6moorscCSDjfrfb3m3HqaKpT6FMLOfMSNwSIjIhqKIZGSCRGTEzUxA1VUFgbhKVCpa1Sq1Qsgw0IGLXNV73eG+tqkVqiJGZzbTWAmZELFJeQwFfQYB+csXoYU+KpC5UdnaHE72nKXv2KpiFMNtI2sHMQ9SLtwqAFPj4cFxAdPTBOpT1ZmjAxoYKiKLqhOjKE/AXY3n3l3/5a3/8lz77yY93H39oNze73e5mnECEREmlUYNSAgKqtikRB2MSAJJoqjEFNduPZbVcb+93f/M/+y//I/yffvMXv9ukZlLJOFGigIExAbqEIWnVtm2H7R2gxkVLFL/1Z3/p02GfR1ivLhbL03axWp+dt6u23aza5RIDVbXd7f399v6L68t6e2t5DNOEoKcny0WEtx9frB+uMWrbtVXRBLUCRgOnZxqoWNd2pZRV01Itp+vTv/xX/+eLzcV9P6bQhGR53IEURs1Ss5ZqJURqQwoxmBjobIk0s25nutosBvR9UKsiUhNTCIGQkN2A24skDTwn8CC6nR3McANY9VvH7e/QDxGsNRv4KBZFlDkggo9ECQ3EFJA5upYKUdGQCJi4FGEOUuX+/n65WscU0YiJY4iIQEwhMCCkpgnsxyDgwd2HaB7kDcOwXq7mI0tfYS0hBkCqtTrnb27t6GDu6oeVAWNEw1KKE43NTM1KGWOMIaCIoGnbtuuT5TCOaeiRKDVxv88xhhBjLrnW7DMU1QoKprMSwg0a3I9DDlxDl4T69oHXoBF7bTSz7/cqwp7UC6++6igFYSZEAj2gR2gA88ydAzeLFlTy1Jtif3P93V/8hf/xf/iXpmF449Hjadzd7643m03NwbDB2DRdyqUv1cQ0xrgdJl4sHz989OLl8xjCy+cv3nn63SY1eZzcQkBVsyiIkt9iAHRQjx6RcsM5v+B4v4iIqaaUNutNiOzQdUxpsVg4N5GImbmUMhsgEtdaD205OLsDEGJi72jN5feAuRYnYBDQPF6l2RhaZVbdElKuRUQIMaYYQsxTVtGUApN3tpDaduiHcRqWy9ZAcx6naQiJASGESCCD6t6mKyOJ4TSefHH5fFgsHz96cvP86sur6/Z0wYqf7q/PHjx6Eta7abet2WIbiPPYL1toA29zbzFB177UzNcvvrd+8PbDi7sXz69fvlifrFMXP72/fLd9873T8x9dfnp5v30vnX330VuL4e63t1dDgOV6UYrcbPfNYlHycF97Dg1J2pbyid6l5eb9sF5P4w+ubvpFPt+cnFlqsUIpa+BHnHCxeH59t0d+d/Eg3t+9d/bwmdTb/WXXNuMw5F0ZSRfLjlOsqN2ybbuQZRpq36RFybDf7U671cnmXPL4e3/w4d/4m3936u33/umvBg6WmAIhkX31ncep+6BqZugCkqECVrOj5JL4kGrurCucPazENRN4ILQgIjP64nafdeLXcyjtQDqeBwd2kNjYwajBAAxEALUUU8/ucWqRM6rnqTNjQESxmVn22gjsZ1++oGw+INCPaU+B8QGSmzMgmWGFQCSAolgBA4CKDWyI1iBEA7ai7I2hcEBGRYABTQltd/Nyd3vGDVfM1EBFjJyOiiQXr/5r0zonG88+xD7mnZGM+VEDoVQvSg6VU5Vcinp4lrsqH89HgNfRL7+nD9c/TNM0jqOIitTbm7uSS60VEEIITdtyCByiUwX9+lADBSHFQMyBXAkCME/rsvhdEhDk+vp6msZSJBCDsapIRWAcx3G5XLZd50DgzGdlBjBEZZ9REZrx7HaWiAAnqwBYSh7H0UwRrW0bl8TXWr0hhbn5nY9P9wuY2U6z0xodqmIHExHAJykMAKZWRaQqAFVRRGrb1he5iPhR7dp+r+ZmKfbM15w/QGagOaTM5S1OviEgqFI5AyAjAApILllIQ/v5rv/C7P3333/37afR/qyVwqJ5Gmo/Dvf3/d2d5VL7Pvf7fnu/LyVPk2Ed8p4F8z6Xovf7AS5WV/2uhMUg5W/813/3r27at97+CrWRFHPJaBiiuwMAI3FskFGbcdzdoRkl7B6e/rm/9BctLLg5pXbTZ0nd0oMuVO3+7u7qxcvLy5ubq6ub7d1UKiKtl5tN1y4bfvPh5o0nZ8tFywn6vI3hnEMSKCYqAmJWtDQpllz2+72UOu7Gp4/faM7feXkvGtLdULhalxaJSKdsdQIUSYd5pNZhGGyeqquZqkAI5GUKAJCBzOl1lYnaNqnCNGUEbtsmcELmWoUDTtNEzloCd342MDKX0M9xM5BiEHEZptVaKSQDqyLMbKJgwESz1TgHBXQ3cg9TBkAkqCJd195cXipo1zaA2EYmn30UDTFyDDE1KUU9ECVhdkYlUeXAKtr3Q56m4FaxTODG9s7JO/ALjpS+g9pxrinUPDHIAIw5iBQF5cAOgjKTanWx2GKx0P1wc3O1XK6I2Az6fkQcPQ9xrkMImRkNXeCCB7WRnwnePrknkNemABgCz6gOkFg1sxACuke/GqDazEk39PRd87caPSzyyIw0MLeaCIBENk0lxVTKVMr47e98J4Qwal0vF8s2np+f9MO4Wp9eXU27oX/09I2XV1Mei6qlmPK0V9Unjx//7u//LhO/fPGCA6fUDLsCpuBp9+YZxQKo4I5dAA7z6hwoiW6ugTgnmTBzattusYwpGYgBxBCaJg3jfhqnlOLJyZnbEjIFkTl/8Ci1sTn91BUhmQgAHB7zwYSrdsjmGliJDBCcO+tPGwkZyJBnGq3BMAxS68NHD2NIfT9Oebx4cDYMwzjuzW+nWpu2IdUmdJlkKn2H4TnW3x1fvmvNeVhOlc6tSYuTn7z4coMTcyttvsr9Oq0fYGsFbkxqoqmWy/520TVpGfOUDblh3pl+Jvs3dLluT37Uf/7icvfeG28+OD27vLz6JOWTZrHiVCPc0a6F8i7RwvDGALvubj+wlNSGZpgKQ0Hu1AYYn+s+ag2lXJxunuXd8/7uKS++e/aoG8r17d0PysBm33vy9t3N3e9ffvjw0cN/4+ytH7787PvDpa0fXhfbVsoiXakW+W53N7SlawKojlIuL++ZE3PY90Mo0BA/vHj6W3/44W///v+hRQqRO6KoKqjjG2+ePnyw+PJZjnEZSjVWpOS+VK590CN0M7/goCKetyWyOdrjQ3e3GiNEJDAAUXHCFlOoUueRGWMMiZlKrVqFOSBjzVVEjBBMkRBozsE1MDGdiXsISO6b/DMDL59NHOoe7zl8KxuCufuegRGggR4KI5hl8ECAaApIjACECgha/X8bAoCiYUIEBRNQBkZySAMCESe6urlarpfdumEiq4qMYOgnryMKTGTGMAPw6EeDHTLMgJ1xrHqwbfVUVAXNY1UBUS1VaqnOx1JRPPRlFIKZgdvj4tEaoNQKpWQR7fs+54mIYwwxBi86j1CHOhSG8+0DYIRwbKARzMwVHIyMKKq57vrd3d39vt9XsRBCTElFSilTFmYWqSZ8ftZ0TTtTTnGmdCMAB4gcihpIdVNuVSOAGNkMSjGROuasZm5m0rUNEuQ8AEpgUyugc+nohRAxV1ET5ZmphqYHdiGYW8aJQCBEID/hFExVPIisisBcRrqwi1KK5OpVFSKSWojdLmimRvn3bNsO/YdCdAEWATPFCsUUQmBRE7OpTJzi/W7/4ubmvfff3+fJkLANTYopPDhrF2+1TQJkRCsFzaRkMMs5M9VSRlLQsarC3f12rPXZ7bUiKkIu4/NR7Gb3+PFZqmZaGSkyMwciVAhMoRaNaSkxS55GgW61Sdp//uJFewJIcD+qjeP2bhz2+ylPu/39zd31tO0jY4xx0cbNsn3y4OzR6XK5SG2iEHSxaAyNUlRjMGBGcUkwAAKhaZ36/u6mXSwxpGGY9nd9pSiCkYgDqkxjFUEzRSJatEEVaq6ENk67aqNiUw0U0O1t/cJWtcpapQRq1suzRKHmXZ7uNuv45pOvj2MYx+p8UscYzMBD9VQUAJmctA4z+IKORXr+A5rOUB+7vv3glFmrsPNpTMElVzBPokouTUolT3kau64LTMQ8Y6RGvqtLKSmFFEMpBUCJsGkbQKyKUkoMSauoahVJoSHGwOzyIkIUNVVAP0H8bHObRXfbd09XnanizqAlInICSUx1xqsIkfJUkMNqtZymYAZ3d3eBkx99RJGIQiBEKKUAoJqaFDAEJ6cpMjsP3XHlud1lYs+wcrW3ghGxiiAyAiOHqkYEgQkQZ1QYPTfdMNCsU/AmrQB6s2xqplmqUZQ6iRpSE5jbFEeG1XKltfTTeNKd3NzV69vcLFoBqGoqopabRAExy9StWlUJxMM4Bg5n52e3N18gElitmp0XVrUS81G4Q0wA7lZHr8uWA3NMsWmalBrmoCLEYKq11CZ1q6Xc19txyF2XHaWOYbZRCDG4csIPVUfURAocKCQA5i6RAckAQU2cq2gmUuFgvcjsTmPFTDkELYJsgVEBC+KUS4qLEMJ2u4uhJ4JaBVHHYQhEIBWNTEpMASGRlC3Kp8P+6ycXb16c/PDZJ589+7JbLWmZLsf92eZsvTi92d5PWB6tTlbNUm5e3khPiQcVKLgOiQMNfR+XrSR6XscfXj5/SunJ6aP7/f39lM+6hU31brr77tOvJsTfefnxzbD/yunjnzt9wnc3z8u4q5MBjyV3TbfanF5udwoMTQLjL7bbexy+ujp9hHxuzX2/jau4ivykXWcoH3z5yfvvf3XVNsrxC9ACWofhkcZvrh/+sNSM2Jey6loSq2wNxnG3q+Ow3KxO1ydtM93f9/0wLq1pmi7XgRpeLs5fvLzsAQPjEg1Eq07bzeri6+89/uzjD2I4AxkAQowLxcIBDeUgIyTveg/FEIVw9BcGqCZWXVBwYLVbNXVBMMwOemAKXsUwowfQFK2GRpEUJOcJPOGLEZjUTATMZT6zeMowGJKICcwl0M9wnF/3PHzFVQIwg4CoqmyoprNAhEB93G4AYISCGpwg5AP1gBERDVC1AoIhARGQoYiZiLeERgC8Oj1LXUvEIGgZIycpiogc2Ce+TOxmVkeSgYoCGSAqmqgCMjGpCgLMiBEgGeWaATCExqSSIYWoOphaEyIquDErRa4iCi4TxgN5WvyjIaLFol0uO6+8mFPOU60C6AO22QYWXK0AwMSpiWriGRlqFikSh6q66/t9P97v+tub23GcUoqLEBUg1yIK3XKJIaghKBrBarEKRIDCxAZcTQ+OF4jswB4BCDMgmUglxtQEAAVsqlRR3e37XPPp6ely0SJbzaNZIiBFRmSOpOqWAqgOLxqiVPTCCGZTXr8+VLXkGWYmw8ihaAkICjP3cKZHIDKDAfpYH8XA1AzJC3aPmjCpVWvVYRiQvKoM5N4QIg01OXItFcSmkpVMTUlGncqw3dZpihyYuZaiYmMttezu930KiQOpKDOHkMwMuoRgGlcAEE6jqaVHtfb9yfn5brdTM6xl6PuP7/aV+cnZatmlUguhJu4AgxEZxxRbgVCmiZAUokh4cH6hoC+uL/f311f3pUp3+ex+u933/Xafd2kRFqll5JNlfO8rb3z93Sdn6wZ1rHkUk+RkTwpmQZ1HZ1WtKIoCkxlUgTK0IFZKX2zCzsAAhIqGEAxM0KrZWCpyItUgYcpT2Q9h2RSdhrpPulBgqUTIamKKZgTAtfax46CBIZT9QHb/9bfTn/y3vrFefuPv/bfft2LGnFKacuYQENkDcGYlNhMSMydSJWREmqaRiQsaILRNN00jIRKSivrHboag6MbNyMSIZLNLLwIixcDh5fWLxNyGwHOyJ5tiVQmByTBiAFJCSilOmRDUDFVAwUQh50oAJdcpSxMBEAWh1GqoTsGMsUOxWqbi/ocOaokRkLOCZuCCULWWklNKiDhNExuaIjHXWgmBORIHMQuhZQqBCwDFmHyC7P0gIoSAItnIAMAJPGgmmokIzKfPkmLMpYBKSBEQc62AYMwq6MMyDgWAEQMHBhVU98L3qsF9CNkqmJgaeL0qRQJTsTzmQUGzKIwFAEOzqDRYhfvbOxNRKVX19PzRXV9//OGPtJ5Rw3DoOhAzc6MmWaZu3cYuiUgpeRzzkydPfvCD320TitZasgFoFQBWETCa/TJKoZkwgCJSVUMIXdeuFi0HIuJatExTjJEgBA6qUKayaJawtOf7F3nKy9Wy7/spT8vFUq2CzEQi1eoHqpkhuOIVvOIxMQRRVDRS0ZmWTphzVfHD2xAt52IKBtBQ4oDdcjHs9nf7sV1tplxNtoR8tjnr+x5IQwh1Gvb396u2rWVCgmqlU2bkvUzdqitDedb3KTTQtZ/fvFgk6dpmrPX5/e2jswcP12e7se+nPXN43LY67W5qaVIEgXEqT8/OM4W9lapaEH8w3tLm4b+1enwXuu9ffWpg77zzleurq9ur65PF6rTZ3I9japbLGtbcl7x188cJ6XY/rCGenmx2fd/XMlZg7ZTh8+3QpuZR03794XrX75/dvBzjIiB/+71vfnb93DYaI3zjvadfXL78aHf39dM3z2L7oxcfVKyrNnZVWsZS63i77evIEcz61kKdlCmeblatxn4YF2fLrkt5rKers2HIoWmSeY/PWqx+7zvv/cZv/HiqwzI2qqa1OA4MONNpdY6YmZ1RfF5JxxQLMzY6VM8AYGDo8i6/+F11rKLETDEQgarlWhA0xlBLHfo9ICyaFomqk15EDwNTY2QMLFVNTUnxwEOyw+sIDh8qIcdHyM09kebEOZhVpqg2J7D4n2JCJnpNVuYSInRIxMd8ICiiBopmh/bRTEVVU0zL5dKbTiWn9pOaWJXXGAZzLNesSGIPEtd5IDf/pTPt7jjDQ0TiAIAMEAiIOedJpKYYETGmBIDTmBWUMaQYkdhnix4iUasceOsgoqXUaRrmoRuoHrKwRIWYXLqlptWvIERjlKLjOE1V8pS3+30/TsOYxTS1qUkNuBxM6nLVrTcbLbXU0jAtu8ViuWDmakqMVo2PDHQA73Bde+48S6dpiShz5IJiTSllmqahz64bZEohaHWYh4kI52hbFWdzmupUs4giAlMKgZAg50xEcPQoZwYzMgghhBgDB5KKOYcwR4iUUkopbuRwRBbd4I2R1JiVD0KRKiJkUGVS0fWqgUA1T45cIiOqARkikBiIgoqXTuM4LhYLJIohHrgCVl3MxvMvdzNDIu8eqqgTFCBGCDF2i6EfFCgtljrg9d19IgvhNJkRGUsFBIotc4xEmBpOjUjtYjeOUwny6PFjCPzJJ18OL188v9wDN6bWtbro2px3NuUnb731C9/91ttvnLNlKT2DEgKHxCGiU4lnQqvOEbVuMQWEwWqRwPF2P+4HwbQxxKN/2CwsAgRiIqqqOedaKgAhtIEXOlmdTEBACIgiuSN6EFOC2AaiOuX+5vHZ4tvfevrz33vwlXce/OiPrqoMFJdA0TAQVDQ0tCoVDGP0gBSUWkIADgQItVYwQiSRzBzM6gyioKlJFYkxitTURl88hKagVZSRmUhVY4q73Tbnsl6v27YhIlUYc0UwDgHcr84K8ywmDyHkQnnMVRUDmUBR8bOy74eT9RrAVBRnibuLhdwFFIiBHG3X2S9N6pzQyBzpYPV+PJyPJyERITGBVZGiykgyn5Oa8xRTnJtDdJNVNGNvzMz9URx4YsIUDv2bEiIBlJLdPIqR1alDhyhijgEZDcQQxVTUGN3u2H+hShVRQPIILQAtoqWOteQKqmJWy/rsokzT46dv/8L3vvfBBx88ffMRGG3WF89fDn/77/433/3en+n3LSCqMGFnVlkTU2LmUnSxWHVdt73fSbX9fjw7vRBRU6pVANCq4CEaG6yaERKCopipCBPEyDF2Xde1bQLHBg+WdSFwCCHGuN8P2+327OxssVy17X3fD03bbDably9fSJWTzZmI+OhcVUOIHiTl9Gc38UScJYQODThHstaqIFVVTIAwppRznkphIkAUUFAmDM2iWxiGGEVsHMc2tbXWlOKYB3fLA1WrxoYZTSLGUhgptA0Yagy/P15f7cYnzXJ9cno3bK2DzWpzt93f6Hi+XK9Leba/DevFxaJDAMnb2yJh0SQ1rPXB6Wm5fAmlWmQ6WVxbvdrvbBwvwiLn3Cy7zX7xw08/frpsvnP69Pn29o+ef36yPruPdoHdZc4TFGiahKFu98vmxELa7veEjJGN4CpnlPLO6u13aDnh8geff/Qh7X/x6deXi8XHu6sff/nFL7z7XgvcGF3W8Z7rmPcPQ3Mr/c7qNxbnebu9bHQyCSkg6v31HSt256e76e780eMmdfd3N1c3L+EqR24xNEYUkCoCmqGJgU1fe+vijUfrTz7p22ZpolpGJKxViWf5tO+uuVw4TNOPZUc8XLE5S63FVBW9DcMY06x+B+ZA1dRrXgBgplpq3/cmGmNsuxbVxmnCwK/RWQzgZ8lpc0ITms1spOO2P/7zcaLjA7GjM/1MnXHLc9O5ggIDRQCyOSHRLa2dhK8HfdtM1DE015zPjCKzJgYRKTmze6Ajqlpgp57M8isRqbUwRyJ2pU8ttUoFmpWujpr6JAZmojSYWSm5VpumLKYVtN/vzez09DTGWEoOzMwRCVNMaKRmUgoiuu8zIjVNcLeegylinHLxWlB1Nl4kJkA49iduPmSmudRc8jBM+36YSgFEM2AOXUdRpOQqpUopBLZcLlarFSEMQ1/LFFaL9XrNxFVFnNZlx8GkvbZwDhx2ACYnJFYgiABtwykxM/b90Pd9SqlrF4xNGWtaNkjolYrXuK9z4RFBVaVOOYP7DBCRyWz/H1PyAkhEoiozx8DErT9w50sBQJEKMjPr56raJ/YAiEbEzAcqm1kVUbFhGGMTgRQA2FjIDJwzASEEgTpNw93tre+I2efpYAkBAKrqxlE+ncSD5t99sQIREiEQAUjXBWYwy5nMTMqklV9eb1XkyaOzkGgsOSaGObPayjSJIac2cGgayFZlmjarzc99bfH45OInH3760RfP0KqYlGHcNPGr773zne98+9GD83F/SwGalKRMsekQCSmYonPoQgxmYoKoqKIMFNnnkgbMU52AA6VoMAc/HbksKSUDGMexlhJCCDGoYOBFCkuwaKI+1anTEJroIVgn61U/TDpsYxy/8Y2Hf+IXv/6Nry4pbiXfbrdTlUl5IQAE4ve5mDijxUkTKSUmApWiAgdNEgcKGADA7b8dZaEURcgZYFWx1JJS8pwcDvE4cK+1TlNm5qZpmINLoM11VYgll1pLLnnRNLVWkeJnICKVKlMt5KFyzGq43W4fXZyzGzMSzhHl8/ECSBgoIKIrKsDcjQgISQ9tp6/Do93XsQlEnO3hdRa/OcEcmbDUKhUBzEmIZiZVDhSlg3zr0F4ikdTKh39G56cH9gPYtXHuIgamTFpVcxH3O5k5B8f3Y3NddfBuV0DUmpkxItexdE138ujxslshCJj8o3/yj++230X+ha9/9Ru7Af7aX/s/CTZ/8k9f7PcjABIlADKhkiEwl1wEMHAbQwu6Z4ovX7w8P3vAlLwgBGCDV0FALqlDQGYOiMTUtd1qtXI0q+Ti5/9BROzzhzmqom3b/X7fNM3Dhw9eXL64v78/Pz9Pqbm/v5diq82qa7sYgqjGGJ0s7zPEQ1wmzF5XAD4LNgAtVawqiKq5LsxJaQfTJsy13m+3BmoK3sKNtTJTqUW1hshMPPYuWISGY4FcQIA4xYgRpnHaax0XMNaBCy85IoWx6GbRPEzpR7fPge1xSl1oroZ+1fJ524YiH8mYq3RNs+u3IPk0NKNhjiCMz7d3Pzb97umjb8XT33/2k48+/eTNdvPme+/cDMPdsK9ad3X6cvdidXr2pmxYtl9M+xw4NV0wvf/ycnN62m1O7vpdAQHV1MWM9kcvX6alnlR9fHqxhXp1e9Pv+kfr84vlyYvLqzvm0/VmvTn7o5ef7wm6xckbyF/u799dr8dabnfPl09PKIWSx6DR0E66RdN2V/u7TcdPv/rWR9ubcZgKyv3N9VgliGTiYIABiWU8W8nPfePNn3z0w4qMwVWyoKCq7unkEA4e765/rdRQreqGuaXYITYckN3Nxa8fU1MxIA+5mg3sTQwNQoyAMI6jJxHWWuHQtHttYLPV/SuTmyNGAq9BPjT7xKDb3gCA+MH36j3D3MEfxCAAwF4EmOJBs4CHLeI6Mu+IlBR1tgc8/o1+wgbmY+JOpAAH5IAOLnx0cOK3mZcEAMCBHSAFBMA5xeJgGjnLEzyaRucMB8mlcAiPHj3abE4O2xP9CEvxKA1Qr8/0kLnjeJXbUnovCeDUHzucUxY4EFEpZRiGUupY+lqr1dmcrWkaJCrVUaQqRUTFRNFsuVysTjdItNvdEyNVCjFsTjZTzl4EqCodhDU4UxoUDpkGWg/lCwH7V0RGSgjMHGqV/X6c+tyE1gzzpKlRrfOw1QmzIURXciGAW8e7ewKYu5PPH5aI2MGdEiYjgBAjBwYGJmamlNj5VTaZmkk1VVAf2RLC8R4C87xohJhLRjA12fX3HSzalPxxBTeCBFAABggxiMjLly8CUz0I9R3qO/YSeLBKO+6pGCM4lePgxw/ITZN8CyLiOI4cErdh2N1/eXmLhG88OU9NlGFMCWO0qlBqVaSmW6CgG1iVMi1SWi3i8jGdr5sH582XV1dTLiebt997652Hjx+Iar97mQJ3bQMGAA2H4GeAGDASutGi2+JWMZEYQySuuVSxIZdRhNJycqrUa80JAEx56oeRmJum8amNiBBySmm9WSwXcaYhdw1ALbnEaJBvIwzLtv6ZP/O1P/adr64aono/9VtaPyhDrkAQQCy7pR9BTIHn6DhgREQGAgIDnc273RG+mtSUEhIihFrrOA7uazCWKTVJRDgFo1kAGyP7Bgwh7Ha7ELhp1r6oPJxsnq4ihTaKSNctll1nZkUIEFNqPQVvHKdSy2hTYKaIZcpDzqGJgoKKYFBriRSdkPTKIA8ghlBEzOfjhHMhYnPU4uvVjytqmdmpC4EZDzNi996SqmFmCoCKu+1zUVXQSK8O+QPST2YGgUA1EEstBkKIBlzFtRFYq7RNiwiqUmtJsTFEBWLyAK15WmdVORIFVAFVRVBk5BhExKqen5wsF6u2XdQspRaO+Nu//XvPXzx/fnn5xbfvfvM3vv/xJ9df+9Z3cqYYU9/fmT0AQ6s6jGWzCqojCrfN6mR9dvnsMga6u9+++eZ7MTZj3kkRm4kMigGPXQcRhUjL5XKxWAROZk6HAvdLI0IzcwEvH2IPPL1gu92Ow7jeLM/Oz+/vb0spDx88AqPbu7uqUpf1YMcPqmBqTqkUVYeoiYyQVOdUTER0zzs6eOlN0zRNUwgcQjeOUwjWpISItSoAEELXNF1q27bd9dsp127R5bHf3t+DWNs2DdE4liJaowpqKlTF9gFyE2+w/HTav9dsLk4utsP+ut8ul8uTxWJ7f9cu1iuKw7R7ybtvdRdfWz5M4/VHkgfORUtT6bzdqMi9TliAEa47vGdNuz5h6Ic+nT96yKGf6j++/PB0fXKyOnkx3Q399h1dfmVxFmPzSdkXyWKQkPP9bnGy5kTbcfegW22UFkAfwv6T+0///MXb30yPzrfbH18+uyH+zjvvYos/uL353Maz1eOTm6kSfJnqiU0P1qed2Tjcr1bN0zHtublaQytpyrmSUc5LoM/G++UYlpvNVx49+qObD7ZjDu3iwfkqeKagAQTg1kRs+M43nv7DX/2jvtSIicgQgJkMyGYS3Axm8CEj8LWRE5Qy6Ww+ijHGwAGY7aCfh+PX0SyLF5Oc8zhOzIgAxa80msXbVgVeKSDmA4aI3J1VVQ1VjybO8Eon5ZsXafZbnfUk8Goi5obU3r4weMCyOHLzKlbjqBGbC6b5QiIkZLfxcbMWICL1bjKyS5xMRZSYUVWOxRmAub7VMaSjsRsQqHnpOCu9j9vs9SJPVQkJCMpUTNW9BpbLhYkQum+TiNRJpza1TOyK+tQkQiq1ICCYyzDQEEOMQATApkaETKQiwzD0w1BKHodhtjENTBgoETG7Cffs6a0itZoKEhKGzbpbdB0Q9sO+5hwIUxPOzy+YaRwHNQUEZiKj6NpAwhCDznj/fLy7PpQMKBASRo5JZl5WenCRwna37UOIFxcX11O+vLperppu0cWQSsk5Swg0a7hmHSIzupHYwUX3Z39HRDGpqtWUConVGGPbtv5n5w5snhLO5b4CmHmetIjKvKRxLrVFtJRScmbEwOQTtIAhMGutuZY2JWZ+8eJFqXXWBxAfd5Bjq35j2WshG276hwffFL/h3M7amWQ5l1qkKCimaRo+e/YypPjk8QMCqEVCiCEEhFaNmRkQdcpQSxPbyAGhYlDi+vTRyem6Saldb86AgtYcGdq2NUIVQGaKUYzcvQSREQgQFKSUqeRsUsHcS9oNA7DPUilaCLUqmiHMNf3hEIAYYwyhesRKrSFSk2DR6lfe3MRgpmLFiAkMdttxyvcE/I333vzTf/rbX32nibaHYQwmoCsqp/vdZNAgR7MMJjMFDqiWjIgpNcysRZDMTW2c6lFLUZlRChHBw4GWay0y+9yICDHDnNNHevCactHAarUhmqsfxOB6kZgimDGxGyq6sZA7AXvxZAECx1Iyzk0Qmto0jScna8RQa6VZ4uGQzcEPG0BU8bDCFcF0llUGokMnOZf4TtM8LiEicm4ZwrzjZqEtHI3GnJ/g8i18TXT2yriVmQnRcK7JCBmR3bHWDAJHRCxTUbAQgqGpihIyzbCvqSEjguufEACYZ/zJwOEuCRxONyeB49CPMURTkwrrzdlPPvrs9n745MPL3VZCWo6TiWG1Mk77aRoDgUjtd/3Z6VmIVU1SDA8fnv/4j0QV7m5umGizXH6xvWLyuHVQBQaotahqjGm5XJ6dnXlmhUgFxBiimYmKQ0GHywtjTH4Jun+7aySub267rnlw8VBVEXC1WEqVUvL2/j7GlFJKKYYITIRGDq/PMweF2fgS/XdAIkYmRjATgVwGAzOgUotr6/phAIBF17Vtl3Md+z6kVIRLLVXqze0NoRJbCCTjpIGXHMCkmPU1d8JNSIKSs2hMO9WtycOQVh29uH5RQR+s1sHssuzfjuuvNqvnZVp19MbpyRdX+093dwyha1usdCdTTswTtBBi2zwvw++PX363OfvWW+9/9vzzn15fhuViqLVnnGr/4PTigpb73f4O8cmiezdszPTTaXcbrGlarrbfXl08OHt8spLb3ZLSfrevhM1i/cHtdXtOrQwPLs77MX+yvWoJ39hcrIJ+8OnHLUVatEsdp5qnccKx3uzulw/On5yc/Gjo+0REBKYRaNjvsWFqLOr0dtderzfPuuU6tcJhP+bATAqm1RSIzKDu335yen6xurpUQEYjhUrMHhzovekx+/rAL54pOKq+eiAEZgpEJPJKfQ6HmTQFCsQiUkspWkopBiKCMcYAgAhd06jp0A8u5XWwxHkj7v91rAlmgwWEEAKSk/ZmeplvOkeXdHYspYOx7yzHFp1D/I7yeCKyehCKgR7J1I7gHN4MzlchsJ8F/tOlFEW0ltI0McVwAKuwlHLI4TIAOGaj4hzoY1pUQQ+XqO+u2Zf9tWLMAIADi2nOOca43+/u7+7z42wiaOr0HUAgNzWuM4iqYlXLEYjyn4i0ArEA5FzyNErNpdSSs9RZ2URoTRObpqkC7s9hAFJqrgUAA7NqLrWYatMu2rZZtU2Mcbff5zwtumQiYHB2sun7PpcimkU0pRSQPeMUAyKZ6mysQESEJFYBnYJTVSQEBUDkkJoEhuEiqdkw9iE+Wm1WPNByvbA5jS742GoG5BAIyMyYUMGMkADcwNCX6xFcsRh9AogA0RVqjt+5HpgIxPU1s5OUas21OFfgWNOrKQeGA0KgotM0QkoY2JUyhx0izp+4ubnZ7XZd6z5G8NrxCniYWh4LtWO/YT/7AkCioFpEFACLaM0CqgJ8vb3XTz4FxCePHsGceW4hJsQAoBmMF10QlWEStKJFalFQ07JJse1aQiqAKZBvPqJAHCqgAVEIihUBAEjNSCuHYCZV/C5nrbUY1FJK1WxgIQogMpN56N5sHKyOfYlMBwul1DSEADag3T+6oMiFAbV4EDvQk01M6a0nT99//931ivL4Mpd+zSH3lcOJluXtbanKBCxAjIqEaFBqRp69dkyVDzNov/5dM8WH5Dit6tJBMCOmcRybpjkMo8WXU4wx5+zOFZeXlzE0TWqHoUfEEKN7RxBTjCHnjIi1ygGQRjIqxf2okogIyHKxZOIpZymFiPf73gdeqhpCiCExIngW1SGqyqckiHhMz6EUA/EBscZjX+pVsrt/gfu/E9VaVNDLGD+wRapj5KqeEGwIwEdC56EBOyLuNlMDFVUB0IpSYkAyNTCIIdWaZ8m2FvXiBtWhbZodtJEOJAokZMBaTVXHcUoxrtdrrTBNU2TOuYSQxmnKUqdMf+yP/5n3v/LuP/wH/yyk5vZ2u+97kZzLWHNNTVTVPGbTEoIMw1jzuGybEIADXr58Pvb7zXrxyadjaJOKBmYxmaYcI6/Xq83mdLFY+O02H02AbpqAinwgboaQvO8hYh8Zzt4iMIHYNE4IGGM00Cal9WpVch7HseScQkBzHRyp2HwKz9a7c5PtkQceQWVmU8loaIaiElJiDlPOMcambXUYQoyGQMzrrrm5vWEpyKAmhsZMjiASEqg0HJsYadjfqWUyNtyErvR9IInNUhu53I/NzfVFu1yvVvvhTiEsmO9NWMs7p48u8nh/efXZiTVoT5vlFzaCwlDLpQ5PHj1eXwGITiKj4edaz1p+kO1sdfGj+0/ldli2y4dnF5fD9tP7y3fas8ebxTMZL+9vLtLqjdhu67ilkkkDU7QI43gSEqTu6uWNcjiJy5jtxsq/+Pwn333y5ndXD4ft/rdefPRwtfnm+QX2+x+P48fL6QGfPLLFfcLr27uz1J02J/vb+7NHj2zc5z4r4slyUYceN1FDffONi7/y5/97f+6dn//f/7X/cyzIXXx2dTNWCVUUkJiiCZBR7YfT9cU7T89fPB+UWzYCI8FX4MrxOIaD257b4LozEIfgJlcq5uENYIEOxCFw8gSC50rlkv1KiBTCTMRAM/PxWYjRCOpYCJAMvPNlJoAKamgmtSJL4Bmgfr1L9k6aDq7H3uL4kTc3YabuM+2GXlXdf5lEhNzq5iCJ5tme/NUTMAUkN68yBBBRAgDRg9IED4CmWxz5lTbbB4iI14F48GxEQM+CPkIXqjaOGQDmgQ6ieh6MogHkKTPxNO30wGhBBCJ2yYOiahnoYAesqgAYY3h1MprWIlXrlGupVbUcC9Mmpa5tncJVa+UZ5yMkExNQQ0IwMjQ1q3kEkW6xats2xhAi9/v9br9v2hRTmAZZLlpELDmXMjpFptS6aNpcMhHFyFXqbB7vh7EJAsUYEEksZZtKFj+OnGBLBOdnZ+M0vrx6uVwskcA8GEQ1za2buKdRIoYjMHm4LUKMx979mAvr60TdwgeNkJhDrbVWybUcLpW5dvdsWjgMrURnSQvCPN9ERBEzqwZo2aIFJfYoK2Y2CVIlxdj3PQAYsB488Y7+n//a74f14LZbM8nJDoiUSGWmGCNHjiUQhnEwTE2wxe1u/+OPPk1Ne77ZmEIIgSg48lclu77FQ2VEaZ9LnaZIKSKn0HLqEDCwt/AKwoKsRMQBAgOQiJAZMYrUADQOvRkxEag1HKvIME7GzSiTNrECmCEReVUKThoXyblUs65tSqlmFohMZRru1wt8fBHbBIsYA3LbxeWyWa27tmvb2KLu6n6KGEHaLJkCVRQ16MdsyKCNGSJVglBq5RREK5grHNSOqIaaqpvOzw54pRQOs3OdAUiVmF7FYBkCIaHoaztUnz9//saTp9M0xhiIAiIBqCgg4tgPMQT/2+Bgi+/0J9FqRoFDihEM1stVoGGvakFEdL/brjebFKNKdXnq4aP2Y8fUjNGIuaqAAQcmT0hVbdrWW1M/E3xbuWwlxigi4zgSI+As9Sem1ER0eZYBoBx+3KBi6rl4BrWKVDdpw1oqgIUQAIxght4RGIEIBZBVTMSapgG1WpUblloBadF105QBlZlVBQxKLU1MKvPsJ09FDVNsAietqrUyRUacchFFA150p0jLzenjYbJliNvd9OLFy8ePH5pQ309tuyi59AOpWtfGmpWoPnl0xiSmNUv98MMPlutFCMQBQ2ymaUoxdevVarVaLpcHYoaaWowRwaNkoUpFQIWZBooIR9vr43733g3A9y+UIszMHJqmM7MgombjNBlAsiYmJEZikvraPATR8UKc/ZaMiMhA1GopIpI4SK0ppbZtAWCz2TDTvu+lSp4mM4sc8jT6acCBZBpznhCoC7GU0nKICiYVYppEt/v92WrNddoPNQfrGZ8Nfdd2m5BKxZty95VHbzymtN3v7mxqcsmSv9T9t5ePTiw+6+9vzLBZtMAw1EW7utrf90WWnDDh929falMWRNQuxmnYlbxEvGhXd/2uL1O3Pjndl1sYP8u3j7rzp7DicXctaoTnoamSP715tmlWi7NN3ksKza7sjbFr0st+9yk3zZS/c/LoUsbfuvuCs3Sb9X3t7++GJw+eLIvs8r4GfXr25Paz3O/HZrGIOABBybVdLttlO9b90/Ozf/cv/Ns/98bX1//Hv37z2XNebZm4Qw5qFogCRgQAUavWoH7n/Tf/5b/6bcAOFd0Rxz8rvwyOKgN/HfkKZoY0M13A3LSQjhQbB05cYSjVByjKiCHGJrkpxas+eO6vxZg8rcmlp3BsbmbCDADMHqRHVNEhAfby3GYeEsEcEgmvDZWO3fTseWWmXmgd/5+jPscf/PgYzH0vYAYzETAwrdfreSwIePzmBxT6mF+IRDj72c50Rp1phDMr9pVJ/Pwk5ycazFTltaEYogdZmFQmAjSDAKgW0WSOOVPVWmup2aslnHctglmT4qLrUhsJsZTiD1Fm9EsQFQBzqYhqAAqzf6k/h1orAiwWXbtoY0wpxVrK/X7nZBp3ITo/P2dmmSdc/ii012E+l41FPQEXghNI1VSKiAe+EnNMTYOIPnd1sWFMwSAN49CP+1IKZ59mkBzish1NCodH7UI7U6tzEotHq86u9scFg4jzVCHMVoqz+0udq+dai2PjaqqevDsvDzIDRKq1yOzcTTjzsaBWZUaf/bv80I2U/GAlopwzEx2TNI4dPM6BbuEIDtlhZnccTBxruMCRAzeh2feTU7tCWnAM+2H/wU8/ev+ddy7OzkoRFW3ahogTkSJAogiAomU/1UlNmJiMI4bFNGnqFuPYI2PTLoyjIgGimOZcA1NIUWsukslsHIdSSmoXZgQmzCyqxDwaCiXkxkHYcMC6vP2YjXSJDnRY9IfcEXZNvDhbbNq6bOMyLlITMAqxgO3r0DMCI5QpN6kdhiE1MTSb3//hZ5d397E7rwBgnsyFBlxKAbAQ+Bi0PBeaoj7NdwdLt4SuInP0GDqG+OqZ+zpSAFITBQ708sULVcul5FIaSlJL23TElOtYSwkz004RsW26GKOIElLEECAgIhMTYJU5IVy1HcFqHUutNqfAou8Ini1D0WAuN/SQp+Xvq+QMBnzopvzly8lXuIeV4qEjCuEVY8EVeXNNqPMsLISIHiF8wOwBoJTqPBj/m9m1tKIADIZgaoqGrp8lEe0WiypFVAMhhVDGCcBijFMujESEgUIVdUApT1POZbVed82i5ApqHGMuGYBqLQZRhS7OH7x4fpO/yUQdc3e3u/n0sy8ePXyMFrd3+eHFZrFYTP3E2ILRy5efX11evXjxLEXb971q+Ve/9WtT3r319pvj2Fepp2engeNq2b1GlJwR6FIqAtWqRAYGVcRsNjMksuMReiCEuYVS8AN6tpKHuTBC5KZpQgjDMPgwlIXUjwfGiBEQ1bUh5qMNm68hmMMMci6+AEW064Ko9vv92dl53+8NLNeCCE3TqioxdW0rWsYy9rv7KrWLCRCmWtoam0UTs04lh9Sq0QTWUhzGzMSjaeri82nfhO4iLXrNC45vpvVP8vjZy2fvdmcPnjz6ctzuxn1H+Ca3WaqEBGZ3N3c1LpfdimOpWjNoRvydmxdnTfvg7HQdmv7u9mbaPr64eOfiyRcvn3+6/+LR5jS1aTvst6XvBH++O/1ot7sDK3nAAFFhGPqzx19ZLfCzT7/EjtOi1YDPxul2/9EvPn7raTibxrs/fP7R8mTdpvZBOt2P+Yvrl2fnD89OzuR2V4a82qyfD/tMFRojotil5YPT2+fP3ni4WWN49uOfLC731/d3vEipaxbN8otnzwMYmqhAVSAAIIxlGH7u3SenG9judiALM+BAOjOF4Li1jmyVw1zJVLWWzMwzRwbITN1k2u3FVaVKLaVIVUaKIRBzDAEPumgxdVMfQxBTFOXUElPJYqbEzqNmYTusWi+BjA5BYHDgfxz/y3yFAFRQF0LzYRHP8s/ZSsiVT0g8e736DQdwZB3pzIqelZvuNGzmeleGVbdwv8QQ5uEgEYuombhRuqqpVrNjUeVDX6yHxE1VO5Dj6IgEeKnkXnC11CMcjQCpSUeOCnMgRmRDZW9Vm6ZxQskBPDCd54eIiDln5zGVUqSKo+ulVDyA3vMTmAsJBUMCZrYyd5O8XC5D0yBAztP1zV3btKvlMpcpl/Lo4cOzs7OGYyBIMQpoP4z9MOaaj1KUUsQU1TBGwKkMw3B/d98PvYgCBg4hBI4pdF27Wi1DCKUWNS2lDNMgICHEaZo48DItkTBwCDHMIkFUOgZhElKIVKqo4Kz3teMCnnEjACeEBQ6IqCqllNneE3zw+ppFgQMjqmjkY0o/7NCc0OQyHOdcqxmY4mHqT2AQOZUsY55W61UpJfArG/7DWYyvl/J6kIn5v3rHaWa1VnGKBXEKTaYSmLu23e1zVUux1WT3u+nDT75AQDo7aQKHwKTzFoJAFJIMo6omikQcYgoxFsC2aYb73T6Pi9ONEXtPYO4raABkqn5BAjL2251pYWYpTmDAWsUQ91OuhmRkYihSSvHBosuAmTmG6O4YvthcQ2fAhOFkvTpdSYsSgJrEGEBsUjE2ImAAxTBtxyHEVaHVD358/fd/5fdh+ZAbqlKDSwEMmAOCeYGMhDOV0JzPy24rrypIpKAhxDKOR01D5KCqFTzm1emGBsiGRGBV7fZuu1itQ4pDHgWsbRoBQcCQUihgzvenAAY41xZKQIjsWRygxhRsBvY4xjhNg5n2fb9er1KI3mURIZioATETAxEJmLsRghmhIRiYMIfA0Uelx9LHV0utNaXk65wctZ7PLFfBOTZmhITMqupCN2M7dhTHkLv5Meo819dSVIUI1AjmAszMpE2NmhBClbpar8ZxQNUiGZBQgQECsykgYCmZyPKUh2FMqemaFgxr0RAImaSYajGDIvX84kEbF1fPb2rmRXcyjrlW+ejDj77zcz9vGvfb8uDEAof9dv9/+ev/t59+9MHd7V0pYgYpxRgAONzd3VYpIUYDWywW6/VJzqXvByJkJkJ3GhT0Wd7cwKC7Nh9EpogIzPy6eaw/cy+DZkK9IcDcX61Wq/2+N5s2m81+vx/HMQQ2oAOsaACGxCBKQIZVRQkJ0UotuZSc61Rz23Qu/MtVUuS2W7bdYrfvm6ZxWd+ia/vdztgCBVBD0f1uD2BIblwOfRkXi9UCm2kcsKFKdDntzpp1SqmWiQgHrLXmN5v27dMn/TTePL8M3cIDW/h0GUKA65efsD5en/7i4q14f/PBvp+Ii8lQpodNl9r0k+l2HMbT0O47yCahlDcgPl6ffSm76zKaWde0U5nudGxTs8nx/u7m7SdfeUsXbz4++82rTz7mkpTWo9mqff7ixWqxXqwalzyNBvuAbUof5X5h7f12/3h1/mnZQ6nvnz8JabG7uXxxf/XW8uLs7MFnL5+dnK05JS25Qu2Wi37Mw+3NL733tdNAV5+//K//xn9F93lXy5YMxz6KUhODgakUMBGMSJCgsXF8vFm8/87Jr//2y0VaA6KB+Bo4Xo1wGB8cXG3mhiFSRCQ/OuygTvfNpmqlltkQiDlwSIF9zfm963+Bgke0GDkfjFlFD6yjAD8Dz2gVIQN8jbhMREdk+3WcR9W7d6C55gEAcPsHVzgyItFrb/sw+PAb6GDfMJc883s9tAPeGLlTAJgCoIoyzUEIAHOEmTtbed/phEpx3rKIk2GJCFFeveFZcv/qatQZSpEqAkRNamIMikCzntTU9DhxdKjGpe/22mtmRIUABrUUM8UDbdtpfWpWq7p92aECQ1EtWl3Gr6aLbtG2LXPY97u7+23XrdbrtUhBosVysVyu0LBtGmGyxgyAOHCI/X4nHiehAihOpixFAlNVM6IQYwhgGKpIP/R1Owd0p6aZ62xEResWi6YFrJpi6NrO3SPnz+SwOGY3k2rVsi+F+Vx3rG9GeioypRiZPBYbSik511pFVUst3nAjubp55mYhzujmgd4ORH7zekaVzWkkBofJJxEhVfAFPQzj/Xb78NGjI8H/8NH/TKDvEfLxZayHcgHAiZzEnqVG6B+0qiBorgkCqwlIUtWr27uGKDGen2zG3T6kFFPiwIZWJe/7+zqNKcSAITQRifI0THl68cVnq0cPQ2I1qSqASBYI0XOMpykzagpRSpYyNokRTETbmKppn4dqYTdNBVpWJEAACsRV1ZOYZuiMUPQVbmGqSAQYEWKTumVbghYQkFpRRcmQgJBRWVUoqVkKizf/+W/8+Ff+8R9w+3SzfDjKSBCISdUppcBzzMyBdfdaWem8YVWDWg3nzxXJo1kYkcwOHmOuG1A1ICJjxsvLa0TcrNdt247jOMqQYvQymokqolueBgpMDAgmSoQcyACKVJWqSkDg5DQKHAKXMo3TNE7jOOZm01itUq2JUaT4ueK1mOuF7IDY8HxgHWoaAGYuxfX20QVEXj3HGIGwlGJq5IUPojldRNW9rtSAD8i1c6GOcKO/ELCCglRSMlVnZrMxERsiAZZcixVEayIDyqefffTw9EKsRg6AJLWAmdQC4B2a1Sz9fkDA1WphJn2fCZEo5qyGSgGk6PnZ+b/zb/+5f/ZPfmPM5cWL5+fnZz/40Y8Xy+b580+vr1+sF4vt3fb059//3d99/l/9zb/14uWXioXQurZrm4VZEdUUYww8DIUW7fnZRa0y9oVDAKu+EmAmeCWi+ekRmSp4CK0/20NAENYqR4zNe0sinG3GgGIM3j65ar1pIhHUWheLxTRNfd9zWjG6KkhUjSjYPDZxjABMrFbJufTDyMQhhJwLEcWDxHW73aaUQgh5mgKHbtmq1VqqlsyMZCi1EJGCTTVHwgzSijzsVqB2qypmInIPed207V3WlgrU2KY9yESUBGOxqdG3Lp4shrs/unv+MC3eSSfPhm0GO23iKadue28Ru9WqFL3e39XAcdGMw9iXCbs4jeOX2/vF8mS5Wp0Zf/bi87paPIztg9Xp8/4GVd45Pw/7kp9fyhtvdQDvh0UZp2urZb0SsFzK89uX7z1+GsQ+fv6FBYrrJQT7cL97frN7d3nSKK/RBtZnU58AN6m93W1jUx8s1v0U7mW0Nt3d9xmtTSEZ6c3IX+kmtLItf+5P/tm//5//nVWz3EAs+wlt34YUnPgWCCSYGOWsASXS9PX3zn/jtz8GRCae8sgcj8cHHNmmr4Vu4szhPVTL8wAbD7kqUmspZTJTotC27WwjN1NYZhaFk11E1QiJKXGAgx+gH/ZFKrw6xQDRTdjBmXR+hcxm9sd9i6ginn586OR1juYxUxNSmj2GzNM9aR7GHdRJHrQ1QwHgcNJR7f6KkZ1LBjA+nCI+5iAGl9G5SovYZ1tzaegzweM38Wfom+1wN8zf7XjGqaqa1lojc4yxlOocSP8ixDn78wjh+EfjrMzXy0EpGV0crp7yajjThcErTmIfS8sMzqnONviAq+Vq0S2IqeS8223N9PTsvEo1IFFIKY7D8GBzGmKUPJVSgLGJqWs7U/UwMjeWFNFpKhothG69Xq9PTkBU1C0KDABMJedcSsml7Pf7Xb/f9QMSN0NZLfKybQFsHMewmKvwOTEAXtHUAEy9x/UMu6puPuaXBDEjEyGqah5zlVpKnabpUID6ONJJ0CSKJjbPeNHM0BEiEUVCBFJTVQM0AvYryp17nVOJQN4w5LzbbndmBghH8zo8SP+OPffrUNARePcP18CrVjgW/SkmjZOUsYqgm99AAQoxNlc3N8smBMAUeQEWMaCBSpl2N8P9jeUSQ5dSm0KcpkHG4YtPf9q2qVvEaiWAMbumqpIB+lGtFgKT0XY/mFnbNpMYIAHhfujFtKhUQwgRkAIHA+AQpFY4LuNDyqzD+zCnD0SiBokRUWpmlMCtmIqpmVo1QGbjWlGoTe2jv/+P/uDX/tXHxR4lPB8KGRqiupQDEMWV2Bi9tUD0nsSBWA8zZyI2ADGBKj4kgiNH28wHlzhvQjYk30e73c7j7XymVmvd7XabzSbGOE4jgTnNudZaSum6LoTgB6GLsFKKaKTFyCWnZKbGHEIKueRpHGGzDswigESSFchYuTpg5VsbkULw85OARMQOOgx/80RUSg0hLBYLX0JMLODApQeRgkdOgbsEzZILU4Jqxq5yeO2o10N45yzKRCVQ/yaA9dBcWGCMia+vr37xj/3C/+4/+t/+7b/zt3/1V371/mZ7enKOgU2EUwOAojMxoJRaq6zWS1AdyySiCNSPe47ctMlMd/1uc3J6dnKiKmM/XL74oluGYbzG0OzH+tGHP/z6e98s0/a/+C/+r7/5G/+sH4aLi/VY9tMwljKYVQ5xtV5M09A08Tycl1pKUebAFBAptFjKqKIhRaJj7sRsvu/9jJ8STg6rVWvN3k8uFp3v1gOxAUqpr2EBs5dbalLbdtM0itSmaUudppyZuEkBzKntvsdn9wQRt47KU56k1nbZIiLAq0loSmm73a7XayKKKZUxT1M2gFImyBpSyNMgtYZIpWZASiElDFRkEfEMm+20F6QQQ1+mlvikaXvJXdsGtK2WP3j52c+F04vlyU3utUqDoUx5qvT47K12ufzpiy9LKctu8QvpjU92dy/6YUSoSNOkYRUvzi92N7ciGpq2Bvmy7mG0FvHi5OJ+2O7reNp1Z6Wp+2F5wu+enX2e9cef/fRBt3rr7MFqsfyd2+ef5aKIsUlN4Ovby5PFcrNcFgCzuN/3RemKas7DV9rNw8VmW/pPbl88Wm1WiO+tT3m33Zk+ffTg47uXN9LXYJvNGgIHpXov3//dHwKU9x8++qXv/ekf/bMffP9f/NrKwuPHj85XJx/+5MNgJqBgaGKoCIQBdLJ897V3H56ddttt9rnA6/jBsW2VOQ7T21ZFhBAioJP92YV9AlpFSsm1ToBz5PuRVPN6OeXVj5l5IqC/ahU1J+EHF9MiE5m/gRnN8XA7JAhMDq+Y40NHchKoHSMzEAXN0OjwHhDhwJcFRE+H96+k2WV4Lo9eWf7gwXbDnwi4YeA0+uYBN5J35udBeFKrqFaEg+hMD/oYC4ag8jPWL14D2eERHUsfMKtSCalKXbZdCEGkEvPBOQ2cXuDtrv/y7PqmcTHnfJoRkRTPwDLTOitMyI2L8fDzeQ9sOKe5IR5k2EwEjLXmu/vbm+vrt95+h2Z3ROYQSi6j2e3drUptYmibpppOuajZZrNRgHEaUUCqZPF+C6dpChyaGA3Js+UQjYkxcIjRJwUnJ6e393f12ctS6tAXMEzMYLbfDYu2c6s6nM3eEA7KYUIKKYrMz9Z/KjrEGAGRqAzjOA1jzhVnxxgvo5kPsZdVqhmEoKplqrOQW2dok7xhVM8x9/sBtKKRGVEgZ5kapJhiSswoUt0EnA+cJD8unfQDB47dcWcdISIXB7izCDMLviqasaNAxgy7MVdEc43YNGIeQevV5U0AePTwIhL1xSHdPo/30TS0TUoNMZMgTvn2iy/77dV7X//OSFWk+IYqpZpRalIptdRKyGjU76dpGLsUCEmrxLSoqsMwpqa5vt0qBPdUJkJVcMIm+ATksJiPpT8RI/I0lKwFmZBxLCOScohqBgEV3HtAgliMJ7sh/uo//NGv/97nuHyYtU1tayQqGoBNDAJyJLXKHHCm9yEzO/c5hhgC5Vz89vLwsqmUFKIPSRU92Q8MFQxA0bnNTi/bbvdN063Xq9TEWmpKKeeS85jziGgIFkKMMbrtoH+yM3NWZ+UeEJLRrDhEEPFwRHBOyW6/O5k2XdvOc1YwApdR+alC6EWoK7kVYuCpuvgDSynH+9hMiWIIIefs50m1maXDHFSrVIWAMaSKrronszkv1qEPEKkidkD91eYoY//m4InpAAaGZCCqJoxkpswwDPtf/MWff/8b7/2Hf/F/+P/+f/1//sH/71em++n0/KLknJr2oKG0aZqYuGmaqQ6lTGBkiKKSR8nCzLw5WRnoD3/4/fVyud8OP/3pD9KyWawgNn0/DL/6T/7+v/qX/yIPu2n8fL3pQkxFpxC1ZFXBUrJKvZdCISS34OUWgADYXVQAwIC9GDq28UdbCmY81jT+xURYygyBm+lisYgxegcbQgDwQ766TMzTfqZx0mhN00yTqZauW+Q6lVrJ0+MDe2iSSAVRQsg5D8M4lVxyDsnVeRpCNDNE8tjatm1jjOM4mkFq4jRNIhUR2qYFtDxNYEoUQBUCC8Aytbwds/TrxfLBkC9ZerNGACCH5fp0Is21QN1qrSLfWj16dHI+Xn7xweefXpyf/omTt15eX360v1prWnL6Yrh7K6V31+daytXdbmiAKBHS3W67bhcny+V+HAwxE9xI3e+v3r548LCmx9q8HO/Xq+57F2/dbe9urq+bE+N1tyz9/bi7SOfn0L1LGxj628amAKBlJ2O/Hb/25Cv398PLXS/Ik2lomg9zXxbwPmFT+Z108vL+drle/8LmyRVef7x/+U56+CA2z8br5elaT1Z3Qz8VaZcLG/J4ff/FjfzP/lf/6W63u5/yMnZQalA8X25CYPLwTRZFYIMIqJLzVy4evfPm+b/8w93J4swmOLYC8wDlZ8mk/tmbB3g6CwcQAN3xqdRcawGARCHGiERVvKpwfMPbCpgF4H6luNRQTYoiUooJEfybgDGigqGKKYoBzbMrQMRDCKv6eznOQwANfQvPXKYZxPFWSIjQ7WnQqckqAEZoSPMmBzhqoY0omL85F9oTqc2xhV4HHqoWVZHELAgGEAJXceESz9pn8SdpKqCmoGYHfT0RqSiYmk+LZoscnb3kAQ2QmFIMMWJgdOH/TIBBUg9uDORuQ97SqKoHpBuAKSBGN8oRg6oKYm5Q6maurhtSUYctEJEBsFZl8+8vWve7/ubmTqpuVhsMxEpapibGUqSfxk8+/7SJTQwcY4oxprZbLNrIfLpZiyxUteQy9j0AqNS+5FLyoixSSohsUimEWY7rQIhq06Szs3MB3G13d9vtOPZ3IJv1ptbder1OKRGyqaBnOLp5sDs/zeN2ZCR2eB/wKM8xqSDGHLouilQDSBxCCIZQa1XRKp7xzgCsVt0JYYYSwQclpOBhLYRGZgbEgYANXIno10YTG0QKjItlRwQMRgDETjtA8hL/0FTgDKPC678fNx0zq+OSNts7+hQjhrhedPupDDmD281S4NTtxn242zZtqyJB7xtG0RyCLbtl23ZExMo4FRrK7/z6b/78n/yuLVZ1wkDMHFyqGFMAmAemHLmUcRx3VSpyQ5gMpkA2jGNRU6N9sYqERiqSMYOKGarzkM3858XDZvQCTlWMrGrNZhoCcKOYLTKZKRhTrLUQtdyefvLF+Pf/0W9/+uWQVo9GCKrFZFAlwogA3ksgCgD4KH4GnDxPR8EgGBgHcpYxAADanM8ENHvzqgJYIETikjMiqVQmGEeZxnG5XDUpgVkMgYggKVHKNQNACNFZwObjdUQXXhCx+UnBpCqms7pi9hlg67jb0lZRq9R933eLNRKUKjEGP49iYEUCg5nKNrtbgSI44dAAYmA80B8RSURzrXnKIbBruyPzXOL4oTn/vPMsnymoqopYACOcHXHmvuFVOtC8GpG9xSBDZgIChZprSdBQ7K4ub6dhbAJ+52tvf+V/+Zd//htf/S//5v/jg598tFifkZkBWq0idRyH9XKlVUy0VCsApCLjcHqyXixWymGxWWkpP/zR767ai7OzZZ72+/EmMTHCetlO/bi/H9o2nZyfTsOeKaQm1VqbphmnseSC1EiZUEoVZiaDOXXbYV0wTDEQkf+kNGe2V0T26+G4B4k4RmIOzLWUkvM0jqOqNE3rtWCKDRGWKrUUYkLAotX5k9M0+KDM+5a26US0ZmVGQkIwtzw39UEHmlqpFQxTbJi5lEoUYog5Z7deRHBymDUxRaZxGkUrEYcYyjDm/RCRQQkJOQRQrSCYIFteUPsgBgWVUiKlxsiqNqm93r6AhiCyhvhH2yurGoxSbIpp07Srk5OfXH7+Rjp5962323F7t9192A8UmofLTQ/TTSnCIXKstcR1t2K8vbuhFDIRpeXLvj/T9ARosdlM2/vu4nxx+uDuy09/8vzZ2w8effXR0y/vLz9+ebnA9jx0Tx6e/dr9Z5dWhlwiYpu6L26um24JhJNMmMJOa3d6+qLfY+3fS8sNJ6N2A7zrd11MJznttne4XjA1AePtvu/LiMj9rg+76axZXt3tbvZ9gbhp17Cv1/uXVx99UaSEkjWExlBZMrlNCKMWXLX0vW9+7dd/8NtDaVoKDgwcO4y5vX7NLwuRBDw3HimwAZhIlqKlmFrybUnEwAAYjojS3LB7IMMBeAH2yIFaVKvGJqXIZearOn8gEhapYuw+5XQwXHEGDprNU/1jzYZAcPQzNVMgVUETAzU1DuzX7BxWh6hHMAfc/8/9QNFJr2pazQgIzJiChxgDsYoBIyCZIjKJVgD1VEIzLEUNQIMyuVOxmFYGVDU0SEz1ILhoQxpNagVEBR9DgKlUMTHDUuqcyOqmZyAEahhCjIBEHA4gFqsVt1EmgqpGaABYBUwghiBmpUp1fAttRp08rpmCN5wBjYkV1RDNuJoiYS26349XVze7bf/GG0+a1E6SyaqiqFQix9jgbr91lxoAiLEhwHUXT0826816tVzSaoXnZ4goUsdxyjmL1JwNYO69aggxRmYOzAoGBCnx2ckSsapN213d7vsYmxjCl18+U3m02axB52R4ADMQZ9+bVeJX2F4gDCHVKv00TDn7XCcwI3FKybttUy2lqKIYiBeenoCLhMii1cxkzuSWGBuPdDEDmeVmbIaJkAnCYcLLgT0ECtWkZrNSynjwiQOHBxAxvNpQswWiH3xHRqqzMsUq4ux45Os7hogGi6aq9iq1GlqMRiSIKrLN5YuXL8+WixPWbJJFLh49JGoIEmapQ89T/pW/9/9FCG9+9Zu9hdhEtECYihTAYED7fQ8IqUm1llInokpkFLosGBAl76c8xMXy+c1WwgI0eM1cRGe2DSJyMDAMOBvRvOIR0pxqx0GucdIQY2MmmrUJiQhyNqME8eyDz6b/5h/8zhc31i4f7nI2yIFx2WIgds8aDliriVgIDOApbISIOtN9oUixIiEERlKvQUxSSKAWMCCRVik5AzjjWpmJKZFitXJzfbVsu9WiQ2QzMVN3taPAtUjRKgUAuIUQYxBnuTnkixQolFrJaAazEE0VnXJroKaLtr0vhYi22935+SOKSerEjCJWa+0CE1KuFeb6ZY6RUHXVUgGAGKOfUF5Dc2DiEFs2NfSIGRUDkCoEBAgmYGhk5L78gbjOdTyY6TFhfi6AzGg2BFEMrCpoxMRggKLGGiIVROMIJP1+unxx9c7Tsxh0sPGP//y3xv1/8J//zb/96ZeXwzQ1bVdFcildE5oUyjgNZRBOtSqW8u5bb8dcu+6ktF1FXWySjWOp28ArZEIhQofbayRLm6hah74iNKpcMgCyWiGmmIKpGEItJRf0gf6EExgAMYIxIpHvTZ8/OPMBDzHe3labGZrMlfpB8wWlZI9iDJGYuRQUBQ8acxsUPSC4oHrwf4ohBOYgqGaGCoCmUB3sR1E1y7mWklUkcEyhRWRCAwUirrVO09Q0jTsxEZlMA1EIMbgKdSyljjmPQpRM5jkDoY11CotUhmm3vT5rFokXcdwXikVx6kdtQnO67nPPSKXoR2VXpf7Jh0+XsPnk2WcfTMPZ+dmj80f9brja3p1hcyP6wf76fHV+sd6M++1ORk2pQUbE+6FPzDGGWgrGdp+FrBSik9X67ZP22dXlpy8+XXWbh+uzl7kfxkqR1s366vrFFPTpo4tTSm/n5vLuhtu46lal6gsdQcuDk9NptF0euOtIDXK9NI2jfoO77z75Stnf/9GLz99/4+2n7cVn+erz28vm4vGL/X5KpVmmXHUcyjrEbakFsIYF8eauryeLxdefnOyuLr/y3ldDWj1gDqAmeURCNizjNjDqlN99+saji59utyqgKsYc51Hxa3mox9EYIpCTPTkQQJVaq5Sc0SxwmMWoPk/y6TW/4nvqnI0yQ/1EBIhapdQpxsABc6meLOamzUToxsRgjt8Q4CGpFEDFDFRNXydY4GEk5XMDAEFXnJpnX5jLI1y3A4DsG81e+RN66TMPksCYZrEYzB0VBmY/KcwMEGrVFINWUaAQY53RMjq6r3ovrJ4oIGgGbFaJDiZ7x4Jwnk/7REzVVBTmlFMvSG3uyrwMreJycNWZcD2DCjMe5k2Nn5LOrQabBZ9K5E/CwJskBSIOzNVIVNy4b5xK348vn78chjHGdHHxkJisKoARkIGaWSAWtZSS88EROcWoUvKUX7x4cX19vVwuu67bbDaLxYKIfartPF8REbFSipuXILprQCUiZBLVGGLbdWqYx9t9vzs7ORn64er62kzbNkUOM/uMKKCnkczVj4ERkaiZzGpEFTHALKXkogYcQtM0KSVwO2ZVnGlec4I9MprMvN2AZOSyQUAFUwBTRpe1RyCIhBGBEV0OhmgxUIg89GWO4EYHG2aIazayOkDuxzIID1pLgONkmBj5+GVEhABVlJhjExqNRSqUWs2AAkUQbSzLOOU708q2jgRV76+3TbMIMeR+b7vhd3/jX972u//gf/KXMDaBOXBLEAyQOOWcx3EQteWyA9VpyJG5FNssVpHDzd121TVTKTG2uyH3o1KXfHERkiu3q4moxRCcyOvzLzuI2tDjNgFEaRx42IVFPDk/fUQCNStgsFARm9/5g49+5R9/v89duzyZRGZrg/lmV1V1o+HZiIzImysRUVAPsfRMkxAiALgy2afGIoKGrquaR/wMJpJzXi7Xw5Dbrrm/vZNaNw82ISZEBpBaCzGwKAGqBVOQKkVzQExhdro/dnlH8uAswJgvSCQyETfsTjEmqUMV2e53JycnCFxL9ul0qcIU/NSdx2kzHccRTzycS3psTcGMAAHZezrT6n+EQ6BD3IqZETMxikiVyoFUZhKMH+/zi4J/Mc+JzlJroUAErGo5i0fQEpFWS7G9u352fXn5/juPrkYL6zfvrj/fPPrqN7/3pz67/ke5ZlOhRKWIEWaoQ+5jIAqQlos/8Qs/f/XZx198/vHDQJRClZpzXsUQCKRmihxDcMJDOjh1grtjGGiVWq1pE0A0MB9h+qcpqrUWnI2oQUsBNDK/Z5yCg8dxcwh6QIn8KR6GGugWFTOhMwSfU6tUE8h6oAP582+axp36EQ0QxNRyLqUQzZZsMx5gbFZEKgJWqdt+X8aJYoypTU3KuSBS27W1zu4n49BvNps85lrLomlLLhwJEZsmRaCru1v0XAECQtSqTBgQgkLgAHnsTtLb7WmX8ce1HwNWtRbwfLEkkd3uPjaLieAK62c6vgHhrFm+GO42fXln9fDLZv+Hzz5bYGpO1pv27KZMU+lP28X7MX2Z9z3avhYoVplX69V2t1WpETEaX+X8Yk0bTae8+Mnw5VTrN55+9XS1/uFHH/7+bvvm6dm3njy9Graf37/8ssi7q/PNefd7w9XLsQwp9CGKmN7dPTg/A+JcqulUS8WWn9X+omm+07TtftpsTp9t7x+fnAIvYChjHScZkELDPNzuOiIzymjFgI0xTwx1tVqenCy/+9aT/8Vf+avhd/7ww5S61XITGWIKIaUgjGig8sbD84cny5vLy7Y7s1e0XIADVVNfc4UCAEYyNDRTtZqLZ8QcDYgdvT8GQNhrryPOf4SXDvM18Lxi1x8hwYF7c1hu3gWJ197+NswMDnXIfPocZ1J4MA/C4/htXt7zn/XwbjCAOQ/VD6u5inJ9BwIhoh7k7McnQEyzLwz4NA1cXh5DFBEk7Np2nMZD2SemaGBgpAJHVNxe8wX2CYeXcQeGEAGIvy2nUiHNPiUIaEA+EtFqIcw/MoALXhRnA2uYjYhUndbsvQLMPCAwm41IEFHRQozMbCKiQkRaai11v98PY8/MTdMtFktVIApgNrOxYEZh5ghAkYBhtVmTqZbSNOH+frvf7/2H2u/3KaWmadq29eM1hJgSN00j6nkbszm2iJQpl1prLVrqzPUr5erm+nRzMo7j5eXlarVMKXZNpBBDRFBFRCZiQo8RmPMBCD2Mc+j7qRQiV5lpLqWU0ratl0G1VpUjPuPm9FJLEX01oiLAWishhjgbbwZiYAKwgHDQogJ6tYwAiCJ1yMNxaaJLQA70smNwx3EZ6MEM83gfOVvzuPYcpRRXLs1MLyNAAhQ1EwgcKTV1srFqrlOMq/PVumEa+6FKiYC/+Wv/4vkXX/7Hf/k/wUWsjIGjIQqCmZhCrVJFUtOA4jiUhhvRWiY5WS+HnJ0+xKEl4i8//jCtzgWjmyUBy+Fncq0FHEsfRyyc5QCzxs3ypGhJavfJx5/fvIST5YowhRSnEv/V7/3on/76941PY3eSZc5pAp86HloyVUUPWnBPe3UOB83Pp9ZIjITEfJRWqIjfSbP7hpmqMaOBMjNxmKZRBcZxvL66Oj97gEylSNMEt3RCBjIBRFYVUKsitUyTGYQQyD29Xj/ZDgeRg18VIMxRm+CdRiBiNdjt7peLjsBExVubWivFQ0UCeOCzuS3QrF0Ab4Xmw9jPDTGclbaERoCz9/3PSA7VCUBmRkgKVVWOlmFmJmqo9TVpBZopMZpplTLrF9XKVM0oxcbETORf/sa/+Dd/6dtFaMqwH+swTibVZBLJ9W4LIMCoFqGx999/uru7LwqnDx82USJPf+kv/fnf+/4Hu+HeiIuUsQqKAFTISAEQydATY17XJqOJR9EAMzEFI6h18gLIwGqpOHPmAGZcDpxYZq9uAbRD3uVrWoS5QD8Idf0QBjP3fzngtQSvf8Svfe6vYkwAQLX69/dMTUIqIm5Wsu97VQ1Ng4ghcBUtpZhhqBWAaq2BebVaLtpmAmjbJk+1XayMcCpDnSogjOOoMzMDABFFGookMuX+yelZ5BSKtK2uweI4xlVTGy5S7m/vTtp2Sq0RrrtlmcbfffHZPi6+ff7G+uzsy88+J0HZdLhafrG/f5zWLS5uxuF2v3vjvPvq5kH5YvyoDhTIEEcTGIeTxUb3e8ula9Ke7be217c3d1/rlu+9+dZ26j++/OzR5sGD082X27tCSpEWmX/65Zerk5OnzF89PX9+XT6+/GKPC0xNMBCF7W44O93cPr/sS6ZFrHU6WS2vy/j7zz75WnPy9pO3v//hj+/6+9ixNe122CJrw6mWmvtpFZalSi5SFVuwFkUavR1ufu0Pvty+985f/9v/9/Djj18C0JSFibo2lTIsbP9wE8l4TM860BSoqhw+9bleeb28OCxBH4eJipRSqqsxKRx5ZI7GMBEdrN78hYjxoCM9nvi+aGJqkFhVqlYgx2Xc85uMzEiBEWweZoso0lEvM7/PeeYFAKAAak4K8EhkMwIzsIMQGZ31COSMG5fO+uTbvXnmb+tqWRFzHq2rlWaAiehIxKHD7MN3najWmk1FQE1N1dC8KIEym8yin8gHPAzUzPXYdoj4EZEZpFJ1p0dVJXJ6IiGAmrlsAQAArdZSpYQQANUMj8CSzQ9ihtCq+PRLRRwWdkckVJvl8QboG7hU2e329/c9c5PzdH6+bJrWw2sBWJ0RqTOcxhy6rnWLFwILHEKMi0XXtl3f9/4mj7fX0ZTMzARmggUDInLbJrNOVLT6caWbWvZ9//LqarfbbbfbaRzPz85qjcPQxxhSSi6rYWZCSCF4wR2InJGKwG3btk27OTkRsFpryaVWbU13u93d3R0RdV2HiE4CAsAQowHQNMoBrYR5uIHRg0G90AcgJCCcP043CyIGpKmIOCULYLfbMbu/qMvJZkuW+XA82KocKyH62TQMODDrj1vG4TEvpFQqqBwuVBAAMiJGQJjymChe3t+vuH10dk6M1erd7c3l3fWf/Qu/rKylFgzJqmIwNVHfe6LMMXIahwEUOKVxmBbdygyy1KZrVSE07Zcvro2akJaGgZnmgxjgUKy8kjs43dsvVF/VqlqrIEYEzjlc3Uz3N/m2Gc348rb/wY8/v9wpNG9AXA2iYIVQkFhqiRgDB5sHXOB9te9aT6qCA1Xc9eKqiirkmJNfTiqMzkYHkepb0ACMjImRqOvSp198VkRi20wlp9CWUsyEmcyRJyIkJOesV61Sgzq+fMg0VNEZOxdHXpFQrVYxxmgASEHFmCJiQCvDfpenTds0gcngVYKHn5Omagf3VzeDQTIFAxWVWQzbdUvfTGiKs7G9zi3O4bL3j6NWPbR/bpE/X+HMDAZZi6p5OCMeUlEDh6KTuSM+gInb6jNCQiOp+XS1/n/+rb+zbPXf//f+4osXL/dXn443n9vuy7dOoO02KWFs4un52dO3337/69/6+OPP/rtf/bXIgWDM083bT89/+Zd/6e7u5g9/+mzRnCBgraXmgVDUDGhe6iklh6gONxI7SprzlFIi4hBIxbJmMQFEN8U+3F/k18DrHbL/1CJyTHDzf3Xjn1pfFbKvepVj1woWnNOJ8wq0QxTBq82LZmAhOPPHw7kV1EKMOcs4DrkUORgLIbEUIeRiNow5xdg0DRJO02hqJefVolt0nVHox74WIYOiVUGB2ECVzAzYIFZoYyoyNhXeXJ6++PLzL/uxOTv5Vvfwx7vbl4mKFKRYiyzPz26HfbifYuBd0k8sn2t+B9p2tfqt+2fnsl6vV7sGP7y6enr28I3NgwnkZty3kz0O7fM6ZKtAPCGQ0NrCAtuiMiFdk7xUqUEvls13uMuSP9w/274cvvX06+eb8x88//BqvH23Pf35t7764v72890NaMaKb58/+eD+dlEFqWmabpD/P1t/FqtrmqUHQmt432/4pz2dfYY4EXEiIjOqMmtw2WVXD6rG4DYCt9rNBQgJWuKaG24QQuIOLloIxBVXCHGD1KiNjFuYFrS7Tbeptl0eqlwuV1ZmVg4RGeMZ9/xP3/C+ay0u1vv9e2fBllI6sXMP//7+d1jrWc+wf/vm4nE9x6a+kd0xV7OMkvJn0jcnqw9u9vOjR3+wftViNY/4r//OX67PVv/lH/3zLWKoq3FIMihpYCGSzDoqsTazV6mfN/pq9yr8D/8H//6+S7su9Sl9/tnPf/KjPz5/dvz+e0f9dr81fv5o+fNvbgS9xoVD6TMZHN83CgXYkKLh9iXphUXBBIhK4QtoD9rZh+c4TE0tlR4FsoxpTFkyFdWWZxrne/DGx/iWAQGtTNAeglX+UxHRjchUwb00nO+M6GOFyfrDzxb3GXN1GOqBrelTL7zHj4yITNTUKGDOWUUAMWdEAAsYtMjEqqb2ujCEoGmEggX4rYbM7kWhE05jAKD2SzJ7LLJ5mMjQ4DtTJWuZT3svWRACYnT9pJVcDia0UR/0OgW1QjPE8m6wj/l8kDmJ7GRIQsSSZdS033V3603Oo7+/JyenUylA5s2WkKKVbD8DRopVyDl5UYkcAWw2mzVNs9vt3AQZEf1vORxGfC9mKeh0TgLZkDAiOc1KWzg50aZpqqq6u76tqsptjYhpTMnGMUrkEACsQwOxe3jQm15AIKzrer5cVFWNiHVbEfNs3o5DGsdxGAZ30XXnDxTKKdkkgQzM5ClmxRAICnfK0UQgCmgipphVgUxNU84imlW7Pr19e4lEcGgfHxiumCo+qA+mqavSlPFyaP0P19iEC5Qaquw2MwaMMWrgnJOb3RnCOGxns3mzWkqWs8VyHLtfvP7201/77vxkuet29WyOor5vTZQBFIQJmhgljWkc57M25SQqi9XRMHRUlJW07dK767vF6nxUTH7eO7UNzcwY0eg+YtOBH53yqqqqQiTEbDBmGZEjcQuqYtbU9d3d5fXdUC8f7xITxWHY1AE9FMI8kTCSqoICFkEEAZioMLmtpZr3XUTFRayAaeC+6uSUdkepJiQ0BjoQsNbrzbu3b8+fPZKcmas6Viknn0b6UBURAwaoiEyyDKYiQiJ4AMgnSu2ENCMQQREcgRFyQAaSqm647wEkSx7TOGsbcaW6GRFmyf4XEdG0j8E/g2juBO/Lj4gm2aNX2IqAWZIietcED8D7MkYrTR8ExqIIA1eg+csuxeK0FBERCCEgm6CIEGJbt6Niv+vrGDEEAPl//Md/+zvvnc7r+qzZHr/f/KWP/u357G8YSKzifhiMYtXOf+8f/v4f/eN/fLo6/fC7v9IczX/7t7730x/8i+vbNx88f/TzL741yQHDCOb4r6qKZ1oTD0NfVTGEyGXcb0xc11VKRT9LjFVdIaO7k2Dx2Rc1U0kG2MTqYfUjU5KSX2QPAokLuaIEH/tBWegfZSBhaqNkKFYKvnXuQeLSZ04uKn55lI3MiIhd3w/DQMxZxMBijJGjaA6hYjPJGcAQDdXm84UkSWo5ZdUxwZhF6hjTbr9Z3/lbpojOAKmIg9hRXS/mber7XR3jrN51u2M+ftIsd0N3tblbzGZuwmhDrkLT2x6gmjXzzdj/4dXLbTiqqzhfHV922xNta4zLZiaiq5PTu/VN2mxvWlkulx/2i6/77a3qkxzaulkP/WI1C6wX61tu2uNmPgzdn96+65v5I7W/ePrRm7fvbne3VT07Xyxurq9zi8u2Xan+4eW3YP1xXJyHWWrtzThgHUYZM4gy3No456aBWQtQqQ6i1DZ/8uobOnnRV/UW6XrfPZqHv/E3/tu/+2//137vv//fXd9t62Y+9htXggDjnDn2WZN162zVyZttZtmHX/zsJ8bV0fH55u72937vv9Kh++1ffRZDiIvmZHHydr+vKtgZci53x6HjfHh2HzAbUHG63DQtzjppxokLFm2mMqaiLXqg+D2c7KUsIiRGKR6+xExmaiX1E3zuIyIIhsgPASqbJlOHMgjLsKqMIciTHRGmBCjw4bB7jCEoYWGk+rlIBP53+NUiOSPxgatRrqBJuc9IHtuLRKJaxwoR3VbHhz6EpKbOMILShGWRw3kEUzMqh+JSRMacvD8TzcW/2Mw8RMbMQM21/mauckdyYoEnW41u4+TuWwAISOPQAwDHotWf8G1zoAjLJgUmUk3OZu2H/m698SjW/b47Pz9/9Ois67qprQw5j4hk5Z4mQlSRwG4G7oyrklKEiKvVCiZqIU6IoC8JBTMAwpKbqKZMxIFGzVJi0I0A5rMZM3f77uT0uG3bcRjni+PZrPVyyvWGzma1rGVB5kyIOYkBjjnt9/uryysvUxExxhgCM1Wz2Wy1WvmrSmkchuRzLo48Xy39Qp26SchZwVNNPCkMLIuMo5stqKlmVQNQxSwCKN2+v3h3daD0HBZ8cXyebqZDifNw4HXwxDpgQoctk0WQEBk5cGAGI1JlYiZOWYY0GtiYLRi9//6H33nx8e7bl+Nuf3v1Trrdh9//dJQelWG7O5nPspmmUTzEVyQYock4dqFiIBIbqAqD5kGEAmYTDtX1xRWFZj8qV6GU3KhY7IHYEdFD1q/vTf9b7lVvhAFVICWT/TCi9IzERKvjeT1rduMY6lWfdlVNDOYDmRACBxYTyZmJvRf3TavqpLQJA0Z0F/hDZ68qphqrmohyyobIHIjQoOSu+DNPOb98/TJJBgNVQ7R914UYvfVHVxQamBoz1RUHhL7fp5QQi7GFj/0nZ3By1rNNxERThDJsR6ZATCJkauv13Ww2K1mtWQEp5wyMLo/1LBZCYibAwglyETcBMfM4DkTOUylX9HSklbLMsUZ3uPGUaH9iwG6NqzB5cRWa4XScMrMrzpJYzpmxqmJtoOOQjGJTVzrm3W7zyccf/Y/+/b95HHvt3r5/Nqt4SWIAeRiHnHtATAr/6d/9u7/46tVf/d3fffLi06NHj293dx9+8HxVw7/4/X90tHjEkHf7vVYrpBgiioyaTFS8phjGvuswxlhIewBViFVVAXDOlnNGgVhXbTWrpO77PueRJl9K8/kgq/0SC634Px2qc//kMPTkIY8YDg9NVYn4QTciZW4YgmJ5cPfNCbgEMntfegCi/Fd0qcuS1DSnzIGLaxRBHsUsuwSEmXfb7Xw+jxx3621dVUw8pqQhEGPbNGm363Y7DJxVjAxAATmEqgKMg5w0s4tu9+3lu++++CDchP3tbWzkWWy6cbgcVGbVOMo4bJrV8uTp483dehyGHMNaRHX7AR3Nw2wQub1bPzk+OX908vrtxdf9y9VsdtK07/I+W3zKNVCisX8U2jHra5avNv35bL6CFQhKkhHpSoZud/XXHr14lCKt7Ccvv5qdnXzn7Nkptl+tr+7ymAXiydHt2GPq5gbvNfNmufj59buOQCKHivfdMDf86ORst9vcrW9iE/shK/Nnw3a7zcmi1GFr6W/9nb/9f/w//58u3l60J4+I43bMIBXVIbbxvdPlctiv78abAe4Gu3pzNXsUwp/+0T/JCljNhlGfnS2Xs1M26fody5jp+vxkNZ+H29sxYE2AjpDee4VN7+JhxcAE3kw+WsjMgNNk0rffdKDTAybQw/LF/eJU1Xlkh7OeS9CxECIwZ8pmB1qhThW3W0WXgmzqm90UFqUcNsU6mQBN3eeXADQgKRqWbynbwxyJIT9XS0VvqkjBy7mCLKi6niVwcBSUMIRIIjnGCAoyJkJEJIHi+JIki1veoHenqhMzGghxmnE43iBWbNCQfbDikloNHABcWk/F4EcyOvrC4bBRcxZvClVNJDsxC8q0sbRHVsZnYmY5pZwFgZo6IsJ6sxlS3u27fui9jqmqeH7+SFX8yVs50xnACFGRch6rKvrIyTmDiMDIIhJCDOGXFsCDUhWhAH1Ifh2pgiggIXkmmQXmPLX1VV0REyg7jDRrW89Hc0ci5zQxQ2iCZFHV2LZoVlXAFIzw+Pg4pzRKzh7Pm1LXdeO4fvV6RMDVculxifNZK6ox8Jhz0iyl4Mg5SYHocxZRPIzzlJJ7GlhGc7mPZVFkNk0529CPfTfoRHw+uMXgAxaCTsaeiHig3Pk/bBqJPgSBmHlMI2KxbQLwiYkaEACJqapmwyenj548fuaqoM3t+vPPfv78k/fbtt2s72QYDON+vYG2FpVxGEOMVV3XdbXtdmDaNDWgUeTAKCbcRNDMFNe77m7TVbOTLpFkdBG1mlIkBAgxAJL7//oy807ApxKOAk6GGrAf+25MSgRJJaVk0lQxRiRAMwk4opv0Fg64kZt4mvnCQAD3Va9iU9hUIjFGFRGRqopZxDxtBtEtKBSIA08abyQiMVFDkdw07e3Vze3dHTNnySGGnCSjknrZEsw0IHq7r6KMFCJHjSLiYj1iirHKOU3FqmM56ueQiMVQqYGJ1lU1DP3EOGFfikerIw8IC4iqEtsWDEWMiFRdwUpiMgVcSFVVacxpTJOYhN0+2CerAOBOx/fAGDMipSTO2CPCnBOglXEqTMfddCwjABpwYKe4JZVsiWLgQEk0lumYqOWu29V1tWhpyJux3wsAGTKhgu36oc942+0+/PT7/8Zf//e4Xd6sNy8+fvGbq+UXX/zkn/6Tf/b6m5d/7d/6leWsunqzQ2gl1EAsWc3M285hHHxjdF0nIsM4RA4ask75XFVdOYHan0LT1ACVD1olk4SoajnpQ5sfnOaV/u9iE4/oWSKqhpgB2Ix9EHlg8cM0CgCwKVoHEYirMJ1vD7h6qmVLI+SsKY3jMHocpH86S/J1WKSmKlWMdVu3MBORq+srQlws5v1+yCJJjck6giGPxojOWyUEd6WpuZk3/WZ7tbtb1PXQm2ZpV8uX337bgfzms++8b/Pf7y6+kmSG87aVNFBV0ax5s75ZNQsI/EYFpPsuLp/Go3W6GzRD189D/S6tmapVXcOw33XbVTz7sDn/LvQ/yNvbqK3RSLhV/WB+dLe+u0odVszAtdafbzYdN+eGz48e3UrfdUOsWmlnP7i7WJ6ePJZmHsJnw221nD2pm7y5ey/Gl9DtWC3DE4itwc1+UyE27SyTQrambTuAuzRCCBTDpu++fHdxcflGkNJ6L0mjcc+4wxyBMtqz80efnjc//OmXw3690fXv/Gt/NXzw3lnOghQTBJFVU2FTKeAQKwZKi9ZmDQBkpFqTqQoiihRe59SkupLQMfiJ5Tedy4dCyeVfKgpqNC01X0A05Vv5v30hiohkKQxf8pm905DB3WEnsMRUpjE2Ivl5dE8/mG4IADWdXp2YN26gzByYnLyECA++EYvJylTJwUTvIFQ1AiDAh6UbOGPXRCl4E86qMqbs3oRUbIScd8kGbhXNjrw/wEvd8LBEwYuoW+WqGPpmK37D981HYCIi4CLgL69YiwmKv8IQiLlOKRG5pEg5hJwzAsWAKWcPCvV7yAsmMCDmlGTv3lxZhnFg5lhVfd83bXNyeiySQkQzTEmQkCnkPE5na7BCNir86qlQFDNGDH4ZHArpgocgIrkEr1iPOPXLyQneiYqok+uBwJwNzRxjZOK6qf0PwYnGeaCAOLeGmNE8ghrdyZBjaAJLrOq69tWYUrq5vun2PQDc3t5eXl7Wdb1cLtu2RWYdzBm1OXnlk4dhdMAcALWwMNhZHu4KZQoZQNXIFE1z0qvLK89bvUcCJnQHAdy8jibK9mENH7rV+y+elg0AUAge+F5Xg6WsCpAVgilgCAxUmxmhCYds8OrbV93F1c9/+IPlojp+dH63vdtud/22G/oR376rZ23K+dGjR8vVql0s+n6naWjaGaMJyDAMoYpOu25iZcBX1++MQp/NOChgloyEFcVYsWpWn9qaPCxz/W1yKMurOmYWMRUUICBPCeTIqBDmbbsdpUSRmIkWzmkIIcTIHlFxuK0LtcoxXi31tYf5qcLETHKZggEgGgAZOIeDwNRdJ6oq5pzW6ztmNrDtbr9a5RhqUR3HMTAhusbHvEVJSfrUN3WIda1dN21btVD0Eg6sqomKhhD8xCJCzW4AqzFwWzemyYyy5Lu7u6ZuYoz+7GKMItmDtEpfpwaEhMFAfGuM4+gnIxNPa7IIVtxU4/Dhu644FJTJMExDYvC7/HA4g014PwAAMqFbHVVV7TWJmjo7UwTVjDnsu/7i4mJ5Pk+9RrdbB0yi+77vs93s+zA//Zv/rb/58t2mnR+d9fvVYhFj3N51X339elx3i/ns6fnZ12++6vt+JABSlTEYpDSquxdM4+BiTkh5xDGmMcYYYl1XRcQgIimNiAU0ZY5VjKYqYlKVDavTXHtC6QpDP4TgFaE3KinllBIAVlXFzO5POE0SHS4Xe4DtwTRH8+UGCMQ+ogRTTTkNQ59zLjkYfo2imZGC7PcbohACIbCIdPtdHaskWsW4XC5vbtcgVjd1XVWmqev2m+3aIAMweWAcEhLtu76jOGNIeVycPkbiz77+9oPT0w+Ozy677eX6+izOz4fqdr/btHVmSFnzeq11qNt2u9sT0YhwncdbzufNUUv0s/W7phpO5itew9123cwXH9dL3XYE+Xx5OjP6vL+9ktTO53Xd7HbdDea65ujwL1Ev9PPN+jYMv3v89P3zR/n2259evQ2Lo0Hy6ujker1tK2hj/enj995eXSbeHTXz95qqFvvm9mq+Ol5ETqbrbtcwP3r06O3NJRhFjptdwhgwhDELIL/47ve7JLurG7LQDx0qZlbRZMivr97BpdkIt91YHc1T2nz3L/1GWM4iCBKaIGUj0DEGq6qIoKr9stXzR7NfXKwRVc0l0+pIw0TKcQDQzXImQRFMp0yJIUSnJqgIISKXqtkPxD93lPuucyN5n+yqCSEGDn6mIAAim3ql7OB5ISyXSgfN1KXQ07jf+byHZgZKPJlNeRpgigBkaFQGSfDgw4US5W8yP2OxaC4MAAxBwdyMH5kLbGlmwIEiADMVHrSICIgqoALJlCleiHwASKRZoZjKFBgfSgQQ+oTYaShUhHWQJTOEwHTQlziAbwoGolb2ZM4ZgdOYVcsQCsomBVUTFUbKOfd97wO4lB39hn237/reinuJEyVgyOP7z5/FyH2/CSHknJDZ+dohhhhi1/cAWcVSykxYxnQAVYwTPigAkLMeSjRHLogLT9NPFCzwGDmAgv5XO/0YcEzj0HX9vjs5Og7Mk96wpFRYAefcDw8Nwf9vA+QY0eVYOM3qUdNU73rbhwB13RLRfr+/ubnZbDfLxXI2nyNRAFIFUJOc+6Hvu7HwH5kMQA3URNQHa0aGqiIKhqQ6BsTAeHd3m/ouLuZ5AjjvK/UH0M4BZy2SpWlshHivUp6WqJmZMaFRjNHqmLNmlb4fDEncy5iJmDd9/8c//PGqT7uLt5ucn7//yRdv3smw397evbu6ent5GTkeHx2dnp4+efz4aHWUxzT2/WI+X282WIW6nY1Dr5ZjrEzM2PZD3/UptkcJYj+kULl596imoub4n/fQ/lIP5NCHr79cvBYk05A0JcEkEiALINazptXrO45GSAwhB3RE1gmlaRwQkZhMFADdWslVDjC5klKpp80NM0yVkBExy8OyzIPLyJcGEfX9YGaz2Wy72w7D0HV9ddyioq+UnHMI7ixqMQQzHIsAjCUE9+3NOVvl7xeZuUwWELDiaGZSEkwNgAEwxjCTehy7MY1g0O27/X5/cnICAOM4xhDGcQxc+fEVKCK7708W00DsFOsYg4ga+Lqagskchp/2WhHQ4T0lCw4kGGa1fGjq/OhKWcCKYaKBYQYKDKqgREhqAijEnDUDoAJwiPt+vV5v7XQJQpFrRjLJY0r9kLfDcLfdP3/8nGN48vzpdpe2V5vj1ZKJl8uzv/ZX/53/7D/52/2ue3p2yvqF5iGHaCBoWQiAQJJw8GwQcAtN7xzRMKWBQ+AwDHVTV7WLuUKoUkopJcaD9g0QKUYichEiTp3VQYBy/6xc7sfMLsVy8JKZY7xnmEFRFZp7ZJi5f613dlOqHACaubFuznlIY9YEZkAIBkhkCISmiAGQIvukzm1fTDhjIqYQAnPMak0VQ1X14zDKsNmsh7SPwafkgp5pxNiPeTMOZ6slbdbXuw0whaq2ffrg2fOaq8/efvt6dfSd0/cW+/kf2vrVuDNE6fMM2tPZ/LrPRrysAqq9zftF0mMOdVXvdahheDpbXK9vunH/m/NnR/Ojz7rbL9cXDfCni9OZ7L/cbTRbFLtL26Mwf/7o0cXV7TankQPP6s2IX/a7HDRR9YZl0O3zenFkTNHepN17q/Zp5lzNXg93eTuc1YvvQvXh4slFGq6pXw+padrQ1t9evDs5O7U+ba5uKdanp6c3Y39zd3M8X3zno+83OPv7/+U/yCgIASpWFZHctCxGHdMtjlvCcbwO5/VHv/39QMECY4U+MGeA2mOXIQ8guQ367NERwTW49/C0UKYT+x4/dNUD4RRwiA7GF34iFNERlLpJ9HDuH/gNdj9SLVpZZDZCtcJvFhRPLAYmNAZkMUCHwSfGnxfbClqyocDHW74xy7wMC2/H6c7+e2Fqf5QoWAE2S1lGFMuo7b5WMXRN2SQ8PZR+OLXpqk5YVmdGM5QHgojEIauq+umpBdxAAhEAEzMs9vN+1ScDQwJNqsUB1n8OF9TWw+rRgVcWSVYS1pAw+H0gktUgxCi5jF1E1DyoO4uCjuW7MOcJ1ZtuYjMbch7HFGME4mEYwPTFxy/aWa02hBBEqu2uj1XTD70mS5KZSIEBQMzIKZROCSpaUDqUvFMeODs0VdiFDiObTQ/cGUWmhlyyWrOIgEIa0jiMTMz+3cjTrwNy80IA96tEM3efJLoPT/NSU9DttqfuDQABQgg5j7PZ/OzRo7Zu7u5ut5vtbrdbrk5CCAAMls0wZRWVLKKAhZuKCIBZtBAnim2TIbJIBsLANg7ddn23OlqMMi31KWvFpveXpoC8+xf2wCPRZxm/VKaro5gYQsC6oqBJFccREQyQiZkp55GJx3G47cf5yaPTk+Ofv3m7mLfrt+/Sft+0sxff/TTGGJHbulWg3a4jJs324x/+WdU0H3/n45xk0bSb3R6VTo5PhzRc31wjx1FMAggCm6qpSyADcRLJSUOMU41T5p6Has8nv6KKQAyh8PEIAJSpIjMiXqzm8O5OTNCQ1POLVSWHpvIpp3NxBP3tRkCyifzCU46Sb2FkAkCb0m98nu2dl88OQqAsOYTQ9912t6tnNRAbAjNkyZKlCjWgeh4CUcWhnH2hSIc0pxQCEzXjmLy7MKWpMSykNwPyd54oA5jTArOMQNpUdRoSMgHCdrdfLJeuCSi1r5ucA/os3IlN6CJPIgY3zZOclRgisxkguLCfD0JLmIgKIgagbgRQmjHEYpNo5XREhyYmuncpoSiaZlFjBkJQUHdVQzQkpMCpk81mh6I6pCGJSMqigDKMwzj0d9dXzz4YQOTNm6/rxVFkePXym+99+ptPHj2fV6t/efb7szg7auuGdJsSsCoIaiajppoxjmoGWFLPrLSyYKY5o2lWhXEc90R1XdV1U1WxilUdK5++HqxZJ0yufIgIT27sh65DVUOozJQZmeOhAPJQGmb3nEIzIA6opKziOt6cyHU0E1RfelLVLCmlbGaToH7anESIEBHADLPGUA4zAxPxYTqL5u1207Y1IRMjmO52myH3wGiEmhXAGIMjyRi4UxlAZ3V4vb7+5On7n9anl3fXP716d1pVZ/PVmkEqXFTz6uKWNKcqchXzmCPn1fxoN/YRolq6Tf3XmFM9n8dm2He7fvskHL04frbZ3HW0a5dH7Uiv7y5Ozh5/sjo/6pqt9F/tNtTOl+3Msu72KVY19WkVqhiDsvxoXH99tzkP8ezo0brbXu7uHi2OT49WQZrLq6sc6pPFEnH5prvbpu3Hjz44jc2XN+/+cHexqptIcbPfI1O/6+b1LDaNGl7f3Ni8mc1nkcOyPv3Lv/bsR//q519evYaK9pKqEANklHTXDzlgqOnpafxLv/nrf/TqzxZzDYIYwNAEFc1yYBIgNUMOwTTA+Ph0wayQhaiCQou7Txs9HNZ2iC5itl+mdKgq0H3yMzz4lsMhePgJh61OzIoATt/BQmIQVSfYGDMxGxio3HeQ9x5jhkg4qWz8eiiRCAg2UaChpDDChFkK+FWrXq3hYavAASIGIGItXzD9QeBJWUWwSuWjULxLzeeJB0TqZFWbFAfKQAJ2j4rpA9rTdIxDYcIa2uQWWA5uowLKGRAjoAJMJJDDH+67XZSIjFBEmcsEKiOK9kyVYHbQu2SuE5mZd06qSkgxBI4xG1xdXy2Xiw8//uDR2en65qrrdl3KH7WLfshf/OIXm7TlwHXTDGOf0ojIgGyAZirg5nT3oieaBlUh8J9bVIhoAA4biIjrmZ3AqGpZspiaaN/34zC6D5SzScr0zN+SSRiIh8oGkUtlhT468SZNAZidqWoq91zInDMitW0T+Kyuqs2u67u+bhsvjFUV1JDIULIoTuxv87rfDECx/MmEBMzEJjkNEOK7dy8/+OgDUzOy6RchER2EZgXTmex3D/tFH3h7HtqGqVJnAsQQECtWMyKKwYBFBdR8PiqWiRkErtZ3KfVA1bs3F9CPL569//jsBAF2Q7/erO9ubr789tViPq8ib7cbAPvudz99+/INBNpu98M4fvDBR5rk669evnx3sTh7ltRMlQNlkGAGZkQcmABqQEYqPiiHe+UAYh3ebkLKWU3FLCmMJqMpSVahIVaRKuyGscZWFMkNBCCHEAIHMJ32f2ltAAhQfUE5w/dQRD78h6oW1KcMs83HEwAWQtxuxr7r6rZt27Zp23Ho0pi2283xUYwcTMtMxJ0vCUAQmH17jpPtL09V7ATPqpaYGndMIKcEFX2oiCJC3TR9P6ROKVDX99vtdrlYMLOKxBhzTjFUTDElyTlHClyxmbjVpt/fPlXMOR/m4x4FdlCcPCis9dBjAICqTCJJ13i7ltu3RjnqH5wqTARuwZ9N1BIAIyGgAiIg397diSaAlBPkYoQ2w1gZB83vfvaTn//Vv/7fOZ6no9Oziiwgy5h//IOf/Gf/6X/+aDn/lY++c/3yy5Nlc5sMNTMpE3r9dkCtfIdOgixTS+YTrOI1YOM47Pd7RJy1s1nbur+PH30AcJhhHQ6iqT2bLEmJnGslcj+09UNyAorgcM7ygbenBMWw268llWzO4EQ1sOyE1KqqY2QAN+zmw1JxlgBkQUAREXBjMAshdvu+64Ep13WbU54jmKSu2ypkYBDLgTCYGzWhqSlRZ/J2ffPJcnFydNJvOpwthqw3u/X8+PTFhy8+u3z1s4tv2sXqtK63fXqXEoVK1PZjt5o/SopDv42EQHwJydLuRVx8sDrd3l7T2L339P0e+Sdvvr7oNx+cPH62aC926zdX0lL1SbUw4HeqEOOY893NXdM2j88f7+7WMvY92S0P70bIVD1TOKnqO5O7btMuW9jKvG2v91vZ6KPF6gMm7cd+v9MWVoQfNYu14DYlYEQOYzfSoMdHR69vrm+6XYxWx+p0fhRoUYX2t379t7/8L/5fSbKhGRmxmkkC2SrBsH98/uh/+7/6X/wH/4f/3U/+6T8NECpJGcCIHLjPxrUgR0AmTl3/+PTp8aK9vkwVV2o2hdGUc6TUBt5Oqxp5qIWSgo+uXTluUiLXyaZMGbPJs6nc7odb349IYlZRQwohOEdYstcQTBQfyqYOczdwrKkkIN6vTucg0NT4oxWutC/ryGzqKWP+vXB4YX6YGhgW+AcAyGzygMZfmpR5K8t0f6a7816MQUVNM4BMmjE8iCygXPNToWbmWWjebfjfoqqACIQgkzoLcCrLVNUPHQBU97jACZJ6MEPJE4QLhEEFEU1Uk9sMpuQDLudXHq4TRMoqKUvTtmqQUu66fbfZ/Mavf/9otby7uxvHIQQad3v1haZqACHyzd0dmNRV5acneNwHKj64FWwiKPDkmeskcHJQ0Ax0iimaCltAkyRjSr4Id93Q7XtGNygjRjQRxOJkjwzki0z9IuQpP8AYyKCwtRExGgIYBRLRXDyZoK7rvu+dwEyR67rOkgVwHEVFQgjT0I1RlIAJxSNpDRBceqbqPpP+W5HAIBtojPTo7OTm6p1qhunNchshMDhUPN78wVS3PSwQnUTPD/L4iIgEGIlAswmgGEBDxFUEZM0iWfxt6NLQ5VFDtSUy5EBMs9Xs+LRjurrb5v2wt3E7drub9aPlUaxbM5kvj9I4/OhHP14tVwZwc3t3dvZo2KW73TYj1sfHRFTFeq8GRIzMZKjuhONgB2dJ3jQf+hzfL67f8QvVQHNKpgkwG6Scu5yRjTLkqmnqNmyyNMygFkMgxkFTpOAaNzAPayfAktKJTutTYUYxCRh8AqJiquLEGh9XmTslanHwNLMYYt/3277jGGKMhJEDE0HO3X6/X8xWgbhpGgRLeVRLVeXsMeQQJBlNsbWIbjTm63HySCUERVBU9aXJ01XqeeDGzG07T9nEBMz2u/1ysTCneJeq12/oIhfNWSC4aaJQjGBWVxUgmmpR+BcL+8NpZVNNVk4b57RVVQVmwGCAoGqWiTjGGENIY5nWe0NGzKZAQEYgqoy+2hEIFVRVnKV0cXW963cRBJC4Coq4G4bb9ebLb19dXK1f//Tl3c3+k4++9/by6uXX3/zD/+r3/vD3f/j1F1dM1b/z1/9NFV22zfFqXq03ZApoBMCxck2Wd6KErGYIxOxEO4ewQCwDQSBShWEYmHmTt9vNLsZYVVVg5hAQqarKjMpH52Yle8jMqa7k+ytLMjUkVBED8C7rYankjyUruLuPgvpXiqqainswueOtaeRQV3E+n1dN7dws1xNPK9ZExPWiBjAMwygpUCBiFT+RMpqOY6qqer/b3d1cqoxQoYuvkSIZjWnEEA1x9ENyHLLOnjWry7dXP5WL88X8uG76NGx22yhwMWxChFOaP4/ztF9fk+KiGQa52W9nzSynYDkFwj3I5TA+5vo7uvjN4+df311+efu2rqqjs9PtbrezPG9nmtIv3r7+6Ml736tOj+rxj24vXo69VVWEVgQzkS7C9c1NRoC2FaKXYzIbX8zqj+ePv7q5+Oz2zXkzm8U6W7rqd4uw/A14xKif37758e27j58//6/Xz374+s2PupvZo+PONIDVAtvruz0Ir1qRZEN68uyTENshw8cff/qXfvU3N7n/4uLVRXedpK8CxBhzhj3wLfDnP/tqlRd/53//twLl0cQyeJgWiAmaESgSpkyicNziswVeXZhxsKETUjAlgci1ggmSmZKYBweQkKkagvgB495sMFUPU6chpurCLEBiZApM6DxiETEwJ83RwVoXNIuY5hBCDMHdvXiyuwBE85rGGCefVAAz1MKNJvCAFpjGumDg+RklJAoQTN0oyAwQeUr2BisaK5tGYFCc/iauiX9eHYqyCXJABFC36E/JSoxp8Yko97CfGZ73qFrGZUxEOhU9pgogpj4nViMBlawBKYsERJNMTMTeTyIRBqIkSVXReYdlX0EIFQCMY3aMWiSD28KiAbFbv4mCmXh4hJUhGtUhasjMkEfZbLdd18VA3//V7zw/f+/y8npsln26uf3m82G4e/b0AyImNtGxbaKMyIABQ0AyNXUrDlVSZX/EJVinMKtoYtF7yUaIbkltahjYJkxuYm5hyrkfRwxsjFQx1yygiBTYZVOMCKbCk5u9mRq6TSUCgNi9CayaoKlkBTQorvmQUqqqKmfZDX1jDqPXBkg85KQAbhiuBgKoQD5WATb/FQbkukQC9OUEKmIqonm5mNV1fHPxbhxHBCZiN13yGpeYzTQwO5TuIb76YNqFkyv0wUmynMWqpopMiogUADAERQVAFEVkIOZYZwiETFKF/X5rzIAmOd8Mwx7xXT9UzMC8N3r69Omz1TEQ3q3vrq+uAfHR+ePH54+J6VnOu/X67etvFsfH7ckZtksKNRFQEkHg6FF0FOtKzIZxVO2J2RHHUsYZELMr73C6cgAg1ExoLEg5Gs6hPUZEgqrhdtUstnd3IYAFFLeZxqmq8ARlIy3lhqK/3abgZj9aJjiAaJgNTcytCcignCExVv7ygdiAdvt9HnU2a+uqYiRDmDezPObtuN/vN8xIFEPkcdQhZ1VDwrqqCYCrKiXMMoyjmKIIiCiiikygjxvFmACqc5WIqcLKIUA/Geo6rnC+3u7FrOvTvhtXy0UaB0b04A7Xk3JgbzJ94ChugYFoiGnIAMYhuFmrl4lqwBwcrshJiIiJ1AA9fVnVJj9lz/EQEeZQzBH9HHXIlkhFKSAYpnE0wMCByIrFjmZEY64327S+62Z5iFwFAlG52203fb9e383bVobb//V/8L/5b/67/73/23/y//yX/+r3by7ezusz1XjStpu++yd/9K8uXr1Zd3uAIRiMGSkEJy0V7Ep18tC2csgzm6kRgLJLdEUViaVwvXVMYz8MwTPYAdwmlKgY88I9V6wsHwBz9RcR5UGYyFTd4Nv7qpQljckDgHJOnm3sy6mQPQhhckQkosC4mM1mdRuryMGL15zGkZiYgyPuKqJmoErEGGIkBvAknlQF1pBVR1NNY95t7sZxj5G8KAWADC63BvZ4OVMNIXG4GPq51U076y0z87Kdv7t4+frly+Xx0erk0cV211Q65/qD9ijJfo+USIZhh2BtU+e92NC385qDXQ77NVQfnhxVOn7x+pvnZ+cfrh7t4+zzu4ujrjtW/u6T9+/W693ZbA72gVoPucMqR84G37571x7N6qPjvN/rmBU5B74iO4oVbcZFvVinu5vdHTXtKePZbBH3+1w3q2Z+HuZXWdebvXV2XsXfefTsj9bvRoJYtZ3q5X67rxGEK8AWa87YbzuGMK9Ofv3Tv5zRPh22X7z94tt3X13evJYsdag01i9f3/6P/+f/y0cnR/PFkxBNgFj9vmMEQ5EMqlbVGVmpnlF6cdr8+ItduX6wRIcHiIak7nULJb4dpCDxxm5SjM6LcKmA7zQkAMu+kcCHBFgAEBdqMRMjqQEbOSYjLl4FiCEE4pwGUA3EKgkBJ3AHAUotTVRm2EhooIjTILYwtEtKdKT7ohtKwQLOH3Q42hhKJJiVbhwREUwNDNX9RthnbWqBQ+Bqgne843duOHnwWRaxrCGwmKhklUzklJWCoJkqGmqBQhyKUnG/OFAgBkOPNEXTmn2a4wFp7DWSWkaySZJQyFV+Vvg0bRqvUJZkONGcKFjOZmXruioBwBzVms/aQVLXD6ooSU9Ozs6Ojm4vbzDHtmpnq/j+hx90G2zrFgCqKuZxTJJVMgBSwEBRTSgA33snOdn0gf2GCBIFIn9ebkLgc0IjQ7OStWWFuYkAOaUhpz6PgyQlNRTiMLk3+UgFRSVEnjDFDBSZPBJep6FBKfU4EIICoBefIQRVG8cs3syZuHSxqiMh5CApSzYhBiSgwAwgqt4Wg4KCqYlbh/otq6bgMCdoFcNut/v8F7/YbLbL43MzUynJRQSUcmZ3klIEAAaQqeY7wPX2gC2E90lhZY0CMQIxoaoFQAMb1dxgTduac4iR9vtusVymnAAgA2CqFbQHtrpKaairUyZ4++6CAnd9f/bk2bPn780Xi/1+Nw79m4t333z15dFyMVvM90Bj0ooCIsWAoBAYcoYkEgEkZ9XiNENwT3LK2doYgBHQYgyqmTmqWi/9kDrLRtp2fXWxpTpWMVRoYVnNWtyAZacxAwAyMjteQZEDIozOO0UDMsvKCAwEhoSoWZEBAxEjBTCHVAFEs6ogGmJtBoiGzLvdrh9SXVWzpq1jCEyillDbph6HoR/2TVtzgEAcqypYNYzddrvFmRFziBERQgiuYk5J6trva0V042Y0lQI8ME9cyeJ9gIgiSmQxzhVos+v2u93N7d3R6giBp8IOOAYxMcjEAcX3tdeRZohZNHBUyaIWA5mBmCIzAVsulT8a1CECQMriZOisaljAbSIkCiIiWU2FCJmDaz8MwNTE1N0+UFHMUEpwqCVBR+O42nbSjzYDVoFsOcRQVc0yxl/99Luv396eHx39s3/+h//R3/17EmbLk1lz9NSgHvb9Tbf+8ec/v95cXLx9ud7uga0iMQ0ZUFKeoGIwNUUffYLk7IRvRDAxAxdXUohBSUfJouoRjN5mjGlEQskjIDAxEJm5soQ9fodctWGmiIPzdRDRFAlSHpkYDRRBRGKsTEARALOzv5mQiDgE78SZvc2jEAITVcyGMAxDkBBCQAAf5oOimUoS9TE/oeaMqn7rgZlmBZAANlrOeRyGPo2JGM3ARAGDIRgQoHHwz1pABIAh0ttxXLF8cnI6H/q7zaafj3lW3a33w5DqOJ8H2fTD8nj1uJ6tN/LV7QbbqmqqYeii2bxpsqkmbebNCOPn3V1K4/HR8YvnL/qbuw42HEPD8e729smT9xfNIu3GH7366uPz808fnTUy/MntVd/OtklHQOlzO2tjBdLtF20lqJvRfvzu6tNm9bSZPYF82992dzffffTee4vj3Wb/xetv1rPjD0+fHMnyJ2++uqg333v2wYmE/Wz1083tDtMN2r4hAgspn82WYITADJgH2fep2yISLMLy19/79Y8fv3hz9erlu1e32zvId6NWG55DJq7nAbEEpDtAA05XIVMRdHtksPfffxL/9KcKQ1W1KXfMjFHHLISoIAbAh7kDIhK5zksRjZB9buQ85mI0DAjok4kJ1LWc5QD1k1+EZsWpxwqBIFYxxogIJSzUDB1ALt6a8P/7MZ25zn4mD1d36ROAYQwOeovzQNR9eRgQzAQRAhy8HAxLlWbg56vAPVHQ4PDrD7UMyBTLPGn+C9g/jbFxqqcO0gMAEJ2yLyas4tD5ZxFVI6ZhGKInM/CBrgiBAwLknJEnrrVPxUrcqZXkr8lZ361IDEQti+bDsAwg+7f4jRurWhHHblRlyVnEHp+fr2/v3r26Jmy5bp6+OFnNThszprCYtes3d4vZPPWZOcRQE3leKKADTuDOijrx6O+fmE0+UojkCmQo0yR03b+YimQXV6lKSrnvOjBr2zogac5UMZGJJASaOqiAiCklLzSnnuzefO/w5HHiTqtCVVW+PLz6MbNxzJgw1hopVqECyq5sDDESEYKiBzA4XuUsaCA7iANcIgiQ87hsmipUiPL27duLy8vT8+e73baqIisDqogwsYrr09yt3LT4bN/7IuIvqVTswAoqo6UiRfHiPuNDrrRBVVUAdRXbum5cVrnbLfb7XZZUV0OsKgCoCePYq5GYVNWc5qur7fjt5bfjmI6Wi6vt+NXbm0/mR+/WPR/Njk5WzKxAIYApuOWM30DMrOajQg9OKqNeb4nNjNhjMSBnUU1D3u27jSJaqC6u9zfrxEiE0LbzPiUMZCwEyBBNgW2ijjJ7Ilj5mcVnF5DItODBxAFAVYSYmNjIKwZv0hgAcs5eX6vIfr9PY1ot5lWsTPMogojMoW6aquu7buz7jgOHSO5hrZbHcdj3fYwBCuISDN1Yq4oxTB4fqKpYDN/DYeSBiG4vAgAlvwvRwNq27YeRiLp9t95sjpfLvtsjmQfHep9VQNOsWPI70YmPgVkRVVLKmQMffjsTgrHf8Z6OVw4QcgNSZWQAUlM0qGIjKoeD/bDSiIgJUQzJ0egsJsxEiEpIHHIeDXG32w9pwBZTl0ygCZGogpyqKiznUoeb09X8Lz96LM3iJ7/4ogNKQ08QONTfXG22SSRJbJY1cbfphkGqpgWClEc/DJHuKTsqGRCQIAQyUKIgzphUTf3QNHX2h+wmnKJmhkZiAgBGXkKUHSQiCEDEhYBJGIJvZWMiRGOiyJw0zWbzYRhCYBFr2jZy1CxVXfn7GEJAdIuHiIheYCEigaWUXKHT9Z1kmQSe/eEEVgTiaJo9tQAPXayaqZhZSqOquna+vOGu80BgYhNxvJOZALQzkQrXlpLpgqtvxl2Hu9P5cnZ0dNvtHw3V8/boRne73cZm7VlT7a1+J8kCJzTrB57xbLXabNYyZGD8Ou+F7XfS8Yfzs1fb8Qd3r89OT35j8eQt3n01rpeWZov2bBhyEjidH+/DEW3e7Lc6mxEEENlvtienxy3Hfd8Lk6pqVX+rfdrn56H6tD5nGvpt6mPWUU/a5QD6Svczww/Pzr/p774dblnxab1ctavfe/v1OENDfR7mCwMzW6vuh+HV5ZtIzdilEXoGUrFhTBSrp08+Wa7eX/d3n739072shVWNj2arIOLeGAhW7kSfSLnGCU3y2D85W54d0ZurPdWryGaQPGbbjDlnM8goAgKmDAzEMCWCTqAilELGik+c0j0DHyYY/8/fiC5zRVLNqgIIYSK+2QTK+rdrSTmFQxnx8AfadFdMdd79KJyIRcQbslIhGBoaoCL4kD4RErOXRHioqRTQJjVZeQFuTOQ0TLRpiFYy2O8J4ACuojx8EqfCCkxdJ++LW1R8VPfgL3VW8phzXh0fMVFKqaor/8Wu70jjWDWRiME81KzM+73MRURVcxcv5NKzaXFfLP/2s7jMxcGMUEH6NCYRkT6QtI1dX35tOXCcD3ew694AZbI4a2dtCLOqRoDAQVXUJIuxIjFyQHMH2/IQPYmwFLKH8hERSjKBqvOYAS07NUfdxRq9CNjv90z09P3nX3/9ZdfvT3E1jikGRECm6AJjQhAtjsvMjMiqJjkdoIjydnqN5qJANSIGEACqImVVD8RQVVHSyhhYPPPC0P3ujJAIOEQDU1ATVQAtzDQf8COAgAqp1TFwADLc7PcXF29/5VddeYvE7Libh7JMerLC25hqZfxzCxsmzhw8tFTG+71wYMWyWyUx5ySqRpHNQEuGHTmtMi9yXdVIGAmrlPr5pht6EdmpRIiLxx+cBGqbZn7+pD45n7fNfLmIi1XdLpNk4ogCCBJiJDZiijFo6abgcLiXS5ooBC4PfCKqqWrOKasooFIQbEJsq7pFtWQGASlWg6RAk+umbz0RsOLRoC67Kc+dVNUEcArxJgpjGkTFzG2HIgIBFKdQmOLe+n4Yx1RVsa7qLBnNQmA1VVH3GTOTcRzjMNQhMiKAtm0bY0hp7LpuHIe2nVVVDYbkNcHU0kAhOxIVJ/tp1FLU2e65ah7WAOhrbxDNOY03N9fL2cwA0ACZSpgPgcFUJJd3EtHIphR0QHaas4iqiSiEEIn9jtRhzE1T+yHgAc8EKFmIEdTEjIBU1IduxQURkRBjjFmyTF7mDhgTMaAebKOZQz9u9l2X6phFamoQmSnOYgOIhDGPZsivbtZ/9vVXOuyShbqZI9ZJQQF2SYcuwX5kDP1gAI1mSjL4hjiscK+kk2nx31Iwg5xHNetFmAMijuNoU0snImpWnDvwcDWYTFnRIQSf/TVVvVgumbFuQ13Fu/Xtcjbruq5pmiqGMQ1V3YRY1VVtYEhBFcGgruucZRgGooOcFsaxEODAtO86ET1Ychfu0RQP7LtAVIkLKFRKHH/3tDC8XQSDxYQKaFI4Ozo34RlmYEBYcUVmr/OeNpfPuLVZO+burh+Wi0WTxn7oj2fLs9ny5eXrTvYnR8fvz1f59vI27amKdQBJiebtbDa7vb2iGGYnZ7d999PNJSWJgk9WZ33faw112+xub291+xde/Mp5e/zFzauXr76ZVYuT5fHZ9u5abStDRQECb3abVb1AxZwyIkLEndn1ODyN7fNqeXpUfXbx8qdff/PhB++/d3L69ub6s5dffHj+5PFy9V6NP3v99ez45OnJI8p2uly8He5mgV80i6dt+5MvPqfm+Lrb/uCnPz49ejSr5hQpeZ1AISvkDgnao0XzazN4t311cXN10i4/PnsWzOkZRAjo/H+/4XPOzBQQTPJy3r73pPn27d0YHqNxzgkIQqxAjIAFTJxbYSAiDIgG4um4WAodn1AJAmrhM5ST2pEb0dJ+TR3GAUvyrgimmEMRcXUD/rnsiweU58PHw3bZB1im5HxhQueeTdUAePPuVBv1mV65n9E8a7Q40BiYCqCVOdGUdG0GeTwYRCIGBAyEVs6LXCCWh8jH/cv34mOihz+8w0qBBcX4WFXHMRHRcrmsm8YrMDdL91IphGCmIkAYQErZhw/mX/7BzKLJCtbtYxRARFSUKdLPO8J92hvZkHdd1xPIYgGRtjfXt5jZrDZs764TBmji4uVuCE29bOdJdDmfS845J3f5KjZ1hjGEwJX7JBFRsVGZktdKrwnWD71ZyTkSAwGykqEChpokd33f9/vz88dPzs9/+Kd/MnbbF8+f55QVVdWoiYimmh14iZMG+z4J5EGJTERIRkjAlpOKGBEjEjOomgzj4R1RgXFIkdUQi+1lFlXnKXNgMgCBLAZY7MjLmkT3ywarm6ZtG7e3Hvv+9ctXPtnLklgocCRPIylRasAE7KblD9gPh/dxqmjv/aNtEq/5X3cwDfJV5rX1ZCDkHFj1lFTGaLV5wVR2nySezWG3N8RQVbP5LMaq7/a95Pp4+et/5ek49l63DSlnw0Uzh5RQlDkiTrFKiAioIsgB0RnwoYxdCTigln3vfN7okgeFPApmoIBxML/Rhbni2KJbn2cQK/jP1KkTmjFAkUGWXoRLRIz4O2hEVGxEAQDksAgMkBCZuR/G3baTrLN2EetKUg6B6roe0yg5mQETh0CIkHPOKhwZQdH97iEiwDD2XbdX1bpuYuT9dsuBimAQwCsJlzgAFCsjAiailMbs4bNZc8oKNkru+34cegC8vbk+Oz5aLZb9MCCw2xQxkhFQrEyTZgciy1QbzOkAKM4hMw0UCEwkm6qCMDEjqokn6LhEFBHBlDEaRT+oXcyWc3YuG+hoACKGGJBAzRiJiM3EnH/lsu0sSJRFxpyQG9FkZCJqyMhR0tiE+sNnT9979uy2645+8IOLdf/5V28ubzfrbqfAoYm3m9HUJMu42z5+8v7i6PG333xbNU5w8mXj8M/BTwGgWHvYmOTo6MQMhrGrq6qpajO7uLg4Ojo6OXns8cmA5l+s7pQ++Y42TePb59mTp48enYuOdc0m+ZMXH52cHM3adjZruq7b77v15u745DRQ7NN4u17vd6PX8f3Q7Xd7A0hp8EnAmAa/7BEADHTClZl5Npt5LLSj02CWJSfNlkYqw34iKLiBd6duqWVmgCgqpXw3r4YMfBxXHFktxthiwKTrCBvbbQC+e3TCN3iTuiqNT5enb9fX39y+fTY7OTs7uRrutpv1qmq/V62+GtYb0aqphyQ365vVfLWcL8c8YLIM/HPsd9s3/43zj36dqpfXr//l9Tcn88V3lo/f6XCxWQs2KcaL25uGeB6XH81OZHud2TIbV9ztuzzI0fwIdv2QhzymJkQhuxmHIa6262FeLe5QXvZbMgSR9x6d3/ZrjnZMzW88eXGx2/3w7Stp66aKL+qT3W5b7fcnTfs0xq1ljTSArIdhyDhr5lT0RmRqY0qiOQjWNqt28w+WR7/2wYsns6PgHDJ17IMwAJqaZkVDy5kDA+SA6eOPjv705zcqiZTRKFkGlYgUOSQ0MWA/s9UAIGtWMUdlJ0qJ4xzuCkOK6mb2pJPgaBIBehOMWDJ1DyVRmZgW1n1xhdYpa/fPgUkHo2Q4ZCo5VQgVHC0kBLAxi2RDF2p4EVVYS4iAgOyMC7cvh6IXBQBUBUMl85E4OgF2HIvrfMoChV5HasU3Aich5QOdfPBDsLz2Sb96QDpg6pH9V7vTkqOp4DMvQlUldNFRoROICKIhP6x+3I1IsEhjtCiu4IDB6OFZ2YGn5ZImovXdRjO1cdZtrs5Olx88Oc3jnSRTQTPps6Q05nEg0f2dru8YqcoGhkgKzBzCHDkys0rptg8F6+H99cupPFwAhDLdSCm5mYp/8ZhSFtl3+64fVGA+mzd1PD05GoY9koWKmQERYiAiB8MB7P4X+UKgB6Vzab29IYcSheYEIAAIobwr/vQclDJDVR0l9f0wpoSIIu7AaQUBIgAkUisYuwqoEpiJtItZIJI0ujf4t9++7PueiEw0p+xqFsUC5lEhVTOWBD07LGaaFGE06ekOVc4vdQUT0QomgqeZMYUJKwJEnDxtD/li5FSV/TC27WIWas/jyET9MCoQh3qfNTIYVm6RbGQhsiKKGXHw9VzWkvoUD5jITecOFRsAeJWJiIglrSUNNvSWRjMkJRRUlVSF2oNnAYMJZyOfiwUKIQTJ2R+5o9iIRKYyNVEUmIAAgpkZUAiYJZup66d8CK+qCGQKaczr9Wa/39d1zRRUwRSyCuLg8RoKGkKIsTIzMx3HIUYux5QZEM2Xi1aa3a7bbDZu4kpME8JUzijHdzEU+YQRKJqaZAMF8+YDPNLLJRVogTmlfH17uzo6IiIiPPjXmCoTGwaFklfuXh7AlLXEN4pT451Hh4gMkUNKnidtxFTM5V14aG5eyqYgqsQ4jmMIAUqLgqqacw6ByW9ZQEbKpjkroSFT1pzNAqIBrLd7fXxshuM4MLGhWRKTLEOatQ0ArRZnJ7/7b4paP9pnX7/6wWdffP3u+tX1LVdRDPf7fn7y6H/yP/2fff7zr//D/8t/WCMToylMsbaHDBkJIbSzNuckkn/1e7/S7bubmxvT8PTJk8Dh+vq6qqq2aVerVdd1OefAwTFfIicSIBNVVajq6Fr5tq2zjMPQz5qTLkkILVMTQ5MGGDoliGBxc9etNxf7rttsttvdzieqyXn9JbIJskjOSbUQsXOWEIJfCqa22W6wiCDAiat+1BCTSxrBzEFob9dTSgfgzbT4vQJ4x2UEiGrExEhpAklVDLJpxSngBebzYTjjhkJIKY81LhfLd5eXV9XueDGb53iVdqfcfq959Kya/cn27WvpxophnxLHeTu3ve26HgPXodlQ/lf91V9oTiuOodfA+vTxqe3WP333+tVq1jTN0dHZ2/1aQj2j6oPVSSP9S+269e2inu/F1n1/1Mz1tmsrrkKoqniX8j+8/vqTZvVpu/r+8fLnb7786durX/3ko3Ouri7l29cv++fvP5+dnmf+wdU3+7w/q5fPT45vd91+t8mz5v3l8Vf9vg8KMQiTcd0lRoVZ06hlQA2Mkodxn99989XRcvnRBy+erR6dtrNg0zWIaFTS2t0ch0XERADVtPvovdXZiq9vJYQIEjPqKImIKzT2lhqMCSmwFR6oknMViXzqVEg/REAlhxkmo5cij/KfYvaQ++IXpJcOPp1BnHIVJs7QoZu/7+z/PBjkm/2+75fsqcJm5tnX6O7LSOSzIZiiMAD44bQOAMCncqKlTS+ePuqoCRW6p5sKJhc2+/f68vX/9MLD/0C3o1W7x8nlwMgpniXTyAbRDERku9ulNBLX92gZoivHvGqB8hRsekpIhCLu6Z4ATOxeyTnFhMEBnr1P3RBEqKIRaGqZ3zs/OZnx3TByxczYd3nR1Ko8jt2YpcrQS8oqeVBE6rqhrlttA0IFiqrABMV2p9QlBx7Yw7ucDqR1B/wmloYMw9CPQz/0WYw5pGGoq+Yv/IXfePf2DRIwceCgCjFGYlI14qCSc8pUGBKFGeNP7AFA4i5K7AQpnBhaImoAB9UrBwaPpc5513X7rk/jaOYgdFm8QEDIBJhNPZoHTU0FwWIMbVWD5JwTxVDX9eXlxXazWaxWZeGrZtUYo68zETUFiIgPyCIPK9oDhH745GG/HEqfw9L1irvsFzcuL2J7OPipePKGGZppVdWj2K4b2tnM1MwEmVPK5ooVRCBSpJxG5khkY8o562zWlOpqYlaREZJXjX5Y3788uIeyIKVRBXKybpv6YQR3gCMVFQFiYDBgCAwxUATNBhiICTGbIaCK5pSQiRlhouuNaSQKRRwEBgpI6NcGUVAxNQ0hIHrKFfVj6vYdACwWC8KiSLecvZRRADdsmTavDEMfAhfLnxBEJKuiQds2IprS6LHqvtJSGmOs/G1KKYkJIoJTgXznuvAIERkDRSauLO72m3rKPN9sNvuuC3RPKFTVNCYLCoCmisXfGa1YWXnUF2YRNDQnLXpGLJNKxgIXUUHvDQCFOaJNdCIkJDjEvBABou+F0rmoKiEzkxiJZu/xJLtnBxGFy4vb/vljBAQ1dxbr+x25kQkihzDkNI+hRZCgx7/68Scfv/h7//if/eLLL9vVsRiN/YCz+v/6t/6j9brztkXV+dwcAjkd0NdP0zSPzs733a7vd4vFIo1jYN6NeegHnvHt7a2qDn33+uXLm9tbBFAVZAME5sJYRUIOfIgvvL65DiHEGK81mOqPfvSzs7OT7frOZ21d34tqqKKZ9f0oIjGWCFXfSsMw5DxSGSMUZxMDKCQhAQ9sLgOv6WYxRGSKRDHE0iJObi+Si7G4iDirOkH2gcREOkQ2Qw8GZwzGmUBVk6eSqQQNI8Kr/d3joyePiN6sL1/fXZ0vjx6fHL/d3iLkk1jNlkdh38Uqv9/M18P8dX9Jy9l8tRj7FMYuhipmQOSacQfy4+EWU/pLyye/tli+vHj71c3lKFbPZ1/l/WqEs2Yxz7PNZr14/OyUgu7z9TAAoOUUYhz7Pmv8+PGz/e62y2Nm6vPY1VZRf07z47v0nJYXC3r97o3NV4tYffD4+RfddrtNjcTjx+fDbpNTks1uaSwEhKigFLCeBWDtx47rNkCNRqMZAwbmpmqOVm0d+OPTx0fz2eJ49tVXP/2Dbz8PMFnT+JRBwJhYzFCNOSCCikruHq2W331x9s8vb6v2yZjECDmgqmo2DBHRCmPDWA2IKCJNbasPZyGEAGpJhazQknGibZpnNfhZAGDFidAnPxZCIC54jy8CK4FQLlVQ5ns2a7kSpkqo/Ey/84ym68G/TMEMkbIagniTaoQOOKoIgBEFAwR0iamfWTBhNniwTAzEKsXxWlV9yKAmgBaYzQTAdf+OLvjZUfrvlO7pQYcXPBVbKJJFCtnI2f8i+fC4ih8MBUQ09zoCgMnM1MsIm8q+wz/Q4aaJC0VEzKEEjxTQzrW7/mVsgqQ47LfPThd/4VdfoNy0Z3MAMwFtaBz6/dBTGBklMFUW9qMQghpYkqG/01SbLVISDlFV2FOqmbVoYbyAK5iww72A5AaMqs7OgZzFkFJOXd8jsFoCxq7bbzfb5Xyx+PgTkVRVESn4M0BEZnSFBZqJlDkgljUjUxmNh6lTFuuH0QxyVucBiIipctHqo6pmy8M47rt9PwzjmAiDESaxSZmMjKxgTtJn9J8MYgoIs3ZmJllzUQAgXby7vLy6On30qB96xmLt4zXBoeTCX+a02QM+mU0T1cNErLSPRF4bqerUORwcbynnVEwTDNUMUJkxjWVNOn5ETEisObVt5Q2R7+IqOnFHsWQIWKwqVVPJOIGXvm4NlDlqPlzVIqJt2zJz1/XTGEgQywxaRJzsEplAhSZ3u2IbrwhMq+V86HaIikhGUM9nkg0MQxPGYaQwubkAogEZcojmVhLICD6rIg7BmTd+DoioG2Q0dXO3Xu/33dHxEUybhJnZEVmzEOlQuk154MXTSFW94BMRUjXAuq4RcbPZ5iRuOzSOYwh+UpmqeBydD6xzyiFEP7f8hwePMUacN81WxI9oZr68uHj23nvd0Nch+gvgwAYQGImqlDMDMPEwZi/W/NyrYhxzArU6sCG4e0LV1F46j2kMIRIRGgamnH/Jc9zM40VZJNvk3aoqkm1SXPrArpylKWcnyAFAzjAkRGxSGppIY7/NIFChASuEJNmMVCmbkUFK+cdffP6f//4/+eFXrxCrzWaTFIFiv7v78R//c+CaqjplRkIiLpcNYt02hAgE508eP33y9Kc//8nVzU3/ox82VW1qMYbLy8tD0sBmuxHJYO4OwMTh4VbydmscR99WrjgLIWw3vT+x2/XN2PdZxipUhkBE1kNOikTMlPbDoXfKOSO60aIaYoj3kaseketf6R5FiDhOFlll84pmSr4nyvlMlKRwINmT3XzJOU3TmWDlDwEGBsAqIoMMWYZIXEfuoRqkquPI+k3afwDVrGpu0ni3Wz+aLR5Vs2Hoqvn8t/j4cnP547uXT9uTp6H+rXj6WbcZltUAedyn8+Xps8Vst+8vhl0ftK3q133/kclH2tJ8/sfd5Sq2i/n8qIddNwSIj2erjpvN3c0YwqKuvlMvvxjubjHDIMdxFcBY0mox2/Z533cLDEuqbofuHwxf/ZV49jtH58/D6Q9ef/7z7s2vPHtx2iyub+zPuhs6Wp7D8pPF+dV+/fbm8sOzs0dhcfHmHZ8tJcg4bGixXK5O+u0+xkoyiECIbGDMkQkXi6OTk0VlEOr08uLlD7/8cSAKIgkAOAQmR9HMDMjcssaADFWs2//F77/4sx//yb6/49gWL44syRz7mLgkRq7vcuYMx5gPAoecwcAxYZBfYjEfmhU3jwI/98AkZyKahM8lM/VwDE1Ivwd1wYQf4HR8wS8vbgVJjs0U+yHilDKAA+dYYMTDrYuIWCSNfmD58nLWz2HnKJYcxaxZVQGNCNmBNPJGTFxyy+xW9V6lsfOv/WxlrwI916NIzcogT1TA06qBbEi+Q5g5huBSDGTKIpYTwZQhWu5F54Wg/ymH2Za/gJyzw6fTCMxHBnagW/nAQkXVMmgiyKj77774ztkShn1SUnJNL1qe2SpFxUoMxkybQTfboc+WswXAYeTIFkwyEiLWVQ3FjPvwi7ytLrQ9RBLJXuQ5Dud2YQAw9kNKo6iEEMgojWPXU9/vQ2yqqiICVQtEnjiRJZsZkiGAlOg6ciDMLTcOp7y/a6owjGnoRqfb+6SykA1zUtGcxcGzlFNKeQI4UFRzTgAAjg2YimZ3ktLsin4hsMBcxaCaTMQMZAAKcb/rv/rqq+99/3s4UeP9aCuL5IF48FAW+4r3o9ke6L8O9RxPMIB/6C9LxlSzo35mnv5hqkJIVV0BGBYHhYzoeSzGhFR42ApO/UckK77nMcacnWYcAEEmi2dEyzn3ZmlMRMXwKUYkwpwTEfg4wJsdR4bESzcQpsylPiPIxCGSIQEyYlPHpg0pZSBGIzWbehVjDkSQRZEoEiuopDwtrwCAIiZmIJ6o6sGoZabMTG3b3t7ebjfrWId21oTAPhV3GaA/WC/XHBVIYzJTURnTGKuqqqIZqAiUXKkDRZeHfvTxt4NG6AoJp8WDux8RYhlP+3t3f8qRzZfzqq76fhhHSinfrtfz5fLs5KTrOld9+v4xNbWSFofsJ74/5NITMrN5VIZTqvx1lEVBkwL3cKyKARWXLCyVgZlySZsyvyy8hxTRyckKXI+WJKkoB0BEURwzxlARmWlSyJoB1AIHpdAr96Ny3W73+f/zD//Zf/FPf3+bzeJ8RINYYS4CPQwMiISipmiMhiIFKnbq+mw2v7292+122+2uinXf9WlIZiYyiggeJgoIxOw6GDFxoAsejIxVdRiGlJJpUdWM42iEoKaq49g/f/7esyePb+/Wd+s7Px3ARWSSyF1PirmllTJXMwKSa6JNS2IJepPMh37e/9N/Hbm5nRqhW9qDSE7JDoNjm3gCxKyucvT9DmAElkVNK67cuTEwC7ESNk0FQxJVQft6f8dxdlq35zi/3Vwpxw+qBcZZ2gzjbIx1Rd32Gm7fO3v6PZsPV+kX2z0AVU27G/bz2QzM6hAYaGa4Y/iD9bt33CJTrNpbzWByFKpaacipn9uCGnq3u8XewvykbtUk7DZDXVeRaqDru6tQ0WLRhCw1clLZmRjDL3TbDuHZBp4tzwG7V5eXN/N+J3ZydPpmu91UsVqtmirmptr23fO2rmJ9rTpA+urLn/zG97+Xc/78s88fnT47Wp5AELEqJ6tj3caljtWoGAnT0DPS6vQ4OBfMCwkBvwsDACNOWVSGaGDD+Ozk0UfP25/8Yodh5pIeIhMh85BjsmxAJoQhohvNmU32msxsBetDyZnuTZD1ULh4+WRWug9TV8ny4cseVjaHyZcZ2YPZ1vTT4OGHld4fffCCpB4sd+DuebolTG2Zt4gqJiDZcggBDU0B8GC6Xz64lBSGWpLAnW3sfF2anMMA7mW3UDQafOADufPVw3KkJO8I+gTNpe9ZSkqXn5WTspvAVI2c8CUlLYSYo5/gfv46Efvhlcm+f8AFWVp8xdCFKsEjplVzSoPpmMeujfnF+ycRO8URmAhRKGVNkZQjJgE0NrKWlWZhASTZhjZ2gwiaWXIeBk7Ks2LVc4/noz8Kp5eK+lymgGSqIqo5Z0AyhZSzgeUsKtb3Q1VxCI4nYd8P5OMTAxU1MiYot3rOiKygksvjhUOsBFnOtt/tvCD2U2kYBp2qYVUVUVNLOSXJpdAlEjUwrKrKH6CHgpn7oBiqiZmYSCCo64AIIoAASJxFGGgY0uc//1n6639NVWmarRihZokhIqKauX+6/nI+xiSrLhvnQPR52FH8uV3z4JS3CYMsZLJJBWPuhOTnNaoxogIyFoWQ+xw5OY4Qs0gakhUhNjj6FJhVdUx9IKqqKoTgYBiUcx8ALIQDj9jrBUPEMgKEEUiINSuRkhoSR5Riq02MTRP23SZQi+inPxogAScZckGsUUwRgWNAcxawuj8KMaskVfHfjq5JNAVgRNxut1nSanFc1VEkqyrFyK6zMkMiU/Q+ra7rYRxETEz6sQ8xBnfTACw0QkQiQaK6rod+FHFKjLrxd3n2CKDgIYGIZIZVFb3UCCGklOq6UU3ENmvbcbwYxwGQqrberjcnx8d+RooZE5jRmAWhDINyThQolMxgKBwgIx+zkQMmgGCOiEugaGCRg6iYHVymAMnp9/fHLBMjeu6dhsDIpBnUMoDFqbVD99FBQjUC3PfjZj88bpsqomTNYn1KFkmQ017qer7V9PMff/4P/tG/+LMvv4ntsTDtTUJbpaEHrpyvR2hgRgTiZxQpTINsVe26DpF2uz2AMAWqyFl6ZoYUD8sPUBHogFqZqZvO+pn58DLyqpehzJ1HGdr57OmTx7tu+1f+td8+Pzv7/d//x6pplGFMKY1jFsujVqEBRXXPFj/hTNzHhc3T1RDJE9zgUM0cYB5XaDpHwkSqED3Lt5xRen/32WFTPyi2vV1WMCb/O/2iNYRsakgc5rOM0O13FijU9EXaRaXnEmaz49z3ZyenS+I3d2//bPfq9Ozk09mzX6wvbqw/29MLnnU5XzAMmpLgq6s3Z8enC6E89EHsjvCt7r61/tfa89N+/nrcvLm5+v7p09Nm/nJz8+XVm+f16v1m0eX1zfq2nh99RO2np8f/cne50V5lzJZRYJnr05PTV1fv9ppWR8uY9I30726//bfaJ9+ZnT/l5Rf9qx+/ebV8/l5M8N3q5JLGL29ePZ4v66Yad/vmqJrNV1+nu0GHOtCf/uBf3Nxt97vx9bsvz44fPX/vw8en7zfNypDUGLBWIWYYhxGyWdaAakRkRDo9LEMCIzVCn/uYInIE0rT7rV978tk3vxhAmhD7oQNVtcrD5IHYwMgwMCMGkOx+/DAdyn6bgXsZTKSWQzHhFFN4oDU3gIMh6XQ7lm95+A8i1gPU/qDiOZz7cL9eJi2uAoAgKjKBo+R6eCX+Y7koIvRQ69jk4AwI6rZj0y9SAxeC+h1iIoJkaC5oLt25a4tEcOJxT/0XThoKmNymEQFwHIeUMyG5OteJO1AYQlI8lM2n4OxRtuDXPDEAurUuIjZN47g6TlohN44exRPLtRS/RuBciiwIQphFxcxE0SAO/fr8ZJX6/uWX7wJbHWYhsFEEQiJjAnVrVtEACAQpjahihJksy6CpF2Y2HkdhdoYfMTNN4nwwMvUDDlRAzenSDiySZJ26K/Scy5TTUOKTJKVcGmainBMYVVXjHoqIRugj/sO76EXPPd3KL/uUZBgTKHpJ5nK0qqrEU2QLKsOubwIGMEB1rhKjCnj6c6EVIwAnycQkKZtp4FBXcUw9WFElqyuTCV69etV3fYjBNAHUTOyZkq4DADBABiiUmsMheNgL8GAoRg+yMuABy/vQ3R508iIwMYXKhzv3HIpRVyQaAplLHd213AFKVDMDzVmBVLMH0vkrM0bgwIyNWCnoTQUMAkdV53OHlMa+16qqCjduWviqMGbN2RQPdMDMYM6QIMTAPJvPr25us0pVRXRSbsCsYkQuxRJTnWrQyKziZYBvNC971R2foEAIEAKv1+uu6+qqaZqmxKi4eRFzQPYEYmaa8CAKIWTLAYOBpTTmVIcYmcldIP1QQggx+FjQ0M0pfXkQSs4iauaJrTmECADD4NRsY6aUBpGU00ggGCMANrM2ZwGkPg3XN9dHqyPzzBYDDhWH4BL0nJMJoIGCISiBgXmDRYZk4hoVsgMORmREoIbEICYqzOSohtcYfj7gZMfg0kxw9qMBMyEExILR5iwxEmvw06mqm9vN9stvv9HT47GJdSSIrUBUawxmt5vuFz/8wZ/+2U9/9PkXXW6bo6f7sdcAxJXmzHWrWQEQSA0MuYQgOV/jsOyJKKVEBCEULoczIJ12EziamWQ1E9FkCGZCVra3TpT8QzvkVEwn7oiYmooIBdQsl1eXu836//53/uOUC4l+6uGQKbIT/M2bXXJFlndE3l2UxAPDLNlFGIe9PJvN0pjGcWRmBwuIg7o5jYFbL1CYiPZ6gK3AFIjRCru1jMHINQBqgaiu66jMgGI2bLYxxnrWjqijZRO5GvYftqffaZY59a9vLsZmMV8dXW1TLxlm4WSx+Obrb2hx+v75e/O0+ie3Ly9FKUET6mG3ffTo/FUevxm2UHMiFuav1uual8+ao46r1/u743o2D9Up6Z10Uus8tnGntt9/9PjDI6yHNP7x7Zt9HY6PVrIfu023lgQnq6YfUpI+CxnOlic/zsM4bueDJuD547NXm5v327Oz+ZL6zXZ7cYX6/PSkArvbbqWumnbO+x5sfPPmVRarZ7NR9l++/tmrq2/Ojp58+OzTD599upytqgoiJbTU396C7CvQUMKLipGgd3Ts0kAF8nOMiVkDcv/ig+XRSfPNRRerBQMCoyqrGokKmiAEjObkDlNfaHVVHXwLzYwAOTCK4gPysvdt8PBInipcK1TNgg8/BAwnvP2XBl5T2/NLP8qvNJhWCyKZaUpe0Nx3yYhYRAEeTYrm3MCHP80XOGDpfEXNNCOSmhTrHMQSScRoClwaZiwOSO5CkfJUAN1Xcnivj5t2MkCsIiJ2fT+OA3FV2he1Q2qxez+4GpuJiDBnwUPmwPSUHlx+IiLqWITBJH1yEMkB9eC0BlNzjGrMI5E9e++079fa31bEW82BG0UB7gCzmcbYmJEom6Kp5m4vkimEACESZ1J1n1YT9pm201ZKUKsrtH3hlMeiD4jnfrch49gNQ05VjP04JsmxqkQchGcvFPyileLeb4HdoPaeAYOAhvigBC1Eh3FM45gJ0WXnXJK9/eIk9SsTEYlMfFQEngwQAspQnJP8xFRVQJmAEYmB6ipCKRPA7RCIAyLFqn53cXF1dfn+++/v93vJqarqMY8EBJBlUo74bQ332df4YPGXqujBRNgerufDXrCJMDTtHceCDCababNCXfWaxH+MoqGhqYfIKHhvrcCMxDFWUWmEUpDBOIxmqmIi4gNlH74gMSilscuaAxMA1HVd17XzIezgf5U1J8xKiMEDRkwNMBsAABkEBZrNjpGvfYZCZWBnScR9Qcec/I3LppJzVsFJUmpmJacPA4DmrKpKGEKoAXC9XoNBVUeerASKR0YW5FJOequtquhj2VTalZxyPww1UoiBfedbIVk78prSmDI76sChRAVyIDBStYPg0Qz6vk8pm+WUEhHGwFUVMBDNWusgF+NZuLm5XcwXjC5YEUOIVZVS7/4g9ydgiWF2RUMRNRS+bCHaUYhBUgIzVQvMAGRkhSeAaICuxnB1/bRYgIhEVV28TSQqKEVpAZN2REVVtLPhars+rkLaQBPj8vRUaf7t2/UP/+xPfvr5V2+urnrNcb6YVyddys3RfJRhHIdQsWXhQKSI4CgQiKtt7PBWOEyPzM7UCjmPZbSExCEAIqqU1Q6AajkLGBjYoQQp++XBIL7I3rQAAMwtSURBVMyrKFEvowEARKDbjQMlxogETdOYiapVk1svYTAykEJLOjjTmudUmxf3BmhEwCGg9xVUjHA8thYVmRkn8p8Vq4jy0yRnYpe7l0LQFSx+rfkTMYAy7HOehmhVBQMYUwIUA0SITAwpsWldVettf9kMJ9RExKzp1d31i+cfvX/0wet3r7/p35wul+8dnfSSBxla4EcaU05WV8o85vzu9sKqSKHe74e2ac3gtt+/rvh7qycx0nrTXY27k9likap3/d0N6Hlz+vHpok/d7c3VEKtHHH5tdfpl3m/3ewhtn7o8amiqeTvf364ta1PPRtXL1N1epxdxMZtXatq2zXbYvxpTrMOz07Ndd1et9yuMN5vbEI6VaNau2pHHPI46DmM6fnTcLGZd112uX93cXf/0sx8+Ofvg6dmTs8X8/ZPT86P5r/36b763fS8YqGTXwAOFCSdx3FfVrASdo6IMu8U8/vZv/co3/++fq2ZCA9MMBm5pASaiiqyF6EMGlq3MMglK0a0IkbiQkqe1QkRect0vQgRvgF0b5RF0ORd2iDu7HBpfVTm884d/HKoiM1NQBvThEZFbvEAWRVC/KLi4iFlpDwhMnZdQ6oCp/hErpPtDXaUPFj44pxYZwa/e8vP97/Iaz4DZAHLOBIRGKY9Z8zT+Up1kWUgYOcYqdkPa7fZmxgdAC6EYdqmAQawqx579jCu6gF/m/fgV5R25y/oRDFFVyBQk3evSmZko5JxVlCsCzP14e9Tak2dHbbjjugINDHPEWiEbGeCoIoFrgJATKFokC02jkI2IlQPEndh+6FBx1lRAcMiEEjEiyDmDAAB6RFuIgeC+6vW3xOszBe26XRo5pdTUVd02w9BTD8d6FCsGA6xY1R1ewIlpQG5s6FNRMgVPobODWgpRTL1GD7HmQCpuuyhZsooCHQKWNYtnSFmpuw38khPNJqCiohkICIOn8ahq08S6rj32JKWMBIwsIgpW18319dWrb7598eIFMavaOA5AyNFzVsu9iGDTiV0a3wOB4FAAHYanf67owcnt+n6judM+FJ9t3xVqSnio6xEsq4IYIpL6uYqO/Shy8MAHNWBiimYmkrODKuipmASBgj9cVdMs4zAQkYM+RLWZDcMAAIVlVhY+JA0KNeEIoEhKmkU7osAUiCqDWM9PmuZy6LZIpOAaSVACARUR9700AAQLISCYucUpihkwe8OgngBV5gqg+24YxjFUIcYYQiHRqUfYWyE2AQDFOMnlqIGmH/ucEofgezmaqgp6bmDKMUYBQaL5fH51dWFaG4CqsaoVFYV7nNGBvppSGoaByEII88WCCQmB0IApZ43uN5tFMwx5uL29PT0+Cd4TpowTZcer8CQSpqno/Tmp5fo0N+kmJPaRWY7u0sRspn3qAYHI8Sr1aBhX8mNhDjmXnCUnBSNm00yIbduK5JzT0I8uj1eRpGnb7Xs5IqOU8tvb1z/+8usffvbN9bYXRJ6vqgAJJeddFSPDkLWrWAkBApIScnAU170hQjBwN3xC5jCZSCEiuZUOAKioMYTAqiYIGBgR0TJ6OqqqAXguYTikDhMCkIgAYiDKOTtdlZkJAkAAAAMNxLN5I1n2XYd+ypqbtQbVjLE8biuxk0XsiujwWZmBOKMxxKgiKedQRTFVsFBVVV11Q28Tcl9mW1OFZu7sSgCKVm4tFBHjcuV56KaIOuM6j6mNVVXF7a5jZmUaxr6tm3mmCigyhaP42e5aSZ5SPDs+vdt1l8NuBXVNvN5vz+fL98/Ov7x4+7OXX52cPv5kdXY8jJ/Z/nXa54qH3X5ui2ez1Ttc59HmoQqrk4ux483VeQhn9eLduH2d1s9p8Xx2vO+6OKTzR6ey4x9ef9XN6bvHT3/j6Mn85uqfrq9uWzqaz5pset31sZ81rWgi4E3OWM8uh6GT/fkIj2ezD9qTtxcXL8dtHeOzqv2L8bFtuzirdGnXqR+oapZzGrNkIWy22+3x4/rZ8ycXl2/7/X7sh7v93f71xU8/TzLw89Nnf/k3f+v988fz+XlQFZtQEFMiVrPRABDYB8VgIJIRjTTrpvuLn3z3jx9/883lWLftdn2L2mMICobKNYWUU4zRz0xCRFPweaqHtZiZgZD/n2W5AJiCFRzdlPFwoJshqhkCMTF4JJy6+ycWXt6kjQenVU/XBBXboel3GBmAS3ERgD31TDICMrk7n+tBAJhEzdmvAEDE7GzT8j8k8rw5VHfA82EYEgU2F/0YkRGqX7kBaBr0eLQ7IgMIIDspQFVBQ+Cc1Kk9OWc1RSIV4Sqq6jB0qrmOFYQSkOnm1IgUiI1KQg8zO4gWY0RCEcfJjJA4cE5ZAUUklVkjqKmoqGQzK5GwUKxLAUwBREWySUYcxw/eP1pwQlPkFswQBXFkAqCKwLM+gwEHVlUgYlA2y8DUAndSjVuLIwtQSimGCIFN2QCw2HwX8I8CT6wmc3g/o1vOyphGBI0VM8I49jnl05OTKoQ8WE5ZRBuqC1VDvehGj7glKi2p035VDQyQA1GQnAqmYlG0C4x1EzGAJBB1B2kEJgD03NMh9SknQk9ohcIIA2NfAio2yXAMkVD7NHKAUBlwEklQBhAIqAap9JpoP//FZ7/zu/8GMTKjqZJvHMDCmS30ATyI1Q9VzsPJJj6QwR/ocX5EHi5CKqolBjMkDOSTC0NCdrs8FbTSoAIampZBJdxfpeaDDyzebGMa/De68T4hesppzmJmkhyQwKqKRIyeMm7liEcEVbdmMANQVI4YGMdsTqctFTCAgEIgIKua0M6aYXcXff+YAmEsCRgQicXUcrYJxgNUz/1lpin9otT/6KaZCDfrjSI2dVNVTRYLaD7IcISpvL/grJuS54qIVYiSVLLFQGCQxxQ5+PACOYqBIjFR1dTLo6NxHGIVzf3FEZHYFBQhJ393aBxl1rRtXfuvCDGoqIcHEhgDL9rFGNLd3R2hVcz77W41m4e2VUEFYzNEBlM0CxiwQrwv3dyV3/tZsSwYCAFFNGAAACRU06SpsJhVgMwEAYp1gqOHUIQLhTdDQIAciIkZRQBRJKvKMAxiUoTlxhU0LG0zf7xYHv3Zn/3k9//gD7++vKqaFa2WhjgiAFM2aio2wCQJAQnYxMw83MMV+SCIgZjAAAlIDkQl8gpbsxX7DAQCyclrBHKlBaMBC5gqeuPtK1lJiJi9Ui9mIyRipgU3NEAFdTtPEVO09W4LouRngpXLyxA4EGBJjTR/8mKIREZQPNoMkThEv+nA1IUyMQQQAwXGAGZYXgplVSzXScGeAaZGxCFbAx9LT5wRH/iDihmyqxpVxZSPFsu19Bnck3F41M5ZVVC2eRgq/mp7uzh+8mxxStX+qzff9k3z/PTsuG7fbW5TRUtuRx2l6z948rQO+5/e3vQEe4O6bfb9riY4quNuTBh4JNxlGPsdLpaPiM9ivbm9Ghfwq+fvH3VHr++uf/byy9O2ffzo0ZtufZH2ArZM9r358gvtBxktAySJVSOm7XJ5dXs7KPSWYl31Q/9uhPmq1m23ms85wH63Rub5yfnQw3J2cjdsh+1dwzxa6vZrqlcoQpzevHk5pM3JanFSxc3mbpwHJO42g0i86q/+3h/8/fPjk9Pjk2AKEJgI1dEWSJ4j7rT+Mj1HU8ioSCPO4v5f/60XL//+j1JqqqoOUO13nXKEbE1b9ZJFsni56wNb8imNexxMThWHcVcpUZwIUqL4EJ3/gKpASBSIkFU1p0yEMUYAy9k5MWZgaoeJ0qEEKi+gVNA+z4Kybsspww73K4GiIaoQk05ei9NPMfP+ezJwLsZF4NNCQGQjBUJ0jMmIgBDZ1BQFjRRwAiDYrQZyzibqhnymRoFhysYq9BQwm7J1Us55HANTVYX9mMc0eo1fQCkq0A4CMAexDKXyA1X1qNQxj1GjvwU5a86qTvsubGQpygUDMPSwaPVMWEbJlgZrOX54ftRAFlHDmoICCGECJAMGIAJQMCIxEAIDBDJSVWKMaMn9Zg1AyTC725AjVcxhSq1XMzu80QCH8Y16VJnY2A9DXYXlcn55fdM09dnJsatycsq73a5pWizYnCFNQwB1hSAeRo1+32fNviB0Kg3SmMTUUCR7MJAampYwWkBEYFQwU80iRqRAog5ZKaGxAZkiZPJ+rxCNZTGriG1IPSiYEiJnMZUMoACaETnQn/74T/u+CyEMYz+fLcj1bCXVF9FpGHgoX+gw26JJN/uwJHKM80B/LqPGaXd4O2kgBoqI/r5btgMfAom8Z/ZxhuMQMDllTPQpd9szAPJBIU2O/n1Kh387xcfNEh3KZw7E6KEmOFGHvFSzstvGEIETEJD7OKuhZ7wLiFkmstVqvr4s3+bmYhiJweNfCa0kcKsqAxmCoQIYE7h+noj6fowxImBV14Y0jomYQozk1gxiHJmZGUhBkCEgl7Gx2cROhBjqgYs3pmbNkKxqpCQfY/avJWPE2XzZD6OIKkgWDCEClPGHmTGHGCsijSGEEMZxVJU8JnMEAhG0uF1QRFyu7vRuGAbLueu6GCMAEpPkTMREAG5tZeX9Mi8MnbzoTrXqpRf6ERpCCMHxSM0gAMbBgWa3OcVCLyGbbveMEIuXrI93cvZtOo5SxQg+rnJWDbH0vFo+/vZy8wd//x99+e03EEM8Oc8AoylTMMSUjZCNAvn1TmRSsqt9Xg0gZhCcRSBARHCwryyAikNfB4IjT8kQ06gMHJNls3CPkpqpSQxVCNFzhJndL75QxGzyhvWPJlYA4OoKcwTGAFXUDBFijId5FSIxjn7NpJyyx3VD4WRSYPQGFDQQsmJWIONAAQoW5bdh8WYt1Y2VG1NLwomfMaX4QedQmmOvEcE5lKQ5KaR5U/fbXkDrOlaCESFWfLPdZ0ihqcD43Xbf5HDM9Hi52gydgtUhYIhfv3n7vbP3P/3w0auLd1+/fZkWTRO4RRuNwYQCDzq2sV7M28t9N6ohkcT6XT/EqvkO1989e+/lsM77zQznNdpN6jTAhyfvHS1Xf/TNzzccfv30+W+vZsubyx9cvBlj2xwd7SwNOQ/ax9mi222RIekY6pC5/tnl1Tnik3mzquJ7eFwJ/+Lt65jDZrt7NdylnNucIOWqgTEQACwX853c3t5ezRjrEIMOvKh2XapndbcfZqcVQNikdd93Ibk02EeMoABK5jGb7G8GoUMug5BpgH7Yfv87Tz55/6dffLujeDb0Y4h1ykKk/bCv6jgMwzRwEab7WdW0pP7/LK/D1xCGaYbq+L8glYJJJ4+TqqpyHn1Y42uAmSaKUWl8TRTADGQizBW7hEK5NERDJhZJfmsSBzUQyWPOMo3FSqOgxaAI70XIfvy6+BbN2Uzm1ohA0/2EwCIClslznhDBQHEyKQO3roUkYrkUcDlnh5RSlljXOeeh73POHAIRD8M+peytrf/tIsLIh5vPisRZUUlEwJQmCmgInJ0qCgBm5Hwo8yJBXBfNFEyNIruZB3MY0zgO/XFTrxbzQBkMDYGJUJUIAcktz1APqnIEnIaehZtlRMglNUQp+rtvWQpvnZkID/mV91VssUUwp5QiMfuJW1f10dFRXVUxVsQU62rM6e5uvVyumqYxM6+nJhCxnJUwzYCmNxL0sH6IVCXlZICldFedWkKHDw0BHN4wAAGDwnJzoBrNIJuKeTQviQEB55TQuMKGUUWzIaqRV/hoQUAUBASZq6++/vb1m3ff+eSTzWYzRwTkLMqBQsl5kGn0cP9xWI2Hv+hhGeSfOZz1h9LHIQE3ODiYQPrTxjICLm/doaY5bE//vd4bTKKzQtUqn5+2J0z8JL+2/ZVUflUTIXnUzIH6Vn44mInkYRwd7irplQamFqpgEytJshyvVpdN4yPOEjkCU5MDPmP2fkUlw2F06OcDEfx/6fqzWO22Lj0MGs2cc6232/3+mtOfv6uq33aVXa7ERTlALMAkQBIhWdxwhSwRLCIh7kFCuQOuIhEJKSASiVhCIEVRJOQ0CAVwE9vlcrV/nb87zXfO1+7+7dZac44xuBhzrf2eU/bWr/N/5zt777ebzTOe8YznYabRcoyY+Or2FhGalFyI44YM9fWiuSbQD6vAXKMWqnsnESARK0LJQ8NNLgVAoqdgQhXXlVKYw2zWSslgfqRI4OARsIgUQmIOKbHr5UUG77ECGWjIQzGzpmmmdnbbtqWUUsrt3V1q21nTeA+xASQiYFBVN807UPuAK54DkRGUUoiZOEgRVKM6R6LeL0SCcQNV1eRYPlq1jCDXJpMBisiIMtB7cNV0R6pTFDbx7/3e7725vhJTalvjIAg6LVTDyMRYBRKIVf5fj1l87OKNS50Olf6HK1+nYFStGQNm5j4LvjgIAzMQqUi2x1YgxhiZQUVdij6ufJ1Mdycob1MTuR6b6q1xIuc92eoxyMQcOfj3izrFTiKShxw5MlFxs353zRAln/WpB1bVTXxLxYrjKh/fiunLxzj9exSFEQyQkErODRGDpT4/C+076UrRhtP9fhsjx7bBTEkC6HA77Prd7reefPjh4vIt3n/5zTcnp6cXi5PUlbvShWZlkf94fUXt6mJ+hH3/zW7XoVKMCnxfNAZrmijdnkMgtX2XrwF/eHxynOIszn757uXtsvtktjhu2i/yw5uHq1bpe6vL69366+7h09n8eGM/aFYvE7zF3Y7irlMou1VqT48W6/1mT7xh1qGPrK9J+83+L589/UuLi3dv3n2l3UOU++0balPL1JCV0seWIZSQoBS5WJx/8/XXP/61H/97/87/7t/8n/1Pfvenf7CcXfQbODtemul2v1k1oZQuZNBgCOpeOsqA3i02dHMIBgAtSoohpk5Ndc/l5r/5lz958+YPNcZ+EC0aQ+xKB2oh8mQ85SheHwdOvBWqIocqmkcA5MsZRqGDmblRmI5BBETuoEPeohrPaAJDxDrQNO2Mw4WCozWzSwLpcSrYcbqogYiW4sI3dj0NOA4EVBWPTDIX0dVp1/qSTNVGh3gzNUX39yOXA3kP4ZHwQmJWkyp0exTf1ScuIjC6Ig0577vOzELgUmQYBr+YmSmE4I9M9rgh/Xf5kUKeNMR1cEJ8RFtkAgcGj9aR5GwyYpGSgKdOh0keuj0fU5NiKfuq2UAOCO7Ui6PWlpl9ZtXLGzL00DNmDhjcKipQBMuHlzGgARCwo6VJovB44/r7RaZg0DazTvsienF+vt1uBcwnjc2s33fb3TalOP0iG0f9oUYD4EScePFmpkSYs7AbHIOl2PjC8G8iRCZyK8VJ2Og0i6iqiiGbp32K5CxZzIyMSExJMsgwi+zsCmgZcjFlgABG6gFgCH0uDYe+H/74j//4Rz/6ERHbY3JLXQyHJ/53MNDjrpkMjXzREk0WU4eQ6MBqyybwdEgsHT4QHpiUHq7P6Z/+jY5yRCSPA72Ozol8iVYeInAQd2gQEZXpccHZA9VcinvQqVQlfCkFmYiDU04AyBxMZTFftW2bu86FIGZKrnPSGrTiqZ0O2NyjHfHx8ijFjSKtbeNms3737t3JyelsNqtUFmII5Ibp+Dj1aZWqGs80AETkYRj6vnco5sqbyGEqRcZjzQCEiIzZm0lFCgZKKQxDMdO+7/u+JybNJQT2eQZvSQupe3Lmkt2gS1UNbDafe57Dfr9fzOelFK6sWwFzX75qfQloaOJnnpOXADB+1EaEasIYsAoV/S+JOXgVNQoOfePY6JRh6J7z4643Fe+j7btOTAgJGFREzTSEjlGbFJiRg5oWASBjqCIjQmK3oq4+2JXP1hEDwQFGr4qaf8bxjmMBD9OSA29dY51kQ0SXrkF1IUEpo60aUYE6ZTxeKzBNTrjedNoLNAbjTM/EF7wvDJwOVICQEgBkGZwEcrhjopRCyRlNEckRG3NgYhd0jqRP3YbT5v0O7hk/l1ESXtXpzsopMbEZgbBiAnvv9PJ02H++vt60oCqLAU7OjyXn26ub0EZljCm+7DfHqV1psylx3/XPT4+WT5//w5sXX7xen/C8PTu53m/n0DzhtmnsRekfDLJCD0r7/flyZZp3w44EF81cMHy+u490dFrwYnnyLm/uU3uxXJzdD1+9fHl58fT758+Wsfn59evPrvc/eO/DD48//Ec3L75ev+2bhWDgmO6HvVA+Pzl9t9nc7buUAiH0pWSmjcjVZjufLZ/F1c9319tgcY7UlxApEloZOAYosFvfKS3ns/bk+Pj27vrJ5VHzS21Ym9VikB5QTpv2f/Q3/kZwKRiggoqquuEUIoAWIEQiYDAtqhAwZDUIIUrRfP39945//P2Lf/SnV83sYv2wCwSqJabUdV3btm4ixyG6itk/w+pCUe+57yKgGKKDi9pjGj91RDzwDHyc18WR8zdvdMCjSRe4XUldQ1IPbQCwGnRPo5crM4lIPwii1EUFNRSsbjxHTYY+QIGVOhm9UnxaCoyQ6iU5YhE/BLk2IPTxxhhn7ss4Yc9E2SznjEQGICKEGGMcch5yNsSQEnEYur7rulIEXX1aIy3rrTZKYskvHj8Bc8kGEHygiElEwC0PdMJ+Y6HvB5xpscIyut2rDLlHEwY3QZKqoNViBKoINXkGAECKUJj07oBuaWBjK8sfCzGE6HdbKUbIOHIJRDR24pEZReq7RAEDczEjkmHo3IUFAO7v78/PTj0eLsW43e3u7u5SDIvlckLQh350pt86PvzsmFjDUjITx8l2GTyTyXGKU96mLidnyn1RE62CAjIDNVNARVTwewj63cPZgj784ImC9MMuZw09ZTHTIspgrnMXxmqw+yd/8qf/+r8BhCxFfabXz1kb57NG1uERw02QZaoWpqN/gi/fOTTH73/cezj2y6bvP8Q9h9fJ4aabHhdcyz9CNJ9MjDHiaLgwITAfJgICRvZ3vzqgGNYYmDGWuJRCiLFJAODtYBFBAgQMITKFEMNisbjabUEgccR6d6u3g8en53PsNHoz1qhLIhr6noncrf5hfVfKkJoUQjQAFUEwVTe0fPRJAlfJgknVxSCaUaC2bXPOCoZe0w9DnAUA2O12+/0eAFPykAx3YpSKSzxJ0FvP3hD3pYXG4OPSztSiWwggYRZBxJTSMOQUw3a7zVIM7OXrV8ujlZtBuH+D9+hw7JNaZWjRB6oGKQDuUAxFMhGpCgERccAAiKYMowm/VYmx0x6Ts3ztiU4skXsmpRhTSvv9PncZEAwtl8zEhWirUogppqFIneiGMVgMfMQLfHLDzFk39AasgU0+Yf6U/GnY2OqaVv6oVYLx+HVljD9h9mksdGAVXWZQzMbTu5bZMDWXsU5EhmmDuBP0tCWnVU2j9WhdeMSAyIAxRi3CRNQ2fe5KKebOLwbRTUjGAd6SMwAjeRrJuLnch3S6Msba5jvlh7lLpVWdhh+1SmqAosUMGHHRtq1oa/JRbNfKv0SZt81C4u5hG5qG521npV3MRfTz3X2f5bfTxa8++fiX/c3b+7u4mg2LdPVwD0ezOUYMy5v79Qdnp88X820PD/v9QD6xnzebh/miCdyGvS5SEsAX/Xa76X4cjn9wdHYiyz989+VVv/kRLJaffO/r+9u3b9/Om9l7i7P7vnu33+Y8LAq+l5ZfDQWbVMxwlgbC65v7tp2fzsN22CHCEuOsTV8+3HXD+sfPP+72vQlGCg/7dds27VFcxnbVl12xfd4vF7PdsI+Mf//v/X//5k/+0bOny/eePdnv9MP333vY3949XEs/PDlr/rX//n8vuKjTOWYfEvSlRsSCYFKAkJnEtAhhoEA9atH9w7/8L/7Kz776+++2d7P5UbfbuLIdodrwM7PPTsIIPw7kC/YdBO+HjKmZohmMOMlUxX/IL2xE5MDOYB+qQV1HYub/85aBvx61ukwQCUgB1TgSjZtHRJE4VpeFqnAgo+lintAMTGXxgYvDGHWAQGBoRaSSXI6fRqrXXzOTG7YaIzvUk1J09OSq74xZCAGZi0jXdVKKR/OpWq4Mk/mJVjVA+C1LGCdDp4l3EwnIFAKqJg6UEAy7YfDiRqQ2evwWd7/qEIJLT4hZrM4zAxhAYVdSuopKTVHBSzcgYIOstW+AhkAARshA0JeinHyDi2obIiC6MwoHly24/EMnjbk3D6bbApHApEnter0Rkfly+fLVq2EY3PWOiJA5pZjLsNls5m3LKY13deVIQHFiR/xvkMKkKUbEnIvXeY9X/jhMRMzOrFuRas/KaOIXFrg3h2u6TNE9P0QUtb88PX562nS573MYepBZ6LKKYBYYChRFFXKPaDB8/er1w91D2zT+ztTFVutO72GOSPIABsE4Zz4JfSbMNLWiptPTEYb3WKf/OmGXCTpMJ/vUI5sWv42D9BMYms5lIibSenURA/jYhHuFg5kR1r2DDFPv1VPeZEy39r8RKVOYSS61q4LkMV/ka/Dy8vL+7lascnMy2o2JCZhjrPocJ2joExWMpIiixszb3e7m9i7F1KSINaHM6vIAd46vh0zddCHwQTMRzFKMTdN0Q+9v8lAy9z0CdF3X7Tu10vcBEZxe6rrO2UpCNBPAGGLylAyqE5E5hoioThmLFCRO44dv6H0x7YZ8/3C32+1Epe+6N29fv/fe+ziWl07IlVwCs9PmiIiEgoCgLsEEBfKJVQUy8hsUEQlRAHMuSK4pUUQOIZh7SU6XsalK4RCRAphlt1w3VtG+5CzF120wBqRt14tiaGZqBoQxJvAkCgDQ6mqj9phLWBGGB5MdfE0f4nSJ2NgInn7qAJe7jgArIqx1MhIZYGSu1l5I6M3EJrXM7IvdKvDFKbZ5BFU63QWHiGQ6fg0pEEkpIcQY43bIXEpKKcY0DIN6Aq6zZ9VXCUUlS2liBDPVajwDAsyjFQr8M96Ex9ICDCeLpjqZoYBuyVYIiAzmIS6D3V6/O5ov3p+vqO/u2bah5N3QiBydnEC/KWUoQ0kpvOr2Xzb5vbSI0vy0e9f1uydh0cxovdvG2dGsaa1tXnYPp6v5c4tFyi9BJCohdVBOEN9rTorl7dAJInLY5P5r6E61LLvycTq+ebhbPz06bmeL9fqzzfUpHv3FZ9+/2t//6duXXzWpna0uyxLb8uXDXWjb2C7Xm13JoDSsFu1cG1ZBsk0eAmLb8B/cv9vu+8Vy9nx+urgbAAa9aJcN//nV86/f7P/oT37OEVfLmUpJ83h7f79YRoTAXM5OZyerbk72g09++Pnv/5d/+6s/CKJjwUAu4iADMGaIwUz6kgkRAw+5BAqShYJKGdDi0az8d/7rv/of/b9+vhXGyCSgpkiYc65D2iKABsR4cFyO1eThR4wA6CibkUO9k7KqhsAANpZxyIEJaSiDL30RJQIRRSc66ySLD06O7dLRwcv9rAEPNDpuTatWTKovhntt2YFgdjQZ8r9h9oReUFM0JCOY/ptaztn/UHem1YQgImQido8fdz8LyMqCMu1Rn6dVVQ6sBt1+PwyDmwYBUC5DKaXWn2Ahhpp4MKpTp6t9utUmaOW9OQCAkXGtJ0J2zZ3j0fp+YU14BkB0CkqlmJBIRlaRolhzRf0w9EagAYTIyOheml7rEJOheQ6aX5HiGQDEHMhvSjMPUmF09buP6AEA1HByqdIN7voekebzVkVffvPN2cUFM4uWENoY43K56PfdMAxd33umOjxyJ/UfU3kHMIrb66mqXdfxGFiLB+uSmANiMRgrPzUwDEwAYkqqoiZi3SCiUEQBfCSlXKxmnz6/AOmw2yVUs8KABloQCIHYPHomdxZT08Sw3WzevnnzyaefOk/gz8qd+ADEuz8HlZ8dfuiTZn/E9JOa3qaTegJJzOyEy3SLQG0MPU6T0YGGevq1Iw6o8IhG/bWIjFXrdOU8Ntce33ABEREQLWNyyAG35MtymussWWv/a/SYTqFBJACH83x5efn69cv1Zuvr3De7I1pVBcOqHlaZeDIHpqqZiM2gaZqrq6td110uV978QkAnhwEARF1JcfAkoeTsHusIyEQAZO5GUfKQBwVAsy73s7ZZLBbtrBXJjoTu7++bJokUPwOZCJnbNnpPDMe0XdWxnEIgJp9qMoV+6AGx67vdbtd13cPDAxG1bYuK8/nZ3f3t+fn5vF303T5wqOUiGCGa76sqvUIVoYMPN4ZYiuAoLlFQ9dRxxhijim8QcE/XiSbE0Rq7FKlqIUQzG3Luu64fek9A8sGVru/3+x6Q521S1ZxL2zRVVIcoIHUJi0y2Jofr9hDK49jwhUfWX79D/Ex7vBan3nIazwH/LiYKHAoV38oiknO2ehc8QqixEkO/pw41QJMdHY54359POTg5mAMzD8MQQgghVhMBh0qqYExECAGg+tm6Z9LYpVCo3lOHZI/fR4+7BmqNVJGrAkqtlNw+xkKMjQEMQ7tYbOSuK+GDZx8s3t7/ZH+7BZnP2r7IXstsuXr36mVDDJyGFn+vu75lOUUoTbzrdqdNu4izvsjDfn9xeTTr842UNw+3P1w+ey7QD5t3+07niUNT1r0xNiltSjG0GDnNFm+Grnvxy986e+/54vSkXXx2/eYkzi5mqw/PT95cXf305qUGsFXzbhjCfnveHj9BXp6cf7Ve31zdhnYuiYZS4m73/OisdLvb3QMwhPl8U+zdblvQntNsKWXWa7tq/ta/9bf6Zvh3/0///s9/8ouWFwZ2erwCLJv7u9PlctuXh4eHDz74MARcLVbPT773b/7P/60PLp/+b/6X/wvSAqAEwADBMBlH5VAMerUMYMzKNPisFEgAQ0GmBtHK7vrXf3D+W7/xocoDRiTEyEG1jFof0LqOxQ4YvelMPLiQzLuh06c7cvI4sY5EFEMkdAFjzfNjftwbjlU40AjJH3VzY6EgaiWEQEgy5DJkgFpdeTwZVkJxanV7ETAuPoPAoZooo3PUDom4tnJNpYg37Osjipmqy5UMoLgnLmEuWYqPRUFg9mcJAEiU2lYNNtttNwyOGsDjrAGHofdXrSJt044970dtuKqWIm6p7t9GzBBYRInIqJYI/g5vt1spKkWGYXDtxQgLUFT94Oz7vh+GUjL6WDQiIrlBLoxiLHS3p5z9HKTaESc3fEPEGCOhdyKEGYmDT7tUm91AiOTMhF+aU+NsPNpqBb/dbbtuf3x8/Pr1667vj46ORsJJm8hNSu2sBYB91/kKcQBDxERh1BXU1SVS/Mz3Rr57sHo6Gx5UltM6hIPhi6JWBEptYUkpkrMUUUMUySIZLQcYPn7/YhUD5WERwwx4hpQUomiLiDnTUGgo1JdIUIadlGG/fXj96mtGUBNEcCSNiM6OTGy/f7KTB6aqxhh1VMgdXg9+ZHvfxz2X3dNSVQEe+TBfnIdkjx/ok3zn8FrC0SYKRjb0EGNNaHJ638Z3W0RKzjnn7HoF36GPrCeAWX3JfT/IqGatAEsFEUZbZmYiUyWKH3zwMXjz0dSfrbsGIKGSKYI+xuuCqgZm51pKKTHGrttf392kJs2X8woQ/XWpslVSARH9WdVLiB8PrnrIqIUYmqZx2Y3fplkGjgQuPmJu57PUNkUViO/X64fNerPfbXe727ubh/VDznm72+/2ezCYzVoP2+pz7oauy8P9+uHm5vbq6urrr1+8fft2s9mUUlbL1XK5jG0zm89T23AIN7e3/dAjs5h1Xe/vUi+l3rge6iM6IWBC6vvs5dy4eMRBWOQ4YR1m9n3kH5Yn6gT38SNycPr4QY/Q0NdcVhHT3W6LYos4D8CJ4jy1DJwoPPqZERpW/crh2pvw+rTGDi+Ow405/ddHIQ5iCIExkI8wjpDdXRq81eWvAog48ND3YObLy/9TNdn/NtXqC3tqO3iFjweNZh6zh73d2batiOZc2tQ0KRGRiWkpJmpq5E5L5jJzoBA4hullThvqcOsdvt7paoPxHHDc7OUC1DQYWyzm+92u3zycHx1nzZ30TcOnGM4zzQRiCq/Xt+t+f3ZxOQ8tGG5Qv+L8u7u3X1O+bE/et/mbbnvHenF2IW34+vYdD+X99iQqfd7dUNK/QO0nike5nJcQC7/b7R7KcHJ2uoiBRHfdsDG7a+jzvN4Ql4Izah+Gvif6SGaXaflPdm8+K/elDefNspjdYn+xWH7arJ5xWCEEMrEhBpwh9tt1CvG8mbfGIrIDpdUyrVavd5t3Q0eLlhXuv7k6mZ+9+PwVDJjCrG2XbbvcbQfCxE1zv92en5+fX5y/eXv15t3D0KfcpxefX81nz0JLACoEigiAgIYMXsQrgvrEOiIRN6SGWlSDAjJZS6X093/xVy/+9PMXr+56tRDRE8S0lCHEGCNL0WrNhN6Jd1gNRN+qaPWRYp3ITHPuZ/q8fT0Q0SSSnf451u0+2+v6A2+HwTRuhogEbGbOrFCoK95qz9jlZ2jV26E+4ojovfONIjLSQqTonXwxUCYOHJipjEJIUwvM6CPNVisGvwx82MkvHr8uHP0AYs6567rs5QWRGXDgknMuRdRcM6gCHLh2cOr4Rp1E8CstNQkREQhNwcyVj5HI1GbzmW33683WDEMI4hkT/u6ZAZABqqEVM7YiqiouREVi51sBJwsnb5kaEyLxKNSo480EYeTNEcl8ngnc/40Qkfw99xYJekCSZoJIXCeR/HV5hNl+311fXT999kxE1pt1zqXvusBMzAEJidsmBA4EKCL7riNaMPHjuQlVjD/SIcFjHj3HbeQa4wS2DgvK6bzJDmTHSSjwdFC1LJZFtBQOzKUEzKensw+eHAfYLdtgYFpollCRDWCz7RpGBS6C+/3Qi+NS7qT/+c9+8ld/57elZNFISNPac6Cp+q0ndlj4+oUxQbepNsWxOzDdUkSkKo+dwQNpJ4xf05l7CKcO74NpP+o0Of/tQTO/ZV1jV8o4xEduq20yPh+HLB41NQ06mPeFKUz3Cvq48fhJElII0dTOzs6ePHny5s1rDlTEQogOFl39UzGr4fhhuRWyu7GDAWx2u5zzbDarz0QEEQN5NIeFwKpO/ymAh70rANvIB/vxRD6GjTgMOZsACCLu913gMJvN7u/vHa3amN2GiPt9v9lsmYlDALuftfMQA/e0IwJ3IyEsUnLu9/tdyRJCk1JcLVfENQzBzERFATzxo2nbXb+/f7i7vLwc+qFpm91+16QGRgTJIaC3mwRCpJxFzZp2lkshIg6V/dLaTHHT78o+EgWz4iYj7nOYc65cKSIgiOjEkfvH7Z9+znnX90MpTZqrgam63ahVoR+RKTKrE/NQI6gnZDnVP35IThDnsRQZv2wcM5xWYKW4/I5wE5c6twU0qpeIiDmIZFUT1H4Y5rPFxAAR+e6rhMr0ENMWm2qD6b/6OVfNRMAQQFVn85kUQaTZbL7ZbRCdx/V5ftSaSuLv8wH9XHfZ40NMX4e7dbwiq1DDVR6ACERiyjEA4XqzPk5Js81W7VqHL7558fHpsx9dPv/q9upnuhNMpxjpoV9eLjcLu3p7nWaz0sbr0n9etgFWx7OjYdjkIl1rC4439zdXc1u0s+O0eHP3rjmO3z86fW928fvXb15s1kqJY9rmgWecjtrt3XpvOl/MFeyz+4eHIf/a6vLXLj663W1er++u4GFo6Hx1fLfe7HRYNvPn85kUeXH3LlE8nx+h9F/v71ObmshJUFWurt6+f/mkmc9eXr9N7aKI7HMWKzuIoWk5lH/v3/0/fr695aPz49Xx3W53fvYsxXng+ZPn591wO1ukk9OjN9+8BmzeXu2uH/Q//L/9nXcvvrl5ex9IBREqWPb8CnMXCGSygIoIoiRGRMhmCo2ZZdmjiuTdk6PZ95+v3l3dAi1VEZlAVVRQcCQ2xYoxO0lMiIxY50kB0FkckRJCCMyonss4hi/Vr/E0hMdVMi2LUe+jI9fz7QHC6WQfBXdFBAhTqK33UmQ6670+xjHny0V/48PCuCugKiMffRpqE11VTQ0YTQwIFIEAPOucqkm8GTAQSh6vDV/pzAg1uNSTfw1ADZgJzDygOJcsIsyoqp6PYaYKqmUyvjNE91ec/CHITMUqc9DnDIj9MBSRkBoyU9QaD2s+MIziPkSIYjAMORdFYm+e6+h75BscDj8CdAD3yDaDgYEPtER/hRWHVB+5aeaozoL5YiDGmsM6GjuJWtf1d3d3w5CPj4/v7u52211MIbrgDEEEAiDHSCFakiFnESmiiARi1QhxnB55PGQN1MSnf3POWF12RgJyFH+igaq6LtN9XYmZVKSYipSh9H3piw6KTESSmwgs/a9979PjOVFfMCIamaJhpBiKlKNlQo5DAcOAEDb7khWQwu//0R+/efnVfreJzRxA1IPPxqaDGY5un48l71QHT5NiE46Z4PUhhoNHnt8mXtN/p1/P0/dMwpfpX50iOtx6E5o8fFAYObZRrHag1B45MzGxUfDhgMxG4VoppUjJIoQMCEWEEZEYXOzlKSWGoAbACPDBhx/d3NwUyRxI1Eb68JEtwJHrYkK/4wEwxrTv+vv7BzRsmoaZAwcQqToAAGQ2U5GqwMVRgKiioAIEY4scETEiU6DURBQsRVQ0D8MwDIvFwjNNpw8LANwBKGfJuaDtkUPTNE0z94+y5CKlLlcAnM1anIUmtRyZkNRnGlSsGAD6YOmEd7f77Uk5SW1TshBXGZ+MCfPeizeAnLUURYQQuAqBx32RS0EA0XrCiGYzQGTz+QzEpomlmIgwBRNTFEBQE1A0w1L8iMoxJVX1mo2Y1arJOjpscgiEBlQH88z77o8X/9ToATM4qFEfcfYEdybQcIjyVZU5wvjbD4BFDZPwtexGmW4B0u33i/li/P2GNTul/kIPbJlQ1yE4+86yd+zjx1wgAoOSdyWXEJiJSylMwVt8fjgzgyG5jaWfdT7qQ+OuekRX365S4LGAqScCqI+6gsszMoBwVKDlfAXb7fXdbbuYZ5ZCdhb4IsTP+zwMdtEc7/fD3c3DsEg8m5kICgrSOx2Wsp+1J+/Pn/7y7TcvyvWHafXB6dlX+/uyl6ft8jcuP7CHe2nzmbUfWVxjt2YYTFLTXD08pISLsxPYdKXroUndrP1yKAvpPpTTCGkr+hL3c24vqQWC9bpPPLy/OBrutp/lXU7x4+bkCaYmpnuRne4LJDWdLxfv7m6Wy8Wz88vrm1sFlJK5CUCUMGYZYLkMCF2mnHNo0836bnm0ePr0fWY5mq82D+s3L786Xz3dddjML252w9/7Jz/tN1s0CwqROYSYkMlAmD2HIKOqSQEthBAo7ASUUTlAXbyMhpGjluHPffr8j37yeiNNRkKprKCIMDEz+wTNoxySbFQM2HjmwFQy1rA7JPrW/Dwg1iDT6S8Pzt+qYgGAcaQJJ/D+uAcMDFAB3ZlRiharaomJt8DqQUWgBRGhunD6GlMfbn+84x+bvmgGPr3rAhlRSSn5fcXM5CCKiAltjBCC8ecDkoAWkW4Yci2pANSJ1jgMgwOXaRIBOMzbOTOjYeBgWINBRLRIQQqeYOJ3hqoZgKiSKjEhUWgS7vfb3WYeGu9U1fMFAiLkUsQnhxVzKYAoCgKogOqeK5XgAXQ9eBUR+EAsGEjFiEgM7MYsI3asfRxVe0wWqV/2+NsMFNQFEwDQ7ffb7Xa3261Wq6Zt+r5XtRhi2zallBDD5AlJTKlJSOz9FHw0CDGwx2FyrXwbQxnVrAB+1bFLMVxDY2YIueScy/i0VdUUtJQhD4PkUgYZigJyCBxjiJbZNu9dHH10sdThBnkgYED0/CVG5QaGLClxE7mIisnl+fz6ZvfZz38yb/jsZNnt7kNg0OqYPPKdNp3FE4abIDuO41Qxxu/AlOlf/Q8VYeTMMdLo/e935NTzOvzyav7g/vhO2/pb2rjvXEs2DuaYVTH7I3digAdwbZI/69gsRoDAnEv1GyXXz1cmjMdHNzOYNe0nn3z6y1/+HIGKZGY3qFIVIDfmxcebwwykuENKeLh/t9vt5st59evh0XtUxMxSSr4m/aemP6OT2D4GpYaKnqKs6AaPlIsN2oFB13WbzWY2m/mc/Pgh1jeKCFWNQ0ht2zRpNmvA/YRE+qEvwwAAIcQY505quo1kaBpvdxpizsMwDCXnKpgn3A39m3dvnz195p2dQUokVr8XhVTNmAKxlhJjg4ilaEptKaUecaBgRsxmykwexqOgRGG6g3POABQCmU9EVnfyoKqDFFVRM0UwhG7oc1Hi6DIEBQMaB4Cr5KgenFjPUZi6zxOikEdLhYo2VLUaY42fyoTwJp7ygBx6vBRGg3sFmGANVSdeREQYhkFEmOP0m333TbsJDiDOBNQO1z8iinosxmPnTlWbJvV9H4EX89nN7V2M3t3zeDJVAxVBDoe1pC9xsceHnk6t7z4fT1BArM0OQE/nIMRBRNRSavqS5/NmfXf7vfnp5fnxLzbvHrbrZ7Pj3+ZnP9/dv477YRbut5sEi/lqud2tqc+rJhnbtchi2IdeF818bZtb604wvs9ps++Ojppfi8c3ij+5e/18v3u/OTpOi//q4fWrZdLSB0MrzBlOYnO/60Vzm9omwsvN5u/kFyuOcdZG1d0wXJE9Obtc7Pqb3fU3ktu2OYvzjcirzc2fa49+88nHX61vfrK9f2k7iq2pCui62yz5aDGf3292bEhiQdFE+WT5y/3mPmvTLArmTd/F1FzdXS3aRrWbreTXf/1XPzha/X/+83+gttwPXZfl4d27iAQi4e/+8ReqmmJq57P5Yn60WrYpNjEtU0wtkQiIAsgskY8VqoqpgkIuxqCw798/WXz6dPUH33TKyYoGrUa8oiXFlsxN+eoqmc4yX6NT82ssAdwBQiekXJH8t4VgdCCnh9o4G9u9TICgxVtpdciobokDrt6jiIgYQCeGAACAFKae60jyID6Gq0ONqeKKmcYQ2XEOEQEslxw1jdmrY6/HDAyKeGtApgwgADCxnHMpxWp3AFXV3UWHnJ1SVjUkFJHA6MVlCmxWM7ymt4UDu/shEk17HACGnG1kpGII2+2ut9ICY5gskcw5KlEhpqHkUgoQghIAKlSf0rH5VePbDAjRiEFEUM1IsdqYuoUSlMlM1kzVpAgR+2E0fl5QbU8RwaCU4l4E4M7C+/1+35nBarWKIU40eIzR70MmrsuoFnkgal4ux5iYSEXsgE701YIQaOx/4ehWXD8pd2KpS1Ch5mEbERURT20rUqSUXEQBiUIIDaKkxCnbp+9fQn8PNqgZElCFZ8jEqiUGKqVHiG2al4yff/7lZz//+oe/8r3zyycPu83D3c3p2bmVYgHQ0GUbYHCo0TlsPB28okedMvwZqnySkboGBGHi+auuaCqgH7fhOM0+fRvAI0Q4rEAOj2mnjqbu1XhpPT66qUtBH0vbEf2YuDWCWowxxrjPBRGRyR0SjZkIAwemwBxds7Lf7y4vnj48PLx69Wo+a2U00n0sTkbAYe4YDQhm2+12vVlzCLP5DGtbzQ1/UNEN62HqiY8vkATEu/ePu3ZkntGAESk2c0EUFRlEZLPZpJQ88HV6G4dhyDlLySHwyflZDAEBcs7MIYSIiEGEYg2xc68v1NrWIW+lqRBRCBRT5MBDHvquz8MQUrx/uG+b9snlpZSaTBLHSQioJxUBMBKDgUgmIlFz02g1IQyTQBAnWtvtc4gRwVVEzCzF6Rk1FT/S1c3/zbxPl3MW1cAspoYAgcwMCdB8FAynDwXMm1V24BNSl9O0iqbTqQKXUf5sqnjg/XO4CwDIBzSZH60iwHsRZsxkRkXQxm1VRLuuW62aAxAPk9atruGxJ+1PzIWGfi+oGgZvFwIoiAkSmigYpNgMw6CiISRmNqiJCEToqqF65JqosrkL4ujiDd/+mv5m2qeKqqaExIpV3uQmlYGp5GJqRHf3m8XJyaJZ7nPPGjkXzbI4vXg+P74v/c/v3+2P5jpL211PkdKsATNGKmZ9Ka/6dWrheLk835dus7HUfNAuoT26u727P0klxBjSw2bz7PnZKfHHsrxdX5U4m82XXbGHu83JvD1drB5y7hAAqG+br/vNadN8uFit8qLk3S53nfSpjZSbt7v1UQqnTdNsB0MMw2BFjiF+2ixa7d4MZQvSzNus5XZ9t2gXszaVbRdC0w0lx6RqHUBYzl69fhe0NQ7FIJfddr9ZLJp9v/mf/s2/+S/8+Df/t/l//R/8X/+j9uy947NLWBgDXL15G04++fXbu7vr9UN5KPnqLue3gaAN1BC2hA3iyWJ2smpjzO1s3i6P5i2kEMBaaNXMSqen8/lv/vlP/+j1H4lZiKxF/SMSUWGBao4MNJLJYKbiYhsYj2zwCS8oxayo0oiz+Tu0ttVdOp1AMAp9zEZzWJ8GG7+nbiLv8cmjfSK6pVClkHy3V9mMjIusckhuIGvmlXetIVRVRWucBTMxzWZzJELwHdXHxIEZsHouu4mGv4RprFTcIX9EV0hI3shiIKJ+6LuhTzFtt1sRCRxzzhQjEVUABEBUB9r91YopAZk312qaQSCiXIqJeqNKRpGsmLFWz2WftUNCyyqsfd8NpSDSWLKgm2v4Vqu1r6mCJgarnSYFDygG8KBKMCBCFzyAv/D6MdK0kYm4+lMDgbGLNAgx56Hrhq7vZTQv4RC9Pd/O2nbWNk2yklWLQdVMApMnwxuaqDK454o+VoWPGKLe1s6CpJRENGtWsyJSqjV2XSRFtKgZoqgNfR5yLkMxMSRm5BAThRApDLvr73/07PzsRPvbtpkVnDNFhOjVpLJJGZg4pECQXr2++uXnL4hnf/V3/mI7n/cZTMrLl998+v0fDVJICEjNw+MMKdBUNU+AZmpCHQIjIpLRrHnScsKojaiLH6CUKrI+FA9NZfT0QDaOlY08GR1cReM076jPOARJpZRDFbaqMoQCpWj1vEGshplWRUHiFok+RkAHhiv1OgJE9wLyqoQoSwkxIsL773+w2WyGoUcEETPPCvyWzcY4AGoIiFdXV8MwHB0fEVEMUVVBzUSQKHBQVB+IgpHjdNym4ON15jWHmpkoETmbxcaElFIEa/d7cR/FzXazmC+c2/bhu7EpSQYQmIlot92qSIhJpEZhcIpmIFIIqz9gnf2X4sFzKkIMTUhIEHNAhCha1CCEd+/eNSldnF3kIQsoRbYiUgzRoECPmSkMpSBgSCn7kISXD4JIqADEWOocOyKSN/sA6vC5qJaihNFJLP+gzUxFiguwDIu46ouyFEMEqiyFgJlZQDQEBWO3Vprg5KgQ+I7Uhka9PI3SbBg94mHcv9MKn7CO/5/PtBzCI/eyZGYGzyHzaXkoQ9lutovF6mBPEaLzvjVme5SGPjY0XVrtm4BCMAATExMEIiBidpsMp2aHYSAkUA3V2AJtdPaCkezx68HA0NC7DTBekWbVA2l6dLMa7mQAisho5ngSq1HdINqXcjRrUe3i5OTF3dvNtvzw+EnZ7W7fvdscrSTCk3bxTdF9g9yG/dAt42y2Wm22WxVtmTuRL2X38YBPNUFcspQZ8fnqWLv9777+5QdP3/vV04/u0/0ff/P56cXxe6ujeQif7bavt13GEFJY73dPT86lSa/urkNImkuM6U6z7u9/I6zOmqOHmN7evI3tYn50PB/C7cPtop3/8Oj0EtLr7cPvvfzy2en5D0+fXt5e/W53I7M05F4ZOYX90M/j7Gi5eij7znQnQoI3V9c7NuBF5DT0e8jDfIaRiiGkQP/B//nf/+WPf/d0uXp2fnIvoYlnJkVKOT59P1ycnp0crYzUCKSIFlOxBKR9f3/95qilRYtaNpvd9ma9Hl69AyqBLADF0DZhFsNscdo+efL+x5dvfvp6C2kmWhKwDQAQS2ZMClhIgYFVUSxLMDBDYrDazzY1rAPriJUFrCPFjx85jMpsmJANjg0uYrc+ruNJmEXRJx1xdLQDMxAzz6swJPDQBv/NIoKAzOSMCFSYVml41aoJcaExut7NVdUqDKxZUgjnZxdiGkMKwGZqSmKSAgdmMUMENXUSxcOKxztGzMzU0JCBvZXGxCXnYchmKGIiKgqRCIxjTK6sNLAiJXI0RGbu+w4IA1MRdYkAA3tXKxAmTopqhmQSEU2lgIZEgqBiHnPESCULIRJCHjIYEACUIRakMkg0twlPBqQqMhAyGxgDMAL52C6Diho6RWaSUUC07SQSUePdA1WzMs51IyIgMgKYEdTbV80k574b9rkMOQ8qJSV2KtsMZqkNGAFJACIx+MRvCGbWNklEPYozDxkThhhBsh5YdyCiZEkpZlUXddaBIzHJxcNorfqReF+mAICIDoMOvZZsAIkCEEAIITUBEbT0s9WsXR2/Xg8JZnmXt/uh7zYigmP2Swjh+Gi1PJp9/ssv3rx+98GHH3/0/sW8Td0wFNEmtvdXt9KXGD24DTCiESoDmPFIzNQdMg7t24hlJ07o0B9rghGI6C1mszoJOP34xNlM3+zN1qm/AKP+FEbboQn0yJi06n4q/j06Dt5PkzJmZqDFinqkvHqDDEvJUkyLUwjFFTNMGAJJGUru23lrIsyBMTAxEhiJQPZgAylFTONsdnJ5/tWXXzUhOObSEVsNAITsuee5ZEK4u7/fbNcxhhgjAYMCMe+HvuScYiKGIgUDAqApKKiRFS2uW2JCFTUuxS9mRlWrPXI1UmiZY5sQtNt3uUi369vUtk27k62CNIF7IlBjCqLW7bvz8wvC4P2svh9GYwvg4J8gtSlVI3cC0KqViTGpKpoGihhoPiM12e26mGK/39/cXC+XR2CmWVJKZGaggYKJFdUY0URVJTYz02KgZMzMlIIWXyekY9ayLxUzAEVwoFxEVQ1VVQzNTIsXQQCMYKBknrWszusHJvO1L2oGBJ40AiC1OvKReFUlJgOwserwbSqiAOIzYTlnAKXxyoBKzGBw06+RboRHakTQzZOsks1mFXKAkvsPudCHCJ1i3+93s9nczLquyzmHUHtVMQGgksfTmW8cnzAjMwRCqO+Boio6W6ZCiOATHkwMRgyGwpzc+mxQAQTmMAyZyHNRHbQrenRdHVueGFkzE4fyI68PCIQQFFVR/F5kIjeeIcJeyr7k54tF3+9v9uV4uZTNNhyHspi92d11D93y6PSDeDJs71/tNtg2HNquL4vEDeGuG5RbDPHG+rS9+/Tk4oN0/PBw+3q37tDmKf3g5GLY7PfHiWJoUnrY7E6bo0/mJ3d5uN3c8mLRExXmr+5um/n8fLF82GwiM6Cp6i7rSxwgLknbBeddN+zn/WlsnjQrzn0A40ANQEPwbne/bGezwn/p+Olnw/qnwxralHi2D7o3W1FbqJj197pdxSXvMEEKcfZwvzbU5WwOJKltEfT86PyXP/3q9//Lf5iMGGdnqxPsi6qY6CzNw/feuzQyI+tK1/eDCKXQbu93P/mn/3TRwI9/7YdDd9fGY9FeNQ2aiuWc99Lv+80ABdbbh6+v3tHy7L3T9OrdzU0BJLYiBEmUSikUjQlIUUXBkJBEChDQ2F8CcMeGUdPj2KdGRjvBY4dnKzjxPI4HQt0x1UfKzxDmRqw3LeDs66ht9WgLHM0MHXhBbXPh2PY/5FVrD94qQkMAHsE7ufUUMyno8fHx0XLVd10gSikhoIogAQi75tMAfOYYAVzk6veN1iFGRO98a82cKlJKkRSTev7EqBxPIYYYan/LNGfhSEaev1izI1F9x4iZx6+qiBISoBGgi82zDVyQKLgLKSGKSN/1FINkKaUEDkygUi10DUlRgiGqsaCgIhlB5dhRBZERnHYBRSQEInOZdbaAhIweCmZWXf4Q0EpRLUYcvFxTM1URGYY8qBYiAzRi4FCjdiKHyIGATDHEhKHezWqG09izZ2AerBwci0EzIAKVosIj88GlZDXVGhjtRRSaqRRnf0SKDYOoCgATNUzovamUQoqICJtu33Xd7//RXcl7UMpFiWIugojRjWIN2rYVvWXm3W63mK8+f/Pw2c+/OF2l1epotVwNRR42f/pf+6t/7fjszNCATNUmEcskjphokWkv0LckNTr9cxqfmRijCQxNnUQbcaHWCd5agnhrjEeL24ndmVRHMOr2/Hj2Bi6NU8T+g48VOaKIDEPvIwGImHMx05xLzlJ8oRcxtcgcU4wxgBqoBkR083YmFwO5eTJiYAxeFxDS0/ffWz+s7+/vgSkyoaGVzByGXHoZZvNZLjmEMPT93d0tM85msxSSkwpKzuiAmCGYekOcCMz6oRf1iSsgxCZENzEy1dhEjgmZ1MzEEJAAmQCBmhhBDSH3Q+72/WyWUgyb7X6wnolCiCUrgq7XW6Jwdna2Wq12u90oMlNvJataLt0wDCqgVojIdX6llJSSmYVQnfpElJgQYej7EGIehjdvXj97/lxdUkmMVv08Jfcl98xopjnvVcVtlkaBFgKAKbhNq1WZvLrJJGQYlViBCAk56+CkTp3sMjUpBMDoI3s+h6vuRkCj/0blKR+HWirvLeZGZXXAVMemM6CYuZ+1UXAeCRCribMUMTa3UXbi0Jd9Fpcts98eUyoAjlmjCBgoZSx1DxFK0WHoU0qIVQ8XQgBDYkQUBKvWg/XsVqvOrajOZao2kXxcwt+5okZIgdi0GCqHKnrKeYhpjlYVrlRlsCiiOWdA40rEkplLSWCSzFbBVNVPIQAiEHgGgbiTDXk2nhgEokLWD/vSdwHT09XFpi8/e/tydnYsR/P1ZsPDkIwuOBindaKdiGZ66NcXJ8dk2A3Z0AKHrt99vbt72rSzdq73+zfXV58+e+8Dbt9cXX319ReXz54+e++9+7u7d++ut83sg6Mjjviz7d2ATQmzfbfbPDycnB4fLZf3D3cceNHOct9/tX/oirzfHh0tT3Bzd/367dMnT3/07IPc7b/++qvrEJ6enX9ydPz13dXPv/zlj558+KxdyA52Q7kB2w7DVvRo3qpaMOzNdnO0pNBGkpj7vFglMZVub5SOjs5l2K7vNueLxenZUxykjfMSF10xKCAKQ87hD3//9zhybDi2MTaz05OLzXr9X/xn/9mwWf/K9z/66U8/e3I+Xw/rABmpUZpxpEWCZt7yqo2hRaJO5SHr97//PLX0d/7RF4HO2FIxxESqe3YHCuai4qOjrjaGEXyYVVk0IKCiYkXyYNOM1T/364Donv4KvDFkxB5EZ+r4ps50TEd8bdZYNXiAUQJiptNcoppNFOXhg0z/6iy5CJwcH8eG+4eMYFQdzsCtR1QVkQgIanONVIora/0cUPcgAMglOy7yaCRVTTHWmRpGKwJmKcWUEkgBAGKuA0Me6A0qOSO4LYrWEJxRae5IDgmJOcQw9IOIEIXqgWQwDNm7lUPf55zNVIAHbvq4MGqh7EOxaJqQApARmnEloEHJEB1rEhrg2EohRGZMhASPpR2OnxKAI6jDj9iqqa5UAww34HVq2kIILuV2NjuExEimHtfungNKiDGmIhIA1KRkSTGqKk4MhwgSm1kuGSYcIJrzozDLrxYXjpjZkIe+L6UoIQZGIuRAACFFbw0UVd53IkMhCoFZQJFTDFgbBEUBEYogYikKFHZdnzdbMrO93O/v0t1+GIZS9O313emT50MuCUAlSyHSQER60Mz6zjo8hEQ2im8mNegEeip5o6pWDbr8I3psNh0oxqafPQRJPqXov3kSOPuPhOrtVO9ps4ndfJSVUI1YqrDfVzUzlzLNOVNKqZU2hAZGi3M3O/FxCnKTXQ5ioFKalLKUXHIM/L3vf++P/vCPJPdoDKJNiGqWmoS+dwCklLu7u/2+WyzmbdvGFB/bhYjep/NXZw5qrJIKldBQK30WzWZatOAQ0CCmtklt284CBs1ZFIAwhMAhAu6L6G63Q9TZrB1yv91uxoBnJUTJZb1ZI8DZ+fl8Pnf4qKreLzOrrqqlFAOue8UMANy1yy1XnYHzDpGL5xCwe/tuOV+uVqvaOxn1uYisAAExxOAtYDVlIrdDHPNQMYSo5vMcDGCKRsTuEKtYBXVevZDCaLrqJDZIMRktv13JZ4ZYc4rMX47baDyenx6+Zl4AP0L5CmisxmDX9WDkeBTHj0xUSs7+cP4jTOzpiFjLanNVwUSkTDUAjXbnAAYgfd+3besStKZpDE2zEaNoTduyqseqG9DURX7ue//YHqvPfOxojHsQ/KAgY/crx9GtXNUQtZiJui3A4fYeJ5D/eV8ep+ifh6EhIULkAKKEUAz2qs8XR9x1MgjO5++2e9g/LJvZ8WK12+5ovnzv/HK4u7rdrjUkpQiI19vt8XzRw6YM3Tm3qV28KEN59/JXj85/ePTktlu/Xt/285WiPpkd3a0fwvFi0cxeb7f3Wf8cnx/N2rLXP9g8DHNqY+hN3mw3y8X85PwiP2yHQTIhgL3tNkr2fkjn89nHi1W33981u0WvZ/OT17K9yv0Fxafa9KfNF/3VuuyP0+qvHH36ew+v/nh/M28W2g0lMhAVsSspjfF+Hpft8fCw3+52KYST5bJof39/N29DAXt7ffXR+cXZqpEBbkH7UnopyBHMwsPtuy7vu27Xl0GNmjSTAgnl5OKsTThvU9/t2xRCIbBEFjTrfug761gNihFDnLcmOj9Kf/FXPvyTX7x7c53NZhiDUk4RJQ8KwYiIUFTAAnOjOlSTBs/h8LkvAKWqpTcw0HGNHJS/0yKelvKEaQ4GPwAQiQKQlDKIakDiwFav10PTiKpUGKtVdYTwZyRo/tCjXKjWKOJWgN5fYKYYE6CpufOyMjOYGwQDEWTNpQgyeS5pLlKKF30mniboVI9qUR2GIeeCxGrmjqKcixIYlIoUCVUFqRZNZjXAzMYpGyKySq+he+R7EwQQiSil1A2dmas3vORDD4F3wZAfOmYqJghCZihOVDFAUAYlQwYCQ8ikRhAQCNRlVOieki7y8ZNXERgpi0ZEALf408otjZeimalYqaIThDHKoE5im7VtiwjD0MOI58DdDXDUh4DWheRyezPRIoVsHORBBDMOMRnY0A+TA/J42QMAqF9+IoYqolKKOd8eghkEVGIPeAIOLEW6fdluBimElAzIn3sB8hYqcXTnbjNDolyyAgMgxWiSt4UQId/3bZN2+83nX7/+8a//pdLfs2oIZCruduSHLx7cHJPi+PDOmKgaPND0TN/jZzQieOyLQxD/bYeACQ+0RBOOGTEKu7RoEmdMQ8I49sKm+2mqyEdZEouYw/rp+plYIn8sHwgysL73fAngA2n2+J3KyEUMyAgwUiglN03z0Ucf/eJnP+UmKhRFyKUAQGqavutCCDc3N9fX1/4h+pzXeImKiDibNUmXzACRplAz9+EKRCiACGhBRXb7fT/kHe3btl8tFmGMInQVIHNYLpebzXoY+nbWHB8fI8J222HVGgIxq+h2tzOAlNJ8Pp/NZtOxNvUcZ7M2hKijDyEzl5IBRhcxVSLq+4ERsZ31fc+BwfDu9m4+n8cY0UzFiLkU4+BeG9Wqh4iGPCCwD7kWKeJOJxjdXTUSGzBRXWmAMDqalspzqIKKH6neNM5aAFCrXQYikguBxjNzhNpY9+tYECETgZoUM+8RjCNj5sO7hGpqOQfwvEiY6EZUsAIIWKT4OUnMHGpTWAsAfGtmHgyqnbcfi6PWE8d0SCLKWcad5WIdQzv0m6YROTmqgbEr5dvnEbr4RnvcVoCqBSnkPAAAx4hiQ+4R0Ig58KydlaGX0nEIj9mFEwk8PsJ0B5GC++yDoSGpdxTVAhAR5JJ3qusUfnB6xvf3P7961Z6sFiFd9TueN4vCMcY+WI92Ml9eanldujwLYNxvc8b8fHXSbx9sGDSEAeiNyLLbXR5fnMeTNy9++cV2/ec//WG7LeuHd199/fX7y5PvP/1gvd5+9eZle3oSmM/DfOhlmIWCQVQKIsU4axfr+2tN1MzboR/e7dbzpvnRex++n9OLbvjlV199cvrk6emTpQw/ff3Vru1+fP60RX19+/Bye8uLlQ1dKnaOsRvEmrgtu3nTmGKfZVh3tIy99D32zSwumzag5VJKN3SkWrpWNZdcgM5Wp5tOIQ8cg0HIg4anp8uuhCGnXEouWgRUMC5mYEpoZAImaEyYDJMYGxAgMBMWCQmJtAwSmfZ3dyfL+X/jL/3oP/5P/2AriRerfhgaFDSVXIiJU7CMoMCMAgZqSIyqBkjEPg8mIA6dzVVxiKh150wQfgIlePBVdQy1XWVqSoTIQUudBwMARPMukh3k5xFRVZyqAowy5clI+gCCO/s6PTSAz/ebohCCiCyWs92u7Yc9oDZNGrkNbwdDnSKw6samddrNtPanpz1UbXBDCCGmfshmFmO0/d7ADSNUSk5UO2Ih+QOBidbxdDRViMRKlQxwbR+O3CkzxxgBQTwgXswMiDiXIqZ+E4QQkNBAYykNSFRR7xERFgYkzGxEFlSCFlLXC5HVYRnRaoSEiqQGqugmlaqK6N7wMn2UZgbV9FLN0Py4h/pqASAENlEVW62Wi8Viu90OQ17M504x0fhZiAHX89zc81XAvCU/fWSIhFY93IZhmC54ESEC8fH3OocGqqilWHF9GPsUrpsVua4bkEoxER2GAsCjzwdiQIE6fQaBFNExB5rloq5XRESk1oEepQCxEdn97h/80X/rr/91pFBUEwBoMeMxPhgPARAeqEQnJHSIVA53jf95QsDOt+vB5NdhU2xCM9MDTbqfqe/mvMgBYngEUtPP2mgf4DvO9f6TLDrnXEpWQQf9AECj/6+Y5r6fOiRExIFd4VNRnBZmMgPJmWOMFIdhuLi46Ha7t6/fMKOocghZNA9DjHG9Xj88PJhZ27bz+XzC3MzsNcdkEj2SZ+TSkOm1pJQaTn3pxSSN8n4w7Pu8vr/fbtYphePVsp21iCRiIXDTzMx0u33o9t1sPmuamSpGTmqbrtsjg4p6Othut/P9zswppThOOXgZ4DjVcaeI+GTThGuJqG2aMhQ1DcyqQhR2u/2rV6+ePHkyn8/9Q8DAVXNTIV1hZgRylweramL0YSKogkWrvpFjeeAHMNS5LZFcnPoRMSmqAMhk1UvEqRAGyOMifBTRe6t7utWliDsR4Ih63DkFzIwMEIgJ1aSImYRR8abqlmXVAxoyOK2IIlYgBK6nnE2WOVWd4zY/AB5j5IifiL5bEiCi4RR+97gDJ3corG12MtBqRHhAx1aYZ9V43f2uatnMEQBMSy5aa1YzIm4XTR769aZHF76P6//PAKARFoGRgQc6Gvr8oqGa5YJIAKSB7vLwzf3NqdE68mDleVjspdzfr8+On65Wx6+3ty+v3x7NV8/ao25b3nV7xvZ4sYK+LJSWzezVfqdFIrW8mn212/DNq2cafuXZRy/yw1fvXp2H+VEzK13f9/0sHQWNv8jd9fU3F8enl7yE/f7z0lnkWUqa5d3m9rxdHS1P1sO26/o2xpa5A3tx8/a0uWhjc3ZyvpE832+PhN8/u7yC/cvNHUn+6OJJF5ufvPgajZqmOYO4AbodhhyxUyagWZj1/bCT3bNPnoVEsu5Uh1IAEUOMgFQUd0N+2G5PVgEJZgnnhTuV3X6vAmHecAixRBNNRdwpLaAhos4bF5sUEcVghqAoaiZgosaIIUUiwDwwhyxauvsff3L+k0+P/+AXm1yIA+WhC0BoAAyiHpuOKh46LORih6n+q0vPhzMRHDhMn/y4tg6P5hHLT/C8blgwdDDEHB2iF8fsB/zqePmJguC4fA8Q9vhkDr7G51nPIDcC87rh7uFOSlmtVvvdBglCIC0lhJA4GoBogdhAoVLEwJCYyXLJbhID4zglAKipj9y77F9EYghlNE4mwhQDAqC3uEFFSuJGXY2Ik9zPIISpABHRWmC75JjZyV6X+5kBc3Ddd/CZhZLHhoWw5GAZrYiKkgoWI+UIioJEYCjGBARGCj79Zw5LKm/vgi43nA5sRb3gHp0/1MzPFL/aSVVUy3hp6qS6FS1dv10uV5eXFw8P691uc3526nP96NLqxz6LgRozue4ghOinqpmZyyNBTdAzQNybTtw7kcyqxx04mCYk4kAqgQgAiwCipYRADEai5i7Vu31nCIFjKS4IZUAzUe8IAoXa4iXOOStU++CSB0IEZL9b+pIpNT/7+S+urm/OTo9VhiwaMFDOAATIaDgRA9MhO+EeX5AyWhpO3yCjBzGMNI+M2+1QpjP1qmxseE2r/ZBAwm+b4X4HNk3fT6OqegJk43PQw5u7tl1Ap/5Fik0uqiJqMDlcgxlTDCGl1KQYmULuOzYIIQgVM8tZYog5Dx998sl6s3m4u3MRnhvn7Pf7h4eHnHPTNJUXQQRXdo8chL/k2lUR8TlQf3VTPzGrmqGJGGGIcT6bA+B8xsMwrB/u1w8PpeTFMG/bWUqeXAZN0wxDcv1TCDRrZ5rAjEvJBopM3nZZLpc554eHh9lsVq/tEU1WgzTzeFDNuXfq0auWcT2g52ISkag4V3R/f8/MHJhDKCWzAyAEhGr4KSIxBhHxwB9EYg5mlrMnLbIXbNN79S0g68McBqpQx8FM1cxBBRKYoRpoEULGyZINAMeUT6vK+LpIqB5UdarOFW81KF5VSZGcJmJCH55wplNFBAjJkDkikoiqlr5krzCBHnNjAKx2AscBGsBRj+hnOcq+2zdNk1Lrz9Z99pmiio4Ip65/9krLp26JwFRKwertAkSkpmggakRQRHIu4xZAcPMUBVNj/zgI1JQ4HB2dDGXIQw+PUdp/VuYxioG8f1KlGqhmBBCQSC2lIKqWeLfbv9hudLZYnJ7d3F1DxJP5alVk3e/noicdXpve79eXzer785N0fS2BGBWQXm/voKX2eIV7CZhu9jtis936+OhJO1t8r2l/75ufXTf9v3T+yQ/g6A8fXv3T/mteLPBokUr/rt8+b8/ea1aK8RUMt6VgnxsM90N3NJsd26zvbA5xHknz/hfr6+v1+q88/8Gfo7Ovbt589vrLDy6ffjA/XWzxs/WbRZsuJW6HnkK82m8v5+3palXu1m2EvVnp+4SkWnDWZLLNbjtPZAH7Xbdo5gFot98Hi8vZUQHE0AzIL96+mp0vF43IfselBEgBtYsITglkNTBiToxccs+oMRJhQ6RGapgVVJAM0HM5u5KDYCAahhwoiexDuf7tv/zxT776+xkYYRFCo0NmIlGwAhyjgWouIZBPax/SLTBJQxAEjRTcBwz+WV90QGCaGZJNnkL1BDcAcykclJJVFKmexYdYajy+mcmn5xX1u49V2dMDe3LTqq2pgY0Ad7d3r169fP+99wjmWYacB59idL1FEaE6SVTVLVlKnVxwMbOqe1JPBbGIghaHCzC6jgai1DSAxswIqIqitemOYzcMxiglBXOpI0C9ukTExvcnhjigO4B5cm0dwOiGXsegQTMWjKKh1wBpQUEVFSkTDoGUMCEkAy4QGAWsOGk22tCJx6qamQIgIwcsRb36HG9u/0Rq/6Wa9ZXyeAgSMbMbqOScAez87OzLL798eLg3eQ9GTTWA8ePUqI7+LqYGhKjZpn6Z54qb2TDknEvVJRF5WidoNboUFUfMqorIkQMixsSIQCCGmIuKSNf16/V6v98TETFCESRSKAhgByF0iMRERYpPndSpcg4OtGIMWnIpZTafXb17+/WLF+dnp0U0iDVtcALkkA553Czjlx7k6B1+/dkf8WMdA04CiAmpfAdd0UEI5eFvm0DVuDUQD8zodNQMTQyrX9U6ptz3fY8HUUq+reo8gBoHAgIQ0DJ1xybHIzKDUgQIPSAFnX8i//shBBaRH/zwh7/42c82642U4hPId3d3TvU1TTObzfzlTE948tvAcbZO1ZOzZATfMIpPgWMgRtFqulgyAOB8Pm+a1Hfb+4f7V29eL+aLk+PTGJNqjDEdHR31/V7HEBgzWSzmYiebzbofOgDw6GiXNssYTje2IBWdZgRwr6IQgs+FuZgvxUjEkjPFiIgimkxcPjcMw2a7oWt+/vw5EpUiiQOYliJEFGMcBilFuUYZVh5FpPR9zfyyccxERiNNqulXqKUuEhX3AKo0u4giIwIK1KXIHNC3uR+tY0a1709w/3lAhDFkRgp6g9A/IDQpknNhJkYKxKAwqceI2GU+OSsAxBiZoRRS9ITjoVBpm2Zamc5v4XjsP5bc47p37WPbzkoRq2FuDAggjyB+Kg8Ap31RreOIqN48Fd0Z1FQFUbdJJBo7v8AcI9uQ1VemB4YsFstchuurd6Zy8Punwvs7Xz5M94joDEBUkSACbYuUAJbiPUDC8hzbRbu8L93TOJsT/Om7FzZfnHF7ZM1DtzMYnvD8o/OPPnu4vsm7HKkr2fZ8vDyNC7y6v8sg89DoPPxy/6CmZ5m/d/HBm7J9eXd91iwhxnf7TW/4bHG67LBfr7d5/fHle9Lxdjv0jLFJJesu91uVy9nyyWzRb9Z51wlZR5hb/tnuhmC2Sun9p5fv9vcR9IznP3r+0c16/ZOvvtajGTaxDbO79X2aH398cl7WtzdcMhGQ7fMAMDs5On1yuhh2DxhCOG5SiKK4L7nb9aV7WM4aTc3NMBzNmtu713/5X/jNTz/+0defv/2jP/xTt7ozUmHTlqiNIaAxlnkbmlR7wABIGH3mjxEjkhM5hIBEBkwUCaGNhnL/4fP4L/7m+9rfkA6WIYXGipRSAAkhECNSqT4H5mkyaCb0OMU1TliqTs2LqUidzvTHS9SqGM7AvH0E5l0Pd+vQqggiImRCJuDJgdo3kmfjqakTitMjThfA1BM5vCEct3nDzmvHN2/e9v3QNM1iuSSkmBIimpozxZ5o4c4TuUifeyIMIXoJdXBrmSs1/JLw3cuuqDBDosBsaqqFmEbFEhYpnueXS2Wk/O3zZz4dAVOBzswphBhCyR7Njf3QE1Ix7fo+pRRCQADEYGn1emP/5LMXP31xty5NTEeJUxSNpSTVQAFoJtC69QwQqoqYEqmfjwTcdYOohBA5UErR0VgpJefsEuzJH0XNEBSqhxP4G+h8ld8N/TBcXlw8f/b07vbm7v625IHQiyVHeDUL3YMLRLxfCIgERkzRmIq3uBC7bh9jUoMh53rJmTt4kKqWLF6BI1KMyTMTEocmRAA0MQQQlc120/d7IgDCYoUbxmDAxUwIjQmYIBB6hailuGcrIVBlpYSsaO4YBU3BpJTy4sWLJjVlKGZWihatAPE7qP0QoxxyOVMI12H7ado75u/IiHu86TMt7OlHDjcajJmp/vdOzHizZvqz0xJEdHhJ0GgZV0rJeTi4tx6TBFQVDtgs5vq/wYfqXbGOj1GXAKimJReiappgqmwQQ/L57CbFTz/99L33nz99/mw2m93e3i4WixjjbDZzfoUOPMH9cFCdtLw1H7dpGlXtx1EAf9urKj8QI6OCZEkxegc2pZhms+OT4+Pj46Hr3759e319fX9/3/edgxtEHoZMTCGkEON8NktN8i6bvz/7/T7nvN/vPfK97/siRcUki5SCAIGIESOHFEITU5uaJsUQGEDdMrFek6L4CFbo6urq7u6uSSkQeyHkb2MphTmYASKXIqpSStnvdx5JNCFa/9Ix083fHwAaP98ARkMuQ5G6qAkBSZzkAAgYtIiKj4k7Z+O8sqqqG5YYAgXy+HRmVlGnZvOQvUvrzySXMuTBVek4atS8OORxYGWskSBwCCEggX+IpWRvCY0czARgPB1MRVSk9qq6rvPYGR3ldKYTXKtAROtXMRPfNKI1Goi5bkZv1ZF3ML0odSrcDAMDsaqqKdKofxqKFNntdiEktwihMe2k7vSDqgbGXoZO5jF+VREYKqKCufUUWAhbstey3w35eHG8mC1v7x/2u+7J4rgbujselkjPNMRheH9+9MPZ+UeLpem+i/koNZfWDtfrXe71KLaRWsMM/JWWf7q/vZnR0+X5D/HoF3nzn/bfbFpeHZ8MpVzdXs+5+XR12RJ+ffWKTT5enjzpDLd7lLLC0FLIeYgKCbDkQqFtlucamz96ePNf7V6FNn5ydLJqm8/X795xObf5HOZvY/iqdGvLp+1sNZsdHR8/ifNTSGK2C3KHw9HTy3nbnqf2OM5xsBQoJMbIy5MjVWBOZqEb7M3N5tV6+83D/fuffPy/+rf/7f/x3/xb2/X6H/z9vx/AuwhE7o0jWhA4MBAi1LNVACJLQFNCUeSRqNHUJMlFFZqUhqEDFcM87K//ym9+/ye/uL663SKe5D4jVYiQhyE1ypFU0RObEarbYGXL0YVkxgjgVxvYdJh+p2ytWASNyBQUjGocHRJWkayOPlOTQtoxBh4CncNy1vX5hyjb+Qs4ELg5SOEwLkezUiTFEGO4v7+XMk9tBGQTKCh8UEmDbwB/UMB6A3lqvOlBDV1let5EQ8Su66YiNVQVgINPAiIVK6WYKHOMHBDZHUJ9eB++zV3hOECxXC733V6s+iaraQHN/eOYjx/6SunN3c3uat3M6Yub/dOTo+89XV4uT5gGNCCjyGgEmtEHgXTIWjJRDIDAqGZDP+QCgYthm1JyWYDfOiKVyq7euy5mQggh+M0UYkTEkjMirtfrpkmzxeKjDz9Yrx/evH19vFqKZqYAYKIFXYEKXpwBgro9kYiBmYDiuNSHYVB3cXYCWUVVAE1MQUFUqSY+2hSdiIhOLbnYWkU3m912uycOkjOB+ZFXpBQpoEgU6soxHPv2NuFoLw7HkE9ARcZ6Ql+9uxrKkKVQCApgpcjUDDpQ+UyV6LSGxwL98eObcPwEbrwOOfzxCXhPaHtikqYLozIw4++f/vVgm1QY4cvV7yGfGhuFNT6PVR8ohOCmDyrqxleIyExMkTlaryI1I4wxEMZ6FSOSJ+Uy1e3oOXOBQZUBkQICzWeL9v1ZYH7z+vWbN2+IyDtf/qwmDITeVCH0At1GRyUY6YFDDRCiIZCZMQAERjB2swoFATUxEwghLZc8a2a73b7vh76/YaYQUH1UB6BpSgxNim07mx2ZquauG/yh27YdhmoF1HWdfy4lD4E4NY1ZXYeuGTKzGEPbNF484CjuCSHkwjaUWQi73R4RFovFy5cv1ezk6Ey1IICqNE0DAH0/2GhK6QthzAqtwYLkk2UHuBYADNTAQmAzzLkfclYFQlYfeSeWSSwDCHVmzBXNRKBVX4TTXOe4eMC9o0LbUi5lKNINHQJy5NSkJjVBuOt2Q840EjN1qgDNbaVCCF3XDcMwm81qDxFBhuIzmESKVcGtgdiBe5Zp+yiAEbGC9oP/kgViRvQRrZFlnu4D7xfXjTEOEFT38Gp0rqqM5OMsdc+OXooE5MZOiEQATZNUjDnFlMyUES4vL9+8/FoNKEQpGczA4b5fZNOa9H8lRDNQNPSQn0oPMiGCqYISCeqN5mOws0L3++5mbqdtuwh6tVufxOMfXD7b9f2r6zf90dl51h9R+oVJIZWcwaBsd0+fnTA311f3HcTQzrPJT4bN5uabp5jadqHdzUveH88WF3voNQ+qqzSXkm/Wt5slJ4ufLlZv1usNGLdpiLjvu7ttXrbNKh73armXAkKpuUP4vf279zE+CYvLZ6cv1vff7PcYZ6vVSd7fWJY+agm0G/Z7geVinnbr7X6I81lKnPd70VC6YR4jhGYoeSg99OH4eNXvS98NyNTLgE3k5cJo8X//2//JL3/21T/4x39y8ex7YTybEXzoSg2xmJKNemA1NXVPKwMFsgI+bRQMpOSSydhJVCAAIlNtU/lX/9pv/e3/x/9PtQ2x7ctAkim48J7cNBTqivCu6Lc5SQMDI5cMjQWifVtV8Hj6o4q6CZsAEDhJq2i1uLQ6czgKgKbfP+ES/7XjWU/V7WE6Yh8zZXBahK7MRl9vyKawXC5Xy+Ou62IIfmMaUBFzIqoWkc5yOxACA8NSBjOo+E8fpRXqJTIiGPi8h8ORQERMrqoBAFMskolABQgJDU2VAn9rk4zcQX0DS/EzLoQQYwLb51JCQANwbSwx1RA3VVMDk+OjY9rkh67vHuTm/uH164f3jsP7TxaXZ/OjJjaEitJRyGKoGogjUwESk0QpG/RDFo2hCiNx7MqDGfR9JnLb2doqnLThWKUJADWXilNCkdz33eWTy+91n7548dX1zfXzZ89CADebdzIQaGxxusIDUC2bmZbH4innIiI6JlUhAhGLlZFBqR82Bx477mZWr0AMQYdydXu33uyIo6iYoaqW7DS2W09RJffH939abHDAIFYAjwimHmvICK9fv3b0UUQouLBaJ45nqoCn9X9Y1BJ9iyuaeluTFt7qaN70E/U3TNNb/nW46fDga7wwHgfjpwrVvyYZqYMtB0CI6EQv8+PQpagMw1BKBSUxRlHZ7vcuvJAigUMIyYhcOj1dw0xkoOj2B+NLIKydopJL7cKROu6ZCB5feNMbOL6NNIktqpwWDNHVMPlAasPIgKC5F0ALgUEhl0HFkAPUGz4yceQQY2Nmpegw9Dn3Xq0YqIiYDmAEaBy4bWelaM55u92aWdM0bds6fKzrF8C09H1X++AA+/0+hGBgs1kDCDFGb4qVoQZuKEAEdBbhYf0w5BxjfPvmDWO4OD0d+j2ilZKds3D+yUzdtsk/6vGktdGfvQqAfIWEQKrWl75k6IcyDEXREMm8pjMvIStxYiomPjwLhGSg7gpNY1jkuB2A2YNGyAwTEbIGDVKkz/2QhyalmOK8naGyj234hxhjNDUVASKHj/P5POcMBinFwIET5WEQGUXf49rOOYsUsWk2ws9TDiHkPGw2mxhjPWHrAqPpX20U3nkhNI57gVoGYKeQYeQXZRw+AACfglQDM78BxMwCxbG6LtvtdjafxRACz5pmtt1viR+r1kMS1/9Sq7AR0YAAFUjZ1KRYESuqAqCEGICbkO5L/vr+5ldwuZgtbstmLrwKDbUGuaQU50DX93ef33/zG0eXp6fvQ3/z+69f8/wkpZSAurc3y+VyOZ9rr4Q0gH4p3Zt++73Z8XNu3ovHXw3rENL7y+OHPNzc3PawOzpaHJ2svh7WR2nxPK7eO718t92+7HshBNJdn1loNl/YPne7jiIul8dDv/6D9dUmrX5ndTILLaXhs+27WcL3cf5kfrSV7s393ZKbu5uri+cf56KWMwUjMsld0W4wMmiZeN/tMUC33Tzc3q+Wp+38qBRtm3Z1/GQ2a/a72z/8yZd/8E9+utuVi/P3TmYXQQHBgOplMx2hquqKtKqzQlLEotCTohgTEpIOUkLTBF4UJUQtoiZNbELflw8uzv/qb/34//33fhFDAARDQciIaBrVWLWMLI0R1oFhRHQXDudVdMwMPmTy4c9+Gbho0W95xKq9qRxPVRF9t+M76k6+JbIe9yP8me7wdGNNj2gAgI7LFcxssVgsFsvN5r4UNzCcEaEUzZq9/pvkEXUwwQBQDawYkNuuy9hZVytSgDDGZrfvhqHX8U5OKcUQXVOLyMSGOr15lQFxADiiOOer1A5Ir7FC09l81u67figQEYnU1NmXx6rQNGr+1U8/WuHxn3zx+ev1lsLKSrN+u3v5sL88Sh+dLp49mS+WTYxzURHdA3AEdHNoRJKCogQQVEkNAVxeYESsCiIFwH2fxNwTG6v9Tz0mTYah3++7xWIWIw9DQeyZ6YMP3uv7/Zt3r1MKl08uUpw5wQHAIGCAWj/bOr5bk1zNALBOvTHr2NkRUTFRE6tuQTjd6JNvAtVIW1bJd5vtw3ojYjGlUoQouDECGtQGK7N+dxG53/8keBilJUSALtg3EQEOr16/3m12s5iGrmtiNJAiVQ87nYaHB+LhETn1Uqd1ewhiKvVCPOGb6UqYTu1DoHP4Ne0+Ooj29B90mEUHyaw2krX+9zyabBFVhyrvVrgibbqZ/MfNoB+GnPPUdKjhMwcvR9CmLJUJbxkAElTvB2MASCktl8uHhwdfcslb0geSKYdrcZw2mF41Ue3cTaBNpKBq08RsPQNFCgU8/QEZCRCMqn4o5+wMRQjNbNaqipkQE6CZYN8PKpbzIDVjofbd/LkhYkpp7CpG75O6AM5tLHLOuQxmNjKDYTabNU0jRREx1s/CSsmEeH52fnt7S0Rd17385htUOTpamFouA1NomhrSUrviPPZVPRkPHr2/AWAYhtH7CkWK8+3i8nWrHKeZZc2Rica2EI0WtAAgJnVhjfVAXaUIiCpaz69pURFRYEa0vu/3213uOTUh8cz/U11mqiHGpmlEZBgGGL0hVHQYQFVTSCm106aoVYSCiOQibvB9sKF8mgqGvveJeg/gdsNJRHObommD1NY7TDAxuNhg+kyliGP2nIsbZoloBPLR5nqBMBORiobASGhmXdcFptXR0Xa/NVNErmkFj1t93N0ABkAGaBAAC4IigOkAUowRAA0icVQIneRoNza8m9mRpfmabjf3v/7s4+fN2Yvu/uc3Lz+A9uOjo9u8e1UejnD1ZKBfPb54oYNQ3ouYwXb9cH50doH4cnO/bwm46aB/kfeNwEWYfTBLt932beznGJnDg2iw0jA+hXbzsJHT+Q+asw+wvb378up+FxfzuJx1WfbXNyfz1fnJ8cN+vdlskWgWT+4w/N3u7njNCfDj1cWLm7dvZuWT45O47kjtIs0+unz64ub6OmhISagTzPOT2dOTi023aZp4cnH29OnZTz/7yf7hvkgfSNd3N1nIFAlx6Pag+Xh5OjuLm/WuDEKGwTwa2hANqcaC+lusnirnEpoBFEkRFBTNAnIULcBxyFFLbJvjEJVBIzZoOUDfS//Xfucvvb0dfu9PXrWLUyJRHWDIEM+QE3JHiKZGWF1/Rpg8TkBC7bv7SNThQX8ISlQVyaZ62O9sEUAPVQGouXQAAN8KQ7Cq9MTxaH70U4HxCnGccdA/ovo3Cug5Nlad8tSsbWez2dx1LWYgoiqP3QR/aoiAhCVnb7oDVO6HmNijIuvmMjULo8eY1Nl91VKYIiJpUYtaSmGKKTU5F+8LhBDIjEIoxXmIRyXTaO2o+iiUkRhj07b7/mHo+6ymHjLqoz2iZkZgVIZGdz/65Ozyyfc/e/XmT37+br3j5Xx5o7Rfy7u769Orqyfn88uT8+VqMZ8nNh1fOoqhZEILTCln6bvcLOYpRRFxnxCz5AVZVQKBAhAgiQAxZ1UR2+/7XDLz0iMp5vO2lBxD+PDDD9tZc3t9a2bPnj9nYjRySaCCy8HEcSDzNPrhBRuWMQXdldL+jItmAEZEDpE5EKGHPsHYN1G1rLLZbm5ubhQspDhkEXV7bb8GFQHItWE8snTfkTHaSHwCArESoSFoYeIsJcZ0fXv79YsXv/prv7Lf7fBxVOUR1vzztoMdNK2mh1NVvzsnDKRVZ69TXQEAk4Hh9Dtx7Kzht22BHi+Ag0RVG+VB0xbz/+r3eghBRFzj7x0BAHCOgYmJcBi8IYIxBrEajJpm7QTaRrGzqZhRBbIwoiJnufwPhOyYH0xjSscnJ3d3d03T4CjdmF7X47s3vqJRnRpKKSqPgjkR6fshBEoNeTMSAIgJi4Ga+nCgGjACYIxxTHr2hzAiBrCu60vWnCVw4hBSSLIVAPBPZ8IZZuaCHkT0Vx7mc3/zQwht2/qRXErp+97lMghoCrN52zT1HWPmUnIppW3bnHPbNgD5m5cvuv3p02fPiFhqLIqF4IzXAXGjqgpcbUmc/remaTmgmXqbCYGa1JQCgL37e/hiElNPdFBRqCO/6L/ncfXWufTHalJUETwhG9EDs612VGezedu2fd933X6z2bTRXJDno3w5Z+l7LORAsB+ByzTNJ1DNBSaAa6PtNSHmEaBPN4KIILOo9sMwdRsP9pqveWev7eBVIYJP86AZ0Fi7FXOT86LVkx0NlYgRCEAQ2f1ifVmGEFdHq67vVYUYZ20TYvLsW1/jI+30SN8aGLCBAYnLtA1M3EEeSBmIBQJQYCoyiKoRvOw3idsfnD4t3S6/u9OTk6O2vbp6/ZDkkw/eowF/9vrVdrP70bMPTyKVty++2D9I0yqEkNrN0AciWrR5yEQgQDc6vAJsY7PkpoP+9v5O2uXR8cnQD/d3N09OVt/jVTg53m92d/nOxH54dJL69FrzOvdl0LmxaM+hmaVmd7/npgnz1f1u/67fncf2SWjmRT85u7jpNl9cv3x++eRE5HS5yhaucieLRTtIq9Q0M+176+nZ0er2fvv0R7/yP/zX/pX/8P/y9mQev3n5mtt0fLx68erq+vr67koDwcfvP7dCD/sOlCOHXCTULO7qwula8tHnqsKIAAxFMSCjRQAyjAgNhNY4/eN/8tPPPru9eHLRzprjo9nxYrls8XjZpHnMtvmX/9q/dNf9wy++uU5czDJjdHcsDQ5yXMRuKr5nAB71+TatuenA+rPXwAhlPHsKCMzAE+X9j1Q7e3XdE4wsrTfGRB7PawDw0HcFPfTjHEEMTJvWagfNzGNXEAixaVtVjSG4EUguxURCDNV8yEk2MwM1MoVqQgNIqlp8rBSRkIrVLljJIsNOqtmreDfPd6s9Fl5WipgCIaUYAwdTeRRzjDbQPmw1th78HREEJoa2bcNm1w8DhhhiPXkRMKvjUVQUsk42rxtY/9avnH349OSf/vHXL95cS1rI8oSa1buyW191L159fnE0f/Lk6PJktlgkCokUVC2LKLIB7bsOFVLYx/gomK3cvgGAgH9KgGTgUyVmlnPZ7faei5Jz8fGfxWIBZrO2ef782Xy+uL9bv3jx4uTo+PTkxBRExrcJwUDMxARp+pDH265e6mIKOvZkEYlRkYOHzKOYHMpBpOT1en11c90Pg7sTB6BSMlMwAxMxQwIA9pJN/cC12loGFXWCzhcfVoN9AmQ/2kRt1jb7/fbzL7/88Y9/VVVVJAaaRnmnk3oqZ/1wnzDWtDumPxyKjqVaG5vzLsQ89eHK2BiFMVZpAjqTwHn6bRPokTEklQ8i5Se+Z+pWi0jOg1tLihTHFVjD/uqly8SzGW/3qS8ll5wlNzgD9OFG4uDZGoyAhKyjsGrKAmSmUgTUAkdVG8pgZkZ2fHRUG74c3GvHHl0ideqr+Zbx5wPg/pxhev5mRoyq2u86RDCEft+3swURVbmYe30hiPggBU6GSmCWZTADry5SamazpUjZdbvcV2oHEYdhODk5GYbBn6SKFisIhlATqXj0W1KVmGL0zQ5WjToRhqF03QMiptSEEBaLJRGGGMMwDENGEjN7++7NerO5uLg4Oz1HpCH3Um1aGdCnT02yAlCMCUCZk/dPAXCzfRhyDwZEFGKIqd33uYgAIDE6eRIpoPq4OZiBaAGojexx3YrCKNuv5ymKacMRAH0RsmdsgQ/YF2ZqZ20IvO+CZM373TDk+XweQwwhFA95Vu26DpHatlUfdg9VrOdCAvx2SeABv/Bt8QMAmGpsmmEo++1mtVoRMVJVAvhFhOgApKIfRAQGhgBedjmLcECg7vb7/X5noK74YXI32sgAgKRWtKjCMGuXqtD3Qz8MkUmLMFHTpH3Xwdg6YJ7w1lilIAJw/WMtxqvbh5vD2iBaSmlij4pqTLAtPbXLVTN7Ly2/ePX1n9y8fHZ0+hsffv/N3buv718z88XyxAZbb7ZNkz6J897yDXFPSQxu+k2ONmtPZtg85A6ZY6ArEdndfRIXR2kuIuvdpj2OxxqaNNf1/v3L84s0/+Jm88v11ydPLz9dXRyX1e6bLzZcFvPVTGiXd/e368ujy2cXz653/V0vGRiweV1yCfgRpfOYqAxf5f2bzf0lxqu7m5zSdsEMNi9wziEgrRifzJqvP//lm33/5PlFLtuApb+7XrVpnbvV+ZMfLL/39vVVv9mVh7XcbXuMHBoy6LohxiYwoJqBFiQkJiniNjYwFlkIZiBuw4BKQGJoArmIhdSs+/KLN+sv12yamQtSmDepTTGkQDEdnb+HxMtZ7HtRZaNgKiEEJhI3/gQTA0MDBkWFya/PM33H+W2rfuTgKXf1Uh/xN2JEd3GpST40icVMFYyqFNXQ/fdwnJj2vDoz9caZ1XDD8fpEz2039l+OPkhpLhQyNDIyU1BrmmaWmu1ui6hWpGlaRMiqWLvAysygqKZoxIigWStTBaZQVGIkQCs6iBbw+X/CYSiqjnZQDZm5TZGZQUEUQgo1UAyqgTUzZ3elRx9aAQRQrXWtqqgYGqeQDHTIPQLEGBfL+XCfVUpqkutSDSCFmIecQbsosEgJ2Mqa7u8/bk/f/yt//rNX9//4j79c313n2LTzEOenGsqb++317btXK768WF0cH6/atokxxzg0JQ89z+N229m9ENJyuQTn/Nw6hEHEioqof8hMTKWUvh82291+1y0XcwQOIaKxFiAgBShZwcLZ8cWiPbq/v9/vu5yv5vN50zSIoKLiNBgAoTUhSiWdUU1D4JxRK2+vCiAKCiFyAPLzWs1d9glnbQuIXd/fb3fvrm72XYmxQcBAoeSOyGr/Dp3HRyMEAtQaMUtMaKg+YU/o5aCnP4JmoqgKRECWmYliytvd5198qZJVsRi3Rjnn2LQTAKfqs22AWEoh5iKSUtKRpJGD0tZHaSawEkJw953AQcYUb6y6qDzhqglFTU4/U2UyRYZNlYN/m2NTGiXY7mhARG5LMwwl5+KdDe/kOFzjAExMjGqSc9YyzFJEAEM0QgoBoKZyM2BkUrMCwkBQ/YSd94Ka9IpUXFLNBEZAOJsvYmpECxk53PIKQkpmHqdQQ3Q6GBFCYAB0pa2SmAkRUmQmGLJmUUQspaSQxH3GAgAZBShZu33HASMTAIbAACxSejEwcu/pETuWrt/v9zt/ZxwN5JyHnGOTAMDNSGMIAObeHIcwN8bo0/EhNAYaCCBVSN91PSLkLDlL35flYhmIUmjatDhZnXbDfrd/WK83X3399dXtzcXZ+Wq5bNqUhyKlR2IwZGKKoFoQhQOJSNf3Xdft910pJQR2K4FhGMqwVy0imTgUM2QiIxsEiKGKcf0wFkVD8xRABGE1D/QCRB5t/DCboSIhlaIhVCqREYtCycICgdNqGbuuG3LOebjfDE1MTduEFECqwSAiIJLnTIMAmUdUAKCpGTEjgpg4d69FCYJrD2AUVIKalMJI/b7fb7vlYmlmJlaRkEgpMs7n1xhXUDC06vlO7JIfM6shHUOvKiGxlKJSwqwNvnZBSylEYci5Sc7bwW67VVNkQLBmuUIjLdq2zSACj2nHABVKqhlCxcQGbIAC4odn2GWLMWLEvewanHEAzthYTIlf7R5OAyVNsU3Y5wAhEB0dzX/+4suz88tPTp70Of/J11+czOYfXj47W53+/u27z3K3RhuQJJtyP5sv0o6tx6TMDO+6TcbtR3F+upjL5u7u5TefPPn0/Oyj+4e7z9++2syPmqZ5kmjbd2+aLXTlN5YXp7b/JndbwgEYNeS9pWVjnO/yniOmIgXkxgYV3e/kXJv352e399clpS7DTg2PW91sP10cfb7fN4vwr/+rv7Pd3b5781PaP/z5v/DBb//2X8g3f+3/8L//d24B55fvDdLdrq+NhaGbIbRZ+819M19YBwEbUwsq4p+oqVil8kzEzds8PcpPQzVDyghkkJRIISuiLY+WadU0R++rdGJDEbs3u96I5AJY4JuftW3DvvoxihKUgcjIpT+1j2Q26l2nI3WqaOuCAzNXxhjUuTGokAgRwCbP9RoMceBfWE8HAFP3c/Bav6qb4TtfPvJoo2RkfG5QATdMhJM3vqD2uVVFMliyam3j+TUsCioCYC7TrDlfOeecVVSNmAkD2aBSxNDJfDIEK1LNUdDMQFTFjBEjufcVjs064CrpMELwJrR9y3nMv9NK6b3rhEAAqAIIZG6Dm1LTpF3XV7mQCiEBmLdKKEAKjBYizU0y79Yayg+fHb93+hf/5Jdf/+kXX67vSh4Wx4vjVXvUprjL25+9uHvz5uFkvjg9Pd23zZ5jnAXaUuB2c//gSatHR0cxBpUqh3cNB3MQVRV1w6RhGErOiDCfz82gZEUrROxe9d546bouRr64uBiGfrNZb3e7IeeUEnPwf5qp5p5dOgsGgLkUlRGZgplqFlU1CCRm87Yl077vESAFIg4E2JWy2e5vbm/Xu45DIHS1LPiIMqAgKQhgHWwUHG2iAAxEDcaZW1+zTsuZEiCbZopMEDQbYhEzgBcvXuy3e+Cm60vLEEKwUZFXV7wZjmN6NPr1+VqWsbqdLBARvS9DtaJwXI9acvFBLRzXzIR1JiIHRi5n6hFMvAiO3ZaJW5qclA/52vGbaaJqVKuWQkcl9TD07ofEAXPRUnK9LlX89KE6JGg+Te3C8HoboI6nRE178zJfRHIuTdMeHR3f3F4ZGIXgH0G9n/05gg7DAKM9oJvi1BadqRcoVa8aAgCOFvNcqrYaxTwOogAqUzRzpSsEZgzBCFUU0d8lN8SQvutNLaY4Tb+qaj/0HplS5eoAWQoPAAcfHwDE2Oiok1RVw3ruuQaFmYZBnC7MQ8YQUtMQYuDQpGa2uLy8fHL/cH9/f/fmzet3b7FpmtXyaLlYNDGKmEuVC6po2W+G3W7ndy0RrVZLh3HMnFI0RWZgQiBQUxPzFGGwigaACNC0HmRII5Xlwjer87rqPC27kLxOINa0CkYae68qpRhhCAGYOAZXAG1328ChaZoYK9VV8hBi9IBQw8c7wtCRvZmRVU4YNRsoop/NjiRAVTJRROLNZrOcr9CQMfosWAipuov4FDF6NJJvO1P0KGULTIgoQx6G3hvdo4gPRTJhBFBDa9tGRaW4zEMXi+Vs1u63277f++Htk5KmOj29sSwfbyqgqpL17DMgdl5AQwFkZ9kBRYblbB4QEkQA25v+Yn0V25Nni/kPzs+/efX1do/LWfjk2Ye3m+7V/U3TpKdnZ5v79fXDerU6OoZ4PPR9whwICpQh72B9dnS2v99bp7shw3z+Gna6u/+V2fFHs+MmHO/2D6ezZhbDterXd+9+8OFHT0P44s2rn33z5fcv3vvo7GK+XW/efLVdEjdLCrHLcnt3kxcxpdRtdwlhOV/0Nny9eyg0b9Pq2MLZxfNdv+lUkCKZ4tA/OZ29XZf/9u/8zt/4N/6Vzz77w2Wg//g//8+vvvziYnHxP/jr/92/+5/8F//P3/u988X85Zu3225/crRqV0H2fb+9f3p23sa8jKts8fp++9iP8POI2RXvNkal1GTSyIEEAERNTao/oaktFnMEbZqYi7BBrN00BEVXl4pkAGuaWAyGAdy82AyYkbyyqbMkWLfHAXLx0qeUAtUHjF06M+EaxyUioiY+Fo7f1Yfa+D9ApP9/W28Sa8mSZIfZ4O4RcYc3ZL7M/GP93zV0VVd3s8UWSZAUBGklAhQgQALBHReitNNS2mhDbQUB5I4gAUEAFxQgaCEIBCFCJAVCIlpqVje7WVXqKnZ1DX/+Ob7hThHh7mamhUXEe7+o94H8L/Pde9+9Ee5uZseOnQPT2TH9+dWJ9+nhOpm1wlcGx7w/eM8kmXwwODCg1VIPh+N6vQLz6AalFJ19jP19Lvy4hxFCpIopgQEB6HwjwNRqKVKLACOA1VoAlCceoiIiTPNxJuonFPgUlak5Jqzqc1U4v3MiQiCcPBiIGUzUUg0G1rXtmHOtJYToQauqAmIwa6q0BgWhULSAhgKUsd6eNc1f/M23fuPrl3/86ac//ez1izf9XdpsUnO23Zw9fv92f3t7k7/YX6+fPUuP1uWkT1aPFKrmse9753VeXFws4+4LQO0+GGMursIiVVwHSNW8ESRSVRVAx3FEDMQ4jvl0OjHjZrPxD+7oEREjMpjEwCLAzJGDgFWpwzjUOgn5gyucIxBSk5Kquk1sDBxTwxz6cbzbH25ubg+HnnlSoGKmUoraNKgoUwPX24vgN4a82WqLquTMtJ0Hspq2NbVcRdSK1NB0rq/z+vWb19dvLp+8p6oi5jN6S08K5kTn4U6Zz8elmXtfSCzEZN8ak8n9/AUAnkwuT/HXWUIszh3Dh7/dHnzpTI5e1rYziBeOkT9qeWMPiaIuBkFEMUZVI8Qq0ve9730Xt3VA9+HnUq36YCjGZlM/BzsBfNOpqaa23W6319eviVhr9VkDP0km9gkiIBAZIk96S6A+ROzYEjGCgIHGmBxygxhqrQ4O+fHARBamYb1lNg2cDFNlQeDMfN6QmFkAWHghVwFAKWUcx6ZpnDvFzFJKztmrf8+BvE/nX4j48NwmAh/bT4mZSURVlAOGgCoCQByoSlW087Ozq8tHOefDYX869Te3t9fXd5vVJsboGIloTSkwh/V6nVJyZtLSg0OkGKNUbxlPTQI1VbVEYWmquk2VC3aYIiE5nWJOPZ1+oOjFVlUwqyrOBcy5xMAKCyfSj2IVEUXPwJKZubxc3/cwDxISs6rSxL4Cr1dF1EBEJ0d7VS2lzNoHaj7DYgYuSiGmoERhOBzGi6FpGq1znEHPedRTPZ04nc6poACkUgkxEDty5piZapCaObj5bkGiXMt6s3rrydOf/fTnzM3FxYVWCCFs1isCFS2ByT8OM3pHz3BySTWbx+mRfLoZDZ2tMo3Fm6t1gENoLSSpipU3q3Y8HseauxgPY/nF2D9564p2JbT0/HD93fV7z84ey/DlDw8v346P/+3zt1+l9Y+uvyx6XMf1t5ozK6dT7SHFCKGz2B+P3IR96SsbEqKFNzp+OY6/vXr3LOEP+i//4MuffnD19luPHo+SP757dbXZXp5v7cTXhztAuszhT128Dbr/+NSXxgbQnRZVW3FqYgsoWpXAUtPc5PFnQ/2ts6ur7cWXZWxiKhX4VLvQ9kP/a0+/9vnv//hvnz4/3zan57tNWf/093769/7O3/0r/9F//I33vn35rz/Oh9pQoysYdQwNPf3Gs6+dXbW7N2dGAShzeLI5D96xRpy4wA5szC0hm447AUJPo8kRYjEKZAR2tl4Tgmh17rIiMKKzbcwI0FLqAEABWcFMc9EqmpDRmGbVPyN0vbFFt8ZrCXQhxCVD1wkt8BOGCAEmmQ2m2Y3QT8l/gzCKTlScAsn0wOWHy/fLU51BdE/dWy6FS/aJmiETi0ggFoX9/vDOu2+DSXAtVCmCgGI8q1YsPGsid29gs7qkY2jgNE8wFNOq98SUWrUWUXEPzmjmY2Me1ZQIiTAw+wljaDUXmQPb/FERwKcy/TN6uVyrVCKMwG3TrNq2H0avdHPOqpaaps99UKqaXmWoFAAsojJIG1DHArK7XF3+me9++2sf/srPP9n//OPnz29v36h2uebd4TKs3jm/WMVz0jZbjSkSx8fpare/2+/3r169yjk/evQoNQ3M3YGlSvbxaRcLiCly4L7vuy46u9OZAX1/SqnpYocBcy45y36/X6yUQiAABCMDUCNQAzRAyaUOpyHn4qE75+KgRWBObRNDOO72tdTVqguBibhWubvb3e72h+MJiLsmFhGnMfk7RGYpdRonmX2CPHWWuaKg+dQnJoSJYJZiJKIxj2CM7JAoq2rbdqe+/+iTTy+eved7aCy5CRPJd/nT5v6UPOh8PUxKHtYPNlH+SVUJ2bn/U5KhPq2jS+rjXw+riDn06nyPxF/TCSsPEy9/ls62SstWBbhXf/b36Tioc1Sbpqm17vd7EWPkYRzULITIzNMIgrneuqFLe88o1NJxW1522a2ISDEYQNd10/ydQZEKpgjIRO4uMWnxESKCSHVFAwB0IhdM5ipMUwveAIyZSjEAyMvw+TTsFlRFavVZb5tVFr36EhGYiYOGRogOvy3Zv19Pv25NSt61AbMq08DELE5YlwQIJ8VCJEIiwwnSFVVChLZtIpOZGgpSNFERAaf7R0HCzWb75OpZzqXv+1pVqjBijKHh6JyqZaAvpbSYxzETMY3DyXcigE/CududECARqamY65nhwrqzB/ji/Cf6Jq3izVP07FlV1KCWykx+svktCyEImIjUMt1HX5m1VqkCahyZiReJkzl3B9GpbYRfNYqZVwtMFbLjKoRaCyDc3d1eXV0ZAIeACKVMkgG+wdnnSadSGAnMNUoQUGrNY0ZwHQ3M5KM54p+u65qSXXlx3r+Kx+Px7vYWrHZtFwLVWvr+KCIpJnePh0kY+iFjaSLSOWcXcHKQMgA10AIpIAMpRM0inSoribFCt9q+ruPvfPGL32zX711cPttevHhzc9MPbdv81vmHr6/f/Di/DClhal+Mh4sQnnVn7xKUU3mpag0PRWQYQsPNOqLUchq30KDRscIP+pv32mYVUuF4t787e/edNIb+o5cfHw+/+uHXv7199NPXz3/+5stfO3vnyfbyt2CbX3/+i+N+jFzbmKWA2tNm2wV8vbs+6thuGk12rPayZtvd3vanzeYR3p1SwPefvdV/8WW6esQx/tFPf/bi1efvP35P15uPvvjib//9//F7v//9VVxtnr1zUiCutd93qyhSf+03vvPB2dNf/KN/Bsf6+PLs9elw7E8BkXzbT4PkgFO5pjMJCBABXcFgWs0460+KrFZtk2Ieh5CiColUZJrMwBEDRwRxlb8QE5IZ5JKrixTa/Bt0Fv+dlqRLuSDoA6KiH8ul1OkQMdN5PBbovuT1HasPhlofLPolnaH5w9qcAN1nSrTAUWAzCX9CceYvM1MiJmCROg2BqoUQSq5mkGtWtRCDaJXZnmkJIao26/6ZARAzmDphm4hBcJqU9FjiMFoVMCPCGIPZ1OdTrWbmHHYkghkdyWUyIFySxXnPTDRPRDSDWgsgUGAXNGqbtpRaqnJ0uN5iSmOVq/On20fvFxuQCoUKWBEt52wmHYfhZIfTAZv217/24duP3vqDj37x0fPnQ5VAzanYadQmbEpRUBGrsW03ad20qW3bm5ub/X4vIpvttu3aRaC2zjofMMFmmJpkJiK5Sts2qVatNYfQIeLpdBSpbduu12uPoPv9PoQQQkLkGFOTAiJUFQWQWrVYHsdhGJ1+4Us6MKeUOIYi9XDqCXG72XjqMI75bre7vrkTsxiTiYKCtyn8jaJ3Qt29cFk0akBAROJW84iuTD0tRQAACCGwq5ioeloE3so0a1fd7Zv9j//4J7/95/5iKQUh+bjaw3Lfb6hTJTzfgZnCvCyzZeU/nJ/XB0gMzHgMEXnlvSQ9M+EAl1ebMYx7+MHfgNOKl4zHX3MJnDqLkrsJuSdPPkkEACmltm0fpnSIhATjMMzBY7qkiPd1CxoQszxwPbsvaJaMDQkZiwoinp2dtU1bS0nRF1IFnZvnhACgJqLi/JypgWYVZJIAEYL5V6iqeifKVYQWaE1EXBcbjMCqVOe3IbKbTuQJ+XOFOsZS6jiOC4WciFR0uWg2Y28BMaS0KEi69eyU79Jkb+cDpClFUXFisatLIKJIVYHAIcSgWqrUGGNEntIsqWYm1VJK6/VKBPI4Oh/LUJkJYBTRUotLWnn/K+dcSo3ghEK1qZVlwG5F5CIcuNSRD4QEJyUOm7EroqUTKkQPxKznXUJMDt+goaoSO5/Iz3klQ579cZmDiEgu4zAgYgwteOFBrrAARFBlkpG7nwaoFUx9+GeqsQGIiZBUhVNzOu7ydtutVmomM5PSaWe+qgHQ3U5B1ICJAyFKrXnIPo3jGGeTmrEME73BVNVqKa9evWpSMsP1en06DGMuTEQQ/FIcj0dHtpDQqqktTjWeDbrsEpCRoIL3R9zkVcHhIBONgRsKoiYYdofDxdkqNZ2d6likB9uXQ5v0veZRd1Ll+OK4+8bTy6vMmrbfP71Y47ZdtVvBuzwaHN9dXaQ26un6y3HIyF1iqZmCrims2i3vK3PqsXxvfP2Suj/bnv/aW+9//ublH3/28ePN9lvvf/j8cPvi+o1g2xm9c/n4y+GA0uju9AzSPpTPMIta4BYQ9sdTsLhdb3OvZSirVeq69Hx/PI09I1LNxBgjgsm6be7y8a2rdz949O0v9rc/v34TNufvffdb+2H/T/7l721XZ+n88ZCljgUrWKld272+vuG9vP/0Q/705go2rHD9+WdhPubAAyoR+TDw1LsBRHAMzte1ekieeyu1Tc2qC69PfWwSIrcNm07au2ZqJjTZAwMxRuRYTUW1igQMXhu7HMUDGMbdCtxiQ1WlCpKFEIimqVFP12AGaNDuT/ZlF8HcGlj+0dO7CSSf9IG+qgY098T+jYznK1/m4hBTnCD/zV3XwVQTR5EM7p0JYGoPfAmmgXxnFYiqqoFqYp/HRkCEiDBaqaWUwjFq1VoKmPO1MaWApMRhGbEuxQVkWWWCdmWe8QaYWD3+yFqh1uqovsosqkuBYCDy84LQRIoQ+2WvUnS9fdpdvi31tsEayQQVFGMXmZtQ6ibrpoUBCuV8cX7+ztff/9kXL//wh39093pfRL64Ht4PH1bQu9vrzardNFGZEfHi4qJpmsPhsN/vcy1ncrZerxe4otYCYK5mSQRd23isdbWnpmlqFWI4O9+8evWqH2ouQ4ptjPHy8jLnknMZxzKOJ4ATUwBEnyEys1pqqWWOZMRE3KQQAhGOpYzDyMRd08aYSinD0B9P/e1urwA+E8QshuCi/eOYSxlDiKoVdLGKnrMHQEKyWTJHZpItIqpIjHG1WolqKZnckLwqECLCqkshMCL85Kc/P/WnFIOIBnK1xrAQQWBO7n3DosuMOCI6j6MvqcxXNoLBTE6aXoGZXdFkWdvLj2Aek3n47/DAgh5nMOYhJgEPeppLLMd5Dsijvrd4ENHzgwXZYqZj3/fjmJpESDKrsMwoAiKqgRiYgQA4XG2m3mkBpmmo2CsiNBSTZtWdnW1fv34FIAgQiBXFvSCIyZxRjNOYlYo6j9CvtCloBRegdv2IRVmRmRBNFUvJIlU1OkhNSBhQ1dRnMgjbtiWinLNIEak5yziOi37xFIxNXUxwev9t62gPqLpCwaLKiFiIiDE49CClIjBiMoUYkoExiVQpteRcQEETmGGMIXAkYwMgCm07qQqFwOOYRTSlFFOKMQJYKRmMmrSyZSpQwKtBFVCtJddSHJZAVTWYjEvNTE2QGHAmUdg0MTuNrTrFV53LNQmjEyDN03k++O1ClMwsqoZgqlIrAM/GiaCmojbmMQT2gbUYMMWmVl7MBGtdAEK3OZrEOREhBK4VcHJAksmCyYAQPcXkJgAYoB2O+9g2tBTFEyVWvMHnxlAIqEjkVbvoOI7DOKiqA3LEHDkidGPOiMYccs5N0/hZlGLrvYsYwnrVlXHIpa9Kh/5kiBRDtelD30comsSmCQxNGdF3l6ErEjCAAiGoJqLz1NydTgUEVS1L6lZ9tuE4tIF5e/HK+v/j5UffbB6/v3389Oz8yy9f7JuuEp7x6vlx353Tk7DZWL6F8kYObYxPUhz64djwWMcQUA+n8+7ycXd2Gg/HmosJts2rPHzRrJtcttgc6lDGwufp7fDojz/56Kbr/9Sj939F0x/aze89/9nT9mzdtF+DzdGOZpVNqWIe++cwPI7bZ6uLMvagBkMGQOJ4kVb94bDdrDaBh8Pu7NHq0N/+5ItPQmmvLq8++fnHmPXx+fayaXi7OR1HoSNiWqfV+To9f/FpcxH/5GcfjRfPjs93T/v64dXjeHt6Z9WG5fxyyHbhK5ivXQQiNDCtyuAD5p7nux2upYibdXrT1xhjLxXUVMAMAjMRitSpG2ZmoiKOIXOtinpf8/kNWnwMYFrnUEohcuX7ibKAE27vZ+J8ZE9Oe85zQTeCWH5q91A8ApiP0UzzZbNe3n0KZPd/eUD6AZiqmeWgJzUxtUDuGgjr9dpPxsAsUs2s5uz4NAAsergizr699zSAWbtGvcNHKKq5FFUhiF6tIBKgMoc5ejkJbwa9HiZn81jyA71Bn3aaWiHklgFxqiDRlIgSIhh2TevWg4FZEapUNX36+OrJ1dMNrTop0bQSmQWAlAWCWOz7Yz2ElNrUVtWO6De+8SsfvvXOpz//6LMvPs8q1to4jAJ6e3tzuTlXkFIqAGw2m6ZtQwi7/f54PHofxD+BuC/r3C4MIYBBjNFmM5BSas6lbdP5+fnhcBjHcehLCBxjXK3WXdc1TTeBDf2Yc/Z5HTPz+wKIbooptZqpK6aISNeuVqu25DoMQ631dBoOh6OKNqmpIqo1pQSE7kTrokTOn7lP3O9HrCf61UKICCEsc1Iu6FJLOR2OppPMPcfkw6y1ltS0n3/+xfMvv/zmr3xQagVEZqr1wcYE8Ni5oAhLqrH8+UtfquoJ7/LgKWJ5Y8u+kjDNAtm43IWHWdQCBeH9cMr9c5cdp/Ms+NIX8y9vqfim8DXpTxcR5jAMQ8k1xGBgHMJCY9Vp7Os+dZsB2q/UOQ92ghJxKblpmvV6/erlSxUVqVPBJa44hWBGPJVeywe5v2hujYzgU87qg5TqH9zLDFjoR1OFo8LkzT622UFsLkImOyhmRuaczVu9YDO/w8zMSinDMHRd50z9JkbCSb0JAHIevSPjylNVBarV6hksxhCYgnANMaqYiZrq6dSvVh0AKmi3WoF7JM8qTSmxg9Ei1UxTit6sdLDEvcw8W1pucXVPCSZ00RGwScZ+1kXzxJQBwUeM/fbhdK1qVYCHmCmyu+IY+CgrIjtGyxSICUxdJChxmtLFuagbx2Hod23X8gTJuPbA/eiiI2EA2K5aEUXMftSISOPgnNZas9ddvjtEJMaQc40pjrkfhtNmc2ZgecxE5Pmov1ucVwwzMQQDy+Po2J5oZeTZfwybphVVsWIGnkM74UxUX7x8cb69DCHud7cmpVu1wzjc3t6qCk5L/uHq8O6271xvDKOiTW0wMwSjQCYVEQJjCzaAnnJebTdDX1iHyKHrGgI41TwSjUNe0fjeo45zb0Z/fP18+/jq8eXj8Riub/e2bS66NeTji911t2rPmu4DoM/v9gc2wNStz8ex3MKOE9VaEoIR5hh+8ua6cPeN9fY75x98+vrLn33x2eO4+s67H3zZ7z65fnm7Oh9M4qp7ORyftHFN9N346KPT7suhL8gUAyMd9vv1+flme3bc3eZxpFVXIzcxlSrnxI9T6k+n3B9xFQ+YW0mby6vm7PZivZbct02HTBTjultL0UTQhPT47Ox42D969OzmsLu5/jymLXd2tYrf+vqHgdl7Xl6cPzwcvUAE/0dPiBBNwSWa3Z9NVi1dnq//+LM3bekVDNQ4LPjEhIc76mBeTJgRcwwgKrUIU0DkwFaxTnW/wUTWgWnOdTmYJn+GeVjgXuiPECfVFfWnlJp9NeMDxsByVpr7EuPU7MN5qOrBcY8221CLCC/MPbg/rCfEUZUQiXm9XhNh0zT3tnlEKkLBmJspOUMPjZOjJNSChGpixgZIRFXE1IiYkJGZmUWGqYA2bdtmjhZTFJw/yzRhlFJSVemHpdSGmSfhj40xckAAA0Qp5lkaMiNiIGibptTRDEqtqlqsGtgq0lmXxhEbTpsYMhhhw9wKMSONtzf74yiEWMGQxiKWDx3F737rG9/5zjc/u35xczoWrUUMLN7cHrdnqxiDT9W2XXd1dZWatNvvd7vdPMHOc3/Tp3uCZ7iq4qenJ3alZGZcrVbM3Pd9fxqHYdzvj/v9sWmapumIqG3bGILoStTqxEWVELhU0ckNwA/5mlLcbLaANA7eIKul1GEshBzCfNwHJkbiSbB1HEdvcgEA3oP591rJROSwRmwab5H4LfOo45NFIsIcAxMAEoe2acB0zANFvru+++zjX/zq198X1WDB2x8Pb6jOPpEwD3wxkT3IBvycfZghIaKB90lt3kTmSwXp3ubaYzDO/S+evU5hxoEePndJmB7iPcuP/InMrOpyDDif/pPhg2eES5LEIRgSM5vUKpoC1lIhoZlJLdgkDqFq9YaYqLi18hLqdB7UV5VSjcgZKdi2nUjltlWtgOZ5oAJUqYiINgV7mCi6qNXdLf0T2aTLFyA1AQBxiuJ1DpaN41sOBxIEUdAqvssAQGqtYMzTNYwxxiblKv3p1Pe9qhJzLcVmSWgAGMcxxjjzaYADU4ikBgC1jKAwFiWipmkQSNSGYQwhqFafHmIObhPhIJVT+pwZ7eshxuRTcjFGESUyZ/OY6Yyvozcol7vpN87MVAQRY3ADbAIyAKyqNFEBptkRAxObJ6xwpm9KBcQQCMx8QrNWBUMVcew9cAACU+/BASKrKCAgL8cCMDtcBKWUlFIgrkUwIDEwRwA0JTNo20BEpZQU10hYpKYmrdabPI6IGIJrHWEp6PU8ERNRKaM3GUJwmBNPp9N6vbXJrJdrzYEDIznuJaoGghgAjMxbhCWl6GOs/nGIKKV4OhkCLYoGSIBITJRiOhwOBpACi+Juty81e+g1VUJbwtOUCenUyGACUKtohoAEaICutEKmWrlJWkYQfXa20dPtkLNROOxOTy/ON5vV693tIIVje769uDv2v/fyo3e6tRCHy4uX+SSAT9L2wpo3tR8O43lsDm2zz6c14RMNT1YXn5f+BmgvVhLfDrvH3er8YtWf+uM4cohHpF/UfkXtW8KPePOT/mWH8W2IH/LZ9+yLfzl+/ivd401o7pK+6HfPzi7eqijUnmK5NQHJK2zSuhtltFzPNmeVwyvpC9ulxMfd5myQRksb0+503Lzz+NN8XcaUODx67911Cqf97WkYIcY8jEUFwGLTmA6bVWoj9vs7ajbhvPn5yxf/5P/68r/4y//JNzaXwe7BbS/jHrJnwAxVxQA4RDRTUAQUT3QIasmQ+7NtA5rRjMCYiZnd2BpgNnHz1/FGOJCa8swIrrVOzZgZs3E5XX9XxEtpC3Mj2WMMmk3KUBM5cjbS8h40kE9qobtrEk4cUqfXwKz0SPc1H/prOd3CdO4JfJVb4KUaIjrDNWAEMlVtYggxOE5TctZZjsjIdKoi5ybCgzpT1c0fUFFsHmFDQqiusU6uJGqiBmYCMcQYEgCoTtxqEVEFNKxVcNbzxeXmTdEIYfYanDiDUgBdWcsZu0AKxsCKbbMyc/xWZRQibLv2+9///u/9yY+wz9987/2/8Bf/PJPk8XaUCoEoYQyrVdOcxTaXsq8jIeowQikh8Pn55XEsrANDorjancZq9fGj87Zth2Hw0e71etO07W6308lGAEPgOpbl2PUz1AxVp47PBGMoikmMMca4XmnfjzmXYcjjmN1jMqVIRCk1HJLfvqndoJrH0Q3PQgiIrceG4+kgqqVWMFNTM0VGRMIqRMAhcAyApAZDf5wQkIl6P7eT6J5t48pVzlbhENRMRYjZzRrbps39DaK7gBEQMaembctwHMYxpUSIr189Z6tFFaDx9fNw8msBcpYCcckDFllCnWWgJzAGycBmiOq+JEAvZx4Miy1ZzkMdIJu6VDxn3kt7y7fdVD0/fG/L2yYKznR2/U9mdmaMvxrOis+Qs6q5Id2qXY0iMQavd92lS0QIUNW8QnAVF7/sqgrT9iRCDBHUMDDXWrfbzWa1KXl0TbMF4kVkAK1VoksBTaY//hKOtZJX6moioLBQIHHqNzInABPRECIi1JoRQWU5rTTEWMyW+j3GmFKoVUoZxpxrKX6WETMy+SBY27YAMAxDipGUFkAXAFzc2W+Tqo7jyMw+jaSqZiBijrKHSGgWOFBMiKwmjFQxq7nIxaTg6pmE13WuZ4g8m0WUsmTSS3Lp8TsgGpoYxsBZNRAjKRhgBQUBUPSZc/RuAeiMpYupJ/uqWqWa40MIBDNxTdXNGM1pENMxhm4eCogIUqvPl7mQeODERIBo45h9v9OkN+ja4s32bGtmx9PRafVu6mZmTHR+fnk47MzArO72u5xHRF7gGY8UwzDsdvuzs21KqZZCyKbeoJ9dHg2MTEzz2FctMQVE1zutYtJw07Yts0sbTH3euX7w80Gbph1z3u12q64xs9u7Wx9hB55Upxfu10QUB+8qAhIhzfNrLqXHXGvFQIBWxp7beBFj5vRxf8Juc7baHI+HYqHbdtaHCG0eykB0rafXx/697uIqruPxsC+5o7TtulDKdX/cUz1P7Zlgfr179Ojpo8uLt+Xi9158/hoLr7p1244yAFYL0mWygtamO7Ef7q8tyHdWj/9Mt/k0775//XwbUmpWXT1+Ouyums1b8VxEvnj54uZ8m1L37Xj2xfGwl3HVsZINWoZxYKbz7abbl93ucNjGb11cnu/312PfbNJY7FDHETVUTUUll2Ic09lut8sMvFqJGrFJA6U/Hg9vnj6+Wm3XLz55/RZvgo7vf/sb+fziD1+9vqcLLH/azA5+iCt7NgRoht4WCyAZTQjqdh2ZCrNWATPIYzZDJoSp9QNNE4ljrSbzZKNNia2r1yMT65zc4P8voA0AcA+iLCc1z02BZcn6Ae7W2gBwn8oAMgeY1O+cHGM4i+EuX2ZTtw3ACRMwSxXPF2H+FlCdR2SmPHc9iKDKJF5iiJETgPLsE+TMAABA4qWOhwWBJ5xywUlvTZwSAwA4Cayzu68603wBw9Ss70cwXa8RpxFfXC6vcw9DIKLgOpBuUs6B/R3BXPkzUZPSmLOfj2oWY/Mvf/jDjz7/jM/PhkN/6u3P/bv//kcf/+Tp4zNgCaG1rvveP//e4c2+wfRv/YU/++Rr78k4ptUmVFGEGlhevGqadReta1aIcHf7vGvTer12pflxHDmwe0AOw/AA3J5EumNMSLyoFZjNhlbowi1T7GSKISQRNcNxHFVd46+UUj2yo+MKNpGBQghuUVdLqVXGXErO/hwP4XIvKQOEgBxCJCIyoCLWD4MfrzM4urSB7gcnQRUIiajWmppmGphy+nMIHFhFzSDEGBjHUitVOB4t91ALpkjM+5vXIDly4q+qWj1MOHRmGd/XK/MSXfKYJWsEhFoq4TLPfJ/9O4S6vCwR+WWkB1ZfS0KjsyyQQ1A4pwsP99HDf/EQvmQ5vn99BGxZBjYNWpMnSXG1dhUH4OC7GNAM1GSiCbt9psdVs/v6bS6Xp/YjMUstq251drZ9/vzQto3OswXzJQredA2IACaqATkw++CeofucABoSe9ibACEnDJgZgNaqrjTmMV2qELFr22PCGONCcCbCnPPheLy92/V9j3NHcipXRPq+b9s2pTSOo6gCuFEMeaKfUlKty+zYlJTQRGMQkblERCckGwlgNgPmoFiJMIagquOYY+QQQq2FCJEAyRgImAMywcTv9ls2U2rqAuyllJDYNIcQ3HyUiEyNA4EYIgAhI7rcDsJ0Jpup05lLLd4OI5xOqqWdZGYIaA+C0WRR4HrtrkloEAMjzbZJYCFEAGVWIg6BASiEMI4ZwJomefOuaVoROZ1OMabVai0iNeecR1VzFlqKLRhkGAHAL6Oq+ojJ6XTsujalZACBeHb+MJjcx8jMci5DzoAQY1RRJAR2JpojqfOiXP5v3i/Vi4uzWgQBVqtVHk+H4+6Xwp7NdqrTEXPP/PAWrvkFYwAGEgNkNgQR6dYrEBuub55tNyXEaxUlHSXbMbdx+2h7fvNqfyxFE1iTjv3R+uOv1O2j5lzq8eVpfxdOXdu229Wb4/4shGdps708G0+HGo+dxq+ns5z3u2oSqK91yP12c/4oNofDcBSlprkd5Edy3IaLb8aNwvBid7MHXbfd07R9Feqx5KexJcLVdv1lOT1ifKrNd5uzHY3XedyxVVTqml1/oFLXTSe5DKWWKkyhVjMFTM3xcIwrlmLH2o/D6dDnWgVFe9KwXnEkMtnt3/z2n/rmn//tv/K//6//wEZrRhlOx1hbDKvf/Ov/OWlx/ygv5r5qGjdXgeCWCKpmylaFVE1UakMUCBH08eW2TVxyH8Kq1AqAhL64DYgm4hYFYtUsk4CEk+LI1/oyIzrZRTDMWrcwC5chPDzdEJdcxOkFQHPxPa8NmhOb2f5iUgOaj2l3yQQAmLLsKat5cIxPKR/OP/3K+Y5quJRTiCi1GiSYcy8/n6oqgGIEszDvBVO9d9521qRIRUBjRAU0FlWByU4Svemo6igxOhVRfYxLF38+IgAldIqKq0aaAaCI+RnH3OrkPDCBASqmjk8BASBOCZiil9BmCFBAP375ijdbgRgaPgntTkPF0Js9u7g81ZFTiwN9/IOfDuX0jV/9xrsffO3LF6/funyEFZSNu64grM/P9CRQxu1mC2fnzidIKTkAICrDMHhxTESHg+RZJhiRmcMszh08DSIKiAFAzAyBwMDN4szAh4L9avhJnfPAFBGDR6DsxCeEPOZSq5l5LBGp4vZFMBN7AYwIwFytKnDgMImdiGjOdcICAVXBXLRyzhKm/BqRkZhYST2eTXfclWOrjDkj4Gq9Zi25qoD1p2MXKMSAgJHJaj7tb7eXj8H0l/j4REsR+WDUfP6rfy1beMlX/KM5kXPZ2vcZFSLOvqS/tNp/KQFa4B+cufbzfrnX+LG5WbYMQDmzyiGfydZqphM56WQYBlMbhgEROXDOI4c0N7InC0icxoBwBqqn9u6cj+J8WVzPHIlQEZno/PzsxYvnBEa4GCPPexVDrU4AAJEaQ/RXRJ4kRt2dEAxM0T3yzMBN5R2NQGSpRoTMTAAcMIZoCtXuAbNlCnq/v7u9uxtLXU5am7qTgES1VicATaQ3IjMbhqGU4r6nZrgw/Dy0z6NMiLNmG4DmMccYBUhEzVzAhRCszlQeEdeY8Y6qihkQEKgIBA6I6P04Z6mP47CcgYje9wdETE0cpZgfSgaM6Fr5iOic4Pn0ntYaoCKYSGUKbhoM0yV2KTieJm/MVEFmQlsIIYRIhKvViogOh1MgVFUOITKaWYwhxbhq1549KwgAbDYbBBrHHJrUNM3N7S0AtG2HxMOQiahWefXq9dnZWdt2PnhRayUURVMVp0IgQgipVqlSg4RIbJPoFKlmIgrMqpJzHUuvoCFEZHIvRAAgRIqMhFrEqmKc3GERwSZeFJ5OvVQBwCp1t9uNuQ8hKIAuIBhMypA4V/nz5gIDMHKAzMsvBDP06TkAJLJqksvjbrUl/sPnnz1v+sumvbTQD7a3jOfdcJcxBlPluLopsmENhI80fZHKGy5PZFwBNs3qbnf3jXeuvqarz0r9ky8+fbJ9/O3H777db/7v288/13Ed02hoWYUhpGTjCD20sTuC/E55/WPbPwV60p7f9Ptiuj07+3pavxl3P799vd503Xrz7KA65p7hty+fcpF/9fKz/bBrLjelVgTIKpAlpVYHe35zc77ZPErnd7tdOuseYyrD+Omb67he5dKHGIHJct73Q1AJVDZtfHS5+qt/6T/8S//BX/s2nP+3f+O/+0//8l/9h//oH+/7249fPP/R7//BxdkmiMp8EHpDZDocpnNFgJgUEcGxw0UOAwjNiEo+xdilyC9evmhWlwocQ2KOJgUAUhMRsR9LY0ShYUIhP6oE0XD2vbOJivhLqcb9Wew3XM3UxAuOuTS5P8eXw3p5nQc/Qpjkhl2WQ4loQqbB7Rjuz/D7/h9MjDNX1lqAMZxKFDX1UTSLkV05XmdxW1WoaoGNCQyB2CmQMqEK6mRzBg+3rrjtTW4Qb/LO+M00K8EhNDGJmKqYmihUKERYSiFKIbABiCgiMHGpxWEPD21gbrjsDQtzOATQ2HxiGc3AVMDADGIMQdJwPIqaqlJKwGRliET5+OZ0d/Pr3/2169tXb17cCuOT1aPvXLyN68evjqIvXq5qtTIGZhNQLU0MoWobrX20HcZCjW7CupSMs6OCqAISMyBizvl4PI7jyBgqVACI0Q1cUdWYGHwE0YCZTKFqFanMYUE6Zgxgabu4jxW6oCIATON4D0ZCfCTYS+dq6ueOqM7dGZs9GoEQioiaDuPoFEgzF+gwYi9kaQnAIgV9KTqGREhEOecmJSJS0VM+jePIoVVTyaOICCuZkQs7gTob47i/7TYb44YpMjsx4mGY/0pTbJL3WXbOnHEvnGWaxo7UHuyR5WsuOe6j9ZLcLBXR0gKbfuNkFHX/UvjVuUtHeohoGEZVbdvW4ZBlbzJzKcWZE0TUtu3N7a0zskNMyMEpw7PcOTCz66x61ue5kcf4JXVTn802QGLPaAFhe3bWto1KBXMvBoezwQgZ2Leab40iJXKgCbJCl4sXs5LLzEH0GO1rgxB8MXuhX9GACIgIiNEmaYBai6qJlNPpdDwe3f0X5oU7pUHgdg3Y930MgWOUOV9c2OIi0raT0pX/Yy7ZkJsQmR2I4xgJEUUrEXIgYjIDlwoD02EcvBNECEMeAzMyGsxHEEHgwBgAxElLs3AGh8BL7quq7mjRNM1pHKtLPLj7IpKZqBkBul6a7wun3AEqABAToFda5s28xYTbJil9E7Vaaogu9NwScykFIcTYpEa6pjHVGIOZ5jKmJmmtx8MREJqmQWYAdDy3bVtQPB17VUsp5rHEyE3bAWgZhiZ1PvLZ90NKKcZUayFlYDMzZgQkKYYAQz9GiqFppGZfGKpkagJach3GsUrlEADRyYZFRc1Sik1qEVmtqhmpMbCBeLXpyaHUWquMeTzs7+p4osDAaFVxFusCxDD3lBfiJwAYugUqgocwARQkBEEDZkQ7noancd1uNje7u8fr7TeaNuowRLwGy6LSn1LXnT++eHV7S5SIkwX7rPa3/enD9faqPQu7G+0Pm3bzzqNnOT26e3X9SVetDY/xUZWyy7tE9H5MVoY7NIvdMOQ99pvN+pxAqlW0Q8mvpH+TRqPVs5TWuDmV4TgOsWlT04Z+2PU9Mb0dN0GslPG0v22Rvn32qLPVj05v9k2imKBYNiMOGPB5PrZKz9qL4wEaYg009KdaqVttcoZT6R9ttgFS2jSWIu4zIAjT7//gB0n//vFuePvqQyhNaDYVdzeH49/6G/+NT/SYizcYwtQTMSCmScjBg7yAQkUAI3LVEyQotXQNC5R14j/9G9/42ac3u6OMo+RyKKOBmJrl4zSu0se0OX/GoQnGAFinQ9kb7rOmON7DLeZQBd3rVk1nLvLSewUA95NealydB08mQAgnwVkzc7kwnQgxaAbE7kMGS+sNgGzqmj0UhZtI2dOqm1AoVQNGcj5+SLHr1lWyqQVmU4uRGUC1EEMgJgpgc8Fqpkt70cBEbB7vUjWZP8L9x5nnM9uu9cqMkIjZtVUQUUQByClNMUUilFHcGHnSGUGfSVkYHgYApWRVQWMkH2j1Qd/CgVJKst8BKDIJQBmHiIpVGqRIlUBX67Ozi6fDODbQXXD77/zabz2//mz/+jpVaZhKLQExcoiEPJa+v3569YQSFqshMmJyQWcA01qI2ZA8BPoYP6J5tcMcvROntYYUTM25tERTAzxGmsOh32KY4xOIVubAzFI151HEfcJBwWoVJFzmikVcBoa8N4kGtRRRCYieTTLNAAmYGozD4JfLTCfjE1gyMPbJX1VIMbjVlvt5hhBOp1PbtgQ0juOYR1M9Pz+rUscxEwfT0q26OpzYlEKsVST3VgeUzHAv+7tkPzRrAPJsdu3A14JCTR7ss8OXmbNsBWcLoeV9O4tlyUuWV4YHbpE0K1UuzOslN1ryLd9rD+GfmVFLzNx1na9ef1bggERSp0mItulE7Xd+93d/9OMfNW0HhiIKkt3c1MxqqZqSOz0ZzLonOBEh5rIHzKbxHJo0hp1lQg6fnE4SYwA1MUMDH3avWVPjA3qQUsxlNNEmRvN1ZgjgOdYEIc+Hg/lFZgwGGkI0MB8gUp0mvRG5utGQWZU6DuPhsHcYzI8YtyFiDrUUIwBVSqnWOoz5rGmMCAkDhSUHEhEzWa1Wjja1bRdCzGNfSgGY8pgqRERNk8BMVVwHaM7VQFWRCQyYqWmiJygKJlWJEKrFAEWklgKApahIJuIYkYjHcahVvMNeaxUVihFmZhh6sJgUEe3hxB4gVjXRSoghsGvbSBUDFTXP3HyT+WSTj+VfXD4uuYiIK/NzmGZRypgDTuh4jAGBx2Fk5nbVgZmoWqmiBoZgms04JETSqtgwQB3HEczatiWms822FHnr2Tv5ctgf7g6Ho6uxVM/qQT3RRcDD4dClpmkaIvY7yMi1Si6l1lJFvCwW0/k/RcLYJObgD0FvBBOoS38xG2mMPPbj9fWNlMKRMUZTd5hFXLTjzWgxg5t7GIiIRgbgaBIYGKBbvhOxmhAzKBhis17dvnyVSvnOs3ceH45/UPZfBGVAVsv9PkK32azLiGBWTQrCgYvA8VfH9n1tK1hb9ALDql39+MX1T4YvP3jrrXfP33r55uVHLz+5uDj/5pOr88P4r/ZvskrkJGrH0+Hi7OzEcHPYF0Si1Of8GR4p0dc25x2efX7z4vrVl0/OL662Z9f94Xh9e/7o3Xc2m/3u9uPnn2832w+evPUrGk6n40+HIWw6EylEvWpK8RTjz2vfdk/q+faY+6FCbUOjfOwH3DY25sPu5p2zCwowAsSUDuOwe3P6n/7B//Y//N2/9923vvXmk+v/83v//fvf+lDaDrpOh6KlBKYA4IEkA7ixJoMikiCSGRN7L0wRSYxNjQEAMzFUM1VYcfn3fv3pn/3G1eE49oPsh7zvxzLWYajDoFrG3e4wsvR4rGFNymSGWNXQY48hBCYTZSYFP2SRCKra4oFqM4PYGADIy1UAq6qoGhCd3QLgic4k/ABmQBCYRcXEppUCMPF+XUcRzWO/gQEIAiPgzNwztKnUM53kYj1bUjPE4Cr9Zvns7MwQaq0xkKpyYDP16WYnaLt6lZqYqZEBKqAQIgERJq//tIoRMmNVIKKqoqbIBARSaqS4XnW1jlUFibUKM2sRImAEJqgGYkZmIEbAjEToprAgUkXNxJDJVRSLe6ZzAGODSgyoXOuIXCI1ikgsiCAVTCtzUBOjUAn/6e/8i/c++WK12pytNutVt9l24yZ87+M/WqVUsgF3VkLtBWIAVQQch5zH3HVDs95oKaaGCKJVxuytfwY0w5zLMBYDQmYwBayEkLgFgZDQiKQKIZkVRCVErRQmlSgQAQUkBpECGpjYVLqmy2Uw4yI2loGQDaFINQUgrFqrVJc3AcLAUVRVDM0k50AUOHAIgdnMEJA5iAqFro5H1QwmAMzM5kLkMBHzEUGsElKIjYioeX5gTjcNFEDpeBoMoIjEtgsp1KEYhZRSm1ANIDVQ+lrBMBr0MF7Xfbc+Oz+MY4zOc/KRtADzKJbPFsCENNSl5zJxnwEMJl6aGYgakTPnVMF8qhsAiCAEnrlEUyN4aa7hPErp04tL82XxpTEzES1FfHc4ThljaJqkk40Dq1ouI4gRBULSCqpCIbVtKLV88ulHv/u93/3+j//fatByQGJGN8ZCRANCYDYkUQZQnBBcNTUiZ3abA3K+5A2UTA3ZCd6imNLq8tHT/eHnBCxWgQgUVUuMrQUttY8xNW0EVQaamg5zkofeVAUXYqAQHAyb2k5iBRHVJRbBM3tiJnNnN5Ox5CEPYx5LzhiQgUuunsExIQKpoSGbTU8PKWQZ+yF2XVfNEARwOsdUtD+dtOpqtQmRU4iMEjjWmtXMjIpUUWiahiduMxcFE7BSmiapKcXGwAgDp4YA2fF40YhxahwbmEH1oRJVVSMupsDMIVLgSYKvEigjqPh5JmNBDO4OAciE6gsyTCkJMHNsopmpFhINzAhYqoYJwKNqUKSAaCBqAq22q1MZSoGIkZFSYCAFKP2x7xofhqVhKMMwhMC5lPW2GfrRFZEjUZNIDFz1qBCg2NlmTSmUPLTMiIJWmhROx0OI8W53TcxqUGqtooBkjCpQqxEDMwKgFjkMx269gsnPrpqZoRUdcx3ElJiNjBC0SB5Hq9a2bRsaEyWEapUiASpYRYeGEcec+1d9KdUAKIFoBVLm4Nwy04kxO4nVobs1+IJ0FzAgMJrmf0jRIIKiERtUAdHV6qxUGE+nd843p+PpoJq69dk4nJ96aeKRNCew8fDO5TMku7m5LQAcEFP7ejytJX948e7X4OmX++s/evPZE2jfffx4U8e7/U7KsLH4bH2xK3WE2pL9KjYf1fwladd1u1P/+enQtCvsmjGfiAgoHUe9QT1L0Cps41ZOt3e3b+L52QebLWE89bvrhMbwwdV7N/3hJ/31OfCvn10+gvLz69sBU1xtGEqFnhIddvLq0J+1aX93/ad/808fGvuH/+x3xsEeNVesKbbMbcqHXWxbIDzsx/G2PHp09qu/8Wde/eJzXYf27Ys+IV5s/2S3T4AULUxUL5t4w0wBkEwFwI3IydEYZ+OYAbnBC6ghiiEBY8mBaopwfgbxqh2kGeEcDdWCaORaipYTxP/nJ7c//ry3ElhBJxcImxARgQlUmUGgCXp50EX2wnGi7OL92XT/oPuK1gElBzYACQlItOpsYIdTe3r66/J0T6+Xv09iiQagy9IDMwWc+LdmJqDMvFqvfCoSkU2rmYkWh3zm0XdnJqrLqU3jSCIqMmlFMCBiYLYJFRIRcZwM50Z4kSxlNEIkFtFgJgABkBNN54y5vSpN7okopVanczqUgm6eN106ImAFmidU2UANBUw5IgUCsMApNYkYRAsC9MPws08+e/76xkS3682Yh9SEt996Yk/PP3n55unl1anIs2fvxhiVlEj74VRqOeV8szucUaKJVCUeMc3MkEQNkTlEmqT3cWYOIjKBz2NNjaRp4aFnlkBg4giQAxA+C0pAogpqgblqPA39mHMIgWwKzFMa6vfVWcw6Obv56gmIGMNC3eWpUwkGXEoe8+izVCpoqDPdFhBdJksVgIAQmAjMxNmms68kGLBqFQEzPQ3HWoVCImKmqmJIAYmJOISkdZR6yKc7BuNZRlnnyXaeJR4WyMceDL3f835cxWtS4MQQYq1VdfIhh8miDmEhxvzSPpqliv2nS5MX5l304DdO2DwRpxREKjPOu8qrmpBiqlBURDMickyhP40//cVP/8X3/sUvPvlFrsUInYKDyIEDMYXAbdtQDOCiegaIpFodBQNwNeLpPdMsUO9tbrB52AJJATZnZ8g85kyE7PtXodaC4nxAl0QoHkQf9ulgwpYspgaRnDfmPVyctQ/ADex5pqkiuBRhrdIPw1hGAwUyDsHASFhdPwcIdGLIMgWkyTdDVYecY0qEpGhGiApEGCi6nOnpdIwxta2740QOodZSSoYZcplSYbdrFcu5qBmAhpCmdhWAifrVImJ0dw5zt2nyHhkoqiv+EYgzFw0AgBhNQEFiSIiguSowsNRajdEAaJKXtOBgHKCTsqpWUFHRYzkyERKrgYhhiqUqxtikhkXaFAKBmDbtOmGMClXGMZ8CsoimhrUCUkiJQ+D1ejXm/nA8hBByqet2hSDD0AMjYxApQ9aGg+Uyjsfzs+02rU6nQ661708hhBj4dDwaYtM0TdOM4wgEXNnQQNEV0gEACHIeS8lNbHIZzZQIS83D0Bsox1BVQLSI1bHWKiFEN2MmJA5sp2kGWW2yKHYo0Vkczkj1/qChIuBkUI8AxpNDHcwxaWr0u9e9e9A6q8PAR1oMiAHUqlTFkKusz7YC9ovnX24eP7lI3dulvJR6JGlDJxRvd3eXcXW2Wt0dD1ARARkpM13L+FZqUmrK7ZtTy0/b8BY0119cvzrtthdP33v8zsevvvjpJx9fXT7+xtWTkPt9f3OX+wyqonUY2tSs2+449DHEuAp3o/zk9aun3eo88rPLR7c3z8fD7q2nH2zXF5/fvvr5p794++l7V48vh1v49M1n4Wzz9sW23MmRmi8NwWDTpl3d5QIU0mHMKnlzdX519fhnP/k+oMSYdKztZtU14ZRLqTlh2222eQS53V1dvfXX/vp/9o//5/9l/+auHyQDAsd8uYWqJhqmHMJPl2kDkeE8kDXRKlAmSMUYZl3nqXMEhqiKyISsIgNziMgIQE6rG2vHuG3X4WfPD4e7FW5Kxap1Mid3TZQqzKTuIYBkoGbGRGZ0f+DSzIScz9+pJa9q96ZX09k993p86TjJycwMHzzd+T3wb7Kj56V2//30c5oGqMyYSbxhXbVNabNZgykhwcKntmVKeYko0+lGk58mERuQIkacOAgA1dSs1urZzBRdAMEsBG5jgzEqmpiNYxYRZz44AFtKVkADiJyaFGMENaiq6Fx1ZH8LhB620aoBum2MZ4NGgOyRTAwURJQDEIM7HDVNvLp61DZdoCClahUOa7B6e3vbNc3l1ZVi+Ef/+J/G2MbEZ+fr8/PtkHtOjZ2G3XFvyOv1Orr4Ny2y9Dq3tJiJs2eKPljHybuNqkI8tWY4BDV10ppH9kkozMFggimtAqi1UKRaS388IpHqpO2LiDZ1RT11IER1+w2/xzzDDq5TQkQc2ACxaqllGIZSsgs7ub4ig08A34dJ/z8TK6iBu4ibiDpWEQP3Q/aVMI4jETexY9KJBzp1fgEJx2GotZz6YykF+D7VmD2hpo7Yw47V0iPzx4hInVxaYYno3ph4SKMGAO9I+96ZD+jpci0NL1Wd5Oke0IB0lj5afjURxhgdJqm14tTFhlKqakVEjkQQj8fdn/zJj/7wX33/Z7/4ec4jp0k+w6lchEiBA3NK0fWc5vQXXGJ7OXmcWTs3xBEAxMBwbjC7QYSZmG7Ot123ur29SSmCESAQBRUhsEncqYqp3Wc9i34SABC6cPvyGf0oCGGawPfrRkgmggSl1GEcxnGsVb3ByiHYJEaqIQRxx4JJo9RwlsfAmW4otdZaQ5MCBiAzrH5lUkzupDEMWVRjbNo2NU2TUhwGLAXBLI+jv/8QYGa3L2VYVVOmSgCu6DO3NJHIDwAy9WPLEMAbwH7fZ/oc0ASZQwhRRU6nE4bkpYAKGhiZs6RBwQBJjYqITL5XgqqBMYbO/bBWq+Z8u769ucuAqWmDKZKNYwYAqbXbniWz67tdt25MgBmIyLxcDKFtm9vbWwfhci7eJtA5sSulpKYNKCLKiIECc+j7HpnW7brt2qkdltrUJlf2apsma61CVhQQRMUnfANzzTKOY0pJ1QAw5+q0fQoBzKWqpJSqRZnYW66IvpTRzXk5TLRCAFKT6XrOOTZOnDB9GOYexrs5kNwHsaVmv3+czZx601xK2KwA9OXQxxgGO+3uXj1ZPXrarvd2rAB2KifmUy0h29n2bB3WeX8MattuHUV/tns9dMP7YfPn3vnWJ4c3H12/vGpW7zx9ejscn5/uQgzbgv3Z+Y3mtyJvsDsvp5f1kBHaarUfbU1dmzBqNR1qJsacDKxv0qYz/PDqbTwe37x8ZecXDcd3Hz8dh/FTumaE33z87svj6x+9+Ozd9dUH73/t+vr65nRM7apru/3uGAIfhr4GWD3Z/PPf/Z2nH777X/+X/9Xf/Nt/5/b29tGqUbCSc0xJTL0IuXr6pNb6t/7m39S7gw1y7Mub4xBS28TQxoYBAxHZ5BVnZopeyhACIiFNdltAMLkSghrQxBx2/W0gQjRyj1wCIRQ1MVHDDDom1ipiNZAW1NEg1qxK9y70OJOdzbuus/sWEqGrNk9jlGCmOtuqm7kvzySc+CDjgZnsPDWyUOcOGhG4AbiHzokNY8vImeMjNjGdHeIxmMxiJ9QIiWaZR8+6tOuarm09wXdtTmIimBIsmr88tOEcVJyFjQCAyiEhoqiKVpgC2PzrPEQDqloIoW2CqPsVcy2FAEzMXb3E3ZGlrpIygYvAxUBuAYbOYDEDJNf+MFR/cSN3mCcAQooC4XA4lDGDoYkNcooxrro2RI4x1lKL5MBBzJqUmrQ69bu7/Z65kaqfPH8hojmPJZ9M68Xl5rd+67fW2+1+t7/b7ZiZVx0zTz4DgGqmVrWIoUpVME95q5lR4ClvnLJImyOaKjjdRQ3UW7bg9HE0wiCiiGpopZTTaagikcnMJgI0qE1nhDnHtVYRKapAgVEVDTgEQiNy1ykiQkMMkU7jOAz9RKt1jMrXrZrHCQWdHo2kVgEn8s3pdDRTZkbUKpP9KpNjqYRIquKQdi1CqlqLio45A2jOp/500G5DHHSei3mI1sw71x7mNGYGNq3bJTF6mNzYRGRzj0ZYnjg/3hC/kuUsj1+4QcvCxokhRCHYfFgDIi85ASAS8qJ5+ObNm3/945/+qx/88PPPvxTFpmsphbH0hkCGTuBh5hhCSj6HFIMbsM1N6AXlnTLO+yEGMACas3oiNDWX1hSxru22Zxf7/f7+EyERYvSmISIRBgrLVZozEhAAQgqBaq1EllICwHHI6KTIaeRQ0HOkWlFpHPPidxGbBAhEUGo1MLNQRbTOhRKAnxKq6gNqPEc7EcFagQIxYSUzU1BCZnYWjtZSc665DCtpm6aNMTGTqTm93wzmUYCUQiTGUoGIJItqtaiAUEpRneZkzW2ccRFkAyTigJ4A+b3TKlKlaEGEOCFPdRiG0Jg4OEcIOCFAhOD3syqMRQyAmJnDet2Q7yEF4iBVb65vKfC63ZRSx7F/cnWZTWoeu7Q6Ho7G2MQAYCFFpFCLejJWq9ze3kqthkJM6/XKbf4INTVJEUVyTDEpk0FHoaKK1jL2KcVcCtEE5gGSgatyF1XVKpO44AR8krPaqw3DMK66NSKKyDjmWiXGZGhjHgytlGoGKaUUk2v/wCT2NiG1IQREQ/T3MSktTSmvOrXHww0QLFsJF+ozTPXJ/EPnaMz2TZ4GEZOpGhmid4NJCb64fbXabtOjbf/mrudD166/zme3lj/d33IIq9j0Y82nu1UTrrZrG7PWOoD1YLv9zdmj1QehXcXu5c2bIPq1i3dDCD8t/S+uX/zq9uqbbffp4eYHd8+J4yWGp7x6WcYsQilqVRjytuuOub8rAzdpDGoidv1yc/742eWTLq1+9tmnn/Sff/j++1tOn3725cf9iw/fevfKmpyPn/Y3t6tCVtEslyLDsDoLTWpAYV8GjdGa2B/vPvzah3UYj7s7bNu+H5qGA1O7asSg7Tp3HBpy7rp2OJz68ZSHSn2V4zEHppAJZw0Jm1U0EOZwAiYmoGSEqopOFSJDcRcYm420fEQG1ZTNCBWNA4E5ix6QTEwrMqRIASQQhJgGmwxBl6N8LoOmGhBx8lSacRR/X/erYT7xbYb37zNlj3OTGM8szg4zewzA2dUPHOPV6WIP8mi0Ga0BkQfw0DQoTaqumgiG0LTJRZ9DINdIIiSBieXt5Fozs5kwu9SRy/fqanhTtDAQMLUH8zWGCKXWWiq10ciIQotUCEFhlKHW6qLxYlZryXkMRDFS5MgcwMAHIszMwNudAJMRgEMiHg9UQSkGMxrzaGLBUSq3EfJ9ZRpioyiMTBTU7Hg8IVPTdMUwi3bbrapdNimPx+PhLjRxLFlBU9dItVdvXgd+xtwSMaIysbFJtSIqS+1vYAbLoC8imhv/THWPiUqYyllDUjMFZDM1EEKekl41JFAtx+PJF5SX27VWTxI8hADqJDGg6swFmyhfHl8thkDEKg5Qw5jHcRyRyAA9mSSiWsusNWXTKeZTRaIcyK1ITqcBkQBZxUodai0xJmI0BBWoKgA6NZF8ARuYac7ZzEotwzimzpZcRFUJ0dfQL2UkS+D0gKqiyA+SgyV1eJAS3e+vBzsIgKeOreqiXUtErom3mLDCA+wHHhzZRK5K7O6qIFLHcWAO19evf/jDH/74xz/eH4ZcpF11iHEY+1JrTGks2ZvIxNFtVj0B8u+JyCdGwWySvMAp87WZ5T3lLoTz2TLp7/nOI6LNZh0Cq4rrHwZupia1FBUJzETkrjXLJTVvLhPglA1/5TfOHxnMtIpONAFVp5fFGJmDi03A1GMFZmbmXAvYffnuH+VhbgruOJEthtjGJoTgLdpxHJlDCAHJiLjmfDqNVcpaNMZAjDFGijGX4gmQiDk2ShSYyfWs0PX6iwBUm/Q6TNVHvYp4f44IZjflEAIuZiamgEDIHInJ26yIiEyIFOhhAgQKqjKhusohNW1Lc2aRx2zAbdtUFBPgEKqUJkTCdhiG3Xhszi9W7aoeixmsV92xHEKgEJuSj2aoqsfjEdG2283d7ma72jZNGsdhte5MqqgQ8WrbFKlEnDjsrm8raWA2lf1hRCLJhZmB0FROtZpBFXfFqaaKqhTYm6FOOCOkkme7ZjeCd0NcMxUtWlWEOaaUUmoQJzdWEV2G+MD1BmxyRPJxZpwJdnifx/gQ4y+1pGGKfTo17u+7s3DPa5hIroiBmZCHsScCSOmu5k3gR9vzY3+iFN7uLmjUFxwEQ646ElWtrdrl2cVoeN0fDCA2ibfrT968On99Cufdt7759ZtXr778/PP1Zttt1mPOBy2XfboQ/j27bSV9GC+fEB9FMgqngAJlGBEgBG5SUwiUOWOtSkMed9c3lOXx+cV1Pr1886ZgfLI9Pzbb68Pu/ICphQ/efe/j6+vd7pChiyENUu0gTQxFoQBk02x1tVq/fvnqBz/6Sde2OYQxj7U2kQEASil+qtSxNF17cbYxSnBpwyHffnk3HAYECBQQ8P8DQFoai4pNXpgAAAAASUVORK5CYII=\n", + "text/plain": [ + "" + ] + }, + "execution_count": 10, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "boxes, scores = face_detector(image_array, score_threshold=0.3)\n", + "draw_boxes_on_image(Image.fromarray(image_array), boxes, scores)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Measure speed" + ] + }, + { + "cell_type": "code", + "execution_count": 16, + "metadata": { + "ExecuteTime": { + "end_time": "2018-09-20T17:26:55.079603Z", + "start_time": "2018-09-20T17:26:52.248625Z" + } + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "average time(sec):0.025305808419998358, std deviation: 0.0014581008719369262\n" + ] + } + ], + "source": [ + "times = []\n", + "for _ in range(110):\n", + " start = time.perf_counter()\n", + " boxes, scores = face_detector(image_array, score_threshold=0.25)\n", + " times.append(time.perf_counter() - start)\n", + " \n", + "times = np.array(times)\n", + "times = times[10:]\n", + "print('average time(sec):{}, std deviation: {}'.format(times.mean(), times.std()))" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Using the Docker container" + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "metadata": { + "ExecuteTime": { + "end_time": "2018-09-20T16:53:48.470301Z", + "start_time": "2018-09-20T16:53:45.053727Z" + } + }, + "outputs": [], + "source": [ + "# Instructions and container are hosted here:\n", + "# https://hub.docker.com/r/arrahm/faceboxes/\n", + "import docker\n", + "import tempfile\n", + "import os\n", + "import io\n", + "import zlib\n", + "import base64\n", + "\n", + "# Create a temporary file from image array so we can use it with the docker container\n", + "with tempfile.NamedTemporaryFile(mode=\"wb\", dir=os.getcwd()) as image_file:\n", + " f = io.BytesIO()\n", + " image.save(image_file, 'png')\n", + " image_name = os.path.basename(image_file.name)\n", + " base_dir = os.path.dirname(image_file.name)\n", + " command = '--image_path=/images/' + image_name\n", + " volumes = {base_dir: {'bind': '/images', 'mode': 'ro'}}\n", + " client = docker.from_env()\n", + " stdout = client.containers.run('arrahm/faceboxes',\n", + " command,\n", + " volumes=volumes,\n", + " auto_remove=True)\n", + " json_obj = json.loads(stdout.decode('utf-8').strip())\n", + " boxes = json_obj['boxes']\n", + " scores = json_obj['scores']" + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "metadata": { + "ExecuteTime": { + "end_time": "2018-09-20T16:53:48.737912Z", + "start_time": "2018-09-20T16:53:48.472269Z" + } + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "(768, 431)\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAwAAAAGvCAIAAABjNiXLAAEAAElEQVR4nIz9WdAk2ZUeiH3nnOvuEfHvS65VlbUvWApo7I0GiN7YzWljT3eTlHE0GlGmB5nGpAeaXrSYXmSmN5lM0otGxjGjbGw0wyFthkuTbDZ7egHRAAh0YyugCijUloWqrKzc899jc7/nHD3c6x4e8SdIupVlxR/hy/V7z/Kd9dJjX36aqSk5bnD5a1/4K1/+9Be3isH45MGoEvM6enRfZ5LAE5ZQKwI5mRMX7xXyf/17f+/4+o1f++TL/9u/85/EumkaZRFyJiJ3gruRA3B3I7i7qhKzMDfRxABVL4TcubFZgQgPjRlTAw0RQoW6wMlM3RUOhxsMcHc3M3cHGQAzg5M7FGTmABHBzN3cyNxN1Sw6k0gQEJqmNjMRISJzdzhAzCxUOKc/QURoDyJJT2z/JGIyd3IQkZnBnImIyAnmnk4zgjnyNQ64kzkAJjIzIuJ0uZsBIEovYqZmRETe3ic9EIBZJDYi8nwN0mnMQsR5ns0AY2ZmVlVVJaL0pu7u7kRERKZmbO5uBmZhljRISyNkBuX3FZH+bPRGtTJF3j+BSJgZi59BzgDAxERN3VRVpaqDsrx27ckgBYAQgqoaIEGg1r85AJCnL7qZcXfkWaf2oZRGuzLI7q27EXaf0yDd3d1YCEBVVsIMd15+PpAoLy+puyPRt5OZAjA4mG7eunVweFiG0s26Oe8GzMxpjYgIcFVPC2dmaSQxRhHKtN0eTga3RITuTqBEEg440rsTHMIEOFGmyfQ4gPvrwsyWyS1PWqKNdhLyRBFRIqH+9KbL++ende8u6QbM7sScCbe9vBtSmoQV+ukfqjqbzdLj1tfXE2F009gta7d27XwukUeaYGYHCGB3wKljJSJ2J8AdntYd7UyJiLsmIcCEQJR4kxEc6m7ppUS6aWmnFEJE6kZEquq6IAAA4CwczJ0AcTgISI8meEuo7ACpKuAixAQ4d3OV3pqIQJrGRWwEYUh/BpjZXLtFcXd3BQggd/dEXMwAmRlAbuRu7mlaMhnA4Q6DO1xYVKMjL5+RaoR7GhUlGm6fDncDHARmN6W03Gnpid3NBETcv4TJ2N0hCiY1YhMhjvXs7PThg4d3Nnd3Ll16ItYoDASvyY3ycD2J2fQ8YjeI+ahxChiz11AiEhCBoqkKz5qo82ZnsFFxMdVGE9eKgGAeLaqwBC40RrgTkRCLE2BK5jBjIk4yEuRMIHJiEAAndAqiY5ZuMs0sy3zupBOnlXK3JLrQE1xGS7fqCJuZ67pummYwGJRl6e5N0/QZTUSynu3oAcTgR4rEdCYzi7BZNI9EIGJ4j26zkMyCqxOw6Uh/ppt0q+zu5oSWKjoiNNNEvVnyFGTakePSmQTOtNrK6k58dSzfiZHuEM4yO32vSUYjDykxphC7KffkTyjqOhSwpmlK+cM/++MP3rvxn/7u71174nI9OdYmGpUGYiayQFwgWiBobMpBOT05nc8nRIAbOwJYAjvIGO6WxXaSAgDMoioBMca5GXOwqNZEjQy1wtFAIhzRwZQmwdxUzZ1A6g43M7iZOTmh04IAnIgcRAAhCSZi5hDIzMzV3IrAKEnVWBgAM7l7CMHUDA5qmdnZ4U6Lae1PcVIeSai4JwWMVl0Qp3X1/iomCUeZPcEkiVe844NEZglOdeKAe7q3fU2jJFrMiJiWFcAK1yVN01FMC55WIIUHCQ43S1IPAJZu1KPI88f57ztK7f/b6Tlqv07gMbFNO0uUxwwnwJF0/AIT5Pdqh7dgS+IkifozsMT5Pb3eH2F/zMtPScrS2yXtJn95YigPpf1/e1szSkKNmJm7Be1QxRKA7sGy9H1f4tAS/AWBiNm9hS/eaXFKWhz9y5bH3CeDFdhxfhHTVCQl1x8S9Y4VaZWevjS37ubOrTRMiyIiSQx1BLkywhXiYV5o/T499yFFf95aXbK4p7szIZlhyCYN91cyoZq0cothZ4WUT+Cs3TIXMzNRPmFZMiS7C9bjoVU6XH5lw2L2+4RK7TeJAoFHTE47eE+kgQSEmbondpqpu39/JR1ulgxIELf6vMUu3uMpdzh65NRpMjcs0Ft3JGHi7fulGyyBXSZ2QveaSyNE+2CHu6nDTImJOSM9YjIyByll3UZp3c0zBIErjECNEIHgJhQ46XIAECIWuKuygt2ZyBwgMOCu7CBmhpvVACUhbKbMwT1NBczsvEDM1LgiJZYlT7em3XIsKMG8kzn5y3bOVy7s5irdYcWS6T/0PGv3mW5VoLVqNN3akRaW2u9bwYvWzO1x4srdfp6+SEcIoXe+a9RzJLR6/LtvuPoWZliWLWm6u4lKwpaQqTyp0bAvfnR0tHVhd1rXYRBee/f14//6/v/uP/9fXbuwOzvTwbCczuuilGYWHEJEwjZ3K4bh1ls3z05OR8JWN9QYxaaJMYHxJHI0KxhRjSAmYDqbmVkoq3kzpcbh7iTeRICMYcmWNjJ3dhjMnDped0r+CiSDg0Dm5paMJ89mHbH7KoUBYKZkJykMLSREgodEYEqAxs2dnJbxh/vCqu6UJRGoFWHERAYmjhY70iEic2OWjNXMqTWL0xkLaddC3W6dkCTHQqAnOkvogbK0wxL9dVIbPZgMyrBsheKTtjBLFJ9ekN1ASd6Rg7JG6XjvnNo7R3yP4tVuupK8yjiIwFkaEuAGT5YoG6cBd+cvPZGWmK0TJSuiISnLFVWNFv91mrI3b95BhNZyzTftFr2vnzKNJfeAoXtnB+DmHXpYJsK+7OvNWMIlC6jRjm0JprSi3pJ1jqyGEoEhw8oEMt366qpleO/jSHfnc5ZT93RftrdW1rqDI8kP1H7ujzPhW6Z20qg9uqesTPsK/azM2Hli6xa3P6rzwj29I5ETwdySE4W5BxbhfQCCbmBwJyNw8icQOVHGjq6dZEjwy1vnqAMMWOIg9IAm9VBvy/PtxJqj5zhZmW0iQjqD2sVFQmGJfwwtqCVyImFwH1mmRejPL3lPJCbxbOZwcEIT3i6uApTRToYO3W0SGHRzU/fk0O3IJp3RDoES+zK7Ww/vEsFAnl6DlgYHMMGJDMaM5H92N5ATQ4QlsDoiWOHqFh1wiKNQZ8+yQcmJXAk1M4HdEZBd2Q3cYWxcGBNJSO4vN8oiL7Ys4QmoApQdrsk7BnhGt5Q4LINDgFoff58yz0OfPkm3s+0rYGXBFITetOcjSbbkf+3sme6hy+JiQU5mhiQYaIGcutGiZxqZU6LfbixE5CAA1trwCduSo3+3zl29NIYlQZcRXicBOE1/C3r7kqcbvJ8Tof1ZpXPwi4iw/KV5Gv5SBMCSa79F4QSE/8N//j/782//xTe/8wNz0sGwHFR3T07/7//vv/+7v/EbV3Z2xicn+1sbu7sb5YiBhsnhRmyR4wc33zeNVVHEuhaCgOsYuRD3bBQLkRIBTkxggiMIR1NoHFVDE4U5FWIs4tBCCnJhB1F0JXVyiuZJShBg8BQ0ymaPEzkDBiOsgtDFZDGzw82d4cTJU8TJ7dbXbZk+JQfYuhnvr+uq2G1VdJpnb4lm9Rwnz6q1RdqtKu3InSVAdWWll1wAyWMNacVTi4wW+ixJ4XR5jhJmMxrkWJJTaLFCC9USiTAIZC1Vwog6/bp69FXO+e/Tx1Xm716tDReC2R2uxtVCcAMwM+lNYx8X9lWGuRFWwjHUaj6iZeZZrEjvsy9r/WzHJ+5thUsfLhDQKs6MyRjkjoU53Ep2xwKHdQu64qJo3y6TxCPtuXall5ZvWbwskyX6KpCJSIS7OUQPkmJZjnTLhBYspmPl/OXVTt9wS9ot8btzz/0ALKD8Ctk8Umd0n7v3Wpgr7b8rvs++MlhaZQcRCXNHjen26PgnKS8FM7NI4iO3VWQCSrwgrYJfWhEiBog5WHZM9IM7i9X3vtBYXkH37DlmZlCK7XTSZYF387Mz+un0HjOxIIVjAHKSLrbSe2ViS64wS6FaSsM04u6XHqcny8SQwq09ZxuQRCeSjYRsenWjNXQU2F+vjPnM0ut0mjvLv0TTDorJsgA5MxGTewRZWYXhoGq0NngE1AAHg8kc5uJERk6kAmWLAAGcEiaQ3IAgd3ITFyMHex3MGGZG5uSAehpGVu0gY3LTZKoptG/qZuM+LyO0nTPuKZ3+0mP56JwRyNDZ2+BRzoNIEtIlBRUWkIKW0cbKkVV+z0RfcJN6H2qs8GDHKQ503s2WqtsTnHvPcTflZf/iik3FTOZkrYnb/2ll8OeVbD4NvsyzSyc/8sgs1p7qAGdg14oLc0tQJE0HecJ04fJW8T//G3/9V7745a9+8zvffuWV8exMiuGHs+N//Ed/9vmP/8L+2uat9+58/CNPPvbUDphLEFhpEOaIt+7eEmEYtIlCzkKDIkQmB4ESnziAGJsQgpnWMQ6raqJ6eHiwd+GSiKhHbRpOASKL6SUSvGEzIhbpog1IMQAz65B4Zn90iTaLI4VCO72upm4KE8dCLXUcuuB8AhPrgtvPm2W9VSdybTN8WgG3uirm7prO6KRzPxqVpXZP166I9VXKWNXpfc3RgSLvLF0iAi/Zf2hPJZb+MLBgj/z/FcC0OsXn9Nny/MAdXcwYADEzcTRNAZ3+5X0WyjPJSyooawhemRB65OqsQJz+lyvT3teXrZoBEac4OJ0jAM7gMk91cskkOdexXD949MhJ6wbgvnBCdOIy3aw/fjpnUS1eAX0r36n1n6lq+4gl9NAfz3nh8u8g9Z93ZmKi/ml9ULUCdFbG371v/8JuZroDj1rQ/r/dlyuoKMHolRnoz9+yyu+9aUax1lq5ic5ImLM9jJwg1WqjpP6pza96tL20kllIC15OgyEzY2FaBGFTpLsnsUDgToxkxUNE7Hnd00XMLMxLHJS0I1zNjNncPEX3kp4TyS/iYCLLAglo418rq9MzvrrXyeqqU760MFPzDHFKbiIiyn4m6hAhMxmBSJEdLCCQOzFAxoQqSFkV5dxgkd2ikyGlxXkUcmUhB8Op9cm6EkiT984BOIOYiOFKbhQj185ipnm9PZnF+VVoQdZmzJa/zC5/boN8+PnHv4Pxzx99Uk8LmiK+aIHvCnmvcEd3k587GKYuuoiFuFswHRGZG2UHoyxfvcQjiTPOKdtHPLODVP2nYFlltMr+UbDm57zNikBYVWpt/m+nX6zLlm3he0+QZggbhLU0fPSJZ5/+nzz5+N6FP/3OX16/e2e0e+Hm6cOz73/vo48/tU31889fJNoJQkwUTUMojq1+eHQAc41aFIWIzOupCNSNQO7glILsHoIAzvCqKIh8bVjO6uGte3euPfZYINGo7CBPINOZiBgwZyYHSQJSKehO4EzfmUQtuT0IXUiZWqdMykv1Nqad/NggSpEjM0VKfswz2GZIuHubjbsMRLCyePAuBSSHHo1g1M5rumnSTz1u6DI5k/0W3VIAGKoE6t+/lRR+Xnv5oyzgPtV4DiUlRrLscU65aarJtmzHkNwDntMJcvypG29SEtzR7vKcLBNfq/L7hN5lvLq7W+v5IRJma5FfjDEp7HxhClR4d5OF+wcAjJ1BZNky+fkiIBlDy6q6XQXN+aGPdCQQkwgzEUx7iVnEzJ7UGyHFwBbqAaD0spRiWouc1hUtvqLms0lMne7MwLE/YG+ZtiXRPp2kc/Nrqhp4Mf/dAPripE9IK6IwfdkL8hJ6qWP9k1tvPKd8YSwf6RHWvnvnk+uTjbfJQH2yWUlf6x/dIPtLdl7NUA9UJd3qDlVrr0WPOx3kCZSbJoNNKeGHENgNTmBnScESTuciR7sciV1YzLR9O8vK0Q1wphQ3B9yQgHLyEGQJ1eKCxcAJAIMd2s52mkkBWV715LuHtxYTdZQpzCxCLcd1tJ3+TaRlZoV7A3czTcmP6u6ZZlTJYRwAc9NVaNhLNaPWaOwIPy1HkrecnWqU1BEXLK1DkQFzV2YppSAmZqGcNMcwJ/ZoFjUSM4wdLuwFMzOIEYTLwGVki14rGsecqWauQUQcDJx8Qg52ZzREBIJ5JOcSzDlHxxmavDbkTsQkDDVYmlgws5pFNRZxSYkYMG9ZAClTwvL7da6+ljr7BNnjvhUEv6S/3XMybxtN7sJJ0r88scZKsn+fPTu+a6VKXnoRSZTecdb5ohYiIpDB+iZlksA5pN7D7uToZSmAmbWNXSyIrSV0whKSSfzbjYTaBLuVw5M7cBm0dW/d+adXUs7Rjl6J2iiJgyBOnX7hFmCjF1gIt++8uzm8MCrOpuPJFz7xzGd/8eWvvfKj//af/0sP1dTLH7z1489/7Kn9p654kOBCagyKhdy7d+fg+KgoSzRNOagoSIQyMzvMjInNHe5CZO7RlFiEKcbILNtbmz+7+eHW5ubOxma0hlKFjzsjFcIo1LLZRUxuzOROUHVCEYK7RzXLGU9GxODOcgCWpXaORrgTMUtSxmmpsv2drOuFYfaoeGSXJ5gRunXifSFtqXVjdCuUH+pkrQ7LNlcqaTNPi2zu3FJeXyF1a99Rdt+92WWJnoNBoDZY2124IGpaPKhTjW7ZYutS65NA70m6JULsB2s6ljuHRXph11T+k9QAE2XPd3pn7/gnK8veyLuzzHJqc2uUcmLCRyYedtN4XkF2T+n/2jttMc8EzyEx73zUSVLwsspvyYyIieFeiHhbi9ElJPUX7ryG7q9U9+J92ZdtzwSqeBkN56UGEfOjXe5La7FMJ9QX04/Ei/2Z7KRPK+lcZMkNQz3Pc//L3mCsT8n9l+2HybqBPRKhLi9Z/l5V+5G7/Dq5mGWRAtm60qzlNDIzyvSQGYpNU6JXzmZvyUXyInq2EojMTSjlO1HyGregnBIld0CGMikZt9U0BDB7Kq4houQsz4YIUrkNtRPegUV0d03DSughEIuwSIrj5YrO/op3mskTQnFXjapm7BodTjA4JZvPO65Pq+cLA4yRwwgpjpCGrcycguzJ58+cfScAoGashJQBkVwrhTBLG6TLfMjM5sZGJsRwpMo9BjMIwlwEIbdQBhUn9tJEGpOcIOQOFkcwD4CCQcoGDWiAmASvsRjYURvMmBbzw7FphAMHhhlIzF0NDjZiInbELsvNzMy9gPhCfqW81hztZjNui207Tu+kdJ9W+59bmNtxYufAz4KwY5BOknSmXfeg/g37wjmfTJzyM9JTVpMaM00jlwLlI1HKqsOGll/H2yKSzuWMDtqnFyJz85SK5620XpIty+/YY/M8vpU37UtjXzau0o3SsKz3JVHvvXoSqWOQ8PVv/MnF3Wv/07/5dwJtHE9PYqDf+81fnsXZP/rn/6rmAC6/e/3Nl9569re/8pV4cLpWDKJGD8VPr1+/9/D46mMvzCcHt+7eH0/Go7XRZDoOUrgrUQoEAmDyGJitfbZGrUZrG1ub77733qc/+cmqqsi9Uc3pFOQMJpHkHMlT2eZXMMhM4S5gZnZzz4Fqac3xJTSQ9C4Ad81h7Kw/OSXZeXIRtVVZ2T90zrex8rm/VEvPYo4xdjNrZkyg5KNKgrsVSB6jwjkVqJtRu94d7XY6qU/Q5zVB/8vFT49QtEuU116SaCvlNyQKVbB0IK/Tc92DZDm3I91QRFZKzLrPvdQTSkkHZsZE1lrBcDc3Jja0dlXXxmB5nvtTnRzkgJ9/tZUVWfm1u9USeyx+4l5NJlEPN1AXjYIzFgAur3viRiI1Y+L+8nkPDPWlYcu6ixoctIqKlj1bRJRlR6905tyrOVKKGxaGUSeIlpKolv1SPfXWt0rzmBcvvjxdvQlcXfNuNIvBL7PMsrhf8gzROXyzQtv98Z///vwJBGmdhRlMo4uw0OJMZmSyAihlQFNGP6l4jVtd1eMmB7kkx5/lhGtVFeHONo5JKySayaIZIpwoPN01D9gsW2W0YPn+7LUi0DobiplCGpyIEDE5J88lhwQr+vH0/iQje0CFApk7M2JUOCU1FTUSCQmZwkEs5Nb6GpMvHuaAm0sedqrqZ3Rckyo0Wj4DHASh7JUSEZHcZoNbDOTJD+QGYWJSS4magAszF0UIkpoGeFMAREHBSqxJdokDHht2MLN6lDIIuG6iFkJFqZHUicEGjm51qmVXKinMTcmZOcBJASdmSowJdUs5tEl5pJYA7ETCcDJ0Ji5y7epy/VE37X3x0i5HH+ijV9mw4AhvTdO+pOqYpW9trrCnLxvJ+YltSnXHd33m4tYvKin/c4mfHmGKo7Uhzr/pEr1xQnCGjvOW03rymJfZvPcrVlxlK5zer/b1HirCsqTqsr+7M+mc6yj8xl/7ndlpfeHq5ensfqzC2Vmcnhz87b/2H50+OPmXf/at0fa1o+j/r//qH66X67/9pa+c3b0rxBB+42c3o4KcVP3o8ORsPBmubUc3QfsMplAUsVaXAFBONGMxbZywvrX1/R/+8IUXX1qX0txd2KIToMwEczWAwKTmRVG4GyxpC2sd/jnBiEEg6GJ20hoY2hQOy10WeDHfgEO9DU8xUg6RdKuHRx0JFnShsZQN19VEJt2kbqBU0wAgB0qMe8tm1jmvgyO1mmFm1yWaTodZsnHyoNrxc0s5C1dnnz46IqDlF+kUT//P9MBkScGJjE2dpSO4VoQtJ8+uTAtyxtUSw/dZl4jSCW6e0hOotWJhoLxGncgkIsquntZiYA4ps7v3Uu7L8KX/3PNKtw8+zl/YH3j72g5fqWJrg/JdkocDvYj4Chv3p9pX/YJL+r5/VatsFm/XU/erWn/5MLfVM9onLgQWLduI7fSuOtgTLHDPX3aDZ07AqDPmFqK8/yLn12VFJfS99N1Q+/96z1F3nm678XTTe57aAYAWodV2ApNGSJBnYSFwiy6FJBVuEpEQSYolJ8yaysi6DKE2S9TJ3UkN5GLuRpZhD5m3YS+jlDDPAIhZWnia351b/8gySG3dT8lBa8n3xMLCHCQfzCxMoQ17JTBHhHwVliKGHR0aG6upacPIRg25Rw/pFdxbX3qb+eLogn3UxmkydZmbWxpommK0pjiRL9xS6f8gkaXy0sROzEwuTkbkrOzE5M4WBkVZl2WiOncHkwdyEQQ1RgRNtSamMrBrY4FmOrcUvw5CcIox8ICEZmpRyIrCoxXR1+ZSNq6SuzmpJbeONeYOZxEGwxUgJnEzYjADnnxgTkTgtlGPJxPo0fJ2CRMAZs68+Ak9oZHWIKst72TN6j1TwkCfTvpcgF7zoZ7AdyDh2/yhFenodCXg3mW8LzGLkyNHqnoDWxlbX+zngeFRBxn6CSt5lhafF19ikRW6lCDRw1596bE8jatQb2k05/zK4bf/s/+znZ7BYnMUEafEVrHQbP5bv/xL3/vej4/drCh0OPwv/+F//8Slxz9+7cnJ8b3xpD4Yj52LZp4q3+EKYWkddEFdW489LdrM5EXlpollObj78MHd+/f3nnp2MpsZg8jNrHGDe6pld4K6a2xiVGEui1LEm0a9LStIWbHu6EKGK7OQ4EyrzZPPkjuI8Mi5e+T31O8Pln9+xNnu/ZhpAsJLK9EtYXI3umcnVJ/yepopv0L3p3ufQJd0g6dn56fL0rOw8FX2dQkSQu/djpfSRT2/wXJSyMp0dXPSp7k+PywkHSgZfZQzjJNYX2r6Z93lKS9+mTcyWO190+f//nP7R1+drAy7z1StRuxxGq0aRBm8to7JLOg939CXISYAM0vc2znV+oNvr1oa58rcnp/wR77Cz1uXVsCtTsWKAO0f3ZlLU7Fs5OUk1uw+XJ3V/5DR/gf+el5P9IV+928Xajx/IZaoYpU48zKag9MagQjEnrCEtB1EW9GROzgkn4WvsE+rHZhTOKz18bTNYPsv2z29/6eZkVM/fpUkVWe+J4hRFIGZhSUFkig7VlJpQdtVobt/LnjpVhBmIKIQxJgQ3TRVjWXYZEIxqkVNZJOSLLP09i7jG+5uxEnr5zh+Fi/oTmDOQ0rhOUkxu2UJxNRiTYc5C5M5IYgrk7sLhSBVKJgBVXJmA7kwkxamhGhW1L4G35zVcnK6WRVcUiOgGCJzE+TE9Xhy0hBzUYkBk1ioErSpOEJhJI66qYkDSaFuxCQscIcbQVMvrwAnJwNpsmBTxkU2SFt8sOxmaGdg1WikTl70ocSCgtp/e3Kvu22ntjtbrs/OHcH33RsZFRF1KRbLI1kmyJ4S7d2Zkei9Pbev+FbkSe9N0q1SRHh1ZtCH/o+SB0n2LI3t/GgfdeWjWP5Rh+dBJqYNOrksawVwWtrB/OFtCeVAeToZX7u8+YXPvvSnf3mdSy5Gwwdn4//Hf/n3/2//+//T3sbOQXNwcDoOUjECG+/v76xVQ9IkDZlYxCiaRnNiyZo5pXgBTsGArd0dB799/frHnntxXtex5CGEggyGZREC1RphCMJcNLGZz+eu2pg184YlZasg2TqpJ9cyiu5EOSFFzRIycaQS0/4MZjC0UB6rSKUDm6rZA8GcysSckJc3u0HbNfA2rYxbaQpAF515AYCdjY1zxLc1l1rOyfiDzi+nZyjWpuyhR/GUHDkgxSPgYArVLysJX4HSrUZJzjZKDNhPzmjHtpic7kuRRzcbXWR7AMzS93KYGXpJr97GmNCminZPaZ0TRLTEoivLdF7B90fSH9uKvucU52/xAKdGPr0UvSWvac8GcnN2iq0iZO76AGVLsY8p+7o8oYeuamF53pYSgb31hfRKkfP3ILgtVdevzBgRmT2iqWB/+VYubIUpunSf7id3T7a8mRF1rsfVEH7/M7VpNysTvgLXVhaxv3Ar9+wPeAUV+TKwSwTfXd0tdMeelH3JBrdkcVIOHxtziybS1KXK83ZwyPC8y1dlSjJEzB0eAW4TmIgUkcGekzD63EpLssi7lutJP1A2kYDUeZeYgoQs0QiUCsVT01SGUio9ycWSyOCM+qahO6Cx/ZzhPgu1KcCUuhkxcxAYk6a+tanao2XZNDQnN1W0HZLSBCePdcY52etDzCD2lMjMLczy5Mui1hvQFl4lp1WHKgnEIiEEAqsaDKU6AHNoIGNQtN2S1+4dNT96c+P4bEfdvOZhMRhuj530wtbjz16bX96+Xc+n81hZMaByjtmRNUehnhGtT4tRGBCRERqPRGAOphHu7Cpk5CCHxihpGEyW0hpSSzaHgIhzf38Q6TIQT/2RqW0DDXS5p9mgXWYBbpeso/dVcYqeKdW3pjqy78u6JclDXUO4RFhLnJIflJpFpFBeRnfeEkuvyVzCN8vMuCJgLTUkIyyfg453urr69lmLd16wxnLnjiU1kUMKS+K0P5mdHMOjjhQ7IiICu1vQarOuz8qSXSDBTLyBkTSG+qWPPvWNH1yvDXWksL51/dad/+d/8ff+L//Hv9uAD06OpAhao57ppz7+C5f3Lx4c367KIqo3qjk4bm17dcBzV1aQcOrAt3fp4lvvvH3yxdO1rY2GUDmdnpx+8OD2vdt3ju4+qLUpR8ONrZ2tze0L+/sbGxtVVY42ODZRY9TYNHUNVZFALB57Tp2eUd5OXJ5VrIrTbmV6S5VW6ZzZzbwQWEnop0ZO7TolOOTEOSiSzk2FcB3A6i8hg3O/pJ5XvyWLLgzcqSUAi2u9zWc6t8aJCdrYXAfLWuzQuyRNk/Wc5Jqt+dw1bgEL+/S9ADRL3gJa+cl/XgYrEXUhMGLwAq5mqdD565avbZdlQe6PVJDnDz/XFRfLHJLvmaMQnaZM69uf1qRgjIhTPDcLbE4Fj+0+C+1SdcClP5KVeCWWWbfV4kuv0+f8PkTw9m9rd0VJ6HGZJJYyZvpopkt4Ry83ubs5Ze/OYh27waRfV4BRP1a4QpPUI+OVd++f3CeblTP7N0xP78OI/t26z3k856b6EWKRkBNTAIexMKUqwG5U3BmsHQV6y569F2FnZ/e2ZKMNl1PGFonTQZ113LdR3NHz+RNa/007aCdiJhEhJOiTIk5MRIFSdWeKcTClah5A83MX72vZuMgSLCWfCYiInZMYdCKWYCAiY3cYjNU142kwi7u6GdiTO9bb9kWduCIilowdRTjFAJL7p523LKN4MQlk3hXigyg7i50kpaGDSN3JSTPWIiIuHEMKw9Pj2etvrb/34WPEPjl8ODvQkmdhVHDZvE3x7Tf3P/8LVz/2/Hhz7eTewfzB4cZkdnVzQOsbRyJ32WexifM6jAYMio5Uh1cKIcIbJffAsrGxOZ/Xc1WEwMyeOtK1lNQFmO1cqxFqY4550LmLB1rH4UpFS06NJ2In70rP+moend34KB3fP6fPzklGoN8XplcntBAOORXBGMzODjLXVhFZD/8v/AUrD+o+L89DoozOef9oULJy1SOF+cqAgRVZh9zZcDmr8hGqvLVjCHDiYDST0sxPmvqM4RpVWCAA2TNPPv7MtSuv37jdOGq3wdb2N1/74Z/8xbevfez5w4enZOusZk2sRpuxWtNyI1TMTbR5LY7IcIfCHSljDkqIgDtMo9XN3uWLr/z4tQdHRxfC/o/f/unRrbsHDx88nI8H1WB9OBLi2dn4zt37TV03dcPC25tb+3t7Tzz+xO7e7tbW1tpwmGoZoDBTVxNmQe4inZRXrhUTyb64LosDbQJHbuTTKcjWRFk2kTtq63bX6lJy0vxmJ3KWAGRu7ohmzn3TfJk+yL0VSnDuUxKAtk9Tj6zh7uTJ75X6dPXKx9wdTtbJfELbsWLpoR3FsLCrumendE/HtlTegadWG3WOhBVN3KrD3v0p2/zeuiKSFHNzNwe12TCpzj/Peho5tdrGvafOH4kbVpTQyrGiNfFzmOr8lwux0rsF5cVNTVFJOJftEMgoN5RsFZeLu5M7kaqpxZRL1HekteNfPMcTlDZ3NxFaGU8HUNIanZd6acTp5+7XvnzMl6YBIxeeJQxkZk6QdniLBnsQoCtYzbdaKSHxRHbg/ru0I8sCxlIVQG4/AXSsQ4tr8Ai5+agVaf88j8K7a/trzedo9dG3l6ybk68/UJvO4m6wkJyRkDZJorWGF8N1AmBOqXY+F1gkyU9tZgWDNI+AnEFm0OwJATvE4WqOTDkECCG3jw0MkEDSKwShlPiTHm8KSrZ7VqiZgRbr0CEeGLkxieeiaAMsJip2FHBmmqd8JSZYdhUkSgHQIh4y8lQi5KoAp06DTEJELCT5A4PcHCG3fad2bHlIRmSemweS5433vE+6SD0ISCQACeIFc3Y4xNImaZthGO++Q+9cf7Lc3FA9HJ+YzWsQNTVF2pDRwzcffP/N169+5RevfuJjuyFUT+2PP7jz9uuvh9f0wpNPX3z2hdfvPTh8eG/n8avlcDBtVJs6EHMg0TgU2d3a2d/Ztcn07v37x7GeI1Io3cRJCVZ4SUTqlpqbpBJrywlbyE1mAVInIg7cenYXexX0WSnJT3P3nHi1StIrB/fKo1Z4Z4nmz9WGnlcH3UgIyfoltNIk93XIgiXLhmzbL8yeFt/3jNKMVMGUMzd+jnWKJSulN1Dqv/iKFOphu0fdts0F6SZ59TSCd5VihDCY30YZG304Pz7zWcm1NY27hTjTC1tbn/vk8z++/nY53JzM5xN3bK//gz/+6m9JWcSqKqrx2eFgGL72yiuv3b5RsIem/sWXP/Irn/rU5OgwDswLaGzYiVQqCzPxmXhsYlVW65s7TVmcVvKXP3hltxq6+LXLVz73sY9uXNylQRXVK5NAPNV63jTHpycPHzz88NaHNz/88Kc//WltWg0Hl69evfbkk/sXL60PR+vViB31dJr4DjBXoxBEODYxLWTq+ZnSwtF1/kkxO7Sbd4AodwMz72XcEKnHFBUBgzSaQl1YKBBIzdRVIAxBThCRBKM4wD2V6DqzZJBEANxMicDCZq4a0yZl3lpIbspdn73sewCELO1OmO4MmBp73jqOWMBsaoALBQI0e7ypDUHksJ21aRzMgajr/JuMZkul2Ylik47sYm0d5fWdB+kEI3UzOEkQANqYmrEwWND6VUgYbmBvyyhgwCzWRmSaWCjHIqBttvhCEPh5EyG1SktfEME8tq5RR49butQiQspq7ZzDLU+RmZNQcGgqc2ERVZW8/0Z+X0EmFGLhSHFec+4Y6y5kcHYPgQLqqFCSLEqILO86xOa9t8kaltG1hiNyh2rnY+hEEWW4BXhb2Q6kXnZu5m3BfnIlusOJOJoDysJqmvWxqbvDEDikF0xSwJFaTCRJluCoseTYf1fgLSKLPuHu5ErMQgFO7R661LowEnHklecUFU9kZS5MxOIes5g3DXkrPTgIzowQQuhriP66d0ncnWjrnG68XPrknTmTiNnjItqLBC/YKVkfArPARO6UplSSh5eYB/V8HpidIImT3JB7BKccGSOwgGEe3fN2yM5FKFXJLXrecyIYqaWImxKcIaQEBwp1Bnk0FmoITs5CIApmJTAll6IQI4KQpB3qjIibhC1mWpWFEdLenJ2iaZMwFlzgrE6GCHgwD0TRSTPtqonXIfAUTFJQ3QCRWEIRQJbyn7UxNQcYLO5G7u4WgqjDlIoyuDsZswjcmVnJiMBBQKporO3WmBtZZcJzolTokepY2I0AJ49OZl6bqTsIASxRo7uoxxAcoKocVuX6wfs3nmpOi8HO7aOzWNsUZbGxG+vJ0eQo6jQUZRHCh9//8UCdtgdbLz659pnnX3jh2Rv/+pt3v/r9F6flU2I01wuhOLPog1KVAa5Gxc7W6MLa2jAMg+HO6z/aOD7au3z5xux0RtuO0tEExHIejLgWqDBApOTOYDdGYw2InEXMh04Oj1CFCgs7R/OyLJoYCYCpELuaJ8jEKbssC7C+pvfWrYi2OjjDbiK02/x25d9p3c3dVCVLPMpayS01H0JrXKGFMJZ290l9CEDWFhKBBejAurkpwMzSWjXOLK1P1jrRpInq8lY8ywnWLdDlRclyC8gcplljoXUcdJaY9wILfXyTPrC18eMk0Lvdk9qntNwglva8IhBROLz9nhV17afT01mceUHFLM5Y2KJyEz/3qZf/9Fvfe/feQeBC3avhxs2Dw//h9/9gUI7ICCFooIN6+rOfvK5NPTk6+PDOzS985tNSVUx1HWfpTYUpqPssylpR7u08uP/wL//sT969+S5VgcviN37jN9SbEUmcz8b1tI6Ni8SZUTSUwkS7GxsXd/Y++uJL0fRofPbh7Tvvvv+zd9+78b0f/JCYNnd2nnnmuc/+wqcu7+zavPaoripFiGZEXIWiiQZ1Zsp+RXI4w3qbSPdAorp5vzTZASLNmyyBhSnVdDu7q5oCCCyWi2CLTl57Mm3U0NtXK/WIaomvE+kpcC6dzPKkLUnUFblQHwRpG/YQ2m9TyhURWS7VzFZ+W73eRe6sRRCLN8tovvV6deTii7SoVRfL+bS+TPXtBslElLrkJF8uJ2SG1jfWEb+DoJR0bsYqi+aClopsu2nsZbR0I2/nbqnAuz+k5T/PxWWy+sy6MydIYSE78gdOE7HwaoiEBqrTWHLBVWWuMbIzQrQiOoSnItNAUVU82+gEJJGRvTTevZl2xbOgtO+daWpCQzlUbrkOq63DWBh8IIJqJuC2QofhOc3N2rVOnzh3MYa5BXCHykHEIXkfVNJekLBcOJuKuFuc0U4XLXmgndIYqCv0y9uwIGXgdDAlxrxfNAHmYBhSD55MEwRJHuMkUTUZKtI2VulEJJYdPytr2p3TR049ull0DWEWISaGuQkLE2JULovk1RByqIciRLX5fF6GUlUpiLojdWKCRaZ2dl1SMwlOm8i7kHju5GmE1MYwp9hkLMauqQemu7urU+OWcpqFoKkwh9gDGagkYlhsmgFXEsUDm8FqNUI5CCQeY02SSqgWjLDAPZmTE3A0cs7tVcmdDCxORCRQj42plKyNUARbNDN3SYkw5iBNONwc5BYthoJrG7vxaG2tmY8DcyEFcw2CQBgGYjPx7BBGVqaUpQNSCxMCYOQKMCgkJZ2lNMyRGvOQOdyMCQVbnE11rlhjwmhzc9NKeu3hreN5HYoo21ujC1cKXgslHR/f9Yena1OsjfXwlbd5Ozz48O7+xycXP/6pj/2t3zvY/NorX//DWuyFr3zp0v7awXg6Hs92r14dbG9bGDAVQixm9f1bPJk+fe2pe+Y7lR/CJiXImYxrRqRooWEIIxAQwNEtmpETlAKcHREENzRODIVHtRCC5yZSDGaLuS8redrvEpZ2UGvp+XyOP5bIvP0fk9Cih0Lv3CR4VhP+WkZgdyeR1Oio2+Ov5eie2Zk9zOkSaqFJSsZd+ArQaR9qV7L19HQu6oXUWtqeL9+g/6YtuFndTqfP8gt9ykKAWWxBUqff+29tqtbvcBsOHz6c6FmNs9Ijok9n80bViGA+OT3Z2b/8V3/5l/7+P/pnXAwDYHUMRbh5/87GYKMsB2f1pGGEQSUTKQdrUuKd+7d//8/+5G/92q9jPC8QlIngUc2iDdfXT6bjP/jjf/LGT998+ekXnnny2nv3bzOsqMrJ8Tg2TSFcFoXC56qBpagKJVdTbbSpY4K0o6L6yPMvvPTii/OmuXPvwU/f+Okrr//4a9/6+g9/8urHP/LRL33+czubm5hzUzdCzGCNGhTE5ObqSCVXKfZkrbmaZiJpWlCKcKTZN0+74bW5HJaCuIzU+DljF6YEkM552pJznLhj+hyYU06eJyLARVg1dV+FtzmMBE7+c2/rodw9hf2RRYclZ4mrIWWhUJd5Zu2mxa0N7FnfL1RClo8tMOrwS7beWxX87wEWPXdrdgy1CCkATm4p5t3idKD1K6TeH5JLrdVSS4C0x2sLAZeessIVeTC8lOFLPZvpnDokIlrltYVuTKGc7H5rcyyIkxOjLSN3eGPqToNyoDE2rlwWIDeNlXPReAM2kmkQGAVLSQ6ZhftGjHnqOBUtbVNCeeXUzAHV2A4rZ3q55x2H+gAoAYj0+qqp81aBnrc5ObqitjZiuqeSEeBmBE0GQISTBwJ4AZyIONdLSrfhAwBy7ZA7MQNpS+220XB//hNkXShg99Q2kZIRStR2wwOQoiru7kJEDGJPxNyXv51GP49+3FczwR9JtETseYe7BQeIECHGRouqYOEYQeSBGG5exzKEWdNoKChwjE3uiZcDoe7w5I81WONIZgi5uLubmruZS86lc3Z1ajch4tyfLLhnvheKpgIXT2gDEI9ECt9kDmbGXml0ttoKFqlI5hq9blJgmZy6eHH/33aCkMQYkrMu7+CjDo2eenAg7SuqWjXRh+wQOMw0Rve0eZiDnVOvRJhChmsTbaphBbOagSIV+zaUHP4UiMgc7iVQtLgP8Bz/zg6FlKtA7Xbu7kSWrC8mNUuZSinl180cHEVNZg01KEe8vb49373wk3p+5ZOffezipbJs5iKycXF761mpZHR2R9+7P3ntXX//xuzgw2qC6c2zB/ft7MbDjY88/9ivfeaj1dlrX//a63/xtXJzdOFjn96k8Z3XX7cqPPbEi9X2ZRuu0fz06MYHs+PTix/52OXtvcuz2Q9v3PjQ5wUVZjwvYGIiDdVmjZGHAGZz8dQh3TgaMc2Z2V2UQa5EZrBGXTXzpJN6TG0RqGtVnsXwsrTqXCVttNN9kV2aVrk7JxF9uhP3kvDQJmL3OYvb3OwVEsI5QZrumiO8HapZGqd3/3YZlDm/IbM+uj3OsjV+HgKdE/Xui8/nmLqPvRxYdJ3t5E+XPpC/TrZae/9wcng487GH2okwV4qI5vWsDoUE5vr0+Iuf/sSffP3f3ng4dafAMrG4vrPDDTmTE+YWJ1obnITmgSMV/82/+BcvXHvyE888PZmcErHHqOrh4s533/zpP/rv//Hjexf+zm//zZdffvmPf/r9gunewYPpdEKGqqxgsW4aSz4WYvWUdE8iwdo803pWq5qaRffHL1564urVL37u8z95861vfu8vvvndb79+4+2XP/GJX/joxy9vbunZ3Od1KQWEa1XAAudmKd5WfdiiSXK7GEBSN+4OUOJ4bjOFk38cAGefPzsQ0zbgRO4xkVzrl5dF5XaqbUpUaWibs3sXeOo0R7dUyb3UAyuApwIvd3dysBilwrbka0SCSQTyFBjyHMXjVKZm3VNAuT8kFm9NrSOoR09gorbze0eRLW21lJ6/cYDQR9ad0u0TtGnq3pr1kFl2RUjyq3dK7hyVnxcHaTT9aog+GOqOdgL7X1qbgajZlElVCbS4JK0sGbpcYCJy8gAuwWSoLc5jPYCXxBHUBLLSIztmNBhD1TS1U8ppHakGMHTemYRFzWOHPNE6ctoUjYV4ctOcONmFt0GLXBNAG6UUO8I5l5i7Jac1IZVvWBI+ICKYQ80Balv1gYAgnJuM5ky0fJXzIv0TAJwTTXcF0mnj1Rbs9sEoALQ55ULMpmqmZVm064gWLKbpYCZunRbZ4X+eQX7esSwT0dMp/f28zLPPz92MGSR+Nj0dFIPTk9N7H97ZWd90s+Ha2vrO9nwyBaOUwLlOxwEnpbTLfPa9miX/LmXHv5shWS8OTeutaXOVlM1rWjjIwE4NwZjIwcyFJ5RGSk6BRcLDk6OD9957an2bL+zqzoabQdkYzFxrMwjOLDGVX2SO69l1WFBN2lvdHA6LgCCN18zFzOrGlUsMNmus1WbGpG6RNcLN0dSNWurqYOoJjhSNO9VuFqvCuZ6tl7Q5Kobi5I0hl+BJytoBuuRv72nZ1ibpSlgSmAO5gcxN02ZB6iZmCtQhnE3mlZUhFJFHU16jx58rP/PF3c/9quzsnk7ujafzwfre6XBnMjlqBrz/mY/tvPDig+9858F35nz4cDhVevsDO3p4+/obs09+9NlP/+LnHnv+je9+99abN9c3Lof19YvV2tnNDw7f+pk3dWzmXJbTZr6xtQF4KeHNH/xo7r559eK0Vkutf4QAbgIDoWrYicxp0MCdTpkgVHjOMNfU8swhBWXXH7HGSI7MNd75SIQIoOz1WUEYjyT+zNS2ZBt0n3yZGB55q9QrT0T6TXc6+2rBVoRUGtKZtcvs1h0J4uS0p7zQtMTIS9S5cDItRRg62+n8gzo50P3a3qRvMj3irYlyJ9LutPCHf/gvLSjEKNaXdnY/8txHuQokPJ/PiyI00+nW+savf+kX/z//6J9vbO6aWQihianSjdSsHFZwD4VAWBlSjabT+StvvvWxa88El2mMHELYHP6zP//Tb33r27/6S1/+1U99fihhNj4TAkwfHj2EUFlJM62FnIjKImjaBEzboH6uOTcmDKqBaiTmAJ6cjgEfltUXP/GpZ59+6rs/ffXbP/rBn331q2+/884vfvqzH3ny2e3B2tnx2UDKgqmOlqLQ5m3HJ8o9MlOSiBGSFaxJVnvWhISUogG0jWqYKXUvToTQFTy3yniF5KgDyp2GTkrXPJqZmxNLSi07T/HLq55vn3xE6UnqBuIUKmOGO/cTabsC8mwMtNlhSCWPLW54ZGyLFjpxQY6PPNydF7voLc7PT29VL4AQQjcn6f/mSmTESB61NFdMjxhPN6pWB7v1dqV4JHuc/763OksO1XYF+xZV8s93oR8ngEk8qnscrFWq7HV0J2M4uaurEBVBVCxGl9yrs3O8qSoWu9TBPXn4U44a92plQzJ502y07XhzqVfXc7ZpGrTM317oKemsv14skjRzuhzuoAwsUucCdSNCSN5jNzKvGUyS7sIUkveUmJgLFs5AOfX8BJGnHsRpB4ZWurXOtq5Yyd1hJhKcMCirup5PppMQhCm0WVwgohTx64TaI5Od/x0YqAe5ss3Q8loaVd5gp7Vf2wY5MAXqppGidOK/+PZ3vvnVr13ZvTifTtc2N3/nb/6NS09cRRAwpVzd9m5I7hvzpK45w3ZVSlEBcrfkXgnItd8GcnIzdgDqROTs7EwqDDcCk0sgB5OS+TTOJmfX333r/Z+8tv/pz37zh6888/lPPfHEcwWJ1pEG2XmVwcbyzPQnDZ1acPLUnTe1enZ3eNRYoCiqtQcPJ3/6jW8fz1ipaNSjaoym0aKlxvXeUqUDqJVFhmbzQcVxejgq4mc/8exHnrlSciR3ip7itrkCuEPB7UIvTB0iwKMpg5OF6ARJAbDW9ZMBJdBonMynAZWIoCjHTTMdrW+//KnDwZo5HUyt5M0qbD6cn8ybs6osj5nONqviy1947Mrew699I9w6aM7OHh6cYk73v/kXpwfTlz//pU/9xu/gwd1bb77+we2bldFeGMSzw4MP3sN8tnHh4qxg2tlZ/+73bhwcH03ri5/9TD0YDDaG7mwI7kqYqwiRiLoC6lZFBlOQ9D6I3vbEU/K0/3ygeT0juBVNnM1JmNQ6p4y7gcFL7t6ldOme1PLz/pPW5/FIzANgqXakf+f+opyvPM8Xg5D3tW1t/FVw1fLpo9ztvnxkVjw30keO//w3Pw8Lrnxm4jbDt526NpExvXJ47913jI0CaV0XTwue56ZpNDgTx3nDRM3Z8Rc+9bE//vYPPrj/0N2L4TCqzj0CYmpFIJ3PqzJEmM1rbTgU1atvvTX58q9WHIxRl/xP/+U/e/P99/8Xf/s/++wTz80ns9lsUqyVBdFwUE2P56eTs61QFUUBV3PS6BFRPNd0qiuTdLvYs+fKKhIeFIWameq0Ptsfrv+1z3352cuPf+O7f/HG++/+y3v/+vXnn/vFz3z2mYuPz8d1mMUgUqum7i4GcqT0BU6VU+YZBXsKo7onWJSa52SxSzkhXmFCAoJigXAz+aSAiWd4YtYViGXVviS+jT2rpET6S6Xj/RBsbiiQjLzsNrJopg5jArnC1Z1TqD4qUcg1q55akElLAdkag4M5uGtL4m2HpB5DMRPA1u7VtUyCC5DX8WRyU3PbhiRneLQUl4KOahkpEhlgqnA3VRfxHAxyJloKY/daaCziIJmNe1km/Q/dwFYK0XMr0taB1dOyOcel90buDhYyQ9v+GAq4GgUGcO/BnZM42x5uitLEG5hL1LA2smANYxaVO6WT04tTAmPXwMPdzWFpr+ZaG3NzdZGgce6eU4/zUD2ilUQd8ZhZ1wwj7UaiWoMaAqec6KTeTJOfpk04Nifm6OZmIqmFG4goxpgSbig5CsmRm+t5CLnIS1I6JUu6EMmRKpxkYmpM3F8LalPfiCilkRRFqWrb29uz2WwymTgo2TbmaT8qExJmmHlyhnWlLn1ZvKJNV47u0b68v1jHgO45LtxuKOdCTMy1qUV7/4P3X/3JGw/uH00eTOJstrO3d//Og/WtHS14LqlAngm5dpKzjw8GBzEXaZNPreuYai+QW0sxADfyXKIuEdogCjNBCKxMFsSBCIqQQBBC09R+dvb6N779nW9/+2xy9uMfvD72Onz7u//rv/t3X3zuBYsNO5kBJAyGGWW2Wqix1ZlxdkcSdd6aZZr6SClqtdOpvvv+faxfK4a7TXRzImYrYGZSCqXtQYgBYxL2ilGUpZNOyv3Zlz/30lpxOju9tbFVirt7k52UP3+leimYYLimIjoyypuTmxrallgOApv7fMr1VIrgNgulNc3pw9OD9aog9zhvGGFIZVHHcT1hpq2NSx61keJ0Y+OpJ67uVMN3/+B/fOmXPr+5t31481175437//abb926u/fyp6bHD2+89oOL1aBWu9loSeVo5/Ht9UFNHqdn9f2Dt3//9ye17n7hi0XA4enxiR7Z3AOGXFOczKY+rqmZ2mxcz2NKkZ/Fam4GH3s8QpzDiZnnCIbC4WSqzXPPPfPcM0/VPvNGBV3qc/e/RYpq+tCajj1cAmhnAbZ9pM7xQ5b2fanobqnIoE8waoqWYb0NlnXctyxFk9sm7d/SZVJ2v3UjWlgj6VnJe4JuWzpicGsyGYCuNmWJdLs7nP+zLwq6b5LC7A8jhV0d0bOXgVsjBgDCxvpoFuvGdViOqmrkDjWN7oHZ1YUpzqbrW6Mvf/4z/+D3/0W5MZzNJ1U5YBKKzIG4btbW14synIyPhxy4HArHGzduvXvvznPPXJu7/eN/8A89+v/mP/1fXtrZffjgcFAURA7ytWG5uTa6dfvh/YOHl649e3ZynGpxkzsiiUYjENhzE1YmuKqltuSxiUiNL8iJZTKbiONjjz99eWPn1Xfe+Parr7zxymt3P7j1pV/8pc987JMQns+aajCYTqYSCgfqupFQwKluIoeQ8QWRuhGRkKg1RSiaeu7wQoQobwEDpEKsFFairoUDkOrJklDUjhoyqfYgcIdsPKeUSbdVWUeRK3I/02jeaDphbzaCwZVJLboEJ1c1UhcSjamyllNGq1mT/E9JtWeJrEoEIlY1U0s7Sif11zIKkDeT9+512s01cwJTCikSSdPU+X3dcql18ttpyx4EIopNpNR+jSz1QZxMxgkMtdRsqiYkfYrv/l1lbiymqM8e3SX9a9s7pGBR7iXeXp5gag73AOggY5dbkiizcZfAMNy/dePOhzer3ce2ZLS1NZoWmLPW86Yq12ky8+m8GWRvUxfQiznbsdPEJswP7t1XjZcuXSaSxqOrErOqlmWRygMJ7O6qmhwtnivVFykvzMQszNTEKMxFUalqUYSmbkIRWDg3uwcFkSZGDtJGhdLmS7ktU1GEJDhCCMysZiJBUoULSQjSgqScH5V2fGcu2mFwbxGWnDfMXIjM53VRDlRT7b27gTkww0yTkwgibNyChs7GXW2etNIxa+VDJw0T+fKiIRBRG+Al8k6Iull0uHhj9sEHt//gD/7Vnfdvj9Z25kenBVX1VIPKP/uH/+S1997RzY0IZ+FEeAwOBAGxBBYpy3KwPhoNB6I+mUzqet7UWje1G1L7nq7hlpmjIAscTVMTIgdHVQkFAAFKZom1RNs6m+7Omw2UDyY+K6iRcnr3+Gtf+/r2xvpj+xfmGrkMrpKs3E50rIDFdkaS0zEROSz13UuZVmZqzi6KsLF9dbD3/P0Tm2njjro2M1ciOBWFRI2cDBTVjYGQN8NqeDqevviJZ7/8pc//5Tf/FZO6TR3zVEdrHtyk3Y1xuSRtoeqIuIvvphRASSInWhYRSY7BsQYSp1K9jg2aydnkFG5cDuCxmdRFVYkUdbTNzX1hHoUyxumwGoVRNXXFM4+Xf+XT9PQLm/tX5eEL4eqVw+9979bd+we3/jCEgmBjxnC0VsVTnI15NDoZU21ahlCPp+xxc23QPLg/fv3tkyDN/u6lJ585fjC5f/2Dw5/deufwvQfxYVHQsBwcPDw6mcwGc38sbMyhdybHD+fjWSkzooLLpo6Uljzw3xj99vPPPm1ADskk+egJEXTNEJYAfYdFOkjRX+WOL87/yq24SB7Zbi/vR8Ll9NMK/9piW+gF1ECLI/pXJ7lsbqn7R/I69x+UPqeyDPeUmdoTHP3BtC2oLdnN3EnCfPTzH0R4QeE9HGapS0kqxCQnohyIzgWvCExOwt6YqrsaNFIgEDQaO7sCZD6fP3/tic2NYcOohJtYExfq0Zq4Vq5//KWPjudnP37t/loxqCMYMlG7/uDeky8+9d/8/f/2YjH8vd/9j8utreODo+GgaFS5YADDcjAcDKP77fv3Xn7yWSJ2kKPb8SFPmRHcVLv+oL2tuT3b0aZkoQysPh6PNwajX/z4pz7y3It/+cNXfvj6T776R3/ywfvv/+Zv/OZgVJ2N56O19SbqyemZhDAeT5I15FRrEzV1LTSLFjXG2MTRaLC9sTmoimSCLFCnI/dAhyPtz7oigikLXFgSfEsujT5ht/fkFLRaJtzsmchECScRh1nbcsuJSRBVa7ObN9831Z2t7YqLYVWRuYh1yfAJeid3srm1tJ3zRdq64lQYt+iXRgCyCbdwmSbmYQaToLXQCOzWb03RxfIyOWaVQ8wc3IwsZYiqqTMXKfzSNEbEIbCIrCRBr0ToFlN9Tv/1ISMv28TLVywdRJSiCNyuDTOnPX0X8S8iM5MQzBqJ9WNbG4OjIR48ODxtfH0Q9tdH++teUglbH1ZOpmXCiES9cB7Bu0a97lYUoRBSs62tbVU306Io3FGWZdM0PfJAjJGZ0yJS6u7BrFGpbYqT7L8Qgqqmf6NGOEKQFq1CzQKn8tTc/HrRHdwRY83CZVnGGEFUMas2zFIUZYzq7oPBADlRydwjdQ3FkJY2F8NTzy3XSbPZfM7EcI1RB4PhYDB0BwwQSSyeyoPa5V7VlN0ydRIZPUHZ06bof2gPX768E68AwCJC3KhZg8l4fno8HQzWK4SSB3E8nUxmX/2Tf3Pr9u0p4lR5pgYmTqwUY0g1VICrRVcuQlEWFiOBUuNgN1B22+YgVWYiV2MzYiO4EYPIJcbIDBYu3AduowbF6XQ3hAbe0KDc2Lny+FVw/dOfvLG3Pvrd3/4tr4qoIhYCs1mz8Nz233zh1Uxqhtxdkbv2uRvAqg0ZkxRNrfMGk6Pxzz44io05ybyO87qOZsJFUQbTWIhUVeVaTwbHBUWh7dPTIxHcvf/gtR//6DMvX4s+AxkTLGFrc6MlwHoOs6bmOda6O0MSPQRXjWqpV4Mj1RXWGJZDVZrOJtPJ8UDWeVRZ3YTKN0ZhXrCDq/V1kjK4s2A03IQwRa59Vq8Vw4+/eDjYIqLq4tUy8MXNzfqnP+F335O5afT747gex+tmZLE+G/sAYJqMZ9OzyVxnu1s7T1954sOz2QtXLj7x5S+Pnn761Vd+Uj6YPBXD2fjO3TtHzz735OXNvR9dvzsqii98+tMfvXzt7uz0xr1br//gR7fHJ0eDMK1jFcJcGxeoaVkMAE6GTWJAN7cucESrVL1S3tVHMH1VsnLktL82F6c1Ax5xMrVpSCuU0yEn74JW/77DAbTsnDw/tNw6tVv9hYev914Lad+xatth39oNnfrntx8ePRgiSrIxzYOZZVHTTkKI5oFLDcFjneKtZuac4rfu5q5AXV/a2Xxsb/ftOzdHow2JdNro2mh9dn8M0c9/+tMf3L/1ox/+oCo5RszEx0N+9a03PnzjjWvF5t/+m7/nwg/HJ0UhRICgVhVPm+IJV+W7H3zgn/sSiI1SH6leYzTKVr71wx/JLkzOLiI2ghkKadinYpUYG6+Fwe9+5dc/88JHX/npT/7tj773/7354d/63b+1v7n33VdfOzk5HY/Hqm6q87ph4vFkRkBRlXUTNTbpSU0921xb/7Vf/uWqrEybtH1i2raTF3g2ESKDjLjP2C2fL5UNpxV184Qecp821QwOksJAGyljFrN+pxNzeIu6cktBdcyb5vDs7CdvvnF2cvbMtaeee+rZgDoQw+FsTOwMN6vncQnII0edE0mxcGxajmLytl8NS6qLTl2RckWjm0fyvGlkGzWzqMIhs1ZqKSvcVr/mf2Hm5jlH25Ucwjg9Pjo9Otrbu8AhuKdHtQURPVizhC97xN3/3ClItJiJ835MvOClHFVKqc1p76Sfd2dqkVwbLBN2Q+myJsWHt29f2d549rMfvX37wa0b749v3ZzdmA0vXqLHHh9cWae4XlqGPssj74RMBpp729sA5vO6CGUTGyaOMXeukoRsQgAwb2aBGJwrv9JrSgsUkKwuRvRosNTesxpUUaO5M3sTG2Fh4XlsPKVjmzFRW3voQlyUg7qp6yYGKZpYxxgpBAfFeVOWpZmpuTYNCwdhFukSsBJ39mg14eAuswcJqxNTtBhjLIvSUkaoGRmxg5KJkCrDiXtOstQd0tpeTksGcV+VnpehHQJrVzRlvmfCdgBtSpyqEdhUm1lTFaO51kDhUU4mR7sbG3c+vPvklataVW8+PNhYG0R4JLAII5BqcArEgEdrnIhEjMEsxBSEiMVMmSRHMlsAxKbiaszp7YNLIGkFdD1iubq5zYfj568Mytn4e6/+wPYvXr345Gh3/97pHeFqwAWioirgKKho5nMuvTXGVtVknz/MXEnVLYLZjBycux2aalS4k7DwcFDMuG5irCoJ1XA+rc2MPBaMQcWb66V72Nos3Gc1zSJFKiXCGycjMYSIxMUSZEDeCLQbSSKG86ld7TLl9TI3xqKo0FPHCLBykEHhFgrWo8OHmyNjkmY8qdSHu7tzsqnNB4PNwhlsE9QDG4gVtTU1mvG8KcJaWa6BSNTCaM2evxYHhN2L49ff84eHG9L4dNw43AtW3pgKFXYWVbUIm5trjz29fuHS/PrbT3/h41efffL3v/7N73z7Lx7T6jGSZ4ZlHG1tUdho7PHh+u6zz77wkZcuPH61qU+GZxd2ZvZn3/7WNGoNUvOCSzMXkaIokakcmU67aiVaOLc7C6Mv8XzZ69O3B7ozeWHrkbW3WuKIZXHn7iuiCl3DofYwy1UQLdefv9Win2p22Jh1crZ/dndaR6/LTO2pUjv/hIVPq5uB/p/9G6+QVh91IT+zvz+Mh7ZbKTEFTo4Aj+rMLgwGOdybeTNa3/joM8++cf1tL0dltcb11KNvbmytl6ODw+Pj03E5HKrwjKIx7W5uv/7aT/7WF7/0n/y132pifTo9C2VgoahN2nlGXZlFKBSj0fu3bk9ncwpBYx3QNgN2gJLXOHlJyZAzjtN31vVYJZBT00QXCkUw4thEBo7G4/39i7/xq5eff+nFr//Ft/74X/3rrZ39u3fvbWxsrK9vVoPq4Z07a6P19Y3Nze2djY31wXB4cHDQxHj56tXNjY3rb7/97ltvz+tmPRFNW4CTVDgxIzcyIRY2d1PnrofvovBuGaumXjs58Vq70OyKVz/b68vJNwyObjnnJxUxGaKagR88OBiPJ4eHx7fl7sXtC7GQ0aAMEkA5OwRkqf6Fkn5CslodbREUzM00uzvASK1gcgNzgxt11gaLs6X6XiKAOHlrQrs7Y3pvEUlVAESC1FyWCKlhLYuIGHIJvEND4BDCfN4sKpSXfaE/DwCtHJ310MdAlKLybdDn/JEfR494SvtnuzQOCJuaE6SUcq2M26Fcv/jyc5en9+7efu+du3cfvPWjO7j23ObuJZl1+KBzFKeQi3XtwohY3QGoG5mCOJpKIfN5zUxNrIuqqpvaYQA065VEPJbKmHIxWy46F3cvy4GqEtN0NpcgbrntgppHjSxCyQtCWVYkqArL9KbmgBmIiwoAnEMR6jrGGIfDAYcS0EZjIEnokPKGLlk+pjKRRSN/ODE5XITTrsnjyeRn7/3MDDF21f4gJ24b4PbXpNN/3QS2idcL87dPIR3Eb3+Fd62/0mCIuq78aXc/EITEHVA7OTqdjKcSKgVH5mpz/fT4dDOUx7fvz0VCVTV1VFhMwNOjRxVDIBZha8t7VdPGfxYDFQXgrh4p9wAiaksyo3s9r50QpFRHHZsQhMjJnJpaz8abIgp/7+ABFRWFUjbWpazY2MzHp5Ob731w5dknuZLG5yJJcwBYeE4zikz0R0QpvzJPphp5KuK15PcG0G7vEkh314jWR41qKAYSqul0FutGCmZQIdhYX2fyci3UtbBboTNvmvHRsTcanMRBZjCy/Fgsqvvape2LuwTds1ol9tzHwc1NY4wxOuCMXOMqPI3N7tbOdiivv/bOwdHdvfU9O52fHd3W2U4cjYzkrJls7j5OxDqfzlAAxVydOejMiapozIJ5qkcoR3Lthc3LL8w3L9765rfC4f0RDaJGkCnVY4sDDKpydKa289i17Sce56rk6WT8ox+fPvH09//4qz9+5Xubz710woPd7bWnm0ukvkvl4drm53/1K6cW33jvZ8PHdxHk8WeeHL3yCk9P10fr42hWhsYiE1dlRZS6tKEHS7Jdba7t5+x77ld3L8gewLL66O7Sl2bLSc22Ut7VXUPt/dszW1utgxoEJk4dQpcv9m60/UFmY3t5eH1iWB1C5zaG98/sAFD/RfqAqT/alRsSUSo0zuqLV1slBePUd0yEXc3cjFJ34NS11dyETY1m8ZPPv/inf/71k9PxgKpAxXQ8GxSDSdT/7n/4pwjworTANmDWiMlsFMoXX3qRqjAdn8mwYOEmxsabQgo4KTAabRRlqcIPH5yMx5Ptrc26maOrboLDkfo352bq7m65+qo/m05OqY2gkzWaGujUgZhkPBvD7ML2zt/53b91/c6dv3j1tdH62suf/GRdx9PTkwuXLxdByqJqYjOenE2mZxpNivLew4O79x/U89qZ6xjVjXMpENjzNhfEGVZz2i/aSFV54WprPSgA5d0MDV3ibRYK6sbMKW+059/q0VAXDgNS559kJhg5VK2JOo31h/fuvv/+ByfHp8NyUEj44Gc3nri6v7W2J4EJzuwGJW5NYhgLCcHciqLdAsCNGGWiLfO2EVHyYIGpaDOaO8aTnB3ebqMBkFve/zm1okmt+1r6bJubZfjlBs2bRhKm0/FkOt7W6G4hlEkNdwRNrX3zyKM/Vz0TJx+WO9OkjsnpjRZhcso+nuUbtqgaKcyX+a29rbtBotgcmPh8A+WxTh+4ThWDverS3vOXx0/y6zfuuFFsegVlneQCkPyqyLmzRPM6SggSCjUPQTR6Y5ELNrMwKBttAC+rqq7rhLNTzWHyShNAIu6eU3KJg4gaolop5WhtfTqdDgZDTS1pzKaT6cbGoKlnqQlD6j2XMIHBLMaiLOdNTYKiHJycjPf29qeT2cGDw729/asXrty+c3tnZ8uhpyfHRlYIkSOapoAa2ix+Zm4zwwiEBIYsppKCwICEIKGcTCZJIrmrE6XJjhYptxAE5c2tstjydu9YOKWe6l06QkI53cr2aCNJzNYWcW1rTsjcOFlaqfm3elPXhw8fzufzUbVGHCw2NChpIsOqFFWbziVVNBcSYbU2IB5UJcxjjBFqBDjERdKu8rnawjQqt7Ant6gAKRuERIIr1FRhKFjRVMzDEHgyuXPz/VgM7jbNncOHz7zw0iGzFhJjPaJw6+j0+s9uPHFxf7SxfuHqFSqCYZFwjdYNYH190JKvWRKp8FwJQ2YKNyInj2aNmvrslObjargGbcgbinPUU1ErOAiRzeuIGZPHpjSCNc305MxrpehDDmIuiAQlgxuEG4Vaa+S3jcLziFrvAicY6qmJEjFSRnDKi8xNOAhIyVM6Ggw2N0Zyekjjw+GgCA3TZFxV4LMJz9cGRRXHR6eqo+GwcvdSrJSilKBF5VyURQhFhDUSSUZlsVNKSW7bG8N5Mz76xnea0xlY2KYo9cynTbRRtb1/8epwe2s+nz44mxZNPPzha3dPG37/1uZ4Fs6mp/X8wMaPP/7Y9tiPD06L4eis4Gpnf37r7vSDO49fvTzbHM4Loplw9EFRjVMhgqHgInWRSm0y2uxntCUxSw0GO4dHfz07bJT4xN2F89ZLaf+6tikJdXxEbbu2FVGJNgTW3XxhnLQmursLSxeba3/tXHetNd3K3sWAW0TVt0/yizyqzp8ltUlb6EQm7k5ZYfMlAl+enJWJWhhp7Ruh9QCRmosIaq1nM9XahTxt45W0rpMxNZPJpa3dTzz30ldf/eFwmweD4fzs7GxWV8WAKJDptKm9AddwUhoUtfnrH1z/xPPP1K7GEFUHihDIHaqNWtgYQSSa1/Pp++9/sPmJjyPFvtxb9wNRciO0HQgN2UzoIHNS4QpzMzi7GjOFIIGl1ri2sTGvp02Mh5PTS49d+UxV/OG//h+v/+zdQVU99thjT167Njk9M7WyLD16U8+rajjYXD+Z1bc/vH16dBRCGI/HdHGflOHaalGy7DdO24a7mllva8luPYmdnPpN/VqrzJlD6lWYsGbbKXFpFVdQc2u/OozdDNE8qtbNydHx2clxVQyu7F9cK0eom2Y+I3gZhMgkiDuxSBtW4KTXVS1vAOkwB6e9mnPN/8Ktqqoi4s6m3sKFHEs28+RHYILDpZJe14fkHsvsDKQOQwBcTYncNDITKNZ1VI1lWRRFqOvYdaFYgfbn2bXPDP3PfTvp/Dn5m5wG3sdATOTMsgjcMHNrjPbvwOAyDEIzKVS2udySasxxEJXqacRkM1QjpqrRAcsMdQt9shDP0jwDYDNzZ6cgKcchlKFpGi7YLUwm47X1tflsJkVw1aZpvC2jQHIiJbSd6dBVtarCrdv3vvGNb7388Zefff7Z69ffM9PLly7fuPHhdDJ99rlnb9++/eprr/6VL395f38rNnVa69wVxyypzyZaUZSD4ehrf/51Vfqrv/6b715/45VXfvRrv/7rTz7+1I9//G8+8fLLe3ubTOLuamgsNb5aBPiz+diSfLeIoSxU1Qxr6+t7exdm8/rBg4cpFYWJcuNvT4Xi3XYWtLyITJRwVabbDvJ2tLHiJKckxnIEFm0DAbTymonI2Z0hLKZxOpkEZofOokpVBkbhkSdNCdopy7VicBzjnNQYzqhGAzezGNkhTEg5mHCPEYwQisBEMA7ZKiD3thMSR4tKNmAhg6oZM4Q4iM7nPretqpq4H9y/61U5HlbHwTd3d8pComtkVMXwrR+/eWU4+oVP/YKINDpt3Irkrmvn6jyz5Fkibze6cTeoGhMDClOl6FCDFcWAK6ZiKGShGgyqUVHH07NTZg7MMcyLtSEDMRRSBMzn8aQ+m/PRWTOLZByig92CkHNM7cm7AXTznxYub6rY7h2NDNAslY8z51acZjCzlCq8OdreWN8ZhI27Nx/4NA531lIv/GoUKMBMS4fWTX33PR0NUJZkdzEY0u4OmEs5WvP5QMIRjyrhYVGCBtNmfhbPNqpy+NJzR3fvjN94d2vahAbwgjlExkl9NjjxenZU+1QbKDNvDjfP6k/T2v1JHMRyvdj4xls/xdbwwujKKQ5vTI6vTKfPPP7E5z/zhbff+Mns/tGH7904rqf1WjlzTu3O804qTK7WE0FLEorOba3aN/YWC7os4nz5Xu33q7ZBn1VXH718bXdCNgXbjXyxJFe99UQT2nYnXan8+fH/nEetmC5LLsO+NFiAp6SD/wMiAx368daN1L8qBAoOZ1Vzm9XzabSyqpIRZ96Yq3EEpJ7boFx7+SMf//prPy5CSRYCSVGFSJAQ6kYNGJVViNEH5VSa6aT+4O69+SxyKBpT1rT9AVHTFFK4GRu8bopCxtDvv/7aSy89X5JYbCDsbeUKU+oZmNLikMvXiBwwgqqKk5kbTEIhZUlOc7OZNkenx+P57GwyFaFANJ/NTybTB0cHNcWJzuaz+NSwKofl7t7jTdNsrG+A+Oz0NJAM1tZ3QXUzf/Dg7izO027uiihwAiuROioSJ3KybKuYAamJeB/rcPbWa3+FUkJ0ao7S7qGZw6/9RUf2/2fIsdAAsJQ3r4ATWVnK1uZGVVVVtebMdx7e31xbm8YmupIYpYJlkhA4xojsOGAARVGYWoqRFdlYNaS2tDDKm9gZ4GYR2XLNyRpEDkgq5Uu1C0xs1qRtyIiEmOFIXbXbLabSe1JqLZnIL0Y/ODl9/8MPXzo4unLpicDCzF19JLVBwJ/LOdT9L2/eQL29Drqf8uP6PEaL6zovcr8J6sKdkAoaun158vY6RrCBSEkSDGsiojMRbkIlNYomntw+GqxdDMUg5sbK7rDW+E0NAXLwpYmRi8F0Or19+1ZTx6IsL+7v/5t/89Vf+qUvFYX+0R/96TPPPPnxj398cjYOqeI9g0mitDuPL+RgjPHKpceqcnT16hOTs/nP3r3BzBf2Lx0enJydnV68cKmp49b69ub6JoHcLcWuGgOlbDIQiYjIZDotyko17u1c2lzfIBDUxqdnTdPEplGNRVGYOxuSmldLoISRUje8S37vmZLusWmIuShCY3E+nzZ1k3LaUmUGUk2SI+06RCvM0HJEd1ivnVqnQrr8NmrzWjros2LU5qPFoWYGjfdu3rpz8zYhkBQxzkMIiZ+5KtlwcXNvfXPnJzfeuz1t4qigohgfn5YsQnC32sSio3EiUMFWR5UmMrGTBCGSZHomwEEQRWOuMweDiUgNFp2ADfA6wnYx8KKMRMO93WZQTspQwMJsWm2uzerpeDopi+Lg8Gh8Oh7ubMxsWq2taYwigVrveWo8QQvp4XBCSurPEcDoBjeCS/KsuEitJpB5wwdjqyIZAjXAeD6fz9XIVIW0ic1pE8wbA5uIAJOZffDgdHuzUCnVWRxpjyhOTu9uTIDZakHfEp8mgiYjA8gNPrfYRMvtrSRINVxb2yllgMl4fnQ4YBIWIrMQ5y6iyY+i5HGNQ6mm45PTo4ceCkz2Q1nNjo5r5Y0Lx9Nqm7kAhMMo6rys3FjKS/tP/+pXbjumr762zkCjRVVp4Do21JzR6bQQw3B0Ws/1MK41hy8MNu9fvmgajy0e1Pr6jVuXnto6CLh+eKf+xp8PQ/H45t7Fyxf/7I//+Iff+96MDSXFuqEYC7iTExWpFljAgnaPYE9xZcutt3v1Vn2wsuTtaJsf9i0BagtPOpGW8WXOHsnVy8uOnEW6FZAdupSaxQMApQZgGjWLZ5xHJIkNLRt4HIiE1eAOTm4NzsmfqerBwYlnzYlgnpssOJC6E5O3waCFoO7kOffj4/DUOzJbGZ1o7xIqUk+N9KacmlfkUKsTUShcyoCmrr3waVPPGgpWIUYSomC1zmqdOYKELYTw3Ec+8vTTz905PNnZ2Q505ubONiO1IlbORdSykrFYZCKuDg7Hp+N5tV56bAKocTMJ5OwgIwT4RlFevnihIP7Ru6//9vGvP761ezyfoxAS1sQSFjWly7LAUt6ksUjTRJSiBIQgXBZED09Pbt784MaDe3ePD0/ms6PTk8lsVtdzis5m3kQmKkopR+sHD061sTffebMiurC/v7W9dfmxx0YbG3Vt22sb+1vbu7vba5uDsBacMB6PCWjciInhNZOCUTuxWkJBebN5ghuLNLExd5JAxKmXOwFpi928u0XKZMrRGTXNSK8zaHNQwM2YhNuohwFEwcg1RbVATFIwZvN5fbY+Gjw8Pn3v1k0zGk1Gm7vPjOO80LIKmNZ1IYiRqqLIoCk7XV1ICORGMSHuTM3GBHVtYp2yXImL7LhPOyeZu7qkXVTVVZWJQyFmRp62kVaoIu+Q3eMwgBgGSzVMqgQuxrN4Oo9GQTiINW5GVWg0CoiIjABKmzwu9YFAy9dqxJLyG1LicHoNolze1DI5tY6BnJeQKnMcSHXp7FACqWdvBlL/Ekp7EkgLQ93dIORoMJsTGUZlY0qqdT02MavKDdJK/OThweblyXBvvaknScwRsbpKmw5BSNvWuBRszFIMbnx456033/nIRz62u3OlLDefuPrMrdu39nYuNTOcHE421tfMakp7EJG7gxNYTJITykJmvrezc/Xy1c31zRjjvTv3WCSEsiiKQTVkyIvPv3T04KiZNxKKRiMln2lCYpRat8QQmhjrEFiYrr/15ld+8ZeqwGenh4wYGIMqRJ2BXDVW5UARjQASc6O0nZpTVHWXvI8IIG7kIGIzC8QWI7MTG8ghbmwKTeAVqaiMNaYE6VTsSXCAmZMPjFnSph9tRleSgDlDX0Bg91yokBfN0gq3GWA9hyLMjUDM0NiIhpvvvn/zvZubV55Q40IGHM2jSSiPxuNxrR4f0On0ub3L9fikurCN0Rqpl0yBYR5nDAUPI5PrjBsBVSGQtfqJGUzmiHUsQggcrK5J3QiR0SCyWWlw1R3ny8Xg5gc3jk9OoNbMZra2Vq6PVIK5aN0IMEMzrse3H97/8OaHe09cRjFo1APYKRNzq5W6AEQGygxnCxHiZEDt5ESVWFWbeuFWltPYlF6dxfDweBYKkIs61Gk2i8QUipBsvcP51N0c2ubR1ydN8+6d21B3kDgHp9QElIkbSp0MjYmIF05igDiDeHd3lry7pyTTycBsIIpO4gEe1kabZTkyCaHA+O57cXxvrRKeE48MMlEaEoZVVaB0sDRzHzJZPWusHlUDn0/tZFI/PKCBjKWpixBonYvhbD4uRAZr61MUdVjf3dnb//gn3rlxUw7vDUUn9YnInnAY68F6USCWNXEoJEz8+PRWOXzw7Hb1w8MPfxqLs8bHt46+Pnu9hlLJ13/0w3/y/o397f2TZvLujfdjo1IUIzOtJ4UI13MugnNZlpWbw6JLyqagAiTk8Ca6R8hSiVdW5Hn22kAS2AVEyP2luPXBQJEaKrUbXyBt/AcRaRPiDO6SChC7vcbMs5md9h9JW9MkBnKkLo4s3Eafk9s4GcldUlEbgWV1czElJ2WLcDiXytpECsGF1BQWy1A2dWRmaxoDKJS5MTAzkMVyQJt2QuSplsABQCTA85Y56VumlD4Gz31NcmEbg7NbmlCIWC7sahssIURiFOzNrDF3WEQ0j3Di2t2LNSmHjfqH9w7f+f6rJ3Xz4OCwcT6bTudaD6UqGKZRBKWhANUap/XcqwDiOw8e3r5z/+nnr6l6IxAJzXQ2KAazJkZGwaEqB6GZrW1vv/Hq+7fv3n1ifx+B1WI0C2VQVQijiQJWdXV1S0sINtfGivXRlO3dWzff/tm7739w4+DoqI5NXTeuHogL4l0uRmW1ORhtDtdImAfh1uFDH0oZqv3NrTUpjg8Pjw9Ofnrrbm1uSqQohEZbw8HeXpCiLMvJdGLug9GQLXrdREfeglw1ZSel/ataE8dS38kUx00b9Hi7VS+yFcsptG2e+qmlxMUERhOstizATZH3dkqa2Q2kYkxQuLrO6/rw4OD2Bx8OhqMXnnyqntTHJ5PNqipDCafZrGGiqiiEyTROptM6NqnZD5E0TRyEIZMk/0miFmIRKShVuQkAAzGHSuGABBFiUlW4SwhFKCi9C0DJ/Z97SSLtWJaK3lM5AHNuOEOqoSrmdYTires/21rbe/aFMGecaayKIIZJPaeQK7NWbJROXHZuHmaYplJwIaK2VCgHFlPtfTYse07gc15i74fGF9aVQ1pLpx0JJ/TExO6aWhxobWoaRpWRhFKixqosL+3vjuNsQAZ3zbksDocRA6QEI4rkULemHpWjtXJ47/bdp649PRqNDo+P7z14UFTV1u4+kU/rZrMI9XQaiJ2Ich9Qz14QyqVG7q4ap9PJyenJ2tr6zu5OaiNUN/P79+89ee2Jo4OH9Xxy/fr1Fz/2fNOotJ2QEmkBcLUYlVnMVAJ/5rOf3t3fA/ylj37E4SAMRoMmRiImRh1jWcmsnjGVgMfYFEVRFIWZpj1ePYd4wUAIIRXwpxKMuq5jjKm7hUkCqZx6rpvlVILUsKHgwIsVWbjcO9svW7lEKW97yS/fWc/Jpd4nGywcTCnbQhtzBwWJMHdlQq1ahMAis3o2ns/HB/fjdtT742pn74WnnjsTlvXNFJCkUrgQdlhK8w4FmQUwwRnCzFyE8WzGJByCawRQEiSgASKjIIia1DM7PRnfvHXnvQ/eu3MzDIehqpy4LIpo3rA1YHaPTbO7u7O+v6MPH7z99jsvfOrjvFGZmwGkcIBYuW0+md8utecmbzutJ/Pdcx0oQOBUay5CzXyuYcqIgaOqmipzGFZsrkTu5GBt6jqakgizzOq6acZn07MHVO8VHIkiMxu75AyQRGGpRSu7t/tAUeLQjiVTMhCBzGIKqZiTGpnRcDjY2NweDNbciUTm07OT+3fWqoJcG9U1GT14eLi7u7m+WX1w8HBnf2swKChgVsd63oSignOhTGqzxgejMjitQ7RpKgo2n6rVXth8qmaHSqPNAe09/+TBDx+wc1WE2eykqEYNJBrcY1O7i4gMRGjanIVJfWVQ3pnFx9c319e3H1uv3r39/pXB2kBGPov+8KFPJ8+NNqtQTZp6Ws812NX9C1HrV2/ficSJL5RMmV2YEMjcojI7MZNSa5FmWu9Iu3MIed5qsS/NuM2USD244bCkVYqiSPPc70+YDu0J2O7frtTUe+lHuRF8e3n6zt2YWwnZbaKpyftHTq6eOn25uZdlNW8aAkLU+enpB3fvNBp39/fXt9alKptmQizuYsacq0ERc+aLeMqPIkvuTTX1nGRguchBCjWztN8fJ9dm53T0VPzemLlpbktBcFhQRtRanEJAYJvNz4abGxgUyuXZrL575+H7N27cuXv3zu3bH354e+/Sla2t7enxaWNWxzgoKiGiJhZckKsLgwNrjaggeXh6+OH9e8+//EIV1LUui6IgjtGr0chhxWC4s7dfHx26Sw28+f57H3/ppRmsEFCMNq2LsmiUGCIpQmNg4cYN7jyootsrP/3Jd9547f37tx+enlRlWZKI+u5g7cr2xb31jZ21jUu7ezvrm8NQFhKUbEr2Z9/4ejEc7e/uf/TZ559/8ul6Op3MJiezyazWpm48ekOxZr13dvrGT98mwmwye+3VHxfr5e762sWtbdkYqsPInJnZcw+5DFGdLGtR7Yp2k1Oild05lSxl35imvdKNDBYpb5rD6TQkPNuZcTB3ciZVNBZN1QFVzGZ1M53vru8+feXxItLJ8dnVq1cuXNytKvEYBWKKqBAJL770wpNPPQHy+Wy2tb09GIwChkGK1NyVCCLBPe3EmULvmkZbq9caY1TP3fHjZDKZz+eDwUBEug0LFWYpI9YTj3W19GRmpmbubjoIdHByur2zu7e798prr//g1R+danP1madRFXUzq8yCiKZ2i7RQZ+fLHHpqzgGkFCaHEdKGwI/oldcXH+d+oqU7tjVESQj1HNFQUKAAp3mjThApi4KmTYOaUYT5fFYOBpPZ7Pr1t5967pl6MicRmINTo2ukRTSwEkW3AAtmweJ6UQwlDFjYbHM02trePDk5Pj09ctgTTz02q2fMDCYmQZscEFWJKWRRBbNY6/zilX0SCyWeePKqqoZCLl++8ODBnccev3R0cOCkL730HGUBl0LKyS8CuBdFSCs+n8+fefrpjfWdo9OT/cuXiuFgc3PrdDy+9uS1jY31s8kpiEDeNFHS3issAGJs3K0sirSzNGdvV+pIbe5LFdotoOy8+jnCtRD0C6fkItent4gAek5B5NTRlcBZ6+g+TzWLMagZMYtwXdfRGgpOBZzYPJJTtBi2NncvXT69fevW2RmbFbFpvvWtSTU6W1uzYmgSuAhrUgTyicwbc9ZAToGInUREgkhVxrSrqLkwB2ajJpQ0N4tqIyoqKMYn+7B4dPDerZ8peVS9cu1pq0qvxIhVNYIINp3NLuztf+XTv3B688aTT14zM3G4GYeQSZSXiuO6t8/Vc3n31tRuLRU9KAvBAVWBMeph4VvrIZRBzZta07nMhZkCRCHEaFW1rlZEI3MNsr21vnF6eH1nXxQeCRAws5GDPLjDchVPm0KyFNkBkLpucrv5ijABpNbAeWd37/Llq8PBRj1vJFQFox6fxpOTYSjnsS6EHx4dHxzNPvKRJ374+jv/xX/93/3ar3z+b/+Nvw6vZ/NZbSiroRIVIDLniGG5rlREC2w8oNKsmMZ5KMJuUcR5rM+Oj6dx74Vrx/duHd24eSmwTh+yWKnB3UyiOSxSAI81gojOTi/t7X1mbzvU483dvSvrlZ0dzlV31wYY4XB6dmF9s4L4rDlWzKuq9LClMg9rO9XaJAyChJRCxwQld3gkT7F/gkOoh9FX6X8hyhhL88l9oJ+nOnESPzIKvEivWH1W32DoHpe8zv2+PkTU+qTSOdxiJmIiEkohLmeCi5Fp00C9cL75zvt/+bU/f/fGuzIsnnvphadfePbKtcfXtrbADrW2RzWcPINjcnayVMCIrp9ayq+0NhW7UXeDp5CM5Shi9pblNNg2eM6cqp8R5josUJVCFs+Y2ctiUtDbd269/u6Nn713++Gtw3gWh0SXdgd/49d+86WPf/LI7b/6Z/+kIXeBF0RMpqQFgx3kbhYkzJsa4k784eHDmumt6++8++abVDfXLl/d2tlphN+5dfPWg4OD6STsbR+fTbjA4WSu1UB15t4MiyJOJkELEDcWo7sQi3HTRK8KrYr37t3582//23fffdfmKkTPbe1e2Nu/cvHSY5cuXdjZr4pBIUxO7qZmtek8ueLBBGrqSBBVn0ym3kRTHwyGg1HQqGvVWrk2qDleODvTSD/8wQ9PJ2df+Mxnps3s4b270+PjtcsXRmvrQyo5kKGd95Y+vGv6i5RvTGnDyE69LkzX/DdnDzUiSFvpkCJi6AAQQd1NoeQByajmJNC0kOqJx55cH4yO7z/YXdu4srXXzOf18Wm5uVENBiHI6elJtFhVxeUrTzz11PPzenrp4v6bb75xfHToPFMjjU0T66aZm6l5jNrALWpsmlq1NjUo4DCLTROb2Fj0aOpmqV8wADdzAnthXRfHFNVjAdrdApIDE9Z4PZlNo129e+/GnCZ1Fa9f/9nx9LSsZHYS1YUpGLl77Be0Y7nPafslmaVm1uTZyxba7pFZ9Cdst4CR5w7v9TxN0dX0iNQ+YEVaEEEtOcqKsiwHw6E7ZrN5VVYQBnEI4mbEOJtOlYuIgiAxOaNzk0CHG5PCHHA2CyyuzeVLF37jV3/56tXH14qwXpTXX3/9+eef9+l0c3tjsyxnTeNFyNFtSjEeFyE1jWpiAUBRFOPx2fMvPktAtPrZ556qhsN6Nrty9eLjj/1V82Y0GvzKr3zFVKd1XYSScp1enmPVCHhRBFWdTM92d3djxLvvvVOW5YVL+2p2+96t0Wg0r+dn47ooRCTvjk6Ap60YVd3MzYsgofUuuZObK/JmJlkSicA4F9G3zc0S7XRrS8TW7SyWF92TzUZOaC3OTl7nX1tq8TYVoD0Wm8AnyQ64t/sIN1EP7x2Nx+NBUVhTiw9i0zBIymI6bdbW1i48/uTxvYf18Z1nLl+O0Zvj48GWxKKcSBWBYWQRKgqqipLQ6GRasAioYCYSikxWM6ESNjdXsJEi1kahkUIdqH0+kcODzaq4e/fueHry5U9/adqEcO3J22eHc5/lsDM4FKEoiru3b//0J+Vf/6UvPvH0tQho04Si8Lb+LmnP1uWZEGF2onnyDrQyKk8pubuqNYSiEK2nh5t7jz82ujyd1UVRMcm8jpPJWNXDcADXJjYivLe5brGKc3Y3lnr68OTg9r3H1/apjcKAPO0tZJZioES9Qp6lNerEpiX/AadEMlXsbO/t7u8TSRMtlMMYtbB6fHi/9CYUUnNVx/rd997f378SQvmNb//l2x8cv3TvMJAoYuNTE6AsvamFtWmmEiBVVWxvzEm8iaZKTkJFPW+qgZSF8dBPah1ceeKZv/Ir7//l9++8/dbehV07PdPa2U0GVEsBk2FUgdGgsCbw8cneWK+YTCan37vx+uW9/S21ivjB6fHtB7cv7+5LbbvlqKBw1MwC+70Ht085zMgm3hTDgatJoxVE3WrKnvdUmyS0Olc/xwJ8hEDr6LwTW4TcdaKr/1oYgecwUE/cdZ29FmlGKUzQPgtmaqbJBkNbmZojIO5GrqSNWyp8gzkb63z++o9+9J1/8+fx8HRzfXTn/v3Xp6/euXP7o5/6xMuf+hRJKUXV5pYy2FmSTiRPW/m2oa1omhzMeYs+IlUFMwXSBLtT0MGzhrKEzFKqKOWtgEEU7hxPGNhYH5GszefN7Vev3zr43js/uzkeTwrIhdHW008/+dTjV59+5srW2ro5hkTrg8G9+cxIo8WQOn4ZXChGLbnyguZ1bbUK8du3b/3TP/rXb77+o6cvXvzI08+sDYahKLmQ45PTv/yL7/mgfPqLn15f3+Ry+ON3rv/lj3/y0Zc/gno6Pj7cCEVTx5qJJPg81qYcRNbXbh09/Na3f/C9V189PTvdG25cu3zlY8+/+NTT19bW1oSy47WZx/lsDoCS3Qyoo4kNh2K0tfXhvfu7ZjwcNkwGn8MMHIqgTpO6nrtyCQG5uxSlN1pW5frO5v7ONls8beaTs9OyXB9yadDM7V06Lnc1grnu0L3dhxKtux6IGtvN2NP3YtBWLKcssgyi3cjJyUlTEShFOIkEAs1m8/l0rg2G5agIxWw6E53PmrpgoaiTo5NpkK3t7bIY6Hw2m8avf+Pbr/zwtRdffO7Wrbvf/+53NjY3pRi4cVGIhBCEJQgxi5fMVBXMw0z0whRYRCSZ6cwsEkSERUSKIELCwsxUUOpsySIi3DbpIxIREilFGIE9AGqk5kXBf/QHHzTNhTqmGpQgwQNHjVmU9/w0j7R+UopREvru7t5xZlJ+mlM/HtHf6xFH9vS0pk9+xIrZlMryQarmRsIBjFCE6clcLaGmMJ1Or165evGFl4+mtUlFAjclcnDKDDXzCHMhEnInF8Cdr1669NiVq6rWxNlv/uavz5t6Op380pe+WAzKs/GYA2veozc5kp0cBmNPO7eLqsamVviwGEzGk2JQsaCpZ6kFmhomk0kVipPjMQgkReo0mRtVpkzAEDTNvGA+ixM7AxVEPJvPKpTMXJYym43LIgyHlbuZaVkFJmHKO0iXZenubgp31dyKsA2GpipOInLVBIVT2DFj3EQpHYJhELO0W8lmKHMucLlsTiwSg/olhF3GCboVRMdprbY4Ozz56h//2U9+8JMiDEIu23SCk1o9j8M1qdY2qtH6cy9/ckPt7gcfiJGfne6NNjQgBsCpMVNTnzsBLMJSpu3NQJTs0Wg6qIpSyvls5mZcSEM6CFRyiNPx7PiITw7PBuWD40MMB9WFixuD7eO1DTRTntck4urmHt3UtJ7Nf/bm238+m/713/ud/aeuRkY0bc3ulb7nS7s0pZlKPrG0DYGTw2vzRogIaGbj+dmDn37/z1VGKXAdoxM4BKlGo3E9d1cRMtcHh9ebqQGBmInVfToKs63BdoVaENmdzBnMHBwNur13Fr7VVYdrjlN43ggMzJub29s7O0gb9Rgz0XAwoDieHj/YZS3KQePVycF9aNzdvfDw3r2fvf32aB0vvfBcSTT3OpBLqERCYxqbGogRiuHgw5Ozf/ujH3zhk7/w2NrWyWQ8qKrAVbLouGKMwqysBk+9+ORg/y0qbrz1g71CxGNsah5UAAtC5U4ST2azUSgHANSubW6+dno4q6dQlbnKcGAWVZsgZDEi6IilVouq89lkbXM/xCmIopu5BynyVhhkKS0z0WbynfcJ/rwY7CRVnxeoDSmu9A2y3rVJ8Sc71dv48FLD+h5/9QXgii8q3ZnbwoVWwVFSEymgDWJOhrzqbDqfns4+ePe9V777A53ri8++cDg5OTg48YnffucWqeys7e9dudrQnEPhkvouJhbmBKCzGmTKSQ4OIk+lrORce8wva6Y5NYI9NcLuhEkOyGRDgECB17dv3b378O7DmcMhk9MbQ6r2Rpdeenb7o08/ce3yzu5mVQ2Kw+lkPD5mKgY729uba+998KAsJc7ng5IHJHAwhehOTK5OEgYwLuidD2+o2H/0m7/16aefCUQG9xhdwu9ee+KFF176w69+DY3t7e1zUT44nfyX/79/8Lkvfu63fvUr2+WwaZroXgMpnlSNhvdOj3/42ivf/tEPPrh7+8r+/i988nMvPP70Y3sXttbX6zj3RufeIElSIeEAc3Ojxsm9EJk4gblYG5mEGjbXqERHk7HD3YVREyEqUM9C5OHa2rCsQhmmp+P5tOYipKzd0Wi0trmmJ/O6acpB2VajZJZOOZtmRkh7h+Ual0Q8bXJmBgzm3qi1Tn5OeXAEcWdPW6SCPLlfwMRM0AKkMRKgMY6PTs/GY3IaDYZuOhoMjh4exKbe2ljXhoaDoTY4Iy6GQzfcf3BwdDr+nd/7nV/49Gfh+su//FdNrSwHSde0nMbtf9K1rvn3HTnvB4AjIlVMedYyatrGGtJSeHSbkw6MbDy7eXL43Z9eP1CwlDJDEal2s4LNHWTcFs5gOSDd52FKtaRwtA2d0z7r2WkP567xJIcVrl6BRB3WQa8/hHs/eattzuEUKJipuYEoRiOWzc3t48lJCMFU3f3C5cvTeR2NjJ2c1YwJkiLl5lDNyTH0/2ftT8NlS7OzMHCt9Q17iuHMd8qb9+aclZVVlVWlKpVKUmmWjLCQpZYBubGNLMCNmWy1scGSQSB4wN1GgDHCYAnstrBBlhASGhCaVSVVZY1ZlZVz5s07D2eOaQ/f9621+seOOPdkltR+2t3x5HMzTpwdO07s/Q1rvetd7wuKmDghOtbUNU2fmsQggGoKswgdtsEVPiVeycicwFxqjU0paUqK0uNcmXcIUmTOGCJnWZQIeyHAPM85xqosmSWKOucR0RqjK22qlJKzBYsQ0rAsIydjs94exjvXtp0K5JlF7Lt3k0EwACl0Qi7x0ri060LpnbGUWHpjVKC+0RqtIZFEaIiobUPsQr/qn2zbRD2Dob+uaJGIDNxv68Al025V9n8bOCQr7fK3LtC6DJRXLQZLLQgU7NNDRATMjPNgrAAQGkBSJABlBZYMrQVr0GNeYlnu3bl9WLeb1Tgztt7fI+h0UHT5IFiHrFkHgpCsF3IIahBcL5GKBNbWIamE3HrjbZNqgRSANcRwcHB87450s9kcaVgMxmc+e/d2uSaPXr48v3XN9V6tpq+Ug4AagFFZvfn6lS9+8fkPn99iAZtnX3JBllEgrrh0qidzsR/lqNg3agoRJBHVtLk2+OqveFeMxmdZTMGQE1ayveB7758jquy8A1XWzmUO+nmaos+ksOJ5YolBGIFIrUHPqPAlVhgngdqp1wFEjbGINrHkWTFa2zDWxRh7wXMVAAFpFhAXPlNRjV0orb188WJe5Nh065V718ZDH3rvuxzH6dFkvqhNPhQwztqYOolssrwz5id+4Rd++pd//ebv2/3j/+6/Owu1IlRqg6AaAI4MOFk0s3zN7lx44Bu+5d447176fFEfcYoRHAZ0oBZj0FA466J11qUMrQMDsXQ5kW27VpGczTNwsU25cYums7Zn/uEgKwa+XEfcfODBwns1IAY6YTGohrSHtHvyC789+DgZ2KcztBMA+0tzvJOL3PMlzDKlRFh5J5+sor2MVq+z9bY19sREYvWvwgrKPVk7+3OuPLBXMe7KsUpQjSAmUYbbt+9eu3bLGvfUu96p8+bw2q3dvamzA00JNU1vTj75a88++MRjfn0dsszmGagCC/VF9h47WDZV9EC4LqGC/mooytJVBBBxJcO2CvZERZUIjbHAvfLCMguwn33uShQmTyF1pfebzmWi3/Kh933Ze94VunnCttZ2f75vkhpW60zomjPb63T9CgANBpV2wjE5X0i/XccYOZVlYROQyN3924Px2qOPPHE8OeIUe+sjBUwG3/nkE+rML332M7HrvPUGjAHzS7/2sTt3dv/Yd30XM3prQ0wRGL37lU997PMvv3x3d9chfdvXfMO7Hn5ya7jmjZ3XixQiJgYAQpB+wUfqvW2XCe6y1VeRxanByCQQFm0aRkycF3lCDSEaJKMGFGLdCBoRVTKsyEmA+3BEOUZl9N6vNsRlzLu0yCDTb4FLEIJlWdSV1U2DvuFagIjT0v20bprEPVdGRYAjAFKMkZDIYNc1iJA4qAgm9tbM5/MQkios6gWqemtVk1G1oFnuUlsnUQuS5bmmLnVkva+qwb3dgy9+4eV6Hi5evLg2PlOWxeFkOhwPmqbuRYhCaIVTnyOzJBHpZ0RSjUlZuAezEqcTNRru2T0MqHKyBYks95u+laDXhBGWlAQJEyRe1D7LDyl+8doXbh3ca+7tVr0wkYoQApBZpSanZiOe0EH6y74MiWgpstbvdD2owCzeIhAgCHMy1p5kmW/bHk4vK7QSCyOilULJql/+NGisKIkNGJ9n1mcB6ej4sJCmqEpwlkO0zouCdwZAhVAAKM+grzazonGUl8KsoFGFUTqXCMkQ2sJIEgJMkTOfMWqOTlg4BUKU1FOulTmASEx8c3dvcnSsCqQaU6qqarQ2LqrSZ1lMMTGHyEnYkG3bYK3t2pbIMIsC1G2T5XkIXU+N7Lq2N3iXXjJRJcaESCmlIsvbtvVZFkMwqIiUOBZ55qwNXQdErDYldpnnkKyzi8X86Xc+tb252YXWWtuzmrPMK3pV5JWljXUelt34bmlC30+ZJWNhxe1SNb0eDN53dhRW0BMTtKV3z+lV+2Sn6LvPdMWV7vPFVUMY9g2MnFKWFw88cHH/1v5B3QRJwsmSVWDqyfWKMSbKyqvHR8fHk7XNbXR5VzckXO7ubmRnJw5byoScRlLCvlsjc1ZZuhiKPAdQ4eitC6Hru9hKUMPMbeND4+bHIF3yln2WjK3cWj7atoOhSeAQY0rIrIqOrHUusZR5uTVez8ri6ptvnr3y4EPveExUSO8rRp5cKOgxMDhh06GqAPdiiYhCCCggCoyIktJ4WL7zHWcsAkLHKREuNS17W3Y0BCossTdpSb00qzCiJcyJVGJnNBhdWpqKokZBg72tzck96mfwyXRe7aJIZlmNI2vWN/rKlwJaTtyvmoQgobWSwPe8SYWOt7c3ozfE+B9+93foaHN74K+8/PlmtiiH6zb3VT4k1NSElLrBcG2xiDdv7q6NN954/Vpd14rtwfF888IFJGQVg+AMphjyjSKayg+rp3bGexujG7/0r02yxGpFc4MiSSDm2cCADaxzhKuzo3Jj42LAw7ZpncH5onTZma3zMaVksOkaRNMCSODtnXNJLUDY2NxsQzDesbLtub6shNp30ADAiaLHSdrWm4CeyNjIKfG5UwgNnMQop6YD9vDJanQswyY8aUpdrYTWmpPbhCsLrZPHCt1Z/kn9zOrn0pc+hBkssTABaEgDcrv7B6+++LItqrXNsSWM2fyMtVAOr7xxpTmaZsZgG/eu3aybsPP4IzsPXe5isoCUGFnQ9fIRZGSJjCGAsiAhKvb6KarKK5jHEIG5v3QDwMmPiAhLrIv6y2FTSpCCVzozLC6e237wwvnJwf7HfuMXb7z5wke+7quUuAlNVRayaGJoNSETba1vWMDAvDYegdogPKkXCZb93w4ckW26OSJt7pz51Cc/9eiZM1/74S+fHh9JYmTxzkmMk719j+ANlD4jhBhiNqzGW2deuXLzf/7n/+KPfsd31BzZaA3pZ//Vz712/U1ErPL86z/44fc/8XQONsybmiCpgDVo8L76MvQ8GkRAXrahQ88vNkKVK6yiEZCYMLERlBDJmtJ6Q4ablJits45sURTkXBdC17VDqFSXlmzac3pO3ImWFMwVt+AkzO735Z5l0o9NXMqvAmoIIbEa6+7cu/vxjz87nTbWZT0/vddl7Ye7gjJHaymEVlVHg/Lhyw8SYlc3Fk3TNMo8yH2ZZUWW5VWROWsBRaKxaLOCyXTcNdMmhjgoyhe/+NKV168aY199+crjTzxufAJkEUkcmCMZRVTWCKtQpv+XFUWAZRkT9JIKpxOFfkL0Pt73owbAk8HXb28niUGTwr128uyVl67dvNItmq9813ve/66nQwpgLYsYBGVFc4optbzYQmSMOelNABHl3tluKQvVC6cpkfQhLyAYYxGxJ5ec2hXeXlA7NcN/z4rbSeBlTuIiQuvtYDiUSassi1m94Ryirdv21t1XO0lobRsDq1hrlSG0wRsTutibAdVtE4jZSYrMkXPnhFVZDWLouh45VgBQ6UIHqo4MCA+KvMzyej4LbVcVhbVWWTDw0Wy+f/s2ETGoiBrvysEQnQ2Bi7Iy1jVNm2W5iM7bRV+TstbGlI6Pjhb14pln3j2bzUSkKIrM58770DW5zxXUGNO2bZG5LMucc5aIUy/q45zLF4FZYDCofvM3fvOZZ565evVqF9N4vB5i7b2XlITZWLNiY/VjwCgSLJU++oupSyrCCrFYdvzS/bAXVotW33h4Oit9Gzq4OuGp4aN9YL/8zH7nEFVDkDjVi3a0trZz/jwfT25PjqhnXrJYoywChD7LfFk09WL98kMQYiTbSDxTDj984YH9/f0b8/mihOMUfL5+3DVknSVCSQaBiFLb6JKRCQWRcnJA61lhGfcPbks313pqY2eKoslL8oOs2gqUeZtBipTSSoECBXv9VdleX3/y0ccrSKPzWxcuPNAziO+vP28dsaen6io7J4XepFl7we5l3xArKQPXDC1oC70FYG/ZgqIKHBMpkAFQSGkl06ZIyIAorIh94RD6NyiwAvZaC2+F5XBFn71/y0SSNVYByGI1GiFRCMHYJSsfBAHYgFlMj4VjIhNAfV5q3YY2sgsW+YHzZ5MtD+/cOD7YHZbDjbUx5pkzWJUlWXPUisRUuWzgfDeZPP6+Z9Z80UrXdjMlEcHMeMtRmG1OWWEXaFrFNl/f+sAH7115Y/Lc58aJh5XnJkRVYzKNiog0KPZk/sLh4TBf2zLVrfl+U1qvqajZe9cqdJyCxCTSSXKcgNOCu92u1tn08OhwWJ1BRAKlXlcWgQCFemeQ5Uq6Wu7ecmfhfuH47YWwt7F8VtsRrprbl8JM0mvX6X3XxR4Ex1MD6a0L+P0hdNrm721/Rn98z+bjlIQEBTIgnbfXX3z1ztXrjz3zHnWo1qxfPFM8eH7noXZzZ/Pma6/deu11jTEvy2Z6eOWVrpWwee7sua2d9fU1K8jCQoimbwQhAGFhIlqKjACafl+mUz1xCMtv/fZ1QQ2+pTho14bd5nB4aefMTjUMTTO2+u6PfGi0Pfqt3/no1X9+/bv+7X97Iy/4uGEy6AfGecyK7a2tjeF4/2iSZ7nNimhw98aUvCPB0CyGeVXP6llbO+d31sY7D1z6tV/+9aPp0Qff997NomqaOQCosPRcEA5VbtZGg73JYWw7dHa4tv7Ca6//2ic+/vu+9Ztev3nlZ375F4/ms6yssihf994v+8DjT9uoIS4EMSEASFBNqGiQWAkABBDkfkcsggAIgjFESpn3ypK6KCxFnkviGLsUo1FEAgK0xpC31hjnnM9zUW2b1pDpnYNIAZAEGO83mGjvAYaIfXprEFctwL2KE6pyX3hcrdpgrUVDgNg07d17eyGAM4mZVdUa299uROx3DWFMSYoi2zqzE5S7ukl1NznYK4x5+OKDa8NqnJdlnllCi4AGBRgtgHGs0LI0lGLoYgyGnAGIbXf1zeuPPvzY7OjIWLh06ZL2/CrTN61YAEA1iLbnVRAJAAP234xUpB95fQhAZIj6/M0DGuylJhABwBrbM22XdJB+Pkuy1fiX3/z0//7sp9MMvundH/l//IW/dGFr5zef/XjipNJrhbOC6Mqs/tTsZtUefV3OTGMcLUUXe24NibB1Zin3o4oIKTLZ7K074v8Xj7ftrKhqCLn3dwRIIoPh8Ojg7lq1rilxiCwaEt/dP1LrjROwGFlzhYO9vcXx8ROPPpblvYuabpQZIzBq5p0hoyLC6qxLKQGCdU5EjHd9Cx2gGEBIaT49aqczsrbYKjPnuzYkiVWRR0spJWtd4LhoOo/2zPrmzoXziO5wOi2robWujbELcTKblIXfP9gvimJzc3NzY2N/f//ypYeff/758XAEiFmW102zNlybL+aj0aipF4d7+2fObDdtG7pQVZXzbjQc+aJMSX1eNSE4V1hfJEbjHAAYb4mJmUGFDLGy6XU5AIlQl41sCEKrO9vfUjbwlqtNukpTe/rKUp7pZEDISRi0TAqhB4qWJ106cshqNV+qQqNZSlf0i5BY5yhzOxfOyWDwxtGBAXFq+q7sBNopt5oYqSxGTWg4y6+n1q1X2IU7e7sP+EoOF/uLiWZ5gvlaUXSGutCRsQhgey6cQWGErgUEYq0X0zyP54aD3dk8dBMxSSwyGK3W/PoZyMddCjmCGmBIAIqs1vZGQGyNqafzycFBOR7s7OwMR8NOkoCQXe50Ctq3VrwtHlI5KYIxAagiC6gIGuzlA1ERIRkiFo1k4C1bICmJgiXApRCqKokHtSCg1CvKC6MAJT6p+QP3ViS69Eg5QacA8f4uvqyf9zpQrNa7wWAQYxRVAyAqBi0DW0JVaZo2KrIrIiiyESySmNznbRe07Wxhm1mdZXlWesBQlSYr0dhkMiwq33U8zOkbv/z957ZG3/KRry4khtmRd0adascZku24ja2hKGnOKuiKoxC2t3ce+NpvuPXGm/bwYGC1hZCRQzCWXOBYC+4r3yG6PpnY2e6ddhqTz6LmQXSeWuCACqwhcBK2DLenu53ELi8ubazlWU7Sk7EAVUBsL/gbABFFV5doFbb+bjALQL/nnPoRVlVeOMlM+8GAy4YVUFRjUERPn/EkdHnrK6uzvIVydz+c7TPbXuBb9WTeQV9eTsxIhpi1DVeef+WLz366jh0iMcL6+trFC+c8EMV0+cFzN86PP631nRvXFBqMuHf97mxx+MHBV+48cmmtKj0aV2RgTS/EQNasvov2+bCImH4okeFVJPa7rt4AgIDAfLogbD/w9GMbVRWnc+2OSgJsj9Ps8Jmnn3jwkUu/8usf/ef/+le//dv+wNrGmYO9/bZpmm62v7h+2DRNm0iMZWpmi4UmAijRoKXhmZ2MzOR4Qt5GTkeHR1/xZR9KF+Y/+8u/cfP2rT/w9d+4MRqHLqCqc8Y5w6lLqRkP8q7waxvrNw4ONLOD9eHHn/s0jNxnX/5CWy82yiHU3Td91dc99dDDYd5EEWOt9CCcJQaVHmVBUAXTa16ACC4VePpoRBBjStY7NRRB69AuuiZKSqhKyKDMwfW6OCIhRFB03gti10WDVjFR32StkLSvRyD3iaX0PlggIgaNnuYo4MlVv/8QYVAURIuU5+V4fWNx3HIE64wIO29UkIBSis5bZkHU4dra9s5mVeUqoZlNmun0ge3Nh86d2xwNKp/l1jhAQrQWAVFQFSGpCECVeamKUZUfz+rdw8nd61c3ts+UuYuhK4qNRx977LHHHlWO6D0sm7eWqhCnbBzCiXmnwpLhs6pyrRZW7ZXDl/mBqqhQ1KCqIADcc4D6YoS8evvlH/1n//hzn/74gxsbH3jksde+8IW9rc1OOmMdRVYFY+yygnkCkMP9zOY001N4KTitKqiCBM4TgsYuWGtNv2+smp1OJvbvOjF+t8XlPjHoZCEQVlVlVuessaYLXUS+cOGBNgVCS8hdisPxmaeeuRDQBk5kUCXl3njrFkVxYXurm01L52NonbWFK7hNbd0qCRLGJBJjs5hffPghJmhSIO9YhFQyImewnU11QXlZYpFxFxbHR7GLIBCZrTHELKHNrAPUxXTy6hePrl+99vDj7zicTO7qLljnnEeygIposqw4nkwUwFozXyyms9l8sTDWguLh0XFZVrN588ILL33zN39jSry2ubWow+tXXg9duPTw5Z2t7cm8btrkfO6rIiV44aVXybm9g8P9/YOdrU1C7IUaDIJ3VoGSLFG63pjMkrd2SS84WedhlTC8TZBpNQRWvz6Vj771gPs/LtljvIqNqH8jnfQSighzIjIphOnx7N6t25KQRWJig1Z7naf+jIYCxzp1w/Ggm8Oia7gqQdwMF5+4ffvdO2czMF1dc9fOjg6H21vMMTfWWZNZi2QQRIQBcVhVd27dXsxmkOKdREcuZ04tQgziB+Ny+6wO18EVoiSACSUpa1+UlCVOk0QUsZ7Nv/DcF+6OijbHdwzc5tkdWQaJcj8OBBDlE164ruBqVaGVMkFvK7LEiMgo98TDAAimd62H+9e8N4AGAMDeKRkVkmBCxB6tRewb7aBnWuiqwXX15+hqP+4DWTzhavQLjrFWVYDIZV5VQ0xAENsozEVRIKo1oCDzpmuCZIzJOAHEfGSdQbHJDKhy7K2WY24b8llWZVlhwDBYK+hmKXjnAPlrv/pDX/HVH7QJ2+Ojarw22N5RYwCEE+fGOGcjdxmkKnfoXCdaa1x74p3PfOd3Pf8z/xLms42ySB0KkDFECqnyF9719Ne40UQM1m0C6SQZhcoXKYVIAETGWE4JVI3zkrrZ/h4V1Tvf+4HR+ka7mAZlcKBANqHhnq4GjGgU8VSr4+mS1qm4BJjf4oJ3emqsXux/XPGuVmk49rzi1ZxRXWp0wap81s+gJYn4lGJTH3MsT3Ffcr0PcwERqCesihogAQTWu9dvffbjzx7t7hdntwCki53NbFZmFNkYW9jBo08/ZjB94ZN0/er1tm6GBO3h4cufePbw+nVr7EOXL7/vg+8vhhUiWmvJqGpiZmMIAAn1pFKHKCvVxPsqKm9ZJQDgVI9wHwbZDWe72bEBdoXvmsbbyuVZvehY7cPveM9zv/jLP/rzv7qxuXF47/bieBISJ0RBGhRlbjJg7ep2ERZl4XIAFCm8FdA61GoyROSYmln9wXe/5/nbb75y9crHPv3Jb/26b0wxGSJNrAQ+NzHUqZs/cvnC00+993//hV9UiQKJcvOJz30KS78xHOc1f8tXf+NDD1ycH0+t90qGQZMkcCSowuzBgi69jmVVoFjWuhVWjTMmgoI1YkAMMGACAGtSjAJsjbHoOAkkdkBlnldVaTInCm0MLCzM2CdCS/JkT8lcck9OGnYV+3VoWS/V+5dczerae5eHmFQUDGVZQQgGsKyKnZ1NUBWNqr1VlnrnhNUY76wLscPUtbPpyNmn3vH4ufW1UeYrZxyhRXHGOud6QdW+i16EBVUNCVJh3dZoZ5D7ejabHNzdvT36zKfB5eP9w9n1m7cunD+3vjmom5kxxKntawTawyognQYBAQURZhHmBLCsEvR9770TSK9gBqorlwLs2UJ9XNhLeQZOB/OjX/nUxz738gtrVorYruU2hfkb146G21sAklubkkQWYxBPDeJlEtODYqv5KQqqrETG9hRaROS+upQVtusiR3G0kuA7tUy8PdI52UPfCudSz+t7645LSIYoqpAxaAhVk0jbdkoARCGkqhgcC+xPjmuwYAiUQdOozFSBU7x94+bB7Vubowo5oejQDwe+Op7Mmq5d31q3Wb5oFuWwBGFmddbWMcYUM1CIUSxyuyCOsV3U0ymqchtIwLvM+AwUfJYBSIjsrDE5OtZFXb/5+quPvOOp4cZG00YGIOuNpcPDveFoPF4fV1U5mRyTIUUcr63tbJ95+eVXvM+Y8fBwcv78pS7oog5tx10X1ja2rTGDwVpgdVm2ceacCoDNkpoLly5ffuQhBDk8OmDVtNS76vGe3m+c+sSQWVUADJ0SbVvtjnqy1tOyZ56XK2/fUL+klunSjeXkZvW/ly9RO6CTpQ5kKRmrffzaa2ADEZZZNqv3rr306u27B6kocp+nIISoSYA1pUSI3pNCOpxP1kdrzZSjcmCy2dBfKl+cL9aU5/WcIbHEeX04LKqU4rvf994nHn/8X//SvzmaHRtDVVWWbsdM93zdrI+G0ZnjNlJVCviiKP14LbgMbMmB2SVrkBQ6CUl5CcIwg7WKkFLiEABNCgERXZY1bZNVWd/eq9pjzz2njVZf+GTd770/VEVxyZCmlKIi9pufCqMmkl59hfs7oyqyEozqy2YAPXjHQAnIoJJSLwaDrH3RAfvYC+9zRFYzCwVXkDBgj84v92lmtc6UZd50TWRVlrZrOEZO0aKJ2DrEIFCsbbJxjchgbduNcw0N2JAPKldWibsBZm0dbty7J8YpeSorAt/M26m68xtnW8Cu68S6yCCurHYu5utr03nr0CWViCahDQkKY9RgF1qfu9DGBeaXvvabOpAr/+pn57O6dCUBtTEY0sGD56v3PjManonogSO3LYoiElhMhEDGAFowEqOAqrOxW4TDQxFbDMYYRY1pWRMtkRwngKRMKAQk9wP604jL/dxvmU+exmYUv6RfZPkcQVj6AAKAZNU2qLAqgfV3cHWbTi96J5+u9yWCGE5S+xXzkgh6pajlJsxgFQJLaLo337xycG93e209OkeEYpEQuAuur3BYKseDh97xWJaZja2t1196ZTZrROlw7/jNo2lUvnHj+v5075FHH33okUcGw6GEYIisc4AgmgBPPOOETkK+ZV1dTxaB04++/NevJaBgbbcAVFOUC4RpXr12OP34Jz53a/doPu3aLpBm07sHd968YYtSwCFl4C0CgFoQatuOcqtK4hEIc/IWmKqi2lqf7U+d8aJ6eHg0Go4++P73/+Qv3Hj9zs1bd25f3DwTUgqS2GgxKlmDd3B+e+OxyxfObo9v7e3ZDHxpcp954zPFr/zIV547e6Gu68w5VWDQZFScZdQkyQlmgKKaQBWU+0yTUHXZ0eRYkQFMb8Fie3YnkpIx1lrW1MaUYrTOooIAxBgzZjKGjEHCtm2FuSfw9JkTWkA5hSUg9mxMY5a9u3h60wQ8Iaf1b2FOfQDedQERiryc62I8rD7wvmeyzC0WE9FkLAonS0YBOWpdN3u7ex6kKsuNqjq/tTHwlKPmDovcGQAwxjgLSG1MHkxGToCTpF5jEUGEwkMXd7y3L75+9fbNqwCSUI+Orrz4knn44QcfevjBEBqBBKp4EuEBqBKIA6DebVhUVZYt/rBiO/ZXgFexYF8CIyKHzhhLfXSoioANxF994XOf+cKL3/5N3/rhJ59e3Dn48Ac/GEWO63rRtPPpouPkvCdnReLbpiIzay/hcCIIBKhoV98bYmoW9aJt2+Pjyex4wqzvefqZvMq6LqAxfV7zfxgD/R88sEcnAFQUJaWEzhlCiMqJyTprbNN2dujHQ18Y4/M8xgggJDwcDucHh5tbO6O8HFeVQbDGtMzq7TrsDGPMrEdEXJTG2WaxUFVZ2apJbI9nhxJi7mzqWo2h9M4oMBEyeJ8VRZn7nDSBSgKsu3AwX1BIxrpZ11y7emWn7bLBsGOxTkbjoc18z289ODo6PDwMia21RVnN6vripYckqaJW1bjMy+s37pRlvnPmfEqxB/KQcNHUs0Wbz+rj6Swxjsdrztu9g6NBmZPpXY8BAK0lEOEUtW+zX4WVKiCiKr3x1xJqQ+j7ypb769J67jQUpGBglbV9aVr3VtwbT1EZepBJRUXEIKGCspAhAO26bv/Grec/9sn5nf31vDxoGYC8N8hIigYARZAjcMqAbExhsdgYDI4PJ6ReGVjUeH8c54NNk2Z7murcUpo3G2ub+zd23/jiqyElD+54NnO2uH7lFjN6X4SorSQsimy0jtbEouiqgUHvI0YOyYoXqRSEMKCWSH3BjpDIGGZGBWtM6MLu7u7h0dF2vqW9+Nty73kLgtuvN6vgssfDBAFRUZBOSh6qoKwKisAKKL05YN/juTIVJyRRWOkIk6ohIUSz9MoDIwiESmhQlUBIgHoj5J7FDoC0tNBRPZFlOuk2VbOUvsEutD4rYhRjbFvXNcwz4zmxASjXxxujqq4bCI0ZbagOoJljnHamCqa05XBUbWyNdo7v3Izd7M69GnKNLrl8vVi/DMNNMKqaogr5rOaFz4t5imgcIDYSmaBDr5RHNSFxxzjoGCNORaZdeORrvkknRzd/5deKNlnVRNp4ytc3jiMu9g96WilzcmgyMnXsFiQWTKbkWFvlzqBVQGHMyKAJi0UGRMSGlRnQgJVeRw+UoHcUOj2eT9P8T25Zv/Ocngr4Vo2f1byQvlkPEUX6OvJqcwIAZTwJHFbNkqffDqcyjSXAD0KrLQCWiNFyjPRHiUiGVkUJYDqfX792VTgqpyiJNeXOOqKMTI4IQogYWbLx2uV3PLW1sXNp58G7b956882bNrmphLmRWd3+1m9+4s6dXVF65NFHirKUHlvqWYLL7jlFoFWb7Ap1vE/ShRPcqydu9BCRMiuAZevFuluT2YtvXN+fLurIdVKbVSTGC46MHRvcGlUHbfCD0WQ+R5WqKEZ5TkjT0LmiMj5DVUc0GpVNN9dkqmE13Z2AKop2XTOZHr7rsUevv/vdn/vCc5998fntr9pBMCCiCjnYjrkcFeNxmTn7vne/8+ov/tx4axspAiSn+dd95Ucu7pxppzOHxABkrGhiVVSCJKgIZNqU+ETsCAEIWUVFHCALKotBo8IC6L0ts0xFDo+PDifHzlnnCK2VxL21qvGuCU2q5/Wi9qwOaVYv+t3d9HRaEFAUBdHeBhrgxLgUV8V36u+HAiqq9F5USytwAFQCAIMGDORZlnkXY5IkW2treeFSXEQRAM5zy1EMGtYY2nZU+B//2V/9kj35//TjEwDw3/2tv/jYE49fuHB+PB4LJAHxWYYE1hhLff+GJcgJnekX4X6bOoW6EvTrM5LB3gr1JAAXRAA0gAiMSAx4BOGj917bm05vX7/zge/+3svf+jBL1xsf/tbvfAwInXXO+a7t0FhFAO4VdFRVjUVm6W23jTHW2TaEUC/qRRebRTOfTCeH9WLWdlHROJ+BcQJofaZkBKA3wRYQMtRjVAS2B2sBFAgEgFXtUtqYRJTofsOnQezLrKqcVJNHzcgY9aQhcSKKoG1sM5bI0TvWRZ2C4RATq7GmsOQssUTrbDZca5tOU2MMNKghWGE2BOOBmR9PQ2gtkjAboi7EqqpijEfTIyQZkSVuc2DKHCTKyBmkIi8MWWE21g7cAFVbTrmPxtrjpmmZKygOZ5Pri/mDjz5RjDeSApFubazH2HVdZ222aJxOpevCdNEsFvVwuMYsRVE8ePFSism3YdYsGBprCUCRKLbdcLBelgWSbZqWVWlBOhNDyL0RHvUEZ1ABZFUAswTSAaGXJ9EYu8TReovLwbKCaVaQvYIqcG/IAgqg1Bc8+12bRU/h/aC6bOc/WfP710+ge5WlGJ8CyFKpXGMMd+/cvfrSq/du3uvq7sFzl5vZbO/4uERIEknBWmeMIWsILAhkzjehQ0PrVXl8PEN0iCaCuEG5sX3h7hsxNAkVKufW1tb2D/brrkNj6q5bW9/c3D579cattc2dxWK+6ILkhZaj4DP2PlnHXUKOla9cTh0l7ToHBUECjqoswClAgRlFB6HJvSFLiC6m1DVt5nKObCzCypoHUUWEABOoKCECivYdXCtsqMeilURx2Q7PCkAnlY5+GwYEpdXWiwjUF7z7GYMgCKRsRBBJezcqgxa1x4d7EVhKwmhotfLB8vxwQoNGWNrEsCohUggBBDLnYtc5IEJIIZSDTBVAoKjG5HJGRUNdx2Qkz3Ow3CWMXXIqiGSr9fNPbNXz49s33wyk4+1z1dqOsyVaL5AkdM6CQWPzYjq9NzueWUjTyRGgDAclKmYOsWsTi81KAABMYHVad7cTPvD1Xzu9d2/625/dArTO1aNxtrEd0HQp4LL2g13sREkNoapwFDSpF8w1YBKhoYVER2RIkyDH6HOPJCnpEhDDXtYPiZCXXvFvifa/JLjp9/V+8J/oLZ1Uvnp2Tr8x9hQCgV6ht2cY6ElajtSXS95SST59cli+vRcdWZofn7DxvvTPQxahpPPDo717ezHF/b27uT/bdNEFsWQtGU4dKiFZtgQgoDQ+t+Mou3XjzuH+HQIFToQ6GpTi/d6Ve7+49wsXH730/g998KHHHmFhkH5BFkRAVeNsQiQllJ49plEEDAL1XpJIYFRVgEETkaYYQZWF7c0W7xwdXLt3MMzXz66vFwRtCgHVoNsoBk89+ODliztg4ed+5VcPmvCOdz95fDiJbWeQi+21wxRnManQZp5VHs6c2bx9wC++9rqlcjgadce1E4gpJG6HwX79+75ssnvvpatvPPTI40+febiNrc9MyYQOxRk2kFJ7dnvzwUsXjrtZVeWZqw7uTOfTOa5tQxC11CGIRlA0ibhjY32WlWpUcu39F/sudO88M6eULJq+NV1YkkQF4Zb7vGPRtvemR48//hiiYhsGeaUiKTJYyDUz1h1dv2HqNCiroMzUu/T1UDGSUsKeldpjRr2cj6Ze1weBQbhnM/Qjq9eaB0BGAFJFFGBlILKGjAFrfdO07WI+KNayvNgYbyMKSUyBrSuaJk0Op5A6APh73/bhzNrSOe9MZkzunQHjvDOGtFfgR0SgGAUUECh0bRIFJDXGFAU517LUoXv1ytUf+PmPXXn9xlNPvufypXcOx2tIqIAJUj+zTE+aVJCeRbrC05fMCKVeXkpYpbcGQRHsBdtURBJqRFUUGwQ5osVX9m597OXnfvrn/6XL6Oq9G7/27O987ZdjPZsTQsdh3tTqkEE0tGgskrcGGbvErQVC5TzLQDSxhBgm0/lsNlvUi6Ojva5eYNdK23jEzOcDm5uiEutv7e3/3L/+1z4rNjc2N9c21rbHm2c2AcWgcXnmwANj38SvwNALIlkPhCIQYwRVVOjdSRABl4bDmlDAYO3hmJuunlufjapB9L5rGo8qkILEZnFn0bWDrQe7xo6L9aZp8tyAzL1XhsRMIcTYLAibTojcaDReO54cuGrEMUhKTUpImOeuqnwMzY0bNw7q2Xg4WButVZYMERLYwjt2Hq2zmaCAwdx5p2jRZy63HKxzRebr0C1CcOpfu3mn2dre3DlTJyUWULEIvsqdt7m3x4dHIaaiGvp82LTR5aUrBm2SLsTBaF2QrDFZ5kAlLzxz5awlMIbo3NkzztsudFmWc4rDqti7V7ZtTUSGDACQsX1nO4viirquIClFQ0rAKAyISCBJEEGIEMAgIIEkJgJAWYE+K57ZUmR8GeScoHq63L9JJC1fIUVAFcXeBwgsi6AhIUZVEW3r+eR4EhNGsa9evX6MbAZFlzqLJCgNa81xTJYVoigbEIG6rsuiyKu8XjRoDBgNgd/Y3dXByI7XeX6U2sWdxYF4ZbLzRW1zT4Pq2v5+8OawiyYfFOtZa3ygPFnDohC63BlrkFzwzniF47oOXBTNwnHrSIaFI+PLstAYRiTzbrbAvNrceNd733354mURRAKjIEqiyAAFESobAFGrZEXFYERlgwhgeks6xqQiCGL6XjBRAwCkzL0/M560zCn2/wMUBAYUNcaIKmttrAMtFUEoirIlQlBJwTpDmKmiGDXU81mWvC4Cwr4LTJeow5KohKqqZG0MIXc5h8ghKkDmfD2fAgqRpMjoyyjO+MqyUid5FQSkU1HCjIQYTOZbpE51LqhbZ0Z5UQ6GEUxSSMaEIFk1aOeTo/m92M27pj48PFjMF5PpJIRgnd/Y3hwOw1hkY2tbUzOPkWOwDsdbF+YxmY2tB77+61584ZWwe+ScT6MNHq0FZiW21kpSEPXWAaByyoDQICqIBRJ1cZl1FWSUBUnYIgJFYWB0aEBIraqi0V4NWlbK6cvgou9/PCXMo0Smf9IDG6rLKIeZe1mPHq4noqX8Ja6UgXoiOyrA0p0NiXTZ9fcWAHWVAfJJdgFLRtFbwp0TIOokgUkqSmDauLh30LVdQzglGAChLVHIGy8qaMACJInqNEr0uSZj48DHgbMb7uzm2nlT3Lh1p2sDxqyNeDw7fO7ocNYtWkwPXHxwmJWExgABsAAn0JYBweRRHPXkTxVDbWoLV0oQo6BKqkDS3dm9de/eXWW9d++e/cKd3bsHB8Px5gfe96Gnz18YcWjCvJFkfJnZLHOUuA4cvukbvu5Xf+eT58+d+eqv+KrZdHrjxtWXbl5rEVgdhyDeZaPSWp8SG7Sh5Sqvys2y3jtoY2hCHEQpsvxbv/nf+pe/9G9eeuGly+tnXd87ZUzkFAFEOIUuL7JqNFw0KR+U9bTdPTr6zBc+f+nsBZf7NsWoKCCFz/KySLFr2nj34Oj46GA6OeqarrcyYOYQmSX5LM/zHJGczzc31zc21nLryqzIjQ+LzrvyM5/6XIgsKrPFVAGtzxeLpo11UeWE5srr19aqtToGqDWo+l6SWVclLVUSXXbpLlXmwfQtpgCwJAxi4r4bG3q+mSqDqiEHQKQgIGjQepskdLEJqWYt9g/v3di9ocCeGNUAOBEk4tHaEAD+zM/+dv8J//J7fr9FMtY6tNY67DNAEED48P/zx/tjPvrn/ogxBgi+8R/88/6VX/q/fy+AeGt+4Oc+CgB/B+Cvff/3HR5Mnn7PuzGzTVeDBYGIwsDLRhEmZmFQUhVWkQQ9ERkEpCfPKerKYoVBgBGABTUyE4GJnGKYS/fZW699+rVXdm/eMEnPb2+9/NLzPobYdNYQkJaDoXUeI5BQnvsmcddG57DIPXCs28Xh3r2jw8PDw+OUUkpRRIw1oFwZi0VJzquKkoto3rh588ate7du73YxSeJBWa2vrY83h+cfOPu+D7znoYcvH+4exZa9zYqsGA4rm1EvFooIMca+zNUToXhpVwtK0KsXExlRXiza+qDZ3XujMpldWysuXPAIWTFInARNyMy1mze2S6qyiweLI2eKNnEn0CbArDo6nJ7deEDitnfMKOqctdYPKwEebm4752MMmjhGns2m+3vTN2/s3zm4+8jl85erofXWEdjciGJG1qhD6rsibOYySiIpKVjvnHU2y30ZQ1bXLvPl7v6Lz3+hWNugYriYHFdlIcJrW+MYRJk0kaG8zByZLM+TAlZFtZhNQWU8GjkaWItVkSvwYr4ocw+qR5O9QTUkMqkJqW3iYu69nzRzCR2KrAh5KL0IHp6wQZZG1kR2ub4vJ5AiIRGyrniyANDLa2lfYdYeRtU+Vbyfeup9tu5bWz9wJYZGSHhCGkNAwJS4T2zPbJ/5fPvZ48kEk+1Eakn5sGpTFEADqISKoEh9D3/kKACceLqYb6xvCGjXNqRgMqPc45KOdYBVNo9hPF7HxB6IFcTa8ZnSl8WNW3dGO9vrmxtvXrslAszBEDlLhaMq84hqMA3LfFBuZUW+uTYon35ic1gSGbQOAYnDVlVcffVlburh5ujmnZvZ+vDcgxdJga1R7EE2UVSHInFB6JQ8AliIDmMEF5equcDUNwsBGa/MoqmHAdQQoajy0qwZiVUUwZBVjgpKDhUZERyAMidmtE5BVBmJOEZJDNYaa0RAgalXlkQgVEQwvZ+vCpmeBbA09bXGgGKMWg3KGHh6PEFC45xFH6yt69pZYzJbS+etglWXucyiBVEF63MEo4CGjBGyLiNnw6RGv0ZFFcFmLjPWAGju8Ojw7r3dW22Ydt1CQiQFVzhZwP7xISDVsWuaK2fOXHj44UcUIXRpMjk+OLi3sXlu69wjlx9/+OHHHh0/8dDhweF65qsLZxcGa9AiyzTE3sNHersFWnEfeppwb4zX61AJ9hL2shy2fUEAl0eo9EAN6/1Y5NRQv0/EOQGHVlAa9o1AsGIx36/26/LewilnPD3VT6Cqwky6pMu8jSew+jg4/XHw9qLzsk63KpL1GqyKLLmxmfXTuouE5WhorCMgVLXOsiYAoyGmpN47TcLGZWtb7/7Kjzz06EOb4+HhtC1eePXN115f7B970iEU7My1568sDhdf8VUfeurJR5OzwVgWJOt9VpBV6xCI2j5NR0QFi4QsBoSULZpQt1dfePXTn/hE07Zt0x0eHNprR5Ph5hba4sbtW09urYGEgpKzGLXjlOZJE6akUpaDJ596+tMvvZpVaw+cP3sB5YvX32y71uWDoiiyIksi0/m8mXfIdjqdd62eGW+vbW13zdxmRQKMIY5H6x94z5d98tln37j1xuOXL8UmmaKq6+NJXQ+ryqDeO7h37+ig2lpbLOrp8aIaDF67+ubrN64+cemSzb0xFCTuHuzfu3Xn8PBw/+iolVQ4X5ErsrwoC+sdkUUyokrWIGLbhtlksr97jwxVZXlm53yPreysbcYm3njjRsudKzIwVrC1WSZk7x3sO7RPvuMdo2ptNpnW06mKIgEqGVADREIEIgC9ooCuLE5xOeRhNV5w2YUk2tvwLHeCnowIIiDkTVZmLrOA0ITaZttr6wPbtSxxVFgyGSeczxYxYpnbHmr8f/3hb/gP/tmv/jv/5Od/6U98hzMWlYwxvW0KEnzwb/5PAPCpv/C9H/ibP/bVf/fHP/rn/sjX/d0fB4Bf+bN/5Bv/ux//lr/1Yz/9p/+97/jv/9flsFX9gb/+wz/yt//a7u7dyXyqRsiAEtOyAb/fvGIPjZIhVALV3jQe+uqXMUSqQMbmvYT0SoyzR0qFRFllt5uU07tdW68Ph+3h/HOf+syX/XtPv/fpZwyhc1ZAD44O793d7dfEtmnQmjwzoa2vvfH6fHJU14vQhXpeO+ettQaxKrKmrjPjM+OPjo5Y2JXVweHks1988e7BsaI16Aw4AOw6Pjw6mi1mN2/euHr1ymBYTI8mhS831tYHeb6xvfX0u568ePkBRduFMMgrFo4xcmI0YMzSsQQVGRUVRRgNbW+epQuPTV94bX/vlnF77RevaFlsX7jQLiZNhFj6u/Vudxi3xs7ItlPs5skiNMxtkmw4PFi0mfHZYF20TZiOpjMkyKzz+Wje1G2TevHuO7fuHh0c3bp10KUmdN2f/4c/Bf8/Pj72BQD4wR/4L0Mbk4QUBj7zhKlnGHMIYCB2oanr1NakoSiy1Eo9m47HA0u2qevF7AB1OBoNjSbgNrOFRzMoS1Aw1jjvZtXR0eGB6f0KVRnQUG86JoQoK6i8b4rG+5zNZVHkhMMLJ6SEHoeEE74d9LTLt7GATuiP/cG9pu3JbrE6qmfjizGGACQlQErMk8n0wtmLVV5Mp0dRxHhHipJYURX6qhKJSuwt052JKU6n08GgSik29XxUDV3uNtfWmPnoIA7Xtp0zbRPOnjlTVsM3rrw5Gq8P18Y3b98xo2H02cGiiwgowROWeeYya0AMCXAySGVejsfbCVlTUxbeWLx588ade7uqemZ9w2k6c257lBdlme0e7lZ3h+cvXzTOcG8k7kxmgSQ4EOeMIvZxjQE2kICY0aGqoqKKQFo2MYAS9ViooAgxIycWVkIFQuEkAtCb3CGARkkqagwbKjkFBEUrAJoSW7Q+88ysGrI8AyTFpWQlIdHyCYoC9voZiGCWWyki5VnmfSYSnct85gS1axKS6d0bc29bZtXokMgZMs6gUQVCBwgpqSVjlDI0bd0WPnN5qWjQOjTGKCN3N2+8cfvejeP50SzUgOrJhLZdLOrZbNZ27Xg8PrO9Y61zvjg8OJjOZ5ygruuDo/1rb9xFeHnz0rmvfOdjPKoOKpcy2tlaD5lLhJzUqYmw7Na7HxzoKoDo0fi+NMx6imq8iiqWkj99iN8XgN8i8fy2uAdWQs9LIZwVLfp0wNT/qPc1eN8yX1Ynv190Pt2o/NZZ85bX3/Knf8lvT94VhXuR3vW19Z3NrYPZPMXYz2VCUoW+DSGpKpI1CBI5kZKXvBg/ONx+8FJo5+NA7zn3BI4/+fyzH4N67hkBDARd3Nh/7td/58aLL6oBAciqtUceferxx9/pKkgIEYwaIkWIAkkISSx755p6OplND2/vfubXP75//e6Zc+dMBJNt2mxjh7KcVY9ifZwa58RSSMyCDsmLqCijamJ2PqtD+9kvfv75Fz4/PTqiwntC5VQNh9baJta2tbGTxawBga5Nu+lgZzzKq+rV69fe/cRjLLA4nr3zkccO93e/+MZL53c2y7wUY6koUkwGgAjeuPOmzYgU9/aOiUEjD4ry8899/omHLjeL+vbdO4dHh23X5ll26eID73j6qXxYlXmZo7VkqG9BUFAB7q0Ze8MP1RR5wd292WQ2a1qOx7Npinzx/IX5Yr53cJCJQ7SzxSJqUAzd9DgA3ZnEN5tuvndgFbFube4NoUFjAEExIQmpam95IQJgwCxRQD1pn+4DCAAQFQYC0yeWvTEc9KPcZJlPCgawaTsBWtvY2C5zVZHYGDSqRtK9o+nxyQh1btUSCcyihhCRjLVoYNUsCXZ1zEmLoKS4esZvG7ijUfW+978/iWRFIaArlNoQWCTApR1HD4b0ENcJ1YcQe+7ikk6wJH8AJADbA2MgCWWO8bdfuv7aS3fO7Ax2zp09Nz77rd/2nU9efhdrRCUkvPfZjzdscmd6cEBiZ4Dm04Mbb74OEjPnLPBamSEQGQycjvaPLZlZexzatL69de/OwbUvvPLmjVtic/RlTNIF8USZyRFJ0TqXJ+32do9v37wbumZYDqZH0+3NzYOjw1dff+W973/Phz781XleNW2TZxmAhq4TY6JJzlrs/W6wJ3SphMDWDx96dOby4zffnN28q3sTnu8fvLrbZQoXx5hltw/vsI+XH36f5TLOTZVnEqL1JNSSc4s6+HzYaHvr9p3EXJaFKHNmWOXgqI4pHR0ev/TqK7PJrG3byaIbDbJBXgDAv/ne7yRMNncKaJi88dY4NYCoxEt9SAVAYxR72jh0IUybNhj7hdfeeP3WnR9/7fa5nY3QNF1QbuY2GyA3EuvccblRxCiDPMONvGlbYLQYPFC5VmbeQDsfZm5wZluEU7M4v7FWlAVH9sZpVGutAlhvKUXk1JuCQ++T0rMLQGCpWXk/fTxp7l2OZ9UV0r6kK8JJ49ap1RgRQQVXOk+qJ+/tP/Atryw3FVky1gghcTKm986AGOLDDz16dHWiAKya5UULFEJC4wwZBWVmZokxtqEDMkkEDRZF3jaNCzQeD0BTXS8eeujieG184/oNn7sHHnxwf+/AemTFu3t7Dz/y6P7B0dHhhCO3dWds27ZhfTRq2xmBZA4Jk3LQCMMytwixnhx003mzWDR15mk4KBeLZjo9zqydkEjXZgidM4+MH7r00IN1WFx589XzFy6Uw5FxliUe7O/Pdq/b2KAIK7RBuxhBknJg5ASoIgoiKpwSCyOgsWSMIyQWVWab1LLKyj9WFFhkqSNA0AuFAxo2dPbikzvbZ4JK4ggGiAAFEAEtIQJzst4gWlIhIOpTKkAFstRv2Mu7DoCIxIIAerB/QOQGo7ExNJtPY0plNUohhK6r550pcoK8txoUpAAkoM44a8h7KH0OzCiBmslWUfhxflTHKAHJTyeHN6+8uHvn2nw+6Tjmo8Fwbf3o+KgLoeuaxWy2mM2RAc6zL8rDw6MuhKbp7tzZi6njGLqZWNPuLibXX3/xkQIG64Nsc4s31+aS0ObSRVWFnjO/6pID1BXtpm+kA1YBJQRCoJNoBAGWap9vgV56GYG3sI9P5sjp5/B7PE6ipWW8csK4Oj2JTrHlVqjO73m2t07S3+VXp0tgPWcfQMGgq4qyqoyAFUiLNrQdbKypNb1NkoggWSLUlAy641buHB60DCIBUSMWoZG0di4//9jejatxNjcpjPPcGZzc2T+4fUeQWmZfFfVx3c4W5famGRbiHRonIYWjaapbkuQL7wpz+9aN471dXDT18b6j1NTHdRfmdW0LXxGSxi60kUWRSLjvEwNmAcBep5KseePa1S++/Mq73//+GzeuQeg2821nDRAV3ltrZrMuHieJUvgCSes6McLu8REMBp9/+eWqyp+4fLmrm9h0737Xu37pE3fv7d576vF3dL1ae1QCnS+mN/ZuD4ZDbCW2rNY6byPQzenB73z+cyTKKZ49c2ZnZ6usyqZtpvXi4PjgdrzbNuHo4LBpmmFVnd05uz4el3npnbPGAIsIq6q3dGlrG7fcVjV69jOfe+7FL5RFdefe3flstrG2sbWxoQySoKzsyOXWutJlI5s9cu785tqaswTEaKhfSFWRCVQ1aTJkhLAH2JeDCHXlEq9WwYCKskJSFiUEwcRRkRQgccq8dVmWklpDqs6gC+0ipBotStelKNa40EVI4Fb+XHa1bSQRI+xdhmY51wDwc3/5T7z3r/yj9/7Q/wgAn/n+70U0v/Xn/shH/u6Pf/OPLKtgBvSf/Uff9of/8b/qN4o/+b3f/vS73uNzV1qXhA2hKohKVEZlYDUoCtJ754rIyusDdNkUthTtZQUjYJJEkAiaQFHZKibSmtILt17/iZ/+cWmnYYaE3aNPf4CUX7v6/Hw6a9vWOrO3e68qHCjFJrosN2QApMhcWWSa0ICoaJLks+xg/+De3u7G1sZoZ+eBje1isBaCPPvZF964essXw4QuBkEyhKJASSiy2Bi7wMaocWDQGQMspm7T9Vu7SEje3Nj7jU9+9qU/+h/80QfOn5/P58PBoA0hzzJJHEMiQ8bYfn2wgDHE43nLqFCOqwcv28E4Hczrg9nR4byBmNs8M3lXpytvXN8e3bh8bhPVxTqVWWUht5RFlrLIyZs2tkVWpiDDfNi2Xe6KzPvRUEzmX79y9catW6oahbNRWRQ6HI0A4Jt/dAkC/eaf+4OWrLOO0DLKUiFQARTe97d+rD/mk9/3PQTwkf/+n/Y/fudqxbr1xpW/+nf+h/6nH/7BP2usLZV97JrZxBpvrIkhDgAy56w1yiks2mRMSql3CBmP1w72doeDYZrOU4qI1LUpL3LrnSIsZlMRVukDlL4LYpnj9k1EuER6uH/0i2BfspelLt9yfC3PAMt+g2VO/Xvkn73STa+evSI6LEtmfT2u//I9TppSQtWUEgBsbGyUVbW/e6SR2ZsQI5ZZSJFEoRdZht7EDRTEZ55DjDHkmdtcH2fOS2i18MOynE6O8tyvDTen82NGvvjQxaOjY7I4mU8Sd2jNaG3YhGZytL+1uU3IZeZZgkIEkcxB6choUk71YjGrZ/O2FsD19VF0pJxyZzLvcmd9PswIM4cud4NhuThsbt26HkO3trU13try3jb14vatG7o48CCKtksQkgAiSFSO/Z6HtCxYiAgSeefReyDbCyTqMm1GIlJEwl7MxiCBSkJCQzYl7lSBQ4ytKFKGvXQiI3AMxiCoBg1WrDXGogExcr+kotbcl+IlIiQ0xliHRI45uazIsqJt2y4EY2w1GGhK0+NpjEm7JNyJ8+AcgoiKc8Y7sdJS0zZ3p3fffPPO669TMz9z/sK5J981vnQpZNl0evTCy8+/8tLn69kxIjz82KNk/LVrNzWFqizniWMb1kfrqnTj2s2dM2ePj6eHx1MGOppMmnqBnByWbcIgGLt0reOdzAw3h/PMJFGH1jmCFICU0IKyruKAHm+EnucNS1aa8En1ankF+nV0xbZZxYOr9ou3hTunC2EAcN+0Z8WyOh2ULBOM380Neqm0jnpyqv8P0M7J4/dChlYY3vI8COiJYkptinlVnDl7Zu2Nq6HjLGkKQSxCbsCQCUtuvQgToPP57KB56Y1b04QJIqN27EhsKb64+E7Pedi9k+aHk24+ADXoDaP3PvPEkm6+8cbh7r2ARcozKnNjbaybeDTNRZ1q1GhyU3d1DG2G9vxwJ682bty7O+tCMRxYrwqJY8ccNQTWIifInKEIVntSr0SDRohu7+7avLi1u/vw44/fuvKq82SNAeyjIGKE2LWomDnvvOnaSa+Ssnd8SOPBi6++fmZzu7IudaEa5+cfOP/m9SuPXn7UODc/mjuBMs9u3rtZp3pEo6cee3LWpDfu3TaDMiJKhM+88sWnHn28WczuffFe5h1zarqm5cgqEQCsy7I8Cd+d7F/dve2cM0Sj4XB7Y2t7c2s0HrnSZYld23WpHVf5R77qw61IncL2wfbLL7/MIWyf3Xz4/OXMZik1xoi1zhorookTEiTtVKBTTdJTgMigQEqB1XsvSJxUEZeyJbBUZSMAUkFgVRZNokkYVNFRjuQYUK2pRoM8K7KslEYXszq0qZk3DadqUGbGNIuGjGiEKssL40/GW/8/a5zxVmmp0oOqxuL7/sqPAsBzP/jHnvnBH33/X/+xj//n/yGA/tqf+W4F/Ia/978CgEX8w//4X/XDGVT/wY/9zA/859/7hc99SgmiBAXW3mAJQABVUZlh5bGiK1GspSOBMveGFCBi0Qn4IEIaASKqqnSxnXDLlfutz3zizuHr43IIi+bMzgPrWX79tZfCou7aBlBZZDgeOzNUBefLFJOAAHI1GOR5PjmYkzKk5LyfzyaHR4fnzp199LHHMPcPPPbk4dHsl/73n33t6q2iWHO+nMwWBAiEZF0v0kiIHJVjgNyjgrGOAFKCtmmTiCIlRCa9emN/f+9v//nv+77z5883bTscDEIIAAhAxASUREQUjSROKQIyoOOMTIUj4arCM9uDRs7nubhU+y53w8PZ4ac/9Tl95/ixB5+GkEgMip8edkVe5WVelCVzQHXz48Z538U4X8xnNUdJ3ezw5u3rKXVkjGgqqspSylzWL5m/+Z/8wa/5kZ/4mr/7E7/95/6vxlhrvSVVVBRGpKf/2j8AgOf+wn/8zN/8hx/84X/y3H/+vf1Q+YX/+A91xn3ulVf/KkAf/fyN//RP/MW/84++7wf/u//hr/95yxoXdbeYg8+CyGRy7J0bDofeemOMhDhrZ8DiM8+imqf1agwC2kVjTBLJBrmIhNh1MRhH3CaWdB/OURDVJeaiaFDxd7MZWjE6l/kjEsCqnR5Wclq6DIiEThca+k2jd0ZEc7JD9PgQAhAR9sriLCJiLAmDNbaNdQjx+vUbR8eHddsOyjJzrtYooqRAxpw4dgIoGVKAFGLmnaTgiSCxz+ns9nbbNCl1EuP6eBhDZ0tXDv2tO9eLsvK5mUwOB4PRoqlT5Cy3A86znNqmQRXnDAIbVAuoMbRdG9oGVDxJYbGNMbR1dCZ0XeEdh24RYzYeFGU5GhRFkVtnH7z4wKyuVeLk4OBwcjwYVrmTtVFp8nT5/FnrikSe1ZKxwpFYCECE+x6glZdfb1trQFBVydiwpM4aBRSB3qFKRKw1IMESKofjw4N7x4fMMXUdOg+qwqoA1qAS7e7tqtL6+no7q1MnzmbWWEBUFWYxRM67JTa/2rZdhsYaTlBW49K6pqlDTAjkvFVRZ/x4bZ3IhMUipsixZekUIc+dJt69u6fz46Jri7YdHO4N9642d/cPblx983OfPvfeZy687z2fvXbluVde2Ts6aNr64oUHXr99ezpd5NZdWF+b3tvLvHvmHU+vjdenk9mtu7vXXr8WRJuQ5k09rxsVRZEmLpQSiXO5mTRdTDi/d1sP9zfOXmqbloHIGFCGPoK8b+Fyii5zfxzjSqDyJKRAXPYR64m+1duinxMZ2C+1Pj094HuX0xM/uOW/Cj2c9yWxCyLC21DY0wHNqbDsPhZ1+tNPtgOAt3TjgwAkdopgTRBdLOY8b3ayQeG8phRV2AGiWtGkrMsuLZWozCjGRzGRsk5iosyhi6pSDjYeHQ+292S+P731xsHundyWqsEAZc5H7mbz49lszlAwerVgDUrXjtCMygE3rVFuQXxmAbJO8XYDvswmw+3q4tpwY93qYiaABKYDeu7q9b3twbjMcucTQ2ziuc3NLAGBthh8louhum2Pjo+3t3fQSDksrau6KADMLKpgEFTEeTcalHXTOWc4xGlTp7vttVu33v344zHVsWsf2Dn3hTdvXb1325aW625YFGrpxt7tIvMD6x8+d34a5fb+HnLMimJUDXKG6cHhelat76xVeS6gxrvEMXJsmO8cHNRdS9aAz1hSl7pImGrZmx91V17M87woqzNr45H1mfGWvEVPiiamc0W29s4nXn7jjU9/7hM3d28+/MhjuWohDKJoTIoJEYhATUopoEEgZAUWzQm0ba3zMaYooGRSUhS1zoMKc7TWpNBZg6pJmAWZOYGQI992mvnqmfd/+cF0yoFLV1oyEWOzmOae1sbV0BhVJZT19XUAI22URg2kVdyz3Dxc5o11LssNoKKiITghYZ/oRhB85O/+UwD45T/1h/oXOKW3DXds23tXbwzXRy4zoMl7R86kKMZ7AIPGEhhEvW/hcx9N7ZvvgIlqSx5NFdEQsSo7UmNq7W41x//0X/3UL/zaJ8+dezzr+P2PveMH/+IPVG7Y1cGSz3xuyBhL125ee/WVV6oiUwUktMb1MHpelJM+lbEOAJume/DSpcsPPdR03dbmJvnsV37r53/r2U+urZ0hzaaTOQFk1omIhkREiOAMGgABIk0e7dpwkFJcLBbOmA4oAQWWxJj78vkvvPDf/rd/+7/6/r+wsb4eUzJEzEykKSXpZVQAbEpGBMkmxJgUmbJskEKjAhjYutKP3IL3jffg1OTy3Esfzbw++fCTyBE8lBvj7Y3tum7UI5HtuDmez2/dvXu0fxBC9+gjj2zvbN555d7dvbvGYQyBAGdHE1dab/3qzq5Qa2PRGJd5Bk0p9M3n/a+MM6sVanmLv/Uf/nMAuPVd33Jy08eXHuqfhLKsnaudK86e6+Ukz2xv9SayMUV1PndjG6IKeOeJsGXxWaEqMUYylDuTYjRkkNCkSLNpSNFYC4kB0DknrATY92P13J0YU9t0uNK0NL3IvYoxhpeaPX0l60R/FvsvjoQsDCiryvYqmcaEumRYw6nA6GQu9F31fSNCL5WZYmROXRtCFz7w/g+88tLrx123ubV5cPd2Xw7rvR9EBIhSigZRiawqdyGzJtbtcQiYgiFs5nXs/PrG2tpofPXqlfX18yEmToIAXdue2dm5e3e3a9u6btCYwmex7SyZRdshgnfAHGez+Sh3DtK4zIwxXQwxdCgJY2xnM0Qqco9ZIZwy40blYHtjvDYal8OqGAzndT2bTwFhHuPkcC947JpmnNudMztZUTXiwBVgMlU1ACgMBJy45/inlHr9SGNcCMkaG1NyKEDaK7pGEWc9A6gm7EmqoJhgdiwpNsJJJBI409c6CXvh0xhTSpLl2e6dw9CxJYOA1lgWtsYys3UWVI21BKgIxlqtGQDzrCrLsSo4lzELIhVFmVISa33mq7zsACVFJqNWrXOCHNt6MBqIdpIaBd7a3Lj04S8/fOOGIJntjXY4+ORv//pzt+8chDiNCcDfuHtYWpsbSx4nu4cb1XB9bX08WgdBihrnzd7ursnLCBRCYhYWdqTzdgHINthuLjvbg1ls7t64ma2/8b7htjUZATILGaN4X2UYABDNSSi+ElUFa0FBRdga35OGTy+nvWo3rMCb0/CPrBRm35Y8nAA/bysr9znqsi6gfaOWqC55jbAsi91/F/YV9FOVshMY9QT4eRv+dOrI++qLfZpiECBpCunVl1967YUXMiBnbJg1s8lkG8GSkWUHiGklOutICLg3jrNKTg0BeiSHyQgwG6DBqCoLjFtuvGlGby72bkM9QQldijFKwIFY42yeCYJGy8lbO/QmpyRWLeYd2d2maQ0NLzy4fvGJ5PKCbF5VJvN2VPqQdDgYt204PJrs376BHLfX1u8eHO3v7j/xyEO/7ys/TAR1F67eum1dZozd3z/Yunzh/MXtOnY3b91zWUlq264ry1JC6z0ByHhQqrCoEmbzrkHyn3n++WFZXtjc7prFejXMR6O7s6PCjKFuBmX+2o039o4PKu8LYw73d+9de3NrWA02RsZQN10cHk/PP/LYk5cfjfNFaV3kRMayJhHZsGZ7tDGdTxb1YtLUnUAKbcvJII7WRsZZIWy77vbx7vXQaWQvzgg5NbnzVV7kg+rpdz+5fbj9wmuvHr84OT9af2C83swXkrisiq5eWAMKUZUBte06VTTOtWQ1BgVKgk0IrAhonXcq0svHGFRDgJREO+eMy5wlbJouia0XMdjWglogUCzzSiWlOAftlGtvhXI/Wyy6EACsCilH0IS69Fz5jn/8iwDwL77n92V5PsrLD/2N/xEAPv9X/4yxpBI//0N/4j3/9T9671/9xwDw3A/+34pq8Oz3//Ev/+v/4zf9/X8OAD/7x79TQX7ye/7t7/onP9dvj3/z+75ntLH+dd/yjdX6mmoic7KPEgCBEoDT+wnH/SaCU68oADYgRigTBUIxpGCOuX7h5hu//YkvfPxzn9/cOLOVD778/e/8t77ma3e2zhp1XIK3ObMgAp60iJglHgwIDIqKzucKaIzx3t7b253MZpceebTu2lm9OOvzZ5/95K/86m+UgxG6bDGPYI1RyBxChBSDA+ONyckMKrexsQEE3rmdMzuc0o1bN/ePjiYxpKgGLFjfzOu19a1XXn/jR3/sf/qzf+ZPDwdVSBFUFURVWZYaGwkxiSRhRU0IhghEMspUIhkKoKEJ1ljbAXZB5Jhb/fQnfjEe33nP08/U84PZYZWRMndHk8XtO1evXr3Z1mlzfaOsqo1hlbrJ0X6cHu1JSiCQ+yIlmU6mG9noJGw9WXScc9ArFCAQUR9EfPEv/amn/+rff9cP/cjbDv6NP/Pvf+3f+1/+9E/+EiBulO6wjv/Jf/YXAeCP/rE/yMwvv/rGpOGt7e2ubYoiU07K3IsaGDKEJCyGLCgCoTFGEftN1Dq7t79XFHmeZSl2a8PRvbt3B4Oizzv7nkkROaEs04pxeTpSOfEI7oMURDzhZkpvDgxLrehemqZfo9+SIi950W/hMCy5FKv9ox+pxmBMLJxQwHmvCnfv3fvim89tru2cO7fT5VlMidQZhMjsrQHEvpfCWhIlTsGAeqSsKjPnuvl8NBisD4d5VUwn08Xx7IFzD9y7s8ciz7znPW9evarJTI8XBu2gHKkYTtwsuqoajNdHCYRQFos5xqa04AjXiyrzDpQXC2mJKPMqEhfNaDi0LGWW27zMyBY+21zb2DmznRclGevRcV0v2kVqO18Vs/lEQtgcVFlZksscFskUUUmEAnAvqyS4ZN+w4Z630glEk4yxYDFIABIQRcGQOJFjjqKGU6yyQiR5IDKeerU+BFhqL/Y0oSWDFxG8NWj07M7G2mikqtY5Zl55COKKLAJojBIY41JSBKuAIabcZimJta5nT6sqoomJEa2zhhDQGLI2pFBU64P1M2F9W2YTmU1S3dSJq2q7C60Z5C+/+dqf+js/Cf//fnz3d349wOT6628+dPHhMw9eTm20xgionghZAQD0YrzaF3NXX7k3dVZjbIoRFI11K0s7PYV0wu/Jx/m9H3hqXrzldVhxrN/aOwanP2z1Nnxr1PW2utj9G3cKENJT0xlWkzoxF9bu39i99sIrLmiZ54uYegspB2ild5rU1ecpkgIDM3MSVgQkUAQxBGjJACqjBjKa5bh5ZpRnfm10ePNqPTvSlMqN0aAcM1AILcQW2ha6RZJ2DtJE9tYPynUGy2bgN9aHjz3hNy8gWEVIZNRam1dZljBO5iYKtM1Olb/j0ScevvzwG3fv/uQv/Nwbb7556x2PPnzp0uTOLlqrMShriuFwf+/DH/myO4d7b1y/FlqUpHmRhxQMoXEmhWTRezKzegFkWHHeptQe/s5nPvstH/naYV5wCMPNzZv7u5esHThnSjfp6jp2W+PNB86eee75z04n0zMbm8dtM4ldV7dtWCxil1Vl7v24GsQQGZSVDZIFskT5xYcCp8iJCeb14tqNm/cOdpujugXJ82wtz23u0qhSwSIfhDbt7u/dme7Fg25QFGfaLUduWGbTo+nNo6Py4Ye31ze7pi5L/9Cls0YSp8aAptBNp1NOwqx7R3Nji3ldH0ymszpY77vYq1EiSOraubP2I1/9Fe9972NJpobAGEsAr7z0+o1rd/PMc2IVcc6Rond5OcjaxUHdHu3uXUdrqs0N0Wg9CQMgWosBkrACwE99z+9vu445hdCFkMri6OA/+vat7e1BWfTV48znL/6NPy2KKoJkFnUbI3/0v/xjMYSm65KKs9YC/uQf+/bv+rGf/W/+yz86kS4zxZ1mUnkgQ6CKDBrE2CwlADKB236JE5WTRsf7D+lHv1pNHKNxBq29unv35ZtX70wOf/Mzz37ikx+zefHwxhkzjV/z7vec2zr7r37+F9bX1re3t4w1+3u7rAEBurazpRPSpIBoARUZDJmiqBQpSW814TY2t4rBYDKf27y48ub1n//pn6OI5WgI1ikm421hCEIDqd6qivNbZ3bWN9fH5fZWubG1aYwzROPxWuia3YfOXb198+rNu69dv7s/qw1gTBxIrM+f/dSnf/lXfuU7/p1vN8ZyigAgy15dAQAGSSTIQD04jsoC1ri19Wo6b8QZBRml8h2bjxQQMpf5NRPrwNP9ya1rFXTz/ZslJaQ0Ob5r4+y9l3cGZm00HCVFQWxDLKvhF/YOpQ4+H4QA1pZZDuO1LUf2ZBFaLk+gosLM0O9qS7kc+OJ//aej8nv/2j8AACX89Pd9D791XT6sIwB8w1d/+Fc/+jv/04/+xF/9K39hfjx/+MLl0XjkLI2qwjvHKZBzvUMlIhkySAaRDNkYo88yNMQiWVl+/vWXts7svPrSS9Vo7au+8sM3rl97+YUvJlYkUhFNqS+AkQFEQ2gAyFg1xty3NwI9SSSXGDud+M28DZ+/z9lcXQ3pB+FbY3R9C+C/ynT7j+pbwEIMIbD3/szOzuGVO5Ojw4ff8Y7ri1lvwBRjskSiS9t5Zgkh9P4BhfMSk7FZ6VzTmdQGyqSdSTNvibCtw6haV4HDvSkku721XS/q3XvHTdeCQFUNnXXKFAJzTF1sJXUFSWZtRrAxGloETsmBahrWXZ0SC8k4y4q8KouCEKsyr7y1gB5N5TNA6lKNMU339iXLj9pGKRXkwTgmB+TR+tevXH/x1WtdTNZnvRk4MxPRkl4uGmP0Lk+JQ0wqAJ6iBocOFVNSIgocEGFQ+g888/TYl0wcxbMaQDSAospJjUEga4zrxcFAkBC8I59xlkmMkaVLnFipyHMWJjJd6IwxHj0ncXbss6zrUkrJpMQcAdg4B4hkSEXJWBYAMMY6DsGg02iATUI8bAHtutvaMNsKHFOMi8Uss3h7987PfPb5PwjwnZfW83Ko4qosP7u+XhnJNK0PK2PN+mhtMBgQmRhjSnw8nd872L92585xXTNRVlTVqBRKTdcd706tyVxR/M8vvApizq+fPTo62r13Z/vSRUABUaVlBN4LCfSRPSCceKdDz6jSFCJnPgc8uReI2OvJwYmu1duCD3wrqfkk0PldK1Mnz5ev4JJp9LZjljNi9Vz1/qe87ZwnU+nkgNOhTx+envx2ObQAYogH12/7Nl4Yb968t1dzKkblaDgsjC2UHFoxRIgGackSR0iJWZTQoBgPHKEX2U2m/xxURoHcWD8eV3k+XG+Op5q4GI1sUbWqEVlip9MJzyfSzUVZRYRMpAJstbaxbXfOaFVEwN6WigEY2OZ5keooioQ63hy/67HLD5/bSSlcvnT+27/99//sL/7cr/7arw++7VsTwsHRkSlHlS9DjE1dH+zvu8KAN5PJcVWMUogxxML7PrbTmNYHo9B0iy6WxXC+mBLR7vH013/n49/8kY/kWTmoxunenRTbvDRSuMV8NtxYe+DcA3fv3ulCvb0+Gm+Od2D9uZdezi0Vg+HxwWHsuqHNC1dYdFE4ce9kiolwGkLiZIypykE1GJ45e342mzJovajv3rs7nc/aeccQE8sszbqYWNQZbwY2arp+7xYnNcbacdktFq/t3pxzZwmOmslgc7A2zCglA+LV5COPik3d3do/lGQ6QVcMLp3fdllx8+at/cnRIM8R5IEzO2trQwZ0eWY0Ew6icTQcra+Prl65lrk8JVZlQxRTcj7zmQMjgHJ4uFeH5rwzg7WNugnGOJflvuzCEfbGAU0XDNFobRMAmqYNbWhDPJ5MU4rjUeWciSGIKoBp2q5uuuPJ7Ph4kpittd5lSVJZFHmRYVQAMK0Wxtfz+U/95E88+PDlovSWiKIQIAEpUOgiWntC7j9p8wTouXuwBE0VICa15srencO23l9Mfv5X/01noY5hbfsczxZrmL338sOvf+Z5bhSUkg03prestSIpSUTRLPNkDCT0gAoQmRGJyJZFYYwBZmuNqlZVFRIPx2vjzfWf+smfObp3uL12pmGIKeXekghJ46A7f3b9y9/zzNOPPbG1tjUcZkCNqmRZYYBCCG2Lgxw3xvnGaFTkxRevXN87qkdlNWkashgk/eZHP/ahr/jQ1uZmStFaI6qrZiRAUCvAKbQSk7JnZcXb3Wy4Nh6d3yjLalBWYzN44r3vmsqkqnJlHZYlsBKYqiiZxTg0BATJggfIl5d16V1QdDz9H378f52F7vzGmfnBsXqbu5ITT+ezfg1KfAIFERGtlHUEVAng6b/2IwDwue//k6uD5QM//E8+8X3fc8rmefnYP97vn5w5t3P27plyVLZdkyJqirl3RKBdMN5TLweDpm3bIi+Hw7Xd3X2XeZd5MrSRZaPx5rWbdw8n9dp4uH88LYuqFz7HpYybCKhZwu9L6sN9yL1f0Jd2QstABXq8qEeMiHBppQInNwGwl+dcxkN9gAbLm7SUWz+pgp0UFxABsDewWYbsfeAUYjAE53Z2AJg5GoNIKAYRl9o1qho5MrN3eX/e4aDMjWnrBQHW80VTIyANR6PhcPja629cfOjhoijrlEbbO9duXVfF8dnt6c2bAjqs8m46O17UQ0z1fG5JLehvPvvc2+/N/6nH3/izf2jv4MCWZu38JhjDvWKFdW3gO7v3rM+HgG2zcNaG2J1YWvaFki51XYhFXs4XC4iUEqPxkpTAMFGKXRcbaZwDMMwmRQoBewVoIFVSYaGl2RsIMidCC9CLKAlr17SLxLyqasYYo7Wu7VpnrWreBRF1eeFCCMPRBpGtm0YBbE8Xsza0LKJExBbQCXNCQKNoQA06BujVZpkBwKIvTFZlRfbZ3/n063dmAPAvrh72l+g//bL3Vt5I22aVt5ZGg6rIfe6td+79f/dH+2P+t//L78udu3LjxqSpB5n9b3/7OQD4vq98xz+6eu/kUv9vAH/yD/2BMxubB3v3Dif7Z9fPcAho6H6QocjChL2hKfW+TKqqIGSNA6ui3tsuJABGdP2E7kWN+4B9ySU6FWqcmHydDlNOF7/eFgadHNA3na08TPD0wb3Y/fKEb+3OPwm2Tp/55E86XWhb/f4tCJC1dnF4dHxvj2ctN2Exm7WFz511RW6UUFSEWQWFCClJz/yDKCIKREaRVKU3HRLgfpcnVEFm5aggJvMbDxRjEFVBYGRCzZxHATNuTQxGIgCgISIKSYUyqobJZXWMpMmSIqCAAKBFJo1sUB57/OHHHrmQaduEI40iWJ4/v/77f/83ffQXf+nnf+Znzj71bptlxvp6vsgULNDR0UFqMGhAT9bZ0AbvfO+DiKqSYlWOh8Wwbo9ms5pcXretxBbh8Def/fTXf/VXba5tFc4dzA7KjWrSzWJot9c2do8P28VsXBVVmb3r8UePpu3NN68dtzWBCW27d3e32D4fAzOIKBjrPFogbEFVOMtLAAgsGgUBIOHaaHRx54FzW2fqplbQJKnp4nQ+b7pwPJ/d3bt3ND8K0qEj6z15V1TV2vYWd93tg/2qyNaH1bW7N9rN4dowd6S9ahchak6u8NNJY0y2vr62trUhSBcvP7DZbPQK6MMy59QeHe/e3dtknlWDXFK01gzGgyzPJDIodKEDm4cYsnIAZGISAbA+K4yNAoquHBSiGbBB24HJGAQAWCQvqqIowJjBcBS6qAIxdsfTY5VUll4lkfUiPJsvmqYT0aIsBSnPMmNtvai7Llrn+jZLDUAeU0gvv/Ty1vnts+c3RmVeOSttAIY8K4tyGJlgmZAv69jWOUNL1zNdimMjK0qeZTev/vkf+oH946PhYNRMjjHw2bNnnnz0mfdfevT3f+Tr1/NqvLWTVUNEG1gRiAwRkUE42Lv3wgtfjDGWRVGHSMZibxPtfFmWECMhllV5dHREPr/40MOvvPLq629cGVRDSeLRCwupWOVMeWdz9GXvfPyDzzx5dnuH0LjcGFuyCCpqFCLxloKBQenXhvlDD55bRJ4v3miElSyS8YZeee31X//N3/zDf/DfFaE+mUspMrMwQBJIccHNPNRBYp4oQ/fclRef/cJnhmWxaEKsNdOcnGuRFZgQvfWgmnlvDRhClqiQrDVAwEQJSVWrojBIa+Xo3u3dN+/t5lVZx2CcbdoFAam6+WLeb+zf8A9/CgA+/he+J7cZoXnnD/0dAPjcf/UnHaFBfPG//lNP/dDff+9f/wcA8Mn/4o/3Asgf+uF/0q9WP/3Hv/s7AB4+O7pyd/r5518FgB/6b77/7NnzixCmi2ZrYyO2XROCtTYzrg5tlWXkrUWjgE6zvCxd5jd2ttquUZAsy2xmQxCA7IELDymHFGU+navisq51ShILeshKdClJeAqoX9lmYs8LAWUAVbjfbLhiP6+AovsFghMVk5O4/ATIf2uWvHpORMJJmBHRWpsSN/MFcApNfePamxMV4YDioG/QFQFYAmssElMqMu8MDYdDaZujybTMfZ57ESRrDo8OACnL/PUb1wRg5+yZkaa8Km7fvWNaVwxK5xwjg4PC5grirN0YV0e7twDgL3750w9sbeYERsQRFUWhSNP5oukatLA+GFfloMgLZ22W5+Wg6EW2AE2KKYQYYvdVf/sfW+M21jeTQyGrSCmx8YbIpJS6rnviyafe9Y4nJbbQB8srlvp0Oj0+Ph4OR95lSEho0FgUQEEQBEW07nBy9Nuf+KhDMZpQGDVlBG7JzVr+1++yklSFObH1zhACiCNnyGRZniM6Z1NKzvtgoyGy1hhjnTNk0RiHiMzsvaub5vBoWpal96WIWGMRpeuCzzLwjlHUEBgAEsNqEZwhdFYVuG84FLXezSfzj33sE4uW+2r9d148+y9u3P07n/7cX/rwuzaGg/HacFDkmffWAaG8/2/+CAC88pf/syf+yt/+7p/6xZ/997+zyNxLr7/2Nz79Yj/iihW77g9eOvsT1+4CAKsUmZt18ytXXhk8VQJr4iTCJ5GHMIsuWdA9A6j3hCYCEUmso+HYmayv9awiG1LtESA8iT/gFABzEpqcvPK2SOiEs/yWx2oCvi1qAYClLN2XlLrgVGgFp4KqL/0DVgFZb7R7cjykEL11ufMHe7sl+uF4tIhdFNa+k5poGXwz6HIEESMmVUSrsqoGoqoRRVE1/aTvl2MEB2CDojEWAJU4aVJYGlZRVlE+sECIyCBdSilHsDaxchcH1qKAEiMtI1aLQmvV2tZ2+Q1f99WYpq89/8lSU2Z8gNQ1+uDZrT/8HX/g13/jo7/9iWft+laMCYIYCynG4Whw7ejOvKktFfPFwiB1oTPOoYIwly4nhY3xxsFknlBTZJNVMcUmypUbt6rPfu4D7396vRjcmN4cjjf3X7/6yM5FjXJQzzLQB7c2Hn3kIdE0yLPtzY39q9Msc6C4f3y8Pt7MmSMKqzrjEI1VKhGDJgjKzMYaBeOcFYLQpug5dAmEBlWlqptDn13IfJZ3MU6nx4fzg+P5ZPdo/9rdW3cO9hZH81FVveeppwdPPvXqyy82x9Mzly5ePLc1nx5yYiIFg2ht5mlrq0r1VDRNDw4mx7eaKHlZWYuqmjmzmOylUL/zqSer0h7NgazNcq9Aw+HQeT9vo4KNHNG6pDzIfZ5XRMXh4WzvcGqdu/vGLX5zVxhEs9DpOMu3fdZpAADrM1E4PJ7WdRNjLPISAasyV4W2ba3VoshYZG/3YFo3RV4WZTmwXgFEgYicyw4O9hOzdQ4AZtwGcI3HSRNvz6bf9sxXltZCahfz+Zm1s6xC6AByACJABWBlxCVPB5fTiTglMCqQXpve+uT1Fw7a+WK+cHWsWJ984BIwf8N7P3j57LlHn3qCgFBdjEyOGAUMJG5JwajM2mnQgBYjKXmnisKJECyZQVFO6l0wVBT5tevXKfOD49Gzn/pE2zajakSQda3kaCSKkzSw+MjO9hMPPbC5UeYlKRixiD4DQWYhEuusGqwcyWJhrPV5vrOzvX73sJ3WWVl0XeeRQhc/86lPf/M3fsP62ijGkFJs246ZRYSTsqQu1PMwqSXlkfJoHj938ejOzVdeeXG3bo8mQY40xMhOuhAceQADSogaUwvAiICKoWXolQ00AAJwBNB8OLBknMnzvOxSR95wEkQhp/3a+tPf/fvGawNbZsZYUFCVz//FP83AtLSkI4P00l/+cwmARV3mQfGT/8UfVxFFOl7UvXthNVgfbm4i6pd94H3veuY99/ZfO5yEs2fHk3ly5NfWtji0o/WtzRyTdE3T+CxHpJBi5KAoaxujKGVKyVqDCDFws4hl7sqidDZfLBrmE4tN1aULniIS9b1FCgDQ98DbnhHay0b0MqErP8PTRJ/7/J9lFgtvE0K8fxDc3wyWQcyXSA0RkXEutC0nKfNya3NzF16LoXVaHh4eGGeTJElijb3PjOjLFYQxRYl8+049KouiyMu8SCkt6tna+npRDiaTae5dbk3d1SNvXGq7tt0q8yZ0itDVzXy+yLJsc2sztl2dUDlqigDwNz7xfP8x//TbvtIDZkQuz6s8b1MnEDdG61/7I//s9Lf44l/5s4jwzr/0t/ofP/f9fwYA/vwP/y+nj/n8r/ywMEsXnCUEHQ2rrY2d1ERQAVRmEUmGsFvwwb2rForkMMb0wIUH8mGhAJCAFEQJnF1oakCNJfZGCEMbW4yCbwEbTt8yZiZUA4qqMcp80hH1ot4kYojMoBycNum2DgAyUfXeE2EI0XsvIiLadZ0pDRG1TWet975MMfbKUkIGCDpSY4AQqA+4QtKUBjm9/vqLd29dP6mgnminZRq3hvk4z7xz+v9m7L+jZc2yu0Bwm3POZ8Jd+7zJfGkqs7K8l6uSbRkEQrMaNdN0w2pg0EL0YEdqgQQs0aDRIKCnQZhZmKYbRGN6QI16hLypUpVKVSqfrvKlfS+fvTbs933nnL33/PHFvfmySmvW3FWVK17cuHFvRHznnL1/+2fIQvChWA+Xq9AjMbA9qiej+g//h1/8O1//zj//m18AgHFZ/MVve8/enUOJsX/M63t3twbVSuLNz3ymrkeMhDmbqoExMyKpymk1TmsKNCKaoiGiCBzsHVy8eHk4HIvmk6IHABBA+yALeHNp8mCh82AJAg8UKw/WJQ/ef8JBWsM/+MaXPvAjb6JdP7iOvnIQdpILfvrIXsKp9gDOLMqGbdehdxcuXj5Yre7cud07xItDcCxoBfQpjU7QFHMybVUEQKGn74mAAqlCFgJRsIwOatI1+K1B1cTAgCCAA2UkNUhmoMYJDASU0LzLloFTwVAlDdI1jInXDDYzc1uDccX+3W9/6tzZc01TfN23fOckVKUrEnG1s+EH1dgN//gP/PD//Z/+w5/6p/98ON4qg5svl2cuXnzrW99557eO07L1dXDOdauud9FzwaPaaDgclNVgMEoQX7t114/GAJi6NmWpHD3zwtPjraoejoc6MVQuud4cze7OuIVLW2efevyxHBuJ7bCePHzl/Ct3XgNHrcgirUQFURHIMIuJGKKiAq/bSjNEdp4lZ2IKIbBzscvL1ao3oWKSZt4mOQAy73i73rh49tKHtie392//8i/9nHYr5/nOi888+sijH3jnU5/4+Cd++Vd+9Wu/5j2XLpyRrKKZGUxiEUJVODQtvO2eufDY2550ZVWUpQ+OATySd4aWs0ZwbrxRZ8sIyGJlMSjr4mh/RlBKXIa6Uss++KqukcN0pV989jVVaKIaOkAPBpD13U8+Ue1ulYEBYGNzuJwvDg6OZrPlYrmqqmo8GsdU1EXhyTQ5LKxbtQA2HAyaNh3ODpIKGHgfRoNBWQZGXAeDAqxS12JOA3/3YP/v/sN/9PyN1y5evfj0Fz6/OZz8qT/6JzaKISYlcwjYdF1SHVR1bBOY9YdcImstC+PR/OjOvVsv3Hjp3/7Mv7//+p13PfrE2y4/8uwXn7kwmHzrt3yzI5wfHz/z7NPL5QJEnHMpSzbY3tk5ONxvmhWKENBwOFahtl35UGPPA0FHzrkyJE1FCAb20JWLUfEzn/7cvTtHw3qz8sV82SqSJSkc1ArjgBfPbO1ubVZVVQ5qQG5V0KFEcczEmLpsjCrASOO6arq8Mx6cO7Nx5+iI2NVlEZtFXYbXXnvtlZdf2/nA+9q262IWyaqimoGICJ1xUJ/zmhWkXX7/29+LSeTVVy0tl6uWHUIIw8pStqoapi4hGfEo55xiR+gmk0o6jDEhJiAzyJ6ZRYsQWtKsyOy9o1JcwbQ8PpICAcAVPknWiHUdFFmViamuxwCaU8dIhKS9ny8ZkhMRXw3mq+Wy6eZNRCAAGJej0sVs6cz2zuNXHiLm+eExom6Oxq+98OLs3h4RTAZVWdZNXLWrpUcqyxI0g7LzqBKDp8J5URFp3/rIpYcupLouwbQqPcu5u6+/bCjQlzJEpwPEvnIBQIM+gs3MrAcO1uRLABCzftiLDimB9puvGAKgYu/j058K6xFY7w3Usyn1wX2/x4fUjHHtRtpDuKZgaqKoYI7w3M5uesuTR/vT3Z2zh2LHx/tUFKEKmoUQGMwRARgj9rlkjqhwRKpt7BY5OecGwwECFJ7BsmpXl+VgtNus2o2trWxSFhCa9PrNG2UxPDsqDw4Pp9pUZQWpW8VlXazt3f/J7/vwH/+PH/1DP/vx/+17vxHRPJEviiFVBlqWZX+mPP2j/+3b/vpPAYCJvu2v/RQAPPNjf+Gpv/q33/03/h78+E/1j/kj3/fh//nffhQAYobCO0BExqQp5pxFUxcBwNaTQDDVrc2td7z9nSEUMaaiKIg5xWgIoIQKRgwCWVKPhHUpVYGBAJgBARWFCAgdIpFnZEbMCmYoiAKoGZh8KEtQW3Wrbr5QsCpr7KKohlAgghnU9UA5ZxEmD8CE3jGIxpyTqsUonjyRaG7IAvR5cLaeTkoSBWTLSERAwABqhPKFz3yqmR5JMezfluDWVc7ZzcmwLB0TmnlyCCCSn/4r/+3b/tpPXfmRvwkAX/rhH6jq6j1/6x8DwNkzZ9Y/bjYgHwfDf/L0qwDwPd/+9cfz6WJ+2EiuN7euPfbE7s6utgs0VDVmRHJgYJQNATIYGDOQMRInicH7xWL+md/5TNMsNibbIgmg9wg1MAUkADJbI+s9NKpfPcPuO4GTEu+rR2BvfiicPuzB+gaR+3HwSdLXm3AdeHMhBQDQL2LqJf9gsK7t+siaUwTIxLz309XhrXt3MpgvQzw80pQhq4CpI3Wg60LZIxNBNkMTyEkUtScUkSGhrt+QfithImNbz8nVTJTWpr7au28SaG8riKp94pxKNiOH2If/oWYwQEc97doMwFzJ/rFrj1y8cHm2XJ298tATTz6lKwpccEl783vPXn9ue4jvfueHvv27f/8/++l/zaDoURwJF4dH7fNfeilOu0mJahHJgi9i241G48nW9kZZl95773c3q727sZmvqnpU1WWz6hSkqOmXPvax81cuPPnk5ZiW1bC6NzvujhaPji+84+FH4nJVexc8ZclntsbjuthbJefDsm0ldyTKgBnF1mlZFE3FtPdaT5ZUNZQOMvSl73A4dD4MB6PgnYkRUpQEpITWNTk1spylgR9sOn9usvHWdzy1SPngeDaui+/6rm//5Kc/9Ruf+PSTb338fe96R4otgjg0x25jc9uXB6ltJqPhw1cvCUMrWVW9KGs0kQQ5QYau9T4Ik4oxoCGGsvSFY8HcLCdnLxy3HROOx4NkaSlucRQZ2UGvn4yQE8Rup3IBEvYaSIiOrWDa3do8u3sGEAejUWyaoggmsVnkimk5n4FRWRdHy2Wb03LVpJjretA07fZkvDEZqaWcBQAYsfSOjQqBK9tnfv7n/j/Rw2Bno6wK9zP/yze9+0Nu2bmUq7JsU3r66WcvX766u7ndtdGHQIV78fbN1+f7C4w3bt/5gT/6J5/58tP53tH3fvAb33btsTNbO7Xwo295TFXOX7oavJseHROqYwHLBDIsima2V0CuhoVjR+iWy9aEhkWVVNGcICogOM++dCEoZEIblL7m+vNfvB473ppsWReJUFi/9NyLb6z2Z2/A//x//C67wP9/X5cun9esq/nixRde+OAHP8C+wJQQEaAPVbachZAKKlRUJAkqImWAp97+3r2j5cGdI6IEBjkLIgtYzF22bCKWFACQSdXabmnCQGRAaqJouWt2XeWAknehKIMASBqUpcZueXB05i2PAAA4iBJL5ZQlSVouF8QBj5cxNnXpB0UoiwIRLa8527f3927cu3t4PFNAx74uagAYFb6QVA5DyTLAXBRuXBPocmu4s/3kY967mGNRkErrCUd1lWMbwQZ1FZxfHR+ycxHBO0Im5zzCoihoMT3sYloyxRTdemcBZGTHItL3RdCLu4gNoE0tIAgIMqoAUD8n6KkPIEAICsAAsu5ZAZCQiEH7jPc+cWYNCAFgT1hGhBOzRDNVR6QA2nvtIpoZszezLJ0yYuW7w+m9G7du39/PTYY7+92yKThgCCJiqKqAYh7RVFSF0G2Oxovjg3OXLsyO9jV3G9s7YlYPh6tm1TZNVZVNF+dxMRmMinL88s1743ERnG5v1hWdz62Ox1vntyd7B/frYbk9HO7fu1OeoA6n5xJ5R8zEFLwHx96zc/zFH/kBH3xZFevz6QTW4lCcXrf/w/f/58/dfAXLtUY6JqiKwoCzZgzekA0AqM9INgMhgiwZUDY3x23bVbUfDQdt1yW19VgG0UwIgMlKz5VjZ0AGDp0pqAgRmnOIiASMzOBMsyQh8sKcAdAcoivLOqXOW2iaWcpdCK5dxqZpQyj7RBRm76uAyMC+adS7Yr6a1VVAUDIXm1gOQ/AQ47TI3pHPKojEiNLnCYkxoakpCqChw/3Z0Ref/qIzSHJiHovrAmhYVsCsogGZ1RiRyfXV5Ms/+aPXfvCvv/0n/sHnfvTP9A/+Q//+l/obf+5XP/+3v+n9PJ6sj9scUXUW2+Pl6okrj4n4vYMZW6dJRbQIrEBiGHWhkM6fveKJGE2jgbrAjhCqsmSnPrAZm0UiQuReaIzgiJyq9MUNAhgovpn+b2YA+hWYzanC7sHdjIgA7MT48I15We9B2vvnAiDaSfDtA78FvroAAgBQNV0nqSJAHyqn2nucshIAGKsYYgjb58+t7uwdHh62TeMA6qLwxMyshAS9hauJCVpmwyhORYHByFCUgHseGSGbWp+yli2d+n30zl/MhLg2IiZDM2egQAhgGcTQuHdHNQDjTGyOQcUZkvWWv+DOX7569sLl8cZWJ6vf/tRn//x/95fjXMf1eBmnwzP1aHc8vbdwXB610/HWZrtqm26FjEez6c//wi8cHhxMtjZUddU2ZVWbGoqB4GQ4Hpc1qKpYVVYPP/wQmL9zf3//YBp8sYyZiqqx7nC+cs6ruIGUadFNysFbHrkadSW+k4B9KGFVhdF4dOt4DzwnTaqChA49OAA2zsTonWfpEx7QiJCZetdiZpdzRkbvvaogeU/BOUYlIGWA0mPMAEioQIjdYr6aLaMrNiZnmiZ1i/Z97/16x6PPfO6zkMq3v+2t08WMFBCSMyiqynI62t+fH+6H8aCJLTtH630cDJCcI7R+ZbJzZChmPoRewNw1DQAwMgJ6xoLIJDOSqSj0XHr1AYFw2cw2BixAAOCYB3VdFXWMYoaD4RCJ9toGzTwHkNx2EQyS5KA2rod1TSmJqqFZu1pVZVFXVZcgSQKAFLutyagajX7PH/0TD7/j7c9cf/Zv/KP/5zEnN6x+9td/6cuvvfTUtce+71t/z9uvPllycfPm/dWs233yyuaZM5PtXaCQn/90fv2Vf/6v/hfPxac++flf+cWPPnr1iR/94b/61oefWiym3/P7V1yEewf3H3340cIXklrHHjmIKpMz0yzROwbMDt3h/ODzn/9CirlVYPaoYBHElIiLqspmGjOjeSoWi9V0NvPsc84OMYSQcwcA/9VjFyvTt117+B1ve3L37LYLgYsQXABCAWE1VFCVJFlBc4pxtmwWqzbKMnUv3rn7iS98+c5x95tHRypkhl0bb9x8PbYdAhYhpHZlZkDUGw4DZCYuXOjEUkpAoCmXZfmhD34w5/y5z30BsWBA5xxnnc8Wo/HIjLrcIvaERDRcA7QETMyaBQGxCM4H1JSWK+9C2zTIICmVMY1GQwBo244deNF79+7f3TtcrRIYzedzZL104fy53Z3drQ3PTsRMYNk1h8fHWWRnd2dn+2xMcTGbA8DmsErL4/Fk+9L5nWZxVA93BZoMzlxadMesTtHm87kedYGZ2ZlYbjszSL44afBE1ZDQeRIFJPLBE3sxzWYKqAbOOTEVRTNyjsHEBBSEmQBBsphZCAHWPM11v6um2Med9GHX8Abr85Tq2RejD9AgTgjUvZTm1Pf2DeK+nnCg+3uUGEwUCbu2ffWlV46nC0vQdFpMxk606ZKYMiAiqyUD7JNenGPTXJZ+enxUOBe9WzQte7/Yuz+ebJ45M9nbu98kGW5vFYOxC4N4PL1/cBybw8vntqtycOOVF8z4wqWLt+7ewmWzs7VFoGVYH8z+xJ3FOwYyBQGG4J0B5Jydc4T06I/8bQB4/r//c8T87F//C2/90b/9xF/88dNzaXdr59bhwd/6d78GAD/4p77ju77pG6WqkIUMS+e9W0dPE6GBiJioiugrr752//69Rx95tKqq4+l0sVgVdVUNalAgQlFEJDAyBQBe57WZqAka9sRAwz7ssP9oAAFOfZccs0ieTqcxtcxcVVUQx8z1ZDIcjvszmNmZ2Wq1BComk53VsjmeTkW7emvDTNuYCaHrOkAwgJiTc0TM6+IACRBzEkIMwQNAlOyIDw+PDw4OuHDs1u/q5nBw+j4jAIExgPfOO0cntjqnLgohuJd/8i8zweHB0bt//KcA4F/8vg8XiH/hlz6+Lgq+7f3D8ShPlbRZHE+71JWhRkFF9mUp2sUUXVnHZXr5lRc2JrvmA2jCzO1qURQhFE5UkLD/1T01R0SQgB2b4Nq/Z23xsGahnVLiTklCD9oLPVivnN4+AXLWTwgPzM5OzIROFhQhnRqOfhXr6E3TLiREAyYAEDx1lF4PqN/4s1WH49Ejjz0+felGXiVUY+rTUvBU/ykIYD3+pGAsIklyFhMEBHSASKBqCcBOmp2e7Q5rPLmPkzt5rbSGzhhQtZ+kMVBvT2XaF3u9MSoTnmTBEoLb3D1XjTbu7R+5isC5L33x2WYvDjerxaK5+s6z3/DE1z/7zAsvv3BjvLu5tb0lSZEop9zFeHB46IuATL0ct58DD6tRoKLg0vuC1JbdKid99JEnHnr40Zdfff3Xfv1jh3uHoSzmcx1v7BJrTBqKCjvGRi5fvRKlm6/26knVzjoC71mJitIHT0wGMXV9aqIh9umcRVExcu7LUDtRj4D1kJk/+SJyi8VitpgPywFSsY79Q+xtagnAB++ch4Sz+eL2/CCJJlVRCKEaDyfvfsd7nnvu+Tu39x5/5NHgQ9cuL+1uhuDNO8jZulwgS/DoPKw/037EaC4AaFZCRm8pEeJoNAIAx65pIgIgUorpHW998szGBMUcsYECkBEREZqQxEngxcH9pAYADl0IXqKOxoGYASmmfGZn2xE186Vo9kXlFVaLhYkVwQ18yS6oqsbE25sqAgBVUcWUAIBZXI53X3j+rZcvPnbtLQ9fOvuZz37iZ37zVzHgZl2++MqXb9++0S4W3/X133Lt7JU7t26N6tHB4cGXb90otrdfvPX6pz7/O9Pp0fG94wvbZ/7ZP/gHW4PxH/je79nZ3ZrND5h5tDFUxMv1peliimqwJrwVCiQ5q9pgVKWuWaymdVVNZ9PVKhE670oTMxPnUY1yhBDK4WDSLaeIwK64eev6atmMNkf9mvDOk0QA+JcvvN4v0U/9lT/DzgH3iTQMAJYVyBHalT/5l/rHfOlv/5AR+bL42p/8h/09n37yqoEAwO1b6+f5yIe/rouRGQmJHWfJkq0/B0SJmcH5nHPOGQHKsmjabmdn6xs/8pG27Z59/qUQ2NSYaXM8jjGlnBx7eEOL1GdDYDY5yVDjjIA5Dhyn1E6PjnxZxE672D3x0CPDwQAAUs7eh4PD/S7KpQsX6sGYXVgsl6bJOWQwYnLeq8Q2tvPlghCGVQXOHR8fmKojBoDz25ONir/uQ++9cHabTNpmUQ+qeTs/Xh0bZ0CbLeeIMKxrcOyYqlCWRRVjAsPgS2QIwaWYY2qbtt09c0bE2rZxRVGGIMuF9kMscrAWrJEKnjCXERGYnfd+vWOs92g7JSnjyTzspOA5Bfbt5H/9JvsAMP8As+FB4jMh6RoSQuhhJoAkGRGZqetiWRa7u7sq3C1jXQ9pvHnn4B6zk5QQCYHWwfb9pMBs1awYJCGo6GiymUWJXVXWXda8bF09KKUqqg0I5c3bt4bj0WpluQ3oB6Esrjz2aGrj8Xx+5vzF6fH07p1bsVtyNVq/hhNxXwhMTEYGaMhAQKronGe3PqeRKTAD0Qs/+RdF7Mkf/on+/nO7Z89Pj/rbqtp2nfNMjnPOmnP/SgzI1okphowOC0Q6ns729o/qQRvbiMS7dYVAamprDyfu2YNEnsn3W6+ZIumpUwESEvUmGrruzsGAtD+de74X9Xka2DOr9JStxY57JYVzrlnNd7fPr1YLcoPBYLBcrkSSAqSUQ8GInFJCcMwIoCICiD3LO8ZIjEwMAM6xiq3a1Kq2semlA3/nM18CgJ/+nm+o64AG3/k//UcA+K0/+1/1c5Xn//qfe+JH/4dHfvBvAMCrf+ev+OANVI2cX5enrvBld5KlCLCxuTGdLcK8HRbDuGqJYLQxksYTeOdcigsWYVeIVuyYiMBsPp0Ny7Fj7rqOHWRJ/fV/Ks6CtS9oH22BD2CCACeFy+m1TQR9y/DVjOfTxz84xvrd51kPPvJEbfDgw04f+cAafKBK+v/5ZQCeuK6qLkabLUgB1RBR0bxzAZnAxASRABkAgcn6yrnfAAyNAJANDW194JuuF7gBvVGUKZqZqpJDNMY+c5f7mu9ERrfmDCIhqgohA4CqEQEiujbLJz/9mf1btx9+/FI1rt/2zrdhIke8v7x34bGzLcSO8uaFndFwfHBwWIRiMBxOZzPDdZWhqoNB3YNijp0zp1EWs0UBvDmeaE1ZYTZf/MZHf3N//zh2kdA5KqTNUOM8LSG4Lrcx0b17B3H+/NbXvWeZ095rBxvF1qj0na0KkLM7289evw2sbdsZGDsH2ucKn3j29YCWZnjggz+R2q5DiBVUTHrYz6FDFE+YRBGRCYi48I4EN7dG4cxWGxM7NqCuzb4srvmLDz9y6ef/0y88f/25b/mWb9nceEtqjtrV4erokNTiatUti0VcqHdZBQUQ2YCSSgBBy+ocEWPWegChKMyU2fVmGMTERJvj0Ub1sGNeR4oxxqxAiKYFqqxmaXmobQMAksAxmEFwzjuXRdCR88PFfNGsVs5xzJAFJJvzblCWRK7Pf8iMKeVQlRSoabt+DTXtcQzEEJ/90mff+qlf3W+W5zdGP/TH/9j92cH11175/LNf5BCe/uwnfvuXf+Ha2Us27e7f2fvy9ae/8PL1Y0hLlaZtR6Es0d176WAy8E8+vHN2xz/zpY9jBgNqY3TBZTVm54nYIHctgLLrIQoaTyZN0y4Xy5x1PmuuXXsMIeSEhppBiXquAjhXGHrAIgQvoq/duEU+OO/aVaxcSczOrYkU/9e3P/L3vvTSB/7a//jC3/sxYEJE6bFRIFW4+v0/BAAv/8Mfv/Yn/9Lb/8Lf/PxP/N/e85f/LgD8zJ/6g7//7//rf/Xcax8+d6l/nq2d3cP9vd/46Mf/j5/997tnttuuDSHknO3Ep5iAEBE8BAmoFlVSSmXpZ7PZeDT67t/7e4B+/rNffGYy3MjJGNkTulCoKgBrf36gIqPBWu1EyMwcxUyzmx7XgdWidFaEqhpv7O7u9OMP53zXNCqyMZmUVVguF8fT2XA4QIJmtRyUdexiVZQ++OPp8WqxYMeHB/sxpUtXLt+5dX9QVgCwPRx8+0c+cu6hh7pVQ6a9J48hgndqIGha+GpQQ11GwoyoLmTHjSUw814AoPIeg1MbUCxak8KXgSirEILzHplFjQRNkYh70jwzMeFpotyDGysAIK0NDt/g75wQKvEk8rqveYgYEdZhhQ9s4r/7LmzSBy704hpDYERmEjAiDMF3ZovFIsVcFGXKUhGnlGJEYg8Gtp4LcB8NwUyW4tb2FkpObVPUdW5aRc5iq6bxRXFu94ySuz9dcJpOV6ul5K3NjSHy3mGzL4dXr5zbP3ztzv29a9ceQ5xF6QDXMhyAN2KMiYAInCNkMARG9p68d4/+pb8FAM/+2J8hx2b22A/+BAA89xM/dPpiy1D8hX/wbwDgz3//dxGjSlIVE0KEwMR9h0yk/bwCiQjVZGv7zAc+uOV9WdW15Ox9wPXhgaqGSI7ZOcccHHsmz5T7DROgJ10poOt3XEQz6GPprM967ockzEwQ1MyyEiGzI+di2wGigbVdR8gcCE3u3btVFfXuzsZitVAz7wrCLKJJhYwV3tBwwwkW4pxTtbZdIVoIBSI6ZOmkibk1zagA8CMffPv2YFAXYWvA/dv7i//N9xS+cCWbZjAG0+s/8YPOOWLHzC6EFJNqUrDP/tU/U0+G1x555PkvPPNPvvWDL9++/eMAwYeUxLsysGjSpllNF/N21tRFLSJtOy2KEjEeTQ+LqiBHzvmu7SAt63JY14OicNpEROjdsE5PK1hrunuVlp66QuOJ8rx3xwawvgDqr/0HL/ivXghfgQnBm+Gc07Oyf0P5NInjzWzr0yfBN/y03niWBxuP9Q+uQ8asS7GNqci6MZrEqqomk6IoCAmzIps5H1/0jwABAABJREFUMqD1bwdUVTFFYnLrLCZDwN5UuI8OR+o/dtV1xE0vMlXtc3vRzNB4XeysW6b1H0y0DjLQXoIGBmszDnBnzp45uHdfNB8eHQ2l3d3ZOr4/Lb3brTarQaEoXWp9UYECg2uWLQFtbWw27XKxmJMzEGWjQVFnUYdUsHfoUpePp7PYtVmkjenFV15tovhQLZtmOB7GVYeqIKkaFgfzWRV4ter29o6ObXrx4rkL5zfbRk1CXU5WeaYIZ7bPjAbDNkoVAjvPPoCwQgYzMTVA7QelhGvmo/ZvCpnBacaQY9frctdqWgLtGfuaRQQZkEByqmvn6lBlBIJm2ZQFi7WxW+1s1d/9e7/x13794z//yz/3kW/8+rPb2/XG5v6tO6Aa29RHUHRdI2AM6F3JhMjOG4GaeodIiEyeQhnM1NRSjCqCBgQgKZGJisSczBC9y6oEjKBJBXIKjgUNAFKbyWPhHCUBAE/UbwFd0yhAPdzwoUwxg1iOqS4rR0AAjOiD87xGjGOKbdMBwE654TqlhOfPXTiYL45Se+nKw1VVboThsHOPjS/sTQ9Xms+ePb8z3EiLbu/eQTkYfu1HvvmoWdWTYRJ5/kvPbo8n1648VBfV5nj80OWr0vVK1KJLmRypmWNnWT2Cc14gEzMR93w6Aw3eL5arj33sY21svYcMxuwYUDX1lYF3BbsSOCWB23fuHx4vBuPN9e5MbIilX8dEnEbs9AgQs6M1+YTwREN9qgWtqjVBsqjr9Xl5kjIhJ7mz169fv3TxXE4dgiMkQOodLA0MwMjA91Ko2EZTyTqoqpi6qiy+9Tu+yY/DM196FojIvCcSNesAgQyQTwf4CAag2RyS904xjTcGF8f16mh/Z3M4bdJhsywLHxw5QACofGhyZHLTo+N7d/baLNP5/CMf/vBiPju4Nxufq7umWTkHZilFAihCuHb1sqpVVT1+pM4xAsCFnd3J1u4SiChoyoPhBtzbz9LWg/FMF9m0HJfEbj5fjsaDUTWYz5eruBoNh9tb27HrUk6WBAgd83hccwJCQkFnjp3rUsqqMWXHzsBoTWBU02x44hr1ZtFK36P0HguiSkR4khemoKdtrpkh2mnUESI96Bq33qxBT08UIDLJJ830+nelrI4ZVHNOvY+SD05Ectv4orpx4zUuuSjKNnYIdOJmBL2TZAghSUo5omo9GiniwfHU+XI43hxvjwyxU1iu2uNZk7QDtsAYs6ZE04PZw1fOVtUwqXDg+Ww+nc5VUk6d4LA/Vf7wz/wmAPzcf/1tIXhA+PBP/TsA+NQP/dGkwo7aeMJl8a7fyF/4mz/0+A/9zSd/+G8CwBd/7M++A6DXdfbvQwgBmbR34sH1OamqKaU+GdpMzCClbjgeqtr9e/dTSlVVLxaLrMKOLWvve0lIpsDkmBwS9U01uweTV/pk5zeOGaI1RX19biIQs4mYGXF/1T/gSqCKBDmlsqqZ4M6dG9u7Z0/cnp1zbk2FThkRuLf7PsFAHljRmHNGJOccgMUoy1XXFWCOAGCrridVQYzIBiaMiIBmmTgQEyCoAqtCr10/EVOzo7osiVkJLj/0sHXp5Rde3BwNAWB2dHQ8W2oHOUPS9vqL19+1vTUYb6BQyo2v6s3NDRU4XNz13scYR/Xg4qVL0hmDd4F9oKZF1T7PZT2LWdthwckkai0YwJMrf12Q9H3ASbXxJpDmdwV4Hrz/wTIF3lzoGAA9KMx788TtjQII3nCU6C8qfCAsrLd97G8zgWU5ODpIMQ6Btzd22MOhmQEG5z0xo3WgazzRTMGSSJZsSMiAWdY6nTWaaNDnygIaGPbEI1A1JUTgvuxWYFbIBKCoaNY3l8SE6yu+3zZ6jr7CSdnuPvM7n1xNZ2XpRlXxyMMPHe7ff+6zT6+WizMPbV9869moQuxAqSrruqjv3L3bLFaeeXd7O+caSFLqUtNubm6HUKAyqa9DxYS5a/aOZsPBQEAV1UB3zmwZ4MHeviNktjYuK6zny+XxUZObeGZz93Dv6DOffd7e89RkMHE8bJIqEZtz3r3nXe/+3BeeJiJfFsAsWZMIAYBDNVM1dv22ibhmeKFzjoidcyJiZj6EkAMy9ZTI/sPqq0J2zgdzzola2zaJU5ZMCHXp+nlrdtDlxfZW9R3f8Q2/8bHf+sVf+Pmv/ZoPPXr1kTAYwbJZNdEX5fa4iJD6qwiVAD0iexCVKMGrISsQu4VbOOcxq+YMZg77dZkMLYP6wFnNCB1xP1cvnJ933f7ewdg5AOhWkUsgtYDOhT6xmVYxppTYF+PJxqAeSDK1g5zVEZfOgymCialD65JEybFNy0UDABVUkuTs7vY3/Z/+i61Llzrt1ANmlS5J29RVdTw9nq5WT7z17ZLFDJ3zQEzgskZH4d7h3X8v/+Htb3vb13/wPwNg6FUMhkAORIBdMkMA168fA1gjnJBMEEEtIaoHBLDPPfuFRVxsDArFDD0lD4kIOxNkv7W525TDpmnu3HsWfeFdkVMqQ7AsCuZOJv2nKdO29t0Dgp68bIh685/85OU//oMPff8PA8Dv/PgPdm289cM/8M0/8Q++8yf/2Xo9r2m0Nt1fm5799m9/+ms/+H40JGLnQhLLEhnXPFzSdbsWvGOiZdMSIyMi4qKdvvODTwy3i5uvvn7n5h6FoC2QJ+wzxZCdiRpJP+xXBQCHnDGe2dn4gx/8mv3XXtqf7okrv3zzzkt37tcE2kUA8MTVeDPn2IQ0vDAOZQ0EKbaWuwtnz1RlYTHnNpqZJ67rCgAIqR4NUkoIVpYBAKRL5XAUNjcgBMeBqGRXxvZYjREcOfJFgQolJ5dNVh0n9cBFBmwidNEDSBZRAUJmT+RERE1DEdYZ4ogmmRjB0DT3u/jpbsvMzpn1GpAHYoxOt2UmIgbVPsPLVJW5TzUCw3WrB4gA9mBeEvYB2n22/Mn9ZmS0tqnpiyByjIqi0lOUsuTt7a3Cjw7vHdajyWI6XaImSWAqpsiemBRNVFRVNBvY4dEUQc6df+LWrbvArhpvJGIg7rq4f3hcDcabW7sZInJerZZ379wtqKoHG0Dh1r27Dz30UNespgfzRx9/9ODgzksvPNfGCAD/8Hs+PCAchuA9qCEZ/foP/Od1PSTnkdn5AABP/9ifJsAsmZgBEZie+fE/r+tLEQAgS/5f/9qf/fwrX16mZtUKew9EvfIVqB+o9/ASI4IBpZSkzfsH05zEOS+SDw8P6npQ1zUgKeU+XBZPPLkBEQ370QSjuZ6rzQzEhEIniDwzMvc/A4hKRCraq4aYGQAlZyhCP08hImYHRkURUBUssQvz2eF4stkuV74YIrFBNFAR8J7UQEwY1yogEOkvHO+cmuac++53MBiXdT3PS40tANSlIxVXBgMxcux8YM8E3nskziooJqa+Px4RnSvYO3aO2RmxAsScL1y5cm737JeeexY+9fzs4FgEUoZkGIrBr/7yr7/w6mvf9M3fdWb7rADffv328fHxtYcfRXRJNBRlyloGz4aMrs8JPqHOECISs5mKCLGxY80AquTW5oSnJYiqmAkAmv0ufj+/a5VzeuO06zv97omB4bqj6JnS8gBVqL9xenWt/2m9NxT27ZvgG8KxB5+/V66ZyHKx8MxMtjie3rdYX9oixwSAYoiITGhIigkUAcRAVY0EKBkLggKhGpgAgVqfyA2IyHCCFJtIj2X2PhUmklX7vQDJTAVE134NpETkvQ8+ELQ9EtlvEu7hqxd2Rk9206UvaVJXjz38UPmt/tatmy/dfiGv2pYkt7Gdp/n9453N7e3JVrNaLqYzs3zm7GYoeDisfXDz2bJwntAzBxWJXVuXxWC8ORqP5qvVu9//ztu391566VVQ2NqcLJdz8Oici8mapSz2Dx7aOfOBD33Nz/7vvzhtV19+/ubm1uDC9tlR7asBbZVl4cvLF7Zv3rp3+/brbY5VXS/mh6EuiK137CBm9g56OjqiC8X6FARIkgl7/yTo/ScBsOcpM1Fvy4KIBFhX9WGKkpWtMGMmY0MRKcvgwSPEnHVc1d/97d/26x/9rd/42G/N5qtJWUvSeZvIF9EaQEAQFCFgWhtN2kkLa0SYcwpFCCGgoel6NC5Z2DmxzOgNAEGR0IDIAPuoey42x5vN0SEAKKgpqKiaMTI7t2y7/f19Nbh/by+4alavjg722RfB+7Zr6zKAoUoylZik7WIr0qYU+1D38eTmK698+P3vPXv+0hKxcz7mXBiXZYnFIKWY2ccoR8eHEdSIowqoOiPIiQA/89nPvPvdT5CHX/zN//ej1x4joJ6rr0hiKH2oJBKYUV/EiyBbkoyGOefRaBhTt1otiPD1W6+deff7EBHRIRJYIuacUlFWsWnOnL80n84Ojw6PZktRMiKNiTwamvdsp2PpE63oqzdea2Kbs6Ymec8XL5zf3d1++Pt/BAA+///4wXf9dz/5vr/0k3/v932T8+HOf/N9y9XiT/ybnwPoJ3Qw3r4oWZbTuwDw9NNf+vwXvvDud76zzV1RFmKQc7KcVcTAsgmoESKyJ9SqhCgCRoPB4NUvvPLLn/qF973vfRceO5Ogyx3Mj1qO1K2SoyJnK5zPqUNCNWN2HmhYFjwspWsC5Eubo0cvbrVqG3X52LXLkypwjxOLEHMVqmE9Yh+AEAkh4/ZowkQmmgVRzQcvOa9WzcZkg51jRm8GjvuW3TG0lqNGEy4YPDvnAxExsZoM64EoIlo5HDuHRVFsbpWEyGiE6AoPAERI6HqJJZuURRljHyIOg7ryzGjmibVv2NWIWYEQ37QR9/j/ejtmOl2G6/QNkgyCSMxk1tuCExCKCZIh0Do0jtYakNOnffBsQIRescJwgj5Zj1KQZSOkLnZ3791hKAFsPpsWhUvtIgko9OsTsigzM1MofNu2ltPWZOI8NjE9dO2RRRPnTae9WZvG+bIxV9auWjbLrp1tbm4WmxVBGA2q/YPbR/uvXjq/ParKe3duJY3luOSiWMUIAM4XWWIGIyHnSuc8EPZ8eWISyUxE4LQflhICETtG5txDFgAAsGwbMZMse/fvX7x8djQaZhMmj54UwQg4UClO1/HbiiaJsWD2yM55AGAEzwyGVVVJjgioKuwZTHNOCCUjIgDTGk9ih+xAzbxnAGZiIugDax2wGbBn57lto4EF7/sCxXvfY1QiPVkSAZGBVKQIBJjm8+XOzhk1Tikjcc65KDyAeh9yFsmSMXPhmDil1BcESIi6PqFFJJQVEC9Xi7oaAEBwzEgKCM5xKMh550vvHDkm9qASu8SI1iVi58sCmEJRsvfSG5kDCIAhVoNq98xZABj6skVAwqikSrFLn/z4p9oVXrp09aXr1+/vvRZj+uCHvuaJJy9nEe9LAGhj8uB6aCfn3E9n+tluX9xTX4aAEq0tdx/Urve9uhnBG9SOnir0JpqOqjLzV4BAeDLGetBL+sEq5+Q2oD24dvAEan2DfsTEgNZLDeyUxvWgu3RfnKkCUtu2h3sHmvKTTzyVsh1MD0I1MEBH7IhybsEhIJqCc8EyiOY2davUqgmIoklMIlk9+yzZTNfuAOTWr79HdrIiAqAxoYgZUHBes6lmot6PuU9WAWYeDoeD4bgoQtcsVu3cORdCcI88dHF+MB1UQSFPp8fdsnFsjz/2yPaF0c2DmwvIZJyaLi+bI8XNrW0V29jYaLrVwd5BKLgIrgqFdlHB+bLwhVstVwaCnrbObLVNc3fvzvb2mc3NSfC0nC1RrK7L42bRtWk03sqR2lWqq/Lq5UtPPvHkxz79KUSaTedx1ZQFFYEtdl1r8w4XKbsy7B0drXLHwXexQWcFDYBR0WjNRV87cfUfjXOO2SGhdH0Th+CRiYlZ+4kiGq7n4+jY56yW0WPo52oEYIoSFQAKV3jEpomhqr/ua94fRb/0zLNXds5u16MOsTNQdgaZwBwamRFpBiDoYal1VYwI3hM5sGQIYKqOPZoCEZgzRFABgL5WQ2TPRU7RFEejzbxYAUDO2mIkKpBIDFbz1aJZEnGzaKezud28VVTVwd5eUTjEMyoyLMsQHBF3mrrUxZyzQEy5l8F36Xg8KcmnL37+txaQO8dqxllIFA2AoIud4zCbHh2v5qGqBEVSAtHaeUnJYjPdy+zJwF565jM9zVQADVDRGfZ+WUAKJ1bwpgrOuRgTM9f1oO2a5WLBzN6ctFIOi7RqkdCQDNU5VhFybraY+7q888LhvYPDnKHtMhqsVs1wMPSeV6tlv2gno/VUq65r8vzqK6+hwGQ0nB3d927tGDGbrn3xz549/33/+F8BwC//8J/u7ylJwWwGMNq80N9zfDz/xMd/6+qVKxsbo06FCJm5aRrRrL0KE6Cv8JCInHNAzmFZlVu7mxD01Tsvj4eT4dmCcrl/dKjmXFmjKuQcfFH4MFsspMuYgNBJ5IEberZbd19/dGN8bjy6/sormx42tze7ZiUaAUCyKElR+uCDGpgoKFbOg1lwnhjmbcw5MzMaMCIaVD4QAAaXJKccAaAoXfRQjKoWqBxWPgTvmCBXlc+5yNJKl0tfeXSSc7TOE7P3qgoGzKyqmkFwHX+Ioqor53y/t66aFYD44BHBTBjZyBCUQO2BdtY5dxo0DT2H70TT3iNCpxXMm/bxBxD+B8NPv2LHf/BHsD8kTjgBzN6yiIhjzqrOu7Io5rOGPa+WXQe5Z2TammwBYNYLbZJIWQQz3T86/OAHP7Baru7v71GofFkdHM2m0/mFixfPuABAjpkAJGWNysjNagkqAHjmzMVQkHe8tTkZlMX2mTOvvXg9SQaApusqIgUajjeYnQue2TkOvggpJ+89EbNjMvM9ZhBQFYCgLuqOY9t2ALBsV8vFIgTfLJeL6UxEmVyP+PsQDPH4eCpNF4oi59w0y54G4dgJaj8RU5HVahnUFstl8ASmWTpXVG23cA6417aCYs/QOnFdghMh3rrlNDs9uVUNAZkopdT2QRUu0EkKR3+WAxEoNk1TlIVzqKZdXInm4XCSMi9Xx2oZ0MxssVgy9+bRvYgAvHeqICKm1q9BMOiHm4PBMN6J43oEAIbYX2o+VMYs6KP1IzY2Ise+SwI9z5bI+xKYkBz7kGOsqkFOeSU5EUDO7AsAGA/qu3vHztdgkrvkyRVUvHj9peefe2l2fFwPHTN/9Dc+nvXd3/ZtH+mSBqbgHZqz3COaoLpWTvV1BuKamWF2YjF40i30u+ZphYEnX/0FfkJ2+d0v/q/47+nbbm+i9fzuPw4PTMEefOSJL7vBA89gZoR0avuuqmgmmtvValjWDz/88L3jWZAVOAJc5x0DmKg6PNW0Q4yp6ZZdgmyKkhFyQlMByUQ9J0L6EotzzyNEtJOIRiJkh6qYRVdIIiJZmNZZbCJZTVR1tnTzZlQ6bhaLLsaiCGVRuv/1p386gHeC5LEaD8qyNIOUIjEkkSzy6LXHqkcnuYt3bt85OjocjgaL+bysXIqtJLW8C6JlKAfVIJtNp8fMFEq/XB1P5y6lHDw3zXw4nIwG5aSuSl+9dvO2d0EVtLG2EfN+bzo9apf7iyP2XmLc2R6+9W1vEVBy4d6rr37ymc8K1cmxr93LN15/9zvi1ubGdCFJoxKIWVH4fmBI1Ne/60Fpbyfq2YWCALGLHQKZgapBb05CPbWDySEHJwpZrAQmcATG5BATgBETecoKzqHlOKnLb/3mD//cz//64f1DVDjrL7RIjr1JZAQH0H+syARqms1YwQzRMYNzjgizqYFpilSWAIrIJ9tG//cjIzEzmDn26kN0AUMAgKzCGbJjRWtzWnUdsvPIoczveOc7Ypenx9NLFy8CGTtvhklFumwGapBSzqIpaxdjzgkARj5fuHbm/Jm6dG2oiiYn5wMaaUqeyQCQK9WA4He2d5gpxw4Z14RWkSI4yZk8O3ImfT4PADAA2VoysAbY+EQxa1j0hWaPuptKUThid37n8v17e5AgmCt82VmXpCUAkew8O+/V8PkXrq/aVPjQNqkuXM4pxjYE1+tBwOyvfvyzAPDJH/uzr996/e79e3/6Z34TAP73P/F9jsk0vfz/+tFr3//XP/zj/xQAfvoP/d57+0c/8qF3/o1PfuFbf+LvAsDf/55v3xgW/fPMj24DwObu+cLh9ZdfvnX7VlE+TMGFUMSuRUbrSWYAqpIxITrnPaCxoxBCWQ28D0VViMbl6rgoyoKtHPH+cv7ko9cWR41GaZumXSwGVdgYDsflIDA3Xae5xTLMcvSD+ujgsCLePLtxqHk5XYgbAEBMsfDBsQveG0DM/QIFQjBcAyqaFUokdo5DbGMVyqIswYSIe9l5zrHD/OLLL7ToLNqgqF9//dX7B3eqirquAcds7MybresGx0wEZGtDMlPQfmfsySXkYpdSTsPBMKWubZssybme0SlA2Jsn6Vpi0p8ydEr/PMGETjA8VCDsc1oA1qdSfwN6O2lca8kMjGlNDzrd379iT6d+WfXoIwCB5pzJkJmjGjEFFxBxb3+v4LKoR6Px+N70sP8jmRCBVJOZqUrKIh6Z/aAe3N8/1JyPpvPJdoWihqQGquCdf/31W1VVnj9/dndrs121sUuxi227Gg6qza0Nz13t8czjm3fv3bl346YHDOQAAImz5gzQZXG+AGLnC2KvamVVINIa9FUjhpgzJiQmZI6pRaL+g3CFn82mlnLlnKZYcuGMUtaYEgClLDElkWydqYmZOe8QIcbcr1AzYHWOGIk15S4mhASQ5/NlyhEhm/WympP2+80W2/37DgC9qqMXZIFBjgnUAjtkzqY5ZwCohrWKGiAwA6KIEHsiypKJUS2nlJ0LoqBZSl+ASrNa5ZR7tzsirqqa1sERxsxi2uP6hKiqW9u71x669vSXnx6VJQC0KsOyLgYjZWtjwkCMnAxRjPuZrC+cc0VZIRAgxJju7R/FJBycc35jMFAHRmzMo42NvjTYGo9u3rnvzCFiNPK+TDFKxvForBKNULJ9+csvf/O3fvNwtLFaTL3jtouVKyWJf3P13x9YaKeYTs90kZO3VU/YVPjmqkXM6PTO9do/gUJPwZuvKHF6uBRPYJuvrn5OmvU3qqUHB80PzrvspAZ647X0i77/ykljGngvZfjy9esv37/fbI2cJGfWX7G9xvm022Hncs6pa428QQLIhMoMxIDJTAUJkHp3mV7YoGbGfs1m6fmbITjocoqaUkwpKRg7rsoSwVBNclq2nVguKMQuqqoaZ+ncU0+9yynHZceBFnGZTYvKHdy/e7Dao+DSsg2M586fzymL2t7BgRIWdb1YHI4mtXMYyqIoqsWqbdqWva/KsmlXGXmyOSmCP9i/X/ggorltH7py+cq5S8Ny+G//t//QZtsZTJZdl3IbBoPnXrtx9ktffO3eXR98QL6yc3arGjVgK7GHHnkCtfztzz1vnqKkl1+/+bP/6eceu3zt0cevDkYloSflmKIj32+sAKC6JtKfwN69PSQgogmoqAIQIyMZETH2V4QPhSFmTeyMTZiYPSKwgRpYr4GuqpBijN18UE/+s2/9ho/+2sePD45v7d9/iokcEzoGJQUAUyJwDkVYTNkZGwMZgnPkPWfLBtp1bV2NTRWRejtcJuzBrLWUQtV5R2VpbZOdA4AkQoRdzqs2smcF6FIGpPFoogpVVZW+IF67OqimNikBMKGKiqECdlm6LvWUMLadLhbX3vmN59/yhOSGXciABmSgDjhDJGCAAgAcMICAChABYIRMQNmSR0eAKbbkHPbS/zU6iqr9AMKwR0sMDNQUJEvti5yzSPaeU2zBERW+A0kkFmiZO2Rz5MzUe7dcLZ3nGzduX3/lFUEUAFTJmT25wK5P2AGA//L85Bs++MG3vuWRF64/d/3Vl4np73znBz/0nvefEhII8cW//0MvX3/1aG9WlaPhcHg4m//Yh98Tl8tLu1sbO7uPXDwDt+6d3d7OXMas5BiIbt689dnPfPbilYvBo6REjskxCFkWPTFeQDRSZQ5FWVZ1NRpveirTUjKbJ1itGqjd2atnV51Mm8NHH3/LjesvbWxMLp17S7votjd3z27tlFX16s2bz11/Zrg5djubc8SxK8ZjF1GYlB1mTQCQ8lrG2DdAvZUtMwXnQWC5XLRNi94TkQ/BF7ldro4Oj93OdhG8gvTbXVXX91cLNyhuvXZbk53Z2L5y5UqXl+d3d8gBsHPoCnOqBOgL75mREELwzrGIMPUHDfVDWheKmzdvTefzVbOqQnj/Bz74xS98vm27ejBAYj1BbfoxBUA/0nqDmrA+R9f1Da4fRGRGay3MCVbfowViJ9lBvR/JV+zd8ICByps3bDw5FzyxgmlOSDCfL+7evVfU9e54N1SDe12XcyYqJPfQhQPrUJGQqrL2RblazA3iq6/erOvaeT+bzcmXZVHv7BSrVRPbdmNjgkwmdnQ0Pdw/rAeDre0tRFDLh8cLSMt7aXb1ws7i+HB6cFyAgCoABOcsW8o6Wy6R+Hg6A4CN8SY7LCpflZX33tRWTdvFmEWWq5UPPByNOXBVloAEAJsb443R6GB2dHZrezQelMgSkx8NHLks4lzYmGwu5zPJmdlVw1FwPosMEEREsmrWrH2mRNjc3ETo2nZ69/6tZbNaLBuRDkBoTVXHtUtHP4uBU1QCCYmJmXnd5SP44Lsu5ZTXlSsAMTPxyUdK0Hv/+YIZzQSRETTniEAOyTlPzDk1CHbx0oWsem/v/nw+H43GQEDEzNZT0HqDj34O5Cfh8oWLugRMCgAJcSWqSY+Pp8BcTnxmt1jMXWebgFLYqm27NoLqbLHIWbuUF6uuGo93dncZzdpVORkWw4Fjl5MBwGs3Xj33yKMV6ezwsCrGgKiiRKhqooZmZuRDdffO4f/0z//lH/sj/5e3PHZVcxOqol1FBiQi1Z41RSdoytqFiBCBEHvm2loLtUaJerLOA2Bb/3LfNAI7nf9+BcZzWs3AGw5AX4n9IBKdRIM9+N1T2MmsP5cAT0Zv+gDZqOchrFntiEl1dny8Op7l6ey14+7Oar6EbrzYKkXY+QyKYD3XQU1R2THnnBWAmTMZmhEaMgMwKGbLfTJAzio591fhaZ6ywQmDPUKO0RQ9MTgAMEOUJECG1pdcCIAihuicQzOKUd0rN+5qKwWGZVx2Fo3ynVu3p0f3H3v71WwKANevX3/5hdtVWTvmydbGqm2KinfOnlGNo/Fgc3urbTpiYnTMrhyURelz13pynt1sOh2Nxme2zxwdzrbGm6Oyqnx4yyOPfvKLX2Jghsz9lR6KX/qVj24MtjHnRx96/NGr1w5nq+GZ3Szd4ui4qsfVYGQgRT3cHg3E4PkXrx/O9648fPHSxYcm5dijVwUV7boOkYqiRASRdQXcm6QrWOGKQEURSnWgFs36bRTMEImd89lAJLEzD2QIxv1HTGp5faUaIEIRXOoWG4PhO9/2ll/76G+9dOOVT3/+c1//dR9ECGyZCcVUkZMBATuGdZQJmKohQ10XcdaRQsqJHBmYZzJwZMoGgGgGWdQQfBGyqAU/OrM9W04BQEwUOIO1kgKRAcbe2qcuGL3kzIxKiAhJYjbQmJ1nVU05J7Eu5bbrUuz6ViGJmSsOZgu4c6eNrShY4FZEERyRSkYFY7QsrAZRQghmGkUzk5gRsiUhUc+cNSua9L5dfR6m4RrONQPqV4shqqSIyDnl8WQcUzubTZ2jV15+tapH7FBVDUxEHZrkjtAWqzn74qVXXz6ezUQtJvHe56xEIJItWfAMAHVdjwaDtmnOnjnz8OPXjqZTBoptt7u1XVScJaeUemHUxniyvXvu3Hk8d/Fizl1JIMs5MF29eAYA2HJSVeyZ1LBqu9/57Gff+4H3PPHWJ6DkSrUo/HQ6Xdoyx/4SQjHVmIjMgJNC06baD99y5amD2T2NKWpk1yWGwaRYLWZ3929Ea4aOkeNoGFjjanEoWkdZAakwvLC3t1EMhuWwLgPJ4sa9V8OgjF0EAAE1xKQKOXvvQxk4c6+ImM3my9UCHREz+VBWlQvlkcFqNrt3//7GZFzWVZTU7wpgfjzaPnfRrWbt9tbOhTPbR8cHV68+hA5iUjaqqSB0MYuphcDeu5M0IyByvQzaAETRhcHuOby798WHHn6065qkVg3Hqy5uY+9zDYBKSASnBm5E9EbM9XqfPSlPDBTf3LD+rk0qrAmkBg9MwcwM8U3kUDwZqSGArr8rPQiBCJLlwvnz73nv+z728d+eLVe7w7EYErIiG2YDRiRmT0RlUYVQZDUjHo4mVRFEZdW0miW4Nca+WC6rUAwG1aJZTqdzAB4ON32gtuvmy6WZlcFfOnO+W3DTtWc2t65Mto729xaLGQD0Tet4VFVV3eYu55xFm/17W+MxYAg+lEUJhABNimn/8MAAfC4UFkVZimFRBQBAswtnz969f48Jzmxvjct6EZeMBGKqwOjaLk4XS2Z2RoZMzgNT20bVdVIGALJzkLtm1YTSDg/3XnzxuYtXLoYCy9IVlfeeUVDVRGTNWiHqx79wEk3yICkEAHIWUyVmPhGCaRa1NcFFVMAQkXMUAnSegUFBT+RG4L13ztrVtG0WIlvj8cZsuWgWjYo4cn1sFjOpEPTXGoCYrdr2ve99z1seujCdLwAgIR0dHgYfB4GaZbv//Euo2dpmslGOD4fbW1uScmy7to3z+Tym3MVcjydbZaWGRfAiMTWrVduujuftsnkcIFRuuTyYeHj0sUfuvH7QMLFSG1tPtRohhxQVyHmqrn/5lX/0j/7x7/+e73jH2x4bDyZVXeWmIaacM53gZNiPwKCPOOvnXbq+bfogHnM6JiZCADYD1a+k+8BXfT3oOvEVk6+vBk3hAcY09PaMJ2uw/5QRTU0eXHRf8eP9nexcTBliLsC1XRdNO8ltjIDovBMzRkA1JGVHamCmMcU1N7wfoazt330vFyYy7O0y2HoiPwCpiogaKDF5X7bzZTtvek6LqCGSkYkmAAMyZCImBDZCWlfyKFmcWQA0AV8OvcjyuevP3njllc2NmsrSUmsEq9h0s3ZrC1VULQMAu4K9s5yRoO26mGI9HJKRY0/smuUCAVJKZQjbG5s3b97e3diuQkBR6Trm8p3vfPuXbr3UzKajOowHg05z5cvJ1nB3dGb/7uvbG1vj8Y7WtgB55vkv3XjuywX4tz31nhvHey/ceHFrPDpz9uz5jd3F6uD23durNm7Vm2cmW8PhCMmp9pW4OOcf4GaZ5AwKjEyETLTW1KEBICEZILFD5yTnLiVDNUJFVOt99BG5JABQNRHXtzeQ2dKwDju7mzfu7f32Z39nsjl8z5OP5TYFdNqTgNghKJkQgaoBAQExcSgCE5uqSOx5/kREvRIfjcCMUI16qFBBKbAPxWBzAgCiWcz1WgsFFISUVVTqLNP5dFAOBLBNkZnVREmzmSIQmGTtclo1bYzJEAUSANDGrNjx94++uDd9BgXRSE07E3CspgGIDZfQIFFBZFGJXM4ZgNFzMkQkh05jdqFMaoK9Tw72RVy/hEHQUAUsq6iJQ0AkU0TA5bRMqUsxOc8FSUWi7QKECvIdEjkcDCY5rQaDukvy4isvLttF4WsTzCkTcKsxdovReDAejQFgPBzWdXn+3DnywIU/d+5CjhGiFcyiHRKpqXeuqqq4SKY2GAyrySh2K+saNyyarltkBYAquDapijG5KLksi72Dg4/95sdWq6URL1fLZbOczWarxaLturZtc86qmpJkEQOKUdQ0Y5epdRxaScumIfJ7B3frYsOFcr46PnthB1Oar6bb9RaD1KVjb11eVFWxPz1+9vDo4MbdP/K137QZ6s3xZBPau3t3elM5BcimKWYqya1nQpS6lLo4nU2RcDwYL5p2OpvVaqtlezSdBcSm67r7+/Vo4CsPAPNFFOHZrHv44SfTSkfB53YhHeWEkrICoEGbEgVLOatJVMSVAqj3vh4MzBIkMyA1BWDBEpiBuGnjYrk6nE739vcvP3Q1qQgYMzOwAWAf4QTrU+p0V32wAFonVuAJOeKE9INrnF8BlE4knF+x1b/peU6/Z4Qm/d19r8lEBKgCwQdzsGwP79+/z+RN4ezZC8f393R6kLMgOjXQDAQOgU0p57X1gajFlCeTST0YNV0C6HOqbVwPRsPBvf37+4f7tR9uTXY2NyazxXHShMxlWQ+ruigrsm5zYltMNF0U48nN+TEAOMQEZgZd102Pp6oWnHfs9o8OB40fDgdlWahY13Wz2QyRFvOZLpYT20QmitT/CQRWON4YjgTri7tnX7n+0mhrPJ5sgEBg36ya49m8yxqQQTG1MasBWMqqIjGmlLKpIRIYgmRuuuVqriA3XnulHoyrujQTUQlITG6N8iJTr9vANeeSyCFkMwSFHtIjhMFgYCbzxYK9Gw1HPXe+V2AZgJoFX4ASmBiCamJCZkopAQZHWBa+Lcu27V5//daFKzQYDJaLJuVcFKVI7j3VnHNm1J/0RDRfLd71jnf+ge/93k/8zqfh3qfmzYp8WdUjzzZv4yp1JfN4NF6u5jnl3e3d8da4azpTK8t6Nl9slfXe4dFzz73w2BNPrBYii4PNne0MuD3afuyhRwBge3fjeD5/71Nv/T0f+c5//a//4/Nf+GzY3hRNqYuEAQkROHYZgw2qySuvvPYv/sVPXzi3efH8hf/6v/g/b9YDA81ZsDeBPJl09Wq7tfC7j0wl7OU7D9YuD6CehsjM2GdcwFd1Cydm2acP7ieGa9HA7zLBhAcRpTeWFT3wtGZrB5CTbwOdxHEQoCGcjrrBjBADu82trdl8FY+Wwr3Cs/fDREZGEDNFIgVVURXtS2pmR0akIsBgDEbMpphV11yKvvRRVQBCJkJgxw7doEKIELOklGMb2TsXPJJXVTQI5ClwH7eaNQMAM6MzB+yQU0pNbLsXXnv57v19QAfGMXXs0AhU0KJJl8fjwWw59x4nG0NP0Cadzeb37x1MNibVYLh/cLgxKZPGVbMcD4aWtW3i1avXuja/+urNh65ekygpp5zjsCre/da3fPyTn5hnHQI8/viTx9NGVjDfO97YGEWAXFZ3b77+yc98+vatV5+4cOUjX/MNG+cvP3//9hdffO65F1/ev7N3cXv3kUeuIBcHh9PZdH734PUzO2ceunKtHJSxTVmSmXkfAIyJZtPpcrbQE+bCaDgeTgbIqOgYCUAZmJJ5ZGPMklGJ0Hq/AUTr2ZAMAQmzJSIzEu2kdJ7VdoYjMnr57p1f+ZVfn1SDp649HLuVI2C2gg0AFAjNgmNEIvJoSC4AGaBq6hhAFdfMQlj3PobEDGKWY0dMqiBAXJQA/Uki0G9ToGToEF+/cXP/1p2qKI+JTYGQXOGNDAjKYel9jWBZck5ZsknKJkhUAMB/+Sf/3LKL1gPRSYNzOYshILOacs8tCWgAjEToHLPpWqCGRFmkLGoTUzByvOb9AMF65AQEPZvClFEB0AStd7t2RNQ0rfPkvGPmrum++MWnc1THDtgx4WI5f/32frdaTKez4+PF6y/foozsGBSbnBMhKzCoTzg0BoBhETbrKgQqBtWi7TxzCEUogBBWTfLspBUtQxnqY5yn2G5sb7Zd54NTDArKSQrvAGBnc3K4tzQEgGRZjULq+POf+uJrL7w4Xc6iQs5m1vtmEIBpFkc+ZXHBI5IhhKKIlpK2XFEE2hqf39jYnB3r9mR3MtycHRxfvHCpWc7n06NOpQy+GI58ERiICI6Oj5ap+8z1F65unv99H/7644NpgT6gb0AAQExEkxpZgoyKIIjOQDPAYHOz7dq7B4cHh1Pvi/Ek5qRNk7VwZVEAwr2j/bItAIACQpe9wPGd+1ns2Gg5P25TIpXSkzJLFwnNQQbKyRTQqroEKYNj1FYEuCxT23nnTDLIfFji449c6ro8KLd84ZvFDEyYKPZ4JBquxUsIpgCZHLLrjYPXbmQAcmJs2xsgYN+1KgCaISMAGek6Kh4A+nSkvlQC693hTqofAjM0UwQB7QF7BDDAnrimCIwMTTTJQjDc3tiddW2TVzkvukYBnOOUBUwFRSwDQIwJAJ0no3BwNHMESJyzLBZLF8q+onPOHcwas25UhWFdDoZ+uVzOFzNkGG1tFmWR2tXtO/uTAv1kbKvFpnfDzdHhgQOAwntnEJftrOu8D4vFzA1GOxube/fvZoaUc8pRBauyLIpiwG4xm6UYWUy7DF59LwWvfF6pkVw8u3txZ+v1G696d2XbzjGpaH7mhadffPXFZFI6rwqIbGqqSoiiYgopq3MewKzf7nXlnG5Mxs2qyRnM1DlEEl6zutSIkYgsIgQAT0xI0GsFAaFA7ygAcVWVjO7Lz1/fu3u/ruon3/bE5pmdZeogEBClGL1zLnDJg2Y5wywEgAYeXZeaasBoyZnbneww1serJbvApt5Qk+ZsxgFUyQDZt7nLDr0RqiGCaC68124FAJPxcDlbzQ/3rSoP9/YthIeuPcKaUl6So2JQXrx87vXXXs8xjkeD1KXtrZ3SF3f393c3N4OD+uJOPR7Vk42qKK2JAFCCPXrl0vd+57fTTM6OJ4y4UkH0yIJgYkLkCRHJa06DcrBYNF965u7e3v7v+c7v2hqNkcAs9c5whqhrLk/vc8NIQMhI1kedcn8wmJ3ImgnW3Od1fXPind4XSW9AOw+USmsaz0n9ZCey99OqZ13N2EmV08/aAICY1/efjNzAANcaRdB1zFbPuEU1XXubIYLo7nhjOBzu3dubWrfQ5H2viEc2YmIkMmA1IexZH5RVxQF58ohArOuXaUCioGggkgGM2ZllldzLTnov4XWmSVUi0mI+N7ACXD9t7f9eH9g51twfX2s/qbUq9svXn/UAZHIwPbhzdIBYOC7MsCrKg9UxGDhXtBJT28aSCWUwHKLKqmsP9vfG4/FwOO66FEVmyxV4NxowOlCQuhjELn38N3/rqafexjxfLFfDqlq2y8lwiJqeunrtueef2+8WKVM12Hjx5t17N+9Smx85e3F0Zucz15/9wmc+1y2Xb33o2re872sHRZ3jyqGNxiMSSzHfvnu3lbi9uzkc1hFzG5t4GJXtytlLo3LUM1WIoVm1jnlQ1R646VollKTErixqQxPVLooZ1b4syKoiKGnS3JuHGBoxKiUAdVCQkao3U1UxAmPKQKNqUCQ5NxgNH5t8+ktP/8zP/cr4D37fQ+d32/mhAyFIREGJUZN3lA1EzFEoyqqTGChgzqSqfQodgRkqmMDa4tpEmck513UdELuiBgBgJO8UVU3KwmsrqWm3RsPRYDQoayTyIWiSbLpoF8t2mTuIbM57xw4AnGPnirZti9EQAHYvv2u3p4cCA5BIOrGCsLVREoKo9gG81seaIVivLe7JL9oTfky06wmpoHyyqrA34jVVk56pw4zQaU+kVcOgLsymS8QU2/Zo1gyqOonm1PGg+M3f/q1/8c//uUc/qoeewnLW1FxbZhU142wMRKkTarXuMgB4MwfZM4hoVQ9IlSSBNAaCmGO0sqqdL8h1rqwELLXLQeFTzAK0ytDkrFkBYHNY296SCDWvAoWuSVgEMk8pe9JQDGNyRAQIPXSnOaNCYAk+pL7zBQxUEKIPhXR45dLjN27e2BzuDoqJdMAYbrx2u59AN6JOpBxvgmpqck7ZTEaDOp+r/tPnPl0Mq4889ZZCOIBLvgAANRHtVCBZMggIYJbblESsLEdhNEzH84E4TbaYRUSs6zE5UhaFJITzZgkAXFjl3XuefGJv1TSSGkFX6tHhq57y+c3JvIvinMQmtXNQdc5Xg3JzUuc5IcB8eaDoitJTwNJ7FEvaAOHVi5spEpInR6+/9lLuVoSKaNhbETOAgOutR1DZud6hBokAiIhVlUgNlZABkAgEzIjMUFT6h5mSGiARqHIvvbO1SX7PmOgtMPq2FRAQNBsCEYOh9iQ0YO+7rhPJngjU2cb4/EOXX3/p9sH0aNwuNKCAgmQDsd4BCHLwTlVVVaKSw1AUktJi2XZtY2bssvPBwJJ2YMIM3oPIarGQrlNg9UVZFGG5nC6PDyvIrizy5mjgqjIvfODBoOrX9KAeLOeLksJ4PJkMRqNqEIwDkfPeRGOMpjio61W9ik26dPa8976q62Wz1JQDDvrDKiGsUlsXfiOEmQ8kAqqTanD5/JlGVDVX7AicZGBiFen9sXNCdEhk3mHOhkxmxujIbBAmk8G52eIYbFVXDiSBC4BrCrYhknRAnswToZEAETpkDh4LyJDVEOD+7duvffnlgHS4P33VuclkEwzm3UrRFvN54Xwd6o0aJHeByciBNiWH5WruRq4eudne/nh8dnPjjNBUokq7wmyMDtApIAOC5JQzF0FZUcB6jgjC3v2708P7ALBRD8qkAnFra1KWYdm2W1U9OzrwiKbatXOVrh64g8V0NNjo6mI1O94cb5w/d3Zjc7yxuUEEjXYWeJFb1ggAO2X58MNXz44nhweHzjAnSaqEDgmyZEQEFDDRCL7wMTfOh2Ky9YGv+dDu2d025ZpNIBtST5xBJEPpJwEADkCRDYFUFeRkaIU94f/E1vVE035K0DktUU5kAQ/CQnoqL1svjhNTiJ4qffokve9WD7+uJZZ4+oxrQGjdo0P/t5ioqiqiM+gj99bYrVO4c/vuvbt3j5v5wkOHUhKYqANyxI5Y0ZRAjcDIGWWjKJLRjJVVMrmEyAhgApjNFBWdQxWzvmZy5Jz3zvVosENEBFERlmQ5Y3alQ0IzlajOc1EEMOtyBAA1b+bM1LKIZleXhaq2bbfolqjCDsFRK0kBQBCi9lktXYqhdaEqq2qkKrdv349Ns7N99sL5i7fv3J0dL2azRVEXRVEAUbPsdic7u9tnzp+9/dwzz9WDgQ/e7e7mtjm3vSMZNwbjD7z7/b/66U80y+7Lz18/2DtolstJKEfDwd69u7/zuc9Uvnjo8qUPvff9Z89c2Lu/XxdFIBwgTkbj3LWHx0e39u9P4/ItjzyMmL2HVdMcHh4EdHSGRsOJZouSy7pCJjNir5O6NCbJ5tlnzUCaTTNkZJctqwGxlz6DRwXIIQGagSiSAfa8PHTskEEpCzIyee9L7wHcu973PiH6tU/8zs/90i/84T/4B6qi0LgIPhhQNiDkvjo3AHJcD0YAwI5TTtqzD/utCE7iePvK1DldG8Gx5FzXNQDM2qYcDvuNpgguG4w3RxuTSe5yl6JDWswWDFANq83xaDAoO+2c96EochZfFElbAek0Xr64AwBfeP43VJW4yNJncNBJcJL1Ka6gSujWlDeVnoJnpn0zrushtYKdeCcD9lSfPtbb7GSm3Sd4o2XTrBpc0cVcDSpfhoP9fTOJXZtjHo7OWhQDQ/SS49HR8aMPP7I53jzePxZRyQZIa66cATInQIjxaDoHgCyKwJK1qDz6ACIqGQjJexVruhWCQU5QBC6K5XI+saFzlWRBBHaU22RJAGBY1qOyOmxadsGAVTGKNjGeH24A0vG8QUKx3O8tatrlTlMyNbHkQtA+XE6BHRcufM03fNsvf/RX9g4Orj50FQRjzIhspjdfv12X5ZmHd6XrCnZECmhR42hrLOxhwPNsP/vLvzS9/fJ7r10OQ8fkAICJUk4dIoYCRc2s7dKyaYg9cTLNg6qsfd0s29RmRCJPQHY0O1CIFy6cV8kAgKQMkOIcpYOcg/ebY39DV/PjO/5M7TG7AE0XTdvtrV1XjhQEVAmNDaqC1VcpJSS7dfPuarbYPb8TqkGMQBiiROecZkEDyTk4n3P2VbnmMRD2XmanvHXsk3t6ATKuEVc4kfNwX00amCgRMPauPwYEYKBAfW/at8ZEBGt6tSkYGSr2OZvaRz/0ZlRAUBRF6lA1CYjzfO9g7/b9u74ab53ZOd4zNfVIjkBU0Hr+N6pa6pKgFeQLX0bT1WqpObNzKSVA7OONs4KBiUrsIkESASIXgm9WS+/YMUtKs8X8xuu3L127jIhd267nGoGQuRqUDqnyztceAeeLmVI2UxU17bPIsncuQctMRfBF8GW9JWDIDgDalWhn43qiK8kLndQ73o9TpEcuPHTp/CUqQpKO0CRLv0zAVFRMe39tQAQRVSAAb6qAneVM6MSQPSVYElEZClUE5CSk5vpCqN+z1tIfyT2C3VvRMtKgGNxZdsHcIBSdEkQrMGRRThiCRz/0gANfUxGS05QwgUYiT75pZrPp/rVz50uV+9OpzmdOcX7/cGt3R7Y3E6nLXem8SZ7NZs1iubm5VToPIWRGzdnMhuNxygkAhlWFXWdAknMVwmg0VMkO2YEDyA5catKlc5cogQpub22KQDUYVsPBcFyn1AFiJzkUwoTOAADO7O4++fhbwNAV1SrnJMrocF2dWBYDMAQqggfAwhdIyTG95z3vGQ6G3XTVL4GeVGeqSHBSlJwwctZiyQeivk4UzcyIa+X8mjtxsrv2hcepbuBNts4AbwBF/dOdqvnsxEyrL5EenE2fllAns2swNDr5p6mditOI1gR37PPjzJr54vDuvYEPi5nlZjXyBXUZu+yJvffQWyTQWh/BzDlDkvW02sxMBXreXr+6ERWNiYn62SiXZdW7TklWydK1Uc0kZVNxIfSVnarmnJnIBW9muUe2AMwETBEEQRHE1YO66Zqjg/mq60ajURGGbc7CfrpqgishNYxUDAeaVqI2Gk+Iwr37t7omO1dqsuDLQT1oYiuac87Hxym3TUUBFFnpQ+9+/7JZ3rhza3o8PT46HlfVYrncnmznbA9fvrb7wvW9+bFk7ZYrTzQeDY+mB/PpUcF48fzZd7/jnVtbuwezqS+DSB6GUKq52H33d37nL/7Grz372gt+6F6+8dpjD19WyZak69r5fHoPOYtsbe7kJBkwRxlWtfMVErQp+kCeSSQxoXPoi0IUQCWbOeeMmIiRSKG3I1YwZSNEc0w5S0rJFYhgKmKEXdtZVtVUEn/3t3/Hq7dvff5LL5zb/ZXv/KYPS0zadcKswIzqmY0Jic2MmJ33hNh2K3QEeX0dnVzqbxDTel1hb77Sxx3PuzjOsa5rUEspEeF61OULlIIyDsoBkokpOwpV7cUnUEJWy21sBVVIo7aDUQUAL1z/vHfBhUIBTXtiBSICW1/HiCkQMBmdyB4REYlPRr9gpifkVnAIDIgEBEC2XoRvSCgJ+2PIcG1nbqmLKWdC8oUPxDDA2EXnXJQcu3Y0HG2Mhw9duVz6en40zzk7F/o55hrMRQOiJNB0fV2Pa2KXKkofd8Q5YbfquqadDEfsAyGXjjzT8aq9f/cen7WyKLuui6lDUI0dAOxu7RavH9tipcg557IYMPL+8eGFy6N6c7zfLpFMAZx33nl2bA0FGjJzEYrheKgI6Hh2cHx4/wDBPvfZz19/4aXx5uTe3fvbm9tntnePj48UbTIet00zn88vbJyrnUOEJGn3wlmsi+svvtqsloPN8f7x/jOvvvSuJ64qUe+lS+TWQU5IxCwKbYyLVcNOmpic98EFNA5EHLyoSErzZiGStnc3VTSEAgBiagVsenS3VTGC2AKAvPftj2BadsujrPDajRvNYt6slu9+36RgrxmH9WDZLRbTg1U8Hm2WwYW2W967e+PVl1794PDrfRghmCtZNTlGJmAAT9zmBAYmvbm99Tycnnh3KnQH0B72B4O1P70B43q8R4BywhkiQF33pn1D3P9w33T2zimAiIZ9eWTaj5RP9u6+weglJESgPZ0u59ls6sty2a72D/eTZGIXyqJLLRkyMpGhgUbp7R40C3gjoijSUxlySgZAhDmLaEJEUSRyzJ4Is0i7Wq66pioCIhhhl+T+0ZHSQ5opRR2PNwAg5ewQB8PKG9VlIMSMBt5ayWWOJrk3NjOFMvhia1OzEBMxsGfHpEwAUJIr2WfRLuZXX3nlytWLg0mV5DgAerSonevxZVQABNcXiqYgiKiSECklAUJNgdA5D71rS1IwnwUByHJcFRgI0BMRMVEg53qv0/4zVcnUy28UELlp4/2Do7IeonerrpMsw/FG23atiicffFmHygE554V8im0WsMKb95kxOHd8eHDP7Ozu+XKzPLx/VJHfGA+LophPDyQlVxas+eDoQAl2zu06QRZIAkYMiKEsz50/XxQVwJFI9s75OoSiBHLQex6CgcCgHJGgdJkNdza3F8vGsyRVH9AgN+0CgMBcqOvClZIaFQWAQV2/fuP1s247M7147w54HzioWRY1QyYCQAYSEVQLlW+7ZrIxPn/uXIw9z5dyzrDOrDpBVtalhj5YuDzA6XnD9eqrv76Cg/wV93wF07kvVZkRTrIvHnzAg9UPnpgdPGg0uibjnUzOvoJ4dPobKfjR5uTihYvNYjHrVuDYkw/Mwa3D4NcO7X1LRJhNY4rW79rAfX3e/xYk1LW8T1WVkJwLhJxSylm6LqaUVFXNCnbsHCCu+3NVQgxlgURRsqoS99nYuX+RBESEzlTb2E1Xi2wyHAwunL10++Cg43x0PMvt8d6do6zjoi6lExd8zrmZHi8XrXNl8L7t8vR4PqgHAio5tV1XVeV0uqBqHNvULRs0q0P51KNPhCpcv379pRdfGFTV1uZOs2pHm9tPPvKWW5/6KDMNqtKVgKTo0AM9fPHi29/xNjU9ms1GocpdrAhL7wqi2dHBxrj+Y3/0D//E//i3ZquVpfzCyy9fvXB2WFWr2NF8Vlb14fQgFH5nZ1czTA+n40FVBJc1FY48Bed8zsDOwIEqIDgG7x0UZRF8AGPnfGw7IzI1NcUABVFRlAnNstRFST44Nc8lD6Km1Czbw3v3H7988du/5Vv/5b/7N7/z2c8/dO7sOx+/ps0SzeV+XgK9izOaWF2VKSUmJG8qGdABYb+L9Jfag9jmqQ2D9GV+WewdHI+KqizKrlmRY+2dMMBQIBRFHUo1abplTNlAhQAMs2oUyWZJdb5ahDq85Z1vBYBv/JpvcewQEYgBGE5GCOtEBwAAZGQAM1lzqNYDMux1zSf/Zw9QATpAoHXqNp3o4dfNTX909c2CiCC6tuvYOyD1xGTw2us3vvSFpyEEzUYspee6KqfTqQ0spSiSmb2uO2JIQEkUTcEw9YQ+I8uKBjl2IMDEGvN8schd4xEPD++I4PaZszHl/Vt3CCw33fToSIaDlFObOrWcUwcAk+EYM4CAEbiiaLquKonADqbzrSu7jz71BA1rVWPvvXdI1DXNarEkpKqqhuMRECJT1NjcuLl77sxzL10PLqjYnVt3ltPV7HD+2LVry9VMxEbjYRcblXh2azOJxNSNRuOj1eJ4dnj50rVBGOZuqYvjZU4lFYwMvYTYERIpUlJzBRVVxW1rBkTcrZpOVoUvPYeUzEzZ+/F4iH7IDF3uNjbGANCsFuXWmAM4JGLIiCkJdNlpl9vj2TLODu8N61JL57ybTRfe985WeTTytqCqcMVgJMIb73vHu556K/uNrJRScmjmTFILEk2iQwOVuqgNetrsmrUDp8BPr4BeB2euLz0CYwbCtce1oPVWeetr0RRgTQU6qWrwhJlg0Fc/69wgNVNCYCRjQNQ+Oqhvg1WFCBz7+er44PAwSWpTnM7nEa0v7tEgOO/Q5WigoKqghoA5Z5HonHPOmUjPJ9WUgUAk2dqH16mpJoE1O1XrwjftkglQNbjQxjhftVvk63Iw2dgBgKbtiuCYqfbeAxgYEiQUW7tNQuo6YsdEVRVy0mjKjM4zOURmXTsMd/fu3z5ezt/5+GMHr1w/nN3eHU1sw1g0ZVn0vXXqeudKUTXNJllyUlDRdMKbIkwOzEmUtmudq5W41YhenA8WKVMJMeZmYYIIDtEBUm/iR0jsChXshYiFr0MY3Nq7VxXl7kOXusWqLAoaljf27yVQIYQ5IoBDUrGEntE2KmYIRs3UUlmF7am9+tkv3tu48dhT79o9u9Xm1LSaRTlbYACV/cVxC3Fn92xKElMeloPZqpmnFi1Riu9+73t//dd+Eb58u1ksSnJgiqAqCQDK4FeSvOHuZMuhI0VNEtjhmoxMWfJqvkKHw/HGaLBZ1LWBpJgdKABUdXV4f8897g5y99ztG+ZZsphA7JKaBmJAU5Osyp5EZL6YX7iyG7tuPp/XVABYzmk9xurxzDcqlvWF/hVVCyEhiMgbLOXTyuPU8uckXuMrCyB4c+V0Au3gg5jTV5cyD/7zzfcDUJ/ZCj2/7k2nFaARIKEF7shu799bLFd1qJPiuB4UVem9QxNAJiBQMUAyJiLRnEUUQUwtmfYtHiJIDwWpc87M0NCHQEjz+TLGaAZrZMyA2Ytp7Nq261LXBefLsnRFPwgDPZmPr7UZ1kdtCyG4UBf3b+5nU+f9wfFRKAYCFrw302UTU8zgwFCrQYUIs8Uy5s6FgkRjbFcrmB1Nz18+yx14x+wwigCHrssg4MiRGhm2y1VO8cqlS3dv3b57797Vqw8Th9y1ZXDsXROXm5sb88Oj8cYGGRbo3vfu98ybhss6E3UilfeQxDsuajddpIOj/Zjaxy9e/sLzzxrnVdO89vrta1evjqq6y+lodjieXG6a4+efu3O4d5jaWLL35NiTIjhyjhkZDBOweq4AHZorHM2m+ygCBl2bF9NWEZA1SxMCZYoNxxyt7WKzIAyasqD5IFBXhUMMhHdeuwEx/n85+9NYzbLsPBNbw977DN9055gjM3IeKmueKFLFQSLVEkVLlGhZVrsBy4Z+GDAsGG4YBgy4DfSfFmC3bbSBliF1q+GGWqBESSRFipQpimQVRdaUVTnPGRlz3Hn4hjPsvdda/nFuZGUVacDdB4nIiBvfPd+Ne8/ZZ+213vd5N0b1aj7/6P2bL15/fFavZaBM5oZsZEQBJqPcRkfMzIAac8zAKuL8eWb1J67RHxxENBRA2xcu792+vVisxj4Aas7ZmMFRjJmAJ2UY9tm+qiT1vWQFMOQ+pbbtc5ambfq+82UxGtUA4PwMAI0QdEA3DuZvknMA6fkNaYPGTT4GbZ37uwYdJQICQ7az8xfrufpuYAfjUD8NAzUzMlMDycaO1awaj9pm2XYtqq6WTfCBnU/dCiyWhb+wsyMpquSua33g4J0wDVDH4VcmErCYMwCIat/3setAGDwwQLNaLhfzqg6j9fXTdnfeLOb3elUgx2UIDiHFtFosDCy1fUpxgEUlsa7tvSvQg/OEBkyGjupxde3aVV96gyGz5jylvCea54yG46qsi0Dei9ndrg2e22YZPHvnp+MZQkC14+PT3WpvNCkMDA2dJ4NceO+Cd2XYPdjfvn6pLMKdmx/99E//+WduPHbw3jurmCdJfWAAACQ1FIXzlHNy6xtTdD6rVmVtKeYYISOh1wxilk2TRmKK0jvvF6sVAAjo9s7m5uOP96lfLo/PmmZ+tHd47+4LT16V1HVNs7W5vr29eXJ66pjmfTcabWuWrjtdm/rlKjGAZkmxQe3HVRBgUhcCgmXB3Md2e2M2rguz7BAILcnALiIgAAU8D4BiYjyPAiKAc90lAQ4B7KDnTJLhX2GokFRBh8nqsA5/rIi2j7es50OxYfpKQ38dUAEBFXRITxy8c5IFEau6vnT54u6HD7Y3Ny5sb909Pq44OMDCeWZGJUfqmBOJDREvCDnn4HzwvknJchoKuBzjQMgd/DV8nkA2FGaaotAQId6naCJAx6vm8tgtl6v1SQmDkF4yOVTN9Wi6alapy6o5Sy6L2jsvWU2zsXOM3gcEzJKGbEgiVDIAiP2i4vzSE5enZbjTxc3J5dnVJ/xW6U1Ns4iYJtEeUjQVSVFTkpxSTiIDCSirqok6CmBwfHKwd+9O1yG6UgiBkgGhoIPCI6pkolqJbWikEBLyEPMnlpHRSBTy9sWdZOtgduHaFY15XNXLthEwIVAABQvsPbMjQqgRdFTYyXIxcgkI2651DOPj1bd/6+u/X/+bz/7YV1546YXpxmX0oS2MQIJo33WJsVEjs1AVx+3qrF8Wdem0OD4+mga+dPkyAGhO9XSEakxUlVXOOXV9Tl0ofCjC2mQ2ncyc8+h96HtyMi0qLnxWNdSynjiuDTGlSGqDIDjntLW15Xx49f1X99qln24IcJYsqmaqPOyczxkgKWUAnK2tj8fTuiyxFyIGAO8DEYuAgX2i0Ph4kPXJjwGcPxyQPnF8sjr5uAT5k/2YwSLw8V99PDiDR9ygH2n8DMfwFkPr8eM3UjUDI4DzNf5RV+oH0OoBY4RIlZteu6CVn8e2HE/G1aisKl8GV/DQg0NDGO53BAAS1aQ6BLUnETFD7xFRAQd9yPneidEAmq5bLpci6lxgJiAERXa+j21OkRCrqsJhiEikg2CDBj2LqgmjGg0NpQRkbt7MV+0K1Ni72WS67JZJUBM4H5nC5vZmL1XwE4S0Wi0BB/uGMXFa9plAJCNa7FtEQYSURcVCGRDIoUt9S8HVoWhiy1Q+/+zzr7/52sOHu1euXE25YwdV5RfLOSuURVCzRdtUozXAMJ6Uiz4W7HLWVdcamJsW5XTsm7kwvPHK9yuFpy9e+XDvPju/WPX3Hxw8/tjVyuHJ/CTs4lNPPJHS8v7ddzEbK0EWQAViM2Qg8tD1S2NxHERIhUrnPcvYh+Zk/sq3X1msehnWO1l5jyCak3kqkBkpozcDROWCeeRL5/jBvTt+fvrg6OjiZM3qae2K737rO6lZcqiMyJEgGrFDdAbUN6vSeYfUty0hMJGIsGP7E1xzeyRsY+ahHtm6eLk9PlsuVgv2ZcHoEAKYREMktE6ygKllIOhNezUmjjkvFstVs8wp923nyOeY+mUDAN99/XXHPhSliqkpI59HzsF5l9IQZaA+DDroR6QPgGGXfd6TJEK1/Gho+wNqhZkNdzsMzA8FNhMVR75PKZSlC+709ASHnGeFIlRNM/dMgnlUlXVRtKtO1Ya2JxAyEDFpVjM1FXCkkkUyDBpAhBh7MmaglGU1P2XG6WwaqvLxJ2/kpItFIzH3TdM1DZgMA7mY+tV8FXOOKgBwPF8ulkueTJQ0Z2Ew0lgUvL6+trk+8wQFORs63USEFPtu6QsTHY1qDh6d61OimJj54e5DIFxfWxeB6WQqSdpmtXdw+Mza40QkKoCQNSNRcI6IU043b364tbHOa/7B3VvL0bgugnO+j4n5440dIjn23syarnVl4Qqf+9zF6NCcd0ml6RpUVKBkUoxKdNh3qc9pwHol1VAV3rnV6uRw/8EHt2599OGHT16/UlWhaxswc94tFov5fJ5SzIKIZKpdO2/ZxX4FmnLXinX96pQ0rG9s1eMJcbe7e7/rm6oav/D8U4vVKnULQky9ElWFL9NA0hp8tcSD9gd+wMUffqVBPWFIoiBACiSqWZEYFVlREUBEwAZSsyEMqc5Ag2xTBt/I4CQDVR0EoMO9hAg0aMgUVBTA5mfzdtU6pGlZr9ejO7v7hXN1CElJzBSMGMk5EjAbkkQppaxBvffe+5wjDm9kg34JTREAbYDimZqJihoqE6WYkmR2FM0OFnO8cEVXZ3nAO3UdjOuUpXC+7yMjg0SNOqknk9FkOpnJ4PpViykXnoqihAjsmMhl0WgCAMt2OR0VW5tbZycnlx9/cvvxG6PNC+r7nFomgC6DJbaYpc99TLGLfZdTkmwi2vd9yrHrWgDtYwKkbNKkfNYYcunLIAaqVviyz0im5EZglZEHR+eeIMdApKLOu8lkcnR48M677wyjTgMks7IoTWBQuwiaIjh23hGIlb4yXaa+K0vouna8th6QWtIEeXnvwZWeXn9w79+89ub7N6699NkvX37+Od6ema+4qoPzrijJmIyQeNEvq2m5PplYhPWybM+OmD0ABB9ySqUvQnAg2ROCo6L0bUr37t8OgcRS1zaXLl/0PmRpsmZN4IuAHAhQJJsaqjq0HHsA6GP8zGefphC+88ZrDVtJQKbM5IIb6g3LyoOm2KxPycD6FLuUQBS7HHwYRmBDRXNu/wUc9JdI9vHz/hNVzCC6sU9WP/gIkPgJvTN+/NT4RHn0aG78Q+OtH0SGfVzxfPy3H3/uJ5tMdu4ye0SrBiActJ4fK7UNbMixxgzW5tSLhKoqi2K2tj5eX1uQDXmhg8500EypAtijvHQAQyoK1w/iasDBkoaEA+7SFPrY9X1Sw6KsEVHNcspmxqpFUQzTFiJKOeXBzzScfuifITrnTBOAKihgRiZ3Z/e+geUubm3umMNsuSiKZt6w56QGjKX3peckWSDllMbjGaiZ5tGoNJGYW0QQSapp+LaoIZEjOpdDomrfxLIq2q6bzabbm9t7+3vj9fH62jo5C6Vrm1XKsj5dm69Wfcx7zfHZspmsrSmkw6OjMbux865wYVxdf/LG0eIka1RJ0jTrZbVR1PMuu7I6PptvzJdhY0bkjo6PyoKffuJ6aq4d3rsfDJx6dKiGiB4UDDLWE3IACFnZhEmB0RznnDI476hAA++dJvJOXUAISBAAAUgUhRFRUU3UBBmXyzNZnJVcPrl9SVWm9bht503TchQDttyaCRCJoHPOO3KAwbssADkZDTSLcN6ZfjRwhU+0N+1c5ACIYTSe9TGfnS0WllztsQrj2Rq7wgzOmqUzdt61sY05sfdR9OTk5PTkDCwDoGYdTP3vvPXOYwA3P3prwFupWmCXUmJmG1KWTc1QRBDOZ7Gm58W0qrJz3jkDUJGu60QexXQP3RH7GFxhet5NGrYyqiqIROhSzuPJJFTh7Oyk72JO8drVa8898zznnLMMOSbOu5Ty2dlZ27V1NZYsKQsRgUXJ6pwjVDNzjgGgGpWjUWWaYh8xpb7pJMWti9sjCnDWdV0fu1y54uxsuXvvTte1Imm2Nt3a2RIFdBh8rUkA4N3bdzOCRzQ1R+BIHeSN6dr6bDId13XhHDEOTfKuPzjcT33vne9iJ5A5+mpcK4IvnIlKzk3fc12xL1KMaETk2q7Nqs+/8OLp6aH0fdOnZdciUdf3HNxaXT6xfclh+Qd/8EfN2tqXn30WV42JyRB5iaya1bSP0QVGwKbriB15NAUDc857X4ZCJUsXkxllkSRJERSHpRYy4mLV1jG2XXvv9p1msfipr/3kE49d2bvzUXbathrKsm+bGCMzLZeLy5dIpC8Kr9ZJig7pZDn3Zau5z8lUM2heNcejERKBade1ajmfrs7Y+9FoooBq3lQNgJmGeISh62BBRTMwn6vLiKNkUPOefFEZUBuXTRd7gSGpANgxM6SYus4UTcUREaGCIpKCgD3qtZ4v7maioOYYRQTI4HxTi6qqYojkiZ3Y/r0H4/VN6DOJslrK2Xufzp8K1ufBT0aBKZmllMqyJOLhyXFOVZGhZ4oELCAAwGSggAg4TNIJidCQgNzu8eFJ3Lx47YoHAwAHpDl3fV85FkImJ0kxSumKSTWp63GWPF8snQsAdnY6r+u6GtXo2cAA2LoEAMmCoRMbr1+4BIXeffDe7V/5litWEVaiYNnFLiKogahk03yerQFOFEx1eJaAJUFA9MZecVLOtpXWfDn2IArmqFABRgBKa6GqxlsKzOzYuawWXAFgInmythaKQnV4siMR84BbM6CB/QNGxHQuGgY0lAKLceUsVdNZWY0wi3e8kO7hyaFfNY9B/cWrF5eHh/d+7bcefuOPpp9+9qf/1t/og4zG42aZ1uoqkYrmtcl4MT86bZdFmHpyG9vb65sbACBJkgEjICg655FHdXV0pIBwNj+9+/Duc9NnV217/+HehZ0dVRgkQaFgMAJjJDNTUO37VbeaAwASzra23vng9qvvv491aUMq5zDiByV2ohmRnfPL1VItg+Oj49P9w+Mr29vaJ1VP6IgyEckQiQoKCEwMgDb4bj8edZF9XKacq2cGruig939U/Xz8sPhhvc65uPRH5gl/atPo0YBIEXFYUc0EztHq8ugthv8xn6/z5+Z8Im9qBbuhTCHG+cPjD157vTk83q6n0Uzabjk/o/WyLD3A0B8DRGJyIpnIiYqAIpGIDDxSIEAbAIgmkomAccg8geBD8GwGMUaRwZpjOaecddDLghoT6aNcjmGsCQ6IUMQAHABm6cE8sXfz1Tz3iQy6rtu4sHX75E6FnTdnGUNVNNKtzo6lPXIlG1pRlsSacyx9ESY1gY1HlVguqpKdSzmbMRg4Ij9YNlTBMHi/Wq1cWbRNc/XK1Q9ufvDw4IEriJ1tba4hamyjZ0pMfddBdm9/8IEonJyc5hg3Nmajssw5rl/YEq+S86uvvsZNcklY7Mr6Vn940GQbjcYHR6dlVcxGJRrs7e+O63Dl+sXl0UNoeyLVZOwCqYERaDbKTkwJUJ2ZMbEjIAMXiqN5d3raFGVVrK2V5VjzKiChQxAEQ1VDkIIIFVvNCTMSF2Fwzaq2HXvWroUkk9GUyeUs7IkZRa0Xc+wsRwaFLCaQYk/lCFQG5/mQvPjxNfrxpf/xZRqKOpQjHiWO/eLsqFmccenbTqrx2KHvhJy5lJKiAVJu2qZpFvN5jqkuK1UFHfQ98PDuLgAcHcxR1TmXs3h2j+J1hksHEEFUz/nh51/ZD8R6Q7AUMkmvREpMwOdf/blqlRGBz/NQP8HTUjM0QofjySSUxWQ8XSwXILq2tpGzMYecIpB+8P4He7u7BG65bHPWlHIRirouu67PkYpAzBz7LvgwUPC3draryYgweYfLtm+6lQe6dfOjZrmADGDkfQihSjGpQVlWq0X66NZHRVWOZzMF0BD6+RIAjpbNeDJpciZvnpRz3JyNULMjZLPYtserlQE0XRuK4s7d28w8HY2X83k5Ho1GIy6Zh+c0oQthZ31t9+hourHR93m1WJ2enk5G1Z2792br47W1aUcdq/NVrWKb69tPXN9I2u+Mpk8/8WzB1dd///dXZ/ONomJUTQoAzE5VRVQ1IgVwnIYUA7XBehs8A2GboyPmIsS+V5AM0uekooP/wgCyKTLnnPvY/Zkf++qnP/25e7c/MiQRMAMVaFbdYrFo2yanBGYxRUcmKca2Q0RGyNLef3jn6ce/UNVVn1d9XDiXEKKKREmMofCUsWeuUm6FAwACoYoONDRTSzkVViAROy8KMYpq5jr4onCIt27deeutt5fzRVnVOzs7773//sMHDyZr09F4/OJzzz1++dIAEW66zjMF59rUDrIBADS0Ye9oqkxkokmUGFWEEAEwxwQATFzX9dp0DQ1z3/dN7xBRTUUYkcAEjQjJETC44ArvEYBIAUxEBq/1MAOQnAGRiRyiqgw51dkUzLxjEhQZdvykoC6440X3zv27O5/93NBRQOAcs4Zs6IzZc5hM7PR0vpjP98Jhm/JoNGqatutPJ5NpXY8NLMZUBS9gKQ8oeBB2jnNJ5AKf5u5s1Vp/wnaUQoeIpZRqGAHYGaFm6UGs8GVO5skh8bm7AJGAskDKXI7Xq8l1oXWjgB6ISQxElB0gZ+YiVJWBiGVTAXCPVKs5BAp+xMQ6bIvsvLNBhIgMAKLKxOepJwaG2BMSmdMMyMSOAaHLbtHvnRzLYr5Rrh0e7lV9e80VtOre/90/OPzMi9d/+s/u51jV1fJs4aa1r4uKGPuliozqkSmAx6IsYCjK0JIQIgbm4H3Xtc5T6pvRdFxVFTn35NNPHx8dJ8neF+k8dRODK0RtGJSIRAU9WywAYDSbcTX6w+997/7JMW9vZ1E2IIcWLcbOMAzej1CEkH3bRyA+OT29d//epCxHj+T/Q2ylmQLwYNp61K0hM/k4u+n8cTDkGTxygHxcyXzyNT8yzPrEc+RHo8Q+8bnwCVERfKIiwh854ScfRj84M52f+BEgkXCgwIHpfBXOuk0IHt3e4rTtVAlm1zYdkWc0O+fxDG0oNe0lJVE9by4h2LkrzQBSTsxoCJoVAL1nlfNimplXq2XOacj3WK1W3vuiKJDIFEyzgAyeG3vUoyVUQEwpiWYmAFQXU89ARSiuX722f7rftiskRS4sUj0pggsRe+9pNK7my6VIz+RdFQrHpFiGMJ6OmGltfd0XRd91zntHrvCFdw7UEC3GBExMZFlUZDQez6azw9XBql0R0ywUOJp0FNvlYn66qEKdunjn7r2XPvWZKxcvX7+8M2+a/dPDd95+88HRXnB8undUgpsV9ebW5tWdnZ0LF968d/+3//ibbdtnR4eHx9PJYzklAbq/t+tw68bTT7z/2qsIFoI3TQ5okN6jwdCvM0tmRgCkQKDzZZOFbtx4an/v6OjweH2tnIwq0A7Fhu78EFOiach9EfNEbGzABoiWJFdFDQTJrCAHiDlLkuiK4IiSpUFKg4Mm0yClVIzYBmPhebyt/ckLDhGHtNesoMjzZXt1Z7OsitOTw6bvzo5P52crRkfITH7w26tpTllVmLkaewTKCZzzXeyJsAo1AHz5sz8FIEXwwQcw5aGJzQzITETMQ5TXecfyEfBeVdRsCAAnJFOl4AaKDn4cakNoZnret4BHc2xDGTYuAAgxp8VqeXEnsGM27GNuli2YY4KYO+8Kx75t4ny+SCk5TsEHFZWcHJOZSewckuCwIYG17S3yjtBcyWtVmfp08HCvaVcXL1+aTmdVPZpO1kxJsgTmdrW8+cH7XYqA7EKgLIs2nbQ9AOyezstiNJ1UXVzmvr28M7tyYe3e3m7sW0+Qs7RtM2QizSaTuq7AYGtzIzg3nk6q0YiDy6o+eDEAxC995Uu//41vSE593xtIUXjnQ5fig739DNItWq/uo/sPHbkHuwfrlze21zemZdUtV+3i7FPPPtt33cpwPBmlvgEAJgSmgdSigASWcoqSVc055x13ImCGjhRQFXzplbwJxpzF1A+7PISmb3KOzWoJqDs7223XxSR9lPOGmmOTDDacEx3jfL5ymnMX+y4ROXRpvjr54ObNZ5/4SlkWR7v7IcD9h7c8843HXlyuJGWAmMFsuTzxYdb1K1Ety4ooEBogpZSa1SoUftmswLrZ2sZ0bW0225h3y299+1vf+uY3333nvaOjYzBcX9/Y3tm5/+DB8cnJoBb65h99+7Erl3/6az/x1a98ldFi7NrVYlqPQ3COHDkGHDBu5hDBVCVLzmK5T33TNjHGruvYmJFOz+a37tydrW98+auf2l81y5NT55yIoKdz0T+CkbFH5x0RmQozm0nKPTpHzokI2blfHweLsGRmj0RZh7Skc2kdASqAZjU2Cv7B2XKv6XbqCgAUKSdVQ0UAJmMSgTJUfZdOTk4ASc3G07WiUkJwwccU267j0gFT38c8iMg9MeSuPRLoj2KvvnSwHlIOvtYUy8xErGwmKabkHHnnLBvIUIkM/Z9sBKwAYohcKHtgJhaiLD06RzSAeU1RCDEldV6ZjQgYzDR7YlNVFEQgAhHlwIiSRYFAiQgYAIAM0A2CRwVQRACP6IZgagAQs1LBdk9TF293i4PCvXh5Z73tYXcvtPpiWX//n/2L6sJm/dQzsXBR0mq1GFNVetva3NAkEbkTKet6bWNjqLcsZhc8EBho17fHJ0cxZyK8cGF7Nl47PToJXPhQEHsDqMoyiTRtQ+yRGMA0pRQ7A6jrEQB8/gs/Nu/1rVt33WjcGXvymkVEnCciX4RAhCllkcSOoQMTSTnFPrHz0kYRyTkTDesnn0dwDZxDHHhVQPxxgfJoCEAEZnjuGzivTMx+tDr50xDP+Iia+Ekt85982bkq6JNztI9HEB+fH89H13A+DDNDAoIh7vic2Z7bOBFcj5bnnSFvTtbcaDwP4Jj84GU3A6NhouaIEHEYcCERMrGSZDMFOk+dVnaMNqi8AdFU7BHVeniaZCIA4KII3ocha1bVZEhIseH1hudRoWqgWTpg8z4giyu9b9vu4sVL8/nZ/v5eXTg2NIJQhsIFz5TKjoLr+h4BnWMzIaK6LjUlldzFboyTcT0pyjquOiasyqKuKseUUsJzlba4wueUCamZLzfX1nptVmeLjc3NzXLcHp7FmErgcrpehBonPB3Prl++XDh3enz03u2brgyf+dSnr128Yqq//q//1dHR0Vk+PKC7Dj71xT/zleufeekwxj/4+tcvXdg5PjoL4eHlKxeYwiq3d/YOLm/ONq9ePbx/N9D5ukiEpM4IDDLhOa9d0RQga19U4+nFnY31y0U9OT46ODt5WBUTxnOFJRIwoCEjoCmgc8TAYGxKQKqGBmXpBIxayF1HvlCVrmnIclGNGBFMnaOAZIbEGlPnNA155jjEt35iEPtoXouIQ/IA/LX/5O/9iQv3f9Dxje8BwFLPilCs2nkpRUo9AxAPPfvznUY2VRo41QCDtXgYgTEj4jATExFCAmAwMDuPCD3XZDzaXgw0FgILwDAwPYmzZDFBAjMlJUTaXNtOKYsKIm7v7LAL8/mRY7+2NnYUGDmnOHSBRTKZsfdiJGAAcHQ2F76ErBm19FU1Gl29ds3MysJPqlHwxTjUAC6ltFotbn94a2/vYDybcVlwUfarVat2cLoAAFeOhsl8WThEfOnFp0bOdg8eiqVQ+op9XVXkfRZR1SuXLhKg935Ul7PxyNdVUsmaB2hAKIr3Pni/6ZqKse0WIuoKlyQWlV8sFiLSLJrD+4d33nsY2O0fHQDbU89cfXd3bzaeOhdu3LiRVktbLjG4QvzwbXw0SqBBS2M45MOJZgUKKEJEoQiqAGkA3ivIYFM+P6pRCSbE0PWtxF40x9QPW86UUxQpK6+aUkoiwg4AcuxWLiCxUyUm71zXtoumac1Y1VQTOb1796Otzc16VC/mZynmgdLR9bFpVwAJEJgMApg6Y4upjykeHh2OJ1P2ZTWabmxNvvPy9//Fv/rVV155dTFfjkZjUybiVZPnH97LOZflJOXsQzhbtK+//f67731w+97u3/lf/O11z5YTE6oKn8dxntvs+355erQvOeeU23bZxi7FdDaft12/vbllgMeHxwdHR66Hm/fv0mi8f3IsnmvHfYpAKI90bGCAYCICKgMaTkUHDZiKimREeASm08Ftj46ZWVEHL7QpABsjZFUVQPbHTffKzdtXtzYAILIj1JSNiNm75Wp1eHKQU7++NqtGY2Tu+ljkiIhZtGkFkVKOq1VTjmtwMMR9mMUO825MrWoOwQiINKvkpF2GFsrANUNG7F1waD2YIVJwpDrAJ8UAFbJhDw6AObuWcKUWDCtkE8kEZeHrmJUZ6rBOQKQdWEeKjktTZvBmHrRTEzLvESQnADVkMyZgO38S00CN10fdBDfAgwfCRkbniJEPDg9KoXI8eTf064Vst8lyP61qrP3a6eI7f/+//trf/V/VN55KG94vpF+tYgFNJ54pKQHyw/39z33hCwAwn8/XN2ZiyuRSlvnibNV26HhazTZHGwDYd6kKdVmWMXeGBgihDDFJskxmJiKanHOtaD1dA4Bbd3a//vq/e/ferrqq7wSdgYH37AyzZTBFdHVd5iTAVJdll9puvjo9OlkbT32pVeXULLjzILDzb8G5nH/4Pf1IIwcAkM4p6T/cy/nTBwXww0qgHznVjxyfPNuf8r6f/P0Ah0E7byo9MiAQkg2YdgMDiyktTs/SslmfzE7bdry1CXXVk4SqYE9gQmDEZGamRuQQ2RRkADMMtjJ9pEUlGAjOg9JsiMwYlKgiKaXknEMMohkAHTtTbZpmCNzw5JEgSpKUFWzQSwGiY/JcOOc8u5R6J123NpuJ2e7d+65AQiyKgtDHnGr1hFpWXo0Xh3PHBSKlnMj7EHyX47JZHp+cVqMx+bIsJ30EJmYe6iTLOaLZkO2yWq2KohwgAK6oZ9XsdHn2/lvvlUBPXby6dfkSAFX16HjvZNWnbLB7/26zmM+b+cWrVx57/PEKfOECOb544fIv/uIvfusP//DtV199/Z13Dv7Z8qf+g7/4V37+Lx3u7X1486O1jbWHe4fTjY3xpAKVpaSHp4sLs/F4a3t1eDimQhUY2AatFJqAAjIygaERGPBsa/3i9Sdy4mywbBb5WJMlR+doiyHrwBiYvQsImA0FLKOaJ9SC+j4eLU5VFJJU7IbhOvPQ6DXnSBVUxUgRmJnEFIiS5o+F+vhI2jbE6p43jgljln/0y//w1//Vv86r+X/wE3/27htv7ozri2uz5vSkaVZt30XRZJpVK1cVRUEMMXd9bJ1jMljNmxCKpJDViIvHX3y+3Shu/+HX19fWVos5IfBAONSMhKrnYT8imkzs4zrmXJNNhFiURUrZzLq2Z+Yclc4pVjo4Fs7nrx+3NMFAzVImIlAEwqIMoa66brlYzCXK9auP//k/9xfMRCI49t4XTA6Miqp07NE8mLERMEuMZOZCYUiMvGobAHj93Xc+/fxjdY0OsPKuHo39mJtm9eDuXWv72WRWjWaIDICnpydHR8f1aFzPRuw9eb+KsVd7uH8IAEilpjZaBorbs9H1Kxf65RE79WVQssDkC9f2PSCY6pVLF0XlaG8f7RH4GNQ7x84hYD0af/DBh1Q4QAPUovBd23sfsqQ2ogsegB1XxsVoslYulzeuPPb8k0/eLctnnnrGsZOkmlK3PLP9/aooAEAkO2Yico5VFYnYMRABxS5G6TqsXUDoU/IUgDClPqnE1KWU4FHHejqqsiVJDVpazE8ODw9n61tIyM51bdP1uU7eJHZd27YtOzJIIokIkX1OOih7k0RkR1x1XV/VYbk66GMzmT7WNI0IeBfu7d7aP3rovO8jTqbbW9tbXb+KMRKV3hdgmiWZQDVSifHr3/j33/7O999//3bMyXu/uXFB1CQLoY/90DdkTYAUUgbnamIggn/5G7917/7ef/y//bsXt7a6buW5HGQ4YmhGjJainByfmSmhpZSHOUxRFDHmrukm44kZHB2fePW7i1U52+jAmP2yawENkcTMANTOJciGZKpDj1NUDfPQUv/4QaQiqMbESaIaEQcEAiOwPBj/RQXRGEEEnRu/f//wnY9uAcA85nJSgwETdX1/dHzUxsYBIkM1qpF5tVqlGMuqTFnUpKxKBo6pY2FTMckA4NC0KkY7WymxutJSw6ny9Wi5mn/wcH93by79sjk7dU6feeba+sZMU3TsUVnF1AxJEZNaZEZQS85X9fpauYluZoZZWwbIOQUAEPI+gCiikhNmCw7JFMkBCIGgilhCIkQWRURvhHLu9zlXvyIgAul5Ntz58EcGwKkaGfQodxcn905PxjsXAJYffvjhY1JcRMyWywAX1N+9e++P/sE/+om/879ce+wJqYs++1Z6dGHVdIAaKkaky5evAUCKCQBTSrEQi6ntWnbMPkAnN9/5oCpHLpTvvPbObH26fWl7PKuEzQeXTJMmBs0xEZgvvaQIwADwy7/8a3/wzrtz4Q7caLxuat45T6hmMLDbckQqAztGqsqgMN472D0+OKqKyjth1pxSEepHMmgykHMd9HkJ8qNzAPhhNsqjHfIPlTs/UuJ84o/2Jz/4p9ZDn4QlfuJdPtEBgiHGWM9bPfjoZaLDOBgRFSCldHp6IgRr2+sffXB86/6tamN948nH/LhkzwhGBg5RBlQuEhgkyVmyMauZ6Dnwa7hMaAgHeaTpydns0QY9peQdsyOJIqqgoIKi4r0nokc8yWHyigM9DRFNzbMvi9IxE7EbF6NqNNo9OnbeVQzI5ovQK5yezLc2pwQ6mYzmbVRAZhqcFN67rm+b1TLGqFnbtnNl70JQAxXTFHOK8AgqLCo5pbIsVXJKeTKamuioGM3ni4rKi9PZtB7nectlaOP8bH//rGmFOACdzed+Ui7mi+XRyfbWVRNMKp/5zOfWN7YubW/rE0+eNPOX33vrg4O9X/jZX/jZn/npg4ODlLIS3b778Klnn0BgNVhlWWYrpmv59DSZsuHQAwIkBRIZkEw07PHY+1Wz2jvY3dm+dunK5d29+6KZmIEzkIGJGSiCWU6GRAU6x460SwSGoKLmR4UwY8ZALgi0MfnCj+pNk5QkZSCiwRaOWZNhEDVFwKHdjgDw8TwVhpGlmQCgiNZ1/f7Nm6+99dZnn3/OleXlxx5v9vdXTb+1sRXYB1x2ObaSm77vVktLKQQHmNkU1BCxrH3K2YeS0c1XfT2ZFOPJP/+N397aWJ+MRwMUZFAtEwEiOR8GQbQnd270ON9eIIKy42CuAGdmLiMIINsQj2WmADao5x7dOcO9hIBEjCIKhjGn0aim4EyjW1+TqEVZqMpwzYvIxsbmzs6Fu3cfdF3vHZSeVQ0Bgveeh2uZ+izLpulzBoAHe/u37t1/+unLoNj2XSgLzFCPJo89+WS3XJoakhcBAsKi2L5yyTlKpkmtjUkM7j/Y290/BoCsal1XFOQLq+si53ZUOXbIjshTVnFinlHNYuwXzSrGeHZ6wkSgApJtyDVBMzDJUtW1q/xytfAhMBIgEDMzMXNVj/qURJfsQp9ySnr1ypXVfKWq737wnufw4vMv5kQf3toftc3ObBMA/sZ/99t/ctn673tkyXVd9X0HqKt2tVzOs0QkQFCRmFMyTWiSYo4xh1ABDLiNAQNLABBjZyaq6jiYoUju2lXOiZFzyox4fDI/2Dtc316fTCddhFu3djfXZzHFJFiVQORFVFV9EXb39r/xjW++895HRTktq1EBEPuYs4EAKhkaIDGzxgSEZBhTwhCS5EhW1rNvv/zq3/u//N//D//7//ji9lZsW3YMgxNXEdEIKRQFmiKYc67tVzFqTKlpG0Ia6YRdCEXVNzmidd1SXAgQ6rIC1CgREVGBVE0znhv1UVUBIYRgCOwcMWUzO0fxErGR6ZAjP9x4wyrORGYqIobGDsVQwAlBciUALHKeqYZsMaZHCWngi1BWFRF6z1pVzrP3PgQnqsxELjR9kyRllT4lAIi9AjkoRm+8/eEffPut2Wyrdjgi6XLeOwtnq3pvr9l/6Inzxdur6TTm1JpaID+kOAFEIGFWZ57UQxnD+MFoPXkXplP+3Gce25gWZr3ZsixLImXfO0oxHce4lODIfFWMVUykU+uYESnkhM6C4wKJFDCbDroNUziffwyMVaCoLhsBkQ3RcUyLHN/Yv3vHVpdS/4XppVryDoeQVyBWiXHJ65U/fefD7/4//9HTf/HnN7/4hTwab402Us5lmLD3KbcGtre3twlAiCkmKjjmpH3nvO8lnRwe8comxRQ9OXOB/OnJ6apbrG3NuOLZ5poPBRBoFscOAURsEMkBwMHJXKlAX0JSyxbPFWCAqHVdMFPX9ZpyUVSO2AV2wXvPsesWZ2fb6+t9XMaUJsx4biQ/hx+qDsKcRy4weyQeQEBAzT9Ui3xcpvzAAgY4uKXg3GD1qAN/fp5hE45DITPssX+kyhmq+eFiHtpQw9l+uBE1iEeGUJrzsd2w0iuICaJBTvng9OTg7Hi31ROIJ0BjzJPKZU8U2DmipGjogBWHxBsQkSyKzEhoqsyBGFAtmw72ZB2wEDmDnldCRMRMgMpMVVUjIhiaYowRAUhBhi2ioQ4dIecUFEw1i2N2BI6B0TkOo8V85URKJsjiiyKjLPsuthKwch67gKuzJudIZVEUAYdIohgdgUN1JCZ9184BRC0nwdS1fU5qKqIM5J0Hid3ZWYyxqKqFyNrG+jNPPXnl2pX56Wl3Nm/b1lflbLpx5/advYODs+Uqik3rcYqpaVZzPOmPTt1zcOnS5aIorq1dcmAaY12FS5ce//TGp37n937/X/6zX/6Lv/ALP/GTP/7bv/u7xXi0aJaH+/uPX7nUt4um6dz2JTF19UY/P6sQEDMKMBoA5OFZPYS1IzNAbtvlwd2CLNVj6Q5mIw4EZmBodJ5oDeDMkmrUgn1sWkeFaU42LIBs2UDMTAQxg65NNjzT6ckxkM85EWpgA0NGJ5mbVn2nPpgjl2JSFWYwSY8w/5hUiais63fe++DX/83vHR0vj/bnbQPb29e2Ny7uP7j1YNleWt/07N3itIxYe2vRjCxJEkBHJZnmvi0LH5A6ySdNO7t4tVzfiVVhVpyexStXn75+7er21qb35D06hznGFCMASE4lez7fpuThZhBVcoxIKSVRYGLnfc7to03MeToBnP9q50QMAwSLqUci531OgkQpdwBrCCzZCD2CoiEhknfLo+Zkvmj7NCrD/GweizybzBiBHRdlmTU1qy5GzRkcMwDEZEdHpxvTemdrJiwWlItKUg6BXRk8e1PruwyAYVKlFPtm4UAWMZ513XEvb996kIUBQC0jqYJ4H9hxEvUBFFRy9uyRUCUBomRbtR0A1KNx2axEBRGAwDElUyQl0rOTrm0on7aGJBJ9CKWvAKGux6uuaVatRGQsRMyNvJJ9+NHNr33ty6s4B4LAxeHRwfr61mtvvPOzX/gSj8b/j7/7H4FIgYAgZemdw1AGcp78kGSCbd+2XZtSRiNTMTEm5wCR2QAiGDnePdz79m9//ZmXnvhrf+0l4Afk665puvm8BHWEqGYxgWBWF7OuVstL9YyUuqRVEI/Ivibvs2hwRd9pVKhINHWWZXnWnJ40Vy6ykbRxOZrWly9dyVmmdXlcHbdN60OlCmLWW8wiIYw+unXvD77+R2dnzebWleWyA0NM2RunpGI5FCUYmhpkdUjADITeuWFBZEZ2fmNr+5U33/7P/vP/2//uf/O/HpXBRBw7MyPyYDl2bRtTyt1qsVjO533XrJr2/v4+F+WLL1ww4kk1unzh4ocf3g9FPd7cXMRoyGaWVIh81myAGaDv42K1spg0Z0D03nVNZO+Q8iDMaFYdDApOMHKCRKk39kVOmdihmBCpSk6JHKekHoP00rNQWQLAIopS6KVPOZejsvBhGc9OT5su9KWfj0Yjcrw6hRMwco6982XwhXOlD+xS7Ifs9TbbyNeLpl+fTH/ii198/e17//zXfx+oUAxEBbrK0QTCJTG59aC1Bx0BgBrxIEgVs0ykRMpKKNhbh77PsAvabm/6Z5+4tl6RA2DoU2xNnKPSe1ocL5eLA7boMBfeVvMDlSVR9kzeF2Il4Qx9DYAxZ2QsglcFU6vKEgFiioBQFOPR+hPFeHtlERxqVqZCV4kX4ryLaXW1vPjYlWuzg5PGFkYOciGSQ+HWLZzcvP32L/9y/dYrW88+dfnSlX48XRVjdVBWRfADOwJYMUdxIaRePDEgrFap6/P2eDYdjZEQMU0m04trG8DIAaPm+fHpaDoZTSYAQ/wommUyS30PAOqpGFcZA/SWu+hDgYxKyoTgiULhg+u6PmMehZJUIKfZeNQ0y3/3B7//M1/7yZ0LaxnLhA68yzkN7E8wQHtE04EhJQIR0WDAG8JQJQz9jGE7mnP++HWiQsw/EOBrZgREVNUhW9JMmYe9NxhYlhRCoaKiA/PPVDMNQocfyLFRPzFTOy+SEMAICAgfBaXbueTTkTO1mGPqowtBEPZOjhtkKEc8nmgRhD2SJ3QKmQAG2K6YEVKvGpmInUNGRwqGzOSMEmHGrDlnzQM06dxHjCJJchI0b94Fx8wDrG5AxhiCZ2dmfRJC8uwAB++ho7KUnKMoEKuqu3j1sXdee2UceOQ8+JLq8cPlYZQYuFweL9Z3/KrvVzmWdQEgiAqiiDSu68nW+sH+LkICS32/RFIgNZMkOeeM7JxZbttuERfzuZF95Stf2byw3bRt07V938W2W5zOzQxDMZ6sodGFCxdFIX74kbV913WScr9oLl66pGKvv/XmrQf3nnjiyYuXdja2NzbWZsuTfW/2tRc+c2Pr0n/3r3/z13/tV3/sZ3766o2ru/sHPtDhwe6F2agOrlFYtXFjYzPVq3bRJlWHSqjuES9ECJnZKSIwGrBk6vv9B3cWyzOQfnu27pA7UUDzDil7c9RBT0S18yllFHTOawgpJQKCBI6Glo5kBGM8m5+RckpKnpmc80CatBemwoH3FLwPRJiTIGEZQs5J1AjJl4UYhlCI0tf/+Dv//o++uehsOt4+fHi2Oo0XJtvT7VG5Ntu7f+v+4eHFqt5iOjnYc54MMDMx+ihAgKRSONOuNQJDv+z7zzz7fHSBi9FktvXuu+8tO/vO99+u61CWxWRSrK2NL1/Y2tpYH43GRShFYt/1BhkIDIyZmDF3ImrEntkL5L7vA59vDIZR3tAGIaDBG2AmSIhgdV0YWEo5OC5CEA0IoAaEzvmaGUGJDTJan9LB0eEQMr+2vhG48OwIMYucrZarrlkuGhJP3tFALWJXhnG/jHM44wsz751SVlYApFAiIqpVIZiRivrU+gDNat418ayTt28//OjBEVEF0OTcE+TgXJaMFIxc0oSIKffdqi0LRk85Kzq3vrkdfOi6bjbbWCzPBDQwCqJmNRRiq8uNKxcuZ2nv3r951py2nbhCty+tk3fYgoHmjGZOBQYx1aWrVx574glXIDMicvDVYt7d+ujhlV967vHt7cM/+kMncbk43ZiOJKe6HJFRjuLREJgMx+UoeB9TzCpM7IAtQUCXs0ZVUTk4Pb7yxFOL19/5J//y33/6Cz/l651lxymhZalDADXnC8mLnCwKtV0aoJaEznEhtvSOkbyohRCsB4cekDRHAskxtcvYt5Iz9JJa7clzEgV1ABbYdW0fqolpFMgaYwa8e2/vD37vW12Pa7OLfSs5a4qpUi9JgJFdEXPWLJ7YEQOQipqiMKhZ4QjUuq7XUIwm69/89nf/i//yv/w7f/t/DhK9oxyz9x7Bzk6P3/vwwz43qNliJrVs0It54mjYppxzahYrJq9qa5MZdd3panmeMQaYBbOZ8+G551944saTEjsEzElM5NxyLCYgMcYck0PUGENwy75RyaJG7Po+qkoeeKHsUkwxJkSEZOyAGbMJABydrdqtTY+cVNk5ZrJsuRdiLErHRpBsFAKHkHHgdZGIFFygGeRzDIQg+nLcxvzsjau/+OKX/9W/+da//Z2XaXTJrDQxjT3RQL9F78bMTEiqmiQ7AnJmlhElSSxCRUYWo68KIEk9VkwFVdNyDGKiXc59SuhDsbG5c6VYg9R77FN33M7vj72Clqo9Idf1pKrWMk+MalHpux7IPJHkJCplKIig7x2ohqJYW5tFP2rbuQtERAbmo3756rMb6A9277nl0RjqUXCpAzR0XCO0BcVWdeY4LM9OvvOt269/967Hza/+2fKlL7mN6XR7I/hQQgaA9XLUZYjRfLCqDJ20zvuNtY2A3ORWVaXNXV5c5IvrmxtFWQUu267XpJIyoBv0JTHF3LYoCACtxVCXqp7BmqTDHc9moIBCjtEVpXeQlw2Cq8tAjhOaqL78/e+dnBz/uZ/9c62QUdFKAhIiRkMEjwhG5xWPDjqDR130wUXrnBuGOwCAAN45QkwiBoN8QQBRNBMgMzlCJjRjURVQJBRVkeScd96ZQc7JBNj7nAWRnHOWI/wgReyHosE+LoAGoQ4N1EtEIDIAYpYkZufUk3FV7mxun0zWTqvGIW9dvFJubmIogR1xgcBK56E3qnkgtvc5axEcF2DoPfeSu75jAIdExn1KUdQRee9yzqA2mGwElJDBIPWph+icH+IHVFUgI3lEYGbvXFGWOnBcEFLOMWbnwBcFILnZZFwUYTqunNkTTz+9Arv7+n0mQ9Tlcn7p+qX+7BTJXBFyFDFgQyIaVfV4VJ/6Y8/eO7eKiZkJABNonwgx9v3+7oHF2DfNpz/90nMvvHB6dvram28uFwtABMPJaPL0jaeqqlLRs7P5YrFol820muysbd1b3g9FUYxmYfvysm2KolSAw+OT0/krV/cvbm+tjyeTS5evLE4OT4+PP/3ii2Fz85/+2q+/+r3vXX/q6ePjoyzZO7zz8M4zT93AAAeHDza3ppO1kSyrtFwSiCENaQ4ZLOXskBVQUy6c5zBW9IZUjkpnK0Rnio4DM+S+r9zoySeff3jycH/vfsRWUdFDm6IZOufVhiYmmOlwTVZlMZmtNYtoAFlsuVyOxyWz8wSMRJAkLTSeWKh7yVVZ9jnlDNPphhmczucPdg+OT+Zvvv3u/v4hUjkqWJOtmtVb77575eKFrk9raxubm2tHdz46vnuncjS6cOH0+CAQesRs6NBEgAhNed7nydr66dHZ85/63Ob2pbNsBCqSmHgyni3my8P901D627fnOXZr03FVFDduPPE3/8YvffVLnx3VAR2qiiYVEybOkiSrd5WaOnZm5/Fzw23y6D949EcYaNIAaIYApJYJyUDFIg2hxEadyLvvf3B0cJZUqrJaLZf7B/uFK733quCdU7GYs1o+Wy1WfauC46KSIdgJgAjqerSxMTs+vN+kxYVLF2czDr5AJGAyFecdAscogkNOHWaDmPJb737wxju3kNxgPSVyqgZGyHx0fHzv3oMnH9sejyfe+5wzVqFv22XTOC6Zfd81mvN8vjo+PgXAqh4BGBEjuSiys7m1s3NJpOtSs2xXqc9VPV4ulq5ws+l41S1Ni+A8EfddDL7suvTRzbv7e/vjSQ0Gi/nuK6+8cXrWnCzTT3z5eWL/3uvfOU6Leb+qimLVqQ8BECiBcwYsZlRw5cMIgFTRhBQ1JzHWGJs+y3wev/z4iz/z0/it/+t/8Q//q1/52Z/58fH0SpfKw5O+Lp26otOFeb9KXQbBAAK6Wp1dckhMSNCnFFPvPafYSo5FcEQgGQy8qk8JEUtRH/vehJyv2dUpqxiVRd2kjOfeEQSg1ar91ndfPjw53dm60sfc9p2CiUIEEnKDndrQcfCqGrMyCuKAQVQ1jZkBkLxLSYvCXb185fVX3/jOt7/zt/7mL3Vt4xyllENwIbiHew9CD4VjJoqxV3JHzcocDz+mqh7NNtd2D45NZTarstOjZTIoEM1AvGPN8tHNd/cPDnwZyINJqstR23ZlUZgZu2CmxSyUEBiRrQbgIm8iMjvOKbvgB/2FGSKzdz7nDEAgyalkB+gBXn35V95+D95+7//XyPL/zwPBEbELGGO+//CBIKKjlBOQZyJ2lCALBQBQyUmUEMGAHabcoYhnTBqdA5OFpM6z65tTI4vdaRMCYUaHXRe7vmHCPsvx/pFMtiblTDB7Jl9fctMn6wKc45w1KSPViaucOkQjwgrVDAiwpOFnqI6xYAdiCrIUNmMk2z04Go0LnoT9s93VwcMfv3z9NOG4yeMAk+k4Lk9YMRBOinHXqUkrkuuqLrwnwpPjPdo/mRnf3j353W++isyff+GpqwCgwGgxRyxdluREx8F5Lke+6rq+qIqiLELh6+kUnItiZuKKIIZNn7xnBJCcV8uVpliXIwCIKRX1qG8lhBB9SiLMiEA5ZhZxXoPaGo9aZxYFAgCBmjjkIvi7d+/+81/555tba49fv5ZSRNEyFPAJ+fH5wOpjoxeeJwYjoAGJiHOOmUWEmVOM7BwxdzERcc7Zu0BEfdedLuZt1+Q+qllRVaPReDIeD19/H3tiDkUYiBrIeO5XfASt/UTF8ycF0YhDBC4AGBI+6vc7RFWNRsQ+hNFkXJSlmhRleeniRSlCUmPE4BwDAwkaDMzE4LwqpZxEVVDn88aSluNRFlOAogwG2SIOpYxzbshDTTmnvjcAGlR2BiaaRRAd4jl7JQs4zy44JEJ2oBJj7toupQwIJraUFQC4V7//yvpsbXttvLm2dvHixTuHB1Xpm74DRGJlB85BXZf5LA6GeiLnnGMOjlxgT4BMjtmq0aj0cxaarG9Tsvt37/eL1WPXrr34Ez9++dLFD25++PDhw82NzctXry3PFinn1XJ159ZdH7yogmFMPSFvrq1vbe5cu/rYfD4/ODw6bdqNrQtJEhNbH5dt+8GHN999u73x2NXrVy/MTw6BqOlXV65s/E//5l/5+//gv7713lujtemyEWBatO3u0cnGdHp2crZcxAuzjWM8KCbFWjVhAxQFBGRnxEVdDk007zyYE+GMuFodHj18b4CqETGAMpfT8eba7KIfTZFgf/+jUHgzQEcnJ6dlWVdFqecCLgYkAAEeCqFMaKUPXe81AzqvmtSSGZJ1DlOGnMw8YjGaWtu//f6tN994+733PjhdrIh8VY+RKyS2LqJoWY1ef+vNF1547pnpjS4mrsLlJ5+abaw/+OjDs9OzYmObmrnE3vqkOXkkZAL2a9uX9o7PLjz21Euf//JJk8bTqRBUVdn13WK+RMTRaJZSX5UzKid9H3MvL3/3nTde/89e+uxTX/ryZ2/cuHH18uWN9fWUIqjklLqmLUMgQnacYiJnj3CJCABq9HEJNLhjVGXwl6kqMjHS6dnp9s6m93R4eJRFANxy2XnGDJZzvriz88XPfe773399lZpRMVqt2mHCllVEzLkCGJHIVAMxADjE2Ww6m81id3Z0ur/qbo3HR9ub2xub22zOMw0JUuQcomrKUexkuZo33eHJ6elitbZxoVu0509edIgsyqenp8dHZ88/fa2salNo+66uCnYhx2UvKxGSLKN6lJICkBmaoQGlmIgJANn7ZtU92L1TlpUZAeByvlzbLDfWN+bLedcs18rJmSTVFNyoa7vVskcIwY/v3d699+DBRzfvHB2eMpcffnT/eNnPdi597ef+0mvf/eNb77497/Js5HJSJDBSZtAc0ZyiqjgBTGKSDQGQMcbYWZw3LYc6Jnr2uc9t7lx95dWbq2V8/Or2bC2vbeGyT+sXH989bcqZWzRN08VFG43Il2UGyRZ9GbRrnQfnsSh9jNHESu+StAZCbKKJvSGrkSioc2ikCqIA6FFjIkYgjFGK2t1/uHf3zoO6nJ6cnBJ7ZkI071kFVM+1sWIABkOP34a4VFAwQUMTVADnGRQXZ8vtzbXZdONXfuWff/bTn3rx+WebbumCyybkcH0ypdlkUOAVdbXsugw6qSbBOSKabqw9/uTjNz/60MiuXb+0+PCmQERHDC6m1McISAd7e3v7B1myOUAiy4IA3oWuT6oCBOPxqFmuAvGoLJsmgrFzIec0VMwKNqjWEajre+e4CAWxU1Fkxx6ufObz6wFfunLhsdpdmhSb6+NVu2Ig7IwFqqLq2xYBqlE9mkzGa5NyUqvDDAoMTd9KSiLadrkKlQmooS+9Lwv2CGwKyTBptnHhEMwskUchNTFCBFCVGAKqpq5dlqX7pb/2V5+6cqGZn/iqVqAu9X2/evnbf/A7//ZfX9oeb21PX/rUC6r29rvv3j08ffZ0WfqRGkEegEnQxDaJAQd0Y9FKlAP3BL1j57wbVgBPCIjODbF2iAgE6MjVwe8+vP3973/zc1/61I/9+Oe79mzGMJk31IgzWrgsZdWzq0CNM1JZ+qpwuQcTMMyGktd8cfe99/P1Z3/92y//1vdfgbpeL+mvA2zUk3k7T5KjJFMLOTEzsXY5RdWq8OV4PBrXxWg05AwiEpIjZkAcYt1i7HOMjsh5Bx/bQBDZucIHkc5EyHkgTiJ9n0p2DFYVVRPbee6DC0zgkVGMi6Jpmub2/Nvf/s7P/PTXxsUoplRwGDYHhjDARNzQFjrnKJkNzk+AgUd7TiwEDD70OR0fHKjh0fFxTjIeT5qmWS7n87P52dmJ5sG3CEVRrK1Nt7YvXLiwffny5SSp6zpmDiHknHNWckSf8Maf61B/WABkj3BECAPB6LxiUzBCNEL0xIDETkSapokxhrJWla5plZUMhy6+4nkiNiCqgJilXlMvWhiz15wIHTtkhSTWttEAASjGqKKIKKKIVFa1mhIiMg8+eUA3wEYH3RMNQTGmAy5UDUJRe1cgMqKpSEpJTd3FnZ3ctdevXa9caFddCMFEgkNwKJBH43B1fPGD+3tNjN583+UQgmWAJKRYl2M3EO/Ucs4BXYFoIif7R9trG5/53OeefPLGvXv3v/vK9yUlH4JkuXLp8mw2izkvAD/44Ob+4UERiqKoEHFUj/YPji5evESOQhmma2vHy+7d9z5gzzduPHHxwqW7d2+L5LoeHR4eT0b15tbFVdNnTWdn+9ubG7/0V37uX/7Gby1Pj3w9ErWsdm/3aG224zwc7a2ubF2f7VwfF/WVnUtOSbMxEjKTc8gEYOycZMlRV13yzoqRPzn8CHLKIgpiIuuTjcl07exkObu88cxzL/hS7965k3I2gz4rizgV0yGUAgHR1Eh1b/ehR+9dmVKaTScGWVXc8MYEaqYmKdtoOuu6/lvf+fZbb73z0c27i0VTlqN6NKmqETuvqpqVFMmwrOrVcv7qm28+/vhjNTig0IGNLl55fDrdvX339OH9wnHQ3CwXy7NjkFwUYy7qe4dn9eblz//YT0Xjog7IaAiDosJMRCh4MmV2XlImYO8CgQTvXv7eu9955U1GvHrl8jPPPPn4tSsXtjfWZmPnYDk/TrENng1kmGKfy/MRB80dGCiex78DGKoxJFATRULqY+yWF2Psdnf3nCu9Lzc2LpWhTqaxbabTyfXHrr3zzgfNsk8pMoZhmYg5Ox/AVLIqgIqUlQeAqizW1qcuuIuXLoGD49Pj4+PjxdmibbuNza1RPUIQNDX0fcpN18zP5g9391cZ6tGU+bDr0rABErXAzBwkZxOKSdQwJulTBqKYEhkFXyaQEAKTSzGaWvCh7eLp2WI8GXtfOFf0OasBOd/3+eHug5yVyBfBtre31HK7ms8m49qFE13mxApVWY1iZ0WYvvP2t7/zne/EnIqi8qFerfJ3vve9n/+Fn9+ejdHcl7/2F7cuPPbay9/ZPdwfV8WkLrKktkfvGEAzCKIiMmjKmhCVCObtQow7SxiqMJpeXbt0+eLjXZuOT/tVd3/36PRb33v92tXtxx+7gkxVORXiDFSWW6PR9tmiu+792sa0Xd0LDOB0vjy+deumo6BibdsotmItchJcAXZiS6COfVRDw87YjMg4GYlZzqpF8F0nL3/31b4Tk0jo0BEOZK3BzI/sHQM5GKCwiOzcAGAAFCTAwWVILiWtqyrlvmv6jdkk9d1/+9/+k//k//x/RO9Wqc8xMrFjdghd7HKO4mglMYMwEYgpKzCN1qc+oC+LC5e33/jofQERtJQlmyla8B5RkAh9UEMxffKpJy5dvPS9l1+eVe6Jp546ODi4c+fOpc1Ls/Fk7/7DC+sbzuN8frZ5aev4+NichRD6vg8FLxYnm9PRqK729w+WGWZb1zTK0f6RK/BkfvjMha3Ao3bRrQImlGRasHOIGbIvPQICU9IUVdg0JUkgBKSqQJiaBAk8kxpG0b5ZRc31uCxqtzht6nHBjGYdgjpHDIgmhkpmCGaQQBJZ9NSh2I3ra1/83FOLs0MzctXIgLa2Ns5Obv7e7/7W2dn203rtscceL8pyvli98OTTz924cXoyD75EckgGrP/+W298cOe2ogNfiRWirixAciQmRyw5qw4RbedgVSZCRBVTC9NyxN1ieXa8VlY+58KEUjw9bErnpSqf/Mkf33n8+vf+yT9d3bk1cXmZI6NLDqMoM6qC5uydBrb3Xn3l1W9/czzegOnGcn4AALBaTkyWKTaEPngSUrBsWVKeTNeq0TSBRdWSkNiTIwETM0YkpJiyxRi76NkH5xAYAIZCgZjRrK4KNWljBkNyvk+xy7k2JATynMmtcidAEy6ZUFNOvYopO/zgvfduPHb9M5/6tIqKKQINP4/zSgjUkAZ4GuIA8jNV9c4jMSGSRzM9mZ8dHR4DIgC//da7e3sHkvPJ6WkWYcS+bclxEQKZOe+dYwp+bTZ95plnXnjhuZ2dbSPs+z4ET4SDFfAHtY4pgNEPR8bTx4JqJFU8bwE92uQO1nUkM7SDo4Pjk0PnHBPvP3iYva/9FgEEZrLhM8HMnPMAJD3kLMtVg0YIgcivmjaDemTnFMl57xwYqDkiRh7aZXoeNmyDYFvBCD0YiOhg91LVlAXPE8FEFLz3vqwsCwGChyIoADiIGly49+Dh048/MSqr48PVbDSdt2fKGFN36cpF6JaLd97L0Zg8AKDR8mwVZ2tWQ8XBsZuWk7ZLfZvWRpN+sdje2ML1zfG4Xl+bvfzd773zzpum2rVtYIeib/Nr08mkrKtyVDPodFTP54sh2fX0+KiP/d07t3JKAJYBCauS6OzsZPfOrY3NjXa5ZEJhDqU/Pp3vPP00hoq4cFLmVf7CS18s3Oy/+eVfrny5yH00SbE5WZ2ujybz5mSxWo5nm+2iPeskGHkuClcBYEyqycTEe/SuiNCDd9XIS98ZWBfbKxcuPfP8c0A4LkcFrhv6Fnql6vmXvrC+c6Vt2rbpQJWZFouFiZoqGmZViTGmpqqcA7daLLucPJahCmCI4ERcimYSnF9vMn39G3/8yiuv3b+3Z8ZFqLa21mISx6V3ZZ96dkw0uEmoS9EV1atvvf3sU09/+lMvsvf1tF5J76vRjedfbC5cvvnmq0dH+965rQsX+rZbNXH38NiK6Y//zM/RaLJaLUNZRI0IvL6xiYqqlrMQCpHPKTkuEEFERLDvcTS+JCaEdHpqf/SHb33Hvbmztb6zvX7lytanX3rmhU89167mokroAN15z3YwvuB5kQ8/AJHakJiteg4nTTkSwaVrzw7bnmYVV6sWXSjRHu7udqt2Npt0TZ9SphCAse8SGFR1vWxbJEDG0odR6QDgl+/swn/6n//3nBt84mia8zYvELEHZMm58GXbpcW86bo+pAhozF5jXq1WxIFBzl17ZuycY+ddCM63SXIS9gGJ1cCHcn62HIDus7UxGq5PpyL9fHHSxYV3AKCa08Zs4/7dB//v/+Yf7+3thmJc1dSsOslaVdO333//Wy9/56/+/F/uVu2igxvPfHb70vU3X3/5we0PT9tFiViXFYgTSVkEERmdCFpCI+tyl3oD77PCMy9+bjK7zGX9ta/92P7BvT626MvTZVqtFrfuHXzjm29MJ3UZ3Gw2G4/qshpv7zzdnB51vc02tlZ41jdn3uPp2dGv/tq/+cs/+xUTatrIThXJuZK0UHGaHUPBGKIqWADNiIGwiPFMNDFyKOvvf/u11197x/uxGhZlpaCxT6IRCavApmZDLhABklPRnA1xIOShGZqCCjpHBtq0DRGqwqrtJ5P19z689e++8Y3/0S/+pfdf/95kNBqD77qu9o4A2DktaHm0Spqdc4jgvTNP65e2HnvqcXJFNakFLCkkhabPhOg4gCEBmqgxx6wxpuWyTVkXq+7atevb2xf3D46bpvvyl57Z2ti8d/tBKMdPPff86fHxzsWLv/M7v/P4Yzdu3LjRtk2zWr79zluf/vSX0WGXXk+L5tkXXxhx8dbrry37xU9+9Yszzn3fUmyXwWhcZLDgeDQaD1mxdVVNZjNkiiZNbIURA6mpEfV9MtUq1DlpQe72Rx9979VXJ+t/9PCo69qz0XgTMKW+H7AWmkAAVRSH/DLNzpOkmKUnEkN0RN6jD9CnvFget30qKsqSF81qvqxP56v9w6OtzU0znI63N9avjarkyImIgYXSX9y6//Dh3BWVgBNwCg5I1RsBoGHhzlUljCSiZopESBg1gqOM0nUrZgpAIcPZ4WJ/2SQORvxjf/EvXPjS53cuX7z0znsf3L9dopppdl7I2BGJBuRQjU9P9hGLi5PJ5ri8tXu3BOtWpwDgU9K+HXmat7EHMkUPSKxlKIuyGGwXwJRMHfGQ19PFHvoekVQkABFCVZVoQ1kAzvnezHmf+jyqKkHpUjMAuZUpo7U5hnKsDgoqkkRZtamAXBRIpKo+eABt2+X9+w9efP5Fx+5R3QNwjiIc2JoKSIBDKoU6Dl1s0TMNj/Os+3v7H374AZFDxO99/9XTs7kqNs2qWbV916tmEWWmuqym4zH2GYmc4/29vZs3P3z55e+88OILL33mpSuXLwNazpmREezjGJnB70kfG8fwY1A0ACAoEJ0Tgc6XTURmByB9SsvV4uTkGAlm08kqy93bt9cuXhjrOoE5IkQ4twojigqYpYx9jHAO1x0c7Fo4ZiQedEdmBjKoSwca3RAbdR5SNshLReETEWmISIMcCIQQVVEMQDRLZDVEYiZEMgN3dnZWFL5drXbWL2ysF6NyPBtNV+1iNJt088Mssre715yuKp4F8qOiHpX1w92D2MoojNqT09t37g90DWYsQpkmdHnnwubG2mq1lD7Oj49K71Mfaxc8UHA0Lesck6E2beN8WCsryto0Tc4CqiFLms/rqtze3jw6Ojs6PSGEMZEsF3urxXg6iTF2q9V0tKNCd+89ePqZZ4KfbI/q2Eu/kM+++IWvfXX3t77+u+XmBJHYweHx7uSyM+kPT/ZvPPbEwfHhOHdUBJHcNS0igkFRlobQppiMDbSoPTnMvYXCdQ1s71x4/Jmn+xgJMTdIoQADdAUAPzHb2nvwcDwaj+raVFQSqA5XuWQztePj+6+/8nLXtK5ka3r0kNCQXB+t8KOinOyddvdefu/De/cfHO6D8Gg0G0RsKRmBY/JgUHgvklQzqgGSgmWVlOTNt9998fkXVDkLAodk0inWs61PfeUn3nnt5VvvvjG3FIiPFnOu1772c3+h2Nw6XrXVdJpTh2Qpp2tXr5ZFJcmcK/o+ee8RWUWZmYyMUNSaZUPeE1oyLYvae97bXxwenX740a3bd+7/z/6j/8lnXvrsZDxxWCRNdt5BRkI3hAQgkNpA8ARVQGZVZSYzSykBZHIABDmn4Ko333577/iMEEvnHj7cbZZLRMw5lz6Yiqg1XVeUoSjKRdMgYVaZVlXBMCb4m3/lZ//23/rrkBtPRihd3y1XTd/H5apdrRpJKXW9KBmXAO746FBF6lGZXfmNV979vVfeD0UV2JQrFMRhkwyIiO2q7doOmQmZOAAZI9ZV2fU5pVSWxWq16Lqmjx0zVXWh4xrQQvDM3LTdbBKSiPNeVAAYAVV0b/fgc59/6b3331qcRiLzntbX1hjd4mwhIlVZZ8ldl/o+ZxEkb4a/+Zu/+ZM/8RPTepwQlymXs43PffVrWzuXDvcfnh3uLY5PktOy9Flz7hKpsaLmIYaSx3W9P28+/4Ufu3D9WQ6lWLx2dWdrY3r3wVINm958uaaqanp02mpuHj7siuCruvjH//jXn37s6uXrT4ymjnTZtzFb58vRV7/6Ze8qBTw5PizrIhREVKixRkRlRg/mUBKbQwVynsnxEKCWdblo//APv5WVPHp2ZR/ToOtMCQhMMROgJxZU6VMWI2JPDGCEZICKRKRElFJfjcqUMiGklL332ZB88Zu/9f/59Jc+8+Bw75q/xKaI4IO3IROa6OTsrItpSHEREw5u59KlP/OTP75qYlnXFIqk2nYJiBVAM4Alj6RqapmQHWKzWpweHcW+Y8IcU7NYrM2ms9msCmF9fdb2kXx1/annTk5PMzjwdRjNpus7r7z6faPycL44OTm5dP3G/ltvTdam667WPlahePyJJ45uvcfsHYflonGkflx1OS5Wq7IoR2XNZeGKQtFIhyGCJZU2tgQk2UipDC6yf+zatY/2H35488NkN9vkIPeGyyw9AebcE6APpakZGaEzE7FMgMZWeo9IOcW33nrLuZzzyoWiqqdFKHd3D07OFmU5ygJn8+bo5CyEMkeZt7HJ2CclUodsYLlTlSDJeV9IUiAufNHG1ggHFO+58hoMAZmCiEg2ZmYkxWgk89XcQaIQTB2V06/8/C9c2Lzw4Pg0Xr16Wo68cXn5UofmJKkrWyI1cwCYlUuXc19X4wXiteuXf+mv/eXi5ddPevzyF34G/l//8Be++fL/8H3Rn3o4MjMm6rJwhYVnABOzFJMPjIZd200nY8laORqXk9w0mE0wgvcOnKmZWVHUR0fH87P55vom6pCKBgCKyERAgKKftMdj3/cDyuajj27duv0RM58cn/RNu1g1H310KyUpyzqmfDZfxj7lGFV1PB6PJ2M3mHxU+q6nonTozWR3d+/h7u4bb77xZ7/241/4wueKokpxGP/Bo4KGhknfJ//dH4/DfsiM/wg/LVmG/W3wYXtnu9/aPH54KjEF5tlkYqIMGJg/lgIOxZMjRgJAKKuqrCd9FAYXHCVTE33EflQ0BwRDGCUAIDrvhxRLGWxzfM6wZmYdZEk4dOmQEMETwkCZFnlkRVREMlP3xc99/uXvf4+YPrx5OzxXV/UouKIIoW+7ajR+8GC3WbUEyIBuQL0Ydk1rCXKXJ/Ws8qdvv/r2k88/t3lx587N2zvjjcK51XxRhDCuytystOlQ0vZktrO+OXbFrKyJkQIOTW0F6mYx5jifLxEtOGZCBks5VtPRznTap7hYLseTCTIfnZz07SoaHBvMNjfA6N6DvWvXr09nNUomxdVp+5N/5mc+uvfw9Y/eGm2Mo3Z9Hw+PDjdH4+PTvSvXtssRvPHu9z//mS8hOsDoXRHIHxw+yBLXNteKelSEEsEAlIm9qzpdAJZ9cmerFbGNyukqNlomEyZFUGu6GAotAQCtqMuYelUtqhrZidiVqb+/e+vOzdulr6rJNDv21fhk3u8/PJ2OqlWM793aPVp1HLhwNXovmeycb+cC+7IoENVAnIPYRUBm5xOhQgpluH33/v7e0drammRjcsP0KooKuic+96Xx2uzt731rd/fBaLz+1Z/+c9Pti3MxV9d97HxB/SoJ0Gy0Nh1Pmy6OuCCivu9C8Fmk6VNdVMWo6LpGoQMDNTLVVUPJF0URgDApfnDr/v/pP/17V65e/uxLL37li5+/fPECM2XV1PfesZrmnIIPA4XPsRMRI5SsPgQVadt2NhvV4/Lew3veeTVtll09or7rc9bpdHJwfHB6ehqKYFkVbbVcgpn3PjhvqoPtsyx8vziZFHztykUgC0UgE1Csy5Hjsunboqw31jf6to1dAnS+GMcMi/kcKI+KagVexRy5H6DfjRxBjH0IjgkNJKYUQuhSMgTvvaROckTAvm9DcABWliWi+sBVVQAqgg5x4OQ4pQQqAApi3hETzk9On3zyxrNPPbc8O7nT7lcXp5NqlmI8Oj2KfSI8H/WLCDtWNUl5c23jzq37v/e7v/c//ut/pe8aLqteham89PiL9eRCvrZanO1/+N6b+2f3N9YmbCBNj+IcoJm5oj6YL2488cSzLz69FORape/qkl988dmzxem8bctinDKkbN4VPnilBKI54+ki/fbv/OEfBv76t7796c8999kXr8/qmZhMphe/9jM/+95r3zXCX/nVf1qV5X/4H/4iEVpOYlktERlaQktgyTk07QnFRMyUyN2/v3v71oOiGDMFU6jruo+dmTE7RM0wMDsoNZ3mVPmQc4+m3rFD8kwm0qZo5Nmxxs4AfKjrapRyni+belzd3zv4lV/91SuP7XDpUyNK0GtKJqGu9k8OjudnRVkQ06CmZHaAsLa5VU6EC2+EWQGQTM9DCUjRCBEdSh6VLEjWr5qTw7XStacHcbE58oAl3333rXa1mno+Wi4ePLhZjUaLxcKgW64OH+6Gsgjzxf6yOez69Rc/9eTbb72p1h+fHh4erc6OjzYub3508wNYnMF0wsHn2C2Xy2npkYsoWjlfTSY+FOh926yAyfmQc0xJQEgRQdFzCM4tu3Y8Gj3/3ItFUVhMo7KY1LLKyXlKMVcFSO4cRuc5ZUEkZBRWA2ASMHOBy3Hx2//2N3/7d/41MuWsQ0eTCdpmOZutJ42iKAKQNaf07e9/8zB1mrX0JQEQkuR8ejYPo1qJiqLou2ykdeVMM3oCBTBFAsdesyCrEIiISnaOyLNBWvZxNqlaLs+Env2xn9iuJp68LRbHbS+GLFhvX/BraxI7Iclg3rnULIOvEwgAqnC5Nt64uP0TNz7/1E/+zKLB4PWjv/qX3v2H/0AfHML6zm8c3z8YFWUoUmomwY2JPVFRFIZQjuq6qsaTcSiLEMKoKL13gFAXlQcfqgI9Ixii+43f+X165TUXQkrgmFPO43EJB+KwAAIU80hk0pzNdzY3se/4rNkkxsIdW25UDBAygEPHvFgs2raF9SEEEodUTzBQVecIhEwBQVXB+UK1Ozg4fOON11595ZWmWT5+43HJcrx/3LTNsmk2t3ZiH1fLVd/1TdNub21776uyms/noLYUcZ431tcQoesiIZZl5T2fHZ/85m/+5tHR4c/93M9VxSj2idl7z33fAzxaiT5R/ZzjGc+zMM4/SIgKw1duzIwK0+n0uaefPnjz3di3DOyIlvPFeFI7Zue9DaEfQEiEqoiQcwaAoihyzgSEapJlCIZRsHNJIAzsKFI75wOrKhISsqmo6GClAZDhBgYAw3PM5hBH4xwPmcRyLscY6nJwm5ubX/ziF1574/Xjs7MPP7r14qc+VVeVZCVkQD04PDRGIsYkgsrE7arLCdq+EzV2YTyapiyzanKye9gumhX4tl1NxqPrly+98dorB/fvlt4/dvnSE9dvbK2tz4qq9gWaGpsSOh+Iiii5T6nresc8KhwSmCSNsU19l3JW6/sYY276tr24eXS6PDg5PTo9Ozk8LMf9fD6/sLP5xS9+RkmzghnUZfk3//rf2P+v/v7+2b4vHRCZ8rLNZSEnpweXLl/79svfg9e++1Nf+3OxyQFD4YuqDTEZE4oqAEhW7x0Be6wQR1kKX270Z02MbReb0/kBVInQU/anR2dPPfmkqT3cfzgelSdnnS9pb+9g5+LltbXtto9l4axwEdFzEcpR06U7d8+OTrrDw2Xqlslcb+TrKZpoFmZ27IGQkIexJUBmRhATS8HRsFwNnGX2rumad99//8UXn499730NgghI3nemq371+Iuf9t698b2Xv/DFrzz+9Iu78yYZAGFZFqnvHJOZ8y5U5ahpTs7RkEQpRSYMgVwgYiirkJMMWxYxZ2YxqtkwWMWqqovC7e01v3H369/6o+9+5jOfunb1yo0bjztHXdMgq2Puuq4qSzXJMRfeAQ7Nbxj6lO3y1DRnUzNLKVdhgkoeQpK4tbkBqilF5oDAKpgl19XIs4sxeudFhRHZtI/d5e21K5d2VCKWjsyRMQIgqxKw8yhQ+cKt+6ywWPartjM1HighIqZiOXIoPHM2QAJVMZMBIlr4kHL0IRiTc+HOnbv3b374wgsvjWejuldiHk9Gy8rnvvaeq7oAE1BRyYRAhE3TqOQy+E56NFvN5xtb4xee/dT7794E8VWohWC+PFst+66JQxDbaDSOqVcVBCOEIaCLHf/qr/6LH/vq569fvdK0XV2PVdH7evPS9Yf3b+1cf/Kxp55669Vvv/f2q+MwGs0mcd5M6jExLfr2xlPPfP5rX9tfNBQK9iEt5+vT2Y3Hbnx48057594jID2nlBiIyamJgRLSeLLGpm+9c+v1dz/4nbXxlZ2ty5cubVx4brZWr29fF3wTg125fpXYrVY9Oa8iKjkUZeF9zD0zrJZtYHbk1Cxnm87W/9Vv/dGyiaPRWAUAse37wVjLzGak7NSg7XPh/bQu4mql/WJrfXr54lZdeDJZLeZ7h81KMYIZUXAuBFTL3oeYU9Ml8u6V196opl8MRejmizv373/6U88RFI32N+/cbvp2Vk8NDXlAxRkgjibTEgj8KKaMgMwEZiimYgaGhA6dkCnZ5oUNQoeIO1cvLpard269i0SjtfFSWlcxMu+MN9uz49XpYVFUzz7+GAAcP3yIoMHsytamdfHBrVuY49Z0dO/Wh2tUXrqwhd7ffP/9F29cRUfS6XQ0O25Pm0UzWavQOQXMqqlZGYCAqWTMLkdJXco5O/ZVqGejou/arNh06dLlq9PpWjo+mk0mouHgtO+zJWm7lNlhl3oFSjkP1o6BFAdIiIaWWRwgaJLgfUpKlsGypL6qC+ZqSM7wHFStCv7WO+8tki/KovB+CKdiorKuXRWGUOTgGS0zEKMf6M8EqApERAXlpK4qUkpN24rmQGXOKgmTsnLF5RQ4nQmUCJld5gikWePa5Usbjz3Wv/dWzkk5FITgXSQwHBp8RZitT65c+rWXv/ftd2/3LV69tHnxa1/m9fXm/tG6L8ZFeWgxq9al84hZlYGjaiiKrIMGzYqiqotQFKFwDs0CkWNWFdLBn49NHxUGtCWRI+fYeSq9y30qfWFkANqb9H070rgzql+6fGN5Z/doflSMsVHjwmc1FSG2GNPpfH71Cp+r3ZiQBtz+MKZkINBsZVEA0JtvvPnNb/7xg4f3l4vFaFTfuXXbs29WrUjeWFtDhb7vU845pauXr4xGE0Q4OTlNsSfi6WQSQhCDvu9STNYLI5pIUZTk8Ft//K3A/s//7M957/vYi6D3np2LMX4si/5EWAYBEg50IgOFoZZBUSUiZ6hooS6zd5vT2XFZnbR97Frqu5Fl9jxYitBoYDUqoiIo5KwZVREEid0g8QEgGADTxojn0ahodE6XEwQ0VUAbctP0PDv14+RXG8ZlqgKAOvDp0EARSJHQMQKAGbquX119/OqiX77ynVcfPNidrq2NJhN21Pf/X9b+PNqy7CrvBeecq9nN6W8ffZ99o8xUqhcSQgJjA+4AFxY8SoDtZ5tnP7fYr8YrD/s922Abg+thu2QjI8BGgDGWZSRAXUooE0nZdxGRGX3ciLh9c9rdrGbO+mPfSLDrj3qjqs7IEXkj7s7Ic8/ZZ6255vy+3xdr8Vk+Nz+3sLU1S2MaSp6fny8nhSBFAVA6eN9ud0+ePKW0GY4mRw8fPbK8RJEXBnNcV1urNxa77eNHDt9z6vTK0rJVOtdJaoyxBiyBMWma2zQHUp65rpxCIWCJgWPN3sUQqto555RSVV2Xde1CnJZuc2949fatzZ393f3duYXFO7durSz3jx4+JiAxAHs/6Pa/74//qX//a79U+1qIOULFcXc0XCz7QHj81InrV29u7+0O2gOJ4ly9srQynU1dcImyrmZDCqMOgaKY0agGzE0yePwdZ3b21m5evZa1utfXL9Zlfero6aydKKP2d3Yje5O0X3j1lUcefWSwPK+SxDGjTcVC0HkNlh1trW2vbo52xiVDpimPIsomVlGNMRFtrFWkiJQIAggiR46zoraKjCHEwBJFWW6SqFFQUWS5dO3y3v7eyvJS8F6UJKmtgiOTppr+6+c+/9zvPbXU6wZ49fra/un7H+r158bFTCQqpQPWEsVo0263NjY3m1QvRRhZBFmRCtHF6AiVxhYLMIfmBMCAMQBpAsbhqDKJ7rTbrVZeOv97X3uunZ9Pc/vIww997/f+yaXB3KwcH8R3Kg0cYvRaSVOgI2pCDMGJgLFJZBYx4/Fk9cZt7+va1SGEk6dPB8bd3clkUioSbY21hhQASGKNjwACGkFJPH3i5PJ8X4RJkwJSAoioo7BCUp7rGEEAIbpQ1fWsKGKMnVYrSZPJtIzBacJ2lpJwYEQQiQ6BtbKKJM1Np5Nf37zTWzlERC++8MLW6uq999yXZVnws/3hXgieY1QkSdJqxBBa6zRJtdK+rrROjUaF7HyhiebnB8ePHX3pxVdDCGU5DV5i5FlRBScIZIxSpAVijL5BuWuliZRzZd6yWzvbn/70f/2r/9P/hBiEUWny7AnV4ZMnV1ev1kG/81v+yLET91x6/XU3nfYPd2MMk2lx6MyZex9+3KGZlrP5Xh9YJzpH0J127+jho2u3tyoXTXqgM0AFTcibiERhH1iEbNpjVOOxL8bjazemr1/++L33HX3PE/d5oUfe/tgH3/uh8f521mqT0j5EABVCYIAYgnfeKKWNlopD5BBhOJxdv34LgZhBWyMiO7f/T9i/x2O4efv/82V3H/e99wmrTStpzWTYmu9hK52O9l65+Pr23l6aptZa0oo0oVGIIsykCFAziAJINEFwGpAUxCaSMQgQo5KpD5PNtU6rzdx08CmykFVVHXxdD7qd0WTUTrOMrHOeGRKT1M4bAaWV1oaJMARfFLm2xiaBKEXsLfSmZdnqz587ezbcuVWHkGvopq1JNSuK2qFPbFqUBUdmYWMtKjWbFc57YNFkLJnc5AAQkZRN0KSLy0ceuP+hb3zj6+VsxkE0wP54yIAGwYVAxjAhkVWoWSSGKIQHwH6GEECEjdJ17UiISHH0edpmDkVZS3QCKk3y4CORbueDdto3RpMC1TAwJE7HM21NCB5QlCYRETQcgUMEEUWkUfEBVVXKqmARMoSNJMiJZW3EoJjoUQL2ez3lQ+1GJlNjN+m2bDvNkt58CZBohSKWxQsErepYJzYPoszcwueeefr/+I//eVhjqOjJxx9o/YnvvKnMzJjMGBbRIEixLstuf96QTZNMW9Ptdm1q5+YGiTVKkT7ochBIiD5aRWS0TgwH8VEm0wJIJVnmCifAAEGbpJWnw9EEUXmSqMFhZIL12f6huZMPPHD/pZ3x+o3rNukYhT6wRyYEZnAhDIdjIhQkAVAHabpChCAhxogASZJVZfXUl5/6whe+WBQFCKRZZoxt5elsMqurqtfvtfJ8e3t/PBpra/M0S9PE+xoRReLiwrwIzmZlVbvalaggNwYBXe0U4Ww6XViY77a6r796vtvtrRw5FEKUyFmWLS4udjqd6ELTF0dp5l8iQHeHUI0aGrG5gBFAVGQk8kXhiqqb5UpEMSTatlutLG8ZbVARAKBqQIrQMI5Ck/t0kJDC1GRtSAQWAkYiASWRmVkRIUjkA721HCTHIgBIZCJqvEcCIDEKx6beulvA3Y0EEeGGXwQgCDrL9KXLFy5dvcLItS+vXHpj+cTg+JGjk5kjcKPRyJM+eujIdHNa1HUdfKvXOfvgfVqZnfFIxTjf6w0GC6s3bxk0h5cOz811UqXqcjrbmQzarVMrS6dOHDmysqKN0UipTdIkzdstTK1OUpNkaC2QiQAaSTh4V0ZXcl07V8aqMjOKXpOiVma8T8ezmVaS5nPLy4Ot0ejFV18fTkaunFtb3Z7vH1U2SVPjmKuyvOf48Y9+7/f+yq//8nS27zrU6XaKut7Znxytw8LSyoUL11Zv3Tny9uOxjJlKDepWSuRqEdP4JIJImnWU0aPZ9Gvf+Ob86bOPLPRt1j527OTq6uV+ezCDsUjI8hyJlDGxIBdl6dCxKrBn6c71t7anm9ujlSMrt3bja9d2fbkznXqHieh+YE1kgAKiQogaxWhFQk1xzHejgSNH71yFrBVphYhgLYkIoRBRDEEnan+4t3rn9qGVJQUgAKWvk1bOET71y7/29FNfXO72yiQ+99zLlXtB519434c+9J73v68OUvvSmDyw10YPBgMBjLFBiEJj+2RmEBCEzGQRIDZB7woARSAiSGTHHBExejUZV4jYbnWTZFC5ECQ+88wLd26tffQHvv9d73qyrkqRQCDAYhNbeY9aN8U9SzAYszStqsqzMzbdGm16VSkCCwZJfduHvy1vPf/UU19rtbJQRWvIByeg22niPQBiCAwQ+p3WmePHjCLh0NzTTWK1oABqoagMEoJzzseARAJsrEpTYxMl0+akH5yrqGEOq0bzaDvtxJWzLG2tLC+8fu2yj340nMTIHHk4HC2sHEaiPM+JUGKcTociYrRGIt+0Ipk5eJMSswPglaXFpYXFNNOT4dhVMUZgwcr7qqo5SHPSioEFPQFLCMpaFgZhZNBWMUiWdb7ylWfe+eR7PvC+bxlPRs5XeStj9j6qY8dPr6+tX1tdP3b05GBxeX315mQy3NzauefRx8/c81AQM9wfFhGWrHZlQYjGJES63+1bozxHjeCDawbnIUKUSIgMSFojUx2FRRLKSWlUuLFTbDz98qsvv9bpqc7SIVY667Uno6GD4MGVbpa2srRtJ5WgiqKiZ5dkmkhlaevm6t5wb0zKCoBW2rkaAD589BSzsACz1BzzLFGhzjgu9/NTh5fn+y2FQZGQCEhE4ShqOOPdabG5P9wc7tesk1afMYmi6rp+6s6bo9396f4kMWmappSY5y68tjvc9uyPnTxGTFoUEjmOVkSTblQWRCgcIdRuNuqmNkYOIUhkBBBSvnHWEUWWshwiamyYVwoFm7EpD4uSRKazsqDm00OKtAByZBZp/KYMzBxFOEI0SbI/8+0kH47GC0uDpfn337mz2usPtC81ASSt2XiqjY4hzPLcGlsUUyAkZdJWhojWJKlNrTYaMDIHMu35pcHSISZ96sw9mxs7b755uSq8r1mjKl1NRnFVxdkMGi47UZNzplQzF4AmcQlEnAAl1ntGY/Msi9EpJVVZ+rrQWrfa3dloR2sNEkNd5Wk3Nh8JFqWMNVoECDWAIKNSGCIDoc5sYzZlQACsfdBalzFqrV0ISWJi7QxgJ81SY1ICqZ3RwMHXVbGwvLDDlWfmLEsVZp3+yEvXNrwFmHgOKmZJ6nwYBjx39OQzT/32eDztLZ2guSQgX1lf27FmmCXamu7hwxXPRLEEnpVeUcRM2Va7ACwq74aTVOtWnvQ7bYhcO5dZk9pUEzFg7TwBRkFtFOJB1RhBBJkU5nk2wglLFAJSpJEcsPf1/mT0u1/+YnHlNoq083zXTb2EqEBp1ehXptNJZFZ40I/kEBtflXdeawsCN25c//Rvfvq1V17vdrvz/TkfXLvTSpPEWB1cWJhb6PV6N1dXhWO/14ssxtr9vR0iarc6eZZUdTWZTEbjiQLSRqVZErVSWimllcKyqjY3tpaWFuraPffss3/6+//U8ePHFKlbq6tvvHHhkUcetcocBJAd9H8UiDSVD8DdtRZBmFVDQBFJiHb29q+/eWm6vRMqp1CMMVmet/LMphYV/eGQM5HGR8ZKYd5KorYomqIEFI1IjWcQSUC8FxZs4N4NKZKFSSlGYObIgkCAdOB+R2lS20SEY4SmL4RCTdnDeHePFQDUZTWezPaLeprmaTWpqqqcTpQlXZQ1x3LQIwlstanqen84DJHzdh8ZQNHG3m4sil63t7W1A4hzvYFWGhBHw/2t1ZuL7c7ZE8f+2v/x6//nj27/Xz5eXAX4KgD8xq98HBUiQqaSsho//sBDbz74yFe/+TUOvnAlEm1ub27ubLbaPZXpq6vX7rv3voXW3NFDR9Zu3tFaZbo9K8osS8qqMEaRuKyVPvmut7924crUzbZ2tupyTD72Ot0kOwywIkwiGtDYpEVYzWbhyJEzRV3O9ec3tsuvf/21C2/cdEg3b98mr7QQUAakXSRlbAhitEFEJVErQ4iNvAvv0j8ZCImyLAsxxBAAVZZaQcXMidYI6HwEQ1NXrq7dfvKJt4FERABDJbt//dM/+8rvP3f82JF23rI6K9GHsrp1++rW1t72xs57vuU9S4cWR9MRQFCEg35PE3nvtE0AhEg3oXvMDIKeBOitQDwGjACxiQTWRCDgaweK8nYnBCiLIk1tFDZGvfrq6y+/9NL/8nf+xsmTx4U9oXDwLChEAgftd5aYZWmSmOFoF1AE1Xg0bhBB4EAQWp12f65fuyoxWWSfpq1RMRGJhDmioIDRaBQuL/SOrCxZRUo39gItoJpBITTKWQJjEwZUDBSEgbXVUdhHhwStdpa2EueDIYVNrr3CJDGAwfvqyOEVhcDMwbmiqLWy3vvgY115Yen1+sxxf3d3Ois0UZomSBGQjCZC4RCJsN/r5Cm12mkxmQ73x4jsHdR1JFIhQmREadR8LCxkEASM1kgCEWOMiBQZQQg4VsX005/+9JGV5ePHjzIq773SRpgdu5WVla2trUvX75w7e071Ygi9Jz70na9dvPlr/+rzR48eP3nq8NLiaRYQ9iG4tJUmidYalSJg72oABAJkltCc7xQyKIkoIUQS0Bg4hDoooyhNmXVZxdFsvPnFZ7c2io9867vmFzorh86UlbbpwPsYgqkqNLanFHpXT2ezqgwhyN7e/nA0Ids1xobgG93nF29daz7HHzx8uq0F/HQ+z84dOXZkoZsrVOgF+Id+7SvNNf/hz36rjvTXf/dLf3gB+Ja5AVDn93ZWm9+OlxevvHFpNhpPptNvvPRCNKIMHTq0pBHrcSWRYsbUYCia86wGITGaHn7gHoJojPZ15OCbWDFmCCIhMDAoIlc7rUyMENmbJHEhCrBW6Os6Tax3tY8uNYk01F2TBGZjEwYRiaRQQAmgD6yARUMI1Vy/bQhXVlZ6wDdeeGF5fiAxOGBVlU0tXlVlVRUEkOV5u6OMJmsSY0yiTaIsiZQBmNRDjz4e0aCyy4ePd7oX3vPO933ms1+MEe9/4MFHH3/87LnTe1sbk9He7u7+1tbmZDT2zovEGIJws4lwjF5ExBrHwc1KX/tyspu2WsJolYmK8lYny7LRbhCBzCqJ1WzsOIQsy5kFSCOQRNAGEZu8WACFQhQJOURkRtJ5lpo8BYRBO09a2fbOdu1mIBEJlYmAzhgRLkQ0Ju219Z2Nq3susYPeXMa5izAFKJGc891EQ6bF6dL7NE8ndUVHzy08cP+prRvm1TcX5nrH77nv1NGlp59/7vB8r/fIw3vTML907Gi/NR3tIen1zV2tMcuyTrczHI2UVrqVKaNLV1NZLw567URjFEQFpEBEULSxo/2JINUhgPNADUGFAMGkllJVc0CgHI2OMUaYTSfRdPanEYI3mma+ntW1JDqwkMZmmDMcjsqi6Lc6KCgijXM2OBe9F5adnf0vf+nLmxubSwtLSZpUZZlnWStv5Vk6HO0fPnzo6MqRW7dvGa3n5+dDjM7Fytd1Xfd6vRB9MZsVZVG7QETGGGstMxdVmSaJq8pWK8+ybDIelUWltHrttdfue/Deo8ePBufvvffeLz/15Zs3bjxw3wMhhEbfc7deoQbi3LATAaTJmiREbtx5MW5vbl187Txs7lGISZZ7S2li81YryTJSKMACQAeh8tKkJmiNnaQdlAHWmiEgRIzIgk3VIhI4NoNyggMwUuCotBaREGMUBqQD11oTo9nIgA78Nwc7KyFIkwkPd/tBCHpntLO8vLgxHG6ubrVtfvLI0f5Kvl/tLKZtpVnhrGKYTGbFtGBmBiiqUhgCh36eJu2WydLhaNLKssXl5ejdjWvXQlFYjp08W+j3AeDF/9ufUwrzTtvkKSlSWkVBRKNNqpMUSCNpH5kIWYIED77m6KIrQ+0b71B0DpC9czGEiOJ8CCIByAO8/Mor69s77/3Ah/7UT33S8VRzIDIcggGqx8WjDzz6yoXXJhM/aPW9rwinW9trixqWVvq3r9++sfrmqXd/cDrdnRXDJMuszbLc+FhHEoUxtWp+adDNWsfPnHKxvHz1wmK/k6vUKjW3cGg6m21s7LJw9LPxaJbn/ZXDhxhhwdqbtzf+43/6/JUrG8Oxd2BE9XKtvauJ2AOQUQKMKEYnJAxiOTJpBEMAQE0yHDCLcEOhIp1laZIkTdWLyITE3hMiKIxB3rx0aVbOOqkJEoXov3zuMy89/1w3tcPtnWxRRZuzl+lkduzQ4fd/67epJPnG018/fvrkmXvPJlZqHzqdtjXGe5/mmXOMSEoZAIBmCOKDaBKWA0iWiABo0gp1CJEjKNEgVE4YE0+IZVVpJd6xscne7vC3f+e3P/bDP4TiQZgQSCGEpnzHBhbpp44rw6VTxnCMKaYuMAsr0gK1d76Vp00WtzYaEQAERUKISqmqLrM0EY5GJcYQKdCKRERIDtAQCEqhYss+uOCCsPOxrEofnTKKCASkdhVLTFMrFSoGMoYANPrUquFk7/57zpw5faoo9xWieEnTRECMMUbrYjbb2d0zNp1fGETmyWSaJSmgDoFtlqZpu9Vqq5i4qozOo8TdrU0UDDEiRFcLsPFeAiCIYWSFmkhIizXEMSBiDJHICAgIKpV7H43CJOfzF1567fyLnXba7c0JaKWtKEYJkcv5xfl2d/H8xY2f+dlPdOZOnb4H/vN//dq0iMyrjz1y/NH7+z/4/e/XyWy/mNhEGYtzi/3BXGdSTCNHZYxC40IQEGOTGBhZN8sbUUTDEMU5Z9k4r5lBUUbK1mX1td+7+Ow3zj/66Ml3v+Px6bD8tV//6kMPPvDeD7xjZeXBa9dvvPby6yePH3/4oQcWl045gdWbT/vI7UYtJEx3e9gfOnLmy3eufmXt2rcvL/Zb+v7jS8cX+wlEDUGRfO+nvgIA//Fj3/l9v/DbH/2Vp37x+z/SFDo/80ff9dc+9w0ASI3+/OYqADzRPvzCdG22uX3o3NFiWvT6/Va3XYATI5OqjEWViEop0VorrQFENaFLxIxsND35xCMnTxyBGL2PShowCnkW5xkAFLBEFoHofQNorFzNiCF6BMYoJOhdTSgxNlBxxbGREkEMIfDBeDWCMDUMXmqn7dXV2yJc19UDDz/s93brvd1+lqGru51ukNjK0zQxRisUabVaDCIi7VZLKx19JBDnnAd67F3vzvv9oeOMaX5+ZXN7+MC993/PH/8TX33m+d29/dcvXtzc3U47ORptl5fPHD9ujUq00YryNM0z28pSTaiV7nbyLFESXCvPb1y9+clf+MXzb1wS0mnSBpWkWaZtokxirCfwKdWHV44mRhujog+JthBFa4vACEKIgBIJyJg8yfIs73W7vW4vz9Isa2V5ikp5jucvnP+dL3wBlBJjI9UAXowLUm4Py6+9+s2nn3728rVbXiWZt32wvUF6v/aPEk1jIGK2ancSVJpvzUaysHz2j3xrtdh/4O2P/4lpWDlxmrut9RtXNu7cWj753pkSMFxr5T0neX9Wc2shXZhr19VUp2k9HObGZr2eeH/5yuXRzs6ZE0cff+jBTp4xCzAIChIFlpt31trdbp63ZnDgCWcU4aispnZajyc2Ug/bc5Rb5lJUv6JcqT2OrI3OEgVuXJYRGNBanQPJbDadFbN2mlMUEKREOV+Xs3FqbVlM79y8iSwLcwtbW9tFMWMWBKWQ1u+sT2cTEhxu7+3u76NSyoeyqBigdnUrTwE41I5dnWrdbrXr2hmjkUgrSwoRsXJ+Oi3yNE1NqkANeoP98c5TX/ni6TMnT508TdRAgtVBchiIavJZgQRRWAClca6B8IEfnoMmQpK6qmejEYkYpZNcq16/3clbi/N5p22sJVLAjAJITXlMQuS8DzEqYxibkgiaTg4AEAg1/wGxCJDEJqODEAkZ2SORVkDNfiUCoBoGHRAgIDDBARix8c43VzEiKKURUUD0XHf+7P0PvPTaJee9Vz6gVwntbe6iTUhTVRXRk4XWZFpZlSz0loazcc11UZUtDaeOndzb25cQ0yTZ3rpTTkblbNbPcwOUJ+mhQ4cB4PH//d80C9bNf/l3AYgbo4UFEe8dInpEdeijP95cc/uTPw0cWMKJv/APmj+5+jN/k5DP/s2f/W+aPv/oL9cinSR79JFH1j//5WtvXgGA8f7o8PF+w5fwQVRiskH/8MmzL7322vxcqiQ4KWa724N2Pr/YHg7l1p1Xi+F9rHIxkyRViGJQotEJ2A5gFmS+e8h5tz/dG9e77W7r2vqd6MK73/+ekXPOIweaTmfHHjh16LDpz82zVpPaf/2bL37iF/7D9WsbnWyRRCfWMApHr40mJTF6FLFGNxJ4FCJSWjUCe2jGrIwNEDQCiAJAIqOUIeIQBSVirIMHYDIKkY0x65sbt1bvPPLQfcLujQsXr184/53f+Z3F7uTrv//1zb3R3OJhJzNP9OiTTz76xOPa6tFkf21j/crFi4dOHLHKtPKcDBEyKYgSIAoREpJWhCA+BvCgEFEImRCpEdgEhigIBE2mTAhVprIoQoSsiBA5clHF1y682ep0zp05C+KZmYgADAAKREQAgabDIcJKG0K1vbf12muvIgKQMmRZ+XarZa3KMuNqGQ33W50cgUL0hKi1RhTvw9bO3q2NrUcefUgLUUREZvAIiKQIJNEqsISoGkUcsSRAlCTMTJTMirC7s2shskIGQiARb9CP9jdtaj7ynR+GMIIg3SQfO2jlnU6/V/Z7K4cWAWR5vicI4ss0oaWlRZtkAXTa6u7ujVZv7olPvK/GxaiuSq2EhbUyhKasAghV3iGS0kq8iBDgQbc2agJFMcQmeh2p+UwzaOQQjdK1q+6sb82qelZtHD9+EgUaW0QUJIqtTu8Tn/j4jWvunSvnPvuZZwnnE6PyNK9n9lO/8rnL57/yV//Kn+i0O9u7EwHd7vRavX64tUbUAE6iJmBA4QjIAEJKkzaehWtWAGmWIWKMMTHGucokSpNWrU4M5XMvXL5w8U47b5fT+t6HnnzksQ+yhN/53X/wyU/+6o/96I/+2I+8j7S8dP7Cpas3gTQq5FCKhHD34+z5oC/eUXhmaenw/IAwGktaU/C++ZYCfXB1lF/8098SOWb6oDE/l5rmC6sP/p6NW3cuXLjy9rc/cnhxcPn2mzrpS2K00VJWBIRCyKAoMEOe2qA0IcUY8zw7duQwNiWMQOO954a8GCNz0EqDQIwBkQDIea+0ApQYmQREGEEREUdGpYShdq5JcRIQMoY5Olc3nV5tbYxw9cqN1y9ezFtZBKqB3vVt3/7601/b21jLrbExSIiKMVfGGKWMVgSISiFpEfGidFb4EFDf9/Z3dY+dnoYYuI4htFo5o+xPhidPnfv+Y0defvXiN55//ptf/ypDBiY32pAiRQQSE2u0wiy1iVbAwSgyGvJMD9rpocOHlhZX7rv/wTP33PeFLz2FzAmppIFB6JSMB3Hve+dj3/GR79VGAdYx1IpQQKxWwoKsjE6FBSkqjUgaiBANEYqAQppMJ5tbm+1ub9DpExh2FASrUHdNlyixSfa53/3cr//WZwzkSdJ30RezauxldHVNLc090FmYguxXfprQtgUuh4eOHH34Ix9RZ4/uRKdsduLc2eFoWkxHs/2pn7mXvvkSMfZa3Ukx1YYOrxxmIFJ600+Dd2me7e7s1W1XlfV0NNzbGW6tbb1x4eL62uaf/J7vsoAxeGWsi3R7a3e7DnZ+Me1t7e3vGZt4V6VJm5EAYJBn+8N9h7piQWWOZq2Hzj2wvb1+Y7qFJmQJZsosJJmTqpxOdBlIvO6mk3q8Ntrqz83nQgphMh27WFqrBv3e7s7u1sYaRg/RWa2d9wAYGHeHk529kTXq5u31IIJIiuJkupsnKYpowpbWGiHJ06TXQQQExSxVXVW+npSTQsC0OqbVL2clT3m+10HSVXDamL3d4Ve/8vTDP/7o6upqVZUrK8suVMyQpGlwkQAVUZCAiIoZsQmlQ4gQiAA0AASuxM9ovBuGe4mHDmSC5BKLvRw6qVXaNJkZ8cBHpoAgIiMhGY3WQhIRtFUgDCiiQFzAIKgpSARApbABdkCDZWw8cooA0ceIoEQAJZpGpQ1MqBrBmUj0oYk+F+ciGS3BK6UFQS/Mr8wNFpfmlm+vrpe+mtaTvssYpKwnJDYKhopdqHqDOTeufeUSY0VFRYgQBp3OfjlOWi1Q6vbtG2E6nesOQuGTXrvX7dLd1tkb/+Sv3fe3f+bEX/7Hdz7+9xAginD0wBEhIqgjP/oTALD2C//88Mf++tH/69+484l/ePxH/1cAuP5zP3Hqx3/qzF/7Z1d/+n9u1rU3fvIvC5KLUZMJMYJIv91/4J4HXnrlAgAgw8bGBmlijgHidFxtjYfn7rvv5u217bWtoycWYnSz3VF+SuvU2gS3t29urt++/+xD4xL2x9v9/hyiVkoZTTSuu2SIKYC02j1MbWL0eFIkxhRVXVA8vHQsVd26KoP3w9GoklCKfOZ3vvSZz34BIO/PL0utrE2i+EheKa0VCkCmLCIqRAYQBFKN20uIsYkZ4aaTJwICiTLGGBAhhui8QmgGqMyCRjGgRM506qblhfNvPP7Yo3durb303PPf8cEPrywfLadVGeK1y9eGs2JnPD734AOPveMd3cU5H8qTy6eOnzx6Z+3O9uZWuzsYDAZpns729iPnWhFLlMiMoqhBgIom0UoRqAb+EOIBBl4AqCmSOHL0zketkhhV8CASWQJouzucfO3r3zxx4tRsOpbI2qbMsQm5Bw6AEZDSpOUcez8jotF4HNgToSIdIMYYjNWtVirsT546euXKVV/XaZKJMKLOs8zVE2W0c/zSy+eX5+fe+fZHk8REYSRsWG8aSZNCFUFr74MCTLTKrXYgLnIIqFRiteFyJAJK53Wo8tSePLJ8/OSRBx572+PvetvTX/oMiccAXHNRu7c98UR98lir3RIRYAakEEOY1s4FIYYivn7x4gsvnx/tFwKWfcExxhijE0T0ID4EOLAssABKjA1erBEAACEpJUIC0hSXQAjIri5J64Yi75y88urr3/d9f2Y03F/fuHPkyBElIELC0um3vvyVrxWTKjXdq29eP3fi9Mrxc19+6jlxup7pB+99NMtvf/zjH/+xj/05q/I0ac3NJYOFxbSVV2VNzNwQ6hmYPSCRBoAYRUAIBAEpRhAJWhF7RxoRmBu9oVJE3XHhy6pM0/TZl8//P/7VL8RYnb33oX/60z/bTpNf+qVPudoVAXb2S2XSEGPwBURRJm0+1yHyQSmTZYvtNgGLBFFWCHVq/tOP/JE//e9+50/9wn9trtEKyhB99H/xM88CwE996PHDg27zLVdPmi8Q7bPPv3z81LFWnp49eezq+m6pa+8qnM6y9kJusoSM0qJFXPRCtjH2KqWNQRFBa+Eu9QQRm5+TDvKTBQDvxsaRAKBAE8ENgADqwLeLIMCESAo5RmYhrZlZBK1NFOmtjc2nn/n6a+cvOomL/X4APQ2S2eT9f+x7Xv3GM7cvv9HN8kSSGGM5LVUnJwg6S2KIAqysEmuHlcek9cjjT3QPHdt1jKRJBRFutbIksS76opomafbBD7zzybc/8twLL7/88pWdvaIoal8ENImwrSpElO3RBkBBhPOD7mDQ6baz7tzCYH55bmmpCgGROp3WZDLq9roS6+BLQBHhhx48+cgDpzRDOSmzLpnMikQEiei0VeKTRtgWfB1rH1mCoI/gQvC1i5Gn4/F4PLrnnoxIoUisasU61FPkTqqy2dT9/jeeL8u61RloNuhZaYMGB9lc4fx2GSYodmHAJxbzE8s3LlwYxers0uLueP/86xcSoOGk3N7bG+8Px3v7rpzt3NnIUnvTB1LY7Q9GeyMffDONP3PmTDErt7d2i1ltlJoM98ty6gMom77w6mvzC4vvf/c7E5tMCnd7ON4s6tLkhffHz5ybvnFxb2eba0ct0NpQADZqvtPbnk53o5PS23p02HuZjUO152fjQNCXI6ozt1Osah8ePXyi1229sb82rGfTuvTiFWWjvZ1A3mYqz9Lbt289+41vbKxtuNoBx3Yrm0yhmpVSVcF7BOIIZeWSPI8xahEFaAB67VZqVb/VarfzljXtLCfCqqinRTkdC+d6lKs7o8n2/l6ez+W2ZUFNJrNBkosSIpXofG977ytf+uqsmNz/wH2z2VSE+4M57zwgGms4ssKGgdQYyRvjvgZEAM3sRSGJM/V0PkuXWt1OsDsAd8ppq5NBZq3S6kA2HUEA6WAgULk4LeqZg5SEyLgEFYlFQmNQaYsURJQwkgKO3nsS0VqhIhGo2TkflFG5ShAJRJAjSFTEhFqAIgsigVIqAqEAQJa1BFRVlxpIkdaiYGtvZzybIIIxttPptVudQ8uHt6a747IwOvXiqqpsp632fI8lWmOcg3arZZn29vZn0zp48eyGe9OMgIWGk8mhhXlXh7ryd9ejg7Max6CUBhaKUQ5wk/HgXHf3QOjL+uDM95ZqOx58dd/f+ZcA8Nrf/x+VgZY2IURN6ty50zfW1wFWfV2NxkOvYG1zI22n7TzF2h8ZzD3+0EOf+8KXaRNOH1+O09Gs5DRvKdWelrt3NnYffrDX7enSTSBJuDax9lZ8QsDCRVmoQfaOt7196uvx/h5WTkLIbDLodW/fXhvvTx555NHpdPL6C6/0FxeKwL/zO18Uprn5udHuTBmNQohKN749BEJCIARSigBiQwZDROEIbwE1AQDgD+MXGvhl08RDRgStiAQgiiArH0Rrc+PmrZurd65eu/6ed7/39JlT+8Nxu9N78l3v3N8dZnmGRt3/4IPdQR8ITJrMysIYs3L0cHswN52VNJtabe6+QYJEzEH4wIqmmuZAjEiEiiI3U9WDlGCOkWMEYUUUQuAIiBpAYxMxq5MYZ1/60pff9eTjwbkm/4KBUYmAl1gjCRFlaacsQvASI/gQtU4ExMfoOBhrbWKApKzK3lyvP9+fDKciUhaT4GNmrUEpptNck3PV9evX3/bwfXknRSTSShg4Nh1Ruut3bvgRpEhpzaTUtAr9fvueM6eB9PZ4MqwcmlyIzz147w//8EfZmlk5JKPR6jJUDhJG6C3MOw2T2pVF6eowP78gbAOkqP3axv6Fi8+vb+45xwAJRRc4MjMwEiIgxOiFRbAxvCokEgEGoIPiV4CQI4s0Y29u3v0YRWvjYzSKosS81bp8+crNmzcffeTh27dvb21tLS0tNba4jfXNK29e+IE/++3/+Te/8tRXv7y5fXZ7f7vbsb4y4rVwfN973//qi9Pf/tznv+X9H2plaTdJ8jTNktRXTuuE48GmToQCICAswnzwdpNSIBJCkAM1AAsrAWBp4izBKKtIzwr3ja8///TTz8zP9/75P/nJdz/5xCsvPv/PfuqnXWkWj5yuCgMcnYsEmkgL24MP+N0O0KDX6rQyDZIaawAhstYqQvzMj34nEn33v/0sADB5naQ6ye/WQ3p+MDjoAKmDdUbQvPHm5dWtnRt3Nk+fXTmXzN1e2yIHJ1aOLWUD9NxI6NJWHmqnDxZleMsn8lbpA3fBsgCA0JApkEiROaiKEACpyXVAvAucTYxliQBKQEKMNklEMPiYJmm32xsOx88998IzX3tmc2vbJJlSyvsoiALaCYydf/x9H1hcWn71hec51q2cAK2Pqp21iTlyMImFBEZ+ErvtB5583AyObM6cTbLg63gAhUMWnkwmu7s7xiTD4TRJ0sff9ujDD96/ubl1/cbGpTdXd/frxHZDwMjhj/6Z73rHkw/1B3ZxodXt2zTPszQty4qjB+Ff+qVP7o83W+3MWO/8sKy2QcZ5K0iMo8mtdr4SRe1Pp5V3zUtYu2mMoS6gLp0I1qFxgAmS0sZmaY6IzlUAkiVKq9htUUazMoysVh01y6A2ILPRbLQ/S2x7NuXMiosBRIQgRjczeFs7FWMLwmy4F6AuMzMZDX/+k780OHpGKb04GGxvbg7H493t7eHOXiuxdVUCB+dqrbUIhJ2dSEBEpKDb6Qz3J0Uxm43HhMgxel8JszW2KsuvPv17x48dW1xcvrW1VaGekYqJCYyHjsyfPHHy8sWLF86/VswKr7Wx1qZpK6knRTWUut3utgf9l2/fevKeMx/pnrpy4/q17a2ezYRggczxwZF7uecqulWqmQa3P8HIO6PtVKmWybIsvXr12kuvvLqzudWkfpaViwwMQoTldIoghsBosnmWaA2IWZZKYvrdztLiwny/N+h1uu1WnqWptcChDjydlbdWV9e3Nty0WmhlIHpcTsvap50+KCGIBrCd5pPxBKJ85UtPzWbTPM07nQ4irqwU7Xan1+kiQ/CBjG3GTyzAEhQ0yRwSWRQAIk2Luiir5cHcff3j+ze2dlzZ6ueJNghgrRVFUSQqBMJGYIWgJ7Nic3d3L2CKqU4sJkoTGVQqsxooZa1thkTIEQSYFSADkAbtvCsqP5lMXAg2sWmS5Jm1SksM3JxPCBB1RFTKYqJjdFVZG6UQtVZtFJDI+siJY7Oq3hvtJ3nGMYYQlNatPG9DNS6LunZKYeGd7vS4CuVsNtdeMGB89L2kPZ0W+3szkUlZzUz0rbnexvbe4qBXej8cz44cWnxrHz8obmJoJLUQm/lhBFS3/81PHf3zP3Hsz/3tg+1fH2TSsvwBlrL599V/8lfP/O1/8fDf+3++9vf/olWJCFdl3cpbZ+89C19+5drlS0fPnVWJolYSidPELKTZtKgOzc8tHBpMZsXm5t58P9nc3T3U7rXy/rbZuLl9Z1yXni3l+dbeTidd6fcHXIyMQld502ntVeUzzz535oH70k4vbZObTUMIN67fuHJjbTKp9sb1O5584p4HHmOA3/j0f5lN625/qZiWWiUcwEefpDawIAIiIUCMEYEBVAOSaFjDihQIsDAAEDV8HAohVFXVDHqoSUung8ReFGxkBQDEEYxK1je2XnjhlQ9/5IOogg8x73SCiy6E/cloYX4hTdL9/f00TWpXmcSiVqWrlKYkSUlbldh+v7+2uckc7y762GzHiNLM5KIIQEQ+gDE0IjKRhgzfpDRJDCLECAIQAMX7kCASqps3b5eVW5jrsw+EFBuoOjIKIzZ4X6VaYrQFgKIuNrfvhBAFxBg9K4pWu3X23Jnr12+ub9xxvur08qqoQLRX7Otirje3dGTl6NLCOx995MjK/PziMlMUCSyAgAoVMAYOvvYxNIUFICIpNKi9D9ZSi5Jjh1c6/d61tY1Xrl4LioTgxddfaX8mf+xd7zx0dJE11tHbVhbGzrGrOc6CgACm7TwzkTJtdDUOFy5cf/2NS7PCaZv7ACJB300xRGiQFIJIqJpgQyBBYAFCrUmEhVlAgvMxOGOsMRqRGqmUIgUA1hjmyBxbWbq/PX766Wfe/a53LS4uTaeTjY2Nfr/fbrfX72y0kzzG3T/xJ9/zxNsf/tcf/09z/XN5Z/DG+RKCTW0qUR5/29v3djZfeunFd73n3UBqvjewpBVZEAXATZEoDXEVhBs6QkPVYG4S1IkQgBt4KwqFEBqjqfNslBAqY6wPPrG5iJrN6hDk6NETRnVvb+xWVYWJjhIkooC8hZlt+FsAkCUK0VtlCQQZNREJfs+/+zwA/NZf+GPNNUk7nZb0I//htwHgH7z7fhDQafugGJKDCiZPW9ub+6vX1zr5gGuY6w4W5lYM8Vxiy+3J5sZ4YWkJFfrA0LzERM2N/YdLn6YcPLjVm0R3pMYJydyIzO7WWyIHphJERdpHDwdJ2mRtwsxK6U6vXc6qF154+fkXXrx6+Wr0kiYdbe20HEpEYAyRA2LUydiHYw881F5YfO2lZ8vhpiLDiMyQqCzLckxobzbBbu/J93wgJJ1pjDpLOTYcFAJArSyh8s4LcwwRoAohDIdDiLHfbn/Hh97/7ndUN1e37qzvXLp8fWNrt9NTh44tOT/d3N3bGUlEFVkSozn6Vis7fvre4yfPtFrm1s1r1iiFkqdaG+Ur4ThDDNPRdPXO6t5wVPsYmUlxiA6hkfGDbXezVjdPbBPgpEmUNiCKIEo9ufHG870M3vfwSlH3PTvP/YK7icSL11Z9TcZ2XQWz0gWK1qJwnJXTsLIw7Jil3tI+x+dffBU0d3PbSrqpspasIFy4/Ob2zg6imo1GudUcXKqVd5UhlSVpiLGuyiRLCRBFVm/crErXbuez6VQpBSIcnXfOGpW3WpPx/le//vVH3/GeCpSYxBEwkLJqWtRpr/e+977vyScev/TGmzdv3tjY2iyKKk/SQSuW9UyQ87nuZJsubdz5nu/42NrWllb6zfNvtA4tHjbZmdZCtTN+cf3m/nzKre7+7nA8HKeJYQSVmo2Nrad/75lpMQPByaQAoNG08C7aJEFA5JAlSZ4ZTZgrtdzrp0nSbuftVra8uLS8tJC30jxP8zRJjNZGCXNZe+f5nrPHb9++9ebVK7c3drjeoIDDyWgMfmF+0MSJYJCWzSzazqA9GY2/+PkvPfmOJ3d39zqdaw89/LA9YYwx2hgGEVCN7aoZJiMAM5BCAhUCVrUT0kh6YXGJJ0GPdvN2qy6rrho0bEkRQaQGtK+UETBliC5yCDATh86HChAYWMAoLUoHaLfajAgQ8ixv5S2lMDKHGPeHe6PpZDqd1cGnSaqIFufnFucHCm2jLmRQnmVaFACgLaU2oUTVpbcasyyLPgQf9frW+ptXrjU+DY0Qgs/STIwPKUyqan93nCetStfFbKJZIzJHr62CGLMsK/cr5z1hImKAgAWFFOlkNKsWe346rQ7WETyoaQIHQiLUTfMcCZXSZOzWp35OGJY/+uMAQObgXPjWF2iTa//i7wDzW1oBBi6rIh5s1GFxaQAA165clsTOnz7eWxiIr8C7zfXbi4vL73vX2y9s3Pjm889Py7FJM5rphVCxRDJ6bW9tbXf96OEHbm7dWt9de9u508PRcLJ95/TiigArhktXbvyXp77wo3/pL8z35lpKDzptUdTuLdhsOtycXH7u5Ru3N7IkG00mN1c3LOXBCZFCJJuaqqjqujbWIIJWRkRAQrMpNrzrBi/YnCAPdspmJWVpjt3MjE1FyE12CiGAoKAIgCLUihQgjcaToqpb7d5kuseRdWaT3F65dnU4GrngkyS9s3abJZIi52qTmCTLfHDOB2jywpVGaBZ3bt4soeaJMIso1MIShLXI3fw5aAQ9zd4oAE07TwREogAJiHc+TdIYcTYtrUrOnHokhqHSKYCBg7pWN28kNAMgdqhgVm5v7txwsQRMBKXdzb/+9a9Py3HWTjzXWcsSAGlLkJazIhT07nc/8e4nHsfgT6ys9DopSADEIIpZFBERSRSOMYbgnIteYgxEkKaJ9z6G0M6SOKtSjYcX50fFNM9tbQyIlK5+9oXnd8vpg2+7nxILWjmIAZiMqgOrVl6XfjauW1l6c2197c7G+Vcv7O7uASmhpK5FRAGQj6IARRAIFCEIhiCIb6UowwFJDA+8FcYgBvHBA3ilEA+MgaKUihwJBBCNMXXtlDGvvPzynbX15aXFLEvW1zem0+l4PBYPp0+cUgZarc6pkyeGo9GLr9/c3tvodR4xkC8urMzGRb+PDzzw4Oqt2xfPv/7I2x5dnp9fnJsbj2YhsgAK0AE9TPggruduc6Opeu8yNUiEGw6ZUZYBAoemRxJjZC0sGAO8/PKrn/zEJx598IG/9bf/tjXmp372Xzx3fk+prhxE9jBD3RhMntu7BQB/8vixR4/1Qfyf/dWvAsBvfey7CBgZPvdjf/SP/vznvuvjnwWAf/+DH9gbl+vbZbMODOYXZ9NhXZf/+Nve/Xe/9PWvzaYA0Oks9Prz23s76zfXPvyRd3Tb/Oobl9a2NlYWF8yRQ+CDIozBKdJAlJkED8wHd82Of+hx0P06KIMQsclkbLpiCt8qfQAQDk4MUSIiKqWYOXIE1HnWrmt/6dK155974fLlq2VZKVCA5L1nCRDJu+BDdNEXztks9YQhhM6RY+9dWFm9cOHWtQsoHIEYtY+4szPsraw88s73O8hAkoPxqiQN1VCR0lohaomVQkIkjkFCjEHKaTHaHG+t7cwvL505PX/u3qV77l948/Ll3/nCr/7qb/y8Urbb6kUG0qkX0Sg2MVyMPvxHPvzOd3/r2uq1y29c6XTmNKU6USB1BBV9iDGAoKIs+Gkx89qkWZ6hL/Isa7VagCBaZVnazbNUKXGuKOvownyvm2opx8XGtfPR1istlA46IUr6W5PMIFy7ej14ZJ1E4ehZpSAcOVa9TjsarPt53cmrSTk/tzKtxp45bfWzVq+u/c50ePHKpQQwJR2qgowhEat1K+mQIhFwZakVZsYyQu1qV7s0zYILIYRI1AzohTkyAkKS5ldvrB5+4G39Q0f3JxWaJAgwCnPY2t2pZ+N2nj/46CPn7r/3zTffuPLGleHeaLPcTgOLlLfW7xDyrc3Nf/bJn6+LEpRiRCjdif5iO89252RtI9ZKQYSt7R2GWDhfI0yr6ed/+3OuqAjV7v4wCPjaAyhj9XQ2M0q1s3S+3+m2s8W5uYVOe7nXW5ifb7WyXq/b7XazLEESY4ga6RkBiOSBfYhzg2xpqX/P6RPrmzvPvvjqs69eij4UoZxV5uiRk+i9RZV0u9FzK+/MDxYZ4vbWzng8zrJsY2Njfn5+MBiEGJAsADALKERSCMCBsQkfFfYhKGPnFlbGu+X2dKx6ueWqCiFDMKS0UsRNqkCTIobCGICrugZUOtPiMERmBACIEiSA46ADuskwQhSJZrLfbrfb7Y61ejab7u3tV841Z1pGrqt6VpTtVk6IzEJInsP+eDaaTli41cr7g35qjDYEoSxmVdOA0BfeOH97Yxu14jpoY/b3RuPxJOsnmZI8zcdqFkPURhFoQza4eloUvYWeoCRJEnVAQudcjByRq9oL4v5kwj6ZlfX+aHRwwosH460YYgRGxaAsKlLaok1WfvB/BoDt3zzQSrM5GAGJOSibsJ2f/tG/d+Pj/yvdbXGzQe9DjFGAoVbtLG+qopu378Cgs3B0ZbJfFqPxQrt935nTTqulhfmF+Z5FmLq6hezcRCS4yCGUF668ce+5xwPHtfX1xez2xtqdyXBToz68cEjrfG7pyLFj527e2N5OJitzc2Ulc4sD1uml1Ts3bq6VxezKtVtamdl05kLUJic2wUuaGeejslaiZ46JtYowRm5kP9B4lAgbJkeMQqpZMeNbwKbGuAgikVmREBIzEzXuClYogoIMzJGs0Ym9du3Gzs5ut5v5gM65uq7X1m4Peh3xvp0luxtbLz73wnu+5b1eYuTQJLcbo5lZi8ryLMZY17VWprE2HLA2IwBCAGZmTbrJWhFBlhhYSLDZCZg5xtjsl2+BOBlAGJyP0dVfeuqr586dm4x2mT0dRFpKU/gIS5K3IvOsmKJi54sQHSpIs3RtY/Opp7584cKFKDHLUhJytVdK2UQjAKJRudaKT508qjgmBEqDj40yG/jAsxkbyyRwFGZSaKzVRGL1bMoctTFaxDqvUetubhUGjiWQSnKLmm7fuT2c7R1Z6a30eoeOHRleW9va3mENVVHNplUr7V1749o3f/+5YlxanQBmRKquffDB6Exrw9JIZaNCItLCjBiarRHulhSNkeJuehoZ20zKonNBa90YPmMMpHQIARERNRIZm9y+s/7aa68d+vZvD3V97Nix3d3dmzduHlo6OsOZqythCrF6/wcfY4Nf+b3Xg9/xRb377OXTpx/u9o2P7sTJYy88/8LVy5dOHDs0N+iurZlZFQA1IwgyABNijHCXhY8HId6NKOyAuNpgyJiUliiAoEkrZWLguq5JqY2trd/8z5++df2KRvmhj/4A2ej9REKpVI+JIgsQAgcAeM9gQQMpMseW57JuJ2j8xR/4kBYxRFliUST48Js//EeK2m3u7u/sjaZV6M4f+Zk//T15ovJON01MWVaB5R986J1Xb975xWt3JO9rpTUlk92hnxRrW1tJ9MbX092NNTcd5B2M5MpJv7UowQVhm6Tw3z7wLvX/D6qfpmYFkeaOEmCMhHS398NwtyFEhIQqhECkbJKJ4JWr11955bVLl65MJrMYmZQB0FVRiQgptNq6quDgrLEi4GO0JqsZ3Kzqpdmpx98+OH7i1pWL1XincAWDPvzgYysn7ymoHYSFResWy0EiryYFgK52dVnUtSvLSuvALIFFBIOvYvTjnb1pNbJbduXwoZXlucOH3/OOdzxx6fKNl158ZXdr6Fwkrcm0PAdf+2Jc7mxPf+jP/qXf+I///rG3vfvokTNamcQq72d1nQAKUiACkADgs9yQ0mmWkOGklaiEiFQEijEW02kUoaZ3jMo5r4mUxsQIxamUdc1RtC4KNMkJ5rC3u6eNdYwCCgEJ2VVlN9fHFuaK2XBnf6+Td23a6iTVaHc4f3g+OB4Ox2FYrE92y1BbUaK4kyZK6VaaxBC0Usxce5dnqUmTqq7Kqur2+iHExCbD4VApVVWlCMfosyz1zjvghnqwtbXTnltOralZkBERq6qe7O/qQ0usyuFG2Zvvn33koXPn7t3e3b9x7eZrz720c+vOhMw8mcUjh1f3tnqttmYclSVLXELZXIyXptMdJSBiWYrara3dGeR5v9P5+jO/X46LVt7a3ds3JlGoxtO9pvubpzZ618qzRx6459SJo0tzc6lWrSzv97tpatvtFktsrFpKkwAzs4AIRyQyBDEyKWuknWtbjmZrdzbr6N1sisQ2SV1ZKVIKlFJ6f3c0nRRIcPXKdZOYw0ePjCfTaTFbXF4SECIFkYhIGseWMCAohcLMIdbOKWNVks0q9+z1F3tpd5SYkKWkdXDOqkZrIQoAmQIcnJrLqqrrKpgEA8UQIjUzDxFkJIUKI2pAC8ylq/2wqj0g4ng8ioGVsqR0iNE5RoTxdBZjVE0wGUgQnNV1EEDE6L3zLtUKq4kW9jEaY7RSelIWJ0+f2tzZK6ahLKNFKYqyM5+TUGKSPE3LkTPGprodi1AUNbEbLPadyGg8DmUVI7sQQ/B5apTWpfeV47aR0Wg0amfNCe++n/jnAPD6T/4VUigAJ378HwLArU/8Y1GktNr8jX+9/L1/cfFP/XkAWP+Nn9PGrP7STx7/H/7OiR/7ewBw+1P/NMlyADj5F/63Znm6+C/+BhBE4AhRRNhXBzlyADv7+/XlK6zwzJEVTLIFk+ztbW+t14tz/bl+bzwcFQ4KL8V0bLQmtFVdXr12ra5LQ8nlC1fNrBckvPT6y8Gj3J+7em9vUlrbPf/aZeecLyvUYrKkiPVwOIlVTLQJAaraZ1mv2N+PQaEmowxEAJYkTX0d8UB90ihQ/puAlebcyaFx3NDdnJWDQ6jWyjsfY2RS0KzIzdAJARFIkCUyUlmXxqgbt1dv3b71xOOP+lmNgJcvvrm7tTXo9MT7fqs73N79xteeueees/2lObo7WyHEENgY3W61moXeGB09Ax6UD81eoEghHEziYjzwETa0rsa31kTvMgMgijSjPPEhxCiJSabj2Te++eyHP/Qt0ddKsYhDuiv3boxaWtfOAUGMXLhpFMyyzsVLFz/72d/e398jTZp0jN5ao3USQ4ixtsbkHQN13Nm5U9fjQ4uLXNciQWsVJFCjLYtNFw0QmWNUirSxhiV4H4OzRhmdxsg52W7IXZC5Xqeb27IOYshFl7KJIe7u7haTnWKh2+kvP/nOw4k263fWXBCIdOvG9kvPveoKzpIWRxFRMRCxytNMmEMIWuuD2kGQmZvqlv5g1AJwYNUkUdKgfgW4eTGbORmpt2aOERGttVVVJdZobcty9s1nn/vgBz/YMC8Qsd3p2DSZjStfq8F8D5RMdu4cOT7/PX/8uz75756pJq262Lt8dfvU2RMRKkQ8dHgpMWpu0Dlz6vily1dmVZONw43Gl+itYdBd+RRgw2ho2oRvNUsaKGuToe24ZmFttfO1d1WaJT/4Qx8ddDqXr14mbcYTB2iBlK89AipjNUUAUCEIABJw9Bs7+2XbWl32sjTRWBTTNDEhSOnC1u5of1xG1lHsxtbuzv5QgV/qtZcX+91WWscQOCZWAQCB+CBpK9/YXF9eXFgerNxcvXpqZRBd5cvpdG97fXPofDW3OBCMoBqjM9294Q/G9Y11662vm7RLgAMyG4BEjlHectg2hP7GkkOxWVt1snZn/YWXXrp65XpZ1sFzw4IIETh6QEiTjJmVQgGuyqLbapVlUZelIWWsNcaM6iqaPF9emg+122/Xs/HW7v7t0fBQr63TjpvNSFT0GDk0EZHKKCIFAgjoXPDeW2uFuS4KIEKIEX3guixj6cgHnk4KY5P+3PyTjz365NveduPGzYsX3rh5ezQcOqVJq2SGEFxNIMePHDmystDr5ePhNunMBXFeoiitTH+QT8pye7xFIMookyrkxKYaSaJEk7VSm1vhejQqxlOlElY0dsXhw/PatGoh9EwxMII2GhBbre5kNtsdjYAoAkcGFOEQXF1255YGKu21Onc2b58fFv3uwuGFw9/xyCNHjy//9u98vo7BOb+/u4MY0sTmSiOINcoqFGWqsrRJakwOiKXzoXadrAXMSpHRWikVQ4jeK6NsYkMIaZrEGPJWq9ofbqyunjl7VhitbU2r0lpbIKxvrLfameOMUkshOoR2otpz3Sfmn/jIu9939dKlZ575WnlrXabTyLK3t2/J+Cz1KEpRgWGcCHay/WK2vDAog7u9trZ0+vTm9Ztr11c7eS+4CEBV5fYn07oOJdWZ1Zbg1aurAAAvXYD/3x6PA/wPf/C7PXjz1h/+7ne87z0xcEQxqe32elFAW7O2sbGwOJdlGSIptFZrJ745+OpmBnawbig0NggMJ9PZ3t7MVLI4r203epcobTQhSRRRcuAEIQQlEryLwZG2WgEhzTggIkizGgmAqn3dJK4qUkAwmxUcQ5SIQCEE5yMgalIiUpSldy41FiX6AwgpgkCIsaqr6FPMktzg4twgSTKjTO1qvXJkZTwt9nd387wDdazrejKeLPiBMCeJsdYWUrmaM63KYpalWdptksJgVkyK4dRIy1qjNaKCoi49I4dQGhrPZsVsBgDP/O0f6fVa2uoG0BhiuPSzf8ekmbFJjKxEOPjbv/pzpAiAG4qRAlr7xX9E2iibaNRaq+1f/RlAjj6GusqznDk652PDeWQB8QAgRFXl3Pbw1vUvtL7tg+985KFEye3NtcH8oErMicPHX9h5razMdMK8IrFmQ51pcLdvr7/5xhsBOMPeZG967qH7n794/vUrNy5dvlMVLgBVnhEVc0BmZaiOdQ2hleSGCVGHUGmlXWABZbUVgWYP06QEojVJcHWIERu3ojA3KVR4UBWBgNZKJDLHhnnUTEdARCkjWmKMABCZReRAg3FXVS0E0NQihMx8/sLrDz98Hwm2smztzh1i7OctN6kojYv93v7uzje/9sx3f++fZGIvDCyoBZFF0Cb2QNTcHBoOZCoHnRrhAzXuXe0zgcSmNdWURCEEIgqB6cDKFg9SNUQkAgBt7+xkWWvh6GGEoLQ+OFoDASCDxBAA0VhV+Sq16asXX/n0b336/IXzPnqbmhCC994YBRBIoSIKUXl2Gsla3Btt3V6/eWhlXtCjSEMU5diAeFGiaI0shIQaIUmMANWExpDE6FytiDFyO0trH+ek1W+nu3GiLDEH7wOQExWndbnu3PZumbbnsslkYWV5c2t9c313a31vPCpaaaec1XmaEhOiUgpBQJECYBBBAYXUZOoJBFKaCDg2LxE2gc93lbR3Xyyit36VZj4IwixKqyYTplk1tDEvvfjyjRur99xzdjodj0ajbreDCGmeTiZuPJ6dPHv8s1/8/Kd+43fPnPtwEGc7aQjtl1++8/BjJ86dXqqKnW5vMOjmy4vz9547/cUvfxkpoNISotJaAJq8FBEMIQCgUlYdmL6ECKj5AQ8ejAdnQRSJorCqK0XkXHXkyKG/9RN/8+qbF//R//aTmxvlcFwmyQJEhSCAFD1kJgWAtrWddkoKRardCW7ujVOi3OJcOx10ki5kCDyZzmKMg948qHx3NN3d251f6GdG375zq99J5pbnbNRV7TqtA2U0EGptx+Vkbf32bLueDdfKyZ7U9aCVZr5OuJqOtotynHcTUEqACQ44/wDy1jiMDkpAabyszUlGRBBFKQJoLuPmoywHLwgSqSxrb2xsvfzSM5cuXRlPCo5QFO4uCYiaLAjQqo4eQbRGFKnKqULpdVqj8ZgTC0pFcJ1OByR+/OM/t3rpzXfc88jty9ejgheuv/b4i09/9Id+7MSRe6qpDxJYYuTYyjMiqL2LkQ8dOjwcXxQR7z2hShLrvfMSdKKsJEVZK0mqgteL3XanM50UibVzc/0TRxfuPfOhze3i/OtXL12+mKR2frCS2urll57e2Lhe+9mdDR70+xHdxQuvRTfM07lOPjQ2lrWvXAkknXZbEADRB69tMpnVbjYxNvaMrieunMUs157V1v6wRLXYVaOYT511ShqlIVhz9coNyGE0mzIyIGtDRE1TN/Zb7bbSdQ1z7V5JaunEsceffPeJo4e+/vRX9mcTjjgZFS2ERCsD0WqrmiY7e0RqZQkzAyoXPQn32u0g7GIkorou08TWgLVzCgkFkJT3AUC88wCwt7W+u35n4fAxF6rMkNZquyqLYuacL+q6v7yotDWtdHd/l8t6pbdQaz792INH7j99+cWXz3/paboyfe/b3/Xq5UtjLuvKXd7xSLUe9BNtTAiVq2yejybjclrcunajnhYxUmSoi3I4nY6m0yRtZUkSY3302GG4eOVzP/GXF+b6vU4nSxJMUrJGqSazGe7CCbmJ+mSJzSgbhSV6AACOsaigjqOd0YVr1165evX2aAzGBh8nu5OV5RVj7b988cXKOc+xcnWLoJgV/X7fJua11185fmKl1TkSfa0JHEtE1qkCFw4+FxxjjEqTWG2zdGXlkJNk7fZ6ZowXMYDEgoCOWRRKhIZwmgiw8+zKxFCWJVrIeR+dk8iGKKAIByViFYoSBcAxBu+IwBhFIQqI1SZvtRBoMi0io4iChl6mUANFFAIxiGh01hm0W6lCOba8cmhppWkETGcznWT2yiuvEEKM0RCKYwjCPjBEAFFKIaGwbG1uGzHzc/OHThzyUO7srpFwmiXoFTMQKWOAA7vgBLAsK9Vrl2UJAN75unKEKAfAm2Y1ERQmVL6sA8dGKkFNHooEDl6DoAFh5OAdIIAE72KMioBDVIBWa1dV3jmtdDFzAJC0O7EeU8R6XP3Wpz978aUXn3jybUm3bZRp2dag00cka+xkUoTQ1mQlcghYi3v1/Asnjp3buLE+NMOT58608971K9c7rW5ic0GMRCJstFaAxmACiUDkGKxW0dfWGB+5mVMQkyA0iXZIIJGb4QawECk8kFE2wg9saoymqImRGwBQIzI96Ko3OhvmEEOSpMyh6QDFyIqIGrVGFCEVSQLw1Rs39vf3u3kGIpPhMDVGC1ptVOCuTQui11548dG3PXr2gXtdVd7tSilFaIwSaeJY4A/OwQDCwAK+sTIBGasbD1WIITR8cRFuTIYASmkWRhQk4RABQGntSkfKVqXPs3x+fql2Y03pgYgEdPM3KIU+FrWfLXeWNvZvffqzn/r6s9/sd+fEB0RWGgAJEQQkRiBiIgAE4YioPIYLVy4+cP89UNcGFTTGgmZbFtGKlKAgGq19CMYYJA0iRFYhziZclZUmamXWKI4alucGN4Z7gIaIYhQVOHL0dQAXVSWjmeeNzdtrm4eOHRt0B1cvrmYm9aUnVsRNnpFvumECrAABkaGR0QggKtAxsogoQn1AGGsY843ZKiJAo1tq3vcQAshbMfWCCG/NzgQkSbPN7e0vfPGL9913b1EUSqk8z2MMrW46Gk9LNymqab8/iC59/ps3T527d3N7J2n3IqZf/tLVU8c/CDRD8pWPnU7n9KnjeWpj9ETNPS4cnGqQko1FH7CJgoCDvmBTBEBTqEWJwNLcOMLCCEgQxJGmG6vXi2KWZul0Np0VpVKJ0cpHbooNRZRaDQBHl+ZOHFsZz8abu3uTQhASJOm2sgi4N54kKS0tzjnmhaXecORGE3/u7Mm1Z9eR3eL80rHl3kK/kyaJ976VZ1kyAwDhECUmWTYcbX7tK0+dnE+6iet3TH+QJwK1QCuVUjxHh2KUkGpMem/d9s1h864ACAAaGbjWFGNs/iDG2EjC747EgEgppQBpNqtfe+Xic8+/sLu7a23OEabTGbMQGY4cYgSiwFEbasYTiOidc5WTEIzJ+u1OWRQSwmB+YXf91r/82Z+5+OpLj54+e/4rT822d/pLC2cGC6/9/jf/76++8Rf/wo+/653vr50ToTzLhCVytEbVdZWmaVVWs1nBLFmagYgLUjtW2hIpIiiKMiQhscn21ijLEq3UaG+r024tLizk7e63fuCxdz15rtPrZFnSH3R/9dc/9fu//0yW2f7C4JFHHlEzurW+8e3f+m0rKye2d702ZdrqHjtx2sXqpZfO7+4VpK2gQ0CBJCjLQawwhWiUIZ0UQSLS5auXrS5bMrZxN5EiT1Kl1c5oLxmcyiiUrkYlCiTJjGI9ns2qorSJVb1Wfy6/59hjdtA/dd9DWpmd0XBjc7OqSh94WhaZkk6nkymTGt1o7ESCsKBWwsEHh9oQgQ8ucPQMiU3zNGsUgXRgNeBmIO1DcC4SKaPgztrN+cNLANZoIxDqchq9m47G3UF/sjfqdfqJNr6suKiHvDedTYu66g/697/3HY889Milzz+9s7a+5+uJq3vthFMrPpoovW4+ZWc4+uEEut2d/f2NnV3UdhpqZvF1xZE7nZ7ShCSDdvvYkWUA+KM/+XPNXbr2yz9n0gwUARIIgDRphwRRFr/vR5prtj71bwUEQJZ/8ACzd+fnfwoZTWZbefIPv/EaAHzsodO+qpM0q0OoYwCAsixcjKQICVGr0Wi4cXmtKCerq9dbLTvoDKxNfVGjJqUsKsEAwqyVQojBCyB0ut1xpz28s6m67dbyQsj0wSGCABAOEB8HAlJh75FjqhWj6BglRouiAInQKxJgYrTGKmNjiGU9MaCaVopVWhR2Ot25uQVh0rA7mk5CcJrQahJhpcggaq07nU67nbVSa7UiiBrNeDwUFh+iRNB7uzvra3fEaBGJPrZtapUWZlSoSCfWGqOC4YBSldX6+lrN5fzhfqff8XtjBokcWJRNEhGuXMUsUSQye++9r+FgtwqBiVCTMo26hQA5eOHgm5wpJBGOIAiIwBBDBGAXSPnA0dUOEXwMMQZSTTceE2WdsjXUvg4xMAAMJzMAXRUBorKJvb25/dqv/7pp573enCvl3kfv63XbOzd3O207K2aHl9pWAyKQpXE9bLezLE2Zvff1B97zgeX5Q3fWNmZFGYLTWjf+bwnR1zE6F7xXivdm00lZqSR3Pmatbt4ZWETVRElEFgRhEBJNKnKM3iulCFGEldbY3LUHi6wcDLikgTyhYMN5AiTSWnvvjTApI8wIIIJNq0whCjbNBLTWbmxu3Ll9Z/GRB4tqNtzdtUqTiCakyKk1FmhvNH7u6988fua0UYoBODKAEKokSQGFmYUaETShQhEhQG6k0Hy3LdRIPe/OQt7aDgUgSvTBKUIRCMEZY2MIIpAkyWg4euPSm0kqk+nIkJVIAIrBAEAUb1MKUGobX33jm7/865+8uXpzbr7jagcoTdaMUs3/UEQiAioipTQwAyCwunbr5sbuZt+2hERCJE2odVNagjKBua4dNnHRzFqhsQZJtG5H9s7VwqCVBohzre7xo4dfvHXdowDruvYiSAa95+iCNoCGgXEyq4qpq6oAno1WRilB4BCIhDkqFACMMSqlGiM5C4MIHXz0gTkSKVIYAzd0A7irrGkGY+ruXKmZOgGAUiryHxiU7k7HIDC/fuHC5StXV5YXrDEAQEp7H7K2NZEm030Gc+ToA9OLyf5+iTpyjMdOPvj6q9/4+rNX3v2ulbIsMoHhaLSwvHji1PFra+ssMUYhBYjI8WBCiY1aEe42Be8+NwDBA8qXAAlwo4Y/iGwGBNK0sbHxH37lPyzPz/3QD/1Ap734qV//T6tffCPt9zlICAGIlDAAHF1sx3K0u7FubaedppHh/nOnupna314VXzvv0yzttIsQ64XFrsBkMtx68NwJIuzkZqHXNgqEo1bUztM00QCABDG6NB3YMc72hyceeWKu7YBnyCLRmYyytg4RiUEHIGHQzZL833vg31IC3X1/At2tUJlZaeudP5BvIRLRcDhaXb1z4eLlO7fvxMhap9NJ4V2UKMFHUoqUUkoJSO3r5vVTiAiSJjkH8T7mGWZJKjF658vx+HOf+czqlav3nTxravfQ0WXX0v3l5Rc3dh85+9DRs2duXL0k4h965zsVN8EKAECz8cRobW3CkV3lODZAawwxApgQdGQvggAxhGitsJSzaWm0jSYJPkQHWWs0GHQ7nU5VjIqCfZidOnX88rVLN1dXI+Hmzl4rb9mse+LMQ2eP31vXAGhEfBHaVZi8/Mobo/E0b/VDKF2IWrFQBSACSCwV10gloyZjQnSlGzoqtdQJyahmUri+MTneNX5WhxCIEKNn1tVsevbs6Q9+7KNHDy11em1j5MKF19K5gWnlvg5gjefIIXIQrTURSxRtUTehVSKRMUoUgQgRAZVCEXC1K2svpI3mGELkaI3p97pJkhRFUXuHjMIMRKlNBGR3e3N3e6cztwiKZrNZcA6Z66I0c/PD7T03t1gGJhe04Gh3b2t/d+nQik7s2mi3TfaJ7/7I1TevPLtza+/qditLGNRid7BX+26ejDXidNZNUxxXvCKiFCvw8SDqSmliAmM0sD+6sqAlNC3K1V/4p8c/9rcO/9CP7/7mL0kjJrj7KyAtft/HAGD3135h/s98bOkH/tzOpz6x8AM/CgB3fuXnjvzZHz/yYz+x9m9/8t7/5SfvvVvuax+1AKZ2Vs60VgDgvfcx9lv9+bl5H92Vy2+GWCHE8d7utUtvLAzmcts+vLgiShdTn5GFSETAwYcQCAA06cxujvYurd3OOl3xZclJO7Vaa60UihCA4sb4Eq3SVQya1KDT4TRXDjGTLoZmqXcAHMWwdmAYVBBnLJNCEgjRa22zNNfKVKOSRc02L/IAAQAASURBVLVsrrtUFKPgvRZstVpJkiijtU2yJCWSGGofQqJVFWazqiZF0XGWZnpjc63f6+7vTgkhtUldFHt7u4dPLjcWIa20UqQUIEEILkvT22ure8XW/Q+eNXlWljMl1geMTMEHDhIjAwQAPZ1Ok+UBACiFIhxDQKVIUePyFcEQGZiFGQVFIkSGgx2emRk4AgBpZY0JVdk8EQCKkZs0QUXU7naYZDScVN4BwHRWTkvM0rY13dFsL+mq+WPHVtfXVjevHhkcsjoFEeKgyRRllVjdzhUZrNiVXJgU/9pf/yvr2xs669SRnnznk5uf/eydyzdX5hdc4cR7qR0JJEpz9BCl1cmWVhb6yyt7k+KFVy8wR62owanddTmxCLOoVBlE9MErBUqZug4IjBrv6p053g2aiA0kEFAhISKDAIC1OoRQ13WWZY3wVJFCCVEYUWmNLjIDWKPr6fTC+Ytve/ChuqpCDFqRJtCEiVIaqJVmhatee+Wlt7/v3afvu2dSlUYjCgJhq9VqiESNyPqg1hGKHKNEjUpEAkeMDa8vMkciBKAQm6aGNO9yjIiIDDFiyEwaOcYYmQCJR6NRUVRVVXlq5ArNSxQYfTmtVaKvXr7yyV/+JVdFie1Z4ZRiRFaAQiiCbyljQCICKKEI4jnaLBmV5cbe/tH7jrrRBEGhUBNcCYCEJoALwbP3AOCdYyCTGOEgwkppbUzwUZNWmVGttNftGKMcQmD2dQgRErSAiqMEBnFBgTHa1oXf2dpTokMdQDjRCXJUWiNCZEEFiKrplxCScHNXN3WQIGDT7RFsposiQAeOoRAkBEWklGpQFOpuLdV0fRqdTVOCaFZ5nq/eXL1169aRw4dUpl1dsDAqSRKtokxno+m46rSXHnno/ptb1zhOJrO9K9eutdorl69unbt3LjcdF2ccMbXZ2bNnP/+Vp43OhCAENkTYPOmDKWVDKeK7TKCDIVPTmmqcYbFplKAgCEt0zltrI8O/+bc//9jDD/3UP/rfO93WN178ivq9uq7GqDIiIXBZagFgrqNm09oId1otk7dXV29zNa6jWhj0JsPSkPKuVATT6Vgrs7TYdS4yiFLIHDnUHKXb7bCAC2XjkVAKvK81QTvpFKMSIyqlHHMTFgRIOjFYEYkxrIkO4u7eEuf9YZXef6OGRoohRmEAZIZQOUTUyhDRzs7OxYsXr1+/PpnM6pqDiyJYlFVZVXdZ7o3lMwJijLHRdinSCOSdX1meR2VqFwRQBK21nVbry1/5Utbq/49/9W9SnK5dePnK00/nXnSnf2dn68SpU0++/1sR6PL1S7/37O994P3fpkW5srRW+8jW2F6307xlIfhZdfDj1C6GUCQ2SRLDISmrogLf682NRqOyrl0IJtTO1X3o+uDH05kyJm+1JkW9uHTsBz/6I6+fv/DCiy9tro1N6mczfvXCGxubW8Uk2CQfzPcOHW1nrQQUMATnC0anrW56AkiitdWoy2nJEY021WSY50krs7PJiJRmYx0mwuApjZRMRtMYOELUBmNZPPzwgwuH5rOWPXXvmULB7t7W4onjrbxz59badDzpWlMUs+f+WxXL/98ff+xbHt+4s9HuL/ja7e7ucbMIA4PE6XRcV1U9my71WpSRj/7o4lJqU45clnUwfCnyoXc8/MNnjtx87cKN51+eXb852Z+oVOcQH+zPh2nVyTrlpNq5ua48cOHThErnfe11YtMkIQUEBFwfP3z64NnEA7qe886oAxr6gVtB+L975n+on39wG0TiG//q789G4wf/7k8DANUliULCytUmNvZMnO/30zSdTcd5KwVACPyBb3nf6TPHVlaWk8RMR5PI5cL8scP9eRUwzBwDu7qeFZOJmwYJgT21kjpTNfgYSgGFVptGciyAIJpRNVZ45hBCK80W5zXbDCohgGiEvRcRh4hCKSbTys+qkqzJ59tKqxicCGitAbCsXVW4yCIIg1a6ODgUgw+hNkYrrQNDVZb7e3sIkCTWIHAMtS+r2hllnXPWphpAHnzooZdfOl/sVazI1264N/Q+kAVgJkWKFICkqaoVM7hOO+vP90KslQQWiSH6GoDAapumWE5GViuJETgsLy4BAArEGFUExEwTMUjpvI8hhMCRlaAEIUbhqJGMVcISvWsyX6EW1e7EGMuqQEWBRVkdObro0izt9NqdZL6KcXc2A4DxpEDd9RXHADpvRxN2y3Lu0GFlx6NR+dILr8+86yStUNZ1mXgnqbXtVm/q3dr+8M0r1yYDl/d7Gzs7V2/euu/e+44cXg6zMXk/6M/fc+JEK8v6nU6n00UCYdSKlUIH+Ltf+31rsNXJjCEOzbpGIhibAwhHUbrxIDRNEyQUidBkYQCKiFIkMfIB+A4aoTTSW6Bd0Fo552OMhHQQayvUiA5QKWq4y0GMTq5fvzGeTEKILKK0BgGjFLCAkkG3tzPcn02nr7/66ql7zzUjlciMSK1WboxVippUpIPDPSE1bjF5az5wcPiXRnpFOsbId8EE6mAsJ83bysyEyCAhxO6gc+LEyZMn7i3djtXtZu9EFMEQYplq8+bt85/4d/92VpXW5kppVIQYtVaIGKL4EJxzWmuig20WEDVhRGICL3Lnzua7H32H2GBZCaKPkUCRalxKKIAiorVhYeKmU4FCqK2xqQV2DYQy+OCqympVo5KoSCMg1LUnRaS0KBVjUEixZhZlMWEBTdbVXkiAgIi00bXzzSuPAEqQqVGKcDMlb5oLEhmaTMHm+d2dJYlSkdk5l6Yp0VuIHOCGOUONcuYP/lwbM5lOLl+69OSTTwhHRQo4EkJijZuOEaiddxTU+/uTlaUTpejd3ZdurV1+8OwT1268+dyL/KH3PjYbj3wQAHjg/vuTJGEAa5O6rDiK1ZqBEREJ4b9fVAEP/kGQZp7VDH0PylqO0ARC1VV15NByvz+YzkrnIolNdVqDImuid9GH3HYAIFHQWZyzJtseTzHsP3RuGblsZ22NYgkhigYl1iqYlcVkMMgTbUgJRI4RWnlGRKlJqtpB5KZ/phEEmDmaJBuO99bXt1YWl0E0h0iAAuBjDBGZCbTVRkfCRrgH/2+NH3jLGC8QGIy1IQTvg7E2TXIRWV/bfPnlV65du+69A5C6it5zDCIC3vsYOMtade1FRCnlnBMRrZVVWlgawID3nGV5u92dFVU/CFpsd3vnX3tlMp3e/8CjVRUm5WjsYt5fntP59Tu7Dzzxjse+7SNTzwvtwb2nH1rdW/3aU8+8753v77Rb0+lUESLpRjkXIwOieM8iLBC8Z2YwKKFBmIKveXd3FDkorYOwBC8Kh5MJTou81Wq327Oq7vb6xdbe7u7e9Zvr45mbrA+JNCr1n/7zfzEG6zIqytqd9vFT/V4vv31nOwQDApNyQoR52hwIuQZPpOuqLqdFYkkpQql0K3eRhVSIBIGQYh2gqkIxEw6iNJRl9ce+47sef+yJV998+Zlvfu3a7avv+fB3KJ0fPTa4cv6NrY0dEcgX+9EYAPjjS3PEKrHYbSWDdmIIXO3KqowxKq2V1uFuxpQAhhDHReEDkNYIoLVppVlirU2TGON0Og0hBuYQIwL8yu31BMxkb1wXLiBVRYWKlDXK6sBxWkwrV3IMTlJE2RzvH2r31jc2Lq2tZu32ffc/uF8Nb29uLx9aXj536tGHHtLj2ed/67/cuPxG39hjKysToKjAB+GylgjsvLZparRX1MpyIVCGMPpOnhw5tHB3pT3IhBEB4YDNB1JQWARk+9c/sfj9Pzr/Zz52sHqgbPzqJ1b+Lz965KN/CQDu/NLPMAJZaLWT5oK2NmXpfXDaKIIDGyMAO1+BY/Euy/S73v725YW51atX5zqtMyfvUYcXbl670+lk7blenMW0M6hr512plMz2pmVd1K4SxLKuo8BCO6dWKzIjilEaCJqIvWYURqRQkKARREqilEbyEBiVNNg7Ic2SEkZFWlGeWBGRZgIhTKRBExrTyJ0VcGaMTtOqhiiitFaoACOZhEhpJImBODpR7YS0SrIIgKDPnDkzHhXlbKa18c4LQAiRY7TW6KgSm9gkYZhycAvzPQapxUf2iwsLPZ1fGl1yMQIYq5MYYlFUApSlqasK3ckW5vpwly0bBWOMRVmNp9NxOStqX9XldDwjhlC7RJtE2167PT8YaKNZfGITm5hiVpDVtavW1tcnRREAdWKydm5Tuzeb2smw1+8l7TbZEQDEwD74zKaBgZk/8uGPPPXNr3qBrN2ux3trm7tBWBuDZIuhRKeNsuVs7FFPCtgdFq8+96W3v+9b5laW887eaDr6wPvfu3/m5Or5N04sLjx6330LgwXBUDkfkYva+3KKKC+8fmFnay1NDMfgvSMxQYJVGgmjY1SCCM47o60xJsTonFNaoTQqCLw7V8LITE32NPJB+yhEJFKE3vuG0O+CT0zSuFEUEGDTOBNCDSjCQMqsrW1ev37z8KkVEcmN1aQSZblyHBGB2p32cK96/eLFD0xGaasd7wpwtWkyekSYARQ3LVhoKCfSwJMBMUQmFmogoI049y47rhm1N9G7HGKTxO69byjMZTGbzaYslXeemv0cgAEjg7bJjTu3f+Zn/+XecD/NbIxl5WqtE4jNDBAOxDFKiUiMorCRSCECKFKRUKd0/s03PvjO9x2ZX5zujhJlBJoZKcXgI6PWRjgQKTI2AtdVhQQoDY5ZM/oYIpLyzm3t7rjgITWkFGolwEBMCkFQkYrcDLZ0NfHsRZEhoDxNWSQ2WiytQlkCEmnDPtydjSCCatJtEUBpEyAAR2tU9JFICSmOTEQ6Seq6ds4pIpskTXFprQ0xxBgVKWEmRCLVDCgRiVmee+GF7/7u7+73uyHUAGhUatJsNJzWJVuTEOHGxtpDRx7zZTY/3z197N7rl667uP3FL984e/zIySO9WVGFyIcPHzly+NDVGxsWklSnMXoQQUBAUkj8Bzpfit4TKVSq4Z9BRAAFd+egzM1CJDGyTtRsOn3ssSf+/I/88C/8wi9vrU2Go6lWPdRUhgBMHMjXzeFVGeB+z5i8TeABaqsTo0JdVqlpLL2gBI1RAMrXVZbmWtgYAmsVgTZGI7HzEKLRCgAiB2tNjBGtnU7CrfWNtz28ggwtk1T/L9r+NFyzLLvrA9dae+8zvfOdI27MkUNEZmVWZmWValKhkoSgLBCTkEA2Fk2DBA1taBCPsR/axpgHtxkEDQYMSFiGRhZCzJqlUqmkkqqy5hwjMyNjHu587zu/55y991qrP5z3ZslPf+776WbEG3mHc96z1/D///5zH0TYBwBUYz2apg+hb9AO9ZT7vOSvLjePTUiIAhrXyTshhLv3Hty+ffvWu7dHo3GeFwqmXJQcJfoIQD54VTXGziZzMgYQomqjS7CWQgjGIEd2iUUgANMfrHnPIUpe2N2Dg4e7Oy+88AJSMpmVrfbaw51JW4rZ4ezCU89+6Du/Kz+3nbV6PFpktn1t+30Pdh+9/tqrzz33nLW2ruatVrt5vwizKqDRyBJZCBmEQy1pkhd5roBlWZfzMklsgigaxRpirpWTxFU+lMcnQLSzf/Dw0aOHjx6HqGmSp0mOxmZpqlQb0rSfEWaT8fS1V296Xyau3WltFu3EUoslLBahlpAXhQqAiksLI6gIYKQMLFU1Kr3Oud1upU4sQF1HVQTV6Xi6sjH4g7/7U5fOXX7w4F6/3+mt9BaLhQm4Ohgc7T082j9KKMl73VlYHM3GAPAf94+bE/0vPH+tyFyW2pCFJLG1D2gQAKvp/B/fPmxe8yefOuds8n883vutZf0fu3x+YMzffeX15j//6JWLpJKQBYDp4UTysPfgsW21YgwuSdNWjokRkrkvF7Eu8uzx+KQ96IjFN26+5X3cOT7s++CE+nkvqMxn83Y7rzrp2pm179z+o5/9qX8z/PKr57r9m+XOAVeLVp4hVFXV7vYqqZ1L0iw656IwihiiQa/T77aWdc9pdsLSm9j8IRIaUFDWuP+vf0QQznzPDwAAk5793j8BALs//o/P/Bd/avv7//ydH/3rBqERbgLA6qBfwXjIod9tWbLwYCfPEgSo5gtCzbttZ91sMpmM8narePWrX11dabc6ReQgHEcnQ6i0UhuFhSOCFEURi9bMIgj3Ox3b6XZb7ZikDil1DqxRIlZlQFGMoAaVrGt1ugMBTrKMDSowKiE4Q2KssqIY5sanoIgK0jCUlUGtdRy1Diyi1trR5OjgcGc2nysAKCR54VptQZskKSJxjCxobVa0us4mVeWzPBUFW1VxtpgpMiKlWd5eXSsSW07L1dU8TZAl2tSCMSnp9ubm/cc7YsWX9VZr/eMf+5jR5Ctf/jrPpKDOTGUetdPqMnvDslKkLdd0t6CAjCZUfHy4P51OmcUYW1VVOSsDR4tYxTK3luczE2qXp0W7SHttABTm2XQqSsHLwcH4ZDpJigItZkXW73c1hD3cPXf+XO5yAPCLMjhnknhwfNAfdLv5+sM7h4PN3tZar+ocz6qFj9azydH5Mi6qWdqhxMl8Dlk2mIeqt9kbTmarW9utvFP7UNehmi/OnztXpObO0WOfYWYM+CgxRlWX0L2H91975y3baokdF0VbGEUjovEaEdBZ10yBWEVVM+NAVSInZIVFm60fABI1AwJpLLRgVEEV0BhECrFhyYC1pqpCRJ+mqTALGWMshKigoIQiSAYQZ1X9+ts3Ny5sFTZp17GN6AhKg8YZCJwYh2h3Dg92d/avP9WrAgBYFk4SgwgSFBPXFGeiGiWKAqAJwiFGawwACYogLHVOTbwHKpwqXFQJKQHxGisV7+tIaNFh7cu7d29ev3ZheDjM03EEWtRlUiS11C4z/+s//ftfffXrG5urtS81sAGSELEpfRABwBCSsaAgMRKqNcTCworONK85Xox/8uf/3Xf9jv/s4tZ2KAOwBYUYBJQsOnAFEYowKJIqKHNUVfF1EKBoLKdp7eOXb7z2yr3bad4OdRNpJCpsiZxpJFrsyEYJEEEFoUEdSkCghk0lsCQ+R46WmQwEjo16VlSssSgAABoZRZson0Ysg0pNwcmn0z8fo7EWEUWZYzCIaBIVQABLpCrKTMYqKKG7/2Dn7v1HLw7ej6iNhMumttXKDo92jMHts1s72/HRw0cnkwe97hpUNkzK7cvXp4sH797a3Vy/2I4sETbW169eOfv2zTudznpV1QgoKAYMi6rgcidLpBqbXs0oQDMfckZEOXJTkykhITUwuciKZIfD0dr65rs333nntTudwWoNWPnorG0ZqkO5CCUABJaucYmjNAHCBFhFJUmQq1D5aVJk8/EoydP1wcrxcFLVc0NQdDqpdYTgsszXfj6bhKqOi0oFAWAWY8szlzHNrEvadx7tTSqfWViEWhAjgAhagISYIEYVC1YElrItABUWQGMMnEYZImJgTpPMGFtV8e6dB6+/fmNvZ//o+CjN0iwpZtOFMsQo3tcAIBIQjSpGDmSJRQiNRYtNcqoAqJIog6hiIM/oB4OOiQoVL0x9/+HjZ66/Lzc0HI1TBy//+q/t7O5Vw6EfTq9/67emWTt1GZGRxDrnktSdNdvHo6Ojo+PV1QEhoSgzW2fQYODg0IGIQ0RAz1wzuIQUYFEufF23ikw5QPTUbNZ9cFmO4B482h1Oh9aZ2WxclVWeunZqveeWS9BY70PSyTa21pTV1z5xHeXE+6ouY1VOvF+gBTKWDIul8WTScmme5OKjc9l4Pi/aOZgwmU+UI0nkalEHTDodAJM488QLT1WL8Yc+8qEnr1872DkgC5PZPDX50dHJzsMdVLh9934NgFlqs6Q+Pgkno+Yy/eHt7X/1+PHfee3tH/7tH0iStLO+Xlc+shatYjqd/9lXfh0A/sSlrR+9t/dPbj76Y5fPNRXA92z0yBhDVOT533nldQD4r7/p+b/5pdf++Z3733/5QsP7WFSlZ7+3c//sxXOpMqIp8rzT7Ymwr+eqjM5W00meF/3WyoPZ7dlizjX3ii4iBIi7B/tpO0cQo3B0eDxoFx/6nZ+aXXs2zmezalqHqprPIpQq4FWYQCMkSTsGTbOcMNbzWZ7mabEsgOIpNh0DKwqQIhFgYy6gre/9QQDY/9c/1ryG3stVwuW/ylyiQtpaToBe+KYX6i9+iY9OCigCAgDkWeKSFIVBIiFWvn7zzu3D2Xi12726fe7oZHwwPrn+9IvWdXygNLUSgwUCds70AFy2ahYrBxtbq+XJGU7SIstGQVSQbLLsogSk8X8ogtrIRK1WRi6yyUwqQQypMWqdNc4hoKLRaIMXJCFSAHAJWWtF8Xg43D3Zj6qdXnceA3W7270OgiZE9aJ88ODh4cPHRFYUI8t0NkNDeas3WLva662kqaqqIbLD0Wg6n2YtZypjwcyrMB2P27nZuLzSzpPFbKqkjDroFApahdDvd5BjHIde0b/81NVX3n7Dz+fR17OqwsRFLwG4IN0c9Ir3NIkKUenx491yMnPWDHorg8F6kqalr6Pq8eEhccgIbGRnITWunbcNWAYBQ8cnw9msGo4XRbuX99ZslnmJZEljjHVdzudvjW6cvXIJAKqqskVvXi/SVv7s+56P0ayvnav8bF6W/fVOODlBTXyV+gC5hCAxs2mRu7IGg8l4Nqtn01bvHIJtFd2jkwOy7pnr7ysI08TU6I+Gh2G4uLi6qSx55obj41ldfst3/PZxBbuTX6p9zJKCWdU0B4EhMsjKAILauLUACVGZT5lqjd6noQc2rlvAho4NsGRDw+nAExGds82yCy02OQXLvUojX1BVQSV78+69lyYvOjBpCO3EehVKbFRJkzRxmbFuPJ2+e/PdZ648AYqigAYS2xgpqVGoIACRIiqpATCRm2+zmfksu2FVVfxG0ywqptFzMwGjIQJQY62qFfUCsrG51s470gNHFgx1Voqpn/f7q//pZ//jpz/z6c3N9bqqQQCBEpto491kaZ4+egrDaaYOLIJN6YWaJbYsqyx1r7974/7jBx//0Ec+/IEPrbR7qUkxqkSJNUcJaFOFJnkDWDh6b51VVUqTiPjwYP+rr7/+5Tdeta00cZZKRlQGJQOArE3boYBkRNSHGAMRmWZRqCpEbrk/QUyTpK7rGOssy6QhNi2pj98IVWgiwJibjSchEKAKqCBY61SVmaNIYq11VpibCphZG7SripICgHKMaZ4Nx+NXXn39xRdeaLTpkTkhFfYsdae9sr9/K4SesW5z61w9W9y++fDsmbMSXJpsvnnj0bUnV1d77XJeD/LW+5975lc+87KEqKrGkkgkUIMkoKoIiCq63D4uhyWCQMvukwAB0IBBUKTAQQnIWER7/96Dr33tqx/+8Iefe/L6/mh059OfwSQnMhICc5yUCgBlEF+F3Jh2nqKkwoIELCH4qgHq5HlhjCFwqcuMdbNyMT4Zrq+sbayuVnVVlWWofLUoVZbqO5vnLkkcWhKbmGI0OTgYTc9tJL6qUZHBihAAkzCqqMBy2YeyzH5BwIYPAQAAzAwIzrnhaPjuzTsPH+w8erRXV009lEjEEH2ooyqIKLMCynJnTGiMVYXaV9YimOZmBhY2y0WDKjbQbDaWnGJd1kfT0erqhjWGq6oQ+fEf/afjo6MPf+TDb968WSbuP/z0v88G/Y9fvLAzOUmty9vtyAwW291elucIBILMMcbQvGOXo6DIwUdDiGgYsCxrQRQFY0iCt4YIwRhTVXWaZrPZ4uh4d1JOfSytw3aRFUYdaytLFayyTqsFKjiwnVa6ubKaJ0m9WBwdHtaLajQcjSezypdVqWSTJC8ksiETYz2f1XneLqNXNPO5J6cEDhVNjIkjm6bOEKIty8WLLz2Ttpwo3L7zbpG3VjZW4q5/PJqJ1wcPH4xnk3IxTbKWzTPv/fT4pI2nK6FTeVrhKMuTrfX1NMutcWma7e4fNH8V/JIhbk7lMT91MAaAP3Fxo5Uu/z8pngaqJMl8UTbFfuX9eHxyHjazPJ36OkvSTquzv/8YhOtQd9HUpffTem1trWj3Do6HwLC5vl7X9Y07dzY3N1pF9sarr16/9qyzaV2NMov5mY3j3TjPE+G6Gk4Gg9UAun9w0un1gg9p0o7Rp9IIJMS5pIlWAdVLf/wvA8DOj/09axMF3fy+Pw0AOz/5D5tN9OFP/bP17/njm9/7xwDg4Cf+GSDs/MSPnP2+Hzjzn/9pANj/sb/F0Z//gb8Mpx/f+Q9//DsB/saHn5yWrFkKAOVibhPnkkSFlLCqyyTJDkeT6HU6Wrx9/60/8Id+T6c3kJjkzvlQJqkV5qYzSq1QyutbWwf921U1r+raliue1RgjgECGlm8wQASjBKKe2RNA4iCSkhNlBgnA4AN5H0C8qtWMxBgjCEIGweUh8uOd3dfefPNoOFSDmBhE7La664PVJy5d2lhZmZwMUczVc5cT61i1jn5RVUFkWga0fWtyEYkxMovd3t6avzuNUbhWIFFgrsLx8cliXnZWilZWzj36WC1cglFETDtth9kMo3IZu53u1pkzd47ueR9LX6IhEzGzkmRmfW0tTRIASF1iAY/m8/l0utJpr6+umzQ7mpb33ro5mc9ORuO1lf5Gr5urrvd6Weacs8oWIe11CwZ8vHe0c3AobLJ2D8gcH58U3U6WJuvrGw715PBwZ/f+bD4HAM8xT92HXvpw6tLH+3uff+Wrabc7n1QHw8ml7X67K8NpTLKMkas4n5bB+aLXHRwd71fVaOvq83fG5WQ+j8wr/bWDw6NyXhWDdSshSsh73ayqR/sj3LBFJz8Zj/aHo3MXr25cfurh4bjVenlczVRO1RKIqsigptkJoapAjNEQEUKMwRq7hBrCNz4MGVw+bREROYqx1pJpaLOElCXZopoH77MsZ5XIaqxVViI1ZIQZQIoif/zo0f7egXOJagWIogxoQojWOkpcmqdQT965ebP81m+jLIcQGqaCteSDNjA+g8uut8G8NfmXorKcmuqpPfhUGqSKLCocVCgqRInWJgrofSRDhsCz1EFane0iG6NNAJgxdqE/r+ef/exnRcSiQZCGH0CIgAYAGtE1IrKKqIpq4wOPMTpjjTWi0ZcLq2ANFnk+n89++Vc+/dWvfO3aE08989T1tZW1PMmKLKMsr2JUVIUYYijnvg7VbDibTKa7hyf3Hj28/XhnUVdJkYPRZnkH0PAql+4nRAWk5emlEiM0ERHNdEC48e8xICZJWpZ1XfskSeEUD9jUNHC6XnnPZGQMAZgmYUJFmmKPiESVY2TExBogUhExoNYICDeedGuQiEAtEYF+5Uuf/wO/9z/rdAoETY0jZedMXYckc51u1yXpR77lk5/+1Z9mgLRdnL968cY7t2aLSStPXvn6naeufryKzADXrz8z6PdOhtMkK4AUgVQUQYmUWd/7OP2dAAIJCAqq4tJurNpEPwAAAohIp9t99OjR//L3/8Ff+qE/f/3JK5/+9c/9m1/62dzmTZJWmrWDVABQe1wIExGRSawjCwownZW+hiTtONdpdVdTl/gQ89yEyNZI0W8Px9MQokttXZfsY6iCZxS1AOCcq73XAlUdYCZqhyfTi1vbSgFYSZHUISUIDtRSU9MDizYCdkREQ80W2DZ6IGussHz607/yxutvpUlLxSDauh43RESJ3GSmqTaAAwIFFhFdsrXa7Y4qxBgaeAQBCjWcDAFFVQxRWLXf7oxHE5sn3U5rfHLYUrj35S/HG29860c+9KFnrn7mZ/7txXNX07wt1eLoeO+Q/aWLl4JiXfkmOtAYY4wRZkTnvY8hhhjRWBA1xjCyIiIaFC3nFSWulRdp6qrFbDKdJtYYBrLu6GSyu3vkXArEncwNukWK3Ol1V9rdzKYhyOF4VM6OFMnWcXLvthsft4ui22k/f+nM6sr6mzfeerS7dzyazmtfhzrOa1bsDNZUDQvv7x4kLo0gESMY7LfzBBJSrz4GRJ8EVUzT9ORkKCK7e/s+yNUrlxeL+bntCw/vP3r0cOfslcshRmecta4u58dHR3t37sS4XAkliWs+6XbavX6v28qKouWsA4Bzm4Nf+NN/6FP/6Cf/+c54+ZpsWS39/d/5zX/2F3/jR+8f/Kcf/CO/8Gf+2Kf+4Y/9tS++DgD/7fufMTEaVgBgQEAzm82rsm51On42z1sDRHN8eIKik9F4e+tc6lJmHg6Hh4cnwcf+oJdl2eOdnTTNNjY233jjjX6/v7q6+mhnD5jXBr3A+sxzz68O+r/wsz8rCmVVNfmQs/k8TfKyXiizTyyqJGmSZq7B29/8J/+dtYkFh5Q2wdoHP/FPhAC00b8Bh3j0E/8bIqqyAbUIrPLwn/2D2eR4Mj5aLCY+xtf//B9J8sHK+tagvzIfDx/cfae/udEHe/vuDgCgSF3XCmiM9T60spYGUQmPTx5evXL5pQ99aGvzbOUDR8zSBMmgNtYZAARDFI1ZWd1o9To7+3v5YI3m0wpt7UtVJjodey9LVSFDdawePH6wME7QJupIjNglEwdVFFFISciRcZZA2TlThWIxL2/fvjebjVb6fbJmNJlEjofT49H+RGqpzwU/n0vgXqddtIterwuk9x89vHf/LprM++G8XKgIC5dlZa0xiKaufMKpD9FzSBQnw+l0vOiutGOIzMG5ZBZCYqGqQu7yc+c3VPRkNJzOpleuXLz35t3pfJwYrH1lTOIM9nvd1ZWBNQYARGJdxfl0utLrrHZ6HOt33rm9dzSZ+7C2ttFO/Nm1rY1B/+Dhg+lk2srWI6PUoW3TrNXtp7Z3PNndHy7KRTWeJEUxmcyHw3Fdl+1WvrW+ur62WrQ6zZOlWQ/de3h3UdePDg7YGDQmyQya5GA46/fbMBlGlizPQzk7GC7SdrfIW6v99uOjwyzJz529cjCezsuyk3c6rd50UgqQSwqW4IO2im6nP0hb3cVktncydFl76/ylcVU/2jkcjWapzUMdDRlEgwSICIKKpBqW3FhmQ4RkONQNL685TxoBjbAQIBI1ZyQRNYcOYaODWaIIDRmW2Gz2G5kyQ1QFjrEZzKRpsphN7t6+kySZ4iywKAGLkDF19GCwaLULv3i083j/4ODc5SsQBYES54wxIjUTN18REZaZR4AcWVUJEQyIim02BUiIp34ZVUFkFVAVVo4xSdIQOTBbkiwtFuX853/uF77jk79DQi2BKTGROGvln3v5N1595bW1tdUo0aFRZQVslJuN7RqX3GQFAuccIjIrEAmqqhrAzLkQQqw8ofGBu63uvK5e/trXvvT1V9pF0R900+bBXrRCjCGGuq59XQUfyvkixlj7iC4JAGwsGhSpScEYo4La6L+XEy4FBQWNQTg2oxZc6l5Oo2GNbTBImKZJo3VtyA6N+rX5nGgZpdn8hkW04euc+tubMk8IMcRIiA0SSoG0Kb8AWQUBRSKpOJf44Dvd9p27t1977ZVv+cTHOaKKkIHEucWi7PTyfn8QwvzrX31DNGHlpEh+80tfytqZIKtp3b67v384b3eKOpbrG+vnzp05ObmFmIc6IMlpnbb0fTf64OZHWKKAFBSBGvZwI4Zv8OIhKiKAERHnkrKsRMHaTIVIrUY11ESE2nJWAkAd4oIlsWIJbWqAyHOMIbgkrerqaDhKstxZO5tNZ7MZGtPu9GySpYXu7e9nRZI448sKGCImjYDO2iQGMkmiSiwAYCfj0oBVtIAaVUDRgAFFYVDVJnxZ9Rt8Lo6BjFGIjUfBEO4fHL3z9k1EG5klqnWmrkKzbmooX00NtFy2AuoSkm6ITIyRmVXULC8qgjTQUQBRFokxMItLkjRNGHSxmAFqqKq7t28TJcj09Ze/1sL04urWaDg9efD46P7j1ScuJUrlYuGsafZutJwssohUZdXMflCVVZ11aZ4rQx1jZA4xkIhFSttZMcjTtDg6OQFwvoqPd49EtHCGJHad3Wxlm/1ivVV0MqdRTiYTjISbrVqhSNLcmm4CFBd5LXxSC/H7rmxd3OyPprPbDx4/3tmbLqq5JEcnJ2menl0fvPjckzw/Ej8TNGqLncPxdFYnloQIjZkt5sbZZ973TKvbsUfDTqf/5a98ZTAY9Lu9w6OjJM9qDrNFubq2oQCjk5PFdDI+2Bvt7fvZYjm5OR3hbG6u9/t9Sw40CkOSJO08dRurv/rn/vDx8ckf/Je/BAAf/9CLP/8n/5BLsw9+8PnmX127/sRTf/5/AIBf+L9//6f+wb/4f716449vbzRzwKCCxnjvj09G3cGgKbKrshxPJog4GY6ij/3+IAY/n8+n00ljZWCRVlFsnzu3u7u7v7//7LPP+Nq3Om2uw6Iqi273ZDgiMme2t8eTWR2CAofILDEEIZMIsw1GRbtZmiWpNrZoVVQFo4iqzVyYEAHpNFvQkAWFuiotCQKPx8dH+6OTo/Hh8KCsZoC6ur7Z7a1srm95H3/6P/z04dFentpr166c2zq3KL8Ab9wyKtWiNGnCQIXLYuXzLBWNAcm45Hg03t3da7fPFEW+mFeJs0DQeAtQSa01am1RXLh8pbM2gDSxiTVo6lgnmcXGwIOKyyk2CPDx6PCdd2+MRYEyjWTUiKHGYYGiiKi2iZsPxlDTbBFY7xnUbayf6/dXFWh1JczmixA0y/I0zYejOjOpAh2czGaLMBzP7z+8+87NdxblZHPrzOrGubKsZ9NJmqZZntvG/dG0/SIqjIacD9Xe7uHGmZXEOotAKIqurLyyGkyuPX39wb0Hj/Z2x9VoY2XQy9ODxX6r1YFQJ9Y6685sbqyurqRpBgCWDEJYX10RhpRwb2dvMZ2cGax0ugNW2Rr0SIAX87VBPzVU5EXgyAB5kds0RYjd1ZXuoD9beGHJrFvt9efz2dkzmyB8852b0/FkY6MfQwCAQb8zrsq9ncecOdvJo2AUscallsp6OsCk2+ns7S0Sl2btrhdTeuomsL3R39t7sPvo8bVrH7z96Dcm0+m5jfP9Xn8xnQRWdSawR0PD0XRRBXCpx3nSand6nYAmzYt3bt6azStMkwStaZZZ2GDwAAlISbBZIS1vUADgyKc7peUfNiHwTff5nvRy6cF5T54paq2RIDGyNY6MaY4cQ4ZDJCIV5shJkrz99ttnW60ekagSOeWA1rFImmY5YFbOxpPR4/3d7UuXVViVrTVLODUs13K8jHjH5jwmY4gITwt4UXmP+aKnmZ2AIKAKoqBkTWA1xhg0UaIl94UvfOmLX/r8s9euz6YLsugxmoX99//m37kkITQcl/spBRFD2MjDpXGgNWELmiSJsiiraVpnFkABkE7R4qBZ1lZxKthqt6AtVVWP68V4bwrCIWqtRk5xdmTREKlKkiRk3fKLKACKCIooEfF7Ji1dXhBCI0qqIqfYqtPqAI0xqmCNiQKq2shvY4xJkjQZsdY6VRABa+1vdZI3YnPEJrW1OQ6RyOipED1GbhAUy4sB2gQIgoKoRg5IhEhVVX7pS1/8bd/8URVBtIBYew9ALk1Go2FVsa08qlU1DDEpbNRKDd+69aCTlY93xk881ZmX0063d+nihVdee5tQrTEiDahxmRGxzHeT07UdYlOtqhDiEpEMiGhQEa2zvKzlZDJffPjSB09G03/1U//u7v1H3bwPJnE2A6SyZi8KANOqbGVUV95AkOBNmnpmNFh0i+q4Ojg68T6kWcKR2+0ib+XW2RhFlJK8mC9mMTFGoPasKc5qDwC191nWisJIGMQnlhZl2Th6GrcMqhACgrII4vKiqypIM+ASBTXWqQjH4GwCyifDk+OTUZq0iBSE5rM6TXNhjbHRbtnGgyyn4HRjDDYU08hE1Igx0ACrBo4gmjgDgIAEiCEyCzdo9VpKqXw7MW999c37hwdu62y2ce7+3TuJ7XTaKxLdo4e7z6ldydq08IkqWtRajDFNoYpIzFpWJRA1DxFFjcIaVYQEUBFdkmgMVTmfICapa3f7NcO8qm7fv19XoZW7uppur/UvbPQ3u+laYXOo8linSWpamCZJpzuoRFaKXjfP8jSNdW0Qva/nhw+KTnet21sp+g58y/iD4fTBCR/Ma6YajP3kJz+6kZ9J4wSFpjH/97/0lddujgRzrwZ87A56T1+/+Ghnt7+6qYCdbjvPsrduvP3bftu37M8OkjS1zh0fHT/xxJMmc9PpTCofZqVFqlhOh+inq6tuxyYpgjHNnFYlcnj+f/hHAPD1//4Hm9ecP7f1Tf/Tj3zlr/4ZY5dzIzkVF69trjefgNWq9AAQgiiZwHJ8fHzp0qU8LwBhsVgAszNGQphMxoNO19kcAJx1tTHMcTGfr6yslGX5hS984fnnn+90usfDoUvyJEtDzdP5vFQ5PtgzLs1bRRhNkChN88hc1jWwiogtAR0NOj1hjt4DgEoksUQKyyxBadboTQAiAnjvnTGJNcrh8GD31rtvH+0d1SWXwRfdbt7urK5t9wcrl69cbV++8vbbN37xF37+T/3pP/HSN30wThef+OaPw6c/jzEkmQ2RRaWMpVMgo7PF1LaTB7uPRov9Z559ajabRW867RUkCCE0yQYND5SME+Dzl69+82//1s9/5Wt5O6sDJ6l1iWuOOwBgUBBFREPEdVVVC3Vp0+4FDgymyXoiAVaRoIoaOBACiihrrzPo9VeLrN/rrhqbcNS0cKnzIYS8KKyx0ceoQNaB2lpkfDLd2TtOkmxjc73VSglnvZY4kiSJ/b6xBtVak2SFeEEggxh86LXavXYfwRKQAe228pPHi8prK8/rUA8X0xLleDpMDLdVLrTbleyY8bjdKii1qcNOr9Vq5Y0AyzmXZ6hFupguOIRup/P+Z3upbRHZynvjLIDGWINyYhDQR/UKWFXzAtqtbqc9W2R53uu2DSXW2DObG6I6mYxC9BfOnwFVY5ZW3e2traMbt9Y31g7qea0cjQWlKIiRDCbTaTnodia5r6pZ0mvZrBUjpIXpJslKKz/afZw89+E8Tw/295574pnMJZwkdeRIFAAcYpYXYziZ1VVr0KciITJRdDyb3XjnHeucLo3NDKqoKoCRlQTwNL21oRw207/IEQjJNPx9YGFL1tKSwi7vubN0iXFAUUMooIDGWgghEhmrxDE2TblaarDCLNEm5vj4CCezbn9NySAQoIkgxjl1lti2W62T46P79++/+NIHl1pjo8biEmrYBIc2h8BvgcIBABJIZAEUVaPKuiQkgiqqKABLRDAN3AnRhOgFQBfSbWdVXS4W9eaZSysrMwYm427cffPrX/t62nIETarwkrqLCmRQwERhRDVoiEg5KosBVCRRzZI8y3OLihKddWmnNV+EfjcDsMygIDYxKRKSALBjLSBhRUaOzCysqkDohSWwMZYaoTIwITb6dBEhMghWlREVkQCR1DYKJGVBMM0Ej4gADALEKNoEooEhst5Ha80pT3nZ7ccYm079NAgFhBWEwZAxSGriqePcJEkMIXI0S7+oIqJdzoS0STARRGtsZHZp9sabNx7t7G6fOUeUcgyA5JKUo293UsLDJ69s3bo/vLV/74MvPX14ePLg8Th13UsXnp0NH+88rgInqbKz7UuXLhMpqjqbsJBqBBTV2BQ9esrtbEDVzYNsORlrVmPKwgBoRJQDp0WigCoao/zKr/zKr37msxsbW5asKlpjjE2FpKpSqKazqqxtWmoQqTL2JL6svc3zJCk6vUHe6iY2RQRh7rQLspZZQ9S9vQNANkQhCFhj0jQaO5qOAMAYR9YxMKEiMqAsykWzQhWJiiIQQWvRgOKRCCIJyWmqGjTtCkcBEBCIXtXE6JnIWpvMZ5WvOc9b5WKRpCk2mHIlJELDhERI3ntCI6reh/dsZaICDIqaOIcA0qykgFQhhBhjVNQq1i41CpGUX/7cr+/s7Z/d2v7ll1/u5IW0i1cf3BPF9fMXJHcMSg2qNMZm0AgKzNzcEnXttUHCEBowEgUQaw5JkgEoABtjQx2qeh45LUNkgEePdhbzMk0zYL85aK+0k0HhVlvO1PNWK0mIneVeO8kpb4VQBtlcGXSznH0QBwiCHTufl6QB67kCDTJHG6tS+7piguQ4zG/du/9T/+k/fO/v/EAXypQc2MKSiz6gmFa75RF7vcGlS1c+94UvKNqVlfX5YtHu9cej0fHJ0dr65tHRwdrGehRl1cxl66urxlf7d8pQe2ZtZsb/5M1bAPDpH/rPe90+C770V/4eALz5N/5SYFFjXvnrf+6Fv/z3Xvwf/ykAvPE//UWXFQDwwb/yD5t33I3/918GhNv/+H+8+qf++w/+dz8MAP/9x59vQLEAoEQSWUWm40ld10mrH9UEH4SFWVb7q1zzwWJ/a+uMiNS+ds4R2sVicfHixa+/8oqIXLx48fj42KZp1m4f7u2eHOxfPn+uVRStVudgdz9N8yQpBShJYT4cAWKUSEQs7KM4Z8tFWc0rAABmISZV4YhAFlCBdMmlRQAiQO9rECbk4fB4Mhl1u3ntoq1TtdlkKvcfHD7ePXr08MEHP/TC+krx3X/gd3zzxz+6CMwAW+vrALDZ7R1MZ4KEaYqIxpjRcJi3syRLRov53mLxzjs311bOuX6hpCEEBVQBAmCOiApkYqQ8z1/62Ef35rPxos4TYyyaprZoolLQiEpDQwt1rYHFCPtoMWkywq11hctTmwBgBIgo83LBdUWWuoPemc3tdt4XJhTLTKooYADIJaYqZ6LQ7D0hCiFGjiaxV65erhZThYgoEX1nMGhLbz6bT8uFzbKMAAyYOsQU1FmHKutrm4PeavSSGJckJkss1HVYcJK1lPBgdHw8Gz6Rnru6sbph6f2/7/fXn/AP7t/bn06+dut2HRaEWnvfAGoVMSvSUiVxNoTY7rYMNuZPStqF98EYY43TGALXpV8YY1yWeD+fT0amlVmLee5SZ5w1yizVoijy9vrKdDEtMut9KcEnRQoAZ1ZX7lk3PTzQIoHMAoJGFrS1cJG4qgzQhcFKa2fvqKxc0uoKowZ/6fL2/t7+l7529+ho5+lrT+4+2GXxaeqUsxhD0EiGCLHIc5e6g+PDLEsamnPe7T94cP/4+NiYlkEDjWiUBEgbbxQsFzXfEAs3F19YxDCdpg0AYMMyhVOpbDP9kVO1PwAANnc6AFnVICJNtrIhCiEggChboMZdZq2blaWu2gbrS9YxqBgbWIAoSVMFuPXu7boqbUa8PMreq2Zg+Txdlm3KHJfjqN/Kg1kOfppJhghDgx4AVZHIUVkFCZv4z7quR9PhaDRuHNRIkNn8F3/xF8fT8XZvi6gRQyirNrobBkVnowoqOWeYPQAii3MOAV2arQ76WZqH4AlkOivv3H9UVqxg5vPKGEcG09QScaudpXkWQxV95ZJUASyhAgZma0zwoemby6omQmts5SPqMvGqOQ7fu0AIDW++scTb0x02LKtDBGZG25jDwVonwogmSRLVumF8E5nTLVijgF4CkxvEwOkXbfQ12GRihOADR1rKp5HIoPAplhCQTGQlMmnefriz9/VXX7946YlqUTtrlEiEXJImDh3KzoP7FHS11Z2djMaHRx/5wIdu3zoYH9XArTu3T6rSWoNmtbW9fbFIM4ks6BXUvCcTPb0TlnzqU0xO8602q9AlE1oiCzeRcDFGkyUmcW/ffOeDL77/+Refy5JsMp1WpTeQRq5YIpABgPGiXmvl6BUZWbwRjQqLySKNJk1zRKhrKfKWQrx7Z+/45AQQInO33zFWe508c6kE9oIVwKODAwCwLlERBRGIQhKjlLVnQGadjReLqhzPZ3mnJcoGVISNdbBUtTUQLmKW5VSSSFVihDzLlWk+r5zLvK+Em3c4iTRjg8atiQoEKjGyCJAlREySRJqwXGOalZkIgwKdRougQAw+hEhExlBZznudYjI8PNrd+dgLz7XS1hfu310/u7Gy0X33nVsXLl4VCcPxyXb29GJW5jZ11s1ZrbWIpBoBtKqryXRqjV0OiQEaeuopwzpo9OTIWAwcyWZozP2HD4+GR/PJ0fJi78P/Xz5uH8PPvN18+ov/x9/4lm89/4GPyN1b73zuc5/xJjHWBVZr3JtvvLV1Znz27LYhU1XV8clw9Yl1JPIhkEmrRdnO8rX+AKYTBzD3IUYFgO/ePvPU5e33X79wZrXNMUaQr/21/0eSpCLiEgdgIIY3/uZfFBbvOU1zl9obf+OHCMGL4pI9hsJ66x/9tel4aqx7/n3P7+7umeWwNgqhRarm8+Hx8WrWtc6EGEIIKnF1dc2lyZ3bDwCoKHIiWiwWALi6ujYeT1599dWPfvSj1tokSYaTya37DyfD4Xq/l+ZFjPHx7t7O3v7w5DixFhGD9w0H1ZoG0dmAcSnEGCIDgIqAsqo0TSOAsI+hwXMCGpcCoCi0W61HD+/eunNva2Nzc3Xl8YPHOg2TCoFSRbey0p+cPL538/U84bNbg3IxKQM6u4zAu3ru7M6Xvtxf36yNmc3n4LLV1dX19cG0ngzno92D3boMs/l0e/tyjIFFrbMoS8cALtcF1oNfPXPmo5/4xGc+9+t5mlmLzpllf6G0zPMGEyPXdQSylhJIEitZRDXW5FmrlRe5zVTRc4goIfrhLCTOJVlWc5wdHwSvzmUABgjTNBWJ3k/qah5ZgIwKGGPTxKXOOIPBzyIvWkWmCijJZFKOxuPJeCLCtpzNi7xABYNojFXU1LmL588hmMWs7nYzi5QgOiK0xDEUrXy6mN248ebTm+tPPH0Nd3fC4dGFjQsXX3yucrY2+pVXvmJJRTkKAQALoEHnHCpaRUVF68DYZmBWdFKNMdZejRCZhJSQGlcSx6A1WdJBrz06OCSIaeacFQ0lKrVTa1AsRlVIXAoA3TT/+PPv117xi69/OUETQckYbWDwYgTjfFZ1OqZIMUQNdTTdDNm3XHrtqWtf+fqtV1/90oe++VucxYODnYvnzks9r30ZYmqJgMWAWktZkZJtjDAs0T98+JAlphnGqjbkwBpAiZHBkGv2HSAApunGRISMaaItvPfWuUYb66wlRIO0DJs8daC8xx9spFTNDUbNyEdkOWZvTmJUAiOiII0Z20TWmQ9Fmi1bzSQpQ2Qk6xLjTa/b29k7GI/GG1urTf3TqG3QEEdpsjZUgRArHwjRECpCCMEYw40mFuA0IAOYJS7ZPyQSyVgAjJFjZKMqSGlRLEajz//m53/Xd/7O0XRcdNqv7rz2K5/9zObWlktc8MGQWiJlRmsRsfZeQRjEIcRYJ8aoAtcVAJ5ZWT9/7pwhfPhgZzgcorEnJ5PJpJ7Oq/m8Xszqwcpqkjpfsmg9HS/ObKwWSRGwMkBZlswWM0fUKDUMgKp6DmQRiWIMREiIKoCIzEzUGNl4ORJgZVZRtac2veWvQpt1ZxMHDkRorRFxTSXTzJMQkTk02uoYI57qAJslmiKyMAI2F1pPFd8sNoTgjHE2iTGgMBrSxilIKIJgja/qvMh8kC99+ZVv/7ZvTxILRq1zRCmztLMksxLns3aatVbPHR3cN97cfesmQAGRNMJ84utSe+28XITNjTNra+uPHh3k7S6zMAdc7hQaPBohGlU+DbRXYwwaihIRFBStsaDKLKiNkh1VtciLvYODFz/00ic/8eF7d+/s7Ny7fedhr+hFHzlEYxwAHA3Lje7A2rwGoRA1BjXu4OhIdBQicgT2nNgkccl8PlfEwUqn26JLly+QUV/NQ1XFCJHMwXB6dDIBACSrKo1kHwGdyxc+PtobS7lo5Wl3tXfhyeurG5d6axdtlkcRawyhNWYpb0JEVWguhSgTNaHMLTK2rjhxhtBFFiQjrMxiDDELEVibcGRDJk2zEDwANGZDVUFU5kCAZBrZuy6XAYrW2trX3tfB18YABkgTc//xI14snl5brY+P+nH63MUNTdPd11/9xNNPjViHjx/68IIaVUsgGKqYFomINDKGEMJ8vohRmEWFUVABo8Qsc2VVi4Y0peA9C7BiHWNd+b3Dg2Y9/x1nz57vZhdWWp0iTRPMnHbaqWpAhCRJkyy3NnMuI+NskjDH6OsYfF2WyuyMZZEYRMmKwKKqfNB5Wb/z6GBnrmOB2le/99s/8X2/93dd+N4/Oth4X/dM1up188z86md/PgCGyIi0urq+s/vmrVvvdjtd58ze/kGRt1dX1tbWN9qt9nA0mU1nvU63ljibjqMvY/RymkUYg8cGO4dKhBxrNeSsYw6A0ASYCKsC+BCcIVKtfS2EUcNkOreJS7PMOefQGqD3Xbseffj0Z34NAFQ8qptPRzHUw/39YrDe6/RDCKCaWJs4C4BV5Y+ODs+c2Wrm9mma9rqDL37xZWPM2bNnjTHHx8evvPF6EOy0WmmaIOIXXv6CXbabGGKT/AghBEuGyKAhABHAeVkzUFl7AAiekwQJqWYux4vpeBKDbxWtXrvnkgxEbeKSLAPgl7/yVQOwtX1hPh6eu3Ahm9Qn7z5CIufM2TOb6z0jYZwmVHsWqaxJUIlBAeCFZ67feONNQljp906yVKPaNBHVar6YjUYvPPtcKy8G/b415GtvbAaCrAoqYLHpf5EsWAdpeu7ixY1bZ46GwzRNEKGRcxKahvwCqmrsIrCSJZd2V9cNu7qOXiQtMjKuDjEEDqgmUSAhi0LxYLj/6GAneEZ0edE2LgkxGEfMQcJMuEK0DFj5CEqJdUWW5GlazSaoPptajqwBRSmGGLwHVFvN56u9QZG3Jzs7LnMM8vTlJ1ZXV1+7+aaHxcc+9hIBscaokckmzgnHh3cfG5FwPHGjUvaH4WiovbWs1VIbz270cosG1Vq7mC2g2eSIEpJLHaIVUbDWJomcxmALgCKDTQg0IqmgNVmeFI5cDFE55GmyutqbDEfOOuAarTPkrDGYOGtARbO8AICEdavVevL593/91ptvzUaus4pgYmQE5KhetLJ+c2PQ7RQHh7VIjCGAxVhLK2utb6083L3bvbH69JPXJ6MjObNWFClLPVtM+502RFaN7KvxqMpamcYIAr3u4PhoD5SdsWLEWivCp9EewsywzCWn0ygrFREyREQcOYSgqmRME4nAuNx0KKEKaGO1BhARBl0Wzyoqkmd5WZZVVRVFHmO01jYhYs0WDIhUEJNkVlf9TltVGKjZZBhjQ4wgmiTJycnJ/v7h5pl1EbHWOZcsA76aNDZEVGnQosZaJJRTL9B70iVYHuJKRIZIxaoEYVZWEQU1y1gQRBBot9p3795bLOYC4jL3xS99cXfvcX/Q4xhME2JES7m3KARmp6gxCqJNnCP0VRy02lcuXbp87vLe3v4bN27s7eyvb2yxpfnMq5hQsUbz1BPPeB/m83mIXoXbK93ZsCw28o31LUBQR91+72QyCpNxFHVpVtUlINrE1jEKoUGLSMTUIJpUm7EUG5MoI6FhrkEpcDDUUA6bWZ00xSLQ8nNrLXPjvFvuvFTFGNdMC5pGHxFFWEWZlQgMmgaNoABkjDA3KbmK6j07owTIHJxNBSCKkHUqmpBBl4BKkri7d27eu3vvqWtPxBgjx8GgbWna6Yy3z06cI2Hu9bLrzxZHxyd7hweHh2Ftc7suq9H48P697c2Nq+znGyuDIk2JiMiGGBrEswioaNOLnmJxmpUoq4Jwg8EEZQZAS4YNaIDmzmGO1tnIMp+XvZWVc95vrK++e+cuUyzDAsk1I6ZpWe8NR53trUp95ijP0nlZrW9uTqbl0YPdtZUN18rYhyJrddpdBkmzdOtMN3IQERWo6qhiZl5uP96tBADAoDEuIYQQlAM668jkl6++eOHM5vrqSqtTpHkCVETIZWnUaxCXy37j1PInok1iXkCAu/fuz6eLJGuJqLWurr21GCJrI6VelsjS6OJUNcaIKimlItEsQfCNy1IbQV0MzXEjiKBR6qp2STIeD2OIyPz4/v12kty7e9vPZurs3bt3FckJlMPRInCr33NBVSHW3iRN7U0i2mxoq6oKwSepAwBhJTLLfVwIIsHYpZyPRZGo9PW9hzuIYMkCwC8/ftz8Ev7+p15yhqwz6GxDnbBFC8hZl33b3/7J5jWf/6t/Coz59h/+yd865fn3f+xTyvAH/8XPN//5v/6e37a21hvB4mQ4B8Avfu21T3z0YxcATuYVZbAY1SZPbZExZApwdHB8ZuvM3Xv3jw5P7t67//73v5Al+e7j3U6nc/78+TzPDg4Ogq+n06nXOBkPY13VwZcRAaCqajJYFAUhFKklpLoKHCqOXlWts3W10CZzW8lLVUZGUQWcLsqDk2ObpO1uZz3LBDCogIJ19OJLLw0nM3jwcxBrY/S7PvU7br3z1v7+3tmr1whOM4GROKrLSFWrqvY+xCiq2O12j44O33rrrQ988KXV1bXDw+Pf/M3PBZWnrz93fHw4WFl5+523h8Phk1eu7O7s9Pr9Is8fP348mY2TJM3zXFiyolVWpXAoQ6iD1D4CgAqWc18NZ3cfPh6NpsBKiBZMu9MJMW5sbXcGq/cePnjr5tuvvfK1P/B7fw8zAbjRpER0g0EnbXXPnzvb6SSQdstJ3Hl0b3Vj3aEQSmBGSwBw7tzWB59/9saduxgq8P54NI7R91fadV2maLc3t9bXN9ZWVmL0SdbiIDEomUb+GhsxKACgSULwJsufvn69evVVFXHWNFR7RaHTI0RAFiFEBDA4nk6MWBWqgq9DTWiAlZkZyKGyry2rRo1YgZIzaK3hWC0W48hBCADEQTAKQAJoraIIh1pKkViFalFC8D5xZChNMuMspc5JpqqWfVg/t/r0k09uttcW49l4MW11srKcT8bj48nx8dFJnuTW2hpYlTtZOj4e+tni/NZ2gTapY27ScxcuecIsT6eLccdSxxLUPpZVliYAEEM0YFHVoiEHAgBK6FmjNKpDELaCgmitDRxjlE47y7IWIaHWs1mZWLcyGCwmU2VGFQ5SSyBj0ZCz1lrbLIsKa/zRSEejzU7rzeFjTfNEWgA2iigYMVRHjoG31tcO9x8t5vPYzbK0nxfdk/HIttIi+Hdvv9Nvd7/jW74tS2xvZSVpZXfu3bl188blja3c2V7RihhFoopfTMvh4cF8PEqtkRjzvBDPoHL6+AQARTQI1OCAl1oZRABw1rFIjJEawLEILovBU7E0LGnGpwsYVGhW+gqgBGCIfGTmb7Tj76mGREGJ1JphtVgTccaAIQYQAmeJlFAwSzIEeHT/4fueuwZAhBaR3uuQAAWpEZkYQgJVYVlqgpoVnkhkbn6w028KhFlVog+qpFElNjN/kSi+9hKlVRQrq4MkzxXh9t1b48loda2HQETaWP2bX4UCxhht4MwYqatOt0MKTz198YnLl4skv/H6jTdff2sxX1zYPre6ceb2g71qUU+nZa+3tvnEdpJkb7/19my26HQK64pPfOyTi8U0xMXFi2fKut4/2WflXndgbbqoqsViJqI2dXUMrGKs5bI2RIANgFEVhLk5HUEBAShGMWQbhPeSBIgoItZaAGCQZnq0jHMPPtiwTA4RJUJjLGKTJwKNNQxQQUR1OVMS1W8s3hQISZAis4+RiJCMgEZmFQG1iTPRlypsjG2nZufhnRtvvvq+Z54yDqcYUf3RwYPZ7M7a6hzhxCYU42xtvfvU9fboJDk65sPD41Bz5ePw5E7RulpWRyv9lXPnzr5760G5WGijSlJGIFhaFkWE36MZAagIiwgYa4hENfiAzhFhjAEADFGInDhCNC+//OXtrTMQPYJDtLNyUceQJUnj7FUyj4ejLE/OrXWUWYPPO21jXavbS5JkMpxyWKRZhsQhVjZJW60UJIYQKLWBufKigvf3DneORrbdBz8CNYk1GiMwOJvP51Ne7b7vxW8+u75eLhYKcVZVLIqkYBRUjEVVOQ1LQgBAQw19G4ge3L9zcjL89c/+hgg0BMs0TReLEgCMabRQ2LTxDS+K49JVoIjGUIzNX6ExRhSa6LwmG6WR1xkkYalrX1dVv9M9HO6XZfnwzt2UqH9m+/7+3iLJe2fPj8YTKVrYbh/ef+inU/HR2QQI67oKMWStAppxAUJVliGEJEkUIAQGAmsUxQCANeQIQQXRuhSDmslwWnqPQBaXWZt/6aPX/8YX3vqzv/DVf/b7P+yMUQU0LslSQeNs9u1/+ycB4Df/mx/4+P/8Ix/7K//4N/7KUlP8uf/m++uq9LUn437/j/00APzr7//d3/svfub/9p9+/W9/58edTjqZm9Z+7/DgN7/2tY8B1EYNxNS63urKvAobZ8912t13b926/uyz22fPjU4muzu7a2ub585u37z57mg0unfv3urqKiEuppN2p5tYnU1HMXpjXAOQKOuylWegXFc8DiH66JxD4wDAWjufjYnAGBMjRy+oUHnvhY5Hk+F4snX+3OrmmiqAc2ANAlJqAkdj4KUPfgD+3c8VBqyj7/zWT85eeuFv/t2/OxsN189fhmYlDsgsDjDGEEKs6+B9UJVWq7Wzs5um6bVr10KIL7/88tHR8bVnnz3Y23n22WettW+9+calCxd8DMZaAFhfX+92O1/7+tcTl1ikVqdFNjk8OgISwX7NElgBYDYrZ9PZ47294+Ekb3VJKQY/PjnhEJIk+8KXvrJzMHri2tWPfPQjwvHkZJRcy6uy8rFuddNnnnmi2+/neRrr8uDocH/n8fbWmfMXL8YYwAKiBeMAICvyc9ubhyeH0bqd3b1qNsuL9PD4yIfw/PPPndk4kzg3m058GPV66y7pWOuk0V6onm4OjABEIGPM+XMXjo4OH+3sGiRCXLordOkjDQKzah4lGOCqnBm2pMjAMZakAIICIEiR1ShaIlZRRGMsEgFAkzBh0zSKVyWrzqJBcsY6MjaKcBRSCDG6NM9avSx1RKRGG1qWD4Ej262NjclwdOfmuyvFYOvM+jqs+HJx89230yxdS9YfPtrbuthzNmn3+9OjGkTDou63uusr67PZghDzvIgxojP7x4eQ0NZKf7PfwRCMQmoTANCoUSMioUNCs3R7l4GiSGRANIbIEIsgUJNpgmhi4FiW6DCzqeeASEVe+Lp2JgEWYWVQa8gYF0V4CdiAnHWz1e5b45i1rixm1qWTKkRVgzqel4eH5umnrq6vzx8enQBuAOaLUinJjkaT7mBteDB54/VXv/u7vuvalSeGw2HRbllr33zt9bv82vufuX7u4vbm2fV5NZ+cHPeLVm5saoxGxlRC9IlLfR2bjUlTsJAQGWoWRcvZOjTVQ1RVFraIzdjDNO6fRmcqyyL6PcnFcmK+5OmBj946C4Te13levKcsWR4nje0BcVbX8xh6aSuCMqGgGc8WFihLEtHCOff40eOqCq5wEENzSCMapabPkNOzAOg9vUszRj7N/9Im/WlJRVSLThE8oVECMCAREQiXSBgWqcuqLBdpkd28e/NLX315sNI1FkMdiQx7D2SISMmKigXMyYaqGrQ7V85uX7l4qZXmuw8ffeXtdxaz6srFS5ubZ8jYz37uN8eTUgNvnzlz5cqTQfDGjbdrX7c7xaXLl8py/vqNN1944fnJiB/t7PnoT8bDeVWySrvTadlMTLBkqhAsWedMXVVk6FR/1fy4y1VXc10iS/TiiJBQZVmkvPfq5o2Np6r2Ju9MWI01iN+4jsvSuKn2mBGQQJeZb7pE8OlpDAXRktdWh5gkSZqkUaMiGGeRmGMgBJeogdKQX++l9999/e3XLz58dPfRw6OHjw9jPNreXmkXIhGRwLrq7rtvDk/a3c5ge3PVwPDweDJYae/uvPG5X43f9MEPFPn6+upqCL7T6dVRYmQEXWrA3xvmLSt7JSJAJaKoDdPIxODVCJ2mM4qIcy5wTPPsxlvvvP3a33rq6lXmqOh8EOOc98EZBwBq7Dws7h7skZPtXrGYTvvGGo6gmreSxLTZx+ADQCzaabtTtNrOWRKRRV1ViwWDDseTx/vHERypbS5cvSh7vQ6KCotLs8rr7sEkL9Z8LcaQS1qANjChqnVWERUFyZyyuZEFAJ0o+Kqaz3xVhulsjpaCSODa2tRaS0TGGGZRaHyRiAhATSdgiShKUHVEpil5T6+7qJBCwxlHACSFKoa6roioLhfW2JODQ4d4dn39P/7CL7nts63VjV/40ld76ytxtfeVo515AhH5pJoN2oPcmHFdcmRY6s2jAVyUZYwRCE2ausSpIkeOwRsyhpqIDBFRVlr4MJlVxmYSa3Nq18jcsoGzhAYtxKbpMqiOYLmLV47LR8JpFOAn/ud/AQC//Ge/W+U9Ks+SNVwArWTFcDYBNZq0X37jbQA49qFjTQbGQvLi+z7YWV2fVn4+n9+9fffM1na31z8+Prn59s33Pfc+xFu+Cgh08+bNQac7nowZTXF2vfJlHcsAFMECgHVZkRdH+wdlbouilbh0Oi2rekwAaZKkiRGJhNBttwSlKisWPBqPdw6PWWHx8OEbt28hQq/fOb99bm11tU3aaXeqskozCwAbvVaWd378f//Rp564evnc2eHJESyBYQCIohBjjMyNDj2EkKapc3axmF+5cmVtbe2VV17Z3d3d2NiYTSZXn3zyiatXv/zFlwGg024f7e+XZdnrdPb3951ziUvSJM2TtJu19o6PZ9NZ1krLqipDrKMAwN7e4cH+fhRdW9s6PB6VZSzS9OyFK4WzZV1p6u7v7n7yWz/5kY9+5KUX3/+rv/wrezu7T115wg/KCOxSF8Ps/uO7w+NjYD67fXZtbV0YlZxFC+hiRACgzGad7Py5rW5/bf/waF4uMmdY43Mvvfi+p6/uHx8+uPdAVQHppRcHBBAjI6GKKDAsnbOoQmgT5Witu3jh0vB4jAqIBlEVCEAAABVCXWnwxBF8jZ6tkAG0tIxPQIFGVu1PUSBgBJHIogKwMpERhy4xpA0zNkMkAWQAMsosUaIxBlILoguOQTWxqZIyC4NGRCa0a4O11954Zzadhmn98EF56cqFS2e2d/xjX8dOp1vXJZHrdLo+7DvjjGD09dblCybLy2oajC36/aODA/Z+Y3vznVtvvfnGGx9/6YNpmhUuE88AIKF51HtUJEtIyiKMDEa0UdmToKHUuSAcYi0CVblARQDSoOSoXviqDGnR8t6zgkGzVF0AxSBBYmhAc94P8tyFsNnvtlIqgY1wYzUNGhmIBUZTX5bh7Ln1ewf7w8l8knqX927e+FIZpWNcu90aHY7+6Y/8k7/+//yrraJYVOWg33/qySdP7txfjKfEOjo+zjvZg7v3vvi5z//OT/3uBChWdbFe1AuOkZGsNieXIgASEjd7T1gaaRq7TKNuVjmtihAB3zPTiDTnJTXkGANLAAsKMwIQogqjMdZajhxjbP6suZ8AVEQwdYCgrAtf9TodJFTQqAKERBYFLZluu390dDwZTTbaawhgrANd+vBRqVGlgLAwN0/uJsEOlrKVJce68QwDAAARWW2M8EDCIqygYgxYR85Y9XRycrKz82gO8y989QtVtej1OsxBUXwdDQIKIgKzemEOoarnZ9bWX/rACyv9QTUe39t5a/fRXpblH/3IR1pF9+jk5Ktfe6Usy5V+X4nOX7gcJL777s2j4yOXJEU3C1yzxsPj4W/85m9cvXxhPp/4UE9nc5OY1LlqOE9Tl6J1SoRUC8c6GkEkc7rDaIi94hwCuOYKBh9YmEBIEJttUHPpmt8VvEc2ABX9xhinWYFaoyox+kZ23cztYoyJddba2MSdGtsE6C4He4CkgBbR4Nx7jhEsqYhBIAQiTRyWsymSrK31zq6tnz+zvr7R/+Lnf3k0PjHYlWrRauHo+HErbWd5Hryy8kp/MJmMqtFslh3ZrEjtYjKehdL8/N0H+zsPvvd7/suzZ8+kman9IqiqokPb7Lzey2Bl5uXN1mxKQQE4slpEEWHmZZItaGRO0jSG2rlUFNpFazqeLMqpy+yca2GLHnuuCwAhGqFiUvt7u0MKca2TTxd1lroiccZRigQpJ9ZlWZ532mRc8N6AaqTj+WI8nhDYwBrAmCz3jVwJkBBFAksIAa1N6sijycILRkwUWSQQGrJkEI1BbYo8NYigAoTILGmSBg7N9GO+KEejaQjRGDXGEpmiaM3ns8Z2Lsi89Ngv386Rg4KEEJMkWmc4NnPBJWi00Vq7RpCPZC2B976qVMQHn1j7cHf33Jkz586lt2/fvn7h/PmtzZ//uZ9db2Xnt8///M/+4rknns4uX1ZQMTiryyoGmyZN3cwxGkt15YUlyTJrLYsyKyI45wARY1OtKYJhhumsXNSxriMBOLcsblyyLIBMk2HGYMhSNGmRguqv/NAf+fYf/pff/Ld+rHkNnRojfu0vfN+3/J2f+I6//29/4c9890//wO/7rh/5D7/vR/8tAPz4934KkdZ6g9uPjhwYm+ej4RgAOv1uKzGpy6gz+MAHP3pv59Fodz9L84P9g3bR2VzfHI+mVVXt7uw+9dRTN27cOHv2bIyRQw2qDx486GcoEgEhcKgZAKA76LXaLdQyz1ud1S0WmvmTWV3vH+wj8IXtM+1WlhoCMK126oy9/3D3YP+Io4KxD+4+oMReuXz5cO/AL0qjWriz6mNiqLHGb60OvvXbfkc1G3/p5Zch+hA5eu+safAHRFT7GGqf5Uu+cL/ft9YB4NWrV6uqunPnTlMuP3H16vXr13cfPXxw79657XPPXLv+xeHJ/v5+4tzh/h4AWGsrX/XbHWAeHZ8gApIdT6dHx0O6fB4Ajg6Pi7y9dfbszVt3fZDVzXPsgzGpcdbPZ2vr62fPbbfardF4hMzf9q2ffOVLX379ta+t9PuLqpzOJ4FDp11srq+trAyKPPV1rCVaymI01mVRPQCIo3NXL7RaWTmtv/WjH/7C628uANCaMtT3dh6trKxcuXw5cJjPpyxsyQQWwKam0cayKoKK1ro88lxF11dWt7fOJM6ByikKpslVIorxbL/39PntEih6ThUhSlRmFGYWliDqAZsdfOQIDaAfIguLAMdaVU0kxagiBALLp7ECIQsnKsbaRq1FZETVzwWWYX9qAZDZ9vt9RNrc2sBaT478yvrg4pWLlujde492Hu8w+NUz3aJf5GmCki1O5r0iK1qdpN+58cbrr9+/e/mZ64td7hTtal7devOdlaJ9cfvceDbnUFuXAIAzBhpVACiIsECUGAw7a5ar98Z9bLWclwqSZKn3Zah8lrXQ2FDX3stssijLWSvPQRgEQZvoUKsIolSWcwBo5fmGS+eTaZFmRZp6RYisEpyziswhuixfzMrD/ZPtyxtJYhaLarIIj4+Gx/O5GDevQpFl3UH33Xff/f/8y3/+A3/iB+ejUV37Z595dtruP7x9q9fvPTzcPTo5eN/1pzLAS5cufPHVt9MkCxUjWm1iQZVQSYGEmeC9rdepsrXR2QIhqHhmkUbuaskoNrfOclpAKssao1mNIREZVQaFNE2qEIisc2nt6zzLpYl9bqC8hqKIsjhjpmW1IuySFJqmD1SEU2OdtQZxNBpNxpP1s2uI1plElzpBNUSEVkFZUFissyAsp/zyptBq1naICKIiIhyREEA5iqGloZiMIVJEQsFQx6eefnprayvN2+ViFoKvvXEGrbWAhKINIwdEUrImL65tX3n6yqVer390ePD4waPdvd1z2xefevLp45PRzXfvHByPTkbT9Y3NxazsdXpZam69fWsyHRettIoxSh0kTmYTQhjNpg8ePb5w5sxkPGXP45Nx0cpaeauqq/Pntg+OD7iqB73eeD4FRTCooii4RKjIkl4YYrTWMS+dPiKcuKQpbUUFRI1trqFhZuaoAESmsXgxs6oxdgmDbhZkIgKgTdpUYF5KwRoll0iTktGMk5uLb13ihasYUktKoBKVmTmu9oqttf7TVy8UDpXrejbMszRd7U2m2Gu3hpODPIsByIBbTOvah2k5N44ytCejedLmIKCMzrTUmM9//uXjo/nGmcsXL2w/3N81SQrRQLQs2piY4LS5E4FGuXK6riVhJkJqblFc3rTGmLqujCEVWdTl93/v9zrEX/yln4aS2dfoiNBxbLABhVJAdPMQhtPoKDoLvhZq237L2TTJnCuyBIxBY8CAsYbrajIdTydTHwMpKZokzUPpwToAYOEovoM5KoOyKlQhVLFGg4lxNnGmkcVERBBDDa3CmIZbYBp6AQRfqcRut3snxnv37h+fDJ11zlrvY6nzdru9WIj3ZeKMBI7BE9gmOA1Qhdk5W3vPzMZijIGomRhZA6iKhGKMCZUnFJekKLBYlJ7ZGGMRx8fDk539XmdQBN5WLiajbDJ6cX39TK93J2995Nqzc5cthqNet88IPnCWpaoaRQKzIfC+Dhwsuxj5VNONoEpAihI8hxBtmgCSCMbAgTUxyKc0neU4udHACRBiYpwFkhCMTayF3/yv/ygqfuxv/e8AACF+4S/+XwA4OY0ot0Sf+pF/CwA//YPf813/9Kf+i3/9Cz/63Z/KNA7auZR+Vs6FLQDcv3vHoLSTHMGOqng8nuXtto+MlTkaHl+8ePn45Pjw6OTx48fXrl1bWV09PDzM07ys63an82j/8ODwgENsiLLNN76+vt5qF6aOi0X57tfeODiZeF8HHwbd7sbm6v2dg8sXz3a6K0nRauVZZaoQH3Xy9lant7K+sbG+D4aeeOqJwaA7m47Z11Y1VGWW5HVdAsALz17v5MmFrSu3br5z46t33dpZ5pg4h4QKYKypKz9fLNIsawwuaZqqYq/X2zqz9ejxo9l01ul0Ll689NRTT82n41e+/nVheeLJJ6q6RsQ8z+/cvdvK0yLPRTgqi+hoNCagxCaAWHt5tLfH+AEAAGMvX758891bx4dH7/+mbz6aVrN6bJPMWDpz9qxnv762UlZzBTGGnOJLH3jpwd13p9NRr9PaXF/r9gfdQQeUA9eqkpA15EStqo2e7XLmT+3VlVCV/U7n2rXrN27fno2nF564PK1mx0NZXV09GQ7n8+nWmTNFkZfVgmwOCA3zojketNkJA6iAMU5Uts+fEyRuKCqghEhkBbnXLj7+0ksvJFQBStSUQSMLKYOwxBhiEBVLGEUjh+iFhYwTUY6iSiEwAEgMgMAxRAVp/MQgIpFlaYCSpppCUlXvAzcCRlVRZWZbGnnt7TcPH530u93LT1/e3F77+juvQMArT13t9gfHo8M8b1tL6+vdk8d1GXWr3Td5vluNHofjz7/zlY8/sY2p7XV6j+++nfh4/ZnnmdwEuJVZZQaAKBENJOQMQNAIIoSUUoKEziWIyDEqiSjOy2jQkU2+9pWvjUejp59+ttdftdYeHR7s7u7kSdJ1mTNJADauWREqiqqENE8BYKPfsxOZex5XPBcy1qURhLQSSSIoUPC1quwdHZ69uLYx6J0cT/fryck7b1aoTMWs5qRls5VuVPmlz/zck5cvfPKT3/kY7DT4cn6cFHC4mEKRLU5OrCufefGcOD+sJuQyR0nJYhxhxak1kVmFiWwUE6NHFLvMttQmBE6aJAVjtJGPqIgSNll2+A0iooioCECzcwEAowARBESX4x4SBo4SyFoVTtKk0WWAMBFGkVFdrYtkzFXwHGpEREuKjKBpYutyfnx4dPXaE2QSIIsoUbyogCACKJog0SMnJokskdkgwTLDlQwaVg4hqkgzY1MMLFHIqohKjQ4FuIEwEem8nL///c9vrF8A4MBBRfM0Y/ZEZAg5hBi9Q3Qqg3bnxeff/8SlC/PZ9Pj4eD6rd/eOmOnJp58KUQ+OhosqEqZra2cn02npw3avd/P2nf3DYZLkxqa8KPOsM58uykVtkLI8298/GnQ7MbIqZFlelyFPlKOMxtNW3pqMx3467yRZTTiJU1FcGuAlQgP2jYynMVvGogEUJhZAMiQiDGQb8ThwEBYBJGWOGomoqqo8zwWCASvSgJNOJ+dAABpjbMJUWaTR2ghLw5tcYvkQATBBIywoRJiolAicAHez5Oz64PzZrczYRV2xSM2Sqszn87KMhDbWcTSv0lQTp/OyBkFf17JQzrIib0/miyDcRI3lnSLS4MbNd+7v7G1uDPKWG46mk5kXJKNQVYxofYhN/gYSIlg4vTnJGkVmz6QqwugokjCokYCixqSIWNaVj7OVldU0TzppXi5qATDGVNEDANuIygIBECJiUMIoZQx1OeO6s7rSE3KVcPSVojZW4dl0PpnP6ypYmwKmIuIc2IVHNgDAsUYCi7ZFGcAiInuEz335N6zTVKFVOOM0KYo0yyD63Gbtdh/JCWKpcjI5OZ6M5pNRPZmcPN69/tS14OPO/bt1tTC2zYE1+hgqKqCTinOGo7fOVIiKkpIEEZfYwJ5FkUSEJZI1JsaI6IgapmUzSKPUpKSAQhp54asao7MoVS2ThY10cDRkmx7OqjsHe1TkB7sHx7tHqjg+HtVBKLBTraqFpdhEkAERxyAJTCYjjQwMHFiX4zAbOSB5ImajSNZzAGPqegpaE5IoNvoPAMhstiyAmkUFqAAHCQ4cKH/L3/4JAPjNH/ojzWsC+9/2wz/++R/6o99gdpwSNOJ71AxEl1Krm+1NpwCpMALAz//yr6cJWsL1lXVfhkUdi6Kwqe/03Xw+3zs4fOra9fK110fD4YMHD7bOnAnez6YTtBBQwNLR8VFb2IizQk4QAIo0KdIkRhqfjCZHR2dXNlyyXi3qM1tbRTvxgw4hxxiSInVZC0x+9sKVyDoaz05OjtdW+u1um4TL2bTXbidpn4AUNfoaKQLAYnLyiz/92rd9x6ckSQ+n5eXzLSkrA+CsZQTriKelChPBdDqJwu1uxzjbHwwY8NHj3cl88cHrz1x94qnRaHL39i1f1ZcuXiQ083nV6Qy2ty+o3J+PJ9FHJDLOkjOzEJSIxIVaXZrOKvrsF1/58wCdle69R3dZQnfQnc2HEkOWxbOb/U4rD+yn5cxYdQ5FKjRp9GysvX79WYNK1jJCBC3rhQgQpiDRGFBGBVGKqsISACBPWozYW1skUGeZWBem02kkyDqdlnGJse++83aMfPnyk4SWlckoL1lMTkABUDECCoiQIxWrKHmnU/kQmWEJ9yVhRaQI2OoPMmubesQ0yFUC1qXMAgn1dLbOqvCeORoBFEWW3BZoGg+Eps2HpWNo2XM2kBdZTiMoNlK8UzmSffvuvdF85nLb7rXag9bj/UeTajJor81mkyLPNs9eD2bR7bds8uBotJ/na61+t47x3TvvQGZv7N/5yv23P3j+2mx08vj+g5XBytpg7cSyOAKDhppQp8YgrcCRQY1C4+EiNMv8OqSoKlEyl9Y+jIfjarFwxgLqcDJcTOcPH9yPIVy5eAmioLWdPDeJCxLr4EXZAPDSDA5puzXRcO/wsGKxllS4Ab9iRCVFkSRNqhhHk3GRpvthWBodLhaLap7mfWU/WsxX+t2smyHnn/nVX3rxuQ+trq3fuff2q29+7dn3PTv1C2PTTrd1dPKQMWJrczSbCAOiZSkDx5ZakGbJr8ZSsA5jbAYrgKiES5IDKik2KpDEORBFajztyya7abhNI75FwiUypLm7iBt8sCFFsM7VMSSESNgYwQDAUQMfApY4XiwUwPsKQLIsy9MkhqASHSDEcHx8qArcyJZMs3YTEQABcgYRrbVRlZss8mXP/x4zSAGgmZYYAtEKRRGsABCoaCCDrESiTJCkSafbmcyPx3Hy+PGj1LlOu11WZYze13WnyNUHI5JZ+siLL1w+f3E8n5ycDOs67O8fk3Hf9OGPKiY3b70jjElSHBweEDILdgerRyfDu/cf+SDdfmGsvXTh0t7Bwej4JEszNFTNqzRJj09OQLXB02VpxsyLsvT79bmzm528VfnSAmLCZIxtcs1EFNBawxxVxRjb8K9ZBJq9JOJ7shjExu+GjXCqCRFTVWutrwOANu8Ca00IcnpOIFGDwRRUBUONn8wSNcaz5a50uR5FEHBkal9XGlp5QhJSZ85vrbdT5wAQFI0JzMPhCAWEmUMgBEsmyTugWlVV4qyyksnGw/E8MgDmRWt2fGysA6irWgFpfWMDAMrZuMgybOWz8czHEAM0mhVAqOuQpwkuf0ZUQQFQZlIAoqgURYyoNGZGXN6TCmCt/cxvfPapy5cuXL44m9ePHu5nvZaqhEZdxbUhRWVQNaZIktwgG/Gxqo+Oj1RCt9e1RKJRVUHY+1CGYIxt50Vk8KIK3O222NCiigBgCJIkM2g51M6kHjyzvPbK17sIHYU4m6V5SikBC3p/fDT0YlR1MptC5vJ+OylsYY0pfbl//M5vvPyJb/v2Qd6qZ4vuoNdpt9OUxC/WVrtbG5fzPAOAk6NhWdVobGQNKkfDUa9bBB+sKeqqajqaZkfMqiFENcvIMSEiAUIyxgZlNgAqxPFwdIyoYoH7XVgZRAeLNO9un1tMFzPzuDJ29/jkOUFm5MAA2ECAGiEZItZ1rSrOOiTDgpG1GWSy1IBMzoEAWedrv5iPEa21Fo2zdpm1+Rd+7osA8I+/65vyxDHoH/5XvwYAP/MnvwsBYvC//F/9we/4X/7Nx3/4XwLAp//8d6MaAPjYD//zptT5zH/1PZH5P/1fv+v3/G8//ft/9KcA4F9+3+8G5MheQZr0HmECAGtyhdDudiPrZDrP0uzo6KT2vtUqQowPHz7Msvz555574/XXDw8OrHNXL1++ceOtRT1nYeeoms8zVBCCU9YskSSJ6WUrvXZ7+9zZ1BXd7gDAlovKx2p9tbsox0igCAxoknxl/cx4PBoQlXU6m05DrLvdNmE7OEOE1gKAKkqj6L9+7cmTw2Mfo81amiSVD1x760ySOHDOAJbzuQ81EUWOztmVlZXFYpEVxWJR3rp1Z3Nza3Nza2dvL1Rl8H5jY+PKlStZlvmqvnT5SmLtdDjUyHVVokKWW1EdzaYxRlWKrOSoDvTFr74KANPFzHFQDe12gVKf31rttTvtPHfkgJK3b75x9fKlTqeIIWRJCs5qhElZE8bIbKyxmeMopnn6WMscI8TGwhikJlQAkAC2yGsy48nxgrP+aie+s3vr7r12r510V77yxS/Nykm3v7K2umFtAljFGBqBjgBRg49vvI2ggCgASkbIKHKzJCFaMjJU0JtG09HMmJWbW1i/wcDDxloCBO9NnH/LxzKMoDmcGrbQEmKH1AhRmjmUqm0cJwAAkDR7p6UYG+xoPK1r3zb52bNnF7P5w4P76+vrqxsrl7euPH648+Dx/XTgBmlPrFVQwlBzHUZDNwvGJSe+/MrBg/Nb2+ehkxZZHcKsXHiGzCUiclreULPcAQRBaGg5RtUSNeUCgEKIDq3LiuP5sRX92Ic+nKdpJXo8X7Dq1vntUHlyFhObt4t2q8XCUpXEIFVgicYaAPDRQ7tzMh7fP9pr9KOe1Bl05GID7hNjbBb94uBg1B+sGHLe88raan3oQ60cJE2T+WK62Wu389WTg70vfPlXv+13/f5Bv5+12pPFNA+Lt998q5PD1bM27xW3Hj5ezBeISQyBCAgMCooKqDQa2Oa5Q2CkCRM4FYaYU+EwM7OIWa4kUUHg/0ctu2SlATQmcVreWYBLJwmKSPQhS9MGDI2IKtAoLQlpPBkXaWKMMWQT6yyicNQYEYQUTg4OJQbm2HwdQWiSrBERlEQYBAC1QaQsbWKiTRYCQDOrQGbhGK1bHtbv4fNEAFCssyoSYjQmmc+nx7Ojg4MDl1lVreuaCIyhuqoTwDRJvvnDH3ny6pOT0ejRo8fRx5PD4067+/7nXhhPJp/+xV8xxjx17Znd3aPZZNLtreZ5O8vTW7dvgaIxtt/tRdHhaMQ+WjKz6bTIcjJkXTafz3v9Hi8WLNHZwpAtiizE4H2dpMl0McFG52kRFVmFm9+twVORlpEowgLSEHGWelF9zzndbDiX72MFAFGwxrBhZk6sa+6ELMuWZqolSml5URvhCuJprBgioDZlLjZedFSylthbBAtiANZX+kWRM9d7R7t4QjZxgiox+rICxFaeSww1VyoYQyAyWZ5GjO0sL9JkUVaq0C3yap6PZ9Oi1SLUrbMb5aL2gRPrRsfH/f7g3PaZg8PhaDjPsk4VojWk1vLygaOIoAikoAHIkCQkEZkDBDWxYb4aQQ0gqWJq3IP9g/76aio0mc7aRXte1ZQCCAFAxmiAIopwJAVnKTGUkcXcaqzrqjqqqizPnCMUjTFEjjbJjTVWABGEISEwqKm1ppvCaJglCQe/WMwAUa2JrKlJZ4fDhzdubbosY06L3FrjFGVe0vHJQlicTVtFr7eW9lqtVua8t6FKBumiLGcHJ9OjYSdvZak1xEWatXrFSr/XabXyLFOV1qV2u90bjycPHj1qGZOnaVmVzOxc1thM5vPSo6his+9GQ5EokGgUo+oUI+iiWgiCkLCJlYNf/fyvX754dm2w+jOf+bX1M+v9M1v//tc+m7fa65cuvH24r0VXs2JSR8AEREgtAPq6UmUQrauKWZiZjFUAZUFEaw2aBDX6IIuyarVaKmKRfFA0SipNE/nffvS59W6G4rM0aR4yP/GHvsU6Z6wBRWuNIftrf+77VASdGiJU/NwP/ZegyjHGEKKExuHzMz/4B0KE2kdhVpaqLEFilti65qZfn09HhHF7feX44BgYgpfxeOhD9HWVpakx5s033rz6xNWnrl3rDwYP7t0bF8Wly5ffuvG6Vj4Fquo6GrLWEsUgHgDqEKJCWhTddhsUvY/zxYIFnbVFK0sSK5pVvtZGV0DQ6raJNPjMWhtjtM4lqatDUBUQbjgY0Ydmc72ytva+979/6+zZ33j9Te8DLgOtlJnb3Y61rq5qQDTWjCeTxgPfUGofPXgwHo83Njbv379vrR30uqurq/1BDwjLsnTO1XVdFPmlS5du3azbRT6cDA0BgohGAjCJ9XUQ9oeH+x9+8X2w/9kQwxOXLjy892BtY31tbSNPsyxJQu2HJ4e7+3vbZ85eeuLK3JfKDIhBIxkbncbofV3VR7NOq91vdyQyOMugATgCN1N/OM3yTl2iBmOMqxtbVQg+ynQyXkkvFXkhBr7nD33vu7dv3n/4eG19vaxrXCZXwnukeF1mKP6fDjJjyBryvjHYNs9WFVFFUBLFpe9HFQCEiOAbudugoqhCuqxy3iuDmtEO0jeGjsTNBr75VngJqgewv/U0FWyeXQhLI4+dz0pjXQyx2+1UNV25ejXL0nv374LHcroo68X0uN4f7VURN8+s84k/PtmPqo65VB9adL+evDPcOXvm+tPPPVdV3qGZhikAM4rNMwAgY3jprl7GfSORCgt7Mg5U2EdUtQlx1DRNEakqK2ANRKo6WF0BgMNyv5YQVIJyRFUUQLWIoKwcml9fVF5gfDQ/PvLTvGhbmzBAwwOLxhmbZsaoABk3msz6g400aU1G87WNM4lNy9nCmtRQ9ItR6ep2p+iuZ2/f+dr2zSeca/fWNmxqijytJvPt7maRObKuqo9EsVk8KTCAADpQFGjqYFEQBUESWjLWljWLihhjjLGh9jHEJC9AG5FUgwgwSECES9Iy6umNtBwImMZXDwAiBskQCUeV00QbESRDSAaAgBaL0ofQzjOLSKIaAymkxqC17TSdjkb1fIGpQ1URicKq6owlMMwqISKAhKBLDh4iorUN8mRZmy3dvwBLH3CTXQoN1IeRDBGhar0oRXVt5XwJ9clo2ORnIzYJArZ5G1578untM2cePXiwu7tL1izmC1W8cOHi7dv3Dg4OrXErK2sxirAUrWIw6LHi4dExkQXF1KXeB1/H6WzWKlqSpiqsIHBq748xsogI19G7xFlrkWQ8HmdZSqCgktosKkYFUrSkSsDCZFDRElBVMQe1kBLahm8kp6leDS+guU7vzfAQiMgihhhjkjoRMQaZ5dTNh6eePjpFKulybd5wg5YFFp5Od1EV8jSxGGNVDvr5oNdl4cGgl6bUXLnFYh5I826GAHVVOmM6Kx2D1CpyQLLkBCREns8WIM4lWbfIB09e3dnbA0AG9POFRjWIzthetzubTK11Z9YHFungaIQuQzAs0dlUVJSXYYYESoSMwAqMKkAawTJaMiLQEBIDCALHKty9dQ+ntUNX2NRDeG9FQkjGQACMHGMMzmDmTGohdUlCLVQJvqnRRQHSJOm4Ap2ToHWoE2OMJRZOgqYWGliEBm/QuiRhhlpDVDXKCPBobw96/eeuPrHW6xFzQsawXHzheXdmzbYKkyac2JKDgAySjKezL33ms3f3d3799ruVw5UzG6QmTZwjKPIsTayvKo4eABng6OiY/r/E/WmwptmW34WttfbwTO94xsw8OVbWfKfu26NGBAiDsWQTYAwOCAYbLDB8wBYYgkkBtowIMNhGWJixrSAwIMwgQ0hGaiRL6kbq7tt9b9+6t6qyKiszK8czvuMz7b3XWv7wvKfuBfOBCMLhpyIq3sx8I0+e8+7n2Wuv9f///mQn4zEz37x5o95uydjQh8Tatn1VhsurxWq9ZQDrvapKYvBEiLtuP0LXde2m3q+K2PKD8f7i+NZPv/PN3Oby/OLd2w/2ZpNffvrq9t7xqBx976NP5/fv980GD2YRmCyCQ2VOKQ56h+12q6rX7LGdr1+YMyJJiorWWG99yw0Bmp3tVBAG+BGrJFBBQRDAIUpLFQhVhQVAVGlYooJDLawsSUKIzD0CiHBKYpFUlDmpMIpIjJYoc870giwAMC5K53W1WISunY73VutlVVa8WrdtW5blrVsnXzz+4tGjRw8fPjw5ORlV1Zs3b7z3h7N96NkDtUkAQVSJyFkDAF0MSRXJWGeITFmNQAwiWWNFU0r9thnmHoDGsoIxWFZZzbHvuyIrrHOSosGBhi+gxCwxpuFMcrFYnty+lxXFxx9/UlbVgLZDMJZwMpoI63ZbA2FWleHqcjwejUaj7XZrrf3ss8/29+bjUZVirLfbFPqf/OY3fOaGDSuGfnl1WS9Xwunuye1nz59MqnI6GRdFPh6P+7Yjgzk4QdtpNxmPAGBvurfdbm7dvFGNJsSp36wut9s+JgT44MP3bt0+eXN+2m/r6WhEKsKsxhhnqqIKhl6fnV9erWh/z2cZZU4tDi4WHCKWDcrgLQcKHJHok88+xyz7td/43nQ6rtfb0Xz23gfvf/+Tj2OM3/7pn1Og4bwmMjypBooZDK2d3Zzq2lVDaMkIogzHflWkYYPaOYFod2we8CM7S8nO3aMKgqjXkasACjt+juKQ4ggooCiqpDv66Y+uQZJ0raZVBHttF7o28tirq4WqzvbmSdN8bz45HJ+dnb/73vtO3OXFpc9sTP3Fcnl067ZnG+LycrlStaPM2axqqHm5vnq8ObtXzY6zw3E5mVZ5s5K22+huZgOKCMYM3A1QEFSBJAY4sTfIoEGSNXYovI0x1gKBsT5LHEPfq0I1GvUxdE297ZogURAmVWmIgvDQoO/7AAB5kbcOnq4vNpL2jXHG1KqaRAXUIlhDAKHvvfWcQtOEvKiulpu2bqejqSbbdW3o29xn2/Vyf1qV05Khe/nl0/v3vnFwfLuooCgspFBZd7i/f96t79x/C+kjEQCjMKRBKKnirjRVRRqaAkyGAFSZFWjI0VRV51yrkCJjgTs64pCjuDNdyaBa333gQ1UtMgQlDF9hSLHInA/cMbO11hCllFSUjEFAIEGgEIKtRg6URC0NSUwknVbOxnp7dXa+f+8EQRWRCEVpWEsqQorWuxDDdYmtsMs/+JEzf7fClVh3sVDXe/xOTZNCsMYg0ZvTM2fLpmuWqyUaQwadc4OZQlnvnJx87b0PHn/2xXa1un1ycrVefP748fvvfdg0fVVNDg/tRx991HanrMb5PMRwdXXZhgRoVU3fMwJLkq7rrDFDM6YoihhjkefGmCS4XK5U1HnHLJvtdlSVo6rqmsYYMxlNNtsNR3HOq4oBVRQljBwTCAoZg8wJGUisgKK7vr93SMDraSAiXf+MUHGI1+hDr7vZMzLzcDfgNfdouBFFhyiD4XlBgxh88FPs7FeEwGpUuWvHGd3Yn3kD1SgvqqwonFHgGI3Grk8hdiGE3LnxOK/KCpj7EMqyIoKqHAeWyajq2qhKzvqk8vD+vcur5Xqz6UIAtOvlcjqbI/iUpe1qOZ3O79zar5tNEOkSG2eMNSKoKgKCoKwCxrIOdCLAXUAtaEhkyFtAR2QQwY593l2uj/JJ3waJcUjodN4CABpSEhncUSTOUubJAJMokfosK3w+zL+UFWDAvqA6FbWQGBC8VW/V87DoYD4ZtR33TQtKaDEzVlhdXgrhStIFpJO7twpvY9uORyOTe78/mx0cEFkGVGuKUfnm+bN//z/5j77zS79c5N4XBaOB1B9O9sZFgQQqvNlsQ7dlYeuyLvRI1meZ81lVjZarZex6QEyBXZbleaYK89nMZ369qQNHa6wA9G1AmxtANOSM0cQFGay7USJ7VZuz9Q31h9O9/3KxfHfvYDYf/8a2/el7b00PjxZPX966daM0YpGbVLsyBxKOCQUIUJjrut6duGSYxiuiqrACpBSRsqqonHUgMJDY0KAhdMYAgMSYIlkzrEoYDtEsQsxRwYFNlEjIDvksg9QfAImcIyIPIBIVICXuY1IRufaLCscYQ1ARTQAAv+t3/o7V+vzP/Zn/Yn+2RwB921lr8zxfr9enp6cfvP/hrZNbz549+/TTT1X1zu3b1rm2befTuYRkVC0OW+5wnEwAsFpvNk1zPCkJTZ5nRNaZjNB0bY8iyiwxGTNsQYqEKYllIFAUjqENoXHOkTODBiANpQ/L4PxPSAc3bv7F7/7g6bOzvZND2EU/c+bsqKrqum7bHpCGBPjRaDTk/6xWq9Vq9c1vfiPLstPTs8169faDB5PJmCXFlM4vLxaXl4W1ZZ7N7pxAii9ePCmyovCeU5xMxytOQ86oguTeD2zxk1vHl6+er+ptkeUtt5KSz7OD48Oj4+NyPLq8vLh4/co5H9bbzObeehZB4fpqUa/Ws9EoULtaXHnvi3EFRLsAkAHinxulDAAkaTXyK4B/6Y/8uz/723/y53/rb/31X/s4JIg9z44O3prc/+TjT6ezeV6OmElYyOB1+2fnEIVrkMp1v4cQ1ZA1hlPioQAaujnXM/5rAojoEHg6lDHXT1QzyAsErwusXWdn1xG61gENk3eAH1VjiNe/3IUrEH7VmdLdXwS2bduUUp57EV5sVi8v3yyWq8KeerA/81M/+/jJ59LQnnHbVU+xzyY261wIGoyQQQPUtt2rZvFUV46n2vY+d3me+b5RlW4IsCUAGW4CQAVBZVQBIEKVFCP3HC1i1yUEkwC7lKxxYmyzbRzY0uUhxcLlVEDbN31IRGTIWIIhmHswOwCAy/yr1H78/Kktsl3D5ZqpA0MUZUzDU5TIrNZrwoxTevrkibFUlpMiK5quS8nbOF2uTHU8ZY3tppeA+zduXSy/sPX21s0qhPOrVaNFGaNlUWFRFAW2znDHiAbJKO9wyESkkJSTAgoMOi4GgL7vrXVIJiVhVhhOKwMofJBLi6CBneprKIpUEJRZjGpC2cESAYnIWJtScsYOupHECckoKgJY7/oQrTXEYoHddUaBAfHW9jGcv3lzdP/u0M8wxoJoDGmgoaiqilhjRBPAjnU18F2u8dNDH0pFGMx1Y0N5l/9Au3hJFTXOf+c731lsXj76/NOub0ejKsSYUgLRdlvfv3nrw3c/ePrkqYZ068atrus/+fTR3sHhjVsnHGm57D764aP9wxuzvXnTNK9fv9zWtcuKrCi2bbxabsg6n2XOUO5t13WoPB1X683GGMxz3/ddSklYnHPCgCDG2rpuQ9+PqxwUnPfGGEniXK7IUdNwMNIhvQQBlDiqMHhjlRVEcSBz41DN7CbWX0ECB+IzMisMOO2dFdAYI8KDg35X/ACw8PA34PX0c3iw6zDuHDqHzIbAcJpPqjs39veneVm66XyclY4IUteFbquxTaEZj6rR8YFzNvZ9U69znzmDlsBZu1mt264LMXLCvBxVVYUs43GVUlIV04eLy8V8Ou5jYBbvXJFZia0hOLl18OWrC0nB+pEMcbgEhLsIt154lxbPkkJUNAnAAFTGZUMyjKrx1gv4YsptQFXvfQEaOQ3rh2mneMyMKfOscNZbGnpww/GUjJWEAGqstYSgyhIRyUYVUjKQgytYEySHFgCsNQYFI4/QAdGKoyCSxF55yfLF6Ru/N3vr4YPpraM+szH07+zN9qpxDMnno/Orq//sP/tPfukv/PnTNy+m4xkCWCCndjQaDe4xa8h5H2KPzq8vrxADILD0to/G9G0fsyxbXl31IeVZkeWiKqPRyMYoKQBHq0LKwImYLbFRJLJWKdZt6vvxbHb24vUXb174w+mzzeV3nz/Kb05//ckPJmelqfIvXjwbb9d9twUOGWlfr1TBWULmGJPFIY9W622NgMwJyIqIsCCBc4YIiLKeRRBS26EhVhGgAfM0xJ6Qvc5pGjidu5RxBUTnXZHn3mWa2BCSJSJAIAEhg0YwcQoxEpHzNiZFUjLKSa1zZVnlm85gZ5CsIwD48tmT09MvWdJsOjs/u9qu19WoGlVV27ar1eri4vLWrVvn5+fr7eaTR59aZ2+dnLithzZdnL5RYGcNIlhnLLOzAQCaulmvtt18WlkbQswzEo6qjMJI2DVNVzej2YQAY4g+90lCH9r1clFUJaqIcJSUGvHekaHEiZMSERkDAFkxYTJ/7pd+mYesZgIC1ZQMUpHnF6eL0AfvvDGGOZVVGfrQ1s1ms7l5fBMVT1+fXl1dzff2T05uOech0bNnL169eTkqyxs3b2qKs6r6wfd+I3O2yB0hXF2cl9XMTKd13TQppi5yjOenpwBwdn7x4OS2t6iKkdkYnM73pvO9PqYudLFrQ1PvHU66q3Vli6yikFiaZvniVeBY3j6ZH47rZlvX26bpCNE5Q4BgCJwjILAGAAxgDI13+WhSvPf1b7338P3XLxdPz7cff/LJ68XTv+9/8fuOj08mkxkChRiLoqybzriB+TQoQ3Wng8BdfKIM6B9C4xwPXmRgUCAwwDg0QgfKz3XLEmVHVwG93r7pumbZFVXX1c91LwdVlUWVfqz/MJReiDvazvUpXr8SU6sSoa2bhgwaCwBy+ub1+WoNgDRz6/X2T//pP5MVhavy5eVVkeXGYceRiRnE5xna5JiI4ardPt6e789uHk/HKaM+MLAA7qJ0AVBVBMHoUNIBkgECMBhZQ4qsmvronOOUEDAvRsysQGVWQdhaMd67YEKEkGdl27XLde19VmWOrFfsmAWMBQBWeHT68tVqUR0cOHKkRiUgGAENIahohtZby5qYpd62zmru/fC5Ly4v86L0BRl0eeE3ddczlx5FOEXu0YxmB932xTvvvNdcXXWhy6aj73/0kXOVDGd3BU5swAqRDNoIYcXozSBWl13OBQzKUBUWRqbBKMKMQAwgALTrH6Hspp54DeUDVVRCAhIdwjMUAAwZUDDGfGW/FFVDxlkrkgQURJqm4T4ZRBQxSChC1qr3GlLHslktCRUYUFSFQBkRDZImVZaEUVQUhIgIzTAIu87A2q1FItjJr6/N0iAKA8/GWJf7vulsln32+Re/8RvfffXq9bAUB6twSulgvnfr+OZ2tYltNxlVXdd/9vlnPsvf/eD9xWLdB1lut/cevLXdbr788sXZ2Wk5ru4+uN91oU/88vUZEho0PstW61We+VGRxxSLvOSUsUrb1SEEYTbGgkKIgYAyZ4vch77jBM4RABrj2qbLizEgsYUUuyjJGouoqqSKKQmCMWjQaoK4u8GvSxa8vmiQtYmqwjBzG+QR1loA1SEsVq/hBkiIu9Cp4Qerw0ycUHgwwA8YSUYUFB4V/sHJ0dGkdE7H49x7tJb6rrm6PKMQp2Vx+/axzcx6uaxXS59ls9GYmbeberPahMgisL93WJVFSpIVRd/3xvvXr14P2oWCCu83q+3G+zzLc2HZu3nj6vJitV7YrBiVFJIJHKIQkUMwCsyqNDTAWEiBIgOzGrWeJnleKXkB7Zm8TR2jwlBMtxwjSB+Sd541AUBSdqCUeD4pjqaTIjOG1JOxACKKpMaANZmoGBiIa2IhiykigTfe+cyp1jHm6oQcAFjEFEOGpkQEQRbK8kKIRZKC2Wy2T794Oq5G9+7eO35wp/CufvXm8aNHd+6//evf/Y1f+KP/9pdPn1nCKvcoYCzBcGeoIFHktK07Y4YEeB2NplfLJYsk4bjZFmXV9ElhG2PIfLbaNBOwIfSqevv2nbce3Hvx5bPXb14rizNZR8mwOmMRkSU1Tdt2XSdpw32f46YAujlzBZ5evnnw8H7fdUtv+klly6LLXA0SmB1Zy4iRADGmQAYRkFNqmkZ0eFQYBU1JWZKISUiChIYAISb2PgMkvd4Qhi0nz733VlIPBNYZIECkIYDQWAtEiooGdfCKEg3KkcRpWPPWuiQAAil1iuAzzxy7EHzmyBmAQQQhAPD8+fN6u5xOp0kkhJCYl4vF3ny/LMqu6754/DkSPXjw4PEXj6+Wy08ePTLezWczX2RREmEixBADDeQCVABIkVerptm2OaeiKlAkd7mzHjWBaGjbFKJE0SRgBAGHJ/blxcWoq7IsG9rDbd+BFlmWSWIQVFA1CADTg6MffPr41z/6OB+VZVWlGDhFMnYyKr2x9WbbNA1V3lib+fzmzZsh9F3XNk1TVcVysbi8vNjb23v74VvOOVVt6nqz2fR9Px2Px9MxMce2SSlaa4CVQ1evN+PJ/OBgzxp0fUyyDSmtN9th/15t1h7EWl+U+Xg6Np429cY4z30S5q5p+u12cXHVbdvx3kEnbJNWebU3rhihV6nmcyqyer3RJAJAziIRekfOIlkAQEvGoCr0ffr+Dz6t6xRZyjyfWry4ev3k2Ze/96/+67Is62IiMm3bG2NF5HqbAlBUkGus3W5EIAKIaKw1zCEGu/vgDBpHZBDMV5XKYN+6Lod2HXKCnbr0Oqh7F1qNAHItcx4exkMHCBRh8CcnUGXE3fzsxyYqP5qCWVUxBFnuBbjt2vneXlVOYi9n68uj/cO/7Hf8Ff/xn/gTR4c368VFNauq24d990wgutyKCoFDAVETnF1BfNNt70ynJs8HaXaCr3pNqqJ2gI4psEgKCcgYsqJAaBWRkw40ekLrskySeHTGj2KIqtahLbOqDb1wJ8wxyUb6IveACMbElABgNJ998mvPowCpigARcYhIyAnIW+OMQZOZLMY+MSFgikmZieibX//G+eXmsy+eKKJ1GkUY48XyvNivutQUVdH0sKlhr7xZZEdVdsS4bBn2D08UTlNi7/zQV9nVoSzCjEpEonJ9qEdUFkBEMADJeT/QIQd5zW5gjwMoSoBgOHkAKgsTGEBkVh6YRrCDKKoIkgFVS8YZG1LMy8IgqACohBi9c8IQulC3dTGaYFKjAKoECIkJQZnXq3UMiYaGhrCCOusIse1aUDVkObEoD5qkYZMOIQyb/SA1gOvCesg2R5Jh/GeQVCElCTE55y/OL37hj/7Rcs9YIlBgldh1JJK5TJL2qatXaw2JRZzLHr79wPl8rf1ytbm4ury8WHRdINKTu3eLslytl2Dsm9Mz5jgejznEerOuilw5KuKoyAyItxRZOCWDaIyzxoGC8wXH1HfBGyqLom1aUBgfjTObPd++iG0A54DFECXAxIKGDFpQSCkhWmZFgutgLIVdZioN9zOnBGittaogrAM10hJJYrR2KHqMscyceFDHowDvZp0iXzWQCICZiYaRNeDAJ4r9wd58XLnt9mo2Ljabdkyjul11TbM3Hd/c25uNq3q7WW5W8/l0Np5eXV6tF8vFeuN94X2eW1MWlS/KZttE5lV9sVxtEkuW5YDYRy5H47KsoigippSyLBOJRJh7U4yLfFSuPnlsAZDM0FPloeZFVNWUAgFlqATiiUrrC4JS1SZGlqnL665tAydPLUf1JsZYZjbwLt8FQYzqfjmuVLnv26bOHfncOW84ydB1NM4YIAOYZV5Buj4mSdY4RbTOMst0POpXNZIBAEnRG5TEITTkrCOgEAtv0WYdc2x62Haf/qVff/XDz+9+8I7P7fNHn5wtl+OjG59+/vjs7HLv8IBCsKqldz0H8DYfVU3XStNMxuOiGo2rqhpVnNJmU+chXS0Xm+3WWWcjb5sVmaysKrR+eXFlrFsuF5dXF/PZtHDTk1s3QNPp6WuDJIwopJLQkHFm1dWtJMyz7z36+PGrF/dPbvziX/yl+Xh2+613/uxf/NW8rPZunXz08jWa89F0tohp2UVqorOFlYzApBQtUJ6ZvumaphkO1cNzd0A8c2IRDilmecWixlLmvfd+ExoUztEOut/IwqDMkZkFQIUznwGhEgoh0NCUHODgIKwIPBwFdnMMND53Aq0H7PouqSLiICROHBmEdzg7sM5Wk8oQsrLN/HxvHvs+y7O90f5oPLq6Wl6en0+n03v378uTJ5fLxfc/+uinfvInk8KmqasCFYVTQFdaa8yOoI/1tl0tt4UUzhA4J5CYBVUXl1cXp+fj+SSzjiNbp0bEEZbjCkCfPn1688YNAHDOKYIIJ2ZAstapKqABgFXd/ep3v9/GUFQzVrUAkgIRTKqya+q2rlWhbbsYZTqZ37l9e3F1uVhcAUAMcHV1lWX+7bcfDlbcEEJd11mWbbeb2ye3pvO9zeXlcrVeb7ZFUYa+Wy9WBqHI85j69XoZogwy9tOzcwBQpLbrsrIgJATgPhAasCC6S2Y9mO2Hru+a9uJyOd5sx7P9yaj0eYnGinBKLCGiddVs1rd9TMHmOXljs1wNpF2WAIcYM5+NyvGf+sU/+3v/B9O2D6tVEz08ePDgt/9lv2u6d9B3HYBBNEggX6mS9bruGdRtKvqjvjioAgg752KMfd9fXLzoQzTZSIx1zpvBTWyMtYbIDNxIY4wxhAPy2KCzlsgPy48GqgTRMO0lomFbgV0PaHculZ0MB5AQhkwfhMRpB3pTUVWbQhyPRm2ztYf7N28dm3zctZK6/uaNW2dv3vx7/94fg7zomighbpcJK+fG5f7h+OLsLIS2HOcc+thEi9lV33abF9H1U6C6bspRLtfBx8NYJ4lYUDIEBBlmm3rLibPMD8Of1AcEAsE6tLFPnFhSinUXUgBrozI4w8Cgg5CGgCAyC6ECxqG7VRRbDsZaZAiQ0DlgkZQiK5CpqrlFkjTEbBkE1KiOqNluuu32p37iJ1arzenlq9KVSVKX2DdQV6muG0Emn20vJQfTOQesicx0elCO2jdvLsd+DwRDH3zpDFoBQBFEQlDCgfCYEIcKFxSUeeelYuaYemZhYUPXXYRh1ES4G4sAoF63EhFAIaVdoCYOGaREOHQQrfEIbdtOJpOmafu+YxF11vssxbTZbA+KESEoJ28sx54QnHPG2YvLy+12i6Aw0PmUVCSqdF3rvAdEYywwCINqGgJTjbFD9fOVzB8RDRnQARQ0nCgFCQkwxmitkRRj4s8/fzw9zgjAGdN3narmPi9cnhu/PL9waIq8TMwnd+/WsXv56nS52Hzyw0+ralxVJRGNJ6Nbt28urpZItN1sVbQqMougyrk3o8KFtrFI49zVTa0xGKRpVW22NYDJnBv2AGsIVPq+d87t7e0vFlcxpDz3s+kspOTQt3Xrysxk+bJZWzREJsmuMTuIsYYyV1W/Ot8Mwyy9btMOwqDhc2YRwIH7AtcCQL1WCsoQL/9VxDpez8QV1Vnfh05VvPcWtJqOSm8Xi9PUrGLIDw7my0V3cLD/7odfm47L1NdXZ+dFnt08Om7a9s3lm+ViicYeH930vkgMiqYPaXm+CJGRsOlaAVLApm2Lagwgm81mvref+WxT11U1NmRC3964cXO2Nz+9Ot82/cP7d548O00MQSTEaDNvEPvQdqxoADhhG47JHKj1SSmmLMvcOI9dZznlztccgxlSoNU4pww54CYGAPjV7QIAYLsEADiD/+5X7FthIUTIfJDYJ87YaCSWFD25qkh1R4kvL5affvyxepjPp348/u73vlv3YTabamRrDIp0KfYcEDisJKXgq2q1Wo0n0/W2Pru83JvvjcZTVczzarPdnF2cMSdmEU3bzcZ7P65G3bDIi/zxZ4/g4YPjo4Pbt24Unp58+QKBjMc+JDSKmW1Cp8w2CS82v+ODn3z3zu3/+NNnv/XDd+/ffXD+6dOb89m33v/Wn/ov/rTP8299+xv/+S//hd/2V/7l/uhmUqbMRWZhBosi3HVdHzrrHBH1kRMLAFhjVCQxG+sAIQl7NxTijIjGmuvuLcQU+qDOOTEmiRpr0TmXZdYYRegTI6CzhpOG0FtjM+/6tlVUETQ2M9Z2ddsnAOPIAxlKsSdjmCMZkzipXvMSHa3rdlTmXd8nTiiQZfl6vRbQ2XxelFVdN5vVaro3v3HjBhlzfnH+wx/+8NbRSdt3o8IjsHVOEUFklBcAEGJq+rRYbyrSPLPB9ImCI5uYry4v+9DFi7i8Wu0dHI6mcb1aXZ5frheXVVnM5/M3p2+cc6OytN4575jZuQyR0BoyBAD/4h/+I5t1a/NRZLXee5C+qce5z8r8qq1TDIgQ+tA1zb27d4s8/+Gr133fG6KL8/OiKB7cf6AKm3p7dbW4c/t207YvXryYzfYevv02GEoiz559udnWJ0cHV5chcirHo7bZXpyfaeKujQxEaOqmA4CLq+Xdg0kIEa2ygYRo1ahhJYdEzHrr9kmz3mZ5udxsFO1kXDqfRQVMTKAFGcPUd0FAssx3BOAdORuFVcCgBQA2MUm0xh4dHj1brj7//In1eTnCbbP4xje/eXJyp2kDoVFFVdadBZ1wVwB95XX+kcoRf9QEQGYuiqLv+88+++yTTz7tmNTkAx4fAMkQ4S5UjHY9dYME5HYlkbXGOjfEUDtryRhrLBmy1hoymfeGjCEylogsIRprvHO70spYYy0RGDucWM3QV7IpJE5ddTCPsQ9dX2+6tpXQpBt789/ze/7a3/zeD569Ors4v3BxOx5Nttvu5t3bizfnB/vz9Ub70Bsym6vNxZfno7sTtvoL/+Efm/Xwe37r70wCA7/PGZti2PW2kBgEQTzawmVi2Bh7dXn15vQi9qkoitzlKsCJU2RgjjGAKkdsQx+EO06b7bIYlfP9WW6dgpK1YigmAICPnj45vbwgQ8riqhLRAKG3WebzTRdj3zEAJwIQ65wDIyooAsyvX7z8mZ/97R+8+17zm5sudWXmPJVdu9k2rg1N5BZt+eZ08f1nz99760PvgGyzF+AXf/HPixhhjBCtsbtRFxgGMIN6C9UiAdukMmydiEiEqphS5CFpk1MfO4DMWWuQZJB3sQyVDSGqioqAwLDYdGj8XK+y4eQlvBOUNG2bZdlg9cu8E+YIQobatg19X3iPosZiYCY0iZP1fr3dLJbLmMSQc+iiMCIqa+SUu+J6FoswGLZ34Cb4anEPlzE2SARh5YHeh4SGhcmhMSYmJkLr3WQ8sZgMGU7JGDOuRiW5+XS2XW808t6Nw7btfZFvNvWz1y9A6fHnz1Dw+OCo7/rM2cPjI1Louna9WC+Xm6yoYh8ghnHpc0NWuSyy3DvnDUZj0bk8tz4j1brulWOWeRAJIRhrBg3TkEC/3W5j8j733aqzBsssr7vOkhtlRRyUQIlRQWkQdZKq7OpVwh/d3ruUS0myox0Sma86ZKpKhCkxXkOedvOyIZhyUFupDi013E0dhuamNYgO+HA688h9am/c2s8cMnd3b9978OBh29avXzwHjVlmiyqPfVgtl6py5/bdvKwWy20fGMhut83pxeJqsdlsN0WZHR8fjUZl03TWlpdXV1lWjMfjvu05JlCw1oa+jyEtN5t1vblcXLKC80VmpG+7PBtxAg4poSZRISCVDPT+dPYTBzdvkU3bzbLZ1sQdh57AgHLgKVm2NnV9YQi8C3UQoCIv9/xhr4kkvX/37n/v53+6Wb3kfl1lrswp9jWoVONR5jO0RkQtYFWUgFD3TQypa/vQhT5Kx9qEpKa8WDdni6UL0qa29GVBJkS1ZEowVk0XsA9tIOhEJfDhZKYVNVbaxGdv3iRWVNwuVxkiWGu98YXLje/73gqOq5Fx1PZxs9rkWbZt6ovTSyScz/baepsV2Ww8Wq/XzmaI2tQrSEVRlMCxyP18Mp2Misy71XJpDWXOTmbTdRM4CqlhkCQCLNKFTKhfbEwfQjWxbTJNF86vJkAjhrmxI9ajyewn33rn177zq+cvnr393rubkNBCaHoYRIGAdddsu1YB0jBwxUF9gUCkIN5ZIIOQmBkMTmez9ZtzAEopiVEAGNIzDBtEIutj4m5dj8ZkLIcYJXFhbVWWlig0dWa9IWrblgEUMKXQxghggyZOHDiQwZEfAYAhW1YjwnNnLKUEAJzSIIsIMaxX67reEujg2uhjPD09TylVVbVtmpPbJ1VVOecuLs6XflmVOUhAFRZRFk9EygCwbdptiB3jcrOpigwFnHc9hM1mLQZP7ty+uLg8PT3fNm1RlFlROOec86KQ50VZhqvLy/V6OZlM9w/2jHORI0RTuHKoILdtjIxoc1dkgKScACRzRAZWiysAyHx2Va/Xq9U7Dx8uF4vXr1/PptM3r19Xo9GtW7dSijEFIlqtV+YVPX78uCiLn/ipn6rGU1V9fXZ2fnXV9aEaT1OK9XYjIhcXF6gwm87INMttQMViNIH+4mqxPp6OKEkMgRS8YBIC45QSWgtArQTM3SQvepC+jRwTCoKxVjR0oW7O6+12UW8wczfundhRQSUOLg8AGpyASUNkLoydVmNv86tV/dPf+ImbqOvv/drXP/y6sbZNPQ3IkGuZswgjKCoAXvN7vlIfy85yboxBwCErbTQavf/+e8vV+uxyDeR3rh9hCMy7nASNA7xQAECTCnMa4ioRYFCsDl/oeiymAACGdh2EnRxJd09p3f23c43hbuqyq8Xfffu9enVV11tj8eD4xub5uTVmejxpN9unzz6vm5XPEJQevPWWGDyrN6L4tW9+7bAc/7k/92fqZm2Lou/im5cXN27eGR9N/GzcvLzMilJpFxTDiQc+pCAYEBFkSFHBZzb03HUdEBwd7qcoMUSDVJWjqqgUIIY+dH0/iISA101zfnW1d7CflwUCKAirJOUgnNACwJ/8C39eGHNfoHVAJAhiiEFGWVaHVDctsRqbZ5nPnDNoFcQow2i6Wa4uz86Pj47n0/nl6k3UYECQsOv69Xah0JGr2oDTvQer4FLdIqbvfvqdzx4/V6jIeGGxmY0pESijAA2+PGBmQmuIYOfu2gmvVJU5gSoZJB3GmYMQCMiQAgwqYoMC6IZPbfh+iQwjwM5vDQqAhhInYUEiJDLWNF03KnMVBVJOgmSNNbHp+773ZWlSSjGG0KehzW1o27Rn5+egYJCUBUENUmJBo2QpxaCyc2oPTrRhir+TsgxzO1VEJcShg2GQDBIa4KHusbZvOmPtar0oyhG6JiUlAjIGFdu6XZkVb9qD8Sx2oev7NqXLL6/ms72ry4XEdPfkzrSqUuaF2apuFsvtYrlZrrzx7Xo7qorM2dw6wzEjGI/KyWiUYpxmszZFtL5p+2nhLWHTtmVhDdnFVe+dQVSAVDcb1QQo1u6abk1TZ7m/WC2scDWrJEUW4JBEGNApMqCC6kC/wAGeJDJEAu1uyOF30DAnZh56P8xIZP8rMuf/r4tkl7Y2lEeJIwFkxnZ9Nx/7o1GFNo6riWjHgg/v3b95dNRt18urS+eNK/x0WuUme/nlc58Vd+++f3Gx2NaNcbbbtK/OXi/XtYIrRtNqPAeSq8V6VPKgY66Kqq6bvdl+iDF3WYoS296SYcGLy9V0Wk3Go8VmNSrc7VvHn37+ikAd2QQaRZiZvNFNf3O6//MnD94BN942JivWBJcYX4dmlaI1vuekCpZpxAJEoyJrLbTMUpbtugfAhPrm8uyTZ09+7oN7GCoEsYYNFjEGBbHeOJ8Ji6SkwKBijWaVrzLftXGzbW2CzEOvtu1ChtDF5pvvv705W8pVMKIu82PypLTG1CRNIalhAtxutqHAbQrn27VaWxRl6oMVtbnvwrYsR5oXQDDyoywZYg4cM2fKvNjfOwgxvHz+ouv6vtlKioWrCldpjKiSQnv/5mFMqd5uiixPohw7YVcWxXg0enP26mqxREtUWONAtCfFeV6uNptmuematul6Y+mz01fdyF9i3yxecYHLuP3Bpz9k4LbZ/Oov//nU1t12k/o296V1GGKHA/eWbN00oY+AEGMCNIQWgJmZUJ0xwhJjb8mQQWXOnKNB/Yzoh+B0NAggYJab9vxi3TRNn5LzjowBkb35jACA+XBvPs4zSG2I3bZpGHS1bi4X2yBoXdaGkDgpChiYuGI+m4L1RZaNx6PtRZN5DwAhJGds17Yp7NQbxjoACCHcunVrOp0/fvwFIm43m2dPnt59cP/thw/35vOzNxeT0UibC0UVFiQxZOiaHvNmsdgfZ9VetV7XpJokxRC70FVVZb2vxpMTV/RdR2SrPJ/OpgJ7IfYpxT1LoLpeL66uLn3mj6oRKwCic+5iUN7YDJ1walFEYWD0p8y7XlLb1rijfaCKlHnx5IuXbV1LiFVRHh8dWUvr7cpk1nl7cXke+3Dv3r079++5zCPRDz/55Pzi4id/6qcuX71GY1g1K6q2awlpvjdtNhthzrKsqTufFQCwf3C8XG6gcJMq77vOKbAoGUYy5AEMkSVASimOR+McQ79p+shOSWJq1pvQtdbZSZ7Zsqxclli162EYKQEMDr2OWwSDisjqjc2y4vnr07Pl6e07N955+A5HBTIDg8Co0d1IdAjG3ilTYch02h3zgHmn7EiJvc8G2O7x8Y2f+9mfvrrcJAYaPM6wi0mQXRaQDs9SuE6z2JludoIa2dGdd+8SUQVjBHXXWOCv/nj3YBYV4QF+P+hHdigTO58dTcqsdLxaXb54/mw2P9lsGtEk0H/22UdVNfbevvfh148Oqo9/+Fm/Cpt8VY/LZ48+zXN/ON9rur4XXWz65Xp9++6tD7/9Ezx7s6m3ueQjXwCAsCCogogCDyo8lSa0zjnjXe5dMamGWmEHn1AyhggwSSbMDNL1sQ09OEPORGVCiKm3LneOuj4gIjgLAM+XF3lV1SkmAEyaJImlFIXjTqiBqClwCm0MUOZFaXNvvTOw3oTlxfK9b9zb29tvYhtjq33vfdmG/uzy8smzz/cf5vO9ubQuCK/7VlN7vlwam4dWQ+Dc+aTRGEL+iq4EoixDP2SogA2hwjB0ZN4xMYfLGouEikOQ+y4FHEBTYhiSihRA1QCyCBgCIjQGVFGBjLEADAyInBiM2dTb0nsyEFgUwBEOBLYQwq5yGpQtKmBQQfsYX716IyqExCkRGFLs+94YgwYgXbOtfpytAPgVD3qY6RABOQvA17BE0BQH/WQIgUEcGkRyzgu0lggRY0jcpwJt7KIF5MTNtlWDTdPOpvPYhddfvjw+PLx7chJDn/q2b9uurS8uL1W08L5tU+m9Ua6yIiMySNMyn01Ge9Np13ddDNRo4GQlWe984Q0pSMxyX+TWGPDeh9ih6v7+PHJsmq0hQKNt1wxDghgTBxlaOIN3c5BpGbpmaF3b/oe7jXZJsQTKO2YS73q4CLrr9wyD5yGtZIjU2knHv8qhRSIaPAvMgoiJmQirLPOEfexW7eVsr7h15850Ol4tFsvLVVVWrnB37p6A5Uff/8Hh0cFsPj87uxQU48yzJ8+fvXjTRc2Lic9KRZuX49moEI7npxfWWO+yvk9lORJRbz0Zk2UlC4tIF1I5nlsPXbcuc2dR96fjg9no4rI1tgQkVkVVG2Tmirum2q/TSEMeQkg1URp5uycOu5ihax0tVMRChob7WHjN1TiW0KcH071X28WaY+H9xdXlo8+7D+7d2pvvtfXCGCqrqu9bQLDWJFARCBwl9dYiAlhnDeWq6iMwuSbq5dUit+jn47u3jj6/uEohGEW/m2dgbp0m6DluO9jfO5SYNqnecF/avBt42bkvyXjh6WiqBJBiUVUQhUN03hFHMiApLRaXbd1t1xtjTbfdVqOya5o8szf25lWV5QRZlpPzy/Wm7WJgAcLtZv3kSf/Ww7ems9nZxXlX105MV7fe+qialJuuu1gvll1z1dZ+Ou5TGxxtUFsjbyTdGo/kcG/54stqOi5Pbm4//7hHcnnVMbRNMGRC6oeJ9Hq9jillZTE4SgGQkwiCVXXWqwoKWG8MUR9C1/cGBp0/OjIAEEMwWRZSrLd16GNZlgf7+2hNYm6a7WrdEOikrLZ1x10/H5cGjDGmrpvAiRUUiMGU1Swrc9aEIOuLi/Oz86OTE0PGIGVZJuQBgAMboC52HOH46Hi5yut6HUJYrzevXr+6e/fBw4dvXV5e5ll+dn72/e9+7+HbD/dms+XlUvrOgUpSRGOAQNFnHgAoyy9X6y9epBuTt5uudQjYQuRYjUdK1HHyRekzmEymIJpSMkhkDRpDof/uD39gAG/fPtnWG+sdICqLqoIxi8USAFgoJjHWX2tduG3qweTjjOkQmHnYbYmoLKvB1HRyciIIddPElK4WV+PJZDabvfvWu87Zq+36oDp88vTJZ58//vr777//9lvp/oPF+Wmz3SzOF23dGm8P9veXAl2/BMA8L4ez02S6F1Zxtd6icO4si2TM1rC13iiQczEk5z0BShcv35yuTxcY2TD4LBNU8nayN53u76k1RJhSgsSaEhPC8AECRA2WCmFu1msOzEk3Td+E7uc+eGc+n/d9NDa/Njd9BSqjQZoCu9IFcFdXD1YsTYEZhayJISIZjinEOBqPs3yk11YpMoS7zvePOX92YoNr/c6PHLTwVfkzCJpFUXRwG33lJgNVTSntaCWwq5vw2hgvwiJqm/XKG1ms1s+ePds0Xd0/f//DD9fLq9is9uczZ83b999GK+t66TJ76+h4PMs+/cEP333/7Vg3qzNGFmRbh/7Zsy8+fO/h4fHR6nTrjBfVECIAAOEAviMFGGaFBoyxomLM4N8XIYjcZy631iJDiinGJImdoZ5jk/qozMCGoA/B5h5Rhw1JRIx3y6s1ABSTWddHBBNZnIPNZkMmy5wzBApKSDQE76TUtgESQAbFZLJ3ME6c3rx58/Vv/eRsOn1zdZmEsrzU2FhHMYXvffSdn9w7EA5Pnj510yJI7TQcHOy/ePwyc1lKHDEpCVmz4zjJsHEiKSKRCDAnRCBANEhEXR8GLmxMKaWIiN5nA1sMABCVYADsycCaQlYAFBnwATrQ84acduWkIsbS4BPMEJKxdbOtqsoaw8IpheGfsdpumsk0H7KbrFVJSsZa6xJfXl72bW/JgDFD0Gzbtj73CGiMUeYdf0p3d7gOSKPdGoWhMUmEKtdLFwCAlJOqAFKRF6mrDZl6W5PrAEABjHXc9lnhBmyrqexitR7Pp6TUbOqL0/Pj4+P79+95Z2PoVovlfDY1BEYPzs7OwbqszADBIjiAvckoRyVJpaXSUZWN6j6UeXG1XBvFXjkrvMHq7Ox8NhkdHe71fVDVxEZENpt1WZVoTNe2lkxVlNu+N4MLWwCBVA0zgACZIaoNVEGYB9PCV02d4Ycx3HrMbA0ZQ6yyAxhcW8Ouf4qMaIYbGgBRQQGG6dowSBsOQ9aYvu/Go+L4aF+lUYl78+ntOweT8fji8rJd1eO8GlX5W28/iJgeP3ly6/adWTl+c3qmgF3Xf/d7Pzi7WFpX5nlhrSNAY60BWC2W3tDJjWNnbV3Xo8MDFU3C08m06TpjbeLUdZ01rktdTFpW4xT7N6/Pbty4M59MT8/Xhoo+clImMlnkMsikkBmAFxFI4kANKceKCK33YAn1QiMjWQOp7tGHzGaE1Ar7pK6anrW4rVt342Bbd0+fPxeI48wYJFQx1qhC3/eDrMdbk4ZAthQUofAVVhSF+qSL1aUBGRf+8PhW4bDdrkcmC4EhcdJoyViErmn83jiGdNXWoLqBANYWlFHkYDgJM0FZ5qVz1pkeEm+bvoua1NlRWZXCfHW1AJHcZ/NxSUTz2awsstVmWWR5OSrv375pOUzGY+N8G/lqseySCODVYvHyzetHH//w8MbxeDTy5LRLpkt9ECBTTKr29eur9aLpG5+7X/vOrz64c/Ot+/d+46PftL64/fY7T1+8+viLJ289fOtNU7/4lV8OmW8UAxjrc4dZndpBD6gAm802pFSQVcChOwsAhOisTcygWpYlkZHEZV6Oq/HKb6MkRCTwAIBAIrpYrBDo9p174/GUrBFAZu5DausmM2StjyHl3vrMAUFmM6hbazPBcHm5BtOOpnM1Bkgn4+rwwfjl02f1eptN5s5aSM3B0SG8AAPScySkTb0d5ZM7d0/evKHz83NjzavXrxPL2w/fRjxomqYaVy9evHjy5MkHH3wwrkav3ry4OTG9ivc5MIgmawdFNru8uGrqRdsej8eskHkHDApwsbgCgdl4LyVuNlsVFU71ZmOyrA3d48efO2e+/RPfSikWZZk0xZiMMcYaTuni8hIAFDDEZMscjEpij5RC5BjI+bLI6q4DhKLwe3t7bdt++OHXHNHHH3/adm1iBsKmbbTV+f7ew4dvO2Nj5Kqsvnj85PmLL7/5zW/ev30bFPMiWyxXh0fHCNg+6pAgtO2Dhw9M9ubTJ6+sr9abNQBcrlY3J5OEvG1bwCKpJEVvwbIaBUgJLQn3q7PL02cvtEk5udL42XjsqxJzx95QmQWjziODAGniGNqE1hrdTYWGBE+OXG83uTec+mW93TsenRztU4whRCQmJAUQVtpNwIYhgOCwvROoSAyxDz0AWeNENCUBgL7vVbnrupiCNYa8kYF3RoMkgIAAgXb9IEJAIsQkCqhDxtDORUsIA11nYDjsFBq7WgqulQYAw1YKoAo4MD8H5h3q9bPY8ubs+fmyLKY5HQVoTZauXl8WhQvJWFMBaJ45kbheXR3fnJ1frWLbnxwevj47zZwZTUdz4142Fw33lyt9/uL13X1y5ATIsHZ9BwC1toSqiV1CJFDjgMAQoFIMvQJa6wQADbFy6pMhAoME4KyRPnWp60xQAOtQAlgU5tYVPiYRoZRsJHy9WgCAwJh5Qy55EqPgQzbK9iKsg2xym9XbGCMmFpOZWzfv9l23WdenyyvGycHxrfOz87/4S3/21u2b4zLrNTq1qMlDjNJ2slmef+l1bKFWTgZ61ydKejienJ6vrB9t+i73heFdDq7VXX4JEAROuGt6KRogMkMgnKBVTsPYNfShyMtdSvxAFmZV5Z3CHkwacEaGFJK1llSFkxvwgiAqCRRZQFUJsSqK1XqdFRWpOOv6GNRbyXTTdOu+s2UZQgJr2BhOqmizrNxu25QEAWMUIhOZFcDZTBOAIDML7/xfxhhEGmA2AJhSEhEiZZYcPAMNbiYFARBjUTjC9chIBbbbbTFNQWJBGbDm1jmgvmkz45I1ripYpavrvuvv37l98/ZJ07Vd6t6cvcmy7Gg6b1ZrYMgm05WphajpgqNsOh7NR9XeqOibtQWut8vRZFzlzkXy871m255vl5vtcjqawGS0ubzcP7xRTuaXq3UTWma2jqjnqigtqrKQNd56Ml0vDGic8ZEh9ABqkQ2IIoFIMsYSGh5SaohYZGAkEVgFYEBS5MQiikRd1wGoMThwdYGQDKWUdlofRQQCYDQ7vD5ZiomJDGGG2mc++iLWy6ssh5tHR2VeLi83l2cX88nk6ORotjcK0jx9+mI+OTw+OFwvLp3JXly8evT5k8WymUwODFkQlCQF4cFonvtCpKsqP51MraMQZojY9i0imsxdLjrRSM6G0KW2AdBkMLRJIpTFfugkxRYtB+qjoSQAiVWT8yZS3GhfWiJVAQIFYDCihfGqgijE6sAbggRNz9GOCmVxUSuFMROpP1U+P18cfHhvzc3LV2e351WVO8ooESoaAgucAERQLbnIPaIHsFHUZBknMQQI6dbxwfnZ1fFstlrV0iRnptaDAPTC23qbGXuUjS5WTVaWy9gGA12KBmHV1XmeZ0THkylKiqHXssTMS2gRoahM37Y9B0heEhhjU2iNiQRyNJ/vTcu2q4+no9n+Xl5W9x/cI0mZoyLPDOF2Pd5uNpu287wp7VHTxX67ZsVNH5QsVaP6bBkNFEDeoG/DgcBve/iOef78J+4++PrXP+ieP98/OPj2h9/4s4vNWR9+27sPHj36ZN3D+MYJNG1KwedZSjVIh4PZtzCXVwtRBDFkDYKJMZhBGCGgZAQgKlhVg0g+t1meezM1Um83VTkHgMTKsfPGjsdTY9yzly+vluvIWpRVntnpbP/89QuI/d60Gs/3C2cFpOeUYv/syeus2vvgw299/6NHXZtev356dDQ/f/Xq7uHe0f5+3XcDWaDC9O33HsBHvwEaxGBoY4jxxdmbgP29t98SkNcvX1ZFcX76OqXw/nsf2NxttpsH77z16tXrF6+enxzfhlu3+sUrQceJCSMhWgMA4EDRuHarry+379y+bbwbTUtPigLS9l88ffpGXu/tHeVFAarOuoP945hCvdl++O6H9x7cM9ZcnJ2yxsp6QlKkQRS82WwBQC253JEqJvaijohV6q5x1gIkgNB2q7zIyjLLsuxqsfjBJ482223SKstcjLHrwu2Tk4f3HpblWFktyRdffHF2dvaND77+4O49UkXm5XKN4BTSbH7o3XMJbdNsV12RHBWjalP3g3vu8YuXN7/+DgAkhi7IqMhAjYhiZpWAWR1QfbX+5C/95qwsbxwfq4FRMZ4U423XyJCDPK7UUifJWkfGJVAERBGmNJQMNpCzmJR7CJJW+1VGE/qJbz5068W/9E/+o2CsWO8y/+GHX/+Jn/zpPiU0RGQQJPMo2qdYt81KUrg4exMjH+wfGuMUDAu0TcjzglkAIC9yoyYkBEPWOGUFMuScoZwVI6MxnoWQDAPQTsTDBGhxICKiwo4ouzN/IQ6jluGUOVRCCkOMIQx/SJZEZBArDQdcBbDtZnVy60bo7XoVD/ZuCMWY2rLI59MDALj/1h1QfnP6vJyWq3Z1ubw4mR41bdP0TXXz0BI6Y/JYzKDwmJ2dXdwY7R+OKopqCJEcAPQszgxIR1GAISyrC33mHSKqAutORTF4a1HVkLXOIoMqhxQDJItDpoJY68QyK2tSERfVtSyb0MPguLPAHMbjCoVyk0tn2CllyZHlGABzNERERVFkmV+uN8JyulhO9/fu3D15+fzJKDfHB/PT5WWPmCEYRCRa1cv14iI2q7ZeNnUC0DF4CGkyGjVNv2kbmxV9jJY191417dirAJwEkMgQMDMzACmSDHsgiIBRVAVMMaWUCMgMMXGABABDjmwSNGSs42GGBWqQRcWAkoBCVFRiBiIEBSJm4cSW4Orq4uToRmLNnG/7NifDRG1KjKSAChARjfMMBMj1tmmaVoDQgKr2oUcyQ99C+ZqYoDBoe5mjiBhjvlKiIRLRMHQFhaHnwQAJd3mi2Hd9mXkOaKwFSjSQA0VJyQCq0nz/8NXp68FYP6tGt2/ems6m62azWCwU1KLOqrJZrSimWZ5TVU3HVc/pcrXhCKM8c6ipbw/2ZqmvYwpdu3Uug4SFzfLxuI9tU2+0b2dFFrdts1iU03mR+YmOltuNCPR9BOmMggJK4KIq6r7bblcx9pmthBMKFC6zZLoukTEudykN0vSBOPAj/Y/skKNfyaKBiAxZRWBhbzL4KqtmQFgSIQOqweuZGRCyJGNIhVJUg2Y2K7bNwpIc3zgsy2y7XF+er5zNbt+5W4wzcvjZZ58W+fTm8W0EWW7qly9OP/7ho7bj2WjPkIkhlL6aTqZ5VoyKIssy5/JylFWjChG8c0oYYsiyLEkqc7tYLbvQjzKr02LT9ZvUhAgp4CyfHEz3COTxyxexq8mMMAH0qbAmB6JhDE9EiMIgAh6sM5gIBLW0plDo2+CtU1GbWcUk0nugHFQVZzbrAS6b7s3r87vHM+a42tSgntuEWYbGO5uBKjGrMKLsmOmokZFIGLFu27LK+z5m3k5H1YunL6ySMxkrCwcxbJ3ByPOibJvYdMGPpxtuhFBDstYCSuHyv/Ar34X/P11vvf+grjehrWO9yQnrxVV/tTR94KbeM9au63FK7x8evv7oe6T6rbffW9hMmclS19bC0VmLiDHyatNwUhbhjjPvnXOAigDCkkTIex2O+AiRpanb/dn4eFY++uRKUg8AQORJLTpL+PSLx4zm9u07jz5/Elarn/5df9m3v/X1X/mlP/flZx+365U5OfCZzbJs0zQxhMlo9Pb7H37r2z+van7lV37td//u3zWbVt/5lV9qNuuRN/PpOBrwHseZCasLACg8tTFxSkSUOJ5fXE6ms/ff/9CqOT89m46my8Xy408+uXPvflWNY4h7sz1IUm+34+nMxm5xfj6YSjjFoQNkAYTVmfzscrWNyYBMaFyUnrtw8/hG6cvlqrE2H02m3rnIkUUA8eFbb48nEwbuQofWxLYzxmSZZ4XIGmPouh4AqnHV1d1gwiZVScxmUDNEUFGOKYX90V6e5Qj62aPPX796devWSYyxaevNZnt8fPzg/oMiK521Z1cXn332CEAfPnzr3t17zJyEN8vV8urSlkU+rgzgrTv3nn3yaR/40edfYD6tu76uN8YSADx68vjWhA48urxoU/SaVZnLnTeOrPfW5rENkuLN42MLsNpuNDNNjMvtthqPimJkci8IiZNahCGOnAVUOLESi0YAoATem23ob909efdb7986OXLevPvOuz/47kdpu86KMjWbl1dXdw7nVt4nQkUyZNu2Xm+btll03XK7vbTIo6Jc19t+k4zxTdunJH0f7f5hWY5ev3lzcvvEkWv61mdV6BgAQuK9o5sgImozmw/gvCSKZJAAJAEMzE4xMHjvh6MjgDIAEOzSLgDg+v8DKhjgK57eDs34Iz0HAti33n2nD3r1/MwV4AppQ4gSkmSp640xT589P7mzV0xGr5dXLivL0fxysS2zfJrPQhfvfu3tp48/x5tz2yVqQVGX24sDOzHgLLi6SwBAYoFFFHplkWSFDVtDNqRIxhrrAY0oEJIKO2MRCRUABx45kKBG7mKwYJGcIghRbFtQg8b3gOsYaxYAYEnZiCAZEBAGBtMDFtk4hkswEWmH0k+BT8/OjLWDfa/t+ufPX3z7W19L8eDs7PXRg7veWCSXJHSxP9ifLjZXr05P98Y3ncP16ysFxGpshUCpLMu6TypC5IYQg+tuGxJikoEisZN2DANRwetUUZUBoowIzKyIhDowFQbdkKgaa0Q09g2LWkOGEDiCJmdMZkxRZNPJeFKNilFeFiUYs9luV5vNqzdXL1+9QYmZcXEoVhScM5umnpaFBVVRY01gCZwEoOmaruvAOzJGBfq+dwMWk+Urp7fq4DmVgfI8qOittXJdJTHzkHIylN0gisYCISg652NKKfJ777335evvW2sQhQwRIJFljadvzpbrzWQ6RTRFOe76+E//oX/9/8c7zn/9+p1ffwgqWZFTStZg4T1IIlBLmjnkwARxXPpqMlHUzbaLkYeUAGZ2fsBMwlc33vCZc0gig/YN1NNw4hg+e9hx3lFQURVVUIQQlUlJCZUQjCEWVRZgefutt8rKXF6eLRcrBPe1r39jf29OJj578qQoint371lnLi4vv3zx6tXzU0euqEpJYMnMRpOD/f3jG8fO5UDWWDOfTYcMCiJyzqpqGzpAgCCH+3vz2XSxvDKA1okPMS66bb3OzGhvWlWFAxndnM7PtrHuRAJPfDk3puiDj+AZHCgxoBoFHHriA5KKFGZZcbmpTYZkYGAXAKsj5BQYwDg3tpmwNG8udVJhZZsUoW0J2SsaZ/q+5pQsaOmNt8hJkiYEg6SKAGSH7OfLxdXh/Dj1oW9aa4w1BCxiCVSssaHvYtftTWah2TCzM141WGcm1dhZwzECwP/43gkAkrVJxFnrnAGJ1pAFBdFxkefeEidPMB0Xo7Ls+rYajY5u3ixHk9F0MpvvaUrOmtA2Kok01dtN1/ZR9MXr09W2XWzqi6tVUlIxoKYJ8eVy8SdPz+sYFql7sV08vjwNngLhk7PX0Rl2/vufP1ayRVb9yi/9Cjfs1X72/U/yB29bykCIZYjEMt7bGMN6syYkay2qKIgyx5S89865EDqrQmggJQASCc7g2ObNdj2dlN4hABSW9sfjPrTbujYa757c+vbP/NS9m7eev3j5c9/+VuqbzMjB3kRiV1aVy3J0phpVd05uEp6fvX723V+Td+7dOJz9zjw3y/MXX3//LUmBU3B50RNlFq3VV6+fA4BFMALAklnnLCnoy6cvD0YHP/8zv+XZsy/Pz88noWu69vzN+YO33prNptN83NVNYobQhuG0zGBdhkSQEgAQUIrJIG422y9fvPrm+w8X682kOlo3jVH0RV4IGHTGofPGG6Mqk2rsMx84hJQGQaSCCiqrRmFjfVLpUwAARJLBNKqoIlmZE8S+a43Pcms5RRI5mO3NJpPF1eVnjx4VedF3bdvVeZ4dHc4P9/c4Jovm8vzy+x9/l4iODo9G07KJNbOsVou2acDCpBzNZzMRuRfk2ePnpxeXlENTr5omFFkegQFgPCn2D+Zpdb5Z1+PpPCEnTWS8Meoc2ZxY0VbZ/Q/eCU27bWrwZMA4cgLQQ8LUqSBaY42xxsBgS2JRUTDDkxz6EAC3WVb+/M/+/Gg66lOXZe7yYjndO/iH/tF/vMqL1y9efPHsi1WzXVycCTAa04WwrTehb5QbZyFzjoOOx3NQipGz3FPoSYBTIBLrWaQOYT0e7W/qkPnKO8Oq2kVHqW5bsoWwIObOkVEYBOmDD0gBBlig7qRG+iN30e76rxRAP/YC4EdSa/pxI4rNqkowGE8aYhPXo+k4LGLdhaqcrjfbl68uZwfl8Y3j1CGQO7tcrK6WxwcHmSUi/PKHX2z6dr3deHQ3p/snd04MJo6tA63yPAUEAIhWIApylJhQC86IVAgMWQHTdwEUiqJIiTnFzHsDyMwqmFhUJbOZC6HvOga2xoekgBgiIqEoNEpXTUq+AoDM3ThrPvVey2yEfFQd71+umhC+VDUmKzPLUUUTG2cJKbGwSALIi2K52Xz2xWfvvHX32RePu+32YDp+cd5Mijx0KcumWZutN9tx2Y5H9rf8zM/0QV+8fFEvNrnJhp9nYs7zHAFZhHY5oIIIxhhWSIEdDREXKD8moxFhEFEUYwa3+3AmQVUVAEM7egdoJBRj0BrhGL3Bsiwm43I6KQ/m04PD/VFZFlWRFzmjLq4Wp2cm925cFFfnl1mWpcDO+b5tPNl132y7tsoKAUFDShBjGCz7aA0aOzwCYoxFUewU+D9KPB0aNIML7Ktdfvheh16HAJACATIgEJKCKhAIMosFHDpFKfU7jwAiEKSYCDGEyKCsUFXVly9ecR8A4B/4yQfeEKQ4LcvD+Syz1ntXFqXzrmnaruu6EJu2SaEfFflkVMUQjMEQg8u8c75p+67tnc2ywoszfduCgDW2j+nN+cW665msGp8AU4J/9fuPlIwk6WJslj1DGpASKKnw9ng+jVFAcTadgc2evXwdQhQBGBIxcOeSw+uYkaErS2gQKaUYoxBjkVuRYUaKg+Fddtm4OEAViVAACZGMSSkZJQtqDc3Ho/s3p4Dy4vnz5eqqLKoP3ntvbzpiTV98/lmW0Z07t52zp6dvvv/R9zf1ZjyaFLYcuarKq1Fezqfj2d5sMpupNS5zgETGgSIhWmu8c9bZlGIf+rrebuptH4KZz8qivFrWL8/fZBbGpVcWlhBig8TjcXW+viSlzDiDmJH1mJD1WhFFqIP/GlDQAqIxuUIlwHnecyozRyIGCAEoxsF9h0MnGdK6aVavL0b3jl3m6tSVzoYuGiYmIyAAmhiQgWnopCoyy6Cus7TZrqbT8Xxv1jetcrKonPqUxGbWJOaUCDF2vTiymV/1wU8rNMb7wYldWzIA8B88fTGs7b/+wX0RSUELb6sid5AqS0bFYvwnfuWT4T1/8u/+Hzrv/8p/+T/48Ur65b/xz6mkB//AHxx++dE/9ftM7rsQDyajMs8Ln0nXna62TQLrS7bgMgcAyNIzf/HmVW11ZdRr20p2npme7MjnL1gyn7/38N0vfv3XydLh/NCN99jkKiYGQrUppqIo6rBdr5fGEhIMlDcYqFIIfWiBxRuDIkQInEjN/nxWX7zQbjvyLvYBACxJluH+/CCGeONgr+3js09/cHB0vPfBw08/+o2ri1Pum9k4d6YQEVuURe6362VV5DcO97ZNPH/xxdnLL/cP9kPAcUaTSWZM2fZ92/UkyWg8uXE4Gs3gB088GRKmxLgrmyXE9P0ffPTBBx+c3LtzcOMoKdddh0gcWVSKPLdo2r4LKaTEzGCNFxGNkhk31CiopMwG6NHjp++/81bs+2Vd28y3603mcuusNbYNzXa7LKuiKPIQOwYhZxIwx+RyC6ZiToFTTGlUjLfbZrXeAMDl4tJYVBBRAVTnfOxDu2lG4/k4z2xKhXd5mQvgk2dfPn/14mB/P4g9vHEkEjPvIsfLq8Vsvn+5vJxUxWw+WyyXdVP63C6X65iizzJvnRojxgDR4e0b99978OjTlVohEGNVmfPcAcBb9986OLrRG7w9nX386NH4ZBpAAwfrPEBi7o0jP8qsLaBw43GehEMXA4tzFhwFVQTNvcEB6q0giRMnUJAYknTDuQgQizyvr1a/8uf/wnhUibD1vo/p1ZNXuS/azTpyEOLXL55O96fluAgcvHNVVdossxasQXUeWMfVZLFaOUPeWoLoPVjDoKHIjEKv2qs0zk4N4KZp96dji1wVNkkKgbPMhrB1vgSBlHYEc7mudXazhwH/ggNNBP6bzLVwjYyBrwAuOEzPriOJ7KPPPvc+d96W49Jntun6Poa249UqWEMxymePHm9WayfVarP84tkXo9kohLA6W202qwRy9PDuyM0cwmax+uKLx9OieHjr7iTPUuoykwEAKSHYRIZBQFMmqgJCQGRFgIUBjSIpCoBh1sTCMRikXWUq4JEy66NoHfqECEm7kMiYhnl+cjwbj9ev3wDAaHTrrH/iyOZ2Gnnec+FLC1rWq3Pt+7zMvVVAv+27mILJcwVG8gnA5/7lq9d709HR0fFycXV4fCvgyEDqW1NVZUzpYlUjpMzb3/LT357un/zhf+X/4jP/N/+Nf/Of+JO/+Prse3k+6vous94QkLWaVAYRtBmCRUFFhQUIEAURjSFjKCUW5WGQMghjhYfwHRj0tYRgHAE4iUFFSGVU2r3Z5PjgcL43LnOfZ34yKZ216/rq9M2m6/sudHXTdzVbTBZZUpiOqm0I0dogqsJ1CPmoShw4ChgvKn2UyKKohiCxdn3P17MtZoZBjH3NKR6urwIxRJg56Q50CaQDucgOFilRCCkBG0ADRnOTg2pMiVBFGQSIXEpMgiLQ96nv05v6nNtIkgDg//jrXwxf7l/5q356ryrbZlvleeaJOebO5qaqsf67/p+/MbznP/3b/qpib/5X/mt//MeX/n/+9/x1fdf/3l/4E8Mv/73/yV9eVVWIMc/9l69PF9umFw0MIQEAGF+AtczRZ5lFXzfbpm7yPM/zvCxHprQxpmazqKPEmGJMtJtYqiEDu2SMXWqpqiZmArTWKAglSimmNFjhBs/pYFGA60C3Hb0dAUWEYzRIzhgQNECH+3tV5b745AcXl6/ffvvBjRu3xqMSQT799JO+2/zMz3wbAM/evHn8+bOz09PJeFq4vBqVR3vHN+dHe/P5bDrK8kwsJJCsKBggRhUBQwOYA72zqCrKo1GZLX3TtV3vAdYygW1bLmsfU9rWcbVdxpQXo6yc5PwyxqTGZIokKGiMIERhRgsWNQ4LGAajoiXKCA3HwhrmVHiHMZEzzgywUEqIrGpFMuszP9pc1c186/KRdU6ACCHK0FFURVRRRkgsYIhwSJI3aGhVb/Iy358dpC6mmGIIufMYRFN0hVURC8iZr6azZ1fnMK2MpRTZF3lM/YDiN0TDE/RvvH/vjz199h8+efq3v/+eM+CIHLMDLqyUuftf/dmPAOBP/J1/zX//3/qTf82/9scf/cG/b1hdL/7IPykAPitzl+3/bf8QALz6w//Erb//f/v1P/B/ff4v/v6ubXPvLq+WEsPJ0TwhrC+WbaxZ0DoLAPNi/ObV61++OPN9++1vfOPFsye/+dH3f+pnfsvLFxf/71/+L99978PVdv0f/Kn/182jg8yY7z7+/Le88x65TAQ4sLeowIjYdd1msyFLopJSAgBrrXMOQGOMhghVODESikRFk3nXiNy5ebxenHdKAJBnNvNojfjSOdIys0Tp4vUzjhBSR6SH+xNr1BLmRaaIImKMrarckpmMeG8yOr9cdusLLHJI0GHv8zzPcgOifV9l1mI2nY1hCI7re2ecy6ouadJImpLGL18961Lr85xBjHMcI2vyZJtuS0rMnEJPNKj5B1emTcwAYAHRuQRiwa42608fP/nG++8s1/XR3qRnVowgCETGkrFekduuTpAcsDOF87aweds1kWthVWFjvQA+ff7s1as3ANDW9bgoWYRABxGkqiCQQyPAyGFU5j4rXr0+/eHHH4/G45N7d1RSF4NzhlVF4Wq1DJ8+unXr+MG9u9vt5ur8/Gh/L3P2YG9KzgsrIhVZQUCJUzkq3/va2/vH7vzq7NHnL/cns37dni8XAPCd7/zmlx/95s98/b3141dffPlkdnRYlLlaq4opBmcoaUqYNtxaYzsQRSjGJQh474yzDADAfR+y3CmjqKaUYuiZhYjBwPDRIJsqL5zS6ePnK6L9vf1oDSN98eqCWRWUnKLnwxuzMp/13YKIirGbjDMEMAS5c6LQd301Go2rkeoQ+aKjUVVVeZ7nVZXfPNoXUU69typJDMio8jFynvvVqsmtzzMNq5pIS5fXA6ccvsoH2tU2150g3WXj/re9viqhABHtZrUOcXnr5G7ddIn7mBIR5s63SVOSohxZm33y6dOjw7duntyZbFaoIXa983kxomIyaTbxzv1jT4J9vV7Up08X38humJsTSVsSBQCPBoiSiRCJVUPoQdWTHZhxiNY6n1hAkYwLkVF0l6apKAAD0MuQESRljRxiCgAWXbbaNN985913b9/6pU8/A4DF+rK0mUOzXWvTL8AGym3f9+PRrA8N8CavRi73vI2bbl1aQp8JK/eBvCVyz1+8/sbXPoiLi/Vyef/2+6nfPl/QarOdzfbOzpfzcVkZ2zab0ThoirnP7t+7P2CdyoJAgcwQXjqkpe/6JSI6HIwNWSKUnUFPAeXHmnY7nOYOtmMMgapIH1LmCDhoinvz8e1bN+/fuXV4uDcZVUWeWULmoCoxdMwu9qYP3Nb16dk5qCdwh3uTJrDzplejnaAljrjp66lOo0oSQYgxxjr2fQiCKiCC2vbtsBkPru1hnAcoREYVRXg3o9up7nc1taoOc8vrEhsU1JAf5CC59zHU1hJzRGFjURhUxRkHJBx1s6lDn2KSi/PL0hUZ7ZbnP/VzH/yBv/Tx3/Onfu2P/01/BTgzG40UNUZxNkPB3/NH/zMA+L//DT//P/1//MXf80f/1L/7P/otw7/nT/+9f73Lir39vXfeee/B7/9nAeAv/iP/85//Q//G3/Tv/5lf/F/+DUWRlUWekihcnS7XRT5OQz61cYaQRV1WOkci2i+Xbd2mGGOMVVkWRWVN0W86Y9RaxUEELeKMBZLdHXWdY3xt6mIQIUJFTZoIiABIYZCF65CmLmBUEABYmQQAVdF6JyzE0XsyBi/OTk9fv3z33Yc3Dm84st77v+X3/6u7xfNvfue/9W3/3+n6q3/be7nPzcjhBow3BVgBbLu6pSIZwwStxkDODnk2iCCgopJElZOwxiAA01HOXWORVMUaskgQ2CIEUhMJnctcaQHq01VRZNk872OizBMii4iwsaTG6FAwkQHBgfEaUhTR2XQqKswJWDAkj5ZEnMHMECsY6zYhFi473j/8Yb0IiqrK0KqyKg8F/fCdVkUxvMgRK28Lj7NRdTSrZqWdTUbDH93Y39u9Z5DgAtz+e/9pAFj+2/+HGNPpv/7PEIj3O+qxN6TeeecMQplnmcFl3UzK/KrprM8HJwunWBgft+0HJ3d++zvf/DOffFng5K9971u/uvl15ee/+2sffP7y2fLZp7/tWx8uVuunv/SXRoWWmTR9i7JVMeS8gITYN83WGARQY8yuiQuoqsahN95ah6gG1Vjfi/Z9W5VZWXhMpRlyi1CMJaBkyE4mhYoSuRA4xRiZyiqfTqt6s/DO+twBqs89cOLQEQpqmoyKw8O9zXrTtG2e+zzPKXOEVIfgAMaj0qglgwCQOBnjbJG7vEJRxLBt1jGmul59+bItqtLmGZEZj0eSooLJjd1uNqAmhI5jD6CExArWmtj1AECGQgxV5kGha+Gzx0/fun/HFq4PsRqPjKIM+dQAhXcC7J1zRUHGOG8BYYilQ8AUIpLNS9s0zZMnz4eQpbIqBhoqWkoqROS9B5au3eZlNSlzW1gJ/MOPP15eLu/dv6+sZVFkmQ+hA4UiL/Ksapu+rduL1J6enjpw89E8t3lCBkVjjXE281lbN6Qaup4MjKdVNb798uVp3Lb700qU4XJxdXH17Z/9ien04E/+F38CvH7+7FX57js+h4xQQgREJjCZYQaf+6wqqqwgQOlT27aR45Bqp6Hn5LLMI2GMse16EWHu1SgAiIGkHEM4mu/pprfk+/rSl2U5mxp1wWAwYjJFGx6+fU9NaENjXeYslIVDohR3ie8hsOsTgQ19b4xx1hY+y10e+35UloXPLy4vq2KU+6qTbv9gX1UTR6vOWkCU1G9zp5w2wp31lUAGSooDeYh2hmvYzbgUYPBB/7e5/mulkt3fm2/rcPr6LM8rAsqcSwmuLi+yYgpgvHOWfFXMFstN3T2Z7x3F9Wq7alhVCX0vpk3bl5fTvcneZA+a7OXLF/z1ilw5zgHWDQAYELJebMap7+u61YYlRbVZngEaYWYNhqwCGLJ2SEsdkIEGYhz0zoIqgAiWhFUVlYAVztbrX/wLvzS6ddK0DACvT98gb6bTgyqfIKXN9gJqCaGDGJF7m5u2XXfRFGXJ4FPqQFEFrM8ASTQtlu3zF2fHR8dPX3zZ9tndk4PD+XS1urQ2O5ofvHr65Sgzhzff2YfgCUh4sbzabNZFng8Qnb7vy9z/qATaefaGAhV32eKqApASp5QGtgEQqDIh4m6egspJEQyCQdXUF97cuXv3/ffevnHjcDzKrEXl1Lar7Xq9Wi3qpmmaWhQjSx9C03agFGIoi2zkyyzTHjAHl0cnLGiwiaGLvSKgdbGLiZlZFJVo9xwPIZAhvc41G0hWInSd46lfWREBgIhUSUQYhJTIDoFAqorKQLmxzodOUowIwMyfPnoEVlQZ1KhCiNGr6bsQE6ekdd0AUFPX+WSy24ryfHjhEMvJpMh9FHbWW7Iku+V+48aN4UXb9sOL3/1H/kMA+OSf/4frsPudg4PD4cV0MgmhR4Djw/0o8Pr8Ki9NWeYA8OrN2c0bB1lZtX1vqCiKUYypqZsYYlWOrHVECEjC3HUdgB0wSKDIwoZ2PoOBGbnr6eDwxGUwQIKIICqIJIMjZ9BOowAO+duD0AoVwXsPoDEmSuyqglN8/vTJ3Tu3j49vpCR7e9PLy0sA+IW//bceHR1yiIurxZvXpypYuezGwa3xeDoezw+Ob05nc+s9IAgI0W78CkSITgCIzKDOp+EjY4mpVxZAiX23bZrNuj49PXt++vzV+cX//s9/GmOMHJpmW5W508RJ+m7rkLxmbmC3chJQIEzCCGDQAgqawdOKhMqhPyxm3YI8mo6YhTXyhJw1ZsMpGYWghtzUl1fNor/ajqrc+KyLyRNZIm89ogQWRUVjDRjaRSiiqlRVaQzFPo6qUdt3RklCBDHWkkqySAQaQrdaLe101rRtr7bwWQjRO7LWhrbNvdvVK7sMQzie5KPC703Kvclof1rNxplz5gf/+N/xtf/dL/zkP//vDO/5qjP68g//Yyd//x+c/a2///wX/jlE4JRu/L4/AACv/8//G1KxBlOS3FkzKlGlDVy3kRR7tBERALyiJE4xbTfbT3/4cbeuS+OffPzJ5esXTtLqzZu4WM6dPSyL1avXh5PxvKq6fhNVkgZCLyGoar3Z9qE3ZFUFAAengjG23m59boGgD0EhMYh3llVjCMfTyajKDIRQ9wCgwJvN8sbx4bgsIYmKSEpJ46jK0Zo8z7fbZeJYlJkCOGstUkQFAG+NJUIyADrbn090FvuICDGJImfG95hSF2zhBpa8kq3GRep103ZigDRWeV6zxhD7rouhH0+nkTm07Xw0y3OPMRXOt33nDXQahIMvM+44hH74BBCEOVrjUQnJtG3/4sVrPN5PTX1zf98QlmVm0DpnrDUqkuUejA0hAoIxNqQY+i6EEFOyhJbsYruo62YymcB2NZuMYui7ba+gZkhFVAwxcN/bqrp5eLCow6s3p3HT7I+nV29Onz958tt/5297/513Ly/PU4zOmJRglJWhCd22q0bTo8OjajQVwZREmCfTKQGk0GuMzntmIpMvF/XBwfTDdz/4jf/yO02fxlUOALdvHp6c3CiK7J13733v08c/fPz8xvFtqyazlmKKMaolsDYxdESTcuytiW3QIYonpa7rWRkRWFKMPRGxaB8jcwRSQwgASTX3pg3N/sHhZDRzLW+ululyU623pvA6LmDst/XmJ37maz4z27Y7OJyPp5MsLxOnro6oxlpr0OaFUyURBjDW+sx758gYX2/b0Xi2XYcUYTI9ZKEk5NDEkKxxCOS85SjMnfNe+rCtVx7QZzaqAhpFEAURMbtSYefq0v+quvkrPfSPlTv/zU0iC4wQYTY6GI/3IodNfeWJRvPKGW9NVtfd6xfn+/vzsN2s6u1quTwazzyNV6HJEbvz5XsHt/o6XqzetOPx1ZuugJs/97N/dVz8QNJmPh8BgEEmS5nzBJVP2rZ9DDEOwnNAQSDjCBKRcRbAWBDllBCAAAU0xKiovshFwQSJm9j1fVKxo6xL8T/9j/6j8b13Pvj2z8B3/tLB0e3zLxuS/fnewzYtkU7b7Qq9j30oAL3Bdag9ZXk2zvLx5Wobmg4ok5TEeOeLBHR2tpzNp5PxeHlxZm9MS2uXAHXdvX/v/Wlh3rz54pPPP7n/zocPTm48+uRx17XOGQVRZeMM8PUPGOFa4QGEBg0CJ2ZWULKOEAGGiPXhfCZJmJkz55AQhBWEQAGkzLOD+ezB/TuHe7My8xLaq6tl225DCF3btXXjnc2zfDbfTwoxyuXVMqWgYlT08vKqOMr39w+u1utOovPUtUlJUbjjkOVZF3qJDETGGmQcIm+6rmPmzLqhrSOqZMzgrhfWgeKomogMIqmmoQlEQ7gpJ7KeiIZAmCHPLKXEDMbY4SDa912VGzVKaCVxXdeARd/3oOCdD32MfciNG+SoAAMMAQDAWJN5H1NCY7I8d2SNmh/8Y3/31/7gv/aX/8v/8fCe3/G7ftfw4vG/8I89/F//wff/wX/2T/8Df8ujv/P3/PX/1n/69j/4hwDgj/8dv3dvPimLAhDV2KOD/fn0dN11o/0pAPQxvjm7ODw4sCYLPafYc8+Zy0IMBIajNNwl5i701loFlxIrqLWWeQfFHpCHA4R9cCTgMGdPDAhJEiKZXUSlqO7mYSyaQEjVkBIRoGmbbZ5Za41FIxxOX78aT6qj46PFYnn/3lvC+v3v/yYA/B2/8EvD9/sv/DXvcUjW2HFWls5WWTGb703mc8rK/b/l9w3vefXv/Muk9sbf+vf8+J1/8cf+zcO/+e/68d959X/7FwHIep+DcsKi2KqAJAGAru3iaRiPs1E+OsiykIhtFvpQsUytLRFMYmQxBpMoEBoyPASA4CD118TRAI2cJ0R1fhs6INirJigSmo0zNg5dYMV9P66XbRi3o6MJuMIZxBA8IdlMrCQQAKOiaA0ZoyJ57hkBkbzPHbrL9ZUGzdADEVmTQnSqKUlZlkHhcr2weUaj0mZeI2qKzKnM8tLtFtvY7w4DN+fV/nQ8H+XTUVYVhXE0NB4e/RP/M0P48J/6N4YH7av/0z8M5kco8BgDItz8fX8AAF794X8EQMEQ0v+Ht/+Oti3LzjrBadZa2x137fMm4kVEZkRkRmSmUpmyqRRSCyipKEBISBSooORaBlEgmqYoCj/wIBASQg6pQCULDBqEQAZkSaXSKTMyM3w8/653x22zzJz9xz43pGLQ1aPH6O4zRkScd969L949e5+15prz+34fMIAAAeMAqssJmto3zSPxEcUCgFMSokUIO9OTJ69dCQOHTMXFre7BnZTnsxAOz+ZI9rVXbh8eHoU2+iAurxbNPBBYNhKStfZ0Ok0xuTJPKTHbldwQFJicdau8OTZAKYGyc0QYUiNiYozShxgguDJXkCTRGpObzBonCkmRre0XsflykeUuH7LLHCBZazOXecW6WR4c76+tb1y4eLlpWrJFb9ogRWXPQAYNUVZ3EQDaqMlwguRTIDYGyTdeAwzyQRCxeRbbBESZKUCQgFOMBk2VWXRQoxhWiR0hWUMqfetOiyIDSEmCNdZaN5vOjxlqUqu6Ph4ToEBkKshYIIhBGISIQ4zexxhj2/jFYmEN53kBAidHJyml4WAEMF0bj0bD4e03bteLOZsixmAJCfo40m5zXM0WzeLk5MaVizGmZd1ESepjM1tsjNZSElWt646YXFGacrOsisGwSoAhqQIKgogkVQQV0pgCARGWKVkid+vxp9LMf/pjv5liBwBVmb388ou7uT083K8G5cHh/OXX7l1677vO5u3QMkoLERLGRChJKEqiGgVCl1KK3vskAQCU2TdtFAFC55yorGJBKQMAQQFjAujm5UvPvvP5X/u5X04hDIdDLItZt7Riu7p94q3XL1+7PG+Oqskor9zm5raiPT4+my+6PK+My+RcKWGNy8tVrqkzNsU4Gl6w1jZ1PawukClCQLZV2yZrC2Za5SMT5NamFEXarptPF+325cesHQRIUVFVDRvQBCLas9YIdCUJOt+FFd80MK9obecYNjyXTq8KoM3xxsbQth2LcpnZZX3mrE3T1qvPsyEArK1vZIaqcXGybGcRFifdxsaWSjIil8vi+QtXjufL5vAQ2lI8D/ML62s33DDefXl/OMwAgEgRBBQKmw2GPDfLed2GEGNISZIx1uWgSs4RpOhDMMSEKDGKAgIEACRCJhWJMYlIirEcjYO1e0cn7/rc933bt/8vy0Dwr/75u975ef/+xTcuPvus4jimZNCPS9ekM09pYgeugFinJnYnJ0ejtY31ydh3RzGkPiwkCiDZRRfuP9q9uD0x4Juzkyw3g2IgyaZgsslw0cTD4zcuvfDRL/kdX7AxXj87Oy7LAgCstd5HIhJV6mcYiADnjMcE/FtDrnM85psXQIGRYwgIlFsDoAbEEGaZffz6pcsXtgnT/OxYB0Vdw+HxrlIaj0aTtdGlSxdV9PT0bHf/8Gy6mC+a2aL1SVJUJA2dP6DD4Wi4MRn72WkXPVgKXYrRL+tFWVUxtppSZkwihW41QG2aRlXZ9GB3ZOrB90lXJJ+eUYCqcu4I05RkteWjxhjIYGgFCRj7GBi0hvsPuHGMiCs2IGqfD9x1XQyJiMvMLpuGVB0z6eoIDqupGuSDajAYKCpnlsloFDImq4o3/va3++Cf/l/+EQB0If3CN331dD4/nc9v/SkAgFdee/1b/t1vAMDPffMf+ZJ//M9/zw//21/79j8SJbExBRoBc+XChemdh/3GxyDL+dwRj4dDVBFJKKiqhcuR2MekhCoqgEToQ98Apd7XJ6KIIEngPByMUAxRElVISX1KompVNGkClPNh5+pfuAphRkVkpnw4VEkGMPpgjbtx/RrrnAyub2wJ4Ouvv95537d///Uf/92/9x/9+z/1H175h7/zrRJibjgzbjweTyZjtm7rv/9GANj5qX96+Sv+x8t/6Ft2fnQ1NTv4iR/c/oNfCwBKqxnN4U/9U0lJNSoSSEoA/XKVlVmR5bHzAAAJFYGCrg2q6vLNwwcnddPVoR4CrzveYFupmhgQyBAhUj9XAsAgSQgSaRTxbZuRSUkVIMY4yYrSZWHZGKIo6pj7eaFRw+q6/Zk1XG2NQSUzlgn6w58SGTaoqElFIpoeLYBK6oyRLs1OpxzBoe0kqgAppBQV0RhXh9RJMs4EAwKSYrCoFmScm+J8mLVWrp7cunphUpWF48wgIiYBIHrqr/4gALzxl1eVJRm+/Cf+1u53/6/A5x14xEtf9+cAYOd7/vzlb/2bALD7XX9GFdFYRxxTBOKhwMbapDg6bFLXw9tclnkH+WR4lvwvvvap7UkFIfzEr/4i2yJN1l48OWtd3ozWdf3C6cF8cOmmG2+3yQJUyddqiElDjGfTaYySZUXXeWSVJGVRnJ2eFmWJxKrgjBVUABDqmXAooIumNswqHvr5O3OIEmLKctubhvM879oYU/IxHB2fKAgAk4D2h4BERTEgDlEpb7p7j3brLq2vbxKrKhJnmMQQaAI2btF0HWcAUA7XErJyyjLbSuzqTtGWw4KNCU1DnPXRmjFBF5MQc1HGpqaUGCJDJBVD2me98ir6WwEUiVgpy3Jr2ForKTW+293ZQZG1tXVns7hslssGIFlnXVEg25RS03bed23XMXNRVCHGZTM9PDwGRe89AFCS2HVMwIa7zpsiq1ymMbRNW5V5kRVFzq4g5MiEA1si89LXtx/eH08GZVmJQlVWzub9qoXGdjGZHGLyPVxNGLz30QcVKbIMkExmk6amWQ6r4Vuffqoy9HB/D+7uG8PBd0sJddMJFarw8mt3nn7i1sVBVrBatKApheglRvKp7ppeXZtAUv+xU0EV0Kbr2Bo2RkH77ZmRDdnzGgGSweDod331H0hZ8ejuvafe8lTQ8Cu//iuH88OLVzevP3HjdHk2HFeudGsb62gL34po5nLjsgrIgCohM7O1lohSSiLoIzXLuLG+JiLWGWNcECJiBSUS1N72pICMIIjYp5xmmVnM56GeFWOn0bBz3guykaT9krACj60+ffJ/dH5BH6rYz2X6nes8xHtVKRkCB2jKsghBpsuzJ2493vj52fxkmJUhwHA03tjcONnfvXLp4sjL3lk7e1QrWhU6Pjq5ce3a/sHxIkhZbRwvkqVRDNB5fOzxZ3b3X5vFJQC89x/8b/D/m8efAoD7O/Brv9j/8gu++P1XL1z4z7/+8mKZfAe+UatMbIfDodXk03I8WcflbLlctsvlcGQ2JqOj45lhEk1d612WkTUn00WR52xpf3/nXW+76r0+PFy+dmeH+Ka6UTvb//TLn75SjZ566smzJs4WM5FE3IP+VHVlfF/pYBRUBQi1d7wjggqswm7fvDzMxhBxCMESWgZJXTUcPnbl0sbasKunKUVrcJYaRNq6cHEwLI3h05OT+w92ZtN5CNG5XJRcXtlIy+n8bDoFJkqi/hBUn33bs2uj6vD4wJJxg8wjNE29XC6RyFhrDDdNkBiAXIqxa1tm7lM8g8gK2LMada2GYucRYOnN20tWR0cVSYa5UyVVRpQYgZGAow9F5vKcVSXEyISqQszGmtR5EMlsVg1HyYfAVBWu4tUOVFVl/4SzCkxGhNZaAkogxrnH/uzfB4Dbf/fP9F/z8iuvfPmP/ofveP87667tX0lxpVLavrDdP7Eub9oFiDDbwrnr164cnc5mszMAsJBckWGKD27fXhuPANQwG2sNMiQNkprQuTxjdqFpRRlWUX/SX2uAHk6KhKgABKioq9kWEBIwG1URJaLV0aTvESoAEyMioEhKMSUAskwqykzOmcceu358cBslTtbWjo/P7j/Yeez6+dRvWfdPnLFIphwMhpPxYDyyLvvt+3H/XwXc/9EfIMBz9PxvrRNbX/E/AsCjH/kuEenzdomIGPLMrq+NR8MRABA6VB0WawOuThdH6ayWtp1kbiMvh5kdu6xUQUiiAgSiAoJIDAAikkDJWmBsJQ5sFrxn0dB6V44yY7u07OewbIymRMQWjWOc+wYXIZsAlTbPDGCKkIgAiJgMSo/QFkwoIGgJkUFJojbz1ghLTAaNiCIAWBKRxXKZigIzk2UI1iQFJqoMrRX5OLdVaXvR25//9RcB4Be/4cu3xoPM8jN/84cA4OU/+zVgHLO989e+5bE//923/uL3AsDOd/xpYAMAl77lr/bv5OEP/nVz/oZf/qa/troCxNLbJ5lBACAg82BUbm2undV7fYMtoQJgUVWHh/PhZHTxytX57t7Bg73n3/HutpEPf/TjVx+77sriZ/7jz1/avrqoT3wXLFntlhmwI9OFEJOcnU2TCBEDYAiRibrOd96X1UBEGVkVfegAxWWmn8uzcUnazDogDwA+Rt+l0jKRZZMRkih2IUYVH9Pu7n7b+GvXrxo2qihRFIFt5jsvwIPxxBaDLsH+4eGy6cajcVkOABFi4C52XYxB1VpTVABAbFMQ6DoJTUiNBEyilklCkBBMpQoYUiAAJGjahhGdIb+o1XtUIU0gSgSg0OeV/vTh0X+5Pewe/rZffOq//N3/d48v+23PQ1MvZlPftNzb6gSJCYRQVWMkhLVxub5czuslgolRvVcyNmqkpcQUQgywlqJ6B1lFmWHtXes++N7Z3Y/FEwgSJkJGLEqrGIlAIEzWBxfe+xnPxAi/9rFr124ujg+ak9M8G4mYQYVtM/3YJz7xRZ/97pPZcmjIErahjQpkJSRPSVD6mApCxKQqKjHFqKJ9wzooGwOEyHzux0CB1ElcShhMxl/2x7760b2HqumDv/GBGYZyc3DxxoWscmicKezW9rYSTWcdoSuKjfG4KIoKAEkEz6MnQBRRiMg6C5iZrIQVPo16OiFIEhCFpCkmTYSkgimpiKooAqyPKlaPEqwxUQVRQ+yPMOdSWu1VBvpfd4KtHtqfvfv/92/Z4CUSIIfgrTMux9Ozw0VzxpYGo9Fi2a5vTbIMA/mDMH/irW+fv3T//usPmkcLVxVrmxcezpdTikU1mTUhJmuMaZbzB48ePf+2z3j82fe89tJHf+n7/jI3AVXVGUQwRJ33SSWlNKuXrfddCHXjgwAb7mcrIoKihEhkiRwk37SLaVMvW5+6OLCFy3MclS8eHP3Yv/q5/+lP/+Vv+pb/+97JPJj2d13dev3Jm//m5z/c1tZluLl9gVN68OAY6qnbLEbDNSBsmuBYUtst5Gx9fTuUfrqoFazLXdJIxIz5bNFlJEXGl7au+mSyyiUc83gzzE9n9f3s+PD2nTc+4zMuVpTVy0VeuBB8n5LwW10dEFWQXhlNq6wDUIFVgC72PK2+EUDMRKQaQ2gg4dba8Mbl7fHAzU8PVaKqYFVmWbV5Ydu67N6D+0cHB5lzF7Yv3rj+mIgu6+bkbHFyNq+7UJaFyey86VIIklJZlMOqDIuuyszZdFblZVXksZO2bW2WG8JemN0DihaLOqVUZEU/xZGUlEgQHFsA7aHPfaQD/BZXquc2oqoykYoYNr38VVQtEZMRUWbumqbICkI0bIAhhd4pj029dGiLIh8U+cKxt5QRba2N+q3oG3761wDgP/3Jr6nKCo15x1/9bgD46J/5usF4lFXVw+/8C1e/7a88/qf/NgB84Nv/6NnZGQD8yV9a+cJ+6Mu/6Nln3v7y3/nzb/2//bV3/MW/BwCf+Cvf7nLn3Dh0Xc9D3xgN3/rE4598+VUAmJSuHIyTT9LUrCopkqKxZNAwsEFoai+KnJV5nrdeYogpKQEbY0UD9BKp84+VKmrqUV6MwAoKtMqd7D/3qlGTAkGvvlJVBFWlPrUNLTNgbp0P3enZcVUVKDqbL19++VUVuHDhQv8zHh2tFn0NWlV5UZXV2lo2GCQiBj78qR/e+oo/evkP/LHVlepvS6ALX/X1AHDwkz/0Zm2095M/ePErv/bKH/7We//079AqsDeVzrQMllZKrDZEY+100YazvXjWGltuVGPRthpUhJQIlKiNgQGRWZIwkMF+g4hRkhALciNSMVtrDAglNStOpGW0AIohASITGkQGJi7aacfrYTCqmtiqQ5NlRBBD7J10hLrKcFRMITIjubxp2m7e5OpQUZhUooAmSUJYFIW3uIwtUKkAQQKKODabw2pS2Y0qB4Af/32fvzYcWGPKIgOVlPTF//mPGUZymbEZsyHGR3/n24EAEck4JN7/nv8VkRVRkfr3bud7/zICKMQeCv6mU4mQ2UKIQoiDYbG5Ntk5ntbLAABn9cIYHmhxeW2j8un/8vb3fOjez1osfs/b3v7SS68fW/PetzxZh0bO9p98/NJvvvR6zrHA0ELw6sGrqqYYF8sFAPkQBVCTOGsXy4Xt/9qIBAwCRCYk33QemK2ib8LaMK/KDGYNAKQEddMVtqgKikGQSUGl810XfQynp7PxeH083vBdO58vAMgaB0pN3Ta+a4P3vjPWjUbjo6Mj33Zr46DWMKDMm86HqFpUQxpMAMB3vqsbWCy6Zh6hJZOREmlQBW5bqoGds6Do55mrpOnmy4X64GKbpc70XQyJoAYAFPT5G1cXPgbkKmeSOF8sr12+9Ad/75feefWTFOutyeT48JDZla7Ki6KqBgqp860SlGVlsswam2eZYQYVY8x0On/1zl3Oyp39w4+/8Kmt7cuDvHQutl3btK0xFhFiFMvExqimFNvRwF3eGOzI8bKuMzKWLRoCTaFpWCIQxHahocGYaW4wOXKOgrGigCQpJO8tEZrsvP4QZxBZAnRkgRwZ4vVqDAB/5d//8n9lZ//0bfj07f/XG///Zw9LZJmNMZDxQkMMOr52yTf1xRuX8Tc4G9ibT163GQ8nQ3ZuvuxiwrwYuWxUZoMsK411CACS+nNQSEFjIkZmRICyhBijsQ4RUkxm9akhRhFlBJSgIMLoLHPElBIY9AGa06OdEXKxfqX1nbOlJNCUaLWyrbhrIAnOZ16rhVFXGQb/Jz+vSbF3FUbv6yTtyfEBMl67fi2JHa1vnk6Pl128eevK/KxbTpfE/tLN9dO9k27ZXhzdXN+4FjqtgwiiYozQeq1/81Mf+bLf+dl2ePHqW95x8MaLFUMGUqfIRY7IFAViAoZhNQBYIrHNiroJy7aOMUjUznfRBwUBMSkZhNR1i1Yls9mgGOZojLFzH3b3DpJq5cqCMXZaVdX8tJ6FZEaVEX7i5jMMsJgdxfRiaLoTS8LZhe1N73dBUaJE6aanR+uTLUU8m9ZsbIgCiNYWaxsX6vr46Gy3mTc3Lt6caznVQRPj3Z0TBWrb5d2Hd69de2LRQQjeWtO20bJDJEgJVmLTc34g9i23vpe8ulZEffou9kLY3viugCpQVvnli5uD3E2Pj9p2bggQcX19nOf58fHJdLYoqvL5599FiMeHx5/+9EtHh4eL1jet72Jq26hISujBOJs51jzPDcLi7Kxdzg1DvZhiMgwOjRsUpXadihIRIwLoYrkwhp1lTYoARCSoRNgb3eXcz2YMQ++Qf/MOA0QCIuwbGgiwQsIApBhVMMvy6fz0Hc+/Z23D3dl7wRqbJEkCFA6dH1aDMi8QxDJWWcYEk9EQAL7j/e/YvnKpGgwBsQvRKHzoz3zjqBpMNjZdlqGhJOnBd/6FFOJ8Pu/adjgc/sjv/wKb5a4sRqPRW558gpHPjk9+5U98rahGSEXhqqoAFGt5UJQhxGUTrl7YPJ2eAEBpYJhZzvONQdk2XVvXKWmKES2HthPb224hpti0XUqISMykoDFG7J1dcJ7Lp30ArQAQEgKwSEhRrLWqSRBREYQApK+ae20VkiAbAywamQ1pKrKMGR7t7Dz7liuL6fTll+6dnEwvbG+eRy7D9OSsf4IKk/G4Wlszw1KMFQAGwKQH//sPIsHWV38tABhQ7CMq+gsHAoJ7P/6DAIAob/45AAlBCCRBsBby3FhnASAiibFHy04XrV3C5a0rJ6dHZ/NTzSFkFoyLAJYTJjGJHLl+0EcKBglTRFQg9JoawZJMaFuLpsor730duhpCYZzTfpoPpIgJcmYIab5zpCbllyZQuSgRUyKllBQBGalHphJpTCmhAND0bNq2voSM0TbJK4KIeEmIvDYazcKy6UJubZ+LXDCNymJ9VF0cl5PKAUDJWDpmQk0pRU+UGzbknLGG0SCtqkhQZCIBXQFqGQCZVvc9iQqKilKSBIoRQLXPI1QEtjZr2iamWGbZxmg8784AoMyy2enZOC+2N7elXr5057Vl04iEN1578WB336AUjE3j03L5zK1bdx/siHgvPmAKrEiafIpJpmdzZg4hiKi1ThW8j1VR9LAKh2CccZyJJh8DSGQkSVpmRZUXBs8AoPPRiHTON02AJEWWG2NiArYOIozHa/Wyvn/nYb2sldNkMjFkEU2M6ejkZG9/fzQe3njsZlHko2owOz3VGEw5MDaTZtl2ISJOjw7jrAWAN1673Z5N10jX16rNjeEgrywyKThrQwh1U89mJ20IwAhNhQClCBP50CGAQaXVKqvQHyyIRVOXko1gNBLRdDbtQvdFX/xFn/zIB0NbX756zXcxJVh2ftEeI4DNLBnIEIosr8oqz5yKBN9NF4uQ0vve9wUR6Z/8wA+JqkVDAJkzhsn0EVSqPgTjTJKkKsvloizz68Picnnt6HhxMvd1E8+mc3YurwoWMZayepnnWcFoljMKlmIuoMQmiBbDEUeNGkMIktA5i2wxL4ajjSZMfYKoGhFUwg98/98wbIeotz/98g/+yL/Kq9G73vnOiOHV1z/11sevvvPJW3g2y4EQIBoEZmQk6VPIQUT7UGdDZIwVECQEwizPyBhkyk02HIwG44FNCiGAjSlGm+VkDaPJnXv3c+/cKMvX7r0wWR+53HW+M0iZGwwGozwfZ9kgc0Nic073SAgCpIpOqOtNTQrKzCEk6RFEoAi4wp8BKjMhiEgIgZGJrENVxmhjaBbNctomujHadqZSwBCDJQKMsELPrcog+K+VOm+WRG9WQuduHgAAY7NsUS/YIGU6MFnEvPVhOp0puKRzY/Hw6KBrmpImj6b3kpHhKBvllw9uHx3cP9x+9uaya9sQkSFEzwDK6cWXPvXGG3c3H99eKx0ATl99hdq6B/wFFAQq8ixC6GIYjkcDoJA0L0MZBm3X1cuaUANi13VBoioRQ1YVzrClzAnbBIxmWS939g/Q2Ygxr6DMs27us42hzWtTZJm386W2dYDERKUCeU+nZ7XLFk8//dxvfuxDvotF4ebTOZPZWl/vvO98lxWFqrSz6eDmk8ORef34wcPD47esXXJU5Fx+8uMfXzbRookpzGp/99HDB48O5ssZUO5MZlwe27DKrF1BmpBXbGhNKr0Css98lxXSEqDfIZGdYfV+WOWPX7syGebL2clidqISqcg21jcM8/7+gcncjevXY9Q7t+8/evQIQKuqqoaTfKiqKIDzup5O59PFEiRhSgJqrSWmlKIhMkSLNi4XixA198m6fORcP5FLKQFi8GE4HhFCAkUiSAnSahqyGnytFh3BFdIw9ra2fsqzuv1Uod8HoBeluuBVJADjF33xFz7ce/W1R1I6K0AASgLWmSyzKlLXTYzJGgsimcsAgI3Z2dvr4sOmaXJrS5NfWN947Pq1ixcvqIoPCSBpFAI0RFVeyNrYZFmW54u2nc/nO4925/Nl2/nMuKqo5suZsXT16qVLFzcHRZnlzlrro5C1N69dBYBRlVe5A6H9R7vWZYPMVXm+bLtk7GnbBEViIlYkcM41TTy3yFESAKQ+kAbPPYyoIggIxITECQMDEBGlpJD6PGIiRGIEOn/L+joEQUQ770dlWdeLx5668uxbr8cwu/dgt65bBRhNxlW5mgzGuFKLO+vW19Y3ty+aYiAIhACqm1/1xwDg8Ee///xOA0Dd/KpvAoCjn/xBUkggF7/q6/Z+/AfgnGjADKgqAswGQco8H5TFeDjoiyMmUNGTxaKk6qW9XUl+88JGcXG8tbm2XRWm8+xDN1/WZ/Mu+AyTlWjYUmYIxIcQJIHEWqBwGSTIwRRsYkiRQVPfPCEC0KToOMXECgNbTBfz5f40nwyhAGVCBU1RNDEQKjIDEkYCa4qUALzOj6dGCBi76JNRVQEicllSnbeNZ6Qss1lGsRONmc0310aX1oabg2yYWwAoc4cgzmUKwIZt5shkYqwwEyASMeGbOBIkgvPgagRQUSQFpFUQtiIR9YZWYieikhIgIBMSpRBG1WCtWt7dPQKA3FlvXNf6w6MTpjiVsDDJXVxvCj5Bn0rz8GDv6PTI5tmnPv3iom3AMlqTGJbJS8IoKQQ/m02NMUTUx1x3XasiPYLVMJOSpBSSAGBu8yQcfJdUl63PrCNrAaBpvSIYXRKa4FzMxVgTQlLVjc2tjfX13/zNjz04POy67vjseH1zY22ySWgWdc3Gbl+6srY2yvLcMRXWlc7dv/9A63pjc5tU580yZvlLbzx4cDr/SwB3b9++ujF57MqVa5c3XAa5apXnElKeucw6VPAxnixmD3Z3Dk8PRaSqBj05ggBFABCZmBIpgLJlRSY2GvtiaDDIUOOvf/ADb3/6az7nfV9w//Ybh/uH5ajQREXSrgu+WSpolpVZVmRFwS5XZp98InP15q3HHnsc2P7rn/7pnf19RVRIoClzBYFaa4jAOsuExhhJiYhiaEMnBWUb5Xj7yjipfbR7/PIrr+eFuXH58ngynEzG5aDsiVyFy8g5MpkHbGNadu3R8Vk7rYu8rKxroEftkw+U1Km6LCsEQECTBHKu9W1uzeH0+PEnrr3nvZ975dKVD338g3U9Ozw67G5cG2RWfDLEvSCB2ZIhVQJViImYgQhVQwpEKFHZGCRKMcYumpKsMUSoIikKKwEQEBUu65o2Q8yde/qJxxOceu6ITUrKZMti6LIK0RI5NpkxtvcLE4ukJBKQlDED7A34EpNm55RdQ45Qe/+WQp/nlJiFgBSEFBUwsxkVYCAURX4480wYRBLElSZQVhJKAUiazG+VPHjuAvsvoS29PPf/III2QxgU+Xwxz5wl5zIdLf1xTPH48HA82RyUG6Pygm/qebP7xK1bbPLXXrqTWlobXa62x00bVcESphgNECiV+eb9u/uvfPql609cPfbN4NpTZ/M4ffTA+blpfJYRGyZDCgZFHSIYi5LQuAJKSSkMW/Eheh+D91EDUExx0SyAOPmEPjDY2KWN8WY5GKrZ/56f+P4Pf/ITf/Jb/uzFqzdDTOyRFaKjBjouQTqvQCi5TWJUdg/3hmvV029//pMffcF3mjmql9P1jXFpbVt3StGHM030iY998Jm3v2Vt89LH7jzYeOIZovDipz50tPPAoChkS48PfK337qTQoUVNqEAQkMGoRgAVCaoAYFYWDBRVEEmAgAoiYFyWtIkpWjYIwMzq2/WBu7g13hwXbT2dTU9iClVZTbY3o8DO4dFgOBiNRo8ePbr/YKfp/Nb2haLIOh9chmR4NpvvHRzMZnMRBRETkyOylttY758eRFFC03ZxONpo2qOmbSD4h/uPbmxfHFVDWQgD1m3rrLXWtV3oqVKgwGSgj+Xo53mwUjn1eOhz1hGuyiBCEbVs+8A5JEwqmBKySeLZps0ra594dV8ptdFHSLm1BoFQEJJzdn62LPLq6OgwE0DKAOB02Z1MT9iStTZEWYb20e6+JImSJuujapSnFMWrZXaGysxYHiLi6Xx+cHAILt+4eNmN/QsvvrSeDT7juXel0D3avV8MR8iWXY7OSYiuLOq6K3vuS0wxppHNRq7w6kd5fm17FNp0lvS4axKycVzk4LKsa4Nl7flmSVJczZSBAKnncUkAIsMmxpiSIAgSqEpKgfqzjgogEHFKkqRX5wGrYRSRDpEEeN60BXqU5XR3b+/o6PQ0DkYTZtpcH1qmvtj8Sx88AIC///4nb928tXnhypN/4m8BwM4P/13QlGJ9+L9/19Z//61bf+jrAeDwJ78XCEDO14cUFagXuV88N4Id/LN/YIhUDajGJFEt2LIqygvb6wCwXhiJ9Tvf9vT+lau/8Ku/GaDcKmlj7KxNUKRYAQ/zPBsNYTPWbX0yW57MF6d1OzuDpIoU2XiQlOJaOYjEIYTNalAmmaWmkc4KKbqIFEJnDCdRNYSoMcQxVvEkLl8/Hjx1UccUUYVFVUiEolgkD9ggJcGSCjnxJ7cPhrbsQkwOoyYEZGe6FOZNa6KeWdLCzbvl4dmJMThcn0yG+bgyA0e9CFqAEpIwWmKDSCmh6fN9SRGBWBGYGWhVAKWVAo57DEnfBGUiEVVEYBSVnlW7irgGUYFqUCzns/l0mjmzvrUOAGfdMq8GIYTFdFmU3EmQAe1Pw3R3v8vQb5Xm8ji0ZxmuN9YuAYrxEBAwaY558EFJ58v5op6zYQAwxiBS17XMmFKKMSAzWYia+tR4UQEVJqi9PprX85X4DAy5KOlwNo8KVZHLSbDMxvB4Mmq6JRm9eGk9y7Fr2vWN9YQG2Qjx2taFLM+zqrBMyiYoiEI5Gt98Mnvx9den07PKOmEKAqd16NQBtGzo2qWt7Uuj3ArGhIjee5sZtmowlda64Wg0yIfj6t7u3r37DzsfJQmwKGECJWYA6dmtAKyKhoRD0IRorSOosvzs7PTf/MzPfuEXvv+5z/od9+/dfu3lF4PvKCEJVNaIhhhiFyUXyl1xOJttbGy/5dat8XBMSL/xkQ998CMfF0Ah8RAcOiAlQ8lHIkXUKCkqqfc925PYHnZtZHdpsPn4E0+85fFwdPeNbMA3b2wPrXWFdSWNclofF4UjWxScjygbQJ6jwXo2fXTnzssvfPrgdGFGkxnghRtvNc6lhOJVoucsjxRVUNtgXTlr/a1n3vHEW5/P82xvd/eFj33k0vrmWx+7FX1M1ioJQkJRBiVUpD5Ek/vMLxRJqUeBq2q0ziTf1U1TlcVoUCFp60PmHFkXyQKQIQ4xGEtKXggePHywCJ0tMuTMsSmzoaNcvBinzKSUoiKR0QRBIkDseT0giMBIRvoFSAEUqD8fEABqiqSASQGoXyq9NSoaU4oqCkguH5IrtnKJsWPOVAAQCEV6dIgyQCRNyEaBV5RdBETu0bJkuCeSKBECQHozxRIBwIhduNyC94mYTXF4NGuaYNlOxuu+9fWsxsSOhtmwZKww2JzWR5vrpLlR27XRsAMJCkpgkiKgDWg+8Bsf/rwv/jxypu7k2luf7dbWT157qT3doySUmaBJGF2RadIk6kSd4RgFGKEaQqUh+q7tfIwKHEIAgsZ3Xj0jkrGLef3ku975GUlefLSfYvr5n/rR7cmlv/I3/ubxvCssptbPF7UZ27Zr4+K4DYGQUYMkzQfDF198+a1PPXXz8Vs7D+9nuSPy07PZzRvX5d7uydnM2jKpJ9R7d+49+8xbXn3t5U++9EoI8fT4NAMIkgzbBHT92pWzsz3CRGxEGSP71gMQ82rqpav02tV0EskAABMgk6imlLLcxRAlRRJgxNzy2igfFnY5Pzk7O0GUjY3NrKpmi8b76JxdNmFv7/XW+8FobX2rSiktlrVz1lp7eHK8s/MIkdfGo7pu2qZTTTlTWWTD0eDw6HQ6m4UoTR1SbMbjzfniYd22zprd/f20kdhaYlpOa2sdE62mOL2aDFXlza7Wmx7/3iKfiJBoFYkqIm9uAIQsIIpg2Ypoip5Y1zfXkGS+OFMRicEgagqT0db6Y4Wf+q5ryHBQQGOPjk6alACAyV67crULrTVmXI2GxdCScUzLRV1VGUsWY+jDKJw1UJWwWC6Xy8V0WpXlYG3zuc/4zA9/4pPD0SQC7OztXbyw+eSTTxGmwSA3BALA1lCMCpoZCwCOYTQqLo42/XRWJ4ndfFJdySZVe3ASk2SDnIwjabq6VUU4n0IJAiqSYVjhRQH7GWffccXVg/sYOJHzs4kAoogoJkTqjQqIikpEIAAppo2ttRKbnDHWdTurRbDr/KAqCMTXNQD8xfdsXLp4SROWZXX1xvXJ+uYca8iyAAEAAElEQVSD7/tbmGVMTlWIjRLt/Mh3IxsgRjL9tdz/se9FRAUm5zTJwx/5fsPEBKSqZEAA2QBKjAIImtRl+dbWFgBMBsXp0fxLvuDzNm8+8/Mf+LqlD5eLobNoWUV8p11SRIDSMo/sZHzh0q1r0MrZ7vH+w/39vaOm8xESInjQpe+MyzJrQ9e1EoDQKKMSMhm1/eSULBrjHCElZcX5Sd3sTatyayaNWkw+WkJgiAAJVbmPQab7t+84NG3dJZdFjSAKiL5tI6Nxed15zzYJ13WjoHmeV3nmGBiU+yiOflBtCAj1vNFjuY82A+JeRpp6wx4AgAhAEugRqD35gfpEpZ6J0HdLFfro1vNjJyspjyaT5aLruvmgyAFgUddi2Ai0bbO9fWXRNI+95anJ/ul//sDHnnvn24Nr//1P/4cbV29mefWp12/zYBSURIkg812dNAlH733nQ0oaQszzMoQAfaOEEEBTisRIZIhAAWNQUDHW7B3P29yN1saxXQAAKtq8iN53IcZU14vZaDTc3FxPQG0SbTt0+drGljVGqPTCs/lstlicLJqJy8+Op6A6mYyrMm/apKFDpOFwwzeNBe6STDs/a6O4CmAmSEWZW2b1scwcK6immNRHyHJOGQYjwcemq7PCDQdlPWvqxTIb5mBsUkTDzKZfbkISTSKSIKWeTpQRospkPI4pffijL8zm4cmnHnvf1cuHD3fnp3NKWk8PH+7crevm0fFpG16vJuObTzz1nrc+U5bVyXR+797dD33048uua2KcDCrLFJPHlBnUzDCoxBid4eA9kgYvBglYCXg6n1Y2L9aqa9fWL26MpqmDWLcRfaQSywLiMtQwLkRTpgbUEKAamJT20nNPb5XuR370Xxzv7BwH/c8f+dQXfdl/N9nauvvKbmby4P2KV0ImdkFjqsoy1Iu2WbbN4vM+57Mev3lj7+G9+Xw+WJsQE4oipNXxWwUEJaXewEKIZFhVu66thpWILOd1URSj0dgwJ0kMBggBqUeTpZgYAAkUpOnas+WZEPy3f/jvwf8fH//xx/8GW0ZDYJglIknfdJXeRbIKICDFtFJWA/cftD7OG1cAPtVeepkSA//2iZg5Xey1bUiRxpk7ODg82jsx7DinC9vb0+msOauXi0aFrly71S0Ka/L1cZabMjSpaTyqPZf19jlAkjRZZz7y6U/fuf/o8uNXCKIkzYfDx597++5t9+j2q5WCy0zovHXWAlokZExJEqgiCZMQJcvAzF1iUUhqkKNIVGVnaxUYlMVkPUR8+unnR8XkcHh9b3f/Z3/u56/deqIYr127dtHf3V0ujsUHi8lYDkGjikYAn1D59TfeuHH18nh91DbdcpG2h2vPPff20WTyyU+91iyhhjrGtl3UIHBx68Ld1+7cvHnjiRu3QOXFFz61qJeq6ZTZWJnXcwDuQ6+QkJngTYU5rc5YitqDCt5EEaBiHyGRojdAqpKCLybZeDwwFhezqaa0trFWDQens0VTd0TmZLE8PTmuymK4vo6UzWa1SFgbDxH19HA/ts3ljXVCXizr1ocMVI01xEVeXL5w+eGjhydBlssG0aggKqyNRmfTs9iGRdcRwNrmps2cgGTOqiozCgD2OTGACBBjOi+A9PxnWOEOeyUQERIZUCAgVSIyKJEAJSUAyrO86xZVMX7xxRcX00VpcxYKXbc2nrzr2bcvT2YvvfAqkMmc29k/QGbPdDibAsBjVy5ff+w6IWR5EX3qutgslikEwpR8bGa1K5wrSyI2hIjUdX7R1NVgIMjDqmxms4vjyezClrXZ1cvbZZlbJjZgmRAEAEQiAajEvuRjSpqWT956x/x4b/no2CAMijIfTtq9Q59iaTNERZWgGmKMSZRAAKGnx/chez2gdGXoEu2j3RAVQPqRKPHK996HYSj0ExLp6U+iqgE0sjXWOQPCIE8/+cSE28Pj04wkdg27fFhV7WIGAOPxGir5EJ584omN9a0Qk7pMwfSq6oRIysDQT2VQEICQURFSElHFIKoAbMkaAPHeE2dKViQmUCJRSQjqrAObAUCRZXEwsNaenJw6Z3NVZw0bMoSWyCEbIiYAJFFtQycoVV5dfvLm5tXL27tHL7/0+tHdncUilOi6NpXOsct96IImIERAhQjKvagZEa2iUzSIiVQULbI/mmaVHW4PztpF8NFbNtayITWEhjmZk8PTo6MTZBYDCUUVCYCBfGhjQrKOEIP3DSYqbJ4VIBC7kIIkBEUiu+qgGzIACEnAcJ/uBqAiUXsIq6gA0Qpb2qvaRfv+KDATK5AqsEEVUg2/pQRczfkQgCKKzbONrfXjxTLNpwCQE9XzeV6UripPZ9Pt9cHmxlZ97+RxHv83b/ucF17+1GG28bnPf9ajg6OXX7v/lsff4lyREioQIokggTk5Oegab10OSilJ23aIyGwIzepMI4AEKWkSUSUgDkmXTZdiSGk1Be2Dt3PnCIGIi2qYFVXdRa+tB8qcIBhNsGjCMkwPTufHJyd5Udx/+GBtbd1aK6rl8VlVldYaRgSVMhtAhGXTArmTs5Mg0PfMQhAkQ+QwgQZQ8WwIMsds1Dqsyjwv2OWa2bC7O3DGg3cORAQBYkqrs2ZKRFZjAkTLpkMvMakKqrHE9Xxx6bnnbtx4vKnrT37ihe0L6xe3LmxevDquxtPTvfLe+kc++ok79x5kg8oOB7eeeOrw+Hj54MHx4eGD+w9CChcvXb57/35KySJo8AY1M4TgUJUJ+m01qrYxsnUm6dCas6Y+WJ688ug2XoWNC+vTh/eX05OsyCw5G0iiNC1phujKIokNiTkCk6RYR79x6cK7P+ezf/Y/feDi5vbP/j9+5tN3H37e5793YOyybialtcimP3YyhRQX0zmCjKry4vb6pQsbh/u79XK5NRpZZykE0NhvOH0aIxP1PRdJ2vN4Uko2MyHGru2yIltbWzPG+OitQVKLqiRKKVIS9V4QhYFB5vOz2XxGmQGAD//dPz4sShFAMEVRknUmy4HMynSqqBoRgfBcFQqwsmH0fRfDoKCSRAVAk1Af7S6gAiFJhxJFg8T4xNf+JefsdH4WJHCeDydF7lgEk8ibk6y++gDso7gBQZFWOV8ISkT9BgZ94jrRild7/jBJ7MnZaZkPprPT3d2D9Y1hVQyW81qDbo0vLbTdLNxouIGuWNZtvdTQQEhNnpcaWxGFPtpzhQlGEU+5m9aLX/jlX/u6p/6HEBbkyA6rehY2HnvSltWrL79QSBpYy6H/SyRVTTEgsyIkkQQqgKgGEWLqmrYJbRs7z4RkbNvEfLS2eenqw4f7YSnlYPjsU1fAmX/xkz+FWZGP1peni81J2TayXAQWIYyiMSGmEG3ULBseH+8dFsebm+t37tyzWbk22QbgyXi8MVmH4WhzcyNJvbf78PjgeDQsHeIzTz6JSo/uP5jk1cODw2FV1MdnagVyjiGJ95l1xtngPRvusQq4koRo/84gAKKmJIq964uj95CULYIqqU5Gg7KwzWL2b3/pI//fLJ5/7f/sT7t19dqirXPfKgKzsdaGlFRUzh3evbW9b3aorkrm37K6qbxpku95uAoMiswmxv5ITNCH7bXd2ng8PT31nbfGaddenmy+67l3bI0ne3cetqlbzhcxojGWjIEsv7e3CwAXL2zlzmXWtj62nZ8vGlBIAPPF8vTsaGNYXLh0AdkZCyK4Yv4zl2WJaFLXPrxzOy+rtz72WJZnWZH5rgu+LfKBpEAEhtj7KDEZohQ9ADzx2LXh5tqgosnAlY9dv7a1HRpP1h7NZ7XvRimKj0xgTW64S5wEAYBAVVGT9By+lfhJFUFRQd6cP6tIOs9T++3BxQiAoEkSIvXxt4YYDfmunZ21NscL6xPTnDjSsFgOyjxzXBh7fHYGAMNy0NTdZLJ+5cp1RVYwNiuCIihaY5KkEAMRCwqRQULqTbshrILLlPoW1ZtZb5KSJOlpjYAaJIECAGkSADCWAFJM8d7d28t6bvPxYJQzAYFCEk3CmSGmhAoQ0aAaqlPbdF2W5aPLk6fs0zXq7TuPDmYnI8zLslBmHzBpn5uaRNQYUEViMMwWUGNKAGpYgSpr22XbPTge5VnuTIyhVSGDbCwa0oiLk9nu3UeEJkFwZR5a3zfeVISJiDAmQaJ+eGHBBu998qEcAqBPErX/bAJxDzIHNmwMq2qMQQESicGeYtrr9s7dJQhEffgxIUBCZsx68RewAiIRaFKFJHLO7teETAxalMXaeHTv0QEAjPLcNw1Zo4aH65O1jY2dnb3D44MAzYsvf3x/d8ekODZ02C42LV8dDUZM6JcInYJv26YaVtOzRddF5wiQu65bLpd5njNQjAkgWWMxJQRQwBgly4tO4vHZaYhalbkCKTIAxBhza1USkRkNh7PFIiKSzVrRelob9rlxsQv7e/tNlFZlPl8OgYfDCXNmrI0iXdCDezs+tC5zN25cHwzy4Ns2ALPdPzjUkIqsAgCWCJIURR02scuYEuAA3JDKcNIc7pydRF2enM1CvdToMmuGpfq2bYMJHEWQTP/+9+I5YuYkqiIaYgrGZgzKACcHR+94x2c8/dbLP/fz//72/Tfe9vbnNNlBObRGaDC69fQzW1eulqMRu2zZNafzhQ/BOvfYE7fWppu//oEPhChcWZAIKaIGSyCkCJQbq6p9EzemBMSKyAgxds3Uv/z6K4V1T73jGR45MEyS/GIWFqdlNV7b2mRmQ8wIDAnFa2AwqfMdCGxubj79zDO/+uEXNjfWT2N45ZVXnr51tfUBy0x9mJ6d1stmUA3A0GBUuipfLmapbYMPsWkubW4QpCJ3RVH6ehG9jxJFhI3pOxNEJMxMBIgxxrbpYopZZofDIRMRMxmSvkZHQBGIQULLqgoqCZDSdHba+dpAAQCf+e3f2S9hL3/X/yqSSJLEgKS9wYOAQfXSH1zF5B3++Pf0cU9bX/VN/Ssn//L7ATAhXviK1SuPfvQfKyoCEAgg9rKLHs9blrnvMkqAzEz9WWJFC8KV7XZVzfSzF1xxoQBXK6wSnCduiiLTm4Hlqw6Q94rgRFgj5aa4ef1m8rpebTssMWamUMeDmHBx1oUEuSsUQEC6pjWGY4yAgiw9609UyRKgSS7/pV/74Fd+xZcPR64Lfh4T2lzAbt140g3KFz/6IdN5WxY2d6opxA4NCWjUIECohkUpSpQUQWJKEpNNStYi4MmieeyZ602Ms6ZtOljMfLM4NmXmMqsApwd7y1lbt6nIh6meiQZJ3hijEFXVdy2gyVx1eHhalNmVqxf3909Gk3Hw8c7t++L1+pVrbbs8Ozlrl61IcKiZNXdfe23n4V6zWH7uZ37213/N12xOxhcubDUYDhZn3/H3vvvh/SNndL6Y5S5LKSgkXB3tzx1gon1F10eEImpKERSMZU3RMY4GxXhYaoxd0wDAn3v/e0KKp2eLYjBatt1stijz0hobQ0BrXJ45BoJgJEwG5XiQd03j2ybESGxUoWljFOh8KKsyq6ooenw6jQm6oMtl41zGhEnST77xhoBKSk3XCRAQphQQOKWkfaNK+nHsSth7LpvvQ7ihn930eUO91ZmNQeiRgNTn7xrDEgQ0GcOXL13a2tiIMThj2OY5Z5nCYjYV0C75Rb1EsTFqUkTERdMAgMktgtZ1vXtwNFs200VzcjYry/zGlYvYytHZVBG3lYpB5QyrCgBkmTPGAKCEaJkxeFJIkDrxClIVuYRget67Qt9ERQTQAABvfeqxYm002z88Odx9/m3PP375xv37D5NzB/OzTqVtWpMgYGTKjHE+dnheEiYVIgOwqoBUVZMiARFLSgCARNS/lasPq8K57qffSunNAQohMYTojSHSaJHXhwPQ5YX1tZ2TEwK7MdoIbXt6dAoABGzQXLtyg40j44jN9OS46SIhjkYj6xwiEKhhBokpSlJFZOo74USoIYRAhJRlKtq3rNpmWddLJirL0mWG1QlGCQkAyiK/M50enRzv7p0YhLKwltBaLjJDApKkt0AxowCmKF6DYaMKIk1IyQzNlcev7J6e7j04GG7cYJt3MXIvhupHSqR0rgwHBEmiIuQcEhsi6XymlBbp5I3dyRNX29DVvmud46QoEmbd/u1H88OzSgtGG3wixBgjIgcfyJJzLqYUfRQDSRKkqIpEjIht51tPXZYFUQCw1opKkGjZQa/8l0RgADGliCtYooCCiiooMoOyao+xJCIiw4gECCSKpr/XEvSnij4pt5cogwrIxtrk1vVrAB8Ni4U1thoMIqaYZLGsN0ejDhKvF3ZzMN8NPK5evfvG3uFBF9pHD++CREZgFULxbZPl2XJZE3EMyboVfomZkTClpJCcdSqixGwMEACbtu3my66Jspnl+XDYLk4AYFE3o6piyylK6Ot64GbRzJZ13dSoPKlGmcmisKhuTtYvbW1XxaDI89lsGkJsgzfWxK5r2+Xp2fTCBS8bOAt1lFRZeuZtb8PbD3b6uzc2ID6ExlkgEkRnxMSZf3jnaOfuw3q+GLiiYHPWzJdOebNyV9Z0CaGJoWvbEHNnkA0zCpBhy4itelExxExskGJX54WbT8/2Hj168oknbz1x68HOg62Ll5iKugln81MVP1xbL4djZapGIwHa2FqTJNH7k+OTvd29R48eAVHb+lhmrBBjtNakJGTIGBLRkKJBTEkAQFLqpEOEEP3Bwf798dpnve359z9+M3ZNO5sul4vZ7GxjMBhvrIvLrLFEqCgCUTXFps0zF9sUO//Kq6/cffQAUDbGw3GVz06PQK9KDFmW7R+f7D/aeeaZZ65cvZZI5qEmlT50ZX08MgysygQb6xNfZPPp2bJewvnkgXlVL8YQ2qZp2hYQh6NRNSytc9ZaNqyMZIgNMyqkmDyggGY9FzFFTNOzsygJU+wL+Re+408/9yf/7lu/9a/e/v6/Cj03BPowb1JIl77qWwHg8Cf/8dZXfvPWV33T4Y/94776OfzJf7L1lf/X9S//+qN/+QNbf+AbAODwJ79r6yu/9cof+uZHP/bd/UYjKSaJMUbQCABJApJm7DjPENH7DsgYa2UFjV6txP+1h/ZAln5S0T/pgypBIaXkvU8pmWbROsqG+VrhhgNzsZ3b0g0RMHSiHaTIXYhJ0FmnEKJvQ2iZCDQl1T64gkCABVAlRQTymsDag+PpL/7cL/3RP/IHdpdHHYotBjbDerkYbl567/t+x71Pfnp2coyhLsss9SgZgJS0t/KjAPqYgl/GRlQYIFN0aFufxuXgiVtPPFrWs6b1ShGIgNq2dZrYyMC5C49tLZb+5HRqKodE06OURJmsaOzatqrWu+iR3c7u7q0nr1+/eSnP7dHhtF0IJHvvjdd3dnZCqIklL+z6jWupzA2aL3z/+0ZFNSqHm+trw7L0bRcNPH7zyatXrz+4dyRJsiwjMiKhP5D0DZKIYojeBP8CEiIQU4pK2KuK09r6ZDwqDZJv614x9td/8Tf6q/cN735H23TWWudcXTeOOTcGJHZd9/2/ueJ6/f3f+a4c5M/80id/+2X/zi/9nG/7dx/47a983dvfWuY2hSigUcQHDwBsjERp2sbYrCzKpu2QdeVeAjhv/Ky8pojnsa69wExBeoCx9D4J7ElvkMQweVBASCmoKgENhsVTT97yvgmxE85C252enB7uH1y+fEUJQ4jD4Sg1snewV7iycG6QOQAQ0kVX37/7YDpfbF+6ukjqZzNDuHXtqixn80MyxrZNXWRZEiVGAszzEhH6m5xRnCUmcJmJKMY5azgGT+RUNMaICgjADD1Kv8htaBbjUfX882/bGE26LmxduPzy2cnhfJoNRl3XGrJkDBH50K2gqqgAQCsxuGhM0s9FaNUm66fUK+JB7xpDfNOfQIYANIaYlIFQNfW0gZRiWWSDYpSbqFE2xpOb16/eOdhBScOqODs+LrICANq6vXjh6tb2RWOypunqZrpcLtqmPp2ezaZzZ93W1uZ4Mh4Ph5PJxBqbVIlMT86BtIKrI+DsaH9v/2C5WC7rerGYicTJeDSZTMZra1WVO8Z+prY+Ga2vj+fLxcuvvrK5vc4mHw4KJC+qTOyYrTGrQxeRQPBRhPs8YxKS1nuTm8nm+unBrJqMmUzXBavAZASDKhCBgiSBfg5LAAAqIgxIAohsyPjg9dTPHxzbkRMQqRC8hs4vdo7nj46dJ4SECiElAKWUkMiwSaA9zdxlDjWIaGayNoUU1Yc0XyzPKimdGfkcALI867u3STUkQRVWCwCaRAl7CFb/DyJq30jr1T26IjGCIBryMYAq0ypDBvpCGLkP3VTQKMLG5A5uXL0MABlCLanpmmoy8l23nM7OUkLLMTOffLh7KCBFGTY2Tk9PFrnhtfVocoHMEMT2mJFC8EcHh85aREwped/leWatUQJUJGBcTV8ZgEV1Ma/P5osowCY7mS6yskr9LkI8Wy7XJmsJ/NlioUgM+HBv7+DwuKoGg3IQYxLfVEU1tugy1iSynM6mp4bIEV/a2qzGw3Hh1obFyfRMU7d/vDtrprkr1y9t39q8sH3zxosvvwofeUFDbVkKi5wChSiNiufZtDncP6qbWNi1nLO27WJniOnug0Py9fqVi8bF+clZ5wOiJSY4TwA1xjKBYXSWASTGbjIojEkptQ8e3HnhhYm1dO3a1YsXLijkPuI2XRTfcIgpxqipGk2AcL5Yzmaz44PDw/3Drm6vXr52dHzWtMuQMKk0TWecVe2YEFVQBCWxxZSixBAk2dzGFBfLJWXZ4eHR8cnpKCut0HBt4/LFS8t2oZoU0eQVGyeMyqqcVBODLI5Pqmy4e//BC5/8JA8ngwKLzKXZ2VK79uR41i5v7+08fvXau9/xu8aT8Xwxa0OgpjUhEKLJs7xweWZQtZ0vRKQoc9AhMYcYWu+DJGLbe+B952NKeZZVo2FZli7LkLG3rYisMttBNYVOfFATMCZBQFYkqZezntrTP1IKb9YZqgJCSgBA8FtfsmK/AAAAHf7494oqGTr/ntVviOj+j39X0lVjHEFSjNBbb/ppadugRlGNEVClT1xYDSh++ybXdxhW+gxR1ZgSAgTfnZyezJeL4JOPIcbYSzlU1fsuxmAqs2FNlvHAaoECCFZaF0MiZCVgwxJFdMUCVxAiRUpIkLzXnnWxgrtBP+uJIRpTEGe/9Eu/9vu/9EsEYz4qAnAiyopquTzJTPHEu9+7v7vz6N6dvZPD9dEgtwQxOZZFsyBWEU2+kxiiDxoSRGHFwmQhhM///M9HY2dnpxGx9m0bPLElCxISaAh12y2aYjC6tD7p9/Fmdnjn9tEyis3QWtfHGRjrQmgfPnr0xOOPLZazbqGpg67289lMY2eAMusYZHtrcz4/W8znne9OQ5jPZ/sHO4ZM4TI3GZm7905PZ0QYU7LGhdAf3AkRkiRRBNUk0s/DVhHpiKDIiIwYJDiLo+Gwyl2KKUUp8kF/X3zTu9/+PR/55Pd95ON/6OmnrHExBctoLPpmKSn88MuvA8A//LLP+RM//YE/9bMf+6k/9AX9DfAL3/R7v/h7/jUAXN1chYn+g//mM/+nn/kwAGhsVDXL3HQ+t3nW0/dtlnVxmZJwhlbpzHdstL9vmGkl8el796iIwkQAyER1XRMjM4kAEqckxEZBAIgMKSSkPu4ejbVtXT/55JOf/dnv/dUP/AwxgzMQTVUMWx/PZvNyUE3WN0KT5mdnV9Y318pxlyIYAQAkmJ6c7R/sZsXgueefe+n2nZ2jQ0BYNjXH6JxTBQiCqRe6kWHrrBBTljlQYGJJgoiGAIkZNHYtsZUoohpiBFVElCSrCbWCxtSFJnNusayXMY42L9zZ2Q0gziLG5GzGVdEkbFqv+CZ8i/CcitRXjHg+fU8xAgARpZj6FouI4Co7U3s/nUD/qgEEVO6dERJjjIJAIcre/uGtt90KDE/evDmfzZIP+zt7m2ubAFBkg2tXr6co09mxybLxeO3SxQsIulzWDx89unPnzhuvvcYEg7K4dOHC47eeGAxHAkpgACCmiIQp+r29w9u339jZ2wel4Wi8ub15/eqV4bAi1elyOT09K3LbG6Q31tcGVfVwd+eVV1/1HYyLKnatKzNjMGlKIiJCgimqgvQVAYKAomhiJHSYgrjSDdcnwtT6kKsAADGu9MYgGkFUQVkhoSGXGQDEmAiJiAVACAemWB7MQ2OhRB5AW9exC+3+tAo8MqUkaH0orUFFLwACbIyHpJJUAZGN4YJzH3yIAiK175ad9aloutCFCACZywDUR09sJSoqdF1gRHaW0AAAsVEg4t4wrIDE7ACSiAJQ3+jxIapoFBGiru2YAKiPBJY8t4QWU9DoURKAOAIAuHph42znMISOQNdG49K6B2+8sTUeW4VPfeLFa7eePJnOfv4X/uPVa1c4z+892m1TioBNiAlVEbwPi+UshK6sbNd577usyAFBJakKMoqKIZNEo4TWx9PZsu58UjRZcTY9ns6WrqgAANgs28jL1lkXJS6bugnaK/nW19Ymo8nWcC1jjm2o65k2nhURMCPeXNuYTEZrm5sP9nYwhovr60Xm2tAtjqeKsH3jymhzuwFYv3rhvRe24CMv/M4v+92VRK1TTiyLZnY00xpkFrqmAzIcueuCB8iywSIsj9p23a6fzhbtovYxxSRdFxE89Rk1ClWeGSbLxAilY6NS19OSTVvjfHrCCDF0g+FwPpsZpykasGKI9w/3UvAnZ2eCuL6xMT2btm0bmm5tMh5W1f7eHiqA0qIJlrGdt5OxSUmDjzazDJhUk48MEVIekyRmIdMmzSLWp/XRg8MbxdZwUDVt20qHLreOJKUyK43NhBAMhhSSJk6BkWLnX3vlVUDKyqKra63PMLaXtzfb/YNPHe1+xrvf9fbn36aEs3auKFZ0IIgmS6wAaC3nWRZ8m6zpfGOyIstzUTXRClHwvusa33VEzJbzssjzzFjbG3UZOMakiExGgUS161pGZuIYEvZ5fqTKAVAIISbfby42W2nmVDSR0GoRXekg9378H1/8qm/e+oPfdF6drETCW1/x9QBw+C9+MMqqernwVX8cAHZ/7DtFBIkRlZl69XbUfl2NXdcGSSCOsmBzVMGYErHqedkEcM6hQEQURJSQYvTLxWJ/f29//8AHr4CSRAH6UxYRikiMwWAzKoaj0oxSIFUBQSByhvrmXkoShZJKjLHHhMQQDBMT9awtEEUgQiZKhgglWmMEwWbZw4c7H/jAh7/4v/0dD+fHWGYhJAZwWel917GZ3Hxi6/qN1z/1ycN7d2JHBSmDGrIAmELby8w4QdeGQTFIVs4W9Wd+7udPLl54uGzVmrptDVuNQQQIjQ+BOZFhTamdTQ1b66xx5pmn3nJpa+Ph7oP9g13feNSWIEUP1WAU2/Zg/2BrXeenvqvRN9F3dehaZ5wRKIvi6uXLH/zInd3dnXsP70KCzFlLZlhWX/xFX8TG+i62TYdEWWZTFGKUVV+AViEI/bgBSKFXCSAIJFGiflwijm1pySCEtotBnbW/7WoCABhjmTGGzhCk4KXr8vMKeq3K+icXN8Yf+LbfQ0jD/DzMaOD+wzf+rtaHrUnRv1I6mjUNZ5VxJikQrzJfLFvoPfqqlk1fHUNvRkLo5dCCq3mqSCKCrm0vX7owX84XywWRDcGTcQkEVfv4O1A1hpKEmLS3hj/++OMPH91dLGbG0cI3qKmVcDidHk6nQlRWg6PZ8aistouJjWCI6zADAENcFfnWxjobt/Pg3qgsn3nyVlEUDnG5XGaizMwAKEC4ik1lJFWIUZhJEWxmQEQ1gkIIqElZIa04IpBSjDFpEsP99yIB1009P12yqYaDwdTHl964bVyuqpbROV767mTeKlCfwgCyCtaDFWiLAET7SWevGae+GpbfMtGtvJeo2ldICkRKpIJMgMiqkmVFnuchSe398dm8qIY6O8qMpcHo/u07zmZFXgLA47eeKKuhT2Ksm0wmw+GobZsutCnIYLj21qcHbbNcLqaZ4dzatq1N5owriPttW30Ii+m0Wc421zc2ty8am2d5ORwNRGLwKc/s2mQyXUx1ZTmGyWhY5NnJyel4Mjl7dNwu58NLG5ICOAOEQVKMwsagKgEQsqREIExGkoIk0QiEitq07ZTmpR1HETzXcPSdItBeGMsi0klisgYRfHRsvWoyKMS54DqVh/PagW33zvbPjipXjqLJs1GWrBjtOI+QQFIGtkkaNYEKolDSNiQ7yp2jxWKZNGaZ8zElxACwaNqQekiAoiWJoARB1LCx1pGxbAyyAUSylhGZLSCgrGDffVOdycSkgpKCtG0rCG3XhRBSiCohpWBIibEo87X1NVANlKwljBEAttbG5dHZUgIDjvJic1hikb/l+uWT3YPTMvvsZ97+6ht3bdfdunxJH8aD02MNiQ0rSiRtQ8fKPvokMSbf+RYIgSCB9IG7ihqTEGHwsfWdTz2agKMPQGCy4pXX777/ve8A+BUl67tm2YSgDKqKtFwu8iLP8qxwLtTLhvjKjZujcpA7A5J86w1RmRcEGFPaffjwYH/PWaOgkCT5iEGNzRiLw7P6zPulb+plDQBN0gIcSNacTOuDs5iAPXBQZ10kthEEMGpSUbXUerl07YoE//qjfUjgg0qKRBFJk0qKyftOJTKI+pZyQ8ZI9F3njaOd3YdZbp64/njQ5LJhvUwaU4p+Uc8X8/l8NvMhjtYnkmQ4qC5sbZUuiyG+/PIr87PZhfWt1157bS+mrc11AzCvu7bpCmcNm9R5gwAa20UbCmutU6EQybmKI3FL9z55e/nq4fPvfG58bdNWg8TaeZ9lZVQwiMxcNw1lBkR9F53Ssl7kVeGYj0+OQCXXMMjsE5cuZAaefPe73v/FX3g8mwZJnBkERJaqGCSRYEQZnXPO2eiYQSSk3olDRFmeu6oKvgtNE0KGxNZkvROciKKkGEJhDRO3ISSMCVGSZwLLxhlHyF0rxlqy2HR1CiEGH89FoCH6N5svBEzIACiKSEzMMcnOj/0TBLz01d8IAFFRFS5/9dcDwMFP/SAAWLfav/Z/7LsvfPW3XPrqb9v7sX+IBlMkAvQhdL5FEQBATYMy58wGpKTifYucGTZRIsBKyAigkhShx8qKJm2b5aJeHh0eHOztLesmczkgCMLqNKXCDAAGEcz2+FaMqZspElsiJOk7BL1wKCqlhEkgCfTcJwAjSoadiqoiAYtoEgQlBJYYOSOJgsyLzv/8f/rF933J+wdZddbU1tqQhIiL4XjatCDklW+85W03bz7+yidf2Nt5MMzdsBo0i4XvQp7nQSNHHOTD0MXd07N3f+7nXHv22RdeuZ1tbhs2bVM7Ksm3aDRCRDYhJatkLXfeKyfD4FuPqBe3LlzY3p7OFw92Hj7cexU1GHK+FmuLxWm3PSFEEU3Letk2XfJxVFaI+vjNm4Dy6OHD9a31PM8PD46MMb6Lo431TlI7n2JW7e7viWjbdSpq2YqqiBD3+xol7Wm4K5GWruQXvDLMIhaZG40Kg9h638+5+nvCt+G8AMLoW0ugKaDE0ui4zP7+l7znT/3ch77mJ36x/5pBVfR9hM/4u/8SAD787V9RODLGZI5/7w/9RwD4vt//ORujsmnPQMKgKBZN21/8lEKWmbrpiIzJs0FVnUyn1mWErADJe13xo7gfJafojeG2q7/hG7/eWvtn/+c/Zx2/GexKoP1XG8OsJvmOkGIMw8HwsZuPnU7PkqqCRkkEcjCfTmXu6+7k9KzIh6mOT2xdnYyHG7ZwqnsHNQBgSpZoe30thhQWs2yAj128aK2rp6dqbEGGYooh+q4rqrJvxlBiQUXshS49ggkAhMEYZkEh7BMaMUmMMaWUiCnjHACIjCK6rCxKbMWmvPrQx1+4v3+MA4ciCaPJs1T3PNuixwpqL4o6Z0WKJgZkxCTaF5EhpTelsudGur5VCyKCSRVVgEATkXkzVcQ5h8SKYLJsVjcRmNAszqaEPBwMDbu2iwBw+eo13wU2phpVhujk5Ojw+GxRt9P5ouuCMXZQZhuT9cySY2qjZAmIbACTIEpC34bGx6waUkiLJswXzXz32IfYtcthmW+tj8vCZbm1zmXIADCs8ueee9v+8TzbOS3LcjwcWsO0WqKIDeOK/qhICEko9eciRICQEiEjpOGgCuKbtkE3Xs23FBFpdXTspWaoABAltb4lMo4dE0uMyXBUTSGRwsDZZSfz+Yy7MBhTqZlTBQFiU+auS953bbIYIIFQkkggrOCAIlKoG0KVEMVygIRs5nVrbB/lBlGSUWJjFRkMG+PYObImISA5w6yqyBZXUZ+gAOcuT5CommS5nD56tHNwdNI0TZ9bxoYR1BpE1Dx3hvHo6Hhjc2MyqnxIbAgAtjfXqke7i0VLwTcnp1/6333ZMzf+8KNXXviR7/t+2y4GIFnwMDt7+43Pa6bH7WKB7YJSUIqJAhhpuzCfzV3mmrbzoXNZpj3sB/uJAEnSLrTBSxIJSUMMqmytjZKKorx3/4F53+cAwNm0Hg3KRdvlCsawDxEBCCnLXZVl4rujo93l6dH2+sbF7Suj0dgYJwptiE1dH5+cnJyeRtRBUTYphJSWjTe2FHC/+anbwWYdqY+hbWoA+I0PfvKLP/NzsRjvHB+nUxk4yAANImgiZlQU8ULelXmWmTLRjclw/879iqzYrFmGEBKzAAobIxoXi6UhHJTOMI2qfH1QMZUB2stXbkzn7Wuvv3Ht5s2MXTUYDyrTtRBiA6Py4uaWj6H1bet9UeTR+xTCydHh6cm0WdaXLl6E3b1yUDVdmC79eJAnQGOzEKP3wTJKiDF2jimpOuZlVBV+9ubT9z71Wuq82vLkbPYbv/zhjZuXH3/2iY3Lm6YqW5+KnKOoLFsEUUlRojUOAQ+O965cvTIevhRDLJmeWhtfv3GlnIxeu//GO25eayQwY2EdRCVDWlAyliRmjthZUSGD1pB63/ilj0FVwXBW5Gxc6GywFmTVk0YkVWh8bxJkAAgxdl3HYpOgGqmqIqVUh7rMSyRp6s46YwyTkK89Fq7fd/g8PLiXXQEgkSG0oCgJL33VNwLA/k9833mFBBe++hsA4Ohf/ND2V3wtAOz/ix8+PxCuOklERpNKTASUooQ2pNQBQFcvjbPSiUegrHTMESSm8NtYhuejMAQRBYKua+aLRdfU07NpXdeMBKQqYJAUSUEIlFYIFWsgseNMCGJIIuBspioheY0SY0pRokpvV5Nefg8MSiJGREABwPaENSIgVKDKSyTUTmI2Gnz0xRd/+Vd//X2/47NDCsvlcjAckJoQoMwHi8WCCZGMrYbPf977Htx57aUXPnF0cLxWDbJqJCGJmvF46+xsetws3/n573v2Pe957f4jyUsuhhwXg6I63j/2azlG0TzLjSOkGFU1MFOMcbFcZJlj5tOTmcvssBq/9cnxjRvbhyd7Dx7sHhwcN96vXRgs5+36eHLw8I0k6rLMuDzLMzb6tuefffGlj0cNSJBA8ipDoMxmN289Nl8uti5d+dQrb2xubR0dHKGSMcY3ob+3NMFKm6X6puXnPA8eVTWpIoJjHg6KYVlC9CkFa6r5fN5/cdIVsU5iBE2mH5Ggjgt3ZXuyuTH+uW/+8smofM/f/OcA4KxVlTezKdigRmZQ4tVtUeVuMiim08UiBGcsM/X3PahqSqiaYsixSCCGiJGIufM+pmSNIWJVBBXRhIRt27zzne+o6+VTT73lwvb2zs5eVgz6glqSIPfOxz7/gYiwa8PTzzzr8mI+Ozw5PU2SUkxI5DUBYjEamdYfn0y3J1s7p0frRfXkxUsDSZW9DACpC5NhVVjuOp9lmcsyROiWc6ea5bnEDoykIFES9GyyPo1CtIsdM+V5YdhE8IhMSEiGCBAoSSIghXPrGpq+iSOCInpyfBa8zjT88gu/8pEXXoaisGBJpBpWNi/QA1GMuuJ79ZvLqv2j513ePpRG8E27HL1pjO+BSdKzMVfkaEJQAEI1QCRCCBpFUdCQc/npbF6H6NtwYW0bjQmdgMLbn38H/OSviQIYw4C+a48Xi4ODo8OT2cHpLAjGmGKKN69fybKsa2NVZs7Z2XI5zgd57hzYhW/P5tNuWbdNc3B4Mq+7ZRf29o+zothcX5vP9h88uHdxc3Lt+pXx2np/566vTTjL7zz8zbpuQdWxAVHOWLUn/ZECSBJBoijiIxITYA+AVVWJGppOk7Ll+Wwxi6fjrDCGdcVcIAQlgCQYk6IKoxJokqhk2ZDE5H0EImCKXQx1MI4q4VExGWKuwTtFYo6gwbd5Zh3Yedu6/nY0RoGNSBDoYuQoKCnPsp4sXHedRR0Mc1zpjiD1Q30Bax1a10W1Dqx1ScEgpX6ip0jIigKqfZix96Gpu/lidnCwv7u7ezZfnp1NuxCtdXmRG6Yit+WgaNsaRIw19bLObt00vFr/L2yvb62PPdB8f//d73znpfHo4P7dtz/15Duee/buzn9+5bXXD05P3XDwqddePV3O2xRny2USBUFQVMW29b7zzDY2HTABG1VICRIo04rbGKK2MQGAIhAxMxs00HWqYlzxnz/4IQDIB+O6azLnFJmNBe9DDGwY1RGBKzKSKjTN8enh6XQxHm9ORuNe7hi8Xy6XQVI5qLqUuhiXbeeKwiect/Fk1iVH5DImnBQ5wO3rl5+cLfXOclF3BrkwhZXgw3zpQXKXhRia5byocjV6MDt8z2c+/5lPv+XffuyT9emi3KiqchhSUkQBBZGEYgizzJR5XmS2sEa6Oqsss40xjNfWH7v1xKxurMsEG2fLGFViRNIuhLZt58vZ3sG+Yc6caeY1qjb18t7dO/Nl3XXd+trmzsHhsmmtYWMot1nT+XrZDsui84EUxPJs2RWj9em8WavWLhWbUkwPdg4OMG0Px4vTNsn+4nA62V57+rPeUWwOoo/iAyXICycRBuVgUS8f7h38x//0S2/ceVjY7NpoOM6K569dxYI/fffOp++8/iW/7/cAm4xtCUwQhCEZ453EFC0jG1ZUBY0aTJ6bEPrViZldlgFgjKuO9fnhS1NKvmvLwdA660Nouw6IDFsgNmwMmgiaUui8JyRjLRN3XVMvlqRAyL2h57k//g8A4I3v/YvWZobo8tf8KQA4+LHv7U/LBz/5/dtf+fUX/uA3AMDOj3y34VWVs3keTeiITv/1P1v7vV+z/VXfCACPfuQfiUbTQ8kEnXWRTFvPAGA+nbrMUp5RloOmGKOQAPKbBdC5QUcRUURQ1XvfdW3/Y3Zdw2xFFAidzQgxgkqSGGP/jSZiA2pRDQCBsogRScFDEk3JiwbR0J9dlVkRBJGAU5KV5acf4EtE7IsqBk0qHp0TNIv57N/97M+/5S2Pj7dKLEwMLdrCopUYS5MlSIkBDZ4lv3XrqWpj+96rrzx8/Q3sOgaMCZrpXMB83pd86aUnbz04PhFTZoZiRCYrkowhFd+JkLNN2zmXIZmgahTJmJhC54OzqKDoUbSJSdhm1y49cf3yk3u7+7sPH0Zt9x6cbL5tczwa7+7u525Q5mX0/sbjN23mXn7t1cFoULdLDh0opJguX75RupwIm6bb2dktq8Fg7Pd2dnNXMlsCSqlnUyohEFBfNUJ605vXy4iVmUxmh1XBBMt2wYba1Dh3Xi1J7J8YQiQnoTWohXUXNiZXL278vh/+WQD49F/5+lXFk2UA8rY//0MA8Mm/8EeAmchyiu/92z8BAL/wzV9aZS4MBtPhsjtZikhh2asCACNJSs7aN32HWZY1jWen2iOzViHwpCIpJcsUuvjZ733Pw3t33/n8c2traw8f7jhruygxRUM9BpEAQPtkuKTW5WTdL/7yr929/9JknS5cHlsMSYTZ1vNaJGxsXbJ2YW0GbXcWlrN2VjBvb04A4OjkeHtrPaQuQyIUja1hVxkGxNbHLibs+/uWFTX1Seox9f6aFOISllVVEa4Ydb/FqlrBWJDZJLYphf7SsMkMsABmZfHg7sOf+/WPDSbrpSsN8nBUVGV5Op2dzbsgoLgKQOCe7kvUt3T6eXkfCgLnXWhYXXU418++OQoDwwwMAgqAjEwqrMlyH44qzJYz03q/bGpRvHThChsTOhmOR9VwDAAJ0WQWVNqmbZbzw/1Hx7PumWc/o4vx9t17PoT1tfVbjz92/41XlvNZtj4JvkvB90PKGEP0rSTvu3ptMrh287GXX7t7fDLb3rrweZ/zWfX85AO/+ou+bQnYWNf/OEVR3t/Ze/Dw0dr6+tlit14uaHuTCAijYcPIAD0WfGVRJaIQJWhCUAQm0NxlmhpLphoVhSmssb3UEVbmSFq9VaqE5HqolOgy1oBorDEhRO+FraCColEcsbNkYelZsciymBJISgr1YgYQcusAOID4JAmUAEklU1wrK79csLMxBWO4rmsWuTDM+8OcSJKQErJ1Ftn6pEiICabHZ22ImXPEVJVlXhRFngH09Cbs74fOd4vFvF7M6vncL5rxcJQUhuNxURaWqaxKZhlUZZaZ6IPtU5MY+6i1x25cq156pZyZtXH2Oe94hz89e+kTH917I//i3/27P/jSTsryWA2Dw7Q+OT058Hlx2kpILMlSNJDI+xAFfEhJANmkKELIZJgY2Spi8oJMZDSEwETOGQX0MRljYmgn6+svvfI6ALz/i37nz/ybf8VGCUUEqsFgMZs2y4YBnSFb5IPRKOXZYjprQ9ceH53OptYyKogmQB0MBpjZRbM8nc/BYBd9Mdg8qKeUlchF7GLwbYAAAF3AVx/sFibPAIpq0GLMXIYDhC5UEUKSnLOC7O2Tw3f/rs/9H77t6z75y79Sn03bZZN4AUx5WSKbqBJSVxU2M2hALClr8stlxgYCpCTLZfP4lVuTta0oXJUDIG66YNCSMW3XJpWmaxVxa3vLOXu4v2ccX9ja3sP9jc31umnfuP2Gou1CdMYgYNt2DDYvsty5ru3AZCKpjTEbuE5Q2J4dTT997+PrKa8gP4mhi+CU/WlbeT493fnwbPnke569eHOrKArreHY6m3ftztH+B3/jQxJl7+FeW7ecp/WN9VtXryvg2Wyxc3BUjdaKwQjREkQHRCARBSwBEgmRACDYzPQSC2edIU4x9MAkNiyqbNhaEyEiWRTtuq6ua+cy51zfmWZm45x1DoAZyfuoIn2kHbEVgBhjTFF6uJQoAHz07/+JzORVXhQ2A2QFePTPvgPRIAICMzCCHvzE9yBgjBFUVPDwx7+XCA2zKhAxpHRyNH30nX8djc0y4yyz7at2ZUBGUxSl7xYAMJ+eFVVlQCCl3Iw4V0JMfQbyKoDovAGEAAAx+ND5lFJKUVcehIiIDKYXewDj+fFUVcUgmxR7ti8QQO9AE+lAIkpgUFVSSF4DESfRmKKzLCAxRupRGxqTBNCUEiNYYoQoEaVLScv89Tduf/xjH3vfF767GGRnTa2BBQQ0ZXmOCb0PMUTnTNdpMZg8/57PHY437r7+Suz8+nCk5J56y1uvPvb4S7fvBswiUOlKL3Cyf3xyeDAYjMAiCHXRo0pQcI5slnmJWWaZ0HdNSKko8pQ0pNpkmYZscSrOwZXtK9euXGyb5t6DO7Gl8Wiys7NrHBGjGnzunc+9/NrLUcIwL4mQCQm4cMX2xkbyYbK+fv/g9Oj45PT01DLnuWvrpsi4bwkgEKiAwCoApe//qJ5XRL1ghY2zRZlrjKnzWVkkia5wfXH9v730BgB8w7veDgqQ5AdevAsAf+MLP/PG5c0L66NP/aWvf9tf+v5n/8L3A8Drf+db2GVy3jFC6/os7d66DABMJncwyGBSVdNp3UgsXKZBAMAyR0UkEqDgPbMpssJ3MaXet4YxRkmJXaYgiBCjHw6qa9eu/tiP/eiX/Z4vGw4HINp1HXHOTKhBAVf7AaAgSML19Y1PferlrlvmuUjqb7PYdY1xObLxPiGkiNCkOBgUx81892z/5s3H+7ph5+Dg5hPXbZUR2Nh0jEKQUFMbvKKAYx+8zY2tnBCIpF6EYRhjik1dn9WnzbIuijzLckMWUiTDxuL/k7L/jrY0S9P6wNfsvT9zzPX3xg2TERmZkVlZWZlZ3nZXdbUpaDU0jVFrNGJhhFhIa5C0hMwMC7HGIBhYDKiZmcUICYYBNagddGPa03S1LZdZNr2JyPDuunPPOZ/Ze7/vO398JxI0/81d8dfNyMyIc8/Z37vf53l+DxEBoZrwqsx59fkhZoC8vj4lV463NurtCRVjRVe4IlBYLvqDk3nmETnWR/a9gQWymnEfsQNU9BH0d3UjMbPV9GMrNPiKEU1D8bMimkNjUUdQOpdNNRqVBTNl1aOT4zMbm++89uZjly+d2TvTi03XNgCAnavKCsFApB4Vm+trmzvjS4+dP102D+7ftzKc2999/LHz0hw+vHurDozOx35hecyEbCkQhJJZi6qenLv42Onpou/j+bO7hYN5bJ996sqkLje3Nqbr64MgPq7rvm3btvWj8Xg8LhBTyj1oUTscNlpq4GgFGSIWMxMDMMeMRJAyGzlAExiPRhvVVJvOEGg4koAQB8YHMJsDZAOnamSZsLVcIo2LMncxgmngEr1KBtUaHBAnSYToQgATA5m1x5L7jaoqwTEImRogiwKAVxv7YlnE474XECPXtW3JPDAdAEAGUmwIZrZYNrHPznG2ePvu3dNF47yb1KPxZLKxsb6+MR1Vo+Gd450nZmbSlLqmPXNmL4vNl0sXKu8LcBS8n89OR6MihQiSL5w9h0C9NjHnITS6t7+zt7NzeLDcXdt47sqTWw7GH3zhnbe+cXJ098qTF//+P/nVS089U5J888svbe+ulWsTaBaQE6IACiK0bczZmq4zpOEEQHKEHonBOIvmbBlVkTkQgaW+R0ICMAPvg2QZTdahOZ5ubn/4Yx/7+otfplAIsSO/vbV9dPiw77vGs4HWZVlV1UYoYyddF2HIQ5KVRVHWpZkuu1kXO4WkmkXyd3/3p37qn/2r1MQUAciF4CwmADjtugSYUeexZ0mAWDhfjaaTManZYXNaLHTP032C7/34Cy1oczqfhnIS0vGiVbIuZnOkZERU1SOViGTBcV04H3zBBChV7S9ded9zH/nE+vZeMR6BcyJY1UWO0rfRV4XLumiWdV04T4vT062dTTaqy+ripQuXLz/56muv3rt///bdB+c2z7Rt07WNOnCgEFyElLJUVYVowbtkcHA0u3Tx8nde/ep041zhggU6ms80WlWM2tPTeXt8fm/33tX7Xzt4+Nx3v/DUs+978/q7X/nG1+88vBvKqpk3ZzZ2Novxuc09LUMs/Lt3b2rMx7NT5+sza2NYaBHYyJvHzJYkAVMJpCjABCsZHsl7BoUySERJScyGaIKISM5m5r1Hg5SzL8J4MmXmmFNRFCWRITE7BD+sWJhXyfmcJQz2ZgXLenRwFCZTANAEqnnezWdiiMihrEcj5wMTM0GSBGjkhnkIwEwlqURJQkw55QcPHy4Wi+3t3Y2tM2KYJMY+YtLCDzJOAoPg/LDKKryfzY59rqu1tbCiuA5MfTUAhGHZrmo6hI5ijKrimSUpM4fgAJCZDCClbIAqq9Ji55gIXUqDUk2aRaQzM8lJUlLLWdQMTUCGrmtSyZolFWUBYEAyrAnQAAlU1dQAAwB455d9dCH4evTw+PDtt69+6EPvWw+uCpVBaJp2XAWVyIR1FWKKqc91EQBxCTor3dqzz7R9+/rbb757/eb/8M9+5s/8h3/mqSvPzm7dK8KIgDR1t25cz1FyTEvsediDlGXOGaB3YfBRGhH6IuSY267z5Jgx9T0pE/nc5XlcoEuOw/uefC7lPmkXox0eHfcpX3zssbW19V/45Zenkw3pIwY24xj79dHG3s7eeDwOHG7f+Jb0SVOerq2Z6P32YZYkQIjs0dmAUrZVhxau9nMAGZCUmUDFMXl2IsJEqtkVVR8jAPxvrzw2na4B4uAFsxT/y48+O/L09MUL5/b3JnVw3r/z1/9zdpxNgZjMVOHVv/ofgxL7ghiSAEn+6p//k7FvBvplWYStjbX7B8dtmxgCaB42QMiYVAEhxn40DgToGGM/pJxQEc1xFlVRz9zH5fkzW87RO2+/NapGqoqO2PmYEyIRs4gZqHOE5FUZmXwoRqMipTLlU3ZBFXOUwoc+RRX2LjSxQ89J0nHXrpM76ZuGdHtUAcAoVPNFs74xAdSiJo2qg+bqkNEHoKziXBFCmbMiAjl2hXPITbN04wkRnhwfHTfN5uZmxAxg5Lisi6FFZphDmNBWj13w3kNOBhpq/9jF86NxtehTWVRi1EbpYpcNACjH5Iugqv+mWGsgACGAMxUQNAZCxGExoGrDqnXoSkOEQfAxQ9FVsbiRmKGiIiF71ASIVjhm1CTx6o3rL/zAD/Tzpo+pqsYFswsBAHxRKqFHHk0n3vu6Gi07PXp4J5TV4xfPesfTuvzmN1+02Jw7d7Ysi3nTkjmGTMBMhGBFEQrHJyfz29ffPbO9URZFVVXHD++Nghvtbm5ubYW69lUxWAcMeLboFl2qQyJCdqQWEQrJFqM4lz2TGSCSqSVJDpmInfOElEWIoOsXwQfHJCKQRXOmgsUU1AgUgRGBJDMhMfqMpISFF4SjZin9yZnp5jiUSZOimYEnJznFpmNi7zwy+cETLzKu6xQx99E57xwHVwbTNolDmcXosozK4mjWIrMIRLM+q2p2ZgDQp6TATuzo9KhddirY9V2X+/lidnh47Nitr0/Hy0WUBGgOmZgKHzgUw0nvg3/80mN9SnfuHoRQKdHDw6P5YmGan37qSuzSrcODc/t7D+4/mK6tgzPnhwJBWBvXT5w/+/Zrbz/zxMUnLp7vjw+6lvfPnleV83vbW2X4wMVLbTeb3bz2gfMfmAM7AGfZWUbLiBBjjjGmKEVdE/lQFECEQKIQcx6q6QcHHqh473wIJhZzIqaUExqWZQ0Ar7319vPPPT8/OXjnjTerUKhojmm6tnFw+LDpOiAiFkB2SFSEkfdg4j0TEoAm7QdRqc0REY9ODr7ne3/v5Seu3L79D+uNPVGIqXOB1BEAzJoF+cChYMdZsxgvlb1Yw1gz8Ob6aFwfqNw+uvv2g4MfnG51HTRL3VzbtKiT9ckixoP5Seyz5Jj7xbQuphtrRQihcAMJAMjVo+nu7v5ksuY9A4Dz3nlmdCH4ImjKrYieKc+mnHKObdOhOVClUKbceofve+Z9f2Zv99VXX5vNlzdu3Hjn7bdi186Xiz4xIzNTl2Q6naSk89P5933P5zbrycuqkCXGljmU3lmMKUNdhDg/nc1O6+n43vL461//zrt3bvc53X34sFGabu6yHV/Y3emrykJ5Zz5/8403tQgicnpwdPnCRV10h7duP3nu3LIV9WQOIZoDQiJRJGIz61MCNGaWJM4F74JmUTPR3MWEIuQcqvngDaCAqhyPGBmYPIKoEvOKRioZ0Zg9oqmIgXkiEzR0IRTeheOjI+4iAJjA8ewUBBBhNjtddu1oNCmKUFXFxtrGZFSjYxiiUuggm6hoSsfHJ4dHR02zLMpye2d3Y2NjbX3dFaVIms0O5osZQQw+qIIjBtW26wFgMhlXkzGXpRUlFwUwygBLhMEuOCCfV5t1QpOcRUVyapq2i13OWRWcJzNl9L70qiYmqjLw+R2DMzXTDKImkLOoQVZIacBXoJiqAqGXXiSrQ4dqOaecEhcBEBEZFLIImDlKCMjKpREkAtSocO32g8OjZjLd8iVnsvGkkrbzzESUpKPA3mHfLEZbG28d3P6xn/+pmcX5fHnj5jWExCex+rmf/q//5P4olL3ZcjE7mh+7ws6f2V3OmsD18CCJXVNXFYI2y9PRaEToc4pVWZJJ33cGko3ZUK2xDETEjkG8MKlGQPR+/NzTH2v79tatmxfOXTh4OL907sr6Wp3SMkkLAE3b7OzsrG9vltXo2rXr9+49sGVXI3/+059eNPOf+2f/wns2pGHwGnohCDAjJFTLQOTRMKfMDoGyI60r7xhTjM6HoZLg4eF9APBlDeA9udS3EvP6+tQ52V0fXdqZTOuqmNRiJghcFCiJESxrCZBFQAHAiRliNEhxFTNmVQPMVe3rkT9azEWKgeDsnGubNokUlUeiGPt6VI9KSr0IErBvYgZkQkwCTMRqF85sLxfzdtlQ1lC4bILgwDKwCQ6gm6DEse/RcShCyqnpusXiVLWtx5uIa+QsS2c5o6ESZBX0OVvHpuV4fNh1L11763PPfQgALtSbepq0RvTeTAGyglHBkjMk9eAKCIylJPIuqCoRsvMEqw5XRKtCeXx8BNlcQUg2X8yWc/XBVXXlilJFh7KKnAUAEF1BvnMOSXcmxbaj4/snabPoNHt2IslItZ8TsKSEyAC0IrqoAMIQmRvQOjLMO+gGNcc7yElAAJmQCQAHJj0SmzGgAlg2QRRVIPWh8JXjccC1wq9P6nduvtvEfnN763g+4wK7lJlXfmEiBkKw4Ctec2WZOhER1cloHRFFuqKu/KQuRnXbdYKuKiuVjODZ164YAyiRbe2MFDBl29taI0eSM4GWYRQmUwtOWFPXAcDNe8f/7Fd+K0zWjABd6lQEQlGMTcUMRSCljGguEKKQJiBgcqioCjrk7wuHTUZHj5ganNGySSDzxoAChGM0HRIa5BSpidITdEonktqTwytb+2rqmDyxpeTYxZwTmEcjNAfKObPYyNXCQUXZoylIMkgCosxuCkbID5ql90WfpRXsFCTmsgzUzwEgIQoUR8eLPsamjfOTpm+7MA2Tza1RvaY5O+cYYXF8Ujo/HY2cc4P6M1gKRlUV2/ns5LhL3f6FS/V4/c133j3t4pnd81u7O1cuX/ra7/6GxN65SYZc+uAYLSMAcE7vv3j2JW81xSbOG03Jl+XG3unRw1FRVwZFtn5hIdGI6kYtqfX9kjVXrpppL6LLZeNcWZZj8sEM+5gegcdZQcSSiJjqgAUWMXbOkpoAgVdYMR5f/Oa3P/jC0x/+2Ie75fLe7VubkzUx78swmawdn54oOAXX9DIqq0BMZlGjJfDoEVLMqVXJktSsb+c7Z87/4B/40a++9PJp0063wcjUrIuxqioAKDhotrRYUBG4CLGPJpmi78kLIyRYEiwKP9m5+NV/9Y1bH/89884fmSs5nN+sfuD3/9BbN6/fPz5KOU3q2jtEyefPn33pWy+++/Cg6/vH988/8dilui7vPzhO8Mpk7baFcOP2nTv3703G0/NnzwTPW9tb07XtoZ8hhHJ39+xiscgSi8nUV5XG2M5OYlxevnx20c7YxYJhsVieNqdR42hUXTz/+MWzj89mp1/87d8sNyYf+exnfuEnftIhcEx1OWlMFDrnKpIOlLGgB9KM19YOZrg5mtw5mnuC3b0L33z3xtGdo+c3Jusjf6+dp8CHfdzauyiaMDdXNjfHVXn/5P7RyR3BngIbIFqo2JNJxwk9g5FmHbpviQi4gIE47oQRAwH3MfvCyqxp6L4BYi9qnpyaMbCoDrVxCjlJQmMiYlCA7BwwmSZjLhnJUbFcNmVRAcC8beqiXh9NHfv1tXT/4MGDB3f7rh0VrhkfnNvbr9dH6rEeTQEgC5BaaiOrTYtiWteT9XUO5fFiOW9vr62vl5Vnz/WoFhmoJDyYih0zADTL09Fkg1xlbiQY1NQYTNQ9IvYaqqAJgCewnE0lx26xmOXUm+RhGc/MiD4rIDmHABkMshnEJG5IcqiaquacU0rD3kxlQBkP6wtSNWavmlKKqsxMAKoqRE7VcpKUxDlC1MENwEammExc4e8+fNh2uVm0Nddu5IWRqkJS1j46AkLlIrSm92Xxt3/1n/7yK1+dbG70XfJjN1b96PTx+ur9f/33fvxH/sSfuBXn7fzEm53Z3dnb333j5FoiMAUSMZCut+AK8q5tG+dGzKSScpa+74Wy94UIDe1LYAwCq/YOGITDLNkA+cL5x9umu33zwROPv68IWFfkvamqK1w1mSKioXvjrWsxpth1n/zUJ648cXnZLba2No5O5q4ohpebEFLs66JMoquCcBVCj0hIgGhVWU4npXcux27oVM9iiy4BwKgagaCIZpEi+EkZgnbba9Pp+pgDsw+rwZfJVAUEcXBY0+r7q7IFBRUwwQG1kg1BptMRPjwysHo0AgAffNv1bNB2bVlWMbY5UVmF0HRtyoKIiEZsA+e38DnF3Z3d49lx33UxJgOBnFSMCA3UUu99KZpQwEMGjbXzi9kD78pxyV0vngw0DZtEMCMARHDOGSXyWBUVOs7J7p7MTroWABxxO294e0skI5OIDd3BPKymshCyZDHDUTUWlQF9u1jMs+a+aWbHx47Jh4DM7JyhjsaTPjWL+el8OV/f3GJfmAKYqQkMeTfBqi6z5roeXzizffXmARJwEdoYY4xoWnGNgFnVOUaCAQGsoI8YWCpgaAiEIDbcMACRiJh52EYTrfJqj0RoJGQDRRJ2ntDEFBCYsW+XVo6CL+7cfPDtV199/qmnqXFiACzD/Go2dCswI5pjZnXBG4jqKrMwuB6RkXzwRtmG2ElirnwofChVchmcD+XQZtP2iRCqeuQZvfcaCqOVtx0AmigHR6ebvi58YkAqHTuWnFfks6E8F8nUwGxAY8ccUYXQsXc5ppyjgHHgvul5HCAmyRltyG3AEAZDIiQQRlNU0VmKibEHiGqL3M2XC/bk0EfJhSEzKZE6yiqasCzrZU7LxRI8TUeTREnIEIzYlF2SCAAl0OmiKTwSKnmOMSMAJkXyzjsAMKRF0z58eBBTnC3acTG9dOnxYq0YT8fWabtsDHKMHajO5/N79+7t7e72XeuIkJjAzPLx7NB79/jFi5euPF3U0weHJ4vFwnk/Gk2Oj483N7dGpS/rmoPzzhGZCQNA7LrHzuw9fmHfofapFcjITjN2Ta7r0tfhzvz0xr1bffBvPbg3Q3dhXCU0dnzSLEJd931fFHVZj4EY2aeUgTibmQmqigwsABjea/aokonZE1HOse9SUQQAuHbt2ndefu37PvvJbtm/VpY33r5WBj/hCTs3Gk1i7E5OTkZlqVECu5T7LrfM5IXITAl7QnIAmtmXf+AP/pHN7f3rN39V1VLOvqxEJSZNSQDAdCBIWs7ZoWOHOYnELkJOzjtPWvg2ScnlfNH/lb/2//B9L9X6bNl84Xs+deHy4zoqnl+fMFMVAmY5OTrY2Nw49/jFb7/26utvvvnUc89funChKv1yMR9NJ+WoVHJMtDaZ3rhx48H9O3UVnn76fYtlLwre+Rwzs6/qCh318QDRqlAg4XK5BJSNre2Pbuwvn4ht1/cSsURk3Ns488FnP8royunWT//8T//yr/7apz/zXV+5O29vnUCNqFAWpaZkyBG1xY5GoxaTHwWELLm/d/hwY3eva7u7D2d7pm/EudJy0cr12w+dr86dOVOPq1EgkT6U/vT0RDQPqB4yAI2GQEiKwMCIoARgTDDsoR0CGJmpqAoyu6IgdupdzqKiZOCHEo++15yHR4aqElMRgmRANQXN0ucsVVEZYIxx5Ec7O9tr43GPBgChLB36pALgXFnunDm7ffaMSezms9w2B0cHY+smW2tA5NAhosYMiHU5Go9GfU5m1nYp1DURPbx3n71N1kbMtHpnEhJR7ltVAQBXcM6JkhiLZHEGaJKzERAZ6YAdhiEBr1lSH7u2aZqm6fs25YRg7DwRDyXVORuboioBDpl9l1cYM5UsOaVH7ujhXbqqzBg6g3K21T3PucE8NXzZqlweBinEEuScDRC9QwUkvHnn9r379564fB4ARCQjJoeFkba5cK5wvu3yaH/3p3/z5//Jl35ldH6LukwYN5CeG60/99C2+vDKb37pjQ8+f+4TL9jspKrHDsf758+99J3XKzMm0pRMYQD3MViWiAgbG+v37945Ojra3z9TFFUfIzMP0A4xVUumZuCGV1lVuq4LpfMumFJK8eHDk7W18u69k92dde+p4uB6ZRfuPbh3dHLa9HFja+PJK0/Ol4tQFB949gO//btfBoXgnOSsAsG5IZfk2KXB5wC68gdlASPnXE4ZwIL3UfTwaNYMk3geGsWtye3WuIKu2dta293cEsfmPTp2RopDEdxgUh6iyGCoqqgmWaJqUlAiJjUZKCUAZREK7zvU4eHrPXvPCiBdZKbgfc55XI9D6BZdnw3VmMAQgImYKIucOXPm+PDYBsCgD0DMSICoaMMZpn3HdckWU1xSxkmBRcEi0bKgdWWxBsKYHKMn8kyF8yDoFH2BTs2tb274HO+enADAaGuduradn4ZRKUimSkRk5oCSSNN1gExkklPXNlnFe980zex0tljM7929k2N84onHpxvrRpzAzIAcF75WtK7ru5g8IIFTExUDgOBcY13XdUpWO3/5iYvffvt2GNdLMcm5qkaaMoJjYKOMSDYMOwMLEQ2GVhpDIMBB+BwMesOLb2qmRI4GccyGsILmnJ1j5wkRPTOhgWjquwi+qkJRBgAUtZdfeePKxSvVdEOXC48wiCZopipEtCrR4DB4zRhAbVVMgwTeOZEsjtmHYUlMxA4o+JAR2BdFWZFjMfT1qjMIVQ3MO5dzjCnllABg2beA6A0gZW8IQCKGHgFMVJIamzczAFZREWUCUBRVRFmhscRAxYVwcjCbT7I3AVFTEzADZXSGkD1H05RVUhaBpcZWtM2RTNeqMTPH2CfN62WtMRfkjN0y9qLi60L6LEmQuFdJokguoxCCRyKfERwirNejxXJeGQWnjjHLgOvGNquwBwAwOHz48HQ2Y+fOnzmzubaVurSYzR7cfzCbtTvbW5O67qJk6TEnk1wWPng3qkpHbJaypKqqmb0CPrx/d2sXL184D5LP7u+Wno+PDyfr65vTiQs+gzkmsKysAGBoKfUf+uAHJ6Pp6ex4bTzZqOvDW6f97GjrwiVaqx5iitt1F+bz0ouryo21RgTBJju7pyeLw+MTZMZh30goqilnUyXniBhRh2sRGQ248eG6S4Q5JyIKIbRtAwAbG5u/9uu/8elPfOLZFz5SlaP93bMvfuVLh4dH6xvTyajEcRXbXkUgxZT6pGpIOWVG9r5UBe+dYVq28ff94I889/yHZ4vTruuY3VAoSOwQZWiteXQlGDzzOhQF28BMhyzCmlHRTCGQv3b3wZSL4EZScB9Gfn1nbJIxh4IVtCrCTrErImf3z2/v7H32uz/nnPPeOcSU2vF0Uo5H2ej841cUYbFYxC42i5lzLIaiFpdtTlElz2ZHdVV3fcueq6J0CJvbuycnR8su76xv1yGEUHDpzYma1sUY2fed/JE//L857uY/8RN///v+8kc/+KEPf/nqr0QAA7QkOescMxdhvLtdTEcdyZSQ4yx38ysX95tsGLuC6N7B8dnti47Cwf3jqhrfu3vPUlybjGaL49Ek9IvT9a3j5bKpJhNTYGJ0DlAZEdXQzBHBKoJgIhmRgBBWT2RkJlACZ6CMqiD/Vo0dDMIzMRGJsiNAzCaOmJCYCoOMxM6XmslMR3W9vrGGozEAqOR51x8s0+Hx6fFstuhaY3jy8YtPXnqMp+Mb77zTzU6nezvBByCPGbqY2fmY25PDk8Vy+e7NmwezRTUaP3Hp8rn9s6ayPJVRXRmAD1XSaGDZ8vDYqurauSohuCKUk0mTc5ca50rJ2ZDBBIcHIsLApM0p9zF1XRdjHHg0SJRzBgRkryakOuRgAJGJXEpJRHU4t1Y0sFVYxR71aCBi3/fD8c3siCilNPyj4T+tIKuxyVaYRQBGIgVkKuaz2etvvP0D3//5mJuh+1HNgjI633nsQIqqfPnWtS9+4ysf+9jH3r7+doImjPASlB86gfW7J7Gnq8e3f+VLv/5HX7gynYzAubUqPPHY41NflsmQMA04SgqiOUcl5qZpJOeT49MilCGUKw7hIyj+kMZ6D09Hq4o1lYQiMWcLzh8cnMRYVrV/+9ptlWho7Hhtbf3h0VHsc4qpWls7ODzs78Vvf/vbJ7OT6Wh8MjtFD8GFbGJGfYzoGIAQ3mtCBFMLBTOBY4q5C4S9pD7bw5MjpAAAfZ9CcN2yif0yYcLAexuPbaxPfVW5EIZC22G0AmLU4YeVAUxW7bqKBMxcIIgQMVgvznEUDd57z31escpzSsG5NnaImFIKIbRdBwYh+OFqZgYZEQEcc04ZwcqqPLh+YwDtwKoHU2GoDzZQtbIsc4zB23/w7/+R8+fOqEJRVkkSOP3OK1+9f3AXOBgoEbghIq2KjISUknVNQx1vTkZv3LoDAJGsGBWOULseAospEzljBspmOWdAa+fLO7fv7OzthVCoapZ8eHSccz9Zm04n47XNLXacVTUpgKimPjZIuLWzM8yMkjX1SXICADQgphAKQUmx3d3Z2tlebxFaHdpkAIxFEBid86sevUHpQhrK1wGQAFeFDmBIKDKYg4fsu6qK6qopAwmZCJCZGMBSSqiCCJ6gqktCm4zH3jtEqOv6nevX520cj2tDIuKUMgw6vKIJGSMOzHn2gDxc/5BWlXQIw6WFvPOooo/K3JgZKSiAmCJ6RSR2CpBMiZ13DmJ0Bn3KfdsDwLs3b3V9j2Jx0boCU0o9RDfyPgCRmELqc49oWWk4WRWI0Q2CV84Wk8aUcw5FaCwvSSdMLpoRipkiGbKgLSRnUMkaYxLCDqzz0OZcpjyelogoosEzEgFzt+r2QUbiEJaLRggo+NznedcC0RJyRewzRhR1xIiW825ddZgedI0rXVH7dpmA/GkbMw6AEwzOrU8nj196vO36e7dudX1UB8o+K/hy8onv+vTN61ffeOU7ZVUHz4v5Ym06FqmZoCi4WVrwAdllsWZ+mlIGdGf3tyejOqV+e2fHMwEjkHOEBKoDNBVAQZtmfv782el47d6tO4ujo7M7O2d3tha3x+3iZGdn49dffnntzNp4Y/KVF79+4cln1tfXqzAKPjy8ef3X//UXX3/zLeeLpIZ96lIzOFoVYTgpTE1FyCERDfwrMEw5E65aIb33AAIAIYT5afcPfvyn/sJ/819feR9vbWxeevziN77xtXfeerOIYToaT0c1KqSUAKEkMsemUXMkKzCjghjAd3/u85/9/Bdm895VTOzMULLELnFwRRGGRwwziWREYM9mliWjCgwQcQURNcgcQq8mStP13WbZRSA3Kn72137rd9964xOf+cj7P3BlMvbt6cl8sehOG1AUxaIcOfbz5WldVRvr01AV5J2RJ6JQjW7fvlOWxdbZ7cI91vedqPZdZ1m7vmsWi53Njdl8noUBcdEsR2UV1crJNFs6bebOii61Jw9OxxtjZjQVyFKEqs8ppuV/9V/9ueefe/5v/fjPkvfI3Hc9Gfag5SjUm2O3UdybPdjZ2ticjBzmuVNi2Z+unVkbzx4skveHSSdICYpZvzh/4ZxX2xhv5gJni+ONetzMlzffvfGBD3+o7zsRdYiiIKZM+F64eDCaDoFNHapgCAcL6qqzUJGIMZhmHSomHDMTDS4iNiMw00zsiJ0jNGKAbAPdP5BCTrENnqabawDQLhb37xzMjueixL44Pjn1pb9/cLS7u1OHAKHoNbEv0HvJMJBAkbmN0QC3d/Zeef1NQmJ2i9nsnsr29mZVjJummU6nKXbMLJqJAT0BQFGVxGFcT4vxWlQYxtbURXROQGCQOwxMwcwGCavruq7rmqYBMCIekv+GQEYGaqBuyKAAIZgbkLiqMtQ+D5Q21UcDDQwHPXjvzCDnuFg0fd/Xde29FxVYnbOraamJ2TMz8tCMmVMmh0h0/caN03mzvjk+bWeiRoWLmkdlsdTY960f13//p37iq9/82g/88O9BirduXd1N+P5F2Lt3Wiu/uZxtP3725Ve/c/U7L3/8M585aE6V4MyZ3Y3pWmxSKAf+zLAg0FUFLuBisWTmjY1NQk4pOhcU3kvMrb5Usw29IkiAlnNC9oAOzYD45LQNoZzPe2KNOSLCyemCnW/brqrqew8f3Pj5n1cwVe37fjqdPvfsB954/c3YdVU1BkTpMxmJyCr9M2QYwQgwOFcEL1GIqY/9SZMWMa7V6wCQRVPfHh8/KCi7Aq5cft/umR1feiIm9sRsyEMWkZiQRCA96tcc1hBKtNrGAYqaAhqCDaZXIswpVtWQ2u3KovLRDbJmURRkJn0sfPDOx5wAQDS7oXhZtCyqqqzuPzggF3JWedSKN+gtSdG7MomJ2AeeffoLv/cLhMpEAi5KDhVeu/3WtdvvugJUI6gAoIgmwax91J6xyI3ev3V4fnfn4v4mAMyh3yxGZNJ1MfiAAGjq2TMSFqWC9SmfnJ4ez076GEfjSVEUzjkCrMvx5tbGaFRJzilF9iVkSKIKulg0BjYZT0aj2owjRIj98C7Pj4YDEUG0M7tb+2e2Xr12NwuVRRmjeC5NLWchJgQmMlgxvoe4u+Lq3jWguofxWs1WdmlcoTgMHslTBuicc45FIpipWuGx8M4TlqUHS4CenUMgBfeNV177PV/4PjFbLk/9ANUwVRFGxeEZSgTENmTyV/KXGZipEgIwoVCGHGMsqgTA7B0DZ8lZM0PhvcuAokDskUlFUTQ1LZo55wHgG9/59ubmlkN2YGUoFJMYiiKrDEhsU+NI5IgdMvJAw16BkgA0pyET6bw3xlnuJ35UZcjOsomCz8wtyL35nJmdYdScEVvLvVpnMgJX+QIkmwmAjzn7MiyapaQ8GY1TH5sclxAJXZ9zlNyRLbtoSNkXlEXIyqp0RCjZFKbB7VZ11i7G5SiENlsXTTgMH9JzZ/fHo3Hq45vXXlvMm2eeebaaTq7eukNkKjnHCKAAWlej0lPsW8mr7zgmJqQQxCz44EKpQM6HsqpSzmtrmzrcUED7nAvnYPB7Iw1vPwONGl3AJy5feP3bL2szD+fOTnc2OKXd9Y01f3BpY29nZ/Tw7dnZ9b31evzG62995WsvvvLWq4tF67kkT33K3jkRIWZAQwBJefW0Iz+8IYdSZgSUlNH7IgQDSTkOjW+/fO11AIAv3YE/+JvvHZI/BP9/fn31Dfjb/8smAAD8OYA/BwB3Tv5/fgsSMrNqNpFkioSrglkZsJKM4PrYKaAjx6SAHkUJAIvq229ffeX625cu73/Pd33i0x/9kLhw987DUShcCEVR9CkVVS2gi7YlQm9B2XEIbdttbm4P8nPf9YRkCEUowWkZQmyXt2/e/MALzyfVg6MjVVXRpu1FJWkyxOPTGRmps5Pbh4pGghShrOrrt64vFrPf/8P/8fzu/aoeLfLDLiVRY6CEsLm34Qq8e3wfnE4noTSYH5+eLk6P7y8/+P5nP/zMUzcfvLTsulmy9bWNg3cfoCt9EbaqUXPaYvDb586tqea2Pbr3ECSFwg0dvIJANsjpOCzShhPGO6dmklc8el3J4auNNA27HhJJ2RMpswEgkoqoKpkCMiKB4YCEMGImVgXvnPO4WGTvaW08BoDKhboobQz1aLq2uQWEp83y8qXL588/9tJXvspkG5vrvqwAyEBFlJ1jj2ZY1qO1jc2zj11698bNjY2N55997vT4GIjGo4mSEqEP7pGXg51zAMCuKMq6KArPbBmimJNhWQWK7x11AGpo9t700/epaZoQwnDVYCYFVBNVQ1BkUgMDAwQXY6/vbUVVzRSRVtVFq+XpAMwzERnK9ubz+Ww2G42qqq6QiJlSGnaqpKZsxEMgWgEIouRqPH797atvvvXWxz7+waqsmtxgFvV+LjmYm04mX3/1ld/4rd88Wtx7+5VXzz938fTe9c+6rUu3Tvg0Lsyfmn3muz772y++9K3f+tKHPvlxHBegsHV2b7y9cf3du2PwasLMKUcEYnYSe8e+CK5wflhWZVG1DACPCsyHB4gOoJYhn+wCA0Dfdd4Xgqvu5tNlN55uHB0/zGJlFVSzqi2bxbisADGbjccTZjo5OtqYrl26eOHerVtHxycxduSCIIhk7xwygCE7tqxoklNiKoaEYJLc59zGKEKMDgAWfd/1p9J1myP3/ieeeOrKE/W0osJ7DoRoauwJ0ACQgUwTIijoqtHKDJElZiBmBrEMq+ewDk0NVVXiciYpAkDOEcrSOe5jBBXN0XvOsQ/1ODC3mJlQ1chB33eF91VVra9vPHjw0PugaiICiACimpHROERzCJqUouHXXvrm8dHD8XSsRkpolK/eugXeZ8k59ghqZio+ifnCe/RtnxW4ifLqO9e29zcB4JtX3/zUc8+rQlQJBoxoYubAELjwk8L7GIu6nq5NY0zeF3VVE9Lm2joxIyIqMTkm0iQEFDgcHB4dHRxt72yugDIO1QyIyQ2j8Ar1aWaWMwJ+5pMfPVz81rffvlWMPQgYQRYdFKXBjQRIBBaIEsgwew65+FWRCA4k7SESr6qCaGaDZEarjaOapIymRVkGIpU+55RYHfuubx1PFoulqAHzS9/4zlPPPHPh7G7su5QzAKhkVhscLoaIpkOcHwcA83BOmqmqZ29gjfSWBJlEhYPjwClGQAC0lHomZFfYwC1SyEm8CAHEGLkIAPDW1Xemk63Se0rqmdCwHo0EsU29d+IogGEWCw4tQwItBq+hiooYiJiiY9VohIJwtJyfGVWefGYVgFat6ZfHXTPLXe2L2tw8xaQgCB0oEI6qKrBLKQ685rZtlpB6D4Ur+pxVZCnp+vHBpJ5MR2Pru5PYLyR7DFxw0mgqHmsHCKox9pitovTM+TO37t6d9ymCj0mjEQAwUQiVSRbJk3FtOY+qsD5d6/akj7a7u3P31vXZ8eGZ7S2TZJKCo5yi5ESFF4WiKLrUeu8BkFCrUPgiOEdVWSGRMuWhjsgyIg1DdM4IAOS45Hoxm7fdYnNrb2dr7fa7N0IJa5sb1KI3zLNmM/FGxDNuUkT+u//D3335zWsQCg1WjEYVV23bqEgmcN6pKBA458VkeJKISJaMhqDgHAGQWiYwAtAhEApy4ckXiACIm6ZBlb/2l/9PP/R7P//g9rvzk8OzuzuF47s3b7/5+psHDx4sZsuD44P5cvb21bf61JzdP7e78/S585eeePbixz75kVBUomGxSOTCX/w//qVf+OVf29zZZe/JuV7EsoAY9jEULmfuYkueHZerTkkd9GKzrECESAAccyLyhB7RRFM1WQeM71y7c+PGz3zrG9/+9//QH3zhwx9LXTuux1kyqasYzExzFpW27YB4FIosAqCSEZma5aIuS0F2xKD2ta997cb1a2+89hqyffxTn5murfVZuj4i+qZdsBPI+uDOfTAcTUcPjg+aZpm6/u79u8v54nh5evfk4Oa9Oxe3tmbLxeCuYHLZrFof9yTeuar25cgfPbj72Jkzrho70RrpcHa0s/vYB598/KXbt2/cuxdPlzFDVdcueMkyCdXtg5u2sJO+ubS98/DOnTs3ru89ds4XXpNUwZOFGKOZwMB0JTQzEyUkZGcmACKqTDRcjfBRFQGuYHQcY2+qzAzMkkUlMhKAz6JZh6JDNgBgVgRDRIfjtcn6dAwA09E4nCskgoErqvq5Zz9gANvbW928eezcuW653Nja9KHKqgqATJ49KNRr06ZpD2cnT1y5cubc+Y3NDULev3C+KIJAdm4ghFjK/SPGPACA49KxB4Nu3nSdyxqISyBQNcGh/QLIgJBEYtf1bdvGvn/kuWREAgV0xMQm5pwLlokxD2hsR25leVYFWz0AAGQwNwzc7EezDDAzItZ1jYhN05zMZn3sx+MxYvHIDIEuBIcIogA2lAMieYu2WC5efvWNj338Q0w0LSqJsaHcIK4XxWnbfOXLX933E1yHB/fvbW/VP3z5uae+/UDuznsu3jw4CI9fnO7vf9f3fv8br7z2ta987cPf9UmnaXdjbf/C3s23bhRmjVqGDAaEgKhELKoE4Hl4VOehh1tVVfPwdhEx0TTYVB+tf1ak8CQJAQBEVGan8/WNaVmOzWLbzEfj6uTkoPTUdstl26jZcrkYbDCnJwexWTx2bv/05NhMFAyDJzNGRKQsmlJvlpxJ4aiuS0mpXTYhcFRddj2hG/rh2m6xnJ+cXZt87PlnPvKR5ybT2hyO6lHBQTQb0+C+kjy4ZT2YkHMClgQNCAmRDTSR48KxAqYkCESozFCVgQANBABS7GOKZVX1fYySNMaiLEVVcxqN6nnbDzQ1BjTClNL6tFDA4+OTARFB5MCUmWFISpKTDGjIzh0dz5B4Y2vzZHZ8crI4PJ11uYnWDWhFX5aqvUQAgsIFA227NisnQWDXqR3M5wBw5/TgN7/51e/+4EfHG2uL2UldVI4towmq4wGhYzFHX5RFUSFScKH0BdOAolEmIsKUctvllNLh8dHJ4mhvb3tnZ1dAVEWSJtUkWSQDwDL1fY6AGNhLzuTw3JnNH/0jP3L1x/7HpLksRl2fYXBtD58HUeeYmWOMNPjczRB5EN9pqGB6pLT+ryXXf7O4VlMkJqS+742ZTEBTOV4TyfV0HII7nB22bUtcRut/+mf+yd7u5sdeeO7smd3VmGJilJCYhzp6ERxcxMPYhQamZWBJ6XQ5j23nmQpyYEZM7Jxqzm3TRRhNpgzKA+LUbGA0pDY7x9Lo0B+fU0I0RKjq2lCKUBhhFHUMWRRBmR0gZTNRIIQ+Ze+IBnxT1CS5F80mWdQMlm2nlfUpRsbDbnk6X4ijxiwZlOxmp20iy4yiKmgOoS4LS0lFnfeqairzedcH3qzGhsDk2pQWkiD2a2sb5HzKuTOLqY8I2cSpjdVYTcHa1PUxve/K49/1e3/g1Wtv/eTP/1IiRqQoGQb2uhcEVpX16WRUlm0zD6Hc39oCZsdIoFa6ZtkBKhIQYte2XdePxmNy4Hwoa8qSEZHM0DJkymCeS5HM3psYAPlQsAoCqCgPbwYwA/XBiaho2t7d+ebXXyIH6xubWWEWez/euLk8vd7cz5sb12bHD4/n9dqGI6ekses76gGJHIrogGNXVXTIzNk05TyoJWbG5ER0YHCbmagaKDEBDFZOjn2cTCeHDx/89b/5N555/5Pn9/co8O2H98fV6PGn3/fE08+aYowpdW3fL178+pceHj54+pkPet52RXHpiW0uyrbLRCCS5ov+7beveu9zTkboH9mRDCHnBFFDERx4AUiqasCARkaGCKCDORxQJSUx4ly4kEUBxfmQso2rzcLTN7/5zu13/85/8Wf/kw9/8NnZyaFD9qu1vs27tu+7ZbNcB5uMJyDiXECivm1zHyORAELwxwcPf/mXfqkqw+c+//kYsw/hZL6oJ9P1zZ2+T1s7uyLREV26cCWnlMHWT2fz2aw5OXXJ37t3961r115+482/+d//P/+v/5e/+IEPvfCV134RRAEgobjx6OHJ0ePnn7lx8+j+rQefeeGDy6avds6e232s7+bz5gBRHtucfOd6P7N8mJXJ67KB6Ro59gJX9vcfLI8Wy0XhvSzbozt3L1y6kDGlHMkKRRATAhyELLNVdzohJjVEI8dsw40G1ICZRYbyH2ZmfATpRRggCUPl8MCi5xBINRmomHrmEMp7927ef3CzrOqyqgFgfXsTlHKGlEyBpqEoy5IQ+77Vqq58KELJ7AFA84qi7IKfrK+VdSUKZri9u6umIZSOGcwIfNYIOFzUGUAdcxlGAMBYkPnC1zGpZmFiM04xY1mCkZiiAiOhWs4555RzjimlGAe4P4AQo6qowgDeJyY1JaJkOebshtdluKvqo7nr0bigMHyWcHVqxxjNrKoqZu5jl3M6Ojqq67qua+d4gO6qKaoaDrs3NYHgfDZ7+62322U3XitzjAXwIiesg3r/5mtvsNoHH7tyUvQ///rv7D955Zn7Gt68H6x8l/Qo64eeeWZtb78E2tw/9/a1N597//unozo5t3/hDEN0oEigZo8kbXGODUxVk2VZZfmxKAoi6vtuSOUggnP0aC1sqiAiNiRSCJ3zzjnI0HZNTgkQUh/H47FZv5zPkExyH4IbRLf5yfGF/TPd4tTS4pOfeP76u28ezuaOSJEG/JoARcmm4ggYBcwCDdQlMWQkTlFFscsRAFLqpt4/c/ni9tbm7bv36kXl65L1aG00GY9HRV0YyOptDYK6KmVwzlfsk2hKAkboipT6GBOicy5gTGa5j4kAgncraVM1pVSUdQgh52ymhCAqsWsLHwrvclIiVMneu67txuP1vu26vnODWDDg/lbWqgwgqEhoRLBcnNy68e7Bwd3rN26g80ZoJNOtajj9mBnRmUM0h0hArKDOQuy6tos566JtAaBDu79c/MpXf+f9Fy5dOXNeYhKzbAJIaopZzZS9E02enUfv2DskVLRsJtrlLsY+xigqxFyHYnJm/8z+GSFTMjHoYp9UmtgNJuhkAgSIDiSBasHu4Ojh8x/77L/3R37kb/2//sHZi1cKj5KzSo8I3nml1ZKZiIaJCFewaQK1wRI1vMxDS6zIgJ3AAfNoNohgNCCFqqIuGCRBCOQdj8uwvbXRNA0RkfNJBNRCVb7y8ut3b9z6z//snwYABTCwnIQ4Ezs2AzQeGNQmiMNlwFLsjw8Pu6YJzlV1yY6SZNEMpo6Qq3K5XPbtcvhZMjkwNFEzdYSL5RIY2rYFgIv757s+F3WBltk5ADmZzadbY0BOuSNUQVAzFUADJMymljPb4PSyZNbn1WpeRHJOaqDMs25x7/R42Xbl5kYPkGNMZojQxQREwKgxeudGvhh2tZ5YVB37TjVGwaDsyqzaxsazV6AupaiYs+aY0VDITvpujH7WdC4EcG6WumIy+uQLz/nT+fm6+gOf/+zP/eZX+sXpsFdjIu/Ih1Is+8kEQdF5XwTQXBdEoDnHAhU8EvoY+2FhoSvwASkNl1VzzoGqqqQcCQwQfShjSoiIxAyARGaiMvBIhqUdqWSR3MX+1u3bwHz2zDkPoRyFhhHP7iymOF+2gtwgQhj3EXLKiNkMTQxohVQYdjpqmlMCWzEqyTkiEpXBQ4bvcd7NeOi4RhpG9CKE2HXT6eT67Zt/9x/8wz//v/9zvhrtXbh4eO/grRt3zu2fzymxc1iMdrY21m+8/i9+5Rd/9Tde6vvRhQtn/5s//6dGxTiEuulnhvrw4cP79x/yCs2jSMI89CUZmKWUi9KH4JsuKtiAowcbnPhABqKKDKQCoGSWVZgAmTUlEsyilmxz/dzp/Ohv/N//9h/6kX/nC1/4nAuW+64uypxiH4KqVFXpHCMjG3dty8xF6cflhpmKc8RcVvX3feELZRH29vb29vddKMTmzC5mcT4wO3Kl5UhIg6o7Gq1XYWIb6YlLT96/e/vodPnG9TtfffGbv/3iVz73he+9+cVvxKZF75949srbx7frUVUV/tzu/mPnzxDC1Zu3X/vaa0Ux+sD7n3r48IF17YZfm3ikEPb29kbF2vxk8e6771zY3ir9yPWyW47H24hodVk8vHMvLpc0LX3hNMnQAU42eJ+FiGgooUTA1WhOzGR55TqHR75eADAAJnLOrZSfbGCgAEQoAoOxkR2LmOfCO//O2+986zvf2N2bXn7i3HDEoCeiwOBrCgaOeOBNJDMh57znEIKYOqSh7Xj4v7JzgxEFVlEvNiRdVZkqOm+a1TISalY081wAgIdqWo/YeS4glNXRaWqjkAtJQEERkRFVTUVSjCnFAf4YU3rP4MvMZkiARA4GdKxatkyOR+trLuesjwi+j/6dR2f0o5eMiN4TGg0EiXxwoRinlJbL5fD94eUTUTIjVaSBg4wAaIgulK++9vq1a+9+4IX3JVEoXOVqyHr79s3DO/deePJ9ZVW8dvTuJ5774FNt8F97e8fKHnO5bCsod7b2N9a277bzclRdCe975403P/LBD/pRmOxtWu0a6YE9yqoVFgBUBAeHKhsMwx+S9u1AajOz9+QwGqxf2WzIUAGoiGQxy2aFAZpB2/aa4nRtihgPDk6L4MgSOBSjoghqeezXA/br26M3Xv7yR56/8n2f/+Q//ul/Xrhpl9rKFWAIoM4ho3eEJJFxsIUYM5uRgkk2BOo1AgD0zYW93TMbm0cnJ1G6k9N5jtGzq8vy8uPnL1++tL6xMcx3iCamaKo5dzHNThcnp/PFskkxx75PKTrmUR3qInhHopZTWqWDRACAmAfGeeF9QjYRRgTn+xwNJHjXSy+gWbL3wUxH43HXtTGJK6jtYtO0QGxmOhxMEGPOzA4s5d6+/Du/uVyeOO8na2tFVVLggJkcmJCZElFRBICQsymo9x4TDSAhDgGHNgjHGfHu7Di/0+9ubE99EBXIWRGZjMxUJYkwo3ceBS1LVktdkpQlx9j3YrnwITgHhJubO77kwbDFYTD+S59jjGkQvHPOAMZIWZUFGaFkunHtrT/8Iz/867/14mtvvrt39nzGzIRmw4MHAfGR5oVMpCJiSsxZREWJ32sHg1XuC02VbcXEBFPzhYs5xj5Nx5OqCBE1oBDoxuZ6jO1idlx4j8iiCUQfu3jx0vlzv/5rv3Lrzr0PwSrnAWAqOeeemBx4MAU0MKWhfUP09OTk5PhoOh5XRRFcQCYKBbFTA9FM7ItQLBZzzVKPhEJJwKAGIqqZHKYoOQoArBfV3fkBoHrvxmvjbjZbxL7pe1cBAIOhqImooCCA2aoUNmtSVTRQICBChxwKRB5Vo6hy3Kd7i+N57MrRqBqN2qYhcm3bhZwn47pYGx2fHJdA+6ON2heWUsrJeXbMDmmNqDZjoyZ2fRZTGHMVk5zMF22MILZRjR6enorkxswRLnIqfXE8O1l6LiqPqC9/7UvFqPjUJz5+7eadd+/e6JolADgGMCHG6XRdiyWhkveqBRIxJEdkKgxSOjKRDMjkyAUDFEN0wTkZSoF1IG0yO+fFIOckBsQevR9kY1IByKo5xfjo4q6ImHLq+ri2s/W57/++ST259+Bw4fj1+w8eyqTKTsyRGiJqhKFwJzOhmhMEHd5mCKjAOvAnwYiRgAdbpwEM4iwAwJDkFUuEflVxrbLCl4sQw3Rt7Z/805/9vu///Cc/9mHp+829/aMHB/cPD/fOnE1ZSh++8/qrP/cvf2n//KWXf+0r80U5a5q/8z/93T/9p/+z6XT/3v37Z/fOzU/eiH1PvmDiDJpSD1gws4gOE1iKAsyrewPio+bEwZthzgayLpvlodkVDNCIqQAgMrYEs771vopZ/94//EfHy6M/+kd/1DOxUHBuVFd93wGiDz5nDYEHYodjMtG+7xGwqKrzj1184oknU+wRwYj6LDu7+0CcowTnY0pdjKUnF9CA2JAxIIClvDg+PD4+NDJ0VITq1oN7i42zXW5dhvXNtXp9fO+Nu+sbo9dfffXs3s6oHl9997orR0Wlt08WD1/65jN7tUfHgSoPi+Xi5Pr1brJx0rROUoG6sTGyLrY5ZaKT45nsnTs9mb179drl59+HTIG9pKSGOWYTY+ZAhIRiSgQuuMFoiIhKZgrITlVU1WxVyiRDSQQYMTlwTE5JUup84XMyJhJJnogdv/i1r/3O73wNKD/x5Gcma+sZCAAyGTmkQcclBkQUBQDKiGIyxKMU1QRUh6HXQJm9DInl1cE4oOqGnznqqlTRcsqgimreeQCoikkAF9CT584KsdxrHhhAmoUIjchkRXeIMbZdIyoiklJSNTBOSZxzgGimhGSAPgQDHa1Nt8/suiEXgIhMQ0n5v1n5DNVOgzHIVgOR0apHUlNKzLy1tTVkGmOMBgRGpgooj+ofEMAlkcl4cjo7+s53XnnmA1eISBU8ukW3vH/v3tp0bWtt8vhmce1rD84+BHn3+r6NtIZDPW2sunnz7aPT0yuKG0Xdsu7u781u37514+bWs1cu7e5NNtbnJ22xosPg8OdUeSQOPlIfiAjAZHVfV5X8yA5NK/kPaBiADEUtd10GiM4XKYuIMtHs+KQquT2dO85r05HfWF82zbJZMoovVLp5SrIzCVsT/PS/9/u/+vWXXr9+P4x28JFHGBnNLKUEqdsarTvHGjMiZoOcVQ0c+z4uAeDc5uR7PvnRCxfOc135enQ6nx8/OFiczrp2oWLdYtn5EMogJgPpxzsXY7z34PDdd2/dfXDY97muR1U9no7H02nNaMtm3ndLAnAhOGJQGFwvzrkuZs1SFlUf+rZJYOYdqbECek/QG4A6T8QofZxOpotlk1PmEecsfRcBQCUbKKOp9nXwOWfNCRxduPD42f2PAGFRlH3uycPde++03dL7Kg/8Y1WxnMXMBAH7LnZtCwCjuipCMaxtu9iX49EyycPlbO3MWekiDHotCiJYVhFh50WydiJ97hZ9t2w8+3pUj+qRLzwjChoFJk/giBiCcwkti2aTmFJWHThAYuoYTY3JMyiqlN4dHz5YH1V/9S/9pb/813/s26+8Mh4VBj5l9S6ovrcuVSRbVYwZMIEgruxvMMwo/6tf751BBhBTct4xUtu2DsAza+qKokbTu3dvb65P1SzlTGaucE88cYlAv/Sl+vqt2wAA5B4lWkE1myYTt5LW0EwRLMc+npwcO+e99yKwbPvRaOQ55KSOXc52ujghAibqusZ7R8iMQz+uptQmSQPXAgD2R+u3rt2Q7VytrxXBFd6NR3XX97Vnh8PhQcMKfhXHJSBcmcSHaELK2sWc1RCpLkad6VEzW0iqqqoKhfRJmt4hEjpE3N3ZVoKH8d7uaLLlS9DcpSiqOQuY+qqqqVC1RU6z1CohARnAsmn65UI8j4pyc2NrHuPd5SI5XmocVdWJ6P3Ulxv1QWqb3Ndlsb+zuVuHz33o2atXX+6bOQCktiMizuIL54IjVHKM5r3zKq1qMhNmBlWx7JDQOUQGRQX0znHwkpP3HhAtZ0DMpsEXCkP+PGMGIh3YAbDCEiIAoBqqEbuuz02M0+lkfTJNbdo5c+H29RuHy6ilP+1kXEysY8zI6ghhlfJCsmGvYghgYCiiK1omqAEPR98qh4orsgkRpRwNHh3sZmZAhJrFs1/2i9F4tGiav/v3/sELz3+IBAvyO2f2Dw8Obt6+ubt3ZrSx+Y9/6mdfee2tP/yjP/qxTxe/+Atf29g589LXv7H+Uz/9J/7Unw1FETyfHB06JkFAwqH0TnJmR845ETGAlKTwwXufRXBw7K8anVYfITZ89LcSFQMiNEPLCMPFQL0vsnTksJqs//TP/cvLTz35vZ/7bu6FFQyy94WhxpSR0YcqECIamXWL03m7bBeLXXbFejFfLouiEtMYczUaJZWcpa7rHJOJSu5dVfb9/OrVq5s7O9V0o132uWuOD++i09PTo7ZdXHn+mccunnv9nTcgkHRRWV5+/TvHhwePnd+9dP7s7Ojo4MadrBhG9bn96rV7Dz736e95dszcnsxze/nypTNt7maLW6cnWztbL1x+wWm6c+fWmfFWd9Qsj+dNbF+/dvXjH/1QO+8ggbIKARKTmhGCDU4yAYThk8Y86JtKRGakaIQYk6oZIhETIQ2/bZB1BFTRsmZflGhUIEuMtQ+xb778u1/+xte/szxenjanBw+OPvCBZw4XJwAgIuQAaMhfCQKCKUAGFEBVyEjA6EATgpkogBIP5vuhNnplwjUEUMIhUatqmk0FyYZTA4EBYD5rmqP24oULjv18tuw0mXNtjuS9YwYTUACUFGPfx7Zt+65bDWCPvtKQZGc0U3LsHSuiIYHj0+XSvbcWG+6p7618RETfW5oN9qBVwohUdXDMOOcQMaUokkSU3BAoX0kjCoardz4qkKi9+fZbg02hoNDG/PLLr3SxL6drblx5QsqWvvluEYt70r6eHt6Q5ubRMu6MF9aRWEBsUObLbv/iY3euXS0fbr5//9LW1ubBwbUqTFTMFGxYr6I5N3hQRdVMQTG5wRI7QORAmck5UlWRIaoz6IWGqAiaZdBHnWaNfQ4MppbbblLXjDF1jYNwbntjffPi0eH9vj3Z397Tfr63tba75rYn/L/7j/7YX/yrf2veL6D0CKRmZgQ4xD7IeyKwPuecFci6mJNCn7v1CQPAua31zfVRTB0lf/TwqE8aqsluPVbrKbaa0vzkeDwd+8KJJkkpRcspE+DW5s5kbQepXN/a2VjfCIV3aIy5mR/fv3f74OF9MwjOF971IgBQ+DBfzGLX12UdvO/M+r7zwSGgSh4G6+GQUlWQvLmx2fcRRIgcmMUUV/IoIYAF51MfU9YiFMtmcf7iE7/n937f4eGBiBGZQrz/KzcQOWcTECPJqjFngmCmKnnZtLGPTFCGENwgHpt3oelaYL5zcnRma7seMgmiaoLeoyOLcTZfklI7b9vT1nM4u3d2Op4Sg4gAGjA6hsyQwQCVmZSg7bs2xagSRRQQkGHI6CGaaXAeVCRLUYTa3GI22987/9f+yn/33/2Vv/Ibv/Wr48lmKCa4SpuTAYiqZAE3VHoCGgRmMIWV6WeYgYYF9XCYD78ADEQSMgbnQDTF3nscjeqqKueLU+epCMX8dE7Abb/Mme7duz0ZjY5nJ9dvXofhqo44QECIAEGHPTIhGJqaDkWdG5tbpjCfzZrThaiOR+Pd/XNG3DXzw4P7pml7e9MzDZvt4RwSs2xZVUUzMHTzJQDMb94dkSfGmDvuBVL2SI79UPUrDhmMCAkHPwuampGtsFs5ozFYFlND9mXpmXvTh7lBh+uTCUVt5+1YEZmcwdbmZlw0s+Z0HMqNUJe9GgMghrpk5Nj3TdfVoSSkCNqBlZMJJEOIYTIWzUDUi54ul6PpeDO5w9gzF3PTRdd0ZTHr28pLqtz6mc0ycHN48NS53SuPnblz510AEEk5ZczJFUXwwaA3NBqGSsK+zwBASFltFf4z4MFIr+iI1XlxSMZD5gLVQIXJyKEntkcHPyCsCmCRvPfDAERIKopExjRvG/beQ1jf3Dv4xqt9grAx6mOKMfpBOzVHlgHUqZmumK4DHWMgNCAq0UpcsNV6H95zwqqq8zyIIyvj/+qLwMAAyqJuuri+vvP1r3/7i7/+W//uj/zI7OCgLvz+3t7tu7fA5Cd+8id/8Vf/9bjUn//lX+3EcTk+XfSx6X7mZ37q+Rc+9r4PvC/nnLplWfjTfmWl4NUfJzkMwzV7QKU4DJobM320GV/xaZBWCj+sBsYh76OWZChzISaxbKBJLXjX9fILv/zr3/f5L7DXbj5XSVVdIBAThDL0WTUroHlC8qEej0ryo8k4C4R6LGpdTL6ooiggisjJ8cm4qph0Mq5V4nJ+8vIr39zcPfPChz/BjMq4tj51bMfHB23b7mxtoWjM3d6l8zdffjNSXtvZuKwXzuzsHC8XD+az4MK9w9nz5y82D+4UTo8OD0+l6mYPN8/tnJ2M2nk/uXBh8uBeixBnB+/evekmo+nWVLOexjSptg9OD28/OOxi3Dmzd+HpJ0+Wi7VqErtoA9kOwMQAlB1rjsMlaNU3SGQiIoJMjhkJTVRyhtXpgQAMlFUSIYcQQLA5bdbLslme/M5vfPHw4XGJXLmA1bSgksxBBADQNjFlR344/BlQQUQl52iaiJQJh5UMqpkKMSOyWjZ0hoArjoux6aqqWoaCCtGcNcWB6xF8AIC19Y37Vx92G0uchii5kZQ9G5Bajl3bLJY5JTVdLJc5xrZpRCTF2DRNzmnYgDjmgQZkYEjovB9uzka0aFq3EoMR/22j+EoCUwUaNpM4gLP+bZROVZXO+a5rUkqDELDCSq5uEzBcNAwRiGKOhvjOO1fv37175txuC3rn5t01XxVlsTaayGmze35jfTI9nNSn9zu9f/zS4TvtWuijfv4P/b5+je+5JVcjM97wtbFtPn7ulatvP/X+Fy7snnv95XcGXjXCEEaGQXIeOppgiOYgi6rkPJAb1URV+r4DhCGmPmhhqmCQEbMBmYGoSJKEWUlN4n/yn/5Hz3/gKU0LxjiqyroOxyeHV6++cfXtVyifbq0Vo0AFdLE5/uynP/qn/vgf/Rt/+/+Tcu8pmKGRAhqgOkI0tEEvyEoOmr7LniWJ7zMA7G1MD47unyy6d28dPJwt+gSTUQ2QJ7W/uDW9sLc5XZv6wN7XReBssmyatu1jL4gEBm3Xz2/dvXHzrvMwqetx7QPbqB7bjs5OTp1jx37wewYfRLRtu7U1DT4458AADR1zn+IAkhFJK4wi4XgyaboWAE2hizHFOID/PKOCNF1HXPhRkUQaBVdPx5t7vfmyrMbjark8xlB3sxPPbqiyEx1KggVMm67p2w6Ry6Isi2K4vCKgJPE+RMl3jw5Ozp4vilEhQAqCSN674JuT07s3b4HRpJjUdT2uJkOlUUpZCZg5g6QYseQiFBS8sWXIBppNxEzFcFWDCt67LL1jh4pmSIZkgKY5dQ4hMP23f+H/8ORPnf3VX/vivXtzQDceT5Cw73t2fvBeEIKa5ZQAGIeqmke9p0Tv4RdWYcnhI8bIYjklY8BkWX1YW1uryqJZtvWoijGKqhqklJzzxyeHuzvb58+ff/Otd4YBSMwIbBjcQAXIQM3YTE1NTIGdn0yCinr2ZTlKbacG9+8cICKROOTRdFQXdTZxgcl5AxNDNU2azTTlRGU5tFd+/NnnT7/xombJIs5VFXMz7zLjOFQGkHJGpOAdMoKqoomKChKyGpiipjTU72Q0YH54eLA2Xaf1iTetytK6FpKNfJEIlu1SR/X8dN7nrp6MfNahjliICQ0N6rruUt9azmbHqZ3FNuXCOQeVg0AFMYosT0+Xs6OiLovKFyrkikWf2q5pIKmLW3V56+TB+7Y2uG+hbyocf/ojH/rqK9+AwQlsWU2BGR2ikqKRYRI1YnRBUjId4goISAaITM57MJOshOiYVSSrJJHgfAilGMBAsSIGQAMTMBje4zKI9gAGhFiEsGi6Psv6xoaym7URcvrGq2/6MFq0iTmgmoIIkyATKIKwkgqYEaChARA/ijPqyskwnN+GzADvFfkCOMcxrvb9j5b6gIR924eiIAfGXrKEMP5H//NPfv5T3z2pKokNkr7vySeuX7/+N3/sv58t27P7l9T44dFhOXqsT/DkE0986xvf/OJvffFjn/rE4d07Kbbr0/HyeA6gg+xhBipqzlbVe0hdjDmLB2XQTMP0QwPXlZCGoQ0QlUlVAIiQAGmo8BhWB+QxSSL1zo9fe/Xqm29c/+D7n27my1DW5LzkpGgxKjoKRakqkiOyX9vcVCN2Ho26mIhcWY/FrI+RGFStWS5LJjDoux4h19X4yuWnM1BZTjRbatO4Xnv91TcOHs5CMbl5/c7lc48dt/m3r725PSofe/yxt+7f3Fyb7p/Z+7lf/aWmjz/4hR+8M3vpZH5ahVxbhGUL+xuzoxwfPFjeXyxOm9HedDyddPcewvbm+ubo9unpg9nhpByB4dFsXq5vPDg6WR6e7G7tPvbU0+CKHAUNkf3w4CNPYIRgwDzQWIFRVsluMzMmds6bWZQ4uH3NgMgjIjMRFYawbBaVr8/unXn5ay++9cbLEruK3KX983foaNYst9d2IEFe9ACQZ8ts7NSTZ0NY7RdTb12XY+O9c4NbRh+9+0BBM7kw3AYRhtNfEYyBzRRUUAQ0o4hpHgKttupbZMuiMbKZEUTN2TL50DXdnes3jo8OCImYk4lHBjDvvfOeiGKMbdsGX5Dj4bwlYkBomi6b1MVYwbqUXM7JwNDIVoDIVXn1kAKDwUQzaHeEACCSzayu65Ry7BMieu8AUIfmVCBTEjSyQemwAaVvBqEsbt6+8+qrrz/zgWdfff31115/9cLF8+ubW1vjjaPbd2dHh1KiPXduMTpK7XKj2Nc4rwPj8Xx+spxdfLDzxOXY5j6jQ7d75txrb1+/du3dp596+tf+9W8NnQ/2aMdLRH03uF998IXz3rGHlc9jmHgU0IhQRfRRXekKGZYBkABMJJlpTsDIVV3M50dn9/YuXthvFsdV6dpudufujfEofPLjL1h7//Swm5TkTOoCtJv3pw//gz/8+w6PZv/zj/9Tv7aD5ADRFLOs9t74KCUEBpahz+KJ8mIJABf2dxapu3Xrxuxo8YM/8ENR7bW33uyXy/dfeRy6edd1VV3F2Ds3rUJYxoRIOdty2RycLGaz9nTRzXvpYm4WMzK5dGH/qcuPTWovkrz3IfgQXFyBsJAQJWfIVvhQhFItAwE7oqgeyQeOvTEMvQ9EzM2yA2IiQBUCBqRs2ZGPydAX2bCLkdgV0/WvfefVo6ZLUVFJrJ9M3LzNGAoyyzb4bUlx1UVCRgrmPBESsabcAgAPpGzEUIaT5eLuwYP1Mxc4oxMxJiIoCr9/9szmdNo1sW+FgTyHqJ1BQYxJJWVhJiicrwOXXhnELGZNOhjFVFQQaYAqiYEZOmYTNU1EhRoAcl3VBtD3TTmq/tR/+Md/+Id/+Etf+ea/+Oc//+qrb25sbI7q0Ha9wSCuEyKm4WZPqKu0vP3b7Cl7xBcdPlxZspkC8/AdNE1dF9aqzNg3HZd1PZp0bV+PJs7k8K07b8x00fRXb9wBgMA+p95UDUkJkqkHczj8XVRFh0uPmopINRr5oqJNzFm6NuWsaNFx7ZkQ0fuAjhVQBwu0qkjOXWsinvy1a+9+AmDv7L59XcG0CIVDdsTEuOiXBiWhMx1AZIBMBiYpARioDkEeJp81IxA6R1mN7aCfSctUsEf24Kqq9qEOITSSdDQK3lUTzLkUtIqIGAUg5WiqDmlUVVz4NqfTtjnquoNm6UQoBM1ZsxF79l4AEsKiXfZL6wyi9hjKlnCR8vrGRFDuHBw+c3a3Xcy2/Fq/OC0RPvmhD8Hv3IwqFOOIGVNCoyGlx46ziERlCmIqBuw8m6Q8/NQdkwPAFDOAMnsmZ8ZoaAaSclFUxDSsGIkQkNHE1JAoq60kH/ISe0IgU80Zjfqsxcbea7cf/s43XsmGHsGyoCGxy8Ndb1CIdNWKQIOLBkzAzEBsYDAwDWZ4gdWac3DaMQ85DxmgnbDq6AGEsqwAB7Bp8iGY6htvv/0vfuEX//Qf/6PLk6jSMeIv/eLPL2fHVVHM58v9s2c96/VrJ6ct5LMbH/v4x+/dvnX08CGahuDX1ycP5ktmZzoQOpOaxtgVRcngDDGnlHLvnQMEUtBVyaUZUlZDAyYkWv3xkJhgBZEYpimk1WkKiEVRHR0cvvji1z/ygWeCozL4LkVVKcvy1t17Dx4eTNcmZ/bPBHZ9jBpzUY/6vgEkM3CMKWUEImbNiZHW1iYiAuAMiRQJ+PHLTyUj4gokkzEbvfPGO4h8du/8m6+99Vu//dt/8od/+Dd+5l+e3zo32t588Nq3n3js7Jd+57fXR+Odncn1m3emm5uz5vSxndFH3/9+cOP5fHkyX46rrY988Pm+7++cHjz9+BPu4uV6Unz1te/cunHrqXNPRIkE6g1Oj2a9AcSuWKsvfuS57fPn0klXFWWy/t8cLggqeaB/gaEB5JxNhkGHAWmYfZnIIWXTofILDRBICQylHlUuwr/65V/86le+Ettmezo9s7N///7h5ubWeH2tKqsuRYkZAKSLyUfHnanRoGip9s2inZ8Cma8rH4rV5Q8AEHOWbB2pGXkgAgM0w8F6bWYr8SuDZNBMasZgjJkBANrTEzCDUGTFPooBq1gXm6ODgzt3boHktY01H1zFhQKkGJl5fX09hPDgHuckWXIZvCHikHJFIhIABKbYxyTZISgNyUlTIogxMQ8DHBCAChLwqusoKwCYoKp2TV8UZZKoYN65lNOKvm2G5ABJUAc/oHeolvscnXed2L/+za98/COfyYftYxfP328O9kZhY7JWbq2/c/T2Nx+8fbJvk93H5t1i+epB7YpF3/TfeuvSdO8IvvrC41d61QQCXPm5Pr13+ZvvvPnqW2+AG5iqg8iNIsrEVTXquq7v+9TnoihGI/Q+5GRm6p0HCAYKCqjGw4AqWVRElHJAC4a9ac4gBjw0CZLo6cmRSp+1ffvde1evv/H00xdPl0df/LWfGzvdWR+h9hKhnTd13bmysdnd//SP/fDhvdu/8MUXR9NN1UBcSAZiAkbDBJic59hny4PvIpUOAGBjbTyyUvNjZ7bamvu9renRA6LJ+vsuXVTpjk8O6sk4JTVFFUAsUmxF0ZdlVeb3PfPs1vbZL371xXdv3H76mcvS9dfeeh1yd/nC/sbGyAcqHNalX3YdAHi2wtPgGK7Hk3FdH5wcUu0cWkHO+lwQL1EMwfsAAo7cUdMCO9VcEBRcgLGS9aLIZZSenSu9r8ajnNK9B4fLRiVx8BVCdKGdrmFZV5A6Fs6aCbRwZEpqRPUk9cOmxKqaFHoA6PsWPWfNrETsrt26fX77DCCXntHUi2KWovRMYwrZj2S4TJNBskQK6FkVwHOog6+QGMUsp5xjzkktY+oSAiGSGACAZAMlI0PK5AQIkL3zFRejDBIqH1MHSHVwn/vUC7//C5/98X/0kz/7z//l6cnx+uZOEutTBgyiwo4MMEvybKYCZqgZAZBIRQadDIkMcBVJJQ+mjsmxmaSycOMqtKd5CGF2fdt1SdGNoDib1t748hsPpW0pAKSSXG/tI1gXZfAIxpAJCQaXCYgN1grCmCKQA0IqiiJ4lN6bN8mWBRyrZcvCjtXUsmhW7KIlcYiyjPMuAcD/9E9/wkKoM2APmSCJuToApC71SAFNg/dMLALEDLzagJkRCpioEfcSDRQ1I6qWrndQJgTAiP16VZWqHrT2zpMnAKgLMx0sGAuJOmxQmBxRSslRKIoqtV1ETuSjcTACCkbSJ/HMwNQqJqHElMmBYW/WESQkM6rILU6Wiy7X4Lms42I+cW7n4nkAiIQOrD095rLPrvTeg/MpRyYmo9xGyhrIK+QUMwBUdZUNVazwlRiGwjXLWds043pcckixzzn3TYNEoSxDGXTgYZqiaU6g5tAjABh6xEi5JWkxljkCFsXbN4/+3v/y8/eOUr22ngEy5myq6AnMWwRDQEdIhgQggICEklUBkBgEwAiZVwYLsEepCxv4cipWlaOU0rBfHMyRfd87YHYIpkQkORd1iQT/+Gd++nu/7/P7O1sF+Ht377fL5bOXL75z4/bNOzc+/Oz+j/7+7/25n/3yb7/0ysbm0z/8Q7/vzddeu3/nxvb2xmRjur45tRu3JWUOtZnF1I9HVUpRUmYOXUwpxcmoQoMseWCV5SHThDgsANQQVIawDyNLNgMbOp7NlI0d+8AGWUmBmF966ev9v/vvoHWx75AA0FKGtXH5+mt3H9y7eW5/D0QcO2QG6YjgW698Zxm7Z59/vi5GbJ4ykqJlURAkOJwdbWzsMRBDBsTx2manwmbeYHF8ePvG9VEVNqqNk/n0Z/7FP/+h7/7Mn/jTf+In/9HP/ua/+ldnzu5fv3937OwHP/7db167uSS+1zzo2qO96cVxGcqq7toGOn3mylOb4yp1zeZ6NXv4YDpZW5z2wdwLV54lxIPZw3Pndi5x2Ru9e/fmvdP+y69/e/vrj3//xmYRRtmUkQ2H2kEjAgEbgs1CQIZMzlAJHaFLoErIZg5AJRqDMSEaGUvKPdpkVB/dv/3ml196/fU3WieHy+XpMh0udLlsrqxvk+MuNuX4sWo8AgAjFMtZk0V17ElMYpwfnZjDtfUNcOS8kxwJAZCDI0Vtuhb6PlS1cx4UVIzIgXE21ZwNMrISmGVBBStDy0BDJ+p8vn/hPK6vnyzzspXAtarFpn344MHR7Hh9WhuoZAVgxWyo6JxzxcQXRO7w8HDFHWFQFVFgZARzCOwpmrEjB2AiKiDvQZIGG+Ojlf3KWEm0WpY6Rzlr33fM5IPLWQyQ2YmIihEBmImtCm6YUFICAPIUcw519ZWvvvhTP/3TP/QDP3Bmc9Q+6G7fuWWdlnXN7MiRsH2nO3zfZ57KixO8/mDLj07fvfXJj166+vLb91/69uiDTx4ezDa2Rp1oqKrd3b0Xf/wfOiLvQ4pNHlJIAKIiuStCUdd118UYY9/3wxpm1cr1aLMlg4UK4L1doYCJmToTHgIRmi1LJss9S8e57WcPKZ5+/6c+dP/e1Re//JtjT+f3t3NeFmEqql2KYbOEImedjSf+z/0Xf+zqzXdff+vheLqFELLoYENGZFXxwfdZ+tR572TZbO2uw8myLBwZnz+330y7+clhjMsz2xuO/IO7t9nj1vaGiiBg17YmoqrLReOc35jWha/Q7OTkYDouJjWPgl/f2qxIPabJZFRXlYIWRfDBMREAVGUViqCacpacUnC+qEozSLEvnCMsm9gb9IRIImhpKNsA0xwjpH4USlAgFDJHBuNQTCeTGKVftojI5M5s7FTV2tp0y7Mczt5dtrdJTYZ6Shyi+GhIkkSyMjvvPZERAQx4SgRQI2AVZfLzpvvmG2988vkXLItTo5S4QxBvw+XX4UBBUFVS5NVlkTh4DJRzRGDJEnOOogaY81ABNqzkBQByyp4IDJjAAIk5Gm5sbPmiHHLMhMwIk/Howf27qSj/yz/3n33q05/6O//j//t3v/y1tfXtwYtNiEAoIgRAwIqGYIQEJqZGAzF9aJ+iDGBoyESpz+W4NGlzinVZDja6oetWxE4Xzfr6eu7FymK8tdXeOpnWU4Bl0zSIRoWzbCkKkLrAYJqyZhUAMLCUxQQKXzCzGWQdYInqDRwS+yJb37edmHLhMqiIkhrKoFEqF/5ksbz28D4AxEnpitCSjRHX67pru342q4oiZ8GKbCDJi3odvCgwJIrcUFlmlnVgigkMSBKiITWCiiqQc86aHSIqCmTRIZFDK4a1d2jZVt3FSEySciuaByctM7ITQFwJ/GwAWUUMjVkRMyIpqGJGQE9qyuCaxXK2aKZlhc4t+iZUwRECwLCTi9BHJEhmigxOSdFWgfLBD0BE3rvAHoYaoJj6rh8c4O2iUdGTo+PZ0fHW9pZ3jpBSFu069g4cpyxo4lA0W9IVGZy9zxHUsKzq016/9MUvXb1z9zvvPLj+sB1tbLUxKiqFgh0PahetqJsIaoiKAwnm0XYH34t4rDzWgysgD79BRPq+zzmHEEII77mCBgfAwEZcOenBUs6hKN69fuP/9mM/9n/+b//CuODj09NPfuKTUzf9nd/9yjffvXrnwb0mdx/46PNfefPqxz7z2Q88/6GSwtU33oztuY31jenapCx935sDSpqLokg5MRMoKoD3YVVjJYAwBKyVV4V5Q5YOCAnVkBCUUko0HOOqw7p4WP8QuCy9iE5Gk3feufr6W29trdXLpj2zf8b7MPwVPvbRj+uwZwU3VDIGT1958cvfevXl/cfOfflLv/sD3/sFjdlTcXJ8ggY7Z7aWzXI0ruqRC2aloi+50ShCljISPHx4cHB4CMQcyul0vevu3r11a4eqt958+97JYvvShQj6uc9+bnm8vHP7zpnHn8CcUaQgnjXHdQgV5if3d2w5P+mXDx4eLZrYLLu1SXdub3N7ff3ylbPf+tbLN6/eWmz2u9u7qvr85ctrd8Pbd2+8+Dtfff65jzx2YZRT9oimNvTwimRV+zfeG0R0SEZMrGqSkokpYmDyGNRUzBC5bbqqrH1d3njr9a/+2q819w421tbcaH1juldBWSd6bfb2l7/19SeeujQ5un85X97c3gKAbOoJAcEIRRIBxdSnGAMX8+PToi4jN0jBO5YYjdB5YoMu9ogIpXnyxGCqZgiiZFkG+QUUiZxzvYIv/GDbv/D45VjQTO2k6bNCRu1jnJ+ezk6OVXLOEmMqvNP/L29/FmRbdt53Yt+w1tp7nynnm3nnueYqoDASA8ERpFoKtqQOSqYsUWFZoZa63QqHI9xyRziiX/zgF3e7KdrRTXXYkizJsgaTkkgCBAmQIEgUpgKqUHPdunXnIefMM+1hDd/nh3XyArLDIT/5vFRV3rwVefLsvfY3/P+/PwiSLGzgIow8HI6YuZ7Pu9gZYOtKUfA+Mlq0RsEqegAxT8byqopoMuVWZGEwyTdPhlNnoQ8RpxS974hwOBwCQE7Uy+BFUc3ZC4vlNgIiS0qk+dQo6vH4/s72cWjOu7Uzq+tNFx7t7EgXdKtcGyx3MbWnBvej6U4v93aOL3hW6nYPtq8vnXrzt7/82et/S5xLklrGYjQcdfVLzz/3jT/9dipH+V08uflN4SSpxlBVZVVVqtk+lGJKlBKzUdUQo0LK3stc/YhK0pAwAfigEYFEEDVExhTDH/3+lw8evrm53rty5fz00QePbr1x/dxyWZWt99XSkqsKH2NhTSyoTrOmaV9757V6Bp944fzuo8etn1hHBVGeb4MSIRtrOYlxwDHVXd3rr+UxdcFYWVfaourKINGoGLIFF8NeORz19/b2CCR2HlJqmgYkJi+Dqsc9M55OuhCHFp46v9nUXTs9PLu52isMQrQ58JKtZc4fTQxBVRV1oaLExUaOGA2bLoW2a6LvUEMdo0KHJIQKhkLXzGfjFDvoumLk6npemsoyh2ktSuI9MIWUPvvJjz/37Ee9T3fv3rz/zTeMU+89qi68L7RAJyfRlBQAjXELG0PeSQksFBOqyqDGPNjbfffe7afPX4pJMCZU77uOjTFsEQAJDDFhTv0lJApJEyQJAphUNKUUVZJKFA0iCVUVFqh4yDvPIGDQMjEpsg9xa2nFWBuFDKNoUhUi3tw6M5vOdnb3P/qRl3/97//9f/mvf/M3/sH/ZT6ZjJaWgogPwbJNiikhwCJ6EEkQRTWJakqRCOmko1gEewEwG/HiXOG9RyKI0NTzohoW1sbg9/f2t+88LvqDol9aVADYfry9eW7dx8CCAOAAkveAlNHtwKwpahBHVrtABoxxSKyqpIBqm1ndhc4Yhhg738ZGi36PDIlqij74LqZUmd7j7e3D+RwAOoOJobAUGdquLZ1dHQ7rkGbz+bDfR+D8ZCW0CGjJBEyQM2BFYgopShJIKYWYAAiUUhQ1mvduueIkAkwIQIqQGd3MDJDyfjAXrFnSKAoaAohCEkaCE3MDoSJxWiw3FYFg4TcEyUwCQECw1ibpDo8PL5y/0MU4nk5L6o9CAAAUMcyCmhACJIaIIEy0CG0DEE4iUaIgUV3XMUo2wxAZY4vJ4QEzzKaT73znO0VRXrl6eWN9Y2llxbJBghAjqLIhSBi6oGpAATQCgO86Nq5p28T2vTuP/vG/+u1xJ260XvSGTQjKbIqiC8EWRYpy4k1RzKJ6ZCaCBdt/EdD7RBR9okXDJxtYay0i1nV9dHTU6/XKsrQ2B2VAWRYoWbqBBIxZ3sG4trb+yp++8so3v/WJl1/oDYea5Oql9vhwdghyd/fDf/NHrwwGl2EwqpZW2uBPnTp1/8Hde3cffuRjL5dVhSoxasUcM4UoekKT3WhIxjkrEBSBCBY/8wmO7kkZl6UUqilrVhafNdns1PHeEwGzbZrWOVM33evvvP/Fn/nJ1MaENnoJrS+ryhUlsvEhinRdjEv9/v7Bjgj0+8ObH9w+d+ECKllmSbqyupJiCj5Z54blcH9v583vfXet37/w1PVo3WB1s2k6Z3l/fDjpWnBl7bvpdPbsM5fFp3/3pX+7vrQMrrKD4trpF9p588ev/MmZs5fqejY5PHzxuWun1zZW+sPX3nj9yvlzVy6dO94/6JAPDsZztFSUtYIx7vSgH0Cfv3a9T6P92XzvaLy+NqTgR8pPrZ4Ntrj5zrubp1eISNQiAiJnx4UxpABwIvRSAgBKCArKhlVS1iYKqCWHSUJMa6vrs8n8d/+f/+bRzVuDBKUdHR/Ue+3sYF4Pi8FHNi+tDUeHdftgsk87+GeHPz8bT0/+z9CFYA0a5kgohgajYYjx1o2bw+GwuFaWxTCgP9jfm81nyytLSytLRVEoYooxm+dVBVUxX7ggipBIEyqLOuM0cQIFABqNfOwmk8l43ngBL346n00mk6apQbPeuTHDorAsiEzEyCICkpDYGDaWU0gimBIoALFJiZ0p2RiCJBLMj0yQJy6Bxa8vLxMXNZCGEIngZH9srLVN0+R/WeRPgyqoQKSc9ygAKCo53TextQTYtI0avnX//u7+wZmtpVFvcP7suR3Z2z16tP/wICHwoLeytvLw9oPjHqwPXe/YSL+6dXD/qQtn3Lsftr//reWf+8wuhAKp6vWrtl5ZXzUFK4Bzznuf/fyYyYYAqhhjzGk7vJAiLR5IoFmltTgyFuIsVMpME0wgqqQCIJisowbC0dGuprXZZHrnw8NqIFVfFULtg+sPjSvnTWhaP58cHx8dHx0dTifTrvZ1MxkMlj/7iae+8cp7mkqDFQOxsaIISL5tfegQAkawC10sWGvZMrOprBtAFVQAyZCpjCusnc8mBAlBDYFBQBXHJqlKCsPeyBrTdJ33855xMCwrWxCRJp9lTQhkDDJz5i/Mm6brOhEgEMxEKYIIikAxJsM8Gg77G+uoUHLRbq0Plnp3t6fGISYY15MvfvFn7+9sHx3v98ue96ENMYkiWUBlRi/+YHqwM97Z3zsKaf7MR559850/IUwaQEQRBYBUNIrEKDFI9EkLUVBCzdYPRcr0KsiCBgTbK1+/8b51xfWz533jU+urgiWGRSuMZMgAEwBKThUCjaqMTBl3rpjZ5F3qgi7AfXCC4nXMKaQEEQzbosxUxNHyChGDKCHnVMGUlBRtUTKbyWRSFNWv/tW/+rGPffy/+7W//53vvjocLZWGongkIwlBF0G7GdEJuTRBgsUOfPEHRVUlkaosRApr2RghRC5c3c26rusPq8nxLCJOKAwdJdQeMADceOvd02d+KkkQBAbiKCoRCsdEMYRmXh8fHM6OxgUwC7KiJmDAwpXO2pTC+OiobudJNWLknuutjFa3TvWXR4LaCYgAFcWs87fu3KvKPgAUZNt5Wxgb227ifcWGDHXN/Gg27g+Ho6qMmnxIKVlrMlZk4SnI09Y8ChPNFAAmMgIc1SSEABJBlEAJVYEWDGvU7GAQFVJWYGLOiWdEKaQYYgghScwTawJkpPzUxKx8QUwxwSIbDRUEEDQpASogu/Lg6DieP9+kOOvmqVbfdgBggBbPYNBEEFRIEwIVjEDMqKSQgoQYYwoxxlu3b7dtvHjhIiIzWWJ0zrTz7tMf/4kEMm9mzlWITASACMjWONEYQ5CUFFCBJCYASDF1qUtkEtuDWZxrxctLga2qKiEbKwrGuZA0u1IyaBaRGAlzhBPn/Cf4//LSoihEYtd5Iur3+1VVNU1T13WMUVVHo5FzTiSxLmAoBCSgiOh9GFZVMvZ3vvSlp65dPn920zft0unVjUubSwfbdx7dv/+wOzx8T8hZLpp23sXZsy+9cOPm3UmjZ86eV9WicKIp+EhWi7KMwRsmlexcQcT8m82uCCXNB8OPvxM6GUgtEG5ERlXbthWRsizzJSNJus67wt5/vLO6eQadY1dE74GMtUXbNqhknWtaL4oJwNriuWdfSACra6c+/1NfQCQ2TlQMu6LIO4FIoF/7yu++99pr//Gf+7P3796++OxzhoGJJIV7Dx950V7Vm8+8T+np516YHk3CvBuNRhO/v9Eb9o3Ze7zzzKVrZjB49b13yUCvPzgc10fj48tPP/vM1UsuNmv96u33PoDUlT2XJJXWhGZy8OBoeevcm29/eDjuyFWnz21unl1/5923emTOrp3qJNz6wWtPv3xl8+w57RQFn3RQSKhZHHFi20ZEkUSQjGERhGx4RsAEBbuVYe+9997/J//kn+7t7F48e8GtrO/s7vSGg3OnNua3bzdJ3z3Yvnrlwhqde+3220fH01v3Hlw4cwYAFlFIAMIMxOxMgb3+0hJ0YX9nd3x4dLB3UPb90mh4anNzqRsBIdvCGg4Sk2oSWTCfTs4GBBXViKQMBTCE5NgmAACYK+xN5zvjaSMSgObtfFbP6noWfUeKKcQGmqIYkjnJb2XJeicEMYaKovAxZd86oSE2ESI60MwQETJZJZ6nAroACZgnRrAF0J/AmLyZXZh7mTml2DS1tUvO2UXwtaT8O89+2gyVTKLO5HgMBSZrilv37969/+Ajz1xClD7b9Y2Nzvtb2/uT2cSMBseHx5Pj6VhTf1COx361X2AzPzrefvr0qTt/+s1Lz19xVy/Hpk3k+v3+5plNXWQscRIRUcNsrYtpMWw/iS4/oQKoiArqAsSCSLnpWLwvANRoRCJFTQkENGGSVHdN3c4HK6NPfuaTFo6b+W4TZ22AoiytgZ2He0fHk4P9o3rSxCgkYNmYhAym6g1noblwduvlj/L3Xr9N1rIrdMFVQpEEIs4a6kJheDabAwAba5mMZWuLIGokAaM1hQUGSb5r+mXhfQciwKQiItGwAVVr2FpDDJVNRHkBnEO3OEUf5STuU4VOcJHZJ6eaRKJzrrAsKVhj/NwPlpY//qlPfOYXfm5tbc1ZtzRa6tr59/6rvxdnUy7L7ePDv/W3/5e3Hz/8rX/3b68+c/3OnXtd17miSAlEAjLErnvllW+88+7bwQNbKcqkKQlKysl8iJhBuUkkQWaR5/obcnoxgGHWmNnSmgDyCKUY9F975+3Q+GtnzjlG8YFALUc2xrERaxaB1AA5I8cZR8Qn7AMVUS+pDSGkmCRlG4JhBgACMIQiKZs2vdDy2vpotHzirVJGY0gRlRHnXVs6Gg2HbdvNZ9Pnn33m13/t//gb/+B//Jf/8l/5kKpepcJestAddJHHJpTDlxcWMBUVUCJEYwxJNMaUw+FwMIQ4i9GP+oPUg+PJfHV9eTqZ26oyzMe+HvUHbdMBwMPb948f7w23lr1RSQoxaGEj59RzKtGtrq2WxHv3HxXCjMYqxjZM/BgQBNVZu9wbTuqJAqyurpy9epHLQlDn05lvO0liTXnv5of3b94bLq0CQA8L7xvtQmJvelWUGFGLUR8ns/F82qtK1oxTF8skEvPaPFv+yRlJSfI8KEJMIoKKJAoJKQr4mDpVRLVks5kUJceoShZ0Z5pspgMHAERLRKqQme7KnKGnuRHThcxTAWJGY+AJbS0/cZMIGzutm+O6Xhn1Tp87B6QpRoDF1hUWz36IIA4SAiEoooBBQitMogkBA8eN9Y0uSExpb3e3LCoy3Ov1VlbWEsi8rtc3tkzhoqhxRkRC18WYisI6Y9vQSiaSQQcAhkGUYojIro7QiDW2p4ApBiREAu89O6cATDmzQlRBQLJ7Fclko66qZCd8dnUtym5cuL1ksYdFVWXmwWBQVVXbtuPxOPO+i6JgpRgEERUlo60IyHtvjfvmN7/9iZc/+qt/7Ve6hNVw7cKV67033xo6sz7s++msvzSox3vEG8YSkDm3tfXD118b9Krl5dHj7QmbqiiLkNqTHjWvtkA1IUGKPyp3iChLWfJA60fdePavADjrmCmE2DSNiBhjjDE+JiJy1iUJj3f3OhVb9pMka60FYkBDhhgR0Fq2zqrqaGkZID379PNqyLBVhRB9VfSTTz6EsizqujGD4pOfeLlU+d53v3fh+rVrL37EIA77vdnx8f1HjzTHR6iw6M79h7f3x1bwYD4R0r3dnViYEcHKYPD+3TtC6dMf+5jMm4cHh5H50fF4ZXWtiI3z9VK/KqpiIjBaWSuYnO/6o9G7H95htmvLBQ+GUrkvfec73s9funxlfWNlfLh344Ob3/rjb/wnf+WvoCRmq5KnpJxPmkzAE1jA4EEAEAUVRLMiMAgOynK2f/yb/49/9btf/QPr3IuXrveXVx5OjmezetI062dPP//SSw/uPNibHP3w1gcXz57d7C1jwZ7puG3ywzT5UFSGAUFEQW2vQkG27qlnn5scHA7X1yMgMBeDnqlcTJGY0wk7ggAXOu1sXcM86YcnAypiBEnOFgAw65rdyeSo9squjWHWtN63bdukmAwTIUuEruuIXb9fqGL2cOXL3DpLzK33XReBEYFC6IzFosKECREBrMlPiCdzoJMS54lfUok4310nd5HkaZu1xvsuhA7AZhq36ML4RZBAFBXJGGKDxF3okMA4q5Jip+/deP8Ln3jh3KkVBAiVsRsrx3fnvvXcBvAxNrGZh4Zx24RVpE3sNZOjrQuX3n388O1vvvLx85fBiIRoHS8vL5VV2YVQOlZYcHmTRMvFk7eQnzeZxqIECRMo574iiyI0W1gQRIFUKYkR4AiCAEkSRkUL1rz53rtH85+ldNDVB43Xw6OurveOD/YmR0fOmNJaF1OPLRmuZzURpSRSMHJfkZ95/rn9OX54836vVwKpNbYWsdZS8IxUsE0KR5M5AIQABNHmoClLFiCKFM6RYDOrc4Ci5Px3FZWEAIggmmLyZdkb9qsUNIaW2SAZASCEroPYeiCVFBnBWQMAqGrJkUEAjdE7sMzkyBhmYY4xHh0d3rh5o9wfLC2tDkbDncf3y7XljauX97cfH0f/x69+Z38+86F58+23BAkVui44V+UgrKooGMWRJvHShiCxLNhHYTbAAIg5JIFZIgkRMVNVlaI+ppCRNAaxU1EBIExJyBLmOZ61H9y7E2J8/tp1CRC7zohYSYmSIhpjCQ0iEXLuGlPUpKqAGfXRxpA0BYkiiUAJyWS3cAzWkvcxhGgEQpCzp7a4KLsoRAZ1MdVUkCBS2CqExCa4wqUk9XzGxvyXf+9//fnPf/a/+7Vf++EPXxuONspylLNHlJUA6Mn0EZnZYJYuKhhjISbrbF3X1dA5Z7ogZVFaa8rSFW0nIZ49ffrD2/dU1TlH1jT1HAA0pLe+/f3P/Pzn05JJAKqpi4nRgFFVYOv6VdHrl8N+rxvX5KMFywAMlABs4awzh8dHwaX19aXRxkpk8dLFGJvoowTDNkzbD77/Tpq0tgcA4BJWaK0SiSJAiglKQwTloD+bzmOKDOCQJapyQgBGFtW4sI9iPifz0jGFCCrAKAhCHCFFzLMWQcy4NGU4QYWgIuAJzn8x3CUD1hoCcGw7TSJCSKpEgDGFDPqMPuQmRwkhgUDWii7aHTImprB7fLSxMjx9+kyvV81z+wFGQnJlgWwzxH/RCEoENkkTG1tYpyrEZFwxXF6ZzdvJdKpRg0ajlFRr37miWFpbA9AERGxbH7Oot2nnsbP9njXWadAk6YkCAVWj97aiuuka74uoyOxcGWKIUawrAVEkSUgIyqiYF72YKbgLHc+T0idrn/VJ9YAIJ13u4gGWFrvFoigGg0Gv18sbJSYmwpS7Q2JUIYCYYmGLsjf4N//udz716U9trK9ODutT65dOLw1upskv/7m/2HXm9/7wG74+dIxiXTttL26uvT7dO5jXw8Fgh+bMrKLW2iQeVWMMhh1gHiQkkAVADhgRUROCorGcKbVJJFc/1ponO7K2bVW1LKuUhEiMMdNpdK40aLa3d4/Hx0v9QWq9ihoEDZ1DlSgCYgiDJmLTda1hXl5aEZAkYI3zKR4eHa4urwFqDAEBQ+fPnT8/dNVbP3y7Wl5iY6ezGUbZ39s7Ho/7/T4RDXsVr6+no9l03K6X/YkPMdT3H9/fA+gTXt86e/rCWTMdN3uHl06fvrS59foHN6PoWx/cWSno2XMbq/2qsPbx0bErTFUNKKW5Tm/tvPv0+SuXz138+g9ee//mway0RnEOelwfrixX5zc3br3+1qOP3zp//iIIyiIKA0KIQAhoEBVOKKkngaGCIKykRGjMhx98+Cdf/trtD25eu3Z1MByu2cEPb7y/Nx8/tX5GCN688/71zQuXTm/VvvEq0fJyORjPx7cfPjJFAZDnG8KCFBeK9eB9UjBE4Mz6ubPGlbXvQgiN7wwREiVQYGSkE9uXEhAICGQdnKLiwo9lcHJ4RICD4QgA7t27M1eObJLqvO1a36UUvG9BRYUENKbou8gm9kqHi6QZUU0IpABkXa8/EJmHkPLSxFp2lmYpBKGQwPx4xZOZzriA6cCTmVAO1MATaES+i3q9Xtd1bdtmqrpCQsrFnagoIxKSJk0a2JE1Jkj0KYGkIPLBrbtH++PLG+stKRlyVSExHO7unru0tnM8nsxmpigitnOGOqTBaOQgYPAX11ZfefX1q5/67NlP/URDaq05t7q+1h/u7M+tc0wUo6RFWoIQMZ3M/IiZiACiMWzYPBkInbwjtGSDBsgAClBQZDWgJJKYqem8Gvd49/APvvb1qxcG06P7k6MZUxVjTDEOe4PsqA8IQRMRSa8nQAkgAreRD/aaiIdbZ8/Pmrj36NGp1R6RMlHXdiCEgQxCaYtpWwNAVNK6KaxLKRGiKyqrGkPsfJskiiQfvIAAorEOmbu6piRWtetqV7iyKLDgmMoYIYmQoqSQBKyrIHhjDBI65wBAFYnZMLEhVclpVikkNEBMPnTvvf/OD26/P1GfiNkWg0Fx+tTWZ37hi7vbj956dOf+V+ZLW5sXnns6Kk5nrQafgoQudm0LTcsOLw0uvvSxl2KbjMWmO3733e8RsSgKqMSIhEiYU0hCDIBgDLQ+ZhMxABhDrZesTlISBiKA4GNlHSrcuH+nC/H6hcsFuyRBoiT0AugssEHDyKQkKDFb+zCIdME3MXShiyqSxDAzggHIEyBUkaSEmJR8VOVitLKevfHEqMi5R1ERZpuww5z6ntOUDKmkg72dT33y47/x3//6P/m//ZN//E//xfHx3vLSclSlkACFGFQxhGiNQ+SUIpFhJFX1MTJDCh7Ree+JsCwsoBBqWTiJfnll7elLl9++fTsxtc2cDAEAIe8+2Lnz9s1zn3jWQ2hVAbidTLnfY2eTBAVSFB640lKctU3rNYljy2x96uJ8lqwsnVm3vaKjlHEMEmLXzClKSnLv3bvTvWMEyHanToB7vWSgDl6mcanXK9kE38W2S6oxJUcckzRN66zJbXFMUUCRMMYEGUFLZK01SIaYiZJoXo110fcLA8oJ8tOP8io+YzaRKOe8LjzPiKCikqy1GDpC7EIebiNEtSaXg4s2E57oYgAx0y5yljCgEO5NJmJMm9QmzTxMJtslj2DyAEpFRJJGBE4xJCRCFSRjnGtDQEMiUPSrIVEIURWdc0IExIqURAFAk0BKvm1BkzOGEX1ThwBVVSYwAnIijA+xa52hlPxsOiaC4INQdL2SiIMPoFg4B8yYuSRZt5di0MRcAGFmoBmTv0FSTFkKtyACZ4EmGMQFxe2EzCneB2sds6UcGJ2e/CmmzPMUZbbT+bywbmf/8Ct/8LX/+d/460nqXmFSaK8/8/Sp89e+8c3XHo3nh3Uce1QxZMqyKM6dPnV48/by8ohpB0BjDMB5aEKaMEpuwQEByFCKYph9ij8aX+kiSFhhsXBBYOJFrDUiWuvyoydb2EJIAICEB4f79+/eX3v+OTZMwQ+rMtQNgXjVkEJV9tsYRQOyCTEW5EKIZIyIWuPEZT+aIuCw34+xI+qtbp37udOXlcz+dEzWPn5wf//R45SStZaQlnrVmsW1ZYt1+/DxzmA0fP7Spe3Dg4HymaXl8Wx8Z+/R/tHBz372c6e21h/euXlxc/VK//LD7e2Dg12+fgFI2yDbu0dHNx9BUY2Wl2ed7w+XyXIibVIz901nFBV6rpzV0z5VF89s0Xhy770PNtfWbVEQYddFhRIYiUkVmAg0F0aMaAACBkTl4dLo1v37r776/W9/7Rubw5WrV66+eevG9OiIR+ur1py/cPnymbPTdr733t7eg3tLgng4KQe9vf39ZjwpS3f3xv37d+7/eQC0RgBSCtCJYdbO+xQFiI1j5NKWxrrYeQjJOjRIPgU2DAsSKAiopKSkZFgSiCKQIRASFYmJRDiBwu07N88AjPe3ZXkrEbdd56OP4pu2TSnGGCFH76nWTWtc4YNxllVy+Q+CoKIg0u8NYkiS5ijBWGvQ+kaCpAhJVE2+thYD4nzoLC7LExziQiubsraOiPMCI99CKaW2bYuiUBAEyNmHlMMBT/qQGAMbRiKNwERs7OOdvft3H7549SIMC0DtsVkmC7N6fHj4aHe7SSHMJ32D3aC6d7h9fTh8Ye20i7q1vLy8c3jvu6+efvEFHg4JYWN1bTQYPNqd5psWUZHIZHo/KGbpy2KYnkRzGuNCJyg5AjZjJXQRjauICVWUAHmBfOSsEuGm0Tfe+rCiC6SRRCDVjlgcR1WfsBMTyJIxSSmozJvWhxSiiRECFYHYFO7sxXOgnbEoEjgnZnPZK103rYnNbOYBIEQAIe89GVYkTImQQIUQImgbfAi+cM6VpbOO2bAxXefzcwIgJxSBACmBYScpJYnIqFFjjFFTTEkXnyykJEygAmCYCTIRh9Ck1AFxUZbQt2IHLaFxlVf/cDouh6e1qh482rl0/SO+9c989tMPHz1eFjIqzWTOxqyvrhUW7927WQ57O8d70WuKcVYfqCsBMPpOJYEmIM7iVGICSHkoklI0hgkQAP7BV9+H/8DrAcC3/0Pf8//rC0EZScm4smq7uHnp0tLKWi2AhvIZDCcaMc1E+ayJhUWykoJWZXl8dDgY9P/u3/0vfuJzn/8///f/wze/+a1eb9jvj0Ri2wZEUxhLiBKSsQYAdRGESSqqMUUf2LAzRTOF4H3GxjFyc3x86dylNoU333t/eXl5llXJCj20733/LbM82Lp6rm0bEy0QBADWiixjHqRYZsPkDHUhxpSSpASM1pK1qMAgpIJqCFJM88kU2ohR731w8/aHj8eTaW3YdgEAOpBy2FdOqavbrlsfDQeuKqrerIl7h8eT6dSNlgolUfBRXMFZ3i4qzEyGWNiwYWSDyTIRQpJIaBKmhCiKSSFrYRTJkCKyACCjAiaJIKKQQiIkJGNFJYVICJKELBORAqiklBITpQVv4IkiBhfYwsUAjhA5D16OZtOjut46vTmezjMqrKj67SylBAUwoKpKSlGIRVPXBlvYlHMwREJSJPQhAqIti95gmGugtuvAe1sWMUZXliDaTGeAgCrTZkoApbOStG59URWKIc/IIEl2KAat55NjDZ4hAJi2aawpLBtJ4jsPAEwsEnO7QiC5hpYTh1fGuJ1krBJnP2X++mI9gicdr6hCCCFrdJjZe58XZFFSxrXmybiqqoBzpWoKMX39T/7081/4yStnLjy+9+F0dvz2+3f+9//dP551eHAcbt7efnnWVCVTSuTcqbPne7t7/X5PJAGIsSYkjwscEaYoiJg0gSaDlFJizjomPUkmlwWd/8ktqrpQLyy8vJluRzn4qSicMSamtp7Mbn344SdeenE2qcd7Ox8eH3ezyR9+7Wt123zxF//My5/41Hg2XVpZAzJFUTHB8d7YWLO6sq6gZVnhSXLIZDKbzaa2X456S6Ack1b9JYC0PBzupvvj8ViJrWLS9PSVCzvbt7T1veFAgzex2Fxf6XkMjZ+2nUg6f/bMYDB8+Pjh9u62CF24Ngz1DDHdffTowZ3bvg7PPfdRsfHbP/j+6Yvn2Jhh6ZZXV2cQPejLz78wj3779l2dTZfWVttZvb61vi546513l1aXXvjISyJIjMCARMaakKIkIATnjETpQkegq9XQ+/D7X/vD3/nSl0pTsECSNKmnfWvWl5fqg6OLm1uXzp9vY7e8vNF1l31MZzY2+olu7m7ff3yMxL2lZaP2B6+/DgDgXMxUPdF2XpM3bC2itvW0njZ3Z/VqfzgaDv1sPn6wM1gajdZWLFkwHERC8ipJQTSjl1GECBQhqUmAxraxaX29sbHR1DMAwNACaNt2bdcmSSnGup52XZcVzwKUNMZ2DgRlYSz3wPxIO0/MzC6G1Ov1QtskCSCSPEaBxKiMMbTmyS0BC7s7QcYULe4dQCQiXFgI4UnkVv66UdW6rq21OQyI8upfF+lIAGjQpQRRgA2xokgyxs3m3dsffPATn3iJBxYYTdJ1T25v0o7HB0dHEEkczxAfdaE8tbTdNoOGqrJoWK4MRh98+7XpT//0yovPdglwUA5OracPHgBiQk2g5seqmQVxSRcxw4sAOBZiRkRFkhiMdaDqvQcBIhaSCAzACU6OFdKYUorIUI4Po+/KknspzRGDUBmQPbgm2bngzEOoMXgJXhQqg2y5SkwdJC9K3ldVefXaZW5qCsEQWKaYxJjSYCvOeQEA8FErV0iMuWlNMQGiQRZA7/1sPrNsB4MRIs2aBoiYTeenPoSyqsqyRAQ2NgEnSYIiIBlsF1LsYvRRQpQuRAAISSQpOFQRawvnbJ0CszlZG6CzLlouByW7MijO511J5AFXT5/ZuHzu4HjeTOd1mNTJJ8F2PjeGP/Gxjwx7/aYeXxpRaU0Icjif9soBmeHB8WPLoViY9JiYYxJEREVDTEyLhQMqoPzkL1wBQmUz7XwGDJdgC6HUemfdF3/xF/7Sr/yl5eV18Dw92P3D3/m3zeFOz2Q3pXGudK40bAwCxRhUOk2Nb+u2RcMCCiBlUVSFLZhRVaJPwRsfkNCSU3ZAfOHyNbBOgwKZDLSBEzSpLnzFC9V6fguI5IPPM9GubT/+8kf/T7/+a//0n/6zf/gP/9HjR3eHw+VeWfiQUoosxjiLADFEzCkxomwLW5Rt2z58+PDc5sgag6SJoYiKaHvsQj07vbU+bWbdrDODIcB2YAoJC+V3vvUDVt28sIUZcd14tQ4RkwobFkIVBSQuLLKJMSoAk8mwC2QAVEQFUT+Z26Baxw/fePdo77AJeCSBrJtrAIBWRHznSjKuINWcomaKYmm0dHw87boOAIIIE03reR/6bFAJJWUwmyIgMzjLKWmvZ81EWt/YchA1hkRYFArZdwR08qyThQokCQjnuEzVJ/UmEzEQMyKoZT7R1UUVIiBioypeAmiOY0ZdrNHU+5BEoigy1DHefvBwY3Vt2O8rMwBwWWnd+CRlgixEEEzRREzgQyco1pWg2gUfJKFAZr/mLqssSmtdv9evm9Y3od+rYt1Fkezprmez6fSYGUejoXHGDXo9Q0EpZ82KKhH6plbA6fgIU5SuFlN2CaDkonCgkmICRbYnGkvUHCskqgrI+YKURYOXSz6AbE15omeAJ+LOdPLq9XpZIrrYAxBg3qnlIKOkpCCiokKMRVk+fLz91T/8w7/7d/4Guvbm7Rsf3t27+vxLtih6Ft5/7Y07L199+tkrqjzu0tr5q+WNDxgh+w2IMspbKScxEQNKEgREWfTYuHhHJ2GUoASg+aGTn04ITx5Pi+onP49ijNnLxsRE/P1XX/uLf+7POVcaa99++81bN957+803k2rju72D/VOnz3zsE2shaUjBGnN6cxOZ5/NGRPuDYZ4YGkIUSTGwVmCcgmFyIJ2kRJjj8xq2JaoSuTA+Pn70+MzKmnNOLc6ayWi4FgGdK5+9dkFTq76Z7e4H361snB8trYrqaGkUjtsmKvWWnnrqakyuqOSnfvKn+iObuubxrfvzdn738TgBf/qZ56lr+Oq1+uCwgsL1+6HR3d3dzSvn337ttdFgcO2ZZ4Im60xIMm9qQOyVVTOZAqFlu9TrS0zvvPrG1/7oj/7Zl/74yqX1L7z8iTvjG3fv3f3k5z/91MVzLml3Puxu7zzcfSgauXb9pXKNy9A2WvK0a0tbXDp3cWNz81tv/GCwugqwN4+hR5yYIAkLtNNZ13QHe/uT8SSEZNEeAg1twcYp4fHjPSqs7VfDjRXTL8myLSwzJUigi5h20ByDQpZpfzztuk6CXxn2AWB2dGSHp2JkCSHnuKeUYo7RpsxtFUTwXTevG+ssOQeZh5JHGDEAQGF5NOzt7D1khJ7jyXR2WDdiXNnrZ+bhv+f/gh853hd4iQwwBUXESISyEDNJr9fruiaE2HVdr9dDEWQGJZWUQCHHwSMIQlLRCMyMogCMrO9+cPvR9u6FlaFdqsTSKS4uzVEmcDPhfjcjKsrh4Hje+qtbs2De2++ehrL0enpp+cPD2zf+9E++8NTlUA2FaGltVX7sJ1eApELZH5pFtRlyehJ1cbLUoyzHIMKcyZmPhgQgBCkJYoa3CmhMqsjG0GA6l6Y15XA5okRMXcS5h5nHWYA6aAKDaAgZMp5KsRUTVcFYwxBj631XgVRV2dRzQiWCFDyDMRZVHJUlNPW06Zacw0zcFqsSABVYY/LBh35RurIy1pZlryxVFabTObMJPoyPxoS4tr6WiY4ppqSiMYpE0GxAjgLYxHQ0bwFgNu9inhkTWTIIkFWPMSQAYCIkjCnNmxqJg8CkrrHkleGS6bs3b77FNTk0vaXBuGmB9Py5088988JwMPoX//d/fvHSmYvnT22sr3548/ZkOj177uLRkR5MZpS6zaV+aa3E4H0CgRQlxRhjsswiIpos2lxvlEUZAXoKKUFlizDvlN3nPv35X/7lv/Tsiy8cTyd7u0dL/ZXJtE4KZ89drI8Puvncxxi6NqBxqqQRYowpdrIQ/RjFwhhXlFXhLFNhrGr0smjiQcRW/XGXzl66urKxOWkjlhUqopy4jnHhk3xyd+QLKUlCZAKNURApappOJ4j6X/xnf+fzn/vcP/yH/+jrf/ynOzvbtigGw6Vez4UQRMA469hKUtDYNW3hsHBue3t7dWhOra0c7u/G4A2jZXtqba2u66PDo0sXzj6++yhEBYCWaNbFylhs0huvvPpSenn99IYa9po4hLIq4+J9lSBADrKFzcQUAYxlAhCJORqo841vPKqZ7h288c3vUR0GveHxeL9TtYx15wHAsG3nbVP7tdFw1Bt1XZvhNEVR9Hr9bjqJMUlKzvRF09w3JRaMeUmoeREJoIbQWRr0XFmZNtRAEYBT5uQLKWWComRlQGYgiIpqYmMo404RgJCVmMhaY8Vq6KJEMsYSiwobI0iKxAIMBCoLlILkEyFzPDhloo/hvePx6++8d2rjlKL+NMC3f/jGymjp9NapLsYSTY4bFdWmazvfVoaBMIF2PnSNl0UUjDVMlMASO2Auin7Rs8Yg0nQyA9Gua3zwXdcym16vQKaQYo8NEef4CsjgIlEA9D6WVaEpFpY7EUFIKQA4Y4ykmOfuipRlFLLIGThJ18asg84bZJMb1jzgzxctIp2oqU7iHU+M8W3bOueIKImgJZGEuhBAiQKzCTEgWltwCOGbr7zyxZ/+yRefuj5wtNI3n/vUC3duffjLP/fF773ylVe+/JvPXfo7XWfHk8nm1tby8kqO2CZEISIh4IUWKf9ITJnfRXntmZOtUopZcWEMi4gkQSQmQ2RwsQfVk149v3NWVWKMMVhHZTG4efPu/Qc71y9fOOb9n//FP/Pd0RANGVP0+8NrTz179tyFlLBL0boixpQgIlJZlkCYjTIG0RCMer1eVfjCImHXJevAOdfWc9814/GxSooSm+P5s08/E9p5jJ6tefvddz/7+U86kju37h5M28HS2mw+L5yc3lw5e+2sD3ownbvR6v2Hj6rl9fWqWt9YXd+6+MF7t9t5kND1CiiLMCjsyvLocDKrgEe2fOUPv/rRa1d6Cqtlz7jq0d5unfydOw8aiWW///1vv7qxuTVYXW6aFqxjV0iM7by2zA6ZU3rwwc2v/N5X7717k4vi0rll6DyGVBYFoKTQobWxqWehjhi2Z/Xc13qURsNRSa5r4p3j6YODg2cvXzs1WN3bPTyazpbLIQBYsiEFzzKqCoxCiLuPtx/dv2/Qnjlzem1l3XSJQ7Ku4KIQwjqFVtPu3v5QlotBBQxIlpEUQSATvQmIQcDHyNaWwcq8GxU9ACiK3mQ8VVtKiCH5rm1jjIiMjAAsIoYZEH1M83runCGT107CgiqcQl0419R14XDY5wvnN0+trPzgjXeOxrO15QsXLz9tngx7cgOgSllDRGROdkMLudyiRlJAZGtNCB2RElnnSu875xwiazbhKMCi49KIEZlBVFIyhh1zSORs8eG9e/fuP3jq6afapMWg11NaOwrxrYdPnymPbJBp2NhY2W3am+pPX9l6dzmaw7h1nIzj5VF19/s/qP/sL5Rro4EbLC+vAEJcaL8XMgHO2faKJ2EyIJBVg7jogQAAgDjnKS+iCSSlPOsSEVIlyCoSJbZqDADNfXh81CS0R3MzTzZEbaMIItgKyDi2OYxeJJASMgmQl4gp5gOHQBkgBh/aFjUxIZIoBePId7Ho96Cpd/f3N6t16yQm4mQUGEFBQVICVWuKZt741tszrnI9FTRoRv2lYLuu62bTWb+s0PEimUEVNKGkJCGG4EPofGiCznwCgHkTjHNE+eFCIYasQ+x8B0IARESWsF+6OkmM0ivKqih2Hj4+bsephNK60HgUg5IuXbj4zKVLla2+/LtfCU3zmY9/cvPU0nhyVM9nK6urg6XR2zfeGyytHx88OjierC/1U4goybLxIYKAMdZYl/16mnMlmJKCb7te0UtB2sP5tcvXf+Uv/8pPf+FnkPlwbzqbz/v9IYJZGi3Xdd2ybmyszUp3dDTtYpo38zkoaCJJoklUjTVsyDIVxvTLqnSWmRhRogqxLQqX8bdsUejy9aeFDVqjaBQUc1S3iACIip5E5+XegJmJTUZCZK+SMZxiMMy7O4+funrtv/0//Dfff+313/mdL33pS1++9+BR28zWT22oQgidIoiQNRxb76wx1qDqmTNnttZGzXxcz2pAruezdrkbrS0f7TXNfLq6vHz//iMAUMJJ8DbFzdEoNfUb3/jOpRef2bp+yfV6x8ezHmA1HEYAjerYkDV5RVogBgUlUBDwXYy+9bFtIyveePv9t1/5funpVDWCWSq4cM7FlKwiAFggQnM4OWqQlp1r286FUA7KsugP+/3Z/r4PvnIuqhBSUggpJRAmsshEKCxJlVk5alXa9bWlzndtO7Our4BJEZBEIMaoKgyASln0Y9BkVlXUxKoMBKiZ6kSGSyzFtylGIoLcpRETUMweEwVJKRGCQMzlwmJRDpIbHsNe4f7O3p1HO52m/wXAGzc+OH/mzNr6OiMLgzGExiSCumslxlIhpqhJQkh1XaeQyrIqy6JflAbZsWXkFFLsQhdT1/mu9VGisWQtlYNh0St6o4qY6q62hiTFFKIsNmDQ+jirG+y7U6e2+oPdJqYIaNmlFGP0BlyGSsUkRBn0kD3kP+KX5GpgAdEhyjMTzCCGrLwByvFQeoJMDCEcHBycOnUqExEXMyKEhYpWdaHGUXGuCN53XTTG7Gzvf+0Pv/XitWvPXb/y8MF2fXRna0nOrOKv/Pkv/uaX/u3rr7/2wvOfmU4nly5d3NraLJ0lyqeRMrNAUslZvUAnq3iEk3M4Z4ZAyE18RlerPNncLd7mEy9OPszbrgUEa0yMoetir1/Nm/C1r79y8cLFMxcuxzD/9Bd+6ie+8IXoI7O1ZdW1QYOgMYqgKgaZAFSEyCQQJGQikFAUtmI3xeRDKIoqaWzbtqrc6uryzs52VDGqa6ur/bKczo+HK6NZbJc215dGwz7pqaefnajZndS7Dx8888yl7Z3t737ru88/+9Lh4axOdxvCiGIdvP7ujXo8u3T+8sbpzeV+740fvLI8IJZyNo8Ero+uXBrWDczn07XV9bqpR71+Rzjx4fmXPn7v/h1jI8T01a989T/6C/8x9So5iRlFwKXBcLx38P1vf+fVb30nBjl7/nxUcIMBJXHWnb90UY08vnePhsNLZ7ZuPd4ZN121vD6r49LKyLnSz9sP795L6+s//cWfGnp77/697dmsizHNOgBwARKAqnDhujQHSOcunFsZLrXz2tpqaXnUN2XqPDFX/X4XE/p2uVf1V0dY2i6FGFrVFJMYYzIMAiFXxqJsnC0HffJHk1vbD9YA5l0ol6t522FK4n3b1F3wgISMKanmLAdE1dS0tZkzkLJBIqSgTCBR5n5uWHzbnL+w9bGPPLN972ZBs6evnj515inrlsyPJTWeXP+4sEf9aKyiC0kaKKQEqhFQcbG4JeeMSOy6rigqXdyWqEgIKhmDggyoAJhiBEig7NywPd5/9533PvOZT7tqNCJU1B7R4OH8wHfnThfbzbzoV8NzZ+6998739h5Ol1eqU6faDw96h+36YPBof/+9H/zgI9curw56p3rLhijFiAvgaSIiZc0xkYvRlqJK0pSMdYyUUoIF+Q9TjKhgFlY4MAqkgoqcQGPS2IGzSTFLtgTg7t6kFldHITsCQKVoCIhIUvRdbYxFNkIsom0igSDoDRs2DAlJIPlIIUgSVCFSoC5qskVffTSFBYDHO9tPby0ZiJRQAgMZ0ATARFAVbjqezaYTy+7Rg0eo7L2fz2cZ8tGrKuuspEgxA5kyHium0ETvYwwhr8BEvRIAJMVBUbHhonBEmEKETEeMUFirkIEIVlpvrDUKHBVC1BAqV7JJzfFs4MrpwRFK6lfF5tbWK3/yyvvvvfvs88/cvP3hB3fD0fjwaH589eo5byk4E6sCej2ZTwgMOTKg1lhny+AjATpXGc5EE1bEVrwB6Jf92cF0qTf6a3/tf/pLf+7PD5dWuxCbeR1acVqoh067qiyfvv7029/709MvvVBWxborjsbzJiZRRQmoTJCsNaUtDLNj6wz3yh6RMoCq+hQLaywXRMTI+5P5pUvXBqPleUxoXFyM4k/Ac5oWxChMCklV8uA2heCKUgFD6IyxCMgGUopl0avn87ZtX3rxxeefe/5Xf/Wv/t7v/f5vf+lLH96+yUy9/pCZKDCqFmU1HBatnz5//fLFSxfu3Xxvb2+P0a4srdy59/A7r33voy9/1FkzGvTv33ucr5POB2c4AE3m9XpZSDP/8NU397Z3L1y5PDq1ntAoFmSZHKuCmhNLUA7NFCEVSJi6lJpQKH/w5rt/+pU/XsXywsZ5GDcWaZXKlVQf195aWfw9a8jYaT3vF9YRdfOmv7SUuoCibdfGFK0dtF3LxjgymBKKGiI2zhh25ECVHCooJFpeGjSdPzycxhhDUg8GyyEuCEByArnJiBjUrHoGPKlygAhjjMxlWVU0ny5IwYhZ44cEDItbW1QAGejEByyiKjElQ8pEcZHJbnwK8+gBoFpaPhiPJ3XjhhxCMGyRKYA0oTWKStD6DpRTkrZp5pNm1BdtUrM/8W3b7/WrokRD8+m8qZvNzdOjomTLRa8KGoJGNCgAyGALx6qha0MImbkfo4YIs9pvbo4uXrpy7XH76s07yhAlInEXggIxG0YTJTLkaCdFRAGkxYwL8kqIjcnjITnZdsH/hyV+0SUyW2vn8/l4PF5ZWQk+xBiRKCQgUEBRXMDDREBSUlVmYwwLyNe//c1Pfeb5y888c/HB9PaDuTHm9X/0pYvnN9/d6d75zd//nxXnLp45O6lnFy5e6PUHSSTFlEDIYkqJyRARMBKDaBIAhKxgPFlx/tiqLnenuHCrCACBMiiBkiRQgSiha9u8/woxxJSU3WAw+Je/+W//4Ktf+eiLz3zhc5/62MsvjYYDSalpuugT2zKKpBAhBkYFIESAJJCSAFhj6rYd72376eTgeK+3uXJq8/yp9YEA2V7vYPfhl377t7717W+SMZ2kcjC4d+++zA6X1svt/YMrF69IDHUzP3Pq9Afv3nnn9t2r168C4M69+xtrG0bkykp/pw3ff/Dw7uFxYSyH7lMvfWRyePTBh7eeevr6Uy9/UrpZ7OqKuRDkKOura/2Vldfee+deN79w8ey93R2P/vj4aPtgXBbGoB0fjf3x5LvffvULv/gL07a2BZXVQNr261/7oz/56tdS3b5w/ZlHD7ZffeONS5cvn1teP3/x4q27t3/47ltrS/1PPfds6upW/Nmt9f5R11/aNK0ymIP944Etf/ELP3fj3sNb794YrW+OVlfKmCrp9YQBoNs96q8vS9K665IKQOy5YriyxNbU8+5wOpnZxjmHKJN2WvUH/eVVtKZjoMyZcEaikgKCKOCCcykAhhVTTNLuT6b3t9MsAMDdR3vXNi4USFEDSEIREI0xta23ZJkgiagkMhx8aNqGDRaFtdYkQQEwbBREJCKFo/3H3/nWrp/MLJjNjVOQunZ2ZPIoMtfUiwBhfTIjXfQVeSypoKqJgJMIRLXWpZTYGAAwRrz3RIGtg1y0Z30DirGckoAq59US5Cd/4qJ49+at/d3D8+sjxRTb2TDJBSzu3Nu50DtlR6t2UG5srd59+63be4dxVJ29sjKpzOb7Oy605lhvvPnmM1/8uV61tDYYuqJAQkJWjXkElWICUmSz2JarimRhYCY+KypkaauIIAEhxsU0GlGRSfWkVQIFVIgSo4ASzoKsuSGQRLIgCYAAEqowibMEICpRVEVJAInQAoqk2AUitcyFddK2GhOgLuDvgI7IArRIALBzcNyGiNJhoxwTskN2CAIk1rnRaGisyd6Uup2z4eGo3zZNUbjhqO+sRcB8KEDySghIUbQLwfuQYupi6KLWnQAAI5eGHaoxkDQF0QDYhWQUncGgknygwhQFI+E8BO+7zeVTly9dxsLs10fLZ0cOKGo7T37j1OZ7N25859XvcmlsVe4cH839xBCWRX/UH0pIAOgTuN5SmM5DAmcNgqacVowaYjTgAIgUjZIjA0H9PKLiT3/mZ/76X/3rzzz1fN2002mtxCDku2CZrbHMrm0nz734kQ/ffX17Z3trY71pu7XRaBYCWWMNo0RDUDrHzJgNKIoEyCCIEHxnGC0XxGyt8T6oNZeuPx3JKNiYD0aVjFDIo08FYCAizf3AE9OASkqSClcoaArJMAAZSeIKF5POZlNV3NhY/0//9t/85V/+i1//xtf/4KtfeeOtt6fT47WVU2WvAJXYzPqkn/roi/XhwezosGt9jPNer3/92lNvv//ON175049/5OOlrWxp/HEAgNgFK9hEDyLYhc1+b5Xg8Pbua3d2Ni6dufDUVXPFlMuDqBEsnkwLkBAllxhJIQTpUpHw/s073//6t88M1taLYZg1Lol1sML2Qn+p6uq8cYPos84stE3to6mqeev78w6NZvRkPZ0Pq4ECGkTfBjswAKpRFBNkP5Jhw8yAJiaRsLY2sr1yvD/xx3XbSCLro1oDhkGBVEUhEXOKMaRITMbZSJSSpuR7hClEcskh2xhtjJWzljARQdIkKSEECQDIwI6tkgnREygxlYUlYuRAAJLER+lAOx8BLQDUCds6TFs/Kjuj6BlJHDnXeVEkAfAxSsrETmLQ0LbStoUpjCmqwcC5EgDOLK0VZVGWFSDEFLroU1BBNYaRQARAISaNqZPkY1IAaJN04skwRP38Zz772o2dp4hv3n1AQMaYlLTrurJazLABQWBhWAXVdCLyIVTQHMjxIz3Dk1WXar5+F7uj/JWyLEdLo/HxuChsVVVd1xIZFARCANSTiF9CVdSqqhSSDx0T7e7t/da/+xI2ex8+mnbJjUaDgOVr796Dgo8PH//GP/iNv/O3/ta5c6eunF1bHZYQO0KURMQWVaMEg4CEiAzAmLNYESVlrQ88oSDmd0ELaFDWM+ToDwUUJBJNIXhEYOa2bUOIZE0MaT5rq6p4+Gh7Z+fxH339j5556tpzzz793HPPvfjiR4aDAQG1wYMkCTHGzofoCudMEVM0zg4G/YPd+vB4cu/mh1/7oz+YYzhz7tLLL35yfDR+7713Hj6+Ox8fSUhq7FJ/uOGKG/ff7lsYDl3hyoc7u6X3105v3tvdDal56YWnXK9sZ8drg9GpzdP9XsneV8z9XnVl0C+MXSnc6Y3V1Mx9kvdufFiVbqVfsPjVQbm0PHLM46OjH7z1ZrW6vrS+8a233qIUe2hGg+HF0+cP9w9i7R/tbV96/qlXXv328MzaRz/6UUhp/9HDr37pK9/48tcubJ71Xu7c3x/vj/u90dmzZ8/0h91scv/BnapXLo9WHfdw1Ju3U1ctXV0e7W0fLVfV/ccPlrdObW1s9fsjiPfr+fS4qz/zwsfO4SrWXO8eAsC07RykznvTMQOKcEIsKjOoVu1SIDXWmaQJkMpen51LCmwRmVOKqolODOaqJHlQAlFBDdoEzOi4GvbOl5nx+ODx7taVCbmi69qUYvyRnUk0hw0mUUkF2giQYopBrFEhAtAuNJapZE6huX79zP277917tLM8GnHRPx7v+nh47uwlk3MgYownWUU/LjcjBEAQJBVNmazKTCJCYEKMxKwKxMhGWKDp2qFhRIwxGsMASgCoYvImSoDZqIqABuzMsPxwe/fOh3dXL67zKpTJF3XDDs+ifXjvYO1j1+dds7I26A0H9cG4xeJNlrdX0+de3Fo3KM1kf/vh0f1H1db5/vKo6he+E2etl8hkDHAOHwBMCgt+YwyBGIhQVTJ5VCCJCpAqSARBRgXKwfcCGjSCJUqFCKEKSjQMeYQSPCuBYlAWEEmiMQnhCTWbFBAIlCCqqCGXQBTFGsiCLETUCIBg2KGGFJCJBtZ2CgCwezw7mLanhojzaVEUbEtbkE+xCU1lCwIsegUSWmOqtnSu8CH0Q2XYLNBowCqYQiBoRDEo1QFbrxIxJmmabtZ0R8czABj2+n2LlcPKQhNlElIUQmMhdIjeIkISTJREGlEhDYIC5uHOdr/qr22u9/s9Zm7aWVc3P3jzrfdvvNN2deHY9u08dFpWEmTF9ddc/3g84S5iJ8aWc6VWkCNoioqxiT6hVkVBDjQFA9qzNtQhjv1PfOqzf/kv/eXP/cTnY9CjSQ1I1pYxJR88GlAUZFbPCKUU3ad/9mf++Hd+a2NpVAElUeuKDrRwhcXCMTIBEUUBQOZsaFZg0OQ9I1tnsjD4YHp88amX7Gh1kjiQU8D8uedpRARMYEBRRJgcIuXIDomRmRGUmDHnyDGBCooCQkwpIQKCgvjYxUnHBP/JL/3SX/ilP/u9V1/98u/9/re/893d/Vvrqysq8WMvPiOTg/l0j0KUmFzl0IDv/MVzlwpXPHj0cGXNBwHftgDgEEnBsAGJ065RkiVbrRajNoW9Dx7ube+d292/9sLT6+fPBERIagxbos6HxNDUdWULaCJ08cHNO9/52jeWpBi6AlovKaqlwMkhrTJV/f5YAwCYtkYQdIbYHc0aH+Jo2BeinjWDorhy+fLx8XHTtmVVKbElk6VrKDEiIKo6RmKM0mNbApFCItUSi2KlZhx50ze27KQfUt9WUhrvOx8CRyjLnpAeNPPJZCqqlk0J5ME7a5OKjWmjKufYOiBMALbwiIGoyQY4QCdiyEZEFC2MiakzhFECxgTMRVl60JBjEFsFgFaKcahvPXhwbvWppp4BKcdqUFal6wc/R2Oqqt+1sSx41BtMj8bqOyZjXFlUo2q47FypMQJRYpiDhBh86prQWUPWVcYaQJWYomKIqrGN4nOsQBO6eTctSydtfO7aU6c3Vg7SfHNrbfvBgWU0hAnU+9ZaC0Q+BkAy1gqoihAwAzNRpoOJCi6GaYuGLiusFbKhnbPzK/OpVaWqSh+6w+ODNbtqSyNBCG0WvOVxfj6xrMEFRRaAEAvBW+/e397dPpw0L3/k0tn13u6jo/OnL8RmLKGY++43/+U/29pce+bCyoXTaxqCChjb70KytiRVlAQqSQwAETrRKBqz6nKBlJPstlEiyqgYYmKilKKoICrSAqgokMhQSD6E4ArnbJEioAgpV2UPMVbOvf/+7ddee2sw/Mr58+efe+G5z33+M1evXulXPa6qGIoQumG/F0I42j989GgHRI+PjsZHk93He48P20k3u333B9/42vdsYls4GBSj/tZ8coyQNox7eWPDby7vHR9qglCH9a3Vg0lTusmgsvv7jz5xebMs7N60WxoMHm8/XNk60/lQR11bXRkO++LrNJt2072VUX/vYNzr9VPTlD1aLs16YUEjuLJYXx3f+ODSytrew70wCRcvX5zu7Y+Gg+n80Lf11tpZpuL9d27oZvHW2z84f2r5nVd/+L1vfW983JxdO7s82Ppwe2f26Jhiun7typBM3c3eef8d0LjU609n7W//4TevXr7SxhYoPXWhjBDcwJrSkMjR8eT7b97obayun90wMdYHjy5euDS7P2uHAwD4/Te++/nRp5ZGlW+6oanA9Iw1aBBKLqFvxBKiSiImZgMI2RHFIoSoQKBCZAA1ACmRaERIbCwiYETrBuWZFUat5zUAXLhwdnJ4vLSxoYBtjLOmFQVDANZ0EpOigjhiEiEByNmCgVRVMYKmmMI8dFfPn3r22mV/+BhmEzCmUV9PtkdLq0kPDVEOmSNjrGpGKJ6I6fSkdTgBNRJmmO2iVF/gGRCZ2TlI4ruuK8scvrgAC7V17aw1GaKWkiowKgSxRTGJ4+/98PWPfeHlPrmy30t9N49xSehyg6++d+/KC089mM88JmBqj2bDgOMmfrDEh88tk867m8d+PCmcXVpd7vV7TTuJizZ3MVEVkTzXYkZmQkDVtKAc4QIS8mRYlTVLopREQgzZNpJxvSmhc2wkx3hp23WIllAVIipqXioAqMqCOq0L1REoqKJKXssqJMwO1RACOwviiagqe7PjsVqMUVQ8AEym04e7h2uDzdbPUpL+wNV13cZYViZIyIAHUk4pETITIUAIIaZEgD6GGKM1hWUOnVfCCLaZB0BKoD5IVNw5HHc+AICxWFWFc4mNDd63bQfkWJEpyw8NG9NlMBqIqhCAKgLR7t5eQJlWxe7+/uOHD4/ruhyUAhnNRkkSEUUQVeiXvcqV947vi0RiQiZ0btZ2RVk4RAaqrFMDVVmxAimQ6PH+0dPXn/nL/9mv/NxP/3yvPzg8GltTZCRBtotn+082/xKCde5oFs5fvX7pmefeufnBC5eux9g6MgqKklyvxBSsMYAECAkWkn9JkpIvirLt5upTb7i0d7jv+qPTFy4mACEWXTggVeUkV2khjkBY6MyerBUy3DYnpp5UwPm7Fv9UFVJkZk3ChNPxUUrysY985DOf+NS77773W1/+za999feXR4NTp1bG06MeW7KurPrA0sxrU1YawsryMjDWTZjN5mVVAsD/8PjRjy+pYfbv/RccA9x/CH/wx/Afel0F+Kn/4DcBnCnKu0cHNhVUFS0RpjQ9Ploa9QtrQoq9Qd9UBRM5VzhnVZJvvUoyTIoYUioT2WylsJgMgYVBRBelTWGwvmJq1cRVWfWVKmIg6BMlWxhichxRwXBhrU+RFRxxn61xbpa8Suj3KmMZlFNUL4mYYkqN7zoQycLGlIIIZ2+RJAQhg0XhnEWD6EFFEuUzGsB3Edjcebz7/PUrQy4giA2hq2cFc5uC79rRaBXRik+gQowh+9VSDPWsSeqKggGCSNu1CuqcAcZevzKWCFEpgzVySAF4CZ1vyVYAEEIHIsury10jgPjMs89+9+b7165cSQ3s7+9X/R4DRYkxBlcUaDnG5LuWiK21jAYEJbN/DZGCnCB2siVMVPOejYl0kXSRhytore18OxwOx5N4fHR05syZNoTcDDNzNsFkfrSICEREBKAUBdjtHEyoHFxeWSr8o09eePbqz/z8d995fPPG4U985rOthH/+u1/+xne++5M/+dPL5z/isdCuGdieeEk+llWVtAZSFIFEGpVspmDIk1cWQeefJMfXJ5FsRMjI6/zciSLZjm2MKcsqr6uddaopxTQajbyfp5h6vT4SI9L9hw/fufHeV//wD65dv7o2Wj1z5vTp01uWaTI5fvvtt7cfPT48PI4hxKihS2VRKiMC98qCS2OV0XLLKGz2jw5OrQ1Lg35y/PzVy99746iPcPbi5TppXVLRHw1K0+uVR8e7z1+5sp26aYrLZ08nod3t/eH66fF4fjQZM6VCZG/33uULZy6uV1unVpZH585tra71eo/uPbh3sDdcX54/3n/h6WvT+XHnuzNb6ybJaHV50kweH+ytDZfH9aGqX+31L155Rqfyz3/9n4R5R8QXTl1oJ3XopmtrPcN4afOyiaHeOxw309HqqY2VJUHeebR9+dmnyrL34P7hB/dv706aF648vT/eTv3lh/vjNhxPmlDZWeXsqeW1WHc/fP/ObtPVoAAwadrH+/vLS1fmXWvJDrgA0GSwsM6QJTWZt06IecAHgMiECrigDktKUVJSEkBGQAJLGTzBQMYIGR/jpO4A4OWXX9jZPYopVkUxix4AIUnwwYeQEBBNrtOTgIASqIiEEJMAG0SmLnhDMJ41TSPrp87fuv1w2nnq9V1hucNx482PLYXpRLicb5zcJZCSIpHGmOdDWWP1ZDX7RE8HAIat7xpjuCzLEIK11ntvjCFmPQkczgplKxB8KHrVW++8t/Pg8fLqxd7a2rzgJVDo4irR2s6s/sH74dyw6PVUuD04woP5hY31A54drmjc4gu4+f7je9dFVpeWhsPh/sExMiYVPNnnqSqigWySTDGlSHRCj0D8cc46AJyoojXf+QCQidpPfmxYZMxS27RIua9CXjA28sCZIRPXFmhXyDETmgvgrEYSSSlZY6g0oUsiKf+wMSUyBn0AAJ/k7oPdZ6+cL7AQEp9SCPrw4f2trfWl4QiZGBkB2RhLhhOZJBbK/JF1ofFd2JnsXrxwhrgY13OyJCooiqhedO94vntwaEwPAMrClWVB5EWkadrYJVu67BqOMUqeUylBUlXVKKBgDY0Gw/Hh8eHhoSnt/v6+qA6G/U5DGzwZZrLZvowA4lNZlj6Go/mkSyEnNxb9kR8fJ0UA0uTZICYt0Q5tebR3EFv9q7/6q/+Tv/xXtta36lkzPp6URZVLcVoEXiozGWMEEgKIRtVkbVl7/8InP3Pj/ZuH8/n6cBjmbVmaEEMXsN+vGBAQJUgKPqmiCILGEJMRJiamuq6bLj311Iu94dq4A7JkiEJISNlDJADZegz8Y3XPj7/yFUL6I2+8LnIggAEBGQEkJkYkwqLoi6a2bhtfP33p+n/1v/p7P/+Fz7/x+qvN4e7mqc1mNt0+uDtv2l6vQjFLw/7u7u5sNq0G/Y1TqzHF0Mw+e36jB3arvzQia7oWu9bEMGsa5/p9V5TEo6on0U/ruToerK2snjnVWxoO1paJKDUNdOnurdvzw2loWoMWutjV86p0lbXMhKAgWqBV1E5CsMyjwcUYuepa4nkXbAqCkkiwnnljQGV3b88Yt7axYZxBY1JULqwmzneJMYZEWJGYI2MCQLGl4bJLVUERbKvNdNLE1HVoh8Ijti6piQIEIfoOpedsvz+UvMFRIMCAGnxsUgDLIhqjVyUFSCJRUpQkqABAxACaojeF8zEVlsvSFYacJcukmiAlSJBijuQCkEhkdiaTH9568IWPvzQ53rPzeWEUpGOkejZPK5HZBg2SoqsqZEpdEJUQapQEOCCAxnf9fq/q9YCAbablASCIimJUIZHofQwpZeYjAMS2Wx4uA6AaFIILl68gGEfmxReevffg4Z07dyWlwXCwiP0BRFDOoadJEkRCAycQf/hxKTQurG+wiE39cQdIhqOBc84H3+8NprPJ8fFkNFjyEvMl/YR5i4to2SzlhASAyLY0gmnQM1ur7rMffZaKwcOd13aOpu/dujurZ/O6/de/+ZsvPP/Jj3/0k72lNRQI3ZzBWnYQRQGy8IDQJECAjLxcQLHhpLXOnMMYY27JVKKKKObGElJSjUFEjGEicq5Y2HsBrLUxtU0diKBpGilcVVVHR8cC0usN67p95Zvfsci9qjKWJEbD1PkOAQb9Ua+qjMXBoJAk8/ms6jljTAopQjKGmbXpJv1hodKd2VxLbbN1bv1jzzyFbRDw864tCnP6zNre3dtsbNv4ybQt+0uHYfrmB7cvXrxsXGXYxijT1sfY9q1s9AcbK6PLz121DHfvfvjg9t6Osb3eSm8w2NveqbgsV0aTg71eb+jrDpquGvVvPziaHU6fvnJ9Pj7QGFTCg3dvLQ9XTpWbN+5+MGlrN5xfvXgeQB4+vH3hwlbw+2HaDspRA7xzNKmbJhmngKFuiv4ADJW9KpnyxqPDg+P9pj74xIsvgvJ4PCv6g1FR+NksdLFuupn3YCwAjAaj2bTd2zlYXhpMw9wyOFshGg2aNAKCcQUbPrngFnbCTORHyREoCGQQIklCcAt6u4pPoewVZTkcHx37EAHAx/nysO/VjscHEsLSoL8/axAgpiQIxEiAAhIVhIAMKKlkIUpiAiRyoun+o8Pv8o31YW/S2t021fvTleU+uf7+rQcmJTHGiSQRYc6UBc1XHgCIRF0kgj2BUy3k9ydy6QWzIc+Qgm+bpjPGIbIIiIC1NpdN2aQFACJABJK0b8r6YPLuuzfOv3Qh9ioonJv7BpAMX0rFjW++dfZzL177qZ/8yquvtIfTdx7c/sjTn1zpsIvm/fXJtOsqnf6ZlIboirJYTAh04bw3hExERAKqhCf0iBMOaZYNJoETiLwuaP2ACEwcJf37e/TFp4iEPvgQAjlEAeRMwztx82WdOCyekZRAFg/BvEmERfa6JFBlw6BEKlVRSALD1hgFgKrXv797sHM4O79VqbY5ONRZe7CzffDgABP7LjCZleHK0tKy78Lh4VGUyIZMaTrfdb7ttD61sWxLo2iCQIzBEHkf50137+FOSMREADDoOTKYotR1OzmuBZ1FA6QWDS0e3sKoOTqjwNSxWOaidFWvPJwcx5kim/wb6LqQbaqIlJIkkPxBl1U5nk2CpACaUEISLJwwJ0UAyIofS9YEaabzpy49/Tf+xt/8ws/+zHQ6m81aiUpkVTHFpIpEjIAnRBAAAWJMEpDRFdV41qysbX36Z37+6//ut37uk5+0FmPogI0PqnMhV1jniAhSiCEQAUo0hkUiGxNFDo/G/ZW1rYvX6kRgOH9WWS2T718VVV3w+klPKOknh/WPl0G4gLNhjmLOAGJcXBRoiGOKosFaZy2IhPF4XO/Nn33qqbOnl/7kD34/1s3t+49C1LLsxajAWDCPhv3pfNa2bdE0K8vL82mdUjfvulhUXNrKupKRoiVXTFt/OJsOiiKl6JBGgyUEDUfzw6PbhwBlWaiosM6bpjCWYnIJutnUIA5cYdmQosSIBNYaMighGUQGJd9tsFtaXm9UOxQszLidBgkYdT6edW1jYvBNN2HqjUZd8M4YA1SSLdBYxSKBMQwGokNR4QQmV8AWWTQlMZWbE8w7D523UCwbLolBfBQBIhFN80ZBiQgNKZFXnHedTyFKTBLz5hqZmE0TQ1wM5PTk4JUcJccky0vDpdGgoFQ6Q6ggKKqYtXEh62pINJWj5fcfbJ87e3Zr0DuezBynXt8ZQ/N6Ph4f9QZLKUkUcYYNFtYWiKQIbFxRVABYxLLqV4ay0ZoXbvfsPRMQBFENMfioCtD5FgBK5l5RJEBb9RMxG2vINk3Tq4bPPfPM6c1Tb7/z7ng6QcSiqMgYprzJEmtKIlIVZoYF+H7hjQJEID7hufFJp5byrPpHI3w0IlAUZYh+Mp0UtjBc6Mkr10AphSc1U56WG8Awb11J248nvfL8v37l9s07j99/1BKsbX//4Wx+WFSDAcX/69//3239l/+b86dGN249HK1stTExB4CYAf1AJgHmewtOSrcfv7l+/P5CRFGC7PmH3JGqKFhXOOt+/H4USW3rrcO6boyBqqrmsxkinTp1ajqd+s4D2aLoqU8ilCIBWEUqnXHOOle2XYhRRLyIMmEGTItmsDcBoEiwFldGfUeivtl/cH9jecRFejw/WL/QX6qKOze+Mz5uzp6/bLi3N+XOD5xAOZAaYU7YjveuXzq1/fhhYaqPvvTiqLR3b7z/+GFixI31C6asvv/mm8pBQjx76sxx0956cGfz0sW333jnk8+9hPOQpvG5tafsafdob3d0fjNM5/ce7fQi9Gxv9dK5tfHx/r07vVG/czgdT4Wwv7r89tuvX11ZO7+yYY3Mjrt72/v3pq2IGVo3PppfPbe+UZlHD4+0j6v94uoLLy9Vxk/rjfUeShJ/VJU0V9xaW7s+HNx+fAgAVW/06PHeC88+e/bC6f3HD9rQxAZQlR2VbIEkxaTGECESZx6yaEqS8uQhnexdDOTpCSlxQgRIyJAAwTBbO5tOASC0teNRYcz60tLhZBLarterUlKABYUrgRJoElHOUWKQp4SoKBHJMKMpe9WH93Z3q6K3fOY0VTuHe/XsqJ7N69m+UUVC0sWwghZ3SUonVc6i1jlRQ+OTy/TJ1fnEU2CM6fV6TdNmLFCM0TkXQsjzzHwviQioJABrrYTYKrz+5juf/sWfEKWi6qv4slcxpWGrl6G/+95j2txYV7tdmgd7j1cePnzp8mVpqb+2crD76GZ7eOPhncsXnypLl1LMD0hmg7CAa4GIgCAA0QK/9WPdz7//OtHbiSxAqpqyZyTzM1AVTK5SY6zrelAM8p2at4P5lyKSYLEGOaEqKQIRojDgiZ80Bx1L9lZoUEIMIQiI5qandOP96Rs37pzaeM6gMYq2MM8//9zuwwf7D48q018qnQHT1P5wdhxDKlwJ4n3dtk0LhtbW1vtL1hWuS0nZdl3IeVp13WzvHk3qoGh1UZ2YxjcphNm8rRtvy8KQQRVGtYbJMmjS5EmZM0BbUoxhNpuqalGWBVPbtSJiy4K9AWLRoERJVZMoac+60hVN20YQrymoRBFLTK5IAopggHu2UBWb6Itf/MW/+Tf/05Xl1eOjWVCxwNYWMYQYBZByAOTJS7KuRjShyTWHccVg3sZnP/rJW+++873XX/+Fn/jU0f6+aCTBZj43MZWiSJw9t6CYUrTOSuSgMp5MBensxSvq+t6rKaoQM7IBISqBAIhArmXhxHH8o6voyQGtP5ajdxIzCwzZD4kKaI2JMSoisukkKSgVDkRKU/kw3999aBxtb09ObZ6xrnr8+FFXp77jmLqisKfPnHm483gyPj61dfrCxXPtpOnSfF7P+0mHVa/HLjNyCld5YIlx2raE1KkAgGU2ACWyzjyoekhRg3RRBdp5PSh6WVEOImgyPQIXTnNMGRdACgURGns8mwcQa/ns0gawzGPXAnnTm7c+gE7GNbST5cKN23FANYOh7fe95aCpJM7z0hxQl2lgyOoxNgRYoem52OjssKYARSSGsmRiJkIkIQVWiMgoqBHBx+RjIMTs6FRSa6xxLihoUNWsUAZBzUtnx0Y1udIuj3qVQQRgyh1QTh9PPkYfEwAIYIhpuDrw7fxPv/v9/+jznxmYajxvwCggadKjw2OfwLBF4MYHIiyctcYyExFjjvtF7doGyqLslQAIBIgooECslFIMUVJMwfsQwYMkAOj3SkZOYNQ47pWmKlJKCBh8O1fZ2Fj7wuc//+GHH9689aFvW+ccW5fVPAQBHRERcW6u8i5+Mft5MhBSVZGomkhJRPN5DADO2pBiVVXZtAjKx8ezlWWTM5FOxkg/8mTBQkTNKbZkEJWE+699sPto35NCUfTWhkZDr24MSDh/etjn2W//i9/opgeuMG2KyZCyEKSMHEsAkjOlVPAkjVtPeuV82CKitRazvRcJOKfqARJLEmJ2zmXFxZP9IiqGEJx1KaWmac3S0FhX1zWzHQxGIjHEELyNFL33XeuLwjETEnVeFSKzBYgCgmSIMQ/ogUlRkyb0ySH0B4OB5fWlpaP7D4fLg6Pj44cPd+/uP/zEZ15e2lh6/+jd4dJa2Ru8+/6dJAxRHGFZ4cO7dxD6NtYT6n7248+Pj4+aw20oq5de+sjNG++L6FIxeO3mrdvjuoX0zMaZjfXT7333W4JqkTeXV+59eOvy1vku+MFoNPZt1e/tPdg93ts/e+o0Mo+PDx9tuzMXz4QKDqaTg739dl5vrp2a7483BiNr7NF4wlywmKtnLjX3tw+mLQBN5vODQ3rx+kWDvd2j5tq1q5rm2zv766ORSWo1Gdae0VFRHUbxvl4aFAAwm7ZR8MyFS85Bv1eltg3NXBuPPZCyNAgUExjHzMDERIAgIKCQ0SxZli+qhqw5GY5GxYhsyn5Z9cgYsriz9xgAjFBR8uFk7Kri1Orq/s0PwRhn2RijIqCIpJjLdJCgwag1yqqkSYjYkI0pzdoQI1nNNyosjQpnlz728oXZxBpQDCGnqWEICUlPFDzZR0kLP9cCxpAXX/AkZZ1+zGPJzAiuKLRtW2stM2fAea6QUkopiTGcsUA+JWdtW9m3Pvzw4N7+iEpIxNaIxCRJIQ7R+sPmzu9+8/onn6aNjTv7D3bv3B+f3nK98oysmU158O72BwcPn37x5X5VnZi8ANEgaEwJEYiIgAHyGkcIERQyYH2xtcraqZxPjqBKMSaR3LARUF4I5pGyEpGmmN+IIYKFPVdh4eSEPCMgpNwxiIICLZ6ZALjICRGCpCASEiA7awyRIPiua+o2H8H9peUbt+89+9SF81uDWVsvj1yUuL6+wdHVx+3K8ujy+WvRR99G7wMR7R8fzLs5OSCD/eUBuhC0U+WUUkxqiH3bzubzpotRWQCLnAUmvpnPkmAXAcgaNgVbQvVdp8D5GjB5XiXKCs6wtSbGaIwxoLNu1vrWWtu0rfedqkpabOYVhASt5bw5qkMbJAIBRBVEMq6ZTUwKxtBxc7y1sfGf/+3//Jf+7J+PAabTBthwzpNLSRGMcTGEruvwxB4iIiklImSmLnprHEZitVGgC/qLv/QX/vGv/zdvf3Dj+vkL49kstm1VVT74mAQQIAECoDHO2pRSktTFNK6bzTNnt85daiMpc+sjskVImLIGLu9SFkgVIoL0I4vK/1uH+mT/lVRyaYtABJyRECEfAISCkERSSiG0xETIIGodHOztzKb1Fz7/M1/5vS/7kKyr2hAe7D1eXVk7tbH14e1bs7pxrmQu1lbXDtqYfPLeoyusdYWthqBqKFBsUziqZzPfxq5RQqc2dl2FbBKUtugoeFTpEimaokisxqCiGiZmUk2SIiGTqiFTOmctkxIBhrbb6g99TNPptILKh3a9dNaW1rqIogA1DrAs5hp3CcaY5j7MYRIKdr0yotgIRd4wIyApi6IoWBbrkib13qqlUa8+qre7mRpYJlfmVC0gYhRFBSBGtlz7uSFmRklqmIUIkJOA71oVIQQDhJZBJYaEINaYCDLolSvDnmERFSIjMaUUfYKmSyFJUgWA393bBgA4Plp8qL/5Zfj/y8sZq2K80nBtQ4xtQgBBo2gMp+THx8dLS8svvvTixqlTN2/e3N/fb+ezstdH41KKMQBRjqNedKoZiywnXZ2q5uNaJGWYjghm7wsYw8x54Y/IRVG2TVfX9dLSEgDEGAEkM4QyKpoNIlJKMaEvChe6FNWtbZ52JM9e2jRaXzvX65cb33nttsLg2sVzn/vk1ddff+0b332v7J/pCAgziRYIst1Y81MRAVH+PTZjLmjyUD+XQcxMSLmrFVEQEBE2Jh/IucgriiLGGH3s9XoxNN577/1kNh/0e4RpNp3P53Xwfjjsl2UFjlKKkiISae53AVofmTQ/s1QoAVgyIctEWVmjEzm1PNRQ94jb2TylpKjjupnb3mDlPMnog1t7q5tX1pZX7j5+jCWWzKGLbeywDVc2T4+nujFc/ci1M/v3P6zrGmxvNBxO5rM2pjbFb//+VxoqaWUgFpZPn97b3VsdjsTy8aNHz1w4P9s/slYed4f3H223Dgdlb5n6W+eWO1+zsRfOnA2SmmbWd/bYh6eeerpfDI+Pj0oK586db9pu5+Co53pVQYf7R+vk0MblU2tlgXtHB9/+wTur66fKpcF7H9za3du2RJfPX3jx2rX5/mNopuiQq6rq97ZvPfhg9wgAfOef++gLqxun9+++v7+90+8VletbNMHHmdSVY4uEihIjEKplIlZQYkwxxZiiREJ01iGZPD8QAwpYFCNbDhGh6hW72/dDaACgIIcJ1leW7+/uFsaujEY7h0dgihhjFCFRJFDHC/CVYgbcMBIQKkDoOrIuxFRUlbDrICRpfDoejOALP/2Ri+d+yuQyRVWJ2BgElJPTfMHZ1EWibNb9ZBMAZkftiWvsRwOV7Eg0xsxms+Xl5RzUkh8MxhgAFZHCWMXUqbas0C+3p8c33v3g0xdPg5fK9uuuQ9C+tfM2LRm3Vcfp2w8uf+JyvbJxcHg42z86s3EKbbl8evPe7e3t/V3nzMraarabMbFIMmyMgSfCHUQUiTFGVxaL7XjmISrElCQlJpAfhXuQKnnvQfPQnfINdqKeRhWYzesNXEXSmKJhkyDrPQQXqiEFAIUEgMCch8aFYdQQfFegqor33hKpSq+wEiMRuoLTBAGgcDZInKf4/TfeX1p6uec4Jt91WpqqWu2p093xzuH7B4WpGG2KyYdOGIqBc4NSSOY6IS9sbUrS+pgDOOv5rPXeuDIlIDKjfg/2YF5PgiSgoglJFAGyARFJnagQUdIYfJeiAUNdapN1cgABAABJREFU1/mggDgY9gGxq6O0Kqp5naiLgBQgZ7Ic2yAa5hhD0zatD8hMIowqIoVlYkOiR0fHn/rER//r/+1//cKzL8wnbfDRFlVQyW1CTgiOIWQxVh6/qCozxZT6ZamZrJBDyNX57Awvql/65b/0j3/tvx32qvXl1W46idoVvSqECADWWmOYNHtxUufjpK5F6fS5S7Y3mgWTgJIkRrXMKUYAAMDFB58zB2LIGfI/3hOfwCP0yRAIsyM5aR4JqAA7A8wJFTK4AoGsEY3AEJp2WFJXzx4+uL//ePwH8z/Y3z8OMa2dWhkf79fj8cbm6dl0yuiWhu7+3fvra5tLo6XmeGogkmCKCY1yjhoA0qg9Y8rllXloG995kBgDIHaogdSr16QhRctsiB0zIxdlyaCWEUVTFAWxZHtoUKEEa9Eo6Hg26/cGzDQsixi7vnXDwoWUZ3RQItXTemRMIbjhqjVgqQpfmIOu3pmOJ+NxGlopLbkSHaNBso5SAh8QhEAtcikcU9L/F2d/Hmzpdp73Ye+w1vqGPZ255+H2vbfvgJEDABIEQIqjJJOSIqU0mbSS2JIsS5bKUsqOhrgS25WK4oqcUjlVUSV2OYk1mKqyLMkmSIIkSIoCQAwELoA74va9PXef+ezx+7611vu++ePbpwHZ/7hy7q2u07tPD+ecvdd6h+f5PXXoEsysWa5O99xwrxgW0QpkRBDLxqZgbduYmUMUtZK8MmZVNcgiaOAAA1EvtVRVRuvXz45xc2Nklpmo4EJyMkMil5N0YmpgBLeuXI8UFsvTa3v0Qx996a037n7rWw+vXr/5yY/dvr5dXtkYlM5NF0tFJnaD4Wg83ijLogy+LgtPqDkS+boc+VAaYpu6rBqKoASigEQ5p5hi7NJiPp1Pz2bNLBS8Mahq8iW6TtCKwc7l69FgOpt3bTQxyRmZAGCxWDRNO5mMPv6xj7VN++DRo/sPHqBZimk+Xw4Gw6IITE5NiMA5n3IiYhUDA2Jm4iwJEZgdgIL1zhVSVe98zoKIRVGklAbDwXKxKKvKB9/nsYv2VwqZqogxkwF6dqlLWQvHKqunFy5tF7LY3NqoivADP/ChlW79+r/8yp0vf/N33/hOFUKLAy+p8iICZmxASGCQSfEc021q61y8Z7uCvgfDc4GpiCD1UIB+hdKXSta3ZH2dlFI2U0Y2VaAe9E8xtg2z96GnBBZFKWopZTTKOatKSk3fqIfgkSirAhIxK4D0/R9a6UOSVCLU2UKX57PF5PqlvZ29Yr4Eb5Nq1Gpadkdnpu/fu/vBF2+bucnuxebk+OaVG9Y1TbNspO3a7qXL2wXJ3Tt3BqPh5NIlKgePj0++84WvXLu068qqE73+4stfefvNzN17xf71MLx26cbRYirBdSoXLl8iyRdpr7Du/v7j6dH8ox/6+HQ6Y6pdVUzny9P57Pj49Pnnn7+0feHp4yeXLmEbmzamo6fHW5f2pKgOVsvBYDDp6tX8cMiAqZ232ZeVKO5Pp4LQrLq9q7fB3Lfef3iyvPN9t68Fz87ryfR0tZBbN24vi6dw58gV4YUXXqqHI83WTJeTukK1rm3CyBmiIYhmBPDsTDCb9MjuBJpF1cQ5x8zIqACGjB6b2I63L5EfiTlEIi6qcqg90SbqYjmloiu9n80XdSjKol6lnFQRiZkNNOVEzAbgkckQzZiAkAwpalLNxEieBAWQfNgQpruP3/nK19/Z2fsRdy7iAdUMgP1Otl/v9GYBMwOgniUBQLj+ACPqR6zn6h5CQoxdS0T95msdknreKKeU+lFIyonRyGEGhOCbmX3129++tTWqx5tptq8xjusSxIxt2XUXigqOlwffuPP9n3zlG4uHFKUOVUE4Tap1OJgfR4lbW5NeQEdoWUQMnKNnclUzW8981mgfVO17CyWifvba+3z6hByz8/rPFAxExDnXh51JFjXJKYuZyHoU8Uw5vl6KqZ3nUAuCVyTU1HXiMYOKaHZIQJBVAMCAQhHmy8YVA6QAsKrKQkR9Vbz36ODSuw8++vLltllWo0knah4nF8b1Zp2aZAlzzGQ2KGp2iN4pptw7lpFTzm3b5ShZsnRtVgtFSKdNTrkuh6NBBQBtu0IumjZ2MftQlkVBoGDKjBnwPMPIHPVS7x5LL4bgqwLiatk0zXJJTCKacwaG8+ghZUATrYvKshydHCsaMS+Xi4DsyNXei+pqsfzf/MIv/Ht/5S8PqsF0trSMvqj6Y1nXc2xbz/AR+6lQTskMVM1UPfte1mBGCFiyt6SZtEvp4s3nf/xn/9Bn//E//l/8/j8wCPXpYqZIg8FAckbC2La9+gaJzhaLZZfH23vbF6/OuqgUDBEdr/m0z7alwH2AEZrBuU2y/6VnZdC/MgoiQjPU3pUMKGAIopYhKQGzM1CR7ImCh7ZbVY6sTfv3HlOCjdHo9PQUAVbL1cnpcVUX8xUeHJ/WPNjc3FSV0WBsRtPT043ReNVONeecNXWpYqeEgNaLez2xtzDkYIStpE6yQe/IIEZiBDNjAEccnHcIjKYpqfSici68H5VDi+LYSZZV13ZtNxiOkuS+i/fkyiJITvNmgWD1YKCBJKYsslFtsXDucl3UL2xtzMvNg+XsTns6l4SKgirAPngMBOxYyOdMKsTYOYodlJOBBT7qDqeLowx40Q8hKyoY94guJOPgiYmyqQFmMASNomQQyPWGTJOcVRgxGzjmbDKoizIQo657H7MsllKOWcQgZRU19iUYMsokwHYFBQNX5b3jdvHFb/3UJ16xVXdhdwNdkJSaduW8T6qUBQldduZAJXujLolRRiJkrsqC2EUVAjOwlKRtU9d2TdssljMDKH1RhqJg3zbSCu/duFYOxoa8XC7AoIuZUUNZEHF/tLRNE1wxHo8/urf3yiuvxBj3D/bv33uwXLX98ZujqGioirIsui4SEDGrqmjqRYyq+myF2yeqijyTSwMiOud8CIfHh9euXs1ZsmTn3LNsin5zQcSWhIADB+NsebkxuBQF3nr/8PU3j3/nK99OuPHwYA4B90/PHEDUPus4WzLs7YAIaghgBKiCzKxoz/4N3ysDevYgM6/n96pExMTZcj80appVzmKmzM45x0ixi4B5zb82MzNi1iSm5hxLFlWVJG3bOefMRNUICRCzCgIaWYwRAMRMxIiRVQAht6kE2h1O4vR04ItHDx+283k9ro8XJ+89OMyB3rt758Ub10dV+Y1vfvPu6Zkbj/aPl2NflKb7Z/u3b163vILCv/Dqq08Ojx+ezB88/s5yOn3lxVuXd3eK4cCN9/7la2/nJg03xu+/9+DxMu4MRofN9EiWl3a2f+gDH2qPT47mJzlQmezixctn09OT6RSCd5C/8/5d8m48mQzqARPPV80b7703GI0kwXyhTx8dlpUjzE3siOHCld3u8QEJgpIZDTbGq2Yem+V4ULer9uBotYj0nYeHly/tXqjdwfK4HNQTGj7cP9ocjgFgtlzcuPkckbv1wkvd2XG7mFeTyhycnBxWo7prEYEd+VAUTIhEyIQITM4IhvWgLywQ0ZiBuBwOWCcGXgzqwbDrYhLwvqqKMQCowfHxkasGfjDok3JGo9Hx430RdYQgyozZLObkOJA5MFBRNUUCX/rYxpwaZJrOTsfjofMFclkwO7fxe7/37tOnR040MTM8Mw4Anm+1zvFv52ugZxqg/pHzldO5HqgnAK7j4tH70OcD9Otk7D2NzI4ZQAUElDyBJiMXvvruOx989TktQ6M2KGsCiW0zqssjbBar+WZR+ml+/Fuv/eCPfrDe3rl7+HSv3AjeFWV4cPjUAk1GYzBVSQ4ZCcxIsxJBH1rQi5PPAxYNAJn5fFVluEYzIjGbrW2fqmpqqAqATKyqxNQb4oAMAVT6YFVQM8W1R2gNJDu/HAk5agQMbGaa2QExm/bYJJ9jlBhzkQdlvWpWITD7EgAK56VI85lEgNffubNZ20s3NnMWhQwsKFpU5aAeWgZQY2YxNbSsqUmZeugKUoxd7DqN2nYtWnahYJTYTVFkWJbD0vfzHgzF9PQsCg69B7OUWl96ICCklFIZnGPOBpKzmXnv2647nZ5lsdOzs+VqLpotSYwRHDP0oYfSS94gy6CsHbusoqq5i06p8o4A8mIxCsX/9m/+7//Nf+PnF8v5bNEyOfZsSKIqKn2GHPfCmfVRqIiQNQGAZEFRzx4Q0bj/GGQMymJoRm2SH/p9P/XNr7/2K5//rT/w4z85Ho5PlrN+MFmwL4tCcjKw+WyZFRZNfPnG8/XGzjJTH8YEBmq535+KnKse+u+twTNL37Nhz7M50HcfUQVG6mPvzqf0ySSrElHOHajVwWPK3Wo1rvwG+yfv3T99cLw8me3sXRqPQhvTYjmdz86KercoB2Y0my+K4Mqi3NnZfeP1t1aLVahGIXCJrnA+pxxVqSjQkyl4w4DoyPVP4wGHCGQAwCRZ0YzJiQqAVcE7Ys2JCDoRVC29L6oQQmHAgoZMXeyWsVXCJsXCV8EVdYhOTZftsCq9K5arJhQ6KIsldQrQQcaC8mJlSzdy5aYb7NZuzO5+nB3F1BJkzdnUl955Cs5VhipAqOCAS+oMRJ3fGa9sdn9+aqVtcekBuS8rTRHQOfbsDCBLjjkjsJKKIqEyGCMGckqYVDvLzrFZ3hgPGa0sApEBKDkHKkksKwCzGAA6AMypReuev3bLg7Zt0xlFCg+OTh8czG9/5MUn+4dVWVR1YaZN09J0Wg0GCrVz2YxMgQmN1oZtYFKxrEKODUVEUsqr5Wq1Wi0XcwCbDIYbg4kna9qEXGQLm3tXkzgCPDk5KYrCO2eIKUqOLRF57733CfLx8XFVVVVVDar65Rdfun7tets2zvmc0v7h4eMnj+fzxWqx8j4Ag+Tcq6J7mYuqAmK/SzIzx87AmBl64gNRn4nRdc10ejYcDokB1mUPntf2AEZiwQFV5DpNEfjbd54CVMaDMhQ+66pLe3tXR2Xz+NHjwXDURp4vV51kF4JavxhHAlpHnbpnP1lvwb7bT54rtZmZmHDtMoFnmJWu7aJkx+ic68VAhNSuWpVMbMT9CWldbAGMiE1Nu5RTyjE67xFJJJlZCAFApXfmIYKpqjjnQdU5Dwg5Je8ZQa9duHLjwqVmfgrZHh0/HTmeHZ3mgsdXNx1bZbJXeF0tFqnd3t7buvbcl9/8jq5Ohjm/cPXyRz74iZPTJ2enh/de+1ZRFG++8dbW1vZP/Ninm/lyNl/5ZG+//rbM25u7F27dumnLhjrxVbn//tuW6L2T083Dww9cuXr5+vXXv/GNnWLzpVsvnzSr49hmkxy7re0JB7+1sRVzc//hgwbh8elpHfPJouvEVY0MQr68Mzw5eTqqx84NLt28cTpd9pC/g4Mn3uvOeBCXEZMOSt+pNk17//GDnZeudBqXs2WALs6bt+58BwBOzo6/8c2v/9zVP0iDEVejeHzst1ymXGPIXQvelQUHz2Vw3jEykyNA8C6gI8nqXPBFELWTxXy4sV3UWx5IDFwo1LKhxGjD4c6nPv2T8Pf+QQfamXjP49F4tjpmciGwmBAxAWsWQsceJfeDGIdApqAgBoa5Q1JQzZK6uHr69GxjslkNcTQeXb54bbU8vPvevuub2P7Ef9bXnje1/flPRJjl2ZOyD6XBnAUAvGdmVjXVJDkDmHMcYy4Kr5pj7Iqi6He7vSCiL/uFEFrBLjv2o2p0Oj965+igHjFfHQ/2YxHV6jDNsSqDgpnIMOLVrOn37ltdH9PyO6u3Jreec4iYYlouLu7ueiLJ2WHRg24B1AAVjYh6xDkS8bqR6j87MdCeUaAAOSUUQfTP4PTM9Mw2qv2C2IAAnXdZRPswIXKIxMCKCrg2CvS9Wl899tQKYnDkCHISpd4ejxBCmK3mMXaFr4vg1RI6BgCHrgqeGFztz1arg6P5tY2alMPE1eQ9eUZf+BIdqAoRx5TURDWjsjPIpm1OTdc2yyZFQQQXPDDlplORwvO4LgpGAGCiKLJoWl+OwbOqaJa+5lUkFakwEFjOokSGaITL1apZPJwvV01ugYE95ZwAlZDB1u53JOwDBybjcey6tu1MQXIecCgV28XZ8xcu/p//5t/69A9+7Hj/ANgVZdUztlUkS9a1z8tgXWn2R6Laud+wp/U755KoI0YEIe1VBBgRjQ2xk/QLf+4v/D/+zt/53L/4Fz/66R/e2Ng4OTmp61pyEsnBUdvFVZPO5sudS9cu37zVCEQDJlSzHmaoBuwYFE3PC2iAc9TlM7PJWgz0vSuwZ+8QE50HUoFhzklRV00XHKPo4ixtVPVFH4bsv/ON137pn/yTZrUYUjWfziZ7u6NycOXylaePHy3PToCJR36yPTo7Pp4Mh6lppsdHFy5c6mbtsK6rtPY7mJpTdZlQjQwIFcEIIasGDv3Mh5E66TQrmxS9blYUckZTFWMz531VlUUICiCMhq4zW6ZohMzOzAZl6ZAq9k5JY2tEBZeNxdhmICvJp5zjYlnVVUmsIov5zDvvvd80RjcYszyJy6fdikYVOjIRY0+OgTAktBgbUgQA0mo8AMNVOnvYnsVivBHKYOqzOgA0QfZM3C/juU/xA9Rs0foxLyAiI1sWUDPL3mFVenZApGY9BtuJQRJTQLMshkRsknMzvXJxcuXy5dVidjJvM1Ko6lVavXf36SdefiGU4/lqvmpb7zmLKhI6cj60SRCgKsuyrE1ATcyQDBRBVbsmphxjTovFYrlcdG1U06ouR1XtFHIbXVkczZoLz70QhjsLkcLo4cNHasrOKyEx9+ewmnUxeu8lC2BLRE3TxJhEMjNBYaEMLz7/3M3rV89mi3v37j569CR27aAe9s9ho34xQQZwPs6HXuKHRERrpjkiee83NjYODw+dc1Vd9JQ4NUWg/mkQk0jpxQxXrYKFwbhZRQezV16aFGH16PGDj7zymbxYDGz+R/70T7/53v3f/OI3zNhcaFGJjdf2SuzD9QSEFZ/tuJ+tlXvT8bO+QrL091P/uoux67rWeV9VhWPHjKoaY6eigYKiI1YkSznlnAHMm5eskpOJ9FvRtmt6ElIRAoCwc967LJkAEYQAmAAU6rJIOcecMwkiXNjZjqlNkgd17SSndrXsYuFqappGZOPK1a/deXz98nWAYjCo59ODujvb2dreHI8vXL78W9/89uH+yeO773/o5ZuXhvXLL77wkZdv3717d7Fqt3cvvPH2G2Xhfuj7nk+qq+OHFXhPru3i9csXnhsUb73/7tvvvT0Zlc9tbf/gx77vyZMHnXRPHj7ZP3h6+fJlTJ0YNm1TlcV8uhgOh6mNF3cvxiaNPDrIIHl3e0+tKYfjJueKJHhZdNNF13FRVONJUfCybZzxxmQcF63VfgTDg8XZ+wdno1BMNjY58zZPXhxO4P7vVkXwwRPzrO1e/uBHH5E7PHo43ByVBSVkNQzeB99HLBIgMDE5l0QsaT0YNl3MbVvXo3o0CfU4GyF6x84517SNI0alLuXN3SsAIFU1Xa5OZgv21XgykSY+evJ42XZrMJuY5YznOmNEQCaEPk1ZYkzI1LOIBsP64f3j1OVdCMM6bE42c+udU8dM5+c49hKzZ4PHPqiDiBAYUc7NlT1RomdsrJ+Raw4KM5oyE6J5z2bFYjF/RlYMwYNZ1rS2UaJ5AfHoOXh137zz7t6Fcuf7n4N3qH33ASs4o1owAmRGUNvFcHb3+L3pF3Y/9aGp6Xw+G49Hi3tPU9fu7mzXdZ2ikEPTbIqI1t8KiOt/n+ceyPtdNQmgpZQBrA8yAFVai50RgJlI89oM3wvORYTYEVGKKaWEwYFZ31D1EkLqc0t1LXTv9yWqmlUIVDSJJN+vzAyIGZEkgzEMyuqsbckjAOQYC++rqjxsmopgsWoJyvl8WRSOrfbGjggL5/vEH4CA1MVOxVAJDUx0tYrzxTIuF479YDRWhiipjSl17agKk0HhcN1jLZqmEwvsyTnEiKhZumSQswODfhmoqoYuSzaUZW7SIrYxUslmJjEhGjuXNAf0atq71dXMOU9Mq2ZFSLHrQLTkChbL73vxxf/0//Af3b50dX54NCjrZJgFDCiL4jofTYm5z7k2M5V0nmtkvX1XVL1zRETJ0EgZhCCDGgoKkjowRXa+pn/jz//b/6+/+5/96uc//6lP/vB4PF4tl977tmlWkgRo1XVXblz/8Mc+VY825skEgUEJEBnBMImmnM1AEVCxzw/FdZK2O9fQf8/U57wSWvesqHL+OfRprKIZyQpGUqWUS4GqE51Pf+u3fvPL/+K35qezjZ2LhbqDo8N57iabmyG4jY1h2zSrZTp8ejC6daMcVE2zvP90/9LFvclw+Ph05quy8h5WDTCYCScpjNAQzAjB1oJrUVJTQVMiV3o2IoB+VUBd7NTUM5uqOXCOg/O9zIKcS1mm89OuWdV1WRVl4YNDIhFHhGgueAPIahQCIllSAinRmSl24oAILfdDMBWIcQQW0CFXaHDWiUnD3pmH6B0FR4TBoEttQCzZVkl94WVzOD9e5G5qqEPAmtgRmUo2NDImsnU8/Npkwo5JAE2lV5uYMWFWGdS1I3JMaoZoqiAmMWsylJxBE7OLERCTs+YDL942pCen7So7F8JqOR9Wgzamo5PFjcvbTduKdt1i4RypApFnLpkdmCGhcxnlnJpDBBly1mzadt2qaRaLRdt2jFSUbjQovTqMWvnyZD4XV1194eUEjn2xXLYP799DxJgTemZ2hOc+kvNRdIpxLtIbwZgxFIVoOj6aOueGw+FoWH3ogx+8dPHSnXffPzo65j5AHo0cmQIa9IqAvqwxfKY+1nPaFiDiYDCYTqdFucPMqiKihMCMRETOWkiEVHvHQIaOLAZb+fjwM5+4deFnP/L1N+OjO0cfuv3c89cvff21144ODoqNi+xDzJENPfffOCQAATNU7dXu3/O3Pxuy9pIgMxMRdnw+EjYAZSYiRDPnmJnVMnticA695iSQxZKhEqEBxJQdIQIC9rBpdN4552JMWRIDt8u2c673AeQIRJijIDB20YEJmlji4NXyweFB0q7NMebUdWk8nlSh4JX4Mnzn4dHTWbt0Z6m15uRQZfWjL9+8sL13GvNX3v7G46PFyG298uEfZMpI5Q//0Afee+MbzvLu5uT49PiF28/v7EwWsyMHDOMJCs5mq/nZbDyalN6PnZ/G5ou/97t36+HtC5deeOn5g8MDk25nNEqL5cgXxXAyPz64/+RgUA+fe+E2PnmC7JrT+WaIZ4upcbUzHr93Z388qFIXhxVmi1jAaDiuh+P5rD04WhbObTApGGAk9qJ4ukqPzhpt5xIfXb9weezrvd0LAPBP7h/D3/678Lf/7gYAAOzB/59vO/+TR8r/ySOf/qk/GGM+Ozys6yGV9f2je0nEANvYsS8C9dA+62sMUWFi9ITASXI2aZvGeVeVZbNoHbvpdEZMqo1zVwpf7h8cuJzP97sq5yofJCJTXMtjtJc60/lGbD0hWhfmIuuboN8orbXSDOsqnrsuFkUIITzb5gJZgsSAHFwyFLWiKB/ce3jc+fELW89//Ka5tnzryTjDyLxIN0cxhHlu/LC+skqLL777I5/8yOMwOQkmtdtfnI7Go+GgPllNuWCA5NkZCjGaSS8JQBVy3qwHWvcvIGNilc5AERUJQwj93QagKSXJCUQRsZ8S97LW/qTIKUNPPTYzFaL1itD6Ke6zRB41XcduaE7ZrwMZoiNlRzEm74OpdV0cjAYrk2AGAKtF48elZ0SngHh6PHVQOU+ns9OwgYOiMEedxaSyhkyDJhIhy6BJ0mK5PJnNJHal94Oy9oVvTVEkJ5WcNkaTgkhTCwDeu7xKQJzVgIgARZIoZ4Foyhyy9JsJM1MDVcS2aUAhlIWxZhUAE8uqirZG7jpH/Rc8+ABmbdOKCCJNhpur/ZOP3X757/zHf/PGhb1uOq84xC5b8CICyGDg1qAlsB7hC30VqaICACq23udn4aIEREJGJWBMnDMomCIBZCDgzoSJB1u7/+u/9Bf+y//8P/+t3/rtT3ziBwaDwWK5ABHvKSUZDMff/7FPDLe2513iajSoqvnpCSMyc7Z1I2pIBtTDIRB6Uh6sETPnB/SzF+r3ahcA0MAEwDFDFsmpn4sF4oJ5wMXy6cHvfPHzb3/pS3H/aYVQuUFz1mEABFi283SSB752CHsbW7HC/dPD+w/uXd7dOz08il334nO3zo7PvKe2W21Ntrw4BnBMOUp2ngGhz9lWQDJUA02oCqK9PyAhKBqwiooxMPXbBUdkhOQASZSBV4tl23btYl6XxSgUpQtlKFLXoA/gcNm1RVWgd6lTJAfIrsC2WaqJdwwCYEpGjoxMNErJrk0Rm263DqOietJOD9tOhi6SGQn3RUxwAb0su94z3waSkbUpNfPmpFuEUNVAqhLYATE904v0Jtoev0mEQGCGCirKzIHJxIbDETN7RqC14TMnEwUABsigCbEQpZzmNy9tbY/Lk+ni7sF8nhyFaqMOFze3qJlv7V4cjgazs5PRaNyszEym02mbNJuJai6LZmFN1dRV6Z0jJgNIOTVd16XYNm0W6TMoXFGFQKEg10JwBYLOF81HPvMjxWhytoTBaPDmm68dHh4OBtsGoNkSCID0/E9EU7WiCF3sVssFM4/Hw9Fw2DarZrEAROaQc4yxLavBxb0Luzu7T5/s379//3Q6F1MVRSRiBlyf24DozueX54xE6muj8Xh0eno8nU4n40m/DDCwnkDBSLWBM0LFBDHFxaD0ugSgrduv/NjZYvatd762bOnJa/f+u6/effT4gAa7BgRpNeZaxBx6sfwshJsN1aQPGfhe0Q8AICHCs3XEevYjkoioxzwxEzIgGTMSONVsYjEllYRs7MgxZSMkMFPmoh7XVfCrZqk5xxyLEJBgYzIuQtnFdjGbVyEE72Ps+nXIoK7yvCOH3oMSuIKPZyen0+M2d0nz9t7O2f7Bcr5YwJLAf+3112ljktTKutgaXzl+ev+HPvqDFyfj5dl0iFDl/MrljeevXMuqByfz956eTpenN3YnaJRyvnrpCnnfzlsnPK6qZrU6a9vTdhl8sKTLeRxNtkdturS54Var2Wlzcu8IrNveq+4+PCv8wPlyBTzV8Nbrd7a2NydPDwzkwtbGpMROlUaDzjrpZi/duBTnS+UgmeervD9f5XhW5icvbl0k84+nsRoVDpaDmh8/fXLaiaP60eHs6uW9xenx199+7/lLV9zRyf/yw7cfLk9+5k/98T/7V/7q9OhsCHRhUjx49+tf/+LnJuNBsLAz3NNQ8qAqioK4R0EzErMPRycnZ7P5Cy+9BMhJbPPSTfQDANWsiEzgY0YfyqQRMCJkkzgi/Inf/6/Nj/YPnpx8+evfePe9uzAaMhExSxZj7Ll9wESOBSFqNPXOORUFRAqu6WJMqVt1VTHQbE9OH0/ltHNxa2vn6ezYpZSRCPvZD4DjdfQurImj/ShIVU1FeqDOswkqEUF/Q6x3Yxa7CKBE5+6nIqxWTUpYFGXOuadlZFNQbySZkqFmNe+Ci+F01vzek0ft7Ws3P34bMMg3H+wkGJTlrJ1zETAadvkSl+1Mn3zuqxf/0Ce3PnDtYLQ4OD354M1L9aA+OZqRQhYFyh6gR43Ael7VHyDcm7XVsojGaGsKlyECiJhZ6n0BZkJIRmBgvWevL5tExQAcgGThsofmkvUhCAj96Ad69CEhISkRMxKZWUIzROxiFypP3rWLlsnlJAishmVZD3MDAL/4+AH8KyEHDfziP/2fWVD/z3ibAzxcX9FcZenIU0wNwcARm7Jy0BwtiUdTUyWfDLJo4YIQzWNkcExgBoVzKapkNbReS97j1RwwZHHOGbmlpkZTcLg43P/0Bz7yn/0f/+OL25O4WjFxVjR2OWsvoyYApF6ErYqGzGj9MK9nCfQMYJAsquKC78MEepExqAEYgesRtQDo2KWswZeDzYv/q3/nL//9/+ff+2//2S/9yCc+fmlvD4HaNjc5vfzqh4fbO7OY/u9/779ohf/Un/zTr7766tHB/mK5KqoSca32p35BDAhGtuZpChCpAfV2NQQjVMuKAEhg6JU6VSHz6xSCKBKdo42qxKZbPXr85S999c7XX1sdn7iu23KhaZfL2HS+Lkbl5a3dM10dnk7Tqh0XhYVqc2srQlysTtpm7lAv7ExSuyyDGw3rxelCQZW5I9kYjK1pRQ2NGE374lvBszcwR0YOVZQIvSNDRKTeEuXIA5hj9OzUrD+olqumaWOMufDFzuZWEVyOEc3ILHWNIRqg86GNncNgpilLVQUg1hwNWEyoX3eL9rkzOQsiMKC1eSB4w40c0MOYUsCcJETh4IzQ2HGwoSNuY5bWOxxOqkZjcxYjleiZMhIxBzZRlN71ilmF0QIhmFKfAY0ePROkDOI8lZUHAmbOKqIKgCrZrP88LGbIkhEtxumt578P2T14dHI07YCLCxcuVEXVzJepjcn551555eDgQeraUVWDiaRF7Lrjw7O2k/FoUBfFKiU7OyuCCxwQIMYYUzqbzwyxqMrCu+DcoKqrAEEyEyIVd588ff4jP7Rz9cV5p8Tee/f2m++0TRyNXV9t96GKiASgkmStWQZw7JipWTW9rlmJRXKcL8vSV1UFZjG1JnDp4t6lS3snx6dP9vcPj49ns1mbkvOBiUR74oma9KxWMOsZbcDMkrWqBvP5ovBtUdZG0pvhich7tmQmYsDOkYJl6bLh01P5xX/21bv3754sfUJwXqdHU6JSsDM1zCKQTSlnEFXqY1vVsDfCf4+loOeV8Pro1N6EC2thxnf3zuzYOSZHIpqlRUA1VekragvBIRpxgCwqIpJBrbbAHEZ1hahF2JkvFsO6vnnz5nR66horHSNiVZYipZm2bVcPKirKogjL2LQYR3W9yG0Denh6dv1qprJqRDMQFeVCYffqpQ+88sLFzY1mtXJ1cWN3vDibvvlk/9aVa4Wn2rlhUYydfefRQ/T1qKy8Kw5mzf6jh3VR4dF8PBjvbm+ZVWeH05OTJ10WRLq4tTfZ2vnmnQdvPXw43twaj3c296rubHbUNKPaDh7c2dycXL/6XFpV7+wfPz6ebYxGg7JaLJaauxHTzes3FrBcnZx1KValryfj4VYJyPeeHKy6xKtVyfzhF2//4HMvfvU77z88fIfH295zlG5nPBwKAPjlYpWbxfbmZFwFV5SOcGNj9MFbn/yxz/x4s2oQOCE8nS4v33jp5PDJo7vvbu+NQMUzu363beqCyxpnTbv/8KQebNz+wIdCOanqsUIAXxqz5NYMmKhnnQIaI5DntovOFejcZOfyaLi5dylDNT7t5PfefNPXVUmcc4oGDGLMBuaJPbFoBrWebKFoDp2gNk0Dpr6stuptm7UG+cnTh02Kq9i6voFTAzUkIkCUXtxgamqEDvswIwJbr4esn/QQEbPTtc8XVdRR3xnjeZdMABhC6Lqu61JRBCIWUTNgLok7tWTUAbicXUGjxSov53K/7WBv68JHbo3Y52/fs1UmpuWyKck7UVdaneRGord/9ctjsVcuXIK2mwwG49EI8KmpguNI6AxAhB332BiHAdEZqoiJZCImshgjOtePWSVrF7tngFREMtAMYoyiGpDWgThmAIZEq+WqqLifvraxZWZFMAQT6TkEZNSPTjoRZxqYmIggdCtR5Z6Q6ZBjTALaZkXiMdEnXrh2dHw03N0J1ehk/2xlyWT5cx969Sc/8YGo89l8QS5sbuxsTHZ8KFWzQWLS1Woxm06bVdO2UdW8C8xYVo6ZDCyJThfNG+/cPVumhNXpvCvrYdN13pyqUaC0Wkm3pHKoWJivtJNCxXfJPDceIwQVCAhKVBSup3h7cpKzdNEUXHACIKhm4kPJ4GJsi1Hdqk5T12ru5tMffvX2/+1v/PXnJpPTeQPkMpoAKCghqVjPeBYzMOgHiaQOQCWZJuldO9Qff6qAGKoyqRACsKFRUMCIRAxIkaIoSBfJsQhHGAx2rv6Zv/jv/dN/9A8+/7lfefX5Wy/fft4Y68nmzZdf7pz71c/92lvvvvuNr7/2K5/91b/0l//qn/jjfyxW3XIxNxUmorUq2gxAAZU4gJHmhKhGzvr8STGUjNkQDByZA3EFheRE2yanrvY0Ho5lNb/3ta8dv3vnyTffOHr3vb1QX/LhLMmy6zJYJLUqX71xcY5Rp4ePV4+E3RLBlzIKdPnK3slhmh4fXblwMS0bgiyiq8XCVJqYEV0netx120UJXUxdcq5AEEZjopyEmMTUhUJRVMURqSqDMjsT9WrO+d5h5ZwThPmq7XJexQgGF3d3B8MBo6UYY9f1GDPvC4fGAqzIAFmVGXJOakpMQKZmiJBB+jbKzEA0o4Fny4ZRh+K2fXkKNk+ijp1A1hwdFL4sBqU00TkZlJ4pNYZYF7FLJ92yRBfcKImgGJk5WKc3Z8SAwIAgOakJ+YgeIIu0q3Y+2d4gT2aa1dTIFLKYKZAqqqgq8VDzqmtPL13arEajiFWTSIxv3bjWZHjw4NGgqop6cBbzpVu3iq8Obd4Ogm9WaVIPWuNO+exseXxyVlVlKMgckWhBrnJeRZHZlVVRVy44ExmUVTBfaC4MeFDdPVpsv/SRKx/85FLQED1jt5p/+/XXQ1FlM0bwTAgq0jM1aG2bSgkMJOeqHIpIs+rYswGu2ohAZV11Kee8ZKLAHh3lLHs7m1cuX5gvFifHxw8fPdo/Ouy6VZdiKIIPBZIDQCS2c0CIijp2fjBG5dl0vulK55wZmGUizDk557NKp50zQMCs5Or63sHZg/1ZUYRhDRcmgws743uL6c0Xb33z7nsPDw5dWTYpFq5UyroWI5iBAKEamBhgliyo5oMHQNAeoUKI3A/u1fJ686CmpkCYVZ2QIWTVfnORJQX2VVkRY5caRA6hUolVWW5tTES6rl1sTEYmWnjvNyaiMpuets1ytZg7Ykn5wvZmzElByfF8tZCUxzQAgJDVE88kd0TPvfhyMdp49+HjrCjgHPkVYzUor46L5yf+S+++PSMOOGgWzWRrcxW7oLQ12ti5eOlstmijbI+rLS5Ozs6OLI0uXk5iT/cP3bRxxUY27IS2r93MTRyV5WJx+HD/XhNXjrkswr1H9w/9IK4a4NX3bV159aXb3uGqmS1au/v0yWRn68oweLZVXTKyMzo+We5t7zadzQ4bUN+2trmz9frbb1zY3buIdH082N7dkZjee+8dzt2t3TAowTHX9faO98gEqPPF/PGTJ0DVq6+8cuvF25ev37j5wouXr11PCotljG3q1DYmg0j+Qx//yeU8H54eXt8ryuDRXE5JMc1Wy8PT43nbXrh68/bLH/TldtYSiu0YIXed90oUkE0R+vxkQECyFMWRZ3JgGLUAxxnkY5/6fTdvf+C/+v/+v3/11z4XqmK0MYkaW5GCPZhpFvboOHgXCFGTEEHKEoiE6WwxDUWoq3rHNtjzInbTxczXtVMVyWtkAvZQKQBiBlij5EVEVdbZeNpLMVB7HbGpqiIhExtIVnDEfaqGra3y7BzknGez6cWLF/u4OwIKXS9VMCVQBCMowVeJ3SxtDbYWDr/26M0XNusP/PAL9KV3ho1477quQ+YWYmJzRXExwvyzX+2uX9187geCwebm5jONNjlAATDqcXr9axvMchKAftCqAMBMMWd2TnLOWZxz50toUhUzMDWw/urVZyMUU42xy5IMz0HTvaVC++XIWkxuBiqKDhHsvGeKpuZ9iWiE5IJ3XLqMq1XKlKrSeXYUihBCzopJUElVgvf3Hz+ZLp+bjHxVBTFaNcuuS/3omh2QpS42XWyJXVkHMCLksvAheLMEhJhzTDGEokh8drZ0rmi6brZoJqNBVVanyzkT5ywpKzCqAiiZiSGJWIzJF1UbNbUdDogQjVFQY0wpxj7jV7OFEAwsKVT1MJkklfF4mJsW2hhPpx947tZ/+h/9ny4ONufTKYZCzudk/VT73GLVc7O/q9E6fwatI9vWUptzQQABWS+4tt6WJWbC3jGw5Vz40KU2i4SiSFHL8eRf/zf/3O7Ozm/96i8//J0vPvf88//6T/+sD4MvfOGrDx488b6oquFsOvubf/2v/8avf+6v/+/+/ZvXr5+eHuN5AEqv/gcAAjIQ6NMFqA+JBzaKmtmHbOIFSSFBBpXubOk9bdUlnJ6++5tfePLat2f378tiWRTu8ngi/dEBYmKGiM5fvXEdCM9Oz1R1WNfki/t3HzMVdbm6cGGDtnYqF5bL5dULF0jpzpP3u67xFJbLJXER2K+aduzCwPskamSgSEB9Fhb1CWTU57KuSSvcR3UwIxAQ+CKA4TJ2UXIyOT47A8ULu7vDwchM1HIvFVTNz6IxJQsBr/3UBqJruKMIO+8cY5Lo1K+Zk2hqZhlQhRhVchV4NwyWsohkPSifgEQTEzlmV1XOO+JOVbUuIMmiWTyenuKQdsthu2qK4I1JVQ2VAByQWFYTICRGlmw5GZgx+iIwM3qnBkScc44pZYWkFlWTQBtzFgPi5154ETHEhOwHwxEeHJ2cnC22d/d2d3aODh53MRkVH/7BH/nab3/utI3DaqQxDpznrEGt7WK3mpsV5F3pAxAZIXtflhUH54Nr22ZnMinJVUxlKL0r7jw+GF56/kMf+/giKboKNBdlee+9996/935RDchz/7o4P0vXYw8AQKI+wbEn4oTgDTGlRMRgJknIOV95AMig3tQ57rq261oAuHTxwtVrV5qu3T/cf/Lk6fHp2dnZFNnV1SCnDoyYfc8LySZsVJRerZ5Oz7a3t0Wycy7GjAjeEfmkahlNjDMSKlFVpnbxyY99eHn83sc+euHiRvX1pjo7fTgaGR53XlOpwTrNFaVeJiWiltQMjAF4bbtZL5d7xSacG3F61Sb0bjRYRyiwmeWc2TkGZCLnnCfnOfhQpNwWvojdKqWuKgsCaVYLx7gxHg/qqm3jfDEjdFVdPHz4UCRd2NsLzIUPVVVD207nsy4mMfShPJvNTcUhFqFEFVE6WzQ+LFOSmPJsPl8dHZejMWH3/tHZ9OTYVwObza5fv3Hxg1d+40tfHNaVCowDN7NTKYua3AVf1IPBUtoB+Nr7s9U8YX58fHJ0Oh+XFWvmF68/2t+vNyYxtQ/v3H3u6vM/89EPQInv3b9z7+49S3b72sWP3n7l6aO3Du8fXbj43MzJ+wcPcGuLBbc8EJEvJqcn06ft2eak3Bj5KENVK0P98MH+w8dHWfjq3t5LL7/89nvvxNRs1IOyKraKXfZVE+PZ6bSLXdOtmGg0Hv7YT/zER37wYy+8/Mrmzq4gxQzT2UIMfVkPBuViPs/JWmf1YPSh7//EFz//y7M2cZVTt+wktbGLJuXgwpXnr9x8/rZi0UZTduYUTcj627Zfm6xFBKp6jrMKzjnJOVTlYrFEdvtHx5PNjX/nL/6ly1ev/rN//s9ODo82tjeJGZMVZY9kd6AgktF7FwKiEdOqa6MkYDKCZNoadyuZdUkcKxSun2ris7deir9WM2AvglbVnIWIRBQR2XEPBUTE/rcSIGKvR/peNm4/NEFmFukWi0VRFKrGQILKYGjGyoiMQKpSoZPjZdWqbpRpVNwn3JxsXmlunf7Om8MIRQjkKGniQMI2mMUb5caTNx/d/e2vfuQTn97e2jp/XYBk6aJ4MO8dICJqv80QNeb1Rrnfc6MqmBGR88BrBSv2BdAzDMwzZcez5bSYJklw7o/u/fTn6qjeet9/ZP9VIkLMMWGOpXPFYBjbBTN5VwAwEJF3y+WyrrayJSTc29mdphy7GOqSVi2InC7mR2fz8XjLefaOvQveFYQOe1trxqp2ohURdZ3kqMH7IgRmEEM1zZKZnS9CnLYGoABN2zZt4z0TOcpA7GPWToUAqMumIAYJQFKOSctCBt4b2Kptm2ZloSDviQmd75YNs/OuTF1HBlUxaGPnHJtHQ7G21dPF7d2Lf/tv/IdXtvfmJ6eV92LnJ9j3vD0TFH/PI2qmBtLXP33R0/+CO0c8IZCa5pScc+zYQLN0xKApSjbn2AxFxPmgBk1ufuSnfuYDH/3IP/qv/2s/3uRy9Du/85U79x8dPDleLVLTynA49q777D//79/81mt/62/9rZ/8fT+2bJbQu9D6fW//7SfKZtDv5xg4IwIwBu0lUGIoaQUpEG6XzqX8xq99/hu/8hvNO3dvDSY36iHyIIIdt80qdeTIAB25o9nZ4NIOIN+996DaG8O8G40mXZK27Q4OjgMNum51aW/jwqXL+w8fnk6nF7d3r12/+vDBExPADKuuSRlqpMVqCewILAMgKANg31Ip9G2MmRmCrcGOfcwEMbEhnC7nasjOr2J3Np8BwMWdvY3xmNBy7BgA1LJqUQRE6bpWDch5YOY+po3W5mTvGQBSSkrcU2dyztbrp8xIzMzIowFj1o3Ml7h82q3Ec10UXUoxJmDX/weIWdQXhSKTOessztpjWXnz2z5kw6iKRIV3FrsYk5FhYBGJubFEjizmTOzL4QAcO9dDvLOIGRIyqVISyQrJMAp2AqenzXC0/fDx0/3jxem0jZl3d/YmG5t9GSIK81XavHTj+z75E1/5l7+BQhvjjWYxrxk7yMWgJB9WTVMXZQgFETIzOuSCHWNwWI6qunAsVhauHA3eeve9avPCRz/2wxm4x88Qoffu9bfe6GI3nAz7ITzkzMzPYPrP1DAAoKoxRgRw3qtK7DoRMbAYIwKKSJ9IvVwtEckxhxBUNeaEkp3nmzduXrt2bbloDk9OHj9+cnx8YqJ9j4tMRpRzkpyRqCyLLqXFYjEej2OMzGSmsWt7HdY6op04i5EJMhwdPb6yu1EU9vztG7gK/+Cf/PI+RiMStcCcsqoo0LpbZWJDI2RQIiRdK+1MFRAUCc0sa1ZRMzu3qvXyIMLzF2WfldHfYoqAiF3XxNQO6rIqy7ZdxnbFCKt5u7O7FUKYz5dnZ2egtLG5OZ0tl0333M0bptkM25i6g0MOfjpbdDGKWkz58uWLJjnFeHq2cIyo1moUIIlRRYeTLWja49OTenNwd96luryyefHly9c3XaAcfXChLnW23CjDw6PDpqqvXLgYV/HOo4f3jw5cUVzbuYDsBkXYvn2jMNR5wxYO7j89mk1lutrZ3f30p3/m9uWrd17/VpX49t72rZ3NV2+/XAHfff/t9x7de3nv1uZg65e+/JtS+mXbbLgqVIN2duLL4ULbyVZ9ujrerCbj7fHdu/cvXbqy//771XA0nGxu7l185+79leRqWLsyvHP/0aNpC87nJGKws739/T/wsQ998AO3Xrj5wosvKlEb88myzWLEoRqMxSym7IKrB3XXdt7RdKmT7YuXn7v99re/cYV9m1og/8Lzr1y59qJiyErzhRWDmj3mnJp2hp6RUVVpXTicP7cNANeGkpxz7KKhhmEpMZdYzVcr7/hP/sk//eEPf/gf/+Nf/L3XvuG8rwcDi4oOUo6eg/M+56yqarpqV+bQCLPKdDFbdMvlarlYrfxgsL198dH+kQNTQuuFHQhA67xx6JdH65EUrMWD372KQM/hQH28WSIEZs7xGR76uyrREMJgYLPZ2ebmjmMShgbUAwQgNiIF1X4m45v5zC3ERb6+eyWTxI2Ns2JABPIv3wlny9KFKolLmjCXXLicLtejs/uP0qLZ3dpBIjiPbHWOPSIx9HaQ824Czfop/lr05xz3Ji9El1KSrLj+BJ9VP+vAC4A1KBKRASzFrGKw1qbQ98j0evXsujTMOQHmDKY5joIvyRbLKZoRcQjcdLlJuYnZEy/nS7E8qYuCgxvSo6MTQK2LKq5iZH3/4aPLFzeQkQmKkgd15ckDGKAiFmbadk2OyTOEuqhCgabsCdh3seMu+dCDoTsDbNuGXIgpTecLLoJDB8jJoDN1CtSpB1LDDCiGJpLO5n44Kjx2IC6rBgCDnoJE5AkZFdmCA3O+QOZoUg6KsnDLJ4dbRP/hX/6rr169sTw9C+QMEdaQyH+l/OlrbnjG3AEwzGp6zqDqkQOoqgbonFsDqnrqgzPFXhcpvXp9MCxzEjNYU6TJKRbitKOu2Nz9o7/wZzTrN7799vt3H79/96Fy+NCHf+C119+RNsbF8vkbNwHtycNHD+4/qOpyMBz0OrJ+LNWn5QoCGyCYggoRKfYBlKSUUyaTMojPCqez1371t772z3/l1mjbT7ZJokCEmHwHE0FLMM8RMTjksqxU7fT4RDQjYl0PjmazxaodDkanp2eT8TZieXq2yJXf27swPTk6PDm8uHfpBrsnD59mkaw5tpFcORP1g2EBGLNazB56RbCqYV/qMzlE4HOZWlZRky7npGoAGXQ5O22apqzK3Z3ditg0xyikmkRMBBFz1tgl570jzkmDK2Lb5JSKKvSuva6LPTUUTJ3zmq1pGnIkSGhGBpZFnCibtanMvF1RyzwlQLByDSxWEzUwh1hVJXoHi8aU6p2NlVvMFpG6ZVlueGRxTIQZCCgZk/WEYwBAQ8xZNUKuJ6N6OEBSBc0p6XkIUVKLKXdiCViJ580iRT2ZNun+/tl0tVgmwzAcD0NRqkqbowGcTmdNNFC4cOvVzwwnv/ubnztbrHY2NqVdOlEgWqVuVBae0BNycFwG9BgceoBB4Rwhgw0GZVkWb915vwujH/19P2N+0AlQKDQLIcaUvv7aN0JZAmNWIFNHbNpnKK/fnFuja80speScU5EUY+riebeGzNyHETnncn+3EGXLaurYiUruspkhYF0Xzw2vXb9ydT5fPH7y5PGjx2dnU0IOIYCZmSCC935U1/PlYrWioqgMIGZh9aQMKADCpNk6MnJUdebfezBXqV9/861f/vx9lfCwmyxQjLqI7sQ0lJysQyRSMiMzBgPDPjqoz56xfJ4t1LOsclpvvvqzvD8snulQmVkViEkUwFREmFRUezx0CL4IoV3Nrly+NB4NAK1p2q5ru65LCarR+Gy+uHzlclEW3UpCUeUYRRWznZ3NmlUznEyI/ZOnR1VVqGrheDzabJaLsiwzY2ZLkirnTlbLNicH/HQeYydAXFbVfLlsV4cO7Vvf+PpPfeozIa5iu1xY9fDwaP/szFf1aLLbLps37z24du3i9e2NixuDYcnDYeg6ODvR211ezJfjjd29ve27j7/z4OTuZdj4gQ9+8GD/yaP7b66irFbLqzs3Lm5dzOLmiZN5V4TNrZ26LKxNy9xuXBoPAr//8MnjcKbsVijTtFjkeTkZbuyN7z16/+jJ0wtXL29t7Y19uX3B7by6ffPW7eFwdP3mrVdffWU0HLCjnPJsvjACRafs6mElWZNqr+jvb0b2PiWN7BfJLj33cjXefO/9N7cuXnzxhVdHw70kRc4cwqDwnGJMkICRTFUymkdz9j0pioiAZI5dX2l0XRdj8lWIIj74oipx2eSum80WL77w0n/wH/yNL3zhX/7yr/zKnffujEajKhTaR5hI9uyF0qrtgDDF2DSNmOaUIK0c5oFPnuLi8NHecOhyTjkzEYGth+RqPS3U+jqnv5P6LmRNoHq2qVg38N9FVz1rUBDXUqH+l7z3ZtA0y6qqqTdLI2Yk1b58UDVIACqYW/WNpC4rw/Rsfm819xvy0oevjt95Oll0wTMjWdeh5cF4fNisfE6Y8u72TiiDRMH1iwMUTLKlnMzQOSBGSevBj2r/b7Y+qaOPJlZTMUHpteD9/UoiYKZ4/kXof+x7L8lCTKp9dIP1fhQi6oN2+o7NM6Su9UUYlnV7etrG1bj0OWZNiX2BjruUlsulMxru7c0XS0+4ubcZY4dMADioKojLRlb39/c/2t7e3CjUWpVkmsn3IT7rglk1ECBRZvaBWNXYETnKQkCUU1osFn0NF6OWo9pMu64rmCvv22wCEFWQyMTQkQCoigGyoaXMORfOj9nHEDrTmFJOWbJ5X4JC7lIVClBR0VAWq2YRysozlYw//2f+zMde/cDBvYeTjYkPvlt17NY35f90/PPsHUJSE+1pcueG82chQeuw275AVyEmMzFLhIwMg+Honbff+W/+4T/8mZ/+/R/7+CdmZ7OYxIgUOAwnzWI22rt4fHDyzTe/c/D0OAsMh6PPfe43u6xOpQy+bVZ/9s/+2Z/91/7gG2+8sb2zFcoCEHqvifWChX68p4pmRCgEikxCDEhYJpw7UjibPv36t1//7OcXB0eXRiOzztdhcdJ4Z6QYmD2HSiIoqgstMcRV06yqSdU07VCsaZrUdd1qVRah9PV8uSiCm80WkIPEdu/C7nx6Ol/NxpON8WJ43J2xZ/I+iqTV0gNuVAPH7EIgXa+oEQCAc4p9AAGCMhESA2FPo0+mInmxXALieDyuysJTH9glmhTANEtZBHaubVtRrUJA4tl8mUTK3vHUH16ERVH0fRsg9V84AEAkBXPICJYsSRYFIzVcdqXy9ma54tSkVPuCmC2qpaQGyC4E71xpZoDWkZVWtWCLJj9azoauKMrSATQirOrIZc2SMyJ551rtlm1jzurRgD0BGoKYipkioUaJKXUC2TAZHE9nyO6VD360rsrpdJoyIVeEgOyKskSwLB0RPn160MQ8HgyOz5Z7F679+B/4ud/67D97cnh8YXNcFK6L3Xg4YOCSmUOwwKEqyaMDLIg8kSMuipK9e+3tt1YafvaP/NHIpQK7UK66zERFEe6+/97777/vQ2B0RAhZAEFUnp3A/fHbF0BrWsG5c6rvEFQ1pcwuDupaRFNKuE6WMBHrfb79KR1jzDl7ZmIvqsO6+sDLLz137fqDx4/2nzw9Oj7tYiyr0rGLOXrvyjIsFgvvAxKZgDofVdGACECVFAEsN82gGnRNvHf/6WBQPN6fJYPJ1vZI9OD4KTsT1AzGyKRgqgkAkLIKI5GdnwXrmCIzQ1HJIs9OAOoT78/dLX0RtO7JdU0fAQNV884TQ9uszCKajEejEFzO3XAwXMbYtm3Xdb4cTefznZ2dUBZns/mVixcPnj5NXRqPRmYwHm+URZUBvAuLxTznPBqNVm0nxyejUb1KaXkyHw5HSeTJ6bRJeZW65fFpNZiI52FRLufvv3xx59bNG0fLZbCtx/fuDgNfvHLtnSfHdx68t7Gz/dOf+mFbNiXzN95/++js6MrWjens9OB4Na5L5+uHB9Mbly9d3di9897jX/utz1557vLW7ua0TW/ceVwEVLQnx1OPPALK6t89OJxGNC4ube5ghrOT5Ua5dTp7xM4Pyq1LW5eOpgt1tLm18/jwaWd5b2cy2N0oJ4Mf/tEfvXTjxssvf3BnvLmQzBtjF0pDQuLlctWoQCfOuTAYkuOYNaopsECPjCFy2FPTAAyJl03XoXo3uHzrlb0bN8uhZyrn8ySiIRTGTOjYIQiJRTNBIbTvBokCGKD1Mtx+1SsiOWdAiDH22WJiQEzsHajFnCXnT33q0x//+A/9+q/92md/+ZfPjs8GGyNfFjll8+icYyJn3KqYavBBQLouI2YzG47Gm7sXD45OnGoWyarOEZ+jNazXAKkqKYiKiSrLszIo54xkPRRLTfrCKEs+D97qry4lQlX03nddVNXxeDSbzbwPo1CypkSQiYiQFEEECg5ltVjO9/ePrl4YzqbzclBKQvHufVnGbfzUDzzffOVta3KQ7Bnrooi5Mw+L5aybL6pQeO8tAymSopliYAQjJdX+5lqv+JiZCM6TgxURY46S+x61bz5xbbuwdaf1bDtIxIScJOWce4KqicB6N8Jmus7+VjUwFDGLhceSNC5nGleTupzU1dlpbNumIAo+OMeAAIYp5RDCaDQGNYmZwKaL+e5kY3dzq2lx3qZ337v/kQ/dZNDUdhI6C66XoSOYiBBAj3MlIrPMDtihaDaElNKqWbVdA0ZMXAbqVivvSERApfRh1a2UOKkwgaEqYJsSElBP3TAtnCvIMWidhRU9a+WcBk59YGhgUdGcBsPK1BwRSl6cHP+Rn/rJn/uZn54enTiArm0d8TNZw78y8Dx/3859hYaq8kz6gN9bJAEA95JpMABgIBMxy4VzoeAc9Td//XO/+Iu/eHZ8tpwv66J86fYr1kZBNHQxd6EaSE7v33vcRl028eRodvLO3bPZdDze6BZnTuwDr7zyyR/6oeV86Z2rynK5WCBxKGvv3ZojbgaEaEimphYZlDkoYhQFySijgPe+9vVv/Tf//GIKI1fNtFugpJzQwXS5GI/HDSqoFaHS2WLRNrnysW2E/Xy5GIzqqirz9JhAvcMCi8Fgcnh09uTxk0sXdjbHg7IqDg4O9na2nz55QsSXr12dT5cEhuC1TZB51bXSpQBYsxv4wpPr5T9FUVAvTlNVBXLn50vMbYxd7Jh5NBiWofDeOWYH4MACOwFgpH6ou1gsiKgoixij90UIYblaunpAtP7uqGjWvFYTAosYIwRfqGrsGvW+T9+jhMCOVJ0ZKbbZCnbqycyMwTnG/klt2bICu7oKyGi64GFgh81Ze3SyOl2uxl0x8iWpMVEvk3cUskqyvBJtQUeTwXhSqSUEITb2kNqkCiLaZRHjlPRs1YwmG9dv3ghMy/lCwWeVbEbMPnhAFckmsR6Up2ezR48ej19+GcCms/m4Hv/sH/sTX/qdz9+78/bWZDAeDJAwENbs2Xth8ASeKaArOUBW5hA7eeuddxvTn/vjP4/VZpMElRAx+JByYqLXvv716dnswqUrUUySBu968M/5Eh6+54DtJx/qnBNRkXNgqKpITpEkKCAC9u2EIYBjNlMVWUsTVFNKICLSIVJsOiQsQvHic8/fuH7j4PDg7t27h4dHTYo+BEWpqzqLTadn21tb7KjTTs0YrWAGQUDz7FitW80RzTvvScw1H/rgB54+OdisxhzLp0fHYVgTeIa+FBYjMFIzAQRVQ+0HQaaiPaczi2bJz67DLsX1SUyEbo2hc84REsKar9YX9967GFfekwpvjDcRbLVcbm1OEGC1akQ0ZZWm3bmwd3B4mC3v7mwfHh8fH5+VRWGGy+UiZxlNNnwR2jYWPixXi9Pj49F4aABtlxbzmal0KQ/qYc4Zi9CuYFKUw7JOMT48Oq2wG9bVaLJi4q3xaGdru2mbB2fT4271/AvPa9fs333rYlXXZfmxF66dxV3tZLSz8/DO+6oocf7W22+enTyajIaVH3/4gy+NtkehGn7xC7+3ulg/d/PyfHoQyg1OahCkHj1ePTxoVoONzZ1iOHv0aLyxWbvSK8GyqwoTwcnG9tPp8cMnd29cu/bRj33i9/2Bn/7wR7/v8uWrDhh8sWzadtGimTFFySkr+SJUNQJKjpITMDdtAmIEWiwa73qqwLouH5RljBJjNLNOomcXrfHBdQs0jd6XVVWL5CYtAJ1jh6gEtM6FRuh7XSIyQ+pf/udThpR6MDf16pQUY49+6qeDOWcRWS4bQvy5P/SHX3751d/53d95/a1vL+aLalD1Dm2HnDUHcqjWNI2YIBkwltVIwd1/dLjskhNRROgZEaiIyEhstoboICEhiBr3FFUzAmWHa9EqnG9eVXtQBNhaZdwvyHIWZiBWQCDkEIq2XQXmwCyMhpS6NPBFVjPCVdMg+aMnx/XljcVqFZ2Zt5S1DsWTvHptI334My/7L98ZH3fsVAFWkEB1fng0fXJAKvVgcDaf+6JyqihZVYHW0cF9wlePeexPEpGsqkYoqr2su990EOGzuVWWPiS5P3qMCPs/ExFTSv1aGsw0Sb+UMRNTIQAkAxUT8V6GlXNqT48Pbly8sDmsY7NyrAiaYkeBg3cA6DyrZHZ86eIllHTSLiVFZI3dalDXVT0sUPaPzg72jy/sDdUwxlwUCQCKEABRxLIYaJ8DArhOXyHRbJq7rpnP5hIzGldlnaVLkibDOni36qI5qssw76KBpqTmnCiwozZ2pGk4HDZN1zbLV5//YDK52DTTZnE4m7l60AGCL+ZtJ0ghVF3bUuFR1ak6teevXvmJz/xY6lojBSRAjCkVPoitOZHfq2l4Vv3gM6vXufLMzt/paZNmysym2o/uegie9y54fvjo3q997pe/+dprHumVl1/Z2Ni8997dYTHY3N5VtbIqxqNhFxtFyAavv/H2g3sPY6fmuKiK6XLhvd8Y1B/+4Ac3NybT2WwymYQQ1sfuciVFCEXoCwhTMwUFA1MlMNOsoJaJxYHGg5O7v/3FUQZ0yG23AWBEi2bp66KRbNINigpzZmB0PndNSq1nWqWuLibjC7u+8t4RI5SOt3b2YpQyuGa5jF1MKccGqqpaLZfe8/7BQVUMX331lW/+7mu1D6wewQa+yE0kQ2JOOaskRGSi2LaI6tmDqiFK0v74IMfEPCjrqijKsiJCSGIxkWMXOMeOiPq5ThcjInrviTiLqKpj7uMzmcF7r9Kv7XvzXD9qRewZGUSeWLNkBOd98H6Vool4YomJxYUMuXJNjs4MQLx3jn3TrLIKoDl2w9KzVktE0AyjIIhp1q5S9OhKcsTs2HVNKouikziN7ZnE7Glra1IHNtQkEQCyiKjEBDFLzhLFmhTLqn7uxedFYNk2UTQrSs8zZyZCIpCcVXMogmB+5513Pvzqy4LmkNqmhbL4zM/8kTe+/Y2vfvG329Re2N2oKk8pItuoHphpzaUngk6ZwmKZf/db38Lx8I/8/M+XWxdWHZKrzdTE2GHp3HK+/PKXv1qG2hRMzTEhgImhw2fdMBExc1EU/U/7Lc+zhJ/+fxGJMWbJxGQGwEbMItmMRUwNHFOMGcDaNnJZ92hJYibAlNoutUVZX71y6crlS0/3Dx48evTw8aPc5aKsRsPq+Hi1Wi18CIHMAFLKwC6ponMZABmBTNJi2TQ/+WM/vru9+Y3X3nUgW1d2OtL7jx+PtM4pSvCKkEAJAMT6H/uBVv85iqqqsq2bz/5Bs3VIu4ioZO98FiEiYkKDXq7k2GXJznHKCcCQbFCW43GNoF0DhXez6UxyduR9qIpQTs+m89W8Kqtm1RHgbD7b2rxOxHU93D88fvT48WRjczIeVWU5qLeOQLpmNRrulEWRYpFFEHHZrZzziEy+qKpiUDLVQ8lJ2L/x8BCAB1HKyvtBvVB4un8yW8WLm9voyt97cP9Dz91KSbv9w43JuIltOz2Np/tat9//wks/+uLVJs/eePet7fHOyy+/fHJy4Kvxe8PCFzZLUxqyLYU9FlvDL7399lfuvINVvrQ7svm8IB4VfmvAZXH16f7jG5tbv/3k248Jd2/c+Pk/9cd/9Ic/vX3hcqhrYs7iVWQ2m4pladrFauUG5WC0MRgMFFmzSko5Z8mCiN75KCJZgidGkKyMUDgGwByjiZgKO89cieQ2SkxQllVZFArQppZQgVBFFIWASFGQUYAcOke94IscIHKfM902Tc5ZVNDM91nlqoEdIUnORH2SFfdPlBjj0cnJlWtX/+SNP/7oySe/+IUvfuv119tVi4BgEth1bQNJKh+QcDCqx5U3wAdHh8fL9tarr7osqe8bGAl57YRSMezPMQTAXn2WkBw7JKSeiNX3HEC96qU3vT/jJK49PoAmqkRMBDln712McbqYbm5tgLFlKzikpiOH2TSEwFnP9k8Hjw5zLbPZmZtsZVCsypjjPWqHO/XHPnIrvHN8RcPsbL48OVRQ8zB9+lRHRSiDgYEoAxqi9Iu5XrZD5LwHgJRySkk197PTJFlM8Nxe0Vst+w1er1XpZUVotp7J4vry7k+ZUAQ85/86whhTcIQmJqkIfmtve1Rzbhfvvv32ha3JoPIi8WD/cVF4REkpqkCMsZ/4EdNwWO/sbllK03b5+GC/DOzACFQ1o3ddygcHx3VBg2GFgFVZmEGOiTmY6drdQ2iWzSxL7t3IbdetVqucEjGQWOld67sKPSEPhtWGDe89OazLCr2bzldbk0mURL3M2qSLXRuTK8JiuTre3//4xz9W13U1Hr595857jx7NRaYp+areuniRQ/Hk6OBsPgsIYjYpih/9xCc3R8PldIbBg6iAFdAL5BG+Z5zzPxoF/Y/evndWRITPNPhqqlmZ2RMT0XR6+vW3Xr9z5+2u7T75iU8WRemINze2BsNxs2pXy4dlVX/rrW9/4Xe/NNncWLbNt7717cMnx11UYpctyzKaZNG0cWH71VdeDs6rqvOuKIqkiqo5S2pWWXJRlIQIYOvoO0I0ABEF8SV3q/mewy/90q/q46NKbRUbL1AwE0A2l5pUl4VlA1QEajR3CBkhpegCeedHkwEzxq4pHNXe16HcnowePTk0k+GoTqlzRKenJzevXVJJVVV30RbzxeTixqXLlx6//yAoVs6ho7Ishi7U5ChrQQ7BUhtVBAC6rhVRdkzM7Lge1MPBAAxi1wXnA3HqomcqqzKlTABillLqe4YUY1+eMhERN03rnB9VA8lRTYgIRHrJfz8M7hedawcfAIghATBKzF2nWbMnll7X1XTeExC7wksW7z2AiWhZVVlyTB2IOTRfhZJ5TjaDBotq6SjNVo1KoIBAOUNRDDqwmeRZTol5tDEYjwcIGUy9d4jYtjElNXRtyoYuZkFyL9x+0YLrlh0Rm5FoimuoPQCqaFKJhMjkvLN33313tZgWCKhCPiwjrM6aV3/gU7duv/Lrn/0nj/Yf69ZoY1AW7Ls2BecgmSuCK8Js1f7OF38PRqM//Qv/VtjaXmYC9th3l4y5a0ej0bvvfOfxw8dlWZlijomcR0ZkjjH2dU9/7HyPCvO7r51+I9ZLzonQ+7BeHwAgEjpUtZxFe4iQWq9lVrWua713hOSdU1WDPh1Ml6uVd24y2djY3rpx4/p3vvPuk6dPEXkymZycHI9Hk+CYER17y9q/qJNpzolIxpPx6cF82dlEw/1HxxnL+7/7tXbVDCaTNiYufAYxRAUhc6gACmL/yi7PeS8iKSX4ngHw2oSAiMznt4yKWIopeN8vzoAAFM3Me4pRUxctNalbam7LMpjknDUnkazBh5TSql31f2/bdWXh1bSqamI6m85EhNktF0uNHWxv1FVVFQURaBYLNqzrJLmLCXpymQIInB4fU46G1HZpUA4Cu/cPzy4H3Luw9/Dg8N0HT5qo462t5aIxi8fHpw/dvQsXr13f3T05PYXCeRcCV6ruyo0b7cmTpPTqKx+Oyb9/72FVOIXlzqRapfmD9x89evL4+z70iXowfHTw8GiVB6OyPD3ZDLI8meaYKGx2ed4uVy+/+Hw1GYRx/aOf/PQv/Pl/+/q1m8uT1elsuVrG0WiDgE1tGcVQy7IMKm3bMs6rsnZEgoaOmTAjprbLpswciqCqplqEAJp75HpOyYwKHwSwDwhPKQIQkKvqyjnuZw3MjGS9OIT6CHE0FTv3UJmpEQOYLZfLHtXN61vZAntDVbXYtcu2QaR6MCgHdYxds1j18+wuRdN0ae/iH/5Df+gzn/7Mu+/e+frXv373wb3VbGGq0saqrsqyHoQaui6mLjdK7JOaU829vFcZkFnNzLR3dqiKmCIgMDkkVdUk1kfCeAfrzoP7gkGfiZgQkRAUzMw5FFn3+iLCDgoMy2Y571Z1NcJoDikDAoIjAkBvLnd2/OjAbhY5t6ns8qiQ4Aup29n8Gyfvz1b4xz76Uvf+dCNZANqX7uj4LC4WWnHKEQlFMlrvV14rbgnQOU/Eqvl7xCTIzMbAxmraT1Cl14tCT4UEs35lvh5pwXr1YoSYUso5e+cWi4X3zjuXU0eWGDindlwXexe2NifDQcGvv/YepK5gNJHjsxNkbGKXRLNBzn3QFhVF8N69eOvW8y88/+D+3TL4yvMyZXZGbNCmajQa1mVO2jWpKqqEKWUJReghgYAeSQDVQPvgQDVMWVQlxZySAELuYvDDjdEwhHA8nSLgpCo/8n0/8C+++vV37j4IoWKAVbMiAmQs2TsKjcR5G4sCGWD/8PDh+/eGdfXSKy994OZzk9EQ6nqR8v39Ayrqx0fHx48fFVVVqILizQuXn792o2s6JGJmJVHVrOrMzumaz7SMpt8VjT3T1K9PPYNzDyxi2zbeezAw0LIou67zzklMd+7effjwfo7tzRvPTTYmdVn1DUTTdI45uDLGmFK+eunKZDj8xX/4j9iHycZmNRgZtl2X2xQlJTOtSvfS7dsvv3w7plY0V6EkIsjK7Ak1ipgZAzBilj7yFwUBxRxqUkm52RsP7nz21x/99lcvChZIhQ/R2k7FkytD4VN0KxBVchGKQgCjA1TmjDl1FJwPvirrlTao5tC2NrccgANEs3Fdz2eni9nZ9mSoKU3G46OTY8++a7vZdH716pXTp4d50ahKSkmzZqCEFozYsUkktFAGR2x9wBmCGqh2opZTZKDKuSJ4ibnsZcWx884xMTH1T6d+AlFVVfBFrwjPuWNG1fXuqRefSM6iGkJgdqCAPcKFHagF79ocY1YkIETKkEEFDNQ0wgjKeROTGTkWNQNlRCZmQ+8cGIIqOy6GpSNk4llnqtVK83IZNesYqgA+kx4ulzNNC8sU/O7ujiNhhwIcVVJWRdeJJMlG4exsKeyvP/dcKMqzZaOiknMPRw7ei4r3znk2yQjI4FJKo9Fof//pwcHTGxcvmoqo+moEHB7uT4d1+Sd+4d/62hc+/7Uv/ebZPFy+uFd5T0bIFfFgvmz/u//hc9vXrv/Zv/LXGh+a5MiXZIQ9Q9YMARjwd3/3y22bt8eDLmbnPLID/W5EY18cOOcAIOfcFwpt2/YJoGbrjQAYMLt+alKWZY8ulCY7dob9OsmpgQkgc/BF4Zgd9384MyGBwtor13VdzrmqykFVfvTDH9nb2/3266+r6tbGRrNq2Grng6YOgDyjWi48++BixuWK0V/87K+/MRk9mUd2Xjfr7XbxZJ66YlCxpx55gAYKPcoSnPeIfW8BigBmWTWd25PpfAwM1lMTyQxMNKWMiERsHoBI1CTn/mCPKQbvgW16Nq0KXxVMAG3bEbGINF1H5LMpEVufQYg5x2hqOUqydHp6klIqqrprG0BdTqcM4B2rkUpczlMIoSpCs1y0XcpJJuPJlb1LsVus2pWAjocbzSK58eBk1Vqb8/2HOXWTweZsdhCXbZubW7cuf+QDNycx1asGrFtA9+Dp4c6V5y5c+8B82n3pnQelWyBhVH349KCN3eVLO/nkdLKzcXtz78Gjp8HCg8Np0+ValzevXKmn4freqHZ8H+bJQeLcMkqhqZLXDu7+2b/21z7+0390sVodHZx5dSmLMGVU5xxjsCIkEwBwdV2slACCY0NUU0fOOYwG6pMmWyMnENE5RrWs0GsPQmizGHDqOjAc1PViqU3TYGuLBQwHA8cBiVU1IGtvoV3HNikyq6mZhBCcc13X9c+6/tpFpP76lpjBjL2HELBZJU1Zs6IiE3pioJSSaAbVlLKqbm1sfeYzV77/+7/v8eMnX/nqV77wxS+8d3y2vbm1tbm1mM1J0NRvTvYGpR8OJw7WZENQ7NX1YIbOEZKtRd5oRGAqcN6zAIJKP4niZ5sL6IOzoPdG2fqOA/suXgjRzJx3Y6i6+RKhCFyqqiu8QiQzTMLRCnA5mmcvy2ZwKWzs7C5SXmRcxnx2cvrNZnV1Etvvv3jpW/tXjwpI3b2zeV6tQIenZ2fBF6YEYtm+azYyNTFQzZozEjKSmqpoL5HR86hjBCTk3lyp/cf34eSmSAgGhr1KnMyUCbuuizE650rvVXPh2Ywtt7tbw63JYGdr+MKtG2+9/u39h4+uXrqsKstmCQi+KDSlLNrFnI0RXVV6MRXNLzx38+KlC/cfPygLPxkNmrOWCHa3Nx8/WT168HDzxRerwVDEchZEW8xnjrAsK+hDz9QQFFEJCYkCs6ikLETcf2qmWgY3KINjmp4cu+Bdzrefv3X1xZf+k//L/1VEAvtVE13hXBIPjoEBOGVLmurgYpvvvn/v5rUrzWL+wksvX7lxbbC9Pbl46eDk7MHD/dfffufw4f39g6fbRYCUfvBDH75++er88KQI3piBKaUkpr1WqQctrJ14BnheANE5Gx+BBPq28rttblEUXdf54ACs7dqqKvefPL575z1EvHhxbzgYiAoz55wJsaiHit7UjKgcDtsuDkajP//n/kLhy//P3//7iBSzZED0rnaDTI2ltDXeePGF54uynM7n7LgeDGCdjWpEFAiZGADEdB3YAYgKBICaNTWbwR996/XX/ukvbXUWHCOTZGHvICdQ9UhklDUbYSMdJkPHLquoFqGMswWPK+ecDy7Ps4nURV27cOe9ewcn03Iw9kyXL+x1bdsGbgmvXdlQxfdP7rdNzMtcX7t57eqV9998h9CHwsduKRCNA6037FZ439/v3nkyUwRVQaRAqDF7pqKqUKUsQ4xdFkECQTPNvXe83zYSUVEUACg5I6IpECKCtrFbl6hIznu3vquE0BERoWN2em7fccRqlkzJsQJk1cJ7SOKXShBBnFWsjD6USNDFCADOBQYSEc0CCoXnjY2JzRowZRqsGJenS0k6qSZdas7yqiFJmPc2xuNREbhTU0Aw5ATSJOuUu2ynixUV9eVr16vReNVGQlTojbBERA4M0BwTE4kgASNRiuKGnJK+9c67169cyTmL5MILE4SiMLOTafvxH/nx52698KUv/ou337uDkp+/dsMHns+b//6XPnvh2s0/8+/+u1qMsqhzVYzinZoBIeSUirJ8crD/la99zVdVUoiq3nkzUxUiLMsy55xSYuY+UKgfCPV6oPW8RC1LziIKlnMGs6II/egoeM/MImKAgJhSQqSk4sypKnIhKjnGlAARnSdyvt/tE1HvXMk55dTu7mz/8Cc+/q1vfevk+MRMGoziSA08AAGYmkuaU6qKom3bKpRdm0/OjspRvrRRb0RlSgddaxjaJAWwMwI1ZVUUJgBjVVrH5yH2EN6cxbkegfFsYGy9YaUfcvd9uwjmTH2TyuyYqes6ZlRRSZ0jBEvO+bquFvOma1uANbgkODbTrGqaTSF2EdXOpqex69ZhR4ghBB+oKiticoFHk11mPj07izF2XWqb6J3PqqtlQ+CIEBAFsEtpY7TRmgj6jt1JVhS4MCxvXrly987dE222rl/ieRTvUzVZzqZt9lev3Hjz/fePT89efu6lvDzBMZ+dNd+595SrkQLeuXvvhWt7de1mi6OrNy8tPB89Pj6ZnRV1SKsVNs12VUtsrl7cpnoSjd7Y3xdYvr06/Iv//t/84I/85NPDWSu5qopsSh595YkzKoKBNyIjb+QQjLgqC1UTSVn78B8i5rKovZNsampi59wDxyYgairmXBBD0855NxqOGEmkM43z2SmYDQfjsizX0TyapT99EPpYXuf8egjXtr0wvxcQ98mc/b3AfRQDE2R1RQGmhiBZTbUogifuwJTJAJi4x34vFivvy1de/sAHXn31ox/56H/5X/0XX/7qV85OTgZ1HcyWyyUO6tKN9OTAiUo/kQYwUUFzZppzJvesAQcAtD5nAM2MwECsp5MDgJ3bkRAMnWczJWDgtaC4b1Ccc4jQtp1IrssCunY5nW7s1Vmxk8hOPTIbOSaX2/Zsfp0v7uxdJbObm7vzFL8Tu8aHwWSzq8o3XXcWZj/4wghoMVlyXYTVbFoWV9quqcpaI+auAwAgtt4Ya9B7YXpeTx8v1R8ffWKiSm9YI1p7EfRZ2iUCfNfZ1ge5AxBRG7uYUgghd11vywIwk3Y8KG4/d21vZ/L8retvv/H6d954fXdrS1WdC4vl1AevBrETMVJCNE6SFvPGk1zYvnz96tW6qkZbI+u2l2cnx7MjlWiqF3f37i3bp/v747Dt1HtPk8mwa9sFMxg4VyCggjCYc4wEGdCFYDESO+8DAGjOw6quimJzMl6ulqVHNC0QrUuf+pkf/5nXXv+VX/mNknwLGZ0XpRQlGDsqWk1o3HU2bVcXtnauXL168fIV8pxVTaSdza7vXry2c+XTP/DxP/wHf+aLX/vd3/jNzx8fHDx/4yYbsiEIkCIQGjvIkjUz9Ap/XJfK51Cgvv/DZ4N9PB/un5dHveJBVZxjQ3nvve88fbK/tbm1vbXFRG3bGaCIOVebmWouyjJnQSbwBOBI7Pj49Ic/+SP/w2d/5ex0HobjLucUM4Gx2qgcPHf12vUbV/sRbQgBmQzAebfe4pwTHwRFyUiJlEhBUdVkWHo6PfvyP/5v/eHppBpmhFXOKOuIYpHs2HNwq7YDoqRqua2oKICamAVdCEUYjJiL+Xz54O4DAxtUdY6JlTBD4LC3veUdxBW3i2UOoW1aJm8CJ0enOpCz+uTCxtZDdkVwnigDiGQkT4gqIiLBBTMBpKIs+u1wa61kq4pgpCbJcmZ2feIAOmLHomrYL7etdxKFEIgopUzEpkrYR66uvUhmIKJq0g8nnHNIamZIazFjpzlLRiAFS7DGSbOYKqHkIgEumyf3jzZuXC03RmZiqL7wzGCmhug855hEjJiCd1vjEZg5j0XBZwjtLC7jmWTsnHa5rYd0+fJ2WSAqIlBSS2KrThqBzgjL8tLmpVAPBWjVJuthXaBExERqjKDMZGY5pRwTKnr0wbHmaIjf+PYbP/KpzwB4QjAzRkNCyzkKPzma//9o+89g27MsLwxcZu/9N+ec659PV2krM8t1ddHeFwKaFnQjQD0INwIpmCEEGhFCM8PEMAGoG4KRBGJGEowEAgER0kBghGkQ3TTVlq5qU1VZJr15+fy1x/3N3nutNR/2OTezJTQR82FOVGTdd9+97557zjZr/dbPHFx98jf/8NPvvv76G1/9yrtvvPnu/ZPzxfLaCy/+3n/3D/jd/flqrOpJGqFt6nHsmYqYSULgV77ylUcnp+10p0+pqpuhH5jZezLbGDgxExKmlAAKUXQzWixjr6yCRGoaU2Sm4H0ZOjAzmElOiOSIckYzYKaqrquqTjFmUdxqVonQwNh7zaaaSqmRcx6GgZlMqQrhu7/zO1999dWvv/bq+bhe2bg/2cmjspEjkqyeneYUGDWPdeXjOOxO9Td87zeEB+OvfCmv7nSLFIGDKRogKBhnBIHSc+oWnFcV06wbccllC1QogKVBLeBxKQSZC0fWRBQgIwITEUGWXFVVFTAPq6Hv6xCYIY5jzEbom6bJmlVES4SRao4p1KEfu7GL3odslnIOwRHiMPRVXSHSfD6v66ZAnjmL95V3HoxVdUwRVZGcYT45PW2vNljVD07PR++mAzrtHj/cm5i98PhTX7z77k/+zM9f2z+cuGonVM9cufbRp1949/57hrnycjizGwcHw9jfPz/Zn+x2muu6OTuenzx4RIc7dc1nq9Wrb74zH+XZxx+78dit84vz4GsZMjFpliD43qPT97v1Os//1J/+U9/2a3/zvXvzFMk1DbmQUue8AzNPzhmAKKqygTMC1ZyiD3tmlhWKwskQDU2LuxIRuRIVmxXUEQGQWs5qOWYfqlDXRGhmde2qzm28Y9WGofPel7sVEMWMALQ45JFDRFFJMRU2SDnkEbl8S6H5IxAjAYASVNQ6zQAgkh1h8CHHOA593/fNbMe3TeWcI04xjX3frTsk/OQnPvmnf+TP/P1/8Herqnr+uedy36/Xi9v377579/bp4tyJiuTsnQfAlFKZyRkAb+xPysxCiUlFTMAwE7JDMiQDLWcfIX9Y9E6MjhxqMWGzS139Rn0AZrNqvehyv5pNZiYGCuAsk2akCipYrg/eON9/8cp55U/fv3tw69b+7v66G2I/Ok/rmDofXrkK4/XrH/nio+np/vnp6ePTWQheRFRJRJxjQtDNrboRjjJuZNUF2LJifLRh4+qvIp38KibK5mambdZ3AbfiOORxLJvUsjz5xOPf/i2ffvyxa3uTOo3Ln/vpn/iZn/opRj9p9wzsfH5uhKDqqqpmN8xX61U3jmkcAciJ5qqubl27RtMKPTchHB7s+zvvNE2Vcjw6ODibtr6qcpK+E92dBM/sOKW4WM6bdlY5751jR94TsBE6QEoiJTjaEddV3bZWVyEwJqa2DnVod+pZt+oA4bf80A+9++adt99+f5GyAGeFISXnvfMVRFMBVWGH8+Xq0en5C85HkfU47hwdaZRh1TlwyO7m3v4P/+Yf+oFf/+t+7md+bne2o0k8ezIz0SKMEyQxQTDUbR7tv4r6Y5deWICgJU5ESgfIhFktxvj+3dvn56dPP/u09yGPSVSBXQHxDFHBgJjZkzfNElUxhDQMaHLj+o3Hn3jy4Zde0ZgyoBGZCqoFoCdu3Hr8iSdLOJTzXk0tmyLRltO7ybQCzCAOidRIUBxktF2yV/755/qvv3nLNZJSrrwYOsdZs6JlE2AijyCcc3LMKaWUog+Bg8tIk9neKJBiPl8tT45P66raaWZxzG09aarx4f1HR0e7Tz7x2Nmjh/cuLtar1XK+dD4UoHiMcb1ex7qdTltMGQyCcxDFzDRnQSHGnDMBOnZc2he0ypU8vlz5QN6VVR01KZpa7lOqqsoDF/5jIZ+qWk7Zc8mWyZV3jCg5l79CBCJk8h9icpBtBNt5jBG9kzxyBqwYwWKKRMaKZsBClfIMqnzevb58/eDxW9duXvM1j2NyjhwjEDCRCxUZFHt2793ebOLWsDKbHswkDMuz1XrRY87O0ROP3ZztVgYJVNXIALOqond1e/XKQRIUcn3MMad2NlmvOhDVrKhGxM4ga3bsmFlUCBkRwAiRsqSmbd67c/9rb7z98Zc/lodBJEMevXOKqAqunpyuYp3ouZe/8Yknnzs/O16tF1HyUy9+NBv0AL5tc7TWNWkcmIDQRDI5HsbxV770RWBWIkBWRGMyLlF0pKpm4Jxn5pQyETI75zwieh8IUURKhKGWM4oIHRMxGJAZOydZc0pGrBsyDRESAGlhTDIaIhAW0FySxPK2mpmZ5Ogc1lVVqGAxDs89+/T+/u5rb7319nvvqw3B1SKS2AkZeko5m1nlwzD2gADani/s1vXH7f2Ti7duU9uI5hFUOZgKCrACARoX/9/N4RxTzFnKqAG27B+Awkfddk1qquq9996T44IpxJSSCCM7BtWxCXXwAbJH1PV67Z03tJLSWNf1OA5YGTtMkhHQOUYIpBCCRyRCYEIiSinu7u264B6dnM4vLmY7s+CruqratmXik5MzABQzc9pWdRpjqEKYuTH1iTTMJuM6QZ8fO9rrh9V+M0PV55/6CJ4179+9N4TW7/rZ7tEXvvL1M1hmsI9+9KPNtH14dj5rd65fefyXv/I1V0FOaa+eOatyqt64d3/M53vNdbJFqKa/8vZ7Q8adurmxE/pueX7WHyajXK/SxR/54z/6fb/+t53cWVbqfLBQOzINFgYBJGeZDdmzMkHMUXR0VDwAHbM3ywagBs47VEbKSJhUk5p3zjNbTqBmAORCxSzDGMWIyLErjs7eBWanAESsKqJZS0oxMBZuPrJjh2DjOMRxI7DYzIicKz6ihTajqkigouzYhyKjESA0ycRBc7o4O7OUu8VyPYxX68oFP8TonJ/u7eUYQW2+nAPC7/u3f7+BdkPvmhkCOc+Shq++8hVXBvxgppoRmJyWxVQm4sgoACYCGZiJmZHQFGNMvKnRBMuoiwkBN5FAuHGrKxbPKgpmBUh3zNlU2bu6Wa4uPMNu02KGIRlVQfrYej+pmvTeab9cPvWtL7xOp/dJq+nkcGfHK8Zx7RzODvf5YHK7j/rUNHRRpHuucpMqdMvBUeuCV8klkwwJ1YzMVAxRLt2qzQwAVQS2Bo9lnKwlLhGL+6tt7ByLAz3iRqFn6pk1qqo1dZBu9YO/6ft/xw//VseZNb32ypf+wT/4H+/cebeupgQOXTDVxaKv6jCdzHJKdV03Vb7AlZQnxRRc2N3ZdW19dP3qlb2D04vV8y+88M6Du2dnpynGadUEYkLiUNU150EmYeqcRR3HHPtuQXXrqCILRsCOHVGKgoo5A6JvZzuTPibAmGzdDympB7qyuxewgiw65KMr17/r13729b/639bTsO4HQi9iI4g0zphSFgZk55b9erFejuO4f3BAvg5cMzmJMXiSHPNqTHHwIfy67/4ezDbEPgTOKVkW80QAigqb/C8sROZNGbStmwGhuFRuTSgNSQvgrSoIkEV9CPP5wvvq+edeVBUTYGIRIChBSQBgRKxqkuUSPo2i3rkqBDJ88snHfuGXfmlnNuGY+q5PQ8857V47uHXr2mQ6HZOIAjvHxGqmWYCxIIeGIIXBZIxqiGRs0XJghgd37n7+Czvq1dDI8th7dmmMxMxkyJxFIGsIXlVKEZ1zJubgKlGtPZ/3K+7anPomVOt1Nwxpd3//9HQxrRzU/v3X3z7Y3SOadNFcwAfHF9O66ZYDG6/X627Sz1erdmd3dT6H4F3WyiGLOSICC86VqXSoAhKgIgJUIbCh5FyAz5wzOaqqSsdRQb3b2luAGAAjBqZeYozq2okiZrRQVWg6jn3NEyvaPYAxRwBw5EpGCiEpIiIpgJo5Dt5zBBUZmdk0x6RVVYNCN/a7Tfv8tVvvrpdn7z/s7p8cPH5959oBNKREHnC07Ii8IZrFnCJoNWmALS8Ssfl64gM+0Lg4WR1dvX7txpFoROdHX3WjKDuahGDk0AuyIKSsSL4O1K97M/PsYhqBiRFERUXaeoKMtEl6ERXVLI6x9vXCui984ZdffvnjYoroVDORA7CskkVEYTo9euudO3/hL/ynv/23/eCnP/PpIcV1FHIBBU2sqWpJGcCoVBuioa7v3n342muvF54iEqcYg3eIkHPyDojdNuseQ3AlZ01UiAjQYk7sHKOhGpqU0XKWPKbRewZ2qpJzQkRmFEHvfVmHWWJKqW0aU4Xi22HASCkLGOYkKWVEYOQsebFYl4lY30cfwnS6+6mXP4Fit2/frfeCESURY0rjyI5yjqCjZycxPnhw/rf+zo9P6+n8Yp7IN+bY1BALKwEF0CyDFd9dFSkda+FVqGVQhwyIqJZVjbcNbbkaRXJOJeUFOXBwDg1yTAnWk3YmEVfz+cHRXjVp0jjE9TI4v8dAgZLEisa6MueaMfF63WWzysHGI4lAJRtZYPQOuW6Gbo1ZdpvpLLTFmSmnTIyeSTEF9g55SANPWu+qrLkf0zpnQBiTelePY3xwMp/Vh1f224O29sP4/P7+i9evv//oYd22kRI3YQa7vdIv/srX2mnzwjPPnp9e5HX6yGO3wOfjhw9uXb+WEAzh2SefeXTRf+XN95557tl7J8evv3cbm+ba4T5R5XLaPTi0LoPpb/wtP/jZ7/v+1fmgoyDAZLbDIaQxhTrkwWLK5gw8qIKpokpRRThXYfHXVRXVnHPfLSdN27S1gseYUDICOCRlB2QEPMaoOVVVGMaYUmrq2jlniiE0YCZZRI0dF4GUiBKRA2bvwABMx2GQLdOrHNdEKCKFTF2smFNKTd0gUcopjhLHCGQ++FAFz3T84Lhfr6dNuzfbjZ6bqvLsjK3vOgSYTCZoVtU1AJyeXXjPYrBOS+eqMQ615+eee9FdEnQkZ+/IEaomcl4MwSBnAQZDZCNTzAZU7qciFtNyqxmBERJhSf4iRAebpBpjcsVVjYlzSgAAAg6atnIyjuNybkSMDkIlXCFa0jQkuVlNjhY2/NiXrn3b46eH8ezOKU2ms2kLdZhNKqtcU4VmOr2X3QS8O2W/0+7t7JxfPKSqLcJ3j5w1JxMFSzk5duidFqKSlWu3DBlty21Ck81fF/a5akGeyUQBLIMwlig+8ejJSJFyHL/pU5/8XT/826KOi4vT9cnJT//k52KSwyu3urPFuu+7YRz6EcBporiOPlDFvgqsklJKRqF4u0+q5i/+1b/yO/43P/zpj37qZx6eIdiN67e6dZdi6pddYM/em9l0OoOYU5cObxwliqMNeeyrgJ7KL4PARJhRU+AqjgmJdvd2l+Oam3DyaJFVUkzeB2asfEjDMAuTxTB89DOfOPrJa/PXX61RnDCCW6WIXgVRCRlwlPGg3Xtw/+7Jw4eHewftdIeUQbBufZQhi7ZhysCyHscheudyDcQ+k5kpqRFhSfpRVfXFn8TKPHWLw8FlPQQIaBune6PiCZRhm1BdhbpqWlNgDgWTJDO1YiGisLFC2iTyghkqOHaoqe+XjujjH3/x7/6jv7+Yn/p65h2z58rZ7n67f7SL7NOYmJ1jD0am4ogBUQtNiQAI0DAYo0IGU2dp1ANfzb/6tXT33k64mlIOtbPuzDShomk2wsAsUogLwEA5SUnhLiwijy5KbiqXxmVThSsH+0Tu9r37L+zuXrl2dHbv7nRSnyzGO28/cm0t0JwsRs/iTck4x+Sc86ESwIKyrGMKoi0HTInQGMFMkMgQMmQnxMCEaGJpjOzYAMRUwQBUSt67AoCycw6RHUdJDpA1I0FW6/peg1PGoKCSgyNSKdafLri+iyEEIjeu+uC942CAWaSP0TuyrMkhkHEZdoAhQZSoTNlyRWEX+PFqdkjtxWp18c7DxflyemVncrTjJ847m3gHgB7QkBLTali3dbjq91arVUoSVPNOQJ1ef/yGb2rIPiH33HSogCRAMSuRE6RuGCyrmTlGEiRgLdZnpkAYc6yqyjlSA1RMOamZMSAaKeUxH+zuvvP22/fv3bl17UrUZAnZcRU8JM051XU7P5v/mT/7Z1/++AtPffSFX/7q11586cW2mfV9QmTPtOpXtXeARsBZE7FjV335y195+Oh4Z2ffAZuhZwJVYvSuiC8MGYrLEjNrzpKBlLz3gKaWPTGoOIaUQTQJePJEgaNEzMgAUEJidXMb5bzR1QNYLneUKZKpqJlDJBXtur6qAyBmsJyU2atqTMLkY9QUoyP42Esvzy+W5xcXB0dHeRRTZSPLFsgjWKlmgp/2fbLeqslBXq9Sn6umVsBi0GlgGYDQ/HYCjiWwWoUKd8GyZjREs6I+doWzUIjh3jEiFIdPBPTes68TQtQYKsiKebS+H31Nhrq3U1+r272mds5GUAyBE6riYg25cewcIqSY4jCOKfpJQKqSmABEyRoo9h36cOv6LXScLZ0tLqLErFDXbJrrqmoggKV20oq4LGM/RO0GU0wVseNljO+f55RPXzzavVZVN6dXfBNu7jef/9rXvvbW4saVm0/t3jjH5vZw70zH7vadfHL+zS+/dP3g8N7D248/fqNfz7UNoZpU3j18eG+Iq/ce3rly/YnqwflActZd7HDrc8Qp7ATc22l/6N/4wbaubZX7mDg478MwDM57BRXIiAogBqiEzrk0DoYYkxEHBJIsrnh8gEgcTrsVXVAznTZNM2kqKzI6EWZ2zqkZMqmqTyQAVVVLFjNs2qllARuGlAIF5wKz66UHQEJmAFGJfW9Q4tU3tsklOKcAe4XXX2DB1XKJSL4ukeKMpIyICKcnx/P5+d50R81iipOdw+C9iUKWMr7vVyvZzIIdOhBV9s5EQGLNrFmiWun2TApLxhIzmwKyd0RqVqBIZgdFqaYKQIhQLChgQ+AgMFRRhc3fmm2ytMwg56wqvJl4s5mWBMwi18zDsFou93YOnHPLfpiyyylWTbsex7aaXBnzV3/m1evVS7PH994euvZwlpEAeTX0s3Vopk197cbxgA/l4qUm7968Gt+9NyECNQrOzCAqiBqhMRhvSlszo43E3z48Zt6ibcTMBgZQjJ5oC0gAWvk8FB+CGKOlTIF+4/f/ehfcyfFDNv38L/zLk5PTx55+4vXXXp3PF2fz83Y2W3errlvtTGaisjedGSECMXvJibw34iq4e48enFyc/Y2/8Tf/7d/5u5/6yLNvv/Pmzeu35hcXF8eni9XakIm4air2WLtquZjfeuwqOe+IsGkDkkOPjs2xgAGDkBrmunKalX1zbXZ4/+EjFhnHxdCPZrlqvQEp8XK1DnW9O5k+9eSTb7/2mg8urYWAFUFzVjQwzSJNw2A429k9Pz8/OT55rJk6Yik1IhEhgVnsBwSQDGjonEQFxywiOYv3npCyZVUwpZIusUW2LyHuzcf/89HYls6uqogKyIWRo6a2ERUYbKLpoDDUkKDYF4CBgqEpIfZ9P/bd40/c2tnZOZ13Rj4nhayTncnB/v7jTzyBiMWBrWCwMQkzb3PHjMoTtlK5FXW8MKFHev/tt2VMErJ3XvPGe5eJs2QAiJLJAM20RK8A5JwLOwfNtd4n0z1fn3ZdW9fiKztgYH92dvb0k08EtIuHxzuuXnTd2C+TREIdh/VFGiaTZrmat9P64GgPR7l/fLw7mTFQW9UctQ21Ew3MZhpzbprGkrF3lfMGEmN03rVtm1IqF5VjXxxXRRIBswM0ZMEAzI4TADC5wF0fbUieXUYTzbuTCRqNXS9JCAkNY8yMAgBMVOR+y/V6HEdPTdFDCCkSa4qFcyNmWRI6x8Q1V80w1lDt7UxP8/DoYnV6fr9f9Ie3DmkaYg2j5cDMzqNYMKAoRDhtp+t+hD4K8Y2nPtIcXevZC8r5sksUIhASkXcI1vUpi+aoiGgAqojgADTn5L1LKcdxBLPpdDrE0cyk+CZDWUuF6as+1P1i/uVXvnzz2mdzzlVdr/se2bHzQxxDRf/8c//TD/zg933bt3/33/o7f++VV179pm+6/93f8z23bt5MaezWq6r2WgprRTAgwm7dffFLv6JmxF5FOTgEyCIIyOyKDfSlAfSlCxxsdWFlnuWcG+NopoyEhFkyJeIQtidw+UW4xMgUaL8MK1UVEcwAoZC+LQSKYy5WYqK5qC9TiiWR3jtgYmJerxb7ezsfffHFn/35fzkMPVAgIIEPQqGtkCzFkGi2M92Z7bz7blc0D0SQAQEYUTZIoW4mYOVcKOJQdpuIKFFx5LwjMCrSGt10rcTlN1IdYgEvK+cDmaZBNMvOZJpsTGPebd0TV4+eu3p0OJnMpg02FTnyOS/ni3FMuwdH03aSUz49Pl7Mz+M4OnaA3MfcxbSKsurjcr6eL9anD94TptDU00kLru2HwRPHjGnMB4cHMQ3BO/M6jiGl1A+JnFNJVRVihJPT81nYf7A4m+wd7DUNDmNrOGX3lXfeevOtd1986oWD6e63fdO3naZ+sTinQ35wcV7tTKpmJoyvH7+/20zqNr++umeO93d26rY92pntV96a+saNg9D3gRsmPj6ff/N3fv8TH3l6NYwS81ri4WRmaMMwNFRsvwjARLMqEaF3filaV2QFesMNwFaETHVde5EhjmcnJ967o8PDKjRm6hwDgIr64FUFiMTEOSaiZElE6+AUIJsiYaiC9wERnXeMhGhxiCknBiB2xT+5JJEXvAe3TtCX5k9lqYOCakZTFKNgw6o7Pz2dTlrnOGdFR/sHB1nVRC9X+Gq9dsx1XXvv+ziKCoMDUQCQMnEldZfqG9gQZAAQJedsSkzeMyHnnNEIEJg2Ro1lnlXoz6aAiBvnj402fjvFKJ8Xy7lExIP3DgFSFjOrqoAiMckQE1TqDTwROFbMy5wHloPQviTx1Z/6Kr1081u/6zPLncmDbrka1nG9Pk/mxfkWF4G+dHb3G+/duXF0VURRARWMUcszKXuKyRCKX2r5NQu8tkn2uLxqN6/BxtZ2+8WFKUSICFh8FEkUkCyuV9/4sU8/9dRT8/mcAN55/Y3b7757/dq1O/furbreeUcIF/Oz5Xw5DGNV+V3Xuqpar9eq2FQNWC9J6qbNEscxPXbjsdNHp//NX/nL3/Wd37m3f3h+Pv/Mp7/5y1/85YuTc2SH5IEhNB5jrNqqH9aT3WlV1cjsDFBQQbMCMAkYEKMzp0oOG/DYtJ2vhuBP+0XOYkgn88WNm0cvfOoTGXTaTiz4F599/nP/7McNVMGKAEpyLjsGzJzzi8WS6bEH9x86DqFq9w+vNKFm5KyqKhlyiqlpmnJQppyyZdc0lyJeMxMxgA/cPi4PcfhXPTYqsS0hq3yEqFwM4sofL+snAjTED8eslpMUEVQIcb1ar1brKrhuGIOv6lqJnMqoSUzxxs3HDg8PzUxEm6Yuqhm4tD0w/eAJb5wSike2OQTp1yePjitfWWEcpegLAwMYpGSAAsDG4padA5CNZUtKjQ+S8m5dnw2rgJJWvRClNE7aJqututVTzz0zSlodz1ktdp3zrvJuNmnWy8U6p53D6Ww6IwfSx7YJjokToFk54UAVhLx3JoBqCGgihuyCE8628W6WQvjFDd7JVQgGkCV7DEYO1ChUZuJSRqAQfB5iQMioRpwNNmCbARE758u8UDgXsWRSG4fh0hrRCAGpmIZt+g32RFhizBPanaHTqkFw0flq/7Af18ePFhf9eHh1b+/KPjsGVIShQag9q4qCUQgKvBw0UXOwf2PEarEeVHVI1MeOXHA+OGMFTEkkFz6NK4RARSvWAETkHCyXSx+CqG69N/ESnC9cx5RzCRp5/bU3v+Nbv7WtKhW10vup1O3s+Oz+Sx9/9vkXXjo5WT32+DMXF/Zj/+Tn/uu//D/8xt/4/b/zd/6b168fLRdnRGJmnly54B88ePTe7Tt10yDCmJJDcM6XaAdiBlRV857Ky7XlY22eoZmJFlGpiqio6XZvSM7mQznNAdERKxRfEld6iQ+3HABQdAciebXKJkBE6/Uq1IGIhmHYblUCixlRTRFxMV/t7+8//vjjt+/enc0cMmM5PgzKBeEcpTQ6Xx0c7J+dnRFBkeUjk26G3lBYVhu5vghdkg3ANuYx24MiJ2HmUl2Va05Nix+eCojIOJoBMdH9d77yrzxS/v/6eLn2RDh2653dncG7HjE4QufGYWxDqNuGxAxpROpV7j86efzo8Pz0GMWu7O4//dxL0ssXfvFXJrv7zdH+1Sv7/WL++Ve+Mji+Nj384pdeCbMJrvTVd96aU37i2i0yW12cx739w7ZOLEdtQwjs6NH5Wb2/+9kf+AERG1LshqGeTprZtO+HruvqpinFtIoUYZAYAkLOGYlEMztnJY2tXNWIhQkQqso5l1M+Pj4hoKqq9vb2neO+H8rbQ0STyWQYhpyj947YCq7sCo0ftxoj3KSMF04wMiMV7+Vf1QCXJWcba4ZN9RNCULU4RmZq61Y0nj58MJtOqioM/RhTns12gUySMBIRleA/71xd16WpJiJUimOkD1APADVnhLnMX3mz7ADAOdwIlsWUS4lQcnaNiC/LiM0/BApoRARmDLwxIDQjINHInos/abF8UUNEDI4iZHKBWxjXw8VyMfGhCrXEDESjiHdhhTaY7nH10dzc+6X3Waur3/KxB+P8bHFaMz4Yx6UjWi6H1Xh+/9Sddi8ePOZG9cgZOWHJLy3oD0AGAzWAD1Or4FcfBOX1LweGFtcDIEQCMBVgRgAwRTMzVEJz5GPXf9tnvmkyaR+c3Z2fP/rSL/3y0d7BYjW///Dh2I9X6um6Xj24dzyM0TsGAiAehl4N+m7MozhAUWTEECoR26mnja+oop/62Z8lxk+8+NKv+9d+3ae/4Rv+5ee/8MoXv4yS1v1w0S32vE8ygAkxMXty7IHMJCZVBXROBJADajIciZzEHMyOZtN+PT89H0XVqMnqdm/cmB7ujUl+8h/94+nB3sc/+tLubOf40SOgIASWLUv2hKoW2DnyZPbqq6994uMvP3z4CI2qujk4OtrbP6BAquodZcRSEDvPPrih64dhrJt6KxT6wP0Z/pVIz4f2gKqWEgi2rPXNqYh4WYsAgAJsePobXyFFpIL62ObTqqZjjHGM4xjBZDKZItHYx3ZSM6ELgYhv3ny8biZjSgXaFFMxLXtz22+Xn7eRrolkMRGTaV0ND06P7z2aGgFv6udyVSGCyobEaYAqYCWtU9G7EHO2nJJkIvaAPluFuFoPVvvK+4Q425mtlqu33n3no5/6mH/j9le/+jo7rCu6cfXKbjuZTavjs9PQVpOdqZIZqqbR+dYT2Rgr35Ik7z2qBQ7MPubkncspoZmBQwDPlFMEsOD8xtTKs4mKJCT0vlKqMrJFDeRAFYcoFpvJJCs6xJExNFUy9ICEZITF0GWDARsWv+++7/u+b9o2iZgqqYhZjKksBs8MzARohJLzGPhzy3vn0rT1JA/SsJ9NJtBO43r14J17exfLg/2D2e7OpA7B2XzVhcr7qhr6fLoc1DU7Vw7ETbrRRq26cTRlIBOjPCQbMpAD47LqTNDMio8eMTLx5hpADCEkSZciicsHqLrgVHUc42Q2PZtfnJyePf3E410cZpNJVjXD9cVqGO3lj3/8jbfe+cIXvvoLn//al7/81jjitas3//E//pdvvH7vh3/4B7/7e77ZdOiWF+CygU4m7dvvvHN+ft5OdsTAAHJWZsMNzScXaLNYMwKQbqUaZY+YoYhFTQhF5mUpJ1NEI+cCswegco4ROcBClINLtvHlASgiZrmwagA4uIocxKwFo9ooSJgRSSSXYxwBhjhSDE888cSDR8fjMHCQpFLsRBis8Dm8dzHH45NHMcacIgN6F1RN0RARrEBxheenpbAjIiWG/EEYTqmKsmSR8rGYgqoilZwCYCICBEQVMTEA+NcffykOK4SxqtR7+cRLz37qxWeu7+7UjqqqcnUQNTBoqrpupo790PU5jmkYLI6gxem0EKMgp7had/Ouu/fo7Pa9+w/O5+fLjqoQ2lkS7HtNyf7+vXf7vptO2tVisb+3V1fVcrmczHazQqGQzaZNcC6jDmIX676t2rPYzyXd/MgTj3ONifysOX5y/uqdO5jzdG9ndnB03fL7Z/M7x4sHi+5mu3f9+s1rk906dRi4aWh5cjosl9NZfbE4P7l378bhAVfVadf9mk/9mutPfeRRPzIHx65qm3EYJEXJgrY5ObNIqSyJqHSkYxyS6GTaiKEZlP+awpBG7713IUECpaZus8hquUwpTqdT7z0WtacJIkwmE++CqZYiASnUTZtiEpWUovdeJMVxJCJP7LwrZyptc05kyz+5dMy5vBGyWR5H71wIQXLOaTRJOY1xUCKtmkoRpruzLNkzZ1HnXIpxuVxOJpOmaYpSUlRKVy0fyvoEAFfahTHngERE5esurSZSim6bd6gfykgtJVV5XBpzAYCplpmFmQIaEKRUHMY2l1+Z9YFoMZ0nZl9VKffL+WJvhwOSMY/Ka5SzNKamdaNWUR6fzM6+8v7Fu8dXvvn55UH7Xjztz4fH6iZxWF0sNCfIevPm49lzAiBDVjBFKXNk2HQ3+iE04vIa/vBrUe44sQ39qvhRmpkrguYPfgMAsBjHq/tPPPeRp7puterWb739tsa0d7B/58Gd6c7Ondtfn68fTo/2kCoiayeTum2HGGUudTNFpCzG5VRRcU073dmpq+bG4U3XhPP5+Xx+fnE+Pz4+uXL95nMvvvTOu+/vNNXVA7549FY/P5vcutlOGgRiDkgOC5/QMiAzMwiYCmgGk5TGvouaLWsGwv2jw/Pbp49OV5/9zGcPbz2mIYySHz48/vmf//zv+F0//MmPf/wf/ON/VNe1yla2JxJcYMC6qrplt5wv193wzFPPtU2rKa+XSySumsBVKOdXMQ4O4j357LKo5JwvBY3M7pI3BnBZzPwrECBELJ6a201AG/MIMimt+eX7UQRjBltHzg1otwm41Y0ear1czufzZ55+OmVZzFfFI06zgEi3HlIW76suri+XfTFp2bCIPsCriimC5mQKamTT4O/eu6djZGYwyaq0+Q4ANWQCM4KCgipsWUoGQIjMPMZhMplJTLX5LiWyTJWPw2DODesVIhyfnZ7/yuKjL3zsZXJffuWVi4vzWV1VzAf7e7tX9nvJzCTD2A3L/aM9HCAN0ZJkzKQqRfWIUCyHAAyJFCzGsZw+iFj5QIVEqqqqjNzWjYBqVsip8i5nIAUihDqM40AeqHKigCUWxsgQtYTMoyNIagJgxK7c3F0/ZFUjKp1d8ddIOQUfgvNl5gJFVGzWTFq/t3NuWXZq83J6tmrNPIFEUZTjs0U6OXN12J/OHturj3anU1+lVa+GkWqriFy7GkTZEwUyGGPKqkTGzgGSqJohkQPIqmpadLxAhKIqpkPfh6py3plZSbqGD9ARKzopQIw5VnU99MO9ew+efPzxyteStM/jzZuP/9g//We/8sUv7+wdvP7a66+/9W5MOJtdm812Y5rs7t7o++pP/8hf+qmf/oU//Id+341rN89O7gOCAr762msxxp1dZ+AQvWmhrxG7UhyY4aZMISr5jJspvBkwo3dOci7hMMzk8mY3OecIAQyyKm80B6SixcS/qMcRcWs6h2VShkh1XTFxTBEA+5JIIFIkIs4hMysqEaVxDFUVY6yqamd35/T0XA04OCa2DYMespghOEcnJ8fTydR5T0wiiZwvVRgBagEIQDZNKQIW/xe0bSO0AZ+IyAyB0AwVtHA2DME5T8hqheNkmhMA/MPbXy2vw/dfnTz/1JOfevn560c7e03tER07YBLAj/y7P1K+5vhv/ZdQA7vwxP/+T5TPvPfn/5hzXtSe+MN/snzmtT/5B3dns4Pd6bv3Ht57dPzwbC7dcmfv6qQJF8seAFJMk6uT4P0wjn3fsfdATrI4H4B9FlJJdVudnJz7nWnt66995avPPftMP6QxjeM6784Or1679e758t6w+ur9B598+kmuZ6cPH4r3u9duHOxfvT9fGNqs2fUVB0+PTXbm5+cQGIJbrPsQurTueuRv+eyv7RVbbvuUpqFunNectkC7gRluTXcI0VcVEVV1DYCqRs4hEZghoWYFgBB8TiI5E1JwrKrBuRvXrq777v79+z64o8MjX1VFxL6zuxuCH2N0WMx4lBCRkYBsQ1ovWdJIhDkLXsLA2yvg0u48hGBmMcaN1w5hqCpLOY2xrSqHerFaEEAahqqqeh1cFeq2GaOIaI6JEIoN+mVVXYzEENF5r2rlegMoYgLE4gu4qQBg4/yTUgKwYtFYWgHvnfeet+F8ss3p3XyjmojkHC/RWkIkpC2MjJuhhpgpEHFx2SLDUDfVZKKaNSUiiillhcHwLOW5GXqnIsD2RGifvNfh5994hqaHewdxSP3FCgwzEhAdn51N9/dpf9ZZdkykhCoguk3nQnKONm2TFUVDQYM+/FDZOC996FbesHPLW2hWqCWITDmNHml/trNcLQHs0aOHVw8P4zjUdTMM8fj4tI+xW42TyZ4KGjCSu1isFst1zml3d2cyadghMzBk0wQGdd0c7B/u7R2QDznbtJ0tLpYpqRBGlSvXrn/yM9/8Dd/0ra6eCMBqva6rCow8ehHd3HBsYBbQYTKJCozrnM67/ng1nKx7rRo/2du5cuPqY8995LlPPvvyJyF4ATjY25s17fnp6WM3biAiMgkIEjpmE0HRSVNLTkQ8xvj+e3fX/froypWcRsmpZJnFIaaUTFVyBrWSeBp8KM6E2+23aVsvi/3/Bfz2Aaa4oTZspHmX1anhdkZddJJQ4j9wc79S0a0ys2P2npgMIKa4XCzPzs+Z3BDTX/gv/quhj2Cbo18VlqvuvffvJtn0mlvFH+gHNIvyHMqTsGwCiOw8MVUIF3fvpm7QnEsYnnOuEGpLpSxblUCJzSsgf3FzYeZsOkhWAEkC2cY+MtJsOt2bzW5euzqbtGPX3b1375d+8RePjg4+9clPNE1z/9Gj8/Pzru+HGFfdar5eGcK1G9dDXTEjgLLnqMkYk2ZBTCoG5r1PIq4KxFx+l5QS2MbBC6GM+SBJXnfd0A+E6Axrcp6YwAjRNd48jmlUhxmUCPM4BsfIbAXhRiQgEJWciV0STVlWfQ9MdQgbGMVsjFG2SyLnLDkXRSaaTeumRV8TZ+IESHWN01ny1Rp57cIwmXZNc29Irzx8+POvv/lLb7335un8QRcfrmNHIXM7KIOrq2qWMxAGAwDAlHOBLFQUwFQlJQFQZmSHgBZTBIScUsq5nFbOuQ83oNu+R4twr8j+U5aHx8f9EMVQjYKvun747//7/+Fz/+Lzf+/v/tzXXj0L1bX9g8ddteurw529x1OazOf4DZ/+7s/95Od/7//2D/zcz/3C7u6uD+Hk7Oytt97yxadeynawOMYUk2yCKxARVa1kjBRzAfugKEcAzFliShsbaGICLK1IKl1vSbYulKwPugvLOfd9PwxD13XjGGOMwzCoaoxxTGPf930/jOPImwWzycYuL0vOuRye3jsAYKS6qkRFsxQGqJmRcwikplmy96ymzNz1a/jVPiOX26scsDlnMSMkhM1mudx3iJfILkKJ9mUGxGKAbQBAuGEFmQHA9x5eB4Afe7T+zKc/ceVgtwnBMXsfnPeOuFQ/D/7WXwSAK7/9DxpVt37vfwgA9/7KnwWAJ/8PP2ohlOrn7p/7jwDghT/+X145Onjh2Wc//eKL3/DRF567dbM2XJyejH3nKwcAvqqyQWjarh8fPjpDdOcXC0VSQAVerPtHp3MFl4wfztdfevtdcfXJ+fLsbPX1N995/c7d196/8/qde53gmvi9+eKnvvzVr7x1Oyq7ZgrOPzo+vnv86Hy1fHjv/rtvv/v6G+/88itfW0S5v5ivRbGq759dPFx0L33mm1/+lm/pUuaMNbqaGIaxYWfbmamIMGIh3JQ3NOXsvHOOt+cnIqFdQu3EzMTFFNIQDRghjkPO+dq1a23bnJ2fpjjsTGeTtjHTmEbnuDjCA0HMScGcc5tzBrGqq6ZpSnVRroBSYV/ikeXjvu+7ris8BDXNIv0wpJx95ZitW8671ar27mB/LwR/enI6ne0myWCQYmLEnLKqHh0d7ezsbG20uA6VD97MCLlYEDF7QnaIxZIilwMUQZE4q5SNRESmWgZAKlKeYSnGCVkFClmYiMopaOAu6XWXt5pzzgyL09GmIrINTYkUwACdY+ahW7Fkqx0xC+Fa8yOynawMqClns6PJdH2W3v6Hn3/pO164cvPZhxqZmcUAYLFahaau2jotJSsYQc5lmMdiapodMdLGyVG31Z4PrsBXhbqECKJGVGxYP6ACbCu8zccFdBWEg529Sd10fdd367Hr6p39oVtl1ffvvF/XjSVYd1Eds6+J3bobsupuOzk5O59OZ0eHB13XLxcrYAOsHj06vrZ3AHZTVKu6TjG17axtZ0M/zucr76tnnnkeyH/s09928v7tsZuPcRyH0QUaFZCy6iiYGEHywMoBIRNmcMsI0hzsHB5cncyW3bJP8m2/4eWTsyTk7z58dHjl4OxscXpyyszr1bptmlD4vzk7cirqmZ1jRHMudF1HLhyfnr7x+pvPPvm0Iz4/PT+6cm3jDAoksp3i46acB4CU4jiOxbC/0PtLbjB8CH77cBltl1ZMujnoAQGxJFNtsuQRQBWKhO8DDK/gjYVgD6iSyz8Vx3h+eraarx574rG/9bf/zhe/9Irz9XZEpUzkQnjlq18/Pj7d2ZmUW0VEsio5RqbSp16W+8U2nAkBwLHHOM7v3yUxMEgSawrFdhytmKcX82skZkIq0mVTCyEUHNSYVxplVDUh5prC7s6eTvyQo0PTcZjWze7h3uJ8/ZP/00985/d9z7d+y7e+8uUvkfPn8/mMd6umXiyX945P5kozYQYMTXCCkEEUGQwcixmqFjZ313dNUxFyzuKDr0JVLHGJmAtWqlrVIYQq5dx5HWjkyirNFVEWgSgzNxmTkPeooEbDMHhfs3fDMFQYTJXJB+/EFIkVKaYYuBaD4H2RL8WYDNDMUk6emJwTAyJDAMh6vdl5Z3GiTJkomyWwUNVBtUuD40rEAgPXbRz6V9578GCVPv7Sy03dDuayApDz7PsY1TBrLnACMErORsrsyDFs5tpIaKoZyQjAEGJOQFjX9SUHcxukhWhAgOwCO0QEZm9IiLSYr3KW7ERRbhzd/LF//E+Oj4/Z79XuSt1MkIhDVTd7CE1dHRwdtBdnDx48fAgI773zzn/8oz/6R//DP/Qd3/5t77z73r2796qmSWMWQCJmYnWFQWEbcbL35QRPKV2C7mUTlUZutVrRJpFaRBVS9s6DGJfXFRGJySBKKhXeMAxl6FlVlZl1Xd80Tdd1dV2HENbr9aYT2Oy70vr68uNKc6u6UTWmmBSwDEHqOvT9aGZ1XZtoHEfvvYkSE4gx0yc++fEvvfKVrAJW+v4yPSk+M6BgyIREKoK06UbKpvPsECDFhK6ksuQYE26dYwCKumUzL9Nt61oEjQBw9WjfZAQlAK9Wgmb95ovSWP6fQe//zT8PKt5tzxPG+//tnyFEvzPd1Grk6oA3r16Z1e2smRKF127fpSK2BBBDH5rlcrGYL5B9FkX2YpjEzhfLnCKDnQ9jVKj68ZA5OffW+w98U/eCY7azxfwi5qUouko0n4+ZBSa+ubF3dPrgXspRdQxYX7954/07d0Xh4NYT3FT9ybjq+9rII907fvhb/+A302Qiuc9jJsdJJBCnGB1xCEFEHBsH570fRdQ0SS5wS44DIoroZFLFMTIxBVcWCRbrQjNfhZxSjClUvq3rmGJb1Ux0/8GDfmfc39937KwAekjeUZGAIIAPDAp915X1oDGKal3XlyX1Jc5a0jBKE7IpG1THnLz3SBjYTZxbnp/NF/O29inb2HeDaN00TTvJAqqmOYe67rrOe9+2bYnsLJAnMZmIQ1IxVyo6MyR2JrmYMGzxDwFAIi7Yh5lBcVhBMATHvPkDlLKwUCRKSWFmVpJoNukSALSN9i36cyQ0UwEjg4KmMAIgccBmUks3xDg2jUdXJZNo6Z7Fq4DXXOUksgqKXDPHS3jzx1+59Znnbn3sidtsQ1OfqI19d+3g4LCeHp+fubod4jqCmUnhYRf6RcnQ++CixV/1BpR+xFRFsple/pqXpc/lo/xRRW7dvBl8GC6Gxfk89aPObLXuHhyfzM+XKeVxmaY7TUrZccWu6lbLUHGULGr37z84PDw8OjpEtNVqrZKj6u3337/52K3W7YxD770Lwe3u7ZwuF1/85V85unLlytVrXexme9dvPfH0gze+HGOUnNlpllF01NyjMyA2SUSW8oAu3H14cXjr+Y9/6jvYTbORmWRLoWnh7Xvn8+XVa9diSq+++noW298/mEzahw8eNG2NLngW7/yYMyLGsZ+2DREXBm1SvX//wfvv3/mmb/41Z+fn6/WKQzDkqlbJWQiBi1P5hsNfjs7iALHRfmOpQbXwMT9c/fz//vigqS0SeAPQDfXYirF6v16fnZ42bfNP/uk/++mf+bmsuFwtdw8PVURViTBmuf/g+M233v7UJ19um8YKSiyZipnyh/yfcBuViwBSMnH71XB2woLEjGiq2Ta6Myx2yYVwp6ULoZIbXHLmABAUYRQBUe+DpGwMqR93dpu2DVVdo2Q1W3RdleHW0dWf/uc/+exzz926+dhiPm/biWfH5B+7caMLtRvTDMLqdJFExETUkIIpoMSi9SjwKxCoASNsWC+iTFDilwGA2TmzJHkcoyEmktDAkAp07NaSE+F533Vm3vyEQjuZdOtu0AHJi2ZTQQBRHfsemHxd98NgiOxCP0QMjhD6cUwptdMJMzOxI05ZmSibqVpAvO4bP6RBs5kZYW/JAI0ZzcWsAMTIlkmxme3e2N0/JD8ZhQEAnSNyCSyDGGlGU1DYYoMb0NrUwLwjQFTJYhnQkHiMMaVUVdUl6zbGeLm8cGPIAACWsyAl9oGIl6vlxfm8uX4N0fqh/8Ivfv7ll186vPLUz/7s19Ua0HB178mdvevv335wNszv37s9DI8WF7en0/yH//0/8NHnn3rj9ddM7eT0uB/j/v5MlSRnRDbkkksqOTEjgNv0jYhlOuC93y54Led7mTLDh2gJYMDMuIFtQETGlBW0CP1Wq1X53pwzADrnVqvVOI5XrlyZz+fFsj+lXGAeRHKOxzESokguFHLvnamNY8wpIntCzCKemJlUJaZooAWbQcIUE4oO/XB2dk5EkqLzDi9VoKYlX0G223a7qzeoPG6PX9pcHpJTlpyZCcBfNtRIbGAlJqw8Yuo3pYwmUFGfk6gRooCp3Plv/sRj/87/7fq/9e9vvsZS2ZFXfs8fBYAHf+VHkAiZrv2e/6h8wft/8U9SCCTACnvTlvj6YrV+eHo212TAAFCmGoXcoYailsUsZQNKKQ9DX/nQD6MaSDKXpHKmrhauRsjzHOdx1RlEALJSCLLnMGmmi0cnq8U8NM4DPHr/Tlytrx5eC3V79/zMibXVrBfc3dm9vn9475VfrqbToYwG2Qmjc84xxXHclIaiWTIpF/NMESoCF0TcCHUJV6tVVVUhhDjGooYuwI+qlgwcJIwxee+auo5xJOQrh0f37j0YhuHGjRt1Pbkk4hftIRRpbXmXzMAs5xxTKv1wWbGX84Eird8Mp4oMpZDPmJz3HnGMA4I2dR3HdT+skLkbxmuPPwWFL6FiaimlGGMZopVdU5JkSpCDc+wcFX6FmgFYEVZueDKle96c+Jvme4OHqeUyHyt7rLygsn0UpQwhalbLZkkumXaXZQMxEbORmRkyGyGYkYCIRBldYBdYQVOMJgKGA+L9GHti70KTqRJAUJO0l+HFIbif+PLs5998yirsBst5Pp+byJMHV20cwZF6TmAZlAAYeePfaB+Ar2XgdUnOhS0fsKgsi58YEmzERZshyIYJxEwIKCJXrlxJksdxDM61oVqvu/lq/fDRI0cuDpmqsOqHoR9NEYAU1IdiGCUxyvnF3Ex3d3cnk9Y5qpr6fDF/5/Y7MQ7rxXI6aac7UwW5e/f2w/v3P/MNnx5zrtqddnq4f3htTDnGIcdYQj1yGsWyc+zYgUGSURgu+vTMy9/47Z/9LW73iY4Psj8cYGfQRl3z3MdevHrr0HmO/aBq12/deuqZZ69dv+6rEEJ1sLeHHxZYmXrHZpCyGDoO1enF/J333mXCOvg8xoKLkxmKQQbLplktF1szZHYFty8LGmBjoFAmULCl/V8WGR+UNpc0n81iLM9FbROWuvmqy/OyvKtESBvhACBqlvjgwYMU5Stf+fo/+/F/LkpjVF9XJcedHRM7ADhfLL7+6qsXF+dmWtj68OGfvVVJokFx2S0Xagg+d/1wduoNiZjIEK1QP7FAvkRlgrA5yovEwkxTLt6hjh0hDzEbELuq5pBXfe6G7vzi3ddfS92qUpmI3pzuTgQPmtmrX/n6cj4fx+HOe+/Fda/9cPbgeNa0z3zk6Ws3ru8fHYZJLWyZLZMmyNFy3pjcCJAF74FKEjh758ZxVIDCZMxW/D8JkdSA2DUhQIwo0tR1l+KZ5o/+0L9+8JlP7b783Cf+zR+yo733jk+XMfWSBLPzFNNoJsRAhFVVieoQowDGnAuoLqbjOABiXVXugwF0VhATySlDStfbWWtgmssrmUET2ihZCZNkgxKrK49de/zbvum7nnvmJbCKwLGvDb0iRrMElsjEmTAYiOFl61LsgwUQmVlUxQwZkSDnTER1XV+yL7V4gBsSEjMRb07vMuUHwOCr1XJpZinGvZ29L/zCLzx4eP9Tn/rUN3zDR196+fq6e9jUNWgzdLy3e7Wq/WJ1f4yPrt0Mv+/3/7bv//7vee75j3zk6aeHMf6Lf/FTYCwKQOidt+2/7xz74AGgvGKIOI7j5eBYVcdxPD4+vnPnztnZOTMXE/zLEx8ZS34SbQMusuRxHLuuW61Wfd+LCCJdDveHYdiZ7aaoTK5IkVOK2x1nYMjknPewJVXknLq+XywXXdcDQNu2zjlmqoJDBJGkZux9SVokwhDCMAyvvfb6crkEM6bCQDL84EXdjMUv6RNQ0jANEEruRN70IKKaRbMUnSOqEQABMKJH8uSC26A7orl8kIeBS/CUAQAZYBYzgbv/rz/x4K/86ObkEDPRq7+7VD8/isTEDokf/M0/d/ev/2cA8Pj/7o9zVZN35D0S7Uwn169d25lNcuxzHAAAHa+69cV8mQppBkqSmpV+zPuqqkMVqsN2D8hf5LFH4no6X/an624ekxA3oZpUDThEBs3ChLX3ad2RauXdtKlLLDBovn/nzjvvvrVeLLySh7A729UhPXbjxtHVq8MwZJURdTAZQSOYIhoYqnFhgKgG782sWGBkFQDIKkyOmYdxKNUwERChI2Yi7zwzS845ZyZH6FJKIkLkCImMrly5wuwQWURSTBvirRoBeCIVA5U6MIKAaU4ydP3QDWibagM2BVMuSahljTnn6rqu6zr4UFcVbsRkNo7jMHZjHNpJi4TM7mD/QA2ZPYiAFRW85JxzyvChg7wsdlQ0NVPJOeYcJSdXVhtsqwMtz92AjBDQSKEIowlVbTuWJhFlcs45tbylRasZEDAAFtYagCJQoYiz8yYbnSYwZBMDdOg8mIGR82pQtZVwimn0GX2oxHhMaFUwyArgHEVVIUsSvXcfaffv/OLrqVtdv7Vztr/zYFx0tdXTWiQDKmbhrZQPiEuZx7jJwricgMKH+vvyGdyGkRe5JW6/xUpAPDgiKKwp73zdNMv1KqZUVxUYrPv+YrU8Pb+IoyI49BUJSc5gIhInk4ad64dhGMa6nfR9f3a6ODjYPTg46PsIhoPG19584+DoYFytr127Etr69OL8c5/7qeeeeupgb3exWj/1xFPKnkJIOaU8xjxUNjErCdsMQJpNMvV57LMd3XruG7/z15+ueVAfphMTQ+cnYR8pUTDXhHfefHN/9/CF517wvhniUE3aK9euVcHfvHbj9nsPTBQQRaVmV6w5o4iBsQ8W4/3792/fvn31ytVSDfsqYCG68gbgERXeig62FUDx26QiAi9bqPAtYMtL+HANZFuuPm7zSsr6tKLE2piXFGovGcjmljN1xGpgqgi4mi/Pzs/PT89+5md/nl3Vx5xFqskEiZlNMCMjBT+Ow/t37tx9/04Vqt2DfUnZhZKafukBdfl8CvUXQIGJ4mqZVkuHZGrJMmqZDhsAMm3IMYoAQIjG7NQyEBA753zKuXKsqmerLqbcTicOXJfGxaMTayh45widyGN7RzZC7JbXd/cm07Ybh8a5mGR1fOYOdmPfnffD4t6DCftJO60ndV0FTjqcL0RTUzUoRoSgQIDOsdmmj3GFgyegBr4KY4qqVmhMCoZJOGvLbEJOckvVEvTaY09dAP6ab/vm/Y8+Xz33xN//y3+1FQxnF/3qYreZVnWd0wrAQvB9ihnBEMhxVhEwZBr7UU2bpqbiu2Eb/a0ZMDmsDET2Q5gRn4mwkpiQUiBOaoYQHJOYZtvZO3juI8/2fd93q6qq0LFmI4fAmzQeAjJCdgwJQUGwzOg3g1MyS5JEFZkRaYxxGIaqqrBEmCEiomcnWQQBAC7Dp9ig3NioWAUvKQ5dx0dX1qvl2++89Z3f+R0vv/zS/pUDCvDGm38bTBHJBOsq3L57dzbF2c70t/2Wz7784tPB4/xiMZ3MFsvlctXXdZ2TEKEPFYKJgGZBBmb0PsSUhnEI7Kq6rqoqxrhYLJbLZdd1Je99NpsEX2UpPCdDBChApIBmzRuJjeaU+6EXLbaHxZRfzTwzn59fVFXtnF8sFiUt10ydC977S6tSVU1DyjkTFQxpmZMAQlVVjrmqfElYhA3kLyrGYgikZkwuxeScV1FjAMScRUBgG0HPRMOQ4EN3oaoRokMe7ZKjbSJCXCzrpHDqcOPnpAYF7AMzRdgQBr1z2+Imeawtm2TFIGBAqo//wT8FAPf+8o9s6x+88Xv+CADc/2v/9xu/748BwP2//udu/K7/AADu/Y3/x+YMqAIyKmTNikBNW+3s7NiD437sAGB/ttt3Q85j8D4VPxKiPiYEIMLAvqmCQ5B+bH0YLJ2P686qCOZ91ZqMqlFzM2k0JsgaGEOO3fKikE/Terx16/Fre4eq+vDBQ3T88nMfaaspjzAfVjkN1KVpU+8f7PhyUjGS4zFnFGucMyQwYMdZ7XK1Y1EGiLJjQkYiE3PoxnGULJN2EoKPMeWcAIG9h2JVoOqdA6AStet9yDkxO++rqqpESho3Axo7ZkJmjuOYFUJwoLBcLLzzs9nMVFVBTEv3a1s+YiEMfZhejIgEmCUrFNQzI6IPLsacUz46utaEdjmkUUqwHTrkEAIxjzmSEkCxLWHbTLlkw3/YIjQEZqXZpk3NDcV2nYiQLlHkMg9WxG3XjpdwCJeIjPLfAg9t7zwQEdNLroapipmaWhYxMzJkQDQAtFFGI/SVRzTLmdQch0R+bZDZESIwiUcDC7UfMWFOT4TJ7tfv73zt/jcePHZ1d/dsOZ/t7obgQU2GCCkXnSWqmSiC6baDKY//2fBlc/tiIUHDdgpWGJ6w/Z9tNqTotJ1MZtOs4oidEQFm06gqhpZVk4wpZ4negUECy7PdqQsOicYxdd2YM3R9XK9HANeGhgiAYL6a337n7W61aOq6H/sf/4mfWJxffOJjLy8uzo+uXK1nu8Ah1MEgpzTE2DMDMYXgQwgImCOI8GBNffDEJ77l1573tM7ITUWBBJIPHoHHZGPSdjKbny0C+OtXr+4f7AsYOg4hBBeaumqqEJxHhJijguQ0phxFTcRy0lBXWdKdu3dSHtmxaWFrlrJlwxsA2HxQVkjhzpfXu3ym0CwuV+H/t0EYfkD0gf/1L9swQrcVv4jklB89erRerd54483lYpXF1l2viFm0UHlEchxHUTHAu/fvvf3OO6v1yjmnoIXbu2mpYZNLv+lXcPukiPr1kuIYiLkcu6bFR6Ksr7LbREppgbopodBKdGhWyhDQOXXreUcZMGswqpFS3926cVVShJwPQhWGPAO+vjN78vqNwKwpHexM02oti9X13Z0GmU0u5uf3Htw9X50PaQxtfXDlcDKbGChS0QYLbYbY5kMYYxzHFEIYx3GxWIpYFil8xzKNAty01LUiKzFV3jd/6S/+1+fe7X70uYtxfeWbv+H3/aX//Lf/pz9iO20cRzPNOTVtA4Dr9aogf6PkMSVyTgFUoB8GQAyhGCblMmp0G78NNLM4Dg3SrK5NxROxAAN6QI+sMaMBqNV1feXKUd+tU0rOOSZKKTOgI2dimA2SaUzaZ8jKhTJcUjS1BF+iKKQoYiZqY5Z+HMtcqZTj5QL+4B3fnItl+RkaFjNVAMwiJ6en5GC9Xj333LMf+9jLKfVjv96ZtgiyXi3AxKQPAXJcPnp4+9mnH3vh+acJwQFZAgR37/6D1XpdQr6QaBgGESlJ56ZiIGqiarwd8qxWq+Pj45OTk2EYZrPZ1atXr1y5UteNAeSUi7Jk61hbgBMT0RjTMAzDMA7DMI7jZehhzsUHRBy7STvJZeJmWHYkgKaUUsop5SLGaeqmqduU0mKxQMS6qff29vb29kIVvPeqqiKAeEngKLHzkotk3ZgdO5bNWKS0y2pQQofUTC438uVpQFtbDdu44UHOuZDaC9kZPySVQEQwUFHcZnT/zNkSAH78//rvOENS++Qf+69e/g/+MzBBFAR597/4PwLAzd//fwGAe3/1z5bhBgDc+L1/dHOeKN77a/85ANz8XX8IAO7+d38enTNP4gm8SyDA2DY1AxeXmBzj2K89kXfF2kEsp0Cw09a1J5OIJpqjSjRJDimbjZpDXU3qyaxpa+aKcG/SHFRuD+yx3ekLT97anTSu8t5Vt67cIKDVMPoQQh2uXz948urh9dlkdXEyjOuYe2fpxrUjx4DjaJIdcfAVG1FGVCpwu+lGWDcMAxFVVbXhlBMjWlVVhag+aSegsFgshmEMIXgfiLm84OycD8ExmyGzI9qoeuOYmqYphQsiiqgZFKUhAICKiqQxScoIyIQqMo6jqXr2wXvcDr8uF8DlGR5jlJRzSp6d5DS/uMhmddM09cQH70J1dHiUs6KgJQDdjICbummbBgBiSlmK1iIXA2vZ8Jg3cCkzuTLv2BQ8RLYNoFPchs/hhuajakxbP5YtZ5sYNi35tl0gICAq/EItrrwAatlMmADAit0yKIKZZMuYJatjFsiE1NSNZbWYteLBuwdxfLapfERHBCoNcc5CDEaqY3ostPnOchHfPXj+o7sjPHntWr9Y7DQ7nFWykWciNLGASAZ5m7hXrLdUlRBLMvxGa2AblenlnbylcSBu7SgA1AxN1ZEPVdWPY0wpmFw5PHrjzdeX65UheBeyA3Muj0PrvSKFyjsmQxjHUQBzzAxukNT10ZTaJrRNQ5V7dP/e7ffefezGzfn52S/94vmbb7/1vd/1nYx47erVvSsHyI68z5L7Ya2TCYFyMXIoSLJozhYTRWo+/ZnPWjjsloOrGw4Q0xJJHE8kZQLfdcuHx+fXr94Yu/7g8MYoxo5jTC54kXzv7l1NmXwoHhu0VVsoKDtnaN45M0g5rdbr68xGpMWcfjM8KC45WGauW2Cm7LQNm7ickuU4K6yLy0X/q+qerZshbO9I+1+tgS7tDFhVyhyj7/vj09PVan3vwYOsSj6EukpdocNs+OxqRoihCg8fPXr3vfe+5Vu/pVzMG7bYJXy6iegARN5ghIRmNnQry9mEwCF7JgQCIsDi0gabqhrN1NDKqIWBsqZk6r0fkzjDnXb64PiRqYHYpPLzfklB6irsTidDMukHXXdTYifades8DkzARnWotRvSYu0C7+7u4O5OqFrvq+XpxTh0TTXzs8l4tihqmhJBweXyYc+EmnUYowvOxPp+cK4qNhxVVSFhP/ToPZjstPX5cp0c31suf+sf+fee/IHvm8ceZjuDpokLX/4X/+Te++8/OWlc7WMaPPmmrszTIOWmszEll2TSUpYcU2qaihyXsxgIvPeiagCqkiUZOgfUhpDzeuqno40AkFJCgATi0NAhOhcZqfbYSd8NxcSZiVANVMmIRHMWTmJS4lGMiRwwImU12JREyOSNMEs2JKONa1EhhPZ9X3RqtjWhKZhxARs8b9xyU0rnFxchhNBWITx1fHaqOa9X/d3bJ2m0nd16GOcpLdc9VgF0Wj337PNx1FkzyyPlCCmne/fur1edPzgAJCu0YrBit1ZOoJSSmlVVRUQ5p7Oz0/l8vruzE0Jo2jbn7Da/OhlttB2lVtikuamaWYppjGOWpCXvy6xgXYX9M5/P22YioiJJFdp2ohpDcACYkzBRIRrnnBfzxRhHAyl3JxFP2qmB9l3X971qDlUjZX0RQ5aU8oY2ABR8rZpFRNVyzs5T+RUBqJCAsmo2ISsuqZsmofx02XD1yFTBBAxKMDhtCBE5mxFsxtKARZAB33ftsRRPfvsPfPalp646RjJ9/c/+e9xW7D0yekIUe+8v/p+crxEdECPgg7/2n3B5NgpMDg3Z8Pi/+3+CmpBtjAJMEgg4EDFirpumbRpNRWzRVZWfNdU4jBwqBRAFMfPBrfoRIQdn3uG03VleXFjKtQ8IoGPq+hF9aHcmbuianL3Y0ZWjSVufzs/OFsu6moSq7lcjTRwAjSLtTkto8+P7hzuHN29eXZ9Lu9PEuyctyrRpIEYWFpcNyQk2VBWPnRB8SsnXtff+/OLCOfbexTiqalbpx7hHpLoxn6zqahzHxWIxjuN0OmXn4jgiUQhB0gZELC4MAC5pJoPKBzVQAXYcPGXNKsLIYqqqTFSxE0hN5RFIDOqqBqRidF5Mw4lpc0OrllVXprEhBM1CDnLOKSaVhAp149swmbALVVh1I2AAIBVVEzMj5hBCH8eiojfVos8y3cRbl/1eriGnuClcynSrWEqBqIJSiXw3EDEEMCBRIwQjVMxcMuq3kcXFtUVMS4CyGhoaEjOxgILiJpamYEJltAtOHBKyE/PEpEDOOe9yzDkLm2s0vDOcPvPC9dUihYdnVzWgKaM1qBFFyTDrY2F2fDLMj7+4+Jav79cBKsyUYxpJjYSVyRxzRgPcsLlBYTsoF9WCEIF9IM40NZFsqsybc0UNEXgTUY5mpoTUTnaadjoO0RHH2F+5eePR6RnfvUvo1rEnZhnipG6RoK5qExCBfohDylEEjblyMOpq3Xl2Q2ICQ0amsFz3q1X/xpvvdOP4Xd/9PU899Vxd10fXH3dNnQQYYNEvu5RVAkItAuYBACVZFhgEV+Y+9k3f2+w/drrogX3wvutWRFCHSiWrqWY9vntfxvjUU8+8/+57CkpkDNk0S5RxkJwWWbMHNsvecR2qpq7zMIBZcQ0n5r7r45iWi3XwQZ3LWlomNLQynE+S2JiBy8taZOFEWBY9fcjd/1ItuJ1TgKoW2oWIWCmbpHCzNl+3uZwIwBRKeY2ogIrIaMUpCyxfnJ8tLs5X6/X9R6fmPBPnGBGtYufQjWlg5y0l70PTtKv56aOTU0BQMGZGVWIuxVcJq9ECChiQOgMCVA8wLrscEyqrKAHQJjglO0bNRrjxElIDJhSTy0KtTNwpS9Zc1dUIejquJx5b4r3ZzsE07IWZsizWZ7o3TQSCOCzXaxln4IZVX4d6t2qH1dLmY7U7005X3ZpxXbtaYhqWa6vTrq+ZHSlpFgDGwIrIzoFa8MHY1v1qNp0Q0MXiAoBmO7OU87rv1JTZMTvNuZeEleNJwAF+/nM/ef07vzHstdnjNMz6Ow8On378e/+tf+OX/t9/bzLmiQ8GNKSUJac4CpD3Pjpk0yxgmpxzoaodskpGA0YUySKKm9AMIudUrWHvoiYnguAFCC2jEmGxzmt9IDFEGGUUVO+8gsWUidWgWJyAiCgCe5dzNtzwJghKI2ZmgFSMmdQTc9Usz+dLXe/sTIlcjAmAAMlQnPdYSmSiHCOgkSM1IVMz6rpuGLq79+488fjNmKJlbesJUnv33nLI7mq7J1na0JAT1+TdWXNw5UqOMCyGtV+enj3qUn706DiEChRKXFFV+S1SJarqkIEhBCeSxzFXVT2ZTES0alrvPTsvqkBkAKCGCiIqqqVBFZOY4iavwERVNIsqsHNgZGYxSdM0y9XaEHzlJStuNlYuaZTOeXZspgaak8zn867vwGAybdu2mU6n4zhezM+HYZg0zdWjK8cnJ33Xk6/ARNQIwEBj3zdti2BiYmDkmcFSis4zERE6MwJFQgRJKKjbvWZKRqCGzA6dszFmVTJkR5pF1Zx3SJzFJMYym0YEInTOsXMAkNl8cHUgUiEi9s6QgF3xTQRiKLQ0gvJMkBwYatE2sCmqAUPJQSE1ywBiliFnUGN25iBUrvY0a6oIGQBYcRpq0axE2dSgJD/wouvMgF0gdM1kJqaureJ8WHf9wf5+33dR0rStau9anKShZ8Ze0uJiiHGMQ3/z6tVp1Zwfn6TMEPxp3+c8CmCjru+Gi76zNMY4VIe7VgU2ZGLmAGDS9w7YeRBT57z3wSyWfO88DmjVNkkIY8yGlFXRkIniOIYQJm3bdd04DKY6nUzaus45qxk6RibAMIxDyqmMSNgzMauKC6SWC7hookRuzJIQeLl4+4uvnN1+96lv+OjO88/04pIEESxLFAvQAOid2xoiaEoxpaRqwXsDLNBFVTer1ThE8SFks4PdvaQAiCnFmKRETYsZgIkZmIEa0kaRc0mc8M6VfY1b5wRWQkUwQzM0AwIsH5kqESKQKTlXe98AujKK23rvlqR3AEFTICBVzSZimlWyaIZixA+GCMSGxegKWTMjIUp2gM4FZYpI4ixzFgBi8g6SNFItvPsVNzz81FPrp64ndAjORINq6lbIFNU0yo26vdbp4pWvtw59w+u4HOKYRUxUDIScklODMvQyJAUULYZEgMRqqGWvF+RV0QTQgAkYERUQSKX0K8VRyMeUqrotIXN1qKKKME/3dmezPVOiuqLgKnbB+5hSzpYzpozDoADByK1THCX7SYVMfexD2/im6ddj3UyQ/bu3765Xw6//7G/4vu/+tdduPPHEMx/1010O04prFF2uF76aRAkpOwAWlGyWFcV4RHflmReOnnhuldDVTajCOIxMznEQtZRT1nR2+mBcrQ+n+/V0Vs1mp2cnKuPerG1DOH74yPsQU2TPSaJqQtDgPRqaqEcIrN7xzmwSqgBGogBEnll1A9kropgAQbZc/PJBrVSqJmjKJQSzdHiwpQfBZvCvW4plLvC7mQEh0IaFrgjFTWeDNBmSKqIZghkqMRKpmYGCyrBe33v/Nkh+dHI8iJhzpxfnYxxr7yofSsqviCE5RM5ZDKjrB0MuoilCpOJJBx9EcigYmjlwJTu3Rox9n8Rc8IxMQmRsKACZsASQgamCCpiiaRk8q6oBOufjmIlIUbJl8Xg8rjLKOKzjMHTzIc0FV0rZUVWtJC3iMA5xQtVU3ZVqdmNygKs4g2oqlSwSdthA01pVR3RRMUpc9pbVObeZWHsHRFnNkJgITLwnx5TG0UwmTeM95ZzAtGnappkyhzRmQkIDM8ljVwc7nFXzt9/o3njV7tx++IXPf/HH/sGVxj37qZdkpwGAOKTizuKc29vdnbatma01ZefMqOv6EGrvPAGSIiuAmooBQOFHK0BWyZInvp6QN0KovAduq5ocMWPWNEp0wC6J5hHQsuSUBZ0XgGxWJnyCqgRCKIRYuA2eybGCbPwZism4KqihgSc3neyMQzw9OevWvSmqGCKz8z4EIJIyUkFA1iSpCOxVdDKdAsE/+if/cIhjAVBzzOsuvvXuXcE6KnrGiujq/mGGcXZlxsE7DrGPr7/x6unFqVheLpaE5Nih4eV8p0DNyJ58EJExDoimqjFG78OVK1dCVSM5IAfIqiYbc5ICXDICAkHWPOYx5SSSDTeKDhUjCIgsAkic1dZd3zRtIZmwo7YOoNkxp5SHYQCwlOJ8fnF8+mixnIvk3b2do6Ojum7Ozy9OT09zHidN7djXIQQOgAxqClTUhZ7Jco5DX+Zcapo1AyqAIRghMTEZmrIZmwKhQ0BTKCMzVcxi2YB9QO/FQJkMsbSshaRcJFMGJCoxxT726361WM8BYLCEZEiimJEJvFdGMAAkMlJzigHYGSKQQ/ZGXpmNvTqXCROCMipjNMlghoZkDpQ1O0U0AkQmrBh2JnWJNLl+5WjaNB5xd2daN5VzrGBJVdXqpq3rScqw7oYk2TUhmi7W6z5G8g4RGudYJTB677kKZ/3QocNQPf7E4/uTRofl/k4d0/jg5NHxanXWxTuPzjNUvmqJcb+Zvv/u+68/uF/tHliEUUGYyovbBBYbhzgAwEbYqJrGEcFAcykXiDmpTmZ7SGwqZIZmcRhyjLX3s8nEEy0Xi8V8ToieGQEMAcCc43oyqepawDgENYljbyBAamgASIBOmIAB7eT+3Te/8NNP5m6yftSt7y67E0OrJ7ttO0NDyVL8RSRLMcEahwEM6qqetK1nV/waELGdTkJVk6+iGIfaV41kYGbRKBrJsWsqX1XoXFYFRQTUvLWdM0UiJCyjwKJHSyk5sWTbBJeSjqeK5JiKCGpr3ZhiKqq50ndvhhpI6JCIgUw3ro5ACIDkEAGsUPHJMEMhUG8F9YSEKApZBNGYfZnkbppsQgbGilJSiPj+gwfdNfzYM0d14ua90xlVQ0pVPVEFZAYOYDJ1HM8Xe5NppZi7gZiE2BUdpxoRGBHodp6xcZmxzfPZTjtgexVvhyobkREimYEqMBNzMafXKgQASGNsJm3bTJbLedPO9vcO6qbuFwsDjGngxAqwWq+uXDlKYySgAvcTYErJMc7aSbdanJye3Lx1C4n61QoRn37m6d/0m37TN33jN129cWPRd3UzRSJih8xm6eTRoyqEXFSshKYWU1bFKNjs7n/sU5+JalnFuY3EcWuoo8Mwnp+ejX3fNPVsZyfF7EO4OD9znnd2ZmcXFycnJ9euXv36a2+GUMUYHZFnZufGPCIakyFa7dk7x5WvaheqIGqF92UbYd1GDwiXjvtYau2tPSJsYZztlHc7J9owzbfQveacqw294JJ2hpcsojIZQ0LYqBmJbMPhFcmEdHp2dnJ60rTNvfv3p9NZP0YFKEQEQ1HZCImdc8MwgIEjTCLsmIiTJe+qghRun9hmeeDmOSAoqGgcRhMFQsOiJyczK+RxAwRwqqnAXbqh3iMiOi52JuqZA7sRqQp1BKvYgYyNq6Pp2d1HfddX6KyXg9nuSlYxp5TjpK6mdVsRN7OZjLGta2FcLFft7kxiBJUAZBxqF5yhJUHD4EJwvhz/DtGzQ8BiStR3HSKycyi5+FKMw6CAOadQVaYUHFuMlYdjGb7js9++6hZv/M3/8aDdOX5458YT17/wuZ945f7Dqzs3JktM657Yp2EQtDj07LyogELOeUzJ1AqpVsWYCcmVTChEEgQTU1UBTHEkBBA1MwUoQhViKiweLKnoqilFZopjZHI5CwUmJDMbx3Fzx4kUkqaIBB/Ke83MxChb8e0G9jadTFozWa1Wy+USAJiZiC8nroWA473PCjmNVXAIGMc4nc3Ozy9CqMdhbOvGe0dEb7/+xtvvvDZpjuK49m4IiONQxw6Zmt396bSqKPkxaTPBR+cPzs5PnGeRVNJXSupOStG5oidXZs5ZUxLnvKr1fd+2be3rYRw0jbzdEQKKYMyUc1REAlIDFM2QiUizjWPErb/rGJOI7B/unxyf1HVdN00chjK/LvPocRiJCAlXq1WxRhyGMQR/dHRU7IJWq5VIZqadnR1C3hqeGH2I5Fd2gw8h5ohpky7M6ArtD7YCFCZHRFlURRGNmQ0gayZAImeGoOCZhbmgYlkzceHJYsnUc45VxYzNTEEkp2wCANInbMiFGn2FyKLgkEDViZIjA5UsDFb4AxkUoRTjhozsvZmBll+C1QSJQUWTWFY0FJXCZQlVxbyxPZvtTFJOhgIAQRIYQLaxH/baiaqImnNufTFvjw5cqDKxa+vlcrHXtIftNA0jEESGvl/vz3aePLj28NEx1bhYzA+aylLyvp5Mq/M0TNsmj1GSjGzrHG9dvQ7Mw1tvQGjee/ud9Xq9P50mldJfBM9gBsqOnYEWrtug2cCqOoTgxhhFFMyqqi7HXBK5PL2RGRGd91mkrITiHuycM0TvuHhlTdq28IQMUVUKGUtMm6qi3oJoMvXXd7/xd/zArcNDiMuTOMrQ7e5WIJbyQIwlKqDsx0IP/fCloGYgeRz6osJup1PvfYpxMp0IoG7raYS04XozFZ2/wsZtlYnRgJBKCHrOSZW2lAlyKhtfaNzwfzdjn+KLqArFMxUuq6Etq6M062XzwDa1YBOlbttKR40JjYgUrVibW/nyEswOsPEaEpHiUFncoxEBItgaYvDe4uBnO8fTZjbZ2d2bnL3yxj4zZ3UuoDCa5pQz5AfnJ5+ZzdrQPJqfh9ASFPIKGAgAsiEQbXAgM/zVhqQbFtOWAAXlMi2A0ZaDApvZ/GZMVtcBAcYhIXDwDdNw88YtU/v6m2+eLxbIoCC+9t1yEMlZUs5ZkjokTwhluJaVJtjuTE5Pz1NKDkiz9F3XtpPnn3++apskGYnqts5mzIzkkqwvjk8YQSWLSZRkJmAcxSKHFz/2aQxN343sG1XNIshMiKYyxnh6ctKvu/39fSKKkjVbO5n1Xdetu+Ddw0ePwGxvd9dUzNQxDSqhqrJKocMDqGesAjNs5FqTaRO8F4Gi+CsnkWxHWpe69/IywoZyY1tOza8yQrzEgWybcQ2QU4qw4cTB5VtQLgb8kPZ98/6RYZkBZx3G/vjkmL0XtQf37/tmb4zRVEMIxTGl7LfZbJZT6ruubVuJQxzjet2VildVynYoI+TLog0AN2YQaGg69APARpxvmxndxnUHgba/JxDxpc0JboI1i6s4sDGjq1zo+qU/8JhiWg/g3PziVKKExtdGITTg4ihZGHdnu85ovVhOfbWKnVgMk3rCnqI0FJAsDaMht76qySmJA6ydc0hFH+fLjQUKAHVVxWGw7RM3M+ccOw7s1DsGyHEY1XvnUtbdZvqzf/1v37v/8Ea7e3hzduOx56595Nbexz7h3rl98otfJQRmn1Ii9klGIkKkKlQEmGPqZD1xWIKjS79eeSc5l1fgshsxVSWtq+DWIIDMhA6ATFN56ZTZsSuiaOHgU040jkTuwzYKCJf+ZJvjKOecUqnLebMsEU1NrQShm5lOJhMiKrf7zs4OM5ohoNKWXWsKKUrwlYgBCLNfr/qdaXt0eLBYrg8PrrAL45Datp21ExemdYPXj9yto6tf+/rxcp7uvnf23u3bL333t6fVyiDXs/arb3xltVoeHBwgATGqUFmTOWczEsmGUKTFZfeYWs556Ie6pjJaNQSRzMzMDighqNlmdgxmG0NzQgMtd4B33sByjlVV5Zxjik1TpxgBoGQnlcVNjsdxXK/Xl69q09RXr15l5vPz877vp9Mpc1PoruMwFDvNYv0FCEQARmWOwMysXDx/vXfbV9tUzX3gBGSmAmAAaqAAWuSkZhteJiE65oy4FcdvunTY6nm5jKqRkEy1MlOYP2ChpmpC05KvgUgMc1S0DKAetdwDjA5ha629uQPAjFSKnHkTUIbFQzklyAJGYCZZytyWHffjOIwjADw6PZ62bagqUOv7npDI8iT4yaS+uJhDzp6JQlit1pNComKCmB2xA0wxjjIiUVOFNMbZYeUOj7725qvmZL9tD2czS3ns1qySVsvgvaIMqbNmd7VcHl259vyzL7zx/vuL8/Nuubpy67E4jkjOkNdp9MTOMbkS0AlFqU5EIVS2IbwaMVdVyHHccP6ZNxMeRAMYxzFUVdM0q/V6jGNVVZRIzJxj70M5FqsqAAASgdrWDCcLAQWwSJwAHUfT137uZ9+9/ebHvvd79299RLxUfRSAJHJ5WRCT824cYwkk5sJKJhqHPgRPxDGOpdNm5+p6GmMcx9EEsmRGUtGM2RFZEaxlKe8qfkhGY1vZzeWd4hAR6INT40M3UflYEZUQmdhUAazYcW5UGMyFOFxMJbbK5LJGraQMlZ+KCIxUDhMjIFQ1YCOkwtfbqgA265GYmT1hMB5iWi7wbGhfeOZt6Q8mdIVz/sptp+ZD5RNqN6ClwWy1PLOc61m7PDk5QmIBQBudKcFUgJAN0RRQSvmHRKxb+7xtzGXZw1i0i0SoCghkpkRuM8IwK2MSRyVG2wDQ+6aqBsxy4+ZjL7z00pu33+mWy7atXMXdST+pq5yzSe77zrn65rVrZ+fzvu9zjjHFtqlnsykp7Eyn4zCsFwtJ0nVDqIOohrryVdCcwZEhjutx6LpWzTtnbKZiBoa+z/nJF166+sSzD04HrCbonImgaiAaxxiHYT6fD+vu+vVr5FxKCRBVzLNrJ5Oz4+OU8oP7D64cHi0WK0J0hGLgHbeTOmVpvM+SNMfaNXuzZtr6HLFp6v29g7qu5+teiSzlkvYuUlIdsXR7H6w82Fw4Bee+lGttv2YDKF7CJCGEcexVx6oKzE41wf/iYZf1E1phBklOprpYLI4fHe/s7L351tvDkKJ2eRx509xvYrTrui7PLIRQflxK8fT0VLUop5S4xFf9atJ1sfik0nNoHMdNb21E6DZLBUjASr+y9Y6iS/0gEoKCqrJjEBNRDhUD9V3Hhgwco3pCVZyFiWruT+ZN08xCret1QIT1SOT264kMcRZqQkzrwRE6Msk9iE6bNgOzoQ4jZAvOsaFlRTB2nFMm3sr0COuqCiEAgPNuHJNtW5s4DDWBI7QAg5mB28/1o68dD4If+d2/sXnx2d2nH5s988SsCd/1xmv/9Jf+zzoMwYXehIgt4/+HrD8Jli1Jz8Swf3D3M0TEHd+cc2VmDQAKUxUKhaEJdLNHsqmmTBIlk2mjnUiZzKSlVjKTacedTAuJpChZSzRqIUpGsic2hkY3gGazWQ2gGyhUoYacM1++6U4RcQb3f9DCT9yXEMPSXt58ed99J+L4cf//7/+GpuvG/VS7HIoUYnSQIiUSEaGI5ZwBkRcHaCdCqhKuMlOwjoMiAai4AUBkDszFCyOCWZ7HprSxaZi5FElRfNEcLVWQHqKOAaDm7ZgB80v3KSIyN1Uj8hAjOG13uznPXdd1XVdKkZJTSss9JDR1IkwhursW4RiapikFTUHFxiGLWLdaXV09LrM1YSU6/a1/6y8zP75+vh+Gx2cnd1+8ePwf/J//bz/59qtff/eN1JWYug8++GGtrolAVWqsKR0iemrqTr3apm3MjA3b1BDRNO4BIMbUtg26l7lUBFTdAA2JawG+JMh4pcAaYQCkUoqqN01zfX0dY4wplVICL9U5MxfVYRzLwZXH3buuu3Pnzq10qKtOoYghBHdApKZtRVSkWLVPM66Ib02+izFMOYtI/X53RySzl7lm1XoWQAFdrFS9EUAtUNUdiCgQxxizFDAwU7MCSFyfLCAiRoIQOIYYYwrEALBpVyfHq5vdaDKvOZ2uVusmESHMAiYxBnfQSo0lAmYANUBA5ERMVHIpkisT7gvVERCgFKmTfZmFKISQHAcAuN7eOHrXdV3q+n41TzO4r9rO1UiFI6uVGOLlzZ5jXHGcpsxI4zx1bUuEm9idHG3M/KNPPvwQ6c7R6aNHr8w2Pb28GqbhwdnZCls3vxpHmYfVutusu2G/e/Tq6xdXVx89fpzW6+eX1x9//NGXv/713TgSUd/1eZq1CAByVai4lZJFhAjdLM+ziIQYUkohBpOiZlCV606lFHclpNDELIWc10cbEZnnyd33+/3V1dXZ2enduw/qeqg8YyauW0sTU3bbknLUxnmV6ZPvf9i8//lqLEHg2qdNC7ibZtXZxcxiWnKTSlWKBI4pMZMUmUsexyEyiUrXr5iTiK42G1ErYuAkMptKCPHWs+tl+WLmak5U257azNS0gMpGQPRAjGhIi4bLAIi5RgahuyPwUhjZ4veDwEwYY0BAd6t+yosDudMXpDMKB8oPEFWKR233wMEPoWs1frS6ciFCtStjYjefylBkjHnK0zxc7stugqN0ebfLXz5NmxT+1QfNVe49jRH3iCHw5dWLx599etz2MbsHELNYrd2CKZJX5WWd6B96z9vjuf7L3AjxpfwZEPFWlfDSlsDBqopbcl61UYsxc9euyjiaw6/8yq9+74ff/1d/9Af9utmPe+RlFBdDM08ZXEDt+OioSc319mo/7NE1IH7p7S89vP/gD7/zLwLFbt1PJbftSsHbVY8V8WAg5t0wkDkDhIBzmcUUiLPS0Z1XvvS1n70cNa6OnMNcZhdrUiqlXL24GLa7tuvu3XtQby1IwchuPpdS0Yzdfr+9uVmvVtc3N6bChPOcA2GMaZz2tCIWDwSI2iVuU6CmPT4+6rqeAheTGFqptHHAojXOsd5wrc7gdUIBAEheURx8+apFxcsyo94TIuLFgkhj5Ns7dSvZc3MDQPZFwYpupq5aZL68vBTRO3fu/df/zXdqaR8CuzMi1pMSzDm1u92u3tB5ntd9Y2bDMABAitHckL7oToRLDBM6gCEyO6BbyTM5Bgrsi+suOAARooGDGRAzmN4OU26/qMuwEiI4hMARDdm4oWAmOkoQSpHMSbIWnfquT5uwG/ZYNLUpOiqSAqIjOQGFMksCBEUyL8PkxCm1q1Ur07xgCwhENOecuKlWTPM01XS8krMhVAYiOItbu+oATdEByMC7JnGm1Wp98urDr/yP/214cAafPnnvt/7ps+9+/+Pf/+2jbOt2tdsP3MapZABQBwRMzE1MTFREmM3cQ4gIHkJwKdWbdFFlAhIRmrkJqq9SyJFgrvaaC6aNhqGOpgxymRtfdV232w2ictuMMbMfxHc1tKti1iEswZ/19wERFmM1cPdxnMZhWK/Xm341z5O6REyIaOCMRIDZCxEykYpEYmZWFVWZ8kwhlCIhBDPpuvTdP/4OW/f82ZOnn35ydDJ957/90+fPyuvv/EII/Ozi8r/4L3/jZ/+3/6u7XfizH/z4ww8/6voekYiilFrEYCmSUkIKVBsr0BCDFgP3EBKSztMYUzLVPA1MUM0Hx3nOeQSw+qyZaYyx9rdSNM/iDkyc8zyMQ9OkUrIW2WzWTUzmBO6lFEbMOeecx3Hq+i4wl1JOTk7W63U9map/TNd18zxXtA6Ruq5LKQ3TTTV8WPID3MEQ6+6OWJVcpRRm5hDhYH4BVWqMJKpORotPystghFosFcmBYwzRTdWrt2G1rbMKYLgwM6pSKaWxBmILAH3XRw4/+vH7pCUxv37v/qN7907W7aqlVtnVzRSsEApyMZjFQAyHOY/TIJIZcb3uU0wmfnR83PUJwctcSJ2QEXAs426/3+12HA5ib6L9NE1zkbUnjo7SxIaJnj9/XnLu1msKbWq7ME67m20oGgMFosvdVc7zw7t3NqkteZJSjo42hfyjF8/Xm/XJyZ1nF09W5+dptc4X16vYENPosur786b/6PMXP7APc9GbaXz1/oOzrnnvRz/6lWEXkVzUs0Qg4lS3u8pMqCMqRMZDEnCtFXLOeKj18ODKU1tBd+eDJOW2WV1v1iGEYdi/ePH87t17FctT9xhCKeoGDGCuMTATTtub4NBS3Hi6d+eNZtTiZDqPWru/dNsJE2INTapdymL15LbqmmG/3w1jTI0Dc2qabjWNo7nFGBFUijMCh8AhIaGI1gxWMSV+CQgToiGp2EGX7IgQFgQaDMAAXuaALnsTIZmbKxEyVxGpGhw+zTo5W9gY4GbktYSvwp86y8earl7vQSDyitYi4eLJbTEGkVKKhRBCCOC+3+/34zZ2LNOUx7K/2KaMDcTdKj4+J94cv929zd97AZ9vU+aAtvL06dX2yYef9JxQoUKx7hadFNHYK8KKBw2R+5KKDIexVt2I6++rqblC7YJqLKi7e6Uv1DcMcx7znPs2zbmkQOAEzrHhNYVf+/Vf//EPvz9Pk2MgRrFi7sTcNk3O4maBIxH2fY/k5tpyc/Xi4vL5i+fPn6/W69Vmc3J8kotQ5BDj8qCrhgZKmQJSAFTVYRqLGThmo6/8xM9m7sfJ2r4RLabWd52U/Oknn8774fzsfNX3WaSiiBSCuasbMRJSaprt9ZWorNab/XbHYRHLEXIMYZzG4+NNSnGz6lqmJtJ61ff90b1792MKVsnLuERlVaCj+m/WErs6Hd5uarWMqA9SFcAvo8c//6qPWUqpbsrMDR4IQLfIpEO9X7dIEFQq2263u7i8bLv+wcOHu3EcpuGk39yWsLXJjhxq5pGbiWrf9W6acyk5mxs61bKev1D13l4auCM6EoGDlYLglbJSZ0s1xb7iWQ5OyO56u+MviCMgIqiogQCiVtSIyCpxDzEgdW3vWQgpMJv6tN1xDEddrw6exRy9iKullIDYzAk5EGbNKBaQ29gggORCgIEZGdS1vplclhylQTV1fZ3vtinV+E0i8ixZNbtyDF0TyUHz3DebxuXq8vO/+3/890eTJz94j55errNtzo44BM3CIWz3Q2wic0AEJnJAJhQpg2lqg7ubm5SSmOEQkqOm4ooQEN3VHBG0JAMQFVMgIqYFpXarKgYzK6Lu3jTNzfVWRCs5ZjmHoHpCmLvHmMy0Rj++rJvrfD8wIlSbnDrWSSnVkNoa8OnmVaMLSK7mgODORFPOTtT3K3MYp8Hc9+POXLuuff9HP8zztL/aQR5//7d/i9O827FIn5iOjk73w93PP9++98HnX/+Jt/70e9/fbbdn5/eYIxMjKgIg0DQXt2JaW1k2RYKAwdxcRFVLTKmIpBBMUEpxs9QkVZ3y1KSGmSp20zRNfVQki5RCxCFFmQQJuq4bx4EAEDBPU1Xmmpk77Pf7GONms8l5LiI1S7KSPwDg+Pj4to4ppVTJFQHW2I2ua6ZttgrcmKHV/Rdr8l0pMs8TM8eQTK0q3fDgPOmmZsoxYg2FV69TrVruqiohMzMsbvKVv/XFrsnMUFXdtEiRqACgrtNkjz+5DOQMcH2xe/z55cOHZ4/uHN09XW+a1ouaF7N5nuVqN15e7a5uto7Udh0CzGVGgNV61cTU993rr79yfNwBgIiGavACaKrX19fzNFZINTUNUZinvBvKpk8cG5VcRImp7VsMRDFMObdNo/txHAdqGyJqQ3ApBDjPk5uuV1237mbiP/3xe+FoxeqX24EwnLZrcSL0onp+ema5UIZXHr36/vPHDx+++uitt8zh8sln/+Dv/r1f+9f/9TffeZcoWBEyIAypSeJSxAjJVBHQbAm1IGJzrRT7dd/7ISwcmeFgPnlAzV2kMHPTNKLZ1KtTc4XPKxnYS3GvPwGY2dUgS9+kbJqlYEp/+t0fvPbgbmzCg6++czVnIUxti8A55xDCLTnBzDiE6mNZaTZmBRHW67UDMnPXredc1CDPxRhdwdzQAQ0CopurLCbgC2enHg0IqqgqX2BemJkGFQUzeMm9qHBRCIFqdYOEjFwFvjVVEZnqHoS4JA9UXnBFsyvVoy7TWmOaGnEA04oY3dKwa70fArvXn2YA1R8WASAFtpI3q9XJpn/88TMd5pb7UCRF/hdPPvysT7/2q291//zT5oefvoLxKSAjDk9ehBhyRAeIVdDvFrLUKCJgVteaKVjfix44X4eW0ZBqipsz01I1qxUrRMQU6nNX79PN9fU0jnC8cndVaZsWxZwdEL/xjW9+709++R/9g79/du/+MGci3O62uNqYedf1SGGectM2agXc1qt1HvL26nq32yHg0dHmjTffePjooZqouLlXBLN+vGLZ3GJKZS5vvPnWpEoczx+8vjm5vxNPq2MpLpLbNhWZn37+pBQ5Ozvv+14q3ZjIDDgwmMFBD2xm77//PiLuttvddhtCVFWd8/nZWZfSPA3MyIjQpjaFNjXHx8cPHr52cnrGqalmKmwyzoWZ1LKquDl5VafUU19xCQNGrgyYWjWrMYIvHq/MtaRQperLsgjjKymt2mpRKYqVKQ9ewxSxrjST6nWpmnfbXZ7ns7Ozrus++/Tz1HSmdYhfmBkxgHnTNyIyTdchxjZyiMFERUrNQjJVBGBeuHiIUFNSCElMKDIBBiR2lGlGwKZpyijI5DXZyoqJtk1T4StYps4Lx87MkAMTqso85Xaz2k/jNM+x6SgEn0usCqDiEUMgn3RqmtYNpnmqlr5EqA6gvlmtSs6A2KRYRBAgEHuRFEKTUs30CCGKlCY1WmkffT9M+2HY1bKAifb7fdu2IYQiAuAcagKFrkOnhnO2PnJEyPPuiKnN5fof/y64nrGtu7g57oyAFZqUzIRkYfSMMnaYpAgZXA/D8eaobpRqVk1cYoyEWKpzKwW1Bdib9ntOYc3x8TylFPb7XEqJyzIgN12o8gA557r/qkqlhR2eYrod6Khq7dnmear9bSVAiEiMwRF2uz24900bOKB5SGyKJaujV7MGBxctCzIBMEk2qNOqQoHArJQiUkQKgbVt+N/8r//df/Qb3/nt3/rPHr3ardaP/t4//D3xdZHnKTSr7v7VhXz0wZO337r//vs/MocYG0TMWZgiOozj3Pdr1SpvR8lKBKZGAR28vk2vqTqBy+g1MmwYxpvttmk7cKuJZnV3KnN2h1xykbnv1u6epRCzghe1VdcBgOgS3l5jLzmGpmuHYWDm082GmWsMWe3+iaiGacQYU0pmambMoZLNQ4gAEGPSuj86uAMzIYOoEmHXdTlnFQ8x5LyYT7q7yIwEIcQK3d0Wqe7gvjSouUykVEELEwVErolR1dIAF5yPQnCFQUYA2JfpXnt62q/Jdb+bLm+G7fT0poxzmQGA1hTVnUhULi+uXlxeP7u43O7G/Ti1fdd0KwQoJa9W6+OTzfXl5W57ef/e6Sv37ydmVSUOMYSj4yMiHPZ709pFY0rdOMlqc6RVVAykNh+dHd/sdu2qb9ebxx99cndzcjNOBXxWeeOVN1qEPE37cX817jfHx9ur6xSipwTIO5GLZ0/RA2S8fn5DgW7mYbu9Cal9cHw27YcPH38yRZzm6frq6smTp9QEAfivf//333z7bSJAQs++2K2ZfEFk4pWSaBWKQ+i67upmKzl3qQkHPjIRxki1ia1PVghxGWIujY24w9HxMTLWtUkURMQBIFAGU/Cgnm/2q3Y1stx59bWLBw8z48O7D/Ll/hrH1cndWZzBOKUQ4220LSFaHUURzarIgRBAyjxPRe3evROrBD1VJK6GNQBgbmhambu3ySr1KFl2noPxCoDVnqqCGqE691JgWObxdDsLq6wXBK8Jl46OQOpGBhVMW9rWqttCAkQ7xEjVn17ZatXLFABEllg7ILg1fVFVcHcwVWC2EEJK7Xq1vhno4vqZIKiYT3rx+bOTeym2yEzQpudEH99t2p95cMLafvDsbmleI3vx9GmJRIHJzMELYTJISARsyHaYzh0A2KUFqbe5FkNEtJywiwc0UUDCUEmISAeRSKDdfr8fhuoGUDngXdc/ef7k7OGd/bz7m3/zv3fx+PMfvvfeerWahgGBStFxmFfrSG7qTsUajsTOzMN+h4br9doB3n73nV/6pV92IkVYYkXBCNEI0E1FzI05TWX8sx/+8Pzho/MHd84ePvLQmqEWJcQYE4F/+tlnecqnpyeJQw0/qlggMQdiBaiOpTfT+PzZ0xhDjPHjTz7LJR+YZ4SIec5921opx+s2Q+kDb1arV1977d0v/2R/dBxSa+ZqAu5FpE2HJ6Ta5wDl/DIHHpEryo1Yg+IXGnSFeVQEQ1iQJ4qLmuDwqnItqqMleAn5vETLzd3U1cb9eHN15e6vv/HGk6fPLi4uAyc4DM4qyoqI19fXOefKr3R3yYUqHlDKLdctcPBlqWCNggIEJgIEVQNizaK5EEA9nBSBzDCEQKy+QGLglUjy0o7LzMyNkELgELmoxbYZno/OuN5s5jyLaslDhNBy675IbBCxSZXOYgicQohtrB6ebdumEMs0E1MkVtVcygQYiasUywErmSISFSkxxOwmIm3T1v4el+4FwB3UiShVwCCE1CQAmzQnDm3gFjH2x7OVHIADMmCZ5hSDWJnmmZliCKWUiMzEmCVQCNEFqj9JICJAA0BVMUQ0V3BiAmJ1M1VmCgAtYPQl0aKINSmKCCIFCnV9zPPcdNJ1xCGM211Kze0ItRZD/DIPjhCXmBY8yFtSSiKyH/YhMAKmGA7DWFAp9SfUD6TygDkyApgKM5kXdxEt1WF1Gkc0lHlSKe+88+av/spPf/1rX/prf/X+b/32f/kHf/Dez/3c6+3RPdfxON65eL57//3Hv/tP/5uf/pl7Ly6eIlApBYGYg3kdOoTqpj9Pc2VFILmZV9PA2gDUHIB5mmOKc85d122vLpGIOUieD4xgVJEYY81JJaIQeZqmXHLqmlyWN0hEKgIGRFQ1em3bXl9fE9Hx8bG7b7fb9XrdNM08zzHGq6ur2qnXoiTGuFqtwez6+ibEULO7zLTCm1XyWdufOh+g+k7VRbQyHGAZCrP7VC1XF6O1gxyHiBceIREeDnAKNUXu9mBeNoEQYtM04DiLwAC7eWi7R++89fqzx5/tb3IRuJmHoeSSp1XTrrC/s16r6zyNRcrRpm/aNE7l2fPLLJpi6vq+W6/ELDJG8DLNn3zy6XB99dbrb67XJ3PJnOJqvXnt1df+5Z/+aBomAChzRigpdRybaRwCISFGTinxujsTCHOeTo82w802hnhyfNw1IQbK+5ERz09POcVsktrWisz74e7Z+eSax9w7PbrzMAJ88PkH0IUHb705b4fvvffeJrb9aiN5GLe7eZiOUhPaNmz6v/Nf/OcP3nj1r/+bf3PYTwjYBKwpnQS3zaSiLik0IhJiDCGsN5thu9sPw/n5ORFN0wQAtXiqJ2O97yJa44zUBQBDjKr1UCUidITqdEaE7oaqTUjF4en11Xa6ud/3+f7Zb/72b77K0196+/XUpCTYdP0C7x3OgzoUql/UaDBCCjHmQmred32IwdxzkVJym5I7T8MATm3XQfX8AYgpBgvTPCNiE2MpxQFCjNXC16wczOGdGYNX7+aFniPu6VC9+FK61A8OlwrSDs4ocJhH1P8gIl+8eyuPp4pX64T/dofBRVbO1XXawRd+TsCl8ATwA54p2ITLcbIxG9Hl86tVPk99Ol6v7uRzc7/uwx/ehdd+8vzNNjz44fiWtr/95OnNuulDSICKIJEa8UiEFBXB4OWA2Q7Jz/aFNAY6yLkd7NYLnxYPpeUxrOyWxDwO0+XNNRKKKZvNeWq7dQxxGIZuverb5n/4P/h3/oP/63/05MVTMCgiYCMSDePYdWs3H4b9+flp36bd7tpUYkhE9Pbbb3/jF7756NErGIMDiFa/G62KIpXMjE3biZZxLH/hp3+ejzdPr8ej83vTbP3R0XbKBlPfNB998N6c853zOxUENARA8Oqmioi4pCKo6jyN+/3WpASiJ58/rpC1mTOxme33+z41CWGz6kedN317enp2fufeK6+9ebPPqe2rw6Fp0Zy570opIrmKpyiQqIqUpmmLKlVbBsRbovvtml+KTbcDQ6gg8oEWjbe0ZSJGVDM7cDsOA83DHVXJu+3NNI1N2967d/+f/+G/3E9zpbrXYw8NYohmUocdHAIBFhF3aSLPOaeUUkoiBZcMuNsaDBbkiYgIVY0INeeSpS5oCrwc7aLO1SbCAKskBg5tdAZAdzM1gFCx8av9IMVKKe3xWszVjUNIbSxDFtW+bYZ5qu0yOatqPSiI0EzBvW2bxAxmjAhqxBxSwxYW7eKCAKMdMneGaWTGpkl5rsCG9X3v7kQhcBApaqpFzIw4EVF0IMKCVKohKpCGtmh0M1B2LU0KMo6TY4hpLKVkDSG4ax6nFBMTD3nfHR/N1XIDI0BNmlg+z2WyWSVzCORIYi0SIy3lpntMLeBN5Bg4iBgAhkjzPHVdv16txmE0s3meK4pe1xUi2iGXzQ59z20vi4CzzGbW910Vxy4rDamuigquLEOWep2EgaKCqYmZmheiZs7zMI6ACEhdG3/wZ3/y9+ftX/8rfwHh8z7t9tvP3/36z3371379//m3f8uHpkmNGf7u7/+zX/zWo+ubq6PjY0KWZSpdHDClqCq4cCYB2aUIV/nqMqa3GGMpZc45Ncnc5ly226Fd1UBAYqScc992hx5usZlQLXOeavjuMAxt0zAzE2EIqmU/DE3TINHNdts0Td/3wzCoatu2TdNUAtB+v6/AeX1AYoxLol8utZnZ7/cAbip+EDHAsvCq/SmAYQxJoC6t4AshFMzFzJyJkHBJ4bhlkR6cK82kuocQN02qAEYISgciS4wNEbuimqYmAYAC3NzcfPbpZ59+8MG9B68266P3Pvno4mY77i7P16s37j5M7aprY9c1q1WXS9nubsBs0zXZUZyQeL05fvTKq12bQhlfvHg85cHyfHF50XZrRQCzSPj6a6/eOz//6OJDANisNvupFLXnFxfgevfkiF13FzezluOjDYizYQLcytzE9ODOeSL8/PPP91dXb7z2aqImELkxOF3udsDBVTuOTvFkvWnb9vmzp22/miB//uLZowcPssiLZ9cP7999eLxpiMLRaUDYjvuLYRhBuyZ9/PiT1eqoa1aTK4IFPKiRlgggRcRKfo9NIqImRu87mfPV1VWMsZqP17qnjoZzzqq63FQkc+QY+6YJIRCymjqCgYs7uAcA9Co7gL1ma0OTjrLI3//jP/gv/+iff/Nu96spPbz3SvBWzLBLVTNlh5xRP4j7VIQQmQnQkAOGsFr1ACBF8jSimarUogQQxbzrGgfPs0B9YJlrL0dERUREYBEtAVSqAiJRZT5CNYCrodYIQACLxD0EWqYYVedWE3oRmVgPzuuq6lpdJV/yWx2gmlpVkeSCPtXfdyMIt5XH4RQ8fA8goNrikxYUEAOmJl5d7062u67bxATnm+NtKddmsGk/H6/1l15Lqx1+96J/8sLHKTDoNCNFMBOmGcjAuAY8m9VbW49MZFaRpYKtD9vi8133yoMizoxqfMeSvqdAMRd5/uwZMbmrg6NBzuNmsxk1m7ip/9RP/MwvffuX//5v/FfDfGNmWR2ROKSitp/Gvm3GYXQpbUi/9q/9GnPou/W3v/3t+6+8EpsmS4mpLTqrWYjVBkO7pmtiUHBDPD+7+8abX+KT4zMPgrFJ3bAdmi40Xff886ellPPTs6ZJpZQQwzzNgMSMUgo5oIMVI8BcCrpdXV6q5Ovr7bNnT0MIwDyNo4FVWCUFJFMSuXt69pWvfOXs/G5K/Xpzcj28CKmdZQKwkkfRQojDMNbeHgCYuA6emqbhJZRRKhzyRdJPxWY4kC0EMjRTX8plPyB25r4YDt12frCYNCwUZXObxmGaRnc4PjlKKd3c7FQ1hIRA6MBInLgGU8cYCUlKqbURHV7379+vy6NtGiI4OBAhHJwbkYAPhX7JWYowsZTizoBKjDVBjphMjOqVV60AIBIQAgI6aL32ECkGen5x5eZH602eMjlO02QwsQUMseTMAClEM0N1UEsc6lNaRBiXQB8rkiqFEaGo1oENcQSEytIAcyJkZgKY55lD5+41dzkwzdPsUrFGQMQQg5uDsxeLJhCxoAMZutcA8WBeE7dLYjftusayzi6BCdRynj1Q1zTqFEKkGGbTfKglVQ18IVfVU7jUaB7wwEwImKUJKSxNU1AxcEDAEFIIDVXSPmApJedSz+NxnLzK+vC2VoAqAz/M5fkW5Q0hzGUsOXddV/F2PDhNuUO1qMaD58LiAQag7kgMSA5opsGdiA1gGMYpzyXPqQmXF1ff+5PvfPlLmy+98cY//ofp/vm7YJu2Obl7/uCdt7/1d/7BPzu/e/7GW2/9nf/896YRm6bhQGaVb2fErJbnWWKMSA6IKsXdAHEaSozBXc0txIBMIYSSte37q+utI1eQBhEM3UTqfnqIPTIiLKWIFg6sJtM8HW3W5io5M7EZNE1nZlJKDKlpWhXd7/dN06zXazOrwavu3nVd/XhvW+Lr6+t5nPq+q3Y+xLWWrcrZ24LSEaGOJircnnMupRABq0qN+zAjJnA0xIPvKLqbyEw1WUyt0jKYghvXvjxyqGRTZmqaxg0mzUtjBBBjc3F9HWU+Pj758tvv/PDDD9Fs03bT/vLzJ0/bo01/cpwCpDbEhl88fz7st8+fPZ2zFA13H712vZ/+8T/5/ZM751/7yrtfe/X+a6++plj211eM7ASMjISu3rfdl9586w9+8AEAMDoTZPVpHELAcdyuGdeRUPVB3+92w/PLq9h2q1XHQMPVtSAGxjuPHjy9enHqpeXGxDAEbpp+3VkRm53b7uzs/Nn26vn1xdnRukP+5MlTN79zeufR2aPodu/B2bS7+fyjT0zz6mhzf3X6zZ/88i9842e/+/779x/iql9XT56FcL60jl4bPA5BVZfRsFmMMRBP0zRO0zTPlccYmNebTWoaAKgkCkKKMfmEzNw2DQAsmT+VHAnVEAQzmhOEIuZ20q7nPJkM/9b/6H/6K3/rb33z13511a5EiLrWS5FSbqtevU0OrRps5kgEAFKKU2w7Sm2rUqTMKoWRtRQ1VQdH0JJDk8x8nqaajAsOQDiV+baXNTNHDKHyrK0UEbFgpohUActD/VV9qA6sIARXWPS8iy6mzl7xtkevFcPtVAKWj+SWz3+AjAAOdgvw5/7IQZClqgAYI6WUQgprXAuw5mJ5K5NFTqWU2HZlvwcDCgxNCK/c/9Npar52em91MvzjXZkHDyhkhAbAjmAAIAYYOJAhBmZCrCypwGyq7s5Ls1jDROBwsX7YTOnAol1yxBzczD757DMzYyRzTakxdyTYrI+24/ZotfJc/vpf/RvTPP2j3/rNm7wlwLbvVBfLC3c82hxbHiLSz/7Mz7z62htS9PzevfV6Y2Bd1xlUQydpKOZ5NhMv0dSy6pilZP9P/5P/1+tf/8mf+9f/qnLIagG4jeHp88e73e7BnXvENOdCTI5AKSwzBzMm9toEsImU/X5/c3O1XvXPnj/LuYQQpiJmhiFg5C4kKLkNjKrHm9OvvvMut6vV8SlwwhAxcBlLjAHciVCkzOPcrlrzmoviCFBKEVXmYNW53+0WI4SDMIqI0DxnFdFqtCV2GKUhIpLZol6m2/5yAThu/alctQzDfppHZjg9PYsxvnhxMY5TbHrShVtW17bXQOkDGx4RY4yIvlqvHj16VF11oapB1W6BqGXlU83BAxOdxtlUAlQQkYCMKCC4mxJGA618XAByqBqoAACOTrWrVTOAtm2aOME4EhG4IAIhpRBBAMCZAxkDAIi5OzlUskUg5sRznqsuKcVUrIgUICIT4lDDbqwIhIAGSIvsKRI7BxUxs7aJKlqxkwpvuNQiCtVlNkCkBonMEC1SSJGnIZMpAwbzYs5NyNNUIDAzOuQps1rf96MVn1XBzSyXHBejJLslvB/wYKjGGGZWKzVmRi8JKTiio4GruakTxxAjYlWkg0iJIdRQw4qfq9k8z03TMIdDeY23+GItag+4AopIznm1WuWc0SBxqD8B0BjRAVSXKDda6G/o7qKmBupVeUiqHjgO+1nFAkcE+JVf/KW2/caf/Ks//tqb79w/fpu/2jXnx2++/uWby9/+9JMn3Spuzu40LX34/WcnxzE2gOgxhVrNm0mV5Ve5hZkict81Ous4DaYhNBGRioiaYghFZjYfxjGkFFOTcy5SmphCSAA+l5JiEMml5LZt1aRIWXdtKblpYgjs1cItvtS7VIXXfr8fxn3TpKOjowr81CHper2u3Knb6me324lIjNEBQginJyfvf/Jx3/XiX+gbK+KOB43Ckq3GFX+tZToihMAONRIBD1IwN3Pi6gxHeRnUAnOqZ0c16QXA6j+paojYNI2bztViEZgQYkib1fp4s141DYs2bWzW61deffjglYdt2+JURAo49E24f/fMStkP5dHrX3rlzXff++jz62GCGL/zL/5gevrg7bdfuf/wznq9JkRxJY5ABK6qcnp6crw5gmfX87gPMbHW8QaUccpY/tIv/Nxf/MVvtcRH69N/8Pf+4f/3t3/HuvZmuztfbxzx6urqlUcPN/fvueruepvN0dSANJfTVRdOupthyl6GPIlol5p1v7m+ukoKLacnT5+iySD7y6efJ/NXHj5Qt2dXF//a628weBPCxdOnHbdnx2eghhxumT0V6FBd4voCL71B5fj3fS8i8zyXUlR1nudpnuPLV9BDXlgI4WBv5ohYe0I6RGoGpCxlngs5oDgBd0en3/r1X4cmXo0jSGCKN8NE6Fi0hrDWK6w2cgRQF8kC3CIC8artGcnNCaoZv1NIqmQiyCHEWPOtsaJHqmoaMFQ+XAUvASDnbAeC8jLmrnQ2rYFkRNWE1xfjWqhgCTIuORlohjVVvlQ0x6S4KXO1QTJkAkJ7uQdB/XQX7MeWsRoeTLHq16ZSZ3L1e8EcgAiohcQQiBvKGGb1WYrroFkNWbDN/KA5fbQ6Pz4++d4ZfPeb5/u//NXnpwEDGZMwunsNtUhKodYspvXAq3DC7Ua8UJGgdo239sR4W6jRwbhmOf8cKMbHjx/nkplJRAzUXOZpdADEME2CEI43x3/jr/+Nr//0TxcRimG32zsABV6t16o67HcnJ6fHJ6f/8o/+5Ycfvn9yekKE0zRO4zTnTERQc3k4mqmIIgATN12HTOM4PXv27MXV5SyCgXfDwADjsJvn4eTo2N1DYA5c8xTVTEwreGXurm5FTMRUPvjg/aOjIwR4/uwZuDFRyfn05OT0+DSF2PfryBgDPXr48K033nzjzTdXq/XJ2Z0sjiEihXmeCdGkENE8zbnkk+MTVV18BRCrn6+7a/WUv/0AzURESqlfI1IlA+33ezf4YpEEAGZ+my2KB6DCAZbDT7SUokWmaaqKntPTk1Lk6dOnlVhgbqt+1bYtEc9zNvOqU1fVGi5NiGYeQzg+OjLzGKOWJQy7Rgmb3kpOltprGsdhvzc1rIEyXA2s60DQKsG/4j3EhAAAZKqlZDWxKutDUxUCOj0+ZqDri4v9bsDqS+VeSlE1YjbVilQtfYy7lFKKgBuqIyzO7kyoIq4G5uCmUg7NGGI1rnCvP0dVODCFhVnlVsEMr3kCXmlSzLBKY0dXQUuCFKjMc55nQjABJ84Nz2CI2LadqOynPTeh7zsH50BuLqqBuG0arV6ugKJWpCBiTKkGhleIwsGrskJVER3MInPEWGF7d5cizAGJ660ERyBGgHmeAWCz2dRFkXMex1G1HFYOHk5cqsgCAgWO7lbJDZXa8rIQN0OAmOJt2b3EoKirm9zyj0MKqSGOpsYU5zkHil2zury4ev+DD85OzrdX09/+j//fiY7zVP70e3/yB9/5gxTWP/jBD1fr8PDVsx+9913AabVu1FUkm4mpEC+PBSKUMhMBsRHV9CDcbFYONue5DorNEdybptnv94AYY5NzdoBAMcWUUgJAQjQVcCcGR5hzrrvBMExt09WJQ7Ujr7+2TYOIz58/v76+TqlZr1equtttS8nMvFqtamhAFQGp6vX1dRVRrlZ9dTN5/fXX29RkyQ52a/G1bK2+IKxmJqKImFKygxT0cA4hYmBi5GBIbrBoPd1BTU3ca9Q8VBpfjLFq4SuR9BazJwpdagGgSY2JdX0XUnj6+eNN137p9Vc7xlUbvvkLP7866ZUdFsKDEfNm1TeJGf3q8iJP0+ZotVqvAPCXf+lXmOn7f/LdixfP3bTq74Exa8aa4glwcnwMAFgngFYYrIy7/dUFlenbP/9zX3p4n6fx6Q9/8O/8tb/21YePpqvrRw8fro+PYt8+eHB/uLpax9bFnm1vnu+218Ow7vrzoxN0/fHHP36yf/7pxefTNH357bdOjtZNSj/zla/24vOzF/N+7ww7nUfTuOn305Ql96vuy19+x9U7jpBlvL7xYaZqdOyLC8yyFQNUNR4HFlVVWdyTzWKMq9VqvV53XVdRVVWdpunq6mq73dU9pCJztYBwd8V6r16GB4dJVhlaCFAwUAhtKyE82+2fXV6zMxfQUQInVyBerCz9C5yHW32SmiFCTA1Xt8Yi7k7gRFaVW7WKJgrMYYlCYqIYMC6qiBACRQZCMc1SRFXV6lDPzJmZQmgQmSi4gWr1S3XVJbzXzMwFERDYDU0RnRGDAZuTOYm6GTqQOZnjIVRj+WS8Jm7VX00JHdyqEo9o8eeoDLlDggghk6KLFTdHQ2eQYKHvQ4bTDFcXFy/KeE2mqkcxSSlduz7qT1b3Tj/mm/mrJ3Yn6TAbcgFwAkQjN3BTr3GJoUqViQMsyTILKvVyLwZEIHQGqHp+Ujcxk7r5IKvDrKZI01QCBhNBAnVTsKIlTyO6jeM+iyhi2/e//pf+8r2Hj262Wwe4ubkeh62VsU3Uten68qJr00999aswzx+//6P9zVWXkrvNcwZwqsYe7kSBgIyw6RODS8mzaGpXJ5t7J8cP99mwiUjl5uaq7Y5qXBIgV8NDhjjuZ3Jyc1dDM83zPO0R4LPPPv70s0/u3rv/4/c/fPbsObqXPJ0frY671DMcdV3Zb1OMP/X1n/upn/v5t77yU+noHLv16uTEvDSR0MWtoMM85RDCdrcj5n69USc1WHoEN3QDV0CnuAQOm3lFOIvZlOciYubVAG0ah1wmJiesBYQz1Tp0IbTWV90HffHgsgA+D8M0jip2fHwaQhL17W5LgdW11i0VP6q6N2YCU0AgJk4cUqpl2eKCisgx3jpiqdtc5lzyocTBcR7FJpDZsgVozcHNowdzcGKOjaghQVFFpmxmwO6kTg7BHAmJHKhOCVWj4dGq/fz546f77RAInE0hBMaAokJEAQMZBYopRkYKxC5qWQlRs5qRQVBjjg3H6ACAFGLDKXFqfJHZYwHPUpCRA5saAk/ziESU0n7O2cAxAAZxcCBT91ICCNLiUgfMhjCWSUAdIasysQuAU0ytEo+7IRJ3fT9OMyCnrgWCu0cnr57fgVIUKRsWg6oqV5HayNemqOalmLlZwQROGlzWQNGQQxgkg9dJngODsTGwZdNs0zQTcWqaIgKEUzWKrUpDXKifdWcEcvEiXg7tJs9zDiEQcxbJUtRNTQ3MCRdTVMca6UYWAkREZCIwDxXpBwSCLPnq5lrRr7c3L15cfO+7P3r++KZfb27mi80pEA7//J/+k+urT2V+9vM/89pX37nz+qOz0IFAMYMiLmrFDEOoskhzmEqeppkoEvA8ZyCOTetERSTnTEyAZm4IPg67dd91MeZpMpHEdCsrMfdxLnNWpgaBxyk3TeeKaDUtHd0BiYjJ0GKKDvjZZ59tt7v1etOkTgWGYZzGjMCBY2WMElHbtiJydXWV88zMBiDmiDwO4+np+aNHr437yYphnUtTjThzdLoFUN3rRJIQSMVFQM1EzETQq1OJR+YYEyG5Qi5lmCck5hg4kKoQITBZdXqM0YDUHIDcoJSsVlwUAAjixX6KbTo77sfti8snH5fpGmX68ltf+uq7Pwlek5oKE8TUhNg4xaZdNSlBmT/+0fd8uPrJ1x/90te/8tU377/15v2z881ws5+mzKENMSF4qlmqCNtpBK5ClaZpmhamODx90Mhr6+bXvvmtd954o+R5vep2F093jz/9mS+/A1JYhcrkZYQy3Tk+udhuw+pofXSu6oFx3YaLy6efXV0aMGanfb7b9ePV5bi7ubp+JjocbdKXXnvwK9/86dfu3Z1v9rlotz6h2F6O5f7r77zx5a+JU990fdPmcb+9eKYl40FESeDkblLMxMGQWVQrp2fOZcEjqpqSqJKBVn2/Xq3atmXmaZzGcRCVWgO5V19lICdXNxE3I0AzLVIQIcbQrpuQEjrkYW5S18YOFMSNGG2eGCBQYAoIjDW4uKZk1XQhx8jRHdAtcJUBojlkcwMy5HGapjyrimnOeTRRRtSc8zRpljqUGPZ7V3dzKaXkoqpEsChq0N0tuKOpo7M7qHqMFGPjXimrRMRE1QUHDwbZCw0KDRwRgBFJtBbylWTkSBXiNzMhInSwulnWyfySsYxEUHVzAFTNT+1WgoXOgcGQXBBNA6V9yd/58cOfPf/8xc3HeT5WvLderdcPwBEV1k2gs83zpqTTJgAYoDEbAZiTmTEu3qjImmdzr4L/eoIufAEiqLaH7mAIXPMwFqMgJER0dajBRRyTu99sd9M0n9+9dzlepi5mKchsUooKEV3vbtpV23Srt9/98jd/4RefPXtOhMGpzCMG3k+ayFZd/+z5sz/8w+/85Fe+3N2/c/n0iYnFfnXnwYOKiwByFRgRsZqFlJqYBgBgdMWTzXmMa50YEJw05xzavswlcZiLSPaYkqkxcpPSNOzBNFC8uLokIpXpow8/ePWVVz784IM/+7Pvm4iVzFba0ILM50fraRrvPrz/i7/4rbfffbeIn969582qPYLUdcN+DOyumQGJYx0Az9OwWh+bYUytITEaIzsU04zOMQYANEJQB/Raj4Q693UzEwBqu0ZLmYbhwMlBJgSnwFxySak9TMEO6EUltZmC2zjsyzQ3Tduv1kCcVS+vrmQB/EIFdExLWOz+DA5C96Ztu77baUasoS4gbk1qwaXq4ThwEa0tupuLlKxzm4gJLLtJRHJGDkQK5oCALKqxYcnCzCYKTBW9q1kE7O6mHEgQRY3MT7oeHErkiUMj0jIqSJY5RARHFcAFvQ6qJTJXl/fAQdXcNUU2CMUzqgKxqok6IlGM6g6ECq6m5pY4RIqqEjgyBQMgjoZ2sx82m6PUruZpzKIcUgNaSnZwDY4hIpAWKUViDIrmahwiqIk6MafUjMOA08QhVtlqyabFNl3/ytnZ+PljdxJgpwCAAIJUHYvRgQy0DsaYqUnJtQjJOnHn1oLPCN26A/dpHDcnR/thUFN2BqRAS4nQdu12vysijriEGVXfID9I4hEdnRnNjIhd/aCJRUASLAREoWoVHQlcAbxmOAMRBghINOcRwVDM3MnB2TkkB9kON2rl6uqqbdu7Z/c+aVfbm4sPH/+oSHjlwT2j9o//6Pd/9df+yttvnX36+ZPz89XVLjkSOBETEIoIm8lCfUDm6AAqBlj3qHoyITM7QlGtZq3zsI/MKQR0C4cwJPBKsqz/UC7KHMAQMHBIw35MnCJGKc6BY1xCKvbzfHlxBUAPHjzsun6axpwFgWJMdWirqqv1CoDGcZznqjVDDoFjBGIM6CLTOB/1a1c3cWAnBgdQMHAgoJf0h5cMLTJzFTVDgADuJgUckZBSohgqJmcuSgZYEVMPkQDA0SqBdUnvBqpauQrYiWYAEDUhPjo6WnVhvy8me/R8787xT37ta5E7NrCSXWcHIQ4cO1I6Pr0LRvM4Qhnl5uLBvXtNv5Zxe36+Ojl+Gyx17QYpEAOCIIGLZfVhmnImn6oAAQAASURBVIY8AwCGpm+xd/qJn3jnr/2FX7t7dO/NN9/pV/3ls88g8puvvnp2fGyuCkbgERwJqmWfxvT85mad2tPX33x+/YxNUttsR+/a7qTpzrt1Q3Rx/QwDrNdrMVkdt6Z7n/GkjT+83heRWXQW22UpIWK7zlrOTs5D2k3DNI8DhWQptU1SKxERQYmQGJExNbU3YCZQmQEX8gcRUQh4YJKpKhNtVit3GKZhGPdd09+CPQAIjq5WzXpNxFUxsjIjQKCoZuTQpUSAAOjgFgjRY6XH+2I9TMSVieO2iI7Aq8k+ujkhmNVYQFJE4NCEpNOEUkIIMQZRgcpUBiBEUXFwIgoUcskVd4wMuZRl3AXupgoebskW9Uj64uiq2uXUyh2XdIjKHhaEmoEhiHgYUPhhQFAJ3Qa3qquFTLPAngDOSw12OwuT5bk4DD5UhYlUlXM5adOE+k57/PYH2+np8/7nHt28spqTWYuyvUltx30CmY85KRIjlwiMXBSUfK0I4hKIItU+El8yteuWR9Wq7nC4Lpd6kPNXlA8jMzNL5RUyV3PjcRxV9PTk9Gq6LkUjx1LydsoCttls3P36+rpbdTGmf/Pf+DeePvn8n/zO7xyt123bEngVk8y5iKiUxwgmjq+8/nq36p1DzgKAzJXBwMSEFBE5hNQfnYwvrhAKULjz4AGFFAMyh3Hai0owxGoEUrT6gucyMQMTxkACmMuECE0KH3z4ozbGJsR/8tu/nYe9ZOnbRpldNKbYxPCzP/2tr37tJ9566y1Hutru7ty9l1XbpkfkYtqEmMtUlXRIYRrHnPMKQUQ4RSKoAQJINE5ziCmGRs1qm+russiMqRrFupWiEkI8OT6+vrnZ72+Oj098MXKQAzVAlnHGF8hDKoIIw37IOZtq33Vt28YYtuN4cXHZpLTqV6Be8lzxG1wEWWKmleQmRaZpMlVnrH4ntAye4dZRph5FrtXu38hBRedxUCuIHpHhMNJVVzBnwoPaH6o7Lhg4KRjw8jB4ze0L6iGFlvBkfZRSQ8xMXsk4dQhLyKqaODhAkUIVfSB09xAjCUw5ixYDrdntgNCkFA0BwUQYiYnB3UTrESFS3IEDModcpMylb3uR3W5306YUY1ApAZCYVVm1RixUI0CPKSKgqhJgdU08oHG0HJYiTgjEqqVOPawUU7XgyzQDCeppDeBmQIiES52BYZglQZQsDgquc97viw7T9sH53VWbrOimP9rvB1OorodVnV61S9vdbpNSLiUw16kjYo3Cg2oWsujwAdyXiVspJXCoZTYTVS6Dg9ZqQ5f0lQXfJ0R3jDGKV/3Rwgd7/uzZfrfL87w6amOiF5ef//zP//xf/Ct/4+OPnw5zHsXe/fI3r/bTi4sX2+3Nxx99Khm8IWImpkX2spiFoIjEEGKIkjNzqEl8asqB2QGZpdY07g5+enJafbOqGRIgqlTne3R3FWUmANuPY4wBEOY5MxIGSikVnaapuLuIPHnyZL3anJ3eXa1WOcth68YYa0iRhcBmDqDzPKtq3/fLFi2iYlJk1XXu3vcdIpqJgTJEYjI49IwVeD3wQW9B3Ep4CMwhkIqYOSKJCLOHEFQBISSm/bQ3s9g0SFSKEADHVBO+AchcQ8WGlzgcBwBzTYm7PjUNwSox37kX6ehofffOOZhy4CzFTCoxMaRExMzUts08DLvdoGrbYSfIqeGQmnV/1LZHRqG4AXlgtFIDfzwENlEAiJjvnZz9tX/717/21itriNPF2LfBQdOq2z15Ck6l6f/oww+O7t+FJj7+5BNu4puPXt1f3pRSTCQyrThYvx6vdyd3795Ml8PN9l7Xx5aePnu6OT262F2Nz67R7LRr1yetz9M8S2zbh8f3Z1FSu9ntL29uKrDjyN1qE0KDUxG1UkoTGQFqBpyZMQVVdUAkclMGoBjdFsvWSvFh5qo6XMTw7ggYY8ySiajary8kd9MipWkSIg77iQKmmPBQRVRGROWC1fP9gOMfaIHwkvNw2N7Rvc5MpaZwSa5ECDVbZKMOHmIsUg/KoLoYnVTlmqqWIik1MaU5z/Uy6qkhJvVsd0IkDEQMRCFWo/nlog+K5SX0FIGrcw8xiQgCEB1SRXEp6hGJq2QNFkEpgBPVFr+uy+V9E93KzepTAe5YAzFuSXaIWOkMIURytCJofsLpdJDv/96PvvVXv9F9+8uf5uspJQwe0VBNVGXOEMMU4UioFRUCQp5JFD0iLZFlB0ngcsAsZWxNcTuUtH/+VXmJla+EzExk5FbK0dEJB7q+uTw5OdvPw2LTQpinPE3Tqmt91DJnNz89Pvt3/xf/3oN793/7N3/z+uYmhrBqGyDOIqu+R4Ttfri8vn6r6R48epS6nmIjDpHJK4UCMYYoIm277jcnT8wBODbt/VdeNwczSwy7/YAYCLGGTKoWJDRXKRJjnKdxGvervhv3u2ncXTzbBlco+fd+7/cunz6xIpGwiZGbdrvbxdD94i/+4k/8xE/cvXf/6OTs4urm6OhktdmU6+1ms8ql1LHCPEvb9bvdFgHmaSrjHAMj4TAMMW5oudfBQeYixjlQALdK8WfCW2NZREQOJef9OKUYzOyHP/6zRw9feetLX9putzFGQ3RwFU1NZK5ZQvUkM3V1t2ka5zm7+3q9Zo5EYZ53wzBU4lspxc15MfGsOyy7S9PEENNutxfVQFBH3XCgMBCxutaRuTsuyjMEVzEVQDMVNK89DdoiPIdKNlkcbEP10oTaIhgSUIxhGS67vxTyV4ugoqaC6OBI1VmLqJgyMXNQLWYam1jPiYqwAgKiTdMYAhMSEpphnvM8l77vmqYtORNypTQ2TXI1cIwpVIFdDGGei1lc9e319fU8a991MbK5LU9EddGvju7uTYqmbqaENYXbkUnc6uBJSqEQcy7YREAMHGaRp0+f1ki1LKUhUgxWE7YR1Bbv9QXzRQqY0HV3c/Xtv/oX/9L//H/23tMnP/z4kw8/+vj7f/Jnz55ejIMebfpNfzxOo5rVsZcUabuu7/ur62sVqcN7AEgpuEEIARGklrt+CLgFqAwGqcsPqA5YzUTVkWm5p1XoQYv0geMC6ZUideNwM2a+urwYh33ft8ebzfbmomn4K1/7ic3Zva+fPMDYfPL507v3hw8+ef7Jk4tZwtX1/u69U/hCHP3tFxWPCSFUTXuMkQNPY3F35uDmSKSlAMA8TeAemOc5u9kyGHqp0kBErB6GZjbs9yenJ7XpiKlzs7lMIgtz8bPPPlut1nfv342hmefZHWMkQLqlS/KS5BP2ux0AxphUtO97R9wPg7uDQc756Pi4lkTEZDXhjhnDYv99u5HezsLqu67/GWMMjAXA0NUs55k5HI4hFzARDSECoJRSQVlfYsMRD+SRWwYJkgMAoyJhbKhJnNaro2OKXR8iNTE0AfM4wCLUMCCu4G5LbYih67qTO3eKmJiHpk1NgyQIaBgopACqXtRUREkdjJgCGAJAy/kv/so3/sIvfnP74qnN+fnjT46ON3dee9T2jRmcnz/83udP/9mf/Glz7ywCnB6fpbYdx2JIiHDnzumn3/vhq6+9FmKcm+Z6nO+c3X//4mq73929s+mPGkEpgE6Ng+wnEdHtsHv/48fenFTOYpvCOJfYdE3XT9OkgAYhtLX0dUes3V99jrkaIRIiBzOlEMU0MFFYrAL9kJp3ONlr9Ju7eQgBCUMIlaNTkZul91MFABEJyM4L9lGtg+r6JMTDJlmhoC9Ipg7eNHAww7z1LQyRRcqBMeaq1e3Q5nmh6qpqznmhLoRQJQ41qb5KDqvvWj1uACCGSIFhEX1hcDdCXtpSN+L6YFc0yKtuiENQK+aOlRaI1Voe+SUHrTIZoba2BxDl4KVx4BTXEgcRwWmxeFvKdigizKFS0mv56e7qDgGdvElpP81jz6+M8Sf33cf/6AdF7LVvv/XDvM2CR9C2AbNKRgtnK2kYB9kIZ3SNoAHJAdUPAShcu4fbh5CI3QGRFgh5eVYXCikAIJGawcE2WlQZo7mriYhN0+TOIQTNOcZYstajVzjE0AACkoPDul/9e//u//Kv/pW/8v0//Z5KaULMOf/whz/44P0PipV+tWq6Ttyvd/vj2PQtkzkRFdWiUp0xRTR2zfr0zlwcFU7O7x+d3rlRD8iJwyzStJ2LErCZS23BHRG8TcG0ZPDd9ur66uLZs6d3zk5/9N5Hf/jf/vOPP/oAXNHl6OikSWma5pOT42/+wrd+6Zd/5eT0eL3eALdhnNdtK6KOGJv26uamSUk0I2Hf99vtDRGLFjVNKbWpefr8xXq9ik0y18rTFDEb5riOWDMOiQgJAh/QPnUw5IBFxnmay+wAu2E3jkOMXA24zExMoztR8ErrAXIwcFeRaZpzyY6wOToiYgTc7wZVMbVhHFArSosHAxoUkRA4pegOIYQQIrq6a+XVLqC9vxQrLdCmGahZyS4FA9QxcSXPo4MDVwSTEAnJRKuiepmCAS5jiuVxYCJTVS1KsKgqi+Q8x2QQ0ImxCq3FNMZo4EWk4pe0GGv5PE8ptU2TpmlmbhAADRgxpIaATXTUYTHt1XoBWObCKfXdap7FHdq2NYVhv2va5mizUi0iUy3yVUFFTZSQMBKaqy4By5UoIKIic9N0SKReg2+ZiGQWJGo4TtMU2g4qwgNQ222vPmmLy4QtSiAmtYIABJRir/kZI37zl375p7yM5uv10f/+f/d/+I//w799/86r435Kbdv3/ZxzfUrrntik1IRQcramUZF6m0WttjoiaoYpHlJgEWOMZiZaWmiQqLqW11ekqKbgTvUsdQAyM1BSB690+GrI1LYtIY7jcH11ef/unW9/4+ce3F3/5Fe/9Fu/+bvf/ZMfr0+OlejZi6vvfu+98/tf+tI73/iN3/xnRAEIENFytStwjuG2Pa2kbBEJVMPaZlusO6FW4gub2H3V9X6AQkvxECIuKsWFboyIaiqzIELfdxUDa5pkplWRLlKeP3/ede2bb76BSGZI5Kr1BHJ1LyU3TWqapOrDfpRiXd81TTNP83Y7ZM0ipW+bvl8TcGB+/uI5mLotkkxzS0AV+qyQUuVOAAAs6X3V1RPdXOvYhcGz52LuL/0yylwQKMYoUsip7VpAFNHKH61Pk2rVHWhV2gMAoBF7YAyJZbQYoms5Oj0/OVqZFFwkGGrqjA7EMWDARqVU49CIBByJIzJRqDHaNUEbRRWBYmBTA0Am7lICgHfeuPcLP/M1zCOZdyG+88brQLq9foHMMaZ2ffK3/6P/u6TmS+d3h4vrdewR4jiOYuoRnj/9/EtvvZba7uPLF59fXzfdeqP85a98dX/15ONPPjw5O56mScVEPcU2z/ubYf/guH/lzdcvx/De48/Wx0eP7t2PbRdiC0DmSBwNPYbAYERk6KVkMKPa8Ydg7pUFu3AJVOuhfTvYqtUzHzKg/GAdqK6Oi6PBAbNhIl8qJPcQGBFEhKrbslWmZTiUv0vOEnrdCxdZbv1pfAjJ+XNVMizK9MV6qhR3Tykx4H6/Z+aK95iaujWpoRnHeTZVPiwGN6dI1d1jIZYYIhC4q1pQMeCqPDSiAHaos24rNQdbkJ4KRnj95wDfVksPdDeteCdUz0A0u/05f05YjoiB4sKpQHN3dCSo0csIDq6m7syh7dqS54JmZBSAihbNm7Z5VfGz3/mT9OLqnV//iYsNZFASLaXMltt1FwObqQXODKwaHakOjQGBFyWRV+kMLdz16v1qCLGOKw7Xu/xfWFwElg2UKJeM7vM8d23T9/1nF09T1666dhrG/X6Ypql2iqXkBw8flpJTSjc31+Mw/vRP/8w3v/HNnLOplHm+ub6+vLx88eTxZt0fH5+sj0/79cYcqsCVqj0T1LYJiNgdT++9Ik5e7I0vvUNNm2eN3ICpOcbUSKmTl4VLP89zmSd33W+vp3FwyU+fPmaiH/3gB9/5zncef/Y5Uzg+O26bbj+OCHD/4Z1vfOMb3/6lXz4/OwdGbppptqbru9VaRJumzUUJKcQw53m93lTWLyJKzlXxigCVQc8cdBbCxdq8SJnn3MeAAA5uqniYf5mZqTFRXPU5T0zwsz/7s4hwcfni7p179TNPMeVcUlQ+hFcTeY2tzjnP86ymsW37vjNTIrrZbs2dAGmxcUZENF0wgOrqNs95zoUoVFdfRJjm2c2BXnYkt4/5sgDcAFwlF/VpHEA1xSBa3IHJkaEiPYfHo6726gQNBLUdrhJfqvHDTESONfCcqGZbA1fdFoCBVZWNipp7NYOGw3zH3RANkKs9zaK2chSTnHOMMYRYeW2IiyUyIBMSWB2Tq6sRgZScEtc0EsIIrkUyhaZruyLqIlak4uE1qCSE4GJLlEGNUwB0hxgCIBAzEqKDmiaE9Wp1fX2lrGZYBIRRmFA1cABicEcCwmpypGaoYqlpn7+43j55/kLn0eyVV5oYW1WXUhB5nmfihgMjoBOaWZ7mkOJqvb6+vp7nuQL4ZhZj5THUu+C3HeRL9YqqmgGwm2Ogiqsh1SxzD4ym5q6VMVjjqQwsVVoDQJ5mJr66ukgpbnfbf/Q7v/no/p3PPvnovR98+BNf/+lnLz797MnnP3r/syfPtt/YvPZH/+JHP/7BJ+3ReszbQNhA6+7qSs61526aJsaopq6L+Y1IRmJ1R9EDvsLjOFZsVXJ2d5FCxEwRANTVHGqoy0KVA6npivv9nhgNHEH7ttvutlcXF+5+//4DVV2t2v1+FBE3nPNYq/YQQoyp2gqs180hKnUUUTMlhvVqFZhVhQJ+9vjT93784yra4GoVaiZa6bcLZ8cdELSCpLV7rI8WOYAREYEBEobICCRSOFTKnXCINfc4xRRDMFiiaW7L2YMb73K4AAAFJATXwhTb9SpQ2M3T8XrVhDjthz5FBCxq5mBFkKBrWorBAejAcTckYMIQHZCYyUEWytLCAFGzeSplHPu2AYDXXjm/c7IuN7tVaoP55t7mYnc5DXJ8dIabzW/83u/+zne+c/8rb19tr49WrWbr27aAk5emC544efEJN7F56pSzWGNzHqcyN4RouGn7eX9jc4nOTbcCDs/2O4D29PysuXj+5Mnj85PT45MjcdkPO5mlNESJiQNSqVOenIubEXguRcFik+qe3KhO8xSQoRJzD+c6IlKNDb49BREjB5nHujHWoL0aNfNFbK+aCNaaoYriK5yxTDy/QAKrX9z+uvCDDxvu4tYYYvVGub3dtzTQ20lRnSHknE2tqqQNcRxHRIoxMdPowFW07+oOOZcanVyvISziGnj5QsTbuuwwk3JbRBt+e4lmIkaAlSSBB8DMD7OPOlA7eEIsIzC65Va7e+VMu4FVviEgIXHlIgVCRClCgEw0SUkccJ4NzNyTx3exf/yHHz7fbR/99W9fHXcjZ+sCR+YuchsMslGayJtirQcGAgVgvKUlwUuh++LcWFVglVW7AFiHi6/mMzUYAQGYiACkSNM0qoJAMSUx2Q8DqG82m/08juN4tFo1MZVxSk2SIqcnZ3Oenj+/OD09FckpxJDa8zvxwcOH9uV3U+QiQhQpxTzLLGXKuUGsEB8RqVqKsaicnN9zigXg4WtvKrC6JsJxGFQMiYkWeL8atuach2ncD9t5HKZx2F1ffPTBB5cXz7fb7cWLKzV49MqrZ2fnZrbabL78la8+evXV46PTu/fuqWoRwdBanmLTFfWiFkKc5nm1WSMCIa03R1dXFxyiqE6TVHu6Ohs2MwCrNTaAk4OryTQpdjVDUcGq3zce8FWREhiJeLXalDKbaUrp8ePHjx69wsxFqoRbKzxe979SskqZp0m1gEPfdSHEYc7ufnNzPQ2TiDRN4whMTIRuVh14+r4vRUQyANTpSAiss1RbtmWFH0g8tvhQIzGbSclz1SdrKZUTVLfgA9Ongm6L5uXQPenyBDgg1YoRTQ0AEgcTd1M1dVUm0CyECOQEROYUAnPI08iBQ4pVZ4EIZofL86UW4cBgLqKEmNJyemlR5BpKbwAQYwQDKYqEUBXmgUPk2vpDZSQu2QUoavM0MWEdxfrielrd8aUKQ/bDrCKGlbcI1cSjqKBB00RETHFxujd0MSsmZlw/L/U6CFxQZDUFCmJZHZ69uBpnbzfn+93uBz/69JNPnm6OT0PTzsPoiPtB27aNKQKRVqIAU9u2l5eX8zxXyz4RwcV8b9ltqw/nrcL2sF979V4jrAqIZWnhy6uS2oQYIAcG8UrPdPOYYgg87PaXl5fnm26aZjX7/PPnwyxHJ8cFwPnekxfXjumjjz75/g9+LEItUIxI6KSExK63pAeqY0oiChzwC0B07c6RlqNiHMf1alWXExEpYAhBRImqiUwFWqASV0MMWZeJgAMgk6M/ffbs6ubqaLVarzaXl5d37ty5vr5yBxHLcw6RQ+CmaasEep6nUkSKzfOcUmrbdhn0I4RItSo6Pz/bX27nPKWYFr+QgGCmVXZEC7Xg0APD7SdfD5JanUPti9xCYBWvDFU7cMNVLKYUYxQRIAqBlz+3kALRHe0Le3u1L0DmvuvQp1yk7/s2ta7GkMqc0TRSANVS1KAE4gN7j6ECOxQMUMU5RauhJMtJJiJC7io6z7mUed13APDu26+Dl7ZpikxHx0d5HK+vLk9OTnSchlz+H3/v7/Rnp6u+H66vX1zs+rDaTfNu3N27f95HtgKNIwby1L352qufPb88OeqfP318dfn8q2+/td4cXb54cd6v4ybuhwGYYttibE1JS7lzftau28uL5xIY3LQUdJd5Ao9EFB1UBZzcrLpI1I0iNc2Us5QC7vM8h6ZLTWN1HzKzQzmy1CVENaVWXQmRQyql1JsYAgG4iJhpSrWbrQOvL4Aef66ZxNsF74sJzsLcov9OYnEtPcyUCCqqBAd6SslllhEAqltV/Wk551wKM8eU9sPgplTKPBsRVejOtE51a3Ef68YeHJQoAiyQPgcSWbifvvCdaWEVAlSq0dJQwi044Qd0BJm5lu0hUPVZaZrGl1zZUFGYSjwUFXBj5vppMrMfSrx66gM6UgAknUsX2LJww8mRZ0sRssndpo+fTJ//J79795d/avzWa+/pLkAQF183GvIsuQRsQ0TlyktygICLK93hNK17syi4LfyAqiM2JAT0JfsdAAEYa2UE5KAIKQbVUqQgESGFppmHoaEUQmKmkou2asWwJzBoYgIAPvi5xdhwIFBlrHg75GLEEZgAgJhXKe2nnHOuH0jf95U4UtyOTu9Q6rmR83sPsyCFSITjsO/6FRghQtumaRyBQw3sffTwIRNeXjwH00+8FNNJ8vHJyTd+/hdeefSKmx2dnB6fnB4dH8XUTDm7IzftPIwQ06xuwBzjPM8ptcSMRfqu3+63bdtWyW31BTHVpm3VXUVXq5WUEpCAyF2bGFVtKBkEpgn7vkfEGKKBT1JweTYgNclc0VxFq5Nyis2L8eLp06f37t3HLDXnchHyuJuam5ec1QQJSyl9v3Ko2U+83W4vLy9iWpWcU2xf9h+mTRNTagBApKQUHCvWqrXBrXW/qlLAwxTsZW/gbgiuJqPIOA2xSRicZAl8B3UHD7zoF+rsGcxVLMYQcKH1Lex+5jp4EVEITEjjNMFx3dchS27bfp5m4uhgxXLyRkpBdyaMMbpDlcVVeyszI4C5FOYqea0Sm3rG1F+oFAmEUy7AHDAQsZo2oWHAyMSBp3nmQ2yWqABy27booKpN5Pr31GLLCaZ5iiGu16vr3S6rJGYkzKWIqbojx+r4GGJQXwKh3A08ZNWmthlmxLFWh8xs6CIC7EB0fTP96Eef3XB477PP3eGjT5633QaIYhOQcRzymGdgCoc0N1BnwHW/mqapGvxUxhct5p/LrlpmSSlVW/AmJi2iRVLTO1R2pRNRNdyyahS/WEgrclhmokSmioTuUKQ0McaUXlxcrLq7H330wX57uZ+GV994LTbdsLu4vLqapqnvN+vje3/8pz9wkKZNyIHdwV0PrqS17E4puVeyueWsATDGWD1GYop5kpTaYRwRGYADJzVRLTW7vq6iIgWZY+BDRZVLKTUy9vr6GsFdy812N4z7o82GQ9iN+7unZ3VXN3ViiimkFPu+Zw7DMNRMDDeIMa3X6+qfVKUV0zRsd2NK6fj4GJFWq3VKDUFApllmIiJmMWEnd3c19wNJDhdRbeSgquaOAUyNDhaQTuSgIXKloVTSCVNgjrWlALMQ2B1E5BYAOHjCLy9TQCZCyqUExZKlb3tRy7kkbiJFMJ1FmphSwCmXaZxijMQIDhxiJYoGDgIMyObI1RNKRU0RKc9TFTqkJh4frQDg9PQ4pnT14jJfDUzxYnfVbzYJmcR/77/9F//ivQ/e/sq7DViIqTlf58k7Cq+99s6njz+8mbf3T09knMdh99Gzy2vA49OzBgxUj0/vhH49infdUXJrkJtVKwQfffJZd+fMZr16/H53eiRgYDbP8+npMYHWbr4OvACgbdosM4aQp+zuOUuXegA+hINh13b7/QBfqAxqLY4HtdDS9nMNJDAGrtUDHxKIq6EOM4/jWDVZJcvBdPFWUEVfqH1veZZLzBEucuCXEqVbgQUi5JJTihxYRWusaUicJ6hBvMyUq7WmOwBM0zQMQ91+FbxJyQ4uqV3fz/NsInpgs7h5pZs5EYVQicn17nulMLsDoKkpczWt0gNEtBgG3LZKsEjXvNq91vdzazV2ixKBg4IZzADoYKqiKiKlIkO3pSKA1+zEYkpNQNOAGNVb5wiqDk2IBHYfQr+HT3/nj4MOr//C69/1vSeEABOWNYeVoYPOROQe3NJBfR+JBRZuIxICMZrjgZSKS31XhwpWu8bbCyMi9+q+BLfQUc65iUzIogqlmIFY3u/3IA4npzFFBxBTZo4x4fKpMqITswNSQmQwcQcCBwocYmoXv/88TdOCkagywenp3dO7969npdQCBVfP86wuKa7MrWlSba2YqB5XKQZTvXPn3qpr79y98+477yJB27Rt7Imiu8UmDdOsqsXRKSDxLGpIyCQGwAGQOMSmacy971buHpCMwd1LLsOwn6YpNs005VW/MrPLm+vNqguE6gIlb3dXTLBO/awFjGqkYvWaSCmZKjOLlPo2YwqVYBE4GlqMcZ5LKRJjlOWgNwBXrTBEqfSCaix0mFij4zLGZiYK0QzmOSMCE8bIiLjbbev2GonUtZRMYKWUm5sbRPSDRLLWMfCFFzGryTQO47B79OrD90OY5psmRnQPFJzcHXURJkRTcVenag4K5lptRQGgyhaAKDCbVJMFJCIM7EUQMVBAR6ghzIAhxjlPMfaVL5RLUZEQanRzhVSrtLw6LWU1DyHxS5x5aS2cMKVmnKZ+1acUTe1me5OaGEIcpznGiASlZACkEKYpu/s0TceboynPhEiARZYsLzXL09i11DQNFFTTYlqkWLX8MgXzUhQdUkjqrg5SyT+VZ05czeXB0dwOnG4VV4pxnPWHP/p4aNc3owJg0YjcKEpqQ1aJXaNFp2mqoUX1nteU8mma5jxvcFM3pSpguZVWwOI1v+AQgUORklrHgw/+cpeJAcBlkQ0iVpG1FpHKTCmlAFIKLRKb2fe+/71f+tbPv/naK598+KPT85NvfeNXd8N079U7n3x+sd+Pr73x6PisW63FBnOXJvTzsLeiyDTnua7b20taoClwczcRA2cmVYsxFpX9fr9arYhwnmdfZLZq5oAUOBAjvnRnqTRhrleLiBzjME37cWialolVZL1aZ1Eo0jRNTMHdu65T1d1uX12AiajWT0xLuwwApeT9fp9SODraMAcpYqoxxL7v5ikTY3BG5rqVutxGR/55NvQyFHM/RFMtGJgZIzJTkVIhUnenKtepc4kqSFM90InA3PkA59+eRO4AZqWYZNOci+g4TjfXN668XjXIINMcEMCQQzTNpVQnbmhSg0QEwREIKYZQEEG8ZpYhOCNJzQJ3arp45/yMmgEAUghF1Q3mqSCnzdlZCzhfbNum+81/+s/2CCHASUoff3rVnd19cPccFT7+8AMK/vDhwzLNN5pvchnQBoPTgJDnlhnb5vnVdh7294+PHz/7/GtvvMHETPTaq2/+4OOPySGmEFNq25RivNrvb26uTY0M3BQUVYQciWC9Xs3jlKcZEOc8b+KxgotZDGm/Hzar9Wa9GoYRiVJKTdPUtODaMS6xiVxTRzg1zW0kEVHtSMXdmReolYhExdQC/znR3+0PgS+UDbVIsIOr0G3Rc8s2qd8QauxJ9ZWqnHdHBBSxzbonpjwLIvarrv6EpmlKKVqUiEKMOc91dYkIL7bv6uJEhIyVzWTEC9xU9Q2V8VNnVQct2BJR9rIIAPhziaFQWcN0+LOAWK1WbkdOdEjdQUQgAndUBTjkS9zWjPVzDEhkAExGMM0zORxh2jDEhot5AEfzSeQ4dLSV937jj3x7deeXvtSsj65PNh/7Y8NmrTg6SOOICG7xAFRVOqqoBCYi1EXTRoB14zlAtYBIwAErh/ywp5AsTsd4GI5QdeMlCjVrrKpvRATF68igaVs01SpHAfZKZ0UCWARzROwkRMFxOUAAoGmaCrEsf3vgYrai7sErr/ucZ/FWEQkNxNG7kLIqxaCmRM7EuRQOTIFKKRx4P02l6Nmde0Q4jhOEZjsNRJSEZilN0wGT7PeJwjTPzEwhTjl3qa/2ZRxCmaYYWbW4KSBsb272u+vr6yt33w+TmsaUduOgpTRx45LHm4uLp0+C+9Onn5+sj9/+6lcHLeOoXbcy8ICx3u6KbTZNm3Oe89w2DQIDqDutVsfVK484IPJhIr0gT+aKuBAFiCg1CakuRZ+nGRxDCIFIioZQQ8S871fTtCQ7HjAdd9Aqzh+HgZjEFGhJLfWF/UZE4GoqpWi+2d+cde0rp3crHjCD1ziUKppBU7A6PTeoCWhQPVqgrvO6lVs12BStx4EDiEmRzKaChAFlIUkLETDxZCIqKSWvoXLVJNMcHQ/KAyAGoujuRZQORMKKAFMVqzhwJDKccwZwMBCRrmuLlCI5tqs6pQOkGnRgZm3bziWHyEVk1bRFdcGUmBhxuxtCSrZ0C2TmyIgVbQpNYOqoB3gmro5mbkVFEEJkVjdVJzBXrIseAMCr7Y1BmAuePXq0Bv7ss8/MoxoywX4emyYRxcDR1XLOtcuqjVZKiUOYpznnzMwcwu2J+4XOalGOAAAzTfPUdKXOxvXwDf4FCjwiuteKx1Mby5zBoW3aopZzAYDN8clnnz+NXfftb/7s5dfeev+9P6OWj9vz7W7/q7/6l1N3dHp6+umTyw8//qPX33oXQPPkpUBfQzbkVq7Pi0zXFlqkWaVbgqqKWopN9dG+PUUWnqVaXQwLfHLYu5g551yyro/a2+Z7nMa2a5l4nvP52Xk1W27aJtDyWdXsi4ocd11XO4raYIzjWA+qGOPJybGZTNMkom7WtV3lgzsa4mLlVicmbi/5OV9sJG6PQKik7xCW5kYVwNs25f2Mqal2fBhi9e1fyBR12PqFkUrdSSuvs/5FTEExqFlV/jrAbrcvcy53UDWWcafjXktJbXN8dl5EMXBgLmWeYUbCkA6ZDugBQVxABbUQmMEhstWhSfH0/CiuOgA46vr9dnd6dueVs0fIdKW76+eXj+4++t1/+gff/+ST9jiiWVR77cFrxUxdLZcmYLNqwSCb0clJu4FVu756cWEKw7zL0wju2zwVmQGUwZ7vtiertRh8+vizjto756fDzbUyjzkX0avt9cnZade2XiQ6eQymktV4wgQtIvZ9P05jXfmLESCGPM/TNPVtF2IAwAr7VTparSRuM+Frnx9jSH3runSG1VU5xsBMIlqKNE0iJg9fFH0frBmqcQZ8ETF5WRgdlskCAtHB741q/JGTqVf3EkBUN3dMMZUsgPVB8DlnMU0xNU1zfX1NSO6+G4fK+611dkoEwGZWSbIAECrmAQA1byFGYq71jVmNBkQG8MN6q28GzQms0n3owJWu1VDNu/BKXKoTwcM+8pJUtDDKvdYHClC9Pfn2qaj7DiF2hqVkU4ghOgtl7zgmUPPSciDwUqQP8cvp+MM/+FiebH/xf/Lfhzemj3/v+4AOiNEAnQqCLWw5BUQkR1suFbn+2xDdCdxc3byO9wzQAAzMFWup4u5qXOMNrAJyepuQrHmqdSAzF4RhGCPyzc3NMI0PHz3s+zYXWtYF3KYiAQKaISOb1x3QFpTYvYmxqpzAQQ1MFcFM4Z0vf6VMwzDPd2JiNwzGkRkpEDiCqgTiylkiIjdUg4jBCENq5mIVPBB0CqltW1WlkAzQigZOHAKr1oBoU6XIeTbguNDkkUsuRYTcr68uL68ux2GsHB0KIcaoJSM4oedxd/H0yaM7Z0GFxt17P/rB8WZ18sY7c9acC5kiohPBIry0pmnMXEqZ57lNiTmZSteuiNANFaocBg8PCSB6ICyqornuoTEmW2z1MedSgYZDfLyFEOgLASwHolJ9RLFO4nIptZzq+lZNDuk2bodsMhXJOU/T/Mq779JUqmXKKiao2daVhAGg7pZLxQihutEAWDWBBlL1mr/hyCJKL88DBATg2gwxMi3kQTUHjTHO88zErt6kJqVUihygfqhjeFUTKyLq6hTrGnZ2D8yL27JqwNR26/3NbhomYmibVtWGaWZiMCiidohJQwYppXI/K/hUHBQQ/EA1YSQGxFuxJIYYqh4wIiPiPM/WBGJypxCY1AHREBAJCdG5Wt8RIQAxYgBEG6epTD7Nc0GkYZhEdBhGJG4SZxlczVzbtkPAcRhKKS6KHMo01xZ2znPdxN2ViFNKlUJnCkTIgXQ21YIIxDVqMce2JSQRcHdmEnUECrxswVAZQqSm0jStFp2nElOrWtq2n1er508/b/tVu1rtP5ti1zZ9UzJxaC4un7dt+/DRo2/98q/e7PZ/9+/91r2Hr41ZEreAlufs4EwsIqpax3Z4EGjUbcQR1BQA5nkexuEWUD/skxXtMJGyKFSImWnhhB18H8xAxLKMdXas5pujYwoBF8aChZjMfXuzLTmvVqumXWomKUsDUEpuu1TlNiKy229zntUsEqfU1NB4AFBRAFQ1tyyHCSz8d163xwEsAxRTkbZt33333T/+k39FjNNul/p+LjmEFEJAJkR2B1FZJDaLlUnFkQnN/dBFL38FsRvmLGYG7m3fb1K8eHHxvT/703vnr54fb9gkcHjx4vJmO56cnd17dI8QBNQBpjxHgki0kHijuWaXTFocDKjORsjdDDBGXHECgA4xOY3jQOwOljXfuffKkxfD/+U//c9uLBydn6+7FhGoW19tL56+/8OvvfbGG++8eX11ub3effj4ybhKR3cfnp3dn0YH8WZ1dHe14jZ1+xszPTk+Gm6u//iHP3710SuRwvV2f3x84gZT0bTu99sBHIZcQtMbEjghBUoJAZidQ5inAQyJaHuzrSUshcQs1TTr+uqaTjDGJCJt25ZS6hy5Sr3qza3aKzMjZiZeglEJ6+2rB7tqVhVVTiFSXCz9Fmatg5mbKXEkZlUVqeFuEW+/7SC9OpTdLzsQZvLDTAkRF8ux4hWpEinuTkwqOuUZe6wdkYiISEypjUlFAG6XR5VnyTL4AgCkCmnj7fDrcD7bF9jZRAfLirrsYMk/u9WkVECzkogXHPK27rsV2R0gLziIMLSaOHCg6r50WwkqghG0WVksNnGOcpl8S8ziKAhZPSGFaK5giuP8ekr0Z8+u/j+/9/Uvf/mfh07U1BUdSJ3AEQ2/YPGDSIHZ3LjWeAvfY+F4w0EC5u6lFIS6l3DttKtnmoGXMtck6qXfd49EABhTAnfNs6vt97vpMqcU7z28F2pSwctXFc0t24TWDtq9Vt9e/doAQgiqxoRjyYSgWV9/863PHn88lUIcyETdQmIGBA5i6m7Ewc2q26SapSYh8TzllBJTcM8YOKtgYCfMWTiwgRt4ahpwjyESoakwE6Cbe4qxTj/Nfc5zKVnynPOYp5mIVKSo9E1rDhxCLvMw7IPNLnPPNA7D+aa3B3evnz7ZvPZWCEEkoyIxpRAQMcY4z9M4Dl3Xh7je3txMY27btn5GMSQHV1/Attvdf2Gt1iyhKozkIFqLGlJVRgZzcUGgnHPTNAi+3d6kFBHtFputlQcRtm3rbszMzl88ZW7bVzcn5nGa7t67t9qs8/ZpbBKESBykZF4aHWCMIYKoEdUiWwFQpQBgjfswq7ai1VLXVUSM1HSpDBDUhStVDRiBgJAppBimcarvixBVD7zCZWbNvthbMyIpGTItHFIGM+RDmHEphWOMKYICgoUQ5nl2s9g0WvNeHBycmOZ5CiGIymrViwg4zLkw15ENuoObBWZRAwZRDUocA4OZwzRmFKiid6gxQ1Xf6WpWtxG41cSauakqgikQhoDAQG46jeP15RWAbrdbMjfD4/Xx9faaOFQzp7Ztm6axImZWSqkeXdWkpA7+Q4gHdKBSxwRh2QTrc1cLphQj8uGZdMADMLsg8CECmwHW6DRTrSY6IURRq84wu2EECsendykQB/z008/69nS7224261deee3evXsAE1J2F0KrbewBSH7Jh6hPvakuPtRLBJ2HEMb9BIhN0yKim5upgUEN+0GsWCNRNYIyd5jnCQCatq1cGXcPIYzz7GYnJyfMLCJVNZNiGqep+gadnpxwiAfq/hKPSExNmyoAsNvtKs2cEKd57jfHNYsNAJrUXMoV1BMRvboU/v8VQLcH2+EcqQ90pajrj9/7cR1VhBjnaeQQDg8gYDVYMQSsPAQ8hBjV7uQwbYFlK0YAMx2mSbRviJqUYtcS4832RuWzgPce3DlrY9+tN03bUYpIISReoRfJpcylZEcOWEMLMkhBETRVrAZeiwjNXQCtAtOcS2wMEokJAZ6sjra7/O//n/7D7376NN495wgxRgT8+PHT9599cn73REDUNHBQN4H4dF8e58/X8RqzSgyK+0SwDraOPOcyb28Qw/mDRzfFYtBmswpNKJo5ppvdlNq+lDIWxRCQYrESEIKjoTcxpRRVCzEHDgDQNM3hcGHznGKYh3nY7Y5OTuv8tI6SVXUcRxGpQCAAMFHXdRUy/2Ipu8AlDohQrRHrS1T+f6z9SbBmWX4fhv2Hc86995vee/leZlZWVVd3V88AGugGSAAUQIJkcAApkgtaohfeyd544Y3X3sja2AqFF5LtsMKWrfAUDimCsiFSFkFSEkUBIAmySaCB7q4eaq7K6Y3fcIdz/oMX536vEqSWftFRkfk68+V733fvPf//b0QEd5jdpVgn1NmyV1OmrObv/9ErpF519yzY/Hyo691Rk1ThbTVbLBa55P7QU+B20e4P+ynnlFLXdWbW9z3MLYelErU1eY6ZpUiViMzPIFUDhJRijS6sQy5RNbdrvfqP9LmbWZEyzy4Ax2EcENDcaqJg/QwzhxCZA4XAIYQQsObDupqLuSB5ZefNFFzvxw4zG01HdovMIR5c3vPD7dsPXr61ft4aBo5IqlISQxuZKcQQQ3gcF+c/vgx/7/ceDK5gxaqI0IIDmYupzoySuVdVk85KoHqz1ogirxwk3puA1Eq1dvuRpwSAqs4rJUupy7cSQtO0iEQAKcWU0lSmrHmchheXL7bb3XF1nt9pM6sxs3X+rSBbfafrxD1HusW2NiG0XSci2+1+tT7pNhviOE05pbjv90xVAoAGToRcQ40RASAXQQoGGFIbm07NgSiEWIuQKq7Dc64DEHkuE6KDSc59YEJ3NwmMw9Dnaby9ud7d3e1ub1+8eP78+YvDbgdqpjYM4+b0zAArFHFzc+Umw3776ccfomoZ+tNVF1wOd3dEgAzqLqJ5mioyySmI2dD3YLBeb4j4sO9VjTlwrNr5ugRUvpkIyXxGws2dmGJMOMdZzdqpail0MWY+OXnQNE34LGBt/qj04ized+8PvZndn6A4lzVW0AiJyBH6YXj06JGYjSKLzRoIVUV9BpNKERFFJzvaO+u4P98eBIQUAs+bgBsizZVYAFrrzYkRyRHKJDlnx1pUDgiUYqPqISQDHHIWc3dU9VIEAM1rfISrmfqMe1UMrFiVb5oBFJGrm2utMSEc+mnMUmKMDuSOREHV7u9fd2Di3W4vakBMTOYuNbjJQBVEZMr1rKKiZmpTzmY1mqXaHahKAxFoxitMrSZomR+Xh5oOYLUhAABUZOj3h/0dBby8frnd3ZorurUppZTM554dYmqapu1anL2Epj53pKhojHOcWO3yRER3ZApEWPWOqsLMqsVMzJUZ73MZfA7sqFWJpAYIZGqmUvuB1LQK+xbr9XK5nMZJ3YjD40dvjllOHqwfvXbxta++DajgNI75w48+MNAQ2U2IkYiaJtV/qzrV66ViZiIK7sQVHFU1dfAiJYXEFEznxbJewDWykrCSCKp+n1+HFZJzR6Io4tvdQVWqwiOXcjgMRBxTo2bjOHLg1WqlZuM45SnXmKUYQ4yRiYdh3O/73W5nZl3XlZIB4MlrT84vznOepmls2ibGYOZm9SI0VZspq6pypTmYo54p7pUlQObIxKZWSt5td2ZAzADEqWm6LqamhrSpWlUFHJkLnN2X7llqGoaZm7rWpk93N7Wc81QmJMCAwzSK2mazfnB+Jlpubm6cIKW2agSzFDWnwCGE2DQco6MXkVzGPPYiE7iom4uYa8XkHB1m8kQB4MfvvHN9+YIJx6kH95dPX/wH/9v/8O/91u/4cnPIdrY5N4NDPyRsFnHxhTc/Pxz6F8+eM8V+zIPaFGIPdDX02zxdj/2Hd7cfXL4wVZB8mkJHnPv8+ptfpGYxAcbVcv3g5Ha/M8Bdf5iyAHERWyxWHCJxQGIkVgMxKyLMTEyAUPH+UrKIENWHHoYQhnG8vb2tTqt60McY1+t1DVCoxOh2txvHyWsh8fGDmZhDSrHi+CmlijLSrGw7RhsfP6YpT+Okx2zk+zm7HDtW63t6nz9Uv85R/PlKesXMpkHOGQxiiGYmUqPbYZomM0spMXPJZZwmDlyfGwDzhFeFubmUgB4QAkJgjke/ItxnzxzzkedQeSTCuSOi0tUATkfAhKrKoaJH7sAcaySAai0grcg3I4G7IDAhqhertZMhIDFRIHRCJGYiyzkDtznS5PtyQu9f8NnXv0zvXrV/+LJFQRAtE4NDcHP0bJ3h692y9dQWC8Cxlo44AEMR9Wxt17qZugChuiOTAyCQU7WakrhULEhV60/qtV3ZwE2q69nJARhDohiHbIgxhqZtWzDPMpF5QBSA1C5sf7jb70R1qdrvD6vFInUtIxuAqVNoppJDTCISj2hwff+qyqx+EDEFBKTlcoli0353mPD84RvurFD0UFgxdt1YBCKbaOJgDuKWAucsTM4EeZoCBzB119TE6jENIUguKcTIrKUQ1oB/YiIzRQzgtr27nKZpv73c7/dapmEY7u5ub29ucin73R4RxnF8+vTFV77802enj6wWGoIruUppAYNMWjiTNpG7FOXqxYOLi33sTE3MccoEpmAcYhMb6adetynFRddkxlxGBQoQHLHOrAQaI4sKUCBiE9Fa1gm2WFSDbu3Ms37Y51KiOHIMzESec0aHpmkrLXsvukREJlb1YRyub68nnRIxVBIKCRwDR3MTyZvV6uMf/GgaD8vlejdM1HbQdFOZuq4TUHFySIbs7lnF3YtYiIEwmCFTUHOVGghNTsZIuWRARkIMKOSiaIieCyEgcW0/d0Qzm4YCqTNHUXPkwzhKKatFB4y1iM2k1DBJMVd1c4gxmjoe2zE18NxiEQOjD9PEAO6KzEisqjQPw8CILm4E7lzVhfX54ArOQEhFCoKGwEBUphEZHR2Zh2HquoVNDmyewojWFBF0M2COYECYXIU5mDryMfB9fqlDClTcp5KzihqD5tW63d7tf/f3frfoqBoSt5Kntolu7upSO/IQgJhTMhFQCGBVfaKm7uSGgMRzw1cJzO6CiKriblXHFEMYx2mzbgBQVUIIOZecpxSbEGs5LiEgUChaGJmISjF3MHA0ayLud9t//I9+59f/wq+dbE7KJMvF2WrpkiUE/urXvuZkV1cvL69ul4v12I+BkoMrzGGQ98A+c5jJLHAggEBmzhQDzvrNFBO6UWUVEJkYwNVVDQznghZTJXQOTExTGYkCIIlM/XgYx/Hs/IyZh6FPTWqbyIzjOKTIy2XngHnKzNh2gYkJGYjcfBzHYRwQPTDXGgBwOj9/zDEcDvtxFMIUmSOl1erE4CNDBwJzYGaGWqtWlVU2FxoTMDHWA4EwcqAQCWQa+hCSEwGG4kAheGqKu5WCYIGZHIDYAVWACSJFM6vvo4K7u7oh1bxCKJpztu224FtLgXyz3XLqYrfqCjxYLwPR7c3NYZhwnaY8xBTdWawEJmAyw9S0ooLMZmpiBFYcTAsSoAMoVmjVEc0VzAHgdppW/ZCubyLQB59c/p/+b3/zH/zz7zcXT/YOHOKUyxhkswgLiu0Wk3iheL27vS357OLhyssXm2SGNmZTux37yfTzZxcbWvbF+kFPVqshwtX15YPHD/uXN0sMN3d96NZ9P1KMIQTPed0056dn5lZEV6uVEaJjpCDiThSR3SwQM1Aec2iRUuq6buqHmKJk2e12RfTi4oKID4e9mbdtU+EiM2NCcJymgRmJm/vx5RUSA+roSTUZCKHKDOq8Uvf5e1znfh5SqV7sWVsMR3t8VR3V3sbKulaHWvX9YY1QRUNErQZcciLM4+iqzpQVUGduXYqGENuQtIpuDMdxRERxK65gFgADUe2zpLobUy2FvIepnetP6O5utaKvkuLgTkco2+boHPDAwbCGbcw9MhWYcEOrQWzIIlJVobVkLKQwW0/dCaqKyNg9ijiiEjJgWLfXK/rRKX3tZz9Haul7+8clrcUP46QBW4zqhRhh6FPEDccVNZGaAi5o4hJSovkn8GN1Htbfojk61wyj+tah2T229SqK6wYq6kRE0Y36frjdHjikFBKY7w47EF21baBAlBQ5Nc3dsDeR/WE/TadujlqT38DMMZKU+g+jHa2AFZ3G45NRVaui09zbbrFarshNXTYnF4f9PibaX9+tFmtX1wBINWAwyGc9TRJCQDAACwFVBdGZKIuAAxNVobtkMZ2RDzcrpQzDOPT9VMYyHQDcbA57mKZhu72b8jRNU0yhlPLy8jLG2LVLADQFNAwx9uMtwCYiRXPXAom0aEDwaegi7R2JGhQFmUwLMEZITWg5+SH3u92h5cVi2VEIY5FxmgInBDDJz19+/Pi1R6v1WTFCNHDGmrsFEmJAIKhp5YjmJlJEjAOb+2G7Y6YUIjnWHJ6aGhhCSik2TWtSmGh/OBQpMaKjMwRAMnApAuAInnN/OOwenJ4Shj4fTk/O0unG0RGMyZ1qQioHNUAlPAqcHUoutZe8eo3MzREMHQHQzRzrla/V415bWplBJTDXXk5VAEQ1VyAFl8p5g4No7a8DVHOqeRbEaiJus79mJvDmWxiklDllNyACNKlVkb7vKTA4qBgAas1EQ04pqWlw8jl12zkxVAYcQKUAAhNlUVGvWpNIjYLclSmE1HFiJpFiHlQ8EtaWnTpSqEMldBTNHNBhKtkIY9NM/SQ5X3766XvPPv3Rj98RmwBgu71dny0Ra35mxUu8LrgxNYCEjD6ZE5h4Ecm5MNXpCgKzitQAX0QPIZRSkJCYU2jGaTR1QLc5BB8BkGMIIUx5qgiVASCFKo8mDqTuXmeXsF4vLy7O8zjGGJrFwg20CNK4zxkAmP3jTz7dbg8xrswhUcpSqqiPAxOSed194bh5zgJsBxBzBp+m0nVdahLMODHUuHMAxABgBFovVQADQ2MkJ1fTIqI1urqUrm1ijBxCinG57CLHPI5dl0w1l8wcU0pNSszOCFlsPAxmxAxNSpV2Q8ZVsyHiaVIdCwC2yxWIuJibt13LkSkFFQB1pmBZOQZEA3DDuU4EmRk51FfSAOFIzTIQkyKpKISESNWWRRGDI2N1QlD1yYLXzCA1VTgGw7ubGhI51DZKwd3dqBBvdze7w361Pms4nW3OztcrM5BizLzZnJYyFclaippwoJAiIla2cRgnImR3q/CSGSNVCwLRLHV195IFAH7q574duSHkxvH6+vaD51fSrCYPuQzLJu52267R3bjf7spr5w9BfThMFLvn1y/b9enn3nxiY2k4qvrl7S1Hhjydn1642F4xH6aUVqnpnl6/LMPu9eWDcigHk2JK7tlkAb7qusWiffLoHOZ5GrTSyVWvQxRTg6JNSm4G5tMwRPDYdN2iG/ohxdi23ZTLy5eXtVkvxjBNk7sHngXoZhaYY4gIVPsZfW7MsMoXiwoicqg6NhAVgKpNPMqHq6T9FfmXqlZXF/1LmjBVOrp678F4AJjlNADmBnTPdoKZBQq1WKxiB33ft127Wq3GQ19yPhQhJgckZDDBQIGDERr43GeGR899TSB8hdiaVRJH2Ar8WJZ0lD/XP0VHRZ7X3wDXAFwCmPuZ68yopp/90irODHQ0v1Va6F4RHkMMTly8zQZ7aTC8POxvaPvwa90vbr4Kf/BcXuzWzWLUjMAFfPLs7qHYOYaPxqmP5AmdSKtmW1RFQggY5r3Z75lMJKuPn+Pn58yKVzNgZubKzUwrUZ3zbrerIRy5n8ZxWrWtmZuW2HWBsVt0w6GZxG9utmengzmWLCmBE5orKoKbg1bX9f2VUUnTqtINIYzjWM2ftzc3gKBlNBMAB8RxHFQ1hHA4DItlo6p1blNRDlwJIyKqeUJQHUnE98C7yhGKBOcQEHDsh7vtXb0EEZGIV8tNKdnMCAsxS/GuW0kxFQeAScprj5989Svf+P1/8Yer5fL11x9/+ulLsbFJbdM0g+swlAxFG8KipWRRMJEQA1HgEHBy8SI5O8SGE8eQvAHww6Gf8tQsI3NQlWlUAgfXTz/5RE1++mce5sHmZDLwo9YSichBKqXVdi0AtE3jSE2TRDIz1wYrYlDVnIu7NU1drw3NmLu720OZlJZJLbs7qDKSowMYB9rt79brxRuvPakh+l3XrU9PP3DLJROiIZoUgmphmDMVoLJKzHOaFDozZxFmMneO0Yo5uJkFDJOpmeci5uhokksIsYash6NRAgAAPUZ2gVoEW58ytdm+ktQ+B11V+JB4TgvMcxBXlRmS1yCZal9AxqLGHJxm/1GVCpqVnKdSSte1MUYpJVdJI6KKljx1TUSmSbUUReJhmnjGZEINTC8cDQBnXBfRyRCQCZhQP9su3F1MMQZlHrIyx7vry++//97LcRjvrjabDVFUhd0wGWIX121M7phLrgKX+ngNyPnei2u1FAzNiiATIBKZuZjcX/xFlQMRMQKN07hYLKsUtEauu6kIumLd8RGg7ioACOhEpOAqxRMvFotpmvq+X69XVgoRA3laLPphf7e/Q6T33/9wHPOmZaIEVtdldayPv/pI0VKsvmigjsSVgUQiFTXTtl3U8O7qzgMAqRLlgOwVeJ9jzHA24gIRlzLudocqA+LAgXi9WrVtY64lZ0AcxzGG0DYpcENEIkWKIbspIGJKCckZODURwEvO4zC6Q0pd4BiYI7hoVismvljGk5MNhFDE3TBSKFMRcCckJEYDBCAHBAOc6hrIUIoNw+BmSMHNmJDIyKeGmBzJkWIED2YORADOWLMra7SQwzyDoiMQOM4uaXCgEMLdbjfkLOP0wx/+8NFrb37j7a8eDv0t4oMH52fr04RJ91PbpvWqK1rUXVWnYeLIeZzaRZeaCO5F6mb+Ge8DUDHjmj2DlXnpUhOpYWAQubq5ut7eCDViAgSEyIguuaHmyePHbbO6urvtVieb1UoG9V158eLp9e3u9PRMzNebk5Pl5uXLp1u3l4e7p3cvk8Hp2bkCXO53il2RqzhYUVs0qSE+adsmcsmTEZ2uN4S+WLYI5qbMXPKkbohRRMg8pYREk2QX6Q99R7xarPJYai1nDXfOOdcm41qkWO8sVR3HcbPZpCaJzFIQM6v22xBnbOaen6r1av6KZhmqaOTosrzvGkOkP3LK1mkmhM9yc47i5XsKDADmPvd6F5gBgPj9F0RQm4YRHeJiEYhHGTCmmJLP8h0EASWRUuoANE9nr2jT0F3doFog66vzqv60ftzLn2cbSG1CQFYRQEwxzqLpKvKtM/P8qEJ3AgwAhmhwdELO1ryZVgN1ExELVm0yy9g9WJ7sl4aLeN0P74By++biD1+0H12dYzONZSiagzcBE+AXHz76/rOn++RCFkBRsT/0ABhDCCEwkqj5KxMbIrkZwr0Y+l6oA5/91DiHrpt7HYGblNytmtvHMo3DuFkuUogpNdy0w3aXUrtcbUx9HMYXL148PD/fbDbMSBTA3FUJsPY31UuqTrj2WeCQp5RmMBAxi4UQwepuRGdnp+M4MZFonusL3Wryh5olblStCm9Vcwih+kFiDO6zwmkcx3pdisihP5ScayrPcrmcqdlc0A2cADBwnWKxbbqcMngAsNOT85PTzTRO3/397zz79KOf+7mfaptwt1MgnIqsNqfXH753mtZexETR/e7u9vmzZ2dvf3VQIyCMHAGLqkhBh0SUYiJC0Lg/bPtxv1yvmqYFcCk5RV4t2suXz82r/oPV5kYZprnKl4hcBBECx+pYqndpNREQIx2lwSEQc0opDeMoUsgRId5e76ZRIkUTNTdEcFT3WrObSxnOzs7adnG3HwmZQ2pXSwgsKhGDk5k6E3slnaoS06EimjU1q2KqgPPSU6dqRAbAGKKVSQwModb4EpOqoAWqEVkAfgRi66wTm1QD/+9niPswe6ixxZVUrRz13NGn4zSZO3NNDILjt0RZhB2YqF7jOAdne/W4VqES1rRSrHoj55CQWUwVXN0YKOfcNg0gFBF2n4zVgqqHOP+wxxtIAQLS8SqvM4WZqcWQ8mGX2vXv/pN/VBL3oOuWD/s7Xm0aZihKkdQ0htQ0TYihhhHXqe4+TgkASi4WzVBzATYLzIFqgWvNJtAa1QGAKTVHlL6uj9WpSaUoQkVIiSk41sHI6iFbc2KKuIN3y+Xv/rPv/JW//BdSalLDQODkqtqP436/f/zkjY8/+rio1FKxCvAAgs2ZUFVBQFCdMurugI5zrRagiqQ4d/pWe1cIoYIPR2R+ziuCOcG7cmsYQjgcpO/7lJr1er052TRtO47jNI2EmGJsmqZpGiZC8FJKIO4WrYNKEWKIKcbQiMqUx77vpzyJSOCmaRoK1MWWAfO4B51CBKQSI4qUvh+QEwE7qKljjEAkcwapmXh1ARJR0WKirnWpJAcAEYyQIgeHjhEQ1AUUHVmNQgzuimhVpgkABIjM5oaAAO5zSlA9lSjEtO+HfsxdTKlprq+ufn/7e0tO2271Yn15fnZBipf2aVy0m5NNaBgCTTI9u3px8uDkrS9+QUqmlErJAFXrgUjIzIB+3BvB3ap4BQASUKRQiojJze5mkBFDyjrFQClFLHmRmkenm7vBXlw/a5v05I0nME6ff/jo5uZ2lRo7QWqTjL2hT+MoxT549sylKHDWcnXYFdHYtsOUDwSP16cbjJRzZFidbIbSH/rd+ZPHj167KDKl0LoZMzYxwJjJHRBynlAtEQHCOE0hxZzz1A8MtFmvD/sdFElNI+JEwMx5moaj5rX+mDnn1CSOsW6eda8updTsKHerR1W99kzsfniCYwrgPaKjcx2N40yG+v3/W7/CfU/Fq74w/6PJ0fVJeL/mmVm9LGpwUYpxGqfSj6vlqm07R1czDFTPNWBkwEShmAZ3p7mjlPyIciBS9XnUtdXhswHoHgDymQJEhGMrNjqo38+MlbqrOSXVVXYccAAcAai6yKqy0meOUGYNtQMQcNsKMtTTk5ADp0UX2hSNPwnDdB6/sd48OVmXd5+RIrpqdCXXKS8WJzFRJp3yRFmW3lKxtFxUYxSagzsRHndEq0blY5wPzYuEE74yABERVAtJRbaq/JCxJvu5Qtu1Z6enOuX9bp+3+1FltVq6rUsp+/3h5cuXHyyWX/7S2zFw4rlaby4ZOSq/7rlSn0NpZ+4zhMBEYmW9Xrs2t7eXh2FYdN1+369XGykSY6i0ZYw1lIiYg8hUd9k6BtUWcSIuxfEYFVilMMMwTOMYmDcnp9UPMo6jqoqJZ1ODECIFAsBFJ1IsPEgVcem67vr66oP33nv7829++vTZe++/+/obbz6/ejnuD288OHvz0WsvPny/HnKByRNklWdPP3ntK18dpuIcmciJQ4gmVh80huDIi0VLgbbbq9vbm67p1st1IkSwhxfn33vn+3kamRemXsXFs0yq+klmr2JdOCIzFZFxGIkJ3JCxTUlUp2msCv3jVQ2EhDH249T3ExiiOQcEgJzHGtMw9gcp0+rB+TBOKtq1C0BenZyERQeHft5j5m2gfkVAq2dTLWqbN4eZnDJhIlC06uQFbEIy86JKIYJBCk0kLTnXG6YKnFUVzGpOq5sBooi4Sb0m7V6fCS5FcK74RTtiJGoqKkePaDEzLa6sQGgI6qrigblSw14KuFf0KI8ZA3kDDm5SFaykal3XiFtWdQQgNLUaqYyMkosGa0Is5iIGwYpqBIpUc1zQ3M20hmIDzd6z5BRc26a9KdPN1WGCUdtw/ug1uRnGscQ2NCF5KaJ5ckT0EJumaepAU0rhMEdzAYCZFpkAUk27IaI6mzKRGxQtSBSPwWMpNTkXVVd1OJYvqlRpYqgyQNEZrSEHQghExZSIpqmsFov9/vD73/3em5/7PHEEVFAtJbsZIk1j/vTZsxQbpiDqolK0OFgVmxMyEMYQjwaN6oTwOpga2DhNq+USXqlPqiaO+pn65ESYb2evJh2E44kCteRksVi4+6Hvm5TW6/WiberJgYg5F0KIIYWYigqAcQwhRBU/DP3Q91IyEXAK3XLBHGNITeogm4mAq7MaqLiF0HRduz/coeSSy0QQQ7CCBuRugE7oDmruYFI1iMQpxAgORkghGtIcXdMm4FBFVl6PH6wN88A1JRLm8xXdCQDQcJaigFp1LxMh5OIvr2+/8NrqS1/+qhvunt8kpeEw3ry4uWyvNu0yAFITrteL2MZBJkPzgP1wWJ9s1qdrL47oWczql6unHdRz1t0hl5zz7GNqY1uTKMxkuV4o2iQjpoWbDX2/bhIx9X3/4uqqL9PpgyfX189CLmftsnt4wk17Z/Lhy5fiJXV0fb1Dg2Ec16vlMvCwvbvbHRbr1eOTJ3D5ctm0bWqWECOF9abtywRqQPTw8aPlatmPI3VEEALFyKyIHIlSnMZRXR0ZALSImaUm5VwG65sQl+3i0B8qlFWB2spVVZVVyTmXAggUuLpB60BTj/hXtKrHtLzAMUSa3Zfz4FKPszrTHI+eirPOblY79q1WKOR+uDkiMn4PSFiFKo6gBB1z3mtEAgCoSCQGCod+bwar9VJVikrCxhGJsBZ6MDnkHOqmOEN7WMGauk44WJ2NGNBVa3edA1o1eN3LtrUKGOo6d5xy7l8UIvJjK2pNVphdKj7bLJmY5mvcjOC+oBTdSVxA3U0Bxob7JWeXIOFBe7KTcMvy3SfhaV59rXnttXe3p9dU6ODqxdXJ1idr2d60gYPAKnS+CIKYmgQA5sZHrOdIw+HRjn4fb8j3Dr3qTKkDUB3+jLCIRIAY026/iwtOKXGg3f5w9ezlsl1w2xITIsWY1uvN9m47jeMnTz+9eHjetQsONcDOEKzOK/aKNakOvFWRc/9bB6jSfVUgohjC4XAwVUIycjULKZQsDNGOvtB6MVXDIWIVANX3RWmOYjIzm6ZJVTfrdR3GK6pZRNAB1SkwaJ2fLISwWCyIWERCwP1+d319eXl51S26L33pyxcPH6qqOobQSd9f3+y++sYbzemDvgzLRWw4GPty2R76QxkOERMhAlERmS8yBDCoBaZm0DTN5uTk5uZqt92WMW+WXUy4WS9TCLvt9sHFSd9PcHw/mHnWqB2buVRlsViEyNFQ8zRf0GbjNN231Yhkqb2tRFX6XRP85laW+vpoAcBp7G+ub5jx8aNUisbYcmhUbX3+QCM7IQGIClGoz/pjikSth0dEisc8sbox0NFlhIgAxOaJIhhk80POHZOWYirIBACTlMQ1pcSYydzcjDnknM00hNq0ZnPvclUXQnZEcyMDc7vfvSqv4e6mRiFUKRo6gUuIsRQZy1RrSiteYuCmZmiJY62WU/XqGVQzCqxWigoSOmCWQiFkLW1qu7abTCfw3dhn1QaDuyHAbAVlrrnYyGQuYIR1tzDb7w/ZwRF/+Rd+7oNPfviiv7Px9uL0/MXLgyqImJtiwHEczazpPHCsGLt7bf+weVIEmGYnIM5uvBoweExEdHc3Jw4ixiEwx1JyShGBAQyB3OfgwZIF3LDWctXwEGJDd3fmYEepze/9wR/+63/lr1UXPSIw03K1EPCb7d2LF5dNbBGRmQzQi5mrmQWeTSPVtgTukZO5aTEA5xRLHms+UG23rdstHcuW6AjXEdZJew4fMYVqp2KO9XoAgBji6WrZNA0hlpLnPR4xMFXCnUMg9BBJVXfb3W43mFlq02K9qu1n7hWhAuLQT3udptR5CEHM6pa16pZ4xsS0u7vJ0z731+QYAI96UCIGYlq0abVcIeKw7w/9Xc4KaQnYAEVxBgrQLCcgR58NMw6MVBUTAlqVEgCobnCUkeF8KyFQ9ahT7eX98OOnr51/6fTkdJW60m1WYbGk9rDdS86h+Gq9PD07E9RRx0eL9uTiwfpi8/LyxaHfpTa2i9bVYEYNeRbz0VwAJFLyKKpW2fZSQygCebG33nz9jUcXN59ch9SZ2jAMq6YR96FM3SI9Ojk/OTvZX9+Y6XZ/t2jby+vn3cUDBhmGnejZ0PdabNEtTpZr2+8n9XSy5DYedts3NqeRWLKEyGenm1LGw2HPXVCEiydPUttM1a1JiYnzmNE8YnA1QsQQkIkwdF3Xj0MCDMRu2u92m/WmbZpJ5BVMFnLOIczPE2Jq2zbFpLOu0e8DOevdJCIOXh1kiAhe6xfnlPOc86sH3Mym1HaU+WyakZ575svnfLh54nn11+5eof3jwX2Md59RUDJRKRI5MNHd3bWapCbFJqAbIUJkEy/TZLV77h5W+oznuXdoOzgogr1C0s0QEAAcPfCIx6gGQqLA+kposs/QDuJR2AMADurza+f3oFl9ne9fo4rDRAAwFwMMQOhoGIiylDFGSo0BfiCHT5c5fPVMkR4wxJuxM9TA63bxMBBcPm/WazbKokyk/kcs0DaXBH2WDwvVnKw2i5KBZppsjqOw+Ryd6T5rF82i6/I0pMWKmV9evnh0frFer9fLTZ9HzVKDPJaL5Wq5ArO7u5ub27tHF4/qs8QNAcBAGeYO3vt31Gd50r0aasZczTRPExGtVqvnT5+WIqvVSWraYRwtkKiSMsKsF7knTY9Xid1fWwBQilSEiY4ilfrb+hIxUjXhImFNhlXTwGwmZ2cn2912t727urre7u5iYvAoMjihiPXDGLtFJ2U3TJnC8vzi6uOfLLsGidw0pqTDNN7dxtWpEbsHRWQiAnQzMXEwRAYgEUlNe3F+cQVX2+u7Mg2Pzk9Wy+XZg9P9bnd+cRxM8bP6Yq/ZDUBHJluHYVDFLjUOihTAzF2JsGkaERnHEarfm4gQXCWEJiXiQABuKmqac769uX15+XIap9dffz2GZpgOKaS6oi9PTyUGJKaqQ5hvBgPHWaDkQAiEFa2f9Z4VXjz2j87XVgIEcwGAGEKI4FbUmhjNtWjh+mUQQwhMTAHRMeeRGTkEkSJmouCqHOZU3yp/rasFVW+8adM0DliKOACHWOcbd1GTlNjdcylmnlJFcAsdrRxFxIeBmMytRq3NAIOjYaVvrJg2IZq7gpuoE0GTSlG1uaQT5lggc3MDrOk1c0B2ZW4aDm3UIRPiT33pC0muX9cVrE+/8+Pnr7/2+OnTS4pNu4iuUDEPM4PgCJCaFELIZcSCKlpN77M5vIpm3YoWJq5BWdVqUB96RBxDTKkMw9C1XWWa6JUKFHMD9xBqbTvA/BDzFGJRxYCOKOovXl69ePnyjTfe8KokJ0pN2nD48KNPb663AFREiALWOlyHWl5Cr/o962MQKU85hKAiw+FwdnpWH1aEtfdUavxDVVAaISMSgttnAWxw5LWrMqPrutPT0/qVTUyPmYF19hJVd28ajoFFyu3tXc6TKbZtk1KDgQDdrbZgxhgSYshlUhAFqTM3hzak1g0ZQhej6/TG+eLzb32ecOzvDmU/iJa2aR4+PLt4eL5aLVKTwK1rWkZ6+eLFj999/91Pri630+6wJ0xpdRoDOTPFqFamPLUxuTkHqqlIgFi9OgxgBna0E9RPkB/jvx2Qw8vr26u7/em6QwIEzKWsF8uzszMG9JK7RRtjJKCTk5Ozhw+4idnz2dkJ7VHyOIHUZFKYaTWYzfaipppzqaEyc2IZBQo4HQ42TatF+42vvP3+i202y0UhpH7MY9vGZrG9+mS5XNogU5/32zt2Wi6Xq81mHLIbvXb+qEzF3BGcGFNkbjoF63Ucx9xRgDFjjOi6Xp3d3t2ul6sY0s1u20t564tfGEXUEZApMiJr0aZpOHDWUk3pZjUFN8QQyzg13VJMcs67/Xa1OWmo5rVazrlin6pShxgyrSeFoZkds/2OIc4ikkupMsT6WzfPls2MmWtfTT2J6ojzGZBzLCrGIwdy7wGCf+Xj1ZOx7pWqfo8VAYATimo0D8Sqfs+f3N7dNk1cdF3XtjHGAmREzBQr0OD3X8WdjqOAqtWwCoSqbsbjNGNmWE0x9eGA7MwcAtUN717FUgGDuugSkR/3HJ8VxrVZes6t81p0Bd6kpkqoRITRwTBxw2RjntocH2m4FZsW4balRASHErLvHf7+4ZMvPm7/2Orii38wNS+HHGhh0BZrHMzMGSKxqIWQjhPejE5FYnCxOTQF6tZPRLWn2sAoEPgMrB03LANxZw5M4zi8ePFM5KuqBoQxpCY1Mkw2c5xIhK7GTXrw4IGpmOjHH336+htvpK5qLdt6YNd4mPvhrF4cNR+28lN1LslF9odDw8QcHLxt2+fPPjzZnBXRkFKtgiql3Cu8Xx136hes8sl7ID2GEENEh/r1K4ZpogyIFQoKoUmRObhrk6KZrVbd3fZOJN/tbodxbyY5j0M/lJxFLKQUmra/vSNKgL4dxpNHDy+ffjxN0sbGQ1gsw+Xddry7Wa5OJ1GLHEKkunSDVUU4gDsCBhYrFMKDB+cR+cWzp+9ub774pbcePXzEMWieInN1Nta7iIlVrVKuIhICD8NA1AGyg3olA9yYkHlOB855AqQQYi45pCRlcuCTk/U09lU7dNhtP/3ko74fNydnb3/+i+fnj3L11YcwSmEOtFp2p2u93tWtyM3mfUUUQkghzOEliHKMUmVmnSU4Ul1oeTJwiEiIbA7IMUtZNjFCdPNsEogM0GGWyVdCx9UQwMz7cYoxECGoOqG65XGoz5EQggGEwOqubhRCSMnETJWaKKr1XgwhlFFyLkRz1pS50fEQ3e13ahZCInBTRWY1cwAizFKyZmJSMZESOU4lO2IxL6LUxm2R27HnlGpZW+BARG7GMRCSAAAAEzu4KAhi7/lOR2cklTBNS5HXHz66zD5d3XSLi9feePzp5ccD4klag9k45vt0GbPiACGEGJsoZV4Zzc19GEdPRl1nYhSJiexYjxVinHfLXLEcyyWHEOubWGuDSilwDFhCqJ1HDlBTaNXVmDhP0raLZ8+ef+c7/+LJa6/XbC+RfDjsN6fn19c3d7fbs/NHTDx3bbtVDqLmId3fp8hcZIoxxRhCiPt+X+G6mssiqlCLAlThCAwDAKDbXFh5TBRzV/BxmmoH5OnpKQCoGREVlRgCgKN75daHYVgul4S02+12+10IlFKiFIi4FCGgEEO3WBCTmbqBmUxZRcbQEKaY6yEAMTB1IR6uXnahfOtnvvKNn3ozD9ctpmDV2AgpBSIopbgXcA88ENHZ507ffv3ndplv9uWjTy9fXm9f3PTPr653eaLYtMtVi9BEnIZsAMAoaoSkDmAGzOpOGAC9ppQgzeadOim5U3H6yYefvPn6RZxG1aJZr8tdBOxSTE3wAGmd2tWiWXZGUGSiQCGFrkv7/jAOhQMTRgBUrcyazvBPKdM0Afhi2bVNBwCCDuZOCGhYyhdee/3N84/f+MpP/5Pv/IvBaBC9mzJT07Tr25eHs/bccigahWm76x+m5XSYdPTYBoC0Wmx2cptLPgz9mjl2cZ/zvj9sTs9b534Y0qItVhbLRdYyDPkwTnfSt+sNx9aGgxmoI5ozRY4NkJMbMSGiFqknbwhh1w9E1HRtdhUtu+1tik2TGmbGGMUVcE4VYGY2rsx727bTlOuFV3fIeoniUUmsqkjYpKbk8uqJhn+UxvJZRu1+dOrU2J66ltyvBP4K/wWvpCO+eq7NA4Z7nfutCJhFZjMrgMyxiSC53A3X6cEpSsTFUsGAQA1SSsGhlvLwvVYTAJhn8OP+O8aZVw7zd2NzK4apQ1XoAzooOFZxIVU7qR8Tol9VEwMhchGpKUzuriJ8/MN1u0IANS0mrpTHKUXrVu3WBuKmJRI1AmxSe8X9ZRkvd7dX1Jx+4Su0euuN777oPhxYgQzMnNwjxSL1yXUcDV7BV2rqNdSCMCRAdJ8zo80N7bNR1Mz8M5DMAHAap6dPnx36XlCffO6NXFskaab/mhTb1JQxM2EM4fT0lBCfPnv6wfvvN+mrXdeO40RETRNrelhBVNUa4mQzPZ8rz1qh+ISYYmOaidhcl8vV2dmpu+dcABlbqlViAHAMmpu/jh7Lb48Hg6nNMWX3r4OqSplPjllPQ3OmPiKaKyJMeUSE7Xb74sWLq6vLw/4gWswthNh13YDTcr1xRADUUjA1k9jm5MQRwUDNKYamDYs2ffzujx48epKWXe/Is3CjiGQVJaBZD4sGhA7OMZ5dPEqpff/9H77zg3cuHp53XTAVQjYkcFSxpmvNzYuomiG0IbVdWx/lgPWcOOKQAER4d3fnMw1EzBQ9IkORoek2TROJwKwc9rvL559KHj//1hsPzx8Pk7rWU4bcIWAQs7Rc8HKRpRB3IcxBcJEit7EuW0zBVNU9EMNxDarLQwxR3UVE3cmJHRxxNx5WCRaqTQX/iVQECEOKjkiVJlJ1AEaiEBzBVEQVyUWFaG7FMjM4qtlEBY63sGpRBSAmZHedaXut0h9gZlGNHKq6KHAIKSGRmiFxYFYzdDdAdRfTmjTKVS0HbAAGyCE4GABMImPCq/2+oVRHalelgCkwgIEDH3UV4ITkiKbiKXBw8GlYLtrVavPJx0/vgJoU7m6v1g8fP3x88eLy+fVw+/D0PMaFqPo4dl1XWTAzizFEiTXhydDGY5i1iFQ6aB41KgMOQBw4VNQTFovF4XA4OzufdbkIs6mKEZkBCRyJaymcu2mVE0xjblPoFsvnn37yD/7BP/zG17728OJ0vWpyzsMwrE7s+ubG3YlD3bQqgG7meSoAc0L3PY+QUsx5QkQrZqY1iOX+Vv0M9q9PX0R1U7O5mBqQiKUGAwJs77bDMCwWizoqxRChZuwipBTBfRgGVV2tVjHG29vbaZqqPszMzEvbxS50IQYOWEpWBSQEx5zzMExNoJiCEyExOJmiumgZUQ6//Es/99UvnJe7p2zj7jA2sVsvlylGsuJikbAW87mrFEEPjLxp2i40X37jG+Okd4dhLPbRs2c/+PFPPn3+cjvmadecnDwqjlkMEVSEkQEpZwUAilRlXrMOpBppAQITQCyar+8O17fb1fkpIAjYKFlMHQjiStg9cUHL4wHZQ4rsLFKK6PyCixa3FFr1ai91RBTRcZxUbbladu2yDsqzZYiwiDD5w9PTR2cnf/KXfvlHP3m/HMZebQB8env92uIkGV6+vEaiQaSoxqYdRR49elSG/KN334tdtz4/XxwOI7qAFPWSp3VKoeh0t6PNmboCuk+TYbi8u1OCrNqsVhePH6eYmiQxJjNiYg6Y1WpxFRAAICCF2DAxE1uR3e6ua5vIKGZmmqexSGYOgQMTzZIaRHdvmybE6ObTlGfsHKBCjHLUxsx1KKplKkZ2j/q8CufUrexY/aamULvG65RTZ6x7hvr+r9+fU7PYGY7y2c+mi/n5BsejvDIDIcaOYLfXANikNFzfnT94kFUw8jBOi24x5THUhIOG6J6MrhRU5RYIEXxOlLm/Ud3Ba8rY/EPe1wgiY8X56f7bmaezI7M2LyiuOZeaMOBmVP0Lr0x2YopoWUZKsV1EyboMxFqyGDthtmITUsjggxnFLm5OPlzR3TJyfP3NuL/9dHu738amYWRQMAcmNNVjxOIs6C6lHHNvCRkCEFpN/IBjVj4eaYt5MgOcCXhVBZPFYkFEV5eXZw8fdItOi+Q8GTkyiVkupeRclZ6LxSLGeLfdXl1d3d7eIp7VidXdY4qiNdv2M1tBvZ5mBTQzE3tRopCnCQlNLMa4WG5Wq03bLfp+uLm+jU1sFy3aZ5b9CgP+kVe+wm6qpgbmBUoVFuScpRQQc5yF9Pf0KiKqyXY/HvaH/X5/fX318uXLnCcgWLQdAMQYP3r/49h2xGQqZycnu8urw3Z76PePLx5zE02Kee241rPN+oN3P7x7+WLTroCDiYNZ1UW6G1EkYHNAkOo2EnNyXm3Ovvq1n/7+977zgx/98K3PfWGzuSAG0JqebG3TgoOaojsGqrhrzTQIIaCpqAB45HD/1h//67lMqg5Ah8Ph7Oxks16L5DyNh93dOB4enG8Co+hUmTVg5hjAiRCmnNvI2MVihrUL2Wt45nzp1B8ZEQnJKziKCO7MrNW6aQroTBwodBQi8+6wf315AmolK7IjQq1Ldgh1w8K5qAvQrTJ/5u41U98cwMy9iKgqHM3zpgo+dwqqWhEj5FrmAPehZE71HjZVJjYVdzRAK5JzFpEQI3VdjDFLKaX4nIYK6m7FGB0ARZUoEPNYMiGHmLZlOIgs12tAqF5OrpJvRzeFurkD1HQwQmwpdUFw6N3dQnz09leWX/jCf/q3/4sCoYnh9vLlgyfnb732+t3L2/1h3zZdt+imXIZh6LquPmdC4LZtzczHUUymPIawBAAVUeK+7/1evoDgAKYaU53yPca42+1UZzD/aFbX+ozWOWUK3BzA3FxUmIO6T2MZU95sTp8+e/bhRx+1bQhkojKN4yeffPLpx0+JAmJQETPnOQO8InmfPSRFBMAAgqrEGHIeqtnCTF9t5vmsNxSRmQOxG4CrqgIi+kyz7nd7EUGE5XKpqiklVXHRpm0Ds6lWBrxpmmmaxnE09VpomFJEBARerValmEhWsSIjMYcmVilQE0OTAjGqozqio5hG8jLt33i0+uKbZ1R2Z10Eh8zBDIisxjiYa60PQEQgNHUDZ3TNB1C4vn3OGNYpnTTh7Z/7wq//6re+8913rg7T89vhn/7z73vsAjcCYCKRyY+47ywAghrj5JVXRRMDBgBzutnv7vZ988YjVRNXK1askKFO+7JXS7ikFRK5OrtSQXcrIpUkrIESU57uHxqlyNAfzKzrurZpAak2Q9SUUQRr2wSO4vntL739+PHDvj8QJghhcpexLPCwiU1ISVWYEVPTdCk2vNvfrNvNctW9uL1Znqxe25x+ePPclIvbZrEax36RFk1Ih8OhnpQmeru9C8tOSna3x0+evPb6k36/Z8PEUdVCSJFxlwd2YJi1fjWJkojR/exkc331/ObyxcVrj4fdLrW1eNuJilDEqllhatvWzYsJEYUw56Sb2TRNVS0KDqUUkQLVj3if42yfATP+Ch1RPyrlEmJk+qwJtQ5A93/rv/fjngj7V/4EVjofARzcKiuKlJrUSSmaIZeffPcPfyj6J/7qXxz6MTWNqzEz1Xabmeo79tH/q//uvSjYZ+KcfGb1qLpD3bWq/9wdEOoM9ur05+CO4AiOsw6RENGpts5DXVu1fuOG6BRQSQ/jDiLEiPqjTx7+wdP25vDB848uy04jkCoXlUMhTJvuZLU5fQnlt86mf/EnHuevPtnl7ARooEUJ2A2qKnke7txrJXjVeTFiQg5EAGjHo6VienNIJeJc/Tr/BwB8sVw+evSo8imXl5foEGOKoa2aLzPr9/tpHANSk1Kt2F2v1xzSJ58+u7ndOlARm6aSS3H/DAwPx4/jI6k5NkZ+lhZV19fNah1Tk7M0TdO2rYjc3W7zJOA17j+ZQv2fG9YsSjdwq9ZIUNN6zR19iQAItWGu/villFL0cDjstofLF1fjkA+HQ0rNYrE8PT3brDdN6tzw+ur2drs9Oz29ODtxMxBdMLKJlEkkt01LDszBkcGhjYHd3v/hOyDCFQU1qHhAjIEpMNXGFCRiihFDhBAUqOkWP/vtnze1jz/6qIwDgePs4OOYUq3XrIGNosLM5jUo1sFdSlFRdwUwEQFwACMOzFFVtbaeAT5++CTFpj/0h/1BpZw/OOkaJsi3Ny+urp7xXJM3K+LVDFNsT04IyeeGG3QDVZnjMQJXcRwx21HrBoAVUwGAEOZO95InNOu6RhEgMMeAeA8qMyDUsLd7kVx97tQf39xqDCIAAgdDMHAMHFKqzGbtefEjUz4PPVU6Ug/REBy84p+MVONiwYGAUmibpktNk2IC8EmKuQcOFFBdpjKKapEiRd2diWITgejQjwBIIb7Y3imjE4NB4tDUflEHAmSswTQMgGpm4C4WlJbcsVoR/fR2+60/9xevQvPBOEqTjKBjHq7ucNDXHj3ebNbjdLi5vQGACsLPm4MDc4whEmIpMk3Z3GvsZKmNSMd0Wj0W+9TnQP1kSmkYhnvEHedOK7vHjquqr9rriJCxriixZAkhDEO+udt2bZslh8gvLy9VdRonDmFOFQFQr+UtfC++PB4qEkIsJXMgIiwlx1gjFY6P+uO9Pz+Rj8/V+tyuz4c62LvVuZaZU1WoqGqeMiBWeVPf99M0xmNSiZkRcYyx67pATEhMbAKS610Dbdd1bZuY0RXUU4iLJjUhEBI5IiChTePdo0fdN3/686z9IgGIetbEcblcLZdLAJymDEhtu+DQEEfmFGICDkUNXNsAXUtdculvn3/y3vvvfPfT99/5ma++9cd/5mtPThe/+se++XDVWukZPCK4qeQRVAkdVdAUzdC8koHzaVM99hREMReJTepWXbvqQhupAYoeIjl4ERlLySpA7MQGpE4K7MBqVNQAqO4ApZT9fr/d3pVS2jYuFgvmgMc3ghwCUiDKeaLIu377Z//8n932/f4wcOpC6EohCi0kfrm9yqQa/Oz87OLkJLrn8eDo22lLDZw+PNkdtqC2jF3ZTVIUzTuKKAZFU2jKpEM/9eNEMYaUFsvF2YOzL7z91tnppoyjjGPp+zIMlidXNbcQQ9cuatYGILn5lCdTTczLtvvn//yf94fdatW56dyn5KCWS8lFREUqUCMiqlZLUmtOStXmd113T3LZvGcCEqqqmn42rBwrQV9N94kxxBDqll5vgePn4/0o8ur88OrF/9/34Z95uWg2WWPkYto2TZdSf3vXX93+w7/zm3/7P/lPH3Rdo+bT2BDO0PEf+UruZl67rCt74G5VglA/KmLsroiEcw2NVXWw1XgdmoES/CzhcM5Gqi5hZg7MUBXHR0YQ53xek6JTySlhMNuVvB3x7ZPVzybq/vG7sX+y/hNf+uE49YYU2oOOvGzLkHMx9nC2Ohnb6Xe3+8/91MXhJ6fDuzsEiBwTpKJq4IR63/rlx1Yvrwkc5Fy5reMD597xX2Oa7xvDoHIIZqaWSz7s903bjuO03e0enJxu1psXwzhNkzJyjDHw7HdDyDnXaeni4UVq0na3WywWHGjox5j4XgNfWYwaq+DuZiIizl5Ex2lCQDCrl3JqmvrdmiFzWDftvt/3Q09IbdtWP2EI4b7HTVW9RuCB49HwdT94EaK/EtVQ2bdxrKoIappuLsly3R8O0zRO06Rq4zhst9uzs5MvfemLb7z+2vDeh3fbYdmmFJZaJgBNgePc0uUhBhmmddu8/8F7X9ptm9U5YyBSAoU6HCgjcLVIZi8OyCG6RYesLt1i8e1f+Pm/+1/+nZub6+XqrMZ6d12XYnQnNXSwXErOU0xcSWUAcADmULtvjveqhcCEPMvbwREphub09BycRIyQN+tVDOIgovqHf/j7HBZf+tJXSlaiCAYqMnmeInfr1S3VvCADc0K0I6nKzFmViewo40BERzPVyhGblmIFnQEQzWKM43ba94fGuTYWVswJ1AxhJmMRwSFwcNBisw2ViEopPsewgh3HMUb0Y+DQjNOqumMR4VwMAECrpNFEmdlUyaGGuxuSO4iJVOUn1TioWo2ncyUkoWlVfDswxJTMfcyTuALAbr+/2W1jXIoqBo4cEjOhYQ29qS88zOmjSEQK4AyiaMAh3Q35ex9+8nf/0T+j9YMMDFNexbaoiehhv18su8VicejHacrVIQX3Vthq2ERQEVEZxiEwExI6qAod64l81tNYscJcu1+wbdth6EUkxjk00vyIec+1mwYEczQaEhJGZDErWdoYTHXsh9V6DTbdXD1/++0vFsXr25sYm+P0YuYKyHQ8G8wq5l9rj7CItG2jKkgeQtCjUeZ+4624Xb0SzKy4Uo1NA6hAUCmSi6xWq+12W2E/IpqmKTI3qTGzmmxZcWUphZiZOXCsOZlSpkAUU7WPBXczV4II4FJKzqUu1jXzhLUaN6XImGj44tuPHp6lhg3dI8UsVSrgRYQcUkyMWLuBzY6x/04G7jZdb28J+dCP+90IhIdtv8u+m/z0weN1Gz54970OpQ00lcyAVqs00KyoqpKakaLDUZkKaEaGQuhAYjBNJcTYtS0swBRIVw0YeIqpjW3r6KIWAQkCEFb6wWyGKQlnhG0cx77vOYTVYpFSV0+PEOZHSjAwx3EqTZueX92cPnzwK3/m1/4X/87/BgNzCKzkqiE2QxbuVrviyzbl7f7Bao1uovLy9mo/TUpIHFQRo6xPTu8++UQoXl3frtcrwNCXEpmXq/Xt7jaskqry2K/Wi1Vo2iYSgpss45LdHUzLNEm2CA6uIiZKgTmwIbAopbTf7c7PHvz4h++898FP/o3/4d9ou2UR4RmJmNuogKgeA5VTqME/Mca2bStVSkTMlHOpfFkkriyVioJD9S1W/XV9dN3zYhVVFdGSi6reD/H3Q9JxP5kHkn/pF3h8p+9HIj9WZRM4ASGCETITELAIIP53/9U/eLJY/6lf+MX/5nf+8Ve++pWf+da3tiVPu/08ALm5gR4vemeuvV3kTuYINqNYhISIBlZj4Ku0FNGR5iUY8P6bBTs2S99/i/NT3d3dayuquwcmkdprXTF+qn8pIm3Wa2+15GkpfnIYvg0nNz+4+wg/WP/5b76X90+vnm8DXpahId72w357eLJe+Onqh/Lyt7Yvnj9kew8MSdDjVJoQhByg5u7MYfOvvKzm7qriVgmkOXDUjtyeIQB8llnpagCO6K+//vpitToMW+BwOByaEM+W68Vi0eexmBKCow/jwcwbb0ouNZBjsVisT052u+0keRE6AECkEEK9qlJKVQlUOVZ3H8YhhaYUA4fIqFZqleOiW0zTpOZ1m09NChTaZZNzHsfxnkS7/ykA3AzUasHTDAnU2RzV1ExV+iL1iVlKDiGGEBeLpUg5PT3b73er9cndzbWWStV5zpk5XFxcuMvF+SkCTMN+tQi+3d1eP3v2YnjztdV42HZMquJMZpJS2KzX44effvrRR19788umNUmdABURyMkU3JRCoFotVvNtmcHCbnd7fn7x2muvv//+T95884vV+bvoFiFEVRdwNSl5KiUGClXNmqeJCVNKMQYAkyLurqZtaFX1cOhrUrOrI3KMqRQhJFMbJSO75fEH3/vu9ubmC29/DUg5kiICmEhxNAderJcVoXEHNwdmDIHASsmKDACEaKrVUoFIzFxUiUilAHlAVrXA0cW6lBBApAiBGJg5O7dtK6gIsylT1RgBCNRBihSROZVYrUgmTQ2limJGYmIGd3QDACPw6u+gWMQQoGkbojSNo5gzUQrBzWuynANwYDGVrEXL7LuB2kVgVdQFfhzFEQNQLTzuD7vb3V23WhOFly9fiGMTA3OIhAGBiagS6m42e+XqdmgInlUptF6m0DRQykfPXvzGv/fv94zYLLQWhCKIOZi7Ft1LjGm1XDZNO01TXUznMFXmEGOTUtumcYJxGrumRQSCqKrqWkFfrxmVAGpSConklBp3JwKRHCPfQwlmBiBQY4RmusXBHOo446JmTMwch/7wwYcf3N7dnZ8tzy/Of/jOO7lA34/g5A5MLCbuEBhNoeKUxwQHCzyHrAD4OPaIUEquRwzOibJwv0DbfWTccZKqC4aBI2KTkpnlaYopMlMpGd1SbDmSldLv97FJy8Uii4QQSs7L5bJru8NhBMhNSm1KY5ZxN5l7kyJXNYRDrXZpmibFxiS7KUAkJANFNGbvGmiSe5mGSWJ3smg6wREIGCv/Cw6sucz2ZyJRNVDRjCWHEA5jvhvyi5vdYcrdYplJMm4/fXFzcX7xC9/8+js//kCuxhd3h3HKjiEgq2spBQDNay9prTQAqJEKtWUOQ0xRHYvZqokUInOISgk84JJjQ4F07gJndQBDUcil9tGiIankUiRPUyklxtB2i6ZJCOTmGFBFITgAHJkwdyBF+LW/8OvXu/1v/5N/HLrOatodpmBQ8mjs14d8e3tIOS9x8fDs0eXdjfiYFu1YhJi4SQPBdr+jEEbVlJrLcYiEiTjEOKpSt7g2aQKdL7qrq8tt7pcvLtwU1ELDAN42TaJQwy3NbZoUEObIpJq9B0zMh8PuJ+/+5Ps/+v7bX/vyL//yryKCQnWRMQemwAAcONQuFUQ82ZyY2eFwyKU0qalh+nXTdpkxgjnzkLj+O1Uh9MrcgyLV8Y45l1IUHIgo8KwSrNh2hXLvAaSZj4NZ2vEZCHpMs6uIzAyOowOgExBTjSFZr5e/+fd/83d+57d+7ed+/s3Hr/38N7/5/d/7/fOL8/PX3jDwwMTM4f6fO9IfDA5q1aFKQEYcVFVcENDBGefofUbiUHFsNXAONU6FFMzBa69ezmWWPqggUqBQ3FWMkDCgqigYugHWsxkIsU0BkIYs0yiN4v7jZ3Sy7Nbd42YF7zyXu/7BV85vHjYnm9Nt06cJxOVm2D9cnzPG5Xr9wacfWVQ0rSGNisKEPi/HELwy0veCJ3BwdeEQHeeuLlcDw5ACIHJtIzfwiiqCMzqBPnhw8uWvfbFrk1JHgXMuu91+2S3axULBA5iriFu/3XVd9+DBWTFZLhd9P3z84Ydt20TkYRz7oiGwqqioFEXEoR/VFOcikZnunPJEGCRP7bIrYmYgUg7Qm9jl5fVmswagaRpiCJxS2zTTMaxzGA6mVRTHIpmQAcykarNQRENI7jbmkYh1Fv+hqnfdKqUIaIsubm9HKePQ76eSS56WXZenATjEdTS1rutiCiHGly8+jjbYeLi7fHr34lnbhhfffyeaCiqpRWjBSBDDarNar599+P7Xf/a2iZ0QFweHQA5sSuS5tsMAEyq5OqiWEa0ctnu0/FPf+MY73//+MOwgrJt2GQICskMhUqJiNg0DuroWCwgBI4Cb+lAmJhIp3aJjYCteigYIIcSU4mrZvnjx0X64RRSZBoqR2gen56t/+vf/Vri9/cbDs7YN2VkgBFO1ngPa5A7t2fkjI5dxatv1KIM5sjEQ3mcA1QoZ4mBiRFg5OWYWdXIE9wmMyUB1Qb5E3JfpZLMokzGYmzaBydlExIWJicOYhWID4GKGPPMdATiwoZu7xBBqxrOpVvUdYk01qOiIM7laVmMHUFAAD02r5rV2nigg+Jh7RwypYQiqBgZqCjUcw4AxBIZxnEJwRypmoY03w25b9szYFs8NvRxHj4mYEaXFuCBMCAEYAcwdiR2g8uYwD0SqMinC4Ho3Db/+7Z+H9ek7H37Ql6moBcbiYIhZS2ACoHGSKW+Xy+Vqtaph0DXDM8YYmZqmLQoqe1UZp8whGoERgFoRZ2IAgnkcSYiMGCpd2TTtNI0pxap4uGeVUI0D1gSaOlurGaCxQ1WbFMucwk/ef/973//Bl7/4xuPHF9v98PzZ1dhn5gCAqqUKoFXFkTkQootYSCylau+UiNTAjGJMqsbEfBSz6ys9GD6X1UDAAIHnqmYws+xuHEIuRSAvUiuSS54WTYPBxXO/3wfEs9V6MFUE0XJysgHRfr/jEGPTAPq236saYUhNiikVKY5U8uTGKQZiFpEoBdEtBAQMDuogZgDUQOg44qoZh8Gl50jdqkupyTBVjK1GIVSQlAC0iEw5qII7A68WazuP/cefXj6/evJ6M/l+HKcfPP308WuP/uS/9vNfvR7+69/63fefbieKQo1hLA7kHghdBRmZuLIwBYyQKBAHBIlSbHfILfGq4XK4C8ziAI0hQQzxaNWMDujmOas6gJsUMy99fxiGAQ3aFAOFBMTO5MCzDFccIwBYzKbWpnZ7p6vzr3z5W7/y7/8H/9HtzUCrlTH6KClEdOIYx3HXpBSRmiY9315ntOu7m0PJ69PTROjuIfJu6Pt+quG6nJJnAJUaHp5dIcbDMOz20+lidfrg4d3zTx8+eBKpHSyP6IwQEIywemwjc6GCAE2T3H3Mwoi55NQ2Vzcv//xf/PNvvf3GJx99cPjmz52cPa5cbAgcUoNEc5K+iTjElICQkdq2UZHaxSYi2LZMKO4mxkSSy0ySUHRHggCOiPWut5L1uHUXrzwGeu3J0drjROhggKigpnYMpkckdq/p/DhLQZzqKluz7hwInBFcdIipKUUZWaYpBR+2z3/nn/z9l+H2dz7+XnzvexdPHgpj+e3w1/+Nv+EUQwVkVC3GcBzWsIocj2KemWbxav0inOHg2RuPZkhEIRAgMgWHzwL5qz+80itYScjKKNU8ByRzqQjEzPnBTIgfJS/cNLGVvBjjatlBRzoOP9Wevrbj/+p336df+srda+uJ757dPoM23YztVd+9fvboJJcGsSGaiMnRIzN5bdYGhDlzB6DWEMIxkg4QkNnAzBQR3GbZE9aeSbRjxK+7eyDSof/85956483Xb64v16sVEuakInq3P5yfneaSQaYCdnN7nXM+9If1Zr1cLfKU+/6w2213t7dmWLHo5XqBhsMwHg5DSpGJORAxhhBrb3nTNGYGjtM4AUE1Z1EgNY1tXKy65Wqpqm4+TdMwDJXdP+7EoJXlJFSRWmh0lES7mTODmUMtW3ComdFt24XAIYQpH25ur4bDkG/ydrsNxDc3N2a2Xq9LKerWNm3bNSklNy3DPtj4/PlHEeUbb7++bLpk6gjFNQExkVPIOSvAk9ceffD06e2zj8/efKt4JA461zJ4TXETNXCvtaUlD8N+Cy5j30sZl8vFkyeP+36/PNt0iyUjmBdVdVDVzMHzNPaHQ6KgIjEyEi0Xy91uZ+aB4zROgVBECLBbdmZWxulOhtPT5effftPZ18tFWC+1i6rjRx988tPruHIp06COjiGg74ftoe/Pzt8uWdNyQTHoWBiMGIFM3UAhBK69Ig4QQkSiEAIgKNS+OXB3KabmmJiIvViHvoppO/R5c9YxBSD0IjmDW+SgqkWk6VJIaSxZShFRJqzlJ4hoopOObnEaJxVJMaYY3edycQwBGFwVCT3gNI7EWLPLTk/PAHDKEyAGZjer2YliMpXBjSpnTUQEZGBcg5Mcm5CyD1mkWZyMWrbDIaOdpBSd7hx2tYsEvGFsGBNBcEdXR6q9GTVnlAACoSIECGLQ50EZLdAPf/LjfrvHoptmYbHd73bigpG9Am7mbdu5eylSFTkppfvwGwB3MdBqT6NSiqgEYKt+4JqUTkyOZo7IWNsrvAKxkDOWUoj4vr0IEcGEmQxR7328iO6goGZiZhIwtvHDDz/6p//snyEWMP/c57743ntPb3dbxEiIRAyEBhXen40qVVpETDLvVjSOEyAjMQPX18jmYj46rrj3UIfXlioRVy0EXp0xZiqSAZwDiypWmRT6ftij2XKxlkmLF0wcIuc8thRSkxQQGQxcVZhrMiKbe/XlmFUBVXR3QKn/toITWjAEwMhx2a2awK0DJGxSIMExl92uj6k0KXpF4UKqVR4INcuqMNC4vSWgcRh3w/Tg/LUQm+9974cvnj57cHJ6dnbaNSkPw09++P3V+vy1s8XLKyxZnayYOiV3MwR1CGpAHGptCCgBRAA0R4BDn7eHvEiBTIOZGGZ1gvF00WVVM4ipcSRxyyLDMBTJCGYqOU9jHlWkjTVnBCuBSwiEQF7pUAeAAiNTdON94W/+sV/++NPbv/N3/ptssGgWjqwlRwpO5Mhtt26CgWaH4l18truJTfSSTSUQ9uNwfv4gpbjffaqCMUVXi8jMAC7DuDcK2TwXA4XDMK1Xi/2+Xyw2TegkFiMKtdVRC4WIBjJlDkjIJU9SlIjatoU2mZbX33rzf/ytf+u3f/u/+9t/629N44hE7uaEyIxMNb1L3WTGY8jc8zCoSIyREEzFTJkw53wvqz0yKtQ2AY7JnFX0b2Z6jAUxMcSqmZmjQxARGWs4zjEfcVYR+3wPwmeqIK/wz70shxiZQ7ffb7t2UbRgIDVl8jbQDz/40f/sf/4/fT7t/tf/9r97+eLqbqHdZv31s8W7zz9+6/NvzyGq7lKPG6JaEjTb2GB2fVcZOSEiAzigYyWwDFmxPmGRAFxU3J2Zq77Jjqms+ErKn5nWZ6PPxkUgrv1WSFgXV2NOichMc0Bw5MCMEJigS1MuDzj9Wbr4R//wx5B9xX1/c4ObxU3Lw8PT3I9tgRWmPRHFoOo0I9nz948AgFbDDana/AwcCSkgcLV5IZLjTB4FDlbVToQIGJiCM5kW0V/647+86pZT05srMQdVCixmN9u7btEsqNvu7mq7xTRNz58/Xy03ly8vnz57Oo7j59/6/MNHF8MwtmmxOV0v1gvXGX5zcwdru+aeCq1vcte1pmLuXdeK5Ngsh3EgovV61bYJgFIMKjaOhZkOh+Fw2N+7E2cGk0LVzeScY2yPb7flnMX0iBm4iKSU+n4iQrPi4KltROTi4uLy8vLBxfl+u2uatnrVz85OzWy7u3vj8YOxH/r9dtk2bWiWbdfEQA5FlJgAwVRDiCkxmp+cnDaX1z/58TvffvzYHYFDfZM4RC2FA6FV0RyOw3B3d7e7u9ltb6axXy5ad2u7TjRLGUHBCUwFzAEgpWa3P+z7oeu69WZ1c3eIcQEAIlOIWDPT1m3XDwfzMo7DYYCHFxc//VM//a1v/+yf/jN/8smbb05T3qzXwqgOoL7fH3Dz4NAPtCho2rTp+sWzu9vbBw8vigsBbU4feBN0kCJCga1KXBGQWHKu2Qp1aq53FuIcGgEVCAFgQFMTV0RaLhZXt7cGoHXoBhBTAmdmQlazoT8sutUwTHmaAhMiNqklItPMIZgDI7VNg20LR+dF1UGnEJAom7pq0zQqUgsymZmZxrEUyTEmBFA1m0MdKTBiiBVqrsyLmhOiW006JBd0h9Q2V3dbE40tE5Ir9VKymyMHx5Zie2yBrmc4oBk4z/Kkyi4TkZvalKcshZh+/7u/f9fn4nj+5FFMYblaSimK4EwqBY7Z+QBYSnGY3RjVaqAqZp6apCb9QXKeBuY2NgbOkRDBTJkCM83pSlbFzgwARFybMZilBmZWHpPAnY8hqH7UWVXxIxKAlaKI1LTN9c3ten2a2paQPvn4k8OhX63PK+/uZqa1CdFVpDLUUjTGmKWvU2aecmxiPUdElJABgdhprmOY/1lEmP+AGgHOpd8cFV3VtdSUg6BigUJouz73u0N/3p1wCPvDEBZt5ctiCGju5qltsoqqEHPbtjEmU58rsL1UdQaAzUVoTPMpNT8vmRwD0MlqFYVGG4qq5HoNm7vNgXBIGEhM1RQcUmhS0yBx4nD14mo/TGp+d9idnp7/4i//0rPnz/d32xeXl02TVuuVme12u7PT0yZ9mvcHjB0jI7EVr5sGIYiZSC1+Ro6pTV1qAi9iFn1+edswlkinywUYqngAm7IlNkeqHV59nsZpnKYpy6SqMuVSpkgptU3tCCcOFBnYkACB2QNp4jlWjSjElze7N7709bPX3/jP/o//99//4Y/i6QkAy1SIGJgIqYCA0VCylHHdNRevPXnx/GUZJ6aIjuzYYJgOBzF7sDndHUaZSiQOkcldiqtKNhEgEUW3u912tV417aJtm7pLzzypISKkJgXAnI2Qq0mzRqAVESbkELLkv/mf/cZ/+V/8xq/86q+8+bm3xmJMEQECRYIa7EeMEIlNgYAIkIn76dD3fdM0oppz3h8OIrJcLmFuZWZEEFERZZ79XGYzrnFPYNWqQeZYj/xZ5eZwX5RxPPXuT79j0sPMcRJVjvNIiiFCzmNMEZFAkZmoDWU3ouAf/PBH73xCpyebf+1P/Mp//d/+1p5Vo/y/fvM3funm8t/60v9kRn3ux52jzmieD2gOECCc99Z60AAdiz+IEIDMzdUQCO/30aOo+xj/imZ21KFUEZMduxjv87vQEcCrM4udyN0IkERbxAXwSllVAIDVz0P8dnNqv/2T9muP3/z8195danp42hnylCGG1fmJt5eeCA8W3B0MA9d59BhKO3fM1Ehfc6/uHVVH5OOO5zlPyuIIM/YGgASMHIjiYv3WG29K0UXbAbq5R/AhT8vl0rp2v78b3du2fXjxcLff5ZxfvHzx/nsfTFM2s8VikUsex4mI1WS7vSOmqo+u/7V778lxdqyvOTOHFFar5TBQu+wAPaXUpmTqpQgAMWNK3rYdcx1bZRyneuUdi8Y8xtB1rdmxcgjA3XMp4RjuWXX4y+WyqkHFcj2gTG292SB4DEFNm7ZJKZaSL1++XC4aF9ndXJf+0JGToZSJYdaVE4TAIcWoWpqYyGEYh9ffePLjd3/ylZ/51uKiG3PBaohyQA4ITvVSV5c8lmnc73Y5574/vPfuj7q2fXj+4PXPxdWpgQti6NqGGcdxEJNxyofD0DRNlSg6SIysMkrJKUUO/PLy08Ph8NZbn/ulX/z5b/7sN3/+2z//9a9/7fziYrffiVrTdGW/j+2ikCOFYcxjkRR93O0YqR9GMT158GBzenp1W1Js2/WSuqVsJ6r+T/OaAGFW4R93cBPlOQJZzYGZKs9LKQKguBUVAQeDRUzqlrUUMSQMZO5zmijH5CqHQx84qQgi1oq4EIObMRJjzSyFypXw8aa+35oQgJmnaXL3tm3Haax5AcMwqloI84yChIFYdL5l3bWqF5nZTBAckVS9FI2RECjGIKKlCCIH4MQpi9/KOLA3gRvABVAgmqV0c1U5YDXw139vfvC4qjlAyTm2qVsu1qcPf/TBB+MwgLeb1TLnvJ8GI6QYVW2aJkSqYCcimUIpU9u2TdOoBhHdpC4glakMw2EaR98cMU8AMw+kBmBqTKAmlQAEAKLAzGbjfdwtEoGDmPnMEM9wtaqYe3VourOq5SyJw83V7X/7D37rr/zlP79abl68vJKi1W9f63Urtm1G7nVdBlULwVUscEQgVUtAKu6OVQBU9bb1XsXqGnM9CiK8Kg2aECs+ZGoIqgXcqKbTcEoOtO8HChFi2A8TMqWmyZYDkFuNFjTJ42TWcEghVZmUiogUAEdkRECo+figUBPjyM3MUd3dhFxBXYsxeJNSG6M33ufCKRDROI59f6h+IlEzNSJqUssUpJiJGSBT2vbbMk77w7BYrj//1uckl+fPnt3dbT/++OOTs7OTk6RFm9i67TSX0LVVtwpgWKN0mbrlErZw/uBB4JaQwY0QJuk/efayjUE3K5UpApUpL5edwrZLjbshoyNud3fFJEsZx0FLAYTEgckjBAZmwhDreVgVEITk5MLzLt283Parh6994evfePHRs//8//23IATuFjIUBEqc1NzQK8+ghmY0qF/eHTA2+TB17SKGMPUHdNteXsdFd3H6YOx7y2NcbdxrSr4DIjOpYyQgwBDjfr+PKT28eAgIU57aNh2BQS8lq4FIUaNusVg0LdUQDfBpyut195t/9+/+e//u/+pP/+k/9ad+7c+aQuRYEQHGe5dC7aRiN5UihGBuhCQ+h8zVuea+P6DuEshcz1U4ftxvC/Dqxzz0/JHPf7azHUelalGs/yfRZ0chWB2b5h4McwVEUzVMBGhmZRg2q8Vv/u3/z//h//J/fvjk0c9+5es/ef+9g+XHj96822+3h8Nv/ePf/st/7S+F++/siCbNo89xQjh+H26BmAD9+JCd70swNfHaQlSTSnx2sFXujmg2HwHO/dKONv967nCBqgOvs1HdScFBAZQRzWPWDYVTSp36ULxtO1WdVB/E9FdP3vqdP/yIpvHJn/mZp2hrD8PhYKfLeLLUhN4E2AkhG1fWy6AeEl5dBAZWV1twMACq81yFnWeAHl3BqGauex1OgRDd+cHq9Pb27gc/+MFy0XZtapcLjrHrFuoWIi1Xy74/9EO/OVk3bQPVcz5JSu00jU1Km82GmYdhiClmAby7qwbd++AfpDlHgY9VunnKqtqGpl7iqlJhcCKSUtxFtbiBqolIKRNzDCG2LaaUamm2u+dcRGobwDz7VvE1AKQYE0cHr+kgy+VyGPrQJNHGrETi3Xb3+NHDly9fEuEw5v3hMPT9brdfLtsvf+HN8bA7bO9a1ywTsRu0TuxMKlK0AFpqIhKLFgBfLBslQreXL559+fGTMRsiAlEWCRzQtGrozTQwbzbr5aJBtDJNKfKPf/Sj937yo5+dyvnF491uD8Bt23CIRGyiJqZiOUspU0ykNu1e3i2Wy0XX7Xf7xbL71rd/9k/96p/8hV/4ha9+9cvr9drM9vvDi+fPQmoIUEVXm/V2HLhrU9PmKX/67Pk3v/H2p/texh4DbzYnHGR/GBfdBt1WJ2er8wf988uGZ3UqoSGjFm1mvoBUFPGI4AIggpnVG8ncvPbgpMSiDSVAHPN0yi1QzbbQWEuMS+bATZPqZkHMtW3H3KutDKp97uhtrKRbLiUS3WdwVAB8HMcQAnOsyXsiBgCVZtUiNIuXnJBMa3lhjbSPzHiUG1YOiSZxJD70g5iHGnVADE24G7e9a0vUIK84JJwBr3nKOXI6PuugwWoIagWbQc19GvvXL56kwG6qkseJU4zrtB5kYqCjHanWqFRuPTjNCSUVyKlJSKvFIpdRVUU1hoAVaIRaHOpHpP34C7f7B3HNYScipgD12D/2YM/qS+JqBQWoxgkkxLbtfu+7f3D58sW//pf/UtMszi8eEf+oBmEzoQO4GiIyk3s45hqimTIHdxjH7A617DzGCMBQC0RrPzVSLVJUFaiwNROouVkgNkcVMCU3LMXQQcU5UkyxaBGV9Xot7uM0nm3OANDUlczdmsRV1x9ijCkFCu5wtKBqCOEYdDK3WhICuGt9HtYxzAABCSjnMo17I2lTXHaLLvCu781tuVo0bazpL1KkFMm5uKOaqZkUG8ZJzNeb05vdbnfYicvN9RUhbVabi4vzGMPV7e3LF3f96MSpbbvbcaLYOQZwQIcQQrtaLhaL1Dbw9N3ffPf78C99vAvwu7//L3/y/38fd/u8fvj6F7/yTe42//n/9zf+8J0frx4/OogGpgTJFYopJ3ZEIAYNISxN5fbQVwtlyb7uUlzhdNiHhKpaxr5hVnaRqZTMjNU6miiSOZMvuzYQ3NzdHqZxc7qpVuW2a1GdGYFQVFQhhhBSrPeKZKl2VPMxZ10uV7/2p//Mr/+lXw+pFa0yFaxqcv9MXFxXFjMpSmigxNRQ0zTNPVpzX1sJAA5OhKQ1J4Lu54T6B/A+9BznjbqKeO5XfTpao+qrOj+2Zv3zZ8gQALg50BygNS8q4AjMwEaIXjZt8/H7P/7f/Yf/+z/363/5z/65P/ebf/M3Pvz40y9+6xsn682LT5+frVZI8Df/0//nMVbLqrELAHimd4Hd3QkIIziQVlPYLKXxoz8eAOpc5gCG5HMSQCCKcwwJoKozKXOtzfPqKkS8j2X+I4Ph8bdkDgXRpIRSzlPTcTjAtOyWh0Mf2pgIZOop0M9tLjZPt9/7W9+5+Kkn/lNv3ujEOSJw2zbTohlgjLEL4Ca1WtLdHcgAsOrPj3nP8+THHJkTVMICLFCweTp0JjSr8gNwjJ8+f/pP/tl3fuVXfjlGmob9fr8/jMMkxcw2m1VKYTjsD/sDOKlq06QZq3cIIVzf3OScv/zlLy+Xy/1+r2Y19QeOwXQxBjsG9QJAzThRyKpq7vv9bprGLFOIkZn7/WHoe+YoWExdRJlR1ZsmqOowDHbMV6yhIO4uIqUKKh0AIKXUdZ27cxO1SAihCqRSasY8IuHd7X4c9jfXV3c3tyJl6IdhGggppaZpUtd1MQa1CV3AJSGgab/fMWFMi0BRVcFUSo5d62ZI2DbNkOXsdH199VLzlKjNRbhJZmBoRM4OiAzkhJBSNAY1YYBvfP3rX/7ql59+9Mnt3d0nn7zPFB14t8OmXaxW68CNqu/2O5Hpi29/YSqyWa9/+utf//a3v3Vx8fDZs2cnpydf/tKXFosOEXPO19dXFJCJF4uFWrUcw5hzYB6GcXG6vLh49OG7v//Nn/lKG9Nht33w+sV+OJQsTDFyQNeuWS8uzi+1bLA1NwAXLQmjm4spITEyVLFLBVnN3F1U65JQ+4bBDYhQS8shhDAV4VVyV7djXxgxuEuRGIOKAnhtUeYUvXa3ccQilWiPMSKRiUzThIgOoGbscyRpvcDs2MCccwmBc9b7Ch4R4VA7xICZCQM4uJuKIEIt9DYkipFC0MEcVGprnnmKoUwF2uZ2yqNb4tABLgADzAPAPAge0SmCitbPfcNFyiQFmYFxmHJsw6PXHr28uSaCYXS31KxWHXVuysgAqGoEFDmZKYBFToSkWoho0bbTJCGE1Wo1jIe+7zVnSKlqvwJXgt4cwGGe8JipzoKI2LbtNE3jOKXU3EsNzAyRCQNCrRYmdK8LESAQGADs+uG1x2842Pe+96Mvf8leXF5CDYJCcHcVkZLn4l1EoooUhorAAYCqdd0SjutoPWPA3UFx7jmX+zMAau6xA4ApkDuY0TxQiUYiBGViJhyGQ2RGh3EcQ4pONE3FzRW0aWIRdXBOiVOo2qKcJ0KuDaB1y60ilPo8B0BHNCcAJwYCJGAQOOzHvODEKdBcJBBiDIFMFcGblCr6xRSmKR8OQz9MRcXnLlW+u7sprhAwpRCJAGUax8thbJp2tVptTh588OGzZ9dPvcEmNiFPRUpMHAO3sW3bdrHsQoxF5Rs//6uVkDCvkdkGlhEKu5BJJN4sNw9O1kHHL3/xc8Nu1wQHyypjTAwoy8Xq/MH56eYkUnCVJjKzM2HAhiklbkJEYoscY83JhjyYnz5648lXvkHt5t13P/mP/x//CW1O3SgiiVsxQ3WgeuGju+UiIXBsFl1oyzAVGXaHA6I/Oj9pY+yH/vbuDhDPTtcvrq9zyUiYQquqs3vZtIkxMI/jAEjtojs5PbvbbaNBKYUdKLYhMBlhwLZpkHCYsoiCQ21kcsCp5D/+i7/0i7/0S20Tmenubi8iZh5CII4EVMuzGVHBAJwjpSapihyjequj+d7EXiM5jlK8o8j0OO7Uw51eiWKvJ25dv+//OryilnkFi6m7x2efRER1Y0A8PtMQsR8P69Vm3GZHSjHaYfd//Y//o7/+P/obf/Wv/5v/y3/73/mD7/wLS/zBRx/wVFapA1WO+N73vx/wlSZ6xPvJps5ccFQcAVMgCiKl+tuBwNTMakzqrHIwk0DN/QRXjdzM1Rc2Z0v7zLcrO93DX3UYwldIPmY2RpHCCI42Bi0JTWl7GJpll3VsOZDDKEOr/M246Q75977zcbM8ad5cfjD0GWmz6mCzHOmOmUzVa0foH5mxavvU/LlqrKov/dwUAYhIbgpQU5Hovn7HDJrl+u/8vb/ftvHf/B/8td32rhLVi7b9gz/47n6z/vxbby5ifPDGm/2Q69RVne3DMAzDcHFxIaVcX1+fnJycn5/nUvDoV6/nUNMkPOJwKSVEjDFKzgBCSFmzuxdRBxjGcZomcGDmEONUBuY5srL+ra7r6phVHfV6bJgvOgeKzA6aUqQUc7ci9RQ0VSAa8wDgu92uTMN+fwghiJT1ZrPGtYj0/UhEHENIwQVTZBgnN2GmYjqMAwdG5hqOoEU4KjEC2jT1gbBNsd/eTv2hO2mzCnqkgOCOc72LjVO/3237oXcTKQXBEKGU6Y3/H11/+m1Zct2HgXuIiHPOnd6Q7+WclTVPQBUGAgRAACIJQhKklsSmZLlbLbVaXlqrP3j1are+9ur/QMttm6astiXLsi2J3aIli6ZkigNAggAHEGNhqAk1Z1bOb7rTOSci9t79Ic69lZS676qV9fK9l+/de26ciL1/+zc8cv2i5Bs33r108XIz3lks25zUAEIVLl26PJ5Nm2b00z/zs1XVNPXIVACgruvr168751RzjAlxYHuIRoBi9MkARmQx9c6HunLehSuPXP/qt37nbLkM9axfr0EzK2AIWYUJ+k67LGE6TQX9jYLegyYAh0yqioRbr4EinGQi0cFvg5gACbJEkAyiop6JEdu+S2MjM4IBJ3VA6LDv+5yxhNqqSiFfAFo50QkJ0BAxpRRjZKISpFAE61uXqZxSsZiKKW/c64fdipmRB8xZVFLKKQmj8xxw8JGF4k3sQkAkzaqGKpl9XWYkFfuYsqCtNWUgRzzhEBAQDIm8I0IaBMslrN4IEFAhl3ecEB2hcDEmvn//flUHIlQTQpe6PiNUozEReecAKOeEyFVVSRa14krCRIPriPell7MqVMvFMqXi+K/OOULNmobtZsNU2G4OpYgs1WGhWm8+b4gKXOZWUkQSRXFNZCooWV3lc5bLly/+6JXXCN1q2aqBWFaVnK244BRe9rYz3tSjXLod51xKCcBiTETFhRVgiPoSJELcHiRFpkuAhMhGiICBOKWkkpqag4PgACyZ9A4xtqucbHZuFmOfk4xHdXA+p8SM7DirOkBT7VKSnNk5x1bicwZ3kmKXIoUgr1Ickgq/NWVvYEDLLs9qtzsde4IYe9XofRDIfRcdMRKBguNsSpWroMLTftGvO8lwbn//ypVLCURMjk5PTo9P2vWy8nU5iFR1PG1eePFFc6M3b98jdsgiOTXNaHd3dzIam2qSWDIELQkAEhINASlZgB1iF0UFPeP9m/def/uGg/6xZ5997eVXFg9uf+ZTH2vq8f7elNFGdTMdj0ehalxNjCm1REqIbEgmbMqK7Lgkw61BzGzv0pXLT7+wUud59I/+8S+9d/defe4QFCmZESpB7SpDiJJCcc4bfDsNkZrxmNlnx8cnD7Kmy+f3yLvJZNz2fUpRciR2xOycF1UEMkMFCEY5ppSzSt7Z2z9//jDFtFqtM+OkHvkM7B14JtX1ag1U2HyUJSMgOa6QU06hqsEKd40n09npyWnfdRpcqBwziioYZhEAJTIw8Z4QuRg9F/fCcsSUQwoA2rY1M1FRUeQPjtptTbO90TYlkcHmqNoW/ar6J78HNj/hYZRkqB22PoKq6p1bLhZEtaky0Jd//dffeOvH7a77a3/9ry+OV7725kz6Li3WNoGDg93Pf+6z5y+cd8RoKs455tKU0hYHLjsmMeYktjEwJKKcoxo658qJqQM/ZhiN8VAmKIBu7ZKIKOUIIEjIwCoCNqjIhhdsICrB+W2RmLOYAiN2Tu4e0PKwmdzugvfMzsBniWzAyMzmJV/3YZT53u++mZ7bOfvIYXQo3tUH+8dyE9qIwQMNqrbyGjckBCmTxTLqI+cQgZhijibqXEU0pHUiQdbskErqi5lj9qjhX/7qr/7Gb/zaz/3MT3/605++/ui1p55+6uBg/5133l4tFvt7e0zcNPV4PI4x1nVd3uBbt26VNzblfHp6GmOc7eyMxmNCjDE657quOzk5mc4mpWAqUHxKybuScMnOjRaLrABt2wbvQwgZUzG2994bEDOVcmpbWZeUn8EoBbHUQFVTY0l9GujebGahrnwV1n27M5m1XcvsQ+XPTs/KbM5EijpmuVgiU1YJvnIuJM2jSbOu69yvHSKYEUGM3XwBzaiuKg8GYCoSzQgN1TIS7sxG7987AekltZ49gjoCAGCg2Pcnp0dnZyc592aGaCbqK1dXTTMaE1Hfx5OTU/bhajNzHHxw09keIIwnOxfoomgZO1DOab1cNU1TJMQiwoVRP+CrwBRgsIpHAxNVDl7ULIklvP74U23W23fvXXlkVmzCvXPrviXnNOV+1cooTA/Pq3OeGAiRWAc7KwYVdixJwIxpEIUxc1rHuqn6nHLOAEQAPvgMyKwJ0Tu/attM2qBziijqmEWNkYKvU0pEAISWgIlz1joENIhJsMRkAjJzPZQ+hauXiAiYFAwI1Sz1ffCeCLS4NcZUOr9ht4Jh1lOFCiEhkIo6XwCAklVrwQcxW626Qg4evt87S+LYCXtB8t7X6HZHEw+glm2jrBAtiW9Q3BURUQHMlJidD4YuW4fezZfzVR+pqppRQ4Rq5h0hUooJDUejYGbl9iwrfINGg5Xs+lIgqILZbLpzcnKWYkZjZiakUjCFEACRmEgH5UcRBCAWLyG/XrelUil3TV03BUkttw8MebEiGzqEc76umi6vju4fvfjhF6Y7e/uH519/810kIkOiTMQ5DUE327MhpVy627ZtQwhd1xUuYIwZEYpHPBEyEzMzuZyjgg6cegAuZ1tWASpxyCZxFOjo6Ji1CjvT0XgvamJ2sc/j0VhyXq3byWgSnKuci1lKfdpUQcTKJKGuRi44IgtWcCkRSWbqiv4UMaWMiJ49KCQREwnMi0VXORuNxl2v/QBgRwMgoOBrRuzbbjIZm8JiuchiBuiIm6rqIS4XywwZicjxxcPDqxcu3b//4M6tO+26syBmcHIyF+h8PUIOGpOo1c3o8NxBqJsUE5XgQkBJyoVlpqaaBIEQAKiN0YwUXd8LuNqIo5g2zfjcwZtvvZaRJjuzqgpNxSPna/Ye2RmSIVdBkqIQQkQQoB5hAlCB92e5A8+PPfPC3uG1RYTpzt4f/uF3/sX/8uthtpuJKIMnNraslkAJ0DOhKJJp1pgTUW5G46TGPgSiMep6efbWnbuzOkybsTdQtd2d3S4ldj5mafsUPDqyoh4X0SqE2FvwnphzSn3XydmZpcw++bqqpmMQK35LTFRXXk0BQMA0ZkQoyb4RLJsRwHQ6cY6Oj0+69aqZjAq7vSCUYJJilzpfBFkFmCyLHjbYdiFOiAgJ4TBh/iCtfWtvuMWeAaAIk2mrcNwoG2njG7Qpg0qlUHozMrOcS/8AXddVoSqNvSOKlqOlBqmdz3/w8g86Sb/55a9M3KQZjXrMjtE5Cvt7veaV5pffemPv0qFj5qQac6ypIkQiUy3PT1WhtCDeOxVTHbCBssOryqZYARU1AkZEUEAiNxh2iSTY7KcwwP9aZHG4cZ8u15E2aRgDBwiAehkr9JbaBlbPX3z5XLOu8/XbcdwCqQY0IzQVYEqgYHbg6lHf4+snvuuf+OSzb43DG+PeNyGfxdpXSTI4GtxdC5RNZIYiYqICAsSMjESOPVNOKeXU+hBCCMhMiK5M8EVNQVBzamsmI7hy9crf+lt/a39/D8EcMnj/3JNPI9jZ2RkSs+cY43g8LnOoku4+GjU5RQMYNbO+b+/fjwdmo9GohFSPx+Ou74hwPJ4UKXvh6HjncspZsncuhCqbOO/IsTdEwL6Pfds7duWKbgugog3eYj9mBoDMjkqLt5EQw2RcbP5LtdTUDRAyu8KpUy3Od1A3TYGpsmZTdOSdrwwxq/iqiTml2Ace/Iuc46xptc4ioXEevBNRUUMwJHNATe0kdnG9DM24qkKXOyMHRMcnJ+16JSqj0YioqZu6rkIf+5yyGcQYJRuwO7h4aWe2F0JTVd6FyrkgoKqpcGmJkInJkTWjEIL3gYjKei735+CHgFB6CyuEFAJFKd4UMcZr167vHV547/3bVx55+uDcPiKslmfRdDKZScqSUxK3f+miOMoxMdVmDgbJi+WUvPNmhcfjLUu5fZCwZIyblfFxoUYgAJJiE6qz5arNQmQsBgA5KzlWsJSSZiEeOqq2a5vQgCqxY9FYxltljGWFu1NwHQIAyRmYiWiwqB82HRAR59gMV6tVXdeMZACl0BERyYJgAGRGznEhhkwmk6y6XrcGCIQm5pGEnKqomhjEGNXME0+ddwSqiZnAMMUsIAYQHJmBZFGC4ouhqpksZkDnU29J9Oqjj7719o3aeQQjYiIGAxUzUEZKKW+m51jgZUdcPgYwZhsuNYIBOudms9nZ2VnKKYSQRRAheGeEZiZZzRTRAAYZLCKWEJWqqrqu25ntqknxc1dVYHNEnn1KSVXMFBGJWFVz7pcLratq1bUvff8Hly5fvXf3ATKpac4CMGDeqoLsCLGAK6W+SakXySKDnePmiClsicF+A8BEsw0SAUQkVSWCnBO70HXRs6lGlm59dvenPvbsR158/rsvfffo9Cgvl4TBYxi56Tq2zahqmgoBVbLEHMZ1CHVKOcUYfCiCl7LXAQATOzcMHE3N1JSVi49/0sLsDlXdtvMfv3PDVdenCSzLOJS8F8cOCbBdrsFEshytjx15KMRlgMpVNKKqahSxj13bx7P5YrKzg4CHBxcODy6/996NN9+5cfvB8Wiyc3QWl51E4AS4u78/nu6Op7PY98QEqjmDgqkaOWdqphmZGDBlMVMAijmriRkyAoWwWi3WIo88+dTXvvqVm7fuXjq3J0nQewQiQ1esigREPYAwC4gZCLLjBru8XK9o//JjV5963jfT02xVMz05Xf0X/8XfW2txv3PIJmqUjRgjZi/oAbkQdXM2USCOMSqbI+c919MddLicn9w5ma/aNG7CzngaY699z0iiWYA6UZRes3hHqNA0VfDBITNymYq3qzWrjSbkahdjV1GoQsh9l/vYI6aYNmiNqVpOmZjAyBQMFcF2dnZCFd59973bb9+ZTCaTyXg6naqKWV6tV0BQVY1omYd+QBreFCXDDN3Uit76YTbPFuMp/3aL7Gwn8lucdfvX7c8X2focDg8m9s6pDfyhoaIycOxWfTurx9//4UvfffX7N4/ujsbjruuJXJjUAAmzusr5UOeoP/jeDy4eHAzxkJIzhGojLi30QHu4IvPIMWciEsmwyUMtUkwRKVw4xLLZFsOc4YkhDgQ6GKi7AgDsuNg9b2ZnWv7VlsJpoI6QzHWSpaZ0Yfz9qpPnzzEt7e2zc0KBQ4ZsQJkQTME5Ed2tmhn4yRsnrx1964mPPN8343eaar3oU1YDFFFAGjSsMBSnBmVVIoCppuLWxc6DDYzIlBJxCYFGEc0iIooOmCjFeHh48Hf+zv/tqSefPDk+8t7Pz86Wy2XwgQg1ixTZutl8Pl+tVg/5O6f1arGzs8NcIDC7ffv2ZDKZTCZ935dZQ4xdWTzb4QUihxCYmIjruslQbDQx1EGcH5pjor5riTKzL2UyEQ0KycLwYi4ggfNsBlVVDUrocjrmIesOALKIqHRdV8KtTLTvY9/1KfUGCEhV3TT1RA37tF71/bhx89WCYp6NAjOJlmx2U7CcLJum6LxjNVPNqlnE2l5OT+6v5icH5y+2ce3rep27+3dPUM17N20m3jOAOu9C8Lqw1apNWZq6GY8mzHj16nUVFQFRJO8BsdQ8qiW6mYrTptmQl1Tabiz+Kw8R/Dd+FTpokYbUFspJZ3vnHnv22be+9611u/beLVeLB8cPlHi6sxeI54qLdVft7lbTabo7h9yTh8r7HLOCMlHXdQjkfRgkkJtmyEw9u0KY0wE8HVyqJqEWlZWkEVVoiuzUlKA4soipsnNMaETBewLs+n4y9gXYKPFVhWJT1HzluDUT74Nzrut7733wQYohEEDf92WUI5JFxAfHxFmFXRn+lhXiVEQliWZkIufyus8ixAGUkDA4VhJVIQN2LrsQyHHsOYvlXslAypyeSqVZTncos50hfcYAVJHaGEPdSE5/42/+rR+9/Mqv/9Zvi4ovWbCG2UxNEWCb5FXKAjDQjV0IQBmiarHtB8S+jwX86/q+5MaXrXdrhlX+pI1ojpnLLQOAKbV93/vgiDnllPPAbY8pUokOVDEoIDfmbCXEro/56Oj0B9//wen8rEQdi6l3ZAKenYKl1BPxRvxhRFzGBwDbtUqFMw4AzEQ8CHOISKQoZT5IOFYxYvTep76dBHf/7p3L++O//dd+4fL5c3l+92Qx+VM//affeu3tX//N343LOfpKAHKunK9Wq5ULnpBTyjFGh8xIyERYILGND2Rx1y1DtyIQNjAx0qyGGbUKfhHl+6+9oU45PHFYud4hOxiNgiUjgiyqWQmpj30iqKogqjlLynm5XPZ97FKsRyMxnO0edF1ctut1d+f8+YtXHnnKwuQHr7x8vFyvMx0vO2rGrmqanb1QjfoYGQc/cgJStGIGCkWuBiaSY0zbIS+SK05dZtqntI75+Q8/P57O7t0/enB8dnl/5kMVfCBAUWUUMCYXsuQ2t8xQ1Y2yP2nXEKpHnnn+8Nqz5mZrAfTOV+O//1/+4re//dLkyhVhr1GzGqE6MWbKaEDEAKhS7mJCDM4ZgoFmFcjoHFWTKXnXhmW7Wkjbu6pnQmJnQMgOsAR3Y9QoMU9H48pXXbfuu+i9n9UNZ+1BvfdE4Jxn71OXijYq9n3BIRCRqspVVdd1KSXWAnAERIh9K6KT8fTKtWsuuHa93tnd3ZnNADGndPvOnXrcjMcTmS8VhrnPRoP5AbV5U4ugqjH/ScrzpsrZfr8L3pGDze1cDqltqQB/8mGbYdO2kMiSoNz8BmaWknY5meZR5b7//W/fPzvePTj34P5xM91pZhMAYfK5bS3rul12XTdpwv/yr/612yIupfkpkMDDT3RDYjBTLRNoJFAteU2EmNU0A/IgsQNTExEWhhLQCDbIX4kKz3u4TCAyONVSSR7xzgXv1BRQmUidn+eY52lq+Pily2ej9eup61441+2M8LW7OF/WTOirLBoMImUxzEnYw6OzvXNRXvq9VyaT8cTgmCEwkiGrYLGw+oB8XQC24m2xJQYZDhh16epy5SsgAig8h9L6SPDctusv/dVfuH71+p1bt3d3puwdsSMXXPAp9o5x3SXp+/G4Pj4+DiGUgK2qqk5PT1Tz0dHxwcGh9x7J1YAiMp/Px+PxaDTKOanJarVS1dIRjkYjwux9cC7E2BWLqlKr5ZRyzsUBq6qqwfmXKA/ovPR9v00EQ+QYYwhZLXddV15yTklUQaEEHSNRIQb1fW9ZFotFt2pj35X71vmgZrvNlHzIYut128buouNONYo2jMjOeZdVkmYoWrYNa7eP0QjNRCXFPsZeNMe3f/zqpSvXmuls3i7uPDiaznZ3p3uxjyn1KWZyjKZ379+/f++er5pLly479pIMCPqYmZ0gAgMSZ/0grm7gpDIyOSEdlKFIW/epYgte+ory9m8GzpvEUMCY83hUv/gTn3jpj37v1p27q/X6rLcu9bvnzhsgoI0mo65tadSE2UTvnE4m0y5LMiUwREBmUGNk3BDKYNP0qyoTEVJh/YHZYO0FUFEAw1Xuz4W6vBBEKOaKpWxHwlBV3nky8s53fbuYz+u6Lq2I865U9gWOnkwmOcMwZN6k2ZRBDzvHjnF4yeSc7/veUUHNUDQ579EYkSRnJCMkMigLKcZISKpiUDJBiQyksHRVJOeaOZLzapJSDObVM3kqUDaYKzo4gmISA2KKZmbrrgWi1XpZ783+23/0j7KYD0HBfPBEbNmKzX6pWMqgajAms4ITITsyNUQ31BaIomIAHIKi9SmOaSIimjOAsnNVVTGClTRALXyXweADgEytrkbL5XK2M3Xk6qYSETDLOTE5Kz4kWHjlqMkAMEuOkWfTnbt37v6bm78+nk3qpkICx8PvYWYEU0MDNZDCwi4QeVWFqvIFCkckdi5JghI0hGhgqsqARjjMKpFFxAMhWt923rtpXZ/cuTFx+jf+g7+4F6y9f+NDj5y/dv3T1x97+mc+/okHt+5+7aXv16MmeUcE8/lpE6rgK1UQ0MAhOF8GDoCwqbbJTHMekixVycwkZxXh4p2KltWyQZ91nfR7r/x4Pj/78LUr184fjiZeIWruSo+fYw7OAbksJm1k56a7u5PplIjOzs5effW1d965EUVHk70MYMIpe3LLd28fLdbr6cHFG6++tlwJhUk1mSJQyuaCSRID24i2QREAoSwm0Zz7lHMqd7sOB1u5diWVnpp6vLtz7sUPf/xbX//qC089tR7lxaINU4femZqZMCqkZIiummTIp30y0XMXrz79oY83s4NOyBRypr3x3te//nv/5J/98mhnN6sBKqoRldsaCI3LTI5YDFLOIkKeiUHUnGMAEjETdUjkmmY3VHWTurbNSqZ9zJDNwKUk6JhrbxGNqR41Dhiy5pRMlImaZlQFqH1VoxsQGrKUexFDJucdMce+7/t+2IKYCx0wZ0FEIE5ZU+7A6MLhJR+4Ho1DFVTN+RzqUdeWPJBQHFVKTbNVcMOG44yEqqaSmQNu9F8P4zoP1zTl5wwzn01CX5mEbCuQ0rSXOZKV8B2EnKV4VkHhqYm2fWLCS/vn3nvnjW98+xur1ENfP/v0c5HtaH4kfd+Qq9j3IGLG3vcZmvGe00GWkgvrGwCKAXE5Rj6o7AjoIY8fESk7ZRaQpDYUSiiQEc2AC1xsG4uPolgQVR10cVQ+lyVrYRmX6fMmoAoRctacBJioIj8K432/bumNFOnRmVp37d147rgLQJQFGZ0haPn5Cqv1eag/VO+8fPeeni0c1qJQrlSp7GiTTkKICpqHwRwwITKCIiKKyYCuo1MxZQUAIiZy5cDFKOdmu1/6uS+yWQhuvV6Rd4ZkzFR5NDWA8dhPJpOmqZjdaNQsl8uzs7Nz5869/Zbeev+mDyGlRFSZatOMygw1pbRer+u6noxGcWOsWURblnU6LT09kCv3F7SrFRODlmkOpjREkauqSC4A+5ZWpmpEw+zWAHLO5TeWhjin1Pe9dw5ECi8KAdk5Fa1CnVMajaaqMYuawWg6VYXTB8fLZSuWezEjHE0mctzFlFAFAFzwCkZkjIglS9M58t5ALBMSgKUnHr9+cnp888bb1XRvHtP5a1cE3f37d8HQORqPR+w55YSIFy5emsx2mUPbdsiOnANNZUZbbix2LucMKFTOByICh8jMqGbF86Cg+zrU6sOKsEIxHUqBIaQKzFRs1fXPvfDi1evXv/2db1974VOPPvPi3v7ewcULXVvgkGBEs4ODC1cun/7wrdk0SI6EVFXcddkkBxdAoO/7ylfb27ss8pyz4SZBCJHVkNHEKudDCJ0kRHQU2DGRJsnFxRgGJxEWg9j2nji4sFquC8crayq3s2yyl3PKgFBQwNj3oaqIWfKQCQoAzg+BD3VdL5fLvu+rqnKOJeXY5a6NIXjHzMhWFA/Eq65TNWZXLBWCd8WPwzkeu9AL5ZQpGyZ1CszkakZh4mJLY0xMDkEVUXHY17BEALoQuuUiqZDzvgp333/fV6NmPCZ2hKRkRgBIJlGxwKKlmQEAMDUtNzNYmfn64LNkVS3OfqFqVqv1ZDINYTjmy4xMhjjnYUkQUdF2ICIxBV/FGHVw0oqI5F1AFEkiKo4cETMBAmQAJBJVUWnqGhCTmPNeVQFLV2igCApa/EBAy7yyECUBrEy6txAsMhU3r2GwoPrQaGAQFiJa10Uyq3xVhAJnx/d+4U9/7urBdHX0fjC5uju5OK5hdeqhevrq1W+89FK7Xjb7o7Oz42kzm0wmBpjAnPONqzxwL5GG7A0FV8yksK5DSsXAx5xjYg+9QVZUQwIhSALLde/qsUB86+YdOVucXji6cPHc+cPZuHFIyIBZVLRHgyzSd63zvs95vloFH3b39r74Z7/0zrvvf+Nb3/nBj16f7p2bzPa7ZTpdPrh/enzn6N7u4bnDK9fPfnwjCTTA5AJ6n2UATQkVzXLB8ggInRSgPSU1YWIgBAEzLfmUSIaoIbidyXTcjP/SX/r5k9s3X3/tjUvnPnX79r0c4+5s2gRvDEDoIALyYq3ztp+eu/D0ix+7+uizWf28h3rUrNftdDw9OXrw93/xl1Z9P9qZOKK+iwAUqqCSDQXVgkEiiyB18Hm9Mi7NjjITmQIRuzKKKZpjwGpUO4c59utVjIkYyaOrajWU4iKzadIcu9oHialvO5KytkxQpe+FwAEGHzBw33cpRh88DniEK1LuYapbMryARAXAGF2oQzOqDdGUVJIZHRwcnp3Oj4/PmqaBjSmdbcQ9D1HicjFKLh3F5tzRbbhpQVgHGbhBllxxNcRsq5pZYVVvH2ZW5su4sSYefpEW2+uh0lDVUI80RZfib3353946e3Du3MFf/PlfuHX77m9+/cttXO6MxzlJt4pd1x2cO5ezkPHxg6PBGjinnLMSFQqOK+xgACzIMCEbSnnejjiLoXOOHRIaGWrGwV5MDcQGMvXQh5eOm3mYY5e+zczYBcO8gVUHYyDJagbEBGCSpEJc5hR296TybbdquIn7zSsPTn88a7/4wsX1D+5cPJYZOQCrBBtXJUpiXcXeKzpAbOMsNEedKgKIIlMWI1MKxe4HTRQQHTsD1U3QETL7om6QMsvkTTVKxQ8UzNCw75aHe+cvX7oYSggfKwXPLvQ5S5Y+xrppUswIuZx2bdvmnGMf27Y9Pj6+e/9eVdVPPvkkEpWqJVRhd3c353x2drZardp+NR6NnXOFrWmmgiV4pFA9OGp2zKU4zZpT6sxMgPq+977s6SWxleq6rusasZjZOwCo6yrmGCrfNM1qtaqqCgCWy2WoQlPVfd+ropklybWrTCx43zF577s27ezsOufP5sv5aj0/m/tQ1dV4tVrT/mS6s3vv/r1IiipF8uPL/0xBLIugKhMQMbqKnPPedvarC5dgfnq0fvBgcniY+lWblICJfFNXQND1nXd+d28/ZVE11cTsmbyqGpCIuWG2YoTIVOwftXBbi3qbnDOJCIBoRKhqVMLV1QANS3dowEhmCFBsWFDBiHndri4eHHz6cz/7K+/88t17x49+iBrfrLvOgIJzy1UHjFT5R558av4731y1rQKh4yjivGPknJIjDsEjDDnYRFRkSqoKCDklYirk/HLcOVNH3PYxppyNBYGJio1Nw5UZaAlOQqRQ9TFWPjRN0/W981wwD8ek6sy0XPyUcpmgF8ozmKWcqxDYOTWpqqrrehEpbP3Ux5SSmhE5V1Hx9Co3qRYnaNGUsgs1ksOUEYGJ0UyikEcgtKyimcAqpnHwTJA011hswga9p22wkEHGXSxOgFLuxKBMoHZ3drPY/eMTBTBgIgekjGaIudijIZkORjRc6H1DYTsIWVUEkRxDEhORumrW67ZP2XtHRORYs8Em3rjsVyKSczIbyNRomHJuRqPVauGCA9jIYtUMxTETo2QVsUHeDZhzyjnHnGd7e/ffeKCyE0IFBmUw4503McsCCCpWNnQz62MPBMRgA+mHNu3v8NyINnsnk4jlrKpKAIRsppWvshqY3Xr/nQu70xeeeoK6tcn68NJB7KK1KyXu0/Hy6L5nUO/P5mchjGfTqakKAhIjYkypqrwDB2yDsBe1LNSUrNDkS7PardclpCylrJUvxdm664iDogWExx9/ar9pbt5877XXX7169WA2mYzrUXA8bkYI1vXtuos+2+li1ac0m86OT0/v3X/gmumLH/1ENdn/429+98GDxWR3F109X/VCzdG8w0ouXL1+//g0GapoU4ckQkyoBkgKhqKAgIpRYhFPenYGNIycAAv+P6D8opYtuBCYn3v22f/kP/k7/69f/M+Ojs+uXj5YrpfOMUBtlbk6xBjv3n2QqXn2hc8899HP8PjcOoIAsverdQxUoeZf+sX/58vff3l2br8nwiRoQN5LSkigiCTikZUxgypYn6KairFI9lyDAYiVgxKJSz1nDlCocMV8GBlYNquqpo0pxl7REDCrkidNKTDVvmLn1TKo9uuVD01TjwExJfUOQ/B918fYIxb/F6n8KGrMJgXp996zc30f+5jqupmMJwVacuxEpOgMqlAfHFSr1apAMqWvRsTCwnGD4E7L553zZoXcVpjUukWMtvyh8ntFpSxxMyMmxuEnbw2EdONHpWohcPmSd86guLaCJi1s5U7y4e701svf+/2v/+65K+f//Jf+N2+88c4ffeMPGeHaxcvL1ZyBJcqkM39n/ujFqzGmz3/i8y4raBZ2ARRMQQFSnxGInENjx2zocuEIKiCyqAxOQGCmRga1r3IqYKMmMUMicGJKiCYqxfNtmMsOwi+RDKxZU9YECGBkRogMxGiGhiYADqP1XeqmTQPAjqukAo77UXN/Nvn2ePdqb9WbHd2ez6pasvTdKlQOBVBAqypl2B1Ptb+/yutxCBrFwBMAqGlGdsjsBdPwBgCraOozYnFnUvRskEVzqeqyESHmDIjoPKfcY8NHJw9+67e/8pf+/JeW63kzHqWYrU9NFUCl8U6kOBPm9XoFoH205XqlZHfu3yPvZ3v7Zyenq64fjSZZckp96qlHJKbJuDEAybldrcvyquuakJWM2IERGIkKqgJiYJacc445pRL+XEFV15WqpZSqqipLvHRyzGUn1YGVhVY+uZmalXiXnHPcMIdITTiwc875MJlM6qYBgNj39+7cWrf9eDwJgaP0p3fmdrhXhypUTUw9kwUgp2Z9ouAQQRCiSeg7JeNQJaUq1MQKqk3DRBI8xsX99187TkKnZ93F85efePqpUI+WnYnZ8vSMQl2NGkpQAUGh0iNqCZuAQWTGSLqZjyBi6e3REI1UjAKXKrcgPwSAUMTYAxlaVACNiuEnCaAS8OnSPvTpLz3+kZ+e7pwz5BhjFp00DaaEkpBwmWzvyqNazWKfq4r7FCvnQSxJIiy+LC6LEJEjdIRJs4AAg2okNi6WG4ARRDRXwI1xawTVyETMkioTISugiCcOzrvCDiHMJtkSOwaBmHpGdCGAoYqlLIRaVZyzOOc8O0Y0zV0bHTsCRFEAyCkF5zrpc0yOKSP44ERFBWOOZsbOoQExKZgJioAappSYTVLfVFXwgx8JGYOU41KixqYJDYMHxKRK2UKQLKDG7HQwkjXnfRI1ADWLkgygGY3kbDndGc9mk9v377d9V0+n5FxhKDtEQwByQJAkG0IV3MBe8j6rDokFjEkKgdzElIkYoKk8oqW+s6ZidqpQ3FuLL0e58bNkQ6xCnXO2XCTrWC5C2652pjMz6LsOkQi8apl1QEopVBV4l7reISOiqYhm2hgLpT6FKuQkyJQtKhZVIOSkRKgCkrSqqhSVCAqvAgDQwKFXUIkiCOwcEFoWyRkBCAzUiE1U1aDNuG4Xy/bBZ558dmZdFbGqq9neDLrU9bJq56+//foPvvONPnZLX/XVdDzeWfe5QuSA5k0gKWAbO6QCC+DACjAAgJzNOZdTLveLiBCqInHVpKyhvPExAlFs+w8/+9if+tjHJui+erK4fffmWRuCSn/aomtu3ntnf39nf6fyyH2XM/tl1561dy/Mds+OV2++/716OvvEJ37iycev/tEf/cGPXn1fXIjse6gDVXfvL5rJzt75S2eLRVNVaBqYTAwB1bAsJzFA/MB+JUlEACrXUITJgQFoBoMsRuSmk4nllLP7xKc/8zf79td+5Z89eu0iu0pj1gaV5Ob9WzfvHj3y1HM/+8U/t7d3rVNWVUfYMCeLZDKqxv/0//3L//xf/lo928/qCEm0WP4oOZacRYWQFUijIIKgxJxVIPhA5BWI2YPiYEKohEBCoqjOOV+PPHFv63bVAWm2RGQ5p8Ley5qzJtU+p2W/XtXjmTjvLHkkyMmTB+c7jb0kWRfrE8cUDCxlXXctEZlCCN5Mu64tRuGj6cQ5X6QJSC6rAaAoAjozYabRaLSJc3dbi9Ry8YvghtmllOwh/sz2g4FtXIybC68m5+Jd7krICgIxKkCZ6CEWm3IsZiDoOImIKbOLMZplUpVYaGpIDjEk4PV3vv416+PFp6/+8fe+8dqPXmuQx/WYjHM1WpwsPv2Tn+CjsxvfexnunzD7YOxg4CdYYSoQoMnAVlITIm8miFp7pxv8hrm02YMcdEAbVABQFdRUTEnFkEoqNdGQ/DfAQmCAJpqzZAMjJCJXsApmX7yl1Qw0gwkxNKMRKcU+ceUX6/bO0XFG+s333qrev2OHj37Iz3aO1tMuNgUjAXO+avukPoyaGhjCqLIcQdAgoQvF2LSEJjJz6X5UDYEKS6bI+xGRvbOYiVElA1KxijYwVDCy0bTpTxd/77/6rw72dj/68Y+eLZf75/YCkkOQlH1wqxR7jZZyu14jYRf71Wo9mc60GL0CjiaTtuuiaqgqRFBTwNJpGxKGEGKKxFQCkkzBgFKWDYsTsQRwmIlkImLHpZCXJBubBNsC+1toHTeGBWYCiqqiG/OhnNKWru69zzkToiNGxMlkLCI+VNLr0YMHR0dHKaXZdLxczmPvR5M6Z9UMk8muApH3mnPOQipgKqDAjM47FxgBRTUrki+22zGtAyhZhpTqUL3xzlsvvfz6ySJp1HN7+0999MPXn3pyMpoksSuPPSqaEAgUnfNRZcOi3dgwlDpmI00sEEsBWouPVjHgh2LzvXmlG+zHssZSNBXXqKKEYuYspGE6Gu+LmWRhVzkEif38wdHp/Ew9cl3tTnfq/fP9rVtBzDnHRCpGBK5AE5tWpgTxAm7iH9CQDBXIsERFIVkDVCFrzlFBiBgYywzRivcPEWCOqfFB0Jho2FkIPDtQRUBC9r5idsyckjgerCUGqAMgeF/OieLHB2q0uYKIgAjeOTEUEdoaeIDlLCkJB3SujBgSEzZVpabJxPng0BEqEoArXsuIYKSQVdlZjD0aEmKRcg1Ecx2cccxAFEKopVu54NDAQHLshhxjNcfEnhRITACLb4VmU8ppqO83yUOSExcqdFIAcMTkHBqkqqq8j7G3jRQDACIUy00gAmLy6Nn5gu0zsxS/brS6qVars/V6NRpPhvUDDiCDESIRO0Ur7AQwiDEWanPd1HVdl23PtEjoyoBSJdsmSsjnnIsNtG3s08qXylgTDYFBRGJMaoobN2omEhNUc87161aZ1+uzg73Jh5+5zqlbrNewM1ktuoPd2Sou+iyPPf7Yp3/y42/9/h8Zc6inCI6QGMwRKikgExKasSPFEtdYkokAANi5TRKSmRoTiyZFK54paGaaVYS9Z/EvfPiFR68/+v4rPz66c//5Z5+99vjhRAAsvPHO7WYyywqLxVr6ro926+jk4rXzo8ot5rHrlm2CdtX+4LVXHrty/rOf+/T1R+9+/Zs/uHnUCvtWIzBDyiQior4QqgYaOG4mhp5UVTWnLCrMjMAlRGLLMgEABDJANPU+1FVgtL7vztr2z/3lv9q2y+9//Xefe/xRkXi0WNx/6/1mZ/TZL/38Rz/52Si0NkZfgQCAMFBM/XQy/ea3/vjv/f3/WjlgVZcrYwSaUy4k+iJQLASXDECYco4pMjlCRnSmRdIHA+xXUjWQDRFBiQMG10x81Uzm84Wa5q5rAhNhSh2BrNZnxN1qnt768Ssf2b9wcracMlQ19bE9OT6anjvIOYPjOvicsxmpipql4lhYBQBIuczGU1U349nE+ZBzTiqOnAEE58vNIqKF3Juz9LEHgJI5UyzHytBqGJL4cpQzGBY+5cNsnu2seQtz2sZEp3xsRIP/HhIzF7V20oJ5U9KsZo5L7w/syxzAEDHlZNQq5UsXDg7r6sbLP5JxtX+wo60yV/N1d3x0dnTyIH3MmnP+8lPn655v3D/+ne98zWFh9xIgAbIBGROpGZiYooKJIQIm0yzZDEpYlWg2tZKPuxHxl/1nCHctKpuClZkZbm5sRGSmgswP9Cjm4hFHhKrZSmsPhllrtQVA9qRooBa7ruva4Pj4/tGqb48q/RW8t3z6iafeo8dvridRE0n2kKQf+1Hs+0efffyzTzzy6r/9coCAQGqQczbDEKi4C4pq8F5MkyQt2qGcR6ORlDQldkbsiMwVEq+JqIoaZPQcYxqPx9r2v/SLv/gf/1//L5/67Ke88xIjIohoTFEZc8pNCITUp3gwnZ47gLpuiNytW7eaugaAvb29lCOBM7C6abYcAkfOCHwIzBxjRCYFBbWcooZgpiWTpuCEhaJY1pbkLJJFnG6CWh5edvpQxm1h+ZS0+bJfA0Id6lJgheBjjKoSOIQQ6ro6O5PT0+PFYnH37l0zi7FfrRbj8dg5vHP37sHlw+PFundcjXfmd9+fVcwKJsk5duycD+g8EwMO46Uq+LIqxlW1Xi9zzuPJ9MHJ/I033omdrFc9Zn3rwWsvv/r9L/2FP/voI9dDPTqtKIf6YP9iFszIScRvWDXw0KPMWrZ8Dtq4aTOzqBQazfZq4DDfAedIFYoUnByXdRtjb5vo0rZtCwtjuViB5LRep/VKCMmH3Md6Ntl95PKN99+bgCfDmJInh4CAqorJgBEB1IwUCmALaPCQKQMiMqEwmyZgpKy5j21ynEFVRNEcUNkVkMiV856wEMULTOi915yKsEBVY0xEOYQqBA+oknJhzJT3l4mTJCJyzG3flVu41MGSxfmNJ9BGc/FBGS3CQwGUm6bxISxXy82cvlAKxLKhgKKVoauKgVnqYhUCIYEaE5ViyLTAGIhGoLJuV0lyTN25cXN2dtK2ax+KS5MYKTEZKBZSJAIailkfY+W9mcUYFQbOFyGBSKCQc06SY9cZQNXU48lksVhsG1AkUlVfnPgJjQoV0FLuRYU4qKiBIiC7EELoc2qgXEBEKIykItLEIgTx3pdI4+3yyzk5X1dVXcYBpUsGQMJhYyxQq98wsYZDGrHk4Wx/VOlSgNBvfRzMzCyLBO+ZJa0f5Pm9T//UJ566/lic32NnVQjO6nsPTh/MT69cferRS9d/8tP5t157u8sYyRjJAREoGpCBWJnS6RATVN5xHBonK8kAzKJSdvU+ZxV12CMaoEVJfc4uhKDNvZOzm8cnX/7DP+i0/diHf8qw17ZNUaZT/8zzT053xu1yfvvWnbffvVmP6osXrty6dWvVL7NAQpfF7p2t7x29ulNXFw7Of+HzP/PaO+9/8wevrXNOgvVklmMeuO2ScxYEQnSbVpzKaV3CcTerl4yLxPgDQQ8AaM5NVY3qitCcC0noldff/Wv/x78t7eprv/0bdVNzXX/ykx/903/uz++ev3I2b9mNzDkwqNFRRav1an86vfPg6O/+4n92PD89uHCxz5INAJSJkcht3iBmRsJB7MMcY1S1ui5vowGbWbE3LDAkAgABohEYmgkQQvBsPKLJYr4gtbicM+SR5wkm39D+4eH+/t7i7Gi5OOnaCJa8VU3N63Y1lr3Ke1V1ng00pr7rEzETY1NPRGS1XglYCGG6s1M3DZDTjWEPIpatsiw82WRys/c1YUqp7BXMvPW3K7HBwQUohHPgrYxxu1wfroQ2fhPy8FazfYO2C69MuYs4nJDKWBYRxazwQ1QUDDQL53RuZ/+L/4f/3Y+/9XsPXnq79bN6Z7dDPDnrNOMYK9jbffX91y9N+fy1aoTTm0c//rN/7a84NMMhZUMRjAjYIUP5HOoQgKpZh4F0eZ2GgoZlWLSVWBeVE5EhUsbsnDMb2FLIDjZTQ4AtUWPILgKwonUyU1VFIEBAxgzaeV0GPcPYk7b9qvGuM7h8/vy9I2bnVrV/aSzpscnK2fpue+0kTchFhhXI7bS88vyTn7t67Td/9Pqdd4+CY3YIA9w+KEhFte26mKKvfNM0Kce+70HNMasIA0Q1MWPngAytiFDUjLJkIY1ZaiIivHLlUgghxdQul03wCNj3PY/qqqqYMCat6sp5H4sRUOoWi8VqtULEpmkWZ/Nq6pz3KaVCQUXncs4OBiY/EQUfhMQUAQyxYL0fYDxlDYlYcSfbui5tH9s7f4PAlU+WN6IgFMVDpVC8afMxE7lsoqa3bt26c+du33eq0ozquqpXy0VRAx09eHDlsetv3rz1n/7nv7Q38j/zyU989mMvxOWxw+I7wJW5EGpkp6DomB0XT+C+6yUnRnNI1Wi8WvfvvHtTBLNSSjb1lQB+6Ut/+pMf/fBifqa6vvvO64ePPzMKIbYaRQ25pLPZxmN0eyP9CcDjIYkmDFx82y6AzYIEROxjd3Z25pyrnCvfH0IFQAUprEPouo6Zp7s71vXqAs9mmWElUVWCHx8+8+hb3/wGMZuKwyGkCcGQoBAthtubBopKGfmjGRCC4fCHKjPXTe2lV1Ukh0VJYsCOvfOmKpKrMEo5+RC2pyMSldpjkAcRVJVHJEAxIBVRUedJdBBZFJE8ACQRUfOVLydHuVw55YIiwkaFgcPJTakgLoiIOMSHiRCR9y53YobEniQVHDejKQEqBeckZ8/s2KOac6xSGNDqkJA4azIzQC1X5y/+/F/41o9e/uGPXq1nNaKW/0zA0ADBOZcll5Yri0SAUgISADvHRGAgOccUDUzBivKYnKvrej6f6+BEYENcMGYmQti0EJIRQbIqCYASgqqK5lDVKeXVatXUYzDLOTrHtpXvqThCVWu7brsZEpFqoeLBtlIvSFtpW7e8+FIAlb4LBq8KEJGSXEublGIXfGw7RCRGNEACz041dd3p8uTG4+d3f/ZjH6/J8qgee26qSmM+W69cqANX9+8ddUnr0RjOVhV7QmDAyjt0lkmdAQGWYDnb3ETbp1cyVcrmT0QqIoaixi6TAwBcxV4YmbkeTb/zvVfe/NGPFrdufuEznxhVjkz9aHTv/v2PfuipZtQIaODRybHbPdj59HMfmS+7+/dP5+vFveOTdUr1bLzqE6j0Y1y2d0jvT3f3/8KXfu43fu/rt4+OmTmm6Jwrbx0ODyUgMCiT0JyjbOw6yy2FwLYh4eoQZQdZkguj3Z1JjN2ly9f/4X//z3711/7N3/rr//ufeOGZav+bhxfO/6W//B88cv0xUT1e9ASBueqT1MEzUhbhyiWR/+Yf/IM//va3D85f6lMmri2LyhBwaRuEA7ZGdwAIKDkzo3dcNh/nHCCUfKni+QQDucSIiYr6D8FEwbvJbOQhPPXIc2OCRy+fdw7292eN152dmdbje3feC+NzarJu1+f2L3WLdbteT2bjvlsvobAn1XuvZqv1uo+ZkFyopk1dN41zrEhbfjGYSckD2DTP26oIERyHEEI5yWDDhi7eDcMRwwQ6aBMevgjb6mp7JOEmbuyhuwO3n3/45AIAKXoOLIlSZmZFHGNmfYxgdrhz8OZLP+xu33n6yiNv3vjxWxzPFqex5ZQsOEdBP/7885//2U9TXuB89dV/83svfOyT/9H/+T92NHhllmLrg3u1yCAQkc2GcILNbVmsLzbWI8MBXOrBIs0Y4jy30FbhC6mWF6NqgB84XhRgVUSGq8c8gDGao8ZgMCZerxbHckYed9Ff3N09UlHVnTRdxNVphW+NHc4O65317JVjO2sT8z2UJ7700+Gpx8xPPvTs87dufV2ZGEHNJMWUBrtq2xYFm1I0pdR3XV3V6EFEwCDm1DhHzI6pNJoxKrHTmFKSC4eHf/fv/qfPvfDcg9MjJKjrihFNrGnqaIOpbtu2xDxfLvu+77qu6+J6vSaiqqoIaTwarZbL8WRcntJ2sPjvGycQkZoYlCNneJtKJV5crMtlL34bMHgOED6EPW4LILMP6J9lmgaF9KiqSojU97Ftu5zzYrWIXRfX7XQ62dvbVcsicuv27fVyGXzY39+/evUKhVCdzFdR2PR3f/8Pn33skXOjqmtXFWNM2cVUiVWOiZyaOfDBB4YiMDADFVNDni/WP/z+K8uYO6W6qtn00UsXP/LM07KaN5g5NBz4iccfJVehgXO1gJH2ZYT3MMq1bSO2hc7D/QRszMqHLmdz04roer1umno0GknOKYmvAgDnwa8ZvPfB+zb2ohaYq1AhKBJUjqXve7ILzz7udqfd8aJ2UPRHCFCcsbT0N1rMDoHIIRkiaHm+iAhWZlJmigjeO9G8Xq8yEzjjAo4jMlPOORWcz6woQZm5GDcAIhIzIWABn9k5p5bKhB4JmVmhRFgO/DAR6VNCpgGqeujYK6MdgI37qlrJnBciT4x+6KdjTFmEmAidgSiAY2IodvKmYKJab/cFYmYCUx708ABIjh0wlqhEYidgKafD8+d/cjz+zd/8yrjI9gDK3gelshwCqdDUAJOalSK1pE3lnBHK6AENAEhVtYQTee+ZuW3b8XiMJUZkqEVhu1OJqHPleZobbkMxM2QMGNrVOvtcUlMAqeyaUjgKoAAUQgUwVJkA4Fy5hlJOkfJelF2oXOphEI+4TcLZ7vtbJyfbuO5qLJJgG3g6BtEgaztfPJh4+yt/5qcPa9f2i9FscrA7GRvfvXGbZuOm2ZUk65h/9MabR8cnSPW4qXMnAhBlewHYQDcrccPVByi79NbupTy3mJKiI3KGicBAYbleiXPeOTYfo7x+/87Vvem1J66MPJ08ODs2nc4mjlS7M+e8Z6aA1x+9itZ3y8WlC5fn/bsRwTFhyifzBblm3amJat9evZaf/vCHn3nyqbsPvllumWKjVUx6y7UhcpJFVQrmLTkjEyICYbmkpmVeh0TDkawmzhExTJrpq6++/mv/+jfu3F++e+vo4qVzn/szX/rwhz989foTq3VUsVAFJt/FNJpMUDTGXkGns+n/9P/557/8K79ycP5CMcGrER0zkLNhZiTOuW0KsaoW24i268r4rgzBtwUB2nZURGCAija40yN5Ms8OLa3zOIQXX/jQExcO4vxkMgliPeZVvzxtqtF6eXay6M7v7Ui0xXIlYicnJwZSHFWqUMXYmyEgFBPYatzszfaANyHEOjhLSc5kQzwwbED0h959LcsjhFDECsUxq0Cb23VriCWkYnO6/gmQfnOjycOlz8Mt64bF8EGTAABZMiEzUZ8FAIgpZyHELJJyrp1vfPW9b770a//4Hz1z/fLZcSs7qBrny9X6bD2ua+T83hs/eO5v/PzPfPGvIk4uVOffvHu2O9ov2QgEQAqYFWhjbl0qIFMjQu+DZCr54YP5KWA5jMtnRDIAhBBSimV7RSvWF+icK4E55RqVAzZlQyNCos0rZy7ofhkKAKJpVFJ5Vptn7wuexbTr7+vykBvnQ0V0PpzDqMeLqvIMDK/3q3gxVONrO6/db28fX/ziT00+/fEHXfZJX7j+2L/l313mPOWm4GiI5ENAxBBCCMEQYo597EunG/t+VDcEGEWqqjKzKJmB2BwRhVCx84AmHXfLB5/85E+++OKLy3ZRV1UXW+SB9sDBV4hHi7OcYsqZVLsYC7Fmk9AEnvjunTuPXLuGBOv12jk3Ho9LF1i683J7FARSVZEHTbuqADjVVLzUyi5J5ACQyRPFTbDa/49l9+8UVeWRZeg/kVwx+++6TlVDCCOpZ9ORqR0dH83n8/nxCSDOptP9vV1EjDE2TX00X164cOny5Wvx7Dim9R9841t/6U//qWRrUjPTnFLXdowMxPPVvKmbyVhMkoo4ppSzAaYcX3319fv3jyd7B05BFVanp5/90CcdCKpULiza/uJjT45H43mroWpaRWZ04E354RLn4epn++e2wC1iy+3nH+5xRVKK6eBwnx3FqERMwFFSKUb7vici7zipJwDsk4iASXbInjG7ZYzTqxd2rl1c3nvQhCbnlE0ckgKqgGUJLiCW0BVgpmJDUCgjAFjivkRVJDNK8J4dW1F+VgGSMHHZMpz3ABBzrkJIKW3n5abCjhQUAEw1Z1FJgOq9N1NmKNZkZghmzJxiVDN2zkw9h7IMCrlne06XH2WbXOiUsyNPSAVQ2UICosqbyX0pxBiQBDgwIIiaqys18d7bxhEjWy4SMEJCUQNAQuc8RACkrPbtb3/33OUrwVfe+2yk2dAhEm5sMtB5P3QICJJzSklS6m1QkiOhmYXgyoFooGbZDLxnZlyvl6OmJkJybjPGKg5sYAZq4oxBwRBEtZxKxKwqzL4aNX3XT8YTQpQsWABXNMe8MdAvrkIKAFVV1XXNbpgOOOe6ricCJlIcEhz7vg8hlDbGHprnbluyYYkCsiM1zaLFnaSclqoac1y2Z3/hz/ypD12/ur5/l6pqf+/ydOKWd97vutPLV65Ndw/W88Wd08X3Xn1t0Se/uyOSzVDAUnHiZGYCYmZwBghsWN5lkZJVUkgeMcZSDiJRjlA3Aaw1zWa0aldADMCgSBTqvf29y9P9C7ucVsFjBw4dL1ZnDZj3VUTfrturh+dWi7OD/fF7t056bad7o5949rkaw9vvvv/qO3dPFzGTMdOd5fx3//APTo/bJkwZGAFCqMseyOwLlgkgalmlxFNqNkFR1QQbUAGZiRhNSm5msXj1gYhgujP9z//Lf/jgeDHbu/CjH7/FLr395vf+7/+PJ1dJumiz8U7sO6iAq9AvV5Xz6nBajV/70ev/7T/5ZQgNQgDHMWbAjIgMxT4Ey9atG4BdVY3QTHPOTE5NA7typzJ7eIgoA6DE5JhzmUuWSp9IJTvfqMpv/dZXqp/7/JVzO+vVgkmmI9+369S3VXOgxqvVelxV79+6e+78xb7rTo/PfGC1HHxYr9fkaDqZ7ezusa/YuVCFdt3mLL4KOYtmBQA1U0KmP+ENsfkYCIebqxT0zFzA1wI+lx6egIpl3nb7FfmApPHvnEfbLvThJhY34q9tbcREDMQwuFQhQkltSYXLSzRu6rTofvdrv38L4NJkpyH82CMHX3vt25lXH/3oo1/8qZ/6jd/8N2m1/LVf/sdMp49fe+ydd3944ZHnADqH6MwSQHFGKpMRIHKIWAZYhGUeaapWdpBNRWalVYhR+r4v9gAwxFk4ABBVX3YWEcNBegQARUX2cPRpacE3rVJxvknZksTuohtdu9f7lx5Mnp92E1npsqosgHM+sOdQ17WndnG8HoX7EL6F8MhjB5/4xCea5x6/m81h5Z3b352QxVA3zti7QMyMrvxexywqoloGuCklS0k49H2fRVS0bhrvXB5Ywxb7PqYERCJ5NhpXotPxzMxSilFjFXzqeufIe44pcV2R427ZVaGqmyaencUYvQ/rdVso2LUPKcXVan1weG69rtq2K4p0G6LyhnDHh1ZhyVLJAND3vaql1A8KcOINIJQAipgb/v0CaFv9gFnZlHPOpVWNMeac0RWnPiopqoXO28f+wdGDu3fvTieTp555uuu6+dk8pbher6uqms/nbduHnf3Pffazd995qz17UI3Gp8uVdN3Eexe47TomBjVfVcyemCXlFDvPLKoxJnBu2fbv3Lg93Tuomqm03ThU5GxvOpOUmqZKSQTczrkLXVJA5x3HpMRoAlBiTDfF3mau9UGqcHnhhZdafBy20Nq2xy3XLeWeiGPsVdV7l3MmJCQKAdu2Xa/X0+nYUBFYszjEwsHu+1ghJ4g0Gx0+dn3+8o8BMYsUN+YBpYDBCZGKE6OZiiKSoakCA6pZTtkkm2iyWE5dMY0p9VGrojQwM7OCRLbrNgSfUkIqMS2AXCxkDBEKuFgA9oL5Wwk5A1VVz855Lypt14aqKt1bOduYWbOoCBIVfQfykNCJw2sAdqyqtgn4A4MNmFbs70nBArmGXUYShGwliYiLshwQ0RU0CFVV0MxQwZAYELrUZoWqmbz00g/htTdiFLNiIoNa4mepOEYP3mumxkiK6J0HgK5twawZjQCgi1FyRkQC8sGnnErQHhGt1+uuW49HY1UtGnxJioSDo48VXRgUpnaJx/JEKQuABBeixbbt6qraRkGrWilics7IkGJUw5SiqMbYBwxZxDufs6iIGW35zgXML3X5w4eBbuxPh9WboqqCQtZcOT+MCYoZbuzn67mv+NMf+WhaLnJa7Z87Nx5PVZan81OmHBfL7KajUf3uK6+/cetuGE8tVCkXAbZVoxoZS6mBikRuW/PBML8wMCsNQIlFSymVzBUAQFHQnBOKqCNGQ89+HVdd7K498tz+uRkdr/vUqW9Gk6mYdSdHke2N2+/uXzp/+fLF+fH9+3dPpT/TtHjh2Wc/9uyTt969fXn/8Giud27e6BiQUncyv3+yzh1NJvtRygkywOEGQFymdrlMgcGsT13KKXivpuUUKy2+qoIRgIqI5JT79sL5w9ne/q1bd15//c3r1x9fCX/3+z/64Q+/sT/zr7/x9sc+8bn7/ZGp+OBSTuh4Utc5ZwPr2vhf/zf/4O0b78/2DnM2NQamcpOLmumQ9TY8JfiA7BGlLwyqh6FW20zwt0iJqiVWRHSDwhXLGJWIvIM+dr/1tT/6wud+8nBSjZhW81MDrcmNmubspBPEyvn1al1PdgFwfjYfTerFMnZtN53Nzh0c1PWIvU8p931XzjhA6GMCM8/eTGNKaEiDTGPoEjf7ZOnWAImgpOBCYSZSOU1o4xhOSMVw7qHCDrahTNt1vu1Ot1epfHLjTrRB8W1oxsQMspVkjGRZDVLOZtpU9Ww0ffUb33zpRz+KY/fVV370N37hf1tVMLn5qnj82//Rf/iFT37q/F79U5//4ld/49f+yf/wT/t1Dm24FEc/tWydI3bsVEqoC2VRJHLIRZXmXVVgXmYud8XQIEpxDCIzQEwiuapC30dEUk2FcV9Mg8rbzM6lnEv3KSI0OD8iIgFoQYicc1YA+kJtUkW0TuN5Nzr/1jrfvf3RP/v06W5zZ7Xc3zk4TV3HblTVIhkDO2Xk6p2jk+vPv9g89uKqk7GvuTf0tH/h3PNPPPL2u3d98GbA5JhKqqgrVUIIIXcZEEIIK3I5y2q1JiJ2DgxE1AXPzMWocLVcrvuOiiU2u7ffffu9996b7DQEpMWXgqxyIXatqDrnq1CNRiM1Wy4WZta2Xdt2fd8776ej8cHBuaapj4+Px+PR4eFhubHLaWQbrcq2HHaOcy4+zmG1WlWVL3t6SobIOWvw3nm3LXe264k2vpa0YQQXJImdM7PCZi1S3tlkOsDIIl3X3bt30vedr7iqqscff9zAzk7PTo6PJWVE8N6Px2NRXXR97voXn3vuRhOeuHbp4x96+qVv/sHZ8RGZ9r00zo8aWy2XtaqrGxFJps45T7jqoxqY0vGivfvg9PGnnxVw0x1wOeWzGBw5dG2XDWm0d57CbqZGs/QxMaMJEA75cxskC0otuCEXGxEQQbFZKl5HWwxsaNE2F1bNCt8CNj5dquC9k5wBoarCer3qOvbMScV5l9tWC9xLzpICUES4+OTjP66qddeP2A99UpGQeodIJprLTWVERgaQSrXBQbMkS4BKAFpCzg3ZeSAi9giYc65CIERVc5Vjx+uuzSnXVYUIIrlpGs0l9mswII0xmplzREQlHC14XzAkZA5YJxERaZpme0GIKIQwWCpBHvYmA82CiFWoVCGreO+BUFSJCGGYtXqmbICEmrMHHPuqd4zEIDnnhA40KiMKZQaQIQ2+KPktAzjnNWuoG07RQXzn3RthtjuZ7MQ2VePKu6AC2cRVgYkQh20UARyzd25gz7CZWuGpMPMwYjR1zjnvs6qZBe/VbD5fjEdjgEKOdZKNGAmQ2IEVxiqqmveD1peSwcDBhMlkspjPicC7SrWQXmFgPAz0a1DVLJGY2WPfRzBwVVivV8yhjJzQYanLB/bSBol8GAHCjYsuE5XaHgG3XBYmUsk5p77vH796LaguTh7sn5uNp2NCOjk6jjnt7M7IxHJ//8Hqj7730hKAyOWY3Khh5wiwywkNs2V2Pnep4oRoxfvUTOu6ZkRmXnftUKjlbAAiUocxDpFk1HVrQkRDxy510VR3ZtNHH7mMKkAgKKGq+hhzl1Q4rftunR599PFR1aTAjOn+vZtPXb38hU/9xNmde2fH92/fnc+Xq2yo5MCsy5iNQz22MMpZkUgNxMx53pLHwZCY+9hLFlFpmqqqKxeq0uoUvEIkIxoR5ZJyzPjCRz4yGjXfe/MtJpeSzFft5atXR5Xcff/Nr//Bt//KX/2b3jvVhI7YI5jG2APYdLb7r/7Fr371a384Gu+JsSEhEKCYKZRjf3Pkl5FQytk20oHBoYPQcQlqxA+4NRvcyMzEFMiwlCAGoCXlhZn9um9H03OL9ux//do3fvZTH3/h8Yttt1ARl6SuKnZpfjKvfeVcuP/gZDadgUFMiRyFurly9Roit32HKUGRLORIwSFRIM8DvlpYx1Cir9u23R5ABdEIziOiJIFNlczsVJWpyG4MgTbRFPbwkuaN17Nuw9Efsnsu63x7SJUvldNKRKCkmG1adxyawwgICuqdq3xg4t/+nd8+65ZL5/Z3pv/Tl//Xw93RRz/ziTfvvfGZn/ppOTubNKODa9cff+a51W/83u7k8qNXH7m3zogTl3NmpD7GpkZRMzXvSXIp/RiNYUhsNrPiwVamxEDIpoBkKSXvK2bfNK7rWsScUiLA4D1sRn1aDtUtE21Djyq8BwCsKi5vdZakqkAQFGMb75+vf7t9/2dp8iHZufGvXzv/k49NH999L66zYwfSz8/q3clpyrdPHjRH8n/60Bc+89hHz+atC1UbzSHm0+Xhzs5f+Q//8v/4z/7nO++fTuqpmQI5drzl2SgAIbKhMvuqKqYyZcxZEPXAbIBmOBpN6nrEpyfL1aLve4z57bfeunHjxrOzp2OOVaiaupI+snPOuV41BO93d9XsbD6fLxZMtFqtC95ehZByruvGew9o67ZVs9nODjNn1arkVBMVNKiIbrwoEXVdV+JRRfLGhIratg2h7vq1V8/oymCi7/sC8CBizrnrurquh+vvPCJ658qAvyj7uraNfexjXxJbq6oajcbT6URVJJ11bTufz2PqQ1XtnD9/dnxcDDqD88Fxn/snnn3q2Sce8QyPPPZY37VfvXtvHtPeqEGm5Wo9G48s5YwRzVWj2nvuuh6QXVMdzZe37x2ts5w7fzkbHt29vVqeXd7fmYwbNY1ZuKqTOXW1gBckBwpa7sDCmvoAVqWHdGEFqiyD7TJ23N5mW5LpBigCQkxdn/tY1XVSLVREEXXepRjrqko53r5968qVyxVinzsFFTRVYXIMlA1XbX/4yCMwHfVtN0bHRJJTmakQGmNpEAtmhUQUc0Iwdqxi3nsjEkvrtnUMkFRAnXM+BEAyVUa2DZdO1Ao9R0mABgvHLdZHyIoGYMybZL7yMANA54JsApkLIabU2d57QmLADABl+KKWUgI1RPQlxUXFuZD6VBqYmLOZOSY1AjMQQSjOUuCNKmQBVLA+R68oTsixZyQEB8hmhGQEZKwIBig5i5oZ9CkB8zPPPHPj/pE4080RwIgAbIpbK0IfvAAWCoIPfjthzykXMMpUAFDALCXeuP6zc545xbharabjCRKBqi9wi4kKPExPTmkYo+SUlRScoRkSz2az5XJJxESYJFZ11a7XVVWbWkqRiHOOZuDY5SQICEgpRRqSaof3qnTDpdouXK7tLKAQ0nljGWfFZmRIGtGyZ5pQirHvW+niE9eur+fHeTnfe+aJZjLOcZ0kTWd7TVW5bIvF8Xd//OaPb9xaQzVm70NdJqpRhBwQGJKrQw1cOXSqCbSobpxuftmwgRdnCETvmQnqqk4xQNaUkmVh5wGo63vQeH5n9vjFiyBzkRzqcHjp4nK+pnpU+ckPf/ijw8MLh/vnz5YP+j4fn501jf/8Jz6+48Ot5Wop+d3je+8+WGA9DexdaIJzaqQUbNRIu+JhVIllBrudEopI7DpRnU4nrvKqKprMXLl6KWfHXJIImGjRri9evfTJT32ibdfv37g9P1nkCp957sXxtErdvFutvved126/f3RhfxLbuQEQoCfsZL073rn55rv/3f/wTzuDqat6wWTgnGNVQ1MDMqAh+cdsY2fAzAhQhGmbKTAgcqnNnAMiIsDyphM5JDY0BWMFVEFkBFIANUJXZ0Jsdk4WJ3/4/dd2p9MZVzmlYHbp8rXTePvu7btd182mU19X83a1O6ly0v29/euPPk4cur4rMwCD5AaMP4hsQrDVDIzZqamJGmodqhLgC0M2VAGvoZjXPIzfPNxvFzneFtYqiMl2HLbt7bdtuQ4yWISHZhQ4hKmLiBgORDU2KN8jYIZgAMGHWTNihcVi/sa7b4VxuHJhN6eu0/5G39O77zil//Ef/PP10YPXXvnhG++8/90f/mjd6qXpuObxpz7+HGSkvu9TUW0Uzx6mTbjKEF44CEuGXbRU0zpgU8XGtO8AsMjZcDP+LH/RDYxBf/LxEAN3uIgppa7vNqeXIYL0XQD3/Cc+Of7wU3cuzTofHlnV9e+/OfvWexfmUrXdan6KliXn+/dPj9978BMXn/zI7JFmoSPzjYWxr/sY122buvTYo48//fRTJaRa7YP5iG5CWJnYVFPOA89yUxaUGoiIiyLdzLz3e7t742bcxzSdTt+/+f7v//7ve++KrUI5olJKhX7ctl1KqYi/nnryydFodPXqlf39/Z/4iZ+4du1aTsk286YQQtfHs/m8MG/K9SUi5/1oNKqbpqprg4K0a845hAoAnXOFZ9A0zXg8Go/HTVOrqWxIlyGE8tViBj3aPMaT8Xg0Ho495uVyeXJycnZ29uDB/RhjVdV1XU8mk7qu+z6t2261WoloCNWjjz46m82yCLGr62a97tT08PCQLed29fxzzx4cXlh28dqTz3zqp38uoltnsxDAhSyQRLuuQ8QcY9H2kw+LLmbwr79789r1p554+hkAaNuujet6VPsQ1KwKVRZtu4wuZEVR0oG4aaDwsBoO/r0Z8/a+2r7dD0OyH9xpmwXQ993GxXxwDZGcvfcp57qqvHfvv/ee9hEBFRWYEZDURKQOdY4S9nd3rl/rAZJZEkV05LwLntApWJSMiGWEBADB+6qqvHPMRA4JS7cE7BiZ0LB4Lnd9zEkATEuCqOg2ddl5VzyHnHOEG5qd98UBiNkxD5tLmdVvd6jtpaCNNRkSll5Fcs45S8pMXIVQrGhKnZ1TFtGSFu6JESDFiAOxyUCH4R4jVs7vjSfap5h6QGDilJLkpGpk6JlD8D64qngkEJfmMqfcxn61WlZ19dxzzxXXCWaWAV1HwmL0NBg30KZfRESVoaQrl3S4PsX9cbCNHvalqqrGo5FtwqsJgMm2QjMwKXEo+JBYFwCSJADQLClGAGPn/MZSCBG6ti1CgryxF3r4wc5vdbI6ZCFnVU0pldJz2/iWZ7WVvg8rUMrgbNhviYY0RVGJKS2Xq73R+MrOrsWuGgXvfBXc/bt3JOOly9frZsoe3r319je//8pCEOtxNura1K/7FFOMEUrSGBNgga/Qs/fMzrnSFAHA4G0dY4wxpWQGwARoTCiKSbFN2QA8O0ACQkY5HPkGtGF/Mj8bT6YjRzuT0d7+uQR4vFw+8fSTsY+L+fr4rL9/svrJz3z2xec/+tYb775x4957x4v3Ts5wNpnu7IyqpnYjpgopgHPFAWl7akoh8oiU7KCu63zwdV05NzBzRaTUHFnVwArUQgwGGhdnn/7JTz76yNX1fPnKD189PHf42CPXb95695vf+fZ3vv8jxcmNm6e//wffrasm52imrAYp13WdUv5n/+SXf/zGW5P9c0kAgBVUch8cb/t52DhxlM6zNJ8hBOcLA2ywPMRhCvaBKgo/IBrDEFVoBmAEisXdy7Gv6iQQFSc75+atfPkPvnOyktN15lD7KtTjZmdv5+jseN22KcdmUvexB6bpzi670OfEHKp6RCVDBkhE+q7r+z7FWM50SYWImAvxdCDAPBTPUhZmOcRxE4q13WkfrofgoZ1ZN5Fh29pgu2Nvd+Ptv93+k4IVOefIOwreO1cCQ8qOXT4o4C4jnT44WnbrMK6uX782m41W3aLV/Ppb79189/4//u9/5dd/+w9vvj//pX/wy9985U3kSpL87pe/opIdoysBqM2ozppRmIijZg4BABDJDLKA48ETYvvsRQreXrSasa7rlCIMBKBhWCZZcIN6bSJ/kAjBCLl4VhlxiZRXVTEteeylRLV13187OP+px1987InLNNL5a68e/fEPd2/cdd+7R8s4/dxTrzeu7VpahfW7pz+98/Rffv7z/SLdlbNmPIurRTOZnJ/trl1IKuv16uLexclkGiWFUJmB5Gw6xI4MxygYE7ngTdEH70NQQjUgZCJHMBT2DMCuGtUjTen05PTK1Uc++rGPTqfTCImQUmpd5VZtl8160b7vqhBijHU9SGFGTQNAKcbF6RkhVlVVKDvl3S+Naam6Cj8AAEIIBZDUrKO6Tikxu6oKqqlc8KqqiLjvO+9cVdc5KZMDGMr2LeTYNE1xPyoLN6WcUi4j25Ri23ZN04yaCRHVdZ2z5KzzxQIQDHB3d2c6nd2+fbvvkgoEX0lIphKC9z6sV6uK/cn9B6vlMtR1G9OkGTe7h2/eun8wHeUsl3enCbAi8g5VkphDsGwWIZ+t8sGV681sbzSZrft+srtzOj+Tfu2qwJ5KJItmqB2jqJGCWUmwwGHE8cGN9P/nYUSY83CEPDxbLH9FHEQZoaratt3Z2SvioIIYDd2MASFfuXz5xy+/fOvGu5euXCHnshkBenTqGACCeWU+fOL6vW++pMiaEvJwcxWVFhU7UEUAYMeAkHVgfqholpjBzCCmBGZEaAAGWIXKFUZuuf8I1bRsr0VhVDjIOScRQzQRyCmJSde13rvRaEREolLKBt1k0W+vW9l1ULabkjnnnOO2TxrTwxcqhFC4Ky54VY1dx5OxYwdmgkYETCXR3izn2XgS797pI5jzmpN3zrEPzJ6IibHo2Yv9olkRN4qYcw4JReW1118XyVXlo4onP0RyIKilwUWUIcWUJTt2ZFAsLrf9TNlJCUlMitmPDcWEMvNoNCrjTis0VBXU5Jid91xYLyXSA5WIfOAuiqoGdMNBZZpjds6ratd1o/HYAJ0PfZaCzKVNhaoPSXy3QPgWsSiFznY1fnB8bpRB5eNCB0RCIpRBA7EhsuQ+dt2Tjz+1R5RTf/5wHyzdvXUz9t1sZz8ri8Cde3fHBwejg4t2mse7B4yMit55Ilrn6BwXEbNkAyuOfSYqOeWMKKaMhI4GRkt5s4iYyROqpb7PSXSd1cDAtJNeSc3664f7teXj+0dtlx+5dogpcrJmOv32jZeEYTRt7h/dny+7V9+8Vc8u/fmf/2vc6c7BIyev33755kmsd5rpLGUJoTJFQCYmI5PcmSliKBp4M0Xjgkmp5pTSqHC/uo48O1fO+MIWx+AHorGB9V3HIXzu859zZMf37i3P5ufPHd5ZLheLM0NinvjqwuNPPXH79nLVp9BUAA6iqtpkNPrqV7/+67/xm/VoEgUMABm9sUpSFSIyQBUFASYCxDI9kE0yY+6l9A/Mjrk4eRVWouWkXP7qSMsA2wyVABUBjJRRkSnlxMjeOTUAyS6Mjlfr7//4vc//5IdcM3lwehIqf+7gXIptJz30a1dxVfHewd7O3jkFJPZVqMEMoKQyulJGu43tOKiWk0ZgcIwzM9h4fw/FCg2Egy1U8+8/tgUNb80nN4fO9qtlbYuoc1Q4cFt4fltR0UaiG03MzCHSEKvFphkQuVht9TEonh6fHJ+eHl65Eg3O1lE01LkG76me9J1plw99df78Y7BTnS2W33/v+76nr3ztd574yY85MA0++OBiEtMMxohsplByBMDQFICJuDg1bfbNgUPax37bkuacAWRwCTEY6OREVnJ5hqqNAKSoS0yLPBFEsveOHcfUl6G7qHRRHn3y6acefzrUhPuuevGFm+v1ytJOm9tXbnZHZx/+/IceXNn9wWvvfX7vub/ymZ/DLtXn9lbtml2sZqHv1iCa+uTHo/1q/OFnX/zO91758ZtvERJS6ZVd2QQLJkREla+c95Kt5D+WV488sNWIkNAhcMrJObcz27n14OgLP/Mzf/7P/rlkfcopS0aTaV0bEjArcVNVjnDdtnVd33jvvZTSnXv37t29n2Pqu+7pp54KIfR9HI1q4KI00UJGnkwmhQVZZliDcttQzYq1XdlGc85q6r3zHmJsY455lXMWYAT4YI0WkMnMinFn27Zt29bNiNmJ5LquSw5U2HgRFUds7/24mXAgQjw5Po4xeR8Kx9aKKQKzy7JcrDxTYI6xX6/bg8uX02Ktvn7/6OQ7L7/+4tOPjUO4fzqvQXfH9d7etFu1s+nEOy+isU+rvrv72uvv3Lh5++7dL3/lK88988wnPvXJQLK8dwuYGZNpblxwZB4BNJtiyX9CQy0Q0NBtFKYgPHyPla9sY/m2zLst/jGsW8mIOBqN1ut1zhmMN3bD4H3o+66scx/4iccefeuVV995551Hnnyi7/tRPcJekCj1yRklsPOPPvJKXeVkjCxS5nNooFwi8ERVJTjPxF2KYuIdo2FOyuCQ1MBnZYdE7LJIjCmz92xGoAKOsRzng4Rg2OGNCIeRvCEhOe+CCyF4IlSVnE1ECLgYS4kJbkj9hbpYqiHe5PvoRkxXcI7NViVEyOxTzpUPbd+JqUNmBKPyshKoFs6sA2q8b0JVVZUnZlMkcuSYmAk8MYKqKEohQxkRg4Ej6PuVr3zKadkuQ3AgAMCDaTSaiQmo0tAqWjFfJrNiqIEEVsZoQJs8c9GCtINZsbs2RCgFENggu/OFDAaWRREZANWspM867xWskKO2ug3Y7BghhNVqXQgABep2TGaENCD55btTjM4HEQkhbHf57fxr2+nKJjSbNiT9bcnOXCyv1ABySiKSSvqNiPPu6sH+LpP3wdVVvz4+unc627tKbnR6tjy9c6OZTSeXHh+9ejSatVSPHDmvGNgBk7NaUQERgTRFUBFLqplwY9+naAgpxoLlA6IraYLOheAlKnHVd30yc44RMav0GqcNP3b50KV0672bYRJyFlq3DK5dnr11452nnnnSj9z89uLByeqd90/X6cE//1e/5cXefOv9b/7wneMOd85fFolGUUCBHZFjMg9iKmkggZQjw5jZcs6St7WjbJLJS+rz0ARSgXczAqacVovlCx//2JNPPpb79s6tm5Bld2fnqE8xtuO9g8cf/dDlg2cef+zp8dS9+/69Jx6d9fPOo3PB375x+3/+F//ywdl8dnC+zWLOZ+kJIXgtpl6AMBxrmyq8NLGhqpbLRdt1IlK7AFAmYcWFyphZQTdnP6gYIDIGREMQIwUEYc2mhuBKaIGoR1RgqGY37x+/ffP27vnzhnbu4JxqOj0NXbeiiu8dd5/42IcPz19Yd70aeu+174upmG6KDBhI5YpqphYlmhk63uJ/D83sNghNmZVtMJhSo28Boe02uwV7cOPqIhtj3i3kWbpTeCilYPul8igHtCM2QFIrcLuIqKkLjhwF9tb13tWnJ6cRcdGl7u27D86iWjWVCeQkToxQKtK6sqQTHT84e7BXjVanp9/85h/9mffecogwHtcxi3Ocs6TUO+ezZCIC8AhICExYYJmiBAHQ7QsewEb7ADQuKhIgNoDixyCmpWzETUoBMQegjCCat2QXNCyvTTWv12tEe+utt3787ntPPffE+sEcrKfLFzHw2Rs3rgrOzubf/9U/Xn76sY9fe/JLz38hQJ1HGtFwXCczcuzJWavTyWzedVnz5UuXR+NR17aNr4oth+Rc2h9EIPJMWcC8C84ZwQDxbZFJIvK+VpGccplbIbnxeLx3bv/O3du99EpiBNNRk1Wcc13M5gt8bQVA9iHcvHlz3bbehcqH+dnZdDp1zCKSkrjKFSPs8WTSte3JycloNJpOpyEEs+KkB2Wm5gM1TdO2a2aHxKZ5uVr1Xee9L/5ydV0TUsEwy5qLsV+v17gxNHPO1XXV1E0zGsfYF0bRarUq0nfbOLM55yxYtqQANsxWvFku6BSRa9ctGDr209kUARar5Wq1/uHvfG12cPiRj3z06HR59/j4zfcci3SzyeFsLLYCMFfiittg7B8s1l/5w29AmP6pL/zc3rnDV17+0Ve+/Ntf+OIXJjXffO2Vtl2PR0wAy3a5d4DMxga6Kb+LLf9DtY5tj5yHwVWzQVNQOp5/p2spsmdTY4a6rubzRSFLWglOVGvbFsD6vieHfdtPq/DEE0++9s7bb7/z9tXHHsNsiGiKlQugGDFdePz67OCge+fW2AdjBHSkSsAIKkm89+iRgLIJKQCUvBdWywaiqipKgGzKqoaqgMJYbFDLMe+QYuqxVD/IZgiSKQRA9K6UhiZZyvG/MSwkRHTkvfc5pxyFiNxmMF8eWaRM0/JAUsEQAhKJfAANpZTNsFTJOaWmHq1Wy9l44pzvu6SqBkZEqIjMfd83o2pcj71JzWxqIXjP7MvhKgXGLi4aBqKGoAgZrE/RTSdt13kfgEliFpWsgghgaoDEXFT3zvkSzxGKcNKkJIUVkkIx4jYzHxwnFhEELJpdj9gH17crW59K6tkBEykVErejKgAyGKtBRE1S/Jcrx87U1DSTOBfKMReC77tOAcixd9x26+BcMadQlTL5MhukarYhRAJAgaDqutrOKLeNb0opSfbOg4iqeu8NMPWaVFSUkMSyZMl9ApPK8zTQNPD5ixeBusXyaH9vR9BULPUxq1k1+9Xf+t3f+cYP6/OPGbApqmrU6DBU3vU5qRp79L5ioKwpdhmInHdZBMyIGRIYqhV9wAfCJcqSDLnL0mepmYEAzLq2vXphTKDvvv3W2eLsyv6VdtniYuVC/e2XXl5062dfeP7e3bvLVXvvZH7vrLv14OTtf/hPA3EyzzsHs71xzOaQQ6gkCxBFEVKpUINDI9gkFxV7KkNCMur7culINYUQtsBqkUeIpiRCRFyEh337+c9/dmcyke7s5OiobuqSgvDYo4898uRzIpUC5px7weOzxaMyY/AE3HXxa7/3+3/8jW+Pdvf6qESus+yc85bRMhCJKaLDYiauNqAmiCnGs/l8uVpWVRUGphpvzMQRDCWXNFAwBVMr82szYlQDlLJLIYpqSS8GMU/sDHtFdRTBfecHr9GoufzMh51I09SPP/74ycnJqu+ff+bZCxfOI1BUa7teFECUuGQBoZqCGW0cuVCt3GFJMoE55woLTVSy6qa/LF6BikRuI08uTdS/89g23oM67KEUsG0BZGbFd7f06Y65CEmJC3NGy2jeEAUAQQFxi4OLqCVrXB1c6KRDh2eLsxv37p2lblLN3GQ/SXZWBfKrxVyta2O/OjqZVTvnZgcewpUrj7x2b6Emo7p2VT2OGUShGY2W65VmBbCck/dOLaFlcmAgBBUgqSmAUNm9UEPlTs+S5KxZJGXHnETBIRJKia1R06Lhh2LxhGDI5A1jofQ7JBUBHBjoxLRarwDEB/Ls3793YyGLaqden63QwpVHnr7Po/H+I937d89+/GZ8V18MT/yZz/5CFJ4vV7WvwLusisTTybRfd4IiQKuua9ftnQcP3nz9VQYBzQqkYswOrHg2Ykl4NQP2Xk1VjJCYvRkQIftKc+q7RFTiQkBF2Tnw4WixAB9QU47teDz2xAYEyEli5QICn56eAEAI9Xg8vXDh4t3bt7qupypcvHT+4PBQDJwPAKBJAWg8nrDRuB57cl3sju7f293bRQAmQtCcMzpHPnQxAbli0USuXizPyAUx9OxT7MASGqlqCLWIqGEVKtE+hFDVo5RSYYOaCbEhGpJlSUOMGyqQkUMSNFRgk16qqgrOgWjFruuzI5ckOWAQ8CE0TaOmo8mkl/TDH/5AIMzn7Yee+VC/WsW4vnXvVuV57/Di7d7qtnPoLh6e01DP1+1Zd/bH3/1e4ooc96AXH7m2NvniePLdl191qxPfd4v1MviamJXJHCYVKv0HIINBUgNQ2rLJcPPfB2YSgFjibGEzt845G0CJXhl2GC2hNVaPx2b3Tk9PDw4ORLLrAIuQAAEAAElEQVRlQEMpeYBqkMCQzpaxqSfXH3/m3fffufv+zfPnDms3slyCujA71+zNRns7J2+9B0prxnGoeJkJCRw5UzSNpkzkgcnEpDhEG6AAk2ZTBda85/04Rqtxpf2axrVDkIjskqW+S86QfKVIAuo5YFTrheoQcxzAdyYTACU1q+payjifs2YkUAeKYt5zUmFCIqzrpu/juo/eeyMXqjrF1PetbJxbLSVmj6hmxs6t1+ssWoUqpdwnnYwnqqgAXPmYogMP4E76eZvWTqae6ow2rskzIQCRAwBzXAbKQiBJK6UF25xkoVGIJenqdF3v7rEPFlc5q6gikyJ4ZjJOfWZ2GRURjKmEtiqCGA5cIUNJ6hCd91EyItXe9zEjuiipCnQwco9euXK4W2m3GFXekDLgWZdvH589mJ+dLFtwvssQJjvZmF1gypNmMm5Gy/UKHZqYqXrv2DuUXnLnXJVS6wMXVi6QE8O2jz7Uvvr/UvWnsbpl6X0f9gxrrb33O53pzvfWvTV2dXX1PLFJimxSjiQqcmRJphJLiRUmsiLEhofARhI4+eAEyJcYAQwDDqBYk79ESiRFNilRJkWKZLPZTXYXe6ieq2u683jGd9h7Dc/z5MPa76n2AQq4OF23+pz97r32M/z/v3+TTdCxIghYheMVBcdcinq/vS3VnHexxFq9jWtXQCkJCJBBRQ1tE3NOUYbYsaV+efXC7mLeQMu+C5vVOmduWnagsj4+OVn66cF33n38pW98j3fmSti4htDiehO8yyW6QK3nGGOpJ5vzxNRNJ7mUmOuZTCkVQyxF27YFhBp35ciBYL8eDC2nHgCUfEpSYsQss3YRFvvHDw5jiZcvXsQCZ5vV6cnyjR+++8JHPjz0dvpoFQd7fHz2YFiGi5fZQlENbYehycUYDIFAgRBLkRBCSaLsjJyxKEqUVLn1JSVAIHQgFFyDwMS+KAB4ArAiQOCY1YEJFlVAHmLev3TxEx97vWHssz559HRysNseNNfby4NMYYMm6eBmeen55sOvfuj+/R8sTy/MXVC1t95+5x//2q8vizZIQjX4FyqMRs2BmGH1nJKYxJIQseQ8xKEfhhij975t27pdNYCK0XJMNroiqM6JgREItboCrGrRqK7DnBEJmZkJZABjQvIopeDkOJavfvOdL/xi7GY0mc5msxn58OLuzsHewfIsth1739S5AzNxpVGoSBE1Jceo4+SsckRbbAAh5eTY1dNSwRzXbD9WyWQWiJk4m+o2zsXMHDsDqOx13EplPtBsbeVu5ScCIdRIBcGU0Tmq06CK4RmTGs2RGTEKqJkqOQYDE2ubNouyMBbQYtTC6elxXm329neUcCiDWlku486sFdO4iY3xQZgPZm/eeffqwfze0eE7x0/+T//Z//ULn/8ZF5pJKSnH5IInojHFED8gCGOlBEtBYCIgdoigoHWKW/dflQqfc2bH9fcfnWJE9fNWkcoTImRkIAKt0Ki6A6uHK0ofh75fq0hwZDF99qMfvXHtCorMm67vh66dv/DyRx7eufuxP/fp554efuZs9aEXXsqMRxibaff08DBmibmsh3j79p133n4nxti17dPHT+7cufP05Hh5fLR/5aqC5JSnk2nJoiKlJBJCV5uwYgaMntx4TiEQIZsqs0cErUkdSL5pzEoSfXZ8UkzXq1XTUNc026mdOWbNEpwvRWKMk64rOb/wwq0ch9u33z87k49//ONd18EIoa3zHWBiIjQzHwIzLqX0m02V75hqzQ6oTAtmFjN2HGNcr4emCURkVlIqs26GiKXkEHwpWErx3lVmjGOuZk7YisEBR9QvADjHiC6ltJ12/gSWbXQ8Vj4mM6JzfjLpEFHV2q4pOU1n0wdPnnzo5Rc3g9x57+6jRw9KSbeef+X/8p/932bd/NH9B8EinR3fe/89spyMn3vlta9+54evfuT1n/uFXzg8O1OCrGWV+uXypOnX1xaTx4fPdifXHPqSJKWsCgUKVDK5SlXCbS/guNMxQIQqE4IaqAIwLhHgPFxG1Tt//nw671S1aOq6bjafP3nyZG9vD01pJEGgSKlZqsCE7FZ9NtJr169vzk7OTk5xwWSe0DlmY6Om2b9y6RCt5JQdF3OINbW2egkBEIGIkX0AKYaOVBRHFo4LnllQmV+8du3e6mSV+tMYG+M9x4aWcg4AqFCDJwGMmV3AlJJTHVPc1Yg4OF+VIiWNOxcTVZJUhokL3oUomRCYeBhiO5n4JuSUVJXIiQISt20rVo3uBGaIdC4LGJc1iE0IVUuHyKYZiADQDIEwlXi4PHx+togckCkDSK5RkY4QjWrWkQrXgs0Z6aB5MDMmVSBFM2QXutZYCjEWMDXzQAxYjMBQVepKU0ShyhjwvBquBfH4DzM7DNSEdckkJQ/DnqfXX7h262LXrw5LiZP5QswV9L3Qo8Oj9+49vPvo6aOj5frpBtt5QVbD2G7o4sXgGWuQAnFVuYbQrNdLM+m6puItR+uUgYiKqkMk/ICFqKqbzUZU2qZBgEo9Dd4DYMzRzHzw/TAwm+PGREWLgRWJIlpUcxYpamKbfjVr3Oc++fHJdLrYO+ijLHs1C/mov7jXDetBlOezi/2j9eHJ0F7e6VwIzrEjMC0pailBfHA+OJdKFpV+yKaAiE3TtN0k51SnyIgYQjAz7zwHFhETWQ+5lKIoJceaalckgYEHeOH5lz//Mz//ra/lwBJTkU2eTC98851vPTnp/8Yv/esvXr3xtSe//aN3fvTk8KQgOue9mwFgNoVcAMCN4dpEhGwybjXJZQWFqo2rz3ldi1oVLZEFU0BgNSNiGtOUShXgISCSA7T1av2JL3z6lZde0FLWZ8uzs83lazd2Lu6cvX8/LpfPP3/jtY+8zl6uXdmPm/U//H//g8u7/+uf/tSnbr9/+7//zX/5zp07fjIpquh4RNlZFb0RANCY52UGVnKpQuxSCjFXtBsRNU2oCHGtdC5G5hpGVEsdghFhTnWnV2ODSiklZTD2jfPeST26qwQY2KjDEJ4cPf7dL3313/orv6ymDvDCwSUmXp4svfOmVnICQPLODGJOoIoAZmJgqEJEznMpuaxz27b1HTQemCLIjAh11UNkVRpSRXWGY5ZDpdYULXWEwcQ5Jas7ym0AZT2FxqyC7ZJdjUzRoApRRiNFMalhh2qqimrCxIikUMzU0AzNeQdogAwKjl0q5dmzZwe7O9n50xLRcUAaQPqzo+duXFMRfzr8/GsfudefvfHk/RdfeuWtH/3gL/+1v/bL/7O/MgzZiZSKDKkLwb4fEF3TdLnkKuMxBa5vEEKqpzmYmTGxqqWU6pLeewLhqmBWVd7C5auS2szUlICRoc6PiMYQlKrCURzPDk8uZdGUX3vhxU+9+tGHb783Mbp24+p8t/PsJtMJ3HwuE84uX5pfunj79MS1jRAeny0PT06z2A9+/ON/9du/84Mf/khTBEAgrmBp1zY8nZytV/u+UbV+0xOQohbJRNR0LRE5ZAQEHHUHBEiEnqm+casFF6sBAZQZppPuyZMn69UaERm5bVpByaWQITtXRGNMTdOcLU9PTo4RdGd359Kly48ePSDiixcvApgoECpzlZzXtzVXZRQxHxxcGIYhxs16vWbm0HRFc908EpGZIHLfb3JOIVRHEGPX+capClllaCmgVk+3KhqjgWLtvvNYAehPRLT8JB1H5APJFxE5Ii3mOTNBcsQenXINBJ7NZofPnuWipvbgwaMhw9e/8e1vfesboPAX/sIvP/fcrcPHh88//2KA3JHOLlx66913Ht+/9/YffU2RPvv5z01nU9+1R0cnn//sp154/uY/+Uf/nzXJGmy57jVbyhGyaRQ0FFAjqoNUhkovx/rsjGPkmuUy1kIGH8RVjiuGEAIggBhvF7h97omIHJjy3t7e44ePnz59euHgQsmlaloAgYkMVMzMRMVEM0qZTKaq1g8xePCOAamUkhkOLl961wUSJTNREa5uD7JcVMyx23I4ldkpmKgVMFUgZh8cAa1jmu/sNJIixtN+02ba292RnCHrpJsYaFEJ6MUE1DgEywnURLXmx8chxvWgoBVXz47JEERq6SWAqJJSQmIir5bMjIGyQYqJfcg5E6LCCNSBka040gTMTFRdLb8IBRTZWKGoAQgTmhZkVMmMgKYlbZLjqW8RAYlp9IxZZTNmMy3GwAmkT0lAAQkABFSkAFjXdU6KIFTjq0MCA+99NYrCmHlJFWKGo/RYwGirxhZjMNFkAxqZ6nTS6WZoiAjt8OiZyvLarWtNO3HcgfmSdMq8G8KV6ezp5c3b9x4eDcMyC2GIm3z4JE+ns9ls3k0mJRfnvIgS+dl0Z7laqiR2zjWhlJJLPt8w1hbxnHkY49D3G+dCKTUs5QMkKTv23sE2jFREar5sKSlryUVSlpwkDwOBBec+8alPdju7zWKXJwdPnj3uB5tMZoenR5u8TkNeLvuFTp8dr4dkJw8PC0yuTHbMoOsacZxTFJFBlZicY8toAOhIRCr2k5m7riOi2hEBQCWmNk2TS+5PV2aachyG4TwyJcVYUl7s7G5ifnZ0Ysbv37m/1+0Mpj969/7P/NwXn3/xQ4/vPrh47VZ7++HJyTtdO2PHKUYfGtvCqPQnIqLO9SXeuRijqjIRGogoExmhiVW6igu17RmvG1T9iVZ5iwEggZooqHzus59bzHfWx8+ePn2ys7Nz8+YL9x7dmXTtxSsX5/PJ/Qe323bWuJ333/nO7//elz/36Vc//4lPvPHGH3/tjTeKCLvAzsWa9F6ra+MRSoyjc8I7T0g1I72i/8tPRE8yjkJYqsOGrZjEdEt4wpquhaMGtFZRxGCj+0lVZFtiV1uVZ7dY7Hzzm2/+4i/+/I1rV1fLEw2KZtX8m3PWyvQCdcQE6LyPaWBHjl0dWyyHjapO2+m20KHq+9F6zAKe38wIXFeE47lKbKSxZAMI3luVZ457KvyJV4nAT0gwt0If1BqRJbVMGs9xJlJDFVXAquZD8GRVpGQGBkRKljQGMHA+hDZuNnfu3BfRPq0zwLyZSZEzLcQ0xIzJ+qNTv0nXQjeL5Wc+87n/8N//D28+dyvGPEraNhsBAtjm14w/N5gWSVYSVoCBOfZEBITsXdM0QLBZb2qChKqKqGPOYmjCo7mk+sjGMh3QGVVAggDINp4X1MzQRMVMvfceJyiCRX/h53/hw8+/cPjkUV1/boYIiEAMRGebDQDGGIkdsNukmFUPT85+98t/8PWvv3G6XLm29YuFGSCA9z6nOPQ9IJQsKafgW1MrWuo6UgwpIzIjIRMAGCoggXeEhHXZL1JMjZ0zsCK5zjCbxt+9e+fNN9/8qc98cj5tsxRytVoycmiqWmRnPjs+fHZ2duKda5rQdeH11z8y6aa7i91cspkJILMRkffVAlOk0pbAasvYtnsp56EfSik6Hov1qVfZ5mawYwAgZivjX9eRQlG3t6PxZJs4C4R0XpufszTK1v24/ddslKLh+I9zWDyRoffMzBlhOp+mGE1tudkcHh32Qz+Z6nozrNfr9bp3Prz4witDnxHDZtOXQE+XJ/s3bv7UrRdfX57dvnunfPUrxyenV6/fSHn9+PGDTb988cXnf/F/9Iv/4jd+/e1HD/du3lyuhrlvrVjuk3cMCkpoIoaCVZgJaAj1rVnfhx/wNhBrxA5vHaqqGutXPwx9Xz35k8kkBO+D58CND/sH+3fu3FksdggIqqgYWE1KkShFixIykBaJ2ZScQ/Y5pk2Bxvk+9cunZ6sYo+kOM0rOlhM4BHAG9YqTqqkosooRk5H6tmHGoDbEnGKOMRX2Zydnm34TiwK5pJBLkVwgi7YGVbkoBcGGYYAWgCkOER2RZzMMwXNbYzhrxJioKpqWot47UEslV1etmTjnhmHwLjjn1mnjmMgFUTUwrLQVAHa05ZjVdAhzbmy+HQOCimSVxOCrx6RqZ1++enXqXUBzAMGzIyJkR4xginX4T7X/KaKbnM9Wmz6mpJoIoRTpe8AwnU6qXqC+L5gYxJzzCjoGeRkgawWfb6UGhpW6VBQR0EayoxkQAWKxkqY7Tdfw7mS+s7vPnQ+Nd0DDeoirlZd8ZRamuHdD91+5de3Zerjz5Nndp8ePjlaPHt7d29vbrM+cC5NuBkghtAjIzhO6Ycjeo9kgoppLcI4RTdRQ1OqIikANDdrQoGPJmRCrFSMOQzeZEuHp2emQokgm5wiRoWo2wBGTd0Q6aV13+XKJw+60AxduP3j85NHTN3/0bpZU9Xx56D06SSKK8t6j01S6y9cfPri/efDgwqUrDXnTMVItxzSZTpi4iIoMJQuyMZGYnA8wKiyqflUVXbWdmyk77JebUkrThvpkqcFkZ++3fud3y/podwpf/BO/WNbrb3z1jYaao9NhHfGd9x/JkGfT/aN1XPUlzPaSADOriI17ExApPA6BrNaF1bsKP2FusO1XHckb1HkPcnV04ggRRCBEc45r/9f3w3xn/slPfLzESIgpxk988iO3Hzy+cHFxtVm8d/v4/t3buzuXP/Pp1xz5Rw/v7S7mP/j+93//D7/6xpvffvf2naabNl23XPfsvBrW/0cDI2ADHR+Z7ZAjhJGKUkRUNYRQo/fEED16P2K+a771eVVAVHENBGBDjAQjkFBV644lpSQqsIV6VGhiTjqbzk+Pj377t770l/7Cn3/29BRRr1+7gszZoIbTmYHEVNACe0maS9bi+rJebTbVduOYeZ+C846YvQPAkjMin1u3Rsmvam1EmVnBpGQAUNORrGYmJbMqExF+wLk+n8puf2wjqmF9aiaAAIaiaEUqKbYSDBDBIZiiJVVkNEYwIiNHYIpU14XqyJ0s1++9dzvszf3EHb9/p1du2gkrYWjvHh49V/jalWu/fu/Ny7eu/Qf/5//kp77ws/PF3no9iJh36Gr6cWgaBBMp7Mh755xvXOe9o7GvsizZzHLKfT+IqWPftiHn1DShaxrHdXVC5P04oBw/JKlpOwAAoGakpoBKaDjSgBSwlr2cpZRSyMwRXb9+6yOvv06mN15+6cZz19H7gABMSKRAKSs5v+xT358enb1778Gjb3zzW1/5w6+uNr1vWm5aRKq8OEBcDxHNyHszRZTlcjmfkffetqs6URlSBEIm9uhczS0f95maSwGogfaYK5MewTHHGE1t2Ky//e1vfe4zn5wtFsdnRy2GEAIQI1IpEoLPqa+Tw7pCyjlfunR5b3dPxUZRBDoEYyZmNlUDOQeBVBVz27ZgEELIImY2DEMd2+A2Y4WIPHs1rSIyU63Q8fPZY13xnlO5ZJsGWg+X87MGtjq1Wt3XAYAjZsJxeexqOuP4PNfw11Ly4emzPvbL1ZmCbobNfD6/cvliPwzPv/DSYmfn6PSsdW3wnUiU0J5m2ZvOO/afvHSlnc7effed1Wp1cLD/wgsvbPr18dHR9RvXX/no6//wb//Xl5v2hf1LzaxZ9VFXGzBDqNo9NUQB+8AFNvq//gfRenXHpyJ9TJUUUt1w9bJMp9PFYlHNDinGVLKiotmFCxfu3r3z7Omz69eubzYbQCxiJWdVFYBaFRmAd0FyHPqEpFZg2a9U5Uk67k+P54zNYlJOVuxQ1TKZlMQIjWtYUKuixQETGZGYakk5SjEc+lRSESUjOD4+iSYYgjlvzhU1VkDiilIEBI8IzENOWSSEMMS1FW2bUFuXypoBsKYJtfJjGGn6uSQEDE2DSDmV4P16swEHbdumlAgpOBdzIRfYWRGxUbo4hlqLaUXwmBkRMnkzKSVRDYEWAM/rkkzt2sWLfj3M2yYgeTAmQmC3DcQwADFhZiXAzKmP62GIYmJQ+QKSJecEMKm3NKiNEZ2EVRKEOPJxEIHZ/QQMst4KUAfXxmgGCKSoZGZapg1/6KWbz1297HHjWxvi2gGcbdbr5VqzoZoVnXgMQK1xF2ZXL+x+KNqTwV589bVrV6/1m3i6XJ0cn5nR7Tv33nv/jiiEZoKY2jaIlKZr2i14s95vquqY2blSStc0QFRqIiyCqtV9T2iap0+frlfr6XwK2FQaLyM5z62vBaQDxLadIpPkyATHZ6fB05lmAEAmBUaBxi+klNCGlDL6gA22TXfNN5vTs816uXv5aoxRNZlZrb3qOAGBmJ0LXqQgYtu2qjoMQ0qp67oKAaoY1eVyiQiTblJE+r6v+S7V58HETduero//4a/+6r/3K//z5195/fjxo+svnP7gzbcGta++8c3DWPami83jwx/++McUJrEgOQ8COWcb1y5bByLX9308T+FAQMaRMnzez5hZkWJm7LguJQANuCZ4QO2xbQvU2axOX335xeeuXy8pk+Kt51763ve/1zT24ddeevx09c7bb+zuvXTxwo0Pfeh11eHk+HBv76DpFl/68h9++7vfV0RgTkXYeSSu4wlQQKoOMGIa3ZR1aVhtJWbmmM2NUbLVWTLO+gHAYKuOxS2Poh7CKpJ1m9VzPg6sv3Tdw6hqFUuIGBGenq3Yh2+/+b393YNrVy+F4I6PTwldFi3eo8r2jSACSUVC05Sc49CDWQgh+FByTjHGMDDziLSGyloTAMStpUvVCLZJ9WYj2XULfRApxEyOq1ik/uTnFrDKLN2Of8jAAJTq04kMCAKEolmNqsoTlRRMSyk2fvJkI+MUwXmvokmyI/f4yaPT5ekqxBvPvzgMZX28ZFWOWYEU7NrO3sdfeeV3T9/9lf/jf/Lzn/r85mizXg9g5H3wvnGr1Tp414QmpQGkON+QQV1gmQJWmxQhOixSFHXiOzMDIJPikCY7OwgIYsYl57rLwkoaGK8XjdQ6ADM0RUbQ0XKiVV8OZiA2nuwl5rjuL33k4nK1GnK/WCzuPX6EAMNmAwCXr1x+cP/B7bt3f/z2u8+Oj54dHt1/+PD49LSoNm23WOwmMUN0PuScVc15blpvqqY5xwhQyLFzHgDUCqNXNdFC6ExBTQakxvuqJRDLaFSKEqEKIdfRdCWOCDNLhhjj3bsPTK2OW0oRBHN+NCgzIhFNJh0irNfrhw8fDkM8OLhogLHExgUArHwB06ICCMzEUsTqYhu5ZItxaWrBewU1k81qNZ1OKzjAxILD9bLH6UxLAdDgXM6p5hCLZO89opWSnHOqJpKJqJTsHBB9QEaudypt/bfjyVJK/esIwICOGUy9IKI36LrJBAhEZRP71Xpdipwul23n+2FVRNeb1aPH90OAk9OTi/uTfohh1iUt4DirbmJkoDv37q/Xm4999KP9un9aniHApJvuH+yH6WSzGVK20z4/OD7zoVslkU0ahozeE4yhLaZWc+tMrW6+9CcCqkaYhkHNmKtcRyKSnMXMSiHiyp9IKQFiE5qkKcW8s7Nz4cLl99+/vbPYNdNSpOh4+/I23lmtBlw572m9iZKLFhUt7Lz3odlZdLs7droMRFlVWLMIEWfRFh2OMGPSyrgjjFlUNasxUui6odhQRKSYCjUYSy5NiGYT5C54AzS0ugkiwOBDBgVHTQgxJwBgxzllKUVNgx8TWJmJDAFABWIsk8kEjGwbXhicVzNC7EJTpORSADXGXEQJEaCCB0FGK6fVlr3eNiEEQtIaMUYcY6QQlnHjAK2PnpxHRwSgYqpAUl9MyAiKoihEBqCAxgTOMRGqGKIhiqmq1rxkZchSSoqbrGBEDh0G3tJ0nCNH56B8257UyojOuyxFcglNqC2FSXJW5k1AyeqKZZ1yWB6fbYYkaojgG4+NF5EAHM/6g9meIF29duUv/uyf7Hb2SpZhKCE0Q8zvvXf7x2+90zQhhAaJvWPvXUU61zFqzhmRvHd1tQ1gzPXko9pdEJFuLYrOubZp5vP5dD5HQnTkmAwUDRvvURQEQtekmBQUCVShmc21lLYNYFhUmIidYySFBESzya4RQYytUse5eD8MQ5FMjB7DIIPzDEDnE2JE1CJqer62q2VQ5R/GGJfLZb28XdcZaMzDEGOdr6iKqfpJtxmGxnWT6d69p8fPTiO6ye7lGz+48zuJO2imf/Tt78uQmgLT2ZQnU7ECZiUXAmMi0KI2xt1LyilnESGA4EhyBERyzrQgEZJJpSiBFUmASgxmAkR1I66qjMDEqlikAJiqlFI+/ZlPdW3Tr5ZlGO7dPcqJnn/++cmsdWerC5d3PvXJT7z80ieaxn39a995++13bt586WDvuR/++Hvv3bs/XeyIqEpxrqkhMCPdS1hZ6zKWR06NIUBwXpt2tVohWVOhegbee3ZOpNT3YxX84rgY+qCGMDMiqDV0pR5U/q1p9Zz+pNdVxcyhB2RE3Gzy19/49kc/+uEb16627Wax2G/qQtl0dXLinIMiueQQgomwd6FpOnbOuZRSjLH+QURc33MI5Ng7Y3RViA1qoMZ1BlEnb2oAyEzFTFUUK6eMVFVSoe3Oy8Yd0GibH7+jpiCMgOi2i2xHDpHVGxCYpF5zES3M5BgNwTSrVO8cEZMWE0mOwTl35+47y9XhKWS4+4Cd2znYi2eroAUziKSVnf7orR++/qnXfu7jP3V2uCTzk0mnYt4FUXE++KYNMefKda3TzlG1NEYPAqJBra23lGuV2l+xcywiCgqAxFBf5z85VNBK2DYY4QgEjGBqdWRIREVFShbUUpKk4pmbtnvrrR//3//z/xy53tLwU5/9zNe/9vWjo8MXXnqJnO9TenZ0TN7FUmJKs9kOMKmAAToGDl7FQmjAoJKyAMCMvPeAUHJerZbT6bQGssgIuBxZaXEYJJfgfV0VgaGKmZGWDIiOHRKqqm5HlsvV6vjkZIhD32+kaJHMnhTQOzSQ9WZzdnpspk1oUi5/8JWv3rp186Mf/3jOpW06E2WmnAsRxpgAwHvvgw8m9XzMWZyjGvgdY6wiuRhj17WqkpLWUep6vWrbloiXp0tR2UpeaspVDchEZtf3g/eeiGryRw3Jwi2qvLYI9YP7SSZVJWDimKbuSymN98UUEZrp5Oz0rE7FU07Xrl0JE7dexVyGbhL+2r/9v/jUpz76wvMvpEEYw5A3Rcuzo+NhGG5cv3Zh92CzXrehu3Ht5uHR4eHhs529nT72b775vTe++c1vfOubP/czX9z17v3jo5M4bNbxotrPihKbA1BCGl2bYGpEJKYlZxyJU7Ct6saWpf4656vDXIrmMUxq1DyJYNVNgsQYr169+vDBgx//+EevvPKKmXZdG2NiYkXUImamJmagJZeaM4VkHjZx8GbYdNgWt5gPqA24VKRQxSCiimGlkri6DYPNMBgrmjnnnRogKaCQdQGvukv94bNBzAcvVa+FjpwXVDUFRDVlYwATVAQkZlKnYiYCBk1odFT1WVUpng+xAZGdK9sgHjMDM0dklY2EVO2ubWhkK6YiwnrhwI3ndbX4qpl3oUipI19QRCPyzaaU2Oe0zq2TpOBYgQmAUE0IAFGzmlZPq6lBqRbrtoGoQGAqoorsYowiZTqbQC7kHHFGIRPLpSCRbt0ARGQKuiU4n+NGgB2WCq1gGvdkhiad40XrSxoaZ0gUN3HYpNH5j9S0bQg+Z1mthsX+fjvZ6WP59Gc/P7l49awfCHA2nZYibRN+/PZbx6eHk0lbsiBSCA4BONSxClTTDcA4JDATRGRGrcqtbTQSb3XlZjabz3MpIiW4pgkNe8pSLAtUIoIZGThHyK5PcZx7IiswqBm4mkifxLxrs8iwiRUb7QknIZTAOY0BxnW0vI3ssMrl24p2sbpEq1G/8sNqMdT3vYhMplNmVrPlaqVmjGxmkkpVC3lGdEzYffkP/5iJP/Ti89/79nffvv8Yp4tCARtu20UoJkzrnMWTlOKcG5XAOGYz16qrfrh1B1dKySl1zo0b/e38BwBq2NYorTWroCzCqjFFRHDoDKSkOJu0n/3MZ7RIjMPZydE6nhxc3r1y7Uo3mTFtbtx44cmTZyrvnBz2d28/QuSm45jO3n7vXXI+FbFKBUuxapPJsUgpmr1z9TVXr1t1jxNR0zTr9bofhp2dHedcHfmIWPW7IBCgwjYb6ye6UGYmZqxFRh2XlFJ0NMTXeUGtgdRMRdQUmtCklEzt8eNnq9UbXRtCQyFw14ZJ11w82Lt+9cp8OkMwJppMJpcuXprOpm4UjFMdjRPhcnlmBrPptF8tRaSbTNqmbdqupqHXqQ+P2bIV7GA1MlNE6tNXJGtWKxpc9fPbeahLvQj1Vq+pxobbTT0xIjEgOwZTkCSWj5/eD46axhM3HDoACCEYVDS8Z0AjBBOicvv2Dzb90Wz3YlwOKqXzYTJthVKTyseee0VyvPLS83/63/g3Viebhieeg2m14AGhdzv7+0O/XvebLnjbIuNEBFHZGBgACUxzzvWKl1IcO7+NtK2v7QyomtkF235V5hhsEVVEbkuzNQVUMM065kcDAhqo1UDmftg4wuVms16eVm+hqZjh7t5BEj05W03mi0FUnVvHFIsEFxC9FKV64xCrKaCNL37C6u0iItCK7YdSSsml7VqzjGhErkLVzDBL0SKgyt5tR5WmhdWsKsCr2h+ZSkmOyYdgZinms9UaCSbTdjKbsAvOeQALjo8On5yenp4ulxcuXpnM5yfL1d7+wYP7D/s+IkDbBFVr2oaI2rat3Lm2rfZ1ZSrMTkTYOXDEhoSYS6z5BDEOquK9r1Gd0+m80lOS5PNX/jbmxRC5EkhLURErRUU0hJBLOZf71ETr2vDRiAGFnMWzhhDyKP0jBWy7LqYMCMv1+vTsLJYSfPi1X//n/+b/9C/88r/5bx0dnVy+fH1/fxcAv/HHf3h4dHjpwuWUo/d4/erlk5NTj2QlzyezZsfHPs1nO3t7B8v1KhYQ4ZL0L/9P/tKrr7z44O4d1Pzk0cN0tn62Xi0364PJrE8RDICrk8IBGgLVOyQN0Tlfzah1b1tr39pw1yKvBhfrll2xPX0ArG5YcLlcLhaLW7dufe+7b164cHBwcKBgTQilSN1+Viq9qiAiA8u21mdHAT0kFw3CzmJovEfvc+krFMRQjXpNnpzhmOPBTILoHLIhOzLDDBbIxVQmPszIiagRrjfrTWg6zwUQgMUEHDpkdm5IvaioVyuZiJidaBaVJFKKIELXNQCVxoEheAAgpsrlqkqCUQNkIwGfmZhdqbygMXiBVcEBuvNEdzUAKCJNCEyccibnmRwaMTkFGorGIQZyUAp6YGJC8MRS31lmpeTaygESgIlqUQWkrPX7ZGiO2YodHR8RgwvtEAciakJnRbPmOqIYywhkw9qo2XbuUqdWmEsxUTIyBUVjIslxOu/mXWf5JA2iSiA4n+9lFWLHznkfUoqrdeyLNLP52/cfXL310q3XPvLoJE8n8+rqEIOU8/37d10Vq6B6hzr2UcbMDgig2kQEEUWFztHAKlWehlsyUH1PbCUg2LYtuzFF0URqEQDkLZdSCgavpbQhGEApAmZqyMQqRQ0FzBAVTRB9G7SUYjkE5/xk6Fd938cY61zHuyBlC92XysYTMzPA8125qtZOrD7+XdeVUoJz7WSSNa/Wq/GUUCs5OwJjEFNBDk2X8/Drv/X7vwG/a6JdN+fQDiICjtkXUzUF5wHNAIqV6gGuQbZ1CFGvQxUj1jfoOU9/rH5qNjhAEQkhsHOkKqUQsyMU0VzE4Rjxxoh9v3npxVsffvWV5fJsvVpv1uvZnJ+7dQ252/S8OoM3vv7d69dfffmFz3g3OzxcPXn25GOfuP7unbdOV2ddNy2iTE5EmStYs/pnTUp0npkZthjAet22DsFwXqNTxe0Q4Dh1U9oqllQrjKyWOwCAqjbexlg3wLbl5ZjayE0kQsCxyUlDHiE1yKt1f//B/c16ebY8khzB9MLBzt/46//OpJuG4NXk6bNnZnaruzWdzrqua9tuajjEHlGfPn26XK6appVSTPX4+Nh5N5l0k3a2ZYNVx+poZlW1UrJuvQhmmlKq8HBTqMJ/2gKdt/XcdgVWgxoNmLxzwaA2b8agKvno8OFqedgFFzeqhC50nrvpbJdcg4KemyTiVIODw6f3L1ycvvbhW3eP8mkUROvz8uj0SU/pVpiG9ebWZz767/yn/wdxjQ7ooQWrbwQxA2Z0wyZv+th13aRt18szFQMzx1SX6vXQB1C1YqCm6IgcOmanUlmdTqWoSk2VGvqMVKXbZKZ1o3xe4Y6Jxgam1V9LBDjuL0xUBNAQqe8HUnFdw42LMZnkZYx7ly8er9fr1ep4tU5FRYybZtJM0BAN6lartoEIjKpkCjZG8xoAIKkzBnIMueR+6ImQ/BZvj0yAAiNjN6uUVO8yruv1KqwtUsiImaWI847UppMpIHSTCRMbatd2s9lCVBUgNAFAr9240XTt4fHxu+++3bTd7du3f/t3fu+jH/loP5yR4dDH2XxShkRMddPCTEWKjXGVTk2BAcga7xw5MADUtm2ZybmRrbm7u7vZ9M45BGzb6aZfqkqNXE0p1f6p783MNpvNdDb13pmZdy6njIAuBFFzgWtceXAfYKbRYD6fpiGi9+QgifqmYccxxc0Qz1bL1bpXJCD/3/7qP3n9ox8WKarptddeOz4+OTp6dHpyrCJXLl4ipBB4tTyJQ3ruuZuTdjL0m/3dHcdOAXPOhri7u797cOnWrRd/+qd+Oq/Xx4dPdw8u3Hj+xovDYNlWZ2sBWq83RYU8mxmgVbZCSoOqeudMWSXnnDwHRKwwglIybCFAFdpZL6zZ2G4CQPCekMgRiBK6YRguX7787OmV9957b3//oDIDattZ76i63Ear+39jYlFxjklhk7KfTHdvXD1+00uvDYeMUkCqkloBC+SczSFpUQ6eCB0TqbrtAScowYGJ7QXfL88ym5n1RVJAc47BICk5UBp56gjVQuZMtRY63gVEc06cG2mHTKQiZrUnplIKjtbSMUzUOad12rtNbzBTRMOqVlaVGlqklnJq2lbBZLNBxCKlFDUkg9Gesxn6TSk7i92O/bRpG0+AAlYlohWzAexgXGKKyTavO5ecSk7o1I/qDSSyLMvTs25hTdtVP2TbToj+B558IkSo9fq55xbMrKgaGiGaWlEpVookiXH36kWHFpizlSFnx40oAjrvuuAIgdZR+03GbrISnF27+bk//Wc25JpJA5WaDcgAxycnx8fHWIW3TKKFRnQ+nP9gAFAfQ8db0asZIRGTiOLYz2NVh+CWs0xEzFS9jUSkonFIDn11eaaSDYFGIqQDAQUULEo6SKoHb1ZAogKqJCZWJDHR3u7uMAzHx0dNaHxoDTWlDQA7x0WylMJMwTlBOM+BqtVkjaz/YGdnpqar1bqoISKhUzUpNQcciokoKbMCu25qRbpZi0SrlIQYCGPOgfkcR2qgasJKRSSXMXql6ojrW6MKIkMIoQmgVQsC53vY6mNomxYQ60QXAZxnVQNFx54Qo2R0OAzrL3zhc23wR6cnOQ5a7PKVm95Pbt97cunKi+uNzBeL/f3dh08ftHz2ve9/OwSeTHa+9e1vI/uaD0eohEzG40XQ4h0RhpRS07bn2+FxTMLc930dC51vZgkRyZ0vheq42nmXc0pJvHfe+6o7Fsn2QZQ6MUOtVutf3BZJqiqjBQ8EDQlpMwzsoJlMZrPppauXT46PNuvl6XL1xjfevP7crcaFWdfu71/w3h0dnxwdnuzt7YXQIBIxeM+TyeTo6Oi9d9+ZLxYPHz7a2Vm0XTfEOLk2lVLWmzidTks2773zvgKBKyvIMZNaNiWqhmGuwfLnUxLd2tbONUNmIIrMjl0AUzVBFQILTMfL46PHD3fnLaGoZEAYNkOvZ/1q6Xzr/MwmBYgJ1TRPZs2//Tf/V3dvv/WDf/QvdbqbAsWYb75w4z/93//Hr1+5sb7zcH79ahYbhrg3PfDYFCuGNbxWTdWllJumnUxCGoZhiJNuPF+4QeZxBVUlV6JAgGp1ZIOETEzVLY7VkrMNm6wfVLWfjJYiQEOrp5KaYkHvKJBjcnXhj6IlZzMQM0VDx4bU5+jaRgv93tf+MG56RmLnTKHrphU9x4JqBuS2mixANWAiom3+z7l/DwEIzIgZi1StQ6hyLYQaLlxXKyNLBrZMEUTdSmvHaRYzEOZcJEVmyikjYjfpREQMYkoVH1REcklDHJDoxZdf/vZ3vnt8eqoKf/fv/f2D/X0TvXzx0sH+/muvvvryi89PuslWOEYIyMy5FGbWogYmUir+cqSolQKAVeTUNF5EwfrQhIzFTLu2E5UQmppi2DRtHW4z49APq+VKVZvQzKZT1SryAFVdLVenJyc1ALaUwszBh1IdGUhFpOQymUxiis8Oj8Vg08csCBTe+tH3f/M3fvOtH/7gV37lr372pz75X/0//8u/+ld+pW0nfb9eLU8ZPAeOQ2LPi9mMpuyQS44A6IL3LphalpyzhBZKjENMWMSTC03LvjFwLnQZi2/t+OSEyYnKcDYMJbHnJnjvQ/CeGKvLDwykFCaiKr1nVpFcch2kn9dAnpmA6jdVtYigqiMCkRBCLpGJXnrppe9+9zvvvvvuqx95rd/E4AMhWLU0m2gRKKZSsqmvkFJCSwIK7Xw2ufXcu9M2ny6nPnhCVHBIhgqMoqYISfKEHGqd2EvN32aEYkoIDbMzu7bYVYN7m1NjEh9WOc0RZyFgv4kxhW4iUlS1jlCqTL2ulNS0lJRzbJqmaZptQTPezIiYS/He12+UUkY4R73f6kZYhT2PoPwPlo06PsMAjp1zroJaiuQCWgAdOschSckA+7u7rXOeCSsYyBBhNFTUSEpiEhRSw/PXgZopFjQwPucX1JynzbAJZuQaajmXbCZ1JlHNxqYWS0QkdmPaqGoF1hqT88AlF805QXGNMeNiMtEUAc01zlD6IXkOHj1UjVS/GfoY2mlxzf6VG/svvDK5eLU35zyDGpoVVWJ+/OTx2dlZ13aqCFxVsduB8Ra8WbGUuu3cz4O1a61WBRPnjIGUUhMaZs4xETvnnJoigUNGRVeT5zUToYBmLVgKgQdgLQVAEADUgBEJTBWZhyESgA8eDXMsIfjJZHJ8fDybrXddW/OMS5ZSjAjqZKWoVLhLdR79JLvo/PQDgBjjcrVSNccOEVVKKdl5RkAzLVpIgRAVsOlmUURTQT+WBsBoKgaKBmSjaCaXDEVFR/nweRlhWzUSIjahqYyS2o3UCXdM0TkX2rAtLhEBtJTgGdhp1qLqfOj7s/li/rnPfuZseXK2PMGii92dCweXv/ndbxtwjKIaDg5u7u3fcK75+ht/tImnFy7v3L5z++xs4yfN9p2NY7KNac2zqxVhnauF0DjHFRkQQkgpnZyceO9ns1kVwgOAiLpxbFMdPcbEOScRHa22295j+/IanQd1b1IfYURU0fE9OcoTxtparCACAKlClOIced81rQrAv/q9L+8eHPziF39utVofHOyJ2s58QYB9H8/O1k3TtK038xcuXNhsNl/5yle6rtvfP+j7vh8Gv/bB+aZpXA1ZJq4a2Zxz3cPV+RwikmNCJAVTwW0Ael0o1UpgrHq3vyRxcC4gQs4JJDOCZxzWZ48e3l1MGgZFE2bMKqSmUkoWi1EoytAbITkc4vrJo7tnyyf37927Np1mdCc5/eD+0//yv/h//Llf+rPHd+7dvHozMz3bbHZmu1Cshv4qjoJXAHDk3Ww6JdJVWkoZDZBNcMzETAakWkQTgIEoVsCGVsghV9kXE4NvsmYpFamHZqYgiFhh8KUUBFa0ggJGBGgIopazIgsSOGZAF3PKJYuJERoiMIGGpMrshlKMXQiBiS0bEzlkFUODoqCEOMrxxYxIyVAMQOtubZTYIwEXEABi51Ul5sQ+IJJhxQsjIiuoaSFwxEjI9aavep+K3UNkRA6NH4a1lFLn26nktm3X/QYQkAjRiNB7h9gOcXh2dLxe9+1kJvqEfWja7tnhEagdH51MuvadH7/9uU9/5uWXX37pxVs7u3sZtKILVZWdQ2YHUAfpmoXI1QV5ytpv1mrqm10iYEd14VMnYWXoR+I2IZMzBjCcTqdMvt6Ay9XKO390dMTMu7u79+/fzznv7++vVqt6d9bGJYTQTWaiOJ/P1uv14eGh94HYq+qzo+Mvf/kPvvHtb71/+/ZsMr1541YTupdffOVf+4V/7d233/m5L/7Cu28fE2BMKWeVoof37l25ctB4B4AiikAKKKC+Dd6afhjMtAlBchFS1wRZASIROgbYxKEU6YchlpxTcsF3nk/PToZ1nkxnibnrOiYYhkiEZJD6DVWRM2NwTk1jjMzcNA0ArNfrFBMh0nY0rSK5lGzmEKuhrO83Xdu8+OIL77///qNHD69dvTEMiYmobcwMxYEzRmHNUbMTzVKKRAbYm+/6ppmiTPf36PE6IHtCVNFcihRhrjeHZ3ZEdalUilDNxEACMEdEapDSwnfP7R9ow2fDEHPJadl1zazZa5o2D+sMoiWLqgOUnNGhiozbTAQcLSdsalW8j8hmlbRBalpyQvYViYYAfd+f92cAhowiRVQAzRE75yvD3blgSClmYmUKRCxS1AwdYSVpEPbDkLS0TUMFDMXQ2CNjNTnWqHU1Bd1KqeoWhre5QmNzv91dOiJRSf1ALjCpATZNA1Ydjk3OWYoImJo6T4RORXPJONIiixGolGE9CBoEpAYnIcxnUy2iKCZmHtgTmZoVNVakVLKqKeNQ1Pr0ocvXXLtISXlsoLDmPj19+jSl3HZTUUFyzgUar3Cu8iZGRkAVZSQxAVMiB4BqdRRY03ao7rkkFwEjpknXHR2fMhfnPBOwYys21ugOAVG1ANpI4DNgACkCJlU/7swBqWhBtWDAxCQgWUkslTifzlIspyer2WTHCIsaIqUUnWNCyDkRArKrwKtzmxVutVZ1COS9X2/Ww5AAGZEMIKUEpioAqERQ3UlqgOSGVAiRQ2soJUYAYGI1YEeutqwl55w0KyHXQrwOw35StNc0TS3FsNbPWiNsR52QD+G8RIMK/zEzExCqiRmstFquP/np1/f2dk9OTvp+Pe9mN567/u57b//47R9+9vM/u+7l5FiWJ2H+2vXrN67+0R99zSjO95p7D961mhIxYv8A1MZFE9UKIDnn2JOqIEI1rFU02qNHj0SkZhmd74Aqk6IOp6v6DUFTzIjUde35Xua8hoZqk671NHKtJKrfHj7QFNdtL6tKKQKIm03PjhHh5HTZNGH34CKc+M06fv2b3/7CT//sreduHT574gD2dg92d3ac81XjrBKDp3fffufu3bs7Oztd1129ekVE+74vuTy4f38ynbZtm9IjA5hNpwcHB13bIlHOuQ4NmhACkagIgHeeqD7TH2SgnvvCtkshQgIlQ1WCgqhkEtf94dOHWNJk2prWYB4VNTJlJCJwBE1DQKUYqGDL1Dh/5717F3Yv/uLHdp+9/+TxavmJL35xf7F7dtZn9ctNXjNiM0lDPJjsalY1qbM4rOfttJsS8fLsNKXkfCAmhOofx60NvORSCFS2WlECJiQDEKk5cAaEACSmfktkqRReYqo6FGRkJGIGI0MoKlqKqChCJUKbGRqoaZEtwCQrKzCASPbeYfAGQM6zp2IgYOSIAQlIDOu5hOSqN0jHs94Mx5u1/raEDDga80UkxhiahpBKtVfWuht57FeZANGqENiAz2vaLTLHOdaCpjb0Q90smAU63wuY1fTp+Xy+XK8RYRjicrVq2i6mpFLmO3MCGOLwpS996c1vfevlV17+6Z/9mdc/9rr3XAOl1dRMkEZ5fZHs2RFicA4JshvW62F9tpxOZ/UKooFKcd5XEz4iimiVVwNgVZqu16sq9jw7Oz0+Pp7NZk+ePJnP5wcHB2YWYwwhhBCqfZqZh5iZ8c6dO3fv3vPOX7vx3N1793/tn/3ad777/ePTEwGYTBeqEkK3szj4+3/vv9nZ2ZnN5ndv351OpmatFlythkcP7j19+uTw2aPZbO9zn/2cAhyfnhrCfLFgJg4OE67Xy1k38USu9cokhKFpgwu5YMcNODs5PeXgJ5PJ0G+YuWvC6ekZgC6Xq52dxcULlxazydnyLOeSUq4Yt0Gl8s3rGdr3vXNuMploKSWXKvNkZu8cI8ZSiDknJY/MNAzDYjF/7ubNk+OjncVeE1rFOnUTNXBITM47RHDWD6VkA21DgwRrKWcxJlMyw6KOkNApirAZIrja9LNlA1BRq2uRQIhMohpBu9BOlFPSAvbcpUvPhvTo2dMU+9PVatf7/aazOMRSTIoD8uQQkLwrZkSMCLUSQiRANBTnfM0/qVNNYmLhkjOhWtHQeN5G9njvtcYLAHFgNaqmznpeiwiiEDGN/bcOfQyeiVAJTQwM1MomDdigVlFd7XkEmUMd6uC4u1FTAVF0xEzg0AN4HyhnEkEf6nmCgKrivGPvUikgveNgok1gEQmh8d4PQ3TskVBUS0m55JITOzKq1Dh14OqWYRiGPic/Ja5GAIOkqmIBELUIlBilOL/K62QQo2Q3I4XGtc5ctoRgQGYKYtmKPnnyhJkQiInEEMyJIlItNAvimESmqug+yLWuhYtVHRUBVoMeMAFpSSnn6XSyXm/GRaRq3CRHwTkHgqqKjFlzpVsBuKoiEGAxEVWCSk0BASslETsjLFlKNkZC09D4xWLx6NHjZ8+e7V88IGJEQ6E63CMC5xyxT3kEQH/Qvm5lDHVbWnKRKoJF0lzSEKm6jUp2bSBGqxOeop6C976olJg9j8FHSuQAQS3nVMoguTgO3gc/Wk+sDp+qGhoAuq5T1RGRrOOiM9WpNnFTD3AZtYwIxo5LFlDxrgWAlCOC3XzuubOzs5L6i5cuXti5cHx8/IO3vtd2bRMWy1U4PBwOj0/aaXhy9Gixs9jZ3bt3/8dp6EPTFtP6RDgkJSWo+Gbdmg61bYKolVKYXds2m03/9OmTnPNisei6rg5ZbWtOtO2KuW7wi2mdt/EYrSXbJco4/sHt+mykH6oCYkUsVjg7jmTFuhqzmCKgGXAcMpJjbpbLfjKdT3b6+w+f/Ppv/sb/8q/+1Q996NVnT55s+uHSxUuLnZ31ag1ABeStH/7g9p07t27dujbpUkrr9frKlauXLl1i5iHF9WazXq/7zaak/ODeva6b7B/sHxwc7OzsVLbabDp1PJKQAwQDK6UeROPNk3NGIthaDglRQEWTaXFo3mHaDMdPH/ers3nXSYzesQGJaOvnSlkll35Qy0DKzjftJKsZ8PM3b7780ku5H3R5+sZX/jBz83O//MunRPEsds08rvsAzJnZU7GiqDAWjVAfSsfOIYFoXbiUkgu01ZyG5/M3BBRRESNGhw5x5CKyY1GpJRURksK5P9ZGoYQgIhMD0khuNUDAJgRjx0CB0CplLsaUU8VI2/iagABBoYgBk4spOe8BwJikKBKic0POjIDEI0YbCBEU6tOCWwK1ndOCmVmlII4G4BQjMfvQMMBWgWZ13AsKRjq2MmhqNbZ6NPLViVJKuXPu2rVr89m8lOy4ZlUZO2bgOuj2TctuQ+yIuG3bJ0+fphyvXr36ox+8dXR89PyNmwg2X8yPTk9/50u//4Mf/eiTn/7Exz/+8Vc//GrXdQam4ExVBdjQEYfgEazrpswwDNG7NJ8viPjo6FSFnAubTb/Y3WP2ZhZCs/1DWK2WJydni8V8vaa+H5qmefb09OTkZOj7quN+44/fAIPnnrsBwI+fPN6sNzHGJ0+fPTs+Oj46Wa9XTdO2bRdzefvHPz48OvJNC8jOeTEb+jRv83e/+73f/4PfYub/6D/6j7swqcgeQCy5XDi4ILJ+5+0fbnoZYmy6yWwxG2I8PT2RkqezWddNzk6OV2Jt45FYAA0IgBiZPS2PT8/OTtfDwMH7EFRFRTQPaOTIg8Lpyapfx53FTs1zLSJd14FZ7HsVqUmVaYx6oDq8bBr2wZdcUh6GGAHAEZVSvHNDPzQhIFjOOp8tiN1qteQFA1FTdeKVGJlTslJUKCVAmISWCi43Z8ucwmYdNXdMYMgIHh043IgaAqMxOQQzsmIFwFG1qFcqhCoFV3LuOHDrU+yh750BO5cTHG1WU/b7V6auCVGjqgBXUb9SkSwSENWglFS31KIjsVBE0KGoqKlj7xzGmGrz4pzbxquPu3kEZM996kULjS5Mz4zb+ZAQkSEimHfkiBAEDHPRvP3+wgeHFjy1nonNCBiwbqUVKwpMTbVsVepjgCQIIgABMSqz1j7YAA3RFNSIQbVsYhIh73zVbznHzrEBiErfD0WTYw6hQaYhJSklG7BzHTOTPzy8vzGOqfQNquUSMxRjcljJ16KS8+HyTMhduHrzLGLw7axbQDFvBCBgKlpSHNTw8PCwzgacC1KUENQAEUQ+yIas5bWNNky2rb/SsauOWNVaD6CahKaJMTaLRdt2681mGAbvxs6HHWeRXLKrWC9QLYpq4JDRAUMGNBMGElMyBEIxSFqsZARi72vF1PdD8H5nd3F6etzNJyGEmDNzjfgRJvbkxtpm+/OPK1GrL3iu+6/VeqW1klOTojkXF5yhoKKJFiiEhOCIUGuGLggCWBFlJceOuKjmlFNKCubZs3PVWVXlw3WJWV893rumaVerlRVzjZNqezJTEVN13le2+3mFUScGCEjskNDUhtTv7O4wUd+vL+ztXDy4GPv4gx/+8PT07MOvfaKPeLaU27fvHVzeLWU5nXX37r5/cng4DLFtm6Kl9iaEBkSgpmAOOZdM7Lz3IlIZZMzIDs6Wp8+ePYtDms1mI3dD5LzwRUQxJaDtEAjVoAu+mnw/EHZXCdv5ZnjM3kZE9t6xY2KumH8aI8kl55RSVC1AkFIi1Kqs3fQxSVqnuLO7vz47/e3f/K1333rrz/6pP/WLv/gLu/sXposdKZJievzwyXff/GOi8vxLL129cX11tlRV5/zOwd6knZSY2kknZt77xWIhpZhoiqlfrx/0fYxxNpk+fPigCc2tW7earrNSogAYiqlvvHO+Im4YR/gPQJ14A5Iz05IigpjDYX02rM4aZtPMzlVJCJJTVRFg4JRzioMhAudhuZnOd5pu4kJw7KF1A8on/8d/cv/KzeO+QAKHTByamYc+lXUsrU+ybnxwNd2DEYANzIEVU2mY11F940U0l9xVSCBQLkUr/t+AnK/jtqqPc47MBE0IFQmhnrZUZQSIyNsytlqQGMCIgLg+oY48qxRG8CGcnaVcKq2hEMIYi0IoFd7mSAFG6CoyAgEiAWkSRnYAQxy8c4gIJsxOVUyNEQBppKNr7W9GOwyTAwBFE7QUo2P23qdcGx0wSASgQKBSnTVEoApGWAxyKgGoYn4ZkQhn84n3BAAGEEJANlA0NVEtYoSu62bT6Tyme6vNmaK61rPnF1689aUvfXmxszufTJUdtK3GeNb3//K3fuf3v/yV52/dfP75W6+88sqtW7dEtIjsLnazlM36eLlaxqxt2+ZEbbu7PEvrzfrO7Qc/7N95/vkXDg+fxVi66QSREDnG4ejoKKW+X61OTo9PT0+7bjoMUVXXq9McBxNNKjknchSajqCOLdT7kLMQOUEqKknw4YNHR4eH683A7Kez3ZhLTgVyUtTFfLZ7sPN3/v7f3dvd/Xf/vX/3wsUrWQxMEfDx08chtCWV3b0LH//EZ7773Te/8tXf/+mf/qmuazlwg6HEvBqWk9l00s1PTw832fb29nQwizrr5jkJMW9SXvX9dDZtvU/9Znl26ph2Fov9g8snp8vpdL9tOiICsNm8M5N+vQmulWw5CZEZ51xyHpKBrVOZTDpgzqUQQWic820Wg2pIMCNCBK+iTRNylpxycI2qDv0mhEYUvKu8Cg9BnZScU1IRlbjuV0OMMZpKXJ2WEoszUQ2eKRYVdc4RUxDgLIZaHDhyVGcB7AYwMUXn0UDUltIDctLEKh16lpxBqWlPi5wl8QZqggENTUyIGlQHkJHBpDiHbdNKykRkYCVmBsyaiRkNVYtzrvFspt2sM7DVau1DQMSUczWcqBmhN/YqybsASIYsoGDZrLLqlclKimHSOAIoQOzBh1Ue0mZz89KFGSEDdMTDMLjOkyNjVVNHjABiSM5bzIpooBXrbCClJHbePCkCEwMRKhQxR0SoDgswqgckLip1IiumWsow1G0IdW5Wg6vMbOqn6hQB0KzkEoib/ctnzx689eBhujC/tBcWxFqGbLlrWzBs2+nDp8+A/IXLN057KdTO9/ans2kUVVVmNMWSRHLO2c7OTpkde59LYU9gZYx6JgQzVSHnDCp+2gFYysJEqsAEuWRF8xwAkDioKrIXNUA+PVtNpt3p2UkQJt+KUhEByFny2LmC0wIgomoFBGhQguodMQBRkKLOEQNryQjaeGa2HAcpxftQclzMp32/Pj4+vHTpEhGUXIL3hs5UhyEDguOazVlDzXXrVBLvPRAOMa2HwYUmS3HsomatZq5sITSqhobIY9xDllQZsNmKIybnC1hJOeWsMuaAsgvTrlPVGIeSRdUURBUIvZo03TwrkAtmIEhqmg2LQkyF2HkfPDtVrXb9iimVpE3o+rog824ocbqYO+bdxd6Ny1el5Pfefffw6HjaHaiEd9677cJL3//h93/li3+5m6DlYVgfDpszZJ8N0LmaVKCKKkKASJSKEgVGKkUdB0C0kkLn1pvN46ePUipN204XEw5O1ch5EREFkeK8c1u5TC2MGt+kJKqpBrxVJzlso9qhElAYAY2YmNEhA4KN63JUI1OJacgp5ZIAwAdmZtWipt57UwAB530akmc/n+4+evDsb/2tv/MP/sH/97XXXr1wcEFzcgbPHj1xmn/5L//5+cGuBsfer54e7x4ccGgPT5e73Sy07SRL2my6nYnzIYiVPh4dHmUty+OTuNpIKveOjlLJF/YOnLGmDGbioduZzff3CREUW/ZEgRAURciM0VRJ0BF5s/7s+NG9O/Ou8Z5STC54ds6KgGpNfjSi3rDdv3r1lQ+fbXrKtrt/gGhk2hEdHx+CuzSb7w4ChDmwiSoxeHZRRI1VxJMHhSIZ1Sq+RFVccNz3PQD44IZhEFHzVuUXW9eMISGNmZJVa4layUe2TaVDRDKqjANl0jpHATNkPpd36TZlDSvrjxCQoIjEnERLVbHZuMq1831h7UrrRpSQCQhMELbyyeqyRduqqwoAiBSicdeFNsKsa9++ldYDs1NQERmGAWoEiY458ABG9QgQUyykTKQABCCAFtPQBmeiCCgqN27c6CZdSokYwExKASBEcs4BoVkWkyK5SF7X3C7nN+vNKx965Y03vvH02WFzpXWhWx+f3L5377XXXiXvDfFHb/34zTffnM/me3v7V69efe2112Iu3/rWNzd9v1wuu0nnmEspTRPOg3uqd52Zh5RqEhEiEblSIjPu7+8R2tMnT4l9CM3e7q4PLTkm4r2mqcotRUCglLIanJ6titny+Ox0vTk6OVyv1r7hSdvt7u8LwHrZk2dkSilmyVcuHZyeHt+9e/fn/sTPf+5zP2VmzlVrujK7vt9479tmdjhsDvYOnjy5/89+9b/7+Z//uStXr3gMFvwwpNOTM9/wfGfn6PTJk6dPWppKzl3TkKNhGDZDH0LYWyw88533311vlov53FT/xW/97j/6x/+0dc10trh187kbN66/8OLNF198/sb169PJVETjkBR1KHG1WpnBbD5Pw7BarQGpaXxgP8SYUkRG77xIERFCojEQDULTiOowDCVndlxEzAyNq+0WwEpJUko/DHEYYhzquDEPKZ+utM8OiRgFTFSa4KdNKClzFkIE5yCAGREwAsmYWkKSBBFqJ1hyVFWHGFgZ1ROJ2kbyckgHrc9rcQhKoDAanSpEFxFKkc1mA2rTyeQ8hacWiAaW0+hNrWxWJhKwlrkaf6CO4gFyzk03MccpZQR1zqrQgYiHODSVCa6ipuy4IqKhwY1kYJo2jSEUMkFD74RATLhitZAIiQTRwAOJmRalouQgAIGI+UDBbVarnVnrySlaVe0xoYmoCY4s78oUKcMQc87eudl8XsmW9RdpmzanbALE5Nix9yXFbr7TOr7z5OjR4/s3L85fvXVlMQkExQvuTBcxZlTYmS0cO88aRfcO9sXUDJ1jNdOSJCZQyzH2fY+AIpK1MBAieqrxnErIlailakzufIgCUGMZVFXHZaVWNYudjwo2m9WFCxd293YfP35wcHDRFEkhDrFtWzPLKY+xUHWnbZYlew5N63IqUkoRbb1vQlskm1ZFsoAKoDGzlDKUTCVfvHjx7v37FYemNMKizFChmCiOqO4P5BpDjFCfC6LNekOEdVaRSoo5VmormInWw1uNSEFMlMhECwA475zz9ZYb9QEICMAcJpOpiaQhxhRFlIiQ2TkygabrQtOoaMrZOW9mYtUqn+sowfsAdf5TLXWIAOydjzEaYmhCHzfI1jT+5nPP3bp+IzD++L13nz55gkaXLl75wQ/ePt3QdNGcLg+fHj76c7/0p9584xtnx49SGnb25xlS1OiMYUTYISAC1AwZK6XilQURg/cnJ8eHh89E1Xlu26ZuD7dKJqtvMBFRLURY1yPBBRXNUsAMAB15w2q9BMOAI1yrikqxgjRVBawmNpoalSxDv4kpbhmbVCMBcUt3U4FSCpiilInzwftArvNNkfi1r7+BZoHJsuzN5geT7u/+rf/6Mz/60Z/8pT/98dc/1q9iyrI5WR49eZbm690bV+YHuxHw9Oik3ZnOdg8kl+vXrp1tVrsIm75v51N8xvFs9WjVPz06dOAO9g92L+7OHIukJObQZ3NAWjG1zOrYpRRVsGWTPNy/fXsSHKEioAseDOI2HJcApWQiXuwdTHcvKDtqZxcv7PUpmUrn/clq+ejZ0c6l60YtE028pZTGpbOZDx5pDONjdmCyXewCADowY3IJIgCG0Az9YAY1KaJuYdkhAbVdUy8rGKmaqIBUHoIhAmitWY2IuIa+41gA2TZSqoqIR5eKKoiG4A0hxqEitqoMqHYe9chA3cZRjUvDSpMbh4P1xlIcaVEI46Zre+LA9twZ9WQ6vpJHNRkROuC8ZTa0bYuIIoZGWO35iLWpMzIDLCVCtYCBbfqha5qcB0b3sz/7s8yompkZ0LzzVvNfaxgFQxN824YYh2G9bn1IqdRj+pVXPvTVr/xR6ycvvfqh9Xo9nc9UzTWekKbzuW+CqT07fPbw0cP3br+/XK7OVmfXbtxop91qtVLVUrJIIa6xwA4Imq4hoqZrVYHQETnnPICY6c7uwsCKwnQ2C6FNfSZPhEHV+ixxWK+HIae0XveHR0f9Jl67fv3o6OTZs2eGRA6bLnSTtuu6YRhSLkaWc9r0667rLu7tb9arvDz7wk994W/8zb9R7y0iVslS8mI+r/XBqh9UbTZfOM9vfusb337zO2o2DPnihcvBt/v7O6fL0xgHKVpy2eTe1MhN4rC+d+feZrWaTCZPnzxRKdPZYjafTGfTr73xzf/qb/2/ED0Ypjv33vjmtwyhbf102j537eoLz7/0wgsvPnfj5v7FC8/dukGh+863v9P3mxs3nrtx/VrbBDDNqm03nc7mKfcIgL7JOQ/DsDw7FZG2aduuzTkXKUWlJEk5m4FzIZVMRCJl6Ic0RIWSSy65VLfw4cmJPjtpxHnJolY8a2BGdAYoSEDmEDwjaEkF6w2jKqqoVrbkDPYO2YMDAVPmg/l8eXiURArYJg873QyQAxESEDlCMrWaoAWgde2ipiWPYpQPllwKVVxCzCJSSvaTKTunW/TlGGIDQEzrzUpUu6Y11ZxTfQaZERGJPACnWIzQuaDBiQoSCSg3rgBULWq0gp4NzSGiqCkYmJiIKAM4IG+AyGAQipJgKkptM93ZPU1ZwbDmvhEaAXmfo5Ui3lcCGVZRl6rOF/Pqnzp/3s0slyxWxMSUCB0gGvF6iE0z8cGllf3o3YerZf+JD7/kIQZq1tafnZ40we9Mu6QFpcy6ndls2nTtsIoqAKAx5yFGZl73/Xq1qb0co+NxtI8jqW4sTz6IAkDElLKoOiZmp0nrEqSeVWYwhhJKUbWzs9PJtPM+9H0/ncxFSkX0Vh3bOdn1/CuXTGCOiSlgkVJkLZumaYhJDFMpZkpMkksX2ibg8fFxETnY3x+Goes6z15VEdmgIKIRFTDamq1GJ20R1wZF0JRWmxUQ1tzvIW5SSeQQwIixNp9AaFbq32T2Vfbr2CFAddggouZMzE3bOudENfZ9ZZOOAMN6rxJNuo5ghA6rCjrcspMKERNR13XMrnqLq8YWAEiUnSOCnOPQr+ez6cc/9vonP/mxrgsP7tx5/PBhSbkN7Xrdf/tbP8owP16+v7gwX6/jwwcP9vcXwMqeUhR1UsU1iOMmuLKrxjcao6oSIwBshs3R4VEpUn+q+XzqvQc1G83quoUgVIGPGQgz+8ajgdMxiLpqn0QVEdgH3NreAWpACMCYoUqqmlIehtIP2VSIawAZgalzLJJr+z3avJ0TqKlqgkVLjkjonN/Z2VETBnTIYFgItE//6r/953/85T/65Bc+99rHPvbizReuvPzh7JdPD59tWG4+d4NETp8crlbLzXoTiP1s99r1631JoV/nmKcu6BCPlqfFoxQwZB8aMrBUAIBcyKIAxogMrEULZA9USmTiw6ePytD7nSmYpljIeSIXmABBi5QKOSO2FJenR+Scn+3EYUXkkEgNhlx29i/tLHYUqFrSoFITtxhGZq6a+noVxcTqiUfozJDZESITBx+kFDNQgArEc9UhgOC9VzVTrAoMQCi5egTsfF9sYMQGgPVgBkCsDiszHJ2fVlRUlcApGBCKlL4fYorbqkXUAAxq8joTI6FzDoEAQK1mRHPdam1HPhXZDMR0fscw0znlvX5ne7bjdlUMAFAdBzUNbptUQgo1SlqxVFUjoAGqqWQzI3SmysT90JOW51956dbzt3IpnqtHQ1POMAKsSFXUhJirUtz5MAxDESWg1dnyE5/4xDe/8c3ZfJZzfvzkya2bz7mmmXbtennm2E2m05oX7XI5Wy0X8zkQqshif1elBgz7lHLbNvX6iyiA5pxzFgAKrhFNqpYlO8bZYqaqz46Pzpbr2XwHDDd9H0tl3MfzU/v09PSLX/yTf/Ev/cWnT5/97b/9d+4/ejyZBkNQrBmexUCHoVdRIr5+9dp02i1Xpyrl0uWL/9v/zd/cm++UUhbzeSmp70vMGQAm0ykyn202CjiZziXnS5evHj47MrXvvPmtELrnn3/pwoVLTdfu7u6KlGfLpzEOy7Pl08PH8+kixo1a6TernZ2dnb3L3rOY3L1/75/+2q+FdtK1s74fbt56+eTkpJQMKDEO79558ON37+b82z6Erut29ncnk8mjh49Xy2XTNPv7Oy+/9OKnP/mJl164tbe72N1dTGdt23VIPJ1PY4oCcnJ8MiyHXberolnypt/Uh0oLmJhoJf96RFRRIkwxVflRSnl5urLNQObAiLKyGjJnFUnqjZCo1JzOLXE0p2xqoMLsuq47x3CjD6ICpTiw3ba9MJ0+Wa4NbGMlmiIwAaNqMUEnBMhECgUNmZ2hgpmAIiACiqrf9iHsK++0vqSB2RFyEu26TlSl5NAEUSPS2WySc9YRhdfWFqoUnUymnljVnPNlSNxwoFApopBkwiEYBuIWIQh4cgbGJZuBEBpCARuciqmiFCRyxI4J0HEw5MlsMVssDgBXJ6ehdVmKaMkF2TlAMnAILqWU08Y5tzNfTCYTQEgpSy7VPRxCqMkMROiAAEisAJIRt5MdlTwUaycHjO7ZavPoJB50CNisNj0jN+xkiEYZBUPgpnEpp1QKEFvOORcx8OT6dR9jYlf9SgRQk9YAwSoXB2pgR9V5aG26tnEBtcHbMuEABWysllSkaXzKsdXm0qVL9+898K7xfuTnVmXMVok1fjGRgmmONX/QAQqOse3EhOTqaadqhFRKoeAWOztny9N2MmuaLsbcNRXTIrkUUuDG15ytcRKvmktGz977IrJcr3IpNYcSCaSIijCTaZW7QiX8gxpyVY6WKlWpP3+9hQAAmZ33dW+1Wa9zjEi1UmQwMFAAdN6H4PoYPUATvKiY1bG/AlhdJuDIoamKl9FbxKRIkHIxUybc21l84XOfvXz5wtHhs4cPH8QhGljTtu+++/jkNK4jPDk9vHbj2u58980338zxDAkaHxA5phw6B0YMtA13gpogqWoCGQHbplktVw8eP1QtTTtRldl03jSd1U5epZRcK+Na5YiKihA5IlMp3jWE1S80ioMrIkmBqip1O74d/wumklIehn7oh1yU2Ldt23atc9UFlqvdNARuQiOiWqIVRQJiliE5hJpGLFmgdllEqYiZ0qbc3Nn3fpP69Ae/9Xtf/q3fe/7WrT/80IcXB3uL65d2Hs7o6em0m+zsLqDxu/PdvZ2dRw8eFtDF/m5ciwdYTLp762VhmLedc+H0dPnk2dP5zrxtuhizIzYA0wLOMTEoQFGVNA9chnV/eryYtrFfOe+8bwBRVdSMmAmpwrZUxRNmkc3ZSSO2uHBZALIUVTJk3wRyHj6oCkajXKW6IGIIYRwPo9UUcUBkIudd6PvsQ+PB10BT50dpo/e+bZvaqaSURPTcIUnMaNu2Z1QYCwCA4Fb47ahigmikBKkKEtSZKgFU1GIaUs4R8bzZqKOb2mVS5UxgFV3XogfhJyuYKnH+SQnn+bxnpJhsm0IRQ9Tzv3vuy2DH3nx9OBGRuUEi01q9CxgCKBJsPfAgpagVZ6FtO5Jy7cqVg/29s9NDIFKViruq8Wkm1nah7qcmk8kwDCmmxXw+DPnpk6fvvvPOiy+9+tprH2mb9vTs9OjkKHi/Ws2mk2467dA5ImqdKyJt18UYuuk0qxwePq1T9DrNWyw6kVJEwOp9RSGEriPnQ/ANgEsxn5ydKmjKYmhDnzaWN33u+7jJCQhDcE3TEGKM8fj4eLFYHJ2c/L2//988fvz03v0Hk2mXclLQ+awjhOOTYxOZzxaL2Xx/b9959+zp41nXLs/6P/tn/synPvHJTd8752LfF8lE2DRNybmIeO93d3f79boMiTg43yzPTnIpBxf2nzx5+ujRPXa0xwcPnzy8cHDw8kuvHB4/BVQVDZ6ebVbDJr7wwguXL1/Z3d9dx36xs/Pbv/elt9+5vdi7HLN0k/lqM6z72LYNAC12uhpVq2o5F0M8Olndvfuoa9vpfGezXt679/DB/Qe//S9/8+Mf/chf/+u/sljMHj141HZt6Nqmadq2rdaGnPN0OjWw6haMQxSVVIcAQ04pplSWy+VqtezXfa3ya7eXUwoi3Dgh71gkFfBmBKqmqGCQsmbQgMwINU3QBw+FAIAQfdNIJfCaEWLwPg+btmkvzeep2KPl2SoOg8wmQA7ZAKJkQGzIqxYDRaAYh5wyO4bq86lT13rbI2YREeWtC7Q6erbj/UqZq8sPqKAdQkQbKa71Tdy2nUolCzgAyyW3beOdiyKllKZtGuSWqAEICt6sDlXVhDhkrMhtpyIglsVAChXbkA0myi40IUvpJs1miQjaTTwVzqolFxXLotony3E2m1ad+9APRGgA3jmo4S2q1VcPWLG8FTwMzE4MxJB8N+TeNYvlenj3/uHOqzdXCSHbomlTHJBwtncAAj96/51P/fTPl5yldua5lJyLqogulysRY0ciWqQefUieGGtyztj0qxmYihRVh0hMWP+neppJESTcnk45hGBGw7DxIazX693dncl0Uv+w2Wxms1mdx5+3cOOsCwBAVYuqMrFzgcgDYCmFjZmdD6FyZVRyHAaPFkLY399/+OjpdDar074KFSQkZAMARtTRswaqWnJxTUAizTnWNkAN0KQ6ZswM1FSBaDsCM0ADBaQKZfMAUJtM2A46mq5jonFwKhm3dWGdUNbdT82hr4hy7z2hiWTJWaTU37sJ4Scn/BV4ywZqmpMQo0mREp+/deO11z5kKR4+eTL0fX3HXbhw8Y1vvCMaRNxsNp3PJ7PpbLU++91/9c9yHpBc0dJNJkUGBreN6wLYTvkAjB0T4snJycnpCZixD6VICGF3d68OHhAo57J9cLYkOSiIFEKoXrZSMjNvzQBVLqYAyESwbfK3n7imlFIcagAAO9e0wTctEzvnanlNRDEWAPDOh9BI0ZRyrWUJsGhuXEBiNCXALGJMghANAFAcH8foyc+8azkcnRw+vX//t27fTTkudhYv7l/eXczSPEyuXb5y69arz7986eKF6d7uvUcP5d69vYsXXrx1K63WzbDmSaNDevr02brfUOQf/fBH1649d/HiJTBgFIViUoQ8Ije+bRmCpR9+/ztY4vxgNzOlYci5dJO5cy4Vy5q70CBBKhFNAYEVZNj0ItPpHEMLAuh4MlsgYCnCY+h4NXqOX3X2U3kEpZSSUyWo1U/EiWj1xCOic67GS5mZGwXnuF5viKCASRHU6o1XkuqVV6wTG7Dqr6nTKhzjY7Eq4mCbCIZGAKBS0Jn3AUBjHFIaAEk1IY46o+2HPsKj6/1BxER+q7D+4Gtcdm4ZA7CFkZ9/wQdmk7F4qtXVeVJEvWq1xW9bX0nWZkh4fhFNRIixppF7F4Jv9xaL1enJKx96Zb6YHR0+apuOXS3VtQYl1XJ8GDaT6cwRLlcrrUoP1QsXLizPll/76lfAaD6bLterrHqyXKaSN/365ITaptnb26soOu99CEHNnh0ePn78+PqN55vG11U6ovONb7ZUhWEYmNhAl6vlevVEijXdJKeETMjEjvucjp6dmKEYNtNWpPSHfal4mpp7u15/9StfUdXQhDjETd83TZh3k0nXeO/293Z25ou2bUsszCxadmfTZ88evfLCzb/yy39ZzSaTifOkqiJ50/c+hLbrYor9pmfH88XOSTzSYmBoyF/+6lc++vpHNnGIeVAQdvyr/92vPn785Od+7mc/8/lPf/aznys5Hz453Kz75lL3/PMviNjR8Sl5v+7T7/7+H3BonQuD5CQypLVrvICimpquNoMqNKHx5EJoRZUpOE8lpclkSgglDdP93QsXLqhIcN66zgByyjGlvu+7rptMJiGElNN6ta5R2DHGvu/79SbHKvgZitRhqIBpCI6IRBXMtPGzvZ3jzebZg5Md33DORipYYfd1FAAO0REDGrNnRiZCYtgObKne1WbesWhuvS9qM3RX9nZPY78ahqPVqvMtowfkaKoEQEBIZkiAytxO3CgLq9Gr555dVTQIztc5U/1m3a1UVBJ5V0y3B0c2Ex862BLYzCrdCkU15+JD8K0722wADQPHmPuSHYdCkEwZMaCpQQFIzoqBZ9CsJtr6VovmAgogSBklgq41FzR0vOrXzoWdxSxt+nYyFVRJUIqAmkNm53cWc8/1NlNmZiQAcBWJq2UUhAAVLcw0AmIqT4U4NE1O2YUJWJ7sXXx88uStuw+7yUszNzFPjXfz+SRJCU376N69++/dufXyx0oacrHUb1KMJkpiq/V6XEggM1J1f43WtlKq301K1lKjnZyZSSk+8PhJoImKFmHn6joPAUQLMfoQaid2dnZ26dKle3fvr1ar+Wze930dV0sRdkxIYlVcIoBiZmaiKoBG6GCcUiiiOOeoFmaSyDtRsZyb0F26dOnk9JRq0IRvzICZc4klCyJXqqDWtG5CRCwiQOQcqRZARMMUcy4ZedQ2jFKcbSVCgCJKwIwkRSSXmiBR2yEG1CwpJwCgSgYkRARFMwOCKpwAR9w1zWqzyTlNp1MtuaSoRQiAAWfT1hGK2LZWAwBQrMxxQMK4HlrvfuGLf+Jgb3H06OHx8eFmvQ7Ozxd7znVnq6jGe3v79x4dTSbt1RuXv/Ott5erQzQHht6jSGLyKKQCSDqO9ZlEinfEzGdnp8enR2AwmU5iLgg0m85GYqFRHoGc40xidPiLNo1DUinGxAA1hvhcMWJbYBAhYSUvmomqppT6vs+xR6K2nYTgnQtIruo6zCDn3PebIfaIqIp9P2wHHlRTtGtnnlJqmB2zAeRiCgbeZZFTlNC0B9j0xydhAvOm3eQ42Z3t66xdxesR85PTb791773fO+XJbGpOGabXL88nE+kjqH744x/5pT//r3/kw6/utlPI5ezsxA0ybNLJ0xMonPsymbUXLu2xAyRMRcx4MplZWt9+5wfr46c784nm2DUNiBwvV2Y8mc09OywiRQmIwTk2lZhK9iFISaeHj3YuXHXcJRHXdKBQi5Bx/LkN9q4HV7UA16VY1XMZjMoxB9WraZzzEJogIsOQzCznVDV6ZhJTYe+ISUFLFqzS9LrkrJ6RmlkCRsTjN1VLkap+rj8QI5ciZlbjI0VKSsMwDKXUj9C2k5vKZjsfZI2En1qI4JjvWNNzoEaT4hZnfD4EGt37Hyy8cLvE/eDfJyI1Ob87vfciJeXBYcNMoMZU00ABa/kFqKpNaCqyYrk6I9SPfvSj6/U6p0TzaTHpHKma92SGIXARuHbt2ltvv/NP/sk/uf3ee965fr1BIDVbzOezbvr+e7ePjo66+XR3MfeupkykjLBcrTfDsLezs1gshhhX63UIYTZbPH/rxXfff7/frG/cuHF8fPLg4QPHLue0f7C3u7t76dKl6XT64OG9CxcOLly8dOXK9du37//3v/Evrl+/dv2563mIlfgHwKJW1kt27JjrbA2NShmerZZd24KZJFvMp5cvHuwtdqazCbExUa3Dcsrz6SylOKw2p6dHkob/3b//H+zsLoahd94jeRHBej1VRYSJm9DGHFMqbTtRJAHqh/S9H3zv2eHh669/JGuOKd6/f/f+/fubfvjH/79/+s//5W/89Oc//+EPfehjH/n4z//8L5Rc1uveACgEBfrKV7/+9tt3ZtP5zmIBJ2cpFUJi4sAsmquytC5zUxJG1/e9qDoMOWYiZc8ly+zi7PLly1cuXjZVz1zU6i0S+5iGdHx07J2vdU9KKeVUi2lJhZEmbbuYzb13BoBiBlAF1JXVAaaTbjJz/q137t1b9pc81+mpZ0cOLavzDhFd1eawKyUPQ2y8R0QmSimFEBxzle0boWeCol4tAHgAIe1jXziIgUdCoJIztA4BpUid61b7AhEhE4B557dGhDH58vyRqQ9CVad2tS8XQQQTaZqmbZphiAjUNAGR1+uNdx4BnOOmaYgZQDvm0g/Tbn7cn8Q47LudrIWYC4J6VOfIoZMMYqTqDFWRSpGcLBduPDGTQ8wlpzRbzHwTeohF4qxtTo5PxDESeEZy5MyjC+RYpQxZz0fLqIo4ihzPOyIz8zU6BqplG4gqHMgALUk2ibPpFHD/7fv3m7b7xKsvuWmHeYhiSri72L929eaTx082y3Vc9zFDjIOWklIUaZarDSCpWSoZMDgGMSkxV6VHvVUQyLZhc2amVnLWajMcpQPbILB61KUUaUQUARFtNn03mVy8dOHhg4cheAAzqORfKyVXDP8429qyCmuEhXcNV5B0nUeOuX7qXWNOYkxETlQnk2lMOeeyXm9oguQol2wVAoI1CEyyFASoel5VySnWfK6UoiPOOdYQUx2DaFRUqOpzVRWMnPPkxrK7fhF68rU0H68S1tAkAwMkBhHcylycc4DGTN65cU1fjWlmiBiahoh1+x+HkfRW0QOOUXPJqV9/5qc/9/nPfnp1dnr47Gm/XoNB002vXL3+5nffJTclHpgpxgRi165c+h7Lcn2yN7vOxEU3jun/z9Z/xtq+bfdh2Chzzn9ZZddT7im3vNte4Xu875EiKZKPlOTIihoEpcECEiNIZMcC7MBJHCGwEQgxkCCAPxhIPqQgtiXBUbdMNYpNpCjWx9fJV25vp5+z29prrX+Zc44x8mH+176Pcs6Hi3v33WeXtf5zzDF+41eyqpl65wHLhQqq6oOTnC8uTrbb7VWwiWRbLmdV1ZQOuDQfVyN6+cnLXgUMU9zFUwLu2HVTtmZ5NbQ4vJeth00gtKqGqgohFMYPIpYIUgBIaey6bd/3UzAZ2O5Sq0aJlrUEjWWRYkna1HVcr8ugkNUEENld9P0+sXP1mYzHTRPWm2rdv3z7bpfPH54+mc9nn9u7ueT5KZi0YR2Hxx/e7/cO9maz7vzyn/yjf/7f/NIvvnbn+T/2Ez/52muvEMON2zdb3/zOb/7O1z/48Id/+AsH1w6blqp52zS1Yxq6KLHbnDx58uDe8cHCEXbbjeZUN+0ButW2N6TlYs87zikDc5k1EaQmNM0pxV7Uhda3hlULZjFnR+yssJ3yFT5CRHVdA0DXdSUIz7mJSlZABFf8cpqqBsg5i/c+pdz33XK5P46jmhR3XTMlR4hYbLuKhKFEJxoYFrs0K9zHEv9eYjgRALz3zCgplzmDXbFFGrfbbYxFRKDMXLDPHVw09W6OPFCp6lMQ/RUlvyBPAIY7dtwO6TG7Mp7aEYCuPviDn0CfxAmVwD9MOWZL3nsCRkJRMcMQAhOVuCAEjGMc+j4w3bh2dPfunXEYmJ2Z+sqNcfTOp5wJqGlaGeLP/dw/+tVf+9Xz89VsNq9Cc3p6yuwd8zAM3lWvvvrK2cWFIszaVlJeLOYPHz0M7J1z680mVFVVN0Pfr1arlHPlagUG4CHJ5abf9sOnP/tDD+7ff/3555+7dcMUvvilN64dH19cnJ2cnKzXm8ePnn7vu98dY+z6oVQQM4speh/MNPURsTjcW/BVVbkQFsu9xbxtFrNFVVdV5R17ydkRjWkc0zgOAxF7dtv1eui7frsh1f/g3/srX/js57phaNvGV1VBfUuAK5rlQnsk9qG6vNzkmJrZbBjGbBCa+flq+6lXXuu2677v33rzva7rDw+OsmoX+5//hV/+xte+dfPGv6p9eOMLb3zpi19CdvcfPUqiv/IrvxZHDd49ffyYmcEMwNXBxziqpsKYn89aVVutNnEcvGdWlBwRdT6b5ziCwcsvv3Kwv+/YBR9StDqwgAGir13OQkxgpmxhVllbskcMkQ0Eci5AT85JkqA3Iur6jgDrypWFgCHe/NQLy7/4Z3777/2D9XZ9c7HEcUQBcmiFRIwUY0RFT6GQaZg5xUh4xX0sxyIj8jiOpgZAbNB6lqxiedRkNPNVcGMa+8FqK8JldFNlRMSS+112CqUo5Jyryl05iGAx28xW8mq6rvPOhaoqnL9h6FNOBNw2VYwJMTNz1szGOUYA1CyOrAZex4FqyDmzd1D5TjM1Pkrapmx5lCgzpRl5KAttAgEFAiMQVREFARMF1bqtfVvFswtid3h87fmja1//5tfb5X6JIjZk0qQp4y5uyXZ+MOV3KaWm3B9mVkywsNQiycygiEmECA2M2UUbqQrt8c0/eO/DpPL5V144nreLEMjT2TouD49dqNYX6+3l0MUsoCoyDr2I9n0nIhyCJVFM9EkwApZtFAAgMsKkNykioJwTAjJ7JhJV3mnWSmQQIjrHKeUC1IcQNuvNYrE4PDp4+vTptWvXVKXYyagqI5dMhhINAaClTRHRnEuZ9cXMfRiGlBIzcfAA5Jw3A0Tqh7FpWnZp2HZd37dtBQRMTnOhMIGUbNHCG2M2k3EYQl0tl8uTkxNVAckForaci0oQDABMqezIMDhnWuxhJ/yjwPPlIztoBIqV3/TI27RjKr7tBd5o6rq0dwQ6AWZIVVWpahEmX3011SlSFFBVhBB/9md/el6HDx6ebteXOQkh37h+m13zla9+6wtf+pP3n/z62fnTnDIAXpw9fffdN73zqqii6DSLIjjnvJpY2c2BAmBKueu2xUG7DNuSzTkfQlVUzznncYyqWlWf2ECLJlVgdoiTRVzOWXaSnXLBFff2stLdRfuZqo7jWOIBvJsi0kwB2JidSN5ut123UdXZbJZybNvGcdi92kVnmkQERZONDbti0+CYYxEeMROgSlYxZQvOJUsq8vz+sY2DXKyJ8CR3mPnl+c0ZNH9w8vQj20ZPNw9uKIEqHOwdWhXWkB88fPZf/o3/r4BUs+rO7Vs3Fou8WV9b7h3Pw97yjXGMmbmaLwLCck42Xtz/4C2H5og0RRNRH+IwErp508aU+8161jaBQVXQQHIatpeOyi3MCClut+gq5+s4jqKgmNB8cUwq1aAUPedcSaUt02xJmSu06JSSA0TnXJZIiORLBBVtt2si9N7Xtc85eWRgAgBiqoIDwCwZI5qCOWUiVTNUJHTkdnRrLWEDpdMoxOqynMs5k+eUY4yjiBS45we7H1Wb1PBMBkiFDsRcfqUCJ5kJADAxAKJRwfihyE9gijL+13Cgqwbo6iOl9bniFTrngDRrTFFCqETMeQ9WGj9gRjXoui44X9chx+HHfuyP3Llz+969DwgNJ7kCVHVVV01w4Zvf+NY/+Id/7/T8GSDdvHFj6MfTk2fz+aLbDmpQhzDmlIZxPm/X281y3q4v18v5jG7eevTk8eZys1jsbfshVL1jt9jbH8ax347f/f5bP/3lL//R27dffvnlX/rFXxSVZrY8OLy2Wm3v33/wW7/7lTgO49h13XboB8kQ6qquG1E5OzudzWYpxXHYFme2WRNms2axWMxm83k7b+o6hFBwxqkeiaaxZ0BVYASHpCBD30lS1Gmv+eWf+qk/92f+7Oby0rczmwAGUuWC2QJiCLXq2PedAdRV9ezy8vzyAp1bXW4Xe4d/9X//v7tx89r5+bNvfvOb3/j2NxeLvW6IIVQA7uDgqGrm5xerk6cn//Jf/fbNa9evP/fcs2en7MOzs9O6aWKMzKCSi0FUHDvJYqBEQGjjMIwxmakPDlRD8KqEZMQYc6raer3enJ6v33n/o8Vy2TaNmgbHiCSSnYOUYj/0AKggIlI0xzmPxeQFJ4SSkLFIr4E8OlfCrwCQDEXk+POf+e/f/He+8vf/2/v3Ht30dR0VBUt+HZOZA0IqUgBkVmJkV9xWck6EMKboQxhjZGJAc+SA+W517b3Hj0w0ma7HHlErX3vHCoaaiw4ACau2NrUkGQDcLlZpQiOk7BmuCp8SYTG0LHddztk7r2jeB2bHyCUUU6ecUQSDlIqbqFewqMKzenSQGv9k6Bb71c/8zJ84uHlYB079cDl0F6tV/+BZOlufna1sMzTkGAHMXOUdcp8HA8wV5UDPLi827w7JI6rirVvri1WKMsYoBoIGBMae3BQsJqBZMiIWR76p6ikilpALUIFiILe7XwUMCuvGOwIwBIxJXNXOj577+MnF06cne024fnhw7dq1/eNrXbSZ8P2Hj2OGbDhmyTmpZFUtXf5u4rJiOo8AqiIyxWapZZsCdKHM5WU7nlMCQrMC91DBs8uabNrdFUwuG6CenZ8dHhwi4unp6WKxQMSyNvqB7w5mupPmFcKTmuZxTE3TlFyt0n+oKqARYc4lstsRY3ABW4hDP4zDbDYrcidVKCmb3ldmU1h9WczFMS7ni8uL1eXlyjSrKCE6BCpCMy3RtkjEgCDZ0OTq5yyTZ6FyX9XhqQ1CKBS0UFUiogpt23pfjeOoCs5R8N7Msigil6AhZkbgYle366UEEcorYaB939+4ceONH/7C2enpxdl5P4yIOJvvfeqV17/75nvfe/uDn/jZ5Wuffu1f/MovOu9M7Z1333z7nTebprZy3CcsqtiDQEn6ICIkXF2sCkw7TUGgirCczUIIV6sPM9UdHczMqqoys2EY6trtejXVknkwjeIK4MxcgQ+yJkYC0JzjOMZhGKsqVFVgognZRcxZkCDGOAyDmZW3GwAW8z0R6fvBDFTFO6+WJUVVLRI/kITRquDGLqshGFDweZuc0aXFpm6vpxC2ae/28ery7MH5s+t7+5/av7a93FwsR8/+Rmgv5HJoqgw29uNmtW6qen+xz8N22GuoreOm2yb93rsPXv8TX/7CF99oSYe43ZyfHt15QTOvVv2rL9zW9elXfv1X4/rypRfulpSRnHMlKiCiWtWzAhMO6xRC8FVNhAIWt9s+DlVdtXuHOafYb0MzwzoDKQKZWNRJ/V4Q0PJajeNYeiAAiDGqCiEXemUhQTvR5JiYQz92hFDXVYzj6enJ3t5SVELw3ntDRZsa3qKyQ4ScRHI2mpwjit4MAZVUNRMSGATvVFWyBR8KIZHYdf2mW69jSgaqIlSGhumUwNTETSaEvNuLQbmHdogOTCnvZZAV2+1Q/9Cfq2YQd+EpVyDQ1SLMdoanZTR37CefdcRAJCLrzZYQ2TuHzjFVtQvBbdf9G1/4/NnJs0cPHty8eQ2ZAc05VzfNk0dPfuHnf+HrX/9G3YS2bcchDcNgBrPZPMU0n8/X67WqMiF5H8eR0e48d2u73zG7cYiE2DazzWbb9cPq8tIhOe8kS4w6n82//73vfu/738df+qXHz56s1xvn3Lf/4Ntl7+NC5SuWNNZ13bSudIp931WVG4chxTF49/LLL147utFUdVW7UIXgKwNTmXKZcoqSpTSRE7MqpqZp2tlsu1mfnJ3OZou6aWfN/OnjR7fv3Pm3/+3/uWNvlTRtK2ZTLowZEoVQFd5Myffpuy6OkZlijENKCu7+/cf/t//7/+M//k/+6mJ58ODB46dPT28/d4ccp6yb9UCEMWhb1zdv3ama2cnJyclqtX9wpJJzyqC6XCxy6jNq8eYvirl2PmPCYehTiikm5yvHPMRRJJNjVd1uO3JuHMff+do30m//bhY4OT9/5823b9683syq68fXl/t7s3ZW1VXTNG3TGBonIWYDAwNCGIaxIM8OLcbY9RERDRjJkNiK7BwcU32ekz/c//N/5X/1lZ/7p+/+q995mWd7yIaGjqMMHg0ARI2IckpGRgDBexFRUyBkdohIiKEKUsxtVVrEpfOrrtuM3ayqMiAlQURfORFVyUAoIuRK+IHCrmUp+28mTjEW8ReCAQATmdkwDp6dZ7aiJ0RUUCLnPeWU4xgBoaqqcRzZUZbsPeeszGC7EcKFkBlONqvP3zi4+8Oftgp97ReER00FjmgQirY9W51/9PDk/oNn9x6sHj3Nm06AXAhkYGmsXJCYo4gQaUpf+71v0hjn+/s5izkuw5GBmGFKCRBTzmYafBDVcscjQCEMlmOeciIjRmUqJoJFGGc4xcUDk/MeAMN8b5arJvebe6dnHz0957c/XuztkQ+HHzz+C4c3mfx2yOxcytkRjGMCYMSJzg0GZqIgKHJVSXaT2I53JbscWEBRASX2HneL/Su+gu6ytwBQ1UIIXbfp+35vb6/v+81m0zQNTwR/bZqmoCA5a/Et3Jkpg4oSYIxRRKoqeF/nLGoJAZCYHYqYqSZVQqyr2hEOQz+MQwi+ENtFdkZ8gETYd2NMEQFyzkw0nzXr1ZkHIZDi7a+SER3h1JsagCnkLLyjUV614P/d+mxmgMhMANNc7pwr8ReFo6m7+AgVZWJBdc5770uS2o6uPcH8BdRkx8MwfumLb+zNl4/uvbdZbzTLcnlw684rAu7x01US+Mo3vvqlL/3Iz//8z+3tHW271Te+8bveeaZAQKAC6JgNELImz0FNmQgJL85Pt11XN00ZlkQEgZjROUeEIloiqFXVe0/EqopIqlb24ACUc7FpnnirhfDnnKPiSK4qmsWSKAzj2HcdETVtE3ZbbGaHk6aZhmHYbjeqNpvNiCjGWF6TcRwKGtr3PSF5doJOMBsYmAEVRZWvK59ispwNixQNNykdVvrCfH+9OX9ydroI3jGj55lv4nZ4/+OPnju++cJz16uu/f7q2b18sawXlauSgoA1Vfvw/HGvqa2arDJb7L/62S/cPJrB9uy5pr1YXb735ls/+uU/BmiPP/zon/ytv7558vEf+9kv5ywEUPlKoqxWq73DQ+/dOG6ZvAcF1YABTWMaLUtTVeuh22431WzuPKtKHDuXmqqZZVVBEtUyqpXMlqsrvjyB5SMpjTnnyVuJyIlmZir7ysqHzfoyq2XJ81mLhNv1ZnUxuODZV5WvmTkmMQPveW+x37RVjCiSS/dDTCDmiLTIcM0QSolkBFIRdp4RxzwMXbftu1Kocs7Mn3C2C/uL+ZPoLZj2uwh2pRgsmKdNy06c5Ae75kZ3C+Zd54S2exD1Xzt+/9pSzAyJvXdU0NdhGIjo0595fb2+PDs7HbZrIrrcnJHBl374izdu3Hj3vXdi35lpluSYZ7Pme9/93s/9w3/08MHD+XyBBGMcEYpXqzFh0hzHcbFciuSu27Lnuq4QTdIIIkDoHccxOefn89l6sx3GEVSd86oZ0W37TlNC5yGnejar21pVKl9VVbXdbouphhoUDM47F3yYzdrDg33TjMR379za3z+ofJAsMUcwjeNgWtJHyhXiGE1hEtcRUb2YpRjHOKAjJDIAF9z56uLs4vyv/JV/7+atW/1m1c4aNWPnSotd2H+efe3rfuiHbee9r311dnbaD92QxkePHs/mi8UYv//WO//4n/zzP/Wn/o1/8av/8vD4mhrmLNttb2JV3YDhth988HU7W+zF1Wr1+MkjRBqG0SHFoVfLIdQqqmJ11Y5p8CGAmZgxuapxBJxFiFBUxz76UPsq9MPQLPbGDDLK7339W7/+G7+1t1zevPtCN8a//9/+3LvvvXf92o3lcnHr1nMHh4cHBwc3b9zc39/zIRASEXsXANAxESD5dta4KwWVqYlkMyAlUxiTjCCPpf+Rv/DnhNyDX/ldFWwqTwAKEFNykx9nUfOmyjkrIDuiEVS+Sil5z8VWAglDBjS9ub8UTVHjOo51EfwRjUPMOaIBIqmZk0KsJiv+HxNWCipiIo7ZuUlZyY5UjdScd+XKbIIHxjGDmnnyTVOBWd9vC5ukuA6CGaKlGD0iA4oaIeacgfjGzRtJJCW1hgUgjpusjN5Vi1l9ff/2a3dvDeP69HR9/8nH33nzrT/4fn/SLczXQC0yO3RN2w0dAxO7qq4MnBgiOkMSM5WMJuwrUQEEQlK0adQDJkTInxjWmSMFA1NQw7I8QjJTU7CsWbM5JGJF2g6jZXN+Bo3lcRhVnzw6I8f5o0f7N2698YUvIkxsagHMOfvgylVdFjYARAgKoqpEkwOewQTwmJqa7N4FYiQzmpAiAHZU9jtY8ms956iSBZFVJIRqHGNK6fjo+PTsNKVU17X3vmQRlhMKhNnURJkce8dqAomrkFMyNcnJiDQLMhiiqAISsiODwv4TFWNE75JkFA0OGKi49plI0emDqGVBAlAdh2F/by8Pm5y6GMfia5izajZEQmJALrp0+gSbmarrVbH9QfiHEInd5C4oaoZVVRFRjCMzlde5oPWlU0IQx4HJX22+kIxo2iWpKSIP3eCZf/yP/Nh2u71cbzTnpmlv3rh1/fjGux89ePTkrJ3tv/X2W8+/9Py1G9e3603fuQcPP3bOI3pgMTNGT6hAEsipCjPmnDarzfrysqqqKgQAyAlLUrZz3jk2ExFJqejd0PtiUIIljG8ck3MeAHNKhaYNYAiKROzI+4oIzTRnEUlRhjRGESGmuq7atgYjETUE57wVVxLVcRwBsGlq713R2ZUoVrOJuUVEzrEOiZlVScWUlAjBVFIMznOKIqJQ3MgAEfpxkDDD2l1uLq+5w8Prz90/faLVuLc3P0TMOSqmm0obc+cIXjVwnVDuX5wi42w2t76PMc8Xy83l5r/4r//WS9f3v/DqC6ePniDSX/53//31vfunJ0++/dXf/bVf+Kdf+sKnnz27yEr7i5lnVzezy67Dy81sPnfOM+B6dRn7rS7m871DD7gd+jz2aRiMcOj6Zq8lwjj0rtv4ujI1xAnvTDkVdl0hY5UHoyzHY4wqyWBavCKgyzmPYzo62hvisNlcvvzKy9uu+9a3f//4+FhEQvBx2PSbgaqcfA4+ZJGcBJEQaG9vL1RuHKTwnU3AcSjnXnVa5aaUKsdELqVkqjnpZrMZ41iyE9UMmc2UmKEQ4okmIHOH+hRONBGZAkGxO1NEK76rO8b0btAAK0D0tOeaBPT/f45f6av+9dUYkBk6diVhMMX44kt3/6P/6H87jv3F+dnZ2Wm33Q5jf7h/7fWXPz3G0XJqZzPVXHa3v/zLv/Rr//LX0yjLvWWO2dQKOB98AIMuD23bbrfbOPRVHfb2Fn3fZ8m191yzI+qHFIJ7/vkXVqvVdhicDz5UOScVZV+JpNm8jSmlYZgd7m+3GypTvEE/dMfXjpDJMy9ms8o3s9mibRomZofeAVj2zsU45DTkGJ1jBFNRAC55lKo7fhUxKnh2xc3eJLNnQ2tn7WwYtl3fPRtPn138T/7H/6Of/tmf3XSX88U8hNDnKGMiIHYcMMQU+753xAU2KF4AVfAfPzx58uTxGNP7799LWZq2/v/8F3/9t3/nt5GYyJA5DUPX9aZIxMVZJaaEZM2szZLHMXqHCa2qK2IacxrHiOiQSUyJaH25Lt4MYirZQvDFyCRUlSFWTY3Orc8u0sWGnfft/J0P73kmRf9rv/E7B/vNdkz7R8ebftgOw2XXq7zDzKEK52cXMY513ahaVc2CD3VVOUdt084X8xCc876t6roOVVWFEEJVO/ah9ntN6FP8CNPis6+9/7XvnV90IugUPKNHJsIkRqau8HYRYk7BeQMr9CxAIOdSzgAEqoRWGe1VzXo++/jstJJxTD4rVE1lgOw8FvIpYpkuicgzJ80ImHNGQhEDMwREKY3ARKxV0VHHkkY5jKOvAgKYaCq+0WKi5r2b/o1BJCGCmimiGLqqGjVfdp0yz5dLdiyMiOiYyHFyjBR0zOu8AlFCc4tm7+U7X7h57fYPvf7m73770R+8v9qMW4U+6WXXYfCs5ChgkpSNQjByiKBS4tgRVM3MsVPVFFOJF5WcdaKFAiICuwQAYCgZcsJJNI5ZDIkNIKXkCJgJyQ/doColgiGJiYGf7RGBuPiPf+EXstrzd17wXAfP3nPwVEb2pIaIorl43AOC7cQlADBxwXCK17la8OecVRE5TARtALcjduScU8zMjjnEOJiRD04kxzEDwPXr109PTws9yHs/DMMwDMyMJbaZ1CBbBkZC4h33C3JMCIZEhbV9lTRd4oaIKaWkkLl4jhCaGpEr7glEZCYxxSyCpfUATMO4OD7Y359tN0NdNSnlMYoqjillNc2SFaake0bLnxRbngzWJ2YC7CD5cvLBSEViTFVVVaE2BSbP7Aw0pWFHKKYC03vvylNAhID2AxQiLe5xq23/wosv3Xzu5unTZ9v1uq6bm9evHx1dN6QPP3pwdrGZ7+3fe/zwm9/8+uuf/vQ3v/bVrls3dVBBUwLKgsBWIw2qidmRcymli4uLzWrVLhaz2cym5qt0ueTDxLhClPLyel+V6/bqtwbD4L0UWfouu7TEoDrnADVnE5GccpIx5sExL2bz4CsASCl5XzFPSaKAlOLYdV1KabGYhVCN41AaoIIROscipqrMjpgq73McI4KiiUnMUHE5y8REhJN2IKMY4kUcPrh8emvWHlXtKOMcm1rxYr09WBy+cm3v45OH7997787+tVevXZtvmne2qxMYziFCU/f9sKd+2c5Wm8vUbWZtFZF+/4NH333n4xnCZ16489a3vrGsw+mzJ9QPP/NjP3X/4cPvfOftz7/xmabyRNiEqph/AuCsbfcPDrcXp++/805Kwyuvfvbg+NpmdZHH4emTJ3uHB1zSqVRzHrfrSxcqcCwE5KiIJYsgoDx44zhe2SHmnKvgoKh3mb33DglnVb1enXqCL//Uj73xYz/2a//yN5q3361Dte27dbdxoaq4BWYzVFAmBmdm2PVdXYV6uSdOcs4qCki6a1qKywgiew+T9Yf3w9BvNl3Xb6PEEm9uZs47ECmseEaegmSKLPKqC9oZTNiOfgFghMWwsBCItPhnmarID6JBpqAExaXQroCi8qfYtF/t3cv2LasKCDOpJgB88YVPrS5WOY3ztr5x/KqZNm1jyuuLDhQcQTf01/zx02cnv/RLv/j2O2827ayu65wymGYRBAzOa86m2DaNiLZtK5K7bde0zXwxF9E0xjhGJJrP513fPXfjWtu0l5v1s9MzyakOdWHMeaY4dvP5cu/m9dPTs+duXBeRcsauX79+dHTUto3kbNkAi5WRZJGYNDvwjiUPIlJu6Jyyd06yqhkhFQ8BLQHPiMxlxYmIxbjCJVVi37Sz9WZz+vjhFz736f/Z//BP9ycfObK6XrLpoqm3/SiSY5+AyDvv5n672UqOoa5EZH257rtxu+keP306jvHe4wcX56tx7A8P958+OZm3tZpptnEYzTRUFbvS6YKaEGJV14hogA/vP6zrmp3LSQCwbWdq4L1v2vbs9Ew1A7GpMLsykElOpQcm5phSv+nEAJicd2OKe4cHTLwdBj0/Xa8hhNC2c7Vt27bz+bw8eDnn89Wq77u95UHOYtZLErNCeFBApJ03CJgREwIocfDVogmcsgcdvHnMf2x+c8GUUkJ1Zhk1U7FYMzBVRgIgtQw47cXKoUVDz0wuxDhoihU7Qdqr503Vj0kutA81BXWq4miy8HGeFSZnLdmR41SEjECNmZHJCE2xGHWJ5KwavI8xEpF3jogkCyEXExdFlVgeEGXHhWwBBr4Kihpjcs6d991lHOaLeTufZ1NyLKJmSM5hNscGykbOUGMaxjRaitv1xUBy943PuNnyg69/6+P3Ty4GG6RC1SSQpQ+Ai/29cqgzAGvxITXJucQ0FW5KYXBfgb5FWwSinYgjdDRJOGmXQ0/ssIAiJYPM0M3nALDpRxQlBGA0sPV6hQihrv/ZL/7S66+89uqnXpm3bds2y8WCiVWuhsiS2j2pTQFLnA8VD0DYqU2Ln02pi6GuEDjnnJKISJ546mV+8YioakTsHKtq3/flYjCz+Xy+3W5LeivUOKYski0rGZBTURVQz96xY6bCMZk07WYiikxlw1WMldWAyvLDEACYuIReG2rpzJhJRPu+TzkFz8zsnEqWFJOvKj94R0kZGgdi1nWSDDeW1bJRIPAoZKCTQHiquj+Iv1sxFmfmnCebR5AcqnkIlZnVdR1jLCYaSFjXdclSL3+t0CFwF9lxNdYyc8wSJX32M687ovPtmpn3Dw72Do/R+c0Qn51eXFxe7h8cPHz66NHDhy/ceeHG9ePHTz+a1agKzjNg5tIfApqhiIrKyclJt15XbetDKD99TKmgeM75qq4LzFB+C9XC0Ncdf9xyzqJZREVSAR4MlMl5F3zwRdCXUkwpiagZVHXbhOC9F1ER9S6ATW4WKspMMcVhHIu3zTD0xYW18F3MjNmpWlXVzmEcY84aU1Ix75iASYSRmTmmXBOb5bGQYijEsWdHT+N4w+ZH8/37Jw/Hfry1f7iK/Wp13lZ57nw3bi/Gbn+x/0pz8Hi7/Th1Y81jGqs6rC9Xe/PFwcHBMA6imAGkqqmeG9qzVf83/9//1Uv782UTnnXbLfAqpncefmzevPvCSy88r0CVb/IQN+cXMkRNKUmmyj199PTZ6erGc7evHezduX7t7fOViF6/fTejah7JWGM/dqtqvpdzJvXoIgBlBQIzE2Zo23ocS9ysEZKmTACBGczGoXdcuaG78LL5C3/+T//kH//jfTP/p7/4q3t7x6y03W4hOAZfc6AQsontdLNk4NgN2z5wNZ/PQVlyRmRTFLUQPDKkFEXNeU9EYx6KDi2llC2pZZ2MpFEkIyEDI6AaIBiiIyAVRU+4ozMTGTsmwizikADIABE5WwIVBMjFpVHEsyPUrKJWcnSdqoFoEY9daYDNDAwL8oGApmAAgkqOckoOHQLNmupgsffm994GzcFzFbyZVnXV1LO9/YNq1vR91/WXy9XiX/zqLz+4f39v7yDnLDkX2Y5HQgNUZCPDia7onCNmcj6OYxZ13jtfh9CISIwp5BDjcLic7y9mx3t7KUUiR4RxHM00pqGpW1U5evHF+WxeQKurEADpRhUhJkMhAyb2vmL2k1aOwAdgxixqQJPBW04piu2MAKqq/mS4KdwGzTGKny37UYib7vy8iZc/8eLBh7/xD9KwNsRkeHz7xVfe+KmD63diwss4ELm+7yk4X3uL1nf9mFNM6enTkwf3ng1d3nTd6599fbFcDkPPIhazRq19vd1uh21HTOzJUFW1DKbjMJJSU8/Oz9YGDOST0nbsPBNR4Zzmy9VFStE5JgAXgpp5zylF9nhwcJRi3vYjkhvGjYr44LPmEFzRzcyXzf5yPq9nBfkndmaWUtlKBGZoZvODo2vFABAFxERFxMQxx5xVzUSylJRzi1lAZUh5PW5JlTNZzb677K43871DzmM/xKoJHnGMkV0AAzUo7KHAlVh5EomBGUhjDFU7puzJgUcRJUEnfNgePFmtTmWc7y1k3Ow7b2LI4ICLK64BKoAKkBHhxGJCLMHcwIDIbmd7iI4mzbYh+MrnlB26bKJ5WjyQ9wDmPSPI0Pdg5KsaECGtA5JTd9GlleB8ttxf7gmqMTtiIG+K7DGJESER5ZgdOij7HbJOhotxGA5ml01zf9NFrtFEBomqoxoZWPR77b6ZQuk1iQyhKC3iMCIiIxHBJGNgJ2qEbGDOhYWHgoE5orIWKw1iAZjBGxMTQx+HOI5mUFUuxthUoYQGLtpZzpkJHVcffvTR/Y8+Oj46ns3mhweHh0dHBoQAltGhc54kJ0VylVMpPvAgKsxkKKAqmtExsWPifhxUUuPJOYwxO+8la0oSvDcW7xnMvCdESjkrGLlQQNm+G0FxPtvbbLdiGkJd8cS3zbGPw0BIzB6Q0LGWd86sGJaQQdacYyzegQxkAEgomjVLUVbHcVRV74JpzirOcc6pHwcB8ZUnopgiEkZN/bBtZ3t1k3D4yLu4XM5zTmnuovl3Ty6HZAAJ1OPg2YtimiqKXqHvQISOGIlMJcUhT4FoTJ5ms4bYzKDrN5vNRrJIzsGzikhZGAVGz1GyIThiEFST0qUbgBEOsd8/XLz6+kvn50/SsFm0s5s3npvND07PtuZbcu7+/Xuvvf7ZmurhcjNsV4f77bOnilQ7MLSMxuTZNGZR5iqO6eTkZOi2XAXvfcFm1QyQkcAJOXKVqxip67uUUzY1ArVsqoTIYDmOOUdFFRADTTkDQBXqtp0REwCNMecsqpCyMbu6CkzIRJIBDB0yGiNSztmxI+e6oe/GwXvn/W4/qAkmqwcKIRC5cYySDQC9D2opqgF7RdSYA1YWlSpiwwadxGHLCcQW2CCyEGhbP+q3FVLTLvN2Q+xuLPY/fPjRR8P2tWu3jtv59y+efnh2GsQ7ro+CX0sPBJbNsxvGod5vG56dnJyXxNNEuE4AXfpMezwf1S5Wp/3JI9LR1X7Q7l/86na1xZ+m27dvgVi32j5+cH87dFT7/RtHvaQuynzuk8iYMgi+cPPOr3/lt+a3ru+9dHcGGsSZyerp48qsDnc0QQxrZKdWq3lGREwqWtWOAo1dDljVTvvt5dnm0js/puguL89eu3vjf/2X/8MffePzN1566R//5tfuP3xU1TNm58ghkCOuQg3eO1SRPMUGGRASGJZiwUgyNRJYjC7QgNgbiJnFOA5jPwz9OAwpRzPjT4wadefxA7iTuJuW4Hi8ojRPVgpXVGXC4k0OADYFIV8hRVBOWwGRJnEkABLizif7inJ4ZQmAO6J0qflVVedxdM4tF8vVxWW32TjiKrBjJrK2nd2+e7dMNklijPEb3/zWw4ePF8vllHtXgEpAxpJ2Pf3YxbUiBB9TQmRuGgAY42ha+Fkl2oYvL1fD0HlfHR3uFdWliOB8LhIR9/p+6Lr03LWjlLKqee+ZXFGUlC9iJgaKhLALCVEDQs6SUkpqeeiHFKOpFK1pFeoQKuf4ykCSiJwnAAQRcgHZYjZiR6qk9qNvfO6Fa4vx4tH+zI/Zal99/Oa3P7734IVXP/fpz71x8/pzj08vgquHmJGQOBBlTX236R49evzg/kNB9HVlDOvNGkVVxCMRkYrEMZZrAyYxoBIiKpooBU5RUpb5fDHEBCZ13WoamRgQc8rDMEzPHxIAXa4uQhWqqhqHoe+HlMTUine5qpoBExGCamZCUE0xXabVlT68MLR2BqHWNM2stJsOHXGp4KJZAcZxnESOaiKWs4xjLI4hGSvvvBOXNNfOHR8eeTD2CFwlyQGNmdQsoTogZCJCx84kM6ImoeAiGNd1FsWsGaydVdv1NgvM6uqQ/cVqfdl1/TgcLhcha1mVIiECGWGRIIgpIhU/awQkBEQuARmOMGcBKakzUxudROIQgcAhFB1DMZUZ05hFCKbMTkPMqiZmOflQA9p2iF2So/nCB6emhRdKyAKmiuycGRajgXJoU0wI4MgZuSeb1XuPn3A9W7SLwayYGJWVRtac0uiQYKLBCgoCc/HgKMHMBRS4ioxEx4jE7ESkpJKXOUdNCr5V6DWqmlQtCTFVVbi8XCfR2XxmqppNJRtgU9c5Z1VrmgZNT05Pnzx7+gff+R4ivvTSy9euXUs5I6KK2qR7RwPLORGAc44QFShJ8uyTZhVTZyFUQ987wqqqa2zGIbJnhbLLN1FNOVOhaUNZpngEFFRR2Wy3RL5p2iGOKaWmbZlFcmrCbBzHgqPknDnGEEJ5ekvTIeUyZi7idkWiIrwmnDAnkdJfFmtyRBCR4pmLkyFtkaCzZwdGKUnbtrNmtqj8rHJVaF1YbMbw/tPfByUIbIOB6pUpAFl5yrBQnQrDUiWLiqkBmA8u9eNssdwpltMwDOM4gplKNkciOZsRAk+mJ6qiWaezozr56pjqOMbPffbz81kbh2HetM/dvDGfzbPYyfnq9vPXif2DBw9/6PNv7C8WJ2P3ve98mx3M53PVojk3yRIqcM6JuDGOF6dncRjKASkWG4VWUkT7wfu6rolZUi49q6hWTVWM1B2xFqqTgamlNOYxulDt7+0HH0SUCUVlGGJJGnbeee998KATYZyRkNAMRJPzzETjMAx975zzzhXet4g45x27rutTyuOYQ0XMDpEK8wykuJVBUGh8Vao8gGZNkGG/mUUbxiGK986xIkZNpyqzcfzCjdsbOPng2ZPnFsubxzdOu9XJsH1u/4ZP83eePfZ7ezf3rz8/RB3zUxvH2lXzhcT45OFJ08wWs+W4XY+WMoHL0FDVKchisWyrT8VWz56epuiMx1X89d/6ysPHzz736msthe368uvf+/aNOzfv3Lnt/HDcHr5/9o4sPc5nCfls082Orn3w4PH2N37nz966q43PKpXkYXX6e9/46gsv/ZEbd1+cHWPOSOiQSGQksuoqldFBt7447S5FUjtrmqY5e3Di/uKf/hP/y//pX3rj9ZfW3eXf+rt/72/+w3+exzRrF0PfmUHtKk9sCAgTrGdZCNGoJLRj4Xw5dohCzKqKhAZqis6hGgxDPwx9oV6rZAIg5lH/0BoYANAm4nMZOKkEoYFedQ8lWoumzukTNg+AqU25X4hT8KNdcZ0njg+Qof2gg5BdbY4/gU/LA2cEmjIBpjHNZ3MTGcahCgGNpXDKakXEtmkQMLjwdLt96823ZvMZIY1xJCIRIwR2fAWIw0T6UzGLcUBkdm5SSIaqQFzD0HnvQ/DL5d4Y49B3RYwagidqEGEcMQQ/jrGqqrpunUulUSjWdgCF56ApRTA1wJylOE/mnFOKzC6lWFaHbVtVoS6oj3eBdsYqiFgcgREh50xgMSYjFhNVqTx+9tOvfvb128G5Gr0pACgT3b55/XzTff/rv/6db/zul/+NP/e5H/2jD55c1C50YxJNkmXsx4f373/w/gdInCTFlBQNTRiICBwRIcVxTJIEwXvnQtgphImQnHNjHHPWbrMZUzaDuq5NxYWqbWeXl5fjMFZVhUhIUO6Ptm2JCIGI3Ga7RWQXqnLs2TkkpLJRNynGbeM4eiID8CF458q2uPTHQ98jYoyjmVUhiCigoaKqIhd7KkVA710IqAoh+MI4HqUzREygfZ411axpZLuhHZvNAAkYiTOYoGbACgxVHAAbKqGaZYeRzRlUzGJ53W3ZY/DUjbFy/tpykcch9720bfF5JaMyAoCqmhoiO0cIZftLhIyYVL33jjnHSMTsXMkoKAZunjirELFKWTVQMolZAazkDZUzqDD5uzBTNrCiBtW8f7Dng0cCQmZiJC6QExXH3mkHrWaqaGOUoU8pw8np6vGTE18tlNkDeFekwoWbDyklDhUVB9ey0TPd8QOLI0HJ/ABGVERAUp2E4mpGBpPVMDAaihjRLhiEiIguLlciqWnall3fDyWM0zmHVkSzysyAYAYZdNv3vq6CD4CQVYgRjVJOWLxhDQrLpgh7coySk6u8qpIRkKWY5vMGayCGMY6q1rTtZrMpfoZiGCggE+4KhxVVv4iZEVKWvLpczeYzF4IBdF0HYN4xE9d1rWppzMM47GINS8coAIBEBio6ZQUUs7ZdXcWyuClxkAY6RQ4BiGiJEyl0byJyjkyDqiEqYHrjSz98vBhqjmC+Dte/9q17qc+gFfiAQKGyRFCsCGj3Vk3wsha/op2Sf+c13s5mqjYMsbzyE1MBuDg/WRYxcBUTgNqO+olQVt2ISAgxjo75U5/6lCNCk5s3rh8cHCDig4cPhyHWVQ3AZvTw4aPnbt+8uHymKuuLy+WyzZKc86qGgZlZTft+u91sh3FQM3KOmYuDMOzWeYiFQcm2S2rLOQNiYacBgGNGIolRRESFlJz389mMiNS0FKuUokgurIOdM4IiGHNRhCW0IjFjABhjP4xjGcCuDKBzzsGHqqpyFjMUySaO2JWZngAtC5g5ghpob9ZQGrfrYVKIMs2rKo92YVFNEIAQVXBgOMd0vtkuZovztD0bx5euHV2fNR8/efpweFC3TX3t8GnuafX4TrX/mWq2NP8hjJvYI7jat8OQq7o9aObnl+fO56PQLl21TsMfnHfPt7Njqb50/OK2sjHl+0+enXbdfXq8fdqR2aPTZ/cun335xu27bmljha669/HZe9v1T955zmKWdBF82GL1/bfu/eTjrTtuZkyQ4pP33g3ap/Ts6ZnOdR7qg/lixg5D5QByjppi7sdVVTvkvH/t8OnpyW9+9Xffe/edR48fuf/s//Qfc05/52/89f/q7/ztr7313vz63dn8OiiOKatZRc45R4ywu8hL1UAE0GJALmYZ2RMDMbBjdpRyElFNOgxDzjmlMcZRrzKJpn9Oqqvypc1MUR1/Qn82NaArcGiCHneStuL+bhPfOqnuTFfLLgh3PNCy85rgBJjKZVkbfXL8foAiDQAm6nwQM+/ccjFvmxY0V6FIRL1zXNW1d8HMjDCJfPzRvWEcQuWjxEmngAqEzgdNSS2XZ9dUJ8ulDESMO3UDsxMdvGcfZpIlxly8v2ZtG2NMKTIzAPV9b6YnJ6vT07O7d+8QARGlFL33ZlqyzAoPTlVgZzJWugfHrl0s6romojKhTr2sqYiojhNLZgI/hIhL9FFw7AhijL6eOcOKwDcu9WvcX3pG0ViH0I2dxnHpAWp9enH+d/7L/+dnvvWdP/M/+EsRcBBLWcZuODs7f//9DzfbzQA85AwIoMDMGiM6b2SmElOKO3akqdpkKKsF0SOivt8OYx9CZdPaH2IaY1l+M4lICJxykpSLE/+8nWWVYeidc84FV9WXl5ucBdkxEqiZivc8n81mbe0cExgRAmD5lk3TOOcAoBv68lSLSJaseXJfLVcjAhqjmWkubiuAaEhmWRlRym8gua0D5SxjBFFDKewfRmbkBGIEghBRDNSQUNUxqRkD5SxsTkTIYcExTfKs9r3I/qI53/pBxqeby5v7BzUS5ozogLCgPgXTLLHehQNoqogwDEPbtsuDg816ve27tq4JuLAHCqlFYipGFABYsJBphDdTU0dMOOVFEfsC1hTL6f3Dfd8EYdjtfsnQgMHEpms4m0oyVXIeiKNBVPjgo/ubIToP45CMmZiIGBEZi2yt8FwJbQLorBSMkr1gADxZzFMIjpmIkxRMKAOAaso2+cg758dxNIPZrMmaL1eXItkIq7om5xGxqGkK5KwpI0CoKhXZbNd93xFzPWuXi71hiEpYkgKhCPcAGFBU2BESeO/iEAExVFVKOebU1HVKiYz6bjCTLg9NMwPA0mcDgOSSNhadY0AytZwFkCiDiVwdT2ZcrS5C3czm83KPAljO4jw7R2hUXC1KIAAATEWGCIgUdoEMqpqlnKLCfAcAMUs5MyEi5BJNjVpiHgs2X5IgnANJWSRvx81y7+XP/9Dd2D/y0Ayb+cmTEzaP6CwaSJ4eECTYZRCVb51SKj82GuyqLqUxNbO2ruu+H1LOV/aJiJP7s5kqCIiihbLg9bS7LLIWLbqI9kO8c+fW9cOj3A8Hh4tZ27Lj07PVwwePbj3/qhkFV81my3fefv8nf+JHEIAQ9vbmcRzQDE1N1DmvojEOYz/kPCKXx31SyfDO0bHIipkc7MxLU4qA6L233YgOiKZa6OrgyDvX1k0IxQ6mpAkJEtZNXVol1VxYmGDT3qIkZxaxjoiMY0wpO+evRndTq+u6fKmrMbjQ68Ukp+x9IEQGJhMiq4kqYiEoQv1ApGOaC2XiC0lomZgRwYjONX5j/fiz8+OX92/f35y8f36+74O6+nG3XVRur521a3saLx5W9OreDR7ddj1u8pjbYt7hTk5Obl47vHP9ejq/QI+dxawyEL+32R7sHe+39UJHET2ee2M46buzYdPN3BrpaO/Ge996p7t/3u7tbSB/89771/rF8ffff/XuXaqaIebVqN//8MFvfvPNP/0TP+mH/ttf+81vf/ztV3/2S8+/fPP0ohuHlQ8NQjSx9TalOFaOJG+XB7RcLt586+Pf/OVf+fZ3v/P2298nBkNwv/JP/v7f/Zv/9XvvfaDz+dH1m362BKOcxBDZeVJ1xD6ElFWymF6RiwERdrsbFMlmomqGkBPmlESyqo1jV65kkat+X0UB4Qf0EjCdLiaeThrRREIBK+xC++So2NXzdwUClf9VQF0woOnjdrXbmjqdnR/0Dh2aHAI+QaEQy/BUBpRrR0e3bt1ezmeoWlfBe/beO+dKGMYwjrdv33z4+P7HH398/cb17bYjBF98XNRcMQgBK0xJADCctCDMnFJGVTMlJlPdeUhkduy97/thjENT18RIghNcrHkYxrOz06ZplstlzllNVbXruiIQLVW7aeoi0Sz6OEJy3jORiKaUsqQQAqLXnQk9AIEV4xpXDNfLD4PknWPvHahUrKFuUkqkkUA1jWX0sWh91/lmliRvzp5J1v16RjcO//k//Htf/9o3/51//39zcONWf9ZdXFy8+8F7Z+vVZT+scyZm7zinqIgOrXKe0LJIVmXHBF6nt+mToomIBpBz9j4QUdvOsuj6cm2iBEBIzgdRHYcRCRFw538VhzgAgKg6JjPth85UfWAEcEyzxXw+q6uqYkQAQdMCy+WYDaxcS0McY4qHi3ld1123zUkcs4ER0UTbBAAgFTGUIr9CIDIPoM6BRkVASVEs22y6+EdVxx4RhKi0qmxIRAxGBmLKiBkUAC1LQEAw73mUiAh1HWIcV+OmY9h78e5eI/c/vIep30szNqqB1AwVjKYIxsmUXZWZCDFBoSVTznmz2cQ4IiISXeEBhVCccwYzkWxKgMjO5zSOEoO7iiJHJgTilMYhi8DYj0NK43w5JyKbFoXlDiAiKIFFyFCCjRBBxLKoGF9cXr770QP2FTpfFjCSRFBK7S+AEeyOeVGJyh+2+7KJ7i5IlLMQUVYrObBTiTAre/YrbVTXd91mk7PUbd3OZs5PsSe4c00sjgDMbui6y/VaNDVtXVWN9x4QRPI4jiLCXPbdBXWeRF+mdn5+vpzv3bx586OPPlKRmzduqNq9+/dV1VdhsZxfPDnvu/H4+LpIds7lLKGqDQazYn4DOywby5tSKp7oxMLcbDfDOM5mbV03iGqgZUAlplAFMOiHgYmKMaapaeHrFjZueRG0NJVYWo3yjdgVyVK+EtPpbs6EnXCdiAXF1Jzz739478d/9AYB77eL73x88uzJSWDv1CchMM0YTV0JA/jvYO2f4E/lu5Nz8/lCVXNhvhTl1O5hK4ALGWQTQirxYUSkUuySoYgeCjH5zu07lgVMn797p27q09PTP/juW/0ATdOuN13bLutqcfrsyZPHj1944c4H77/bzAIROu9zEmYSycMwxDhkSVdptaq7XQQRTPAVOOecY9qtFCRPnljFFLs0TcVuGBGqum7a1hPnlHyoSuiNmjEzlSYvJzMhAqRQlglMVFcVABaY5wee9uScLxMBM1VVnXMuT6xz3jlfVZUpaMpT0+YCAYmk0bKOwwKdONenofKuRELMuYGau3Gb1aacBqKNxD7H9vLs+rVZaOYPzp9sfNXOlvstr9YrZ7bX1Efzw9X68v7ls9bVt3w1mD6LMQLSmA+bZrvd7u8dXDs8vrd60mlu1KOvRl+9s92s86bVyKMcNwdHzfJgf//7Jw8enZzODvcaDi7buE2Pzz/66PIsBjhdbd78ztt0vr0e5m+//c7jRydYzX7u53/l27/zzWOApx9+79U37qrl//w//8+u33rhp37qj372Mz8U2v31ekxDeuH2C3Wtb735e7/487/y5tsff+P3P/roydO9owPnMUnMeXT/r//8/3Lj+Naf+9N/6je+9/aTx+fByMQQUQCcDy1yhlxsoNIQEYm4tDvgiEU0BGLmGEdRUQMBm5QNqqAiOZcHuoggmJmJU7HWBQAwD+zIIV15EtKuXSluUQ4m1s6E5Uyj3s7aqKxjiah8NqsUv1szQ0CHqGBiUsQZxZns6kjRTgMPOxV94e2XYhGcOzw87Prt5vIiBD+ftU1dN3UdqirUtahcXJxtNqvf//bvZ5FxHFPKVfDMLg4jsXPsIQsqGFi2WOBZUyx+uyF4IhpTBDBmbyBEWIBcYGaHBpglihSehXnnnWfpkmg+unZgIOwIFd2sMQGiqUROQYwiRadT7rYsOQt47x26HX/DnGewyWfyKramfBHnGGm6CFSVCDxXwzgQETMx09TRqjlmBssp5pRSHIlcHLq4sc++/Pzvv/32f/qf/NV/9z/4D2996tXzi9P3P/7owbNnm2FMgDIODpBNFaldzpxjUMt5FCvpGZpEGiNCssk9DpAYEbfDVkRylqZpUxxVUu0bU530jWn05KPkdrYgor7vRFSzVXXdx4EIiUBBqjrUVQAA7/x81s5njeSo2YhAQVGVmZuGRU0AssgwjmbmiEHUo2NPJU/HOWcGzEoEIpDNgIkRUzZCQFRQY8RMVs0aiHUjGpAI0FUhjTGLjKJQYTLwgE4h2GTfhBVbQUbRUCAgCag4CiEA2WW33eo4v3PtpS989uZnXpm9/e73/8ZHLQIDVqHSnIqr5dXMXfBamBB7JOKUM3qnquvLFRG0dZtTHlOsfXDMV9sQKSnEaDllBGDCEjjjQ8AJgAXJmV1QS+s4dGlY7i8Ojw/EFNERoREDM4ICGBOqJMmF62IqaoZD1Jjs/r3Hm3VPvolJxADLzqVgk1nMDCtUM97NNKomqhMTZOfnXvq2q0YfAbzjKLoDL6ykGYgIM+Ucu64jw729ZTNrC0WmPPHl4jezYvC9Oj8bY2zqpp7toaMqhGEYVKWd1WCKaISMqIEDgEnKyG7bdY0PX/rhL9ZtHfv4ykufuri4uH58bbMd9pb7q/UKFBy5O7ef77v+0aPH165dc646Pz9p29YmtIXMgJkJiYymxFAiAAg+9HH0VcCcuq6LsfchzGZNWzcGQMTgjI2QqHV85XKWyx2sSlbCNQ0AlACZSS3mWPq2nEXV0HOxMC4L8YKxWGFcIqqq4xKlwr5q3/vo2bPT7oWbB2nQt958J8ZUAH7AAEyiuaj3djXWJmBkN21qMYoDM9Gj4+OqCl3fI1qM+WoiLcgPwG4WUiNUQtiBQnrVXcUURbWdNUf7+2x6cHAAiB9++NF777//4Uf3777wGSPfdUMI9fHB0dnJyQcfvnd8vPQVqyYfKKWEzKA0DJtxHA0EAFRygdlsRxKViaGFDrGpKnZOsxQOAxLhdDJAJ/4ZFkIbsyuu3KDARFDYT1lzTnmy0MNiaIAAkqIQlf8cx2FKbNgFpxAaExFP8BgAxjQMfby6H5k9ABTfRSQjRwCBzKLkjiWnYa/dX+zvn12ukHiTkkeHObfetwqXms3Ym4uVy2xOdQX29bPHt+r5vFqcjB2Ow5GvXWgv0nDm4gvNvnfxYXfeUn293n+tXlTri1NMhYadQvX49KxbziQ4l8QxAdig8o5snkW9FXjmJNtKmExgf1a/Fo6eduvRemvbveW+T771fjDdpO7046f3H66xXuJ6HTLOlk1W+sZb7+zV/sZyuRFXW/vOW+9/9gs/8k9/7h//7b/93/y5v/hvPf/8K4f7195573sX5/ffe+f3vvnNX//eWw+fXrCrqyEPlKWunPfk/uwf/3Ko5m9++PT9D+9Xe8cOK2OX4pjVGl9VhmYWTWBKp0OaXJiBiBvPVeVTjjGNBXMwMJm6nVxiegxMRUpvYWZ5UkhNla5UZ2Z3Nc9pWVGDWSHxTqf4kwGiPPnMVNjMRACSaZoqsKCOSKSqSEUxXw6PEpLurLdwF1tY/nPXGBVeE0vKPlRjGt9+5y3JKThf195539aNC8Gx88EtFo2ZPnn8aH9vT7J4F3xwWPCkkgVd9oOT0wpkUVExg6qq67o2s4J4IYABGUxLitKLlNMiIsXbqvh7OubKh1nTSs7ITkUA1TufcirM9KvxipCJistRwb2AzByzgIkKAQb2UtBt+GT9h4jeB6SpAS1+/8GxKagoohFYjHGtsRvGw/mCgTkCIgTXyrjYbrbr9aDqu3X/4u0bj87X/9f/83/65//Sv3UZ9f7TR/dPnxo5AwRVFKmIDheLeT0r+pRCEsgqgOCQJGf0jpltmtrNubCYL1I6D86Pw9B3/VVWsk4DmbIPqDkEfxUFSlepigDjOHpy7Jx3bGDeEyPklEC17N93WYemVmZqUJHtpnOe67o2EfNM5GMcS+tcLggzC4Gdcck/KjL4ir2KAmVvjplmTXNoFIDIDNGyqhoENFJARQfgmC1nA7NAJUrAEesYK3INhRyzIlxCepo21a3DH/qJn37hs6+Zd5eb7tbdW6+99urH33rzwrezZXBIhKSmpoKAjl1J1aBJ1GfMDIQxJVP1lQeDMSXvuOAkMSfHjpFyTlDEVgDsudAwrVyMZRM2hc8gh2oY4vnlpTFw4NleKyhMXhXIoQICIZgyFoOJjAREmExzFstmAu+9/3FKKk77cYg7Y5Xp0i2LbNW2qtF5BFAzJCMHqlr2peWTxzESUQEIy5OcRQwUDIlYRVTEjFR1sxmypPlsvrdYAto4DlT8uwEK9DXF38bYdR0ALJfLIk1ImnJKlQ8mBgYhlIWTFg9dAmTnSmL4Zz732Z/5mZ/9Z//sn16cXfzw53+467qPP/74/sOHt+/cPTo8fPj40cOHj28/f+fwcPbOO+9du3ZjHNJsNkek7aZb7i2mPA00R6g6NWSlgc05h2nDAm2LYxzHfhiHYe3WVVUvFnPvnRmgmXMEADEmyZmdg/LWEYJO5QhNc45c6DlgBgKgWTJhsdCdGAV8levJhZpUoq9ZEbL6vuc33z195cXX33vrzYcPT9AFtW2WSFVjZtkmj4ir8lL+SJayUKadfHWxXFZVlWJOMRvgTqQyGRGZWUq5QJgGQJN60cqdUr7yOEYASGPcv3bkmKoqOHbf+973nz59fHFxIUrP3bmrCjEJEj936/Y7774lOT99+rhpayJIaUQiBOz6rmzoCGHyAiC2klxXSioRAJRaPXEGTHc/sOjkPejGnIvvrqjmnJvg67ouDt00ZRUrUWEWFc1gNiPnnIEiEBBLzjEmSRlLaANzYbiHEEIIUChIYH3fd13nOLTtDBFzlvKZusPOVQ1AqioMQ5/NMui8qo7m8yrmp9vLGbCaKaiN8VYzh369iuPW5T3ed4ojjLGpPt5sxm2+Nt+rmr2Ty3PifPO56/M8fnDy8GE6OazndyicrFeP0vlz7cGPHBx16+2Hsnnsc69moX1wfnFz0Rwt29OLs+3YY6jNOzR4rj28zU7H4f7pk41Ks1yEtnq+aVabzahwcnGCwYe6agQWGVnSfj3zlT8O+2/E2dv99n3r964dYUyPZZht0je/+vbe4uBrX/3a048fPzy5+Nq33pwv61nTasYnD+/95E987tUXb773wVOBwVOwmHzDVSAmcg3pMHTPzs6SIWVUMtWUcnJEjp0DoiyqwjuEwAwKTxSgeMrrOA4TQGcQJRcQR01FhWCyZcYfCJ0gJjNiIud8OSAFhyilr9jzISKxK33KbvkFV2NECQIrmE05CvwDn6Rgbse9/+T7fmLbOo0g0x66mCVCKaZoCkk0eAdk49jnHJumWhTKeNsEH0SEvG+bam+vXSwWfbdVUzEEsZRACuUTrPjksyMAlCwxpzRZRGjX9VVVMXMIoeDVUhx7REu6XpHRXq3nnHMlc7jbbOfzeeVDyjmO0Ur8kEihuhWcFnMOzmORB9gE25a3qQT3sPNFiIpgJf+iAG9MTkRyTrSL2ytzMAACUFXVollRXFWr2WbMuZA+MCFgzuLrRXfe9dlSTn3fYQ1g8vTZ/a997Su3Xn793qMHqz6OyRigcs7iaC6Eg4P5rO26bc45gwIiADriq50lARaql3MUYyz2EmM/ajYECKEioGEYvPcppWL0yc5tt9u+70suz9Q0I2y323EcHYcQAoA1dVXXdXChmL4Uf3FCUiiXD5kBMQ8p933fYD0xYSURQlNPTgHO3E4MolggJCZiUlEERDMmNO8MsKrCAl1QYwA1SSl79kgAST26pg5glhCQQUCZXWlnywmJohFsnQa8vveln/7yc196vTqYjTHmsYfEVV198YtfePzme6Pm9dDPfWBiAjIyE0WmKrgCmnrvkWnCdUBFRU2ZWSQXgbqaiYojT0QGGdEUNScBckiWVUwlMJe1mpk6F4BdAhuzbjVm06quZsuZsRkCAJKiFSavgUh5kU0ka85lcyEq5+eXD+49FFEX2DRN8ebT/A/FB8GHKsXEWFRf5JCMFBDBPlEzTKnMO7ESIpopO06xuCFqFkkxDUPvvT8+Pp61M1MtxPZyLAuFru/7QltExPl8XgYVESm7bNPJONtMmdAzB+fVypcXVQVmQPz43r0333rz+rXrdag//PDDJ0+efPrTn352dnp4uP/uO+8dHBxcu3794nL16OGjtp1fv3YTAVeXq8ePH7dtq2op5ZLuAsWdBbFgAFZ4Log6cQe5qRvxUvh/w7Bar9fOYckHLckSZeFV17WIZBEgQC2T55S6EGXEXZF03gWuwIwQjabW06b4Rbh6bUs9SSKAznD5wcebflh++NH5qD6ZSVlCgxbGI8LVbPnJHwMDoJL6Xt6+EnNW3Gtz1mJY4DiU5JMy2TE7jeLYFY4OEUmeNmUIUGKXRWQxn5vo9nL9/vt9313mnGMG59vbd148X40qVd91165dq6vKcJwvZqpJTUMIKaX1ZpNiVhUEQgK00kyomZa+nIl4YugDA5ua0ie5ZrDr8qZiIhpVrKwaqaDUCcgX8o339gM9IbJNNAzJopqTavmLLnhHFHwo1LTS/TBzimkYxyEOBbmftbOqqmNM3lF5Tbz3ZX0CYGMcowg6Novn3eZyPuytcJbBiV07PFhtthtTzrmFcFzVm+EyBjf2/dLPEslFjNxUz5L2/eX1/b1qb7bN/eX2EkQPqLlEWeV015pbi4OHm9N+dfa55148rBZw8fHj7rRqDwaT+WyRh3G9XTXzOtOoYOS8bVJ/PuoyhDDDui+WBzzK4Xz/eO94k+KwWQ3j1kJFSnfqvaNFvV2fPzh5Mt9fvHR8c3gsZzHFnENTbxUen/Yv3Azowny2eO3HX/n9778zeurjM7XeEy0Oq37s15ebJEKeSwGvg0NJdVW5ilBc9fDsLIrWFJAdWHaO2ZE3kixJRFS8dwVko90JM7OU0hhjSslA0UzVVBQNzRRV6ZN+AwHRENSsiC9NS9GiMkOXDtrMjEp4swAiAunVX4crELUsu1BEVVU0Q/FnLLtkAAWTIvwk4502Hj8BX3dM5x8gD9mOUlAugByTgt187u5nXntl261VUuU9MVRNO5/PRNR5f7i/PNhfHBwcvPfeu0Pf11VwTM4xGoIZAQFCzpEdIRM51wTfABSegVnsum0xyyqmruw8swveAwJiLtrX8iOVTBwXHBJVVbVcLuumcTlHjsyESKpTh1dojwWlU5h0zVyMs9WiyO5uKFNXAigJO2o2MezKK1U+QlOBIvhkb4hqhOij5fWgqz63LB6cZ1bLXewuu+iq+apb91n71ebe46evf+7zf/4v/IXf+ua3T85OlIMhm9pmdckKR9dnN29cG8ZeTcixjgkRqxCkZCUSmpkU7BsAAHNOdV17cufbc+8rJCBGE/GeDERB9g6PU0ppsymgoHdUKLzlGjA1z8wOmhCcr2Ztw0xY2l8DAxAVU9nFUaMZmOgwRAOQrH0/tHVVOBmF2uWcM8GMgkTFehxYmREJBUDz9IoRATC6hMHQZfPEgggE7NBEDU1RL7stMZJjYkAFNpUcqaqE+dHQce3r56+9/uNfeu2PvMGL+jL33diLKlUVGPTdePe1T9196YXTNz8+9E0mNURPSEZiIpoBuFChVbVYuqkqGrpiFkwAiKKKACWEOqmAZDElk2JqKpLFSGH6HCIcx0ENnSck6oZtn1M02Iz9ncNrs+XcEGgXLTRRWVQKC4eRs4w5J1CxlDXq4wePNqu15wqcdyxS8mIAgREAUkpN0+wt98yMg0MDNUg5o0fnPANnKcma5Jy/0jogIWRNkiEXLAHiMJqa43BwcDCbzQBtu93AbsvTDUNMeeh7yQkAvPcliuGKeUNEhITFrV6UCXNWzSJZolqBxMu6GRAPDg7Pzk5/57d+y1dVSnnousvV5dvvvT2ft1/5vd9ZLvdXZ6vlYnn96Hh1fr43nz978qSu63EYTKQOAUCrto1xiGkEIl83WVMpjDnlillBsyTNpSfDQjDw3iNCSilGY9aU0uRDC4iIRVGlZqaTDNZQ0GDa95UREVHVyrucLRdcuID6xbcMzcor5pyTnNEQyIlb3HvYf/WbHz89z2Jh1KTIzlHMEcAZegLF0jBP7gdWkG/4AQbCJM7YofuIYEpMJQQDCqZZ3ohs1oTGUQltQLO8S8lICDD0fRX8/nJRVpybdWKH7Dwg7B9eD2HWdeu6rsdxODiYv/zyi+9+8G1V8c4pyDiOm+02RyFk5NI4TNgbEILhRL3f9TpERMAmgkpXN0jxvjYzFUVENVGRLAl2tgJFC0/IZcVpE9NZvPeOfMGBVMuChIL3wYeius9ZtURQOybgGHPf9zFFJKiqUIDPsjoQVUlJBUIg732R/tShqpqq73oGTATvnz55bu/2tcXhBeSaaStZ0jCrZ9L3y3m9lysUzCKX0jnnOKki9DWnUVw/3F3UkIeHTx7P58umnafYb9ebk8o+v3f9x+c337948Pj8sfjmpdDOXf3tzfZixpdDn1J2jE7g9tHx+eV2ux16gzfHzb3LniQd7+/frPeHi0urYJXyk9XZsm5utgfQjxfrDQa3XNbX28VG4rDebjF/1J8eLtuf6Ztvr07OcVyYI+c/PFnrrPqTf/JP/vLf/0fDuBEKy+V+CFaH0Jy7g6P5xcWZiHHTAFNbVZW3MUYmcqwGns76QTkwBxFNlgGFBESkH0chq6qKDJ3zzk+mq2W2KPpqUQFUKFTEIvzAXZTmDogDIBFRs7JBK+ZkJeh0evQB1Mym5I6y7bIrLOKK+7yzEZkE8ABQwHn8xFjok5NWvq6aoKGakv2hz4EdOHTVAKGhiFYhbLvNi3df+FP/5r+53a6YYBxHsyRqRJhFidzhwfL27ZsxRVUJIRAhExXxM07KW/DBiankhEiOXGnVEbFtm74vfWPabreq6kPlfajr2jk2QO8cs4txJKIQwjiOZUAn5vl8LiKIpQct1Gko1xszBx98CDrJcgARqODGZiJKNAkuAAABRVPZ/Zce4+rNunoBC/xezn02MMOEaBDQ8mrUk8vhoMaDeQOE49ifn16wC4buYhtXo65jrg+uf/Env/zo5Py733vrYL545zvfhXYBYMH720fXnrtx3TNFAe99igMSgchE3AZ0xHD1WEz0Z1+4U3VdAZBjX0I6ibmMZZeXlzsbQwpVBUSiUibmYtNQtU1dheAr53yZqksDtHsGJpu2ibeOlFRjSkgMQClFrf0VhGlmRlDkNgxTt1pWYIhYsHogBkqFqM6INTkaRwIYc66qULvK4rBNo69qx1R5D6YaU+O8xeydvxi7rcejz730Q3/0R25+9rXq2v425WEYHLKj4IhyjgDom0ok/tCP/8gvvXdvnca6qgBUs5EJgRGyqjhXOFcGYHVdD31f1JFZJ3TW1HzBBYkQUcWISHOCnX+iGRKgGaacHZOqElfOuSHnMWmfRQiT5dly7gKDA/TMSAQsSABGQKIluAYQAdRSSmM/jv346P5DAnQIKSVPmIxS2d8ZEZNzru+HoRtCVe3v7dWhIkI1LXY7hp8k2MCObaqqjhnMck6aJGYBQDRo6rZt5iF4M8s5iqqJ9MM2iwE7RKybBq0GNEIqxW0i4ZoCEO76gBKKLqpDGg1MEKjYiRE5s6Sy7bvZYtF127i+REDP7vrN65v1Bgn39w9EZbGcbTebzWa9v1x4H8YYN5sVM9+8eS2OIzF2m23OCYmGoZcsJZjZ1bVqjjmKitm0SSEiLkFaPhC2OU8aItmpsolxWoHjpFmBnakPqBVf+B1sgQYgpgRoYuTYMSso7NZMhRJYigMjmWYERFf3Y/q9r3z3uYMwZk1iWQnJgY2ICEq2q9i4GwhsR/tNkssJr6qqAD9gxs4zABgXCLuI9hG0ZESUML6SMLpjdU8lK+doKsvl0Ww2QzQgc+RENI4pCR1dv90NWRRENVTu8nJz/cbhO+8rMSvo5fpyGMbCFgBCJgdgRYVW0Pg/XBWLvt0xkmhxN5r+n6gIAqsaguRcSFgFPysXWQjBAwBMpqOIpcku/jIAZsyhaTx7rwpmciW9NrWiRgQDURVVIm6bOjQVE6tCihlAiNixE1GxvNtvABkAoKKaaQCXUZ/GcYPWIlqSbr052NuTS0WP62HwW3t+cfju5qL3PKTcoAshbC2ZWFVVqzTYyeZGHWaz/TjGbjyfN81ycQhdn/oBl+2tg2vf+eCtrulfv/nCETe+2fzG/Q8Wy9msbS3lPsmz0/O9du4DKmKH+HjYEMi26w9Iby4O9to5rc7i5fk6d7mu92bVc1U9ExqenX5IJ7Pl7LUXX3l2fvLuo0evv/TKAfFLOrdhGwmi0pOn5+0N+NVf+6WTk4/GaNscHj8ZyCk7WS7rF1564eHb74xj5rZRBF/5xbJpU11X3mmWzmInKhZUUEDYk+UkYzJDVwXvmRjYkBCBy4bsSnGtqlL2VKLlRaeic9+tRScXn/JeMCEzELnCpCvdj6hCKWaIxfiiwEtmQOTKIvbqkt5JwQAZwIoYAIF2dIFyj6EiOipDhu7ElgpX8PjVmcdPPNoLFKQmagCscPb0meU8dv1yOWuWs6aufFVVIVR13c7mMQ9V5b/17W+dX5wdHx4CQMHFECZOimQpfBPwZLpz8iByzqlq27ZtSynFvu9jjMMYhyFut9uCCVVVHYKI5qI5m9JkcmYudIfivIeqGXceIQBAyArWd335pUQFwIiYaNLIOOcLyQUBnXMxDwhAxKWxLO/XVHGwNCQZUVDRjATIkJBRAEVpNUh7OVSuPcAwxuHy/GLotnW7eHK+Pu+GjdBJr9Wi+c2v/v7FZq0C1/ePf/Z/8ZfPzldP1uf3Pr53fHB45/ZzY99778cUAa38AJozGjE6T+Xdw6IwFs3MHGNs22Z/f3lyeuawzjn7qj46Ojy/uOCcVXUcR+c9e2+qWXKBtVS0CiGEMJvNmmq30TAp8vArE20zY6LSSyORAUpWkcJyBRGRrIAIaDABFASFjQgsO2I+YRmvsaCkooJqBugd1xz8EAksxiFUC8cOq3qVBmZtmOLYLV1VFa6S5i6n5afu/uh/76efe+Ozsmw3mreShAmqGtVAzAmCCpKjulpv+uuv3j16/c7T7328rJu2qo20JG0WCkWxHiV0ALDttmToyYkpIbFzkopNukHOAOCYC5ZLiAoTuwEQyZGBlW6+9OWEOMYYRRKgBcfe7R/soUNiR0w0WRcS47TREBWxDAZoloaYU95cbh49eFCxiwai6pBAFQGh5LZmU5t0Nypa1L+OuYBzyZKwkBIATEGENjnLY5HBIRqQc+h9aKq6Co2pFemWgSBATokdzmZtUkOa9GkppZyi7ewzvGMEKDopI0yShzhO0AiagGoWSbnYt0jKCgbEmT0geWY1izmO52PwPqYYYzSzorRv63a7ubxcb5zjq1hTFWFHWXKh4CBQHJPzHgBSHIl3whHvmbkw2wOTAopClhxj1KtsH5tU5sUzogRfFOuXchmTo0m0WMag8kEmUrRSVZFQJ+EsqKL3gKBaHhzErA4hggJyP6Z+iAIQ1VQcgvc0qmVVgiuCwU7Gi4imJmQqGYirUFV1nVIu56uMxWATla2Qi3UappXI2+R2hiI7VxRVFe26rvLu6OjAe1Kzs/NzIjIgQL/cO5rN9i43A5Dbbrd7e8unjx8/efzIeza0zXaz3m4ICZFLUOwUDoKIjEy+vGvl9blaIKgpIxNPTFJCFICcxRDVKZjGGItrEBpWVVUwRWYHOaED0OJsoMx4JWhGKkWWytAuIoyIhkSEZA59mVUEzJnHujHQpHF3iZmIOkfBF/aHIU4hQmQgmiQlBAvoEuaxgu+vnhnYQbNcpe1sfw4xPro4qxYtRWCxGftBMjuOORGHylc+iSXZmgyabeTnm3kT3Nh3NKTD5WxvXj8+f7LFuD/C8zfuPrb+3mZzzet8GP/IjRtvbi4IJAL3SGkcEqXj5f46x2f9JjWVQ3zYjWc2rNlubtMc6dZi7yx1z7bng1afnh2/Xh9dzsP3H34wRthfz27mWd6//ezZ2Rrhub1DrP17qY+ipna5Pr9x6/Vj9+Kvf+X3q+Y5qQMTXKwf3X3h9ttvv/fk3Q/Jt7kMAqSGwKHqY3R1U8cuJ4OUbRyiq2tCcETBewXCulY0tVx4yBpTGS9K97PrHkxE1BQRCQgKV9EQJn6JAYCgGYF3jh2RFYKOiSlAmThxUi0hFZczRCqBNbv9yx8CJwwNjcrQjj8IYADALv/0E5wHJxyjmIX+4NrrBzGP0mgXu4ymajarFartzxcp9SCYx6Fuqub4mAnHfiuoOY9f++pXQYWorAMsxqHc2wBGBI5Rcsymzgdmksm6aJKwFeeupmm8995XWTTnFGPquj7GVDLagndS6dWfGPPFxerqR546KvbltymmM8MwOBfKe7WLCZwUrWOMpqBauARskAoIVy44M7MdIfrqqBMRqKWckpIyo9Io2Um2OAZNe7XrZ1mHoR+GiiwNm4vziyHnbXIPTjfds252uv3USy+sTp7dPrz21/7q/yHU4d7Fyf/xr/01yjoMPYKlPBqY8z7mjAgI5JELQj5tNg2I0HjHxESsqzqQyzkyIzvs+i0hmKOcc6hCVVeFEG0GSRMSeufns3nd1MGHMtlPDWVhcpQMBUIyYoKdvhoVQER3wmZWBRFB4kJoYfIiUhpFNZWpL0fbWZZMKl9A8g7VSJARQSeQiZnMhAkCMiYFUUckjk7HbWQ5eOm5L/7kj11/7SV3sNexpX7rkNmAKqfBpZQpVJBRIauKOvFNJTJ+7ke/+FvvP+qGoWkaMiRgVCmrulLB2TEzj0N0zIQmYs4zO8cqaKBiqqnMHmA4bccMVEQNkItfFxSiKFKxDFYRGWLKpmrG3h0eHfkQkGmXxl78b5WneAownczQUxwkx0cPHwxd79k5RQILzBKTFrf1iWjNhU4iKjGnSir03gcXY4KrHh/AAUhGAKx8QERVMQFAcoxt3VRVIymlFGWCvMzAquCLzQQgWAY1SzmLCCGGpik0VdWSm22IqKZd3xfDLSQqDI5nZ6efKCiZoXgEG6RxrKo6jYN3PsdIjCJacFzv3cXl6uVPfeqP/fGfyVnW68uLi4uTk9Ou67pus9lsx9g5xwUQJ66YvBnUTTOmWODaUntjjJOyxMAAi6cdUdHnFTWDJyZmKiW6yLZtV/cKgVdJQXfLu11pRSJHfmokp6UvIhEzKSgiu+BQxFfeBTeOKeWoiherC1EZxwRYg/mKaYwRKPxgNbZJ44ZqqjmXb9q0DRjktDOMdrS75gUAim+1aTY1QyAEIhYwyRkB1FCyqCRJSVI+2D9qqmq7vjyPMadYhWpv74jZhWrGPlyu1+1s+ej04fWjI9H48NE9Zjo/OxPNwfuin3XsECYlSllyXjG4YaJmTiRoVRWTwhA3/YQGpOVxtQlYLfK5uq6rqsqiijK5LjHs3hkqiJgZIOEkxzFUBbPihokiimZqU1kDgCLCBVLRPA7RzLS41riJ8Ac7R/ssSmptVS9htt2s1FPVzoZhcz/3d9nutAfnF93Ti5M7rt4qQVUPDT88PWurJlF4Ng5WBVCZgbfAm24DRDZbPB4l9t3rs8Uri0PYbi5OnqXD1u3NHj94ALPD2/tHN2j53qP7z+zy9eeuv9bUx3Xz248erdgZ1Md717r1xVO7SIGMlDOYCHrWQI9se5o2S8Dbzfy4bY7WiuOY7eyd3KOzW7evL7R5/ORZNHz106+cnT19fPrIFvO+XylbaObrvuN6nO/RvbefrVZb1KFq9hTG+WK+WB7de/8j3bLfbwcZ6lA3s7qLIyhIFtehrJMIBCDuYyc64DbWVagpOMejiICg5T7lnaUx7BZbn/QXqgaGxasUAXXS58jE+DEDnUTNYGSTRyuU/cu0V9bJbHQiY+xUIJObuwESmCGYFvxb9UordtXHGCARUGl6TdX4ioT0ie0E7FQVnxxLLDkZpmCWo/chST6/PL84OXnhxTvnF4m9K4Dk0Hdd1xlQM29E48OHjxbLvdo3jGTFeqT0YMRgmNUUCNAkZzUDo53L40QkLFREM6gqbolyln4cy5A6DKNIdt5z1zuHxfVnGIbE3hUWnikipARd6tjxFaQlImaxtD5u8im2Au2oGjpiYsceEAkDOSRyxaOekOQPj4MpRSL0dXAxjkkMSAzE0MD3OZ13+eRyqHjl0mYcBmZKGaLCejue9UM0jkDD+SrL+w7y4Xx2fnZ694W7v/jzv/D+O+/+6BtfjMNYOtu6qYth0WTaV/goTKoKu5RGMGRCQhqHgZ3bPzrot11MKaYkOZerq24aZlZRM3Pe5Swg0M7axWJR+SA5g6lzruRs7ES4VNhhhAQKiMqAWlAckZwL/ACOi2v0BD2qAmExCJiY945dofdKFgAjJlDNpZ8osTAqImMWcQgl/BCzZUkOEMWyaArWUZq/dOMzX/yhO595lRbNQEQmNo6hatoQVCyJJk2A6OqQhwTAeUQirtu2G+KLr33q7eefu3j/8UwWAZFVyTClrIZWTIgR1My5iVUAZoyT+RYDJE2iguAIQHHiOQMVL0LDyY9HGIANFDHnKMAZYJvyKJLADODgYD94L0AAhUUiu7HClNSyslouktEkfTc8/uhBY5wQNjkBMgcgBDErRCVTIyb0JKZgkHMq4D8qhMo57wCgoJ8OCYFENIkUdIaYmroqztNjHCGXrZkicRUmgWTwHlCHYcyixByCM/OIysQpxnJqchZJqR9GMwXHTFQkmc57kckUjZlNLSUhYiR2hPWikiRU1QBW142hUZa6biSLge3t7b/+2ms//IXPWTbn2ftQCtYYk0iKMY7DAIjr9eWv/cvfePfdjx8+fNDMWjULdVWESFP53dH3mZ0jhunUEJX+zIwdE6KoIKJK4bZNsjIEwJJlxTtz/InfiWgIBExUkkMmyR+WabNwX0hNJCc1deyY+XKzqfab9bDqkwDYFE+N5Mi0bD8LUQEBSoVhQgFENAAXfJYMhI5cUR6IqMLEVisHkJAVFQGzWRH/ikTngmVJMZopghLjcrlQkfXlgI7mbXuwWBweHl5u85BUqOn6eHy4GLa9LofN+qLr12IxpQRgxOh9TUil5JiZlkhtAeQd46eEk5ip6iTU2D3casaIhdbD5WlPGcyQEMv+g0kRRIRh2t+BISAxfcIfAjA0BDRUAITAfrLCAixzSDaTLJqzFmd/yUBFl6neVUSOiJ1zKcq0bcDA5BwBSU6i2oszTqYaI5HrA3ywvmi2EkHAdO/Gc1pXb54+WTNg5SqiJdgI1jNEsD6OzjsfqiHFMQs6t0rx4Xp1p2ruHB8h6tuP7t84Ov7My59ZnZ5/8NG9ata0s7aX/v7Zs1t121D41LVjHNM2Wbfd5Iovx07UVfMFJxm3awQSxd50g3ae03bQLsJnmr1P37izjut3zh9dnl9+/oVXlxq283k/jA8+frjXhlvLw8eX5yf9eqhCn7cuuL3FnsbBB33xzlH73N2P7j86Pz997bWXtuvhctC23d9uYxNo7AeRjAC1D8jg1jW8c/9ht1ZwlXlRG8hk3I6JHXKlWJlGsIzkClRbZqwiif1Ec6Gohgoac3QlqhdEQT05QpKsDDDpUwRES9eBAEY0ZayU565szW3qcAQBoHhxqRhMhmMl3AqmHG40KwQg2y2abTKQQTOZojMka9mDF7V5GSuJGQyMTNFyacoQmDVpJ8Ftxu12u9J4nHLaZjNTWm9W69Vsb58xzJf+4aMH/XbY39tXAVRjIsKpC1MAQIfIaMbEqmqSCxpdMs93LPLS/dSgZpoQCKnyjlPKKeekhAApZ1FWi1XlV5tusbfPSAZmCn56QcExs+PiN+YCEbviec+MCEhYFbMcNDMxYnaOy4ZOQUEUd/uDnDIWbTcDEIliSio4MmHtwTQrANaVWj32NEJ6tkkQhxtzYh9CaNabuBlyL2rIxugAAZxaQofn/eVF6un02d/9O3/35rWbKeumG0IIfdcBcdO0lauFdSRNkgC9J5oidwlVM8EEifuqHscx1N6H5ePHzwgQBBhoPp/FnOMQiQgMNt2W2V2/dn2xWBT+apogRipFtVCFgKjcB2CgZGg2BSIxD9su52gwpT0EZtAMaM55QC7tgYLs4qjAQBHVTExFjdCYCipkJfnTRDP8/7j6j6DLtuw8EFtm733Oue53aV/me/lMVb1yKF8ECiRAEmw0m2S32CGoqWhFRw80UWimmSYyoYkiOOqBFBpIipDpaDZNU2w60AEESYBAFVBVJMqb513a3997zzl777WWBuvcmw/8o+q9l5k3M+9/7jZrfeszHFRqZHTQZRRQRSAYIsxuH7/0pU9/8su/kA5nxWuxogEkNAFURwWgoKohEBFYrQFJABmIkClibZuiw2e//gv/6v0PLsr6pFtZxTmzSTYTIEBGAxUhMBI1UItNUqlkEp24XdXAEKWMAxIxBZUaYgCEUjKAMhKYBYMQKFcpRhlhXcrarIYGMIeWb969zRA5RuNY0MBq8Ag+REM1y0GkCJhArnDx9Hr79GIhAZGurVbCTNRyqKYVLAEzwgi1mBgLZMsjjm3LEotICLJqD4g4JQaDoR99HOxKwqbtjHDIA8h0Avh4p2nSbsLrRtZmCkAcmdSHRKK1FqlSxpIdAULESfOcYoopRlFBQOaoJEhYqiBASNHvaz8CUDEyMbeIVsoIhqFJTUpFRdWS6muvfOJwvgSvVpgBjCjNm7ZpUy2VmVNq1tfrhx8+fPTwodpI1EamlNiApih4IJzMRAgIgDCG6PIFZOTgzpZmikzRVBHdFtImM2kAU9npHJ7bwE4sN6uRw+RIrIGIVZSZxdyf2heCmBn6AcuLjaRn69OxAlAWGUyBQ1OqTBiIIUw2/OKFEDVJzNpZB0whMQOrWCney4iZqLmZjkxMQDMKLFKAO7VsaFWLqQKCqdSc27aZz7th3BwcHMRZ97lPvnaU0vXVumr68Nn5g0FV0zDUVTM7f/jwg/fezGWraIpG/i9ARWBCMJNawITM1LwDM9eLMEEgIEQQ8GoDFBQM1LKKAsSUzLSUokUABQJDICTESGKGgZGpmEt2nSshpuIXaAwhBCLQqrVUIEoEO/yNUEWJUQ3cH3xC+YBMK3NEZBFljuM4gqGq1qoxAhHGGEo1khoLLEPackXTNqRR5OGY5528fHRrffb0w3y1RukRDKBrYl7385Ri27xf+qGhM9HlkA66hSJpKcGki6GX+r3zh5thdcTt5+9/7vL8/ELXKSWxcl0vmtrdWK766+s3Hj9ZzBY3b91uOP3o2eNzHU+raerEeNzmecDD40Mq+vRqoxxiTAb6rB/FLI7j7PziOPHNNJ816d2PPjyH2Y3FjdcOb/3xGz8BPn7p5OS90+szFYht0IgV+mfW4erWzdXyYL64fZPo9Otf/Nr7bz89X1/Njk/OLje21RXyAHZxenE8X6SEJDV8dLn5g+9+T+uddhb6ugXJEVEFEYqp84sV0aSM8FzKLojmEVSyG+34lJlwop2qqns3FSkTpkAEMKWg7nk4+9kqTp2NIzsOEU1ZFuZGBfv6fIKf0Gz/wwmO2mGIPiZDRJrUB37mAfmIwre9qnJgcyh/xz0CFTGgkMa+f/Tw4YOXXuAQtFitNRkAmkmZr46Xy9Vbb701ydWBQ4gESi76B/U4YLG608FNfyMRurJU1WTiADruix6cZLWqARLFJuVSSsmegDYOAxGK2dDnNjWgEkJwhgU3jU8PyRFTAkRkw8kJaWeHyMwOpnj7l1Iyk0jsMtda3TwPPDRvHEdAzLmoKQIRqqs5gJlSAxiAEyBv8jpJWaSUgKXYxWZ7ue2z2FjdEMqM0Qzatr1arwX07//Df3BxcfGp11+/vr5GwlxyUTk7v7jJnGKsMdZSaq1FhMZMkQMROqy359QDhMCqmKWoCggQUdd2MYYqpWkbBLi6ugoh3Lv3wvLgAAACk2oNgVWdLAkOvyGierflYxQNqKpsKpbdCabkfhhTCDEGYlZxmB6RInOwiR5TmaeBhYGRbxVTBQVkMERFg1q1VghZjQyqCFUFRUCiwP0w9AAv3bn9qc98uoBJLpgoEAGLgIJWqGhUPEsJRNXc1JOMo5IQIoJwijWP91+5f/eVe0/e/qiBsKJGqsQQiK3UUaw4wy2F1kpGJFBlDiJTLElMCcZSRRSBfdG6PTegGqpUMEpMjCSiQlAR1mW86IdRFFIchv74hcNu0YlBAFYgQDQ0lVp3eLBKxVpUNedMBk8++Khc9/OQapEImJBAjVVAVdgFimAKVhUDp8iS5fL8XIvNF4tS5OLqipFSbJhYVN3+u1ZR1e2w9TMhhYBmiBQCE2EpYoY7CEFdOlBN1SSXmnMutaiolNo0LTNzCCnGyIwTqYt8srBDWxkRgcGUfO5P5NNtFxMAgoUwadvMoFYxgxRT0zY3b9xkSqmZ1iSgqBoi9NtxFwSrUm0xW8ya2XKxZKbFYqFAMTVgIGoI5PL1EJKByURVRgdpEBBwAhnQ4ROxwEhotcp0JLCPvydN1n7KEwKZWwmp7cS2nvGizn4DJAQtBgEpuoV9rdd93WYTVSbjQJ6FraQq6k/LAMABcSQwA+JF1y1Xy5RSzll32Z+wy7126pLrmHwciUxWnPMwjaVUFdAMdMj5xTv3AIBDaLrmS1/50pc+92nabJ589Cxdjd/+2Q8uLtfHh7eGoRwfHf3hH3z3Zz/+UZESGw7EgEBOrnSBp6mqTOHsE82AzXb6jN2A3lxDZ+A3FCOHlErNkkVEABTBtWMEYZr6maHfZ6YeCozkwSL7b0dETQyMkcFpJLvsPD/GfXYfk6exGiJcX2dfpOv1ej6fX1+vmUKMTYzcNI0ZjGMR0cjIBMvUBuuHnIdSLMQc+InkVSlF5erp05TayNxDbQKvIqvpaja/NVrVnBGglKGsZ4erQwowDoPpkOjRtlxcPP3crRdeWzYHuPjo4Qcc8KV792+U8sGzpw+vH90+PDq59/LV+vrnD98PB6uT+Ww4HwnpWe4tJIt2UYpwN4OEIbCBFLGSO8BA9Gzsf+/s2YODg5dPTm4zP756OJScD7XU6/sv3NKq756faepupBun2xETSeImxfc/enz50dvzxdEnPnvnF15vf/9bP3j40dWN+3cenj2rqsIis9miS1qHBy/c+J/+pT/3wdtvhH//k/eenG2Obra5ZAJBxCJT+pyamlVUZJ7GRrtGgV1u4CS1j02X/J8TMuzlkZoFwr01xW6J605/5LXONFv1PA1Vdf+rHdA4peXtfVrdy3D/izhZZAFMx4/SlERBCAZgSDt+i6K/ZnqxqBk4UDIx8w3BqCiUoZydnZtIHrexndVcie34YLU6PJy181qG9955p++3q9lyzGOttZbcdo1vdmLkEJk5MJpprXnvZe4olC/vXZ0WtAoCUAzTAIoJEIIZhwBm4zj2ddtvBqtaKfujZ2aV4nYahmo7ySsx5XFk5hSC1ErMjDwdLoghBlQopbhpJVJgJkRmUgzkNRMAuntKIDIAjslt2qWUUQoMeay9VO0Sx1og1BRwEYEhX/d5m1WBxypV1BxjIb66Wt85OX7jZ2/8w3/4j1966cH6eu3ExhgjIuZxyDkvl8uUkv98KcWzJjjyzv1AEYHZJ5rEzG3TrlarcTP6QHAYBlULAa6vr7tZd+fOncOjI/8lMyUFVXKWGE1unLKrigEmY0wfgpphXa+HnMecS1VtmGNKqUlSyKS4PY1X8B4c5gcxkjN7mEjVAWszAFBTVFMkJZIIWklAc62gIBRKlaZttmX48R//4N4nXl7ev5WaCALKauh6SVMREkHknWQSkDz3FDgoKiGUEKO0DSz001/87OMPHw0ytEBtaIhY6gACnCIYZq2lDojYhoAIFDhnYUIDY2Jlc0spZCJkpzIYhRAdQkBErCpiIsSDydU4XOecFdC4H/o7L3ymWyymsbR7yRioGZgSYJHMzEq15Dxutvly8+j9D0ihCSEazJukaii6ABzAMqIRKRgqMSIoOiFCxfr1WsacVi2WQog1ig89VVREd+CuqSkjWVWnpZcyEdr8y8y8WnKJV1H3LwZiYuYmJiJ2hjjTFDdFRCFwrbIbW9v+PNzx5qbKSMEzBxERzETUTJGZVTUQlZxv3bxhhmcXlwerAzMBQDPNOdcqSMjEw1BzyTGE+y++GptvquKs6RBj26QiEjkQgRmijyiZFcyMPJFs/w3uktdhz61ENCbGSPSxyQszOyAxLVexyYl2J1yqVvcaTPPQDwBR451gUETNbDZrj46Pnj57GpjRoBogE5o/Ld73twqT4/xssehmHSLmIRsYEyHw9H4QPS/F31IpxdtiqrvBFDmbTkVEagWC1DbtbGZmTdv8yq/8yi9+4xexjCPQ4advPv6jH12dX11fXN0+udsPm9Vq9uMf/3gz9O1qXqUQEu5Y4furxC+1CQ8DqSKI5F2Q1z1EgYimkogZVHV3TjknTM3ITVUweLolADCQ0/u9kHQ9WyD0ywgBJ+IzoBE4l8ubZ791YcdYJY8wJTXTtu1c2tK2bd/3TdMgTKVPraXW2jZd1zVjvxlLOW6bA6VnY9mwKFFReDz2fHW2ALV+vBG7LrbPhovjtr3THXx4dnpxfX1ndURlSzIgAarZdjtrm27WPR7W22whxhzw58N5vz2/E9O9l25dXa+fPnt6FGc3D29dDJvN9TBvF6GdZcyn280M42s37l5th2MrT/N4ncc+8bOrTcR+nrqISKAtpa5oYtzkPB4v3kHVfnhB+aXbD1Tru6cPC9QvvPqZ683ww4/e75vQNu2JyAbgvc2z13/hs4uD+f2bX428euNnj/7pv/zd9WB3X/7k+48errdXi+UqB14zRDK08ut//hv/yW/81z/99j8I/+5nH6TFMRKT1oYRuBn6yiExmpPkAH34NOEzrnBRrXuh+76G9ZKo1kJEzHGPA4VdXPnzUgnNpqMSAaxWwZ0+0+9m70J2aYPu+gAu4d7Rovdf0zkE4GTn57/F/+1HjEsj9t6j/jbUZKo4zEQ1Sw3MCMGMgMLlxdWwXTcNtfPm7vEqWMll+/7bP//pz99++OjDy+trqPns2ZPV6tjHxGPOO+vnCfJqUkgpxkgxpp20zTyO0UxLkVqrWg/mkWEBHRMPyfV2TdOaVkYKROMwHh0eImJgFhedIYQQEHBy5d0d8cYaAjGSGGo15IlDvU8McMY6IQ2lEGKIMcYoquou70SA0IRggQ2pKDIBBdYYuEY1ZLV+GDfjEES0qMp4smi6CMpNMRyrDWMVwRBjrcVCCBjM4G/9rf+hVm3bMI5j0zRXV1cHBwcwOUBOeSZuaVjrlG3IU+8FrhHbffRoRsy0Wh1clgtVbVIjZiK19P3R0dHh4VHbtrWUGEIIodYammAGIs9X7ARkgilNKkX3N0Y1LVi8AVQldBUxIlFKyUeyVcG10H6viKiZoCECIyIYmZihAIGKcze1AlTGykEkA3h1AKVWROxzbUJcb8fv/ttv/ep/9h9b2xgjYzQEI/fIBJHitizOLfPRB1EDEbQAmGKKbK2W8uAzr97+8U8f/vCt1dGsiFCVgBgwJI4VoIqoCQMrYlWlKrUUMzaAEAIyczQAYmKvywGNOAQOUrOZiptUIGWA65yvch7BgElNQogvvfwgtY1Fhkm6jIgkUCe8rRqADrX0eQTRZx8+3Dw7m8cgIoFp2TQ6jgmxUrjWcg2qyIYAQG68qFWImSObaN+vBxuJOcZYxbRKZA57jZJhChEJpQrSpCP2bh5UJsRlF+3kDYNDDkTESITk3KcQggs2q6qb9bru+mMHC4CnnpCzZPY/6f6wCAC1qlR1mbf/gaWUO3fullKv11uCkCWrSC5lGIbtZrvdbrbb7Xa7LbVeX10T8/V6e3Bw2HVdkYpAgYko+JvgnSbEoSAHIN08HcAmSw4ERGKGlAisAk4IPCKKmKlxiPvz0MtrmHB3QySmyOH5YUtTn+lRbkocQormNjxIq9Vh281duYdgYMgUiEl3/bCZF9I062Zd0yVOpWRQa1IyA2c9wyRnARHzSLJSi29YVQUjNL8IQESqQ0oAYx777Qa0/crXvvSX/9O/nMtAORlG1fizN99FDo+fPHn11U+WUra9/eSNn3MM08QAn1c/00N4znB1d1AlQtep7BWyuCsfHdky9CWaTaSKqFXw1CU1IoohMDEiIQVvj2j3EXzsAkNCdL28AOAUBr1/2T5/82PjD2RVCyEwh2EYQgjevcUQVQURU2pVLZdRoVbJ6379QnfjRrOo/WYwzSKVKczTo2F7t50lml30w2q+PFkc5E2fW8Ym5PUm9eVebE3qaR04NZF4o3lN2DVdk03VmqYZ+/XbdZv48EE4OljGn3/44Zu5/+TiwWurFz+8Pv/2B+/gwexwubRhfLq5Wl+Mr966/wLFD8+fvtNfPRuhWSwq6lW/XrbNg/nBCuP15cVF7sOsI4Me+Y+vLs+5mS0Pb0Bz3MwvpH//2WONCZaLp/16BfDJ1a1NKO88ffO/+Kv/0Y2V/Z//9//NxaZ+cLY5POb5cnZ2/tZa8jXYeJ1v376HoMP2vIvlhz/+wfLv/n9/+L3vhMfr0vBysxkOVlwNqhGFBqgxyMTuaghuh2Wq9rHo0H0ZsVu1tqPTTYU8AIQQY5jShmEnBAAQeG7iMKW97GYK+6kN/AdfuJOs73/n8zWxewE6Ro0eve7baXqBvzx8nPu8W1h7YImJaqlMTMwwZimlTaSQnz586/zZ08agm8e+jIczOnn9VQzxe9//0cOPTlPippmbeRxxESkyJZVK35ftdg0wGYh5lqq3UyFQCJMCMpexlJxLybm40zxzSE2DMPoTm88WXTPjEIacnV8uUgK7+dU+Pe351hVRkbEUAYC9J7LXFjHGyfR96GOI3KSc85jHFNNEVxf10YX3MpBaAheUTh92CCEllKpIXCSfbvqhDrcPWw3dttp1X7IYhUjIkWHsB4ph248//9mbr33iVX/mwzB0XTcMAxEZQM65FC+afdzAXhKZTaWkV9JOagocvOlvm2bo2tNnz6rUMY/E4fbtW0dHR7u3iW6kRMS11r1vvZ9i/ufLpLPV3UpAZGCxccyllFJrCIEDqxkAhhRAg4KimlQwm+YGIhICe7u2K4qUgZEgq7r1XDHtRTJQNJgaSzQGLDsC1rKdvf2TN5Ynx9/4i3+ujsWaCGG3rUSDT/yZEQMAu9OEzyuQxUwhRDLRNpK2X/ylrz5654OrcUM0W3ZLkuq5vGDCPqQx8mGi1IqIagAIUtU1Lt6VlFIxkMufxKpWM9ECCgiCtM3loh/WpWQCQxxqXh4uX3jpRUO3LiZCAkNwqwAwA4uBxyFvhr5WYYWn731IY02ctqYM3IUAolWJmc4Fz6yKz14NWFy/wGYgKmwWQqgAnllBiIw061qn87RtQ8TjmCVLCOxhC9OmAJz8PQENLMW4u/8QAIGMPI/QwO8eXzD+mhgjAtRSmQiRwICITdVVpbBTYE7lyMdsYxAxhuhMAB/ixhhN9a233zYAVDu/vFhfb9br623fb9fr4vraUolcnAiLxfzk5MY45m4+H4YRJiNvQHLhADjZNiCDm5zZVGBP2qvdQYoAgOzjWTV3HSb3zfJfnOiVAIgBwURUqloAlaln2J+9/uIQIjE540QV+iFziIcHh2fnF+DdMiKxE+sMPLoLjJhnXTefL8FDtZApBBXb42i+IatIKXkcBudCxxiIg4gHldP+uvHnLDVLrQ8fP2xT89bbb6vZcjlbPztvunmpMRdVxUcffpTH4WDe/e2/9d9dbzarG8tS9z3Mn7hQ1NNYd1sbADkE/9BV1FOi/YUf69ht18179+73jiDulPOq/pHo86dNpmYEsit0YHIkMe/nEZ5XPwBAns33vADyCF6qtQCImdVaDw4OTk/PvNhijmYKoE3TNm3YyFB0vLy6vH9wctItNgWFLKPlgIPWppbjZmZ1iOOQqDk7v+S5zE5WXR2vtlcPDm/e7m6+j9ePrGzYRqlQ4MbBQUz05OzZVoQDYVq+P/T09NEdbF6+d/+s3zw6e3q1GNdS2uXiuuT1ZmhCuLU6Hkt+fH0+D7FNdB9mYZSn1z1EujdbdgCy3myapPPYBAMgZerHHJv2sti/e/TBjRA+cXzyenf3+4/ee3J+lpaHFqjXkhbNktvPzo8/+vGPP/uXv/pf/Keff+P9Uz64de/W8YNPfOb3//V3/86/+qOuXa26EzbuUIyijuPPfvLWWz94S8YSKrckAfJg2gKoWg3NygTNdewItjMsx91p4h+h7MyF9z+JAGrA3KiqyEjEMaQQeH8i+EqbcGECtx71AuhjOKS3bWgGaOiAysePFZgMgdwLnwwAnVuj6iw+8gH4BAyZU679r57ElkhAUKVI2YVOAzhLmomqiOXMMTz64J1/8P/7m6fnH2zLeOPo+LOf/MRqfne+bAAChEip/dSrL3703vuSB0qz4AB1ajpuPSHYRbMO4Zq5yj2XUjx+CJEnQMuAI8/mc1Mcx3HT91KtVlmvT1U1MKcQ3QEdRbb9VsVms9Z1kFUqEZn4k1FkZmNvb73jhF2MIgA0TeM3HyLWWmNISFirOL4yjqMf0JHYbQxCCCbKTAZoVqWWWisgOt/TwHIVBapKdZB20NSkUXBQAwqIIZcSGM2s1JIHvPfCXfOA8136tGO2TgrxQs1/nplqHb333mPv/mmWUpqmiSF4JXdy8zgkNrVa6670gRCc4GWlaM5lx97wy8FTo5/bHakSYlU15hA4qSlAVjHccRHATNWkinpeIQBQpTilLjhdAzHtVpeP1RhBEIEQMDADA5TRdAScM7G5DtgYUZmbkPphwKJH7fwn3/3jG3duvvLVz8mQsU3GAGBkoKpQK1MlDohuT4xCwBgAqzEjRgTFNuU63nnlpU/8wmd/8vvf7ZZxnYdFSIakRaoJMqoqcQAFYlKF/dixigSK7nEETr9RASQRQR8gw5SrUgNsct7kkg2UGAjqOJ4c3jm+cdOIFDFw8OvX1YXqO7PWWjIAlDxuzi7PPng0Dw1UWzRtLTmZMccCysTzUaNZ9g8LmRFFBdCUsMI0HldBQiL0vDjM47ZrV4cHB6WUvh9MNIWg6BudfSjngx9fGIQQYtxRTAFEYNKKOmlmn0U11d9mJqqEHChUqWoWAiEQghJOjgCTftlMTHAa5ZCZ+dHkJ5iXUN/+9re3202uLvjKMTbz2bzruhBCCE3XLQCs1Np17TD0IcTinUYWFYsh+jRNVYFsUreqgXn9CmbIaEjudoGE7GA7iBpMzg24L4sAQggi6tixL/ZSSq05pbRD+p9rvPeHMHNQsFxEwIiBiGstIbTdfCHn50xExEXqlFXCjkuZiM5mi+ViaQAIKFIIIgfOuahVm1w5tZaa85hLkaqARggESGZVJ/dkNwIopagaoY1jJmap9bLf/Mvf/M3/Q8P/x//d/7brOtnAO+99lJoZKj55/LCJ9OOf/Oif/4t/enQ0VzMKjDt3n4/PMczM+aDoNs046SeRIcWASFLNbBrf+/jPr5cJXzbZPTF1ojRNMDKggaog7Spyt5egqc52TRFNw3jm6UYTMwACJGQiX45ubeA2QkjokfWBw9XV9Xw+n826y6vrhlsAKyUT0Thuau6xjdfjpmnuvrCcn52WKyyIJlVit7gcRrXti6tVf7Uea10eHq77PmyHVWy2YQu1vr68eZxmm9N3n8LQNMulNHLdY8PzZXs5bisTW1i34bvr9Rfnze3YvUbp39dH37v68KRbHc7mzZaebbbadS+f3BlRfvb0/adVb87mR23XEXT99gr1oNgS4xMbPrw+TfPulZt3t1frD/qrNsYDCcTyUIYP6qYry1S4UriqNW2ub986Ob88f+fy0ScXR5+f3/ztv/+P3nn0R588DjcXw1/8S1+7d+Pmtq5+ID/IF2qLeLVZDzyG43RwMJstDhfpxuXFKUEbmvmsXtZlO7u8vDg4XnrtqRMNDdFd6ogIp7WyP8/gY1+2m47BxOtx/JN5QimmdtYpJk4/9MAjBJqW0HTW+Ib28wiQyH+0i/yakEkw2Fkbe9OgnpYFAO6h7oYZ0+uR3BgE9zM4r71sd8n57N4ZG342MMaUzp4+fNZe3LjZfPb+K8tu3tJ49vDtkDjERjEKhkV3cO/uyeXVFvAQ0OazmapILZvNpu+3krOCe7BOVqpNE5umBfA3T6U4gwG2w5YDRU6AuFgsCIOqdbMZqOWcyzhsNpvLy8u2bT3erFbe79t9ZUBEgQF2u3rPwUJEB/MdREEin4UBolQZxxHAYgxVVEQQsECJIaCij6YmWM8EVRFE1dA4IDaRi1keR8NYkM83Q6u2LTAW45SyGBGLlBhj7bftwWqxXOU8ootHvAKLkYhiDLhbP4jYtu2EiuXsJVEIrDo58NIOQ3YvuC51i/nCv33/M/2I8OMs7hIEwXxQBfsaG5FDIDEjtBCS91lSHTpOJydHDx+NpMaETDTmPpfYpKgmNOmFn/tnTpYquzPUyyyb7APRFMgAmIpaVhXRLjKIs2UJzNSsjaGKLLktef0Hv/1v2oPF/c98osDITZo0wColGwIaMEcGIAMiJCNEDggVIFpQ6jquhc2+/Kd/8b2fvXV2ec3RQG3ZtOCSFjBmNBOpFijuB6NxEnX7NJB8nXi+DSFrFUOMHCpjVR1rHTyEKYRSaxOSgt26e/fg6LCCtU3rpH9vn6a7QbSWLFXyOJY+nz96NlxsDqjxtikRA0Ax8Tv5sJvR9pzJ3EbFJtYVVhMMxCFoEQQM7rZo1sRw5/4LAPD06RNmDqGJgUqtwAQwhWNM5isT5AMAEENwZDGGiOxWhFML7vUx7Vy/fe+Ys5lgclJGN91SJWaZqvaQc0bSQAHAdhYJFjh4G0NoiLjZbK+uLoexN4RuNmu7brlceiWKbiOEU/LGWDIgmpohxhhzzkQhhGimIUbcd5NmtSoxInqUvSqQVY0x+cyXd3LQWnXHsJmsyHLO7o+qat6E+JArpeRH1l7g4tmF+waSmVVE1JgshhZwIi0cHh09eXY6DJnQjThRwVKMbh23Wq1W86UBqCkZuzNnKUWkeqFcJo+5Iq6PSxPPxgNbiAgMRdStywhRUWr18ONccz48Pura9C/+2T/7C7/6S/+z//yv/fS9d//gm985OblD+KaBvP/uW//kH/2Pi+WcIxORoLhLlZm63GqKkhAxNbc2QFIXHDAxAoGRjzdp5y0y6X7B7b+0ik/rphFZjG4eHr2Tj8QuIAU1AAvxeS2LiIYGgB7/7SF9ficZutm4EYHnBLi+D9EAkSobQKkFkAmxa7uxHxmp1uwTWy8fh1zGWgay0+F6URscRutI1YJx4lipbEwfD9tlG1hqF8JBO8tPLg5m3a3DG+dnZ98Dmy2WN9tu2Iw1hhFR1Prt+uD4sGm7Z9dXvVgAPl7dfDj237s+fTEmJF5wOh03OfJs0Zwwi+jj67MU4kvz4/PN1bDu1zO8Sc2D4xvv5+tH/eYZ515kmWYy6MOPHi3m81vtoo5DgbK1ESIuwuqn11fv5cuT+fJweXKmmwPUWyHOsl6cXWxl89rXX/9f/W/+2nvf+5ff/eb3fu93v7ndwL/4vR9++73LeOeWwhovS2wWl5sSjbtls8FNv97cvHEUTlbdh48fZQ7g5C+OomKCNlkwEyEa4c7xG3aMdHKLTtjNwqZTA7FmAcCY0vMkYZxWmLrPLiGgTR6XQGZOILXdFTLxjZxp6rHtiAjIDjB62eTQn+9Gw8lkmSYhliJM/7FbnQY7wyDwOLEpJZR2sCI40xrJYsAx5zpuX33l7n/2F788WwyhC5AlFIAIEEBEMXJRMtbDRbg8XzNIHYfrq+t+GNRKIg6Bm6ZBJo4hxeQPJwQOYZcVuRvDm8GQt1XqdjNst1skjjEhUtPOZvOWiWvNeRxzybVUqVVA3LbLCxR39vO2jJBUZa/p8ErIOzl/PQBwCMxESFU0NU3XdmoaYzCzWorbOMUYA3EtBcACEaKJCz79E3ezr1JdoFUF15vttW7iVdyUahiMGKyGQFpJcuFAR0dHPtzcu6J5pB8R5XF0JZrnhKSUfLqxc3eyXfP58dkl4C6aFxD8DYvIHkPaHU8TclmKWPU4oT1tuSISB2YOtivHHR4zgBvHR2Mezs/PiQOiiTtUNily3CdgICLTVIb+B6Q0MwvsXsaitRZFCJbNhEgBfC+5dtl9TRCAzIrqYTM7H/s/+lf/dnG4Orp3G0lDG4io5JFiqLkgFSRmSsQA5GFngTGpFgI1NOpmYHl56+Rrf/Yb3/zN31lrbrBNKmSAHMSqiUTPJ3WbbFUR8VLAazdm/JjUAGiPihCZagUdSs2lGgCH2FIkNo50+96dbj7bUqEQlNDU3L8EdsoaRDJVKZVGefzOh0kwIEPAQZQBE1gIrEbDmBeL2QrGq6puPlRqMQIOyEgVlEJkg8DBSXIHq4PVcnFxfqamLz94cblavfXG25thnM2WYyme9asqquztkDfu0/BCJpsiT/z1eeuux9M9HjA9osmoasfS9T/Ez0M/c0Q4hBBYdTLLNlPPRI4heHVORH2/ff31T4rW7//wh00baxUFQWLiHVxkaqqIYGgxhIBxOliJd3A7MJGPXvYA1f4ICyHuu519pW5m7oYadu9kf25PBokGttORMTMRArjAlabi+GMKGERUlRgjcQCpk4GASKkSYlwuV7mcue+fGAQCkWIGBwcH8/lcRXPOgEDGzlLaH1NgQOhvGs2manX3QewmTWDEwVRqLejJdIHAZDZvjw5utV1CxFnXzmeL66vNv/3md374kzd/5df+stjvLdvmn/3m3//g/XcWbSImtyx18x6/z6Z7xMxvK2ZWVEfoPX/Djab24wIAIOYptJhY6yBadl3QlKvoKKDTzG1nwc9E9DFTafwYYxXdq3f/A/RQJd+qu/4NEBjcn8EMpJpUCZNHRuw3m2Ecm9TEEBBktVx5H25VIFABe7K9it1ymRqtQ0whFmKF0M370p+NPcy6WaCnl5cvHxy9dOe+brf9tk8Hi7PSP/vo9M7xrfnxrZ+enW8C9VpjihfX29XqIHE7lCECQrVrtO9fPnsY0wvd7ObhsW2vn12c3bt1987q5OzZ6aPri4Nudth0t7rV06uz/vI6LPDO8rjLWIfhYR7RQIlNNVu9vK4ni+Vi0T09faYBQ+zGamc1h5i01iXHo9ny/OzpIaVbq2NReuPJk9vzo9e/+MudnWKef/f33/3Wd95+91m2w4N01MwSq+VIRrErouu+/8xnPtUfL99646fhwc3l+XsfoVpM7bPzi8XRSYhdRSW3OED2re7bwLeW39sfPylolxczVgFCJNqNtpwmaQDmaYrg/DrYibaBPk7y2mGztsOSYCci8AoFp4kqOVNE9xe8akWYuOruIoHqFTw4CmMEgooATnTY/43OuZ7WNIDWTESRG5MSUe7fWaWEEKWl2Ty0GKhaHuqYq/XZYpteuX/yzjsf5ryBMAeA1WoVIoGI1BIIiIM5m3ciRWEp7tDjXkeVmGqpIYQmxa5p54vZ2JftsM2l5JxPn41oEFOKMTYxtV1TKrlTIjO3s84v+BQjAsYUycWxBGq6R3c//unUKghKhG5BARj8aU93oapvvt0Pxc1W0V2R1dyP0H281TTnLIoKWEXLIAYFODHglOCsGpi3/fru7ZuLxVxUPl4lMPNsNgMAFQ/NnRBEf7epbdyMNeDU/DGzp680TbOLnmRVSSGBQdXqTzhn94ZHQmRA8zVDRDvez5SRRIRoZSj7w0gnzAZEamrS7Vu3QuDNepNzZqKS89gP1OGO9eF3D3qdDUYIkyhs+j/4nVBUgIAUcQQdEQTRqrLntxgEmLg8joib4Sp0j9776Fu//W/+/F/5i83BPKQERDGkKgLoH5EgCJHLCQkAgSIgoYKBpWZeK+IcPvunvvLw/Q9//offa5uWhBJxRxFNze2vSNCUEQlZydwcC5HAFEwIjYjAGACC0wABDUzAxKyaKqACoUEgVitNm+69eI/aGLzCA5p4KohkqJP5OIhoMMp9fvzu+7PYgFg145gIKZcsaIIW5u3l5nK7uTZMgEAYY8NGkPMADBwDqKXIVuvBwepgtcylP3360XK5PDo6apoouRCCU3ZMDXmylVetOWciKnWspaaUak0GFkNQDaMiM4sKIcUYEYNLbJwJT4EVDMFoqpMAwYPVwEsNRPS8hhjjzgfcJdMRWXlHaOPABJCHzVe//IXNuP3D73zzwBZd14UQEdBMPOXK6zDXf6D7YFk1RQIkNLfGIcQYgs+/cs5MTEw7wNtLO9nz3lQ9MoJLLWPu3XLWwF3ViJh3nNlIRETu7yCeG7i/pPd4pzvGqwenTCEb6pPfQBhjPDg8uF5vQowGFYEAhbl1GvjZ2YXkMqEm6luGAocQAvGE1bkwYW9evxvM7RpXT8YQV8Ob1TLrutVq0bSha+Jqubx3796Nk+P791589PjsZ2+88/R8TbFZrhZI9f03f9wk9lZ0GLdAEMJEVJ3SR3mydCHyGbqqGe+6xz2r1Y9HIkKCWtQMmSGXUqWIZH+TpppS6rrO/cERUKuXRMEBOdhJxvadhk3s2Kn+0TJFmhDDvoqt1XzK6b+jVi2l+EFqZu5dwsypScw8DAMzhsDGXKuYggXI0bDhRrmrkFKSWgkwpjTqSBDW/YgcDrr2SsuL3epovvzu07d4pE8c3Ei0enZ52R82t1YzWq8fBVujRcCz07PlfHGyOuj79Wm+RoCR6MJkMw4PDG7xYh55e3H9QS6xCzdscZm3a8s3qHvQHc8Az8r5T8/fWUnzpfbwsxC+nS/epnGIeBKXocqz7UVT6N6NkzzWp/32GUBNwfoSAn1ucXKrjG+KPuX+lpTV4qBZHP7k+w/f/eOnpw/xB996+63vvLOS2RdfvPv2MK43myhCXSI15no9Xr/50aO/9l//xq//uT//X/2X/2XoT9856mjbWzag1OSca77umg4JREDAUMRE9+G9Non96n6h+OLwXVdF26bxnrJKiTHqBNnhnsyBAISMzDDF4eJekOwyH0Qfo7owwcsjA8fxiXaiXFJ1NbILF73LeQ4S7NogcCnO/sayHcSEOLV9Ez5kCuZ7rKaUQpNUx3F7ybCWksWoSIKAEAQIEKHjhNC/cOugawC1mAlzKLUOedQqkSi2yXkgO2RrmsrthrgqVTCQ051wJx5umkhxqaolS865H4frzSbnDOq+sYEDIxIPg4/8Qgge7Bx8e1FQk7qzmgCc0H5/FLXWGNjUSi3eaxiYqhEH2tUZDpXtZbQRyMCRYhRQ0EnnQdN5ZBRiapqhvzbEEFKuRVSIoNYCCF0TT04OFbTWTDDRcbwESTGKqitLfF3xLru0mtiotRaz+PHFo2oi5ryC6XwklF3c4JQ7iB9HK5GJ2xD3La/twD/bpc3vek3xIUgumVUS0c2T4wBwdaWAoFKGoWdCDiGm6C2dzzGnkn269M3M1MRqrrUWd98EqmCjyggogFUrgTEggBEAqhAwECmqoyZHcfbhj9/8Pf7tX//P/8p4vU2r+YR1AZoUrQRsQJEVDAKg81ygYgBQYsIoCCilfPXPfuPD9z94drbGhpdErBo4TJUBGBg4EBiRCTDGCGa1TngbT00LuQmKiBhTNe1rziAQOABVc8JEXR4t79y5rVaBCYggIGZwh1JQMVBAGMcxDyNWPf3oaV0PHOZiJr4TRRkQma9r1ll3fHS3+3BsIA19zrUfswADhxA5cOCIYZGaWdswwebqQiy3bbSaT58+RgoptiJC5oAiF/Wl4sIuYiIpUktJMUmtpVQJAtYzxpiS1Go4RVQ6k6yKXK+vcY0A0HWzWUtus5NiElWR2jSNlIKESBSYFUxEUopSvdpXd+MhIlVhxJJ7RP385z97sb46PDow1Rg4hODZ5jFERHIgAQDERKQ6x4QRiafA3QnFceyBOaWkKj6CQXyuxN4BOTAFYLgTkyBAhSkKg2FHNXDzNr9WfV4G4LrY5144MFX2fppprTrZjwAwIVJwoGY+m9+//8Iwjv2YxcxZ10M/9EMPAB7ltvNBq+5EAABN0+JO6Q0AXgAJihMb9p02ANVakIAD1zoS03I5PzparRbz11595Qtf+Nytmzcuzs4CxmGU2eL4avNuP+QX79/75jf/JSULkZFU1NACE3ia2B5nYpoqIb/LRCYovZTq1r77AsiZZHUszgYpRZ1IYFMQjhHzbDFv2sbUtBQFAgUOIcZo+Lyeg10MGACYgff806/uqFcTAcHMm3bd+WO74NG5UCEEZ0BuNpsYY0qxVmlSmsBd1e0wkGlqwljLeuy7pr3ZwLMixlRrhWJtTFWyqm21zEI0oYcXF33gk9nB9vpSqxwfrC6vLq4ePb7xwp07L96fX13+/OLqOhgS9f226drYNZd1W6tqSIXwYR7rpn/54MatG7fo/Oz02Xns2tVycUgdjoW322bR3Lpxw0Z47+G7Ru3Nm6t5mn1qI+PFdrtqM8oGMgIEiEWR2xlVzdt1aBtKvNb6uGzN7PDo5vXm4tn5marOY9pcln/yd/7lNr/7W7/z49vzO+mwO9tcBq0dFdAQF4sVzWecPuxLOLz3D/7Zb7759jujUZjB5vbRwXsZsoISqynKqIAcvXol1w4Y7O7ESUrzfMSwr9PVrEkNAO6UFEGk7hG9aT41dRBToLNXMIi8gwamiCWYdGL/gejMPZ1tIv/ptHxlCnh63jrY8y9HjADcmITMK5I9uOpfjhV4M0TMVYVUZl3XtpGotC1FTFEbRS1gRUYGVclVMdHhrePVk8s1QewLYYjMYT5rmxgigWeLcfgTTJGPKdxwOn8ICY0JLZASgJKqIfDh4aFvxc1mM/T9MPSuiPbHPpvNYgjbnBFAqrhVXgxsRIAYY0qJYwyBgoc1IoGpBiQVqRLF/ADDnSnX9JBDCAjuDGCmGh15MKieEaWCIq5ZAzRmrDWv+7URhxiswnouqgABAABJREFUjLkWpECIoqWqvHD7ZhNDzUMFCwxa1IeVKSVido+NKUPUzOkaIYQgVAndAE1UHXjxamMCrc0A0CVaBuAY28QrQpRSpVZjdgcGcDPuHWa5H70/XyIAZkpgWTMgkKIBBKLDgxURjuOQc6lSxnGIlhDZQ51t5wdkWJ0ytyu7qwd/FgE1R4lYAlcFYwRBI3DZNE8zJjI0rqRqrNYKKcZ3fvCT353PfvUv/fq4HZrFLIZYVLVIlW1q2xDJFBg8u4IAQ2BECLUOHFsBqQ0fP7j7i7/2K//6f/wXV2UbmcF0zi0YGigjgJnbTZFNwDsTYGAgEKlSi08HJjNCMENQhGxa1KpDHAJEMI75pVsPFqvlWIrF5Dl46DJMVbUporjUiorSl4dvvzfnVqsARYosRUAtxdBrHbQ8+Pxnjlazpy01YZbHKmiXebjq1/3l9bDeLGfdwfygDbHkfhgGDpQ4boe1EBOy6ihVa4Gm6ZDSUIqbrAQKohJDMLNAzN2sSQl3VfIkkK+qUmV34SCSCI9lEJG2bWutV1fXZZxMqubzucciD+MoUlPTEIKYMhES1SnzhwBIRU1lF+0L/XZz797dW3dudtfdgxdfevz4aQoxRuehGyGZqVSVWj1rAd1UUI0AaUpZBF/A5HYVADkXA3ENO05qc2TGEIJbqakKEYhqCMwc9iQeRHQvDObkAxqYcBVUdaupAJO9vomomtiOdGjqcnqXOYF5JANAlRpTOjw8ODu/qKqoIqOsr9Y559Vy1XZtyXXMfZXcdomoM7Baaim5jsVlVPsBE4AB+vhhd1y7Xz0YM9c8qsidO7dPjlfL5ewTr7z2la988dbNk1rK4cFBk7o//s5PKM42fbnabm7fuXlx9mQxD4TisEtKCSZL2l2JAdOF87G7Bp1TgUiBGfdmiYBEmHMW050djKCL3byrIQwppa5TtVoK+x/DHENERpV9TTl9OVlnJ9TYUV0/Bn3Z87GYXxnmd2nOBQBijLXWJ0+e+NHtVIdSymq1GoZBRIaSAamldBCbVMtQx/l8Ns/haX+tXacEOedZ1wlAals068eRumaw+tH5xYOTW3dv33/49OH2/PzunZuzsnq2vRLEB9Q0q6M3xnVWk1Kejps473DWoWLpRyoGlK47eiP3p+f55dnqXtucXp6en5/eSd0nj+6IyNPL8589fHfRpV946dNn52dvnT09WI03NP363Ve+f/nsrbrdaDmiWaL2dDMIZm7bGcAwljYlVHx/c3GV4kt8cJxWJ4wN82bYWAjf+bd/NHup+eKf+bWHbz1+9/r9xa3VrUCqUCE2hycp2/bxU5LaRl5fXv7ev/o3D+6/FP4nf/FXf/cP3/3J2w/nt+5tx95y7ypoDnMiRgiI4nCr7a4NAN9gzw0ecs6mGkLgGB3ngIlQaTsF8o4n4cWRuW0YIAb6mMwHIOzEhAh/8mu3GqbCyHZTHgAIOB0HiMFhAvOK2iZYhZxQpgrI4OoxRBMBH2fs3hoiidWARByl9xOhIqtIJQISNAZia2JAzVZKCApm91649cb7P06LBLzwYL/1ONQUm8AxNUSoiu7z6e1OzhkAOUREVHdgNs8LA1UQM1BgpNA1w6ClZkDtZk2IFBL7iIcDi0xBRLOmISQQdZFLihECA1MIIYYQd06jMQSTighMLFLBsFoVFdfMikipambMwQAUlDAyYy3ZB+FVpKgKohqZmbjPM4cq4tO6mUdxrfvJBEUNDGZdc3Cw9MxKVTVm3Bm8elwREjVNQgNA3Dtq+q52QFHVRCQguY9AKaK1Rg4UXEDnuedkgCJGFHBaZ2TgHFi/GAx36YB+6PiROua8n+ECkGoln4WJOrpPTPN5F5ibWMdxVBURKSXzxIpxwwXwJBbPB0JAU5eNqxKpgAEoo4ZQxqJMRgiMasaAkRkNFBRAA7OgWZUGGYkM+Tt/8IdxtfjKn/1l3fZt13FARJQqteYggUCJmYwUAAwIiIgEhFirhjDvpB9e//Lnnrzz8I1v/3AhBZUShSYERkFTrQKGaBaQqs+o/PhGcFcAQhSwCiJoQJBrGbQIQS4ikyjdCHEcx7t377ZtM5pxYAAWUQaaWLpqjrQhcYrp/Gp9/vhpQiagAqRIQNaGCAb92L/wyr3Xv/al3/z33z69urixDAgWYjg5Oj6iG6fvvv90Oxx1izbG7XodE6dAUjMgtyEamEgWwRgtpVBqAcBu1o158GQrUw0xlFKQoG1arx5Sk0QrKGrxniS6i6ofUrVq3w8h8N27d/u+/+ijR4C0XC6GoTeAy8urUspiNW+aNIyDL4biQ7FcCYgiEyEHQkORimAAWiR/9nNfY8BXXnn5a1/56u/8zr8yhbEfYmrQbNiOAGagYBam2N1JMo0AQB51o03TmHN3RJg5pahKBrInAwH4ySf7Y1On/sEJvDzJVAzc+9FvUC1udwQ7VpASxY9Jb03FRKuXBRyZMThePtEJzNTE58mXl5dnZ+e5ZGK6ulyD0eHB8epgUWpxZcM8zWDHv8w8AhgqieheVuyNhdnUVExlHzk0pQhcpdw8PnrppRdTopsnxy+99OLtW7eOD5eE2KTm4aPTf/JP/vmnPvvLq8Pjt99698GDk5RCjNQEdo8GVfMR4O5x7auN/UXgvb8jUOw+uc8ppM7wJhKpItXA6dTTtIGZmpgcc4shMMfIMXAkIxE3WEKvOGmSdP2JOw52dSi5e68ZGSYOtVYwIAMwQ1QRBTVX0QLAngnqSxERSsk55ypVVKpZq8Z9nc2bcRxOLy8Stx3ylRa3YmSDw+WyZGFCJHyWN6/F+c2Dm08uz8BkaeHKhssy3mmW43Z4/+Hj+7fufH55eBfDD548PG3SdeTLITfYdszHTad5LEBbDtd5OC/DGsuLbXd8cBi3PY15PW4ODg5jjpdnZzNbzhfN4uDOm9v3Hj5+OLtzf9Xwa81czvvWiBfNVnmotN72UUGOOttqyWNDoYA9Kzlebz43O/z0YlXqehMuN3lMy/aZPLs35xsvzPvLw0f9OtDhEc5ssx3sbGwrnQh8kNN1KsP5vOnC+jq8cMCvv3br97//QRkHVCJOKiIWAIAAgRhNwdRjEZ1ADAhMQXcSg3HMqopETFRrJnLO13TVTRof0107ATTB9rYvbL2o2n/80zYwMyZ0JqFNElh9HkKpzIREYB485jIWMpzieT+GLpqqASECsjP+JxM8Uq1Ts7ErsI0og4Q6zhs6OOyIgSEyxxSa1CQhyVJylaAEQlW2TTd/9cXj7/6xPb18YinXShTCLKXISDGYShVjiKrT3vbW02dMvp/cNF0NAIkJQK2CqggCBg5NSg4WF7MQo8dWoDv9qKWYalXTAqJNSiZSfVOp1ly01ozTGRqYTSSGkJqkaswUuSERAKDJXs/DR7S6oNMqTDvU2daiaupsPjMwSqkVqaVWMlvMZsicS6mluhsgGDLY8dFhDKFKZiZQsKrknuDkVNPKu7hAdPohwKQcN9kpcdRMDYknknvRWoGceQpqiuDV5b6OQQAIgTi0XnSpqneVO+NmtN30vWkaFRXJpRafKTCyWi1DQaIQXWwSupahxRj77XarYkMdXeKxk8JW3AXb+SHqICJCmnwOVLVaMbki2wocGYIqgqAZczJkRAjIQKhkAUD7QmqzFE+a1R/+1u+tFoef+fqXeh4bbiiEgFhVcx6bprFalcCMacqHghhjNWFICkItoNCXfuUXP3r/w+vzbTXmQmCGAUilqorsdg+BSwpMqlVAAyZSRgASUyWoAEOt13nc1irumcwBajVE6uLtl19s5vMCJaUWYxrGUXd+pEhGKqzF7YWvT8/7621QjoGkSjQOqd0O41rK7MGD1//sn87t7On59TjWC7tMFOpI2m9myzkClpyvr67TcYgB89iLZARDhlxK2zQcgo5uP46paUR4HLOiAaIP62OM4zCmJs3nc6fREJHfKaFNvvSL1FKzh8lT4CbGIvX6+lpVA4emaU5unJydnfV9vzpYqWpMQUS2223XzRDMAMZx7NrO501u/oJEDD7rh+12++lPf+bg4PBnP//5977/g34oi3ljBoh0vb3WorP5nAiJIhMbSDVFcyHPJF93mZovdWaOMYJBMVX1w3N3hjGouBqUcjEpklI0VeLgY+4q1Z13PHfW9wnF6PwuRlfD6f6fiASwy9CYtNrkkNkk1ELSWihw06Tx2VBLKSXLoKa6WC6bNm23GzNIKTpSJVJFjImb1IYQcyyj26CVoqKA7g4nxtMJQASmEJoQOGjNTQwvvXj/8GC1mHef+sSD+/fuHq4WKVLglOLq33/vD99+99GXvrY8PDp45903P/PZe5N9EoKZILGJ4C7P1AubnXDEPUrdtBrQ1BRSiE7/2JcpugvwGksuObuc1tSQHB/ysaZxjE1qQT2cABRc3kVEDGBVXAM8hatMwA8CAAQmQiZHUU10l0NrblJBaIZFay5CpF3XERETlVoDc9u2MDEUeT6frS+ucj8khIP5sgGhaog8VmkZDtrZw/48trMmNlj18HBxls90LAa4qUKLroutXJ9eXpx+4f6DC8tPz891MywWy0/MZtv19VYuFeTO0eFmcxUwNoFxqNlKbJtuNteSr7fbEIhS89HQ11LbxcFnb9yR7frJ5dMn12c3jo4/ff+l87PLdx9+uGjbuwcnJ7p6ePHscrw+ou5P3br3wWbz767OzxPntuVufjVsdVNuHa3geru92ChFDPFsHIdOxyoX63WvJqYX5xcfbR6Vvv+lz35tdtH0P33r2fXAYFr62EShslgm/WB73DRf+9SXysXVk/c/DAc4vP7a8fFtfPxo3fANQxwIKoZxzCFYiA0SEYeqGZz6YUqExJCaRlS2m02tGmMiItGKCJN7JpNPet2oFGzP9XHkeeLJA2itQsRTaeXKWURENEIDQHbDIfOQClXZIYfmChsw82AjQDCrOhm2qoA4zo3oidxGOBFEfMOj6W6gslccmSIBE6hg3bYdIBgUJozFrPKIwQPn5whCVFKwUi+O56u/8Gc+/3f/6R+dno+WlmVjQ4plbEs7iynFLnbdzCM+uqZ53nBoAR/wAXKMRVBUAWES5rt9CVgTgwYuiEwwDIU7yjmLWB2215t1XdbV6gAA1DSCidaSazIh5hiCAbnpmZoNpZhZP448DKVWqdU/i8DsMyhm5sDEFELglPwzyiWLUJFaa6EQtFap1YeJYjCOlSkAjE0MRa2U4rYETJzL0CRezDpkhIqmEDlKFSDrUpx1DaCxizu0RA6uzAA1GSsHQmICjBy0VkW05HbzEiOPJhW1CUFNsGpMBGqADgcCIahXu+AhLcaMomVXNOOuOjdmQ604gR0UImfn91JwZnMeK3EAUydCdt0ckd0h0TXDkw7FR8BegpshuQ4/KhLmakUUgbQawBXoheo9DKjCqEmrGQsQEQUfGpkhQddGELWqoegxdb//d/6ZKXzmz30tF40hQIhs4jVcIAElPywBUb2uL0AQkJKRSdCjF2999dd+6bf/3j+plVpKZbsOszYihtQUUQHIUlJiqSUgEKqJkhhQkFK57arWrDaaZnAcIZChKo1FKcTr0kOXbj24p4EPFovKPJYKGEqVNhKQ1L42jNsxg2oZytMPH040crR502xLuVhv82z24Bt/+sVvfP2hjE2zGHq9PL3OXQWz1LSGWDd1s9603bxtU67bknvHMgBURWNIgFSLqlKIEYBEzA0oJ8EpQNu2tVQz6GKrRVKKjFhFuqbJVYiYEoFZrFwrilQmrlXQAgCePj0DIkLuh97Muq67uLxcLpfTjUhUssxnYbPZHh8frzeXRcaYIgUCNVQj8jRZGIbhs5/+hU+89un/x//9//nf/c2/NfTDK5/8lLNJACDFhAxHBwfbYahVVBA4xmDkd/Heh5RZdcog8vhwnb5XTx10ByA1BdGKFHxlqWrTdjUXD2bmQEUmTQkBmKhPz9GTLpCQPPtdYkyOWCMCUURkpKm0HcdRqrZdW6vVKl3XMRgi5FzW6/V2u/Y50Wxx2HSNEnhHROztqB8+ROCMQ2gXKajWXCSPuYxWxUxzXwlMpVbJgUMt1WoKDW/6izsv3Lxz98bJ4c0HL92+fWd148ZhSoxQAs2vzvMf/tGbCqsnp+c3bxz+8R+/+c7bby/mK4ARmaVW1QFTEFFQoQDucOj2vTChYkFNDdRH+bVmDsEhKWdruEW1iFhVM9EqiKjoHuAhcBNCk2JKKRFxcUQNNAYEJkUCRAqIRiHGUouaTCacOAFeBihW607y7LRUDrtRKXFVHaoQU4qxlJpccA3WNk0g6vseVLXkkkuMYe6VE6kh5ut+fjDb2LAtQ9PM7oZ2yNo0QUTydp2obPN2vjg0To/6NZW8aLumDtv+ejWbX1N4d3P9+vHxnebomdEPn324OVkctItbCJva0zB0aZZjuM59ZYwpzDOoQlQG6gbEh8N4g/u7i/kib56tL4fN+uaya1ftu08fbbbDp+cv3oiL87p9srmYrfh+ClC7t7vNB2XTKxhHAG4MaDtEw9p2vaAqGMKH64smDJvh6kzHw3bGAy3g8Ic/efvOnXt/7lNfWNHsd3/4o9Nxkw4ai0qgt24e3fkzhyc9/S+/8efvp6N//Lf/fkgxnizmd+8cfvjBRbBCDIFITItVEALIMUFKgScBM+3GtDgOY98P/pHsYBufCMDkZu7WMmYu2N0PDvZj3T0V4zn562PGfV4x2f4/dhEZqhVgoh8BukHnJKBwGj8zi9YJIZg4zgYAuGeg2Q7b3U18dxAkkDJyijpG5K6JTBJITXoEJSZGZExtiKWqoJY6ej7NZ1576T/5ta+8+7j+zjd/8OjJ+v79l6FrQ7NYrDrPx0TklEIMwYlpzmRUddyqVkNxlxEDE3XRnPs4Px8CG4TAKTUhxFKFQxpzfvLk6fp6e+/+3aZr1KCbzWazVurUsHq3t5fFmpmqAGD20Y9NTkIikktWVWJCmgiAMcb5fB5T0OoxtP6J1bJTl9RaY2zUsxjUR45eCUAVEanzxYpTrKVQ4FoKAjBz04TYNoDIUzNrHEMVsVKYQ60CNjbcILPnIIrskXz/n6moKZopYSCHJRFCmPzEHJEmQjBURFVTFW8n3U5kas0JzMj1PqpADKro2NY4ivmKNco5E4IgsSoCxBiJ2WyoKlVq1WoIMUYgdC0YESBCtao4jYA5GFTTUrJJjzBCk4lZA6ACUWBGDQpiasjAHIipjCOxBkOQulgu8+XVb//Df8pt+vzXv1xRoAsQgqpgtUjaRLTA1UzZbZeRiMGCmgIrJ1HVT3zuM4/f++h7/+ZbXYgwljbiLMQgJEVjisFEczXV0RQJQwwQWcWkVM7FVc5SqqlirZFCEQltuh62g6J2dHDrxj/5rd96/dHD+6+9fOPeCye3b/VjEctDqV2Kcd7166uiIFps7E/f+eAA0iLOTrfr66B6fHDz9dc+9eWvLW7dO+1HzZDirGm7nEvTNKJS+g0BDdvBpKQmIWE/9KoSXQWHhO7HU0RtEtMBwFSEMol5TNVsHPLV1dViuexmXa0VAXUiF1IgD3VDQKBAHFoGENXANaQYquRSa1Wfd7z99puL+aJNab1eHx8dxRjfeffdGOLR4cqsbjfXfd/HRCaEHBB88C1egZ2dnt5r0l//63/9W9/6vXa2aleH1+vNwWFhosBxtVqVPI5ldNUIxyCihKYyuWHVWv0/VNW3tlStUl1SKla07uxhwXVD5JKtwLEU0YohRJ+u5FJ9L1RP/kFnrtB0Arjgf0qwmPDj/ZBoj3GGEJAmSNuP9BSSoT47Pb28uqq1xpiaJs261tNqXXfi7nHehExIMZh54JYpM8eui5HLmE01ICupSOUYtZQYObWp1hIbvnXr5OaNk0++8trJjeXRYXt0cBgCExpxPD27urzcdt3y3ffee/HBPRH5oz/8QzNMsdHqJ78nfKMpELBTiyY98MS2LkgUeILSp1B2DwFxbLxW91iqtagpoLlfy26qFQJFQnYFzC4BE6sqmDlU65eXn4pgjr9Pevz95Yg71qyzPlQqIrlULZcCiDGE1DS1uNeuIvH+9xJN6UglZzJZtp2IZMlN16yHvklBh9xR/Mzq1nvnz55dXvBsdnV9dbycx6PufBw1hH4YWPRrJzcwr989f5rWV7dPbi/nq9Onp8NBUTOOrW5zmeUGw2th9Qj6s6CbWoCwjlkVl0eH4/nG+vFgtQStA8j3r5724/yTy5P78+MPn330Rn7vcLH8wv2Xt+v+w+tTiPzC/OiFbvHo+vR7+JGE5mjWvljwp+NGoyy7ruF4ebFu2jSfz+X62mpdzZfbXH46Xt9czlYSZag169nFxa/+R3/+i3/qiz/69o9m3cEnP/O5y5/8KKSYkq1Ws//qN/7ag5deePTvfvi9b33/m4/WD8t52I4lHvBLL9z8d3yWZtGqKJiZkAEzaZVBs8DeGQJEwMnnw3aIMc1ms5yzf6IiU/WjO4tMVQ00CYz2GwkA9oSY3QDEdlDqDpncVSXqCmwXOkh1mSGAx6CwIigKTgYusP+9+5HW/g/0Msqea8qmVfh8yj2VXyFZpJpnzWy1OkSKuUhgY5/zFquqmqtFVKqxCUwERpurD7/6+fu3X4A//PZ37t0+OVwdLA+Pu3nXdIFQp7kX0n7pwySDVAAA5p16dseAQz/NKwBMCdeqpYqqieRxzAbYts3xyUmp9fLy4mY+7mZLIoox1FoIphgjFwjUWnckcXQzicleWSdVmp/RqgoIhtaEJoSQc16v103bdil5ZQk7kwzbcb+YabMezIADjbnknHOpIhWRUkqz2ayKai0xTNNSYuLARFSqGGGVSTpnu/LKzJw2i0YhRJj4UsDTiAcNcByzOtaCAGYithuhPn+kiOpvkIgMTFFgonmCv20/yHBXl6uJqKmpAdZarWqIQVT20KBOshoCD3BWNDBTLbVWEbeJQ9rLhikgKVhlJGM0AUVTy6ojWUFqiDOEAtaiEQkSEJJDpwDWNGncbrqm60fu19erecfj8Ft/4++1GF/9U78ALQsgMJpgKRYZEVjR1HUESB6ICRDMqoWgJLFrf/lX/8zZR4+fvvVhF8JaSy3WABJiAmRAAjbEAlUBBRsjqiYW0AyqqgFJrarOFhJEG3IfEmoZ7730yu3XXgqLtpnPfvLzN+6V0oteb/vVatU26aNnZ+vL04PljIAJ46MPPnr29HxW06YMi1dfeeHzr5984TPdndubrE+2NQtFatV0sZrAFWYec0kpoGGpFckNbCCEKNXNDcDQRASJTAkQicmAiZiQzdDvuXEcxzG71bKahSkta9I00eTZB9NN76mzZhpCBEhmIddaHHKjWsr19RURp5QuLy+IaD7rci6r1fLBg5e+853vlHFkWpmDCk7XAPB0jsVy9W/+9e+uN1fd6ljFVGSz3VY3r1IFUw6hVkkUkFG07oz4ESeTQFfUqlcq6oRLDj6+ImDFumPpOjo5tTfMAQFLqfNZ48Qg23ml+mzL49VDiLVWQqMYAFyhuD8SaX9Q70f5hCxVVIRosmvPUmop5+fnQ983XcOBU5PArEr1WVvJI9He8H1y+sEdAA+AouKZyzUXU1WpHIOagQogIgeKPA7bwLZazl+6f+/OnZvHR7PVsgmcmJgDl4LIzcHhwWWfL6+uP9nNU9udnj2MIQAKokUmEauiSuDaLhWFiU45jRoCA7HTNBCQQNTUnC2qk/vSn7infLoBk9LWSyWznRwPJ5osuNGon4T+EZScP+Yl5iC37rRGOws9gMkZAbzLslqllKIGguSdKiLWWkGt1uog0qQbJVTTccwH81lHYZDcW5kzhT5H5k4trre3mtlY8rZmAelLsdiOqhRAAp5afdhf3wwcm66qFKm3F8enV+ufP/0ozWbLo0M7uzx/dnZ048aD5Ulbhovzh4GRYoSqVq2sh5sHK8xZy9imMGQ5U3l7e33v4MaxhuPZwVX/xEDbQLP5/Nn26lkZH8wPjxara5ZvPXyrPT4+rrO7aa5dczpcMcFmMyK3W8O8Xp90qUshAQ6IV5FQ6u2QKHEVaLB56YVXP/nZL/6//6//rzt3XpzduBVTN5934/VpezD/9h986xe/9r++/1c+80eXf/v/9Lf+G0zzcHm9PjjID+6cEORx3EZqU2QrFYjAr0nNVgwseD/tfi7MNF8sa5XtdhtjAkARDSEWzTtLWWYijJ75jjsKtUsjXeo1mal4X75v4p+DQ9MUWp385fOSyWbBLyNyhTSioROEdqeD7Qg2zysb5z4rGAIYTmnKtgupQUTngVotlaQl7eYLw3nRg8Vy3qYAkA0yYiaz0KYRywCkYnnou8Ro47j5MMHstZcPRz3hdgURNAxZAsNUACIaMMNe1LAr1JiImNxjUEEEERUQyWnC5hxtJgKspkMe3RyrH7fX202fRyNc930za5oYbXLVCC502leE+x27f7ZmNs0DARwlMk+7KCVr9naTmc/PzsauU1UpElIDAIgWQhCxUkZVLLUyB+ZwtT5bb/pSa+DgSE/TNgiATLq350aKoSXyjEmp4nTL6ijLOA7EhMhDyRGcOx8Qix8Ek6n89I3scLEdPLZzzoTJDBNIZVdeAxIxGiIq7L7lPe6IE3OZEDXEAArUdoXDnlLqdw/suahqRFMCiSKoqteXbdvGGCfnNIJoYG6jBIoIqEBGCjaijYitop/HBTTQwMyIjGZkYtWI+EbX9mM+CVyq9OtNpISFf+fv/Sak8NrXv1iDpVlCRKmaS0kUOSCLEZEiGgXwwgAJOMYZVu1nN49/6S/82X/0+H/IxTYJr4ZhwTgLLZOAWMsM1RiCApigCjJEQ6wgilgNskEGBARFIIIGcOi3M4T148cvffbVT33x84vl8mZ4aXV4eHBy8s4HP/j+D3/8G7/xG5/8ypd//N0/+vCDd6HWm6F9+4Mn4aX7L3/is3deefXWp17Xxfyi5m0RUdhuc2q7oooiB6sDVR1zjikCWK0lhIZCmMSfCLkUpmhmJmrVaq3ErCZE0Exqd1IgBePARFiLhMCz2dwMTQE5ADjd3l2CaG+a4F3SlITARAaEaECB1ADMYimFcgbQnIdh1Bji0dFRauKHH354cXEhIscnJzwBjYA7oQ8zI9njJ4+BObRdKUKBpYoUHUs+ODiQKqrgx91YSoxhHEeKAdAQuap4sqihB6whIKq5cqKIKKK5VaIREE2hrURhZ0HJRMEpg27cIKpEwdmYSMFMDTAE96+k3U3sacHqyeciMsl1LZopkplOVZQfueM4VplwEfOsIU8wBVARYnbvIudcq+524i7gGBXQnDBWJXuVJbUUjgGNipTVwTLFtB2ySJ21fPPm0ac++crB8mQ1DzGRKRMFJH73g8eBbx2d3Prg8UWWTMT3X3zx+vqUUFRkEqxNcSpokwW9S2KeC439+xJTEvdkQjM13Ttkskjdm0OGEFQrICqAmiGAIlSpu+hEJHDTu93fZQj+zSJO3FM/vcCBdjB1EuGfiH7aH921ShXxlzOHrp2v1+spICgFMGCMgQ2BhnEQqdthGEDOx80L1K4oXlh/GOe30vyy3zJZyeuI4X43f1rHR2W4GAdWmlFKA4zI5zZ+tz/7HM++fHDnqmw/vDh7kkdedRHrYx3MmhvzJRTaSn5qQ1P1y+nop5vzS6w1ctjIsth8zmk5v77sh77XYsvQlib+6yfvfT4tXg3pKycv/mx7+qOrRzdK82B58gLCz04fLfBgzOXu0c3Hm80p6s2YPqVpvTz+ydPHAknDbBhzx2ZqJ918e3ppKny4eDZsrvv+wepYhuHezbvf+da/+xff+f0ym58XefTBo3HIberu3r53tIzf/84P//7f/edf+fzXv/fORffi6+fbHE5uvVDN7h4d3r6xenqhKoZYibVorVWjBQtoJFCNkJDZbZmIcBhGRGyaplY3VHDSj/mUeoJGmbSUKY4L93cxhYAA6CMqBFSFXLLL403NM/AUgZhqleBcITU18UA/E5vM4MC7/OeGCjiZ2vlineCl3V/8vJXZ//zH4CIzMGJUyFnl4fn6n/7eH/77Hy2PD2Y3TlZdG1bLuFyk1aKdNYTNKrQ3Q8NHS9qunx3fTJtSbx+efOMX29//zjuHx0cSQpWRDbFOZrL+RACx1BpDIJoYwLVUisn2oJeBqIDztt0ohQgQnSZCtRIbAGqVmGKIMZeyWCy6rmPXtVLgyTZmCvrwvoSZfdM+x5k+1uGllEytaZsZzmqpZjaOY9/3ZuCfsjOErIqK+GaESc+Hpdbzy0uPPAspkaFUQYxeuhKRigZEEYkxxRjV9y+oiEsqhIkAaq2VgRCzEwm9swm7tOp9ybizqUXb4TM4GYVBCLz77kTEnPEjKlp1Zz6mZlDr3pJxPxlUVRBDx5n9pNvXQM8XMwAyJjBRR8LASy4zcAuiXewAxUCIOqpYIARjAQLMJgWtgAJYQKwGDBYNsAqBetaMMeZcmjYQQxsb68eWcDNKm9rLfvz7f+Pv/NUmfuIrn5dRIAVhzCZQc6ToEzACBnJKfUAwUUPGtMBytX3ls69/9he//K3f+d0YEqrlqmyZDVg0RTIURARD8uwUZFEwNc21olWCbDaiVTRg2uQxJxvH8o0vfe7X/8pf3pLMF4tuPnt0evro8aNbt24OuVxer+9gvPvig5c/9Ylv/v7vv/3+s5e/9ou/9FdfXpzc/PD0/BS55NoPWXJmCvM2CWiRfh4PZrPO6xGHdvw8EBHRmiI7O6WWMjlBAihA4FBzrSodeC+EtmdsgCcSxFolhDiFjE5kXtw5ObGZebAXPG+4p7uZcOLlIWKMoUmx1tLEmPMook8eP1qtVlJKLWW1XBIT7nUeSDZ5p6uZKUIRiTGJioKFlETq5dXV4cEhGGgVQiJCkYoYkImZAqPWIirB8zgBQgh5rF5U2TTsQOZg5nFDO/GdYQhBqjI7JzeVUiavD/PRIX1shWOt4lqnfXzQfiSEaPu941+1ViJg3osApjidELjruuVyeX5xsed6+n6UKhy56TrX2blWfw/6fgy4ReaAiKWImXBMiAQogWPbdjHw+dV1Srw6mL/6yss3T44abgm1lsLcGfC2Hx4/u7xz9/58fsghkWrfj5947VPf/+PvULDAgU2qiikwRSQsNTsl2Y/+UnKVuqtUxCflCEhAClNYd60V4LkP8O4hqWtJgCilFGNUgKpCxhyYkUyNmJjYwYPpW67qFuGOU4IhM4MakOlO1eUdn2fM784lmY5rAzDbbreqCoC1iFZt22Ycc0qhaRpAGMdh6AdJvKU65nxrtjowCkPubix7y9vL6zvLIwa+lAKzNvZ4uRm3qdfUFHW8iS65vln7I8hNSFvgy6ur48OjNJ/htjx9dnrr6M4LN1544/Sjj558eGdx0hLeny1pWF/mIVKDKT7bXs6Vu7Ytm7EJjXbNpRQDe6Nuj46Wc05d7h8/fbg4uXOynDdK66unb3/w3vHRYQrtC4fdB2dn5+vLT9x5yTZXLzXLut1uh+s4a5NREFpvhnbZNTVf95shV6X43vnZq7dOcl/ffuNRvdMRpaePn0bu7h7f0Kqz2YFKH6j923/rH/3f/i9/o7/Mg8VmcRS2/bi5XHez44NF8+jZNoWl1GxsQAxGHCJQGCSTTomAxAF2bt8AUIobcHkl/zx+YVr6pRAAOXfORciTXXNVq6VMpuz7jbe7bICIDUF2Vg2AACCubfCxaK0gWgNHCNF0ElVO2Mb0fp4jH7CTUexPtl0NpA4SuDIRAICplgIIlcNbj85/+u5DAkRUBGCEJsGiS/Nu1raLtp0tuni8aG8cN21L84NFuyzna3v/vcfna+oWq+Pjo9m8rcPgjtUwnSISQuQQCNHbPm9B95fuhKAqeGIUAxYzE8lSFWBimgCGhpudHW3XNeBOEjvP+L0T9A4qmU6i3YVtZsYU9r8kIhVc/GUhRGZumm6xWKpaKcUnhszU92OdDMFrSvHq6ur6+tpUqwoQhRQRaRxzqeUgLjmEUsYYmQgDh1zVfW+HYaApIdJ9m1AUDIQDq2quOXISURENgYgYUfZ30tRPozdzRsg7D0WAycPDS+1pGSIiEroOY9e0kY84AGBqWE1rFTNU43Ecicg5Ut6q+jrxp+oJkc6Cwgm4RuboPFOX+Ho9BCogBorGqAbByxOFjJJV0KwBJIWI2OLECkA/ZRFTbAGJ22asIonNGLDWqrPY9v31//j/+e9/A/8Xn/rq53PVkKKZlZqZIAZC5jqFmQYBIzCLplKySpg3muWrv/LLP/zJj8qz/iQuECgPOc4ImAtqiKyiYIKmhMB+LouqVCFQJiHclBECjyolcS9VZvyFP/NLy5NVREkxDqVfLLqHT5698uon5ovl0ydP4Ec/ECuv/8KXNTZvn1/88jd+7aqvj8+vr7OFwIkpUGhaNhGQXEtOrDSZZPJsPss5VzACZMS8Q/DUnaw9wt61g2q1mhrurFNcCRwMVLWEwLWWGNuP9/deeRORiIcesFVxXSYiEpJbfgARAUWwyogATKgiqW3y6AN476ZmfT8Ow9B1s5IHDiG1s4AYIht6RIamGM6vLrZ9Tk2zHXtmMhEkjJz6oRcVJkL2aDcEs6KFA5WSY2jVDMAteSTn3DRNiHE3AmNmV2JP8S+qCsSmCGBMXE28KSUKNQ+I6FueOYQQc85mbghktbo1IloZeMoAnq5bbzZERHdmFkgYmxAollL7vienW4nvO2y7Dok4TNa4JhBiChyczEk7LzTXgXt0OiIGDlIFDGKMs9ncdxMhiImozGezUsa+r7N5e+vmwfFR+6lPvpoiS6laKkYtJaeu/ejJmVGD1C0PDqvIfL44P7/8pV/66mKxGreXatakaMUExI0/EH1QOJ2BVQQQiTykyTMrEAFKKbBLjdwZBDCh6cTGmAYOqkiBU9d4wLBLbTziq5baEjOzVKE4lYZSpW0aNRUQJECbDH7dXmz3h08nNzoDyR0lEAxxTxeJMaaECKxqHJOW3DSdW/eJSFWpIBCgJD6Yz1/Ag3dO3//o4snhfBFSSlKP5vPxor8o4+dOXiix/PHm9Mmw5a4jhURhRP2I5DefvfNyPDxoZybpyWbbhXB7cVx4e1b6cKWr2ULz5en6bN7NT+KsKfokD1eNbbkUlOvr7a1ucXzj9sV6cyajisxjPCP7vdOHD1L3oqav3Pv0G+eP3+SzwBGbrmF+NIwHLS003Tm5nWt96+nDA2rvzlYUgmyerRVupMMZpcvriz7Ewxur/uGTVWg1NH3ePrq6/sKD+7cX+L6sH12cNrGpfXn08MnJ4fJNeO/1l+88eOVT25+9d3r+qGRo2u7i8jIoMFmJaJ988MJP3vxJ6mL24sZYjdTAiAIlwuTojstKmYk5+GLeIw0AwOxp1fshiwUOu9bKRDRLUZFaM6Cpis96UkrwJ9l2PqFQgBjNVAksMJnqmEc1MYWqMo3sPWlo9wWT2OxPXP/76gucc4YgkwKcAEBNbNKOIQhH6gBLQeVmlmYdEuo0iqVBYej1yVqh9iJrhU2A0jCoQogAFG7cvn1wcrvkHLab8yLjcta2TfIzq3pHy6pWRc0MBMxAzKSOjo/VWtXUTXQQIJci/nfv8SHVnIsBiNrV9XqbB5PnRWQTY4rJN62rZP3+5imJbBJL7zb/x1lH6EnXToL23CIi8sau1lpy7kXcWGKzKaWIo0RASJwi8XY9DuMgVVNsuq5rura6YTyAkxsCh8ViCaopOTgkJtXrFIdPplKsqmkhjKUURI9gjLVmv712K21nQFWyqHqXZaC1+iCVpy7cufmiFKJI3q0E8DbUnIdYnczoGYW+otCfm32MrbWveEop5WPEKdvxorzSdgsyJraqZSxiWsTMdEaMBhSpFKno+Lku2lirjn69mQVmApRSObBliIRQocHYlzEEHodrBDsOab0df/O//e+D/s8/9dUvVqiQWMBKzTEGREYKbrLgDAsDFFMBiqkpdXt49+Yv/dqvfuvv/dZ6GNvYQBOu8tCGgDElAkQlAE4MZrmOW5QaYDTclizIaNhaKKOQyHzeXlyc/+Kv/PInX/3EOAzUsVqNgeZtA3r0sx/9YDY/+PLXv37db4tVDu1v/fN/cXaVv/B1WffjvFtqzYRsADE1omWEWlCq5MCYx3Gz2RIHAOBADCDqyAwikYN8UgWIDBEEgJgYXU+cmFNsDUjd4dCceOvZmc9ZL7VW5oBkqppSUlVE5zi7d4bL8qhWQa0YEIjQsWRgIq/AyN+e7zIAnM1mqnp5cd0PF03Xzefz0tQmtr4HKYbT8wup1a3WVYRCUIDIDAbDMBysDmopWUukEEIoKobq/B7azaT2yxWAfEril7EZMDuIVYhIVdwgzeOB/WVNk/oex3GczRozzLkgUghcq0PC2DStn+SEwRUGZpJz8Y0AE5bs57zlklVg02/NzG1LAQBR3Gq667oYQq218aEwRWd/MiGB7fNZkRB06kJFfAKoqgoVVJVjbCPXmlUlxsQxjONgpi/evfPqa/e+8Aufunvn9jgOdUAzSRa2wxZ76GYHHK7FaLE8REBifvzkycHh8a1btz98bw1WdzE4mJompNT3m3HMCECBHcSZjkqe2mm/tIgZzMT9QdwBdOKlunsWuCeZVI0pkvf4BlIqIg7D0KTkTktElFLMte6OFAL0AGYiInWm4I4IGwjFC1sAAGCAIgpmKcZhzL5BNpvNcr4UsVk3ExFyj6vOsxxG0SpSTSqqBKKe69OyXWAyRMr6wrzlG7M3nz6sF/V4tlBj2mxuxOVLs0XdXmzHoSfkWQvQiMoW9K2aZ1mWyIezrtTC634xb6+36+3FerlaHs+Xl9v15emzo+XNT5zcOBmGN6+fPrm+zk2gkE7HcgV9bGK7LloqzcOz7fZRzuvGjg8PbnN3Y3nru0/e7RfhTnfUEQ8FPtqs7925e5dn6+36/Xq5RT0u4YD5a+3BVT9soF5pIUSpeLUe29lqyLrNo0Q8L+OziytchTu3XugODy9Pz8vYS5FS9NHpWdviet2XIX76U1+9vLzoy7giC6qIBtH0wQsnbbQhb9TJe0qqULWCggK63SzsIiZcY4z72L8JYwDPidyldCFNQkuVOkkH/fT3/JcQom8OEXHfpx05Y6p/OcRJbGAKJjZNMdSTtHewimunZE8lRnw+1rfnL9sBBWa4m7B6gIbCLjjCExzVVdgqQFXN1IhxMq6jgA2gCWkKhkgz4qJaUTFXiKmdH70wX8wXyy5SbGKnBuM4PsewnnvV7JwBAP1h+1NyT97JgMOmTC4GdB8/9ewPAFXLOedSEBCZgdAt+cwU1JBp52H6XG3nRYa3Vs4slioOAPlU3BsN9/tB3BOKDWCKe6y15uwy8OrTpRADEOVcxnGstRJibNvFbEHEnnAU2Lc5EFE3m3kyDhGaKjNWIe8ppyCqqRgzVS01AxgRpxSY2SzUWvwk9ZvAiwZADBzJHclMcecqNt0NSpOorhackDOYGtOPAWOTh/hkpTiFpuHODt+/qlRz9YdN7Z7tpocOiJP37n7CMrGiqgOMWkCTk3UBNJDFBJpJOdeCyDE2COC7ggM31JipqpgCghFaE9mkLmIwxGG9vnl0+PDs7B//zb9LxJ/+2hfXw4ht6kEKjK1Rg4GAZGrcmTk6CaZo5RT7PP7CV7744R+/+f733kBmUmg4QBUWZEA3g0IDIhM0iGFbSgaw0JiBuak5AILWqm07++Vv/HIIoaAgIZggYB2Hrokv3L750eNnVxdn23GgEL/52//48uz04cOrn/30x1/4ha8O6zEiRuICtQBkqWOttaoBlZybACEkoklzYTANt1UVzGotiFylmhL7FSUTlOiJlWpaqxoSB4ohIKp5jBbsb3HHCD3fbFdY4HNXDmLyy42YnVdmqrhDCIhAd2W0eyvXnVV007b9kNf9tpS62WzGcZy1NTVNqMwSmtTMF7Ncxpjjut9OODciAvZ9f7A68FHILgoeDScnQC969gC5mXvBPPfHd+aZGTC7haztmooSQkIkVbdbxyoVoBOpHpWACK6QADAkcM9y5mCqakiEKcUQEuwlS1VyLvsZVkqNj2hKKXWXRYOEIYSmbVS1SZFjVPBnvsPid7zE/e7z0wl3/arvtaoFAVKThu02MJUyDMP25Mbxr/yZb/zyN75+cjITqVqtZkwx9n25uBpTx3fu36XHdbMZDg4OU2oAoFY11du3bz/66B2CSCZgVFWGcaBSVMVU0VN+pye8P0DMzMytWYHVPP/HbxYuZRCpfpmEyABaakVER4jNfOA1affMpkmaqMIUZ2u1VsZ9NhSpTDxUmG4H0D1ZBFFVpKohmE0LFQE8BaWKMIZaq6iAwWazmc3bcRzz0LezVqQiAQNF4gHt/evTm8d3bt+5c3n6pF9vOAVk1BQWJwdxyO9/8IEs5MXVKkT6+bAuDGPJaBxSsi6cD/1IhECa8+1FF0c9fXIeVu3q6GB7fYUVby7m9184tGfr4ex8dbj85Oxgsdb3NmPfxQ3BZsgLwLvd3FJ6fH0eu7ZpFmPFH1+cX3LfNmG2PLjsL85hs5ovVzEe3Lh5enEOMHQpHq8Orsdytr18ZbV6ZXGyWMbf/uCNa4LF8rBQ2F4Nx8dHQ72mIBs0CHy57gcptMTDw9U8dRfw7IWTWwb16fXTdz56PBzV/kq72CqMdTxrGgpdF4W0SeGVe7dPDpqPTrehmQOEYBGQFFVFQSybpxzjntknInvy6VR5OPeZkXcVhoqN2SEfMRMix1rDzh56wvEmJ9FpwIzMgZDVDJCRkBRUVMVEinOifd2gTUG7sNNT7vcVfEwUtuv7P0Z1/Nj227/SzAAERIOCS0MUya82chKch6yaGI4IzBSQi0A2RORWlQ4OT1548cHYnxNZYEiJgUNR8XkKEsHET9zp/NnP5eD8OlAjRDNwI21ERqzqPZ2nAJqBGRPtJHZiWt3MDsAihxSYEVU1hOiiBtxxfveP2tVzzKwCIruqqBRCDCHqx3RztYqouOZzyP1UORk0TTICqwBApUjORc1SSou2Takxsb4fUFt/oE1swCykcLBcIUBMsdYKzKqEYN4WMzOAQ+7gQ7GSqxTnXc59EAYg00hrB2iZGSJzCOaLQxF2eSpEqIKqCt7A7+Q4AAoTB2LCvRDJbw5ENoMqMgxD3/ellJyze8nb7lCs5naVEQCJiXByZNmz0My0qqAgKWiRqqJsgphNuIiBDQRnNS/AyKxLYQYBQTzVQLVWq0RcpCgpclQTCMFEo9Lc4mg669pSckqxv978nf/2b/wG86tf+qwEHsnWkA8hBRHi4NHl7g5Tq4aYJEvTtLkWivFX/vyv/MP3HlvWZTezvnTcUkZGTDEgWK0yiowia7B10dG0Em1ElIOEkLVmJmP7zNe//PLnXy9RU9M4iVS1qigCHx0cEPI7b7759PTZZrv9+RtvaD9uz54lqCFIpYKJhmGYhlWCrCwaoRpWjpQW3YwnKg1WHw8BCZOr9nBiFu61jU5khSrSoCuuACmIKhLwlOMDAOqZygAYAolWA2IKIsXxIYf9ihbHtnPOjlJIEVAgJjWrnsGNCMQG053tVlrelm22m8CBgx+MWNVIZDsMKiJam9AEUFFJKVapbl2vptfX10eHR4E5enoXKRkggstNDHemZTiNPQgnQtK0F4idQBNCFBEiMxAAi8xgBiCu/gxM4zBKN1O34eDgPYKDOmYGqGZSaokhxR3O6mDwHiTen9i2s+zbof7sCLt3wm3T/v+5+rOfy7IsPwxbw977nHOnb4opMzIrs7Kyhq6q7mqxSZEi2aJIybIpg4ItGRBNGraf/GC9+MmA/wKD8INfDL/QsAFaAyiTNC1bIk0aTTXHHsgeq7uqK6sq58wYvvnee4a991rLD+vcG1G8CARy+OKL+527h7V+6zeICnNERC8YDdTsIE8BALBaBBHxtahHRKOAhmSCNVczmbKmFAGBgB5enP/Vv/pX/tS/+SesTmWcxlKauEJrc7WiMkzCDRInJp5yOT8/S6nJZdJar69v3nzjjd/6TUE+ZP8hqlktGUzBbVQVREXRmFzfSWivkguqlJ+9MiSlZrU6Z+bbu9vd7h7RiCjG2DUtzxpDL2YwhOCq9RiT9/kAfv7MdHs7XkpGBohHahcahmAApKZqVStTJID9NBIGRVUQDmHqp7ZDjq0WYw6r1aptEwAYaIihaDWzGFgMxWRby+U4nIaYlL4c798+ffPrm80H188/ubt5Coum64bWvtJ1SPShDlGElKZaDbldLqQCAg5A+7zXfX03rtanJzfTfSnjxWKVtiPd9xfdJp6dPXt5+XK4f+fk/J3zpw+H3ffH3Q7qOjad4H3t1yeLEzwZp5IoouGnMn4sN290J+80y5/L9ImMX+5vv/H4K4tCU3/1Od1dpM1ji22E+zJqlfPzU728e3+xaqk8t0km6KDt76dmmUKbxnG0sW7zxKtw9fLlftyfbNbrzerq7jo04eTBg/tbnkwL37/zlc23v/HNB8t49cXnASAjKoE+PG2fPt58erXrmo1kd9MBCcXdcRTBTH070OHlBwIeJlzeMsHBbFdqzSW7j7MDsyEwB3ZboMPdPDumlFrMLAQPJWbw68wNf6uqVB+pEqC80s/PhctcLL+m3Dmy6OeLH8kn/MdSzfFNIPQ/7QgwmJIpETKKEqESGtk8gVIGRVDADGGUEsSQAEQIIDAnIJzGQthsNg/GYd+mNldrIkfHtzwnSGROHp4h1vm5gRmaMREAFI85RKzVtdkHji6AqkitMBOBTVVFtUuJmbyfi8yIJiIMAQ6tm3NZvGB9HVR3Lxxn7ZWDw6Fr7v36zznXWqZcSq1gighN2wQOMSVAkKpAlIswczDxuOySy3a73e37ZdswRQLkjswshtCkRtVUxN8/MzOlyuSH4hySa967qjPBh2Ek4rZtmcmF/c4N9CshhKDV0Ug3MHQwYHaCp4PFnK9SnZ8hAoCHydrMggIAzxSs4zjVWvthmKbJj/55mcEc2RWMRLTUepg1mFenIYRDXqlDDFpdqogYDCcwVCZARXp5c/Pee4/e/7lf+OA3fr2/vnmjbU4AInPXdkQMtZrJIiUwQVfVguRakVKgyFKB077WE+osxcubu7/3n/2t/xH9J+/84rex46Gq1kkaZjxsTCNQMK0hJMlTqTW1XT+MD957+o0/9b1/+t/986tdZg1BCyEu2jYihzZRChijEgkyM0XEIU/jNE2qRrZaLVYBT05W/86/+8vQgHpyXTGKwBylFpUCiCfr9WK5fvTg4f12++7bb/3Wb//u58+u3/jKW9t+b4DD2EOWrluVkpGcqoxBibhtU9s0Po6DeZfOfTDBHJBMZmjz+BtNtIo0bQfg9rsK6BlVcHClR9d5OXKMBExhDv44BCRrrTE1MfG495lLRCSHVfymNxU1YPYAOkMjXw+qGmPIUwkx7Xd9yXW5WhatzCHFxsm1JU/D0Lsg3AdAgRgMFICJrdSc8zSN7epkBkdeaTdNxM1h5t0yH7DO/gc7DsIc3hJxyo43g0rEolUVAjMgNG3cbrdjGc9Oz3f7HRGqCoK3AjAXloBoWKrUMiJSKdXpht4vOW/P96mZluLF4mwzNvdjaE7R3Q+9qPDBfdRvBHglN8FjReWULzVBwoiMTFWVKks1BM3TGGNnkv/X/+n/5t//9/7CT3/0I8Ja8pRCowLMsUgR4BCjAYFBCIEwLNp2tVi8uNwDwNXV5ZMnb4QY0LSKgDuHGnBgKR46OzN+HD+bz8bXhgjH282P8ZTScrk4OdkAQK3F5gAQUMM4I9wUOMABsXP+PlsMMRhArcWD3GA+PYzYHywws2PtBDArXeaXe2dLrVVFF6uWQxinvFi0KcY8FUTgEALxOI5qNYTQNG2VaZpGUQkUp1ICg7XpJ8NtM4zfXJ4NWLdlQqAJYXd3/603Hr21bP/o5vNPL18UDmuxrcgY0SioSQJ8tD7bb2+r5JDi5dCT2bsnF+e16/Mep/L+wzdrzh8++yJslqvHJ6t9HmTIpTwQ/HZYLKHeoI1UrZRyV588fsz9eLfrLcQBuWiFMi4CPV00b1PaS7l6+XzkbrVen1Ta3m9jSO8s1t95872rF1e//fGPl8v2zZPTFdvnX35o7UnbLa/vb86aNU81AUFMYOXi8cNhfDn2u5r75XKt0bb7O5h2BLa9uTUZTs9uf+GP/Rv/g//+f3z/k98M/f6GMUZpAua33zz/5394OcnIQKAGIJVrVGQMMznr8DrqANHtmWie6WCgWkvO+cCStsN5HGbKPQEYHhRavpeqtw7MwXkqcymFZIZaay1FfaKA4DqOOouc8VCV/4wE7PX/MkMCh1kOgAG9cg1y2MoD6f1fiQhQlcVQDUlN0YhUAYWNcGbjCHichRBpQmQWJINxt796+fLrX3+fKSkKeIbIzBrWQEREAgdEAcCfoYg4T9xT16WKgXEIdogKEfP5nw8iRBUA0VRKKSqyWa+blMAhIgIzIAj+zfWg/wIAH0LPDkBmOeeuXYzjOIzDbrcbx3EaRzmMHF5rd6xdLKJKAAqRgIAMkUhNK6moorscCSDjfrfb3m3HqaKpT6FMLOfMSNwSIjIhqKIZGSCRGTEzUxA1VUFgbhKVCpa1Sq1Qsgw0IGLXNV73eG+tqkVqiJGZzbTWAmZELFJeQwFfQYB+csXoYU+KpC5UdnaHE72nKXv2KpiFMNtI2sHMQ9SLtwqAFPj4cFxAdPTBOpT1ZmjAxoYKiKLqhOjKE/AXY3n3l3/5a3/8lz77yY93H39oNze73e5mnECEREmlUYNSAgKqtikRB2MSAJJoqjEFNduPZbVcb+93f/M/+y//I/yffvMXv9ukZlLJOFGigIExAbqEIWnVtm2H7R2gxkVLFL/1Z3/p02GfR1ivLhbL03axWp+dt6u23aza5RIDVbXd7f399v6L68t6e2t5DNOEoKcny0WEtx9frB+uMWrbtVXRBLUCRgOnZxqoWNd2pZRV01Itp+vTv/xX/+eLzcV9P6bQhGR53IEURs1Ss5ZqJURqQwoxmBjobIk0s25nutosBvR9UKsiUhNTCIGQkN2A24skDTwn8CC6nR3McANY9VvH7e/QDxGsNRv4KBZFlDkggo9ECQ3EFJA5upYKUdGQCJi4FGEOUuX+/n65WscU0YiJY4iIQEwhMCCkpgnsxyDgwd2HaB7kDcOwXq7mI0tfYS0hBkCqtTrnb27t6GDu6oeVAWNEw1KKE43NTM1KGWOMIaCIoGnbtuuT5TCOaeiRKDVxv88xhhBjLrnW7DMU1QoKprMSwg0a3I9DDlxDl4T69oHXoBF7bTSz7/cqwp7UC6++6igFYSZEAj2gR2gA88ydAzeLFlTy1Jtif3P93V/8hf/xf/iXpmF449Hjadzd7643m03NwbDB2DRdyqUv1cQ0xrgdJl4sHz989OLl8xjCy+cv3nn63SY1eZzcQkBVsyiIkt9iAHRQjx6RcsM5v+B4v4iIqaaUNutNiOzQdUxpsVg4N5GImbmUMhsgEtdaD205OLsDEGJi72jN5feAuRYnYBDQPF6l2RhaZVbdElKuRUQIMaYYQsxTVtGUApN3tpDaduiHcRqWy9ZAcx6naQiJASGESCCD6t6mKyOJ4TSefHH5fFgsHz96cvP86sur6/Z0wYqf7q/PHjx6Eta7abet2WIbiPPYL1toA29zbzFB177UzNcvvrd+8PbDi7sXz69fvlifrFMXP72/fLd9873T8x9dfnp5v30vnX330VuL4e63t1dDgOV6UYrcbPfNYlHycF97Dg1J2pbyid6l5eb9sF5P4w+ubvpFPt+cnFlqsUIpa+BHnHCxeH59t0d+d/Eg3t+9d/bwmdTb/WXXNuMw5F0ZSRfLjlOsqN2ybbuQZRpq36RFybDf7U671cnmXPL4e3/w4d/4m3936u33/umvBg6WmAIhkX31ncep+6BqZugCkqECVrOj5JL4kGrurCucPazENRN4ILQgIjP64nafdeLXcyjtQDqeBwd2kNjYwajBAAxEALUUU8/ucWqRM6rnqTNjQESxmVn22gjsZ1++oGw+INCPaU+B8QGSmzMgmWGFQCSAolgBA4CKDWyI1iBEA7ai7I2hcEBGRYABTQltd/Nyd3vGDVfM1EBFjJyOiiQXr/5r0zonG88+xD7mnZGM+VEDoVQvSg6VU5Vcinp4lrsqH89HgNfRL7+nD9c/TNM0jqOIitTbm7uSS60VEEIITdtyCByiUwX9+lADBSHFQMyBXAkCME/rsvhdEhDk+vp6msZSJBCDsapIRWAcx3G5XLZd50DgzGdlBjBEZZ9REZrx7HaWiAAnqwBYSh7H0UwRrW0bl8TXWr0hhbn5nY9P9wuY2U6z0xodqmIHExHAJykMAKZWRaQqAFVRRGrb1he5iPhR7dp+r+ZmKfbM15w/QGagOaTM5S1OviEgqFI5AyAjAApILllIQ/v5rv/C7P3333/37afR/qyVwqJ5Gmo/Dvf3/d2d5VL7Pvf7fnu/LyVPk2Ed8p4F8z6Xovf7AS5WV/2uhMUg5W/813/3r27at97+CrWRFHPJaBiiuwMAI3FskFGbcdzdoRkl7B6e/rm/9BctLLg5pXbTZ0nd0oMuVO3+7u7qxcvLy5ubq6ub7d1UKiKtl5tN1y4bfvPh5o0nZ8tFywn6vI3hnEMSKCYqAmJWtDQpllz2+72UOu7Gp4/faM7feXkvGtLdULhalxaJSKdsdQIUSYd5pNZhGGyeqquZqkAI5GUKAJCBzOl1lYnaNqnCNGUEbtsmcELmWoUDTtNEzloCd342MDKX0M9xM5BiEHEZptVaKSQDqyLMbKJgwESz1TgHBXQ3cg9TBkAkqCJd195cXipo1zaA2EYmn30UDTFyDDE1KUU9ECVhdkYlUeXAKtr3Q56m4FaxTODG9s7JO/ALjpS+g9pxrinUPDHIAIw5iBQF5cAOgjKTanWx2GKx0P1wc3O1XK6I2Az6fkQcPQ9xrkMImRkNXeCCB7WRnwnePrknkNemABgCz6gOkFg1sxACuke/GqDazEk39PRd87caPSzyyIw0MLeaCIBENk0lxVTKVMr47e98J4Qwal0vF8s2np+f9MO4Wp9eXU27oX/09I2XV1Mei6qlmPK0V9Unjx//7u//LhO/fPGCA6fUDLsCpuBp9+YZxQKo4I5dAA7z6hwoiW6ugTgnmTBzattusYwpGYgBxBCaJg3jfhqnlOLJyZnbEjIFkTl/8Ci1sTn91BUhmQgAHB7zwYSrdsjmGliJDBCcO+tPGwkZyJBnGq3BMAxS68NHD2NIfT9Oebx4cDYMwzjuzW+nWpu2IdUmdJlkKn2H4TnW3x1fvmvNeVhOlc6tSYuTn7z4coMTcyttvsr9Oq0fYGsFbkxqoqmWy/520TVpGfOUDblh3pl+Jvs3dLluT37Uf/7icvfeG28+OD27vLz6JOWTZrHiVCPc0a6F8i7RwvDGALvubj+wlNSGZpgKQ0Hu1AYYn+s+ag2lXJxunuXd8/7uKS++e/aoG8r17d0PysBm33vy9t3N3e9ffvjw0cN/4+ytH7787PvDpa0fXhfbVsoiXakW+W53N7SlawKojlIuL++ZE3PY90Mo0BA/vHj6W3/44W///v+hRQqRO6KoKqjjG2+ePnyw+PJZjnEZSjVWpOS+VK590CN0M7/goCKetyWyOdrjQ3e3GiNEJDAAUXHCFlOoUueRGWMMiZlKrVqFOSBjzVVEjBBMkRBozsE1MDGdiXsISO6b/DMDL59NHOoe7zl8KxuCufuegRGggR4KI5hl8ECAaApIjACECgha/X8bAoCiYUIEBRNQBkZySAMCESe6urlarpfdumEiq4qMYOgnryMKTGTGMAPw6EeDHTLMgJ1xrHqwbfVUVAXNY1UBUS1VaqnOx1JRPPRlFIKZgdvj4tEaoNQKpWQR7fs+54mIYwwxBi86j1CHOhSG8+0DYIRwbKARzMwVHIyMKKq57vrd3d39vt9XsRBCTElFSilTFmYWqSZ8ftZ0TTtTTnGmdCMAB4gcihpIdVNuVSOAGNkMSjGROuasZm5m0rUNEuQ8AEpgUyugc+nohRAxV1ET5ZmphqYHdiGYW8aJQCBEID/hFExVPIisisBcRrqwi1KK5OpVFSKSWojdLmimRvn3bNsO/YdCdAEWATPFCsUUQmBRE7OpTJzi/W7/4ubmvfff3+fJkLANTYopPDhrF2+1TQJkRCsFzaRkMMs5M9VSRlLQsarC3f12rPXZ7bUiKkIu4/NR7Gb3+PFZqmZaGSkyMwciVAhMoRaNaSkxS55GgW61Sdp//uJFewJIcD+qjeP2bhz2+ylPu/39zd31tO0jY4xx0cbNsn3y4OzR6XK5SG2iEHSxaAyNUlRjMGBGcUkwAAKhaZ36/u6mXSwxpGGY9nd9pSiCkYgDqkxjFUEzRSJatEEVaq6ENk67aqNiUw0U0O1t/cJWtcpapQRq1suzRKHmXZ7uNuv45pOvj2MYx+p8UscYzMBD9VQUAJmctA4z+IKORXr+A5rOUB+7vv3glFmrsPNpTMElVzBPokouTUolT3kau64LTMQ8Y6RGvqtLKSmFFEMpBUCJsGkbQKyKUkoMSauoahVJoSHGwOzyIkIUNVVAP0H8bHObRXfbd09XnanizqAlInICSUx1xqsIkfJUkMNqtZymYAZ3d3eBkx99RJGIQiBEKKUAoJqaFDAEJ6cpMjsP3XHlud1lYs+wcrW3ghGxiiAyAiOHqkYEgQkQZ1QYPTfdMNCsU/AmrQB6s2xqplmqUZQ6iRpSE5jbFEeG1XKltfTTeNKd3NzV69vcLFoBqGoqopabRAExy9StWlUJxMM4Bg5n52e3N18gElitmp0XVrUS81G4Q0wA7lZHr8uWA3NMsWmalBrmoCLEYKq11CZ1q6Xc19txyF2XHaWOYbZRCDG4csIPVUfURAocKCQA5i6RAckAQU2cq2gmUuFgvcjsTmPFTDkELYJsgVEBC+KUS4qLEMJ2u4uhJ4JaBVHHYQhEIBWNTEpMASGRlC3Kp8P+6ycXb16c/PDZJ589+7JbLWmZLsf92eZsvTi92d5PWB6tTlbNUm5e3khPiQcVKLgOiQMNfR+XrSR6XscfXj5/SunJ6aP7/f39lM+6hU31brr77tOvJsTfefnxzbD/yunjnzt9wnc3z8u4q5MBjyV3TbfanF5udwoMTQLjL7bbexy+ujp9hHxuzX2/jau4ivykXWcoH3z5yfvvf3XVNsrxC9ACWofhkcZvrh/+sNSM2Jey6loSq2wNxnG3q+Ow3KxO1ydtM93f9/0wLq1pmi7XgRpeLs5fvLzsAQPjEg1Eq07bzeri6+89/uzjD2I4AxkAQowLxcIBDeUgIyTveg/FEIVw9BcGqCZWXVBwYLVbNXVBMMwOemAKXsUwowfQFK2GRpEUJOcJPOGLEZjUTATMZT6zeMowGJKICcwl0M9wnF/3PHzFVQIwg4CoqmyoprNAhEB93G4AYISCGpwg5AP1gBERDVC1AoIhARGQoYiZiLeERgC8Oj1LXUvEIGgZIycpiogc2Ce+TOxmVkeSgYoCGSAqmqgCMjGpCgLMiBEgGeWaATCExqSSIYWoOphaEyIquDErRa4iCi4TxgN5WvyjIaLFol0uO6+8mFPOU60C6AO22QYWXK0AwMSpiWriGRlqFikSh6q66/t9P97v+tub23GcUoqLEBUg1yIK3XKJIaghKBrBarEKRIDCxAZcTQ+OF4jswB4BCDMgmUglxtQEAAVsqlRR3e37XPPp6ely0SJbzaNZIiBFRmSOpOqWAqgOLxqiVPTCCGZTXr8+VLXkGWYmw8ihaAkICjP3cKZHIDKDAfpYH8XA1AzJC3aPmjCpVWvVYRiQvKoM5N4QIg01OXItFcSmkpVMTUlGncqw3dZpihyYuZaiYmMttezu930KiQOpKDOHkMwMuoRgGlcAEE6jqaVHtfb9yfn5brdTM6xl6PuP7/aV+cnZatmlUguhJu4AgxEZxxRbgVCmiZAUokh4cH6hoC+uL/f311f3pUp3+ex+u933/Xafd2kRFqll5JNlfO8rb3z93Sdn6wZ1rHkUk+RkTwpmQZ1HZ1WtKIoCkxlUgTK0IFZKX2zCzsAAhIqGEAxM0KrZWCpyItUgYcpT2Q9h2RSdhrpPulBgqUTIamKKZgTAtfax46CBIZT9QHb/9bfTn/y3vrFefuPv/bfft2LGnFKacuYQENkDcGYlNhMSMydSJWREmqaRiQsaILRNN00jIRKSivrHboag6MbNyMSIZLNLLwIixcDh5fWLxNyGwHOyJ5tiVQmByTBiAFJCSilOmRDUDFVAwUQh50oAJdcpSxMBEAWh1GqoTsGMsUOxWqbi/ocOaokRkLOCZuCCULWWklNKiDhNExuaIjHXWgmBORIHMQuhZQqBCwDFmHyC7P0gIoSAItnIAMAJPGgmmokIzKfPkmLMpYBKSBEQc62AYMwq6MMyDgWAEQMHBhVU98L3qsF9CNkqmJgaeL0qRQJTsTzmQUGzKIwFAEOzqDRYhfvbOxNRKVX19PzRXV9//OGPtJ5Rw3DoOhAzc6MmWaZu3cYuiUgpeRzzkydPfvCD320TitZasgFoFQBWETCa/TJKoZkwgCJSVUMIXdeuFi0HIuJatExTjJEgBA6qUKayaJawtOf7F3nKy9Wy7/spT8vFUq2CzEQi1eoHqpkhuOIVvOIxMQRRVDRS0ZmWTphzVfHD2xAt52IKBtBQ4oDdcjHs9nf7sV1tplxNtoR8tjnr+x5IQwh1Gvb396u2rWVCgmqlU2bkvUzdqitDedb3KTTQtZ/fvFgk6dpmrPX5/e2jswcP12e7se+nPXN43LY67W5qaVIEgXEqT8/OM4W9lapaEH8w3tLm4b+1enwXuu9ffWpg77zzleurq9ur65PF6rTZ3I9japbLGtbcl7x188cJ6XY/rCGenmx2fd/XMlZg7ZTh8+3QpuZR03794XrX75/dvBzjIiB/+71vfnb93DYaI3zjvadfXL78aHf39dM3z2L7oxcfVKyrNnZVWsZS63i77evIEcz61kKdlCmeblatxn4YF2fLrkt5rKers2HIoWmSeY/PWqx+7zvv/cZv/HiqwzI2qqa1OA4MONNpdY6YmZ1RfF5JxxQLMzY6VM8AYGDo8i6/+F11rKLETDEQgarlWhA0xlBLHfo9ICyaFomqk15EDwNTY2QMLFVNTUnxwEOyw+sIDh8qIcdHyM09kebEOZhVpqg2J7D4n2JCJnpNVuYSInRIxMd8ICiiBopmh/bRTEVVU0zL5dKbTiWn9pOaWJXXGAZzLNesSGIPEtd5IDf/pTPt7jjDQ0TiAIAMEAiIOedJpKYYETGmBIDTmBWUMaQYkdhnix4iUasceOsgoqXUaRrmoRuoHrKwRIWYXLqlptWvIERjlKLjOE1V8pS3+30/TsOYxTS1qUkNuBxM6nLVrTcbLbXU0jAtu8ViuWDmakqMVo2PDHQA73Bde+48S6dpiShz5IJiTSllmqahz64bZEohaHWYh4kI52hbFWdzmupUs4giAlMKgZAg50xEcPQoZwYzMgghhBgDB5KKOYcwR4iUUkopbuRwRBbd4I2R1JiVD0KRKiJkUGVS0fWqgUA1T45cIiOqARkikBiIgoqXTuM4LhYLJIohHrgCVl3MxvMvdzNDIu8eqqgTFCBGCDF2i6EfFCgtljrg9d19IgvhNJkRGUsFBIotc4xEmBpOjUjtYjeOUwny6PFjCPzJJ18OL188v9wDN6bWtbro2px3NuUnb731C9/91ttvnLNlKT2DEgKHxCGiU4lnQqvOEbVuMQWEwWqRwPF2P+4HwbQxxKN/2CwsAgRiIqqqOedaKgAhtIEXOlmdTEBACIgiuSN6EFOC2AaiOuX+5vHZ4tvfevrz33vwlXce/OiPrqoMFJdA0TAQVDQ0tCoVDGP0gBSUWkIADgQItVYwQiSRzBzM6gyioKlJFYkxitTURl88hKagVZSRmUhVY4q73Tbnsl6v27YhIlUYc0UwDgHcr84K8ywmDyHkQnnMVRUDmUBR8bOy74eT9RrAVBRnibuLhdwFFIiBHG3X2S9N6pzQyBzpYPV+PJyPJyERITGBVZGiykgyn5Oa8xRTnJtDdJNVNGNvzMz9URx4YsIUDv2bEiIBlJLdPIqR1alDhyhijgEZDcQQxVTUGN3u2H+hShVRQPIILQAtoqWOteQKqmJWy/rsokzT46dv/8L3vvfBBx88ffMRGG3WF89fDn/77/433/3en+n3LSCqMGFnVlkTU2LmUnSxWHVdt73fSbX9fjw7vRBRU6pVANCq4CEaG6yaERKCopipCBPEyDF2Xde1bQLHBg+WdSFwCCHGuN8P2+327OxssVy17X3fD03bbDably9fSJWTzZmI+OhcVUOIHiTl9Gc38UScJYQODThHstaqIFVVTIAwppRznkphIkAUUFAmDM2iWxiGGEVsHMc2tbXWlOKYB3fLA1WrxoYZTSLGUhgptA0Yagy/P15f7cYnzXJ9cno3bK2DzWpzt93f6Hi+XK9Leba/DevFxaJDAMnb2yJh0SQ1rPXB6Wm5fAmlWmQ6WVxbvdrvbBwvwiLn3Cy7zX7xw08/frpsvnP69Pn29o+ef36yPruPdoHdZc4TFGiahKFu98vmxELa7veEjJGN4CpnlPLO6u13aDnh8geff/Qh7X/x6deXi8XHu6sff/nFL7z7XgvcGF3W8Z7rmPcPQ3Mr/c7qNxbnebu9bHQyCSkg6v31HSt256e76e780eMmdfd3N1c3L+EqR24xNEYUkCoCmqGJgU1fe+vijUfrTz7p22ZpolpGJKxViWf5tO+uuVw4TNOPZUc8XLE5S63FVBW9DcMY06x+B+ZA1dRrXgBgplpq3/cmGmNsuxbVxmnCwK/RWQzgZ8lpc0ITms1spOO2P/7zcaLjA7GjM/1MnXHLc9O5ggIDRQCyOSHRLa2dhK8HfdtM1DE015zPjCKzJgYRKTmze6Ajqlpgp57M8isRqbUwRyJ2pU8ttUoFmpWujpr6JAZmojSYWSm5VpumLKYVtN/vzez09DTGWEoOzMwRCVNMaKRmUgoiuu8zIjVNcLeegylinHLxWlB1Nl4kJkA49iduPmSmudRc8jBM+36YSgFEM2AOXUdRpOQqpUopBLZcLlarFSEMQ1/LFFaL9XrNxFVFnNZlx8GkvbZwDhx2ACYnJFYgiABtwykxM/b90Pd9SqlrF4xNGWtaNkjolYrXuK9z4RFBVaVOOYP7DBCRyWz/H1PyAkhEoiozx8DErT9w50sBQJEKMjPr56raJ/YAiEbEzAcqm1kVUbFhGGMTgRQA2FjIDJwzASEEgTpNw93tre+I2efpYAkBAKrqxlE+ncSD5t99sQIREiEQAUjXBWYwy5nMTMqklV9eb1XkyaOzkGgsOSaGObPayjSJIac2cGgayFZlmjarzc99bfH45OInH3760RfP0KqYlGHcNPGr773zne98+9GD83F/SwGalKRMsekQCSmYonPoQgxmYoKoqKIMFNnnkgbMU52AA6VoMAc/HbksKSUDGMexlhJCCDGoYOBFCkuwaKI+1anTEJroIVgn61U/TDpsYxy/8Y2Hf+IXv/6Nry4pbiXfbrdTlUl5IQAE4ve5mDijxUkTKSUmApWiAgdNEgcKGADA7b8dZaEURcgZYFWx1JJS8pwcDvE4cK+1TlNm5qZpmINLoM11VYgll1pLLnnRNLVWkeJnICKVKlMt5KFyzGq43W4fXZyzGzMSzhHl8/ECSBgoIKIrKsDcjQgISQ9tp6/Do93XsQlEnO3hdRa/OcEcmbDUKhUBzEmIZiZVDhSlg3zr0F4ikdTKh39G56cH9gPYtXHuIgamTFpVcxH3O5k5B8f3Y3NddfBuV0DUmpkxItexdE138ujxslshCJj8o3/yj++230X+ha9/9Ru7Af7aX/s/CTZ/8k9f7PcjABIlADKhkiEwl1wEMHAbQwu6Z4ovX7w8P3vAlLwgBGCDV0FALqlDQGYOiMTUtd1qtXI0q+Ti5/9BROzzhzmqom3b/X7fNM3Dhw9eXL64v78/Pz9Pqbm/v5diq82qa7sYgqjGGJ0s7zPEQ1wmzF5XAD4LNgAtVawqiKq5LsxJaQfTJsy13m+3BmoK3sKNtTJTqUW1hshMPPYuWISGY4FcQIA4xYgRpnHaax0XMNaBCy85IoWx6GbRPEzpR7fPge1xSl1oroZ+1fJ524YiH8mYq3RNs+u3IPk0NKNhjiCMz7d3Pzb97umjb8XT33/2k48+/eTNdvPme+/cDMPdsK9ad3X6cvdidXr2pmxYtl9M+xw4NV0wvf/ycnN62m1O7vpdAQHV1MWM9kcvX6alnlR9fHqxhXp1e9Pv+kfr84vlyYvLqzvm0/VmvTn7o5ef7wm6xckbyF/u799dr8dabnfPl09PKIWSx6DR0E66RdN2V/u7TcdPv/rWR9ubcZgKyv3N9VgliGTiYIABiWU8W8nPfePNn3z0w4qMwVWyoKCq7unkEA4e765/rdRQreqGuaXYITYckN3Nxa8fU1MxIA+5mg3sTQwNQoyAMI6jJxHWWuHQtHttYLPV/SuTmyNGAq9BPjT7xKDb3gCA+MH36j3D3MEfxCAAwF4EmOJBs4CHLeI6Mu+IlBR1tgc8/o1+wgbmY+JOpAAH5IAOLnx0cOK3mZcEAMCBHSAFBMA5xeJgGjnLEzyaRucMB8mlcAiPHj3abE4O2xP9CEvxKA1Qr8/0kLnjeJXbUnovCeDUHzucUxY4EFEpZRiGUupY+lqr1dmcrWkaJCrVUaQqRUTFRNFsuVysTjdItNvdEyNVCjFsTjZTzl4EqCodhDU4UxoUDpkGWg/lCwH7V0RGSgjMHGqV/X6c+tyE1gzzpKlRrfOw1QmzIURXciGAW8e7ewKYu5PPH5aI2MGdEiYjgBAjBwYGJmamlNj5VTaZmkk1VVAf2RLC8R4C87xohJhLRjA12fX3HSzalPxxBTeCBFAABggxiMjLly8CUz0I9R3qO/YSeLBKO+6pGCM4lePgxw/ITZN8CyLiOI4cErdh2N1/eXmLhG88OU9NlGFMCWO0qlBqVaSmW6CgG1iVMi1SWi3i8jGdr5sH582XV1dTLiebt997652Hjx+Iar97mQJ3bQMGAA2H4GeAGDASutGi2+JWMZEYQySuuVSxIZdRhNJycqrUa80JAEx56oeRmJum8amNiBBySmm9WSwXcaYhdw1ALbnEaJBvIwzLtv6ZP/O1P/adr64aono/9VtaPyhDrkAQQCy7pR9BTIHn6DhgREQGAgIDnc273RG+mtSUEhIihFrrOA7uazCWKTVJRDgFo1kAGyP7Bgwh7Ha7ELhp1r6oPJxsnq4ihTaKSNctll1nZkUIEFNqPQVvHKdSy2hTYKaIZcpDzqGJgoKKYFBriRSdkPTKIA8ghlBEzOfjhHMhYnPU4uvVjytqmdmpC4EZDzNi996SqmFmCoCKu+1zUVXQSK8O+QPST2YGgUA1EEstBkKIBlzFtRFYq7RNiwiqUmtJsTFEBWLyAK15WmdVORIFVAFVRVBk5BhExKqen5wsF6u2XdQspRaO+Nu//XvPXzx/fnn5xbfvfvM3vv/xJ9df+9Z3cqYYU9/fmT0AQ6s6jGWzCqojCrfN6mR9dvnsMga6u9+++eZ7MTZj3kkRm4kMigGPXQcRhUjL5XKxWAROZk6HAvdLI0IzcwEvH2IPPL1gu92Ow7jeLM/Oz+/vb0spDx88AqPbu7uqUpf1YMcPqmBqTqkUVYeoiYyQVOdUTER0zzs6eOlN0zRNUwgcQjeOUwjWpISItSoAEELXNF1q27bd9dsp127R5bHf3t+DWNs2DdE4liJaowpqKlTF9gFyE2+w/HTav9dsLk4utsP+ut8ul8uTxWJ7f9cu1iuKw7R7ybtvdRdfWz5M4/VHkgfORUtT6bzdqMi9TliAEa47vGdNuz5h6Ic+nT96yKGf6j++/PB0fXKyOnkx3Q399h1dfmVxFmPzSdkXyWKQkPP9bnGy5kTbcfegW22UFkAfwv6T+0///MXb30yPzrfbH18+uyH+zjvvYos/uL353Maz1eOTm6kSfJnqiU0P1qed2Tjcr1bN0zHtublaQytpyrmSUc5LoM/G++UYlpvNVx49+qObD7ZjDu3iwfkqeKagAQTg1kRs+M43nv7DX/2jvtSIicgQgJkMyGYS3Axm8CEj8LWRE5Qy6Ww+ijHGwAGY7aCfh+PX0SyLF5Oc8zhOzIgAxa80msXbVgVeKSDmA4aI3J1VVQ1VjybO8Eon5ZsXafZbnfUk8Goi5obU3r4weMCyOHLzKlbjqBGbC6b5QiIkZLfxcbMWICL1bjKyS5xMRZSYUVWOxRmAub7VMaSjsRsQqHnpOCu9j9vs9SJPVQkJCMpUTNW9BpbLhYkQum+TiNRJpza1TOyK+tQkQiq1ICCYyzDQEEOMQATApkaETKQiwzD0w1BKHodhtjENTBgoETG7Cffs6a0itZoKEhKGzbpbdB0Q9sO+5hwIUxPOzy+YaRwHNQUEZiKj6NpAwhCDznj/fLy7PpQMKBASRo5JZl5WenCRwna37UOIFxcX11O+vLperppu0cWQSsk5Swg0a7hmHSIzupHYwUX3Z39HRDGpqtWUConVGGPbtv5n5w5snhLO5b4CmHmetIjKvKRxLrVFtJRScmbEwOQTtIAhMGutuZY2JWZ+8eJFqXXWBxAfd5Bjq35j2WshG276hwffFL/h3M7amWQ5l1qkKCimaRo+e/YypPjk8QMCqEVCiCEEhFaNmRkQdcpQSxPbyAGhYlDi+vTRyem6Saldb86AgtYcGdq2NUIVQGaKUYzcvQSREQgQFKSUqeRsUsHcS9oNA7DPUilaCLUqmiHMNf3hEIAYYwyhesRKrSFSk2DR6lfe3MRgpmLFiAkMdttxyvcE/I333vzTf/rbX32nibaHYQwmoCsqp/vdZNAgR7MMJjMFDqiWjIgpNcysRZDMTW2c6lFLUZlRChHBw4GWay0y+9yICDHDnNNHevCactHAarUhmqsfxOB6kZgimDGxGyq6sZA7AXvxZAECx1Iyzk0Qmto0jScna8RQa6VZ4uGQzcEPG0BU8bDCFcF0llUGokMnOZf4TtM8LiEicm4ZwrzjZqEtHI3GnJ/g8i18TXT2yriVmQnRcK7JCBmR3bHWDAJHRCxTUbAQgqGpihIyzbCvqSEjguufEACYZ/zJwOEuCRxONyeB49CPMURTkwrrzdlPPvrs9n745MPL3VZCWo6TiWG1Mk77aRoDgUjtd/3Z6VmIVU1SDA8fnv/4j0QV7m5umGizXH6xvWLyuHVQBQaotahqjGm5XJ6dnXlmhUgFxBiimYmKQ0GHywtjTH4Jun+7aySub267rnlw8VBVEXC1WEqVUvL2/j7GlFJKKYYITIRGDq/PMweF2fgS/XdAIkYmRjATgVwGAzOgUotr6/phAIBF17Vtl3Md+z6kVIRLLVXqze0NoRJbCCTjpIGXHMCkmPU1d8JNSIKSs2hMO9WtycOQVh29uH5RQR+s1sHssuzfjuuvNqvnZVp19MbpyRdX+093dwyha1usdCdTTswTtBBi2zwvw++PX363OfvWW+9/9vzzn15fhuViqLVnnGr/4PTigpb73f4O8cmiezdszPTTaXcbrGlarrbfXl08OHt8spLb3ZLSfrevhM1i/cHtdXtOrQwPLs77MX+yvWoJ39hcrIJ+8OnHLUVatEsdp5qnccKx3uzulw/On5yc/Gjo+0REBKYRaNjvsWFqLOr0dtderzfPuuU6tcJhP+bATAqm1RSIzKDu335yen6xurpUQEYjhUrMHhzovekx+/rAL54pOKq+eiAEZgpEJPJKfQ6HmTQFCsQiUkspWkopBiKCMcYAgAhd06jp0A8u5XWwxHkj7v91rAlmgwWEEAKSk/ZmeplvOkeXdHYspYOx7yzHFp1D/I7yeCKyehCKgR7J1I7gHN4MzlchsJ8F/tOlFEW0ltI0McVwAKuwlHLI4TIAOGaj4hzoY1pUQQ+XqO+u2Zf9tWLMAIADi2nOOca43+/u7+7z42wiaOr0HUAgNzWuM4iqYlXLEYjyn4i0ArEA5FzyNErNpdSSs9RZ2URoTRObpqkC7s9hAFJqrgUAA7NqLrWYatMu2rZZtU2Mcbff5zwtumQiYHB2sun7PpcimkU0pRSQPeMUAyKZ6mysQESEJFYBnYJTVSQEBUDkkJoEhuEiqdkw9iE+Wm1WPNByvbA5jS742GoG5BAIyMyYUMGMkADcwNCX6xFcsRh9AogA0RVqjt+5HpgIxPU1s5OUas21OFfgWNOrKQeGA0KgotM0QkoY2JUyhx0izp+4ubnZ7XZd6z5G8NrxCniYWh4LtWO/YT/7AkCioFpEFACLaM0CqgJ8vb3XTz4FxCePHsGceW4hJsQAoBmMF10QlWEStKJFalFQ07JJse1aQiqAKZBvPqJAHCqgAVEIihUBAEjNSCuHYCZV/C5nrbUY1FJK1WxgIQogMpN56N5sHKyOfYlMBwul1DSEADag3T+6oMiFAbV4EDvQk01M6a0nT99//931ivL4Mpd+zSH3lcOJluXtbanKBCxAjIqEaFBqRp69dkyVDzNov/5dM8WH5Dit6tJBMCOmcRybpjkMo8WXU4wx5+zOFZeXlzE0TWqHoUfEEKN7RxBTjCHnjIi1ygGQRjIqxf2okogIyHKxZOIpZymFiPf73gdeqhpCiCExIngW1SGqyqckiHhMz6EUA/EBscZjX+pVsrt/gfu/E9VaVNDLGD+wRapj5KqeEGwIwEdC56EBOyLuNlMDFVUB0IpSYkAyNTCIIdWaZ8m2FvXiBtWhbZodtJEOJAokZMBaTVXHcUoxrtdrrTBNU2TOuYSQxmnKUqdMf+yP/5n3v/LuP/wH/yyk5vZ2u+97kZzLWHNNTVTVPGbTEoIMw1jzuGybEIADXr58Pvb7zXrxyadjaJOKBmYxmaYcI6/Xq83mdLFY+O02H02AbpqAinwgboaQvO8hYh8Zzt4iMIHYNE4IGGM00Cal9WpVch7HseScQkBzHRyp2HwKz9a7c5PtkQceQWVmU8loaIaiElJiDlPOMcambXUYQoyGQMzrrrm5vWEpyKAmhsZMjiASEqg0HJsYadjfqWUyNtyErvR9IInNUhu53I/NzfVFu1yvVvvhTiEsmO9NWMs7p48u8nh/efXZiTVoT5vlFzaCwlDLpQ5PHj1eXwGITiKj4edaz1p+kO1sdfGj+0/ldli2y4dnF5fD9tP7y3fas8ebxTMZL+9vLtLqjdhu67ilkkkDU7QI43gSEqTu6uWNcjiJy5jtxsq/+Pwn333y5ndXD4ft/rdefPRwtfnm+QX2+x+P48fL6QGfPLLFfcLr27uz1J02J/vb+7NHj2zc5z4r4slyUYceN1FDffONi7/y5/97f+6dn//f/7X/cyzIXXx2dTNWCVUUkJiiCZBR7YfT9cU7T89fPB+UWzYCI8FX4MrxOIaD257b4LozEIfgJlcq5uENYIEOxCFw8gSC50rlkv1KiBTCTMRAM/PxWYjRCOpYCJAMvPNlJoAKamgmtSJL4Bmgfr1L9k6aDq7H3uL4kTc3YabuM+2GXlXdf5lEhNzq5iCJ5tme/NUTMAUkN68yBBBRAgDRg9IED4CmWxz5lTbbB4iI14F48GxEQM+CPkIXqjaOGQDmgQ6ieh6MogHkKTPxNO30wGhBBCJ2yYOiahnoYAesqgAYY3h1MprWIlXrlGupVbUcC9Mmpa5tncJVa+UZ5yMkExNQQ0IwMjQ1q3kEkW6xats2xhAi9/v9br9v2hRTmAZZLlpELDmXMjpFptS6aNpcMhHFyFXqbB7vh7EJAsUYEEksZZtKFj+OnGBLBOdnZ+M0vrx6uVwskcA8GEQ1za2buKdRIoYjMHm4LUKMx979mAvr60TdwgeNkJhDrbVWybUcLpW5dvdsWjgMrURnSQvCPN9ERBEzqwZo2aIFJfYoK2Y2CVIlxdj3PQAYsB488Y7+n//a74f14LZbM8nJDoiUSGWmGCNHjiUQhnEwTE2wxe1u/+OPPk1Ne77ZmEIIgSg48lclu77FQ2VEaZ9LnaZIKSKn0HLqEDCwt/AKwoKsRMQBAgOQiJAZMYrUADQOvRkxEag1HKvIME7GzSiTNrECmCEReVUKThoXyblUs65tSqlmFohMZRru1wt8fBHbBIsYA3LbxeWyWa27tmvb2KLu6n6KGEHaLJkCVRQ16MdsyKCNGSJVglBq5RREK5grHNSOqIaaqpvOzw54pRQOs3OdAUiVmF7FYBkCIaHoaztUnz9//saTp9M0xhiIAiIBqCgg4tgPMQT/2+Bgi+/0J9FqRoFDihEM1stVoGGvakFEdL/brjebFKNKdXnq4aP2Y8fUjNGIuaqAAQcmT0hVbdrWW1M/E3xbuWwlxigi4zgSI+As9Sem1ER0eZYBoBx+3KBi6rl4BrWKVDdpw1oqgIUQAIxght4RGIEIBZBVTMSapgG1WpUblloBadF105QBlZlVBQxKLU1MKvPsJ09FDVNsAietqrUyRUacchFFA150p0jLzenjYbJliNvd9OLFy8ePH5pQ309tuyi59AOpWtfGmpWoPnl0xiSmNUv98MMPlutFCMQBQ2ymaUoxdevVarVaLpcHYoaaWowRwaNkoUpFQIWZBooIR9vr43733g3A9y+UIszMHJqmM7MgombjNBlAsiYmJEZikvraPATR8UKc/ZaMiMhA1GopIpI4SK0ppbZtAWCz2TDTvu+lSp4mM4sc8jT6acCBZBpznhCoC7GU0nKICiYVYppEt/v92WrNddoPNQfrGZ8Nfdd2m5BKxZty95VHbzymtN3v7mxqcsmSv9T9t5ePTiw+6+9vzLBZtMAw1EW7utrf90WWnDDh929falMWRNQuxmnYlbxEvGhXd/2uL1O3Pjndl1sYP8u3j7rzp7DicXctaoTnoamSP715tmlWi7NN3ksKza7sjbFr0st+9yk3zZS/c/LoUsbfuvuCs3Sb9X3t7++GJw+eLIvs8r4GfXr25Paz3O/HZrGIOABBybVdLttlO9b90/Ozf/cv/Ns/98bX1//Hv37z2XNebZm4Qw5qFogCRgQAUavWoH7n/Tf/5b/6bcAOFd0Rxz8rvwyOKgN/HfkKZoY0M13A3LSQjhQbB05cYSjVByjKiCHGJrkpxas+eO6vxZg8rcmlp3BsbmbCDADMHqRHVNEhAfby3GYeEsEcEgmvDZWO3fTseWWmXmgd/5+jPscf/PgYzH0vYAYzETAwrdfreSwIePzmBxT6mF+IRDj72c50Rp1phDMr9pVJ/Pwk5ycazFTltaEYogdZmFQmAjSDAKgW0WSOOVPVWmup2aslnHctglmT4qLrUhsJsZTiD1Fm9EsQFQBzqYhqAAqzf6k/h1orAiwWXbtoY0wpxVrK/X7nZBp3ITo/P2dmmSdc/ii012E+l41FPQEXghNI1VSKiAe+EnNMTYOIPnd1sWFMwSAN49CP+1IKZ59mkBzish1NCodH7UI7U6tzEotHq86u9scFg4jzVCHMVoqz+0udq+dai2PjaqqevDsvDzIDRKq1yOzcTTjzsaBWZUaf/bv80I2U/GAlopwzEx2TNI4dPM6BbuEIDtlhZnccTBxruMCRAzeh2feTU7tCWnAM+2H/wU8/ev+ddy7OzkoRFW3ahogTkSJAogiAomU/1UlNmJiMI4bFNGnqFuPYI2PTLoyjIgGimOZcA1NIUWsukslsHIdSSmoXZgQmzCyqxDwaCiXkxkHYcMC6vP2YjXSJDnRY9IfcEXZNvDhbbNq6bOMyLlITMAqxgO3r0DMCI5QpN6kdhiE1MTSb3//hZ5d397E7rwBgnsyFBlxKAbAQ+Bi0PBeaoj7NdwdLt4SuInP0GDqG+OqZ+zpSAFITBQ708sULVcul5FIaSlJL23TElOtYSwkz004RsW26GKOIElLEECAgIhMTYJU5IVy1HcFqHUutNqfAou8Ini1D0WAuN/SQp+Xvq+QMBnzopvzly8lXuIeV4qEjCuEVY8EVeXNNqPMsLISIHiF8wOwBoJTqPBj/m9m1tKIADIZgaoqGrp8lEe0WiypFVAMhhVDGCcBijFMujESEgUIVdUApT1POZbVed82i5ApqHGMuGYBqLQZRhS7OH7x4fpO/yUQdc3e3u/n0sy8ePXyMFrd3+eHFZrFYTP3E2ILRy5efX11evXjxLEXb971q+Ve/9WtT3r319pvj2Fepp2engeNq2b1GlJwR6FIqAtWqRAYGVcRsNjMksuMReiCEuYVS8AN6tpKHuTBC5KZpQgjDMPgwlIXUjwfGiBEQ1bUh5qMNm68hmMMMci6+AEW064Ko9vv92dl53+8NLNeCCE3TqioxdW0rWsYy9rv7KrWLCRCmWtoam0UTs04lh9Sq0QTWUhzGzMSjaeri82nfhO4iLXrNC45vpvVP8vjZy2fvdmcPnjz6ctzuxn1H+Ca3WaqEBGZ3N3c1LpfdimOpWjNoRvydmxdnTfvg7HQdmv7u9mbaPr64eOfiyRcvn3+6/+LR5jS1aTvst6XvBH++O/1ot7sDK3nAAFFhGPqzx19ZLfCzT7/EjtOi1YDPxul2/9EvPn7raTibxrs/fP7R8mTdpvZBOt2P+Yvrl2fnD89OzuR2V4a82qyfD/tMFRojotil5YPT2+fP3ni4WWN49uOfLC731/d3vEipaxbN8otnzwMYmqhAVSAAIIxlGH7u3SenG9judiALM+BAOjOF4Li1jmyVw1zJVLWWzMwzRwbITN1k2u3FVaVKLaVIVUaKIRBzDAEPumgxdVMfQxBTFOXUElPJYqbEzqNmYTusWi+BjA5BYHDgfxz/y3yFAFRQF0LzYRHP8s/ZSsiVT0g8e736DQdwZB3pzIqelZvuNGzmeleGVbdwv8QQ5uEgEYuombhRuqqpVrNjUeVDX6yHxE1VO5Dj6IgEeKnkXnC11CMcjQCpSUeOCnMgRmRDZW9Vm6ZxQskBPDCd54eIiDln5zGVUqSKo+ulVDyA3vMTmAsJBUMCZrYyd5O8XC5D0yBAztP1zV3btKvlMpcpl/Lo4cOzs7OGYyBIMQpoP4z9MOaaj1KUUsQU1TBGwKkMw3B/d98PvYgCBg4hBI4pdF27Wi1DCKUWNS2lDNMgICHEaZo48DItkTBwCDHMIkFUOgZhElKIVKqo4Kz3teMCnnEjACeEBQ6IqCqllNneE3zw+ppFgQMjqmjkY0o/7NCc0OQyHOdcqxmY4mHqT2AQOZUsY55W61UpJfArG/7DWYyvl/J6kIn5v3rHaWa1VnGKBXEKTaYSmLu23e1zVUux1WT3u+nDT75AQDo7aQKHwKTzFoJAFJIMo6omikQcYgoxFsC2aYb73T6Pi9ONEXtPYO4raABkqn5BAjL2251pYWYpTmDAWsUQ91OuhmRkYihSSvHBosuAmTmG6O4YvthcQ2fAhOFkvTpdSYsSgJrEGEBsUjE2ImAAxTBtxyHEVaHVD358/fd/5fdh+ZAbqlKDSwEMmAOCeYGMhDOV0JzPy24rrypIpKAhxDKOR01D5KCqFTzm1emGBsiGRGBV7fZuu1itQ4pDHgWsbRoBQcCQUihgzvenAAY41xZKQIjsWRygxhRsBvY4xjhNg5n2fb9er1KI3mURIZioATETAxEJmLsRghmhIRiYMIfA0Uelx9LHV0utNaXk65wctZ7PLFfBOTZmhITMqupCN2M7dhTHkLv5Meo819dSVIUI1AjmAszMpE2NmhBClbpar8ZxQNUiGZBQgQECsykgYCmZyPKUh2FMqemaFgxr0RAImaSYajGDIvX84kEbF1fPb2rmRXcyjrlW+ejDj77zcz9vGvfb8uDEAof9dv9/+ev/t59+9MHd7V0pYgYpxRgAONzd3VYpIUYDWywW6/VJzqXvByJkJkJ3GhT0Wd7cwKC7Nh9EpogIzPy6eaw/cy+DZkK9IcDcX61Wq/2+N5s2m81+vx/HMQQ2oAOsaACGxCBKQIZVRQkJ0UotuZSc61Rz23Qu/MtVUuS2W7bdYrfvm6ZxWd+ia/vdztgCBVBD0f1uD2BIblwOfRkXi9UCm2kcsKFKdDntzpp1SqmWiQgHrLXmN5v27dMn/TTePL8M3cIDW/h0GUKA65efsD5en/7i4q14f/PBvp+Ii8lQpodNl9r0k+l2HMbT0O47yCahlDcgPl6ffSm76zKaWde0U5nudGxTs8nx/u7m7SdfeUsXbz4++82rTz7mkpTWo9mqff7ixWqxXqwalzyNBvuAbUof5X5h7f12/3h1/mnZQ6nvnz8JabG7uXxxf/XW8uLs7MFnL5+dnK05JS25Qu2Wi37Mw+3NL733tdNAV5+//K//xn9F93lXy5YMxz6KUhODgakUMBGMSJCgsXF8vFm8/87Jr//2y0VaA6KB+Bo4Xo1wGB8cXG3mhiFSRCQ/OuygTvfNpmqlltkQiDlwSIF9zfm963+Bgke0GDkfjFlFD6yjAD8Dz2gVIQN8jbhMREdk+3WcR9W7d6C55gEAcPsHVzgyItFrb/sw+PAb6GDfMJc883s9tAPeGLlTAJgCoIoyzUEIAHOEmTtbed/phEpx3rKIk2GJCFFeveFZcv/qatQZSpEqAkRNamIMikCzntTU9DhxdKjGpe/22mtmRIUABrUUM8UDbdtpfWpWq7p92aECQ1EtWl3Gr6aLbtG2LXPY97u7+23XrdbrtUhBosVysVyu0LBtGmGyxgyAOHCI/X4nHiehAihOpixFAlNVM6IQYwhgGKpIP/R1Owd0p6aZ62xEResWi6YFrJpi6NrO3SPnz+SwOGY3k2rVsi+F+Vx3rG9GeioypRiZPBYbSik511pFVUst3nAjubp55mYhzujmgd4ORH7zekaVzWkkBofJJxEhVfAFPQzj/Xb78NGjI8H/8NH/TKDvEfLxZayHcgHAiZzEnqVG6B+0qiBorgkCqwlIUtWr27uGKDGen2zG3T6kFFPiwIZWJe/7+zqNKcSAITQRifI0THl68cVnq0cPQ2I1qSqASBYI0XOMpykzagpRSpYyNokRTETbmKppn4dqYTdNBVpWJEAACsRV1ZOYZuiMUPQVbmGqSAQYEWKTumVbghYQkFpRRcmQgJBRWVUoqVkKizf/+W/8+Ff+8R9w+3SzfDjKSBCISdUppcBzzMyBdfdaWem8YVWDWg3nzxXJo1kYkcwOHmOuG1A1ICJjxsvLa0TcrNdt247jOMqQYvQymokqolueBgpMDAgmSoQcyACKVJWqSkDg5DQKHAKXMo3TNE7jOOZm01itUq2JUaT4ueK1mOuF7IDY8HxgHWoaAGYuxfX20QVEXj3HGIGwlGJq5IUPojldRNW9rtSAD8i1c6GOcKO/ELCCglRSMlVnZrMxERsiAZZcixVEayIDyqefffTw9EKsRg6AJLWAmdQC4B2a1Sz9fkDA1WphJn2fCZEo5qyGSgGk6PnZ+b/zb/+5f/ZPfmPM5cWL5+fnZz/40Y8Xy+b580+vr1+sF4vt3fb059//3d99/l/9zb/14uWXioXQurZrm4VZEdUUYww8DIUW7fnZRa0y9oVDAKu+EmAmeCWi+ekRmSp4CK0/20NAENYqR4zNe0sinG3GgGIM3j65ar1pIhHUWheLxTRNfd9zWjG6KkhUjSjYPDZxjABMrFbJufTDyMQhhJwLEcWDxHW73aaUQgh5mgKHbtmq1VqqlsyMZCi1EJGCTTVHwgzSijzsVqB2qypmInIPed207V3WlgrU2KY9yESUBGOxqdG3Lp4shrs/unv+MC3eSSfPhm0GO23iKadue28Ru9WqFL3e39XAcdGMw9iXCbs4jeOX2/vF8mS5Wp0Zf/bi87paPIztg9Xp8/4GVd45Pw/7kp9fyhtvdQDvh0UZp2urZb0SsFzK89uX7z1+GsQ+fv6FBYrrJQT7cL97frN7d3nSKK/RBtZnU58AN6m93W1jUx8s1v0U7mW0Nt3d9xmtTSEZ6c3IX+kmtLItf+5P/tm//5//nVWz3EAs+wlt34YUnPgWCCSYGOWsASXS9PX3zn/jtz8GRCae8sgcj8cHHNmmr4Vu4szhPVTL8wAbD7kqUmspZTJTotC27WwjN1NYZhaFk11E1QiJKXGAgx+gH/ZFKrw6xQDRTdjBmXR+hcxm9sd9i6ginn586OR1juYxUxNSmj2GzNM9aR7GHdRJHrQ1QwHgcNJR7f6KkZ1LBjA+nCI+5iAGl9G5SovYZ1tzaegzweM38Wfom+1wN8zf7XjGqaqa1lojc4yxlOocSP8ixDn78wjh+EfjrMzXy0EpGV0crp7yajjThcErTmIfS8sMzqnONviAq+Vq0S2IqeS8223N9PTsvEo1IFFIKY7D8GBzGmKUPJVSgLGJqWs7U/UwMjeWFNFpKhothG69Xq9PTkBU1C0KDABMJedcSsml7Pf7Xb/f9QMSN0NZLfKybQFsHMewmKvwOTEAXtHUAEy9x/UMu6puPuaXBDEjEyGqah5zlVpKnabpUID6ONJJ0CSKJjbPeNHM0BEiEUVCBFJTVQM0AvYryp17nVOJQN4w5LzbbndmBghH8zo8SP+OPffrUNARePcP18CrVjgW/SkmjZOUsYqgm99AAQoxNlc3N8smBMAUeQEWMaCBSpl2N8P9jeUSQ5dSm0KcpkHG4YtPf9q2qVvEaiWAMbumqpIB+lGtFgKT0XY/mFnbNpMYIAHhfujFtKhUQwgRkAIHA+AQpFY4LuNDyqzD+zCnD0SiBokRUWpmlMCtmIqpmVo1QGbjWlGoTe2jv/+P/uDX/tXHxR4lPB8KGRqiupQDEMWV2Bi9tUD0nsSBWA8zZyI2ADGBKj4kgiNH28wHlzhvQjYk30e73c7j7XymVmvd7XabzSbGOE4jgTnNudZaSum6LoTgB6GLsFKKaKTFyCWnZKbGHEIKueRpHGGzDswigESSFchYuTpg5VsbkULw85OARMQOOgx/80RUSg0hLBYLX0JMLODApQeRgkdOgbsEzZILU4Jqxq5yeO2o10N45yzKRCVQ/yaA9dBcWGCMia+vr37xj/3C/+4/+t/+7b/zt3/1V371/mZ7enKOgU2EUwOAojMxoJRaq6zWS1AdyySiCNSPe47ctMlMd/1uc3J6dnKiKmM/XL74oluGYbzG0OzH+tGHP/z6e98s0/a/+C/+r7/5G/+sH4aLi/VY9tMwljKYVQ5xtV5M09A08Tycl1pKUebAFBAptFjKqKIhRaJj7sRsvu/9jJ8STg6rVWvN3k8uFp3v1gOxAUqpr2EBs5dbalLbdtM0itSmaUudppyZuEkBzKntvsdn9wQRt47KU56k1nbZIiLAq0loSmm73a7XayKKKZUxT1M2gFImyBpSyNMgtYZIpWZASiElDFRkEfEMm+20F6QQQ1+mlvikaXvJXdsGtK2WP3j52c+F04vlyU3utUqDoUx5qvT47K12ufzpiy9LKctu8QvpjU92dy/6YUSoSNOkYRUvzi92N7ciGpq2Bvmy7mG0FvHi5OJ+2O7reNp1Z6Wp+2F5wu+enX2e9cef/fRBt3rr7MFqsfyd2+ef5aKIsUlN4Ovby5PFcrNcFgCzuN/3RemKas7DV9rNw8VmW/pPbl88Wm1WiO+tT3m33Zk+ffTg47uXN9LXYJvNGgIHpXov3//dHwKU9x8++qXv/ekf/bMffP9f/NrKwuPHj85XJx/+5MNgJqBgaGKoCIQBdLJ897V3H56ddttt9rnA6/jBsW2VOQ7T21ZFhBAioJP92YV9AlpFSsm1ToBz5PuRVPN6OeXVj5l5IqC/ahU1J+EHF9MiE5m/gRnN8XA7JAhMDq+Y40NHchKoHSMzEAXN0OjwHhDhwJcFRE+H96+k2WV4Lo9eWf7gwXbDnwi4YeA0+uYBN5J35udBeFKrqFaEg+hMD/oYC4ag8jPWL14D2eERHUsfMKtSCalKXbZdCEGkEvPBOQ2cXuDtrv/y7PqmcTHnfJoRkRTPwDLTOitMyI2L8fDzeQ9sOKe5IR5k2EwEjLXmu/vbm+vrt95+h2Z3ROYQSi6j2e3drUptYmibpppOuajZZrNRgHEaUUCqZPF+C6dpChyaGA3Js+UQjYkxcIjRJwUnJ6e393f12ctS6tAXMEzMYLbfDYu2c6s6nM3eEA7KYUIKKYrMz9Z/KjrEGAGRqAzjOA1jzhVnxxgvo5kPsZdVqhmEoKplqrOQW2dok7xhVM8x9/sBtKKRGVEgZ5kapJhiSswoUt0EnA+cJD8unfQDB47dcWcdISIXB7izCDMLviqasaNAxgy7MVdEc43YNGIeQevV5U0AePTwIhL1xSHdPo/30TS0TUoNMZMgTvn2iy/77dV7X//OSFWk+IYqpZpRalIptdRKyGjU76dpGLsUCEmrxLSoqsMwpqa5vt0qBPdUJkJVcMIm+ATksJiPpT8RI/I0lKwFmZBxLCOScohqBgEV3HtAgliMJ7sh/uo//NGv/97nuHyYtU1tayQqGoBNDAJyJLXKHHCm9yEzO/c5hhgC5Vz89vLwsqmUFKIPSRU92Q8MFQxA0bnNTi/bbvdN063Xq9TEWmpKKeeS85jziGgIFkKMMbrtoH+yM3NWZ+UeEJLRrDhEEPFwRHBOyW6/O5k2XdvOc1YwApdR+alC6EWoK7kVYuCpuvgDSynH+9hMiWIIIefs50m1maXDHFSrVIWAMaSKrronszkv1qEPEKkidkD91eYoY//m4InpAAaGZCCqJoxkpswwDPtf/MWff/8b7/2Hf/F/+P/+f/1//sH/71em++n0/KLknJr2oKG0aZqYuGmaqQ6lTGBkiKKSR8nCzLw5WRnoD3/4/fVyud8OP/3pD9KyWawgNn0/DL/6T/7+v/qX/yIPu2n8fL3pQkxFpxC1ZFXBUrJKvZdCISS34OUWgADYXVQAwIC9GDq28UdbCmY81jT+xURYygyBm+lisYgxegcbQgDwQ766TMzTfqZx0mhN00yTqZauW+Q6lVrJ0+MDe2iSSAVRQsg5D8M4lVxyDsnVeRpCNDNE8tjatm1jjOM4mkFq4jRNIhUR2qYFtDxNYEoUQBUCC8Aytbwds/TrxfLBkC9ZerNGACCH5fp0Is21QN1qrSLfWj16dHI+Xn7xweefXpyf/omTt15eX360v1prWnL6Yrh7K6V31+daytXdbmiAKBHS3W67bhcny+V+HAwxE9xI3e+v3r548LCmx9q8HO/Xq+57F2/dbe9urq+bE+N1tyz9/bi7SOfn0L1LGxj628amAKBlJ2O/Hb/25Cv398PLXS/Ik2lomg9zXxbwPmFT+Z108vL+drle/8LmyRVef7x/+U56+CA2z8br5elaT1Z3Qz8VaZcLG/J4ff/FjfzP/lf/6W63u5/yMnZQalA8X25CYPLwTRZFYIMIqJLzVy4evfPm+b/8w93J4swmOLYC8wDlZ8mk/tmbB3g6CwcQAN3xqdRcawGARCHGiERVvKpwfMPbCpgF4H6luNRQTYoiUooJEfybgDGigqGKKYoBzbMrQMRDCKv6eznOQwANfQvPXKYZxPFWSIjQ7WnQqckqAEZoSPMmBzhqoY0omL85F9oTqc2xhV4HHqoWVZHELAgGEAJXceESz9pn8SdpKqCmoGYHfT0RqSiYmk+LZoscnb3kAQ2QmFIMMWJgdOH/TIBBUg9uDORuQ97SqKoHpBuAKSBGN8oRg6oKYm5Q6maurhtSUYctEJEBsFZl8+8vWve7/ubmTqpuVhsMxEpapibGUqSfxk8+/7SJTQwcY4oxprZbLNrIfLpZiyxUteQy9j0AqNS+5FLyoixSSohsUimEWY7rQIhq06Szs3MB3G13d9vtOPZ3IJv1ptbder1OKRGyqaBnOLp5sDs/zeN2ZCR2eB/wKM8xqSDGHLouilQDSBxCCIZQa1XRKp7xzgCsVt0JYYYSwQclpOBhLYRGZgbEgYANXIno10YTG0QKjItlRwQMRgDETjtA8hL/0FTgDKPC678fNx0zq+OSNts7+hQjhrhedPupDDmD281S4NTtxn242zZtqyJB7xtG0RyCLbtl23ZExMo4FRrK7/z6b/78n/yuLVZ1wkDMHFyqGFMAmAemHLmUcRx3VSpyQ5gMpkA2jGNRU6N9sYqERiqSMYOKGarzkM3858XDZvQCTlWMrGrNZhoCcKOYLTKZKRhTrLUQtdyefvLF+Pf/0W9/+uWQVo9GCKrFZFAlwogA3ksgCgD4KH4GnDxPR8EgGBgHcpYxAADanM8ENHvzqgJYIETikjMiqVQmGEeZxnG5XDUpgVkMgYggKVHKNQNACNFZwObjdUQXXhCx+UnBpCqms7pi9hlg67jb0lZRq9R933eLNRKUKjEGP49iYEUCg5nKNrtbgSI44dAAYmA80B8RSURzrXnKIbBruyPzXOL4oTn/vPMsnymoqopYACOcHXHmvuFVOtC8GpG9xSBDZgIChZprSdBQ7K4ub6dhbAJ+52tvf+V/+Zd//htf/S//5v/jg598tFifkZkBWq0idRyH9XKlVUy0VCsApCLjcHqyXixWymGxWWkpP/zR767ai7OzZZ72+/EmMTHCetlO/bi/H9o2nZyfTsOeKaQm1VqbphmnseSC1EiZUEoVZiaDOXXbYV0wTDEQkf+kNGe2V0T26+G4B4k4RmIOzLWUkvM0jqOqNE3rtWCKDRGWKrUUYkLAotX5k9M0+KDM+5a26US0ZmVGQkIwtzw39UEHmlqpFQxTbJi5lEoUYog5Z7deRHBymDUxRaZxGkUrEYcYyjDm/RCRQQkJOQRQrSCYIFteUPsgBgWVUiKlxsiqNqm93r6AhiCyhvhH2yurGoxSbIpp07Srk5OfXH7+Rjp5962323F7t9192A8UmofLTQ/TTSnCIXKstcR1t2K8vbuhFDIRpeXLvj/T9ARosdlM2/vu4nxx+uDuy09/8vzZ2w8effXR0y/vLz9+ebnA9jx0Tx6e/dr9Z5dWhlwiYpu6L26um24JhJNMmMJOa3d6+qLfY+3fS8sNJ6N2A7zrd11MJznttne4XjA1AePtvu/LiMj9rg+76axZXt3tbvZ9gbhp17Cv1/uXVx99UaSEkjWExlBZMrlNCKMWXLX0vW9+7dd/8NtDaVoKDgwcO4y5vX7NLwuRBDw3HimwAZhIlqKlmFrybUnEwAAYjojS3LB7IMMBeAH2yIFaVKvGJqXIZearOn8gEhapYuw+5XQwXHEGDprNU/1jzYZAcPQzNVMgVUETAzU1DuzX7BxWh6hHMAfc/8/9QNFJr2pazQgIzJiChxgDsYoBIyCZIjKJVgD1VEIzLEUNQIMyuVOxmFYGVDU0SEz1ILhoQxpNagVEBR9DgKlUMTHDUuqcyOqmZyAEahhCjIBEHA4gFqsVt1EmgqpGaABYBUwghiBmpUp1fAttRp08rpmCN5wBjYkV1RDNuJoiYS26349XVze7bf/GG0+a1E6SyaqiqFQix9jgbr91lxoAiLEhwHUXT0826816tVzSaoXnZ4goUsdxyjmL1JwNYO69aggxRmYOzAoGBCnx2ckSsapN213d7vsYmxjCl18+U3m02axB52R4ADMQZ9+bVeJX2F4gDCHVKv00TDn7XCcwI3FKybttUy2lqKIYiBeenoCLhMii1cxkzuSWGBuPdDEDmeVmbIaJkAnCYcLLgT0ECtWkZrNSynjwiQOHBxAxvNpQswWiH3xHRqqzMsUq4ux45Os7hogGi6aq9iq1GlqMRiSIKrLN5YuXL8+WixPWbJJFLh49JGoIEmapQ89T/pW/9/9FCG9+9Zu9hdhEtECYihTAYED7fQ8IqUm1llInokpkFLosGBAl76c8xMXy+c1WwgI0eM1cRGe2DSJyMDAMOBvRvOIR0pxqx0GucdIQY2MmmrUJiQhyNqME8eyDz6b/5h/8zhc31i4f7nI2yIFx2WIgds8aDliriVgIDOApbISIOtN9oUixIiEERlKvQUxSSKAWMCCRVik5AzjjWpmJKZFitXJzfbVsu9WiQ2QzMVN3taPAtUjRKgUAuIUQYxBnuTnkixQolFrJaAazEE0VnXJroKaLtr0vhYi22935+SOKSerEjCJWa+0CE1KuFeb6ZY6RUHXVUgGAGKOfUF5Dc2DiEFs2NfSIGRUDkCoEBAgmYGhk5L78gbjOdTyY6TFhfi6AzGg2BFEMrCpoxMRggKLGGiIVROMIJP1+unxx9c7Tsxh0sPGP//y3xv1/8J//zb/96ZeXwzQ1bVdFcildE5oUyjgNZRBOtSqW8u5bb8dcu+6ktF1FXWySjWOp28ArZEIhQofbayRLm6hah74iNKpcMgCyWiGmmIKpGEItJRf0gf6EExgAMYIxIpHvTZ8/OPMBDzHe3labGZrMlfpB8wWlZI9iDJGYuRQUBQ8acxsUPSC4oHrwf4ohBOYgqGaGCoCmUB3sR1E1y7mWklUkcEyhRWRCAwUirrVO09Q0jTsxEZlMA1EIMbgKdSyljjmPQpRM5jkDoY11CotUhmm3vT5rFokXcdwXikVx6kdtQnO67nPPSKXoR2VXpf7Jh0+XsPnk2WcfTMPZ+dmj80f9brja3p1hcyP6wf76fHV+sd6M++1ORk2pQUbE+6FPzDGGWgrGdp+FrBSik9X67ZP22dXlpy8+XXWbh+uzl7kfxkqR1s366vrFFPTpo4tTSm/n5vLuhtu46lal6gsdQcuDk9NptF0euOtIDXK9NI2jfoO77z75Stnf/9GLz99/4+2n7cVn+erz28vm4vGL/X5KpVmmXHUcyjrEbakFsIYF8eauryeLxdefnOyuLr/y3ldDWj1gDqAmeURCNizjNjDqlN99+saji59utyqgKsYc51Hxa3mox9EYIpCTPTkQQJVaq5Sc0SxwmMWoPk/y6TW/4nvqnI0yQ/1EBIhapdQpxsABc6meLOamzUToxsRgjt8Q4CGpFEDFDFRNXydY4GEk5XMDAEFXnJpnX5jLI1y3A4DsG81e+RN66TMPksCYZrEYzB0VBmY/KcwMEGrVFINWUaAQY53RMjq6r3ovrJ4oIGgGbFaJDiZ7x4Jwnk/7REzVVBTmlFMvSG3uyrwMreJycNWZcD2DCjMe5k2Nn5LOrQabBZ9K5E/CwJskBSIOzNVIVNy4b5xK348vn78chjHGdHHxkJisKoARkIGaWSAWtZSS88EROcWoUvKUX7x4cX19vVwuu67bbDaLxYKIfartPF8REbFSipuXILprQCUiZBLVGGLbdWqYx9t9vzs7ORn64er62kzbNkUOM/uMKKCnkczVj4ERkaiZzGpEFTHALKXkogYcQtM0KSVwO2ZVnGlec4I9MprMvN2AZOSyQUAFUwBTRpe1RyCIhBGBEV0OhmgxUIg89GWO4EYHG2aIazayOkDuxzIID1pLgONkmBj5+GVEhABVlJhjExqNRSqUWs2AAkUQbSzLOOU708q2jgRV76+3TbMIMeR+b7vhd3/jX972u//gf/KXMDaBOXBLEAyQOOWcx3EQteWyA9VpyJG5FNssVpHDzd121TVTKTG2uyH3o1KXfHERkiu3q4moxRCcyOvzLzuI2tDjNgFEaRx42IVFPDk/fUQCNStgsFARm9/5g49+5R9/v89duzyZRGZrg/lmV1V1o+HZiIzImysRUVAPsfRMkxAiALgy2afGIoKGrquaR/wMJpJzXi7Xw5Dbrrm/vZNaNw82ISZEBpBaCzGwKAGqBVOQKkVzQExhdro/dnlH8uAswJgvSCQyETfsTjEmqUMV2e53JycnCFxL9ul0qcIU/NSdx2kzHccRTzycS3psTcGMAAHZezrT6n+EQ6BD3IqZETMxikiVyoFUZhKMH+/zi4J/Mc+JzlJroUAErGo5i0fQEpFWS7G9u352fXn5/juPrkYL6zfvrj/fPPrqN7/3pz67/ke5ZlOhRKWIEWaoQ+5jIAqQlos/8Qs/f/XZx198/vHDQJRClZpzXsUQCKRmihxDcMJDOjh1grtjGGiVWq1pE0A0MB9h+qcpqrUWnI2oQUsBNDK/Z5yCg8dxcwh6QIn8KR6GGugWFTOhMwSfU6tUE8h6oAP582+axp36EQ0QxNRyLqUQzZZsMx5gbFZEKgJWqdt+X8aJYoypTU3KuSBS27W1zu4n49BvNps85lrLomlLLhwJEZsmRaCru1v0XAECQtSqTBgQgkLgAHnsTtLb7WmX8ce1HwNWtRbwfLEkkd3uPjaLieAK62c6vgHhrFm+GO42fXln9fDLZv+Hzz5bYGpO1pv27KZMU+lP28X7MX2Z9z3avhYoVplX69V2t1WpETEaX+X8Yk0bTae8+Mnw5VTrN55+9XS1/uFHH/7+bvvm6dm3njy9Graf37/8ssi7q/PNefd7w9XLsQwp9CGKmN7dPTg/A+JcqulUS8WWn9X+omm+07TtftpsTp9t7x+fnAIvYChjHScZkELDPNzuOiIzymjFgI0xTwx1tVqenCy/+9aT/8Vf+avhd/7ww5S61XITGWIKIaUgjGig8sbD84cny5vLy7Y7s1e0XIADVVNfc4UCAEYyNDRTtZqLZ8QcDYgdvT8GQNhrryPOf4SXDvM18Lxi1x8hwYF7c1hu3gWJ197+NswMDnXIfPocZ1J4MA/C4/htXt7zn/XwbjCAOQ/VD6u5inJ9BwIhoh7k7McnQEyzLwz4NA1cXh5DFBEk7Np2nMZD2SemaGBgpAJHVNxe8wX2CYeXcQeGEAGIvy2nUiHNPiUIaEA+EtFqIcw/MoALXhRnA2uYjYhUndbsvQLMPCAwm41IEFHRQozMbCKiQkRaai11v98PY8/MTdMtFktVIApgNrOxYEZh5ghAkYBhtVmTqZbSNOH+frvf7/2H2u/3KaWmadq29eM1hJgSN00j6nkbszm2iJQpl1prLVrqzPUr5erm+nRzMo7j5eXlarVMKXZNpBBDRFBFRCZiQo8RmPMBCD2Mc+j7qRQiV5lpLqWU0ratl0G1VpUjPuPm9FJLEX01oiLAWishhjgbbwZiYAKwgHDQogJ6tYwAiCJ1yMNxaaJLQA70smNwx3EZ6MEM83gfOVvzuPYcpRRXLs1MLyNAAhQ1EwgcKTV1srFqrlOMq/PVumEa+6FKiYC/+Wv/4vkXX/7Hf/k/wUWsjIGjIQqCmZhCrVJFUtOA4jiUhhvRWiY5WS+HnJ0+xKEl4i8//jCtzgWjmyUBy+Fncq0FHEsfRyyc5QCzxs3ypGhJavfJx5/fvIST5YowhRSnEv/V7/3on/76941PY3eSZc5pAp86HloyVUUPWnBPe3UOB83Pp9ZIjITEfJRWqIjfSbP7hpmqMaOBMjNxmKZRBcZxvL66Oj97gEylSNMEt3RCBjIBRFYVUKsitUyTGYQQyD29Xj/ZDgeRg18VIMxRm+CdRiBiNdjt7peLjsBExVubWivFQ0UCeOCzuS3QrF0Ab4Xmw9jPDTGclbaERoCz9/3PSA7VCUBmRkgKVVWOlmFmJmqo9TVpBZopMZpplTLrF9XKVM0oxcbETORf/sa/+Dd/6dtFaMqwH+swTibVZBLJ9W4LIMCoFqGx999/uru7LwqnDx82USJPf+kv/fnf+/4Hu+HeiIuUsQqKAFTISAEQydATY17XJqOJR9EAMzEFI6h18gLIwGqpOHPmAGZcDpxYZq9uAbRD3uVrWoS5QD8Idf0QBjP3fzngtQSvf8Svfe6vYkwAQLX69/dMTUIqIm5Wsu97VQ1Ng4ghcBUtpZhhqBWAaq2BebVaLtpmAmjbJk+1XayMcCpDnSogjOOoMzMDABFFGookMuX+yelZ5BSKtK2uweI4xlVTGy5S7m/vTtp2Sq0RrrtlmcbfffHZPi6+ff7G+uzsy88+J0HZdLhafrG/f5zWLS5uxuF2v3vjvPvq5kH5YvyoDhTIEEcTGIeTxUb3e8ula9Ke7be217c3d1/rlu+9+dZ26j++/OzR5sGD082X27tCSpEWmX/65Zerk5OnzF89PX9+XT6+/GKPC0xNMBCF7W44O93cPr/sS6ZFrHU6WS2vy/j7zz75WnPy9pO3v//hj+/6+9ixNe122CJrw6mWmvtpFZalSi5SFVuwFkUavR1ufu0Pvty+985f/9v/9/Djj18C0JSFibo2lTIsbP9wE8l4TM860BSoqhw+9bleeb28OCxBH4eJipRSqqsxKRx5ZI7GMBEdrN78hYjxoCM9nvi+aGJqkFhVqlYgx2Xc85uMzEiBEWweZoso0lEvM7/PeeYFAKAAak4K8EhkMwIzsIMQGZ31COSMG5fO+uTbvXnmb+tqWRFzHq2rlWaAiehIxKHD7MN3najWmk1FQE1N1dC8KIEym8yin8gHPAzUzPXYdoj4EZEZpFJ1p0dVJXJ6IiGAmrlsAQAArdZSpYQQANUMj8CSzQ9ihtCq+PRLRRwWdkckVJvl8QboG7hU2e329/c9c5PzdH6+bJrWw2sBWJ0RqTOcxhy6rnWLFwILHEKMi0XXtl3f9/4mj7fX0ZTMzARmggUDInLbJrNOVLT6caWbWvZ9//LqarfbbbfbaRzPz85qjcPQxxhSSi6rYWZCSCF4wR2InJGKwG3btk27OTkRsFpryaVWbU13u93d3R0RdV2HiE4CAsAQowHQNMoBrYR5uIHRg0G90AcgJCCcP043CyIGpKmIOCULYLfbMbu/qMvJZkuW+XA82KocKyH62TQMODDrj1vG4TEvpFQqqBwuVBAAMiJGQJjymChe3t+vuH10dk6M1erd7c3l3fWf/Qu/rKylFgzJqmIwNVHfe6LMMXIahwEUOKVxmBbdygyy1KZrVSE07Zcvro2akJaGgZnmgxjgUKy8kjs43dsvVF/VqlqrIEYEzjlc3Uz3N/m2Gc348rb/wY8/v9wpNG9AXA2iYIVQkFhqiRgDB5sHXOB9te9aT6qCA1Xc9eKqiirkmJNfTiqMzkYHkepb0ACMjImRqOvSp198VkRi20wlp9CWUsyEmcyRJyIkJOesV61Sgzq+fMg0VNEZOxdHXpFQrVYxxmgASEHFmCJiQCvDfpenTds0gcngVYKHn5Omagf3VzeDQTIFAxWVWQzbdUvfTGiKs7G9zi3O4bL3j6NWPbR/bpE/X+HMDAZZi6p5OCMeUlEDh6KTuSM+gInb6jNCQiOp+XS1/n/+rb+zbPXf//f+4osXL/dXn443n9vuy7dOoO02KWFs4un52dO3337/69/6+OPP/rtf/bXIgWDM083bT89/+Zd/6e7u5g9/+mzRnCBgraXmgVDUDGhe6iklh6gONxI7SprzlFIi4hBIxbJmMQFEN8U+3F/k18DrHbL/1CJyTHDzf3Xjn1pfFbKvepVj1woWnNOJ8wq0QxTBq82LZmAhOPPHw7kV1EKMOcs4DrkUORgLIbEUIeRiNow5xdg0DRJO02hqJefVolt0nVHox74WIYOiVUGB2ECVzAzYIFZoYyoyNhXeXJ6++PLzL/uxOTv5Vvfwx7vbl4mKFKRYiyzPz26HfbifYuBd0k8sn2t+B9p2tfqt+2fnsl6vV7sGP7y6enr28I3NgwnkZty3kz0O7fM6ZKtAPCGQ0NrCAtuiMiFdk7xUqUEvls13uMuSP9w/274cvvX06+eb8x88//BqvH23Pf35t7764v72890NaMaKb58/+eD+dlEFqWmabpD/P1t/FqtrmqUHQmt432/4pz2dfYY4EXEiIjOqMmtw2WVXD6rG4DYCt9rNBQgJWuKaG24QQuIOLloIxBVXCHGD1KiNjFuYFrS7Tbeptl0eqlwuV1ZmVg4RGeMZ9/xP3/C+ay0u1vv9e2fBllI6sXMP//7+d1jrWc+wf/vm4nE9x6a+kd0xV7OMkvJn0jcnqw9u9vOjR3+wftViNY/4r//OX67PVv/lH/3zLWKoq3FIMihpYCGSzDoqsTazV6mfN/pq9yr8D/8H//6+S7su9Sl9/tnPf/KjPz5/dvz+e0f9dr81fv5o+fNvbgS9xoVD6TMZHN83CgXYkKLh9iXphUXBBIhK4QtoD9rZh+c4TE0tlR4FsoxpTFkyFdWWZxrne/DGx/iWAQGtTNAeglX+UxHRjchUwb00nO+M6GOFyfrDzxb3GXN1GOqBrelTL7zHj4yITNTUKGDOWUUAMWdEAAsYtMjEqqb2ujCEoGmEggX4rYbM7kWhE05jAKD2SzJ7LLJ5mMjQ4DtTJWuZT3svWRACYnT9pJVcDia0UR/0OgW1QjPE8m6wj/l8kDmJ7GRIQsSSZdS033V3603Oo7+/JyenUylA5s2WkKKVbD8DRopVyDl5UYkcAWw2mzVNs9vt3AQZEf1vORxGfC9mKeh0TgLZkDAiOc1KWzg50aZpqqq6u76tqsptjYhpTMnGMUrkEACsQwOxe3jQm15AIKzrer5cVFWNiHVbEfNs3o5DGsdxGAZ30XXnDxTKKdkkgQzM5ClmxRAICnfK0UQgCmgipphVgUxNU84imlW7Pr19e4lEcGgfHxiumCo+qA+mqavSlPFyaP0P19iEC5Qaquw2MwaMMWrgnJOb3RnCOGxns3mzWkqWs8VyHLtfvP7201/77vxkuet29WyOor5vTZQBFIQJmhgljWkc57M25SQqi9XRMHRUlJW07dK767vF6nxUTH7eO7UNzcwY0eg+YtOBH53yqqqqQiTEbDBmGZEjcQuqYtbU9d3d5fXdUC8f7xITxWHY1AE9FMI8kTCSqoICFkEEAZioMLmtpZr3XUTFRayAaeC+6uSUdkepJiQ0BjoQsNbrzbu3b8+fPZKcmas6Viknn0b6UBURAwaoiEyyDKYiQiJ4AMgnSu2ENCMQQREcgRFyQAaSqm647wEkSx7TOGsbcaW6GRFmyf4XEdG0j8E/g2juBO/Lj4gm2aNX2IqAWZIietcED8D7MkYrTR8ExqIIA1eg+csuxeK0FBERCCEgm6CIEGJbt6Niv+vrGDEEAPl//Md/+zvvnc7r+qzZHr/f/KWP/u357G8YSKzifhiMYtXOf+8f/v4f/eN/fLo6/fC7v9IczX/7t7730x/8i+vbNx88f/TzL741yQHDCOb4r6qKZ1oTD0NfVTGEyGXcb0xc11VKRT9LjFVdIaO7k2Dx2Rc1U0kG2MTqYfUjU5KSX2QPAokLuaIEH/tBWegfZSBhaqNkKFYKvnXuQeLSZ04uKn55lI3MiIhd3w/DQMxZxMBijJGjaA6hYjPJGcAQDdXm84UkSWo5ZdUxwZhF6hjTbr9Z3/lbpojOAKmIg9hRXS/mber7XR3jrN51u2M+ftIsd0N3tblbzGZuwmhDrkLT2x6gmjXzzdj/4dXLbTiqqzhfHV922xNta4zLZiaiq5PTu/VN2mxvWlkulx/2i6/77a3qkxzaulkP/WI1C6wX61tu2uNmPgzdn96+65v5I7W/ePrRm7fvbne3VT07Xyxurq9zi8u2Xan+4eW3YP1xXJyHWWrtzThgHUYZM4gy3No456aBWQtQqQ6i1DZ/8uobOnnRV/UW6XrfPZqHv/E3/tu/+2//137vv//fXd9t62Y+9htXggDjnDn2WZN162zVyZttZtmHX/zsJ8bV0fH55u72937vv9Kh++1ffRZDiIvmZHHydr+vKtgZci53x6HjfHh2HzAbUHG63DQtzjppxokLFm2mMqaiLXqg+D2c7KUsIiRGKR6+xExmaiX1E3zuIyIIhsgPASqbJlOHMgjLsKqMIciTHRGmBCjw4bB7jCEoYWGk+rlIBP53+NUiOSPxgatRrqBJuc9IHtuLRKJaxwoR3VbHhz6EpKbOMILShGWRw3kEUzMqh+JSRMacvD8TzcW/2Mw8RMbMQM21/mauckdyYoEnW41u4+TuWwAISOPQAwDHotWf8G1zoAjLJgUmUk3OZu2H/m698SjW/b47Pz9/9Ois67qprQw5j4hk5Z4mQlSRwG4G7oyrklKEiKvVCiZqIU6IoC8JBTMAwpKbqKZMxIFGzVJi0I0A5rMZM3f77uT0uG3bcRjni+PZrPVyyvWGzma1rGVB5kyIOYkBjjnt9/uryysvUxExxhgCM1Wz2Wy1WvmrSmkchuRzLo48Xy39Qp26SchZwVNNPCkMLIuMo5stqKlmVQNQxSwCKN2+v3h3daD0HBZ8cXyebqZDifNw4HXwxDpgQoctk0WQEBk5cGAGI1JlYiZOWYY0GtiYLRi9//6H33nx8e7bl+Nuf3v1Trrdh9//dJQelWG7O5nPspmmUTzEVyQYock4dqFiIBIbqAqD5kGEAmYTDtX1xRWFZj8qV6GU3KhY7IHYEdFD1q/vTf9b7lVvhAFVICWT/TCi9IzERKvjeT1rduMY6lWfdlVNDOYDmRACBxYTyZmJvRf3TavqpLQJA0Z0F/hDZ68qphqrmohyyobIHIjQoOSu+DNPOb98/TJJBgNVQ7R914UYvfVHVxQamBoz1RUHhL7fp5QQi7GFj/0nZ3By1rNNxERThDJsR6ZATCJkauv13Ww2K1mtWQEp5wyMLo/1LBZCYibAwglyETcBMfM4DkTOUylX9HSklbLMsUZ3uPGUaH9iwG6NqzB5cRWa4XScMrMrzpJYzpmxqmJtoOOQjGJTVzrm3W7zyccf/Y/+/b95HHvt3r5/Nqt4SWIAeRiHnHtATAr/6d/9u7/46tVf/d3fffLi06NHj293dx9+8HxVw7/4/X90tHjEkHf7vVYrpBgiioyaTFS8phjGvuswxlhIewBViFVVAXDOlnNGgVhXbTWrpO77PueRJl9K8/kgq/0SC634Px2qc//kMPTkIY8YDg9NVYn4QTciZW4YgmJ5cPfNCbgEMntfegCi/Fd0qcuS1DSnzIGLaxRBHsUsuwSEmXfb7Xw+jxx3621dVUw8pqQhEGPbNGm363Y7DJxVjAxAATmEqgKMg5w0s4tu9+3lu++++CDchP3tbWzkWWy6cbgcVGbVOMo4bJrV8uTp483dehyGHMNaRHX7AR3Nw2wQub1bPzk+OX908vrtxdf9y9VsdtK07/I+W3zKNVCisX8U2jHra5avNv35bL6CFQhKkhHpSoZud/XXHr14lCKt7Ccvv5qdnXzn7Nkptl+tr+7ymAXiydHt2GPq5gbvNfNmufj59buOQCKHivfdMDf86ORst9vcrW9iE/shK/Nnw3a7zcmi1GFr6W/9nb/9f/w//58u3l60J4+I43bMIBXVIbbxvdPlctiv78abAe4Gu3pzNXsUwp/+0T/JCljNhlGfnS2Xs1M26fody5jp+vxkNZ+H29sxYE2AjpDee4VN7+JhxcAE3kw+WsjMgNNk0rffdKDTAybQw/LF/eJU1Xlkh7OeS9CxECIwZ8pmB1qhThW3W0WXgmzqm90UFqUcNsU6mQBN3eeXADQgKRqWbynbwxyJIT9XS0VvqkjBy7mCLKi6niVwcBSUMIRIIjnGCAoyJkJEJIHi+JIki1veoHenqhMzGghxmnE43iBWbNCQfbDikloNHABcWk/F4EcyOvrC4bBRcxZvClVNJDsxC8q0sbRHVsZnYmY5pZwFgZo6IsJ6sxlS3u27fui9jqmqeH7+SFX8yVs50xnACFGRch6rKvrIyTmDiMDIIhJCDOGXFsCDUhWhAH1Ifh2pgiggIXkmmQXmPLX1VV0REyg7jDRrW89Hc0ci5zQxQ2iCZFHV2LZoVlXAFIzw+Pg4pzRKzh7Pm1LXdeO4fvV6RMDVculxifNZK6ox8Jhz0iyl4Mg5SYHocxZRPIzzlJJ7GlhGc7mPZVFkNk0529CPfTfoRHw+uMXgAxaCTsaeiHig3Pk/bBqJPgSBmHlMI2KxbQLwiYkaEACJqapmwyenj548fuaqoM3t+vPPfv78k/fbtt2s72QYDON+vYG2FpVxGEOMVV3XdbXtdmDaNDWgUeTAKCbcRNDMFNe77m7TVbOTLpFkdBG1mlIkBAgxAJL7//oy807ApxKOAk6GGrAf+25MSgRJJaVk0lQxRiRAMwk4opv0Fg64kZt4mvnCQAD3Va9iU9hUIjFGFRGRqopZxDxtBtEtKBSIA08abyQiMVFDkdw07e3Vze3dHTNnySGGnCSjknrZEsw0IHq7r6KMFCJHjSLiYj1iirHKOU3FqmM56ueQiMVQqYGJ1lU1DP3EOGFfikerIw8IC4iqEtsWDEWMiFRdwUpiMgVcSFVVacxpTJOYhN0+2CerAOBOx/fAGDMipSTO2CPCnBOglXEqTMfddCwjABpwYKe4JZVsiWLgQEk0lumYqOWu29V1tWhpyJux3wsAGTKhgu36oc942+0+/PT7/8Zf//e4Xd6sNy8+fvGbq+UXX/zkn/6Tf/b6m5d/7d/6leWsunqzQ2gl1EAsWc3M285hHHxjdF0nIsM4RA4ask75XFVdOYHan0LT1ACVD1olk4SoajnpQ5sfnOaV/u9iE4/oWSKqhpgB2Ix9EHlg8cM0CgCwKVoHEYirMJ1vD7h6qmVLI+SsKY3jMHocpH86S/J1WKSmKlWMdVu3MBORq+srQlws5v1+yCJJjck6giGPxojOWyUEd6WpuZk3/WZ7tbtb1PXQm2ZpV8uX337bgfzms++8b/Pf7y6+kmSG87aVNFBV0ax5s75ZNQsI/EYFpPsuLp/Go3W6GzRD189D/S6tmapVXcOw33XbVTz7sDn/LvQ/yNvbqK3RSLhV/WB+dLe+u0odVszAtdafbzYdN+eGz48e3UrfdUOsWmlnP7i7WJ6ePJZmHsJnw221nD2pm7y5ey/Gl9DtWC3DE4itwc1+UyE27SyTQrambTuAuzRCCBTDpu++fHdxcflGkNJ6L0mjcc+4wxyBMtqz80efnjc//OmXw3690fXv/Gt/NXzw3lnOghQTBJFVU2FTKeAQKwZKi9ZmDQBkpFqTqQoiihRe59SkupLQMfiJ5Tedy4dCyeVfKgpqNC01X0A05Vv5v30hiohkKQxf8pm905DB3WEnsMRUpjE2Ivl5dE8/mG4IADWdXp2YN26gzByYnLyECA++EYvJylTJwUTvIFQ1AiDAh6UbOGPXRCl4E86qMqbs3oRUbIScd8kGbhXNjrw/wEvd8LBEwYuoW+WqGPpmK37D981HYCIi4CLgL69YiwmKv8IQiLlOKRG5pEg5hJwzAsWAKWcPCvV7yAsmMCDmlGTv3lxZhnFg5lhVfd83bXNyeiySQkQzTEmQkCnkPE5na7BCNir86qlQFDNGDH4ZHArpgocgIrkEr1iPOPXLyQneiYqok+uBwJwNzRxjZOK6qf0PwYnGeaCAOLeGmNE8ghrdyZBjaAJLrOq69tWYUrq5vun2PQDc3t5eXl7Wdb1cLtu2RWYdzBm1OXnlk4dhdMAcALWwMNhZHu4KZQoZQNXIFE1z0qvLK89bvUcCJnQHAdy8jibK9mENH7rV+y+elg0AUAge+F5Xg6WsCpAVgilgCAxUmxmhCYds8OrbV93F1c9/+IPlojp+dH63vdtud/22G/oR376rZ23K+dGjR8vVql0s+n6naWjaGaMJyDAMoYpOu25iZcBX1++MQp/NOChgloyEFcVYsWpWn9qaPCxz/W1yKMurOmYWMRUUICBPCeTIqBDmbbsdpUSRmIkWzmkIIcTIHlFxuK0LtcoxXi31tYf5qcLETHKZggEgGgAZOIeDwNRdJ6oq5pzW6ztmNrDtbr9a5RhqUR3HMTAhusbHvEVJSfrUN3WIda1dN21btVD0Eg6sqomKhhD8xCJCzW4AqzFwWzemyYyy5Lu7u6ZuYoz+7GKMItmDtEpfpwaEhMFAfGuM4+gnIxNPa7IIVtxU4/Dhu644FJTJMExDYvC7/HA4g014PwAAMqFbHVVV7TWJmjo7UwTVjDnsu/7i4mJ5Pk+9RrdbB0yi+77vs93s+zA//Zv/rb/58t2mnR+d9fvVYhFj3N51X339elx3i/ns6fnZ12++6vt+JABSlTEYpDSquxdM4+BiTkh5xDGmMcYYYl1XRcQgIimNiAU0ZY5VjKYqYlKVDavTXHtC6QpDP4TgFaE3KinllBIAVlXFzO5POE0SHS4Xe4DtwTRH8+UGCMQ+ogRTTTkNQ59zLjkYfo2imZGC7PcbohACIbCIdPtdHaskWsW4XC5vbtcgVjd1XVWmqev2m+3aIAMweWAcEhLtu76jOGNIeVycPkbiz77+9oPT0w+Ozy677eX6+izOz4fqdr/btHVmSFnzeq11qNt2u9sT0YhwncdbzufNUUv0s/W7phpO5itew9123cwXH9dL3XYE+Xx5OjP6vL+9ktTO53Xd7HbdDea65ujwL1Ev9PPN+jYMv3v89P3zR/n2259evQ2Lo0Hy6ujker1tK2hj/enj995eXSbeHTXz95qqFvvm9mq+Ol5ETqbrbtcwP3r06O3NJRhFjptdwhgwhDELIL/47ve7JLurG7LQDx0qZlbRZMivr97BpdkIt91YHc1T2nz3L/1GWM4iCBKaIGUj0DEGq6qIoKr9stXzR7NfXKwRVc0l0+pIw0TKcQDQzXImQRFMp0yJIUSnJqgIISKXqtkPxD93lPuucyN5n+yqCSEGDn6mIAAim3ql7OB5ISyXSgfN1KXQ07jf+byHZgZKPJlNeRpgigBkaFQGSfDgw4US5W8yP2OxaC4MAAxBwdyMH5kLbGlmwIEiADMVHrSICIgqoALJlCleiHwASKRZoZjKFBgfSgQQ+oTYaShUhHWQJTOEwHTQlziAbwoGolb2ZM4ZgdOYVcsQCsomBVUTFUbKOfd97wO4lB39hn237/reinuJEyVgyOP7z5/FyH2/CSHknJDZ+dohhhhi1/cAWcVSykxYxnQAVYwTPigAkLMeSjRHLogLT9NPFCzwGDmAgv5XO/0YcEzj0HX9vjs5Og7Mk96wpFRYAefcDw8Nwf9vA+QY0eVYOM3qUdNU73rbhwB13RLRfr+/ubnZbDfLxXI2nyNRAFIFUJOc+6Hvu7HwH5kMQA3URNQHa0aGqiIKhqQ6BsTAeHd3m/ouLuZ5AjjvK/UH0M4BZy2SpWlshHivUp6WqJmZMaFRjNHqmLNmlb4fDEncy5iJmDd9/8c//PGqT7uLt5ucn7//yRdv3smw397evbu6ent5GTkeHx2dnp4+efz4aHWUxzT2/WI+X282WIW6nY1Dr5ZjrEzM2PZD3/UptkcJYj+kULl596imoub4n/fQ/lIP5NCHr79cvBYk05A0JcEkEiALINazptXrO45GSAwhB3RE1gmlaRwQkZhMFADdWslVDjC5klKpp80NM0yVkBExy8OyzIPLyJcGEfX9YGaz2Wy72w7D0HV9ddyioq+UnHMI7ixqMQQzHIsAjCUE9+3NOVvl7xeZuUwWELDiaGZSEkwNgAEwxjCTehy7MY1g0O27/X5/cnICAOM4xhDGcQxc+fEVKCK7708W00DsFOsYg4ga+Lqagskchp/2WhHQ4T0lCw4kGGa1fGjq/OhKWcCKYaKBYQYKDKqgREhqAijEnDUDoAJwiPt+vV5v7XQJQpFrRjLJY0r9kLfDcLfdP3/8nGN48vzpdpe2V5vj1ZKJl8uzv/ZX/53/7D/52/2ue3p2yvqF5iGHaCBoWQiAQJJw8GwQcAtN7xzRMKWBQ+AwDHVTV7WLuUKoUkopJcaD9g0QKUYichEiTp3VQYBy/6xc7sfMLsVy8JKZY7xnmEFRFZp7ZJi5f613dlOqHACaubFuznlIY9YEZkAIBkhkCISmiAGQIvukzm1fTDhjIqYQAnPMak0VQ1X14zDKsNmsh7SPwafkgp5pxNiPeTMOZ6slbdbXuw0whaq2ffrg2fOaq8/efvt6dfSd0/cW+/kf2vrVuDNE6fMM2tPZ/LrPRrysAqq9zftF0mMOdVXvdahheDpbXK9vunH/m/NnR/Ojz7rbL9cXDfCni9OZ7L/cbTRbFLtL26Mwf/7o0cXV7TankQPP6s2IX/a7HDRR9YZl0O3zenFkTNHepN17q/Zp5lzNXg93eTuc1YvvQvXh4slFGq6pXw+padrQ1t9evDs5O7U+ba5uKdanp6c3Y39zd3M8X3zno+83OPv7/+U/yCgIASpWFZHctCxGHdMtjlvCcbwO5/VHv/39QMECY4U+MGeA2mOXIQ8guQ367NERwTW49/C0UKYT+x4/dNUD4RRwiA7GF34iFNERlLpJ9HDuH/gNdj9SLVpZZDZCtcJvFhRPLAYmNAZkMUCHwSfGnxfbClqyocDHW74xy7wMC2/H6c7+e2Fqf5QoWAE2S1lGFMuo7b5WMXRN2SQ8PZR+OLXpqk5YVmdGM5QHgojEIauq+umpBdxAAhEAEzMs9vN+1ScDQwJNqsUB1n8OF9TWw+rRgVcWSVYS1pAw+H0gktUgxCi5jF1E1DyoO4uCjuW7MOcJ1ZtuYjMbch7HFGME4mEYwPTFxy/aWa02hBBEqu2uj1XTD70mS5KZSIEBQMzIKZROCSpaUDqUvFMeODs0VdiFDiObTQ/cGUWmhlyyWrOIgEIa0jiMTMz+3cjTrwNy80IA96tEM3efJLoPT/NSU9DttqfuDQABQgg5j7PZ/OzRo7Zu7u5ut5vtbrdbrk5CCAAMls0wZRWVLKKAhZuKCIBZtBAnim2TIbJIBsLANg7ddn23OlqMMi31KWvFpveXpoC8+xf2wCPRZxm/VKaro5gYQsC6oqBJFccREQyQiZkp55GJx3G47cf5yaPTk+Ofv3m7mLfrt+/Sft+0sxff/TTGGJHbulWg3a4jJs324x/+WdU0H3/n45xk0bSb3R6VTo5PhzRc31wjx1FMAggCm6qpSyADcRLJSUOMU41T5p6Has8nv6KKQAyh8PEIAJSpIjMiXqzm8O5OTNCQ1POLVSWHpvIpp3NxBP3tRkCyifzCU46Sb2FkAkCb0m98nu2dl88OQqAsOYTQ9912t6tnNRAbAjNkyZKlCjWgeh4CUcWhnH2hSIc0pxQCEzXjmLy7MKWpMSykNwPyd54oA5jTArOMQNpUdRoSMgHCdrdfLJeuCSi1r5ucA/os3IlN6CJPIgY3zZOclRgisxkguLCfD0JLmIgKIgagbgRQmjHEYpNo5XREhyYmuncpoSiaZlFjBkJQUHdVQzQkpMCpk81mh6I6pCGJSMqigDKMwzj0d9dXzz4YQOTNm6/rxVFkePXym+99+ptPHj2fV6t/efb7szg7auuGdJsSsCoIaiajppoxjmoGWFLPrLSyYKY5o2lWhXEc90R1XdV1U1WxilUdK5++HqxZJ0yufIgIT27sh65DVUOozJQZmeOhAPJQGmb3nEIzIA6opKziOt6cyHU0E1RfelLVLCmlbGaToH7anESIEBHADLPGUA4zAxPxYTqL5u1207Y1IRMjmO52myH3wGiEmhXAGIMjyRi4UxlAZ3V4vb7+5On7n9anl3fXP716d1pVZ/PVmkEqXFTz6uKWNKcqchXzmCPn1fxoN/YRolq6Tf3XmFM9n8dm2He7fvskHL04frbZ3HW0a5dH7Uiv7y5Ozh5/sjo/6pqt9F/tNtTOl+3Msu72KVY19WkVqhiDsvxoXH99tzkP8ezo0brbXu7uHi2OT49WQZrLq6sc6pPFEnH5prvbpu3Hjz44jc2XN+/+cHexqptIcbPfI1O/6+b1LDaNGl7f3Ni8mc1nkcOyPv3Lv/bsR//q519evYaK9pKqEANklHTXDzlgqOnpafxLv/nrf/TqzxZzDYIYwNAEFc1yYBIgNUMOwTTA+Ph0wayQhaiCQou7Txs9HNZ2iC5itl+mdKgq0H3yMzz4lsMhePgJh61OzIoATt/BQmIQVSfYGDMxGxio3HeQ9x5jhkg4qWz8eiiRCAg2UaChpDDChFkK+FWrXq3hYavAASIGIGItXzD9QeBJWUWwSuWjULxLzeeJB0TqZFWbFAfKQAJ2j4rpA9rTdIxDYcIa2uQWWA5uowLKGRAjoAJMJJDDH+67XZSIjFBEmcsEKiOK9kyVYHbQu2SuE5mZd06qSkgxBI4xG1xdXy2Xiw8//uDR2en65qrrdl3KH7WLfshf/OIXm7TlwHXTDGOf0ojIgGyAZirg5nT3oieaBlUh8J9bVIhoAA4biIjrmZ3AqGpZspiaaN/34zC6D5SzScr0zN+SSRiIh8oGkUtlhT468SZNAZidqWoq91zInDMitW0T+Kyuqs2u67u+bhsvjFUV1JDIULIoTuxv87rfDECx/MmEBMzEJjkNEOK7dy8/+OgDUzOy6RchER2EZgXTmex3D/tFH3h7HtqGqVJnAsQQECtWMyKKwYBFBdR8PiqWiRkErtZ3KfVA1bs3F9CPL569//jsBAF2Q7/erO9ubr789tViPq8ib7cbAPvudz99+/INBNpu98M4fvDBR5rk669evnx3sTh7ltRMlQNlkGAGZkQcmABqQEYqPiiHe+UAYh3ebkLKWU3FLCmMJqMpSVahIVaRKuyGscZWFMkNBCCHEAIHMJ32f2ltAAhQfUE5w/dQRD78h6oW1KcMs83HEwAWQtxuxr7r6rZt27Zp23Ho0pi2283xUYwcTMtMxJ0vCUAQmH17jpPtL09V7ATPqpaYGndMIKcEFX2oiCJC3TR9P6ROKVDX99vtdrlYMLOKxBhzTjFUTDElyTlHClyxmbjVpt/fPlXMOR/m4x4FdlCcPCis9dBjAICqTCJJ13i7ltu3RjnqH5wqTARuwZ9N1BIAIyGgAiIg397diSaAlBPkYoQ2w1gZB83vfvaTn//Vv/7fOZ6no9Oziiwgy5h//IOf/Gf/6X/+aDn/lY++c/3yy5Nlc5sMNTMpE3r9dkCtfIdOgixTS+YTrOI1YOM47Pd7RJy1s1nbur+PH30AcJhhHQ6iqT2bLEmJnGslcj+09UNyAorgcM7ygbenBMWw268llWzO4EQ1sOyE1KqqY2QAN+zmw1JxlgBkQUAREXBjMAshdvu+64Ep13WbU54jmKSu2ypkYBDLgTCYGzWhqSlRZ/J2ffPJcnFydNJvOpwthqw3u/X8+PTFhy8+u3z1s4tv2sXqtK63fXqXEoVK1PZjt5o/SopDv42EQHwJydLuRVx8sDrd3l7T2L339P0e+Sdvvr7oNx+cPH62aC926zdX0lL1SbUw4HeqEOOY893NXdM2j88f7+7WMvY92S0P70bIVD1TOKnqO5O7btMuW9jKvG2v91vZ6KPF6gMm7cd+v9MWVoQfNYu14DYlYEQOYzfSoMdHR69vrm+6XYxWx+p0fhRoUYX2t379t7/8L/5fSbKhGRmxmkkC2SrBsH98/uh/+7/6X/wH/4f/3U/+6T8NECpJGcCIHLjPxrUgR0AmTl3/+PTp8aK9vkwVV2o2hdGUc6TUBt5Oqxp5qIWSgo+uXTluUiLXyaZMGbPJs6nc7odb349IYlZRQwohOEdYstcQTBQfyqYOczdwrKkkIN6vTucg0NT4oxWutC/ryGzqKWP+vXB4YX6YGhgW+AcAyGzygMZfmpR5K8t0f6a7816MQUVNM4BMmjE8iCygXPNToWbmWWjebfjfoqqACIQgkzoLcCrLVNUPHQBU97jACZJ6MEPJE4QLhEEFEU1Uk9sMpuQDLudXHq4TRMoqKUvTtmqQUu66fbfZ/Mavf/9otby7uxvHIQQad3v1haZqACHyzd0dmNRV5acneNwHKj64FWwiKPDkmeskcHJQ0Ax0iimaCltAkyRjSr4Id93Q7XtGNygjRjQRxOJkjwzki0z9IuQpP8AYyKCwtRExGgIYBRLRXDyZoK7rvu+dwEyR67rOkgVwHEVFQgjT0I1RlIAJxSNpDRBceqbqPpP+W5HAIBtojPTo7OTm6p1qhunNchshMDhUPN78wVS3PSwQnUTPD/L4iIgEGIlAswmgGEBDxFUEZM0iWfxt6NLQ5VFDtSUy5EBMs9Xs+LRjurrb5v2wt3E7drub9aPlUaxbM5kvj9I4/OhHP14tVwZwc3t3dvZo2KW73TYj1sfHRFTFeq8GRIzMZKjuhONgB2dJ3jQf+hzfL67f8QvVQHNKpgkwG6Scu5yRjTLkqmnqNmyyNMygFkMgxkFTpOAaNzAPayfAktKJTutTYUYxCRh8AqJiquLEGh9XmTslanHwNLMYYt/3277jGGKMhJEDE0HO3X6/X8xWgbhpGgRLeVRLVeXsMeQQJBlNsbWIbjTm63HySCUERVBU9aXJ01XqeeDGzG07T9nEBMz2u/1ysTCneJeq12/oIhfNWSC4aaJQjGBWVxUgmmpR+BcL+8NpZVNNVk4b57RVVQVmwGCAoGqWiTjGGENIY5nWe0NGzKZAQEYgqoy+2hEIFVRVnKV0cXW963cRBJC4Coq4G4bb9ebLb19dXK1f//Tl3c3+k4++9/by6uXX3/zD/+r3/vD3f/j1F1dM1b/z1/9NFV22zfFqXq03ZApoBMCxck2Wd6KErGYIxOxEO4ewQCwDQSBShWEYmHmTt9vNLsZYVVVg5hAQqarKjMpH52Yle8jMqa7k+ytLMjUkVBED8C7rYankjyUruLuPgvpXiqqainswueOtaeRQV3E+n1dN7dws1xNPK9ZExPWiBjAMwygpUCBiFT+RMpqOY6qqer/b3d1cqoxQoYuvkSIZjWnEEA1x9ENyHLLOnjWry7dXP5WL88X8uG76NGx22yhwMWxChFOaP4/ztF9fk+KiGQa52W9nzSynYDkFwj3I5TA+5vo7uvjN4+df311+efu2rqqjs9PtbrezPG9nmtIv3r7+6Ml736tOj+rxj24vXo69VVWEVgQzkS7C9c1NRoC2FaKXYzIbX8zqj+ePv7q5+Oz2zXkzm8U6W7rqd4uw/A14xKif37758e27j58//6/Xz374+s2PupvZo+PONIDVAtvruz0Ir1qRZEN68uyTENshw8cff/qXfvU3N7n/4uLVRXedpK8CxBhzhj3wLfDnP/tqlRd/53//twLl0cQyeJgWiAmaESgSpkyicNziswVeXZhxsKETUjAlgci1ggmSmZKYBweQkKkagvgB495sMFUPU6chpurCLEBiZApM6DxiETEwJ83RwVoXNIuY5hBCDMHdvXiyuwBE85rGGCefVAAz1MKNJvCAFpjGumDg+RklJAoQTN0oyAwQeUr2BisaK5tGYFCc/iauiX9eHYqyCXJABFC36E/JSoxp8Yko97CfGZ73qFrGZUxEOhU9pgogpj4nViMBlawBKYsERJNMTMTeTyIRBqIkSVXReYdlX0EIFQCMY3aMWiSD28KiAbFbv4mCmXh4hJUhGtUhasjMkEfZbLdd18VA3//V7zw/f+/y8npsln26uf3m82G4e/b0AyImNtGxbaKMyIABQ0AyNXUrDlVSZX/EJVinMKtoYtF7yUaIbkltahjYJkxuYm5hyrkfRwxsjFQx1yygiBTYZVOMCKbCk5u9mRq6TSUCgNi9CayaoKlkBTQorvmQUqqqKmfZDX1jDqPXBkg85KQAbhiuBgKoQD5WATb/FQbkukQC9OUEKmIqonm5mNV1fHPxbhxHBCZiN13yGpeYzTQwO5TuIb76YNqFkyv0wUmynMWqpopMiogUADAERQVAFEVkIOZYZwiETFKF/X5rzIAmOd8Mwx7xXT9UzMC8N3r69Omz1TEQ3q3vrq+uAfHR+ePH54+J6VnOu/X67etvFsfH7ckZtksKNRFQEkHg6FF0FOtKzIZxVO2J2RHHUsYZELMr73C6cgAg1ExoLEg5Gs6hPUZEgqrhdtUstnd3IYAFFLeZxqmq8ARlIy3lhqK/3abgZj9aJjiAaJgNTcytCcignCExVv7ygdiAdvt9HnU2a+uqYiRDmDezPObtuN/vN8xIFEPkcdQhZ1VDwrqqCYCrKiXMMoyjmKIIiCiiikygjxvFmACqc5WIqcLKIUA/Geo6rnC+3u7FrOvTvhtXy0UaB0b04A7Xk3JgbzJ94ChugYFoiGnIAMYhuFmrl4lqwBwcrshJiIiJ1AA9fVnVJj9lz/EQEeZQzBH9HHXIlkhFKSAYpnE0wMCByIrFjmZEY64327S+62Z5iFwFAlG52203fb9e383bVobb//V/8L/5b/67/73/23/y//yX/+r3by7ezusz1XjStpu++yd/9K8uXr1Zd3uAIRiMGSkEJy0V7Ep18tC2csgzm6kRgLJLdEUViaVwvXVMYz8MwTPYAdwmlKgY88I9V6wsHwBz9RcR5UGYyFTd4Nv7qpQljckDgHJOnm3sy6mQPQhhckQkosC4mM1mdRuryMGL15zGkZiYgyPuKqJmoErEGGIkBvAknlQF1pBVR1NNY95t7sZxj5G8KAWADC63BvZ4OVMNIXG4GPq51U076y0z87Kdv7t4+frly+Xx0erk0cV211Q65/qD9ijJfo+USIZhh2BtU+e92NC385qDXQ77NVQfnhxVOn7x+pvnZ+cfrh7t4+zzu4ujrjtW/u6T9+/W693ZbA72gVoPucMqR84G37571x7N6qPjvN/rmBU5B74iO4oVbcZFvVinu5vdHTXtKePZbBH3+1w3q2Z+HuZXWdebvXV2XsXfefTsj9bvRoJYtZ3q5X67rxGEK8AWa87YbzuGMK9Ofv3Tv5zRPh22X7z94tt3X13evJYsdag01i9f3/6P/+f/y0cnR/PFkxBNgFj9vmMEQ5EMqlbVGVmpnlF6cdr8+ItduX6wRIcHiIak7nULJb4dpCDxxm5SjM6LcKmA7zQkAMu+kcCHBFgAEBdqMRMjqQEbOSYjLl4FiCEE4pwGUA3EKgkBJ3AHAUotTVRm2EhooIjTILYwtEtKdKT7ohtKwQLOH3Q42hhKJJiVbhwREUwNDNX9RthnbWqBQ+Bqgne843duOHnwWRaxrCGwmKhklUzklJWCoJkqGmqBQhyKUnG/OFAgBkOPNEXTmn2a4wFp7DWSWkaySZJQyFV+Vvg0bRqvUJZkONGcKFjOZmXruioBwBzVms/aQVLXD6ooSU9Ozs6Ojm4vbzDHtmpnq/j+hx90G2zrFgCqKuZxTJJVMgBSwEBRTSgA33snOdn0gf2GCBIFIn9ebkLgc0IjQ7OStWWFuYkAOaUhpz6PgyQlNRTiMLk3+UgFRSVEnjDFDBSZPBJep6FBKfU4EIICoBefIQRVG8cs3syZuHSxqiMh5CApSzYhBiSgwAwgqt4Wg4KCqYlbh/otq6bgMCdoFcNut/v8F7/YbLbL43MzUynJRQSUcmZ3klIEAAaQqeY7wPX2gC2E90lhZY0CMQIxoaoFQAMb1dxgTduac4iR9vtusVymnAAgA2CqFbQHtrpKaairUyZ4++6CAnd9f/bk2bPn780Xi/1+Nw79m4t333z15dFyMVvM90Bj0ooCIsWAoBAYcoYkEgEkZ9XiNENwT3LK2doYgBHQYgyqmTmqWi/9kDrLRtp2fXWxpTpWMVRoYVnNWtyAZacxAwAyMjteQZEDIozOO0UDMsvKCAwEhoSoWZEBAxEjBTCHVAFEs6ogGmJtBoiGzLvdrh9SXVWzpq1jCEyillDbph6HoR/2TVtzgEAcqypYNYzddrvFmRFziBERQgiuYk5J6trva0V042Y0lQI8ME9cyeJ9gIgiSmQxzhVos+v2u93N7d3R6giBp8IOOAYxMcjEAcX3tdeRZohZNHBUyaIWA5mBmCIzAVsulT8a1CECQMriZOisaljAbSIkCiIiWU2FCJmDaz8MwNTE1N0+UFHMUEpwqCVBR+O42nbSjzYDVoFsOcRQVc0yxl/99Luv396eHx39s3/+h//R3/17EmbLk1lz9NSgHvb9Tbf+8ec/v95cXLx9ud7uga0iMQ0ZUFKeoGIwNUUffYLk7IRvRDAxAxdXUohBSUfJouoRjN5mjGlEQskjIDAxEJm5soQ9fodctWGmiIPzdRDRFAlSHpkYDRRBRGKsTEARALOzv5mQiDgE78SZvc2jEAITVcyGMAxDkBBCQAAf5oOimUoS9TE/oeaMqn7rgZlmBZAANlrOeRyGPo2JGM3ARAGDIRgQoHHwz1pABIAh0ttxXLF8cnI6H/q7zaafj3lW3a33w5DqOJ8H2fTD8nj1uJ6tN/LV7QbbqmqqYeii2bxpsqkmbebNCOPn3V1K4/HR8YvnL/qbuw42HEPD8e729smT9xfNIu3GH7366uPz808fnTUy/MntVd/OtklHQOlzO2tjBdLtF20lqJvRfvzu6tNm9bSZPYF82992dzffffTee4vj3Wb/xetv1rPjD0+fHMnyJ2++uqg333v2wYmE/Wz1083tDtMN2r4hAgspn82WYITADJgH2fep2yISLMLy19/79Y8fv3hz9erlu1e32zvId6NWG55DJq7nAbEEpDtAA05XIVMRdHtksPfffxL/9KcKQ1W1KXfMjFHHLISoIAbAh7kDIhK5zksRjZB9buQ85mI0DAjok4kJ1LWc5QD1k1+EZsWpxwqBIFYxxogIJSzUDB1ALt6a8P/7MZ25zn4mD1d36ROAYQwOeovzQNR9eRgQzAQRAhy8HAxLlWbg56vAPVHQ4PDrD7UMyBTLPGn+C9g/jbFxqqcO0gMAEJ2yLyas4tD5ZxFVI6ZhGKInM/CBrgiBAwLknJEnrrVPxUrcqZXkr8lZ361IDEQti+bDsAwg+7f4jRurWhHHblRlyVnEHp+fr2/v3r26Jmy5bp6+OFnNThszprCYtes3d4vZPPWZOcRQE3leKKADTuDOijrx6O+fmE0+UojkCmQo0yR03b+YimQXV6lKSrnvOjBr2zogac5UMZGJJASaOqiAiCklLzSnnuzefO/w5HHiTqtCVVW+PLz6MbNxzJgw1hopVqECyq5sDDESEYKiBzA4XuUsaCA7iANcIgiQ87hsmipUiPL27duLy8vT8+e73baqIisDqogwsYrr09yt3LT4bN/7IuIvqVTswAoqo6UiRfHiPuNDrrRBVVUAdRXbum5cVrnbLfb7XZZUV0OsKgCoCePYq5GYVNWc5qur7fjt5bfjmI6Wi6vt+NXbm0/mR+/WPR/Njk5WzKxAIYApuOWM30DMrOajQg9OKqNeb4nNjNhjMSBnUU1D3u27jSJaqC6u9zfrxEiE0LbzPiUMZCwEyBBNgW2ijjJ7Ilj5mcVnF5DItODBxAFAVYSYmNjIKwZv0hgAcs5eX6vIfr9PY1ot5lWsTPMogojMoW6aquu7buz7jgOHSO5hrZbHcdj3fYwBCuISDN1Yq4oxTB4fqKpYDN/DYeSBiG4vAgAlvwvRwNq27YeRiLp9t95sjpfLvtsjmQfHep9VQNOsWPI70YmPgVkRVVLKmQMffjsTgrHf8Z6OVw4QcgNSZWQAUlM0qGIjKoeD/bDSiIgJUQzJ0egsJsxEiEpIHHIeDXG32w9pwBZTl0ygCZGogpyqKiznUoeb09X8Lz96LM3iJ7/4ogNKQ08QONTfXG22SSRJbJY1cbfphkGqpgWClEc/DJHuKTsqGRCQIAQyUKIgzphUTf3QNHX2h+wmnKJmhkZiAgBGXkKUHSQiCEDEhYBJGIJvZWMiRGOiyJw0zWbzYRhCYBFr2jZy1CxVXfn7GEJAdIuHiIheYCEigaWUXKHT9Z1kmQSe/eEEVgTiaJo9tQAPXayaqZhZSqOquna+vOGu80BgYhNxvJOZALQzkQrXlpLpgqtvxl2Hu9P5cnZ0dNvtHw3V8/boRne73cZm7VlT7a1+J8kCJzTrB57xbLXabNYyZGD8Ou+F7XfS8Yfzs1fb8Qd3r89OT35j8eQt3n01rpeWZov2bBhyEjidH+/DEW3e7Lc6mxEEENlvtienxy3Hfd8Lk6pqVX+rfdrn56H6tD5nGvpt6mPWUU/a5QD6Svczww/Pzr/p774dblnxab1ctavfe/v1OENDfR7mCwMzW6vuh+HV5ZtIzdilEXoGUrFhTBSrp08+Wa7eX/d3n739072shVWNj2arIOLeGAhW7kSfSLnGCU3y2D85W54d0ZurPdWryGaQPGbbjDlnM8goAgKmDAzEMCWCTqAilELGik+c0j0DHyYY/8/fiC5zRVLNqgIIYSK+2QTK+rdrSTmFQxnx8AfadFdMdd79KJyIRcQbslIhGBoaoCL4kD4RErOXRHioqRTQJjVZeQFuTOQ0TLRpiFYy2O8J4ACuojx8EqfCCkxdJ++LW1R8VPfgL3VW8phzXh0fMVFKqaor/8Wu70jjWDWRiME81KzM+73MRURVcxcv5NKzaXFfLP/2s7jMxcGMUEH6NCYRkT6QtI1dX35tOXCcD3ew694AZbI4a2dtCLOqRoDAQVXUJIuxIjFyQHMH2/IQPYmwFLKH8hERSjKBqvOYAS07NUfdxRq9CNjv90z09P3nX3/9ZdfvT3E1jikGRECm6AJjQhAtjsvMjMiqJjkdoIjydnqN5qJANSIGEACqImVVD8RQVVHSyhhYPPPC0P3ujJAIOEQDU1ATVQAtzDQf8COAgAqp1TFwADLc7PcXF29/5VddeYvE7Libh7JMerLC25hqZfxzCxsmzhw8tFTG+71wYMWyWyUx5ySqRpHNQEuGHTmtMi9yXdVIGAmrlPr5pht6EdmpRIiLxx+cBGqbZn7+pD45n7fNfLmIi1XdLpNk4ogCCBJiJDZiijFo6abgcLiXS5ooBC4PfCKqqWrOKasooFIQbEJsq7pFtWQGASlWg6RAk+umbz0RsOLRoC67Kc+dVNUEcArxJgpjGkTFzG2HIgIBFKdQmOLe+n4Yx1RVsa7qLBnNQmA1VVH3GTOTcRzjMNQhMiKAtm0bY0hp7LpuHIe2nVVVDYbkNcHU0kAhOxIVJ/tp1FLU2e65ah7WAOhrbxDNOY03N9fL2cwA0ACZSpgPgcFUJJd3EtHIphR0QHaas4iqiSiEEIn9jtRhzE1T+yHgAc8EKFmIEdTEjIBU1IduxQURkRBjjFmyTF7mDhgTMaAebKOZQz9u9l2X6phFamoQmSnOYgOIhDGPZsivbtZ/9vVXOuyShbqZI9ZJQQF2SYcuwX5kDP1gAI1mSjL4hjiscK+kk2nx31Iwg5xHNetFmAMijuNoU0snImpWnDvwcDWYTFnRIQSf/TVVvVgumbFuQ13Fu/Xtcjbruq5pmiqGMQ1V3YRY1VVtYEhBFcGgruucZRgGooOcFsaxEODAtO86ET1Ychfu0RQP7LtAVIkLKFRKHH/3tDC8XQSDxYQKaFI4Ozo34RlmYEBYcUVmr/OeNpfPuLVZO+burh+Wi0WTxn7oj2fLs9ny5eXrTvYnR8fvz1f59vI27amKdQBJiebtbDa7vb2iGGYnZ7d999PNJSWJgk9WZ33faw112+xub291+xde/Mp5e/zFzauXr76ZVYuT5fHZ9u5abStDRQECb3abVb1AxZwyIkLEndn1ODyN7fNqeXpUfXbx8qdff/PhB++/d3L69ub6s5dffHj+5PFy9V6NP3v99ez45OnJI8p2uly8He5mgV80i6dt+5MvPqfm+Lrb/uCnPz49ejSr5hQpeZ1AISvkDgnao0XzazN4t311cXN10i4/PnsWzOkZRAjo/H+/4XPOzBQQTPJy3r73pPn27d0YHqNxzgkIQqxAjIAFTJxbYSAiDIgG4um4WAodn1AJAmrhM5ST2pEb0dJ+TR3GAUvyrgimmEMRcXUD/rnsiweU58PHw3bZB1im5HxhQueeTdUAePPuVBv1mV65n9E8a7Q40BiYCqCVOdGUdG0GeTwYRCIGBAyEVs6LXCCWh8jH/cv34mOihz+8w0qBBcX4WFXHMRHRcrmsm8YrMDdL91IphGCmIkAYQErZhw/mX/7BzKLJCtbtYxRARFSUKdLPO8J92hvZkHdd1xPIYgGRtjfXt5jZrDZs764TBmji4uVuCE29bOdJdDmfS845J3f5KjZ1hjGEwJX7JBFRsVGZktdKrwnWD71ZyTkSAwGykqEChpokd33f9/vz88dPzs9/+Kd/MnbbF8+f55QVVdWoiYimmh14iZMG+z4J5EGJTERIRkjAlpOKGBEjEjOomgzj4R1RgXFIkdUQi+1lFlXnKXNgMgCBLAZY7MjLmkT3ywarm6ZtG7e3Hvv+9ctXPtnLklgocCRPIylRasAE7KblD9gPh/dxqmjv/aNtEq/5X3cwDfJV5rX1ZCDkHFj1lFTGaLV5wVR2nySezWG3N8RQVbP5LMaq7/a95Pp4+et/5ek49l63DSlnw0Uzh5RQlDkiTrFKiAioIsgB0RnwoYxdCTigln3vfN7okgeFPApmoIBxML/Rhbni2KJbn2cQK/jP1KkTmjFAkUGWXoRLRIz4O2hEVGxEAQDksAgMkBCZuR/G3baTrLN2EetKUg6B6roe0yg5mQETh0CIkHPOKhwZQdH97iEiwDD2XbdX1bpuYuT9dsuBimAQwCsJlzgAFCsjAiailMbs4bNZc8oKNkru+34cegC8vbk+Oz5aLZb9MCCw2xQxkhFQrEyTZgciy1QbzOkAKM4hMw0UCEwkm6qCMDEjqokn6LhEFBHBlDEaRT+oXcyWc3YuG+hoACKGGJBAzRiJiM3EnH/lsu0sSJRFxpyQG9FkZCJqyMhR0tiE+sNnT9979uy2645+8IOLdf/5V28ubzfrbqfAoYm3m9HUJMu42z5+8v7i6PG333xbNU5w8mXj8M/BTwGgWHvYmOTo6MQMhrGrq6qpajO7uLg4Ojo6OXns8cmA5l+s7pQ++Y42TePb59mTp48enYuOdc0m+ZMXH52cHM3adjZruq7b77v15u745DRQ7NN4u17vd6PX8f3Q7Xd7A0hp8EnAmAa/7BEADHTClZl5Npt5LLSj02CWJSfNlkYqw34iKLiBd6duqWVmgCgqpXw3r4YMfBxXHFktxthiwKTrCBvbbQC+e3TCN3iTuiqNT5enb9fX39y+fTY7OTs7uRrutpv1qmq/V62+GtYb0aqphyQ365vVfLWcL8c8YLIM/HPsd9s3/43zj36dqpfXr//l9Tcn88V3lo/f6XCxWQs2KcaL25uGeB6XH81OZHud2TIbV9ztuzzI0fwIdv2QhzymJkQhuxmHIa6262FeLe5QXvZbMgSR9x6d3/ZrjnZMzW88eXGx2/3w7Stp66aKL+qT3W5b7fcnTfs0xq1ljTSArIdhyDhr5lT0RmRqY0qiOQjWNqt28w+WR7/2wYsns6PgHDJ17IMwAJqaZkVDy5kDA+SA6eOPjv705zcqiZTRKFkGlYgUOSQ0MWA/s9UAIGtWMUdlJ0qJ4xzuCkOK6mb2pJPgaBIBehOMWDJ1DyVRmZgW1n1xhdYpa/fPgUkHo2Q4ZCo5VQgVHC0kBLAxi2RDF2p4EVVYS4iAgOyMC7cvh6IXBQBUBUMl85E4OgF2HIvrfMoChV5HasU3Aich5QOdfPBDsLz2Sb96QDpg6pH9V7vTkqOp4DMvQlUldNFRoROICKIhP6x+3I1IsEhjtCiu4IDB6OFZ2YGn5ZImovXdRjO1cdZtrs5Olx88Oc3jnSRTQTPps6Q05nEg0f2dru8YqcoGhkgKzBzCHDkys0rptg8F6+H99cupPFwAhDLdSCm5mYp/8ZhSFtl3+64fVGA+mzd1PD05GoY9koWKmQERYiAiB8MB7P4X+UKgB6Vzab29IYcSheYEIAAIobwr/vQclDJDVR0l9f0wpoSIIu7AaQUBIgAkUisYuwqoEpiJtItZIJI0ujf4t9++7PueiEw0p+xqFsUC5lEhVTOWBD07LGaaFGE06ekOVc4vdQUT0QomgqeZMYUJKwJEnDxtD/li5FSV/TC27WIWas/jyET9MCoQh3qfNTIYVm6RbGQhsiKKGXHw9VzWkvoUD5jITecOFRsAeJWJiIglrSUNNvSWRjMkJRRUlVSF2oNnAYMJZyOfiwUKIQTJ2R+5o9iIRKYyNVEUmIAAgpkZUAiYJZup66d8CK+qCGQKaczr9Wa/39d1zRRUwRSyCuLg8RoKGkKIsTIzMx3HIUYux5QZEM2Xi1aa3a7bbDZu4kpME8JUzijHdzEU+YQRKJqaZAMF8+YDPNLLJRVogTmlfH17uzo6IiIiPPjXmCoTGwaFklfuXh7AlLXEN4pT451Hh4gMkUNKnidtxFTM5V14aG5eyqYgqsQ4jmMIAUqLgqqacw6ByW9ZQEbKpjkroSFT1pzNAqIBrLd7fXxshuM4MLGhWRKTLEOatQ0ArRZnJ7/7b4paP9pnX7/6wWdffP3u+tX1LVdRDPf7fn7y6H/yP/2fff7zr//D/8t/WCMToylMsbaHDBkJIbSzNuckkn/1e7/S7bubmxvT8PTJk8Dh+vq6qqq2aVerVdd1OefAwTFfIicSIBNVVajq6Fr5tq2zjMPQz5qTLkkILVMTQ5MGGDoliGBxc9etNxf7rttsttvdzieqyXn9JbIJskjOSbUQsXOWEIJfCqa22W6wiCDAiat+1BCTSxrBzEFob9dTSgfgzbT4vQJ4x2UEiGrExEhpAklVDLJpxSngBebzYTjjhkJIKY81LhfLd5eXV9XueDGb53iVdqfcfq959Kya/cn27WvpxophnxLHeTu3ve26HgPXodlQ/lf91V9oTiuOodfA+vTxqe3WP333+tVq1jTN0dHZ2/1aQj2j6oPVSSP9S+269e2inu/F1n1/1Mz1tmsrrkKoqniX8j+8/vqTZvVpu/r+8fLnb7786durX/3ko3Ouri7l29cv++fvP5+dnmf+wdU3+7w/q5fPT45vd91+t8mz5v3l8Vf9vg8KMQiTcd0lRoVZ06hlQA2Mkodxn99989XRcvnRBy+erR6dtrNg0zWIaFTS2t0ch0XERADVtPvovdXZiq9vJYQIEjPqKImIKzT2lhqMCSmwFR6oknMViXzqVEg/REAlhxkmo5cij/KfYvaQ++IXpJcOPp1BnHIVJs7QoZu/7+z/PBjkm/2+75fsqcJm5tnX6O7LSOSzIZiiMAD44bQOAMCncqKlTS+ePuqoCRW6p5sKJhc2+/f68vX/9MLD/0C3o1W7x8nlwMgpniXTyAbRDERku9ulNBLX92gZoivHvGqB8hRsekpIhCLu6Z4ATOxeyTnFhMEBnr1P3RBEqKIRaGqZ3zs/OZnx3TByxczYd3nR1Ko8jt2YpcrQS8oqeVBE6rqhrlttA0IFiqrABMV2p9QlBx7Yw7ucDqR1B/wmloYMw9CPQz/0WYw5pGGoq+Yv/IXfePf2DRIwceCgCjFGYlI14qCSc8pUGBKFGeNP7AFA4i5K7AQpnBhaImoAB9UrBwaPpc5513X7rk/jaOYgdFm8QEDIBJhNPZoHTU0FwWIMbVWD5JwTxVDX9eXlxXazWaxWZeGrZtUYo68zETUFiIgPyCIPK9oDhH745GG/HEqfw9L1irvsFzcuL2J7OPipePKGGZppVdWj2K4b2tnM1MwEmVPK5ooVRCBSpJxG5khkY8o562zWlOpqYlaREZJXjX5Y3788uIeyIKVRBXKybpv6YQR3gCMVFQFiYDBgCAwxUATNBhiICTGbIaCK5pSQiRlhouuNaSQKRRwEBgpI6NcGUVAxNQ0hIHrKFfVj6vYdACwWC8KiSLecvZRRADdsmTavDEMfAhfLnxBEJKuiQds2IprS6LHqvtJSGmOs/G1KKYkJIoJTgXznuvAIERkDRSauLO72m3rKPN9sNvuuC3RPKFTVNCYLCoCmisXfGa1YWXnUF2YRNDQnLXpGLJNKxgIXUUHvDQCFOaJNdCIkJDjEvBABou+F0rmoKiEzkxiJZu/xJLtnBxGFy4vb/vljBAQ1dxbr+x25kQkihzDkNI+hRZCgx7/68Scfv/h7//if/eLLL9vVsRiN/YCz+v/6t/6j9brztkXV+dwcAjkd0NdP0zSPzs733a7vd4vFIo1jYN6NeegHnvHt7a2qDn33+uXLm9tbBFAVZAME5sJYRUIOfIgvvL65DiHEGK81mOqPfvSzs7OT7frOZ21d34tqqKKZ9f0oIjGWCFXfSsMw5DxSGSMUZxMDKCQhAQ9sLgOv6WYxRGSKRDHE0iJObi+Si7G4iDirOkH2gcREOkQ2Qw8GZwzGmUBVk6eSqQQNI8Kr/d3joyePiN6sL1/fXZ0vjx6fHL/d3iLkk1jNlkdh38Uqv9/M18P8dX9Jy9l8tRj7FMYuhipmQOSacQfy4+EWU/pLyye/tli+vHj71c3lKFbPZ1/l/WqEs2Yxz7PNZr14/OyUgu7z9TAAoOUUYhz7Pmv8+PGz/e62y2Nm6vPY1VZRf07z47v0nJYXC3r97o3NV4tYffD4+RfddrtNjcTjx+fDbpNTks1uaSwEhKigFLCeBWDtx47rNkCNRqMZAwbmpmqOVm0d+OPTx0fz2eJ49tVXP/2Dbz8PMFnT+JRBwJhYzFCNOSCCikruHq2W331x9s8vb6v2yZjECDmgqmo2DBHRCmPDWA2IKCJNbasPZyGEAGpJhazQknGibZpnNfhZAGDFidAnPxZCIC54jy8CK4FQLlVQ5ns2a7kSpkqo/Ey/84ym68G/TMEMkbIagniTaoQOOKoIgBEFAwR0iamfWTBhNniwTAzEKsXxWlV9yKAmgBaYzQTAdf+OLvjZUfrvlO7pQYcXPBVbKJJFCtnI2f8i+fC4ih8MBUQ09zoCgMnM1MsIm8q+wz/Q4aaJC0VEzKEEjxTQzrW7/mVsgqQ47LfPThd/4VdfoNy0Z3MAMwFtaBz6/dBTGBklMFUW9qMQghpYkqG/01SbLVISDlFV2FOqmbVoYbyAK5iww72A5AaMqs7OgZzFkFJOXd8jsFoCxq7bbzfb5Xyx+PgTkVRVESn4M0BEZnSFBZqJlDkgljUjUxmNh6lTFuuH0QxyVucBiIipctHqo6pmy8M47rt9PwzjmAiDESaxSZmMjKxgTtJn9J8MYgoIs3ZmJllzUQAgXby7vLy6On30qB96xmLt4zXBoeTCX+a02QM+mU0T1cNErLSPRF4bqerUORwcbynnVEwTDNUMUJkxjWVNOn5ETEisObVt5Q2R7+IqOnFHsWQIWKwqVVPJOIGXvm4NlDlqPlzVIqJt2zJz1/XTGEgQywxaRJzsEplAhSZ3u2IbrwhMq+V86HaIikhGUM9nkg0MQxPGYaQwubkAogEZcojmVhLICD6rIg7BmTd+DoioG2Q0dXO3Xu/33dHxEUybhJnZEVmzEOlQuk154MXTSFW94BMRUjXAuq4RcbPZ5iRuOzSOYwh+UpmqeBydD6xzyiFEP7f8hwePMUacN81WxI9oZr68uHj23nvd0Nch+gvgwAYQGImqlDMDMPEwZi/W/NyrYhxzArU6sCG4e0LV1F46j2kMIRIRGgamnH/Jc9zM40VZJNvk3aoqkm1SXPrArpylKWcnyAFAzjAkRGxSGppIY7/NIFChASuEJNmMVCmbkUFK+cdffP6f//4/+eFXrxCrzWaTFIFiv7v78R//c+CaqjplRkIiLpcNYt02hAgE508eP33y9Kc//8nVzU3/ox82VW1qMYbLy8tD0sBmuxHJYO4OwMTh4VbydmscR99WrjgLIWw3vT+x2/XN2PdZxipUhkBE1kNOikTMlPbDoXfKOSO60aIaYoj3kaseketf6R5FiDhOFlll84pmSr4nyvlMlKRwINmT3XzJOU3TmWDlDwEGBsAqIoMMWYZIXEfuoRqkquPI+k3afwDVrGpu0ni3Wz+aLR5Vs2Hoqvn8t/j4cnP547uXT9uTp6H+rXj6WbcZltUAedyn8+Xps8Vst+8vhl0ftK3q133/kclH2tJ8/sfd5Sq2i/n8qIddNwSIj2erjpvN3c0YwqKuvlMvvxjubjHDIMdxFcBY0mox2/Z533cLDEuqbofuHwxf/ZV49jtH58/D6Q9ef/7z7s2vPHtx2iyub+zPuhs6Wp7D8pPF+dV+/fbm8sOzs0dhcfHmHZ8tJcg4bGixXK5O+u0+xkoyiECIbGDMkQkXi6OTk0VlEOr08uLlD7/8cSAKIgkAOAQmR9HMDMjcssaADFWs2//F77/4sx//yb6/49gWL44syRz7mLgkRq7vcuYMx5gPAoecwcAxYZBfYjEfmhU3jwI/98AkZyKahM8lM/VwDE1Ivwd1wYQf4HR8wS8vbgVJjs0U+yHilDKAA+dYYMTDrYuIWCSNfmD58nLWz2HnKJYcxaxZVQGNCNmBNPJGTFxyy+xW9V6lsfOv/WxlrwI916NIzcogT1TA06qBbEi+Q5g5huBSDGTKIpYTwZQhWu5F54Wg/ymH2Za/gJyzw6fTCMxHBnagW/nAQkXVMmgiyKj77774ztkShn1SUnJNL1qe2SpFxUoMxkybQTfboc+WswXAYeTIFkwyEiLWVQ3FjPvwi7ytLrQ9RBLJXuQ5Dud2YQAw9kNKo6iEEMgojWPXU9/vQ2yqqiICVQtEnjiRJZsZkiGAlOg6ciDMLTcOp7y/a6owjGnoRqfb+6SykA1zUtGcxcGzlFNKeQI4UFRzTgAAjg2YimZ3ktLsin4hsMBcxaCaTMQMZAAKcb/rv/rqq+99/3s4UeP9aCuL5IF48FAW+4r3o9ke6L8O9RxPMIB/6C9LxlSzo35mnv5hqkJIVV0BGBYHhYzoeSzGhFR42ApO/UckK77nMcacnWYcAEEmi2dEyzn3ZmlMRMXwKUYkwpwTEfg4wJsdR4bESzcQpsylPiPIxCGSIQEyYlPHpg0pZSBGIzWbehVjDkSQRZEoEiuopDwtrwCAIiZmIJ6o6sGoZabMTG3b3t7ebjfrWId21oTAPhV3GaA/WC/XHBVIYzJTURnTGKuqqqIZqAiUXKkDRZeHfvTxt4NG6AoJp8WDux8RYhlP+3t3f8qRzZfzqq76fhhHSinfrtfz5fLs5KTrOld9+v4xNbWSFofsJ74/5NITMrN5VIZTqvx1lEVBkwL3cKyKARWXLCyVgZlySZsyvyy8hxTRyckKXI+WJKkoB0BEURwzxlARmWlSyJoB1AIHpdAr96Ny3W73+f/zD//Zf/FPf3+bzeJ8RINYYS4CPQwMiISipmiMhiIFKnbq+mw2v7292+122+2uinXf9WlIZiYyiggeJgoIxOw6GDFxoAsejIxVdRiGlJJpUdWM42iEoKaq49g/f/7esyePb+/Wd+s7Px3ARWSSyF1PirmllTJXMwKSa6JNS2IJepPMh37e/9N/Hbm5nRqhW9qDSE7JDoNjm3gCxKyucvT9DmAElkVNK67cuTEwC7ESNk0FQxJVQft6f8dxdlq35zi/3Vwpxw+qBcZZ2gzjbIx1Rd32Gm7fO3v6PZsPV+kX2z0AVU27G/bz2QzM6hAYaGa4Y/iD9bt33CJTrNpbzWByFKpaacipn9uCGnq3u8XewvykbtUk7DZDXVeRaqDru6tQ0WLRhCw1clLZmRjDL3TbDuHZBp4tzwG7V5eXN/N+J3ZydPpmu91UsVqtmirmptr23fO2rmJ9rTpA+urLn/zG97+Xc/78s88fnT47Wp5AELEqJ6tj3caljtWoGAnT0DPS6vQ4OBfMCwkBvwsDACNOWVSGaGDD+Ozk0UfP25/8Yodh5pIeIhMh85BjsmxAJoQhohvNmU32msxsBetDyZnuTZD1ULh4+WRWug9TV8ny4cseVjaHyZcZ2YPZ1vTT4OGHld4fffCCpB4sd+DuebolTG2Zt4gqJiDZcggBDU0B8GC6Xz64lBSGWpLAnW3sfF2anMMA7mW3UDQafOADufPVw3KkJO8I+gTNpe9ZSkqXn5WTspvAVI2c8CUlLYSYo5/gfv46Efvhlcm+f8AFWVp8xdCFKsEjplVzSoPpmMeujfnF+ycRO8URmAhRKGVNkZQjJgE0NrKWlWZhASTZhjZ2gwiaWXIeBk7Ks2LVc4/noz8Kp5eK+lymgGSqIqo5Z0AyhZSzgeUsKtb3Q1VxCI4nYd8P5OMTAxU1MiYot3rOiKygksvjhUOsBFnOtt/tvCD2U2kYBp2qYVUVUVNLOSXJpdAlEjUwrKrKH6CHgpn7oBiqiZmYSCCo64AIIoAASJxFGGgY0uc//1n6639NVWmarRihZokhIqKauX+6/nI+xiSrLhvnQPR52FH8uV3z4JS3CYMsZLJJBWPuhOTnNaoxogIyFoWQ+xw5OY4Qs0gakhUhNjj6FJhVdUx9IKqqKoTgYBiUcx8ALIQDj9jrBUPEMgKEEUiINSuRkhoSR5Riq02MTRP23SZQi+inPxogAScZckGsUUwRgWNAcxawuj8KMaskVfHfjq5JNAVgRNxut1nSanFc1VEkqyrFyK6zMkMiU/Q+ra7rYRxETEz6sQ8xBnfTACw0QkQiQaK6rod+FHFKjLrxd3n2CKDgIYGIZIZVFb3UCCGklOq6UU3ENmvbcbwYxwGQqrberjcnx8d+RooZE5jRmAWhDINyThQolMxgKBwgIx+zkQMmgGCOiEugaGCRg6iYHVymAMnp9/fHLBMjeu6dhsDIpBnUMoDFqbVD99FBQjUC3PfjZj88bpsqomTNYn1KFkmQ017qer7V9PMff/4P/tG/+LMvv4ntsTDtTUJbpaEHrpyvR2hgRgTiZxQpTINsVe26DpF2uz2AMAWqyFl6ZoYUD8sPUBHogFqZqZvO+pn58DLyqpehzJ1HGdr57OmTx7tu+1f+td8+Pzv7/d//x6pplGFMKY1jFsujVqEBRXXPFj/hTNzHhc3T1RDJE9zgUM0cYB5XaDpHwkSqED3Lt5xRen/32WFTPyi2vV1WMCb/O/2iNYRsakgc5rOM0O13FijU9EXaRaXnEmaz49z3ZyenS+I3d2//bPfq9Ozk09mzX6wvbqw/29MLnnU5XzAMmpLgq6s3Z8enC6E89EHsjvCt7r61/tfa89N+/nrcvLm5+v7p09Nm/nJz8+XVm+f16v1m0eX1zfq2nh99RO2np8f/cne50V5lzJZRYJnr05PTV1fv9ppWR8uY9I30726//bfaJ9+ZnT/l5Rf9qx+/ebV8/l5M8N3q5JLGL29ePZ4v66Yad/vmqJrNV1+nu0GHOtCf/uBf3Nxt97vx9bsvz44fPX/vw8en7zfNypDUGLBWIWYYhxGyWdaAakRkRDo9LEMCIzVCn/uYInIE0rT7rV978tk3vxhAmhD7oQNVtcrD5IHYwMgwMCMGkOx+/DAdyn6bgXsZTKSWQzHhFFN4oDU3gIMh6XQ7lm95+A8i1gPU/qDiOZz7cL9eJi2uAoAgKjKBo+R6eCX+Y7koIvRQ69jk4AwI6rZj0y9SAxeC+h1iIoJkaC5oLt25a4tEcOJxT/0XThoKmNymEQFwHIeUMyG5OteJO1AYQlI8lM2n4OxRtuDXPDEAurUuIjZN47g6TlohN44exRPLtRS/RuBciiwIQphFxcxE0SAO/fr8ZJX6/uWX7wJbHWYhsFEEQiJjAnVrVtEACAQpjahihJksy6CpF2Y2HkdhdoYfMTNN4nwwMvUDDlRAzenSDiySZJ26K/Scy5TTUOKTJKVcGmainBMYVVXjHoqIRugj/sO76EXPPd3KL/uUZBgTKHpJ5nK0qqrEU2QLKsOubwIGMEB1rhKjCnj6c6EVIwAnycQkKZtp4FBXcUw9WFElqyuTCV69etV3fYjBNAHUTOyZkq4DADBABiiUmsMheNgL8GAoRg+yMuABy/vQ3R508iIwMYXKhzv3HIpRVyQaAplLHd213AFKVDMDzVmBVLMH0vkrM0bgwIyNWCnoTQUMAkdV53OHlMa+16qqCjduWviqMGbN2RQPdMDMYM6QIMTAPJvPr25us0pVRXRSbsCsYkQuxRJTnWrQyKziZYBvNC971R2foEAIEAKv1+uu6+qqaZqmxKi4eRFzQPYEYmaa8CAKIWTLAYOBpTTmVIcYmcldIP1QQggx+FjQ0M0pfXkQSs4iauaJrTmECADD4NRsY6aUBpGU00ggGCMANrM2ZwGkPg3XN9dHqyPzzBYDDhWH4BL0nJMJoIGCISiBgXmDRYZk4hoVsgMORmREoIbEICYqzOSohtcYfj7gZMfg0kxw9qMBMyEExILR5iwxEmvw06mqm9vN9stvv9HT47GJdSSIrUBUawxmt5vuFz/8wZ/+2U9/9PkXXW6bo6f7sdcAxJXmzHWrWQEQSA0MuYQgOV/jsOyJKKVEBCEULoczIJ12EziamWQ1E9FkCGZCVra3TpT8QzvkVEwn7oiYmooIBdQsl1eXu836//53/uOUC4l+6uGQKbIT/M2bXXJFlndE3l2UxAPDLNlFGIe9PJvN0pjGcWRmBwuIg7o5jYFbL1CYiPZ6gK3AFIjRCru1jMHINQBqgaiu66jMgGI2bLYxxnrWjqijZRO5GvYftqffaZY59a9vLsZmMV8dXW1TLxlm4WSx+Obrb2hx+v75e/O0+ie3Ly9FKUET6mG3ffTo/FUevxm2UHMiFuav1uual8+ao46r1/u743o2D9Up6Z10Uus8tnGntt9/9PjDI6yHNP7x7Zt9HY6PVrIfu023lgQnq6YfUpI+CxnOlic/zsM4bueDJuD547NXm5v327Oz+ZL6zXZ7cYX6/PSkArvbbqWumnbO+x5sfPPmVRarZ7NR9l++/tmrq2/Ojp58+OzTD599upytqgoiJbTU396C7CvQUMKLipGgd3Ts0kAF8nOMiVkDcv/ig+XRSfPNRRerBQMCoyqrGokKmiAEjObkDlNfaHVVHXwLzYwAOTCK4gPysvdt8PBInipcK1TNgg8/BAwnvP2XBl5T2/NLP8qvNJhWCyKZaUpe0Nx3yYhYRAEeTYrm3MCHP80XOGDpfEXNNCOSmhTrHMQSScRoClwaZiwOSO5CkfJUAN1Xcnivj5t2MkCsIiJ2fT+OA3FV2he1Q2qxez+4GpuJiDBnwUPmwPSUHlx+IiLqWITBJH1yEMkB9eC0BlNzjGrMI5E9e++079fa31bEW82BG0UB7gCzmcbYmJEom6Kp5m4vkimEACESZ1J1n1YT9pm201ZKUKsrtH3hlMeiD4jnfrch49gNQ05VjP04JsmxqkQchGcvFPyileLeb4HdoPaeAYOAhvigBC1Eh3FM45gJ0WXnXJK9/eIk9SsTEYlMfFQEngwQAspQnJP8xFRVQJmAEYmB6ipCKRPA7RCIAyLFqn53cXF1dfn+++/v93vJqarqMY8EBJBlUo74bQ332df4YPGXqujBRNgerufDXrCJMDTtHceCDCababNCXfWaxH+MoqGhqYfIKHhvrcCMxDFWUWmEUpDBOIxmqmIi4gNlH74gMSilscuaAxMA1HVd17XzIezgf5U1J8xKiMEDRkwNMBsAABkEBZrNjpGvfYZCZWBnScR9Qcec/I3LppJzVsFJUmpmJacPA4DmrKpKGEKoAXC9XoNBVUeerASKR0YW5FJOequtquhj2VTalZxyPww1UoiBfedbIVk78prSmDI76sChRAVyIDBStYPg0Qz6vk8pm+WUEhHGwFUVMBDNWusgF+NZuLm5XcwXjC5YEUOIVZVS7/4g9ydgiWF2RUMRNRS+bCHaUYhBUgIzVQvMAGRkhSeAaICuxnB1/bRYgIhEVV28TSQqKEVpAZN2REVVtLPhars+rkLaQBPj8vRUaf7t2/UP/+xPfvr5V2+urnrNcb6YVyddys3RfJRhHIdQsWXhQKSI4CgQiKtt7PBWOEyPzM7UCjmPZbSExCEAIqqU1Q6AajkLGBjYoQQp++XBIL7I3rQAAMwtSURBVMyrKFEvowEARKDbjQMlxogETdOYiapVk1svYTAykEJLOjjTmudUmxf3BmhEwCGg9xVUjHA8thYVmRkn8p8Vq4jy0yRnYpe7l0LQFSx+rfkTMYAy7HOehmhVBQMYUwIUA0SITAwpsWldVettf9kMJ9RExKzp1d31i+cfvX/0wet3r7/p35wul+8dnfSSBxla4EcaU05WV8o85vzu9sKqSKHe74e2ac3gtt+/rvh7qycx0nrTXY27k9likap3/d0N6Hlz+vHpok/d7c3VEKtHHH5tdfpl3m/3ewhtn7o8amiqeTvf364ta1PPRtXL1N1epxdxMZtXatq2zXbYvxpTrMOz07Ndd1et9yuMN5vbEI6VaNau2pHHPI46DmM6fnTcLGZd112uX93cXf/0sx8+Ofvg6dmTs8X8/ZPT86P5r/36b763fS8YqGTXwAOFCSdx3FfVrASdo6IMu8U8/vZv/co3/++fq2ZCA9MMBm5pASaiiqyF6EMGlq3MMglK0a0IkbiQkqe1QkRect0vQgRvgF0b5RF0ORd2iDu7HBpfVTm884d/HKoiM1NQBvThEZFbvEAWRVC/KLi4iFlpDwhMnZdQ6oCp/hErpPtDXaUPFj44pxYZwa/e8vP97/Iaz4DZAHLOBIRGKY9Z8zT+Up1kWUgYOcYqdkPa7fZmxgdAC6EYdqmAQawqx579jCu6gF/m/fgV5R25y/oRDFFVyBQk3evSmZko5JxVlCsCzP14e9Tak2dHbbjjugINDHPEWiEbGeCoIoFrgJATKFokC02jkI2IlQPEndh+6FBx1lRAcMiEEjEiyDmDAAB6RFuIgeC+6vW3xOszBe26XRo5pdTUVd02w9BTD8d6FCsGA6xY1R1ewIlpQG5s6FNRMgVPobODWgpRTL1GD7HmQCpuuyhZsooCHQKWNYtnSFmpuw38khPNJqCiohkICIOn8ahq08S6rj32JKWMBIwsIgpW18319dWrb7598eIFMavaOA5AyNFzVsu9iGDTiV0a3wOB4FAAHYanf67owcnt+n6judM+FJ9t3xVqSnio6xEsq4IYIpL6uYqO/Shy8MAHNWBiimYmkrODKuipmASBgj9cVdMs4zAQkYM+RLWZDcMAAIVlVhY+JA0KNeEIoEhKmkU7osAUiCqDWM9PmuZy6LZIpOAaSVACARUR9700AAQLISCYucUpihkwe8OgngBV5gqg+24YxjFUIcYYQiHRqUfYWyE2AQDFOMnlqIGmH/ucEofgezmaqgp6bmDKMUYBQaL5fH51dWFaG4CqsaoVFYV7nNGBvppSGoaByEII88WCCQmB0IApZ43uN5tFMwx5uL29PT0+Cd4TpowTZcer8CQSpqno/Tmp5fo0N+kmJPaRWY7u0sRspn3qAYHI8Sr1aBhX8mNhDjmXnCUnBSNm00yIbduK5JzT0I8uj1eRpGnb7Xs5IqOU8tvb1z/+8usffvbN9bYXRJ6vqgAJJeddFSPDkLWrWAkBApIScnAU170hQjBwN3xC5jCZSCEiuZUOAKioMYTAqiYIGBgR0TJ6OqqqAXguYTikDhMCkIgAYiDKOTtdlZkJAkAAAAMNxLN5I1n2XYd+ypqbtQbVjLE8biuxk0XsiujwWZmBOKMxxKgiKedQRTFVsFBVVV11Q28Tcl9mW1OFZu7sSgCKVm4tFBHjcuV56KaIOuM6j6mNVVXF7a5jZmUaxr6tm3mmCigyhaP42e5aSZ5SPDs+vdt1l8NuBXVNvN5vz+fL98/Ov7x4+7OXX52cPv5kdXY8jJ/Z/nXa54qH3X5ui2ez1Ttc59HmoQqrk4ux483VeQhn9eLduH2d1s9p8Xx2vO+6OKTzR6ey4x9ef9XN6bvHT3/j6Mn85uqfrq9uWzqaz5pset31sZ81rWgi4E3OWM8uh6GT/fkIj2ezD9qTtxcXL8dtHeOzqv2L8bFtuzirdGnXqR+oapZzGrNkIWy22+3x4/rZ8ycXl2/7/X7sh7v93f71xU8/TzLw89Nnf/k3f+v988fz+XlQFZtQEFMiVrPRABDYB8VgIJIRjTTrpvuLn3z3jx9/883lWLftdn2L2mMICobKNYWUU4zRz0xCRFPweaqHtZiZgZD/n2W5AJiCFRzdlPFwoJshqhkCMTF4JJy6+ycWXt6kjQenVU/XBBXboel3GBmAS3ERgD31TDICMrk7n+tBAJhEzdmvAEDE7GzT8j8k8rw5VHfA82EYEgU2F/0YkRGqX7kBaBr0eLQ7IgMIIDspQFVBQ+Cc1Kk9OWc1RSIV4Sqq6jB0qrmOFYQSkOnm1IgUiI1KQg8zO4gWY0RCEcfJjJA4cE5ZAUUklVkjqKmoqGQzK5GwUKxLAUwBREWySUYcxw/eP1pwQlPkFswQBXFkAqCKwLM+gwEHVlUgYlA2y8DUAndSjVuLIwtQSimGCIFN2QCw2HwX8I8CT6wmc3g/o1vOyphGBI0VM8I49jnl05OTKoQ8WE5ZRBuqC1VDvehGj7glKi2p035VDQyQA1GQnAqmYlG0C4x1EzGAJBB1B2kEJgD03NMh9SknQk9ohcIIA2NfAio2yXAMkVD7NHKAUBlwEklQBhAIqAap9JpoP//FZ7/zu/8GMTKjqZJvHMDCmS30ATyI1Q9VzsPJJj6QwR/ocX5EHi5CKqolBjMkDOSTC0NCdrs8FbTSoAIampZBJdxfpeaDDyzebGMa/De68T4hesppzmJmkhyQwKqKRIyeMm7liEcEVbdmMANQVI4YGMdsTqctFTCAgEIgIKua0M6aYXcXff+YAmEsCRgQicXUcrYJxgNUz/1lpin9otT/6KaZCDfrjSI2dVNVTRYLaD7IcISpvL/grJuS54qIVYiSVLLFQGCQxxQ5+PACOYqBIjFR1dTLo6NxHGIVzf3FEZHYFBQhJ393aBxl1rRtXfuvCDGoqIcHEhgDL9rFGNLd3R2hVcz77W41m4e2VUEFYzNEBlM0CxiwQrwv3dyV3/tZsSwYCAFFNGAAACRU06SpsJhVgMwEAYp1gqOHUIQLhTdDQIAciIkZRQBRJKvKMAxiUoTlxhU0LG0zf7xYHv3Zn/3k9//gD7++vKqaFa2WhjgiAFM2aio2wCQJAQnYxMw83MMV+SCIgZjAAAlIDkQl8gpbsxX7DAQCyclrBHKlBaMBC5gqeuPtK1lJiJi9Ui9mIyRipgU3NEAFdTtPEVO09W4LouRngpXLyxA4EGBJjTR/8mKIREZQPNoMkThEv+nA1IUyMQQQAwXGAGZYXgplVSzXScGeAaZGxCFbAx9LT5wRH/iDihmyqxpVxZSPFsu19Bnck3F41M5ZVVC2eRgq/mp7uzh+8mxxStX+qzff9k3z/PTsuG7fbW5TRUtuRx2l6z948rQO+5/e3vQEe4O6bfb9riY4quNuTBh4JNxlGPsdLpaPiM9ivbm9Ghfwq+fvH3VHr++uf/byy9O2ffzo0ZtufZH2ArZM9r358gvtBxktAySJVSOm7XJ5dXs7KPSWYl31Q/9uhPmq1m23ms85wH63Rub5yfnQw3J2cjdsh+1dwzxa6vZrqlcoQpzevHk5pM3JanFSxc3mbpwHJO42g0i86q/+3h/8/fPjk9Pjk2AKEJgI1dEWSJ4j7rT+Mj1HU8ioSCPO4v5f/60XL//+j1JqqqoOUO13nXKEbE1b9ZJFsni56wNb8imNexxMThWHcVcpUZwIUqL4EJ3/gKpASBSIkFU1p0yEMUYAy9k5MWZgaoeJ0qEEKi+gVNA+z4Kybsspww73K4GiIaoQk05ei9NPMfP+ezJwLsZF4NNCQGQjBUJ0jMmIgBDZ1BQFjRRwAiDYrQZyzibqhnymRoFhysYq9BQwm7J1Us55HANTVYX9mMc0eo1fQCkq0A4CMAexDKXyA1X1qNQxj1GjvwU5a86qTvsubGQpygUDMPSwaPVMWEbJlgZrOX54ftRAFlHDmoICCGECJAMGIAJQMCIxEAIDBDJSVWKMaMn9Zg1AyTC725AjVcxhSq1XMzu80QCH8Y16VJnY2A9DXYXlcn55fdM09dnJsatycsq73a5pWizYnCFNQwB1hSAeRo1+32fNviB0Kg3SmMTUUCR7MJAampYwWkBEYFQwU80iRqRAog5ZKaGxAZkiZPJ+rxCNZTGriG1IPSiYEiJnMZUMoACaETnQn/74T/u+CyEMYz+fLcj1bCXVF9FpGHgoX+gw26JJN/uwJHKM80B/LqPGaXd4O2kgBoqI/r5btgMfAom8Z/ZxhuMQMDllTPQpd9szAPJBIU2O/n1Kh387xcfNEh3KZw7E6KEmOFGHvFSzstvGEIETEJD7OKuhZ7wLiFkmstVqvr4s3+bmYhiJweNfCa0kcKsqAxmCoQIYE7h+noj6fowxImBV14Y0jomYQozk1gxiHJmZGUhBkCEgl7Gx2cROhBjqgYs3pmbNkKxqpCQfY/avJWPE2XzZD6OIKkgWDCEClPGHmTGHGCsijSGEEMZxVJU8JnMEAhG0uF1QRFyu7vRuGAbLueu6GCMAEpPkTMREAG5tZeX9Mi8MnbzoTrXqpRf6ERpCCMHxSM0gAMbBgWa3OcVCLyGbbveMEIuXrI93cvZtOo5SxQg+rnJWDbH0vFo+/vZy8wd//x99+e03EEM8Oc8AoylTMMSUjZCNAvn1TmRSsqt9Xg0gZhCcRSBARHCwryyAikNfB4IjT8kQ06gMHJNls3CPkpqpSQxVCNFzhJndL75QxGzyhvWPJlYA4OoKcwTGAFXUDBFijId5FSIxjn7NpJyyx3VD4WRSYPQGFDQQsmJWIONAAQoW5bdh8WYt1Y2VG1NLwomfMaX4QedQmmOvEcE5lKQ5KaR5U/fbXkDrOlaCESFWfLPdZ0ihqcD43Xbf5HDM9Hi52gydgtUhYIhfv3n7vbP3P/3w0auLd1+/fZkWTRO4RRuNwYQCDzq2sV7M28t9N6ohkcT6XT/EqvkO1989e+/lsM77zQznNdpN6jTAhyfvHS1Xf/TNzzccfv30+W+vZsubyx9cvBlj2xwd7SwNOQ/ax9mi222RIekY6pC5/tnl1Tnik3mzquJ7eFwJ/+Lt65jDZrt7NdylnNucIOWqgTEQACwX853c3t5ezRjrEIMOvKh2XapndbcfZqcVQNikdd93Ibk02EeMoABK5jGb7G8GoUMug5BpgH7Yfv87Tz55/6dffLujeDb0Y4h1ykKk/bCv6jgMwzRwEab7WdW0pP7/LK/D1xCGaYbq+L8glYJJJ4+TqqpyHn1Y42uAmSaKUWl8TRTADGQizBW7hEK5NERDJhZJfmsSBzUQyWPOMo3FSqOgxaAI70XIfvy6+BbN2Uzm1ohA0/2EwCIClslznhDBQHEyKQO3roUkYrkUcDlnh5RSlljXOeeh73POHAIRD8M+peytrf/tIsLIh5vPisRZUUlEwJQmCmgInJ0qCgBm5Hwo8yJBXBfNFEyNIruZB3MY0zgO/XFTrxbzQBkMDYGJUJUIAcktz1APqnIEnIaehZtlRMglNUQp+rtvWQpvnZkID/mV91VssUUwp5QiMfuJW1f10dFRXVUxVsQU62rM6e5uvVyumqYxM6+nJhCxnJUwzYCmNxL0sH6IVCXlZICldFedWkKHDw0BHN4wAAGDwnJzoBrNIJuKeTQviQEB55TQuMKGUUWzIaqRV/hoQUAUBASZq6++/vb1m3ff+eSTzWYzRwTkLMqBQsl5kGn0cP9xWI2Hv+hhGeSfOZz1h9LHIQE3ODiYQPrTxjICLm/doaY5bE//vd4bTKKzQtUqn5+2J0z8JL+2/ZVUflUTIXnUzIH6Vn44mInkYRwd7irplQamFqpgEytJshyvVpdN4yPOEjkCU5MDPmP2fkUlw2F06OcDEfx/6fqzWO22Lj0MGs2cc6232/3+mtOfv6uq33aVXa7ERTlALMAkQBIhWdxwhSwRLCIh7kFCuQOuIhEJKSASiVhCIEVRJOQ0CAVwE9vlcrV/nb87zXfO1+7+7dZac44xuBhzrf2eU/bWr/N/5zt777ebzTOe8YznYabRcoyY+Or2FhGalFyI44YM9fWiuSbQD6vAXKMWqnsnESARK0LJQ8NNLgVAoqdgQhXXlVKYw2zWSslgfqRI4OARsIgUQmIOKbHr5UUG77ECGWjIQzGzpmmmdnbbtqWUUsrt3V1q21nTeA+xASQiYFBVN807UPuAK54DkRGUUoiZOEgRVKM6R6LeL0SCcQNV1eRYPlq1jCDXJpMBisiIMtB7cNV0R6pTFDbx7/3e7725vhJTalvjIAg6LVTDyMRYBRKIVf5fj1l87OKNS50Olf6HK1+nYFStGQNm5j4LvjgIAzMQqUi2x1YgxhiZQUVdij6ufJ1Mdycob1MTuR6b6q1xIuc92eoxyMQcOfj3izrFTiKShxw5MlFxs353zRAln/WpB1bVTXxLxYrjKh/fiunLxzj9exSFEQyQkErODRGDpT4/C+076UrRhtP9fhsjx7bBTEkC6HA77Prd7reefPjh4vIt3n/5zTcnp6cXi5PUlbvShWZlkf94fUXt6mJ+hH3/zW7XoVKMCnxfNAZrmijdnkMgtX2XrwF/eHxynOIszn757uXtsvtktjhu2i/yw5uHq1bpe6vL69366+7h09n8eGM/aFYvE7zF3Y7irlMou1VqT48W6/1mT7xh1qGPrK9J+83+L589/UuLi3dv3n2l3UOU++0balPL1JCV0seWIZSQoBS5WJx/8/XXP/61H/97/87/7t/8n/1Pfvenf7CcXfQbODtemul2v1k1oZQuZNBgCOpeOsqA3i02dHMIBgAtSoohpk5Ndc/l5r/5lz958+YPNcZ+EC0aQ+xKB2oh8mQ85SheHwdOvBWqIocqmkcA5MsZRqGDmblRmI5BBETuoEPeohrPaAJDxDrQNO2Mw4WCozWzSwLpcSrYcbqogYiW4sI3dj0NOA4EVBWPTDIX0dVp1/qSTNVGh3gzNUX39yOXA3kP4ZHwQmJWkyp0exTf1ScuIjC6Ig0577vOzELgUmQYBr+YmSmE4I9M9rgh/Xf5kUKeNMR1cEJ8RFtkAgcGj9aR5GwyYpGSgKdOh0keuj0fU5NiKfuq2UAOCO7Ui6PWlpl9ZtXLGzL00DNmDhjcKipQBMuHlzGgARCwo6VJovB44/r7RaZg0DazTvsienF+vt1uBcwnjc2s33fb3TalOP0iG0f9oUYD4EScePFmpkSYs7AbHIOl2PjC8G8iRCZyK8VJ2Og0i6iqiiGbp32K5CxZzIyMSExJMsgwi+zsCmgZcjFlgABG6gFgCH0uDYe+H/74j//4Rz/6ERHbY3JLXQyHJ/53MNDjrpkMjXzREk0WU4eQ6MBqyybwdEgsHT4QHpiUHq7P6Z/+jY5yRCSPA72Ozol8iVYeInAQd2gQEZXpccHZA9VcinvQqVQlfCkFmYiDU04AyBxMZTFftW2bu86FIGZKrnPSGrTiqZ0O2NyjHfHx8ijFjSKtbeNms3737t3JyelsNqtUFmII5Ibp+Dj1aZWqGs80AETkYRj6vnco5sqbyGEqRcZjzQCEiIzZm0lFCgZKKQxDMdO+7/u+JybNJQT2eQZvSQupe3Lmkt2gS1UNbDafe57Dfr9fzOelFK6sWwFzX75qfQloaOJnnpOXADB+1EaEasIYsAoV/S+JOXgVNQoOfePY6JRh6J7z4643Fe+j7btOTAgJGFREzTSEjlGbFJiRg5oWASBjqCIjQmK3oq4+2JXP1hEDwQFGr4qaf8bxjmMBD9OSA29dY51kQ0SXrkF1IUEpo60aUYE6ZTxeKzBNTrjedNoLNAbjTM/EF7wvDJwOVICQEgBkGZwEcrhjopRCyRlNEckRG3NgYhd0jqRP3YbT5v0O7hk/l1ESXtXpzsopMbEZgbBiAnvv9PJ02H++vt60oCqLAU7OjyXn26ub0EZljCm+7DfHqV1psylx3/XPT4+WT5//w5sXX7xen/C8PTu53m/n0DzhtmnsRekfDLJCD0r7/flyZZp3w44EF81cMHy+u490dFrwYnnyLm/uU3uxXJzdD1+9fHl58fT758+Wsfn59evPrvc/eO/DD48//Ec3L75ev+2bhWDgmO6HvVA+Pzl9t9nc7buUAiH0pWSmjcjVZjufLZ/F1c9319tgcY7UlxApEloZOAYosFvfKS3ns/bk+Pj27vrJ5VHzS21Ym9VikB5QTpv2f/Q3/kZwKRiggoqquuEUIoAWIEQiYDAtqhAwZDUIIUrRfP39945//P2Lf/SnV83sYv2wCwSqJabUdV3btm4ixyG6itk/w+pCUe+57yKgGKKDi9pjGj91RDzwDHyc18WR8zdvdMCjSRe4XUldQ1IPbQCwGnRPo5crM4lIPwii1EUFNRSsbjxHTYY+QIGVOhm9UnxaCoyQ6iU5YhE/BLk2IPTxxhhn7ss4Yc9E2SznjEQGICKEGGMcch5yNsSQEnEYur7rulIEXX1aIy3rrTZKYskvHj8Bc8kGEHygiElEwC0PdMJ+Y6HvB5xpscIyut2rDLlHEwY3QZKqoNViBKoINXkGAECKUJj07oBuaWBjK8sfCzGE6HdbKUbIOHIJRDR24pEZReq7RAEDczEjkmHo3IUFAO7v78/PTj0eLsW43e3u7u5SDIvlckLQh350pt86PvzsmFjDUjITx8l2GTyTyXGKU96mLidnyn1RE62CAjIDNVNARVTwewj63cPZgj784ImC9MMuZw09ZTHTIspgrnMXxmqw+yd/8qf/+r8BhCxFfabXz1kb57NG1uERw02QZaoWpqN/gi/fOTTH73/cezj2y6bvP8Q9h9fJ4aabHhdcyz9CNJ9MjDHiaLgwITAfJgICRvZ3vzqgGNYYmDGWuJRCiLFJAODtYBFBAgQMITKFEMNisbjabUEgccR6d6u3g8en53PsNHoz1qhLIhr6noncrf5hfVfKkJoUQjQAFUEwVTe0fPRJAlfJgknVxSCaUaC2bXPOCoZe0w9DnAUA2O12+/0eAFPykAx3YpSKSzxJ0FvP3hD3pYXG4OPSztSiWwggYRZBxJTSMOQUw3a7zVIM7OXrV8ujlZtBuH+D9+hw7JNaZWjRB6oGKQDuUAxFMhGpCgERccAAiKYMowm/VYmx0x6Ts3ztiU4skXsmpRhTSvv9PncZEAwtl8zEhWirUogppqFIneiGMVgMfMQLfHLDzFk39AasgU0+Yf6U/GnY2OqaVv6oVYLx+HVljD9h9mksdGAVXWZQzMbTu5bZMDWXsU5EhmmDuBP0tCWnVU2j9WhdeMSAyIAxRi3CRNQ2fe5KKebOLwbRTUjGAd6SMwAjeRrJuLnch3S6Msba5jvlh7lLpVWdhh+1SmqAosUMGHHRtq1oa/JRbNfKv0SZt81C4u5hG5qG521npV3MRfTz3X2f5bfTxa8++fiX/c3b+7u4mg2LdPVwD0ezOUYMy5v79Qdnp88X820PD/v9QD6xnzebh/miCdyGvS5SEsAX/Xa76X4cjn9wdHYiyz989+VVv/kRLJaffO/r+9u3b9/Om9l7i7P7vnu33+Y8LAq+l5ZfDQWbVMxwlgbC65v7tp2fzsN22CHCEuOsTV8+3HXD+sfPP+72vQlGCg/7dds27VFcxnbVl12xfd4vF7PdsI+Mf//v/X//5k/+0bOny/eePdnv9MP333vY3949XEs/PDlr/rX//n8vuKjTOWYfEvSlRsSCYFKAkJnEtAhhoEA9atH9w7/8L/7Kz776+++2d7P5UbfbuLIdodrwM7PPTsIIPw7kC/YdBO+HjKmZohmMOMlUxX/IL2xE5MDOYB+qQV1HYub/85aBvx61ukwQCUgB1TgSjZtHRJE4VpeFqnAgo+lintAMTGXxgYvDGHWAQGBoRaSSXI6fRqrXXzOTG7YaIzvUk1J09OSq74xZCAGZi0jXdVKKR/OpWq4Mk/mJVjVA+C1LGCdDp4l3EwnIFAKqJg6UEAy7YfDiRqQ2evwWd7/qEIJLT4hZrM4zAxhAYVdSuopKTVHBSzcgYIOstW+AhkAARshA0JeinHyDi2obIiC6MwoHly24/EMnjbk3D6bbApHApEnter0Rkfly+fLVq2EY3PWOiJA5pZjLsNls5m3LKY13deVIQHFiR/xvkMKkKUbEnIvXeY9X/jhMRMzOrFuRas/KaOIXFrg3h2u6TNE9P0QUtb88PX562nS573MYepBZ6LKKYBYYChRFFXKPaDB8/er1w91D2zT+ztTFVutO72GOSPIABsE4Zz4JfSbMNLWiptPTEYb3WKf/OmGXCTpMJ/vUI5sWv42D9BMYms5lIibSenURA/jYhHuFg5kR1r2DDFPv1VPeZEy39r8RKVOYSS61q4LkMV/ka/Dy8vL+7lascnMy2o2JCZhjrPocJ2joExWMpIiixszb3e7m9i7F1KSINaHM6vIAd46vh0zddCHwQTMRzFKMTdN0Q+9v8lAy9z0CdF3X7Tu10vcBEZxe6rrO2UpCNBPAGGLylAyqE5E5hoioThmLFCRO44dv6H0x7YZ8/3C32+1Epe+6N29fv/fe+ziWl07IlVwCs9PmiIiEgoCgLsEEBfKJVQUy8hsUEQlRAHMuSK4pUUQOIZh7SU6XsalK4RCRAphlt1w3VtG+5CzF120wBqRt14tiaGZqBoQxJvAkCgDQ6mqj9phLWBGGB5MdfE0f4nSJ2NgInn7qAJe7jgArIqx1MhIZYGSu1l5I6M3EJrXM7IvdKvDFKbZ5BFU63QWHiGQ6fg0pEEkpIcQY43bIXEpKKcY0DIN6Aq6zZ9VXCUUlS2liBDPVajwDAsyjFQr8M96Ex9ICDCeLpjqZoYBuyVYIiAzmIS6D3V6/O5ov3p+vqO/u2bah5N3QiBydnEC/KWUoQ0kpvOr2Xzb5vbSI0vy0e9f1uydh0cxovdvG2dGsaa1tXnYPp6v5c4tFyi9BJCohdVBOEN9rTorl7dAJInLY5P5r6E61LLvycTq+ebhbPz06bmeL9fqzzfUpHv3FZ9+/2t//6duXXzWpna0uyxLb8uXDXWjb2C7Xm13JoDSsFu1cG1ZBsk0eAmLb8B/cv9vu+8Vy9nx+urgbAAa9aJcN//nV86/f7P/oT37OEVfLmUpJ83h7f79YRoTAXM5OZyerbk72g09++Pnv/5d/+6s/CKJjwUAu4iADMGaIwUz6kgkRAw+5BAqShYJKGdDi0az8d/7rv/of/b9+vhXGyCSgpkiYc65D2iKABsR4cFyO1eThR4wA6CibkUO9k7KqhsAANpZxyIEJaSiDL30RJQIRRSc66ySLD06O7dLRwcv9rAEPNDpuTatWTKovhntt2YFgdjQZ8r9h9oReUFM0JCOY/ptaztn/UHem1YQgImQido8fdz8LyMqCMu1Rn6dVVQ6sBt1+PwyDmwYBUC5DKaXWn2Ahhpp4MKpTp6t9utUmaOW9OQCAkXGtJ0J2zZ3j0fp+YU14BkB0CkqlmJBIRlaRolhzRf0w9EagAYTIyOheml7rEJOheQ6aX5HiGQDEHMhvSjMPUmF09buP6AEA1HByqdIN7voekebzVkVffvPN2cUFM4uWENoY43K56PfdMAxd33umOjxyJ/UfU3kHMIrb66mqXdfxGFiLB+uSmANiMRgrPzUwDEwAYkqqoiZi3SCiUEQBfCSlXKxmnz6/AOmw2yVUs8KABloQCIHYPHomdxZT08Sw3WzevnnzyaefOk/gz8qd+ADEuz8HlZ8dfuiTZn/E9JOa3qaTegJJzOyEy3SLQG0MPU6T0YGGevq1Iw6o8IhG/bWIjFXrdOU8Ntce33ABEREQLWNyyAG35MtymussWWv/a/SYTqFBJACH83x5efn69cv1Zuvr3De7I1pVBcOqHlaZeDIHpqqZiM2gaZqrq6td110uV978QkAnhwEARF1JcfAkoeTsHusIyEQAZO5GUfKQBwVAsy73s7ZZLBbtrBXJjoTu7++bJokUPwOZCJnbNnpPDMe0XdWxnEIgJp9qMoV+6AGx67vdbtd13cPDAxG1bYuK8/nZ3f3t+fn5vF303T5wqOUiGCGa76sqvUIVoYMPN4ZYiuAoLlFQ9dRxxhijim8QcE/XiSbE0Rq7FKlqIUQzG3Luu64fek9A8sGVru/3+x6Q521S1ZxL2zRVVIcoIHUJi0y2Jofr9hDK49jwhUfWX79D/Ex7vBan3nIazwH/LiYKHAoV38oiknO2ehc8QqixEkO/pw41QJMdHY54359POTg5mAMzD8MQQgghVhMBh0qqYExECAGg+tm6Z9LYpVCo3lOHZI/fR4+7BmqNVJGrAkqtlNw+xkKMjQEMQ7tYbOSuK+GDZx8s3t7/ZH+7BZnP2r7IXstsuXr36mVDDJyGFn+vu75lOUUoTbzrdqdNu4izvsjDfn9xeTTr842UNw+3P1w+ey7QD5t3+07niUNT1r0xNiltSjG0GDnNFm+Grnvxy986e+/54vSkXXx2/eYkzi5mqw/PT95cXf305qUGsFXzbhjCfnveHj9BXp6cf7Ve31zdhnYuiYZS4m73/OisdLvb3QMwhPl8U+zdblvQntNsKWXWa7tq/ta/9bf6Zvh3/0///s9/8ouWFwZ2erwCLJv7u9PlctuXh4eHDz74MARcLVbPT773b/7P/60PLp/+b/6X/wvSAqAEwADBMBlH5VAMerUMYMzKNPisFEgAQ0GmBtHK7vrXf3D+W7/xocoDRiTEyEG1jFof0LqOxQ4YvelMPLiQzLuh06c7cvI4sY5EFEMkdAFjzfNjftwbjlU40AjJH3VzY6EgaiWEQEgy5DJkgFpdeTwZVkJxanV7ETAuPoPAoZooo3PUDom4tnJNpYg37Osjipmqy5UMoLgnLmEuWYqPRUFg9mcJAEiU2lYNNtttNwyOGsDjrAGHofdXrSJt044970dtuKqWIm6p7t9GzBBYRInIqJYI/g5vt1spKkWGYXDtxQgLUFT94Oz7vh+GUjL6WDQiIrlBLoxiLHS3p5z9HKTaESc3fEPEGCOhdyKEGYmDT7tUm91AiOTMhF+aU+NsPNpqBb/dbbtuf3x8/Pr1667vj46ORsJJm8hNSu2sBYB91/kKcQBDxERh1BXU1SVS/Mz3Rr57sHo6Gx5UltM6hIPhi6JWBEptYUkpkrMUUUMUySIZLQcYPn7/YhUD5WERwwx4hpQUomiLiDnTUGgo1JdIUIadlGG/fXj96mtGUBNEcCSNiM6OTGy/f7KTB6aqxhh1VMgdXg9+ZHvfxz2X3dNSVQEe+TBfnIdkjx/ok3zn8FrC0SYKRjb0EGNNaHJ638Z3W0RKzjnn7HoF36GPrCeAWX3JfT/IqGatAEsFEUZbZmYiUyWKH3zwMXjz0dSfrbsGIKGSKYI+xuuCqgZm51pKKTHGrttf392kJs2X8woQ/XWpslVSARH9WdVLiB8PrnrIqIUYmqZx2Y3fplkGjgQuPmJu57PUNkUViO/X64fNerPfbXe727ubh/VDznm72+/2ezCYzVoP2+pz7oauy8P9+uHm5vbq6urrr1+8fft2s9mUUlbL1XK5jG0zm89T23AIN7e3/dAjs5h1Xe/vUi+l3rge6iM6IWBC6vvs5dy4eMRBWOQ4YR1m9n3kH5Yn6gT38SNycPr4QY/Q0NdcVhHT3W6LYos4D8CJ4jy1DJwoPPqZERpW/crh2pvw+rTGDi+Ow405/ddHIQ5iCIExkI8wjpDdXRq81eWvAog48ND3YObLy/9TNdn/NtXqC3tqO3iFjweNZh6zh73d2batiOZc2tQ0KRGRiWkpJmpq5E5L5jJzoBA4hullThvqcOsdvt7paoPxHHDc7OUC1DQYWyzm+92u3zycHx1nzZ30TcOnGM4zzQRiCq/Xt+t+f3ZxOQ8tGG5Qv+L8u7u3X1O+bE/et/mbbnvHenF2IW34+vYdD+X99iQqfd7dUNK/QO0nike5nJcQC7/b7R7KcHJ2uoiBRHfdsDG7a+jzvN4Ql4Izah+Gvif6SGaXaflPdm8+K/elDefNspjdYn+xWH7arJ5xWCEEMrEhBpwh9tt1CvG8mbfGIrIDpdUyrVavd5t3Q0eLlhXuv7k6mZ+9+PwVDJjCrG2XbbvcbQfCxE1zv92en5+fX5y/eXv15t3D0KfcpxefX81nz0JLACoEigiAgIYMXsQrgvrEOiIRN6SGWlSDAjJZS6X093/xVy/+9PMXr+56tRDRE8S0lCHEGCNL0WrNhN6Jd1gNRN+qaPWRYp3ITHPuZ/q8fT0Q0SSSnf451u0+2+v6A2+HwTRuhogEbGbOrFCoK95qz9jlZ2jV26E+4ojovfONIjLSQqTonXwxUCYOHJipjEJIUwvM6CPNVisGvwx82MkvHr8uHP0AYs6567rs5QWRGXDgknMuRdRcM6gCHLh2cOr4Rp1E8CstNQkREQhNwcyVj5HI1GbzmW33683WDEMI4hkT/u6ZAZABqqEVM7YiqiouREVi51sBJwsnb5kaEyLxKNSo480EYeTNEcl8ngnc/40Qkfw99xYJekCSZoJIXCeR/HV5hNl+311fXT999kxE1pt1zqXvusBMzAEJidsmBA4EKCL7riNaMPHjuQlVjD/SIcFjHj3HbeQa4wS2DgvK6bzJDmTHSSjwdFC1LJZFtBQOzKUEzKensw+eHAfYLdtgYFpollCRDWCz7RpGBS6C+/3Qi+NS7qT/+c9+8ld/57elZNFISNPac6Cp+q0ndlj4+oUxQbepNsWxOzDdUkSkKo+dwQNpJ4xf05l7CKcO74NpP+o0Of/tQTO/ZV1jV8o4xEduq20yPh+HLB41NQ06mPeFKUz3Cvq48fhJElII0dTOzs6ePHny5s1rDlTEQogOFl39UzGr4fhhuRWyu7GDAWx2u5zzbDarz0QEEQN5NIeFwKpO/ymAh70rANvIB/vxRD6GjTgMOZsACCLu913gMJvN7u/vHa3amN2GiPt9v9lsmYlDALuftfMQA/e0IwJ3IyEsUnLu9/tdyRJCk1JcLVfENQzBzERFATzxo2nbXb+/f7i7vLwc+qFpm91+16QGRgTJIaC3mwRCpJxFzZp2lkshIg6V/dLaTHHT78o+EgWz4iYj7nOYc65cKSIgiOjEkfvH7Z9+znnX90MpTZqrgam63ahVoR+RKTKrE/NQI6gnZDnVP35IThDnsRQZv2wcM5xWYKW4/I5wE5c6twU0qpeIiDmIZFUT1H4Y5rPFxAAR+e6rhMr0ENMWm2qD6b/6OVfNRMAQQFVn85kUQaTZbL7ZbRCdx/V5ftSaSuLv8wH9XHfZ40NMX4e7dbwiq1DDVR6ACERiyjEA4XqzPk5Js81W7VqHL7558fHpsx9dPv/q9upnuhNMpxjpoV9eLjcLu3p7nWaz0sbr0n9etgFWx7OjYdjkIl1rC4439zdXc1u0s+O0eHP3rjmO3z86fW928fvXb15s1kqJY9rmgWecjtrt3XpvOl/MFeyz+4eHIf/a6vLXLj663W1er++u4GFo6Hx1fLfe7HRYNvPn85kUeXH3LlE8nx+h9F/v71ObmshJUFWurt6+f/mkmc9eXr9N7aKI7HMWKzuIoWk5lH/v3/0/fr695aPz49Xx3W53fvYsxXng+ZPn591wO1ukk9OjN9+8BmzeXu2uH/Q//L/9nXcvvrl5ex9IBREqWPb8CnMXCGSygIoIoiRGRMhmCo2ZZdmjiuTdk6PZ95+v3l3dAi1VEZlAVVRQcCQ2xYoxO0lMiIxY50kB0FkckRJCCMyonss4hi/Vr/E0hMdVMi2LUe+jI9fz7QHC6WQfBXdFBAhTqK33UmQ6670+xjHny0V/48PCuCugKiMffRpqE11VTQ0YTQwIFIEAPOucqkm8GTAQSh6vDV/pzAg1uNSTfw1ADZgJzDygOJcsIsyoqp6PYaYKqmUyvjNE91ec/CHITMUqc9DnDIj9MBSRkBoyU9QaD2s+MIziPkSIYjAMORdFYm+e6+h75BscDj8CdAD3yDaDgYEPtER/hRWHVB+5aeaozoL5YiDGmsM6GjuJWtf1d3d3w5CPj4/v7u52211MIbrgDEEEAiDHSCFakiFnESmiiARi1QhxnB55PGQN1MSnf3POWF12RgJyFH+igaq6LtN9XYmZVKSYipSh9H3piw6KTESSmwgs/a9979PjOVFfMCIamaJhpBiKlKNlQo5DAcOAEDb7khWQwu//0R+/efnVfreJzRxA1IPPxqaDGY5un48l71QHT5NiE46Z4PUhhoNHnt8mXtN/p1/P0/dMwpfpX50iOtx6E5o8fFAYObZRrHag1B45MzGxUfDhgMxG4VoppUjJIoQMCEWEEZEYXOzlKSWGoAbACPDBhx/d3NwUyRxI1Eb68JEtwJHrYkK/4wEwxrTv+vv7BzRsmoaZAwcQqToAAGQ2U5GqwMVRgKiioAIEY4scETEiU6DURBQsRVQ0D8MwDIvFwjNNpw8LANwBKGfJuaDtkUPTNE0z94+y5CKlLlcAnM1anIUmtRyZkNRnGlSsGAD6YOmEd7f77Uk5SW1TshBXGZ+MCfPeizeAnLUURYQQuAqBx32RS0EA0XrCiGYzQGTz+QzEpomlmIgwBRNTFEBQE1A0w1L8iMoxJVX1mo2Y1arJOjpscgiEBlQH88z77o8X/9ToATM4qFEfcfYEdybQcIjyVZU5wvjbD4BFDZPwtexGmW4B0u33i/li/P2GNTul/kIPbJlQ1yE4+86yd+zjx1wgAoOSdyWXEJiJSylMwVt8fjgzgyG5jaWfdT7qQ+OuekRX365S4LGAqScCqI+6gsszMoBwVKDlfAXb7fXdbbuYZ5ZCdhb4IsTP+zwMdtEc7/fD3c3DsEg8m5kICgrSOx2Wsp+1J+/Pn/7y7TcvyvWHafXB6dlX+/uyl6ft8jcuP7CHe2nzmbUfWVxjt2YYTFLTXD08pISLsxPYdKXroUndrP1yKAvpPpTTCGkr+hL3c24vqQWC9bpPPLy/OBrutp/lXU7x4+bkCaYmpnuRne4LJDWdLxfv7m6Wy8Wz88vrm1sFlJK5CUCUMGYZYLkMCF2mnHNo0836bnm0ePr0fWY5mq82D+s3L786Xz3dddjML252w9/7Jz/tN1s0CwqROYSYkMlAmD2HIKOqSQEthBAo7ASUUTlAXbyMhpGjluHPffr8j37yeiNNRkKprKCIMDEz+wTNoxySbFQM2HjmwFQy1rA7JPrW/Dwg1iDT6S8Pzt+qYgGAcaQJJ/D+uAcMDFAB3ZlRiharaomJt8DqQUWgBRGhunD6GlMfbn+84x+bvmgGPr3rAhlRSSn5fcXM5CCKiAltjBCC8ecDkoAWkW4Yci2pANSJ1jgMgwOXaRIBOMzbOTOjYeBgWINBRLRIQQqeYOJ3hqoZgKiSKjEhUWgS7vfb3WYeGu9U1fMFAiLkUsQnhxVzKYAoCgKogOqeK5XgAXQ9eBUR+EAsGEjFiEgM7MYsI3asfRxVe0wWqV/2+NsMFNQFEwDQ7ffb7Xa3261Wq6Zt+r5XtRhi2zallBDD5AlJTKlJSOz9FHw0CDGwx2FyrXwbQxnVrAB+1bFLMVxDY2YIueScy/i0VdUUtJQhD4PkUgYZigJyCBxjiJbZNu9dHH10sdThBnkgYED0/CVG5QaGLClxE7mIisnl+fz6ZvfZz38yb/jsZNnt7kNg0OqYPPKdNp3FE4abIDuO41Qxxu/AlOlf/Q8VYeTMMdLo/e935NTzOvzyav7g/vhO2/pb2rjvXEs2DuaYVTH7I3digAdwbZI/69gsRoDAnEv1GyXXz1cmjMdHNzOYNe0nn3z6y1/+HIGKZGY3qFIVIDfmxcebwwykuENKeLh/t9vt5st59evh0XtUxMxSSr4m/aemP6OT2D4GpYaKnqKs6AaPlIsN2oFB13WbzWY2m/mc/Pgh1jeKCFWNQ0ht2zRpNmvA/YRE+qEvwwAAIcQY505quo1kaBpvdxpizsMwDCXnKpgn3A39m3dvnz195p2dQUokVr8XhVTNmAKxlhJjg4ilaEptKaUecaBgRsxmykwexqOgRGG6g3POABQCmU9EVnfyoKqDFFVRM0UwhG7oc1Hi6DIEBQMaB4Cr5KgenFjPUZi6zxOikEdLhYo2VLUaY42fyoTwJp7ygBx6vBRGg3sFmGANVSdeREQYhkFEmOP0m333TbsJDiDOBNQO1z8iinosxmPnTlWbJvV9H4EX89nN7V2M3t3zeDJVAxVBDoe1pC9xsceHnk6t7z4fT1BArM0OQE/nIMRBRNRSavqS5/NmfXf7vfnp5fnxLzbvHrbrZ7Pj3+ZnP9/dv477YRbut5sEi/lqud2tqc+rJhnbtchi2IdeF818bZtb604wvs9ps++Ojppfi8c3ij+5e/18v3u/OTpOi//q4fWrZdLSB0MrzBlOYnO/60Vzm9omwsvN5u/kFyuOcdZG1d0wXJE9Obtc7Pqb3fU3ktu2OYvzjcirzc2fa49+88nHX61vfrK9f2k7iq2pCui62yz5aDGf3292bEhiQdFE+WT5y/3mPmvTLArmTd/F1FzdXS3aRrWbreTXf/1XPzha/X/+83+gttwPXZfl4d27iAQi4e/+8ReqmmJq57P5Yn60WrYpNjEtU0wtkQiIAsgskY8VqoqpgkIuxqCw798/WXz6dPUH33TKyYoGrUa8oiXFlsxN+eoqmc4yX6NT82ssAdwBQiekXJH8t4VgdCCnh9o4G9u9TICgxVtpdciobokDrt6jiIgYQCeGAACAFKae60jyID6Gq0ONqeKKmcYQ2XEOEQEslxw1jdmrY6/HDAyKeGtApgwgADCxnHMpxWp3AFXV3UWHnJ1SVjUkFJHA6MVlCmxWM7ymt4UDu/shEk17HACGnG1kpGII2+2ut9ICY5gskcw5KlEhpqHkUgoQghIAKlSf0rH5VePbDAjRiEFEUM1IsdqYuoUSlMlM1kzVpAgR+2E0fl5QbU8RwaCU4l4E4M7C+/1+35nBarWKIU40eIzR70MmrsuoFnkgal4ux5iYSEXsgE701YIQaOx/4ehWXD8pd2KpS1Ch5mEbERURT20rUqSUXEQBiUIIDaKkxCnbp+9fQn8PNqgZElCFZ8jEqiUGKqVHiG2al4yff/7lZz//+oe/8r3zyycPu83D3c3p2bmVYgHQ0GUbYHCo0TlsPB28okedMvwZqnySkboGBGHi+auuaCqgH7fhOM0+fRvAI0Q4rEAOj2mnjqbu1XhpPT66qUtBH0vbEf2YuDWCWowxxrjPBRGRyR0SjZkIAwemwBxds7Lf7y4vnj48PLx69Wo+a2U00n0sTkbAYe4YDQhm2+12vVlzCLP5DGtbzQ1/UNEN62HqiY8vkATEu/ePu3ZkntGAESk2c0EUFRlEZLPZpJQ88HV6G4dhyDlLySHwyflZDAEBcs7MIYSIiEGEYg2xc68v1NrWIW+lqRBRCBRT5MBDHvquz8MQUrx/uG+b9snlpZSaTBLHSQioJxUBMBKDgUgmIlFz02g1IQyTQBAnWtvtc4gRwVVEzCzF6Rk1FT/S1c3/zbxPl3MW1cAspoYAgcwMCdB8FAynDwXMm1V24BNSl9O0iqbTqQKXUf5sqnjg/XO4CwDIBzSZH60iwHsRZsxkRkXQxm1VRLuuW62aAxAPk9atruGxJ+1PzIWGfi+oGgZvFwIoiAkSmigYpNgMw6CiISRmNqiJCEToqqF65JqosrkL4ujiDd/+mv5m2qeKqqaExIpV3uQmlYGp5GJqRHf3m8XJyaJZ7nPPGjkXzbI4vXg+P74v/c/v3+2P5jpL211PkdKsATNGKmZ9Ka/6dWrheLk835dus7HUfNAuoT26u727P0klxBjSw2bz7PnZKfHHsrxdX5U4m82XXbGHu83JvD1drB5y7hAAqG+br/vNadN8uFit8qLk3S53nfSpjZSbt7v1UQqnTdNsB0MMw2BFjiF+2ixa7d4MZQvSzNus5XZ9t2gXszaVbRdC0w0lx6RqHUBYzl69fhe0NQ7FIJfddr9ZLJp9v/mf/s2/+S/8+Df/t/l//R/8X/+j9uy947NLWBgDXL15G04++fXbu7vr9UN5KPnqLue3gaAN1BC2hA3iyWJ2smpjzO1s3i6P5i2kEMBaaNXMSqen8/lv/vlP/+j1H4lZiKxF/SMSUWGBao4MNJLJYKbiYhsYj2zwCS8oxayo0oiz+Tu0ttVdOp1AMAp9zEZzWJ8GG7+nbiLv8cmjfSK6pVClkHy3V9mMjIusckhuIGvmlXetIVRVRWucBTMxzWZzJELwHdXHxIEZsHouu4mGv4RprFTcIX9EV0hI3shiIKJ+6LuhTzFtt1sRCRxzzhQjEVUABEBUB9r91YopAZk312qaQSCiXIqJeqNKRpGsmLFWz2WftUNCyyqsfd8NpSDSWLKgm2v4Vqu1r6mCJgarnSYFDygG8KBKMCBCFzyAv/D6MdK0kYm4+lMDgbGLNAgx56Hrhq7vZTQv4RC9Pd/O2nbWNk2yklWLQdVMApMnwxuaqDK454o+VoWPGKLe1s6CpJRENGtWsyJSqjV2XSRFtKgZoqgNfR5yLkMxMSRm5BAThRApDLvr73/07PzsRPvbtpkVnDNFhOjVpLJJGZg4pECQXr2++uXnL4hnf/V3/mI7n/cZTMrLl998+v0fDVJICEjNw+MMKdBUNU+AZmpCHQIjIpLRrHnScsKojaiLH6CUKrI+FA9NZfT0QDaOlY08GR1cReM076jPOARJpZRDFbaqMoQCpWj1vEGshplWRUHiFok+RkAHhiv1OgJE9wLyqoQoSwkxIsL773+w2WyGoUcEETPPCvyWzcY4AGoIiFdXV8MwHB0fEVEMUVVBzUSQKHBQVB+IgpHjdNym4ON15jWHmpkoETmbxcaElFIEa/d7cR/FzXazmC+c2/bhu7EpSQYQmIlot92qSIhJpEZhcIpmIFIIqz9gnf2X4sFzKkIMTUhIEHNAhCha1CCEd+/eNSldnF3kIQsoRbYiUgzRoECPmSkMpSBgSCn7kISXD4JIqADEWOocOyKSN/sA6vC5qJaihNFJLP+gzUxFiguwDIu46ouyFEMEqiyFgJlZQDQEBWO3Vprg5KgQ+I7Uhka9PI3SbBg94mHcv9MKn7CO/5/PtBzCI/eyZGYGzyHzaXkoQ9lutovF6mBPEaLzvjVme5SGPjY0XVrtm4BCMAATExMEIiBidpsMp2aHYSAkUA3V2AJtdPaCkezx68HA0NC7DTBekWbVA2l6dLMa7mQAisho5ngSq1HdINqXcjRrUe3i5OTF3dvNtvzw+EnZ7W7fvdscrSTCk3bxTdF9g9yG/dAt42y2Wm22WxVtmTuRL2X38YBPNUFcspQZ8fnqWLv9777+5QdP3/vV04/u0/0ff/P56cXxe6ujeQif7bavt13GEFJY73dPT86lSa/urkNImkuM6U6z7u9/I6zOmqOHmN7evI3tYn50PB/C7cPtop3/8Oj0EtLr7cPvvfzy2en5D0+fXt5e/W53I7M05F4ZOYX90M/j7Gi5eij7znQnQoI3V9c7NuBF5DT0e8jDfIaRiiGkQP/B//nf/+WPf/d0uXp2fnIvoYlnJkVKOT59P1ycnp0crYzUCKSIFlOxBKR9f3/95qilRYtaNpvd9ma9Hl69AyqBLADF0DZhFsNscdo+efL+x5dvfvp6C2kmWhKwDQAQS2ZMClhIgYFVUSxLMDBDYrDazzY1rAPriJUFrCPFjx85jMpsmJANjg0uYrc+ruNJmEXRJx1xdLQDMxAzz6swJPDQBv/NIoKAzOSMCFSYVml41aoJcaExut7NVdUqDKxZUgjnZxdiGkMKwGZqSmKSAgdmMUMENXUSxcOKxztGzMzU0JCBvZXGxCXnYchmKGIiKgqRCIxjTK6sNLAiJXI0RGbu+w4IA1MRdYkAA3tXKxAmTopqhmQSEU2lgIZEgqBiHnPESCULIRJCHjIYEACUIRakMkg0twlPBqQqMhAyGxgDMAL52C6Diho6RWaSUUC07SQSUePdA1WzMs51IyIgMgKYEdTbV80k574b9rkMOQ8qJSV2KtsMZqkNGAFJACIx+MRvCGbWNklEPYozDxkThhhBsh5YdyCiZEkpZlUXddaBIzHJxcNorfqReF+mAICIDoMOvZZsAIkCEEAIITUBEbT0s9WsXR2/Xg8JZnmXt/uh7zYigmP2Swjh+Gi1PJp9/ssv3rx+98GHH3/0/sW8Td0wFNEmtvdXt9KXGD24DTCiESoDmPFIzNQdMg7t24hlJ07o0B9rghGI6C1mszoJOP34xNlM3+zN1qm/AKP+FEbboQn0yJi06n4q/j06Dt5PkzJmZqDFinqkvHqDDEvJUkyLUwjFFTNMGAJJGUru23lrIsyBMTAxEhiJQPZgAylFTONsdnJ5/tWXXzUhOObSEVsNAITsuee5ZEK4u7/fbNcxhhgjAYMCMe+HvuScYiKGIgUDAqApKKiRFS2uW2JCFTUuxS9mRlWrPXI1UmiZY5sQtNt3uUi369vUtk27k62CNIF7IlBjCqLW7bvz8wvC4P2svh9GYwvg4J8gtSlVI3cC0KqViTGpKpoGihhoPiM12e26mGK/39/cXC+XR2CmWVJKZGaggYKJFdUY0URVJTYz02KgZMzMlIIWXyekY9ayLxUzAEVwoFxEVQ1VVQzNTIsXQQCMYKBknrWszusHJvO1L2oGBJ40AiC1OvKReFUlJgOwserwbSqiAOIzYTlnAKXxyoBKzGBw06+RboRHakTQzZOsks1mFXKAkvsPudCHCJ1i3+93s9nczLquyzmHUHtVMQGgksfTmW8cnzAjMwRCqO+Boio6W6ZCiOATHkwMRgyGwpzc+mxQAQTmMAyZyHNRHbQrenRdHVueGFkzE4fyI68PCIQQFFVR/F5kIjeeIcJeyr7k54tF3+9v9uV4uZTNNhyHspi92d11D93y6PSDeDJs71/tNtg2HNquL4vEDeGuG5RbDPHG+rS9+/Tk4oN0/PBw+3q37tDmKf3g5GLY7PfHiWJoUnrY7E6bo0/mJ3d5uN3c8mLRExXmr+5um/n8fLF82GwiM6Cp6i7rSxwgLknbBeddN+zn/WlsnjQrzn0A40ANQEPwbne/bGezwn/p+Olnw/qnwxralHi2D7o3W1FbqJj197pdxSXvMEEKcfZwvzbU5WwOJKltEfT86PyXP/3q9//Lf5iMGGdnqxPsi6qY6CzNw/feuzQyI+tK1/eDCKXQbu93P/mn/3TRwI9/7YdDd9fGY9FeNQ2aiuWc99Lv+80ABdbbh6+v3tHy7L3T9OrdzU0BJLYiBEmUSikUjQlIUUXBkJBEChDQ2F8CcMeGUdPj2KdGRjvBY4dnKzjxPI4HQt0x1UfKzxDmRqw3LeDs66ht9WgLHM0MHXhBbXPh2PY/5FVrD94qQkMAHsE7ufUUMyno8fHx0XLVd10gSikhoIogAQi75tMAfOYYAVzk6veN1iFGRO98a82cKlJKkRSTev7EqBxPIYYYan/LNGfhSEaev1izI1F9x4iZx6+qiBISoBGgi82zDVyQKLgLKSGKSN/1FINkKaUEDkygUi10DUlRgiGqsaCgIhlB5dhRBZERnHYBRSQEInOZdbaAhIweCmZWXf4Q0EpRLUYcvFxTM1URGYY8qBYiAzRi4FCjdiKHyIGATDHEhKHezWqG09izZ2AerBwci0EzIAKVosIj88GlZDXVGhjtRRSaqRRnf0SKDYOoCgATNUzovamUQoqICJtu33Xd7//RXcl7UMpFiWIugojRjWIN2rYVvWXm3W63mK8+f/Pw2c+/OF2l1epotVwNRR42f/pf+6t/7fjszNCATNUmEcskjphokWkv0LckNTr9cxqfmRijCQxNnUQbcaHWCd5agnhrjEeL24ndmVRHMOr2/Hj2Bi6NU8T+g48VOaKIDEPvIwGImHMx05xLzlJ8oRcxtcgcU4wxgBqoBkR083YmFwO5eTJiYAxeFxDS0/ffWz+s7+/vgSkyoaGVzByGXHoZZvNZLjmEMPT93d0tM85msxSSkwpKzuiAmCGYekOcCMz6oRf1iSsgxCZENzEy1dhEjgmZ1MzEEJAAmQCBmhhBDSH3Q+72/WyWUgyb7X6wnolCiCUrgq7XW6Jwdna2Wq12u90oMlNvJataLt0wDCqgVojIdX6llJSSmYVQnfpElJgQYej7EGIehjdvXj97/lxdUkmMVv08Jfcl98xopjnvVcVtlkaBFgKAKbhNq1WZvLrJJGQYlViBCAk56+CkTp3sMjUpBMDoI3s+h6vuRkCj/0blKR+HWirvLeZGZXXAVMemM6CYuZ+1UXAeCRCribMUMTa3UXbi0Jd9Fpcts98eUyoAjlmjCBgoZSx1DxFK0WHoU0qIVQ8XQgBDYkQUBKvWg/XsVqvOrajOZao2kXxcwt+5okZIgdi0GCqHKnrKeYhpjlYVrlRlsCiiOWdA40rEkplLSWCSzFbBVNVPIQAiEHgGgbiTDXk2nhgEokLWD/vSdwHT09XFpi8/e/tydnYsR/P1ZsPDkIwuOBindaKdiGZ66NcXJ8dk2A3Z0AKHrt99vbt72rSzdq73+zfXV58+e+8Dbt9cXX319ReXz54+e++9+7u7d++ut83sg6Mjjviz7d2ATQmzfbfbPDycnB4fLZf3D3cceNHOct9/tX/oirzfHh0tT3Bzd/367dMnT3/07IPc7b/++qvrEJ6enX9ydPz13dXPv/zlj558+KxdyA52Q7kB2w7DVvRo3qpaMOzNdnO0pNBGkpj7vFglMZVub5SOjs5l2K7vNueLxenZUxykjfMSF10xKCAKQ87hD3//9zhybDi2MTaz05OLzXr9X/xn/9mwWf/K9z/66U8/e3I+Xw/rABmpUZpxpEWCZt7yqo2hRaJO5SHr97//PLX0d/7RF4HO2FIxxESqe3YHCuai4qOjrjaGEXyYVVk0IKCiYkXyYNOM1T/364Donv4KvDFkxB5EZ+r4ps50TEd8bdZYNXiAUQJiptNcoppNFOXhg0z/6iy5CJwcH8eG+4eMYFQdzsCtR1QVkQgIanONVIora/0cUPcgAMglOy7yaCRVTTHWmRpGKwJmKcWUEkgBAGKuA0Me6A0qOSO4LYrWEJxRae5IDgmJOcQw9IOIEIXqgWQwDNm7lUPf55zNVIAHbvq4MGqh7EOxaJqQApARmnEloEHJEB1rEhrg2EohRGZMhASPpR2OnxKAI6jDj9iqqa5UAww34HVq2kIILuV2NjuExEimHtfungNKiDGmIhIA1KRkSTGqKk4MhwgSm1kuGSYcIJrzozDLrxYXjpjZkIe+L6UoIQZGIuRAACFFbw0UVd53IkMhCoFZQJFTDFgbBEUBEYogYikKFHZdnzdbMrO93O/v0t1+GIZS9O313emT50MuCUAlSyHSQER60Mz6zjo8hEQ2im8mNegEeip5o6pWDbr8I3psNh0oxqafPQRJPqXov3kSOPuPhOrtVO9ps4ndfJSVUI1YqrDfVzUzlzLNOVNKqZU2hAZGi3M3O/FxCnKTXQ5ioFKalLKUXHIM/L3vf++P/vCPJPdoDKJNiGqWmoS+dwCklLu7u/2+WyzmbdvGFB/bhYjep/NXZw5qrJIKldBQK30WzWZatOAQ0CCmtklt284CBs1ZFIAwhMAhAu6L6G63Q9TZrB1yv91uxoBnJUTJZb1ZI8DZ+fl8Pnf4qKreLzOrrqqlFAOue8UMANy1yy1XnYHzDpGL5xCwe/tuOV+uVqvaOxn1uYisAAExxOAtYDVlIrdDHPNQMYSo5vMcDGCKRsTuEKtYBXVevZDCaLrqJDZIMRktv13JZ4ZYc4rMX47baDyenx6+Zl4AP0L5CmisxmDX9WDkeBTHj0xUSs7+cP4jTOzpiFjLanNVwUSkTDUAjXbnAAYgfd+3besStKZpDE2zEaNoTduyqseqG9DURX7ue//YHqvPfOxojHsQ/KAgY/crx9GtXNUQtZiJui3A4fYeJ5D/eV8ep+ifh6EhIULkAKKEUAz2qs8XR9x1MgjO5++2e9g/LJvZ8WK12+5ovnzv/HK4u7rdrjUkpQiI19vt8XzRw6YM3Tm3qV28KEN59/JXj85/ePTktlu/Xt/285WiPpkd3a0fwvFi0cxeb7f3Wf8cnx/N2rLXP9g8DHNqY+hN3mw3y8X85PwiP2yHQTIhgL3tNkr2fkjn89nHi1W33981u0WvZ/OT17K9yv0Fxafa9KfNF/3VuuyP0+qvHH36ew+v/nh/M28W2g0lMhAVsSspjfF+Hpft8fCw3+52KYST5bJof39/N29DAXt7ffXR+cXZqpEBbkH7UnopyBHMwsPtuy7vu27Xl0GNmjSTAgnl5OKsTThvU9/t2xRCIbBEFjTrfug761gNihFDnLcmOj9Kf/FXPvyTX7x7c53NZhiDUk4RJQ8KwYiIUFTAAnOjOlSTBs/h8LkvAKWqpTcw0HGNHJS/0yKelvKEaQ4GPwAQiQKQlDKIakDiwFav10PTiKpUGKtVdYTwZyRo/tCjXKjWKOJWgN5fYKYYE6CpufOyMjOYGwQDEWTNpQgyeS5pLlKKF30mniboVI9qUR2GIeeCxGrmjqKcixIYlIoUCVUFqRZNZjXAzMYpGyKySq+he+R7EwQQiSil1A2dmas3vORDD4F3wZAfOmYqJghCZihOVDFAUAYlQwYCQ8ikRhAQCNRlVOieki7y8ZNXERgpi0ZEALf408otjZeimalYqaIThDHKoE5im7VtiwjD0MOI58DdDXDUh4DWheRyezPRIoVsHORBBDMOMRnY0A+TA/J42QMAqF9+IoYqolKKOd8eghkEVGIPeAIOLEW6fdluBimElAzIn3sB8hYqcXTnbjNDolyyAgMgxWiSt4UQId/3bZN2+83nX7/+8a//pdLfs2oIZCruduSHLx7cHJPi+PDOmKgaPND0TN/jZzQieOyLQxD/bYeACQ+0RBOOGTEKu7RoEmdMQ8I49sKm+2mqyEdZEouYw/rp+plYIn8sHwgysL73fAngA2n2+J3KyEUMyAgwUiglN03z0Ucf/eJnP+UmKhRFyKUAQGqavutCCDc3N9fX1/4h+pzXeImKiDibNUmXzACRplAz9+EKRCiACGhBRXb7fT/kHe3btl8tFmGMInQVIHNYLpebzXoY+nbWHB8fI8J222HVGgIxq+h2tzOAlNJ8Pp/NZtOxNvUcZ7M2hKijDyEzl5IBRhcxVSLq+4ERsZ31fc+BwfDu9m4+n8cY0UzFiLkU4+BeG9Wqh4iGPCCwD7kWKeJOJxjdXTUSGzBRXWmAMDqalspzqIKKH6neNM5aAFCrXQYikguBxjNzhNpY9+tYECETgZoUM+8RjCNj5sO7hGpqOQfwvEiY6EZUsAIIWKT4OUnMHGpTWAsAfGtmHgyqnbcfi6PWE8d0SCLKWcad5WIdQzv0m6YROTmqgbEr5dvnEbr4RnvcVoCqBSnkPAAAx4hiQ+4R0Ig58KydlaGX0nEIj9mFEwk8PsJ0B5GC++yDoSGpdxTVAhAR5JJ3qusUfnB6xvf3P7961Z6sFiFd9TueN4vCMcY+WI92Ml9eanldujwLYNxvc8b8fHXSbx9sGDSEAeiNyLLbXR5fnMeTNy9++cV2/ec//WG7LeuHd199/fX7y5PvP/1gvd5+9eZle3oSmM/DfOhlmIWCQVQKIsU4axfr+2tN1MzboR/e7dbzpvnRex++n9OLbvjlV199cvrk6emTpQw/ff3Vru1+fP60RX19+/Bye8uLlQ1dKnaOsRvEmrgtu3nTmGKfZVh3tIy99D32zSwumzag5VJKN3SkWrpWNZdcgM5Wp5tOIQ8cg0HIg4anp8uuhCGnXEouWgRUMC5mYEpoZAImaEyYDJMYGxAgMBMWCQmJtAwSmfZ3dyfL+X/jL/3oP/5P/2AriRerfhgaFDSVXIiJU7CMoMCMAgZqSIyqBkjEPg8mIA6dzVVxiKh150wQfgIlePBVdQy1XWVqSoTIQUudBwMARPMukh3k5xFRVZyqAowy5clI+gCCO/s6PTSAz/ebohCCiCyWs92u7Yc9oDZNGrkNbwdDnSKw6samddrNtPanpz1UbXBDCCGmfshmFmO0/d7ADSNUSk5UO2Ih+QOBidbxdDRViMRKlQxwbR+O3CkzxxgBQTwgXswMiDiXIqZ+E4QQkNBAYykNSFRR7xERFgYkzGxEFlSCFlLXC5HVYRnRaoSEiqQGqugmlaqK6N7wMn2UZgbV9FLN0Py4h/pqASAENlEVW62Wi8Viu90OQ17M504x0fhZiAHX89zc81XAvCU/fWSIhFY93IZhmC54ESEC8fH3OocGqqilWHF9GPsUrpsVua4bkEoxER2GAsCjzwdiQIE6fQaBFNExB5rloq5XRESk1oEepQCxEdn97h/80X/rr/91pFBUEwBoMeMxPhgPARAeqEQnJHSIVA53jf95QsDOt+vB5NdhU2xCM9MDTbqfqe/mvMgBYngEUtPP2mgf4DvO9f6TLDrnXEpWQQf9AECj/6+Y5r6fOiRExIFd4VNRnBZmMgPJmWOMFIdhuLi46Ha7t6/fMKOocghZNA9DjHG9Xj88PJhZ27bz+XzC3MzsNcdkEj2SZ+TSkOm1pJQaTn3pxSSN8n4w7Pu8vr/fbtYphePVsp21iCRiIXDTzMx0u33o9t1sPmuamSpGTmqbrtsjg4p6Othut/P9zswppThOOXgZ4DjVcaeI+GTThGuJqG2aMhQ1DcyqQhR2u/2rV6+ePHkyn8/9Q8DAVXNTIV1hZgRylweramL0YSKogkWrvpFjeeAHMNS5LZFcnPoRMSmqAMhk1UvEqRAGyOMifBTRe6t7utWliDsR4Ih63DkFzIwMEIgJ1aSImYRR8abqlmXVAxoyOK2IIlYgBK6nnE2WOVWd4zY/AB5j5IifiL5bEiCi4RR+97gDJ3corG12MtBqRHhAx1aYZ9V43f2uatnMEQBMSy5aa1YzIm4XTR769aZHF76P6//PAKARFoGRgQc6Gvr8oqGa5YJIAKSB7vLwzf3NqdE68mDleVjspdzfr8+On65Wx6+3ty+v3x7NV8/ao25b3nV7xvZ4sYK+LJSWzezVfqdFIrW8mn212/DNq2cafuXZRy/yw1fvXp2H+VEzK13f9/0sHQWNv8jd9fU3F8enl7yE/f7z0lnkWUqa5d3m9rxdHS1P1sO26/o2xpa5A3tx8/a0uWhjc3ZyvpE832+PhN8/u7yC/cvNHUn+6OJJF5ufvPgajZqmOYO4AbodhhyxUyagWZj1/bCT3bNPnoVEsu5Uh1IAEUOMgFQUd0N+2G5PVgEJZgnnhTuV3X6vAmHecAixRBNNRdwpLaAhos4bF5sUEcVghqAoaiZgosaIIUUiwDwwhyxauvsff3L+k0+P/+AXm1yIA+WhC0BoAAyiHpuOKh46LORih6n+q0vPhzMRHDhMn/y4tg6P5hHLT/C8blgwdDDEHB2iF8fsB/zqePmJguC4fA8Q9vhkDr7G51nPIDcC87rh7uFOSlmtVvvdBglCIC0lhJA4GoBogdhAoVLEwJCYyXLJbhID4zglAKipj9y77F9EYghlNE4mwhQDAqC3uEFFSuJGXY2Ik9zPIISpABHRWmC75JjZyV6X+5kBc3Ddd/CZhZLHhoWw5GAZrYiKkgoWI+UIioJEYCjGBARGCj79Zw5LKm/vgi43nA5sRb3gHp0/1MzPFL/aSVVUy3hp6qS6FS1dv10uV5eXFw8P691uc3526nP96NLqxz6LgRozue4ghOinqpmZyyNBTdAzQNybTtw7kcyqxx04mCYk4kAqgQgAiwCipYRADEai5i7Vu31nCIFjKS4IZUAzUe8IAoXa4iXOOStU++CSB0IEZL9b+pIpNT/7+S+urm/OTo9VhiwaMFDOAATIaDgRA9MhO+EeX5AyWhpO3yCjBzGMNI+M2+1QpjP1qmxseE2r/ZBAwm+b4X4HNk3fT6OqegJk43PQw5u7tl1Ap/5Fik0uqiJqMDlcgxlTDCGl1KQYmULuOzYIIQgVM8tZYog5Dx998sl6s3m4u3MRnhvn7Pf7h4eHnHPTNJUXQQRXdo8chL/k2lUR8TlQf3VTPzGrmqGJGGGIcT6bA+B8xsMwrB/u1w8PpeTFMG/bWUqeXAZN0wxDcv1TCDRrZ5rAjEvJBopM3nZZLpc554eHh9lsVq/tEU1WgzTzeFDNuXfq0auWcT2g52ISkag4V3R/f8/MHJhDKCWzAyAEhGr4KSIxBhHxwB9EYg5mlrMnLbIXbNN79S0g68McBqpQx8FM1cxBBRKYoRpoEULGyZINAMeUT6vK+LpIqB5UdarOFW81KF5VSZGcJmJCH55wplNFBAjJkDkikoiqlr5krzCBHnNjAKx2AscBGsBRj+hnOcq+2zdNk1Lrz9Z99pmiio4Ip65/9krLp26JwFRKwertAkSkpmggakRQRHIu4xZAcPMUBVNj/zgI1JQ4HB2dDGXIQw+PUdp/VuYxioG8f1KlGqhmBBCQSC2lIKqWeLfbv9hudLZYnJ7d3F1DxJP5alVk3e/noicdXpve79eXzer785N0fS2BGBWQXm/voKX2eIV7CZhu9jtis936+OhJO1t8r2l/75ufXTf9v3T+yQ/g6A8fXv3T/mteLPBokUr/rt8+b8/ea1aK8RUMt6VgnxsM90N3NJsd26zvbA5xHknz/hfr6+v1+q88/8Gfo7Ovbt589vrLDy6ffjA/XWzxs/WbRZsuJW6HnkK82m8v5+3palXu1m2EvVnp+4SkWnDWZLLNbjtPZAH7Xbdo5gFot98Hi8vZUQHE0AzIL96+mp0vF43IfselBEgBtYsITglkNTBiToxccs+oMRJhQ6RGapgVVJAM0HM5u5KDYCAahhwoiexDuf7tv/zxT776+xkYYRFCo0NmIlGwAhyjgWouIZBPax/SLTBJQxAEjRTcBwz+WV90QGCaGZJNnkL1BDcAcykclJJVFKmexYdYajy+mcmn5xX1u49V2dMDe3LTqq2pgY0Ad7d3r169fP+99wjmWYacB59idL1FEaE6SVTVLVlKnVxwMbOqe1JPBbGIghaHCzC6jgai1DSAxswIqIqitemOYzcMxiglBXOpI0C9ukTExvcnhjigO4B5cm0dwOiGXsegQTMWjKKh1wBpQUEVFSkTDoGUMCEkAy4QGAWsOGk22tCJx6qamQIgIwcsRb36HG9u/0Rq/6Wa9ZXyeAgSMbMbqOScAez87OzLL798eLg3eQ9GTTWA8ePUqI7+LqYGhKjZpn6Z54qb2TDknEvVJRF5WidoNboUFUfMqorIkQMixsSIQCCGmIuKSNf16/V6v98TETFCESRSKAhgByF0iMRERYpPndSpcg4OtGIMWnIpZTafXb17+/WLF+dnp0U0iDVtcALkkA553Czjlx7k6B1+/dkf8WMdA04CiAmpfAdd0UEI5eFvm0DVuDUQD8zodNQMTQyrX9U6ptz3fY8HUUq+reo8gBoHAgIQ0DJ1xybHIzKDUgQIPSAFnX8i//shBBaRH/zwh7/42c82642U4hPId3d3TvU1TTObzfzlTE948tvAcbZO1ZOzZATfMIpPgWMgRtFqulgyAOB8Pm+a1Hfb+4f7V29eL+aLk+PTGJNqjDEdHR31/V7HEBgzWSzmYiebzbofOgDw6GiXNssYTje2IBWdZgRwr6IQgs+FuZgvxUjEkjPFiIgimkxcPjcMw2a7oWt+/vw5EpUiiQOYliJEFGMcBilFuUYZVh5FpPR9zfyyccxERiNNqulXqKUuEhX3AKo0u4giIwIK1KXIHNC3uR+tY0a1709w/3lAhDFkRgp6g9A/IDQpknNhJkYKxKAwqceI2GU+OSsAxBiZoRRS9ITjoVBpm2Zamc5v4XjsP5bc47p37WPbzkoRq2FuDAggjyB+Kg8Ap31RreOIqN48Fd0Z1FQFUbdJJBo7v8AcI9uQ1VemB4YsFstchuurd6Zy8Punwvs7Xz5M94joDEBUkSACbYuUAJbiPUDC8hzbRbu8L93TOJsT/Om7FzZfnHF7ZM1DtzMYnvD8o/OPPnu4vsm7HKkr2fZ8vDyNC7y6v8sg89DoPPxy/6CmZ5m/d/HBm7J9eXd91iwhxnf7TW/4bHG67LBfr7d5/fHle9Lxdjv0jLFJJesu91uVy9nyyWzRb9Z51wlZR5hb/tnuhmC2Sun9p5fv9vcR9IznP3r+0c16/ZOvvtajGTaxDbO79X2aH398cl7WtzdcMhGQ7fMAMDs5On1yuhh2DxhCOG5SiKK4L7nb9aV7WM4aTc3NMBzNmtu713/5X/jNTz/+0defv/2jP/xTt7ozUmHTlqiNIaAxlnkbmlR7wABIGH3mjxEjkhM5hIBEBkwUCaGNhnL/4fP4L/7m+9rfkA6WIYXGipRSAAkhECNSqT4H5mkyaCb0OMU1TliqTs2LqUidzvTHS9SqGM7AvH0E5l0Pd+vQqggiImRCJuDJgdo3kmfjqakTitMjThfA1BM5vCEct3nDzmvHN2/e9v3QNM1iuSSkmBIimpozxZ5o4c4TuUifeyIMIXoJdXBrmSs1/JLw3cuuqDBDosBsaqqFmEbFEhYpnueXS2Wk/O3zZz4dAVOBzswphBhCyR7Njf3QE1Ix7fo+pRRCQADEYGn1emP/5LMXP31xty5NTEeJUxSNpSTVQAFoJtC69QwQqoqYEqmfjwTcdYOohBA5UErR0VgpJefsEuzJH0XNEBSqhxP4G+h8ld8N/TBcXlw8f/b07vbm7v625IHQiyVHeDUL3YMLRLxfCIgERkzRmIq3uBC7bh9jUoMh53rJmTt4kKqWLF6BI1KMyTMTEocmRAA0MQQQlc120/d7IgDCYoUbxmDAxUwIjQmYIBB6hailuGcrIVBlpYSsaO4YBU3BpJTy4sWLJjVlKGZWihatAPE7qP0QoxxyOVMI12H7ado75u/IiHu86TMt7OlHDjcajJmp/vdOzHizZvqz0xJEdHhJ0GgZV0rJeTi4tx6TBFQVDtgs5vq/wYfqXbGOj1GXAKimJReiappgqmwQQ/L57CbFTz/99L33nz99/mw2m93e3i4WixjjbDZzfoUOPMH9cFCdtLw1H7dpGlXtx1EAf9urKj8QI6OCZEkxegc2pZhms+OT4+Pj46Hr3759e319fX9/3/edgxtEHoZMTCGkEON8NktN8i6bvz/7/T7nvN/vPfK97/siRcUki5SCAIGIESOHFEITU5uaJsUQGEDdMrFek6L4CFbo6urq7u6uSSkQeyHkb2MphTmYASKXIqpSStnvdx5JNCFa/9Ix083fHwAaP98ARkMuQ5G6qAkBSZzkAAgYtIiKj4k7Z+O8sqqqG5YYAgXy+HRmVlGnZvOQvUvrzySXMuTBVek4atS8OORxYGWskSBwCCEggX+IpWRvCY0czARgPB1MRVSk9qq6rvPYGR3ldKYTXKtAROtXMRPfNKI1Goi5bkZv1ZF3ML0odSrcDAMDsaqqKdKofxqKFNntdiEktwihMe2k7vSDqgbGXoZO5jF+VREYKqKCufUUWAhbstey3w35eHG8mC1v7x/2u+7J4rgbujselkjPNMRheH9+9MPZ+UeLpem+i/koNZfWDtfrXe71KLaRWsMM/JWWf7q/vZnR0+X5D/HoF3nzn/bfbFpeHZ8MpVzdXs+5+XR12RJ+ffWKTT5enjzpDLd7lLLC0FLIeYgKCbDkQqFtlucamz96ePNf7V6FNn5ydLJqm8/X795xObf5HOZvY/iqdGvLp+1sNZsdHR8/ifNTSGK2C3KHw9HTy3nbnqf2OM5xsBQoJMbIy5MjVWBOZqEb7M3N5tV6+83D/fuffPy/+rf/7f/x3/xb2/X6H/z9vx/AuwhE7o0jWhA4MBAi1LNVACJLQFNCUeSRqNHUJMlFFZqUhqEDFcM87K//ym9+/ye/uL663SKe5D4jVYiQhyE1ypFU0RObEarbYGXL0YVkxgjgVxvYdJh+p2ytWASNyBQUjGocHRJWkayOPlOTQtoxBh4CncNy1vX5hyjb+Qs4ELg5SOEwLkezUiTFEGO4v7+XMk9tBGQTKCh8UEmDbwB/UMB6A3lqvOlBDV1let5EQ8Su66YiNVQVgINPAiIVK6WYKHOMHBDZHUJ9eB++zV3hOECxXC733V6s+iaraQHN/eOYjx/6SunN3c3uat3M6Yub/dOTo+89XV4uT5gGNCCjyGgEmtEHgXTIWjJRDIDAqGZDP+QCgYthm1JyWYDfOiKVyq7euy5mQggh+M0UYkTEkjMirtfrpkmzxeKjDz9Yrx/evH19vFqKZqYAYKIFXYEKXpwBgro9kYiBmYDiuNSHYVB3cXYCWUVVAE1MQUFUqSY+2hSdiIhOLbnYWkU3m912uycOkjOB+ZFXpBQpoEgU6soxHPv2NuFoLw7HkE9ARcZ6Ql+9uxrKkKVQCApgpcjUDDpQ+UyV6LSGxwL98eObcPwEbrwOOfzxCXhPaHtikqYLozIw4++f/vVgm1QY4cvV7yGfGhuFNT6PVR8ohOCmDyrqxleIyExMkTlaryI1I4wxEMZ6FSOSJ+Uy1e3oOXOBQZUBkQICzWeL9v1ZYH7z+vWbN2+IyDtf/qwmDITeVCH0At1GRyUY6YFDDRCiIZCZMQAERjB2swoFATUxEwghLZc8a2a73b7vh76/YaYQUH1UB6BpSgxNim07mx2ZquauG/yh27YdhmoF1HWdfy4lD4E4NY1ZXYeuGTKzGEPbNF484CjuCSHkwjaUWQi73R4RFovFy5cv1ezk6Ey1IICqNE0DAH0/2GhK6QthzAqtwYLkk2UHuBYADNTAQmAzzLkfclYFQlYfeSeWSSwDCHVmzBXNRKBVX4TTXOe4eMC9o0LbUi5lKNINHQJy5NSkJjVBuOt2Q840EjN1qgDNbaVCCF3XDcMwm81qDxFBhuIzmESKVcGtgdiBe5Zp+yiAEbGC9oP/kgViRvQRrZFlnu4D7xfXjTEOEFT38Gp0rqqM5OMsdc+OXooE5MZOiEQATZNUjDnFlMyUES4vL9+8/FoNKEQpGczA4b5fZNOa9H8lRDNQNPSQn0oPMiGCqYISCeqN5mOws0L3++5mbqdtuwh6tVufxOMfXD7b9f2r6zf90dl51h9R+oVJIZWcwaBsd0+fnTA311f3HcTQzrPJT4bN5uabp5jadqHdzUveH88WF3voNQ+qqzSXkm/Wt5slJ4ufLlZv1usNGLdpiLjvu7ttXrbNKh73armXAkKpuUP4vf279zE+CYvLZ6cv1vff7PcYZ6vVSd7fWJY+agm0G/Z7geVinnbr7X6I81lKnPd70VC6YR4jhGYoeSg99OH4eNXvS98NyNTLgE3k5cJo8X//2//JL3/21T/4x39y8ex7YTybEXzoSg2xmJKNemA1NXVPKwMFsgI+bRQMpOSSydhJVCAAIlNtU/lX/9pv/e3/x/9PtQ2x7ctAkim48J7cNBTqivCu6Lc5SQMDI5cMjQWifVtV8Hj6o4q6CZsAEDhJq2i1uLQ6czgKgKbfP+ES/7XjWU/V7WE6Yh8zZXBahK7MRl9vyKawXC5Xy+Ou62IIfmMaUBFzIqoWkc5yOxACA8NSBjOo+E8fpRXqJTIiGPi8h8ORQERMrqoBAFMskolABQgJDU2VAn9rk4zcQX0DS/EzLoQQYwLb51JCQANwbSwx1RA3VVMDk+OjY9rkh67vHuTm/uH164f3jsP7TxaXZ/OjJjaEitJRyGKoGogjUwESk0QpG/RDFo2hCiNx7MqDGfR9JnLb2doqnLThWKUJADWXilNCkdz33eWTy+91n7548dX1zfXzZ89CADebdzIQaGxxusIDUC2bmZbH4innIiI6JlUhAhGLlZFBqR82Bx477mZWr0AMQYdydXu33uyIo6iYoaqW7DS2W09RJffH939abHDAIFYAjwimHmvICK9fv3b0UUQouLBaJ45nqoCn9X9Y1BJ9iyuaeluTFt7qaN70E/U3TNNb/nW46fDga7wwHgfjpwrVvyYZqYMtB0CI6EQv8+PQpagMw1BKBSUxRlHZ7vcuvJAigUMIyYhcOj1dw0xkoOj2B+NLIKydopJL7cKROu6ZCB5feNMbOL6NNIktqpwWDNHVMPlAasPIgKC5F0ALgUEhl0HFkAPUGz4yceQQY2Nmpegw9Dn3Xq0YqIiYDmAEaBy4bWelaM55u92aWdM0bds6fKzrF8C09H1X++AA+/0+hGBgs1kDCDFGb4qVoQZuKEAEdBbhYf0w5BxjfPvmDWO4OD0d+j2ilZKds3D+yUzdtsk/6vGktdGfvQqAfIWEQKrWl75k6IcyDEXREMm8pjMvIStxYiomPjwLhGSg7gpNY1jkuB2A2YNGyAwTEbIGDVKkz/2QhyalmOK8naGyj234hxhjNDUVASKHj/P5POcMBinFwIET5WEQGUXf49rOOYsUsWk2ws9TDiHkPGw2mxhjPWHrAqPpX20U3nkhNI57gVoGYKeQYeQXZRw+AACfglQDM78BxMwCxbG6LtvtdjafxRACz5pmtt1viR+r1kMS1/9Sq7AR0YAAFUjZ1KRYESuqAqCEGICbkO5L/vr+5ldwuZgtbstmLrwKDbUGuaQU50DX93ef33/zG0eXp6fvQ3/z+69f8/wkpZSAurc3y+VyOZ9rr4Q0gH4p3Zt++73Z8XNu3ovHXw3rENL7y+OHPNzc3PawOzpaHJ2svh7WR2nxPK7eO718t92+7HshBNJdn1loNl/YPne7jiIul8dDv/6D9dUmrX5ndTILLaXhs+27WcL3cf5kfrSV7s393ZKbu5uri+cf56KWMwUjMsld0W4wMmiZeN/tMUC33Tzc3q+Wp+38qBRtm3Z1/GQ2a/a72z/8yZd/8E9+utuVi/P3TmYXQQHBgOplMx2hquqKtKqzQlLEotCTohgTEpIOUkLTBF4UJUQtoiZNbELflw8uzv/qb/34//33fhFDAARDQciIaBrVWLWMLI0R1oFhRHQXDudVdMwMPmTy4c9+Gbho0W95xKq9qRxPVRF9t+M76k6+JbIe9yP8me7wdGNNj2gAgI7LFcxssVgsFsvN5r4UNzCcEaEUzZq9/pvkEXUwwQBQDawYkNuuy9hZVytSgDDGZrfvhqHX8U5OKcUQXVOLyMSGOr15lQFxADiiOOer1A5Ir7FC09l81u67figQEYnU1NmXx6rQNGr+1U8/WuHxn3zx+ev1lsLKSrN+u3v5sL88Sh+dLp49mS+WTYxzURHdA3AEdHNoRJKCogQQVEkNAVxeYESsCiIFwH2fxNwTG6v9Tz0mTYah3++7xWIWIw9DQeyZ6YMP3uv7/Zt3r1MKl08uUpw5wQHAIGCAWj/bOr5bk1zNALBOvTHr2NkRUTFRE6tuQTjd6JNvAtVIW1bJd5vtw3ojYjGlUoQouDECGtQGK7N+dxG53/8keBilJUSALtg3EQEOr16/3m12s5iGrmtiNJAiVQ87nYaHB+LhETn1Uqd1ewhiKvVCPOGb6UqYTu1DoHP4Ne0+Ooj29B90mEUHyaw2krX+9zyabBFVhyrvVrgibbqZ/MfNoB+GnPPUdKjhMwcvR9CmLJUJbxkAElTvB2MASCktl8uHhwdfcslb0geSKYdrcZw2mF41Ue3cTaBNpKBq08RsPQNFCgU8/QEZCRCMqn4o5+wMRQjNbNaqipkQE6CZYN8PKpbzIDVjofbd/LkhYkpp7CpG75O6AM5tLHLOuQxmNjKDYTabNU0jRREx1s/CSsmEeH52fnt7S0Rd17385htUOTpamFouA1NomhrSUrviPPZVPRkPHr2/AWAYhtH7CkWK8+3i8nWrHKeZZc2Rica2EI0WtAAgJnVhjfVAXaUIiCpaz69pURFRYEa0vu/3213uOTUh8cz/U11mqiHGpmlEZBgGGL0hVHQYQFVTSCm106aoVYSCiOQibvB9sKF8mgqGvveJeg/gdsNJRHObommD1NY7TDAxuNhg+kyliGP2nIsbZoloBPLR5nqBMBORiobASGhmXdcFptXR0Xa/NVNErmkFj1t93N0ABkAGaBAAC4IigOkAUowRAA0icVQIneRoNza8m9mRpfmabjf3v/7s4+fN2Yvu/uc3Lz+A9uOjo9u8e1UejnD1ZKBfPb54oYNQ3ouYwXb9cH50doH4cnO/bwm46aB/kfeNwEWYfTBLt932beznGJnDg2iw0jA+hXbzsJHT+Q+asw+wvb378up+FxfzuJx1WfbXNyfz1fnJ8cN+vdlskWgWT+4w/N3u7njNCfDj1cWLm7dvZuWT45O47kjtIs0+unz64ub6OmhISagTzPOT2dOTi023aZp4cnH29OnZTz/7yf7hvkgfSNd3N1nIFAlx6Pag+Xh5OjuLm/WuDEKGwTwa2hANqcaC+lusnirnEpoBFEkRFBTNAnIULcBxyFFLbJvjEJVBIzZoOUDfS//Xfucvvb0dfu9PXrWLUyJRHWDIEM+QE3JHiKZGWF1/Rpg8TkBC7bv7SNThQX8ISlQVyaZ62O9sEUAPVQGouXQAAN8KQ7Cq9MTxaH70U4HxCnGccdA/ovo3Cug5Nlad8tSsbWez2dx1LWYgoiqP3QR/aoiAhCVnb7oDVO6HmNijIuvmMjULo8eY1Nl91VKYIiJpUYtaSmGKKTU5F+8LhBDIjEIoxXmIRyXTaO2o+iiUkRhj07b7/mHo+6ymHjLqoz2iZkZgVIZGdz/65Ozyyfc/e/XmT37+br3j5Xx5o7Rfy7u769Orqyfn88uT8+VqMZ8nNh1fOoqhZEILTCln6bvcLOYpRRFxnxCz5AVZVQKBAhAgiQAxZ1UR2+/7XDLz0iMp5vO2lBxD+PDDD9tZc3t9a2bPnj9nYjRySaCCy8HEcSDzNPrhBRuWMQXdldL+jItmAEZEDpE5EKGHPsHYN1G1rLLZbm5ubhQspDhkEXV7bb8GFQHItWE8snTfkTHaSHwCArESoSFoYeIsJcZ0fXv79YsXv/prv7Lf7fBxVOUR1vzztoMdNK2mh1NVvzsnDKRVZ69TXQEAk4Hh9Dtx7Kzht22BHi+Ag0RVG+VB0xbz/+r3eghBRFzj7x0BAHCOgYmJcBi8IYIxBrEajJpm7QTaRrGzqZhRBbIwoiJnufwPhOyYH0xjSscnJ3d3d03T4CjdmF7X47s3vqJRnRpKKSqPgjkR6fshBEoNeTMSAIgJi4Ga+nCgGjACYIxxTHr2hzAiBrCu60vWnCVw4hBSSLIVAPBPZ8IZZuaCHkT0Vx7mc3/zQwht2/qRXErp+97lMghoCrN52zT1HWPmUnIppW3bnHPbNgD5m5cvuv3p02fPiFhqLIqF4IzXAXGjqgpcbUmc/remaTmgmXqbCYGa1JQCgL37e/hiElNPdFBRqCO/6L/ncfXWufTHalJUETwhG9EDs612VGezedu2fd933X6z2bTRXJDno3w5Z+l7LORAsB+ByzTNJ1DNBSaAa6PtNSHmEaBPN4KIILOo9sMwdRsP9pqveWev7eBVIYJP86AZ0Fi7FXOT86LVkx0NlYgRCEAQ2f1ifVmGEFdHq67vVYUYZ20TYvLsW1/jI+30SN8aGLCBAYnLtA1M3EEeSBmIBQJQYCoyiKoRvOw3idsfnD4t3S6/u9OTk6O2vbp6/ZDkkw/eowF/9vrVdrP70bMPTyKVty++2D9I0yqEkNrN0AciWrR5yEQgQDc6vAJsY7PkpoP+9v5O2uXR8cnQD/d3N09OVt/jVTg53m92d/nOxH54dJL69FrzOvdl0LmxaM+hmaVmd7/npgnz1f1u/67fncf2SWjmRT85u7jpNl9cv3x++eRE5HS5yhaucieLRTtIq9Q0M+176+nZ0er2fvv0R7/yP/zX/pX/8P/y9mQev3n5mtt0fLx68erq+vr67koDwcfvP7dCD/sOlCOHXCTULO7qwula8tHnqsKIAAxFMSCjRQAyjAgNhNY4/eN/8tPPPru9eHLRzprjo9nxYrls8XjZpHnMtvmX/9q/dNf9wy++uU5czDJjdHcsDQ5yXMRuKr5nAB71+TatuenA+rPXwAhlPHsKCMzAE+X9j1Q7e3XdE4wsrTfGRB7PawDw0HcFPfTjHEEMTJvWagfNzGNXEAixaVtVjSG4EUguxURCDNV8yEk2MwM1MoVqQgNIqlp8rBSRkIrVLljJIsNOqtmreDfPd6s9Fl5WipgCIaUYAwdTeRRzjDbQPmw1th78HREEJoa2bcNm1w8DhhhiPXkRMKvjUVQUsk42rxtY/9avnH349OSf/vHXL95cS1rI8oSa1buyW191L159fnE0f/Lk6PJktlgkCokUVC2LKLIB7bsOFVLYx/gomK3cvgGAgH9KgGTgUyVmlnPZ7faei5Jz8fGfxWIBZrO2ef782Xy+uL9bv3jx4uTo+PTkxBRExrcJwUDMxARp+pDH265e6mIKOvZkEYlRkYOHzKOYHMpBpOT1en11c90Pg7sTB6BSMlMwAxMxQwIA9pJN/cC12loGFXWCzhcfVoN9AmQ/2kRt1jb7/fbzL7/88Y9/VVVVJAaaRnmnk3oqZ/1wnzDWtDumPxyKjqVaG5vzLsQ89eHK2BiFMVZpAjqTwHn6bRPokTEklQ8i5Se+Z+pWi0jOg1tLihTHFVjD/uqly8SzGW/3qS8ll5wlNzgD9OFG4uDZGoyAhKyjsGrKAmSmUgTUAkdVG8pgZkZ2fHRUG74c3GvHHl0ideqr+Zbx5wPg/pxhev5mRoyq2u86RDCEft+3swURVbmYe30hiPggBU6GSmCWZTADry5SamazpUjZdbvcV2oHEYdhODk5GYbBn6SKFisIhlATqXj0W1KVmGL0zQ5WjToRhqF03QMiptSEEBaLJRGGGMMwDENGEjN7++7NerO5uLg4Oz1HpCH3Um1aGdCnT02yAlCMCUCZk/dPAXCzfRhyDwZEFGKIqd33uYgAIDE6eRIpoPq4OZiBaAGojexx3YrCKNuv5ymKacMRAH0RsmdsgQ/YF2ZqZ20IvO+CZM373TDk+XweQwwhFA95Vu26DpHatlUfdg9VrOdCAvx2SeABv/Bt8QMAmGpsmmEo++1mtVoRMVJVAvhFhOgApKIfRAQGhgBedjmLcECg7vb7/X5noK74YXI32sgAgKRWtKjCMGuXqtD3Qz8MkUmLMFHTpH3Xwdg6YJ7w1lilIAJw/WMtxqvbh5vD2iBaSmlij4pqTLAtPbXLVTN7Ly2/ePX1n9y8fHZ0+hsffv/N3buv718z88XyxAZbb7ZNkz6J897yDXFPSQxu+k2ONmtPZtg85A6ZY6ArEdndfRIXR2kuIuvdpj2OxxqaNNf1/v3L84s0/+Jm88v11ydPLz9dXRyX1e6bLzZcFvPVTGiXd/e368ujy2cXz653/V0vGRiweV1yCfgRpfOYqAxf5f2bzf0lxqu7m5zSdsEMNi9wziEgrRifzJqvP//lm33/5PlFLtuApb+7XrVpnbvV+ZMfLL/39vVVv9mVh7XcbXuMHBoy6LohxiYwoJqBFiQkJiniNjYwFlkIZiBuw4BKQGJoArmIhdSs+/KLN+sv12yamQtSmDepTTGkQDEdnb+HxMtZ7HtRZaNgKiEEJhI3/gQTA0MDBkWFya/PM33H+W2rfuTgKXf1Uh/xN2JEd3GpST40icVMFYyqFNXQ/fdwnJj2vDoz9caZ1XDD8fpEz2039l+OPkhpLhQyNDIyU1BrmmaWmu1ui6hWpGlaRMiqWLvAysygqKZoxIigWStTBaZQVGIkQCs6iBbw+X/CYSiqjnZQDZm5TZGZQUEUQgo1UAyqgTUzZ3elRx9aAQRQrXWtqqgYGqeQDHTIPQLEGBfL+XCfVUpqkutSDSCFmIecQbsosEgJ2Mqa7u8/bk/f/yt//rNX9//4j79c313n2LTzEOenGsqb++317btXK768WF0cH6/atokxxzg0JQ89z+N229m9ENJyuQTn/Nw6hEHEioqof8hMTKWUvh82291+1y0XcwQOIaKxFiAgBShZwcLZ8cWiPbq/v9/vu5yv5vN50zSIoKLiNBgAoTUhSiWdUU1D4JxRK2+vCiAKCiFyAPLzWs1d9glnbQuIXd/fb3fvrm72XYmxQcBAoeSOyGr/Dp3HRyMEAtQaMUtMaKg+YU/o5aCnP4JmoqgKRECWmYliytvd5198qZJVsRi3Rjnn2LQTAKfqs22AWEoh5iKSUtKRpJGD0tZHaSawEkJw953AQcYUb6y6qDzhqglFTU4/U2UyRYZNlYN/m2NTGiXY7mhARG5LMwwl5+KdDe/kOFzjAExMjGqSc9YyzFJEAEM0QgoBoKZyM2BkUrMCwkBQ/YSd94Ka9IpUXFLNBEZAOJsvYmpECxk53PIKQkpmHqdQQ3Q6GBFCYAB0pa2SmAkRUmQmGLJmUUQspaSQxH3GAgAZBShZu33HASMTAIbAACxSejEwcu/pETuWrt/v9zt/ZxwN5JyHnGOTAMDNSGMIAObeHIcwN8bo0/EhNAYaCCBVSN91PSLkLDlL35flYhmIUmjatDhZnXbDfrd/WK83X3399dXtzcXZ+Wq5bNqUhyKlR2IwZGKKoFoQhQOJSNf3Xdft910pJQR2K4FhGMqwVy0imTgUM2QiIxsEiKGKcf0wFkVD8xRABGE1D/QCRB5t/DCboSIhlaIhVCqREYtCycICgdNqGbuuG3LOebjfDE1MTduEFECqwSAiIJLnTIMAmUdUAKCpGTEjgpg4d69FCYJrD2AUVIKalMJI/b7fb7vlYmlmJlaRkEgpMs7n1xhXUDC06vlO7JIfM6shHUOvKiGxlKJSwqwNvnZBSylEYci5Sc7bwW67VVNkQLBmuUIjLdq2zSACj2nHABVKqhlCxcQGbIAC4odn2GWLMWLEvewanHEAzthYTIlf7R5OAyVNsU3Y5wAhEB0dzX/+4suz88tPTp70Of/J11+czOYfXj47W53+/u27z3K3RhuQJJtyP5sv0o6tx6TMDO+6TcbtR3F+upjL5u7u5TefPPn0/Oyj+4e7z9++2syPmqZ5kmjbd2+aLXTlN5YXp7b/JndbwgEYNeS9pWVjnO/yniOmIgXkxgYV3e/kXJv352e399clpS7DTg2PW91sP10cfb7fN4vwr/+rv7Pd3b5781PaP/z5v/DBb//2X8g3f+3/8L//d24B55fvDdLdrq+NhaGbIbRZ+819M19YBwEbUwsq4p+oqVil8kzEzds8PcpPQzVDyghkkJRIISuiLY+WadU0R++rdGJDEbs3u96I5AJY4JuftW3DvvoxihKUgcjIpT+1j2Q26l2nI3WqaOuCAzNXxhjUuTGokAgRwCbP9RoMceBfWE8HAFP3c/Bav6qb4TtfPvJoo2RkfG5QATdMhJM3vqD2uVVFMliyam3j+TUsCioCYC7TrDlfOeecVVSNmAkD2aBSxNDJfDIEK1LNUdDMQFTFjBEjufcVjs064CrpMELwJrR9y3nMv9NK6b3rhEAAqAIIZG6Dm1LTpF3XV7mQCiEBmLdKKEAKjBYizU0y79Yayg+fHb93+hf/5Jdf/+kXX67vSh4Wx4vjVXvUprjL25+9uHvz5uFkvjg9Pd23zZ5jnAXaUuB2c//gSatHR0cxBpUqh3cNB3MQVRV1w6RhGErOiDCfz82gZEUrROxe9d546bouRr64uBiGfrNZb3e7IeeUEnPwf5qp5p5dOgsGgLkUlRGZgplqFlU1CCRm87Yl077vESAFIg4E2JWy2e5vbm/Xu45DIHS1LPiIMqAgKQhgHWwUHG2iAAxEDcaZW1+zTsuZEiCbZopMEDQbYhEzgBcvXuy3e+Cm60vLEEKwUZFXV7wZjmN6NPr1+VqWsbqdLBARvS9DtaJwXI9acvFBLRzXzIR1JiIHRi5n6hFMvAiO3ZaJW5qclA/52vGbaaJqVKuWQkcl9TD07ofEAXPRUnK9LlX89KE6JGg+Te3C8HoboI6nRE178zJfRHIuTdMeHR3f3F4ZGIXgH0G9n/05gg7DAKM9oJvi1BadqRcoVa8aAgCOFvNcqrYaxTwOogAqUzRzpSsEZgzBCFUU0d8lN8SQvutNLaY4Tb+qaj/0HplS5eoAWQoPAAcfHwDE2Oiok1RVw3ruuQaFmYZBnC7MQ8YQUtMQYuDQpGa2uLy8fHL/cH9/f/fmzet3b7FpmtXyaLlYNDGKmEuVC6po2W+G3W7ndy0RrVZLh3HMnFI0RWZgQiBQUxPzFGGwigaACNC0HmRII5Xlwjer87rqPC27kLxOINa0CkYae68qpRhhCAGYOAZXAG1328ChaZoYK9VV8hBi9IBQw8c7wtCRvZmRVU4YNRsoop/NjiRAVTJRROLNZrOcr9CQMfosWAipuov4FDF6NJJvO1P0KGULTIgoQx6G3hvdo4gPRTJhBFBDa9tGRaW4zEMXi+Vs1u63277f++Htk5KmOj29sSwfbyqgqpL17DMgdl5AQwFkZ9kBRYblbB4QEkQA25v+Yn0V25Nni/kPzs+/efX1do/LWfjk2Ye3m+7V/U3TpKdnZ5v79fXDerU6OoZ4PPR9whwICpQh72B9dnS2v99bp7shw3z+Gna6u/+V2fFHs+MmHO/2D6ezZhbDterXd+9+8OFHT0P44s2rn33z5fcv3vvo7GK+XW/efLVdEjdLCrHLcnt3kxcxpdRtdwlhOV/0Nny9eyg0b9Pq2MLZxfNdv+lUkCKZ4tA/OZ29XZf/9u/8zt/4N/6Vzz77w2Wg//g//8+vvvziYnHxP/jr/92/+5/8F//P3/u988X85Zu3225/crRqV0H2fb+9f3p23sa8jKts8fp++9iP8POI2RXvNkal1GTSyIEEAERNTao/oaktFnMEbZqYi7BBrN00BEVXl4pkAGuaWAyGAdy82AyYkbyyqbMkWLfHAXLx0qeUAtUHjF06M+EaxyUioiY+Fo7f1Yfa+D9ApP9/W28Sa8mSZIfZ4O4RcYc3ZL7M/GP93zV0VVd3s8UWSZAUBGklAhQgQALBHReitNNS2mhDbQUB5I4gAUEAFxQgaCEIBCFCJAVCIlpqVje7WVXqKnZ1DX/+Ob7hThHh7mamhUXEe7+o94H8L/Pde9+9Ee5uZseOnQPT2TH9+dWJ9+nhOpm1wlcGx7w/eM8kmXwwODCg1VIPh+N6vQLz6AalFJ19jP19Lvy4hxFCpIopgQEB6HwjwNRqKVKLACOA1VoAlCceoiIiTPNxJuonFPgUlak5Jqzqc1U4v3MiQiCcPBiIGUzUUg0G1rXtmHOtJYToQauqAmIwa6q0BgWhULSAhgKUsd6eNc1f/M23fuPrl3/86ac//ez1izf9XdpsUnO23Zw9fv92f3t7k7/YX6+fPUuP1uWkT1aPFKrmse9753VeXFws4+4LQO0+GGMursIiVVwHSNW8ESRSVRVAx3FEDMQ4jvl0OjHjZrPxD+7oEREjMpjEwCLAzJGDgFWpwzjUOgn5gyucIxBSk5Kquk1sDBxTwxz6cbzbH25ubg+HnnlSoGKmUoraNKgoUwPX24vgN4a82WqLquTMtJ0Hspq2NbVcRdSK1NB0rq/z+vWb19dvLp+8p6oi5jN6S08K5kTn4U6Zz8elmXtfSCzEZN8ak8n9/AUAnkwuT/HXWUIszh3Dh7/dHnzpTI5e1rYziBeOkT9qeWMPiaIuBkFEMUZVI8Qq0ve9730Xt3VA9+HnUq36YCjGZlM/BzsBfNOpqaa23W6319eviVhr9VkDP0km9gkiIBAZIk96S6A+ROzYEjGCgIHGmBxygxhqrQ4O+fHARBamYb1lNg2cDFNlQeDMfN6QmFkAWHghVwFAKWUcx6ZpnDvFzFJKztmrf8+BvE/nX4j48NwmAh/bT4mZSURVlAOGgCoCQByoSlW087Ozq8tHOefDYX869Te3t9fXd5vVJsboGIloTSkwh/V6nVJyZtLSg0OkGKNUbxlPTQI1VbVEYWmquk2VC3aYIiE5nWJOPZ1+oOjFVlUwqyrOBcy5xMAKCyfSj2IVEUXPwJKZubxc3/cwDxISs6rSxL4Cr1dF1EBEJ0d7VS2lzNoHaj7DYgYuSiGmoERhOBzGi6FpGq1znEHPedRTPZ04nc6poACkUgkxEDty5piZapCaObj5bkGiXMt6s3rrydOf/fTnzM3FxYVWCCFs1isCFS2ByT8OM3pHz3BySTWbx+mRfLoZDZ2tMo3Fm6t1gENoLSSpipU3q3Y8HseauxgPY/nF2D9564p2JbT0/HD93fV7z84ey/DlDw8v346P/+3zt1+l9Y+uvyx6XMf1t5ozK6dT7SHFCKGz2B+P3IR96SsbEqKFNzp+OY6/vXr3LOEP+i//4MuffnD19luPHo+SP757dbXZXp5v7cTXhztAuszhT128Dbr/+NSXxgbQnRZVW3FqYgsoWpXAUtPc5PFnQ/2ts6ur7cWXZWxiKhX4VLvQ9kP/a0+/9vnv//hvnz4/3zan57tNWf/093769/7O3/0r/9F//I33vn35rz/Oh9pQoysYdQwNPf3Gs6+dXbW7N2dGAShzeLI5D96xRpy4wA5szC0hm447AUJPo8kRYjEKZAR2tl4Tgmh17rIiMKKzbcwI0FLqAEABWcFMc9EqmpDRmGbVPyN0vbFFt8ZrCXQhxCVD1wkt8BOGCAEmmQ2m2Y3QT8l/gzCKTlScAsn0wOWHy/fLU51BdE/dWy6FS/aJmiETi0ggFoX9/vDOu2+DSXAtVCmCgGI8q1YsPGsid29gs7qkY2jgNE8wFNOq98SUWrUWUXEPzmjmY2Me1ZQIiTAw+wljaDUXmQPb/FERwKcy/TN6uVyrVCKMwG3TrNq2H0avdHPOqpaaps99UKqaXmWoFAAsojJIG1DHArK7XF3+me9++2sf/srPP9n//OPnz29v36h2uebd4TKs3jm/WMVz0jZbjSkSx8fpare/2+/3r169yjk/evQoNQ3M3YGlSvbxaRcLiCly4L7vuy46u9OZAX1/SqnpYocBcy45y36/X6yUQiAABCMDUCNQAzRAyaUOpyHn4qE75+KgRWBObRNDOO72tdTVqguBibhWubvb3e72h+MJiLsmFhGnMfk7RGYpdRonmX2CPHWWuaKg+dQnJoSJYJZiJKIxj2CM7JAoq2rbdqe+/+iTTy+eved7aCy5CRPJd/nT5v6UPOh8PUxKHtYPNlH+SVUJ2bn/U5KhPq2jS+rjXw+riDn06nyPxF/TCSsPEy9/ls62SstWBbhXf/b36Tioc1Sbpqm17vd7EWPkYRzULITIzNMIgrneuqFLe88o1NJxW1522a2ISDEYQNd10/ydQZEKpgjIRO4uMWnxESKCSHVFAwB0IhdM5ipMUwveAIyZSjEAyMvw+TTsFlRFavVZb5tVFr36EhGYiYOGRogOvy3Zv19Pv25NSt61AbMq08DELE5YlwQIJ8VCJEIiwwnSFVVChLZtIpOZGgpSNFERAaf7R0HCzWb75OpZzqXv+1pVqjBijKHh6JyqZaAvpbSYxzETMY3DyXcigE/CududECARqamY65nhwrqzB/ji/Cf6Jq3izVP07FlV1KCWykx+svktCyEImIjUMt1HX5m1VqkCahyZiReJkzl3B9GpbYRfNYqZVwtMFbLjKoRaCyDc3d1eXV0ZAIeACKVMkgG+wdnnSadSGAnMNUoQUGrNY0ZwHQ3M5KM54p+u65qSXXlx3r+Kx+Px7vYWrHZtFwLVWvr+KCIpJnePh0kY+iFjaSLSOWcXcHKQMgA10AIpIAMpRM0inSoribFCt9q+ruPvfPGL32zX711cPttevHhzc9MPbdv81vmHr6/f/Di/DClhal+Mh4sQnnVn7xKUU3mpag0PRWQYQsPNOqLUchq30KDRscIP+pv32mYVUuF4t787e/edNIb+o5cfHw+/+uHXv7199NPXz3/+5stfO3vnyfbyt2CbX3/+i+N+jFzbmKWA2tNm2wV8vbs+6thuGk12rPayZtvd3vanzeYR3p1SwPefvdV/8WW6esQx/tFPf/bi1efvP35P15uPvvjib//9//F7v//9VVxtnr1zUiCutd93qyhSf+03vvPB2dNf/KN/Bsf6+PLs9elw7E8BkXzbT4PkgFO5pjMJCBABXcFgWs0460+KrFZtk2Ieh5CiColUZJrMwBEDRwRxlb8QE5IZ5JKrixTa/Bt0Fv+dlqRLuSDoA6KiH8ul1OkQMdN5PBbovuT1HasPhlofLPolnaH5w9qcAN1nSrTAUWAzCX9CceYvM1MiJmCROg2BqoUQSq5mkGtWtRCDaJXZnmkJIao26/6ZARAzmDphm4hBcJqU9FjiMFoVMCPCGIPZ1OdTrWbmHHYkghkdyWUyIFySxXnPTDRPRDSDWgsgUGAXNGqbtpRaqnJ0uN5iSmOVq/On20fvFxuQCoUKWBEt52wmHYfhZIfTAZv217/24duP3vqDj37x0fPnQ5VAzanYadQmbEpRUBGrsW03ad20qW3bm5ub/X4vIpvttu3aRaC2zjofMMFmmJpkJiK5Sts2qVatNYfQIeLpdBSpbduu12uPoPv9PoQQQkLkGFOTAiJUFQWQWrVYHsdhGJ1+4Us6MKeUOIYi9XDqCXG72XjqMI75bre7vrkTsxiTiYKCtyn8jaJ3Qt29cFk0akBAROJW84iuTD0tRQAACCGwq5ioeloE3so0a1fd7Zv9j//4J7/95/5iKQUh+bjaw3Lfb6hTJTzfgZnCvCyzZeU/nJ/XB0gMzHgMEXnlvSQ9M+EAl1ebMYx7+MHfgNOKl4zHX3MJnDqLkrsJuSdPPkkEACmltm0fpnSIhATjMMzBY7qkiPd1CxoQszxwPbsvaJaMDQkZiwoinp2dtU1bS0nRF1IFnZvnhACgJqLi/JypgWYVZJIAEYL5V6iqeifKVYQWaE1EXBcbjMCqVOe3IbKbTuQJ+XOFOsZS6jiOC4WciFR0uWg2Y28BMaS0KEi69eyU79Jkb+cDpClFUXFisatLIKJIVYHAIcSgWqrUGGNEntIsqWYm1VJK6/VKBPI4Oh/LUJkJYBTRUotLWnn/K+dcSo3ghEK1qZVlwG5F5CIcuNSRD4QEJyUOm7EroqUTKkQPxKznXUJMDt+goaoSO5/Iz3klQ579cZmDiEgu4zAgYgwteOFBrrAARFBlkpG7nwaoFUx9+GeqsQGIiZBUhVNzOu7ydtutVmomM5PSaWe+qgHQ3U5B1ICJAyFKrXnIPo3jGGeTmrEME73BVNVqKa9evWpSMsP1en06DGMuTEQQ/FIcj0dHtpDQqqktTjWeDbrsEpCRoIL3R9zkVcHhIBONgRsKoiYYdofDxdkqNZ2d6likB9uXQ5v0veZRd1Ll+OK4+8bTy6vMmrbfP71Y47ZdtVvBuzwaHN9dXaQ26un6y3HIyF1iqZmCrims2i3vK3PqsXxvfP2Suj/bnv/aW+9//ublH3/28ePN9lvvf/j8cPvi+o1g2xm9c/n4y+GA0uju9AzSPpTPMIta4BYQ9sdTsLhdb3OvZSirVeq69Hx/PI09I1LNxBgjgsm6be7y8a2rdz949O0v9rc/v34TNufvffdb+2H/T/7l721XZ+n88ZCljgUrWKld272+vuG9vP/0Q/705go2rHD9+WdhPubAAyoR+TDw1LsBRHAMzte1ekieeyu1Tc2qC69PfWwSIrcNm07au2ZqJjTZAwMxRuRYTUW1igQMXhu7HMUDGMbdCtxiQ1WlCpKFEIimqVFP12AGaNDuT/ZlF8HcGlj+0dO7CSSf9IG+qgY098T+jYznK1/m4hBTnCD/zV3XwVQTR5EM7p0JYGoPfAmmgXxnFYiqqoFqYp/HRkCEiDBaqaWUwjFq1VoKmPO1MaWApMRhGbEuxQVkWWWCdmWe8QaYWD3+yFqh1uqovsosqkuBYCDy84LQRIoQ+2WvUnS9fdpdvi31tsEayQQVFGMXmZtQ6ibrpoUBCuV8cX7+ztff/9kXL//wh39093pfRL64Ht4PH1bQu9vrzardNFGZEfHi4qJpmsPhsN/vcy1ncrZerxe4otYCYK5mSQRd23isdbWnpmlqFWI4O9+8evWqH2ouQ4ptjPHy8jLnknMZxzKOJ4ATUwBEnyEys1pqqWWOZMRE3KQQAhGOpYzDyMRd08aYSinD0B9P/e1urwA+E8QshuCi/eOYSxlDiKoVdLGKnrMHQEKyWTJHZpItIqpIjHG1WolqKZnckLwqECLCqkshMCL85Kc/P/WnFIOIBnK1xrAQQWBO7n3DosuMOCI6j6MvqcxXNoLBTE6aXoGZXdFkWdvLj2Aek3n47/DAgh5nMOYhJgEPeppLLMd5Dsijvrd4ENHzgwXZYqZj3/fjmJpESDKrsMwoAiKqgRiYgQA4XG2m3mkBpmmo2CsiNBSTZtWdnW1fv34FIAgQiBXFvSCIyZxRjNOYlYo6j9CvtCloBRegdv2IRVmRmRBNFUvJIlU1OkhNSBhQ1dRnMgjbtiWinLNIEak5yziOi37xFIxNXUxwev9t62gPqLpCwaLKiFiIiDE49CClIjBiMoUYkoExiVQpteRcQEETmGGMIXAkYwMgCm07qQqFwOOYRTSlFFOKMQJYKRmMmrSyZSpQwKtBFVCtJddSHJZAVTWYjEvNTE2QGHAmUdg0MTuNrTrFV53LNQmjEyDN03k++O1ClMwsqoZgqlIrAM/GiaCmojbmMQT2gbUYMMWmVl7MBGtdAEK3OZrEOREhBK4VcHJAksmCyYAQPcXkJgAYoB2O+9g2tBTFEyVWvMHnxlAIqEjkVbvoOI7DOKiqA3LEHDkidGPOiMYccs5N0/hZlGLrvYsYwnrVlXHIpa9Kh/5kiBRDtelD30comsSmCQxNGdF3l6ErEjCAAiGoJqLz1NydTgUEVS1L6lZ9tuE4tIF5e/HK+v/j5UffbB6/v3389Oz8yy9f7JuuEp7x6vlx353Tk7DZWL6F8kYObYxPUhz64djwWMcQUA+n8+7ycXd2Gg/HmosJts2rPHzRrJtcttgc6lDGwufp7fDojz/56Kbr/9Sj939F0x/aze89/9nT9mzdtF+DzdGOZpVNqWIe++cwPI7bZ6uLMvagBkMGQOJ4kVb94bDdrDaBh8Pu7NHq0N/+5ItPQmmvLq8++fnHmPXx+fayaXi7OR1HoSNiWqfV+To9f/FpcxH/5GcfjRfPjs93T/v64dXjeHt6Z9WG5fxyyHbhK5ivXQQiNDCtyuAD5p7nux2upYibdXrT1xhjLxXUVMAMAjMRitSpG2ZmoiKOIXOtinpf8/kNWnwMYFrnUEohcuX7ibKAE27vZ+J8ZE9Oe85zQTeCWH5q91A8ApiP0UzzZbNe3n0KZPd/eUD6AZiqmeWgJzUxtUDuGgjr9dpPxsAsUs2s5uz4NAAsergizr699zSAWbtGvcNHKKq5FFUhiF6tIBKgMoc5ejkJbwa9HiZn81jyA71Bn3aaWiHklgFxqiDRlIgSIhh2TevWg4FZEapUNX36+OrJ1dMNrTop0bQSmQWAlAWCWOz7Yz2ElNrUVtWO6De+8SsfvvXOpz//6LMvPs8q1to4jAJ6e3tzuTlXkFIqAGw2m6ZtQwi7/f54PHofxD+BuC/r3C4MIYBBjNFmM5BSas6lbdP5+fnhcBjHcehLCBxjXK3WXdc1TTeBDf2Yc/Z5HTPz+wKIbooptZqpK6aISNeuVqu25DoMQ631dBoOh6OKNqmpIqo1pQSE7kTrokTOn7lP3O9HrCf61UKICCEsc1Iu6FJLOR2OppPMPcfkw6y1ltS0n3/+xfMvv/zmr3xQagVEZqr1wcYE8Ni5oAhLqrH8+UtfquoJ7/LgKWJ5Y8u+kjDNAtm43IWHWdQCBeH9cMr9c5cdp/Ms+NIX8y9vqfim8DXpTxcR5jAMQ8k1xGBgHMJCY9Vp7Os+dZsB2q/UOQ92ghJxKblpmvV6/erlSxUVqVPBJa44hWBGPJVeywe5v2hujYzgU87qg5TqH9zLDFjoR1OFo8LkzT622UFsLkImOyhmRuaczVu9YDO/w8zMSinDMHRd50z9JkbCSb0JAHIevSPjylNVBarV6hksxhCYgnANMaqYiZrq6dSvVh0AKmi3WoF7JM8qTSmxg9Ei1UxTit6sdLDEvcw8W1pucXVPCSZ00RGwScZ+1kXzxJQBwUeM/fbhdK1qVYCHmCmyu+IY+CgrIjtGyxSICUxdJChxmtLFuagbx2Hod23X8gTJuPbA/eiiI2EA2K5aEUXMftSISOPgnNZas9ddvjtEJMaQc40pjrkfhtNmc2ZgecxE5Pmov1ucVwwzMQQDy+Po2J5oZeTZfwybphVVsWIGnkM74UxUX7x8cb69DCHud7cmpVu1wzjc3t6qCk5L/uHq8O6271xvDKOiTW0wMwSjQCYVEQJjCzaAnnJebTdDX1iHyKHrGgI41TwSjUNe0fjeo45zb0Z/fP18+/jq8eXj8Riub/e2bS66NeTji911t2rPmu4DoM/v9gc2wNStz8ex3MKOE9VaEoIR5hh+8ua6cPeN9fY75x98+vrLn33x2eO4+s67H3zZ7z65fnm7Oh9M4qp7ORyftHFN9N346KPT7suhL8gUAyMd9vv1+flme3bc3eZxpFVXIzcxlSrnxI9T6k+n3B9xFQ+YW0mby6vm7PZivZbct02HTBTjultL0UTQhPT47Ox42D969OzmsLu5/jymLXd2tYrf+vqHgdl7Xl6cPzwcvUAE/0dPiBBNwSWa3Z9NVi1dnq//+LM3bekVDNQ4LPjEhIc76mBeTJgRcwwgKrUIU0DkwFaxTnW/wUTWgWnOdTmYJn+GeVjgXuiPECfVFfWnlJp9NeMDxsByVpr7EuPU7MN5qOrBcY8221CLCC/MPbg/rCfEUZUQiXm9XhNh0zT3tnlEKkLBmJspOUMPjZOjJNSChGpixgZIRFXE1IiYkJGZmUWGqYA2bdtmjhZTFJw/yzRhlFJSVemHpdSGmSfhj40xckAAA0Qp5lkaMiNiIGibptTRDEqtqlqsGtgq0lmXxhEbTpsYMhhhw9wKMSONtzf74yiEWMGQxiKWDx3F737rG9/5zjc/u35xczoWrUUMLN7cHrdnqxiDT9W2XXd1dZWatNvvd7vdPMHOc3/Tp3uCZ7iq4qenJ3alZGZcrVbM3Pd9fxqHYdzvj/v9sWmapumIqG3bGILoStTqxEWVELhU0ckNwA/5mlLcbLaANA7eIKul1GEshBzCfNwHJkbiSbB1HEdvcgEA3oP591rJROSwRmwab5H4LfOo45NFIsIcAxMAEoe2acB0zANFvru+++zjX/zq198X1WDB2x8Pb6jOPpEwD3wxkT3IBvycfZghIaKB90lt3kTmSwXp3ubaYzDO/S+evU5hxoEePndJmB7iPcuP/InMrOpyDDif/pPhg2eES5LEIRgSM5vUKpoC1lIhoZlJLdgkDqFq9YaYqLi18hLqdB7UV5VSjcgZKdi2nUjltlWtgOZ5oAJUqYiINgV7mCi6qNXdLf0T2aTLFyA1AQBxiuJ1DpaN41sOBxIEUdAqvssAQGqtYMzTNYwxxiblKv3p1Pe9qhJzLcVmSWgAGMcxxjjzaYADU4ikBgC1jKAwFiWipmkQSNSGYQwhqFafHmIObhPhIJVT+pwZ7eshxuRTcjFGESUyZ/OY6Yyvozcol7vpN87MVAQRY3ADbAIyAKyqNFEBptkRAxObJ6xwpm9KBcQQCMx8QrNWBUMVcew9cAACU+/BASKrKCAgL8cCMDtcBKWUlFIgrkUwIDEwRwA0JTNo20BEpZQU10hYpKYmrdabPI6IGIJrHWEp6PU8ERNRKaM3GUJwmBNPp9N6vbXJrJdrzYEDIznuJaoGghgAjMxbhCWl6GOs/nGIKKV4OhkCLYoGSIBITJRiOhwOBpACi+Juty81e+g1VUJbwtOUCenUyGACUKtohoAEaICutEKmWrlJWkYQfXa20dPtkLNROOxOTy/ON5vV693tIIVje769uDv2v/fyo3e6tRCHy4uX+SSAT9L2wpo3tR8O43lsDm2zz6c14RMNT1YXn5f+BmgvVhLfDrvH3er8YtWf+uM4cohHpF/UfkXtW8KPePOT/mWH8W2IH/LZ9+yLfzl+/ivd401o7pK+6HfPzi7eqijUnmK5NQHJK2zSuhtltFzPNmeVwyvpC9ulxMfd5myQRksb0+503Lzz+NN8XcaUODx67911Cqf97WkYIcY8jEUFwGLTmA6bVWoj9vs7ajbhvPn5yxf/5P/68r/4y//JNzaXwe7BbS/jHrJnwAxVxQA4RDRTUAQUT3QIasmQ+7NtA5rRjMCYiZnd2BpgNnHz1/FGOJCa8swIrrVOzZgZs3E5XX9XxEtpC3Mj2WMMmk3KUBM5cjbS8h40kE9qobtrEk4cUqfXwKz0SPc1H/prOd3CdO4JfJVb4KUaIjrDNWAEMlVtYggxOE5TctZZjsjIdKoi5ybCgzpT1c0fUFFsHmFDQqiusU6uJGqiBmYCMcQYEgCoTtxqEVEFNKxVcNbzxeXmTdEIYfYanDiDUgBdWcsZu0AKxsCKbbMyc/xWZRQibLv2+9///u/9yY+wz9987/2/8Bf/PJPk8XaUCoEoYQyrVdOcxTaXsq8jIeowQikh8Pn55XEsrANDorjancZq9fGj87Zth2Hw0e71etO07W6308lGAEPgOpbl2PUz1AxVp47PBGMoikmMMca4XmnfjzmXYcjjmN1jMqVIRCk1HJLfvqndoJrH0Q3PQgiIrceG4+kgqqVWMFNTM0VGRMIqRMAhcAyApAZDf5wQkIl6P7eT6J5t48pVzlbhENRMRYjZzRrbps39DaK7gBEQMaembctwHMYxpUSIr189Z6tFFaDx9fNw8msBcpYCcckDFllCnWWgJzAGycBmiOq+JEAvZx4Miy1ZzkMdIJu6VDxn3kt7y7fdVD0/fG/L2yYKznR2/U9mdmaMvxrOis+Qs6q5Id2qXY0iMQavd92lS0QIUNW8QnAVF7/sqgrT9iRCDBHUMDDXWrfbzWa1KXl0TbMF4kVkAK1VoksBTaY//hKOtZJX6moioLBQIHHqNzInABPRECIi1JoRQWU5rTTEWMyW+j3GmFKoVUoZxpxrKX6WETMy+SBY27YAMAxDipGUFkAXAFzc2W+Tqo7jyMw+jaSqZiBijrKHSGgWOFBMiKwmjFQxq7nIxaTg6pmE13WuZ4g8m0WUsmTSS3Lp8TsgGpoYxsBZNRAjKRhgBQUBUPSZc/RuAeiMpYupJ/uqWqWa40MIBDNxTdXNGM1pENMxhm4eCogIUqvPl7mQeODERIBo45h9v9OkN+ja4s32bGtmx9PRafVu6mZmTHR+fnk47MzArO72u5xHRF7gGY8UwzDsdvuzs21KqZZCyKbeoJ9dHg2MTEzz2FctMQVE1zutYtJw07Yts0sbTH3euX7w80Gbph1z3u12q64xs9u7Wx9hB55Upxfu10QUB+8qAhIhzfNrLqXHXGvFQIBWxp7beBFj5vRxf8Juc7baHI+HYqHbdtaHCG0eykB0rafXx/697uIqruPxsC+5o7TtulDKdX/cUz1P7Zlgfr179Ojpo8uLt+Xi9158/hoLr7p1244yAFYL0mWygtamO7Ef7q8tyHdWj/9Mt/k0775//XwbUmpWXT1+Ouyums1b8VxEvnj54uZ8m1L37Xj2xfGwl3HVsZINWoZxYKbz7abbl93ucNjGb11cnu/312PfbNJY7FDHETVUTUUll2Ic09lut8sMvFqJGrFJA6U/Hg9vnj6+Wm3XLz55/RZvgo7vf/sb+fziD1+9vqcLLH/azA5+iCt7NgRoht4WCyAZTQjqdh2ZCrNWATPIYzZDJoSp9QNNE4ljrSbzZKNNia2r1yMT65zc4P8voA0AcA+iLCc1z02BZcn6Ae7W2gBwn8oAMgeY1O+cHGM4i+EuX2ZTtw3ACRMwSxXPF2H+FlCdR2SmPHc9iKDKJF5iiJETgPLsE+TMAABA4qWOhwWBJ5xywUlvTZwSAwA4Cayzu68603wBw9Ss70cwXa8RpxFfXC6vcw9DIKLgOpBuUs6B/R3BXPkzUZPSmLOfj2oWY/Mvf/jDjz7/jM/PhkN/6u3P/bv//kcf/+Tp4zNgCaG1rvveP//e4c2+wfRv/YU/++Rr78k4ptUmVFGEGlhevGqadReta1aIcHf7vGvTer12pflxHDmwe0AOw/AA3J5EumNMSLyoFZjNhlbowi1T7GSKISQRNcNxHFVd46+UUj2yo+MKNpGBQghuUVdLqVXGXErO/hwP4XIvKQOEgBxCJCIyoCLWD4MfrzM4urSB7gcnQRUIiajWmppmGphy+nMIHFhFzSDEGBjHUitVOB4t91ALpkjM+5vXIDly4q+qWj1MOHRmGd/XK/MSXfKYJWsEhFoq4TLPfJ/9O4S6vCwR+WWkB1ZfS0KjsyyQQ1A4pwsP99HDf/EQvmQ5vn99BGxZBjYNWpMnSXG1dhUH4OC7GNAM1GSiCbt9psdVs/v6bS6Xp/YjMUstq251drZ9/vzQto3OswXzJQredA2IACaqATkw++CeofucABoSe9ibACEnDJgZgNaqrjTmMV2qELFr22PCGONCcCbCnPPheLy92/V9j3NHcipXRPq+b9s2pTSOo6gCuFEMeaKfUlKty+zYlJTQRGMQkblERCckGwlgNgPmoFiJMIagquOYY+QQQq2FCJEAyRgImAMywcTv9ls2U2rqAuyllJDYNIcQ3HyUiEyNA4EYIgAhI7rcDsJ0Jpup05lLLd4OI5xOqqWdZGYIaA+C0WRR4HrtrkloEAMjzbZJYCFEAGVWIg6BASiEMI4ZwJomefOuaVoROZ1OMabVai0iNeecR1VzFlqKLRhkGAHAL6Oq+ojJ6XTsujalZACBeHb+MJjcx8jMci5DzoAQY1RRJAR2JpojqfOiXP5v3i/Vi4uzWgQBVqtVHk+H4+6Xwp7NdqrTEXPP/PAWrvkFYwAGEgNkNgQR6dYrEBuub55tNyXEaxUlHSXbMbdx+2h7fvNqfyxFE1iTjv3R+uOv1O2j5lzq8eVpfxdOXdu229Wb4/4shGdps708G0+HGo+dxq+ns5z3u2oSqK91yP12c/4oNofDcBSlprkd5Edy3IaLb8aNwvBid7MHXbfd07R9Feqx5KexJcLVdv1lOT1ifKrNd5uzHY3XedyxVVTqml1/oFLXTSe5DKWWKkyhVjMFTM3xcIwrlmLH2o/D6dDnWgVFe9KwXnEkMtnt3/z2n/rmn//tv/K//6//wEZrRhlOx1hbDKvf/Ov/OWlx/ygv5r5qGjdXgeCWCKpmylaFVE1UakMUCBH08eW2TVxyH8Kq1AqAhL64DYgm4hYFYtUsk4CEk+LI1/oyIzrZRTDMWrcwC5chPDzdEJdcxOkFQHPxPa8NmhOb2f5iUgOaj2l3yQQAmLLsKat5cIxPKR/OP/3K+Y5quJRTiCi1GiSYcy8/n6oqgGIEszDvBVO9d9521qRIRUBjRAU0FlWByU4Svemo6igxOhVRfYxLF38+IgAldIqKq0aaAaCI+RnH3OrkPDCBASqmjk8BASBOCZiil9BmCFBAP375ijdbgRgaPgntTkPF0Js9u7g81ZFTiwN9/IOfDuX0jV/9xrsffO3LF6/funyEFZSNu64grM/P9CRQxu1mC2fnzidIKTkAICrDMHhxTESHg+RZJhiRmcMszh08DSIKiAFAzAyBwMDN4szAh4L9avhJnfPAFBGDR6DsxCeEPOZSq5l5LBGp4vZFMBN7AYwIwFytKnDgMImdiGjOdcICAVXBXLRyzhKm/BqRkZhYST2eTXfclWOrjDkj4Gq9Zi25qoD1p2MXKMSAgJHJaj7tb7eXj8H0l/j4REsR+WDUfP6rfy1beMlX/KM5kXPZ2vcZFSLOvqS/tNp/KQFa4B+cufbzfrnX+LG5WbYMQDmzyiGfydZqphM56WQYBlMbhgEROXDOI4c0N7InC0icxoBwBqqn9u6cj+J8WVzPHIlQEZno/PzsxYvnBEa4GCPPexVDrU4AAJEaQ/RXRJ4kRt2dEAxM0T3yzMBN5R2NQGSpRoTMTAAcMIZoCtXuAbNlCnq/v7u9uxtLXU5am7qTgES1VicATaQ3IjMbhqGU4r6nZrgw/Dy0z6NMiLNmG4DmMccYBUhEzVzAhRCszlQeEdeY8Y6qihkQEKgIBA6I6P04Z6mP47CcgYje9wdETE0cpZgfSgaM6Fr5iOic4Pn0ntYaoCKYSGUKbhoM0yV2KTieJm/MVEFmQlsIIYRIhKvViogOh1MgVFUOITKaWYwhxbhq1549KwgAbDYbBBrHHJrUNM3N7S0AtG2HxMOQiahWefXq9dnZWdt2PnhRayUURVMVp0IgQgipVqlSg4RIbJPoFKlmIgrMqpJzHUuvoCFEZHIvRAAgRIqMhFrEqmKc3GERwSZeFJ5OvVQBwCp1t9uNuQ8hKIAuIBhMypA4V/nz5gIDMHKAzMsvBDP06TkAJLJqksvjbrUl/sPnnz1v+sumvbTQD7a3jOfdcJcxBlPluLopsmENhI80fZHKGy5PZFwBNs3qbnf3jXeuvqarz0r9ky8+fbJ9/O3H777db/7v288/13Ed02hoWYUhpGTjCD20sTuC/E55/WPbPwV60p7f9Ptiuj07+3pavxl3P799vd503Xrz7KA65p7hty+fcpF/9fKz/bBrLjelVgTIKpAlpVYHe35zc77ZPErnd7tdOuseYyrD+Omb67he5dKHGIHJct73Q1AJVDZtfHS5+qt/6T/8S//BX/s2nP+3f+O/+0//8l/9h//oH+/7249fPP/R7//BxdkmiMp8EHpDZDocpnNFgJgUEcGxw0UOAwjNiEo+xdilyC9evmhWlwocQ2KOJgUAUhMRsR9LY0ShYUIhP6oE0XD2vbOJivhLqcb9Wew3XM3UxAuOuTS5P8eXw3p5nQc/Qpjkhl2WQ4loQqbB7Rjuz/D7/h9MjDNX1lqAMZxKFDX1UTSLkV05XmdxW1WoaoGNCQyB2CmQMqEK6mRzBg+3rrjtTW4Qb/LO+M00K8EhNDGJmKqYmihUKERYSiFKIbABiCgiMHGpxWEPD21gbrjsDQtzOATQ2HxiGc3AVMDADGIMQdJwPIqaqlJKwGRliET5+OZ0d/Pr3/2169tXb17cCuOT1aPvXLyN68evjqIvXq5qtTIGZhNQLU0MoWobrX20HcZCjW7CupSMs6OCqAISMyBizvl4PI7jyBgqVACI0Q1cUdWYGHwE0YCZTKFqFanMYUE6Zgxgabu4jxW6oCIATON4D0ZCfCTYS+dq6ueOqM7dGZs9GoEQioiaDuPoFEgzF+gwYi9kaQnAIgV9KTqGREhEOecmJSJS0VM+jePIoVVTyaOICCuZkQs7gTob47i/7TYb44YpMjsx4mGY/0pTbJL3WXbOnHEvnGWaxo7UHuyR5WsuOe6j9ZLcLBXR0gKbfuNkFHX/UvjVuUtHeohoGEZVbdvW4ZBlbzJzKcWZE0TUtu3N7a0zskNMyMEpw7PcOTCz66x61ue5kcf4JXVTn802QGLPaAFhe3bWto1KBXMvBoezwQgZ2Leab40iJXKgCbJCl4sXs5LLzEH0GO1rgxB8MXuhX9GACIgIiNEmaYBai6qJlNPpdDwe3f0X5oU7pUHgdg3Y930MgWOUOV9c2OIi0raT0pX/Yy7ZkJsQmR2I4xgJEUUrEXIgYjIDlwoD02EcvBNECEMeAzMyGsxHEEHgwBgAxElLs3AGh8BL7quq7mjRNM1pHKtLPLj7IpKZqBkBul6a7wun3AEqABAToFda5s28xYTbJil9E7Vaaogu9NwScykFIcTYpEa6pjHVGIOZ5jKmJmmtx8MREJqmQWYAdDy3bVtQPB17VUsp5rHEyE3bAWgZhiZ1PvLZ90NKKcZUayFlYDMzZgQkKYYAQz9GiqFppGZfGKpkagJach3GsUrlEADRyYZFRc1Sik1qEVmtqhmpMbCBeLXpyaHUWquMeTzs7+p4osDAaFVxFusCxDD3lBfiJwAYugUqgocwARQkBEEDZkQ7noancd1uNje7u8fr7TeaNuowRLwGy6LSn1LXnT++eHV7S5SIkwX7rPa3/enD9faqPQu7G+0Pm3bzzqNnOT26e3X9SVetDY/xUZWyy7tE9H5MVoY7NIvdMOQ99pvN+pxAqlW0Q8mvpH+TRqPVs5TWuDmV4TgOsWlT04Z+2PU9Mb0dN0GslPG0v22Rvn32qLPVj05v9k2imKBYNiMOGPB5PrZKz9qL4wEaYg009KdaqVttcoZT6R9ttgFS2jSWIu4zIAjT7//gB0n//vFuePvqQyhNaDYVdzeH49/6G/+NT/SYizcYwtQTMSCmScjBg7yAQkUAI3LVEyQotXQNC5R14j/9G9/42ac3u6OMo+RyKKOBmJrl4zSu0se0OX/GoQnGAFinQ9kb7rOmON7DLeZQBd3rVk1nLvLSewUA95NealydB08mQAgnwVkzc7kwnQgxaAbE7kMGS+sNgGzqmj0UhZtI2dOqm1AoVQNGcj5+SLHr1lWyqQVmU4uRGUC1EEMgJgpgc8Fqpkt70cBEbB7vUjWZP8L9x5nnM9uu9cqMkIjZtVUQUUQByClNMUUilFHcGHnSGUGfSVkYHgYApWRVQWMkH2j1Qd/CgVJKst8BKDIJQBmHiIpVGqRIlUBX67Ozi6fDODbQXXD77/zabz2//mz/+jpVaZhKLQExcoiEPJa+v3569YQSFqshMmJyQWcA01qI2ZA8BPoYP6J5tcMcvROntYYUTM25tERTAzxGmsOh32KY4xOIVubAzFI151HEfcJBwWoVJFzmikVcBoa8N4kGtRRRCYieTTLNAAmYGozD4JfLTCfjE1gyMPbJX1VIMbjVlvt5hhBOp1PbtgQ0juOYR1M9Pz+rUscxEwfT0q26OpzYlEKsVST3VgeUzHAv+7tkPzRrAPJsdu3A14JCTR7ss8OXmbNsBWcLoeV9O4tlyUuWV4YHbpE0K1UuzOslN1ryLd9rD+GfmVFLzNx1na9ef1bggERSp0mItulE7Xd+93d/9OMfNW0HhiIKkt3c1MxqqZqSOz0ZzLonOBEh5rIHzKbxHJo0hp1lQg6fnE4SYwA1MUMDH3avWVPjA3qQUsxlNNEmRvN1ZgjgOdYEIc+Hg/lFZgwGGkI0MB8gUp0mvRG5utGQWZU6DuPhsHcYzI8YtyFiDrUUIwBVSqnWOoz5rGmMCAkDhSUHEhEzWa1Wjja1bRdCzGNfSgGY8pgqRERNk8BMVVwHaM7VQFWRCQyYqWmiJygKJlWJEKrFAEWklgKApahIJuIYkYjHcahVvMNeaxUVihFmZhh6sJgUEe3hxB4gVjXRSoghsGvbSBUDFTXP3HyT+WSTj+VfXD4uuYiIK/NzmGZRypgDTuh4jAGBx2Fk5nbVgZmoWqmiBoZgms04JETSqtgwQB3HEczatiWms822FHnr2Tv5ctgf7g6Ho6uxVM/qQT3RRcDD4dClpmkaIvY7yMi1Si6l1lJFvCwW0/k/RcLYJObgD0FvBBOoS38xG2mMPPbj9fWNlMKRMUZTd5hFXLTjzWgxg5t7GIiIRgbgaBIYGKBbvhOxmhAzKBhis17dvnyVSvnOs3ceH45/UPZfBGVAVsv9PkK32azLiGBWTQrCgYvA8VfH9n1tK1hb9ALDql39+MX1T4YvP3jrrXfP33r55uVHLz+5uDj/5pOr88P4r/ZvskrkJGrH0+Hi7OzEcHPYF0Si1Of8GR4p0dc25x2efX7z4vrVl0/OL662Z9f94Xh9e/7o3Xc2m/3u9uPnn2832w+evPUrGk6n40+HIWw6EylEvWpK8RTjz2vfdk/q+faY+6FCbUOjfOwH3DY25sPu5p2zCwowAsSUDuOwe3P6n/7B//Y//N2/9923vvXmk+v/83v//fvf+lDaDrpOh6KlBKYA4IEkA7ixJoMikiCSGRN7L0wRSYxNjQEAMzFUM1VYcfn3fv3pn/3G1eE49oPsh7zvxzLWYajDoFrG3e4wsvR4rGFNymSGWNXQY48hBCYTZSYFP2SRCKra4oFqM4PYGADIy1UAq6qoGhCd3QLgic4k/ABmQBCYRcXEppUCMPF+XUcRzWO/gQEIAiPgzNwztKnUM53kYj1bUjPE4Cr9Zvns7MwQaq0xkKpyYDP16WYnaLt6lZqYqZEBKqAQIgERJq//tIoRMmNVIKKqoqbIBARSaqS4XnW1jlUFibUKM2sRImAEJqgGYkZmIEbAjEToprAgUkXNxJDJVRSLe6ZzAGODSgyoXOuIXCI1ikgsiCAVTCtzUBOjUAn/6e/8i/c++WK12pytNutVt9l24yZ87+M/WqVUsgF3VkLtBWIAVQQch5zH3HVDs95oKaaGCKJVxuytfwY0w5zLMBYDQmYwBayEkLgFgZDQiKQKIZkVRCVErRQmlSgQAQUkBpECGpjYVLqmy2Uw4yI2loGQDaFINQUgrFqrVJc3AcLAUVRVDM0k50AUOHAIgdnMEJA5iAqFro5H1QwmAMzM5kLkMBHzEUGsElKIjYioeX5gTjcNFEDpeBoMoIjEtgsp1KEYhZRSm1ANIDVQ+lrBMBr0MF7Xfbc+Oz+MY4zOc/KRtADzKJbPFsCENNSl5zJxnwEMJl6aGYgakTPnVMF8qhsAiCAEnrlEUyN4aa7hPErp04tL82XxpTEzES1FfHc4ThljaJqkk40Dq1ouI4gRBULSCqpCIbVtKLV88ulHv/u93/3+j//fatByQGJGN8ZCRANCYDYkUQZQnBBcNTUiZ3abA3K+5A2UTA3ZCd6imNLq8tHT/eHnBCxWgQgUVUuMrQUttY8xNW0EVQaamg5zkofeVAUXYqAQHAyb2k5iBRHVJRbBM3tiJnNnN5Ox5CEPYx5LzhiQgUuunsExIQKpoSGbTU8PKWQZ+yF2XVfNEARwOsdUtD+dtOpqtQmRU4iMEjjWmtXMjIpUUWiahiduMxcFE7BSmiapKcXGwAgDp4YA2fF40YhxahwbmEH1oRJVVSMupsDMIVLgSYKvEigjqPh5JmNBDO4OAciE6gsyTCkJMHNsopmpFhINzAhYqoYJwKNqUKSAaCBqAq22q1MZSoGIkZFSYCAFKP2x7xofhqVhKMMwhMC5lPW2GfrRFZEjUZNIDFz1qBCg2NlmTSmUPLTMiIJWmhROx0OI8W53TcxqUGqtooBkjCpQqxEDMwKgFjkMx269gsnPrpqZoRUdcx3ElJiNjBC0SB5Hq9a2bRsaEyWEapUiASpYRYeGEcec+1d9KdUAKIFoBVLm4Nwy04kxO4nVobs1+IJ0FzAgMJrmf0jRIIKiERtUAdHV6qxUGE+nd843p+PpoJq69dk4nJ96aeKRNCew8fDO5TMku7m5LQAcEFP7ejytJX948e7X4OmX++s/evPZE2jfffx4U8e7/U7KsLH4bH2xK3WE2pL9KjYf1fwladd1u1P/+enQtCvsmjGfiAgoHUe9QT1L0Cps41ZOt3e3b+L52QebLWE89bvrhMbwwdV7N/3hJ/31OfCvn10+gvLz69sBU1xtGEqFnhIddvLq0J+1aX93/ad/808fGvuH/+x3xsEeNVesKbbMbcqHXWxbIDzsx/G2PHp09qu/8Wde/eJzXYf27Ys+IV5s/2S3T4AULUxUL5t4w0wBkEwFwI3IydEYZ+OYAbnBC6ghiiEBY8mBaopwfgbxqh2kGeEcDdWCaORaipYTxP/nJ7c//ry3ElhBJxcImxARgQlUmUGgCXp50EX2wnGi7OL92XT/oPuK1gElBzYACQlItOpsYIdTe3r66/J0T6+Xv09iiQagy9IDMwWc+LdmJqDMvFqvfCoSkU2rmYkWh3zm0XdnJqrLqU3jSCIqMmlFMCBiYLYJFRIRcZwM50Z4kSxlNEIkFtFgJgABkBNN54y5vSpN7okopVanczqUgm6eN106ImAFmidU2UANBUw5IgUCsMApNYkYRAsC9MPws08+e/76xkS3682Yh9SEt996Yk/PP3n55unl1anIs2fvxhiVlEj74VRqOeV8szucUaKJVCUeMc3MkEQNkTlEmqT3cWYOIjKBz2NNjaRp4aFnlkBg4giQAxA+C0pAogpqgblqPA39mHMIgWwKzFMa6vfVWcw6Obv56gmIGMNC3eWpUwkGXEoe8+izVCpoqDPdFhBdJksVgIAQmAjMxNmms68kGLBqFQEzPQ3HWoVCImKmqmJIAYmJOISkdZR6yKc7BuNZRlnnyXaeJR4WyMceDL3f835cxWtS4MQQYq1VdfIhh8miDmEhxvzSPpqliv2nS5MX5l304DdO2DwRpxREKjPOu8qrmpBiqlBURDMickyhP40//cVP/8X3/sUvPvlFrsUInYKDyIEDMYXAbdtQDOCiegaIpFodBQNwNeLpPdMsUO9tbrB52AJJATZnZ8g85kyE7PtXodaC4nxAl0QoHkQf9ulgwpYspgaRnDfmPVyctQ/ADex5pqkiuBRhrdIPw1hGAwUyDsHASFhdPwcIdGLIMgWkyTdDVYecY0qEpGhGiApEGCi6nOnpdIwxta2740QOodZSSoYZcplSYbdrFcu5qBmAhpCmdhWAifrVImJ0dw5zt2nyHhkoqiv+EYgzFw0AgBhNQEFiSIiguSowsNRajdEAaJKXtOBgHKCTsqpWUFHRYzkyERKrgYhhiqUqxtikhkXaFAKBmDbtOmGMClXGMZ8CsoimhrUCUkiJQ+D1ejXm/nA8hBByqet2hSDD0AMjYxApQ9aGg+Uyjsfzs+02rU6nQ661708hhBj4dDwaYtM0TdOM4wgEXNnQQNEV0gEACHIeS8lNbHIZzZQIS83D0Bsox1BVQLSI1bHWKiFEN2MmJA5sp2kGWW2yKHYo0Vkczkj1/qChIuBkUI8AxpNDHcwxaWr0u9e9e9A6q8PAR1oMiAHUqlTFkKusz7YC9ovnX24eP7lI3dulvJR6JGlDJxRvd3eXcXW2Wt0dD1ARARkpM13L+FZqUmrK7ZtTy0/b8BY0119cvzrtthdP33v8zsevvvjpJx9fXT7+xtWTkPt9f3OX+wyqonUY2tSs2+449DHEuAp3o/zk9aun3eo88rPLR7c3z8fD7q2nH2zXF5/fvvr5p794++l7V48vh1v49M1n4Wzz9sW23MmRmi8NwWDTpl3d5QIU0mHMKnlzdX519fhnP/k+oMSYdKztZtU14ZRLqTlh2222eQS53V1dvfXX/vp/9o//5/9l/+auHyQDAsd8uYWqJhqmHMJPl2kDkeE8kDXRKlAmSMUYZl3nqXMEhqiKyISsIgNziMgIQE6rG2vHuG3X4WfPD4e7FW5Kxap1Mid3TZQqzKTuIYBkoGbGRGZ0f+DSzIScz9+pJa9q96ZX09k993p86TjJycwMHzzd+T3wb7Kj56V2//30c5oGqMyYSbxhXbVNabNZgykhwcKntmVKeYko0+lGk58mERuQIkacOAgA1dSs1urZzBRdAMEsBG5jgzEqmpiNYxYRZz44AFtKVkADiJyaFGMENaiq6Fx1ZH8LhB620aoBum2MZ4NGgOyRTAwURJQDEIM7HDVNvLp61DZdoCClahUOa7B6e3vbNc3l1ZVi+Ef/+J/G2MbEZ+fr8/PtkHtOjZ2G3XFvyOv1Orr4Ny2y9Dq3tJiJs2eKPljHybuNqkI8tWY4BDV10ppH9kkozMFggimtAqi1UKRaS388IpHqpO2LiDZ1RT11IER1+w2/xzzDDq5TQkQc2ACxaqllGIZSsgs7ub4ig08A34dJ/z8TK6iBu4ibiDpWEQP3Q/aVMI4jETexY9KJBzp1fgEJx2GotZz6YykF+D7VmD2hpo7Yw47V0iPzx4hInVxaYYno3ph4SKMGAO9I+96ZD+jpci0NL1Wd5Oke0IB0lj5afjURxhgdJqm14tTFhlKqakVEjkQQj8fdn/zJj/7wX33/Z7/4ec4jp0k+w6lchEiBA3NK0fWc5vQXXGJ7OXmcWTs3xBEAxMBwbjC7QYSZmG7Ot123ur29SSmCESAQBRUhsEncqYqp3Wc9i34SABC6cPvyGf0oCGGawPfrRkgmggSl1GEcxnGsVb3ByiHYJEaqIQRxx4JJo9RwlsfAmW4otdZaQ5MCBiAzrH5lUkzupDEMWVRjbNo2NU2TUhwGLAXBLI+jv/8QYGa3L2VYVVOmSgCu6DO3NJHIDwAy9WPLEMAbwH7fZ/oc0ASZQwhRRU6nE4bkpYAKGhiZs6RBwQBJjYqITL5XgqqBMYbO/bBWq+Z8u769ucuAqWmDKZKNYwYAqbXbniWz67tdt25MgBmIyLxcDKFtm9vbWwfhci7eJtA5sSulpKYNKCLKiIECc+j7HpnW7brt2qkdltrUJlf2apsma61CVhQQRMUnfANzzTKOY0pJ1QAw5+q0fQoBzKWqpJSqRZnYW66IvpTRzXk5TLRCAFKT6XrOOTZOnDB9GOYexrs5kNwHsaVmv3+czZx601xK2KwA9OXQxxgGO+3uXj1ZPXrarvd2rAB2KifmUy0h29n2bB3WeX8MattuHUV/tns9dMP7YfPn3vnWJ4c3H12/vGpW7zx9ejscn5/uQgzbgv3Z+Y3mtyJvsDsvp5f1kBHaarUfbU1dmzBqNR1qJsacDKxv0qYz/PDqbTwe37x8ZecXDcd3Hz8dh/FTumaE33z87svj6x+9+Ozd9dUH73/t+vr65nRM7apru/3uGAIfhr4GWD3Z/PPf/Z2nH777X/+X/9Xf/Nt/5/b29tGqUbCSc0xJTL0IuXr6pNb6t/7m39S7gw1y7Mub4xBS28TQxoYBAxHZ5BVnZopeyhACIiFNdltAMLkSghrQxBx2/W0gQjRyj1wCIRQ1MVHDDDom1ipiNZAW1NEg1qxK9y70OJOdzbuus/sWEqGrNk9jlGCmOtuqm7kvzySc+CDjgZnsPDWyUOcOGhG4AbiHzokNY8vImeMjNjGdHeIxmMxiJ9QIiWaZR8+6tOuarm09wXdtTmIimBIsmr88tOEcVJyFjQCAyiEhoqiKVpgC2PzrPEQDqloIoW2CqPsVcy2FAEzMXb3E3ZGlrpIygYvAxUBuAYbOYDEDJNf+MFR/cSN3mCcAQooC4XA4lDGDoYkNcooxrro2RI4x1lKL5MBBzJqUmrQ69bu7/Z65kaqfPH8hojmPJZ9M68Xl5rd+67fW2+1+t7/b7ZiZVx0zTz4DgGqmVrWIoUpVME95q5lR4ClvnLJImyOaKjjdRQ3UW7bg9HE0wiCiiGpopZTTaagikcnMJgI0qE1nhDnHtVYRKapAgVEVDTgEQiNy1ykiQkMMkU7jOAz9RKt1jMrXrZrHCQWdHo2kVgEn8s3pdDRTZkbUKpP9KpNjqYRIquKQdi1CqlqLio45A2jOp/500G5DHHSei3mI1sw71x7mNGYGNq3bJTF6mNzYRGRzj0ZYnjg/3hC/kuUsj1+4QcvCxokhRCHYfFgDIi85ASAS8qJ5+ObNm3/945/+qx/88PPPvxTFpmsphbH0hkCGTuBh5hhCSj6HFIMbsM1N6AXlnTLO+yEGMACas3oiNDWX1hSxru22Zxf7/f7+EyERYvSmISIRBgrLVZozEhAAQgqBaq1EllICwHHI6KTIaeRQ0HOkWlFpHPPidxGbBAhEUGo1MLNQRbTOhRKAnxKq6gNqPEc7EcFagQIxYSUzU1BCZnYWjtZSc665DCtpm6aNMTGTqTm93wzmUYCUQiTGUoGIJItqtaiAUEpRneZkzW2ccRFkAyTigJ4A+b3TKlKlaEGEOCFPdRiG0Jg4OEcIOCFAhOD3syqMRQyAmJnDet2Q7yEF4iBVb65vKfC63ZRSx7F/cnWZTWoeu7Q6Ho7G2MQAYCFFpFCLejJWq9ze3kqthkJM6/XKbf4INTVJEUVyTDEpk0FHoaKK1jL2KcVcCtEE5gGSgatyF1XVKpO44AR8krPaqw3DMK66NSKKyDjmWiXGZGhjHgytlGoGKaUUk2v/wCT2NiG1IQREQ/T3MSktTSmvOrXHww0QLFsJF+ozTPXJ/EPnaMz2TZ4GEZOpGhmid4NJCb64fbXabtOjbf/mrudD166/zme3lj/d33IIq9j0Y82nu1UTrrZrG7PWOoD1YLv9zdmj1QehXcXu5c2bIPq1i3dDCD8t/S+uX/zq9uqbbffp4eYHd8+J4yWGp7x6WcYsQilqVRjytuuOub8rAzdpDGoidv1yc/742eWTLq1+9tmnn/Sff/j++1tOn3725cf9iw/fevfKmpyPn/Y3t6tCVtEslyLDsDoLTWpAYV8GjdGa2B/vPvzah3UYj7s7bNu+H5qGA1O7asSg7Tp3HBpy7rp2OJz68ZSHSn2V4zEHppAJZw0Jm1U0EOZwAiYmoGSEqopOFSJDcRcYm420fEQG1ZTNCBWNA4E5ix6QTEwrMqRIASQQhJgGmwxBl6N8LoOmGhBx8lSacRR/X/erYT7xbYb37zNlj3OTGM8szg4zewzA2dUPHOPV6WIP8mi0Ga0BkQfw0DQoTaqumgiG0LTJRZ9DINdIIiSBieXt5Fozs5kwu9SRy/fqanhTtDAQMLUH8zWGCKXWWiq10ciIQotUCEFhlKHW6qLxYlZryXkMRDFS5MgcwMAHIszMwNudAJMRgEMiHg9UQSkGMxrzaGLBUSq3EfJ9ZRpioyiMTBTU7Hg8IVPTdMUwi3bbrapdNimPx+PhLjRxLFlBU9dItVdvXgd+xtwSMaIysbFJtSIqS+1vYAbLoC8imhv/THWPiUqYyllDUjMFZDM1EEKekl41JFAtx+PJF5SX27VWTxI8hADqJDGg6swFmyhfHl8thkDEKg5Qw5jHcRyRyAA9mSSiWsusNWXTKeZTRaIcyK1ITqcBkQBZxUodai0xJmI0BBWoKgA6NZF8ARuYac7ZzEotwzimzpZcRFUJ0dfQL2UkS+D0gKqiyA+SgyV1eJAS3e+vBzsIgKeOreqiXUtErom3mLDCA+wHHhzZRK5K7O6qIFLHcWAO19evf/jDH/74xz/eH4ZcpF11iHEY+1JrTGks2ZvIxNFtVj0B8u+JyCdGwWySvMAp87WZ5T3lLoTz2TLp7/nOI6LNZh0Cq4rrHwZupia1FBUJzETkrjXLJTVvLhPglA1/5TfOHxnMtIpONAFVp5fFGJmDi03A1GMFZmbmXAvYffnuH+VhbgruOJEthtjGJoTgLdpxHJlDCAHJiLjmfDqNVcpaNMZAjDFGijGX4gmQiDk2ShSYyfWs0PX6iwBUm/Q6TNVHvYp4f44IZjflEAIuZiamgEDIHInJ26yIiEyIFOhhAgQKqjKhusohNW1Lc2aRx2zAbdtUFBPgEKqUJkTCdhiG3Xhszi9W7aoeixmsV92xHEKgEJuSj2aoqsfjEdG2283d7ma72jZNGsdhte5MqqgQ8WrbFKlEnDjsrm8raWA2lf1hRCLJhZmB0FROtZpBFXfFqaaKqhTYm6FOOCOkkme7ZjeCd0NcMxUtWlWEOaaUUmoQJzdWEV2G+MD1BmxyRPJxZpwJdnifx/gQ4y+1pGGKfTo17u+7s3DPa5hIroiBmZCHsScCSOmu5k3gR9vzY3+iFN7uLmjUFxwEQ646ElWtrdrl2cVoeN0fDCA2ibfrT968On99Cufdt7759ZtXr778/PP1Zttt1mPOBy2XfboQ/j27bSV9GC+fEB9FMgqngAJlGBEgBG5SUwiUOWOtSkMed9c3lOXx+cV1Pr1886ZgfLI9Pzbb68Pu/ICphQ/efe/j6+vd7pChiyENUu0gTQxFoQBk02x1tVq/fvnqBz/6Sde2OYQxj7U2kQEASil+qtSxNF17cbYxSnBpwyHffnk3HAYECBQQ8P8DQFoai4pNXpgAAAAASUVORK5CYII=\n", + "text/plain": [ + "" + ] + }, + "execution_count": 13, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "draw_boxes_on_image(Image.fromarray(image_array), boxes, scores)" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.6.7" + } + }, + "nbformat": 4, + "nbformat_minor": 1 +} diff --git a/notebooks/log_dir/00000/default/metadata.tsv b/notebooks/log_dir/00000/default/metadata.tsv new file mode 100644 index 000000000..5c2c11b53 --- /dev/null +++ b/notebooks/log_dir/00000/default/metadata.tsv @@ -0,0 +1,214 @@ +foucault +foucault +foucault +foucault +foucault +foucault +foucault +foucault +foucault +foucault +foucault +foucault +foucault +foucault +foucault +foucault +foucault +foucault +foucault +foucault +foucault +foucault +foucault +foucault +foucault +foucault +foucault +foucault +foucault +foucault +foucault +foucault +foucault +foucault +foucault +foucault +foucault +foucault +noam_chomsky +noam_chomsky +noam_chomsky +noam_chomsky +noam_chomsky +noam_chomsky +noam_chomsky +noam_chomsky +noam_chomsky +noam_chomsky +noam_chomsky +noam_chomsky +noam_chomsky +noam_chomsky +noam_chomsky +noam_chomsky +noam_chomsky +noam_chomsky +noam_chomsky +noam_chomsky +noam_chomsky +noam_chomsky +noam_chomsky +noam_chomsky +noam_chomsky +noam_chomsky +noam_chomsky +noam_chomsky +noam_chomsky +noam_chomsky +noam_chomsky +noam_chomsky +noam_chomsky +noam_chomsky +noam_chomsky +noam_chomsky +noam_chomsky +noam_chomsky +noam_chomsky +noam_chomsky +noam_chomsky +noam_chomsky +noam_chomsky +noam_chomsky +noam_chomsky +noam_chomsky +noam_chomsky +noam_chomsky +noam_chomsky +noam_chomsky +noam_chomsky +noam_chomsky +noam_chomsky +noam_chomsky +noam_chomsky +noam_chomsky +noam_chomsky +noam_chomsky +noam_chomsky +noam_chomsky +noam_chomsky +noam_chomsky +noam_chomsky +noam_chomsky +noam_chomsky +noam_chomsky +noam_chomsky +noam_chomsky +noam_chomsky +noam_chomsky +noam_chomsky +noam_chomsky +noam_chomsky +noam_chomsky +noam_chomsky +noam_chomsky +noam_chomsky +noam_chomsky +noam_chomsky +noam_chomsky +noam_chomsky +noam_chomsky +noam_chomsky +noam_chomsky +noam_chomsky +noam_chomsky +noam_chomsky +noam_chomsky +noam_chomsky +noam_chomsky +noam_chomsky +noam_chomsky +noam_chomsky +noam_chomsky +noam_chomsky +noam_chomsky +noam_chomsky +noam_chomsky +noam_chomsky +noam_chomsky +noam_chomsky +noam_chomsky +noam_chomsky +noam_chomsky +noam_chomsky +noam_chomsky +noam_chomsky +noam_chomsky +noam_chomsky +noam_chomsky +noam_chomsky +noam_chomsky +noam_chomsky +noam_chomsky +noam_chomsky +noam_chomsky +noam_chomsky +noam_chomsky +noam_chomsky +noam_chomsky +noam_chomsky +noam_chomsky +noam_chomsky +noam_chomsky +noam_chomsky +noam_chomsky +noam_chomsky +noam_chomsky +noam_chomsky +noam_chomsky +noam_chomsky +noam_chomsky +noam_chomsky +noam_chomsky +noam_chomsky +noam_chomsky +noam_chomsky +noam_chomsky +noam_chomsky +noam_chomsky +noam_chomsky +noam_chomsky +noam_chomsky +noam_chomsky +noam_chomsky +noam_chomsky +noam_chomsky +noam_chomsky +noam_chomsky +noam_chomsky +noam_chomsky +noam_chomsky +noam_chomsky +noam_chomsky +noam_chomsky +noam_chomsky +noam_chomsky +noam_chomsky +noam_chomsky +noam_chomsky +noam_chomsky +noam_chomsky +noam_chomsky +noam_chomsky +noam_chomsky +noam_chomsky +noam_chomsky +noam_chomsky +noam_chomsky +noam_chomsky +noam_chomsky +noam_chomsky +noam_chomsky +noam_chomsky +noam_chomsky +noam_chomsky diff --git a/notebooks/log_dir/00000/default/sprite.png b/notebooks/log_dir/00000/default/sprite.png new file mode 100644 index 000000000..9a1ba84b1 Binary files /dev/null and b/notebooks/log_dir/00000/default/sprite.png differ diff --git a/notebooks/log_dir/00000/default/tensors.tsv b/notebooks/log_dir/00000/default/tensors.tsv new file mode 100644 index 000000000..14ab92ff1 --- /dev/null +++ b/notebooks/log_dir/00000/default/tensors.tsv @@ -0,0 +1,214 @@ +0.033686477690935135 -0.020088590681552887 -0.06952820718288422 -0.011154617182910442 -0.037127964198589325 0.027675606310367584 -0.0063485270366072655 -0.029187960550189018 -0.06240008398890495 0.023013534024357796 -0.03989127278327942 0.05008380860090256 -0.007741665933281183 -0.03287876397371292 -0.037601739168167114 -0.11748761683702469 0.004521750379353762 0.028853019699454308 0.0517779104411602 -0.00796215794980526 -0.01320212334394455 0.04430721700191498 0.008175059221684933 0.018932420760393143 0.0035871469881385565 0.009131262078881264 0.03721753507852554 0.014984164386987686 0.06288659572601318 0.03397535905241966 0.07323484122753143 -0.07629911601543427 0.025469092652201653 0.007061793934553862 0.024168068543076515 -0.021153077483177185 -0.00932538416236639 0.020008398219943047 0.09124591946601868 -0.004324222449213266 -0.03978244960308075 0.002721556229516864 0.014402855187654495 -0.07305984199047089 -0.033653050661087036 0.018916836008429527 -0.09906667470932007 -0.0816487967967987 0.03786204010248184 -0.024345258250832558 -0.04038189351558685 0.037773434072732925 -0.013737428933382034 0.006962971296161413 -0.05075986683368683 -0.05853983014822006 0.021147212013602257 0.05474182218313217 -0.0023966969456523657 0.033427875488996506 0.003103101858869195 0.052188556641340256 0.02112867683172226 0.01912570931017399 0.040994882583618164 -0.046899404376745224 0.06041162461042404 -0.019902678206562996 -0.03430609777569771 0.055051736533641815 -0.02307363599538803 0.03799401596188545 0.008237716741859913 0.05246703326702118 0.012825925834476948 -0.07009980082511902 -0.0658215656876564 -0.026217026636004448 0.0034547538962215185 -0.010499485768377781 -0.03407277911901474 -0.015609469264745712 0.05904542654752731 0.010025382973253727 -0.007614569738507271 -0.014626451767981052 -0.020526742562651634 -0.0133888591080904 -0.04297048598527908 -0.027310442179441452 0.07672982662916183 -0.07654406875371933 -0.018452832475304604 -0.004770145285874605 0.003414884675294161 0.0015660864301025867 0.09974024444818497 0.021774563938379288 -0.011182659305632114 0.012542948126792908 0.007509208284318447 -0.011697988957166672 0.038831550627946854 -0.005357932299375534 -0.013190535828471184 -0.07232970744371414 -0.05544512718915939 0.037685517221689224 0.05604179948568344 -0.009318584576249123 0.07691653072834015 0.06407523155212402 -0.037204716354608536 -0.04187309741973877 0.09156667441129684 -0.015131950378417969 -0.009043064899742603 -0.03963371738791466 0.06665240973234177 0.043772805482149124 -0.02605883590877056 0.06191077455878258 -0.047607943415641785 -0.031202781945466995 -0.027755513787269592 0.03947842866182327 -0.03561769798398018 0.026931975036859512 -0.04703158512711525 0.031104153022170067 -0.02519323118031025 0.04382910951972008 0.0009743536356836557 0.04626869782805443 -0.06611140072345734 -0.050161369144916534 -0.04624262824654579 0.05271061137318611 0.018751198425889015 0.01964183896780014 -0.06158456206321716 0.04558531567454338 0.08054178208112717 0.06409871578216553 -0.030015263706445694 -0.06756670027971268 -0.05235038325190544 -0.003868826199322939 0.04159802570939064 -0.01327139139175415 0.013098297640681267 0.06295636296272278 0.07102881371974945 0.04222641512751579 0.04805096983909607 -0.008017653599381447 0.008607492782175541 -0.028615107759833336 0.00025720472331158817 -0.03297343850135803 -0.002686248393729329 0.045227162539958954 0.013339419849216938 -0.007405259646475315 0.038427866995334625 0.11682872474193573 0.03111659176647663 -0.04015909135341644 -0.027450164780020714 0.0921173170208931 -0.02965993620455265 -0.02082338184118271 0.019321126863360405 -0.014758187346160412 -0.022040149196982384 -0.039930086582899094 -0.0007684670854359865 -0.025311551988124847 0.06316789239645004 -0.042124319821596146 -0.00369357131421566 -0.09647668153047562 0.0272817499935627 0.017931073904037476 -0.00862825382500887 0.029031982645392418 0.009481054730713367 -0.04287506267428398 9.967866208171472e-05 -0.005291931331157684 -0.013227852992713451 -0.044986072927713394 -0.040255751460790634 -0.04440966621041298 -0.018871083855628967 -0.07196889817714691 0.022247519344091415 0.03359810262918472 0.08593057096004486 0.051991723477840424 -0.06735207140445709 0.01761963777244091 -0.09610722959041595 -0.011216271668672562 0.039883941411972046 0.019261177629232407 -0.045136239379644394 -0.06941553205251694 0.015080058015882969 -0.017515845596790314 -0.03446295112371445 0.0056818281300365925 -0.026902087032794952 0.003045464400202036 0.04445115476846695 -0.0059319534339010715 0.02342970296740532 0.020477814599871635 0.0343799851834774 -0.006907808128744364 -0.03625836968421936 -0.05038740485906601 -0.037359852343797684 -0.06436290591955185 0.008329243399202824 -0.07402340322732925 0.028958028182387352 -0.012583899311721325 0.0653679296374321 -0.05850660055875778 0.10571553558111191 0.08697237819433212 0.05220778286457062 0.016091041266918182 0.028692690655589104 -0.066811203956604 0.0273258276283741 0.0035335335414856672 -0.02273113839328289 -0.0813247486948967 0.04407616704702377 -0.026704896241426468 0.013449410907924175 0.03361193463206291 -8.715534931980073e-05 -0.02183370105922222 0.047015901654958725 0.019435152411460876 -0.10429835319519043 -0.02109808474779129 0.03005172312259674 -0.05587441101670265 0.06493590772151947 0.07543408870697021 0.019957732409238815 -0.07956808805465698 0.0518675372004509 -0.04144309088587761 0.08950231224298477 -0.0035674497485160828 0.0016930615529417992 0.00954573042690754 -0.047495000064373016 -0.07026299089193344 0.009458093903958797 -0.005730185192078352 0.04045373573899269 0.06208913400769234 -0.01683088392019272 -0.03058619797229767 0.10396815091371536 0.06679727882146835 0.023011015728116035 0.041412826627492905 0.013200763612985611 -0.004103848710656166 0.03669190779328346 0.05381504446268082 0.026392892003059387 -0.0548575185239315 0.039071083068847656 -0.025101708248257637 0.01201173011213541 0.011860114522278309 -0.03359382972121239 -0.07226955890655518 0.013618448749184608 -0.014475639909505844 0.0049719554372131824 0.015656625851988792 -0.030739545822143555 -0.07689791917800903 -0.06431017071008682 -0.00704206945374608 -0.02359503135085106 -0.017064956948161125 -0.017296407371759415 0.06980762630701065 -0.02241031639277935 0.03240674361586571 0.12853558361530304 -0.05348602682352066 -0.010462360456585884 0.04809032008051872 -0.02580576203763485 -0.07108891755342484 -0.02696169912815094 -9.525533096166328e-05 0.02901633270084858 0.02944873832166195 0.04968598484992981 -0.04918716102838516 0.008842665702104568 0.03567557781934738 -0.0027475510723888874 -0.03134135901927948 0.0007052678847685456 -0.0875142440199852 -0.02382475696504116 0.03414645045995712 0.03810206055641174 -0.00984866637736559 -0.008312695659697056 0.02197437360882759 -0.059107888489961624 -0.024098234251141548 0.03094359301030636 -0.12973549962043762 0.020708126947283745 -0.041137050837278366 0.0056761326268315315 -0.07496210187673569 0.006611967924982309 0.010882250964641571 0.004516376182436943 -0.04778457060456276 -0.06525760889053345 0.002653352916240692 0.005770179908722639 0.06235290318727493 0.07933548092842102 -0.05387920141220093 0.00563370855525136 -0.04533424228429794 -0.0015393514186143875 -0.023837901651859283 -0.038437407463788986 -0.1273638904094696 0.11352305859327316 0.027584169059991837 -0.0337967686355114 -0.04403024911880493 -0.01472635567188263 0.06894902139902115 -0.010051412507891655 -0.004975711926817894 0.022521594539284706 0.05804521590471268 -0.044002074748277664 0.021200327202677727 -0.02036074362695217 -0.046773843467235565 -0.01995112933218479 0.028135253116488457 0.04699203744530678 -0.022474296391010284 0.06061423942446709 0.020173024386167526 -0.050848424434661865 0.047900523990392685 0.017299441620707512 0.011741380207240582 -0.04072533920407295 0.007485767360776663 0.06053395941853523 -0.07185381650924683 0.01761084608733654 -5.361664079828188e-05 0.027313116937875748 0.025792060419917107 0.03112073615193367 0.025434521958231926 -0.04318702593445778 -0.008579947985708714 0.021635908633470535 0.013784971088171005 -0.0016635830979794264 -0.02225697599351406 0.04392676800489426 0.11644234508275986 -0.01395796425640583 0.12324615567922592 0.01737048476934433 0.03388059884309769 0.005864112637937069 0.09602998197078705 0.01587885245680809 0.041671790182590485 0.007324951700866222 0.02605397440493107 0.05491739138960838 -0.017389316111803055 0.03252071514725685 0.0734562873840332 0.022522417828440666 -0.044575490057468414 -0.04067184403538704 0.06767302006483078 -0.09198518097400665 -0.048399005085229874 0.024814093485474586 -0.016164207831025124 -0.017879579216241837 0.09196411073207855 -0.029411837458610535 -0.11392223089933395 0.041475169360637665 0.03474847227334976 -0.044868871569633484 -0.02571091614663601 -0.03179356828331947 0.05762745812535286 0.01071949489414692 -0.006608536466956139 -0.01809690333902836 0.043344736099243164 0.04504711925983429 0.024863161146640778 -0.05188506096601486 0.03747660294175148 0.06708794087171555 0.09257940202951431 -0.01614988036453724 0.06503241509199142 -0.023750655353069305 0.0177549347281456 -0.038070134818553925 0.025923609733581543 0.04194745048880577 0.04050571471452713 0.029351407662034035 0.02462327852845192 0.014487657696008682 -0.03330380469560623 0.003982705529779196 -0.001464424654841423 -0.0597103051841259 0.035736460238695145 0.02292044460773468 -0.038414012640714645 0.036931198090314865 0.004512122832238674 0.018924392759799957 0.030358299612998962 0.0072767361998558044 0.05694272369146347 -0.02203436754643917 -0.004698341712355614 0.03389536961913109 0.007125153671950102 -0.024938907474279404 -0.015947826206684113 0.013175456784665585 -0.011278168298304081 0.0009926046477630734 -0.009168806485831738 0.03457252308726311 0.0057123457081615925 -0.02337765321135521 0.023894505575299263 0.04349888116121292 -0.022797290235757828 0.0727100819349289 -0.018115326762199402 0.038124166429042816 0.039247434586286545 0.041633013635873795 -0.14755094051361084 0.028343109413981438 0.02348748780786991 0.06874869018793106 0.04445498809218407 0.05581562966108322 0.01578139327466488 0.033252179622650146 -0.02924170158803463 -0.06061366945505142 0.03961733356118202 0.00811768975108862 0.00992838479578495 0.009144622832536697 0.03131905198097229 -0.008032725192606449 0.04874623194336891 0.09416060149669647 0.062419407069683075 -0.026216600090265274 0.03620293736457825 0.004188932944089174 0.035280536860227585 0.04640804976224899 0.04413873702287674 0.04112519323825836 0.03036639653146267 0.007794488221406937 -0.017643896862864494 -0.013688373379409313 0.03024129383265972 -0.019136708229780197 -0.006171789485961199 0.05600028857588768 0.016535500064492226 +0.011027496308088303 -0.024405695497989655 -0.08386463671922684 0.020927319303154945 0.005689271725714207 0.05996856093406677 -0.0007956196204759181 0.009789375588297844 -0.0803603082895279 0.044801197946071625 -0.07180933654308319 -0.0029143900610506535 -0.00856136716902256 -0.03346320614218712 -0.007798569276928902 -0.11411905288696289 -0.03559922054409981 -0.03163212537765503 0.08382797986268997 -0.05168793350458145 -0.022534646093845367 0.06254357844591141 0.0358409509062767 0.07168295979499817 0.054749973118305206 0.06195983290672302 0.05129256844520569 0.005751613061875105 0.06759600341320038 0.020089156925678253 0.007372919004410505 -0.04961138218641281 -0.0289068054407835 -0.06689078360795975 0.049537088721990585 -0.004556132480502129 0.02437485381960869 0.04832742363214493 0.026185983791947365 -0.06681882590055466 -0.036847542971372604 0.07215116173028946 0.0061321319080889225 -0.06714709103107452 -0.017863335087895393 -0.020054230466485023 -0.03432276472449303 -0.05887506157159805 0.004439337644726038 -0.03531866893172264 -0.009271482937037945 0.003929611761122942 -0.03269802778959274 -0.04683336988091469 -0.057008031755685806 0.05312695354223251 -0.011464918032288551 0.07964036613702774 0.038238707929849625 0.04390713572502136 0.037616681307554245 -0.019184870645403862 0.006512091960757971 -0.04650275781750679 0.0002603734319563955 -0.005165216512978077 0.069388747215271 -0.007318341173231602 -0.009788683615624905 0.05898619070649147 -0.03379299119114876 0.03597832843661308 0.03770941495895386 0.05520223081111908 0.016187241300940514 -0.043834805488586426 -0.04015132784843445 -0.017848113551735878 0.06317564100027084 0.04395510256290436 0.04354774206876755 0.015665685757994652 0.06106394901871681 0.06698007136583328 -0.025323936715722084 0.029010998085141182 -0.03085332363843918 0.031015915796160698 -0.01323470938950777 -0.007057372480630875 0.02334076352417469 -0.03743452578783035 0.033210836350917816 0.043381862342357635 -0.01404672022908926 -0.0510500967502594 0.05336055904626846 -0.0114252595230937 0.014222022145986557 -0.012847556732594967 0.005534724332392216 -0.05897929146885872 0.05154038220643997 -0.01982218772172928 0.010757329873740673 -0.03445741906762123 -0.10222240537405014 -0.040029700845479965 0.05300113186240196 -0.06736285984516144 0.04006781801581383 0.08117178827524185 -0.030349010601639748 -0.03600214421749115 0.08787691593170166 -0.014367434196174145 0.04144081845879555 -0.03502441570162773 0.014278905466198921 0.030011653900146484 -0.015279010869562626 0.013456911779940128 -0.0048884800635278225 -0.008159703575074673 0.015587206929922104 0.011759160086512566 -0.014114554971456528 0.05875600501894951 0.00886007770895958 0.0725414976477623 0.017348572611808777 0.03597139194607735 0.047681912779808044 0.02057616226375103 -0.06379777938127518 -0.04453032463788986 -0.007904701866209507 0.08176549524068832 0.04509413614869118 0.06346899271011353 -0.08988972753286362 0.018553832545876503 0.1191159188747406 0.03577522933483124 -0.025228817015886307 -0.040783289819955826 -0.06134122237563133 -0.010301433503627777 0.07747052609920502 -0.022916484624147415 -0.009622317738831043 0.02897725999355316 0.08623713999986649 0.017387207597494125 -0.020511344075202942 -0.05336051434278488 0.0595477931201458 -0.014507070183753967 -0.022945662960410118 -0.047839026898145676 0.02875436656177044 -0.009936190210282803 0.008644885383546352 -0.08202296495437622 0.056146372109651566 0.05267763137817383 0.004561274312436581 -0.0858997330069542 0.010225529782474041 0.08658096939325333 0.0017882500542327762 -0.049074750393629074 0.011911476962268353 -0.02169891446828842 -0.05069905146956444 -0.04552295804023743 0.058659106492996216 0.005937221925705671 0.04627959057688713 -0.01059223897755146 0.00999767892062664 -0.05304649844765663 0.022749312222003937 0.018992718309164047 -0.022895770147442818 0.03829217329621315 0.013671902008354664 -0.029014961794018745 -0.018436912447214127 0.00972269382327795 -0.006911314558237791 -0.0051819817163050175 -0.005999334622174501 -0.029623810201883316 0.031398650258779526 0.007046937942504883 0.04939637705683708 0.03417319431900978 0.05921612307429314 0.07533663511276245 -0.08303217589855194 0.023197466507554054 -0.07045181840658188 -0.033225491642951965 -0.008032796904444695 0.05439569801092148 -0.00679369131103158 -0.011116976849734783 0.04314218834042549 -0.04247462376952171 -0.045436445623636246 -0.02030409500002861 -0.054272912442684174 0.024680836126208305 0.0169117022305727 0.05620743706822395 -0.04138171672821045 0.017215169966220856 -0.05698104575276375 0.008510543033480644 -0.05823785066604614 -0.017478201538324356 -0.03509422019124031 -0.03263314440846443 -0.02350476384162903 -0.02317221835255623 -0.05022844672203064 -0.005157540552318096 0.11789020895957947 -0.038473617285490036 0.05670633167028427 0.06260817497968674 -0.01492103561758995 -0.000930093927308917 -0.006334173958748579 -0.03532351180911064 0.013342667371034622 -0.04294842481613159 -0.0412198081612587 -0.08257514238357544 0.013106772676110268 -0.01871887966990471 -0.03841615840792656 0.023593630641698837 0.0076267109252512455 -0.0004288193304091692 -0.03237566351890564 0.03530694544315338 -0.06888159364461899 0.007275368086993694 0.07281385362148285 0.01923300325870514 -0.015439375303685665 0.04176897928118706 0.018193406984210014 -0.07567493617534637 -0.009410250931978226 0.006514210253953934 0.07961617410182953 -0.07042815536260605 0.027444444596767426 -0.018782692030072212 -0.023561565205454826 0.010046640411019325 0.024699829518795013 0.013567112386226654 0.07450196146965027 0.07026652246713638 0.02500319480895996 0.038343850523233414 0.029869480058550835 0.03123924881219864 -0.020638737827539444 0.04272882267832756 -0.04725426435470581 -0.03273483365774155 0.0181382168084383 0.06542918086051941 0.008929073810577393 -0.02631179429590702 0.05791493132710457 0.004842869006097317 -0.032599084079265594 -0.04038913547992706 0.010455594398081303 -0.029155686497688293 -0.012648070231080055 -0.009655945934355259 0.022379620000720024 -0.03043280355632305 0.02819252945482731 -0.07489082217216492 -0.06126808747649193 0.03658949211239815 -0.05717825889587402 0.04585150629281998 -0.009435566142201424 0.07482326030731201 -0.02465173602104187 0.03697523847222328 0.10137780010700226 0.013720766641199589 0.0532737672328949 0.023128436878323555 -0.03503548353910446 -0.09219510853290558 -0.008638063445687294 -0.003385993419215083 -0.016171114519238472 0.008659126237034798 0.040142688900232315 -0.03324892744421959 0.00023912242613732815 0.004504280164837837 0.0049490975216031075 -0.009261071681976318 -0.011175333522260189 -0.029809527099132538 -0.05945615470409393 0.0370158888399601 0.035792190581560135 0.006360624451190233 0.009025298058986664 0.02877216227352619 -0.05009933561086655 -0.008767453953623772 0.01804923638701439 -0.12969869375228882 0.02542601153254509 -0.03539208695292473 0.01311469916254282 -0.06604242324829102 0.01924707554280758 0.0016257448587566614 0.002657992532476783 -0.11810676008462906 -0.056099288165569305 0.04352828115224838 0.018325166776776314 0.048757679760456085 0.13347789645195007 0.01932278648018837 -0.026998858898878098 -0.022187205031514168 -0.047245170921087265 -0.040558334439992905 -0.06899242848157883 -0.06472506374120712 0.09387009590864182 0.03731588274240494 0.024837492033839226 -0.04784339293837547 -0.0460854209959507 -0.0032696188427507877 -0.07217615842819214 0.0051992544904351234 0.007992672733962536 0.01772133819758892 -0.06519826501607895 -0.022801928222179413 0.018423117697238922 -0.001568949199281633 -0.0306714940816164 0.022016309201717377 0.027082227170467377 -0.03475333750247955 0.12578339874744415 -0.049073006957769394 -0.06187346205115318 0.033735282719135284 -0.01525032240897417 0.02574183978140354 -0.02220715768635273 0.00871300045400858 0.07886338979005814 -0.07166767865419388 -0.03171280026435852 -0.033394187688827515 0.04359731823205948 0.0123476292937994 0.01956470124423504 0.019206881523132324 -0.015139013528823853 0.04576127976179123 0.028638947755098343 -0.007567723281681538 0.011097168549895287 -0.042651839554309845 0.033491350710392 0.050450585782527924 0.0024141198955476284 0.045230645686388016 0.017107803374528885 -0.04708098620176315 0.03740837797522545 0.08518330752849579 0.067903533577919 0.027905181050300598 -0.008288588374853134 0.029367217794060707 -0.08570055663585663 0.018481295555830002 -0.005816803779453039 0.0789542943239212 0.0007406279910355806 0.003498178208246827 -0.019510725513100624 0.05425161495804787 0.001415794133208692 -0.00012813603098038584 0.03996918722987175 -0.008020740933716297 -0.025082629173994064 0.04991648346185684 -0.02302737347781658 -0.021966975182294846 0.004050043411552906 0.03663934767246246 -0.07991335541009903 0.011525432579219341 -0.019916918128728867 0.004723855294287205 0.021567292511463165 0.0015560833271592855 -0.0359266921877861 0.019579874351620674 0.025131454691290855 -0.006585592404007912 -0.026161285117268562 0.017660589888691902 0.07109177857637405 0.04889138042926788 0.017199916765093803 0.08600446581840515 -0.09780380874872208 0.0004015046579297632 0.006130060646682978 0.061284132301807404 0.028684765100479126 0.06383467465639114 -0.0049594976007938385 0.006740662269294262 -0.0217656958848238 -0.04859449714422226 0.05877756327390671 0.03761683776974678 -0.10545378178358078 0.08152129501104355 0.04950597137212753 -0.09118515998125076 0.09842153638601303 0.028452595695853233 0.06019601970911026 -0.03319253772497177 0.0501684695482254 0.03132190927863121 0.000567608221899718 0.02053949050605297 0.052537865936756134 -0.027564913034439087 -0.004143833182752132 -0.0017296236474066973 0.00475951237604022 0.03506636619567871 0.014325786381959915 -0.07659345865249634 -0.029283804818987846 0.009068962186574936 -0.04640249162912369 -0.03106715716421604 -0.04256843030452728 -0.002295123413205147 0.027384106069803238 -0.023077497258782387 0.034485310316085815 0.023957470431923866 0.0803368017077446 -0.12103386968374252 -0.027424391359090805 0.056696441024541855 0.02994389645755291 0.06559807807207108 0.02285727672278881 0.010371631942689419 0.0824052169919014 -0.02739478461444378 -0.0981280729174614 0.02520403079688549 0.015463409945368767 0.012999027036130428 0.027222517877817154 -0.02314138226211071 -0.017432257533073425 0.050465263426303864 0.05445677787065506 0.04090394452214241 0.035675372928380966 0.0039504473097622395 -0.042143117636442184 -0.0034324442967772484 0.06230991333723068 0.0322134904563427 0.044305864721536636 0.02189972810447216 -0.016184916719794273 -0.05509840324521065 -0.005737069062888622 0.03307286649942398 0.01833866536617279 0.04008618742227554 0.053409986197948456 -0.016048483550548553 +-0.05447464436292648 0.0015701422234997153 -0.035708654671907425 0.009650718420743942 -0.009833269752562046 0.023168887943029404 0.006517108529806137 -0.021543314680457115 -0.02376026101410389 0.05322771891951561 -0.039178527891635895 -0.00045237442827783525 -0.04126407578587532 0.029432855546474457 0.007210437208414078 -0.07116975635290146 0.0015215196181088686 0.012584874406456947 0.03858897089958191 -0.06402870267629623 -0.07722891867160797 0.09589187055826187 0.0721656084060669 0.05164076387882233 0.01274065114557743 -0.014657692052423954 -0.01963573880493641 0.0037169053684920073 0.08010728657245636 0.004333301447331905 -0.061351750046014786 -0.007775614503771067 0.03328699991106987 -0.0422821044921875 0.07271265238523483 0.03560113534331322 0.04330626130104065 0.029245613142848015 0.03785192221403122 -0.030815133824944496 -0.0057713729329407215 0.04203687980771065 0.011182439513504505 -0.05280549079179764 -0.006018413696438074 -0.025842953473329544 -0.020032024011015892 -0.033031076192855835 0.021343903616070747 0.036601223051548004 -0.0029770839028060436 0.06589366495609283 -0.04110148921608925 -0.07235655188560486 -0.05169914290308952 0.02355298586189747 -0.0544300451874733 0.08879435807466507 0.038118984550237656 0.018786197528243065 0.03196929395198822 -0.02606651373207569 0.025502614676952362 -0.06550543755292892 0.011296724900603294 -0.022521503269672394 0.013904349878430367 0.07221657782793045 -0.018024984747171402 0.08216572552919388 -0.006700857542455196 0.08757185190916061 0.015684938058257103 0.030152833089232445 0.06823008507490158 -0.08447486907243729 -0.022714724764227867 0.02952549047768116 0.004507924895733595 0.01783353090286255 0.0055648996494710445 -0.009200569242238998 -0.004905016627162695 0.01920749433338642 -0.006732339970767498 0.018700724467635155 0.022970478981733322 0.030706189572811127 -0.05835817754268646 -0.0011794717283919454 0.06464138627052307 -0.07858966290950775 0.0459786020219326 -0.00648097787052393 -0.044102638959884644 -0.05668674409389496 0.08663441985845566 0.01829260215163231 0.008133761584758759 -0.012463931925594807 0.045141562819480896 -0.02630998194217682 0.02384362183511257 -0.053335465490818024 -0.018810877576470375 -0.030893441289663315 -0.04499989002943039 -0.0026923813857138157 0.05389247462153435 -0.04558578506112099 0.04413506016135216 0.028452664613723755 0.00011446007556514814 -0.03260605409741402 0.0428544282913208 -0.015096288174390793 0.07363025844097137 -0.03357277438044548 0.019363729283213615 0.012829400599002838 -0.009901526384055614 0.03706574812531471 -0.032637424767017365 0.030743366107344627 0.0036993843968957663 0.01951955445110798 0.006000794004648924 0.09096678346395493 -0.011247145012021065 0.06682237237691879 0.00018583379278425127 -0.03781081363558769 0.055516913533210754 0.004375263582915068 -0.05107564851641655 -0.0718032643198967 -0.04110637307167053 0.06591301411390305 0.05263252183794975 0.06641356647014618 -0.06964454799890518 0.06484154611825943 0.13708345592021942 0.05013914406299591 -0.016466567292809486 0.011048165149986744 -0.06172093376517296 -0.0021021030843257904 0.04395092651247978 -0.031032361090183258 0.015512664802372456 -0.003790442366153002 0.04770367592573166 -0.015971651300787926 -0.012769953347742558 -0.049562595784664154 0.009556776843965054 0.011183432303369045 0.007220401894301176 -0.05787578225135803 -0.000998402014374733 -0.0012062755413353443 -0.012400847859680653 -0.004768125247210264 0.05516284331679344 0.022941280156373978 0.026638437062501907 -0.08432121574878693 -0.0075964308343827724 0.06360482424497604 -0.014265376143157482 -0.05459537357091904 0.003950944170355797 -0.040565766394138336 -0.05085848271846771 -0.05451960489153862 0.04862810671329498 0.019522298127412796 0.022249555215239525 -0.012372403405606747 0.0046339877881109715 -0.08229571580886841 0.02793215587735176 0.05195432901382446 -0.0014625702751800418 0.014082865789532661 0.005051271989941597 -0.04708497226238251 -0.06502185761928558 0.02946351282298565 0.04093050956726074 -0.0023618254344910383 -0.009863495826721191 0.02164880931377411 0.011948072351515293 -0.03781462088227272 -0.014696325175464153 0.01170018594712019 0.02998478338122368 0.08518153429031372 -0.06982189416885376 0.034825630486011505 -0.05146745964884758 -0.06677810102701187 -0.012804652564227581 -0.019317559897899628 -0.017778148874640465 -0.05791381374001503 0.010269910097122192 -0.019249316304922104 -0.04333727806806564 -0.047982532531023026 -0.030942542478442192 -0.011204267852008343 0.008238471113145351 0.07351254671812057 0.020115986466407776 -0.03488979488611221 -0.03376523032784462 0.03725197911262512 0.004016368184238672 0.0004790254752151668 -0.05038997530937195 -0.08305706083774567 -0.026407388970255852 -0.009633926674723625 -0.014091551303863525 -0.0031561385840177536 0.09268698841333389 0.022710496559739113 0.05308890715241432 0.018576987087726593 -0.012817434966564178 0.02009746991097927 -0.0006271993624977767 0.011632428504526615 0.05971107631921768 -0.05389219522476196 -0.01744805835187435 -0.017112188041210175 -0.00038739407318644226 -0.0559384785592556 -0.007915141060948372 0.005766759160906076 0.01829361729323864 -0.017234068363904953 -0.020284563302993774 0.05306480824947357 -0.014334151521325111 -0.03247513622045517 0.08195631206035614 -0.0013328911736607552 -0.062347661703825 0.03867603465914726 -0.010213051922619343 -0.05401657521724701 0.007285366300493479 -0.052886225283145905 0.059849753975868225 -0.01230164896696806 -0.004995856899768114 -0.013616625219583511 -0.006831805687397718 0.011945685371756554 0.005910854786634445 -0.0073995948769152164 0.01709076575934887 0.03879360854625702 0.027675719931721687 0.023102520033717155 0.04956992343068123 0.06170496344566345 -0.03047899715602398 0.09521935135126114 -0.028281064704060555 -0.10154658555984497 -0.04811907932162285 0.06459984928369522 0.008524582721292973 -0.02428540587425232 0.07380836457014084 -0.03261467069387436 0.003484163898974657 -0.048839423805475235 0.03900987654924393 -0.07166711986064911 0.002665975596755743 0.025719596073031425 -0.020670734345912933 -0.0856081172823906 -0.026311729103326797 -0.029600534588098526 -0.01491005253046751 -0.026985878124833107 -0.05607471615076065 0.013840180821716785 -0.053998880088329315 0.07727456092834473 0.006094874814152718 0.03992043808102608 0.09911079704761505 0.029839761555194855 0.036502495408058167 0.06916794180870056 0.024957498535513878 -0.11865288764238358 0.04260721057653427 -0.029213085770606995 0.007463553920388222 0.03478569909930229 0.05236487835645676 0.02366098202764988 -0.016310138627886772 -0.02710634097456932 0.07708831876516342 -0.03157992660999298 0.021986357867717743 0.0006468811770901084 -0.08252815157175064 -0.03760571777820587 0.03630951792001724 -0.007672056555747986 0.015969889238476753 0.035842105746269226 -0.05767713114619255 0.0013631843030452728 -0.03941015526652336 -0.09688548743724823 0.08031528443098068 -0.01138681173324585 -0.04387267678976059 -0.0693429484963417 0.024316566064953804 0.026783645153045654 -0.039382219314575195 -0.03050997294485569 -0.07389850914478302 0.052699364721775055 0.015827111899852753 0.028941363096237183 0.09885769337415695 0.04223202168941498 -0.049259234219789505 0.0008677170844748616 0.029903562739491463 -0.005929502192884684 -0.09661674499511719 -0.050114478915929794 0.10806196182966232 0.019071748480200768 0.03648112714290619 -0.11485211551189423 -0.05508314073085785 0.08071300387382507 -0.024260371923446655 -0.0022741728462278843 -0.0019171185558661819 0.033654529601335526 -0.051287129521369934 0.00481414282694459 -0.03900543972849846 -0.005358510185033083 -0.07110944390296936 0.04102117195725441 -0.02299986593425274 -0.037918467074632645 0.08898575603961945 -0.006984849460422993 -0.06805022805929184 0.016355538740754128 -0.031013861298561096 0.05678567290306091 -0.04957558214664459 0.023193607106804848 0.07935738563537598 -0.0443992093205452 -0.04499679431319237 -0.04604440554976463 -0.0013356572017073631 0.017735680565238 0.0047842669300735 0.056751612573862076 -0.02839674800634384 0.05370659381151199 0.08212633430957794 0.025395439937710762 -0.03245624899864197 0.007231080438941717 0.030804725363850594 0.03785840421915054 -0.0035434330347925425 0.0776607096195221 0.03559943288564682 -0.05429539084434509 -0.012314565479755402 -0.0247708261013031 0.09220725297927856 -0.026645846664905548 -0.004639128688722849 0.06904103606939316 -0.01688038371503353 0.000463992910226807 -0.0030667518731206656 0.05437851697206497 -0.01623642072081566 -0.08132722973823547 -0.0025179910007864237 0.00829892698675394 -0.021121883764863014 -0.01833558827638626 -0.009203186258673668 -0.02648777700960636 -0.05766871199011803 0.10683717578649521 -0.017829641699790955 -0.03866391256451607 -0.02405725233256817 0.050909217447042465 -0.061275046318769455 -0.025392765179276466 0.02342887967824936 0.002341881860047579 0.04181287810206413 0.009477534331381321 -0.005592203699052334 0.001196176977828145 0.07667383551597595 0.003547350876033306 -0.13740919530391693 0.007072669919580221 0.036358993500471115 0.04377061501145363 -0.02152787335216999 0.02360944077372551 -0.08601030707359314 -0.012244787998497486 0.02441244199872017 0.02306338958442211 -0.01884814351797104 0.017596332356333733 0.007538131903856993 0.004669212270528078 0.04323182627558708 -0.05612771958112717 0.024501031264662743 -0.04194056615233421 -0.05831661447882652 0.06329059600830078 0.0453091636300087 -0.04313700646162033 0.09803268313407898 0.043255764991045 0.06003962457180023 0.010534935630857944 0.04567224159836769 0.004710991866886616 -0.007713996339589357 0.04940470680594444 0.05715392157435417 0.006948686204850674 -0.02421591617166996 -0.016762280836701393 -0.005433678161352873 0.008149794302880764 0.0290144644677639 -0.039102379232645035 0.028340602293610573 -0.011595604941248894 0.00036229038960300386 -0.03186863288283348 -0.03616717457771301 -0.01204015500843525 0.028347449377179146 -0.04982767999172211 0.03487319126725197 0.04370390623807907 0.06131565943360329 -0.11123586446046829 0.04969700425863266 0.06263165920972824 0.04399677738547325 0.10763082653284073 -0.009134558029472828 0.002265872433781624 0.07019053399562836 -0.028575174510478973 -0.024562561884522438 0.008187324739992619 0.024162478744983673 -0.014666353352367878 0.04438216984272003 0.025286678224802017 -0.03566599637269974 -0.01957003027200699 0.09036478400230408 0.04320146515965462 0.01000167801976204 0.0763283222913742 -0.027751239016652107 -0.01378415897488594 -0.007102640345692635 0.0780637338757515 0.07914768904447556 0.060931287705898285 0.012487723492085934 -0.042597174644470215 -0.046022266149520874 -0.006487582344561815 0.03467635065317154 0.018440470099449158 0.0011660783784464002 -0.01051325723528862 +0.016649676486849785 -0.028280075639486313 -0.0866527184844017 0.026405027136206627 -0.052983272820711136 0.08183588087558746 -0.00440096715465188 0.02641833759844303 -0.08887970447540283 0.016640255227684975 -0.03877842053771019 0.01373173575848341 -0.02415981888771057 -0.05220896378159523 0.014751848764717579 -0.1080712303519249 -0.007558582816272974 -0.04008330777287483 0.07617410272359848 -0.06113477051258087 -0.03938928246498108 0.06415663659572601 0.03745223209261894 0.07219957560300827 0.04203859344124794 0.026477226987481117 0.05218951776623726 0.045392487198114395 0.057772621512413025 0.04855026304721832 0.029545577242970467 -0.057886380702257156 -0.03384661301970482 -0.01554489228874445 0.020522233098745346 0.004291217308491468 0.020903071388602257 0.08570819348096848 0.0734039843082428 -0.05766165256500244 0.016471583396196365 0.04944629222154617 0.03542570397257805 -0.06451267749071121 -0.01038302667438984 -0.03539082407951355 -0.04126269370317459 -0.102022185921669 0.044362761080265045 -0.020518040284514427 -0.016090229153633118 0.07485157996416092 0.0075623951852321625 -0.057099662721157074 -0.06053761765360832 0.053331710398197174 -0.00531479949131608 0.054600972682237625 0.030058931559324265 0.06900833547115326 0.0025509530678391457 -0.015958499163389206 0.003512472379952669 -0.028259461745619774 0.058590542525053024 -0.0036976172123104334 0.05115363001823425 -0.0003162397479172796 -0.025010643526911736 0.024421894922852516 -0.04474634677171707 0.06982596218585968 0.00560098048299551 0.023750510066747665 0.03522108122706413 -0.052592549473047256 -0.06677066534757614 -0.05059793218970299 0.021338820457458496 0.007384305354207754 -0.02186909317970276 -0.02451610006392002 0.031889889389276505 0.034191276878118515 0.001304782461374998 0.014287503436207771 -0.05892563983798027 -0.00694896699860692 -0.015893684700131416 -0.016879547387361526 0.04978959262371063 -0.05512184649705887 -0.020240364596247673 0.0002593628305476159 -0.03516029193997383 -0.057784076780080795 0.0854564681649208 -0.032198548316955566 0.02910676598548889 -0.010186064057052135 -0.020702291280031204 -0.03896327689290047 0.054258204996585846 -0.022981533780694008 0.022333523258566856 -0.02113102190196514 -0.12005334347486496 -0.005274427589029074 0.06105780974030495 -0.031792208552360535 0.04500791057944298 0.09155896306037903 -0.02038627304136753 -0.020655661821365356 0.08682313561439514 -0.00023846793919801712 -0.0019637884106487036 -0.03390386328101158 0.011367361061275005 0.0064322748221457005 -0.04004841297864914 0.06507154554128647 0.0010855153668671846 -0.01748722791671753 0.02268507331609726 0.04106936603784561 -0.009105931967496872 0.06631473451852798 0.01056764181703329 0.03811473771929741 -0.02287178300321102 0.03660224750638008 0.07216811180114746 0.047154273837804794 -0.05425189435482025 -0.044288359582424164 -0.051276590675115585 0.06990078836679459 0.05101001262664795 0.05548788234591484 -0.08259014040231705 0.015092721208930016 0.1444176435470581 0.0331428088247776 -0.06809896975755692 -0.029202884063124657 -0.07852613180875778 0.007348096929490566 0.07361214607954025 0.002794271567836404 0.0012216983595862985 0.03900276497006416 0.09775043278932571 -0.013036462478339672 0.004968890454620123 0.011021101847290993 0.07001160085201263 -0.00905495323240757 0.019155895337462425 -0.019236797466874123 0.02541203424334526 -0.0015129863750189543 0.021856218576431274 -0.06475558131933212 0.03467247635126114 0.07351037859916687 0.017613660544157028 -0.0985308587551117 0.013613147661089897 0.0912565365433693 -0.00567318219691515 0.00021090982772875577 0.03559655323624611 -0.013904997147619724 -0.02822083607316017 -0.03161752596497536 0.0516447015106678 -0.009524496272206306 0.0553913339972496 -0.028720684349536896 -0.009467260912060738 -0.0653955489397049 0.04247189685702324 0.005246123299002647 -0.06341202557086945 0.01107309851795435 0.017351021990180016 0.006582917645573616 -0.023681681603193283 -0.005888720508664846 0.0052064950577914715 -0.03351139277219772 -0.023256314918398857 -0.041941870003938675 -0.018816884607076645 0.00199952838011086 0.06754910945892334 0.03552846610546112 0.04385862499475479 0.05225754901766777 -0.09293435513973236 0.033741746097803116 -0.03746912628412247 -0.06313060224056244 0.020958328619599342 0.04743039235472679 -0.037129901349544525 -0.055415667593479156 0.009616484865546227 -0.04592130333185196 -0.04517700895667076 0.013541447930037975 -0.02429047040641308 0.006767598446458578 0.02665223367512226 0.03633486106991768 -0.0027487282641232014 -0.032914068549871445 -0.030477259308099747 -0.02482563629746437 -0.0314289927482605 -0.03863433748483658 -0.0462951585650444 -0.05064871162176132 -0.0008231748943217099 -0.04625825211405754 0.0060257320292294025 -0.0031158272176980972 0.11924561858177185 -0.02848733216524124 0.0660245269536972 0.07800573110580444 0.011375537142157555 0.004932644311338663 0.011253890581429005 -0.04125593230128288 0.048105932772159576 -0.013178257271647453 -0.050351377576589584 -0.08634824305772781 -0.00401735445484519 -0.030883416533470154 -0.028310643509030342 -0.010383028537034988 0.016251683235168457 0.00018880091374740005 -0.006309375632554293 0.04710471257567406 -0.09306022524833679 -0.020382845774292946 0.04815363138914108 0.01647755689918995 0.0026992170605808496 0.06411535292863846 0.03283270448446274 -0.08191955089569092 0.022154999896883965 -0.06228732317686081 0.0774519219994545 -0.05769446864724159 0.05483796447515488 -0.03819901868700981 -0.03558417037129402 -0.0073436954990029335 0.011911274865269661 -0.0033525596372783184 0.004480582196265459 0.04388833045959473 -0.010633358731865883 0.010414338670670986 0.023780127987265587 0.10156722366809845 -0.008220712654292583 0.06290136277675629 -0.045009735971689224 -0.03722346946597099 -0.037924036383628845 0.02056736871600151 -0.0066718109883368015 -0.03284905105829239 0.03371119871735573 -0.016499249264597893 0.00012047636118950322 -0.03166244551539421 -0.021121732890605927 -0.024066073819994926 0.006655167788267136 0.0050033461302518845 0.011374746449291706 -0.015536103397607803 0.009087181650102139 -0.04902569577097893 -0.04229460656642914 0.045882999897003174 -0.03046596050262451 0.03243008628487587 -0.02934090606868267 0.07024694979190826 -0.013573416508734226 0.03821897879242897 0.10688231885433197 -0.0015016737161204219 0.02973351627588272 -0.007969514466822147 -0.01527683436870575 -0.09810460358858109 0.0056440201587975025 0.028257880359888077 0.023807425051927567 0.02563250996172428 0.06667394191026688 -0.06000954285264015 -0.018548795953392982 -0.007714600767940283 0.03096560388803482 -0.013261268846690655 0.030809570103883743 -0.029473256319761276 -0.05712141469120979 0.011444424279034138 0.04876008629798889 -0.02677845023572445 -0.0045453510247170925 0.01813877932727337 -0.006139306351542473 -0.004710656125098467 0.008134358562529087 -0.13735343515872955 0.05008172616362572 -0.012944711372256279 0.008054659701883793 -0.07525771856307983 0.006820036564022303 0.018680939450860023 0.008274976164102554 -0.05368034541606903 -0.0870828703045845 0.06698394566774368 0.02732297219336033 0.08583590388298035 0.11267527937889099 -0.04846417158842087 -0.00455052824690938 0.012820078991353512 -0.03404570743441582 -0.07887686789035797 -0.00957456137984991 -0.09331788867712021 0.07978998869657516 0.03472224995493889 -0.026675621047616005 -0.05059344321489334 -0.039498645812273026 0.0017198335845023394 -0.013626289553940296 0.010384452529251575 0.010451826266944408 0.00621569249778986 -0.09227938950061798 -0.02613455429673195 0.012544470839202404 -0.032034970819950104 -0.05953294038772583 -0.00019071124552283436 0.016317278146743774 -0.01631556823849678 0.07991212606430054 -0.026766540482640266 -0.04759661853313446 0.04007233679294586 0.010371843352913857 0.04154399782419205 -0.014677044935524464 -0.0118626793846488 0.06729814410209656 -0.10407133400440216 0.006200891919434071 -0.05506715178489685 0.05531923472881317 -0.03247500956058502 -0.026232829317450523 0.03644206002354622 -0.016683513298630714 -0.0005279026227071881 0.024620605632662773 0.005918159615248442 0.054307207465171814 -0.023011675104498863 0.06742704659700394 0.016554249450564384 0.0221325121819973 0.08879316598176956 0.0192645862698555 -0.029125770553946495 0.021550003439188004 0.05295969173312187 0.0485246405005455 0.03428586199879646 -0.018095631152391434 0.055212005972862244 -0.013022536411881447 0.03470358997583389 0.02350037917494774 0.06571580469608307 -0.029915155842900276 -0.0410793200135231 0.003551226807758212 0.06603606045246124 -0.045416612178087234 -0.011806418187916279 0.02801949717104435 0.0005086669116280973 -0.057543203234672546 0.06358059495687485 -0.012526958249509335 -0.0722498968243599 -0.025892943143844604 0.0036248413380235434 -0.04300734028220177 -0.01871192641556263 0.015480577014386654 0.031575534492731094 0.018607163801789284 0.011452513746917248 -0.022474322468042374 -0.028757940977811813 0.04347823187708855 0.01890970580279827 -0.021579040214419365 0.021663237363100052 0.05070553719997406 0.0600835420191288 0.03117961622774601 0.059494804590940475 -0.0651756301522255 -0.03698994964361191 0.03193538635969162 0.03857828304171562 0.006150487810373306 0.029546618461608887 -0.007231276948004961 0.030699850991368294 0.03364139422774315 -0.07915256172418594 0.04144204407930374 0.009174416773021221 -0.05369596183300018 0.06200327351689339 0.04953516647219658 -0.051721129566431046 0.05694799870252609 -0.002846956718713045 0.06722203642129898 0.0056552826426923275 0.027752622961997986 0.04544645920395851 0.024122854694724083 0.02725466713309288 0.026452986523509026 -0.03830942511558533 -0.010132724419236183 -0.002139449119567871 0.0026912325993180275 0.019400348886847496 -0.013758172281086445 -0.08979514986276627 0.02388867549598217 -0.010897837579250336 -0.04625226557254791 -0.03454195708036423 -0.010134326294064522 -0.024518631398677826 0.04129853472113609 -0.013002066873013973 0.03759010136127472 0.0276811346411705 0.0589236281812191 -0.10664310306310654 -0.007863304577767849 0.0038142709527164698 0.025910763069987297 0.05377217009663582 0.04017961770296097 -0.022221090272068977 0.050397053360939026 -0.020767811685800552 -0.0745619386434555 0.010845637880265713 -0.04068112000823021 0.022935546934604645 0.03833511099219322 0.01033235527575016 -0.02140093222260475 0.032543543726205826 0.0653340145945549 0.08022566884756088 0.027068808674812317 -0.007679740432649851 -0.015320118516683578 0.044717952609062195 0.06224376708269119 0.045648299157619476 0.04406179487705231 0.05350548401474953 -0.006930071860551834 -0.07626078277826309 -0.0015505412593483925 0.04065704718232155 0.04429077357053757 0.07298342883586884 0.01311756856739521 -0.01719764806330204 +-0.0031317949760705233 -0.003893353743478656 -0.033028505742549896 0.03805346414446831 -0.029674280434846878 0.04572527855634689 -0.037673283368349075 -0.0032951869070529938 -0.0581774078309536 -0.0037887184880673885 -0.032970868051052094 0.0009561381884850562 -0.045224446803331375 -0.007506716530770063 0.00826823990792036 -0.10080885142087936 0.01616472750902176 0.01494402252137661 0.07541506737470627 -0.07006414979696274 -0.03607964888215065 0.0932171419262886 0.05445070192217827 0.07381056994199753 0.022520676255226135 0.004758797120302916 0.03136194869875908 0.04714782163500786 0.08858169615268707 0.060970988124608994 -0.02205185405910015 -0.07271809875965118 0.01934289187192917 -0.03134581819176674 0.04339192807674408 0.02699236571788788 0.01157454028725624 0.06481937319040298 0.09599434584379196 -0.012150680646300316 -0.001144365407526493 0.019371187314391136 0.04166450351476669 -0.05394526571035385 0.006631039083003998 0.010038497857749462 -0.045567285269498825 -0.06791814416646957 0.03567983955144882 0.022805482149124146 0.0034237715881317854 0.08240798115730286 -0.020638205111026764 -0.03159891068935394 -0.018255086615681648 0.02131209895014763 0.012950016185641289 0.07459568977355957 0.06006889417767525 0.012554438784718513 0.008310210891067982 -0.05364938825368881 0.021816931664943695 -0.05744614452123642 0.0299665704369545 0.007511402014642954 0.030398527160286903 0.05124574527144432 -0.037417106330394745 0.047319862991571426 -0.009014859795570374 0.09326321631669998 0.007703632116317749 0.025560827925801277 0.04479830339550972 -0.0888938456773758 -0.05490034818649292 -0.01642506755888462 -0.018052788451313972 0.015415641479194164 -0.00869749765843153 -0.008642079308629036 0.04400070011615753 0.023607365787029266 -0.028801502659916878 0.032920774072408676 -0.018343664705753326 -0.014581914059817791 -0.02549564279615879 -0.006732881534844637 0.054300278425216675 -0.07201018929481506 0.004856578540056944 -0.004743613302707672 -0.0475015714764595 -0.05400664359331131 0.08097028732299805 0.03538547456264496 0.019605714827775955 -0.021282346919178963 -0.011803166940808296 -0.02855723723769188 0.03606583550572395 -0.04104769974946976 0.002984464168548584 -0.04329614341259003 -0.05490664765238762 -0.00010633601050358266 0.04103055223822594 -0.030791467055678368 0.034452326595783234 0.06420426815748215 -0.017226407304406166 -0.03139178827404976 0.09892875701189041 -0.010141965001821518 0.04595467448234558 -0.03678695484995842 0.007841051556169987 -0.021215610206127167 -0.036193232983350754 0.09545844048261642 -0.02640080265700817 -0.0025806406047195196 0.021756846457719803 0.037909843027591705 -0.014148388989269733 0.08063764870166779 0.014454209245741367 0.05222165957093239 -0.0015164472861215472 0.01855628937482834 0.03799308091402054 0.05352544039487839 -0.054917968809604645 -0.06773790717124939 -0.08255172520875931 0.08427304774522781 0.054816581308841705 0.05984390154480934 -0.06179988756775856 0.03909863159060478 0.13481327891349792 0.02802383527159691 -0.018639596179127693 -0.0007257075048983097 -0.037549734115600586 -0.014390941709280014 0.05022463575005531 -0.01942068338394165 0.04451330006122589 0.020968548953533173 0.05859895423054695 -0.003363274969160557 -0.02796567976474762 -0.03325796499848366 0.025878485292196274 -0.03778757527470589 0.019127557054162025 -0.030397213995456696 -0.012653306126594543 -0.008641622960567474 0.0003173564618919045 -0.0030187242664396763 0.020591313019394875 0.07617435604333878 0.01953468844294548 -0.09111116826534271 -0.029900627210736275 0.07833541929721832 -0.016123952344059944 -0.025426240637898445 0.03635221719741821 -0.023125724866986275 -0.019863415509462357 -0.02794741652905941 0.048008136451244354 -0.012161198072135448 0.06645739078521729 -0.019575441256165504 0.022552240639925003 -0.10066389292478561 0.028346050530672073 0.032254233956336975 -0.03210018202662468 0.016990775242447853 0.009157715365290642 -0.004408016335219145 -0.010602452792227268 0.022721292451024055 0.04890197142958641 -0.004080904182046652 -0.035209450870752335 0.0022018146701157093 -0.017057402059435844 -0.049113329499959946 -0.001669923309236765 0.009533097967505455 -0.0007851688424125314 0.06035260483622551 -0.0906170904636383 0.041740790009498596 -0.03761369735002518 -0.03565232828259468 0.016446715220808983 0.02488713711500168 -0.02824566513299942 -0.04603200405836105 0.00648921262472868 -0.045344121754169464 -0.013429264537990093 -0.010532940737903118 -0.020443974062800407 0.02097300812602043 -0.0023583900183439255 0.030123742297291756 0.0065961312502622604 -0.05031539872288704 -0.03343852236866951 0.00031653305632062256 -0.04956293851137161 -0.05825331434607506 -0.06915063410997391 -0.08230423182249069 -0.036521028727293015 -0.005393940024077892 -0.0027274899184703827 0.0295992624014616 0.12069668620824814 -0.019214777275919914 0.061489541083574295 0.03780018538236618 0.01711197942495346 0.04222378134727478 0.010369482450187206 -0.05208738148212433 0.043151360005140305 -0.009976493194699287 -0.018079938367009163 -0.0374782457947731 -0.017811166122555733 -0.02723325602710247 0.018661292269825935 0.002115276176482439 0.012694772332906723 -0.012751787900924683 -0.028840215876698494 0.048210445791482925 -0.06597913801670074 -0.0387747548520565 0.07321012765169144 0.001877836650237441 -0.050659094005823135 0.03373466432094574 0.04051816835999489 -0.05309217423200607 0.04263855144381523 -0.05966673046350479 0.07276120036840439 -0.03771001100540161 0.005318049341440201 -0.04251693934202194 -0.016803715378046036 0.001053389860317111 -0.021169563755393028 -0.0043858992867171764 0.04868187755346298 0.04027435928583145 -0.0056891897693276405 0.02472830004990101 0.03017251007258892 0.1030394583940506 0.006781811825931072 0.0763343945145607 -0.030213510617613792 -0.06708914786577225 -0.011380300857126713 0.06517517566680908 0.045221518725156784 -0.04975615069270134 0.04729044437408447 -0.04108657315373421 0.007983755320310593 -0.05352526158094406 0.029770979657769203 -0.040379080921411514 0.004779983311891556 0.011413177475333214 -0.0016672750934958458 -0.031381554901599884 0.0006289823795668781 -0.04129014536738396 -0.02337789349257946 -0.0053895930759608746 -0.040323950350284576 0.012199586257338524 -0.06643834710121155 0.0792175680398941 0.01871785894036293 0.006548893637955189 0.10031766444444656 -0.011384131386876106 0.024335557594895363 0.03811801224946976 0.004876873455941677 -0.11215212941169739 0.04731280356645584 0.007967083714902401 0.022022228688001633 0.055335499346256256 0.0718761682510376 -0.0167914517223835 0.013130969367921352 0.01613864116370678 0.03381126746535301 -0.009393679909408092 0.012361716479063034 -0.032247044146060944 -0.04259280115365982 0.042497314512729645 0.051505718380212784 0.004215158522129059 0.017143025994300842 0.03271624818444252 -0.029357802122831345 -0.008784392848610878 -0.00021442194702103734 -0.13407151401042938 0.0713491141796112 -0.010797369293868542 -0.031396977603435516 -0.11359619349241257 0.031211551278829575 0.014378674328327179 -0.012908133678138256 -0.05517973750829697 -0.08714774996042252 0.05446098372340202 0.028809847310185432 0.04213753342628479 0.08797236531972885 -0.003841087222099304 -0.03202013671398163 0.022264812141656876 -0.01651712693274021 -0.017367642372846603 -0.06320340931415558 -0.07179273664951324 0.10987521708011627 0.0200495645403862 0.018115252256393433 -0.0866246148943901 -0.05353386700153351 0.03970273211598396 -0.016909178346395493 0.004811473656445742 -0.004091242328286171 0.04543421417474747 -0.1004277691245079 -0.016824929043650627 -0.01350425649434328 -0.02346377819776535 -0.02927953377366066 0.04400268942117691 0.029047057032585144 -0.07228435575962067 0.0634244978427887 -0.018814081326127052 -0.0743245780467987 0.024613570421934128 -0.013361629098653793 0.01703350432217121 -0.05768527090549469 -0.05885844677686691 0.08657754212617874 -0.03892927244305611 -0.017843779176473618 -0.061601683497428894 0.011791594326496124 0.005689093843102455 -0.010175470262765884 0.027043474838137627 -0.037954699248075485 0.04591115564107895 0.05017079412937164 0.011151637881994247 -0.005216243676841259 -0.027152324095368385 0.04564365744590759 0.02903047949075699 0.0028905656654387712 0.10010814666748047 0.043297115713357925 -0.0241385567933321 -0.006408856716006994 0.021815769374370575 0.09541205316781998 0.02201569639146328 -0.018655473366379738 0.08148667216300964 0.008187719620764256 0.012143322266638279 0.014538619667291641 0.05683184787631035 0.006400127895176411 -0.06277848035097122 -0.032471705228090286 0.023781098425388336 -0.05358826741576195 0.0010359685402363539 -0.012677601538598537 -0.014056962914764881 -0.06854641437530518 0.1067403256893158 0.014513435773551464 -0.06963095813989639 -0.007763328030705452 0.048467375338077545 -0.02505648322403431 -0.02282710373401642 -0.0003783490101341158 0.007616856135427952 0.03800453618168831 -0.024431027472019196 -0.07440308481454849 -0.026160752400755882 0.06474123150110245 0.013316571712493896 -0.08226116746664047 2.459019742673263e-05 0.0658206194639206 0.09344623982906342 -0.011073444969952106 0.06517834216356277 -0.0662011206150055 -0.006333588156849146 0.026581617072224617 0.011991467326879501 0.03377002850174904 0.04538940638303757 0.03073771484196186 0.03410131111741066 0.020988093689084053 -0.07164328545331955 0.022993210703134537 0.018820593133568764 -0.05622547119855881 0.036833833903074265 0.050172675400972366 -0.04740939289331436 0.05119040608406067 0.04619241878390312 0.02971113845705986 0.032215412706136703 0.034262605011463165 0.04236006364226341 0.009719262830913067 0.007421264424920082 0.027996506541967392 -0.0015136738074943423 -0.0565764345228672 -0.054819364100694656 -0.022905951365828514 0.03066457062959671 -0.005827047396451235 -0.08315678685903549 -0.0013958424096927047 0.0018932491075247526 -0.0034859187435358763 0.01875690184533596 -0.010702804662287235 -0.0017238041618838906 0.06616277992725372 -0.04152875393629074 0.03661089763045311 0.02521873638033867 0.07372193038463593 -0.10549494624137878 -0.010570897720754147 0.05109307914972305 0.023011624813079834 0.07659442722797394 0.02670358680188656 -0.014792942441999912 0.03809653967618942 -0.015955615788698196 -0.032281432300806046 0.05346661061048508 -0.000294373749056831 0.0017740357434377074 0.028665801510214806 0.016555065289139748 -0.033561427146196365 -0.00259250751696527 0.05783316120505333 0.09786060452461243 0.03439534455537796 0.06887896358966827 -0.013603053987026215 0.037977539002895355 0.050798822194337845 0.06070296838879585 0.07568877935409546 0.050945721566677094 0.010821756906807423 -0.01922943815588951 0.005119310226291418 0.007804485969245434 0.010271403938531876 0.06109502166509628 0.03350374475121498 -0.04095594212412834 +0.02001814916729927 -0.014328667894005775 -0.0914124846458435 -0.0016279480187222362 0.012978650629520416 0.009963220916688442 -0.01773180440068245 0.00635930523276329 -0.05974815413355827 -0.02195006050169468 -0.05076470598578453 0.014279891736805439 0.0031736264936625957 -0.052010614424943924 -0.001738924183882773 -0.10166164487600327 -0.042205601930618286 -0.005568469408899546 0.04142056405544281 -0.012379094958305359 -0.027738794684410095 0.04164351150393486 -0.05618755891919136 0.018178220838308334 0.0246694628149271 0.033729929476976395 0.04887647181749344 -0.016912564635276794 0.07216998934745789 0.053032975643873215 0.018336180597543716 -0.05016428232192993 0.025957418605685234 -0.00499134324491024 0.00405045785009861 -0.025651773437857628 0.03262054920196533 0.050721973180770874 0.0729159265756607 0.001531371846795082 -0.0561404824256897 0.003830170026049018 -0.02618277817964554 -0.08452508598566055 -0.04657140374183655 -0.0054414402693510056 -0.05810585245490074 -0.06533779948949814 0.03171322122216225 -0.004157609306275845 -0.01987999863922596 0.0033293715678155422 -0.04810318350791931 -0.024659479036927223 -0.05725095048546791 0.005770612973719835 -0.005742142908275127 0.05445296689867973 -0.0011949194595217705 -0.013065870851278305 -0.013427125290036201 0.05421824008226395 -0.040531426668167114 -0.041322775185108185 -0.0030363183468580246 -0.011487763375043869 0.041512902826070786 0.010900440625846386 -0.030316807329654694 -0.002382064936682582 -0.025990163907408714 0.04136624187231064 -0.04517543688416481 0.039811499416828156 0.028321171179413795 -0.06605318933725357 -0.04488051310181618 -0.043057624250650406 -0.012958543375134468 -0.01724260486662388 -0.019917666912078857 0.007843904197216034 0.1377762258052826 -0.01761537417769432 -0.008639894425868988 -0.03847643733024597 -0.022803865373134613 -0.024982891976833344 -0.020661840215325356 -0.0019402002217248082 0.07585839927196503 -0.051142603158950806 0.023671045899391174 0.00025807259953580797 0.013364756479859352 -0.009638934396207333 0.09181296825408936 -0.03147045895457268 -0.05390980839729309 0.010304790921509266 -0.026940839365124702 -0.008416371420025826 0.09789718687534332 -0.015485002659261227 -0.028021160513162613 -0.07286982983350754 -0.06627601385116577 -0.0005622621974907815 0.029969047755002975 -0.04187377542257309 0.07228022813796997 0.08234651386737823 -0.06049271672964096 0.0005493282806128263 0.07830856740474701 0.01831645332276821 0.06246001273393631 0.008362670429050922 0.0757572278380394 0.044848181307315826 -0.037052642554044724 0.07744581252336502 -0.011654193513095379 -0.029040969908237457 0.003448960604146123 0.039201974868774414 -0.02143019251525402 -0.010830155573785305 -0.03568126633763313 -0.002188377780839801 0.007929522544145584 0.06194624304771423 0.017902521416544914 0.02608538791537285 -0.0573643259704113 -0.08403225988149643 -0.021062983199954033 0.04394594579935074 0.024841751903295517 0.02654240094125271 -0.07003553956747055 0.04509885609149933 -0.005763503722846508 0.06083286181092262 0.0368213914334774 -0.01151969563215971 -0.06679019331932068 -0.03856084495782852 0.06908497214317322 -0.02045053243637085 0.026679065078496933 0.020532840862870216 0.05404086038470268 0.009050018154084682 0.061606407165527344 0.003384689334779978 0.06958460807800293 0.018517006188631058 0.03790808469057083 0.017300261184573174 -0.008606141433119774 -0.02996172569692135 -0.015105393715202808 -0.03914366289973259 0.018898623064160347 0.11421952396631241 0.04764680191874504 -0.047309789806604385 -0.0259254053235054 0.10029028356075287 0.0077736154198646545 0.03676290065050125 0.014946095645427704 -0.015336032956838608 -9.899224096443504e-05 -0.035047344863414764 0.029454922303557396 -0.06272375583648682 0.023261742666363716 -0.012551079504191875 0.08094663918018341 -0.09693755209445953 -0.016142241656780243 0.037428390234708786 -0.006261199247092009 0.07176799327135086 -0.01613265834748745 0.004748417995870113 0.015775082632899284 0.02519858255982399 -0.01159853208810091 -0.043403688818216324 -0.024506311863660812 -0.03731180354952812 -0.0007638516835868359 -0.025648610666394234 0.04687443748116493 0.0884006917476654 0.0206135381013155 0.05338646471500397 -0.09684114158153534 -0.04193873703479767 -0.05263088643550873 0.006990564521402121 0.04212062805891037 0.05382087454199791 -0.02725975029170513 -0.028627650812268257 0.02808249182999134 -0.008676083758473396 -0.002151987049728632 -0.06280797719955444 -0.010194304399192333 0.036922719329595566 0.04725627601146698 -0.006630687043070793 -0.04513243958353996 0.017112379893660545 0.00941018108278513 -0.039421647787094116 -0.06362330913543701 -0.04679834842681885 -0.08683344721794128 -0.06956515461206436 -0.01351834088563919 -0.024154789745807648 0.005095020402222872 0.0027595465071499348 0.06576123833656311 -0.008407486602663994 0.03294985741376877 0.0798289105296135 -0.010998746380209923 -0.02904694154858589 0.025993410497903824 -0.019349049776792526 0.009559307247400284 -0.01664748601615429 -0.01801436021924019 -0.08484125137329102 0.025813987478613853 0.015797482803463936 -0.012906988151371479 0.015390298329293728 0.0004657499666791409 -0.010595898143947124 0.038737308233976364 0.017124012112617493 -0.09904444217681885 -0.011428270488977432 0.020128337666392326 -0.014496436342597008 0.010128866881132126 0.0201269444078207 0.049249716103076935 -0.08835718780755997 0.07184907793998718 -0.041789036244153976 0.07379044592380524 -0.044389791786670685 0.0026908330619335175 0.026000531390309334 -0.033629052340984344 -0.047587841749191284 0.00950403232127428 -0.0016014447901397943 0.05028524249792099 0.031741343438625336 -0.03836226835846901 -0.041624292731285095 0.008317435160279274 0.08498158305883408 0.004601022228598595 0.021251585334539413 -0.016408277675509453 -0.019529005512595177 0.043021827936172485 0.00968943815678358 0.027751408517360687 -0.06600771099328995 0.00942554883658886 0.009376686997711658 -0.007610066328197718 0.01887454465031624 -0.03350997343659401 -0.055733319371938705 0.01708541437983513 -0.036250725388526917 0.012793070636689663 -0.029343275353312492 -0.08753184974193573 -0.08439353108406067 -0.046973347663879395 0.00843001063913107 -0.028598550707101822 -0.036280762404203415 0.00506300013512373 0.04776440188288689 0.01324912067502737 0.07251706719398499 0.08879760652780533 -0.06250147521495819 0.021887557581067085 0.046646423637866974 -0.058564528822898865 -0.06849203258752823 -0.027156593278050423 -0.00405954010784626 -0.006295581813901663 0.04815034195780754 0.05635250732302666 0.013587819412350655 0.042363639920949936 -0.0012578382156789303 -0.014791100285947323 -0.023169847205281258 -0.012365514412522316 -0.04034535586833954 -0.04292808100581169 0.06539837270975113 0.0879550650715828 0.04067017883062363 -0.04285255819559097 0.020685318857431412 -0.02910398691892624 -0.04066403955221176 0.05210495367646217 -0.10864517837762833 0.003656156361103058 -0.04895201325416565 0.007629502099007368 -0.07850698381662369 0.0514344722032547 0.03172512352466583 -0.0625472292304039 -0.08529584109783173 -0.10408177226781845 -0.03817703574895859 0.046803951263427734 0.06662365049123764 0.09920398145914078 -0.0004222657880745828 -0.01126172300428152 -0.03884397819638252 0.009021904319524765 -0.03564227744936943 -0.039886876940727234 -0.08495811372995377 0.08708053082227707 -0.027128342539072037 -0.07419788837432861 -0.02124892920255661 -0.03503407910466194 0.006180110387504101 -0.02611522749066353 -0.003773408243432641 0.060887161642313004 0.010940712876617908 -0.059658899903297424 0.0011702029732987285 -0.015360732562839985 -0.02808474935591221 -0.02897365391254425 0.04689875990152359 0.048408739268779755 -0.06132584810256958 0.06941937655210495 -0.020807471126317978 -0.048874929547309875 0.04861528053879738 0.03160706162452698 -0.01846066676080227 -0.038665976375341415 -0.05974029749631882 0.010179468430578709 -0.1087009534239769 -0.005870808847248554 -0.040786776691675186 -0.01366452220827341 -0.03777848556637764 -0.017687896266579628 -0.05579804629087448 -0.015270755626261234 0.004178118426352739 0.011877579614520073 -0.008338332176208496 -0.02640904299914837 -0.038095906376838684 0.05554453656077385 0.057510118931531906 -0.020771922543644905 0.13087214529514313 0.036944642663002014 -0.03965708240866661 0.014519330114126205 0.12013832479715347 0.10508665442466736 0.052444539964199066 0.006054309196770191 0.03601985424757004 0.007011976093053818 0.055331867188215256 -0.009247295558452606 0.07150954753160477 -0.007210167124867439 -0.0468968041241169 -0.0639774352312088 0.0326974131166935 -0.07145670801401138 -0.013230942189693451 -0.009385070763528347 -0.05117383971810341 -0.02768164686858654 0.03472793847322464 -0.017990749329328537 -0.03827137127518654 0.04226136580109596 0.04597773402929306 -0.03318093717098236 -0.03313133120536804 -0.061363913118839264 0.03545675054192543 -0.005168496631085873 0.0020665160845965147 -0.053911298513412476 -0.005991530138999224 0.00987201277166605 0.02932855486869812 -0.0593109093606472 0.0459073968231678 0.09475843608379364 0.0478617325425148 -0.056765537708997726 0.09030313044786453 -0.028198042884469032 -0.014820406213402748 0.01556086353957653 0.01946384087204933 0.0600586012005806 0.019927021116018295 0.04630567133426666 0.013926840387284756 0.006777565460652113 -0.026607831940054893 0.009667851030826569 0.05777347832918167 -0.019084027037024498 0.016408491879701614 0.03257530927658081 -0.037700355052948 0.01997070014476776 0.038745418190956116 0.01111388299614191 -0.010206208564341068 0.05320729315280914 0.06020863354206085 0.015506792813539505 -0.03385097160935402 0.0172796081751585 0.006401341874152422 0.0293129850178957 -0.015295390039682388 -0.00662225903943181 -0.07605345547199249 0.009969322942197323 -0.036986663937568665 0.004982076119631529 0.02529354766011238 -0.010160263627767563 -0.018970921635627747 0.007711743004620075 -0.00340875331312418 0.04433244839310646 0.0018310791347175837 0.04718794673681259 0.0019481339259073138 0.03622777387499809 -0.13106940686702728 -0.005781612824648619 0.03370462730526924 0.03829734027385712 0.05517477169632912 0.06194538623094559 -0.00547373341396451 0.0766882672905922 -0.00851079449057579 -0.0731918215751648 -0.033866800367832184 -0.009583381935954094 0.0777832567691803 0.020983420312404633 0.03609148785471916 0.006223658099770546 0.029633279889822006 0.09934482723474503 0.03644793853163719 -0.0011224998161196709 -0.0029347711242735386 -0.00028533514705486596 0.02895057015120983 0.04812909662723541 0.01833326369524002 0.05013633146882057 -0.028756460174918175 0.0562911182641983 0.015876423567533493 -0.01250650454312563 0.037056200206279755 0.018457192927598953 0.050334442406892776 0.08085794001817703 0.007125887554138899 +0.06989748030900955 -0.0324060432612896 -0.06745049357414246 0.06244726479053497 -0.05357925966382027 0.05305182933807373 -0.12329724431037903 0.10488763451576233 -0.019528480246663094 -0.031126083806157112 -0.005243945401161909 -0.002356729470193386 0.011174499988555908 -0.022447962313890457 0.01817159168422222 -0.07335696369409561 -0.004684942774474621 0.02198193222284317 0.02680741436779499 -0.059501487761735916 0.01855401322245598 0.03919390216469765 0.008499512448906898 -0.020352762192487717 -0.01952982135117054 0.04740634933114052 0.019946688786149025 0.04559416323900223 0.05796528607606888 0.009500293992459774 -0.043629929423332214 -0.003180768806487322 0.02247200906276703 -0.07296302169561386 0.012648062780499458 0.03290150687098503 -0.008627131581306458 0.047492120414972305 0.03576795011758804 -0.05286569893360138 -0.032120704650878906 0.07170508056879044 -0.041666723787784576 -0.1360030174255371 -0.025961948558688164 -0.034333668649196625 -0.034930918365716934 -0.031591806560754776 -0.05385715514421463 -0.0262893196195364 -0.05040251836180687 0.002803587121888995 0.04482487589120865 0.014807503670454025 -0.07659605890512466 0.054775528609752655 0.05722539499402046 0.054741308093070984 0.03807447478175163 0.021637966856360435 -0.00616194773465395 0.012147129513323307 -0.07124453037977219 0.023537611588835716 -0.007206848356872797 0.0371108315885067 0.11529067903757095 -0.010294008068740368 0.04189819470047951 -0.034140706062316895 -0.030841533094644547 -0.010128408670425415 -0.003637651214376092 0.02094174548983574 0.03983395919203758 -0.0661507397890091 -0.09059464186429977 0.016490764915943146 -0.029852889478206635 0.01019818801432848 0.04681072384119034 -0.002293659606948495 0.10247714072465897 0.022016659379005432 0.0028751937206834555 -0.007583088241517544 0.0011323209619149566 0.03607575222849846 -0.06250249594449997 -0.004738035146147013 0.00814436562359333 -0.00030374646303243935 0.008319903165102005 -0.016891345381736755 -0.019495626911520958 0.09390836209058762 0.05584634467959404 -0.0844857320189476 -0.07361187040805817 0.022329945117235184 -0.045071687549352646 -0.056820716708898544 0.030135130509734154 0.012118019163608551 0.02298184297978878 -0.030859002843499184 -0.02211422473192215 -0.06752410531044006 0.0005792605224996805 -0.047984227538108826 0.0655243992805481 0.09211501479148865 -0.06014185771346092 -0.037100426852703094 0.040947746485471725 0.019597265869379044 0.045686300843954086 0.003910803236067295 0.03489308059215546 0.07128862291574478 -0.07222748547792435 -0.004304907284677029 -0.04437106102705002 -0.04531027376651764 0.011315644718706608 -0.004842871800065041 -0.0016557463677600026 -0.01035698875784874 -0.06943356245756149 -0.05670870468020439 -0.0237948689609766 0.03758974373340607 0.0206077229231596 -0.03690256178379059 -0.022446325048804283 0.07990442961454391 0.01715211756527424 0.04843783378601074 0.05924609303474426 0.009534281678497791 -0.06366729736328125 0.007367270067334175 0.02631148137152195 0.014504427090287209 0.02861638367176056 -0.00421207444742322 -0.09914648532867432 0.0132916159927845 -0.003009610576555133 0.009945785626769066 0.02378615364432335 0.004633451346307993 -0.022786926478147507 -0.0394025593996048 0.09261974692344666 0.05642123520374298 0.04180099070072174 0.04992925375699997 -0.00738511374220252 -0.04320763051509857 0.02822025492787361 0.0016108436975628138 0.019133133813738823 -0.043217696249485016 0.024932201951742172 0.046086784452199936 -0.009318812750279903 -0.04952804744243622 -0.027034034952521324 0.13464494049549103 -0.010095479898154736 -0.003459402360022068 0.030129361897706985 -0.06125498563051224 0.023458318784832954 -0.05397873744368553 0.03282991051673889 -0.05667389556765556 -0.05500781163573265 -0.02914733812212944 0.015017150901257992 -0.04740025848150253 -0.03601478785276413 -0.01921508088707924 -0.00400149542838335 0.048132721334695816 -0.043549567461013794 0.003935125656425953 0.024680152535438538 -0.025326205417513847 -0.033708326518535614 0.011714094318449497 0.04656568914651871 -0.03143574669957161 0.02793145179748535 0.05737506225705147 0.01108747348189354 0.04440119490027428 -0.008778693154454231 0.029638169333338737 -0.04227958619594574 0.07016632705926895 -0.015762848779559135 -0.0018541187746450305 -0.04051689803600311 0.03895234316587448 -0.06731577962636948 -0.040084779262542725 0.017726728692650795 0.03743497654795647 0.034878864884376526 0.026456354185938835 -0.04219340160489082 0.04707908257842064 0.012356357648968697 0.03702227771282196 -0.019624507054686546 0.02959386445581913 -0.03192216530442238 -0.04974550008773804 0.02045353874564171 0.008240342140197754 -0.06705472618341446 -0.03822963684797287 -0.017955979332327843 -0.028766676783561707 -0.0633319616317749 -0.017793646082282066 0.018553489819169044 -0.019863629713654518 0.05710132420063019 0.06928101927042007 0.008793774992227554 -0.09957114607095718 -0.0016850967658683658 0.010747065767645836 0.04937180504202843 -0.026323018595576286 -0.010523581877350807 -0.05941318720579147 -0.030506419017910957 0.04114904627203941 0.007730539888143539 -0.010762842372059822 -0.0037458264268934727 0.05720122903585434 -0.003124868730083108 -0.02922224812209606 -0.032391175627708435 -0.012327679432928562 -0.024186665192246437 -0.04050539433956146 0.013441812247037888 0.058212172240018845 0.07353097200393677 -0.04520879313349724 0.019605932757258415 -0.03412533178925514 0.05492658168077469 0.00586355198174715 0.027922455221414566 -0.033026617020368576 0.02120061032474041 -0.07913793623447418 -0.04891242831945419 -0.05979040265083313 0.049552857875823975 0.012798454612493515 -0.07550489157438278 -0.00476048095151782 -0.026728734374046326 0.0837530717253685 0.04463382065296173 -0.019957520067691803 0.007298066280782223 -0.00956074520945549 -0.02093898132443428 -0.046259600669145584 -0.018998807296156883 -0.019324159249663353 -0.0075571052730083466 0.054490234702825546 -0.06146765500307083 -0.02103910781443119 -0.069538414478302 0.08421860635280609 0.09477230906486511 0.00823262520134449 -0.02957305870950222 -0.06510554999113083 0.011185349896550179 -0.08159679919481277 0.015582224354147911 0.0745452493429184 -0.08661799877882004 -0.03650573268532753 0.0690959244966507 0.06302263587713242 -0.02564229629933834 0.045177359133958817 0.04809458553791046 -0.06760367751121521 0.025887221097946167 0.04022176191210747 -0.08664055913686752 -0.06604094058275223 -0.01561961229890585 -0.01593848317861557 0.005771024152636528 -0.034570205956697464 -0.0397515743970871 -0.04168185964226723 -0.006913770455867052 0.0042502968572080135 -0.0049001299776136875 0.05064791068434715 0.029926057904958725 -0.0630941092967987 0.0167348962277174 0.04781629890203476 0.03579338639974594 0.0009754145867191255 -0.03405467048287392 -0.0197971910238266 0.008882886730134487 -0.04313916712999344 0.030091337859630585 -0.042249519377946854 0.03366389498114586 0.019798316061496735 0.0848706066608429 -0.023924820125102997 0.004645711742341518 -0.02190217562019825 -0.005382841918617487 0.005422868300229311 -0.07583770900964737 -0.009814548306167126 0.007810201961547136 -0.007203422021120787 0.11054594069719315 -0.04807965084910393 0.01591915637254715 -0.008231543935835361 0.02194310910999775 -0.12004264444112778 -0.011053725145757198 0.013664879836142063 0.03960804268717766 0.005976046435534954 -0.04493134468793869 -0.017375530675053596 -0.08543356508016586 0.029949823394417763 -0.053865399211645126 -0.011179781518876553 0.037724997848272324 0.007265479303896427 -0.07716698199510574 0.057415418326854706 0.0326739102602005 0.04726636782288551 -0.06831110268831253 0.029011161997914314 -0.027911841869354248 0.027734776958823204 0.09452533721923828 0.009551653638482094 -0.0050709787756204605 0.015063977800309658 0.020475691184401512 0.042407382279634476 0.0031551020219922066 -0.019144350662827492 -0.014135208912193775 -0.047852545976638794 0.007327953353524208 -0.04114796593785286 0.00561358081176877 -0.07665111869573593 -0.05218105763196945 -0.01762707158923149 0.050734106451272964 0.018670592457056046 0.052129361778497696 -0.09402281045913696 -0.013506677933037281 -0.07541355490684509 0.0031855348497629166 -0.004161476623266935 0.06383639574050903 0.070267453789711 0.01088679488748312 -0.09877587109804153 -0.028144754469394684 0.09547385573387146 0.060352668166160583 0.025614410638809204 0.048249147832393646 0.04761473834514618 -0.07133158296346664 0.06732341647148132 -0.04921799153089523 0.05960693955421448 0.02909921482205391 -0.005613882560282946 -0.029913829639554024 0.02712039090692997 0.024851970374584198 0.014513680711388588 0.06839405745267868 -0.032861240208148956 0.015226051211357117 -0.00641106441617012 -0.061897773295640945 -0.01409863866865635 0.03760356456041336 -0.005550723057240248 -0.007725312374532223 -0.02034522220492363 0.01743823103606701 0.0212518610060215 0.023569656535983086 -0.03496439754962921 -0.06866234540939331 -0.012953205965459347 0.002815370913594961 -0.04160843417048454 -0.011779271066188812 -0.023027772083878517 0.07025041431188583 0.027086004614830017 0.019311901181936264 0.018852584064006805 -0.034893471747636795 -0.04057980328798294 0.031003549695014954 -0.015595152042806149 0.03446381166577339 -0.014888315461575985 0.051640331745147705 0.047192562371492386 -0.023852862417697906 0.006008077412843704 0.01326663140207529 0.05492641404271126 -0.09679406136274338 0.07781127095222473 -0.04287589713931084 -0.04963237792253494 0.00199327920563519 -0.010169998742640018 0.030972415581345558 0.0006064949557185173 0.06357493996620178 0.0010260887211188674 0.06441101431846619 0.01715845614671707 0.06231256574392319 0.04645422101020813 0.003466364461928606 0.020623011514544487 -0.013973810710012913 -0.056384194642305374 0.057320479303598404 -0.012026929296553135 0.0088896369561553 -0.012793481349945068 -0.06474824249744415 0.001850582892075181 -0.026402855291962624 -0.0852116271853447 0.06559097021818161 0.0009184377850033343 0.06308479607105255 0.006000287365168333 0.012568702921271324 -0.11813420802354813 0.017220379784703255 0.035490456968545914 0.08295252174139023 0.010783685371279716 0.04551488161087036 -0.05236527696251869 -0.01346317958086729 -0.020447444170713425 -0.044306427240371704 -0.018674688413739204 -0.01140312198549509 0.06424788385629654 0.009130418300628662 0.004161780700087547 0.026393825188279152 0.027503348886966705 0.06958486884832382 -0.004151659552007914 0.05488075688481331 -0.04086880758404732 -0.05197110399603844 -0.047331057488918304 0.0168728269636631 0.056232430040836334 0.015364413149654865 -0.012599476613104343 0.05839652940630913 -0.06783311814069748 -0.00770409544929862 0.017144721001386642 0.0190350953489542 0.03896347060799599 -0.011333524249494076 0.01767376996576786 +0.03831009566783905 -0.03476748242974281 -0.044267211109399796 0.028406957164406776 -0.04321662336587906 0.05821417644619942 -0.028500942513346672 0.018751507624983788 -0.07322027534246445 0.027077026665210724 -0.05079871788620949 0.04736006259918213 -0.011475469917058945 0.02054309844970703 -0.020297575742006302 -0.14304201304912567 0.00018020762945525348 -0.0077428193762898445 0.0453684963285923 -0.05646166950464249 0.007182079833000898 0.04330075904726982 0.04186828061938286 0.05633540078997612 0.015914147719740868 0.012174601666629314 0.04035688191652298 0.055063072592020035 0.06732317805290222 -4.220040136715397e-05 0.022616131231188774 -0.0798579528927803 -0.009553677402436733 -0.024690572172403336 0.011770188808441162 -0.03972266986966133 -0.03297822177410126 0.033733922988176346 0.04841797426342964 -0.047327250242233276 -0.0057299211621284485 0.07558337599039078 -0.0053606098517775536 -0.04082868993282318 0.0144647853448987 0.015865929424762726 -0.043122436851263046 -0.07818204909563065 0.009383508004248142 -0.035797420889139175 -0.04521894454956055 0.05683666467666626 0.028124945238232613 -0.02812030352652073 -0.0650532990694046 0.005110711790621281 -0.0005769755807705224 0.04719789698719978 0.005647890269756317 0.026630200445652008 -0.002507459372282028 0.011066245846450329 0.004830066580325365 -0.016196927055716515 0.06421738862991333 0.00015735412307549268 0.0690658763051033 0.01806892640888691 -0.011453221552073956 0.03889862820506096 -0.005056845489889383 0.08176196366548538 -0.006740626413375139 0.0763627216219902 0.055451106280088425 -0.042089689522981644 -0.03578973934054375 -0.014579759910702705 -0.012245750986039639 0.017426781356334686 0.0007468305411748588 0.013143530115485191 0.061394575983285904 0.04747546836733818 -0.030214795842766762 0.02368040941655636 0.006470685824751854 -0.02587803266942501 -0.03814227506518364 -0.0246686190366745 0.06661573797464371 -0.04753173142671585 -0.008751723915338516 0.0041625360026955605 -0.02801159955561161 0.015342853032052517 0.08053724467754364 -0.00940107461065054 0.012779454700648785 -0.010267730802297592 0.005575383547693491 -0.031765762716531754 0.040878862142562866 -0.022036949172616005 -0.01728132925927639 -0.0028986879624426365 -0.08427179604768753 0.0243255402892828 0.0005654815468005836 -0.04140118882060051 0.0967596098780632 0.07731649279594421 -0.042905356734991074 -0.007153655868023634 0.08290699869394302 -0.014001226983964443 -0.0029915941413491964 -0.01857876218855381 0.04635270684957504 0.036543093621730804 -0.016356835141777992 0.09206414967775345 -0.025097329169511795 -0.05082504823803902 0.0009630733984522521 0.04480584338307381 -0.01947413757443428 0.06433050334453583 0.004814344923943281 -0.012679917737841606 -0.023431949317455292 0.034151334315538406 0.026308003813028336 0.07012172788381577 -0.05306444317102432 -0.05592498183250427 -0.046969007700681686 0.04085182771086693 0.015430273488163948 0.032972391694784164 -0.11488280445337296 0.07665394991636276 0.12507525086402893 0.028311720117926598 -0.01647244021296501 -0.017866963520646095 -0.08064338564872742 0.012049582786858082 0.04690872132778168 -0.037066247314214706 -0.02671761065721512 0.020628975704312325 0.024742837995290756 0.025009216740727425 0.014804122038185596 -0.003064878983423114 0.026868902146816254 -0.027645710855722427 -0.01314997486770153 -0.04718950018286705 0.02100592479109764 0.040567852556705475 0.01231154054403305 -0.02599431574344635 0.05418545380234718 0.12401455640792847 0.02561071328818798 -0.06282005459070206 -0.03789882734417915 0.11149538308382034 -0.018284516409039497 -0.014828777872025967 0.01563236489892006 -0.05593284219503403 -0.028074871748685837 -0.02974054031074047 0.03647406026721001 0.009564211592078209 0.027885189279913902 -0.012709453701972961 0.050335273146629333 -0.09632138162851334 0.03086903691291809 0.01855522394180298 -0.011725794523954391 0.002492039930075407 -0.0492522306740284 -0.06523987650871277 0.021551040932536125 -0.039435919374227524 0.0009860557038336992 -0.05320964753627777 -0.022768080234527588 -0.03058232180774212 -0.016545254737138748 -0.016761530190706253 0.0319717638194561 0.010261069051921368 0.021663863211870193 0.09042557328939438 -0.05631112679839134 0.042333025485277176 -0.08468449860811234 -0.03178546205163002 -0.004771164618432522 0.02358551137149334 -0.06465022265911102 -0.07499378174543381 0.049382809549570084 -0.022024106234312057 0.01908555068075657 0.03624149411916733 -0.0417424775660038 0.02756383828818798 0.03157960623502731 0.03936220705509186 -0.012464388273656368 -0.0024428092874586582 -0.025921335443854332 -0.038783010095357895 -0.02065032161772251 -0.03532839193940163 -0.05684670805931091 -0.059974443167448044 -0.023926900699734688 -0.018624592572450638 0.009056302718818188 -0.00028084812220185995 0.10815521329641342 -0.07551165670156479 0.06254163384437561 0.07410743087530136 0.04838034138083458 -0.023181380704045296 0.013890466652810574 -0.008958607912063599 0.035051148384809494 -0.014097102917730808 -0.00736013101413846 -0.02008884586393833 0.028777141124010086 -0.0050482372753322124 -0.02565237134695053 0.021969087421894073 0.00483070919290185 -0.026582449674606323 0.040709238499403 0.029807856306433678 -0.09399648755788803 -0.02581828087568283 0.04962405934929848 -0.0016974823083728552 0.017849842086434364 0.07427376508712769 0.06665109843015671 -0.05976465716958046 0.03976745158433914 -0.03542283922433853 0.0411667637526989 -0.022643310949206352 0.02264861948788166 -0.002333767944946885 -0.045238133519887924 -0.05818659067153931 -0.03510665521025658 0.016704512760043144 0.041169825941324234 0.024917051196098328 0.006391675677150488 0.017393672838807106 0.04429253563284874 0.09300211071968079 0.034180011600255966 0.03365000709891319 0.014101915061473846 -0.05655718594789505 -0.0036202536430209875 0.03373534232378006 0.030921081081032753 -0.06917808204889297 0.07259917259216309 -0.04386086389422417 -0.015069372020661831 -0.029103916138410568 0.0005965523887425661 0.009773743338882923 0.03362046182155609 -0.0007455845479853451 -0.011967694386839867 -0.022624680772423744 -0.0019163854885846376 -0.07018427550792694 -0.018178647384047508 0.019429566338658333 -0.036907728761434555 0.002711816458031535 -0.03784206137061119 0.08493442833423615 -0.03086257539689541 0.02798963151872158 0.13357502222061157 -0.043847791850566864 0.044837966561317444 0.04093088582158089 -0.0022121190559118986 -0.0852276086807251 -0.017364101484417915 -0.015044931322336197 0.019745629280805588 0.045063771307468414 0.025717733427882195 -0.03634239360690117 0.02203289419412613 0.06696546822786331 0.01656719297170639 -0.025840898975729942 0.011211535893380642 -0.028461012989282608 -0.03787082061171532 0.0791645273566246 0.04448256641626358 -0.0010146968998014927 0.014977756887674332 -0.029785990715026855 -0.0056959218345582485 -0.07722552865743637 0.03922659903764725 -0.14598223567008972 0.04865928739309311 -0.03841423988342285 -0.004869888070970774 -0.0662267655134201 0.012992789037525654 0.056022439152002335 0.0160227008163929 -0.06582999974489212 -0.096920445561409 0.035714197903871536 0.01710669882595539 0.05610088258981705 0.10919029265642166 -0.016522889956831932 0.033747874200344086 -0.008020574226975441 -0.02332693710923195 -0.04488027095794678 -0.041970234364271164 -0.07770445197820663 0.09003268927335739 0.02908121608197689 -0.012422059662640095 -0.09447073191404343 -0.022227583453059196 0.057809893041849136 -0.024946708232164383 0.02206421084702015 0.007429259829223156 0.015561400912702084 -0.06466314941644669 0.04098792001605034 0.0022957457695156336 -0.024381570518016815 -0.02208535000681877 0.08103211224079132 -0.0008292790153063834 -0.02447856031358242 0.07211434841156006 -0.004683467093855143 -0.006341741420328617 0.032741185277700424 0.05464407801628113 0.05567051097750664 0.023131946101784706 -0.012636899948120117 0.04491214454174042 -0.059402529150247574 -0.00753807881847024 -0.0460398830473423 0.0414448007941246 -0.01382035855203867 0.006406425032764673 0.01691569946706295 -0.021027788519859314 0.0010674712248146534 -0.008734902366995811 0.04461784288287163 0.036206621676683426 -0.04668411239981651 0.075217604637146 0.03279896080493927 -0.026845872402191162 0.1101163923740387 0.03552559018135071 -0.009686269797384739 0.008073197677731514 0.10601628571748734 0.049390293657779694 0.02990957908332348 0.03293423727154732 0.04499764367938042 -0.0006923309410922229 0.058180857449769974 0.026499761268496513 0.04933872073888779 0.0017364389495924115 -0.051605530083179474 -0.012853935360908508 0.07079420983791351 -0.05483322963118553 -0.018005773425102234 0.017489556223154068 -0.010892856866121292 -0.030066268518567085 0.0903063714504242 0.004774624481797218 -0.09925160557031631 0.010144457221031189 0.007390959654003382 -0.019248545169830322 -0.02378028817474842 -0.025478003546595573 0.07408235967159271 0.026784822344779968 -0.013125617988407612 -0.01881255768239498 -0.03517170995473862 0.019474590197205544 -0.009342907927930355 -0.04824693500995636 -0.029700176790356636 0.0739915668964386 0.07977055758237839 0.0054870061576366425 0.07820951193571091 -0.07088030129671097 -0.042370378971099854 0.016027815639972687 0.07043912261724472 0.07807985693216324 0.018942290917038918 0.016625134274363518 0.0007505501853302121 0.008200207725167274 -0.0412757582962513 0.028134919703006744 0.020169230177998543 -0.06548751145601273 0.04334406554698944 0.03546540439128876 -0.047681815922260284 0.021210728213191032 0.014432955533266068 0.04152228683233261 0.007960140705108643 0.022854560986161232 0.059917811304330826 0.024938182905316353 0.013727335259318352 0.04022209346294403 -0.03888523206114769 0.0030903546139597893 -0.033450186252593994 -0.01573418267071247 -0.038997817784547806 0.033628806471824646 -0.06225839629769325 -0.007754455786198378 0.0205462034791708 -0.03319766744971275 -0.0030467105098068714 0.027242135256528854 -0.005735371727496386 0.07429695129394531 -0.02355887182056904 0.044881898909807205 0.021733896806836128 0.07622627168893814 -0.1386602222919464 0.029854822903871536 0.03338487073779106 0.05121289938688278 0.09629616141319275 0.01631401851773262 0.00553106190636754 0.013674749061465263 -0.0557873509824276 -0.05458984151482582 -0.007695553824305534 0.025888418778777122 0.03319459408521652 0.01123329158872366 0.028480879962444305 0.009268713183701038 0.016049670055508614 0.07725454866886139 0.020629601553082466 0.011840601451694965 -0.0036616045981645584 -0.02066674456000328 0.061033159494400024 0.031417280435562134 0.06494352966547012 0.03277019038796425 0.011270049959421158 0.001859181560575962 -0.036349106580019 -0.018287496641278267 0.044036731123924255 -0.005737278610467911 0.024319086223840714 0.02204783260822296 -0.02841821312904358 +0.023506857454776764 -0.037121906876564026 -0.04364355280995369 0.001746772089973092 -0.029247647151350975 0.032076627016067505 -0.01992982253432274 -0.02499265968799591 -0.052572377026081085 0.023235896602272987 -0.029232148081064224 -0.0060928924940526485 -0.04848554730415344 -0.003887372789904475 0.029799075797200203 -0.10832139104604721 0.009907432831823826 0.01658136583864689 0.06979797035455704 -0.045563701540231705 -0.04340248927474022 0.10869889706373215 0.06168666109442711 0.062069814652204514 0.0013598004588857293 -0.015982279554009438 0.0047949617728590965 0.026318034157156944 0.0804947018623352 0.020114343613386154 -0.011421234346926212 -0.058261409401893616 0.03387730196118355 -0.022677894681692123 0.06818012148141861 0.0010328823700547218 0.01947597600519657 0.07434860616922379 0.1107172891497612 -0.056783515959978104 0.009043853729963303 0.004595171194523573 0.01023906096816063 -0.06890879571437836 -0.022157222032546997 -0.014453543350100517 -0.05609402060508728 -0.09924963861703873 0.028016414493322372 0.045592889189720154 0.0045829894952476025 0.07266756147146225 -0.034410055726766586 -0.029886320233345032 -0.042629022151231766 -0.006696725729852915 0.013806932605803013 0.03829693794250488 0.02732996456325054 0.03891703858971596 -0.002203503390774131 -0.015161586925387383 0.012556900270283222 -0.019138576462864876 0.04920099303126335 -0.05188439041376114 0.07113859802484512 0.03332512453198433 -0.011583011597394943 0.05256994068622589 -0.01707606390118599 0.09360355138778687 -0.00976213626563549 0.021595075726509094 0.03552631288766861 -0.08595103025436401 -0.03773854672908783 -0.029490184038877487 -0.0011587102198973298 0.017101464793086052 -0.01064850389957428 -0.010516880080103874 0.017860151827335358 0.021743090823292732 -0.0010945888934656978 0.01953568309545517 -0.004069904331117868 -0.020594406872987747 -0.056022077798843384 -0.011717782355844975 0.07137427479028702 -0.0869096964597702 0.0062279547564685345 0.008102130144834518 -0.05990249663591385 -0.04069823771715164 0.08171423524618149 0.017271092161536217 -0.0016873189015313983 -0.0382218062877655 -0.005930062383413315 -0.00933822151273489 0.04256155714392662 -0.02259894646704197 -0.005156476050615311 -0.049417443573474884 -0.07747983187437057 0.01988200470805168 0.04608733952045441 -0.014147276058793068 0.039052367210388184 0.044402290135622025 -0.013566510751843452 -0.034947432577610016 0.0660051554441452 -0.009645636193454266 0.051510538905858994 -0.03633676841855049 0.043899327516555786 0.02813641168177128 -0.024101072922348976 0.06866569072008133 -0.047099240124225616 0.0018568782834336162 0.004134835675358772 0.0901813954114914 -0.0029247684869915247 0.04198271781206131 -0.020702416077256203 0.05245868116617203 -0.006444069091230631 0.024483613669872284 0.010460389778017998 0.03949424624443054 -0.05578236281871796 -0.074774831533432 -0.09498729556798935 0.07475759834051132 0.052596356719732285 0.04115356132388115 -0.09398499131202698 0.06648148596286774 0.15211224555969238 0.028538083657622337 -0.04348546639084816 -0.0012369516771286726 -0.058315835893154144 -0.01719541847705841 0.0340481735765934 -0.0372227244079113 0.01689133606851101 0.025191638618707657 0.07068947702646255 -0.030415501445531845 -0.00956237968057394 -0.029595568776130676 0.005651563405990601 -0.0006771082989871502 0.026013515889644623 -0.03223723918199539 -0.033645547926425934 -0.02511848509311676 0.009279687888920307 -0.02475900761783123 0.014473989605903625 0.06424283981323242 0.029981011524796486 -0.0804748684167862 -0.011413384228944778 0.07679412513971329 -0.018535209819674492 -0.02557951770722866 0.02738950215280056 -0.034375887364149094 -0.025165408849716187 -0.027819260954856873 0.027411730960011482 0.019515955820679665 0.06798652559518814 -0.020479971542954445 0.0240788497030735 -0.09837865829467773 0.02521950751543045 0.020842375233769417 -0.013870805501937866 0.00447677681222558 0.010890422388911247 -0.01526733860373497 -0.03965648636221886 0.009221750311553478 0.03222556412220001 -0.03552382066845894 -0.031522076576948166 0.011322913691401482 -0.019208692014217377 -0.04136944189667702 -0.009825416840612888 0.03184721991419792 0.015969328582286835 0.07412578165531158 -0.06818944215774536 0.05589841678738594 -0.04021801799535751 -0.04864967241883278 -0.015053481794893742 0.02165098860859871 -0.027871157974004745 -0.04587903618812561 0.02234376035630703 -0.013929410837590694 -0.02994389459490776 -0.005823143757879734 -0.062211763113737106 0.0018705035327002406 -0.00709496671333909 0.023093940690159798 0.03386131301522255 -0.050889015197753906 -0.01667504571378231 0.02266610786318779 -0.009573610499501228 -0.016083475202322006 -0.05888238549232483 -0.051812365651130676 -0.02942141704261303 -0.03779899328947067 0.003130923258140683 -0.005416812375187874 0.10311590880155563 -0.029274296015501022 0.07789765298366547 0.026079753413796425 0.04316020756959915 0.030362367630004883 0.006607183255255222 -0.04802119731903076 0.039761021733284 -0.011121802031993866 -0.009967985562980175 -0.03376327455043793 0.004372866824269295 -0.05794451758265495 -0.009464998729526997 -0.006442173849791288 -0.0036229765973985195 -0.02058919332921505 0.0015783635899424553 0.04858098924160004 -0.06526605039834976 -0.028149766847491264 0.06692050397396088 -0.035476990044116974 -0.030659127980470657 0.04608794301748276 0.014975061640143394 -0.08082321286201477 0.046140704303979874 -0.07582417130470276 0.05107741057872772 -0.04521484300494194 0.011254505254328251 -0.023636864498257637 -0.01595917157828808 -0.029641499742865562 0.01036931574344635 0.0050238147377967834 0.029359016567468643 0.048791706562042236 0.013511243276298046 0.011593694798648357 0.062269341200590134 0.10964018106460571 0.025684932246804237 0.058185476809740067 -0.0346161313354969 -0.04343840107321739 -0.03149203956127167 0.0332227386534214 0.027412721887230873 -0.05558372288942337 0.03221520781517029 -0.032024696469306946 0.0133142014965415 -0.03295730799436569 0.025441940873861313 -0.04381375014781952 0.00752912275493145 0.017531536519527435 0.009637071751058102 -0.04241504147648811 -0.03503032773733139 -0.054599661380052567 -0.010546739213168621 -0.008592478930950165 -0.04916180297732353 0.004220461938530207 -0.056712083518505096 0.0710500031709671 -0.0020073335617780685 -0.0049499766901135445 0.10224694013595581 -0.01871667243540287 0.01797129213809967 0.047463446855545044 -0.0004953946336172521 -0.1272037923336029 0.023417001590132713 0.0021016288083046675 0.01920018158853054 0.047971684485673904 0.07663092017173767 -0.0062556457705795765 0.006356849800795317 0.01992347277700901 0.04011838510632515 -0.029862046241760254 0.006459731608629227 -0.021854156628251076 -0.05533447116613388 0.01819162257015705 0.052325110882520676 -0.009466228075325489 0.041032370179891586 0.020356565713882446 -0.014448658563196659 -0.029980596154928207 -0.019605573266744614 -0.1348741054534912 0.07661642879247665 -0.03903816640377045 -0.03296637162566185 -0.10158973932266235 0.022563345730304718 0.02449493482708931 -0.018988797441124916 -0.0368022546172142 -0.09058266133069992 0.032955773174762726 -0.0037230676971375942 0.07014840841293335 0.10614057630300522 -0.01718774437904358 -0.05065002664923668 0.004772558342665434 0.01921462081372738 -0.035328458994627 -0.06879827380180359 -0.08764974772930145 0.09771265089511871 0.02519235759973526 0.0011996283428743482 -0.10858728736639023 -0.06560778617858887 0.07095983624458313 -0.00383983482606709 0.013952593319118023 -0.00777751998975873 0.02419189177453518 -0.09028506278991699 0.002704433398321271 -0.01223961915820837 -0.021120106801390648 -0.037801772356033325 0.06080390140414238 -0.007349954918026924 -0.061385247856378555 0.06330887228250504 -0.0030076762195676565 -0.0492817759513855 0.02374926395714283 -0.011049537919461727 0.03678318113088608 -0.06708090752363205 -0.03324228897690773 0.07177833467721939 -0.06731200218200684 -0.030535971745848656 -0.05292881280183792 0.017486728727817535 0.014426744543015957 0.01216723769903183 0.051267512142658234 -0.030821869149804115 0.045889053493738174 0.06166094169020653 0.004861616529524326 -0.0016575951594859362 0.02503078803420067 0.0554494634270668 0.030904315412044525 -0.005299271084368229 0.09267925471067429 0.025716129690408707 -0.01380900014191866 -0.0036939552519470453 0.008833300322294235 0.05506029352545738 0.010432751849293709 -0.0015475968830287457 0.06177402660250664 -2.9958315280964598e-05 0.013478852808475494 0.02355075627565384 0.05109851434826851 0.015168015845119953 -0.08922509849071503 -0.022149385884404182 0.020906737074255943 -0.07361942529678345 -0.0447416827082634 -0.006469134707003832 -0.00597231462597847 -0.06528766453266144 0.11331461369991302 0.0093922708183527 -0.09869088977575302 0.003065314143896103 0.04722410440444946 -0.023682881146669388 -0.05254356935620308 -0.014087958261370659 0.005212672986090183 0.014315586537122726 0.008992893621325493 -0.025689417496323586 -0.01358646247535944 0.05822994187474251 0.020516786724328995 -0.11903837323188782 -0.0026955034118145704 0.060767367482185364 0.07707226276397705 -0.006523079238831997 0.04580546170473099 -0.0618957094848156 -0.01962270587682724 0.040816836059093475 0.0053305611945688725 -0.004700534511357546 0.02685409225523472 0.0206875279545784 0.003231670940294862 0.03224322572350502 -0.0871422216296196 0.0027503676246851683 -0.01434355229139328 -0.022653456777334213 0.05530812591314316 0.032469045370817184 -0.02011786587536335 0.04086829349398613 0.04816288873553276 0.043986886739730835 0.04851677268743515 0.015415155328810215 0.026307037100195885 -0.0003511927498038858 0.02162924036383629 0.008442782796919346 0.017209799960255623 -0.051486194133758545 -0.04844019562005997 -0.022505465894937515 0.03460261970758438 -0.0010773830581456423 -0.07061000913381577 0.030833208933472633 -0.01833179220557213 -0.005750593263655901 -0.0043514627031981945 0.029112812131643295 -0.016787130385637283 0.05577220767736435 -0.02115039899945259 0.031168373301625252 0.020196583122015 0.07878226786851883 -0.13018286228179932 -0.00029073350015096366 0.031084856018424034 0.03383640944957733 0.07528545707464218 0.03957679867744446 -0.027809644117951393 0.025805458426475525 -0.020059168338775635 -0.019272422417998314 0.015362447127699852 0.0006239336216822267 0.0035327025689184666 0.02680971287190914 0.0020759887993335724 -0.004086988512426615 -0.003829310880973935 0.07101588696241379 0.0751156210899353 0.030046144500374794 0.039311688393354416 -0.05685605853796005 0.02593899704515934 0.0632341131567955 0.053776293992996216 0.06405574083328247 0.060680970549583435 0.05200778692960739 -0.036671847105026245 -0.03307891637086868 0.02543717995285988 0.009299373254179955 0.04255176708102226 0.007860330864787102 -0.04805402085185051 +-0.0018909182399511337 -0.044820114970207214 -0.07163918763399124 0.040148522704839706 -0.024100668728351593 0.03060447983443737 -0.010202106088399887 -0.020059561356902122 -0.048955127596855164 -0.020048461854457855 -0.03583501651883125 0.000949422363191843 -0.0535837784409523 -0.015000796876847744 0.011860433965921402 -0.05241715908050537 0.030414588749408722 0.0005083144642412663 0.0420965738594532 -0.0365186370909214 -0.04198957234621048 0.008989773690700531 0.0484716072678566 0.024975009262561798 0.014181813225150108 -0.021288897842168808 0.05109059810638428 0.029235752299427986 0.11856355518102646 0.05205254256725311 -0.008301329798996449 -0.03758396953344345 0.0021968604996800423 -0.04382101073861122 0.01333424262702465 0.016322100535035133 0.02829662151634693 0.056446366012096405 0.05845615640282631 -0.0066415476612746716 -0.0187129694968462 -0.007768165785819292 -0.044765446335077286 -0.09423409402370453 0.013070753775537014 -0.06697553396224976 -0.007071451283991337 -0.0750681459903717 0.05953264236450195 0.05706819146871567 -0.026492660865187645 0.03829507529735565 0.0037343245930969715 0.0029461702797561884 -0.06669114530086517 0.018020901829004288 -0.005554725881665945 0.094656802713871 0.07239227741956711 0.03295622766017914 0.024120861664414406 -0.06880514323711395 -0.0004335455596446991 0.020005328580737114 0.04376130923628807 0.038313500583171844 0.08552198112010956 0.006666417233645916 -0.04788011312484741 -0.019709691405296326 -0.08325302600860596 0.05530990660190582 0.03388413414359093 0.048142220824956894 -0.032680343836545944 -0.05925622209906578 -0.03565021604299545 -0.05236699804663658 0.015222525224089622 0.0609244629740715 -0.007747401017695665 -0.030496682971715927 0.06463219225406647 0.05127311125397682 0.06413701921701431 0.01025578286498785 -0.04486878588795662 0.04286313056945801 -0.03334140405058861 0.004904293920844793 0.0757235437631607 -0.08004801720380783 0.014482714235782623 -0.02864072658121586 -0.04323390871286392 -0.016412464901804924 0.07730145752429962 0.02418658137321472 0.025256190448999405 -0.009432461112737656 -0.009500333108007908 -0.06516203284263611 0.033058036118745804 -0.025761818513274193 0.031136665493249893 -0.02541785128414631 -0.06828494369983673 -0.03381151333451271 0.047071438282728195 -0.06895766407251358 0.04590458422899246 0.08032302558422089 -0.02854178287088871 -0.05554426088929176 0.054396700114011765 -0.0028279656544327736 0.025905100628733635 -0.08554232865571976 0.05299988389015198 0.029002878814935684 -0.013294350355863571 0.041683878749608994 -0.03260921314358711 0.027927709743380547 0.02086661197245121 -0.014501726254820824 0.018725844100117683 -0.0027638261672109365 -0.04052330181002617 0.02948848158121109 -0.013291019015014172 0.03960413113236427 0.040169186890125275 0.019112862646579742 -0.05741649866104126 -0.0764441266655922 -0.05329965054988861 0.04966019466519356 0.07504164427518845 0.04001578688621521 -0.054406002163887024 0.057056985795497894 0.07127469033002853 0.06777215003967285 -0.0267238337546587 0.010809036903083324 -0.07758999615907669 -0.006764566991478205 0.01769367605447769 0.0015048194909468293 0.022199874743819237 0.09031715989112854 0.06129208952188492 -0.03237209841609001 0.004783940967172384 0.00560713978484273 0.02916734851896763 0.00590055575594306 0.016991857439279556 -0.008955015800893307 0.041910745203495026 -0.022794226184487343 0.07619115710258484 -0.051124077290296555 -0.016377901658415794 0.0773569643497467 0.014580479823052883 -0.08533303439617157 0.026196274906396866 0.05746488645672798 -0.04631559178233147 -0.041450344026088715 0.061932049691677094 -0.07129103690385818 -0.0318310484290123 -0.03152480721473694 -0.0068153273314237595 -0.05762321501970291 0.06454260647296906 -0.05676047131419182 0.029335632920265198 -0.08730939775705338 -0.03088228963315487 0.03385291248559952 -0.03733561187982559 0.023870451375842094 -0.036768119782209396 -0.00010810525418492034 -0.06188717111945152 0.02946806699037552 -0.05942266061902046 -0.007317466661334038 -0.04864199832081795 -0.004663123283535242 -0.01384742185473442 0.009113366715610027 0.013043971732258797 0.03439464792609215 0.019695550203323364 0.04006330668926239 -0.0996699333190918 0.0186141487210989 -0.05071377754211426 -0.04787248745560646 0.0033619371242821217 -0.0050057461485266685 -0.025880511850118637 -0.022876020520925522 0.015032591298222542 -0.005783706437796354 -0.05611465871334076 0.008929742500185966 -0.026563286781311035 -0.0016058984911069274 -0.027423808351159096 0.05620531365275383 -0.031234493479132652 0.02413047105073929 -0.05065030977129936 0.04052756726741791 -0.040260590612888336 -0.009966649115085602 -0.05739545449614525 -0.0825614258646965 -0.03653340041637421 -0.008733549155294895 -0.0065642767585814 -0.0024037882685661316 0.04822957143187523 -0.01652209274470806 0.05027086287736893 0.007506104651838541 0.008204170502722263 -0.012204809114336967 -0.017451724037528038 -0.043546080589294434 0.09482070803642273 -0.01881350763142109 -0.04655006527900696 -0.06941016018390656 0.03074561059474945 -0.022466419264674187 -0.023904236033558846 -0.01584811694920063 -0.006674387492239475 -0.024040810763835907 -0.06479267030954361 0.010131077840924263 -0.09073537588119507 -0.07813657075166702 0.060598231852054596 0.006512967869639397 -0.017126280814409256 0.04203537479043007 0.010303831659257412 -0.0554659366607666 0.015322167426347733 -0.05513647943735123 0.09456553310155869 -0.002419346245005727 0.05700754001736641 -0.02137192152440548 -0.016160031780600548 0.020827030763030052 0.03857126459479332 0.01621590368449688 0.03679436445236206 0.03019641526043415 -0.012842683121562004 -0.03673461824655533 0.0002950042253360152 0.09735289961099625 0.0031672820914536715 0.045265860855579376 -0.04656021296977997 -0.020046867430210114 -0.025994110852479935 0.042586974799633026 0.012358295731246471 -0.035482194274663925 0.012348225340247154 0.005373972002416849 -0.00967987161129713 0.047255635261535645 0.023508794605731964 -0.05229117348790169 0.02727845311164856 0.05601564049720764 0.03368675336241722 -0.07103479653596878 -0.028841106221079826 -0.057779256254434586 0.0028815108817070723 -0.013530433177947998 -0.061871837824583054 0.05253385379910469 -0.04379314184188843 0.0983525738120079 0.03508548066020012 0.033151883631944656 0.09836351126432419 -0.009753908030688763 0.03030971810221672 0.028321104124188423 -0.029599517583847046 -0.10249456018209457 0.05478983372449875 -0.006143016275018454 -0.006388920824974775 0.0072428155690431595 0.03434772789478302 -0.02609316259622574 0.0036974234972149134 -0.05625222995877266 -0.012850807048380375 0.027349265292286873 -0.02686220221221447 0.006132322829216719 -0.0626898854970932 0.04505350813269615 0.03631511330604553 -0.012100080028176308 0.0268082395195961 0.05414735525846481 0.00032825025846250355 -0.0648391917347908 -0.021909138187766075 -0.09938358515501022 0.037886153906583786 0.01785682700574398 0.021476024761795998 -0.0574791319668293 0.01704673282802105 -0.015166797675192356 -0.04623487591743469 -0.040574412792921066 -0.07872608304023743 0.021729566156864166 0.043569378554821014 0.04988855496048927 0.10993462055921555 -0.04009813815355301 -0.050449952483177185 0.005351938772946596 0.005543883424252272 -0.051448311656713486 -0.06669628620147705 -0.08199301362037659 0.09531209617853165 0.021110132336616516 0.02411261387169361 -0.09268733859062195 -0.027880027890205383 -0.02780040167272091 -0.017913607880473137 0.018327413126826286 0.0016195684438571334 0.05666729062795639 -0.09641589969396591 0.017515363171696663 -0.0568295493721962 -0.030344991013407707 -0.054770056158304214 0.02666669897735119 0.05898912996053696 -0.06113143637776375 0.09019550681114197 -0.036771975457668304 -0.05908796936273575 0.028789794072508812 -0.0018480325816199183 0.027781549841165543 -0.04949386790394783 0.015104108490049839 0.09146660566329956 -0.07011082023382187 -0.01812271773815155 -0.04068014398217201 -0.02838044986128807 -0.020527765154838562 -0.052083685994148254 0.03331339359283447 -0.040840595960617065 0.012813142500817776 0.033236488699913025 -0.024017713963985443 0.001319817267358303 0.028178218752145767 0.025306953117251396 0.0519120953977108 0.020571086555719376 0.08189185708761215 -0.0006170039414428174 -0.0338323712348938 -0.0034178898204118013 0.021481797099113464 0.07888525724411011 0.007999200373888016 -0.0022883859928697348 -0.001951441983692348 -0.02920336090028286 0.03152419999241829 -0.0223360825330019 0.03328191488981247 -0.021287761628627777 -0.03470476716756821 -0.033589817583560944 -0.02506069839000702 -0.07745342701673508 -0.02742723375558853 0.005271803122013807 -0.05312445014715195 -0.09578367322683334 0.04064391180872917 -0.0030022193677723408 -0.01791125163435936 0.006787633057683706 0.06425253301858902 -0.07211655378341675 -0.03279513120651245 0.019220413640141487 0.03970932215452194 0.07463068515062332 0.04415879026055336 -0.06285779923200607 0.01952706277370453 0.03426346555352211 0.03783625364303589 -0.05574158579111099 0.0008922120905481279 0.019608622416853905 0.06089135631918907 0.03816451504826546 0.051950111985206604 -0.09617619961500168 -0.05489280819892883 0.010769556276500225 0.013516218401491642 0.002728204010054469 0.03719458729028702 0.030673034489154816 0.02819155715405941 0.0022049446124583483 -0.03398795798420906 -0.021120280027389526 0.07214262336492538 0.008994732983410358 0.030727684497833252 0.025789348408579826 -0.028673268854618073 0.08818969130516052 0.004805638454854488 0.05460357666015625 0.018191877752542496 0.07587960362434387 0.03709031641483307 0.043840136379003525 0.01764763705432415 0.04948961362242699 0.009454965591430664 -0.019879108294844627 -0.025805044919252396 -0.025472380220890045 0.023006726056337357 0.00924436841160059 -0.06572695076465607 0.031978968530893326 -0.019718749448657036 0.019396867603063583 0.0006044609472155571 -0.03360991179943085 -0.03087608516216278 0.04594862088561058 0.006405628751963377 0.0768875926733017 0.03418097272515297 0.05975446105003357 -0.13204142451286316 0.021703971549868584 0.052210867404937744 0.07495477795600891 0.05792122706770897 0.008107899688184261 -0.028510918840765953 0.05630346015095711 0.00016790190420579165 -0.016345851123332977 0.0192505344748497 0.037716981023550034 0.01580985262989998 0.02397555485367775 0.041933029890060425 -0.0518629290163517 0.012542656622827053 0.07847263664007187 0.07048030197620392 0.02724456787109375 0.01966981217265129 -0.01274657528847456 0.009641837328672409 0.017212899401783943 0.04535441845655441 0.017012158408761024 0.06989152729511261 0.011758283711969852 -0.01570926234126091 0.02380693517625332 0.011398138478398323 0.021031508222222328 0.04486308619379997 0.056182242929935455 0.00944552943110466 +0.01745554618537426 -0.041963234543800354 -0.10064536333084106 0.026184996590018272 -0.03905603289604187 0.01919611543416977 0.006068224553018808 -0.014416187070310116 -0.07737483829259872 0.035916347056627274 -0.06168188154697418 0.04503515735268593 -0.018984341993927956 -0.03774215653538704 -0.021471770480275154 -0.1041717529296875 0.010153996758162975 0.0007825469947420061 0.07439339905977249 -0.02539457380771637 -0.02372748591005802 0.038192447274923325 -0.018810924142599106 0.03765670210123062 0.018135732039809227 0.022143738344311714 0.048459623008966446 0.021250933408737183 0.06097937747836113 0.022117100656032562 -0.0031286824960261583 -0.06523628532886505 0.0068003227934241295 -0.02346431463956833 -0.026240097358822823 -0.057192154228687286 -0.02558325044810772 0.047866031527519226 0.0690498873591423 -0.02904990315437317 -0.041861895471811295 0.02464299276471138 -0.0385417677462101 -0.08358879387378693 -0.008881790563464165 0.016911661252379417 -0.06268367171287537 -0.08556056767702103 0.0398399792611599 0.008209068328142166 -0.02538413181900978 0.03850318118929863 -0.026537643745541573 -0.043701063841581345 -0.08853527903556824 -0.03218112513422966 -0.019599175080657005 0.07858406752347946 0.0011542452266439795 0.025126755237579346 -0.005496078170835972 0.023424198850989342 0.012112106196582317 -0.004800067748874426 0.020869920030236244 -0.00637140404433012 0.07132340967655182 -0.01742529682815075 -0.06449475884437561 0.03172801062464714 -0.023398054763674736 0.05464845150709152 0.0022705604787915945 0.09418559074401855 0.010446111671626568 -0.039835117757320404 -0.03283564746379852 -0.025458481162786484 0.030398959293961525 -0.0010249101324006915 -0.013887526467442513 0.020347174257040024 0.07413814961910248 -0.002349224640056491 -0.00803450308740139 -0.009969186969101429 0.0070697832852602005 -0.013660403899848461 -0.05207163468003273 -0.0399337075650692 0.04780147224664688 -0.0798497274518013 -0.006325765047222376 0.020354757085442543 -0.008100858889520168 0.009671605192124844 0.10737030953168869 -0.019520001485943794 -0.017242664471268654 0.01931823045015335 -0.018697848543524742 -0.054041117429733276 0.045477673411369324 -0.03739997372031212 -0.024263830855488777 -0.06650079041719437 -0.07494835555553436 0.03927566483616829 0.035418760031461716 -0.059112124145030975 0.0930803120136261 0.023051105439662933 -0.05023155361413956 -0.013917707838118076 0.10448803752660751 -0.001547476276755333 0.028283616527915 -0.02272895537316799 0.06138348951935768 0.062489643692970276 -0.014626632444560528 0.07378771156072617 -0.025920627638697624 -0.030768930912017822 0.003789435839280486 0.005681212060153484 -0.011699262075126171 0.04949052631855011 -0.04273971542716026 0.007828089408576488 -0.021698422729969025 -0.0021415979135781527 0.028507189825177193 0.04221169278025627 -0.09382596611976624 -0.0751577764749527 -0.02134062722325325 0.06933427602052689 0.04135860130190849 0.03740750253200531 -0.055058661848306656 0.07688606530427933 0.09139509499073029 0.066626638174057 -0.009810004383325577 -0.025475556030869484 -0.07047438621520996 -0.0018762756371870637 0.03847677260637283 -0.012127201072871685 -0.034745216369628906 0.07138585299253464 0.05184626951813698 0.004438364412635565 0.06234903633594513 -0.03016117960214615 0.05731409043073654 -0.015421444550156593 0.0037326794117689133 0.011219849810004234 0.012299664318561554 0.022886551916599274 0.037756603211164474 -0.01738070324063301 0.023929903283715248 0.11855030059814453 0.04444986209273338 -0.050598155707120895 -0.01918184757232666 0.10955779254436493 -0.016129983589053154 0.0125636737793684 0.04890019819140434 -0.051214102655649185 -0.046922918409109116 -0.021029973402619362 0.01908131130039692 -0.026063164696097374 0.06142429634928703 -0.007231483701616526 0.05217304453253746 -0.12311803549528122 0.029711829498410225 0.059022027999162674 -0.017325637862086296 0.01745670847594738 -0.04124953970313072 -0.04624181613326073 0.0049222013913095 0.011422310024499893 -0.027811236679553986 -0.051076482981443405 -0.016256343573331833 -0.02385755069553852 0.011597001925110817 -0.017434651032090187 0.05393582209944725 0.033765073865652084 0.03418030962347984 0.04958348721265793 -0.054872315376996994 -0.011533619835972786 -0.09102368354797363 -0.010500810109078884 0.015353785827755928 0.010934787802398205 -0.030097702518105507 -0.04961889982223511 0.01794457994401455 -0.03344570845365524 0.013279218226671219 0.0010291598737239838 -0.04013213515281677 0.01596936769783497 0.05617906525731087 0.015248327516019344 -0.014718576334416866 0.01713268831372261 -0.0172012560069561 -0.006485660094767809 -0.01250965241342783 -0.012332586571574211 -0.0570310577750206 -0.07937458902597427 -0.00496983015909791 -0.04901880398392677 0.01789472997188568 0.005536392331123352 0.0783386081457138 -0.0375412181019783 0.05093996226787567 0.08010298013687134 0.02693197689950466 -0.03866115212440491 -0.035015370696783066 0.019210945814847946 0.04370009899139404 -0.026734156534075737 -0.02647983655333519 -0.07799173146486282 0.04642225429415703 -0.00904526375234127 -0.0493590421974659 0.031458236277103424 0.01938837207853794 -0.00864364206790924 0.029127594083547592 0.0080821318551898 -0.06913585960865021 -0.03967449441552162 0.004327584523707628 0.014862586744129658 0.03922409191727638 0.07025830447673798 0.025772539898753166 -0.06167855113744736 0.023458566516637802 -0.06278675049543381 0.030299602076411247 -0.008528885431587696 0.009830920957028866 0.03853043168783188 -0.07831348478794098 -0.044557563960552216 -0.016833705827593803 0.031140746548771858 0.05420466512441635 0.001363383256830275 -0.011689605191349983 -0.02354847639799118 0.03589006885886192 0.09547040611505508 0.0067717405036091805 0.03151841089129448 -0.005730059463530779 -0.02484315074980259 0.0029533773194998503 0.007630211766809225 0.04269534349441528 -0.046502139419317245 0.05357268825173378 -0.01878655143082142 -0.023645522072911263 -0.009828117676079273 0.011021009646356106 -0.005840217228978872 0.03269423916935921 0.008021723479032516 -0.02566521428525448 -0.030154729261994362 -0.04202888160943985 -0.08233390003442764 0.005518619436770678 0.007646316662430763 -0.037461698055267334 -0.0251239612698555 -0.026458678767085075 0.09938238561153412 0.028029095381498337 0.052368808537721634 0.13444651663303375 -0.066330187022686 0.02927517332136631 0.05306105688214302 -0.06040981411933899 -0.05963161587715149 -0.03784095123410225 -0.021572882309556007 0.01589222624897957 0.03254227712750435 0.04935496300458908 -0.012295874767005444 0.03149782493710518 -0.0028754128143191338 -0.019310707226395607 -0.03388617932796478 0.010640808381140232 -0.053817711770534515 -0.0432608388364315 0.040828779339790344 0.07587949186563492 0.0368066132068634 -0.03168212249875069 -0.015884319320321083 -0.01580398716032505 -0.07217013835906982 0.019972678273916245 -0.15025679767131805 0.010126733221113682 -0.03510290011763573 -0.007956184446811676 -0.029244814068078995 0.032851483672857285 0.0547899529337883 -0.013481078669428825 -0.05652330070734024 -0.10741721838712692 -0.017412591725587845 0.020163027569651604 0.06175331026315689 0.11130353063344955 0.002542931353673339 0.022548584267497063 -0.03297073021531105 -0.012594211846590042 -0.043341029435396194 -0.05275275185704231 -0.10517075657844543 0.09767891466617584 0.015869343653321266 -0.043725334107875824 -0.05817451328039169 -0.06092371791601181 0.04675840213894844 -0.0486203096807003 0.02925873175263405 0.05109468102455139 0.02228379249572754 -0.04928942769765854 0.0325937420129776 -0.007302441634237766 -0.016865218058228493 -0.005504813976585865 0.07111949473619461 0.01633571833372116 -0.041407130658626556 0.0875038132071495 -0.015065968967974186 -0.04061252996325493 0.019260084256529808 0.0401277169585228 0.05986720696091652 -0.009846079163253307 0.004051475320011377 0.057222239673137665 -0.08840023726224899 -0.03152039647102356 -0.0069039673544466496 -0.017270857468247414 -0.044852666556835175 -0.0030667379032820463 0.030325761064887047 -0.02361098863184452 0.016797374933958054 0.03889021649956703 -0.0031416427809745073 0.001941644586622715 -0.03309670463204384 0.04305296018719673 0.07591964304447174 -0.008177360519766808 0.09914148598909378 0.039822012186050415 -0.044280145317316055 -0.015799015760421753 0.09516043961048126 0.04311886802315712 0.006837643217295408 0.008152177557349205 0.04123873636126518 0.006909474730491638 0.02995496615767479 -0.017748823389410973 0.08572697639465332 -0.00958272535353899 -0.05445701256394386 -0.018591834232211113 0.06211460754275322 -0.0739104226231575 -0.0475960448384285 0.0010195994982495904 -0.04905177652835846 -0.028534000739455223 0.060163285583257675 -0.004386222455650568 -0.03870736062526703 0.029391735792160034 0.062261488288640976 -0.06861455738544464 -0.019602302461862564 -0.023123737424612045 0.04277338832616806 0.05675240606069565 0.009602106176316738 -0.04591825231909752 -0.017913566902279854 0.04187972843647003 0.012522280216217041 -0.05022115632891655 0.007637814152985811 0.062371619045734406 0.04524474963545799 -0.0033514248207211494 0.05243803188204765 -0.0593932569026947 -0.016451789066195488 -0.02900092862546444 0.02215433493256569 0.08199770003557205 0.04510285705327988 0.018590467050671577 0.0382843054831028 0.014314788393676281 0.004949498921632767 0.0011500733671709895 -0.0019858109299093485 -0.018932858482003212 0.05044730752706528 0.021444788202643394 -0.05324582755565643 0.030974362045526505 0.009730623103678226 0.024944210425019264 -0.0024245993699878454 0.031722892075777054 0.04562966153025627 0.035175621509552 -0.015467406250536442 0.022817645221948624 -0.0008014042396098375 0.010038428008556366 -0.01729491725564003 0.013302529230713844 -0.03034358099102974 0.035339780151844025 -0.010096565820276737 0.0170765221118927 0.037880104035139084 0.0017218041466549039 -0.028165195137262344 0.02798604406416416 -0.027170604094862938 0.07086746394634247 0.005907696206122637 0.038518693298101425 0.03387351706624031 0.055527254939079285 -0.1319488137960434 0.047381237149238586 0.04449418932199478 0.04337315633893013 0.0518544502556324 0.03794519230723381 0.014215625822544098 0.07678186893463135 -0.04333803057670593 -0.07266455143690109 -0.0058820671401917934 0.02320966124534607 0.06235993281006813 0.036514610052108765 0.06422994285821915 -0.004062051884829998 0.008034955710172653 0.08933743834495544 0.029060807079076767 0.027369914576411247 0.0003828408080153167 -0.0012042435118928552 0.01604521833360195 0.061260588467121124 0.08272122591733932 0.02856971137225628 0.02086203545331955 0.022956296801567078 -0.00984262302517891 -0.035869717597961426 0.027761166915297508 -0.02211838588118553 0.018755005672574043 0.03169860690832138 0.013635615818202496 +0.019040286540985107 -0.024275783449411392 -0.038026243448257446 -0.051913969218730927 -0.06657101213932037 -0.01318675559014082 -0.00394065398722887 0.10751721262931824 -0.07738413661718369 -0.029015084728598595 -0.05239752307534218 0.029571734368801117 0.012461197562515736 -0.02048366144299507 0.010091086849570274 -0.07307352870702744 -0.029829606413841248 -0.0021489206701517105 0.04507913440465927 -0.030527586117386818 0.013638117350637913 0.08164256066083908 0.019650381058454514 0.02214409038424492 0.035388343036174774 -0.0004940729704685509 0.01716042123734951 0.04630027338862419 0.07491853833198547 -0.011528548784554005 -0.03421225771307945 -0.04647960513830185 0.034671612083911896 -0.0359426774084568 0.09838253259658813 0.0012363926507532597 -0.04492911696434021 0.06664656102657318 0.11041151732206345 -0.027830513194203377 0.020528754219412804 0.05984823778271675 0.04472909867763519 -0.07114274799823761 -0.009673946537077427 0.013263443484902382 -0.10236329585313797 -0.06994374096393585 -0.020463095977902412 0.010112650692462921 -0.12312482297420502 0.0361868180334568 0.008781044743955135 -0.006688740104436874 -0.02301323600113392 0.03940868377685547 0.04701724275946617 0.06833429634571075 0.01076100766658783 0.000720724870916456 -0.011170860379934311 0.016919216141104698 0.009499326348304749 0.004738672636449337 0.034503236413002014 -0.008837016299366951 0.05144381523132324 -0.02926652692258358 -0.009144777432084084 -0.022572044283151627 -0.02263309434056282 -0.014702747575938702 -6.605715498153586e-06 0.016514256596565247 0.014438632875680923 -0.028361594304442406 -0.011938451789319515 -0.006098905578255653 -0.036248281598091125 -0.06930699199438095 -0.03728915750980377 0.029438424855470657 0.005377587862312794 -0.03918324410915375 -0.037521567195653915 -0.014117859303951263 -0.015316273085772991 -0.026090575382113457 -0.07577308267354965 -0.05286816507577896 0.04357808828353882 -0.06673794239759445 0.002555410610511899 -0.10914944112300873 -0.0428696908056736 -0.009741093032062054 0.00848818477243185 -0.06414435058832169 -0.061658281832933426 -0.02237204648554325 -0.07071883231401443 -0.017594777047634125 0.042790092527866364 0.037738632410764694 -0.03912963718175888 -0.07345499843358994 0.01290018018335104 0.061595369130373 -0.011898018419742584 -0.016755132004618645 -0.037327952682971954 0.0516427718102932 0.006180478725582361 -0.02296106144785881 0.06254947930574417 -0.07134224474430084 -0.04153984412550926 0.10341029614210129 -0.0021930590737611055 -0.07335419952869415 -0.1004093661904335 0.03311437368392944 0.034451548010110855 -0.030329596251249313 -0.010006316937506199 0.11273963004350662 -0.012630454264581203 0.021315859630703926 -0.04659790173172951 -0.02592168003320694 -0.06436274200677872 -0.02964954264461994 0.009774644859135151 0.0007440852932631969 0.0029193672817200422 -0.006935205310583115 0.023064954206347466 0.11345954984426498 0.015352344140410423 -0.026152420789003372 -0.033942513167858124 -0.029205815866589546 0.07083398848772049 0.00579118262976408 -0.08914471417665482 0.013699527829885483 -0.08608146011829376 0.000392182293580845 0.029865071177482605 0.017946757376194 0.05706217512488365 -0.004574812948703766 -0.039322927594184875 -0.038668856024742126 0.028109675273299217 0.029145076870918274 -0.01660633087158203 -0.01268509030342102 -0.00324899610131979 0.0686870887875557 -0.0632929876446724 0.0006108413217589259 0.009423536248505116 0.0111519331112504 -0.002607796574011445 0.08461461216211319 0.029053619131445885 -0.060890037566423416 -0.0017613988602533937 0.08573666214942932 -0.055565327405929565 -0.01497635431587696 0.0009363082936033607 -0.09399847686290741 -0.0007238523685373366 -0.05159669741988182 0.02765272930264473 -0.026213334873318672 0.022380948066711426 -0.014328270219266415 -0.010890170931816101 -0.05222311243414879 0.07293964177370071 0.012919829227030277 -0.03687896206974983 -0.041053321212530136 -0.03440498560667038 -0.07136121392250061 0.019950591027736664 -0.04992883652448654 0.09052786231040955 0.0051828231662511826 -0.023559534922242165 0.002998798154294491 -0.02664272114634514 0.011137892492115498 -0.010860899463295937 -0.012372713536024094 -0.04876174405217171 0.009605618193745613 -0.04642585292458534 0.10008826106786728 -0.03924444690346718 -0.04479924216866493 -0.0069382525980472565 0.05444063991308212 -0.12399502843618393 -0.07589659839868546 -0.03882063180208206 -0.02621297910809517 0.10268432646989822 0.024931108579039574 -0.05262986198067665 -0.0033518564887344837 -0.0152702322229743 -0.02148227021098137 0.017166852951049805 -0.08429001271724701 -0.03130526468157768 -0.014782515354454517 -0.007895875722169876 0.0312198456376791 -0.07529427111148834 -0.03374890983104706 -0.014074459671974182 -0.0013525051763281226 0.087990902364254 0.013700242154300213 0.017740551382303238 -0.01720925234258175 0.010248984210193157 0.07036872208118439 0.0431581549346447 -0.030979951843619347 0.0004016839957330376 0.03237709030508995 0.08420676738023758 -0.01802818290889263 0.006752478424459696 -0.02414972148835659 -0.05953453481197357 -0.011756251566112041 -0.0014387744013220072 -0.004657336510717869 -0.03433464840054512 -0.0628470629453659 0.003792383475229144 -0.021027032285928726 -0.07278239727020264 -0.01820402406156063 0.024866728112101555 0.01934925839304924 -0.07457168400287628 0.08095446228981018 0.06411264091730118 -0.01879429630935192 0.03795919567346573 -0.011869031004607677 -0.03595587611198425 0.02036893367767334 0.06254793703556061 -0.02712422050535679 -0.03775980696082115 -0.008557402528822422 -0.08302255719900131 -0.008840780705213547 -0.00858200341463089 0.021608509123325348 -0.025543073192238808 0.02009456604719162 -0.00035327093792147934 0.06798397749662399 0.03882496803998947 0.04419591650366783 0.027286240831017494 -0.06387148052453995 -0.02688918448984623 -0.03396513685584068 0.05296029895544052 -0.01325830165296793 0.014575004577636719 -0.010743114165961742 -0.021157924085855484 -0.08577200770378113 -0.0046922750771045685 0.018632160499691963 0.09879277646541595 0.0022788660135120153 -0.005828541237860918 0.0021337626967579126 -0.0015150955878198147 -0.012340209446847439 0.024108510464429855 0.03426031023263931 0.02451438456773758 -0.030912093818187714 0.004042841959744692 0.029597017914056778 -0.04156307503581047 0.0317663736641407 0.02681460790336132 -0.0515630729496479 0.032846108078956604 0.00479496456682682 -0.04175986349582672 -0.029016239568591118 0.009621111676096916 -0.028846612200140953 0.03417801111936569 0.030963128432631493 0.002894127042964101 -0.03690320998430252 -0.009363973513245583 0.03809210658073425 -0.03461344540119171 0.06605058908462524 0.039205119013786316 -0.04127679765224457 -0.020423278212547302 -0.02698323503136635 0.004684329032897949 -0.024893024936318398 -0.03254155442118645 -0.032673802226781845 0.00993269495666027 -0.005149108823388815 -0.0014696500729769468 -0.10933496803045273 -0.038641512393951416 -0.03586813434958458 -0.025586100295186043 -0.05903063341975212 0.009643909521400928 0.01880738139152527 0.03684266284108162 -0.009849904105067253 -0.07610118389129639 0.05189133435487747 -0.02806433103978634 0.014364403672516346 0.02824866957962513 0.007369357161223888 0.0317649208009243 0.02067401446402073 -0.05612216889858246 -0.008588403463363647 0.059691689908504486 -0.02478748932480812 0.018209008499979973 0.0811312273144722 -0.05490213632583618 -0.0020055652130395174 0.024962903931736946 0.0675101950764656 -0.053211018443107605 -0.011021312326192856 0.03600846230983734 -0.0017581136198714375 0.0033245892263948917 -0.0043951417319476604 0.01944653131067753 0.016557445749640465 0.02498825080692768 0.06280501186847687 0.0034829031210392714 0.052316948771476746 0.05156693235039711 0.04173916205763817 -0.000776225992012769 0.031927332282066345 0.020626362413167953 0.0628228485584259 0.0032717606518417597 -0.0528787225484848 -0.011354254558682442 0.008725329302251339 0.04834131896495819 -0.07248424738645554 0.040754131972789764 -0.04975257068872452 0.005120539106428623 0.04859228804707527 0.07543157041072845 -0.02637767605483532 0.09930426627397537 -0.0004234114312566817 0.08454578369855881 -0.08767969906330109 0.02332346700131893 -0.01026429608464241 0.05504909157752991 0.09532714635133743 0.027095448225736618 -0.042113713920116425 0.05505555495619774 0.054295219480991364 0.05964306369423866 0.03375900909304619 -0.06439778953790665 0.1279052346944809 0.02668791450560093 -0.010871678590774536 -0.035753585398197174 0.061507001519203186 -0.03376083821058273 0.017922716215252876 -0.03864094987511635 0.006777924485504627 -0.005308396648615599 -0.013798392377793789 -0.04912569001317024 0.03450435400009155 -0.07950816303491592 0.013784537091851234 -0.005632329732179642 -0.06145818531513214 0.019062940031290054 -0.03595903515815735 -0.0017869881121441722 -0.024225208908319473 0.0010648395400494337 0.05240021273493767 0.027273692190647125 -0.0159718357026577 -0.013206375762820244 -0.10134195536375046 0.11777917295694351 -0.030425027012825012 -0.040469665080308914 0.018785294145345688 0.025662461295723915 0.09164571762084961 0.007752491161227226 0.02218652330338955 -0.0012120864121243358 -0.009377037174999714 0.05110987275838852 -0.01135302521288395 0.0928080677986145 -0.008892999961972237 0.03588125854730606 0.014636487700045109 0.02821953035891056 -0.06870416551828384 0.07754635810852051 -0.024053847417235374 0.019845010712742805 0.052532389760017395 -0.0467381477355957 0.022477610036730766 0.017703073099255562 -0.011548231355845928 0.028316646814346313 -0.005709795281291008 0.03486764430999756 0.03395233303308487 0.07496700435876846 -0.011381245218217373 -0.02969043329358101 -0.043400224298238754 -0.04131991043686867 0.01198579277843237 -0.03320956975221634 -0.029644791036844254 0.013082684949040413 0.029341788962483406 0.015612858347594738 0.015863172709941864 -0.005655577871948481 0.023603757843375206 -0.00848365668207407 0.05635332316160202 0.08558711409568787 -0.016891473904252052 0.08931820839643478 0.03798285871744156 -0.04146501049399376 0.02230796404182911 -0.05272596329450607 -0.03161930665373802 0.004457828123122454 -0.01870725303888321 0.08310993760824203 0.027371440082788467 0.02808871492743492 -0.02287655510008335 0.010421959683299065 -0.026987049728631973 -0.037544239312410355 0.06125463545322418 0.015397300943732262 0.006282567046582699 -0.0014667671639472246 -0.08370159566402435 0.04391653090715408 0.009132256731390953 0.05757899582386017 -0.012007624842226505 -0.05766662582755089 -0.003487531328573823 0.00398783665150404 0.03822164982557297 -0.011304815299808979 0.033743344247341156 -0.017722925171256065 -0.0382077656686306 -0.017049187794327736 0.043716128915548325 -0.04658328741788864 0.061226315796375275 -0.08633404970169067 -0.04749749228358269 +0.02055337280035019 -0.045284453779459 -0.08663482964038849 0.03277498111128807 -0.05387033522129059 0.02629619464278221 -0.020018713548779488 -0.00021582006593234837 -0.03615603968501091 0.044659484177827835 -0.03023628331720829 0.013403492048382759 0.0207564365118742 -0.031508125364780426 0.010554409585893154 -0.10032080858945847 0.001858401345089078 -0.027108049020171165 0.08159499615430832 -0.018085600808262825 -0.022782238200306892 0.058477193117141724 0.014385971240699291 0.06510122865438461 0.022828448563814163 0.038716137409210205 0.019361376762390137 0.020454412326216698 0.07193166762590408 0.045453477650880814 -0.005169848911464214 -0.022244034335017204 -0.01921786740422249 -0.0315004400908947 0.016872134059667587 0.0007865954539738595 -0.004247757606208324 0.053128138184547424 0.06399409472942352 -0.02486269921064377 -0.03859469294548035 0.05346726253628731 -0.00642580259591341 -0.06301746517419815 -0.01960543356835842 0.0200621597468853 -0.013848545029759407 -0.08583538234233856 0.04795488342642784 -0.01996881701052189 -0.002940157428383827 0.045457348227500916 -0.02132638543844223 -0.009831580333411694 -0.0773102194070816 0.007500786799937487 0.011116703040897846 0.0830097645521164 0.014627181924879551 0.05362020060420036 0.0199340358376503 -0.0002666761865839362 -0.013975669629871845 -0.05968533083796501 0.037817999720573425 0.02750103920698166 0.057085756212472916 0.0012679500505328178 -0.025020431727170944 0.06026167422533035 0.0002868532610591501 0.0678318589925766 0.01527414470911026 0.054275993257761 0.023808499798178673 -0.04416127875447273 -0.07647483050823212 0.0019975160248577595 -0.01872505061328411 0.02721579559147358 0.01033976674079895 -0.003463511122390628 0.06329172849655151 0.03289121016860008 -0.019672520458698273 -0.015728048980236053 -0.015958691015839577 0.02937672659754753 -0.02133663184940815 0.02550354413688183 0.05943932756781578 -0.03463563695549965 0.0016495066229254007 0.039241839200258255 -0.007668755948543549 -0.0325549878180027 0.09366168081760406 -0.008245965465903282 -0.03836921602487564 -0.007552397903054953 -0.01905008777976036 -0.06728067994117737 0.06372522562742233 -0.05070481076836586 0.007545952685177326 -0.03938732296228409 -0.06592395156621933 -0.008586878888309002 0.02825399674475193 -0.006937931291759014 0.03793718293309212 0.04586612805724144 -0.058164261281490326 -0.03503762558102608 0.060500338673591614 -0.022109078243374825 0.025395549833774567 -0.02688021957874298 0.02486974000930786 0.053742095828056335 -0.031684380024671555 0.041770871728658676 -0.015955850481987 -0.03219251707196236 0.0046211411245167255 0.014024115167558193 -0.04739857092499733 0.059983957558870316 -0.011801198124885559 0.017001736909151077 -0.0005291263805702329 0.02075294777750969 0.036256056278944016 0.04303095489740372 -0.06685817241668701 -0.03513864800333977 -0.039958883076906204 0.08335046470165253 0.037093423306941986 0.05096631124615669 -0.0808308869600296 0.04205746948719025 0.11944765597581863 0.048931654542684555 -9.522213804302737e-05 -0.017769386991858482 -0.06510479748249054 -0.0006941272877156734 0.07205390930175781 -0.014139208942651749 0.022590601816773415 0.03378139063715935 0.07642076909542084 0.0500405877828598 -0.01607711985707283 -0.025386301800608635 0.04595012962818146 0.0042063649743795395 0.012773367576301098 -0.05672662705183029 0.02581441029906273 -0.00023913750192150474 -0.027738727629184723 -0.0318731926381588 0.07250812649726868 0.04156636446714401 0.025645924732089043 -0.10921262949705124 0.048197269439697266 0.09586121886968613 -0.0016362783499062061 -0.012904836796224117 0.010154666379094124 -0.0401197113096714 -0.03773355111479759 -0.05431521311402321 0.06099153310060501 -0.023259637877345085 0.0615539513528347 -0.06127815693616867 -0.014352565631270409 -0.06600158661603928 -0.0031286682933568954 0.024426842108368874 -0.043799471110105515 0.05979163572192192 0.03472325578331947 -0.030745306983590126 -0.06722477823495865 -0.020290540531277657 0.018134111538529396 -0.0488908551633358 -0.0022790541406720877 0.0076036639511585236 -0.00553739070892334 -0.03882154822349548 0.03336375206708908 0.016965901479125023 0.0496821366250515 0.10381732881069183 -0.0556216761469841 0.06542880833148956 -0.08598300069570541 0.0028648991137742996 0.006256717722862959 0.04334978759288788 -0.01508795004338026 -0.08210945874452591 0.022432798519730568 -0.021528249606490135 -0.039448659867048264 -0.01668224297463894 -0.07098469138145447 0.02516988106071949 0.03993396461009979 0.034610554575920105 -0.004657234530895948 0.011441376991569996 0.008968262933194637 0.014801224693655968 -0.015737444162368774 -0.05701892450451851 -0.06968846917152405 -0.09491784125566483 -0.016850721091032028 -0.055730029940605164 -0.018506260588765144 0.028531350195407867 0.09341463446617126 0.008040878921747208 0.07690183818340302 0.03289928659796715 0.03087855875492096 -0.012754254043102264 0.0036839498206973076 0.000596282712649554 0.024834467098116875 -0.01710294559597969 -0.06305258721113205 -0.07061366736888885 0.038046710193157196 0.008738513104617596 0.013497144915163517 0.02627611719071865 0.016166558489203453 0.013251270167529583 -0.03844868019223213 0.058104079216718674 -0.04835443198680878 -0.014687630347907543 0.053639817982912064 0.007080697454512119 -0.013107500039041042 0.05909639969468117 0.0031101959757506847 -0.043305471539497375 0.04316236078739166 -0.059598978608846664 0.10337765514850616 -0.043798111379146576 -0.010600610636174679 -0.05330084636807442 -0.04364462569355965 -0.03949028626084328 0.007452002260833979 0.0010281576542183757 0.03819829225540161 0.056131307035684586 -0.02940697968006134 0.027450712397694588 0.04336157068610191 0.04716842994093895 -0.012236191891133785 0.10945310443639755 -0.02005986124277115 -0.039808791130781174 -0.0393173024058342 0.043668482452631 -0.04511905461549759 -0.042595695704221725 0.045994456857442856 -0.009865561500191689 -0.008378606289625168 -0.027996033430099487 -0.02137385867536068 -0.04543396830558777 -0.011853881180286407 -0.012265411205589771 -0.03922542184591293 -0.034406065940856934 0.007067237515002489 -0.044845160096883774 -0.04548404738306999 0.007288299035280943 -0.07638773322105408 -0.03245002403855324 0.01135591883212328 0.08014731109142303 -0.029327474534511566 0.04891600087285042 0.11462567746639252 -0.027234986424446106 0.030488768592476845 0.03443025052547455 -0.029958171769976616 -0.1075727790594101 -0.012116012163460255 0.024825509637594223 0.03283018246293068 0.015443339012563229 0.06338711827993393 -0.03174436464905739 -0.0062836529687047005 0.0005749426782131195 -0.0010190551402047276 -0.034336887300014496 0.02101953886449337 -0.04556431993842125 -0.018722927197813988 0.006403520703315735 0.014811727218329906 -0.017321942374110222 0.007279561832547188 0.020069943740963936 -0.04717390239238739 -0.007069599349051714 0.026082079857587814 -0.1167428195476532 0.04983539134263992 -0.0006682383245788515 0.018167821690440178 -0.07114140689373016 0.027422763407230377 -0.003489747876301408 0.01097328681498766 -0.06284799426794052 -0.09802868217229843 0.0009441553265787661 0.06113257259130478 0.04796444997191429 0.1325526088476181 0.008035250939428806 -0.030973218381404877 -0.045367613434791565 0.015136954374611378 -0.06856752932071686 -0.06624455004930496 -0.07205741852521896 0.07818427681922913 0.04935988783836365 0.028941623866558075 -0.04782082140445709 -0.07969043403863907 0.05402684956789017 -0.04318103566765785 0.01076999306678772 0.02934400551021099 0.04702417179942131 -0.055368099361658096 0.014335651881992817 -0.016730474308133125 -0.012105686590075493 -0.04291906952857971 0.032883550971746445 0.018734069541096687 -0.03580734133720398 0.11276886612176895 -0.02148609049618244 -0.059509918093681335 0.038973674178123474 -0.021372700110077858 0.04711830988526344 -0.038296669721603394 -0.01731453835964203 0.08535526692867279 -0.08365695178508759 0.009219232015311718 -0.04328445345163345 0.017542975023388863 -0.02557564154267311 0.017437832430005074 0.004841985180974007 -0.0208832286298275 0.01636001467704773 0.013795200735330582 0.02519659511744976 -0.03722206503152847 -0.03102806955575943 0.02913258597254753 0.045119646936655045 0.02242455817759037 0.0686606839299202 0.005393206607550383 -0.06997751444578171 0.030917756259441376 0.05554235354065895 0.06682218611240387 -0.006344127468764782 -0.007159266620874405 0.05417326092720032 -0.006403151899576187 0.03307327628135681 0.03530232980847359 0.07628169655799866 -0.023703603073954582 -0.06230791658163071 0.02006087452173233 0.06020098179578781 -0.06613359600305557 -0.04118574038147926 0.04461093246936798 -0.04352012649178505 -0.012331165373325348 0.07188469916582108 -0.031917717307806015 -0.04304797202348709 -0.006652581971138716 0.019526930525898933 -0.06313757598400116 0.004119119606912136 -0.0047125970013439655 0.055777888745069504 0.026644477620720863 0.030219826847314835 -0.037288814783096313 0.011225549504160881 0.02956882119178772 0.01428127195686102 -0.06694500893354416 0.008584779687225819 0.10917509347200394 0.05196550861001015 -0.008354554884135723 0.07758049666881561 -0.07409816235303879 0.019551491364836693 0.02358821965754032 0.04690152406692505 0.04140278697013855 0.02608836442232132 -0.0007231240742839873 0.010012613609433174 0.028864864259958267 -0.02893037535250187 0.041365496814250946 0.004679940175265074 -0.07218420505523682 0.045447904616594315 0.02121596224606037 -0.03192427009344101 0.0627225860953331 0.03694941848516464 0.03552519530057907 0.021418439224362373 0.05467267334461212 0.03702378645539284 0.008473941124975681 0.0336473248898983 0.04622545838356018 -0.0019191011087968946 -0.029658930376172066 -0.05981922522187233 -0.003777117934077978 -0.01733865588903427 -0.004160625394433737 -0.053974807262420654 -0.025609547272324562 0.015225927345454693 -0.031323857605457306 -0.03766150772571564 0.0033874711953103542 -0.016331177204847336 0.0761258602142334 -0.033558037132024765 0.058021701872348785 0.03832610324025154 0.0297506432980299 -0.13813018798828125 0.029794182628393173 0.04578344523906708 0.05951777473092079 0.07907788455486298 0.042243774980306625 -0.011538757011294365 0.05469962954521179 -0.053322866559028625 -0.09160555899143219 0.03404338285326958 -0.0035041356459259987 0.013898272998631 0.029136840254068375 0.009046582505106926 -0.011022777296602726 0.04012645408511162 0.07580789178609848 0.05938013643026352 0.01954963617026806 0.026546580716967583 -0.009417779743671417 0.0016996492631733418 0.0502508208155632 0.0509115569293499 0.05402377247810364 0.05452069267630577 0.005675846710801125 -0.06385279446840286 -0.03170172870159149 0.01043426152318716 0.022781027480959892 0.06462348997592926 0.03231639415025711 0.0001825450744945556 +0.02191905491054058 -0.012739676982164383 -0.015882501378655434 0.04290745407342911 -0.009411570616066456 0.12773388624191284 -0.03135543689131737 -0.00013837392907589674 -0.08519186079502106 -0.013499598950147629 -0.05575726181268692 0.029225943610072136 -0.002722675446420908 -0.0184470284730196 -0.029617197811603546 -0.10668648034334183 -0.028440311551094055 -0.010269831866025925 0.07195030152797699 -0.09966741502285004 -0.05137171223759651 0.04040239751338959 0.027840394526720047 0.039414916187524796 0.04725169762969017 0.03024371527135372 0.05801483616232872 -8.431687456322834e-05 0.04513091593980789 0.02408163994550705 0.0284900926053524 -0.014743941836059093 0.027447285130620003 -0.014976860955357552 0.00014640839071944356 -0.0011470310855656862 0.050207145512104034 0.04236285388469696 0.02484132908284664 -0.031002910807728767 0.0010584605624899268 0.019842231646180153 0.008053277619183064 -0.06028251722455025 0.010354995727539062 -0.015908880159258842 -0.04784444719552994 -0.05328477919101715 0.02237757295370102 -0.04501340538263321 -0.010273301042616367 0.049232568591833115 0.0029848753474652767 -0.004088054411113262 -0.04495133087038994 0.03539237380027771 0.03337816521525383 0.08939105272293091 0.036019906401634216 0.009639917872846127 0.017905309796333313 -0.028567325323820114 -0.003889769781380892 -0.07221223413944244 0.009584176354110241 0.05022987723350525 0.04160996899008751 0.0181767325848341 -0.01464865542948246 0.026034755632281303 -0.0031829937361180782 0.047283101826906204 0.0073464540764689445 0.08025186508893967 0.05571873486042023 -0.028886616230010986 -0.0552406832575798 -0.011609633453190327 -0.034481655806303024 0.018264133483171463 0.0017903480911627412 -0.0009110607206821442 0.08818494528532028 -0.004332587122917175 -0.009784352965652943 0.019727621227502823 -0.008923581801354885 -0.011045631021261215 -0.012742539867758751 -0.00039488408947363496 0.03577130287885666 -0.04979913309216499 0.014659428969025612 0.01235726848244667 -0.01106847170740366 -0.034598421305418015 0.06081882864236832 -0.011531481519341469 -0.025229575112462044 0.05493147671222687 0.01714518293738365 -0.042137518525123596 0.060897164046764374 -0.07030846923589706 6.764478166587651e-05 -0.01232646033167839 -0.06384154409170151 -0.04570356011390686 -0.006355246528983116 -0.08755926787853241 0.0631776675581932 0.09662952274084091 -0.09694699943065643 -0.031044039875268936 0.08046077936887741 0.04774526506662369 0.049351077526807785 -0.03941631689667702 0.06585075706243515 0.030032847076654434 -0.05012410134077072 0.08579863607883453 -0.013306938111782074 -0.010536951012909412 0.013334016315639019 -0.00023064248671289533 0.00942977238446474 0.043993089348077774 0.03327702730894089 -0.007797027472406626 0.014614642597734928 0.016787854954600334 0.03922540694475174 0.06499768048524857 -0.08829138427972794 -0.04644892364740372 -0.033780843019485474 0.03005482628941536 0.023764990270137787 0.008037056773900986 -0.07104954123497009 0.03439612314105034 0.05921965464949608 0.04089798778295517 0.01191385742276907 -0.0075348420068621635 -0.04790575057268143 -0.015542014501988888 0.08995933085680008 -0.02108347974717617 0.026370931416749954 0.018010837957262993 0.011602564714848995 0.0038523648399859667 0.032611723989248276 0.025044849142432213 0.038890987634658813 0.01962485909461975 0.044279687106609344 -0.013350720517337322 -0.002902938751503825 0.013970781117677689 -0.00629534013569355 -0.02466198056936264 0.03015798330307007 0.09554683417081833 -0.002812218153849244 -0.06013128533959389 -0.01473167072981596 0.13294868171215057 0.008440830744802952 0.0048134587705135345 0.010998878628015518 -0.033696066588163376 -0.00810062326490879 -0.051879409700632095 0.05333797633647919 -0.04135969281196594 -0.01791570708155632 -0.0011638400610536337 0.053605128079652786 -0.04497625678777695 0.011068650521337986 0.023408276960253716 0.00134690769482404 0.005982486996799707 0.011331324465572834 0.005798419006168842 0.03433895856142044 -0.0012019864516332746 0.001467329217121005 0.016186393797397614 -0.011831209994852543 -0.05278376489877701 -0.024477897211909294 -0.02577274851500988 0.06494330614805222 0.021858863532543182 0.033771853893995285 0.06237415224313736 -0.06419367343187332 0.0001336300338152796 -0.027003644034266472 0.01647922955453396 0.018971284851431847 0.03342944383621216 -0.0629240870475769 -0.03478752821683884 0.01973254233598709 -0.015103940851986408 -0.02542046271264553 -0.05197679251432419 -0.003957429435104132 0.0730740949511528 0.03474067896604538 0.045119453221559525 0.0008333678124472499 -0.02198519930243492 -0.007771690376102924 -0.012264869175851345 -0.06610224395990372 -0.0502530038356781 -0.04912012815475464 -0.08412153273820877 -0.04565507546067238 -0.0041732387617230415 -0.02335822768509388 0.002630108967423439 0.1009623110294342 -0.010064823552966118 0.06345804035663605 0.107890784740448 -0.01488508190959692 0.008052340708673 0.02410120889544487 -0.022188885137438774 0.053745023906230927 -0.032902173697948456 -0.014636466279625893 -0.06210309639573097 -0.00763884000480175 0.027031321078538895 -0.006997970398515463 0.02963697724044323 0.029475165531039238 -0.039274394512176514 0.020279536023736 -0.025033239275217056 -0.09044751524925232 -0.0229629036039114 0.0783371776342392 -0.01724720187485218 0.00431776512414217 0.04416046291589737 0.06763239949941635 -0.07342871278524399 0.033781155943870544 -0.027995288372039795 0.06872910261154175 0.004957327153533697 0.0336872935295105 0.03249272331595421 -0.012794810347259045 -0.018089525401592255 -0.06007995456457138 -0.01831815205514431 0.06799861788749695 0.003695692867040634 -0.02185884676873684 0.0010393226984888315 0.010662030428647995 0.11931899189949036 -0.029691195115447044 0.014440654776990414 -0.022944388911128044 -0.06329970806837082 -0.00032913594623096287 0.015065423212945461 0.054997943341732025 -0.047134581953287125 0.0557558573782444 0.00993333850055933 -0.06393630802631378 -0.02453131042420864 -0.02750736102461815 -0.041412610560655594 0.0009221567888744175 -0.040967606008052826 0.009298460558056831 -0.058329127728939056 -0.028174877166748047 -0.030963219702243805 -0.02090378664433956 0.021100016310811043 -0.001732198754325509 0.018581651151180267 -0.026756690815091133 0.10098548233509064 0.0002589579962659627 0.0706552118062973 0.11664604395627975 -0.036203134804964066 0.05501818284392357 0.06399121880531311 -0.02151782251894474 -0.10085529834032059 -0.01826135441660881 0.019915815442800522 -0.01579686813056469 0.02565668150782585 0.03250698745250702 -0.027074206620454788 0.026189083233475685 0.025050010532140732 0.002073106821626425 0.008963353000581264 0.020556725561618805 -0.044535860419273376 -0.04985998198390007 0.07348810881376266 0.12824861705303192 0.007667732425034046 -0.041542332619428635 0.0008882696274667978 -0.019182460382580757 -0.020260298624634743 0.05059191957116127 -0.14672565460205078 0.03580921143293381 -0.03979647904634476 0.012775719165802002 -0.0817931517958641 0.05487135052680969 0.010734856128692627 -0.02745206095278263 -0.030032766982913017 -0.06879022717475891 0.02536708302795887 0.05495604872703552 0.022479888051748276 0.0629904642701149 -0.017293840646743774 0.023289436474442482 -0.026857750490307808 -0.0401473268866539 -0.05890835076570511 -0.04454803466796875 -0.06361272186040878 0.08321793377399445 0.0016732303192839026 -0.049003876745700836 -0.03781396523118019 -0.05933237075805664 0.028615230694413185 -0.03506237640976906 0.024507224559783936 0.07109589874744415 0.030615217983722687 -0.10716187208890915 0.036205437034368515 -0.00914721842855215 -0.034798018634319305 -0.02188127487897873 0.04337328299880028 0.013496209867298603 -0.038146667182445526 0.057282377034425735 -0.0049785734154284 -0.04912607744336128 0.08309586346149445 0.05782899260520935 0.026957128196954727 -0.047072604298591614 -0.04087553545832634 0.03834708407521248 -0.08957543224096298 -0.01600569859147072 -0.08185993880033493 0.043983522802591324 -0.030014479532837868 -0.05111391842365265 -0.007476169615983963 -0.023705577477812767 -0.007320278324186802 -0.004980954807251692 -0.003525146981701255 -0.01500253938138485 -0.07493745535612106 0.054813191294670105 0.029649382457137108 -0.003685327246785164 0.10488643497228622 0.05916750058531761 -0.03859607130289078 0.0027998273726552725 0.0843210518360138 0.12016429752111435 0.04626623913645744 0.0013087448896840215 0.05874353274703026 -0.029137350618839264 0.06416063755750656 -0.012450270354747772 0.041718028485774994 -0.019516097381711006 -0.07622364163398743 -0.022389652207493782 0.027526061981916428 -0.027275171130895615 0.04631778970360756 0.02440684102475643 -0.06743364781141281 -0.04320053383708 0.05286603048443794 -0.003435974707826972 -0.055673278868198395 -0.03532977029681206 0.008192501030862331 -0.01420174352824688 0.0009258670033887029 -0.0414089635014534 0.03238973766565323 0.0191301591694355 -0.001379990833811462 -0.06275191158056259 -0.01695057563483715 0.008511949330568314 0.02484886161983013 -0.023443635553121567 -0.01810968853533268 0.08716019988059998 0.09331463277339935 -0.03696003183722496 0.06170203164219856 -0.06044730916619301 -0.04355614632368088 0.02819427102804184 0.029102010652422905 0.06428520381450653 -0.02489503100514412 0.021978285163640976 0.004528275225311518 0.004770003259181976 -0.04521806538105011 0.013152048923075199 0.03390903025865555 -0.07787306606769562 0.0360955148935318 0.02195628359913826 -0.07804132997989655 0.044585611671209335 0.029599232599139214 0.00563066266477108 -0.039049770683050156 0.042996857315301895 0.056569065898656845 0.011245235800743103 0.02206794172525406 0.04946712404489517 0.017153941094875336 -0.027820290997624397 0.011029169894754887 0.002878148341551423 -0.013912326656281948 -0.008716883137822151 -0.08092282712459564 -0.030846724286675453 0.03606148064136505 0.0006355809746310115 -0.04018513113260269 0.00040769600309431553 -0.04120347276329994 0.03234071657061577 -0.013295792043209076 0.033312808722257614 -0.019555915147066116 0.07102314382791519 -0.11556172370910645 -0.012525176629424095 0.055889904499053955 0.0340031199157238 0.06960088014602661 0.051522836089134216 -0.032016586512327194 0.06164153665304184 -0.020346516743302345 -0.05740802362561226 -0.01465599611401558 0.0008326179231517017 0.04341021925210953 -0.008432217873632908 0.03984358534216881 -0.011314347386360168 -0.005037502385675907 0.07704251259565353 0.03344852477312088 -0.008301387540996075 0.00977109931409359 0.0031781590078026056 0.0703115239739418 0.04240939021110535 0.038511574268341064 0.057703472673892975 0.021680200472474098 0.007544707041233778 -0.02445596270263195 0.026106150820851326 0.010265171527862549 0.018194854259490967 0.055833689868450165 0.012206148356199265 -0.015796173363924026 +0.004837268963456154 -0.03742794692516327 -0.05624079704284668 0.0406583808362484 -0.042603012174367905 0.04112572595477104 -0.013444192707538605 0.020501673221588135 -0.03201284632086754 0.01880400814116001 -0.06536559760570526 0.016672685742378235 -0.03919569030404091 0.02168896608054638 -0.0010946597903966904 -0.11207558214664459 -0.01781342923641205 0.0020039393566548824 0.08146964013576508 -0.07276728004217148 -0.064545638859272 0.09169886261224747 0.04977809265255928 0.04128115996718407 0.03193004056811333 0.005429596174508333 -0.017634090036153793 0.01155832689255476 0.07267456501722336 0.024741385132074356 -0.024990489706397057 -0.044491708278656006 0.02989051304757595 -0.026603829115629196 0.03629820793867111 0.004172289744019508 0.014307932928204536 0.08459059149026871 0.06710305064916611 -0.05213030427694321 0.017353486269712448 0.009566117078065872 -0.010802388191223145 -0.05559541657567024 -0.019809052348136902 -0.03698165342211723 -0.056160081177949905 -0.0743960291147232 0.012247316539287567 0.0035082052927464247 -0.014403079636394978 0.0431569404900074 0.005530843045562506 -0.01635904610157013 -0.07985544204711914 0.01436674315482378 -0.027758082374930382 0.09345550835132599 0.010813156142830849 -0.015917254611849785 -0.009514164179563522 -0.033772218972444534 -0.006921285763382912 -0.006600943859666586 0.009106457233428955 -0.017645930871367455 0.06373326480388641 0.045559294521808624 -0.012865830212831497 0.036283329129219055 -0.028507523238658905 0.07989876717329025 -0.0054658022709190845 0.0440673902630806 0.02646402083337307 -0.09311086684465408 -0.05454108491539955 -0.02105708047747612 0.012529926374554634 0.008119240403175354 0.026900313794612885 0.006715309340506792 0.03769969195127487 0.00862970482558012 -0.026242267340421677 0.08563142269849777 -0.01322764903306961 -0.04188274219632149 -0.06096181645989418 -0.01903989538550377 0.09401450306177139 -0.05203989893198013 0.010203207843005657 -0.00880785845220089 -0.012983063235878944 0.010890889912843704 0.1241399496793747 -0.0021052889060229063 -0.02675015665590763 -0.02410789765417576 -0.013914017006754875 -0.025156809017062187 0.06100352108478546 -0.03386832773685455 0.0019583951216191053 -0.05443662032485008 -0.05962182581424713 0.015920298174023628 0.018724577501416206 -0.04778238758444786 0.0747498869895935 0.06395029276609421 -0.012779422104358673 -0.05631349980831146 0.06325028091669083 -0.019320372492074966 0.06371237337589264 -0.01058559026569128 0.012217899784445763 0.02701532281935215 -0.04480981454253197 0.09072909504175186 -0.026885036379098892 -0.006171333137899637 -0.00940697267651558 0.04953633248806 0.0207429900765419 0.055169787257909775 -0.02792660892009735 0.005189293064177036 7.501457730541006e-05 0.031415022909641266 0.04612283781170845 0.046848393976688385 -0.040383897721767426 -0.07525540888309479 -0.05413832515478134 0.062068622559309006 0.0681493803858757 0.07678956538438797 -0.12615321576595306 0.06983199715614319 0.13537654280662537 0.0581776425242424 -0.028035299852490425 0.013993551954627037 -0.06673559546470642 0.01467818208038807 0.029629645869135857 -0.04784644395112991 0.03638124465942383 0.02176629565656185 0.036668021231889725 -0.04890477657318115 0.005070209503173828 0.015572400763630867 0.0163439754396677 0.016868295148015022 0.021337028592824936 -0.00044036738108843565 -0.012026391923427582 0.01087266020476818 0.0463545061647892 -0.031859397888183594 -0.01117730513215065 0.09744784981012344 -0.02208184450864792 -0.09426826238632202 -0.006170096341520548 0.13605399429798126 -0.02335604466497898 -0.03401704877614975 0.04333067312836647 -0.013605504296720028 -0.017242517322301865 -0.01961592212319374 0.01043136976659298 0.0013576566707342863 0.050383273512125015 -0.016079552471637726 0.03171452134847641 -0.0829988420009613 0.019262639805674553 0.0618521012365818 -0.0113380067050457 0.00883768405765295 0.0330580472946167 -0.00044113799231126904 0.03426031023263931 0.009224710054695606 0.06657381355762482 -0.035244181752204895 -0.053098052740097046 0.005070326384156942 -0.013450008817017078 -0.005930287763476372 0.0017238333821296692 0.03665773198008537 0.00016925869567785412 0.07452013343572617 -0.038605403155088425 0.03688586875796318 -0.04266059398651123 -0.028996413573622704 0.00699437502771616 0.03957319259643555 -0.0025132987648248672 -0.01728104054927826 0.05063307657837868 -0.05163072794675827 -0.03580731898546219 -0.013364036567509174 -0.01832255721092224 0.028753601014614105 0.023893816396594048 0.02430950477719307 0.022428547963500023 -0.03570466861128807 -0.044100940227508545 0.006878410466015339 -0.047904349863529205 -0.022070767357945442 -0.07903608679771423 -0.07469803839921951 -0.04478942230343819 0.0015185294905677438 0.022425012663006783 -0.0013304976746439934 0.09426520764827728 -0.0453672856092453 0.06345558166503906 0.06293565034866333 0.01840035244822502 0.014585944823920727 -0.04502341151237488 -0.003610811894759536 0.066815085709095 -0.024045085534453392 -0.018652649596333504 -0.03733748942613602 -0.03432926535606384 -0.01888827048242092 -0.04795015603303909 0.022097449749708176 -0.01030978187918663 -0.02365729957818985 0.05215870216488838 0.0277315191924572 -0.08912010490894318 -0.010295040905475616 0.05722218006849289 -0.02937481366097927 -0.007520958781242371 0.06628118455410004 0.02815823070704937 -0.04253765568137169 0.030019138008356094 -0.09684894233942032 0.030120981857180595 -0.023642433807253838 0.043032288551330566 0.013201023451983929 -0.015159494243562222 -0.016780894249677658 -0.019536228850483894 0.03166591003537178 0.04304414242506027 0.036109793931245804 0.0011147025506943464 0.006453515496104956 0.012281530536711216 0.1033269613981247 0.00937609001994133 0.089239202439785 -0.022038934752345085 -0.06439835578203201 -0.01137904729694128 0.016692379489541054 0.06596049666404724 -0.05120284855365753 0.022697726264595985 -0.011062942445278168 -0.006841658614575863 -0.03376954793930054 0.010714060626924038 -0.025281008332967758 0.004883102141320705 0.04071659594774246 0.017460094764828682 -0.028518391773104668 -0.01899850182235241 -0.06367264688014984 0.0307061355561018 0.02829841710627079 -0.06036080792546272 -0.017732102423906326 -0.06268231570720673 0.06904427707195282 -0.006960494909435511 0.03672439977526665 0.060173436999320984 -0.020123589783906937 0.048820480704307556 0.09242928773164749 0.005890166852623224 -0.10118676722049713 -0.025453342124819756 -0.02144293114542961 0.037246283143758774 0.04640968143939972 0.049030985683202744 0.0525476410984993 0.04372979328036308 0.026763305068016052 0.032445721328258514 -0.020905636250972748 0.017509547993540764 0.01895260252058506 -0.05431617423892021 0.03827867656946182 0.0576246939599514 0.020334279164671898 0.015316341072320938 0.021768543869256973 -0.026620974764227867 -0.023652277886867523 -0.02230958268046379 -0.15854494273662567 0.04559154435992241 -0.034637611359357834 -0.016933294013142586 -0.07393523305654526 0.018336232751607895 0.023128941655158997 -0.033918414264917374 -0.042053066194057465 -0.07727500051259995 0.05113803967833519 0.04257400333881378 0.009414924308657646 0.1303219497203827 -0.005945557728409767 -0.005737422965466976 -0.03504709526896477 -0.02717074565589428 -0.08327355980873108 -0.06335416436195374 -0.08250564336776733 0.06751079857349396 -0.0023517657537013292 -0.029828349128365517 -0.07049094885587692 -0.06237577274441719 0.02541988529264927 -0.0008889783057384193 0.01144446525722742 0.029178259894251823 0.020459163933992386 -0.06731121242046356 -0.00741723645478487 -0.020808489993214607 -0.011139393784105778 0.012319629080593586 0.0854799896478653 0.024397602304816246 -0.07436578720808029 0.05474449321627617 -0.012567441910505295 -0.01974491775035858 0.021252786740660667 0.02236972562968731 0.03828342258930206 -0.03139710798859596 -0.02812405303120613 0.05532209575176239 -0.058133289217948914 -0.030400501564145088 -0.027732647955417633 0.032623760402202606 0.0020648958161473274 -0.00012460497964639217 0.0383959524333477 0.0261222030967474 0.05084981396794319 0.07611602544784546 -0.01787017285823822 0.0005857013165950775 0.00932594295591116 0.06022261083126068 0.026466431096196175 0.00950230099260807 0.07902154326438904 0.08198351413011551 -0.016654692590236664 -0.025792516767978668 0.01469341292977333 0.06563166528940201 0.0343015156686306 -0.004849468823522329 0.058455970138311386 -0.020350871607661247 0.0042570410296320915 -0.010653111152350903 0.06011471524834633 0.007997872307896614 -0.06935255229473114 -0.01930239424109459 0.031571924686431885 -0.0601552352309227 -0.031163185834884644 -0.011874543502926826 -0.03314533457159996 -0.08232107013463974 0.05166531726717949 0.020420897752046585 -0.04517371580004692 0.004552188329398632 0.009440960362553596 -0.03349199891090393 -0.07819671928882599 0.004680757410824299 0.021512433886528015 0.07480596750974655 0.02433188259601593 -0.06678258627653122 -0.03238532319664955 0.04931648448109627 0.01981442980468273 -0.10542893409729004 -0.051945146173238754 0.08503589034080505 0.06739064306020737 0.002663795370608568 0.06386977434158325 -0.028209535405039787 -0.02010011300444603 0.030718019232153893 5.298242740536807e-06 0.013395140878856182 0.006844417657703161 0.008484452031552792 0.005978086497634649 0.042365919798612595 -0.021364187821745872 0.005502448882907629 0.018542209640145302 -0.04529966041445732 0.0442926399409771 0.06535749137401581 -0.03732887655496597 0.015435143373906612 0.03685824200510979 0.019078796729445457 0.004179522395133972 0.04953126981854439 0.03558255359530449 0.018685441464185715 0.0067338463850319386 0.04060753807425499 -0.03095013089478016 -0.003481257939711213 -0.013704564422369003 -0.021551895886659622 0.007039496209472418 -0.0007228286121971905 -0.06402478367090225 0.007417650893330574 -0.001182498293928802 0.013770997524261475 0.004143239930272102 0.008435795083642006 -0.04675358533859253 0.028660105541348457 -0.02072530798614025 0.06098749116063118 0.021417420357465744 0.05613383650779724 -0.10608397424221039 0.025917280465364456 0.07420636713504791 0.01999090053141117 0.07414497435092926 0.022082140669226646 -0.008727692998945713 0.038938526064157486 -0.05373527482151985 -0.023635443300008774 0.008003368973731995 0.009749716147780418 0.00713298050686717 0.027068210765719414 0.027093710377812386 -0.020866669714450836 -0.02842458337545395 0.08358114957809448 0.06409218162298203 0.028967346996068954 0.04308589547872543 -0.012345642782747746 0.02705604024231434 0.061403825879096985 0.05330536141991615 0.05762765556573868 0.05717639997601509 0.033015474677085876 -0.025048095732927322 -0.04179186001420021 -0.007048845291137695 0.029847001656889915 0.04002968221902847 -0.006903366651386023 -0.03083767555654049 +0.02272006683051586 0.010738067328929901 -0.044418059289455414 0.0011279885657131672 -0.06068818271160126 0.031423743814229965 -0.014168929308652878 -0.009820652194321156 -0.04995192214846611 0.023335957899689674 -0.04955894127488136 0.023349018767476082 -0.0029885703697800636 -0.057253625243902206 -0.0329105518758297 -0.1297311931848526 -0.0014333550352603197 -0.009735421277582645 0.07139652222394943 -0.04083796963095665 -0.00784207135438919 0.10903003066778183 0.02712852694094181 0.03640497848391533 0.018197985365986824 0.06030496954917908 0.03398618847131729 0.002861052518710494 0.05573509261012077 0.045720309019088745 0.03954952210187912 -0.020312894135713577 0.0404709167778492 -0.0668930932879448 0.05197320878505707 -0.0144694484770298 0.0008061140542849898 0.016008777543902397 0.11171276867389679 -0.039580151438713074 -0.03479103371500969 0.007573065813630819 0.043845467269420624 -0.0809376910328865 -0.06601590663194656 -0.004025558941066265 -0.09933210164308548 -0.057533346116542816 0.027548622339963913 -0.006509280297905207 -0.0038536558859050274 0.04331165552139282 -0.04595828801393509 -0.032401397824287415 -0.016189513728022575 -0.009735876694321632 0.047225337475538254 0.05623806267976761 -0.001578139839693904 0.031945228576660156 0.00183358252979815 0.06522183120250702 -0.0051137846894562244 -0.027423202991485596 0.016708120703697205 -0.027673261240124702 0.03165177255868912 -0.010898111388087273 -0.005503085441887379 0.04623202234506607 0.01588699035346508 0.09214039146900177 -0.017337355762720108 0.045299824327230453 0.020160699263215065 -0.05815422534942627 -0.06263604015111923 -0.042765818536281586 -0.023233434185385704 -0.0019117966294288635 -0.0212483461946249 -0.06185987964272499 0.051377154886722565 -0.031852878630161285 -0.007261181250214577 -0.04720025509595871 -0.03813283517956734 -0.03508142754435539 -0.027622580528259277 -0.023090975359082222 0.06554359942674637 -0.08439371734857559 0.03089573048055172 0.010876928456127644 -0.0031065535731613636 -0.006425600033253431 0.06913557648658752 -0.026710884645581245 -0.025514546781778336 0.03956107795238495 0.005977993831038475 -0.03769407048821449 0.057397838681936264 -0.008860229514539242 0.0008236647117882967 -0.04352448880672455 -0.059007566422224045 0.014343908056616783 0.06261105090379715 0.002156630391255021 0.0786643773317337 0.058231160044670105 -0.017292119562625885 -0.03803021088242531 0.044502634555101395 -0.03726130723953247 0.007610990200191736 -0.021215183660387993 0.05254822596907616 0.04770558327436447 -0.03257518634200096 0.0494358129799366 -0.05161885544657707 -0.0263514444231987 -0.0197471771389246 0.049554187804460526 0.0031438693404197693 0.03306145593523979 -0.02470480278134346 0.03778008371591568 0.0018513321410864592 0.021275468170642853 0.006517994217574596 0.03156973049044609 -0.09833192825317383 -0.0024494517128914595 -0.05815513804554939 0.07340175658464432 0.05847325921058655 0.03233502432703972 -0.07982175797224045 0.026313647627830505 0.08832179754972458 0.01941462606191635 -0.03891478851437569 -0.02873716875910759 -0.023641541600227356 -0.045288603752851486 0.04121851921081543 0.002013498917222023 0.031699273735284805 0.03881826624274254 0.06958786398172379 0.016086580231785774 0.05799731984734535 0.009730448946356773 0.022118771448731422 0.007134253159165382 0.019598152488470078 -0.012281573377549648 0.014769005589187145 -0.022108618170022964 -0.024024074897170067 -0.00803392007946968 0.051005322486162186 0.06503655761480331 0.08304136246442795 -0.06673376262187958 -0.04300558194518089 0.06920624524354935 -0.02277935855090618 -0.010758866555988789 0.01595594361424446 -0.017863048240542412 -0.023313745856285095 -0.0596182644367218 0.011731738224625587 -0.01796000637114048 0.05168653652071953 -0.022261779755353928 -0.009150723926723003 -0.10648518055677414 0.022615225985646248 -0.002855002647265792 -0.0358993336558342 0.03884654492139816 0.027518603950738907 -0.009940828196704388 -0.02546316385269165 0.025908567011356354 0.013206525705754757 -0.016868237406015396 -0.0208530705422163 -0.04758967086672783 -0.01233049388974905 -0.03958068788051605 0.035129476338624954 0.026789823547005653 0.0636659488081932 0.027073875069618225 -0.08194229751825333 0.05035177245736122 -0.07997840642929077 -0.02174333482980728 0.03306308388710022 0.01915726438164711 -0.03200613707304001 -0.08932727575302124 -0.02550462633371353 -0.03517769277095795 -0.0009092506370507181 -0.005302834324538708 0.0006328251911327243 0.012624706141650677 0.03045814298093319 -0.0009530910756438971 0.03833410143852234 -0.04766670987010002 0.014095480553805828 -0.004861889872699976 -0.014366304501891136 -0.05269972234964371 -0.03471457213163376 -0.04120885953307152 -0.016961729153990746 -0.07302901893854141 -0.021377239376306534 -0.03526847064495087 0.11173473298549652 -0.04059794917702675 0.12599942088127136 0.09158128499984741 0.00011654699483187869 0.02276536449790001 0.003047323552891612 -0.036695778369903564 0.0069777402095496655 0.01358538493514061 -0.04054557904601097 -0.0856318399310112 0.012499828822910786 -0.0337156280875206 -0.002111461479216814 0.0226877611130476 0.01942596770823002 0.0035561530385166407 0.03390952944755554 0.028162280097603798 -0.0669177919626236 -0.030391139909625053 0.01025579683482647 -0.06995826959609985 0.02217692695558071 0.06423242390155792 0.02014891617000103 -0.09116965532302856 0.04058893769979477 -0.061534445732831955 0.09132920950651169 -0.03002919629216194 0.017819063737988472 0.01534830592572689 0.007394934073090553 -0.040081754326820374 0.02324949949979782 -0.013273732736706734 -0.013894479721784592 0.06701882183551788 -0.023641439154744148 0.0009823673171922565 0.11008425056934357 0.09636805206537247 0.02845015935599804 0.05049245432019234 0.0016819584416225553 0.008693177253007889 0.031832315027713776 0.042914699763059616 0.007293424103409052 -0.058637700974941254 0.06410156190395355 -0.02570228837430477 -0.01165719609707594 -0.04806983470916748 -0.05426657944917679 -0.08392839878797531 -0.008687705732882023 -0.03069683164358139 -0.020797211676836014 0.012072532437741756 -0.03914909064769745 -0.08099094033241272 -0.089011050760746 0.0054478831589221954 -0.06284938752651215 -0.022117698565125465 -0.032689955085515976 0.008261644281446934 -0.04073489084839821 0.05402596294879913 0.09071558713912964 -0.04327546805143356 0.02922159433364868 0.010543040931224823 -0.025919632986187935 -0.09130733460187912 -0.021225623786449432 0.03335604816675186 0.01277790404856205 0.017524315044283867 0.07228612154722214 -0.051147837191820145 -0.012974988669157028 0.012005259282886982 0.0018548958469182253 -0.013188181445002556 -0.0010568154975771904 -0.0813947468996048 -0.07280123233795166 0.004850400146096945 0.06448843330144882 0.0015887069748714566 -0.02996067889034748 0.04409567639231682 -0.04788975045084953 0.010945013724267483 0.026708349585533142 -0.12762784957885742 0.02504863776266575 -0.051233112812042236 0.012701245956122875 -0.0651729479432106 0.01814885064959526 0.04070715606212616 -0.008327500894665718 -0.05098502337932587 -0.0892224907875061 0.012310865335166454 0.01894627884030342 0.04410158470273018 0.09539151936769485 -0.03221126273274422 -0.014675834216177464 -0.0289065670222044 0.005917039699852467 -0.04138149693608284 0.0002249737299280241 -0.11247800290584564 0.09584840387105942 -0.003030311781913042 -0.06357432901859283 -0.03052159771323204 -0.03645821288228035 0.03805229812860489 -0.03929098695516586 0.013518502935767174 0.050129666924476624 0.032623372972011566 -0.04242410883307457 0.005979885812848806 -0.0008758688345551491 0.000394467351725325 -0.04182227700948715 0.020761307328939438 0.0511113665997982 -0.004303696099668741 0.061491310596466064 -0.019281839951872826 -0.08708931505680084 0.07119366526603699 -0.008347814902663231 0.002539239590987563 -0.05028485506772995 0.0019576128106564283 0.05897587165236473 -0.07675900310277939 -0.01475767232477665 -0.008523257449269295 0.021275704726576805 0.015316218137741089 0.015520326793193817 0.037488434463739395 -0.004914140794426203 0.020769018679857254 0.05543907731771469 0.01069384254515171 0.006465749349445105 -0.0299812164157629 0.00441008759662509 0.08465895801782608 0.028334634378552437 0.06698893010616302 0.00357734109275043 -0.003276627976447344 0.03682452067732811 0.05257346108555794 0.04804036766290665 0.041318055242300034 -0.02979852445423603 0.04136868938803673 0.012234725058078766 -0.010635068640112877 -0.001050853170454502 0.1185426115989685 -0.023288868367671967 -0.06862412393093109 -0.04791377857327461 0.07075926661491394 -0.05826297774910927 -0.027897078543901443 0.004256341606378555 -0.03337891772389412 -0.028541725128889084 0.08204687386751175 -0.020659545436501503 -0.08247682452201843 0.03501226380467415 0.059630341827869415 -0.02217601053416729 -0.019791966304183006 -0.03105187602341175 0.027782466262578964 0.0110788494348526 -0.029834246262907982 0.00871796440333128 -0.00822109542787075 0.04543178528547287 0.03662099689245224 -0.026409557089209557 0.05028170719742775 0.049406297504901886 0.06888603419065475 -0.008531338535249233 0.05711156874895096 -0.04467998445034027 0.0023713703267276287 0.006663046777248383 0.02888433262705803 0.0337986946105957 0.021962076425552368 0.04096315801143646 0.024192053824663162 0.02045775204896927 -0.07076713442802429 0.023844916373491287 -0.01570064201951027 -0.0588558129966259 0.06785821169614792 -0.0050721559673547745 -0.04147632047533989 0.034642089158296585 0.01935293711721897 0.031283847987651825 -0.011100593954324722 0.009319677948951721 0.02156616933643818 -0.00878956075757742 -0.003756472608074546 0.027403859421610832 0.03231600299477577 -0.04365934059023857 -0.0033784660045057535 -0.009080938063561916 0.00931991171091795 0.0073781381361186504 -0.016894323751330376 0.020437458530068398 0.008152030408382416 -0.0012553526321426034 -0.047722626477479935 0.03972342610359192 0.0026608381886035204 0.09615007042884827 -0.021807584911584854 0.019212212413549423 0.002648330992087722 0.024441545829176903 -0.13154907524585724 -0.013714436441659927 0.030131544917821884 0.032170284539461136 0.05543278157711029 0.10736115276813507 0.039662763476371765 0.037366196513175964 -0.0095553332939744 -0.07078882306814194 0.05889873579144478 -0.038838744163513184 0.01212338823825121 0.06230713427066803 0.02024833858013153 0.00011323015496600419 -0.004225853830575943 0.1039779856801033 0.07777436822652817 0.004014094825834036 0.0035091338213533163 -0.028947195038199425 -0.012692843563854694 0.06300466507673264 0.032450173050165176 0.0746462270617485 0.04541287198662758 0.03338687866926193 -0.010056299157440662 -0.03160092607140541 0.0366193912923336 -0.0028127531986683607 0.03372384235262871 0.0126710319891572 -0.028810832649469376 +0.015210948884487152 -0.030587267130613327 -0.09507099539041519 0.02387291193008423 -0.037841036915779114 0.055034030228853226 0.0027285597752779722 0.03519432619214058 -0.07511484622955322 0.03430444002151489 -0.04513626545667648 0.012446064502000809 -0.03433024138212204 -0.03784022107720375 0.0042907241731882095 -0.11605405807495117 -0.011414886452257633 -0.04174201190471649 0.061893969774246216 -0.05947756767272949 -0.03975040465593338 0.06565485894680023 0.04459555447101593 0.0739416554570198 0.03470505028963089 0.016411026939749718 0.056887708604335785 0.0487365648150444 0.06989685446023941 0.03891855105757713 0.024493029341101646 -0.06778795272111893 -0.036389369517564774 -0.01779710128903389 0.028331374749541283 0.012981344014406204 0.0074673728086054325 0.08865310251712799 0.0567232109606266 -0.06698530167341232 0.007811189629137516 0.04449043050408363 0.041255220770835876 -0.057068463414907455 0.0010343710891902447 -0.0285600945353508 -0.046151529997587204 -0.10763037949800491 0.036577556282281876 -0.016666654497385025 0.0038938894867897034 0.05480942875146866 0.01773187331855297 -0.04531380534172058 -0.0767773911356926 0.048487842082977295 -0.031080126762390137 0.06414330750703812 0.029135102406144142 0.06687358021736145 0.0029885403346270323 -0.03420135751366615 0.009899752214550972 -0.014661405235528946 0.051348935812711716 -0.017436709254980087 0.05320045351982117 0.022113285958766937 -0.012263675220310688 0.04281860217452049 -0.04632796719670296 0.05799655616283417 0.021159686148166656 0.019294647499918938 0.031645022332668304 -0.0639873743057251 -0.06044233590364456 -0.045486532151699066 0.02893977425992489 0.028907597064971924 -0.0038511534221470356 0.0016483571380376816 0.0435771606862545 0.04436454176902771 -0.011861898005008698 0.03484470769762993 -0.053866174072027206 -0.016242310404777527 0.0002292461140314117 -0.0063450634479522705 0.04940903186798096 -0.03231976181268692 -0.010991975665092468 -0.0005409850855357945 -0.0444733202457428 -0.0475158765912056 0.08836746960878372 -0.010441181249916553 0.026631195098161697 -0.03888865187764168 -0.01668519526720047 -0.03015700727701187 0.054228659719228745 -0.014773326925933361 0.015495540574193 -0.013092339038848877 -0.11047890782356262 -0.0041675567626953125 0.06369224935770035 -0.03327977657318115 0.04010922089219093 0.08862747251987457 -0.005721105728298426 -0.024517472833395004 0.09845978021621704 -0.01482976134866476 0.001948110293596983 -0.036274947226047516 0.005209549330174923 0.0036555135156959295 -0.026077598333358765 0.06867958605289459 -0.01331364456564188 -0.029439713805913925 0.011139800772070885 0.03272693604230881 -0.020849838852882385 0.07268745452165604 0.008942724205553532 0.051979195326566696 -0.030108751729130745 0.04805070161819458 0.06748073548078537 0.04992823302745819 -0.04385480657219887 -0.059033289551734924 -0.05507967993617058 0.06382583826780319 0.04213310405611992 0.0734432190656662 -0.08903475105762482 0.030818363651633263 0.1490892469882965 0.042649637907743454 -0.07628984749317169 -0.02070789225399494 -0.07715208828449249 0.015252716839313507 0.07041945308446884 -0.004530661273747683 -0.006712092086672783 0.04064052179455757 0.09076018631458282 0.0018513171235099435 -0.01590586081147194 -0.007371861953288317 0.04114583507180214 -0.022472120821475983 0.0033015694934874773 -0.036461059004068375 0.04004504531621933 0.0028096758760511875 0.03449634090065956 -0.07588696479797363 0.04032719135284424 0.05987176299095154 0.009092948399484158 -0.10443808883428574 0.01791834644973278 0.09641725569963455 -0.010686046443879604 -0.023036954924464226 0.018515557050704956 -0.0010639623505994678 -0.03060259111225605 -0.0143375713378191 0.05220486596226692 0.005015885923057795 0.06043767184019089 -0.04795299097895622 -0.009633212350308895 -0.05757544934749603 0.027796655893325806 -0.0006736778886988759 -0.05379210785031319 0.00958823598921299 0.01310685370117426 -0.014696063473820686 -0.01953943818807602 0.005798493046313524 0.02013227716088295 -0.03579474240541458 -0.03223392367362976 -0.03694142773747444 -0.002050509676337242 0.0013135491171851754 0.05440329387784004 0.03864509239792824 0.04321194067597389 0.05366578698158264 -0.08981633186340332 0.03709230199456215 -0.04035721719264984 -0.060051701962947845 0.024810226634144783 0.051842257380485535 -0.000522880582138896 -0.04908788949251175 0.03048734925687313 -0.044872019439935684 -0.04436087980866432 0.021933546289801598 -0.03902783989906311 0.006716948468238115 0.028084825724363327 0.03680611401796341 -0.02295766770839691 -0.010758520103991032 -0.048693764954805374 -0.0076058111153542995 -0.03547968342900276 -0.029044954106211662 -0.04609363526105881 -0.04132001847028732 -0.007013982627540827 -0.043867841362953186 0.0025510776322335005 0.010647960938513279 0.1154339462518692 -0.037042222917079926 0.06404466181993484 0.05286919325590134 0.01944204978644848 0.006069148425012827 -0.0011240859748795629 -0.04373400658369064 0.030717963352799416 -0.018277710303664207 -0.060171257704496384 -0.07381542026996613 0.004673731978982687 -0.03205354884266853 -0.03278352692723274 -0.008983025327324867 0.0169875156134367 0.0049622515216469765 -0.008930613286793232 0.05407309532165527 -0.08466736227273941 -0.008675362914800644 0.044531580060720444 0.026935487985610962 -0.0023078941740095615 0.05741700902581215 0.01565375179052353 -0.08896280080080032 0.021568063646554947 -0.057286906987428665 0.0657750740647316 -0.06803766638040543 0.06335314363241196 -0.04021265730261803 -0.04475877434015274 -0.017161784693598747 0.026115650311112404 -0.002208828227594495 0.009468796662986279 0.059664200991392136 0.00018498777353670448 0.01174621470272541 0.026730289682745934 0.08295128494501114 0.0015954045811668038 0.0764501690864563 -0.035657480359077454 -0.04041053354740143 -0.021031837910413742 0.03765220567584038 -0.0025240425020456314 -0.031305573880672455 0.024871978908777237 -0.00983605720102787 0.004507496953010559 -0.045398373156785965 -0.011920230463147163 -0.025478355586528778 0.009824523702263832 0.038089435547590256 0.008350258693099022 -0.02748817205429077 0.009378419257700443 -0.05000489205121994 -0.044642433524131775 0.030191903933882713 -0.036737360060214996 0.028739364817738533 -0.01926356740295887 0.08239034563302994 -0.014950398355722427 0.029951198026537895 0.11204315721988678 0.011602348648011684 0.020442962646484375 -0.010122120380401611 -0.004407299216836691 -0.10019797831773758 0.010657772421836853 0.006261868868023157 0.03572048619389534 0.04186651483178139 0.06781977415084839 -0.03810717165470123 -0.018679672852158546 0.001224057748913765 0.04855531454086304 -0.022563017904758453 0.0318911038339138 -0.008535458706319332 -0.039345964789390564 0.005783617962151766 0.04136113449931145 -0.037525616586208344 0.026286330074071884 0.017552202567458153 -0.007999678142368793 -0.017126625403761864 -0.004607336595654488 -0.13487006723880768 0.05678514018654823 -0.029848171398043633 0.017806733027100563 -0.06838489323854446 0.00950329378247261 0.023981859907507896 0.013570291921496391 -0.06013328582048416 -0.09211816638708115 0.06947214901447296 0.023916475474834442 0.0706859901547432 0.12919646501541138 -0.028221730142831802 -0.013993202708661556 -0.004085940774530172 -0.019106755033135414 -0.07957955449819565 -0.04453089088201523 -0.07880745083093643 0.0914645791053772 0.03245483338832855 0.00013846580986864865 -0.07572095096111298 -0.04503586143255234 0.0010858079185709357 -0.024112334474921227 0.011438996531069279 -0.007989881560206413 0.018791915848851204 -0.08942800015211105 -0.026357831433415413 0.01065469067543745 -0.030437195673584938 -0.05087969824671745 0.021809857338666916 0.024445662274956703 -0.04922264814376831 0.0936693623661995 -0.02474992722272873 -0.025472309440374374 0.012133834883570671 0.005569634959101677 0.040983427315950394 -0.015625348314642906 -0.0015810386976227164 0.06123495474457741 -0.07995323091745377 0.0019277561223134398 -0.04053794592618942 0.039093345403671265 -0.02247651107609272 -0.00920360628515482 0.05139338970184326 -0.0186044592410326 0.003666521981358528 0.01844886504113674 0.006987674627453089 0.040230002254247665 -0.002552660880610347 0.05744096636772156 0.005262346938252449 0.015329992398619652 0.07952000945806503 0.01438197959214449 -0.029532156884670258 0.022171275690197945 0.03621498495340347 0.05332649499177933 0.03933405876159668 0.003936971537768841 0.049703456461429596 -0.01715649478137493 0.028522901237010956 0.03248829394578934 0.060466308146715164 -0.012437130324542522 -0.03302339091897011 0.007923642173409462 0.05301973596215248 -0.038667332381010056 -0.012470030225813389 0.0346151627600193 0.017664020881056786 -0.061551447957754135 0.06722726672887802 -0.005224287509918213 -0.07307310402393341 -0.021577075123786926 0.009299181401729584 -0.0708828940987587 -0.019778821617364883 0.029249541461467743 0.04334245249629021 0.03540064021945 0.012782325968146324 -0.032760363072156906 -0.012300977483391762 0.03475157171487808 0.015079706907272339 -0.035642340779304504 -0.0028587656561285257 0.03951245918869972 0.05308462306857109 0.028178226202726364 0.056614574044942856 -0.06570787727832794 -0.03650064766407013 0.02001691423356533 0.03992081806063652 0.009902947582304478 0.040540121495723724 -0.02603386715054512 0.011110016144812107 0.032696399837732315 -0.0670180469751358 0.02247222699224949 0.025971893221139908 -0.06669092923402786 0.06913717091083527 0.06928623467683792 -0.05608657747507095 0.0658344253897667 0.0008344090892933309 0.058804962784051895 0.011022211983799934 0.018531160429120064 0.06714047491550446 0.0010503055527806282 0.02206188440322876 0.031071534380316734 -0.050684623420238495 0.0009616952738724649 -0.01756998337805271 0.00659957155585289 0.025771209970116615 -0.011778721585869789 -0.09666652977466583 0.02557983808219433 -0.025182878598570824 -0.06464128941297531 -0.027850115671753883 -0.009259733371436596 -0.02272712253034115 0.040677860379219055 -0.02097795344889164 0.0341794453561306 0.06530460715293884 0.07789032906293869 -0.10218531638383865 0.010662215761840343 -0.004728479776531458 0.036312591284513474 0.0635969340801239 0.00729802530258894 -0.02511577308177948 0.036593083292245865 -0.04211271181702614 -0.08988910168409348 0.024524103850126266 -0.035853393375873566 0.006836825516074896 0.03705095872282982 0.001402254798449576 -0.013599765487015247 0.02483546733856201 0.07260792702436447 0.07778605818748474 0.02013728767633438 0.0006785328150726855 -0.01714743673801422 0.03594541177153587 0.05943923443555832 0.04495812579989433 0.04044616222381592 0.04191337898373604 0.012709863483905792 -0.06527654826641083 -0.014684007503092289 0.03160892054438591 0.04320194572210312 0.05615495890378952 0.03489794582128525 -0.021863067522644997 +0.0412849485874176 -0.04011998325586319 -0.026762930676341057 0.05799103155732155 -5.177722778171301e-05 0.07374855130910873 0.005251167342066765 0.01255565881729126 -0.05244360864162445 0.05183570459485054 -0.05393284931778908 -0.001900539849884808 -0.046175193041563034 0.007203893736004829 -0.03044542297720909 -0.13122010231018066 -0.003898206865414977 0.020249705761671066 0.05259358882904053 -0.04653508961200714 -0.051774051040410995 0.08789732307195663 0.050207819789648056 0.015884511172771454 -0.019035937264561653 0.03732561320066452 -0.0022309001069515944 0.02139260433614254 0.06477846205234528 -0.017633209004998207 -0.03579962998628616 0.0032096405047923326 0.009741426445543766 -0.04645946994423866 0.03933095932006836 -0.026113253086805344 0.0030191377736628056 0.03907112404704094 0.03124259039759636 -0.035323310643434525 0.012055175378918648 0.06749270856380463 -0.013380411081016064 -0.04838498309254646 0.010684852488338947 -0.01684233359992504 -0.016880512237548828 -0.02368529513478279 -0.030367383733391762 -0.029303021728992462 -0.023695845156908035 0.01281164214015007 0.037610527127981186 0.005387609358876944 -0.06613852828741074 0.030150799080729485 -0.02256230264902115 0.11093443632125854 0.027392461895942688 -0.010648506693542004 0.0031984043307602406 -0.03984588012099266 -0.015299956314265728 -0.05124283954501152 -0.025274012237787247 -0.008728164248168468 0.0659499391913414 0.050483547151088715 -0.018124718219041824 0.029133768752217293 -0.005377757828682661 0.06926305592060089 -0.020996443927288055 0.06567119807004929 0.0350746214389801 -0.09383285045623779 -0.03877980634570122 0.02263530343770981 -0.002506513614207506 -0.022341519594192505 0.026785990223288536 0.056555844843387604 0.01699981652200222 0.023997992277145386 -0.052444182336330414 0.08518979698419571 0.022996194660663605 -0.056012652814388275 -0.06303377449512482 -0.016437001526355743 0.059074338525533676 -0.06035821512341499 0.02706291899085045 -0.016095109283924103 0.01785784773528576 0.027485476806759834 0.09396886080503464 0.01922766864299774 -0.046448033303022385 -0.005394495092332363 0.003646318567916751 -0.008776642382144928 0.03361966460943222 -0.04438645392656326 0.020293183624744415 -0.055495817214250565 -0.052823346108198166 0.003467992413789034 -0.027590565383434296 -0.07652544230222702 0.11431148648262024 0.06463246047496796 -0.04247869551181793 -0.07017642259597778 0.0738639160990715 0.011403104290366173 0.09107166528701782 -0.010017202235758305 0.027112653478980064 0.02069239877164364 -0.04174795746803284 0.08925996720790863 -0.006319895852357149 -0.02457333356142044 -0.00913961511105299 0.013969308696687222 0.03808118775486946 0.0359489880502224 -0.0018331327009946108 -0.0015250886790454388 -0.014211020432412624 0.014259164221584797 0.029172813519835472 0.02861805632710457 -0.05958552658557892 -0.07730690389871597 -0.049239013344049454 0.04538816586136818 0.08624459058046341 0.09963731467723846 -0.09174609929323196 0.04571162536740303 0.09777295589447021 0.05938871204853058 -0.031037453562021255 0.015822995454072952 -0.06264989078044891 0.002271478297188878 0.0350283682346344 -0.03836480528116226 0.06219486892223358 0.01434373203665018 -0.03008444234728813 -0.03754248097538948 0.02364358864724636 0.01342000812292099 -0.004852912854403257 0.02291393280029297 0.0029267698992043734 -0.02468264102935791 -0.012122849002480507 0.029051972553133965 0.0056676315143704414 -0.03135170042514801 -0.0005563407321460545 0.1033463105559349 -0.010231240652501583 -0.08189471811056137 -0.01724008470773697 0.14971795678138733 -0.031693823635578156 -0.03405718505382538 0.01609095185995102 -0.06017008423805237 0.021016623824834824 0.024637671187520027 0.006974474061280489 0.027742337435483932 0.04900563508272171 -0.022041022777557373 0.02550327591598034 -0.047073256224393845 0.017018305137753487 0.0412740558385849 0.021010475233197212 0.030498117208480835 0.007394763175398111 -0.03280121088027954 0.0673540011048317 0.015708845108747482 0.0901748314499855 -0.02009432017803192 -0.0218727495521307 -0.006844045594334602 0.041273459792137146 -0.013994413428008556 -0.04239532724022865 0.0204622820019722 -0.007898740470409393 0.042699798941612244 -0.029183410108089447 0.02243368700146675 -0.045873191207647324 -0.032007183879613876 -0.0035135357175022364 0.04392721876502037 -0.03292612358927727 -0.01046490203589201 0.06197788566350937 -0.04228704050183296 -0.0216989666223526 -0.0545000396668911 -0.018761591985821724 0.02291625365614891 0.010870200581848621 0.05438362807035446 0.007497003301978111 -0.016863374039530754 -0.08568421006202698 0.016981452703475952 -0.02182205393910408 -0.027175825089216232 -0.06587696075439453 -0.05824338644742966 -0.0632862001657486 0.025470418855547905 0.018649179488420486 0.04208362102508545 0.10116183012723923 -0.01474882010370493 0.05447993054986 0.07615851610898972 -0.020943475887179375 -0.026047516614198685 -0.03799273818731308 0.0007852715207263827 0.023408427834510803 -0.05616818368434906 0.02952134981751442 -0.014978773891925812 -0.029721707105636597 -0.003604370867833495 -0.05123605951666832 0.035372693091630936 0.02039935253560543 -0.08050286769866943 0.028001444414258003 -0.024935537949204445 -0.0767919272184372 0.0045339688658714294 0.07516597211360931 0.019585052505135536 -0.005227986257523298 0.03365970775485039 0.04772234708070755 -0.030197028070688248 -0.004460863769054413 -0.04256831482052803 0.005201396532356739 -0.0004315874248277396 0.01836356706917286 0.026393799111247063 0.010663428343832493 0.008682860992848873 -0.0675806850194931 0.001004250138066709 0.08294209837913513 0.02444659359753132 0.030501559376716614 -0.011795842088758945 -0.002751846332103014 0.10562800616025925 0.012269408442080021 0.05727149918675423 -0.023689256981015205 -0.08272033929824829 -0.023025207221508026 0.03692387789487839 0.05188832804560661 -0.058188892900943756 0.03940345346927643 0.06395619362592697 -0.02093406952917576 -0.04659071937203407 -0.003155938582494855 -0.0006163729703985155 0.04586263746023178 0.021897820755839348 -0.02061554044485092 -0.05181506276130676 -0.022123204544186592 -0.04105006530880928 0.015015393495559692 0.0459139384329319 -0.017636196687817574 -0.004319588653743267 -0.038077570497989655 0.07566928118467331 -0.027232209220528603 -0.022235102951526642 0.08012711256742477 -0.0069966185837984085 0.033706001937389374 0.09223400056362152 -0.011868974193930626 -0.07747744023799896 -0.03873113915324211 -0.03545628860592842 0.02503608539700508 0.07490658015012741 0.03454296663403511 0.007521297316998243 0.020776374265551567 0.05351828411221504 0.030221035704016685 -0.025243505835533142 0.006852751597762108 0.02167893946170807 -0.013858240097761154 0.04208860918879509 0.0640232115983963 0.06729722768068314 0.01244578417390585 0.021054474636912346 -0.0077901375479996204 -0.05464024841785431 -0.017163701355457306 -0.13375352323055267 0.012475177645683289 -0.050584327429533005 -0.06797274202108383 -0.0447329506278038 0.05623338744044304 0.03438233956694603 -0.002186672994866967 -0.0611991360783577 -0.028827888891100883 0.02987094037234783 0.026971617713570595 -0.00713874027132988 0.11389251053333282 0.014068878255784512 0.030142024159431458 -0.042355719953775406 -0.05269988626241684 -0.052023470401763916 -0.05908913165330887 -0.0620865561068058 0.07874152809381485 -0.0021724237594753504 -0.0026960172690451145 -0.03327537700533867 -0.07036180049180984 0.024412011727690697 -0.03733766824007034 -0.005920811090618372 0.07238826155662537 0.01705889403820038 -0.060228392481803894 0.024306202307343483 0.004031066317111254 -0.0016834998968988657 0.012641913257539272 0.0827842578291893 -0.010768113657832146 -0.030455073341727257 0.050864338874816895 -0.012293068692088127 -0.004769578110426664 0.0037280407268553972 0.00433995109051466 0.04220743477344513 -0.041927825659513474 -0.020308950915932655 0.037868037819862366 -0.0030570179224014282 -0.046266842633485794 -0.018732797354459763 0.05616186559200287 -0.022011468186974525 -0.01746291294693947 -0.01056132186204195 -0.01742607355117798 0.04951748251914978 0.0658990889787674 0.009150374680757523 0.015565874055027962 -0.03365803509950638 0.03542127460241318 0.010409400798380375 0.009811527095735073 0.11772868037223816 0.05891149491071701 -0.016745690256357193 -0.02479134127497673 0.06436969339847565 0.06933585554361343 0.027850858867168427 0.04215502738952637 0.05041792616248131 -0.062485843896865845 0.018160376697778702 -0.029513785615563393 0.07674485445022583 0.029762284830212593 -0.055608950555324554 -0.06494621187448502 0.02167626842856407 0.016795175150036812 -0.028775669634342194 0.041894491761922836 -0.030427198857069016 -0.0740695595741272 0.012365829199552536 -0.01245211437344551 -0.02814464084804058 -0.018350042402744293 -0.00044568959856405854 -0.011247674934566021 -0.060222938656806946 0.012589785270392895 0.011101079173386097 0.05311091989278793 0.00827635545283556 -0.07933785766363144 -0.05194266512989998 0.07308640331029892 -0.03785399720072746 -0.11120088398456573 -0.03591674938797951 0.06873279064893723 0.08517186343669891 0.006175455637276173 0.04705938324332237 -0.038565922528505325 -0.023469598963856697 0.00694445101544261 0.025556201115250587 0.06476213783025742 -0.0032764854840934277 -0.021117808297276497 0.018960721790790558 0.004142245277762413 -0.024067776277661324 0.01862724870443344 0.0011495272628962994 -0.05712558701634407 0.06983382999897003 0.04364451766014099 -0.11812848597764969 0.02403124049305916 0.0181734561920166 0.017690086737275124 -0.022833164781332016 0.06185996159911156 0.049510933458805084 0.016994882375001907 0.013830688782036304 0.05238224193453789 -0.0442020557820797 0.014451343566179276 0.03129572793841362 -0.005779130384325981 0.010815925896167755 -0.008562426082789898 -0.04416193068027496 -0.0011064634891226888 0.019948672503232956 0.001515233307145536 -0.0013128577265888453 0.008720669895410538 -0.05543556809425354 0.016154421493411064 -0.007992677390575409 0.0464218407869339 0.0340120755136013 0.10887371748685837 -0.07779364287853241 -0.004715355578809977 0.07434368133544922 0.04697487875819206 0.11335857957601547 0.009124258533120155 -0.009490312077105045 0.05070647969841957 -0.06785199791193008 -0.04850956052541733 0.010097621008753777 0.04586775600910187 -0.003936518914997578 0.011499990709125996 0.010976666584610939 -0.02592228353023529 -0.03301136940717697 0.06362538039684296 0.028721673414111137 0.026798201724886894 0.014487599022686481 -0.011564279906451702 0.04241348057985306 0.02404322661459446 0.036388494074344635 0.07555601745843887 0.02203119546175003 0.016357921063899994 -0.03371204435825348 -0.021958664059638977 0.003513970645144582 0.019603358581662178 0.00392490066587925 -0.0419195182621479 -0.00318642845377326 +0.058779027312994 -0.05505208298563957 -0.11617984622716904 0.037572599947452545 -0.06849558651447296 0.04554033279418945 -0.0018318030051887035 0.01886778511106968 -0.048950206488370895 -0.026948794722557068 -0.030941318720579147 0.027105897665023804 -0.006340729538351297 -0.03582049533724785 0.04464088752865791 -0.07763749361038208 0.06527043879032135 0.025503098964691162 0.05346652492880821 -0.02957071363925934 -0.04523560404777527 -0.004004594869911671 0.011194181628525257 -0.04837212711572647 0.005412175320088863 -0.038992155343294144 -0.01332671195268631 0.036172013729810715 0.07715363055467606 0.08613034337759018 0.015242801047861576 -0.06274257600307465 -0.03134359419345856 -0.049781300127506256 -0.05939200520515442 -0.022411489859223366 -0.05101338401436806 0.040405236184597015 0.030886884778738022 -0.01887236163020134 -0.03156962990760803 0.009614759124815464 -0.07309480011463165 -0.0714501440525055 0.02391873672604561 0.011278875172138214 0.006053760647773743 -0.06274071335792542 0.02643129788339138 -0.048039283603429794 0.0033629240933805704 -0.010722249746322632 -0.0010816375724971294 -0.019633296877145767 -0.0868237093091011 -0.01023246068507433 0.020468655973672867 0.05860278010368347 0.02698298543691635 0.12479249387979507 -0.06211845204234123 -0.002311225514858961 -0.0017649338115006685 0.03527138754725456 -0.014716275967657566 0.039131905883550644 0.09896976500749588 -0.023654019460082054 -0.0641086995601654 -0.05862456560134888 -0.05328066274523735 0.04136636480689049 0.06602679938077927 -0.014474313706159592 -0.004682154860347509 -0.09528838098049164 -0.02844112738966942 -0.035187505185604095 0.05103860795497894 0.05896902084350586 -0.02708370052278042 -0.06388242542743683 0.08343365788459778 0.05053829401731491 0.018280550837516785 -0.057297490537166595 -0.07504051178693771 0.02273372747004032 -0.01426194328814745 0.015709638595581055 0.0491524264216423 -0.018631763756275177 -0.01005807239562273 -0.011532996781170368 -0.0024997566360980272 -0.019522491842508316 0.03125015273690224 0.018354713916778564 -0.04906897991895676 0.03345430642366409 0.01279100775718689 -0.04997451975941658 0.0549139529466629 0.02825774811208248 0.06448644399642944 0.0008517892565578222 -0.04625382274389267 -0.005172148812562227 0.03882346302270889 -0.009987344034016132 0.025719420984387398 0.05811988562345505 -0.019511941820383072 -0.026693301275372505 0.05689768120646477 0.0010429322719573975 0.01018613949418068 -0.0777176097035408 0.050033047795295715 0.05539017915725708 -0.007296363357454538 0.02735334075987339 0.002766067162156105 -0.05756329372525215 0.008454551920294762 -0.031138144433498383 -0.026207460090517998 -0.01139563973993063 -0.014133375138044357 0.01679125428199768 -0.014034328982234001 0.043881893157958984 0.00992184691131115 0.038620490580797195 -0.06175774708390236 0.02895822562277317 -0.02037694863975048 0.06862365454435349 0.08873198181390762 0.023593297228217125 -0.03911028802394867 0.027659403160214424 0.038417793810367584 0.02426433004438877 0.04073341563344002 -0.035701196640729904 -0.06972770392894745 -0.0489039272069931 -0.0028651077300310135 0.027400650084018707 0.015270865522325039 0.041548486799001694 0.050627004355192184 0.0014508628519251943 0.06967303156852722 -0.04025682061910629 0.0625624805688858 -0.05514396354556084 -0.056235019117593765 -0.007829471491277218 0.05163848400115967 -0.010936991311609745 0.018740838393568993 -0.07523009181022644 0.03493766859173775 0.06757562607526779 0.035498037934303284 -0.011295723728835583 -0.056211698800325394 0.07197926193475723 -0.03650927543640137 0.03344300389289856 0.09657090157270432 -0.0212064478546381 -0.025906896218657494 -0.03876291960477829 0.07769323140382767 -0.07968492805957794 0.07422218471765518 -0.05998147651553154 0.014400954358279705 -0.03272872418165207 -0.011078745126724243 -0.015657519921660423 -0.03783227130770683 0.03745342046022415 0.034223586320877075 -0.04474793002009392 -0.022043149918317795 -0.008746902458369732 -0.06723139435052872 -0.06887290626764297 0.039603084325790405 0.006801327224820852 0.045804351568222046 0.009911403059959412 0.01864989474415779 0.046950630843639374 0.03451957181096077 -0.01082641538232565 -0.05900917202234268 0.024438990280032158 -0.015080602839589119 -0.021477030590176582 -0.023119986057281494 -0.01944596879184246 0.014383397065103054 -0.007490772288292646 0.059139326214790344 0.035370416939258575 -0.050982385873794556 0.04514358565211296 -0.08912211656570435 0.009417249821126461 0.02158854529261589 0.014148706570267677 -0.03460900858044624 0.036768823862075806 0.006301988381892443 0.01891481503844261 -0.0045148166827857494 -0.000948550587054342 -0.048677217215299606 -0.09617399424314499 -0.016568517312407494 -0.049436286091804504 -0.002895854879170656 0.02261163294315338 -0.0026687418576329947 0.02502978779375553 0.03076573833823204 0.007715982384979725 -0.003460034029558301 -0.036299992352724075 -0.046046964824199677 -0.04495912417769432 0.004399114288389683 -0.012679572217166424 -0.04168861359357834 -0.10634680092334747 0.026378553360700607 -0.051365841180086136 0.043776631355285645 -0.03599192947149277 0.04918759688735008 0.04360221326351166 -0.06051488220691681 -0.003741772845387459 -0.0442570261657238 -0.04607231542468071 0.055856991559267044 0.04324768856167793 0.011882721446454525 0.029003236442804337 -0.03682166337966919 -0.020701296627521515 0.05098111927509308 -0.034164611250162125 0.09877677261829376 -0.010925575159490108 -0.016879387199878693 -0.008741657249629498 -0.04060611501336098 -0.02797193080186844 0.06518576294183731 0.021037476137280464 0.0485839806497097 0.027757111936807632 -0.05072706937789917 -0.014102202840149403 -0.0353214405477047 -0.0018554473062977195 0.03373086825013161 0.006346999201923609 -0.06469527631998062 -0.011625813320279121 0.0022006691433489323 0.0027030243072658777 -0.039009939879179 -0.029802676290273666 0.023944854736328125 0.09111329168081284 -0.04063666611909866 -5.484450957737863e-05 -0.055006660521030426 0.02137245610356331 -0.016235148534178734 0.015623509883880615 -0.015884090214967728 -0.03748365119099617 0.0004390768299344927 -0.09962945431470871 -0.036787014454603195 -0.004168482962995768 -0.06454640626907349 0.028886714950203896 0.047835905104875565 0.05022392421960831 -0.02551647648215294 0.00781727209687233 0.09740978479385376 -0.0681319609284401 0.012612965889275074 -0.043458931148052216 -0.09614169597625732 -0.03968275710940361 0.01581447571516037 -0.01809254288673401 0.014463305473327637 -0.004850635305047035 -0.012198364362120628 -0.06256919354200363 -0.0009220471256412566 0.005341039504855871 -0.019065195694565773 -0.06133405491709709 -0.06584478914737701 -0.09862159192562103 -0.009834395721554756 0.04306848719716072 0.004798511043190956 -0.006322597153484821 -8.725934458198026e-05 0.038961537182331085 0.056669820100069046 -0.08015621453523636 0.021824445575475693 -0.05090959742665291 0.015577616170048714 0.027976039797067642 0.05455682799220085 0.0039015456568449736 -0.007213737815618515 -0.03448617458343506 -0.017866501584649086 -0.0760926678776741 -0.013969868421554565 -0.005310146603733301 0.024245571345090866 0.07784417271614075 0.08013634383678436 -0.06791944056749344 -0.011339726857841015 0.006679769605398178 0.008454819209873676 -0.06376313418149948 -0.024221254512667656 -0.08019410818815231 0.04663088917732239 0.02544289268553257 0.07695029675960541 -0.010973908007144928 -0.05487707629799843 -0.036551665514707565 -0.037476107478141785 0.019637780264019966 0.0025725257582962513 0.0938170775771141 -0.07542620599269867 -0.01928458735346794 -0.02125304937362671 -0.022196687757968903 -0.08633555471897125 0.018465889617800713 0.0058126915246248245 0.003584742546081543 0.0804213136434555 -0.042471084743738174 -0.08965250849723816 0.032862816005945206 -0.04322643578052521 -0.041843753308057785 0.0007041212520562112 0.015956850722432137 0.07890120893716812 -0.04865240305662155 0.023580277338624 0.01238382700830698 -0.01723511889576912 -0.028934279456734657 -0.05681519955396652 -0.0324108749628067 -0.09159104526042938 0.015620047226548195 -0.029278969392180443 -0.018897810950875282 -0.032292772084474564 -0.02210036665201187 -0.022153237834572792 0.018535031005740166 0.07211127877235413 0.02782624214887619 -0.06005452573299408 -0.03467908129096031 0.034008514136075974 0.09311167150735855 0.02064593695104122 -0.03408528491854668 0.05369838327169418 0.04335048049688339 -0.06046922504901886 0.07265955954790115 -0.00650064880028367 0.08749222755432129 0.000555472681298852 -0.03455404192209244 0.005797079764306545 -0.010851365514099598 -0.04178488999605179 -0.00544240465387702 0.037858132272958755 0.0012318950612097979 0.005213738884776831 0.01584373600780964 -0.024565059691667557 -0.03727339580655098 0.03222537785768509 0.08016988635063171 0.02085849456489086 -0.050286319106817245 -0.03637635335326195 0.03805568069219589 0.005505864042788744 -0.008936223573982716 -0.02924432046711445 0.03389393538236618 -0.03097505308687687 0.021993951871991158 -0.020681805908679962 0.025474268943071365 0.04397311806678772 0.03281935676932335 0.043002426624298096 0.021000703796744347 -0.09863036870956421 0.0012794025242328644 -0.007323205936700106 0.02684330940246582 0.021732786670327187 0.045254915952682495 -7.651926352991723e-06 0.03207044675946236 0.014414126053452492 -0.04154282808303833 -0.0028664665296673775 0.05532519146800041 -0.03804675117135048 -0.017085906118154526 -0.02948473021388054 -0.066865473985672 0.026794927194714546 -0.022912606596946716 0.0026199501007795334 0.03323325142264366 0.013513858430087566 -0.02708599530160427 0.05756241828203201 0.028480635955929756 0.045481398701667786 0.04952351003885269 -0.05642883852124214 -0.05546600744128227 -0.008951899595558643 -0.0297275148332119 0.023313382640480995 -0.010651706717908382 -0.010156269185245037 -0.03263958543539047 -0.021486684679985046 0.013771435245871544 -0.0046648732386529446 -0.07853223383426666 0.1128692477941513 0.01660914346575737 0.025108706206083298 -0.02359621226787567 0.06327758729457855 -0.124755859375 0.04940453916788101 0.10289784520864487 0.07629457861185074 0.0013534463942050934 0.025029484182596207 -0.02946098893880844 0.02941623516380787 0.032766833901405334 -0.13070155680179596 -0.019715189933776855 0.0330299437046051 0.06928865611553192 -0.09376984089612961 -0.01329744327813387 -0.07770498096942902 0.006975164636969566 0.022791307419538498 0.039597444236278534 0.024539008736610413 0.024007482454180717 -0.007738662417978048 0.02640555612742901 0.025113767012953758 -0.02230609394609928 0.030811002478003502 0.032045334577560425 0.007426291238516569 -0.009465846233069897 0.04671454057097435 0.06507525593042374 0.01785396970808506 -9.834788215812296e-05 -0.0031427149660885334 -0.043383751064538956 +0.02335214614868164 -0.043639957904815674 -0.03448772802948952 -0.02219519205391407 -0.042864568531513214 0.009016493335366249 -0.015548923052847385 -0.007885098457336426 -0.08528794348239899 0.03091268241405487 -0.040814511477947235 0.027201907709240913 -0.018941247835755348 -0.05032479763031006 -0.012819594703614712 -0.13312114775180817 -0.06558850407600403 -0.022880811244249344 0.041587457060813904 0.00212029367685318 -0.012587730772793293 0.030511051416397095 0.004558747634291649 0.038363587111234665 0.002600159728899598 0.02533722296357155 0.038152825087308884 -0.023548893630504608 0.01189473271369934 0.0015051623340696096 0.031116249039769173 -0.04964372143149376 -0.020444834604859352 0.03906097635626793 0.008404375985264778 -0.053456369787454605 0.015843667089939117 0.044994160532951355 0.05302271246910095 -0.02486451342701912 0.008833948522806168 0.04168929159641266 0.007002720143646002 -0.016470227390527725 -0.031250327825546265 0.017248034477233887 -0.06797637790441513 -0.06109390780329704 -0.013527455739676952 -0.0353027805685997 -0.027216553688049316 0.07479020953178406 -0.00227874587289989 0.023056507110595703 -0.04088957980275154 -0.00756939547136426 -0.009574582800269127 0.07294980436563492 -0.026304097846150398 0.03269496560096741 -0.01197002548724413 0.02279089204967022 -0.008729641325771809 -0.03019668720662594 0.059672120958566666 -0.011381955817341805 0.02703458070755005 -0.008019007742404938 -0.018673717975616455 0.030053503811359406 -0.006431322544813156 0.041158467531204224 -0.009632239118218422 0.06161868944764137 0.02179032564163208 -0.029537729918956757 -0.06557885557413101 -0.0558355413377285 0.0065498934127390385 -0.009583154693245888 -0.009498249739408493 0.03844139352440834 0.06610023975372314 0.0012786919251084328 -0.051444124430418015 0.03868452459573746 -0.008506224490702152 -0.025743393227458 -0.02138170413672924 -0.00156155857257545 0.062384046614170074 -0.04152192920446396 -0.016992667689919472 -0.0014413531171157956 -0.05554245784878731 -0.013646996580064297 0.08636584877967834 0.008148073218762875 -0.006442833226174116 -0.024373793974518776 -0.024455150589346886 -0.022615471854805946 0.04410269111394882 -0.018126707524061203 -0.006823500618338585 -0.04424792528152466 -0.06489457935094833 0.023190556094050407 -0.031158801168203354 -0.07529997080564499 0.07930832356214523 0.08277915418148041 -0.07276101410388947 0.01570378988981247 0.10863454639911652 0.0555858351290226 0.01733383908867836 -0.002080070087686181 0.019325189292430878 0.008620870299637318 -0.045571163296699524 0.08657978475093842 0.012523478828370571 -0.0030215985607355833 0.04541490972042084 0.06253984570503235 -0.039948590099811554 0.03980594873428345 -0.010047555901110172 -0.014882144518196583 -0.041180044412612915 0.03441320359706879 0.047387998551130295 0.053550608456134796 -0.036684971302747726 -0.09637647867202759 -0.06256214529275894 0.029804304242134094 -0.02362600341439247 0.02495267242193222 -0.09913847595453262 0.03876040130853653 0.08078218996524811 0.08177753537893295 -0.04436441510915756 -0.018583374097943306 -0.06025515869259834 0.044351786375045776 0.06138327717781067 -0.00370490993373096 -0.009265720844268799 0.026167338714003563 0.01539769396185875 0.0013576061464846134 0.010648226365447044 0.006030979100614786 0.04955799877643585 0.002626719418913126 -0.00899715069681406 0.0023200621362775564 0.03359416499733925 0.009781638160347939 -0.011554595082998276 -0.044262029230594635 0.03373830020427704 0.15180668234825134 -0.03368619456887245 -0.053763002157211304 -0.00030504027381539345 0.10675686597824097 0.004733010660856962 -0.020749446004629135 -0.0017850283766165376 -0.034456223249435425 -0.060082096606492996 -0.04259857162833214 0.03822389990091324 -0.017448678612709045 0.008673790842294693 -0.010999258607625961 0.05588846653699875 -0.06229149550199509 0.08714991807937622 0.017208999022841454 -0.005556059535592794 0.023140251636505127 -0.01334270741790533 -0.028165852651000023 0.030289990827441216 -0.04375182092189789 0.030500954017043114 -0.029384339228272438 -0.022892413660883904 -0.04589405283331871 -0.029178155586123466 -0.04107880964875221 0.08358728885650635 0.012336588464677334 0.030725592747330666 0.06052852421998978 -0.04993957281112671 -0.017834965139627457 -0.07894112169742584 -0.014366132207214832 0.009874435141682625 0.06361745297908783 -0.04845330864191055 -0.014765733852982521 0.03245408087968826 -0.010865820571780205 0.004040378145873547 0.02066459320485592 -0.024190019816160202 0.019651547074317932 0.023530539125204086 -0.020230386406183243 0.025345677509903908 0.01729305274784565 -0.006807075347751379 -0.017162412405014038 -0.07543830573558807 -0.033297281712293625 -0.02747064083814621 -0.09266320616006851 0.01958085410296917 0.0003695615741889924 0.027632419019937515 0.03332056105136871 0.09410840272903442 -0.03931004926562309 0.05531325563788414 0.10888154804706573 0.011046064086258411 0.013572225347161293 0.02683141827583313 -0.000370254012523219 0.009520519524812698 -0.013958217576146126 -0.017427364364266396 -0.05911027640104294 0.028654782101511955 0.012717421166598797 -0.05656162649393082 0.08822624385356903 -0.007657734677195549 -0.03177783638238907 0.057944200932979584 0.039802491664886475 -0.09536367654800415 -0.0506984181702137 0.06510891765356064 0.009602888487279415 0.05774431303143501 0.046370137482881546 0.08340734988451004 -0.06842634826898575 0.0226843673735857 -0.03140079602599144 0.017181523144245148 -0.005649637430906296 0.07295403629541397 -0.026547882705926895 -0.07218609005212784 -0.008656938560307026 -0.06525074690580368 0.04155028238892555 0.06231176480650902 0.014606250450015068 -0.008908887393772602 0.015460970811545849 0.016890257596969604 0.08698683232069016 -0.010908465832471848 0.014894838444888592 0.0056507643312215805 -0.02040659263730049 0.014101670123636723 0.011478905566036701 0.08055052906274796 -0.04587211832404137 -0.0006800587871111929 -0.021051933988928795 -0.015870893374085426 -0.022692838683724403 -0.025970375165343285 -0.006682418752461672 0.03145474195480347 -0.03778887912631035 0.023489918559789658 -0.004061962943524122 -0.015330804511904716 -0.008118780329823494 0.015672234818339348 0.051317013800144196 0.009225742891430855 0.020138507708907127 -0.027243178337812424 0.04791498929262161 -0.0347617082297802 0.07868309319019318 0.09269977360963821 -0.027499787509441376 0.03922120854258537 0.06528428941965103 0.017203621566295624 -0.09666766226291656 -0.023622307926416397 -0.011276165954768658 0.00013330203364603221 0.0142688462510705 0.05719795078039169 -0.02563084475696087 0.037582531571388245 0.034026093780994415 0.01782691292464733 -0.046803560107946396 -0.008997614495456219 -0.05279720202088356 -0.02988598309457302 0.09057014435529709 0.046556491404771805 0.05272515490651131 -0.018129641190171242 0.03061803989112377 -0.03072270005941391 -0.0647796243429184 0.06658025830984116 -0.1464250087738037 -0.012235736474394798 -0.01448456384241581 -0.02296271175146103 -0.09052468091249466 0.010565308853983879 0.04909950867295265 0.030643973499536514 -0.07171420753002167 -0.06279157847166061 0.029917309060692787 0.03701295703649521 0.053279466927051544 0.07539036870002747 -0.04227997362613678 0.034543946385383606 -0.04252655804157257 -0.05257469415664673 -0.0621892474591732 -0.020007386803627014 -0.08135484904050827 0.10041605681180954 0.05894843861460686 -0.05368253216147423 -0.030738867819309235 -0.01501280814409256 0.038324471563100815 -0.0322229266166687 0.05403793230652809 0.024734940379858017 -0.009960467927157879 -0.075360968708992 0.03583960607647896 0.04419807717204094 -0.029490690678358078 -0.006492140702903271 0.051654718816280365 0.031353551894426346 -0.05354456230998039 0.04966464638710022 0.0285029299557209 -0.018462782725691795 0.029706913977861404 0.0777800977230072 0.03491179272532463 0.009726222604513168 -0.03239603340625763 0.021894333884119987 -0.06694130599498749 -0.003665720345452428 -0.0933178961277008 0.06665191054344177 0.0011292658746242523 0.029676377773284912 0.012016404420137405 0.01779475063085556 -0.017292706295847893 0.009337526746094227 0.009792698547244072 0.0561392717063427 -0.06321250647306442 0.0829545184969902 0.06442096829414368 -0.02137867361307144 0.10522837191820145 0.03981846943497658 0.00612458074465394 0.02309676818549633 0.08072857558727264 0.03685440495610237 0.04947130009531975 -0.031897690147161484 0.025310175493359566 0.0131304282695055 0.028124259784817696 0.04618997126817703 0.03985920175909996 -0.04846732318401337 -0.060920871794223785 0.007793074008077383 0.07171573489904404 -0.06834758073091507 -0.0024061137810349464 -0.0023160495329648256 -0.0217916090041399 -0.05327941104769707 0.06281213462352753 -0.05431424081325531 -0.055815763771533966 -0.045248307287693024 -0.0018197004683315754 -0.03210745379328728 -0.021427761763334274 -0.05949878320097923 0.05665786936879158 -0.012571698054671288 0.01637929491698742 -0.029718318954110146 -0.039371296763420105 0.02936607412993908 -0.031574495136737823 -0.0059695616364479065 -0.022256290540099144 0.09643720090389252 0.08687669038772583 0.060516513884067535 0.08818304538726807 -0.06008563190698624 -0.03543606400489807 0.019717561081051826 0.04600023105740547 0.03683227673172951 0.042436834424734116 -0.008900227956473827 0.022925274446606636 0.018766196444630623 -0.016694169491529465 0.039912693202495575 0.04048695042729378 -0.011030011810362339 -0.009519007056951523 0.04871238395571709 -0.06324580311775208 -0.021649114787578583 0.03741691634058952 0.05178249999880791 -0.03308595344424248 0.0003707646101247519 0.08708198368549347 0.025872791185975075 0.00131352455355227 0.004066187422722578 -0.06134761497378349 0.036825358867645264 -0.022879106923937798 0.042450278997421265 -0.060561925172805786 -0.026365112513303757 -0.0472562275826931 -0.015547557733952999 0.05548103526234627 -0.032202236354351044 0.0002364250976825133 0.048253320157527924 0.03685104474425316 0.021231818944215775 -0.011590030044317245 0.04360295459628105 0.025636667385697365 0.046448465436697006 -0.08597376197576523 -0.038962870836257935 0.025194870308041573 0.009916676208376884 0.03487998619675636 0.0768958106637001 0.03007625602185726 0.10162583738565445 -0.03695909306406975 -0.044859807938337326 -0.04461100324988365 0.036986466497182846 0.013585390523076057 -0.0368608795106411 0.013071772642433643 0.008348937146365643 0.04049273952841759 0.07187291979789734 0.028472675010561943 0.010697627440094948 -0.00918278843164444 -0.0020144509617239237 0.06845977902412415 0.009884168393909931 0.02755056507885456 -0.013592727482318878 0.041807498782873154 -0.0010996628552675247 -0.02061229571700096 -0.029797827824950218 0.03089258261024952 0.003964093513786793 0.03785335645079613 0.04923390969634056 -0.031196724623441696 +0.05113601312041283 -0.008989055640995502 -0.0654844120144844 0.011061678640544415 -0.015244776383042336 0.05591130629181862 -0.03606594726443291 0.013739006593823433 -0.06793849170207977 0.015392901375889778 -0.07710839807987213 0.04008286073803902 0.009781725704669952 -0.03193540498614311 -0.04675086587667465 -0.11180881410837173 0.003126623807474971 -0.004018406383693218 0.09864982217550278 -0.05845355987548828 -0.024334093555808067 0.038976240903139114 0.009841592982411385 0.0450122132897377 0.04912978410720825 0.041471924632787704 0.0651424303650856 0.027461403980851173 0.05804302543401718 0.02654350735247135 -0.005734969396144152 -0.08981004357337952 -0.0005150530487298965 -0.04928027465939522 0.004682417958974838 -0.042111836373806 0.0036247014068067074 0.04720398411154747 0.059077560901641846 -0.04624452069401741 -0.05526106059551239 0.05551575496792793 0.0067499433644115925 -0.05150524154305458 -0.015525873750448227 0.01319080125540495 -0.0796625018119812 -0.06423095613718033 0.008150449022650719 -0.015300760045647621 -0.02694585733115673 0.03369682654738426 -0.0284479521214962 -0.027802996337413788 -0.07241153717041016 0.019123997539281845 0.01925601251423359 0.06446926295757294 -0.010421893559396267 -0.0043621063232421875 0.017295420169830322 0.02739047072827816 -0.018989315256476402 -0.0304695013910532 0.006897646468132734 -0.00442341435700655 0.07119894027709961 0.006706747226417065 -0.008728970773518085 0.040532659739255905 0.0017034657066687942 0.04761244356632233 -0.011838061735033989 0.07458673417568207 0.013881128281354904 -0.05508548393845558 -0.04635629430413246 -0.019053544849157333 0.004074688069522381 0.0004322740714997053 -0.016569962725043297 0.011416683904826641 0.09126222133636475 -0.005709039978682995 -0.0426996611058712 0.014355240389704704 -0.026088185608386993 -0.027337780222296715 -0.044377800077199936 -0.009652817621827126 0.04738912358880043 -0.07495211809873581 0.018209634348750114 0.007578989490866661 -0.01701468415558338 0.0009514745906926692 0.0907764732837677 -0.027757273986935616 -0.019568096846342087 0.019107859581708908 -0.039459288120269775 -0.04558634012937546 0.03452279791235924 -0.02332628332078457 -0.04015583172440529 -0.039560116827487946 -0.08051854372024536 0.021117188036441803 0.026245612651109695 -0.04422631114721298 0.07477163523435593 0.030819155275821686 -0.04975854232907295 0.002892746590077877 0.09854549914598465 0.0002814904728438705 0.051889706403017044 0.0005354201421141624 0.06951861083507538 0.036866236478090286 -0.019228152930736542 0.07731474936008453 -0.011732694692909718 -0.043468210846185684 0.016363540664315224 0.03262719511985779 -0.015997856855392456 0.061069704592227936 -0.046730343252420425 0.020477021113038063 -0.03611515462398529 0.03515248745679855 0.01744881644845009 0.038424666970968246 -0.09511686116456985 -0.05950973927974701 -0.03699227795004845 0.05099456012248993 0.04372083768248558 0.023741014301776886 -0.08772199600934982 0.02134222909808159 0.0792962834239006 0.02615070901811123 -0.014219879172742367 -0.032296620309352875 -0.023421693593263626 -0.028862273320555687 0.06593654304742813 -0.03247218579053879 -0.005740474443882704 0.02707538567483425 0.050439268350601196 0.03867776319384575 0.04368199408054352 -0.010139819234609604 0.053447697311639786 -0.0013203239068388939 0.041384030133485794 0.011342824436724186 0.017498774453997612 0.013270445168018341 0.0012161353370174766 -0.023572685196995735 0.047156888991594315 0.11393334716558456 0.05398327857255936 -0.07535988092422485 -0.03147352114319801 0.12983906269073486 -0.0072498563677072525 0.024016696959733963 0.01625601015985012 -0.034270770847797394 -0.0018847337923943996 -0.048596788197755814 0.052963316440582275 -0.0004991047899238765 0.024749046191573143 0.001522997161373496 0.05124534294009209 -0.08650705218315125 -0.010564030148088932 0.030239639803767204 -0.0019254819490015507 0.016793357208371162 -0.040590401738882065 -0.01640063337981701 0.044659990817308426 0.014291101135313511 -0.006241407711058855 -0.022932983934879303 -0.03589606285095215 -0.05431597679853439 -0.01363099180161953 -0.009151432663202286 0.05642703175544739 0.039657022804021835 0.02657783403992653 0.06942462176084518 -0.04768276959657669 0.004697171505540609 -0.08414698392152786 -0.0011825166875496507 0.021072624251246452 0.059543024748563766 -0.057262759655714035 -0.052942488342523575 0.012127798981964588 -0.028257856145501137 0.01071021519601345 -0.02242778055369854 -0.013027915731072426 0.02575206756591797 0.05483315512537956 0.009771945886313915 -0.027401521801948547 -0.006292841397225857 -0.02260340005159378 -0.00866494607180357 -0.04346606507897377 -0.05762907490134239 -0.048988256603479385 -0.062054239213466644 -0.04800156131386757 -0.018520653247833252 -0.008878601714968681 -0.010283499024808407 0.09924844652414322 -0.06581401824951172 0.0729534700512886 0.08994249254465103 0.04085777327418327 -0.026760360226035118 0.013383965939283371 0.0007408225210383534 0.036776021122932434 -0.04530623182654381 -0.008673964999616146 -0.04815561696887016 0.02402019128203392 0.006226746831089258 -0.031778980046510696 0.01780993863940239 -0.0013316957047209144 -0.009931406937539577 0.036573514342308044 0.017631031572818756 -0.0927344486117363 0.0067975157871842384 0.01829306036233902 -0.013898128643631935 0.0344531387090683 0.06557174026966095 0.04935001581907272 -0.06641504168510437 0.04797197878360748 -0.0322868786752224 0.029619034379720688 -0.031220462173223495 0.006253524217754602 0.040661729872226715 -0.049909669905900955 -0.04829423129558563 -0.02692278102040291 0.014548562467098236 0.03599083796143532 0.0034230821765959263 -0.026369070634245872 0.022190062329173088 0.02759227715432644 0.10966532677412033 0.024993455037474632 0.010878604836761951 -0.02000577561557293 -0.02251225896179676 0.03389016166329384 0.013803413137793541 0.06812602281570435 -0.08319732546806335 0.049738820642232895 -0.019386272877454758 -0.025373971089720726 -0.018682993948459625 -0.0023892209865152836 -0.03883218392729759 0.02344733290374279 0.006584919989109039 -0.01178253348916769 -0.02759672701358795 -0.03713667392730713 -0.09275534003973007 -0.04719243198633194 0.03577326610684395 -0.01588372513651848 -0.03343295305967331 -0.03227800875902176 0.11720963567495346 0.010897382162511349 0.036858752369880676 0.1014365702867508 -0.05602949112653732 0.030422791838645935 0.04046839103102684 -0.03320131450891495 -0.062204908579587936 -0.02749774232506752 -0.006980384700000286 0.001812775619328022 0.049576837569475174 0.051036834716796875 -0.013558521866798401 0.007337211165577173 0.031786754727363586 0.002302509266883135 -0.010803231038153172 0.00973030086606741 -0.043988000601530075 -0.05582798644900322 0.056970447301864624 0.11574440449476242 0.01551663689315319 -0.024220876395702362 -0.0003781934501603246 -0.05689065530896187 -0.009931361302733421 0.026841560378670692 -0.1540805548429489 0.01362632680684328 -0.08055093139410019 0.006132663227617741 -0.07227244228124619 0.04193132743239403 0.0500345379114151 0.003502103267237544 -0.050513800233602524 -0.09760312736034393 0.007218270096927881 0.0342133566737175 0.05492885410785675 0.09199780970811844 0.030968470498919487 0.015318470075726509 -0.01804843731224537 -0.045604102313518524 -0.03938424959778786 -0.035822875797748566 -0.0834745392203331 0.10166258364915848 0.008222359232604504 -0.06557100266218185 -0.029612304642796516 -0.03556711599230766 0.03684883564710617 -0.06374601274728775 -0.007417778484523296 0.07530779391527176 0.017077617347240448 -0.060922812670469284 0.019154846668243408 0.020232481881976128 -0.01534708309918642 -0.006231399718672037 0.0612780787050724 0.007617434952408075 -0.040825121104717255 0.09172651916742325 -0.040591366589069366 -0.005019139498472214 0.05201322212815285 0.014427877962589264 0.04593697935342789 -0.019024057313799858 -0.024330686777830124 0.04735465347766876 -0.070156529545784 -0.026777274906635284 -0.03674750402569771 0.013254902325570583 -0.031720004975795746 0.019556252285838127 0.01599877141416073 -0.0036903091240674257 0.026145318523049355 0.027661306783556938 -0.0005938588292337954 -0.004133671056479216 -0.04339619725942612 0.05504649877548218 0.027275823056697845 -0.014350003562867641 0.10472152382135391 0.04488951712846756 -0.011651447042822838 -0.00951271504163742 0.10365056246519089 0.09854009002447128 0.04176389053463936 0.005381877068430185 0.04906272515654564 0.004075528122484684 0.042820852249860764 -0.022496068850159645 0.06674348562955856 0.004000911954790354 -0.06664810329675674 -0.04825004190206528 0.0625397339463234 -0.0433320626616478 -0.009220220148563385 0.00779627775773406 -0.01327128428965807 -0.043640732765197754 0.07728176563978195 0.030311359092593193 -0.06876223534345627 0.036930616945028305 0.04893263056874275 -0.026633458212018013 -0.005173627752810717 -0.034670207649469376 0.058348365128040314 0.02771272324025631 -0.0017188236815854907 -0.02675718255341053 -0.012029326520860195 0.02340792678296566 0.007378180976957083 -0.0442795529961586 0.014923186972737312 0.07090391963720322 0.06503380835056305 -0.04064777493476868 0.06877102702856064 -0.053816959261894226 0.0008986022439785302 0.01812329888343811 0.02448546513915062 0.08715945482254028 0.017782963812351227 0.0468752384185791 0.01663905382156372 0.001869669766165316 -0.02723519876599312 0.004793927539139986 0.0242595337331295 -0.05976129695773125 0.05055999755859375 0.03007952868938446 -0.05635758861899376 0.02826307713985443 0.055950894951820374 0.0038640748243778944 -0.033436451107263565 0.03997842222452164 0.0402413010597229 0.02159649133682251 -0.004374511074274778 0.024769892916083336 -0.024077963083982468 0.007682244759052992 -0.014759676530957222 -0.02571183256804943 -0.0015250189462676644 0.023775815963745117 -0.043844472616910934 -0.014734603464603424 0.043064288794994354 0.002798696281388402 -0.02307354100048542 0.0433126837015152 -0.00431224936619401 0.0714346170425415 -0.015512579120695591 0.02813738025724888 0.00029576299129985273 0.07022835314273834 -0.12756560742855072 -0.018272673711180687 0.026859140023589134 0.007562532089650631 0.0688728541135788 0.07670369744300842 0.004113691858947277 0.0346316359937191 0.0019148444989696145 -0.0776011273264885 0.018183209002017975 -0.004550237208604813 0.055908165872097015 0.05383133515715599 0.04210400953888893 -0.014311783015727997 0.002151811495423317 0.1016078069806099 0.03397369757294655 0.0028072574641555548 -0.014265462756156921 -0.04487461969256401 0.030831273645162582 0.07060130685567856 0.057248786091804504 0.028809232637286186 0.004338119179010391 0.044397104531526566 0.002722937148064375 -0.029199790209531784 0.03684079647064209 -0.027486562728881836 0.032893676310777664 0.027912238612771034 -0.02979135327041149 +-0.011807800270617008 -0.028644172474741936 -0.09242703765630722 0.023917576298117638 -0.024357616901397705 0.0590868815779686 0.054535988718271255 -0.025768756866455078 -0.07055170834064484 0.05090990290045738 -0.057299382984638214 -0.019180839881300926 -0.030956223607063293 -0.02471032179892063 0.032127536833286285 -0.08404599875211716 -0.008021370507776737 -0.021381327882409096 0.08015642315149307 -0.04269125685095787 -0.027742139995098114 0.06571463495492935 0.02662193402647972 0.06801100820302963 0.021819397807121277 0.06750330328941345 0.016080468893051147 0.021871816366910934 0.07841113954782486 0.014598794281482697 0.015924297273159027 -0.0329485684633255 -0.0026940538082271814 -0.05062435194849968 0.03194922208786011 0.0062290639616549015 0.03346763178706169 0.07774195820093155 0.08262879401445389 -0.0662994235754013 -0.033103521913290024 0.04054536297917366 0.032792624086141586 -0.07152178138494492 -0.013445917516946793 -0.0658189207315445 -0.028663169592618942 -0.07806037366390228 0.03247489035129547 0.0012816196540370584 -0.024310829117894173 0.07851715385913849 -0.009879705496132374 -0.04987527057528496 -0.0682060644030571 0.003910643979907036 0.011826113797724247 0.06005515903234482 0.017404254525899887 0.055733442306518555 0.039056383073329926 -0.011288560926914215 0.004792428109794855 -0.048927731812000275 0.0032211721409112215 -0.031171884387731552 0.05682212859392166 -0.015484524890780449 -0.042972199618816376 0.0713634118437767 -0.07046058773994446 0.04919186234474182 0.027070563286542892 0.021890100091695786 -0.013609004206955433 -0.035170018672943115 -0.03936902433633804 -0.03188261389732361 0.009218799881637096 0.017730996012687683 -0.02553957886993885 -0.019284769892692566 -0.003484410000964999 0.04911268129944801 0.004619193729013205 0.010041963309049606 -0.06768523156642914 0.021943502128124237 -0.07346197962760925 -0.02275094948709011 0.0541018545627594 -0.08213964104652405 0.00415214616805315 0.03338059410452843 0.042064160108566284 -0.028026536107063293 0.08140548318624496 -0.03130919486284256 0.03132570907473564 -0.02944246493279934 -0.01632898859679699 -0.06580384820699692 0.03962491452693939 -0.02979413792490959 0.013240416534245014 -0.0666632279753685 -0.11394033581018448 -0.00038188783219084144 0.0636499747633934 -0.024215033277869225 0.029782000929117203 0.06026454269886017 -0.013133320026099682 -0.08760124444961548 0.05222504213452339 -0.05596977099776268 0.010232246480882168 -0.07259872555732727 0.007988577708601952 0.018666667863726616 -0.02494385465979576 0.019133543595671654 0.005052718333899975 0.02126152068376541 -0.026522206142544746 0.010111870244145393 -0.012379461899399757 0.04301752150058746 -0.0016768878558650613 0.06973112374544144 0.00863763689994812 0.06093065068125725 0.07611529529094696 0.017083991318941116 -0.07619711011648178 -0.05497005954384804 0.006672488059848547 0.0715859979391098 0.05731794238090515 0.05284808203577995 -0.07194770872592926 0.0034930321853607893 0.14071844518184662 0.04508049413561821 -0.07206182926893234 -0.04415120929479599 -0.044625964015722275 -0.04906081035733223 0.026737602427601814 -0.006519796326756477 0.0014843676472082734 0.05727306008338928 0.09436504542827606 -0.028361735865473747 -0.0017110161716118455 -0.011870012618601322 0.02012876607477665 0.031196696683764458 0.0492745116353035 -0.033611372113227844 0.031767915934324265 -0.009619442746043205 0.04367402195930481 -0.040443453937768936 0.02134239859879017 0.054054152220487595 0.007250132504850626 -0.10792717337608337 0.06181517615914345 0.06713129580020905 0.0017882344545796514 -0.019257264211773872 0.03397315740585327 -0.05082698538899422 -0.04325919970870018 -0.050088103860616684 0.007097119465470314 -0.003821766935288906 0.09927248954772949 -0.03905054181814194 -0.06058233231306076 -0.06219872087240219 0.001896820729598403 -0.0010947400005534291 -0.06556448340415955 0.009598667733371258 0.034930869936943054 -0.009416467510163784 -0.03901654854416847 0.023656949400901794 -0.0048006195574998856 -0.04269427806138992 -0.041996069252491 0.0029767523519694805 -0.03194739669561386 -0.011455602012574673 0.023927312344312668 0.02695794589817524 0.020949823781847954 0.06631854176521301 -0.05765191838145256 0.06081923842430115 -0.07558538764715195 -0.07007136940956116 -0.020047703757882118 0.04548981785774231 -0.017544003203511238 -0.07615046203136444 -0.02990754134953022 -0.05330565944314003 -0.05177002400159836 -0.02194933034479618 -0.016390476375818253 -0.01994396559894085 0.030657291412353516 0.03242776170372963 0.008739890530705452 -0.023248689249157906 -0.028997762128710747 0.016407955437898636 -0.01677865721285343 -0.07174190133810043 -0.04952748119831085 -0.03981694579124451 -0.02667921595275402 -0.0898822620511055 0.037338607013225555 -0.027699416503310204 0.07941249758005142 -0.0432048924267292 0.08294393122196198 0.062464140355587006 0.00046203495003283024 0.01925327256321907 -0.02036169543862343 -0.052013710141181946 0.07499831169843674 -0.014326667413115501 -0.03996482491493225 -0.1065249890089035 0.011818330734968185 -0.07180730998516083 -0.040180422365665436 0.006785474717617035 -0.01999395154416561 -0.010377944447100163 0.012858550995588303 0.056552764028310776 -0.11246985197067261 0.018687184900045395 0.036599405109882355 -0.023966114968061447 0.007815812714397907 0.05932367965579033 -0.01500790286809206 -0.04164279252290726 -0.019494742155075073 -0.044517453759908676 0.11705868691205978 -0.06756149232387543 0.04041464626789093 -0.01881531812250614 -0.004670014604926109 0.026705950498580933 0.06088806688785553 0.030160797759890556 -0.007696946617215872 0.06181023269891739 0.018326053395867348 0.014950140379369259 0.07683905959129333 0.047249145805835724 -0.024963974952697754 0.10227862000465393 -0.00833608116954565 -0.03114180825650692 -0.03409070894122124 0.09417035430669785 -0.03921884670853615 -0.01286148838698864 0.026618359610438347 -0.0373549684882164 0.022083895280957222 -0.02558843046426773 -0.025030210614204407 -0.07321900874376297 -0.01353506464511156 0.017958732321858406 0.017501523718237877 -0.008799169212579727 0.03849635273218155 -0.07080432772636414 -0.060561854392290115 0.02889256179332733 -0.07669208943843842 0.01863226667046547 -0.0430615209043026 0.040069613605737686 -0.014098620042204857 0.007115613669157028 0.0647028461098671 -0.002362446393817663 0.04711678624153137 -0.002201312920078635 0.004522474482655525 -0.07680046558380127 -0.024716487154364586 0.04668104648590088 0.043728381395339966 0.005002256948500872 0.06693699210882187 -0.01702674850821495 -0.022032931447029114 -0.007161862216889858 -0.008306674659252167 0.016001954674720764 0.0029502769466489553 -0.016048824414610863 -0.08702830225229263 -0.014582119882106781 -0.006038333754986525 -0.009955527260899544 0.0019775733817368746 0.04839474707841873 -0.059437211602926254 0.02475643903017044 -0.050404224544763565 -0.1209651306271553 0.01109524816274643 -0.014520636759698391 -0.01638365164399147 -0.05419546738266945 -0.012449587695300579 0.009199924767017365 -0.04500196501612663 -0.08749888837337494 -0.05053061246871948 0.026181401684880257 0.022162502631545067 0.04417319595813751 0.1097680926322937 -0.018329432234168053 -0.024781404063105583 -0.008557222783565521 -0.02643655240535736 -0.07421186566352844 -0.025592025369405746 -0.11598268151283264 0.06839113682508469 0.019417915493249893 -0.027245204895734787 -0.013574494980275631 -0.02058943547308445 -0.010643422603607178 0.018308395519852638 0.010274536907672882 0.005891172215342522 0.03187700733542442 -0.03538135811686516 -0.021038668230175972 -0.030338207259774208 -0.004686381667852402 -0.02368921786546707 -0.022561052814126015 0.0030764646362513304 0.00920902844518423 0.07457148283720016 -0.03145495057106018 -0.026507757604122162 0.007960584945976734 -0.0056928847916424274 0.04298007860779762 -0.025448568165302277 0.037640441209077835 0.08661890774965286 -0.06830470263957977 -0.003058196045458317 0.008255040273070335 0.04071404039859772 -0.008049302734434605 0.02185075916349888 0.035239480435848236 -0.00496002659201622 0.02796613797545433 0.0653267428278923 0.008461288176476955 0.037914615124464035 -0.005858757998794317 0.02972816675901413 0.053603969514369965 0.028326699510216713 0.049631860107183456 0.04369541257619858 0.012590295635163784 0.005255112890154123 0.03365186229348183 -0.002742975950241089 0.04492705315351486 -0.02971324324607849 0.024411704391241074 -0.03029737062752247 -0.037760403007268906 -0.007316901348531246 0.07058358192443848 -0.04106714949011803 0.005860274191945791 -0.004696979653090239 0.04535924270749092 -0.0640723928809166 -0.045893698930740356 0.026279345154762268 0.005336855072528124 -0.052257101982831955 0.048595231026411057 -0.00048158966819755733 -0.02586374245584011 -0.012559364549815655 -0.004568134900182486 -0.05759337544441223 -0.038119230419397354 0.02272254228591919 -0.0003085313946940005 0.04327197000384331 0.007039172109216452 -0.019659124314785004 0.038458451628685 0.06171315163373947 0.06710918992757797 -0.030943825840950012 0.06459306180477142 0.03046513721346855 0.03903631120920181 0.005293401889503002 0.040347568690776825 -0.05015118792653084 0.01265665702521801 -0.008809222839772701 0.046215031296014786 0.00984957255423069 0.029077738523483276 0.0010495370952412486 0.04973185062408447 0.0004444006772246212 -0.07307792454957962 0.032912809401750565 -0.022194502875208855 -0.04992564395070076 0.09334398061037064 0.036469269543886185 -0.039154086261987686 0.07025991380214691 0.02230525016784668 0.03553694859147072 -0.02740609273314476 0.04451633617281914 -0.008621240966022015 0.015265412628650665 0.049831874668598175 0.06322930753231049 -0.018073083832859993 -0.028563575819134712 0.02772231586277485 -0.0088648097589612 0.076256163418293 0.009073375724256039 -0.04830518737435341 0.01126561313867569 0.008684951812028885 -0.012567860074341297 -0.020844293758273125 -0.03489978238940239 -0.0314597561955452 0.012183204293251038 -0.017585711553692818 0.044844258576631546 0.02334362268447876 0.05226609483361244 -0.0919794887304306 0.00448310561478138 0.024790821596980095 0.01738479733467102 0.037392716854810715 0.03688431531190872 -0.004241234622895718 0.05451381206512451 -0.004482943564653397 -0.06677659600973129 0.049806736409664154 -0.023921946063637733 -0.008456862531602383 0.0702727884054184 0.013786153867840767 -0.02436697483062744 0.033618029206991196 0.07348858565092087 0.08149558305740356 0.031999748200178146 0.0026608039624989033 -0.01669183000922203 0.004870635457336903 0.05705147981643677 0.03609869256615639 0.05082292854785919 0.08720719814300537 -0.03711685165762901 -0.050088364630937576 0.012699337676167488 0.015174458734691143 0.03740972280502319 0.059103768318891525 -0.0025371480733156204 -0.010021411813795567 +0.03532195836305618 -0.015420186333358288 -0.0662839487195015 -0.006144797429442406 -0.037906713783741 0.021172799170017242 -0.011339066550135612 -0.029338860884308815 -0.0682920441031456 0.015690449625253677 -0.05316690355539322 0.04953218623995781 -0.0030768958386033773 -0.01851026900112629 -0.033346109092235565 -0.1256408542394638 0.007311686407774687 0.024800799787044525 0.05137396603822708 -0.010184514336287975 -0.0063310847617685795 0.03331019729375839 0.003258890239521861 0.03316676989197731 0.021470708772540092 0.005127681419253349 0.0423576720058918 0.023152047768235207 0.0757259726524353 0.03672795742750168 0.07904374599456787 -0.07376234978437424 0.03233085945248604 -0.00860987976193428 0.01929590292274952 -0.028303995728492737 -0.026258936151862144 0.02650463581085205 0.09112664312124252 -0.005379191599786282 -0.05528199300169945 -0.0031528742983937263 0.007314577233046293 -0.07873526960611343 -0.02328847534954548 0.01866099238395691 -0.08799625933170319 -0.08808014541864395 0.04442073777318001 -0.018637817353010178 -0.03336981311440468 0.026184625923633575 -0.0066767241805791855 0.00991909671574831 -0.05628391355276108 -0.054717015475034714 0.01560442615300417 0.06868458539247513 0.0009840460261330009 0.024198612198233604 -0.003991620149463415 0.04073721915483475 0.016225827857851982 0.02099738083779812 0.0329880565404892 -0.03216207027435303 0.06122101470828056 -0.012870386242866516 -0.03933827206492424 0.054803162813186646 -0.01701962575316429 0.04305479675531387 0.0030014882795512676 0.06699370592832565 -0.006753258872777224 -0.06663346290588379 -0.06050022318959236 -0.029585158452391624 0.008097831159830093 0.007022315636277199 -0.02049732580780983 -0.0057364474050700665 0.07374139130115509 0.016961079090833664 -0.0011690499959513545 -0.01851728931069374 -0.023745309561491013 -0.010299395769834518 -0.03698905557394028 -0.018928855657577515 0.07792320847511292 -0.0666331872344017 -0.004449889063835144 -0.007985849864780903 0.018765566870570183 0.0016949913697317243 0.0890439972281456 0.022526592016220093 -0.003236148040741682 0.007913483306765556 0.007483669091016054 -0.002985382219776511 0.04823387414216995 -0.010368712246418 -0.001065693679265678 -0.05739329382777214 -0.06112590432167053 0.036963820457458496 0.05078151449561119 -0.017241571098566055 0.07468945533037186 0.06865675002336502 -0.03943423554301262 -0.046749815344810486 0.08591964095830917 -0.015626901760697365 -0.0007705482421442866 -0.0411054827272892 0.061667267233133316 0.04064071923494339 -0.025430232286453247 0.07467290014028549 -0.04999340698122978 -0.03513779118657112 -0.023853259161114693 0.04355081543326378 -0.02706390805542469 0.018489036709070206 -0.0417950265109539 0.02217015251517296 -0.014608120545744896 0.06409300118684769 0.0010492021683603525 0.04759879782795906 -0.058739449828863144 -0.06291937828063965 -0.043680619448423386 0.05352206155657768 0.017990823835134506 0.014622244983911514 -0.0697416141629219 0.046965423971414566 0.06813503056764603 0.04986293986439705 -0.024641677737236023 -0.05330447852611542 -0.0589892752468586 -0.014840924181044102 0.04687730222940445 -0.022082699462771416 0.013933474197983742 0.06600243598222733 0.07015132158994675 0.05214250460267067 0.042361997067928314 -0.004759387578815222 0.011215245351195335 -0.03607716038823128 0.004788422957062721 -0.030933236703276634 -0.0013377234572544694 0.04110822454094887 0.03443419560790062 -0.012192015536129475 0.033649396151304245 0.10785192996263504 0.035061586648225784 -0.04070308804512024 -0.029636550694704056 0.08942162990570068 -0.044507697224617004 -0.022414838895201683 0.014353903941810131 -0.028472958132624626 -0.03272513300180435 -0.0371842123568058 -0.002618608297780156 -0.03165478631854057 0.07118044793605804 -0.049029603600502014 0.007538085803389549 -0.10555405169725418 0.011859574355185032 0.02689380943775177 -0.004966876469552517 0.03451951593160629 -0.0017203427851200104 -0.03746188059449196 -0.002776079811155796 0.007751967757940292 -0.01639307104051113 -0.04638329893350601 -0.043092530220746994 -0.03790783882141113 -0.01645405776798725 -0.05622990429401398 0.01954607479274273 0.02391454391181469 0.07742899656295776 0.05138935521245003 -0.06711604446172714 0.017501041293144226 -0.09641626477241516 0.0015328052686527371 0.04408909007906914 0.01841331645846367 -0.048175323754549026 -0.06137480214238167 0.016918018460273743 -0.022871775552630424 -0.0339190773665905 0.012188993394374847 -0.03455362841486931 0.014035549946129322 0.044915661215782166 -0.0035288305953145027 0.014370203949511051 0.029273735359311104 0.02707572653889656 -0.010956204496324062 -0.04827434942126274 -0.03898542374372482 -0.050166286528110504 -0.05981408432126045 -0.004660547245293856 -0.06815169751644135 0.02953166700899601 0.004930631723254919 0.05742857977747917 -0.059579234570264816 0.09948822855949402 0.0702720582485199 0.05373536795377731 0.013070832937955856 0.02210269682109356 -0.0701073706150055 0.024048158898949623 0.0023223289754241705 -0.014895634725689888 -0.08736221492290497 0.04372866451740265 -0.015067183412611485 0.007956176996231079 0.03049338422715664 0.0028214631602168083 -0.032033078372478485 0.03847633674740791 0.019634665921330452 -0.11343784630298615 -0.01757785491645336 0.028343696147203445 -0.05280639976263046 0.0557217039167881 0.07272931188344955 0.022846093401312828 -0.07305599004030228 0.0683138445019722 -0.03683317452669144 0.08448448777198792 -0.005127863027155399 0.003340363036841154 0.007826550863683224 -0.039782360196113586 -0.06368138641119003 0.022952795028686523 -0.008202651515603065 0.04330027103424072 0.06918999552726746 0.0002811718441080302 -0.016065308824181557 0.08438917249441147 0.059370581060647964 0.032738812267780304 0.048382386565208435 0.0027012177743017673 -0.007633201777935028 0.048306889832019806 0.062031086534261703 0.029766885563731194 -0.06852547824382782 0.03358909860253334 -0.025992555543780327 0.009842733852565289 0.017142929136753082 -0.013225789181888103 -0.067290298640728 0.018657062202692032 -0.018995191901922226 -0.0025279803667217493 -0.005900698713958263 -0.03007083386182785 -0.07391049712896347 -0.05310120806097984 -0.02480079047381878 -0.03014015406370163 -0.019575469195842743 -0.011168108321726322 0.07488781958818436 -0.011056624352931976 0.03683524206280708 0.1333177089691162 -0.0635041743516922 -0.005628315731883049 0.03289336711168289 -0.019924523308873177 -0.06511367857456207 -0.03174664080142975 -0.00936190877109766 0.030657542869448662 0.034638661891222 0.03935135155916214 -0.039526112377643585 0.014291192404925823 0.04243384674191475 -0.018061121925711632 -0.03157547116279602 -0.01958160102367401 -0.0759332999587059 -0.03267281875014305 0.05461237207055092 0.03884150832891464 -0.007795040961354971 -0.009798436425626278 0.017650309950113297 -0.0516418032348156 -0.03276000916957855 0.024027124047279358 -0.13252094388008118 0.02048042230308056 -0.04842895641922951 0.0028066239319741726 -0.0645674541592598 0.010386545211076736 0.006669312249869108 -0.004668573383241892 -0.06798965483903885 -0.07765074074268341 -0.003669298253953457 0.008740115910768509 0.0620923787355423 0.07881660014390945 -0.0447760708630085 0.002055992605164647 -0.05081044137477875 0.0028590941801667213 -0.01412716694176197 -0.03643188625574112 -0.1231064647436142 0.12435652315616608 0.026091894134879112 -0.019772902131080627 -0.048413872718811035 -0.020047154277563095 0.04816187545657158 -0.009359636344015598 -0.0021462126169353724 0.017872650176286697 0.0623934231698513 -0.042717620730400085 0.01709980145096779 -0.022438427433371544 -0.05119679868221283 -0.015592698939144611 0.03495648503303528 0.062481839209795 -0.044667504727840424 0.0660601556301117 0.004362259525805712 -0.05122953653335571 0.04356248304247856 0.01684522069990635 0.00436924584209919 -0.03364704176783562 0.004605236928910017 0.08236875385046005 -0.06589749455451965 0.006410572212189436 0.0017342898063361645 0.012655588798224926 0.028374601155519485 0.026318510994315147 0.011546695604920387 -0.05211648717522621 -0.005463358014822006 0.0033278963528573513 0.006678819190710783 -0.004730268381536007 -0.0179704912006855 0.04319480434060097 0.11314765363931656 -0.026603538542985916 0.12188416719436646 0.025661107152700424 0.03412482514977455 0.01698700711131096 0.10182902961969376 0.021138224750757217 0.047260332852602005 0.010898279026150703 0.028580768033862114 0.04201385751366615 -0.008690663613379002 0.03196054697036743 0.05961316078901291 0.01874903403222561 -0.04317662864923477 -0.03813372552394867 0.0689183846116066 -0.09996798634529114 -0.05835256725549698 0.017296267673373222 -0.022383753210306168 -0.027693094685673714 0.08451711386442184 -0.02212323620915413 -0.09563475102186203 0.046159982681274414 0.046893566846847534 -0.05126301571726799 -0.0281208623200655 -0.03419799357652664 0.05686024948954582 0.008413910865783691 0.007073071785271168 -0.02944936975836754 0.03232165053486824 0.03814222291111946 0.027806974947452545 -0.04509621113538742 0.03238547220826149 0.06353140622377396 0.08579978346824646 -0.015008837915956974 0.0748971700668335 -0.02153559774160385 0.016015421599149704 -0.04488646239042282 0.02541149966418743 0.05726955831050873 0.02990388497710228 0.044469404965639114 0.010300506837666035 0.019623246043920517 -0.03110056184232235 0.0002311423741048202 0.027039892971515656 -0.04864467307925224 0.03956136479973793 0.033369146287441254 -0.030473701655864716 0.03440845385193825 0.011710905469954014 0.02098427712917328 0.01764889992773533 0.020386310294270515 0.07397037744522095 -0.01686910167336464 -0.007705932483077049 0.03642656281590462 -8.148638880811632e-05 -0.034934062510728836 -0.03389662504196167 -0.0022216616198420525 -0.01580427587032318 0.013735730201005936 -0.016418391838669777 0.012782298028469086 0.011848707683384418 -0.017903370782732964 0.03671645373106003 0.036534082144498825 -0.017694685608148575 0.06790739297866821 -0.013724259100854397 0.03905532881617546 0.03266453370451927 0.04756250977516174 -0.15489977598190308 0.029280055314302444 0.03693992272019386 0.0711294412612915 0.04069428890943527 0.04300583526492119 0.013845990411937237 0.033095940947532654 -0.038586705923080444 -0.057075317949056625 0.04435059055685997 0.033775459975004196 0.015884462743997574 0.0063689472153782845 0.036843352019786835 -0.009687256067991257 0.044844597578048706 0.08943824470043182 0.05335444584488869 -0.01919027604162693 0.02978464402258396 0.0004441938654053956 0.035064153373241425 0.0482805073261261 0.03278801962733269 0.041177909821271896 0.027294190600514412 0.01080898568034172 -0.0011412941385060549 -0.007862680591642857 0.03410695865750313 -0.021003903821110725 0.004650975111871958 0.07244619727134705 0.010747619904577732 +0.01194172166287899 -0.04855723679065704 -0.015730468556284904 -0.028513535857200623 0.0018965002382174134 -0.06341397017240524 -0.04540630429983139 0.0004073729505762458 -0.007037352304905653 0.0018667611293494701 0.0019026536028832197 0.051800042390823364 0.021694794297218323 0.0050009735859930515 -0.045787692070007324 -0.07652457058429718 0.0065213944762945175 -0.033417753875255585 0.0027231108397245407 0.02784811146557331 -0.0014325756346806884 0.09217855334281921 0.04047095403075218 -0.010328719392418861 -0.027071675285696983 0.019871240481734276 0.03748923912644386 -0.02570207603275776 0.05049428343772888 0.015358660370111465 -0.009560110978782177 -0.03642422333359718 0.02041422575712204 -0.02432055026292801 -0.006461878307163715 -0.01159593090415001 -0.060735154896974564 -0.003799751866608858 0.07852143794298172 0.010068572126328945 -0.007409926503896713 -0.03057904727756977 0.03625936061143875 -0.00947609730064869 -0.05467125028371811 0.05832855403423309 -0.06642568111419678 -0.04125654697418213 -0.01777447946369648 -0.0007054439629428089 0.007947196252644062 0.030205069109797478 -0.0017732942942529917 0.003642550203949213 -0.08124540001153946 -0.03426118195056915 -0.01286548562347889 0.04516897723078728 -0.02691579796373844 -0.056929029524326324 -0.01383547205477953 0.009866100735962391 -0.05063081532716751 0.014926979318261147 0.016712261363863945 -0.0023864321410655975 -0.0322146899998188 -0.0044265566393733025 -0.014074817299842834 0.04285921901464462 0.05056897923350334 0.04426209256052971 0.033023323863744736 0.01553046703338623 -0.03584799915552139 -0.05082978308200836 -0.031127113848924637 -0.07671264559030533 -0.05619295686483383 0.017269207164645195 -0.014776727184653282 0.023030715063214302 0.023162927478551865 -0.015946390107274055 0.027587270364165306 -0.022452151402831078 0.03874226287007332 -0.0347333699464798 -0.04072480648756027 0.010377833619713783 0.05775660648941994 -0.05368584021925926 0.05187663808465004 -0.021084250882267952 -0.028453541919589043 -0.0295015387237072 0.0642089992761612 0.05157589167356491 -0.022597692906856537 -0.024971799924969673 -0.01691364124417305 0.06856650114059448 0.06979309767484665 0.035026371479034424 0.01206850353628397 -0.06034861132502556 0.007085057906806469 0.07393389195203781 0.026608603075146675 -0.020356377586722374 0.07150456309318542 0.0030599699821323156 -0.04749289155006409 -0.004896385595202446 0.03013336844742298 -0.0501876138150692 -0.004517782479524612 0.03329337015748024 0.05353932827711105 -0.020838210359215736 0.020084882155060768 0.055074166506528854 -0.12451756000518799 -0.016148395836353302 0.01726098731160164 0.03371679037809372 0.01766768842935562 0.0750511884689331 -0.0115102119743824 -0.012681161984801292 -0.04591183364391327 0.021000578999519348 -0.03761480748653412 0.06983661651611328 -0.06037333980202675 -0.042739398777484894 -0.08319641649723053 0.04048650711774826 0.01375565305352211 0.0761556476354599 -0.067738376557827 0.05913042649626732 0.012810605578124523 0.0409415178000927 -0.009867321699857712 -0.003672368125990033 -0.029849911108613014 -0.031586576253175735 0.058728232979774475 -0.007671013940125704 0.049639612436294556 0.04473619908094406 0.025410298258066177 0.04326780140399933 0.06146188825368881 -0.0017642545280978084 0.05295182019472122 -0.03225533664226532 0.011946674436330795 0.04031362757086754 0.010371144860982895 -0.040983252227306366 0.009775184094905853 0.003263764549046755 0.04721759632229805 0.035681020468473434 0.08302678167819977 -0.03869834169745445 -0.04512941464781761 0.008716230280697346 -0.011947345919907093 -0.020311711356043816 -0.03749992698431015 -0.029206180945038795 -0.019476424902677536 0.00496554234996438 -0.029219741001725197 -0.029589258134365082 0.0563943013548851 0.04726182296872139 0.05617741122841835 -0.09162593632936478 -0.06741832196712494 0.011402083560824394 0.007138829678297043 0.08006024360656738 -0.07594200223684311 0.0062972609885036945 -0.05056143179535866 0.008321297354996204 0.04528217390179634 -0.06958527863025665 -0.08889026939868927 -0.06822638213634491 0.06392312049865723 -0.026646917685866356 -0.005007706582546234 0.01035368163138628 0.016192633658647537 0.04373391717672348 -0.028874870389699936 -0.002762407064437866 -0.12019860744476318 -0.01625332608819008 -0.0016798177966848016 0.07743123918771744 -0.005879608448594809 -0.06513328105211258 0.03778884559869766 -0.02102525904774666 0.03546588867902756 0.026347622275352478 0.0009142996277660131 0.01094752736389637 -0.002842891262844205 -0.02354961261153221 -0.018713485449552536 0.0064964559860527515 0.03528473526239395 -0.047811511904001236 -0.02776593156158924 -0.012257559224963188 -0.009692222811281681 -0.05148223787546158 0.047800347208976746 0.0038088371511548758 -0.05195670202374458 0.02716587856411934 0.11343377828598022 -0.016168611124157906 0.022071480751037598 0.0023931898176670074 0.0440385527908802 0.04158094897866249 -0.010010519064962864 -0.04661618545651436 -0.017697539180517197 -0.06050720065832138 0.011428609490394592 -0.0012906050542369485 0.06866559386253357 -0.028076712042093277 -0.00990569032728672 -0.010674119926989079 0.022943276911973953 -0.013800962828099728 -0.02840420976281166 0.05125611275434494 -0.03319157287478447 -0.044071804732084274 0.028738340362906456 -0.006145820952951908 -0.02966185472905636 -0.03545205667614937 0.1133698970079422 -0.035957660526037216 0.10769961774349213 -0.07546856254339218 -0.018678870052099228 -0.044281769543886185 -0.0248623788356781 0.012414422817528248 -0.05432811751961708 -0.008572906255722046 0.021767398342490196 0.01140571478754282 0.035237524658441544 -0.04217444732785225 0.00046904475311748683 0.027668992057442665 -0.005474174860864878 0.09840746223926544 0.06857001036405563 0.002053936244919896 0.005709262099117041 0.03887364640831947 0.06749682873487473 0.009269566275179386 0.0628466010093689 -0.08812028169631958 0.07021061331033707 0.006597229745239019 0.0693640410900116 -0.017586171627044678 0.011050347238779068 -0.04232579097151756 -0.01011716853827238 0.007025857921689749 0.02886337786912918 -0.0005069816252216697 -0.0487494170665741 -0.022208601236343384 0.029248783364892006 -0.059843968600034714 -0.00637260265648365 -0.04831058531999588 -0.03785945847630501 0.019523609429597855 -0.007995830848813057 0.06555744260549545 0.06763308495283127 -0.002252452075481415 -0.02277357131242752 -0.009704358875751495 -0.03230860084295273 -0.07960017770528793 -0.007207180373370647 -0.07216156274080276 -0.022281520068645477 0.01786154694855213 0.0502239353954792 -0.02460174821317196 -0.01920885033905506 -0.0529024638235569 -0.007760974112898111 -0.04755377769470215 0.01902778260409832 0.009340246208012104 0.023911919444799423 0.0628325566649437 0.05063733458518982 0.07534049451351166 -0.004706436302512884 -0.024874472990632057 -0.015071473084390163 -0.03858191892504692 0.016039656475186348 -0.04147539660334587 0.04672519117593765 -0.08563194423913956 -0.0001900668430607766 -0.0496349111199379 0.07598281651735306 0.08150308579206467 0.05351373553276062 -0.055987317115068436 -0.0904519259929657 -0.042500030249357224 0.017688937485218048 -0.01861017383635044 0.06621496379375458 0.026015790179371834 0.01653551496565342 -0.023193208500742912 0.0030094131361693144 0.043382514268159866 -0.02118891477584839 -0.11725308746099472 0.07918118685483932 -0.018932199105620384 -0.023674415424466133 -0.10338834673166275 -0.021967967972159386 0.005602401215583086 0.007943392731249332 -0.028850505128502846 -0.023870807141065598 0.002152529777958989 -0.053447362035512924 0.03398602083325386 0.061460305005311966 -0.015742680057883263 -0.00186049728654325 0.08352787047624588 0.10058941692113876 -0.14847753942012787 0.06226262077689171 -0.01356600970029831 -0.044312696903944016 -0.06377103179693222 0.012894222512841225 -0.03675750643014908 -0.02009573206305504 -0.03382771089673042 0.0539134219288826 -0.03874718025326729 -0.08448409289121628 0.036662932485342026 -0.05760743096470833 0.013365601189434528 -0.0037657662760466337 -0.0026251054368913174 -0.05346926301717758 0.024637935683131218 -0.002531708450987935 0.014012926258146763 -0.020113516598939896 0.03694478049874306 0.07871907949447632 0.0453178733587265 0.02523343823850155 0.054777685552835464 -0.0034569285344332457 0.003357427893206477 0.012362068518996239 0.030942482873797417 0.07610036432743073 -0.0032027638517320156 -0.04662643373012543 0.004704318009316921 0.03309349715709686 0.03069421835243702 0.00915618147701025 0.009214134886860847 0.001497388700954616 -0.014430400915443897 -0.05400438234210014 0.03617079555988312 -0.09902236610651016 -0.085642009973526 -0.005614692810922861 -0.010689152404665947 -0.02141394093632698 0.05648357793688774 0.014711433090269566 -0.030993016436696053 0.02609694004058838 0.09517538547515869 -0.04985050484538078 -0.01729840599000454 -0.022695237770676613 -0.009308191016316414 -0.007593984715640545 -0.02349572815001011 -0.041938431560993195 -0.06120161712169647 0.009470716118812561 -0.058464013040065765 0.003293723566457629 -0.0251496359705925 0.028926938772201538 0.062041640281677246 0.021252769976854324 0.1235232725739479 -0.01536922249943018 -0.07788798213005066 0.027736451476812363 0.004642750136554241 0.03688962012529373 0.03906889259815216 0.08882564306259155 0.03486216068267822 0.03641148656606674 0.025796538218855858 -0.05380964279174805 0.039964236319065094 -0.012186821550130844 -0.04120897501707077 0.07401343435049057 -0.0055184438824653625 -0.052946943789720535 0.058134689927101135 0.024217665195465088 0.0224735289812088 0.03356771171092987 0.09414587914943695 -0.024278724566102028 -0.059147659689188004 -0.044687818735837936 -0.01470553781837225 0.032559651881456375 -0.09909652173519135 0.01032173540443182 -0.07688611000776291 0.014707468450069427 -0.020218858495354652 -0.009562540799379349 0.040785688906908035 -0.0003432762168813497 0.009171527810394764 0.04976421594619751 0.07616174221038818 0.0747496485710144 -0.03920566663146019 0.012422049418091774 0.03575024753808975 0.033888690173625946 -0.08756446093320847 -0.044558484107255936 -0.015017518773674965 -0.03581627085804939 0.05299164354801178 0.043779272586107254 -0.02612297795712948 0.03311267867684364 -0.0423610545694828 0.009724278934299946 0.052026648074388504 0.00791000947356224 -0.047096699476242065 0.07799530774354935 0.009036066941916943 0.02552693895995617 -0.0027563264593482018 0.03739676624536514 0.042168028652668 -0.012203922495245934 -0.014892110601067543 0.028075775131583214 0.012163462117314339 -0.004831221885979176 0.06747613102197647 -0.0262035820633173 0.0054773385636508465 0.08637144416570663 0.07768703997135162 0.013461152091622353 -0.05943024903535843 -0.08706779032945633 0.018946068361401558 0.0861605554819107 0.0019084368832409382 +0.013870996423065662 0.003676116233691573 -0.03815576434135437 0.017322467640042305 -0.040097951889038086 0.06338861584663391 -0.015474732965230942 0.007501591462641954 -0.07443293929100037 0.030257277190685272 -0.06588190048933029 0.007159399334341288 -0.02203931286931038 -0.019163303077220917 0.007427295204252005 -0.11397075653076172 0.004464283585548401 -0.00046542289783246815 0.0843128114938736 -0.05920639634132385 -0.03232899680733681 0.06363918632268906 0.054876718670129776 0.07078321278095245 0.04943130537867546 0.05623846873641014 0.044548846781253815 0.04158782586455345 0.09537379443645477 0.029789861291646957 0.0021783942356705666 -0.06694617122411728 -0.0004172157496213913 -0.03652279078960419 0.055655088275671005 -0.012178539298474789 0.03211294859647751 0.04154268279671669 0.09034866094589233 -0.032339587807655334 0.003882244462147355 0.01275144424289465 0.037097301334142685 -0.04486852511763573 -0.0164061039686203 -0.0024945614859461784 -0.05175062268972397 -0.06571251899003983 0.045498818159103394 -0.007329254876822233 -0.010685879737138748 0.07309263944625854 -0.04215361550450325 -0.056351188570261 -0.024795671924948692 0.01575566828250885 0.01204740907996893 0.06203921139240265 0.028239281848073006 0.030903218314051628 -0.01590840332210064 -0.017937613651156425 -0.020621860399842262 -0.06096016615629196 0.009594982489943504 -0.024552777409553528 0.04768657684326172 0.026094211265444756 -0.02583473175764084 0.02509334683418274 0.009733648970723152 0.0817493349313736 -0.012464367784559727 0.0398380383849144 0.0246818196028471 -0.06498512625694275 -0.02955833077430725 -0.04086579754948616 -0.02539532072842121 -0.0004996043280698359 -0.031109018251299858 -0.030033547431230545 0.061593905091285706 0.014390390366315842 -0.05487276613712311 0.031484853476285934 -0.03164258226752281 -0.019899865612387657 -0.0329514816403389 -0.004534134175628424 0.03875168040394783 -0.09037803113460541 0.0012553896522149444 0.006103768479079008 -0.020380394533276558 -0.0375942699611187 0.06683996319770813 -0.009583000093698502 0.0027587017975747585 0.009965161792933941 -0.02908521518111229 -0.030304696410894394 0.05914531275629997 -0.026450004428625107 -0.026577642187476158 -0.050647810101509094 -0.07758158445358276 0.006148137617856264 0.03856746852397919 -0.03141864016652107 0.04109521955251694 0.03858167678117752 -0.028454549610614777 -0.013567201793193817 0.07455189526081085 -0.014618497341871262 0.036042943596839905 -0.03292803466320038 0.019689353182911873 -0.00520143611356616 0.007814237847924232 0.09357739239931107 -0.006367858499288559 -0.008776858448982239 0.01076347753405571 0.031576283276081085 -0.026350369676947594 0.0904686376452446 0.003491385607048869 0.03566181659698486 -0.0002185166085837409 0.02807191200554371 0.027149628847837448 0.06180217117071152 -0.06752758473157883 -0.05705352872610092 -0.06374947726726532 0.06028880178928375 0.05264956131577492 0.05063255503773689 -0.0762934684753418 0.002662683604285121 0.13540196418762207 0.014795004390180111 -0.022549837827682495 0.00319999479688704 -0.03037031926214695 -0.03501768782734871 0.08421485126018524 -0.04199209809303284 0.03952229395508766 0.051631975919008255 0.0969739556312561 0.012401723302900791 -0.020357869565486908 -0.03866073116660118 0.04191805049777031 -0.024505767971277237 0.02579415775835514 -0.011756484396755695 -0.012980598025023937 -0.000990320579148829 -0.016557933762669563 -0.0012178929755464196 0.052959591150283813 0.10293770581483841 0.038398806005716324 -0.10466597229242325 -0.03743594512343407 0.09388940036296844 -0.0009185587987303734 0.009787616319954395 0.016386741772294044 -0.030730240046977997 -0.024152716621756554 -0.07304523885250092 0.042609840631484985 -0.0077532571740448475 0.056065578013658524 0.001114038866944611 0.016605570912361145 -0.05966750904917717 0.03328098729252815 0.02864156849682331 -0.036261141300201416 -0.008131023496389389 -0.0004917205078527331 -0.033333826810121536 0.005634648259729147 0.0011953263310715556 0.0471927709877491 0.021137727424502373 -0.049251630902290344 -0.035739004611968994 -0.03724611923098564 -0.031599096953868866 0.014121434651315212 0.0034339758567512035 0.013555418699979782 0.06247670203447342 -0.08870675414800644 0.03924821689724922 -0.05609611049294472 -0.02460312657058239 0.014829689636826515 0.037538688629865646 -0.04901508986949921 -0.04393414035439491 -0.025047525763511658 -0.044548604637384415 -0.013154867105185986 -0.02868693321943283 -0.016709454357624054 0.02580847032368183 0.02696930058300495 0.021298564970493317 0.009018052369356155 -0.05867398902773857 -0.02789180353283882 0.006213354412466288 -0.0250739436596632 -0.06450348347425461 -0.05554515868425369 -0.08910983055830002 -0.07474058866500854 0.009967477060854435 0.00895817019045353 0.0033069520723074675 0.13179242610931396 -0.02834005281329155 0.06156569719314575 0.06263111531734467 0.012276092544198036 0.04743913561105728 0.00449725054204464 -0.02905997633934021 0.04784775897860527 -0.017665311694145203 -0.014231668785214424 -0.05940132215619087 -0.03252176195383072 -0.01718986965715885 0.008518078364431858 0.008879014290869236 0.014650342985987663 -0.024135654792189598 0.005549674853682518 0.0468703918159008 -0.07702597230672836 -0.012320488691329956 0.0686073824763298 -0.014281975105404854 -0.0031574764288961887 0.04208321124315262 0.027946798130869865 -0.05677959695458412 0.06465045362710953 -0.04911554604768753 0.06150900945067406 -0.04738140106201172 0.03444910794496536 -0.0007065852405503392 -0.0222211591899395 -0.011949737556278706 -0.00830305926501751 -0.014409919269382954 0.023637527599930763 0.03239016607403755 -0.0019161790842190385 0.02935747429728508 0.0401204489171505 0.10818160325288773 0.007201173342764378 0.06407558917999268 -0.03146688640117645 -0.06597203761339188 -0.028339272364974022 0.05649314820766449 0.061850059777498245 -0.02798650972545147 0.035498179495334625 -0.04697244614362717 -0.017643561586737633 -0.03064589388668537 0.0019486977253109217 -0.07130037993192673 0.004310814663767815 0.010894620791077614 0.0044001247733831406 -0.01812710613012314 0.008726127445697784 -0.04345148429274559 -0.04649012163281441 0.019390814006328583 -0.03618544712662697 0.015573808923363686 -0.06876063346862793 0.06964828073978424 -0.009214995428919792 0.02531656250357628 0.06917023658752441 -0.06027495861053467 0.029542116448283195 0.021146565675735474 0.006042345892637968 -0.1241646409034729 0.023233521729707718 0.032212432473897934 0.006874403450638056 0.04045522212982178 0.06390727311372757 -0.035845402628183365 -0.03441765159368515 0.0013017315650358796 0.0007681869901716709 0.017139675095677376 0.02593323215842247 -0.056976836174726486 -0.046614084392786026 0.0246146060526371 0.07744845747947693 0.00877934880554676 0.0008443191763944924 0.031167306005954742 -0.05192352086305618 0.0003481152234598994 -0.004034741781651974 -0.1457190066576004 0.030136704444885254 -0.04314305633306503 -0.0253199003636837 -0.10268083214759827 0.03617532551288605 0.017565572634339333 0.005153590347617865 -0.06121237576007843 -0.07098192721605301 0.07585181295871735 0.008441212587058544 0.041382841765880585 0.07056156545877457 -0.007299572229385376 -0.01962529495358467 0.017360011115670204 -0.02959585003554821 -0.02180398441851139 -0.024460792541503906 -0.07474897056818008 0.10598442703485489 0.036582037806510925 -0.013500907458364964 -0.05965184047818184 -0.03859860077500343 0.04560958966612816 -0.0015672839945182204 -0.0038399233017116785 0.017944373190402985 0.05131233483552933 -0.08796872943639755 -0.007440572138875723 0.016692595556378365 -0.008674287237226963 -0.020678456872701645 0.01792784407734871 0.015404850244522095 -0.05681397020816803 0.06221206113696098 -0.01791580207645893 -0.05119796842336655 0.05578508600592613 0.025816308334469795 0.020372683182358742 -0.03766672685742378 -0.051576659083366394 0.05739726126194 -0.0633327066898346 -0.013729768805205822 -0.027847303077578545 0.04634520411491394 -0.011740106157958508 -0.014645848423242569 0.04822901263833046 -0.015227962285280228 0.04130043089389801 0.05737186223268509 -0.0023794483859091997 -0.009231948293745518 -0.04387227073311806 0.031546127051115036 0.021588798612356186 -0.004023480229079723 0.10687758028507233 0.042231231927871704 0.0010214719222858548 0.013852975331246853 0.018244463950395584 0.07595860958099365 0.03655041381716728 -0.02969144657254219 0.07638967037200928 0.012332565151154995 0.011269701644778252 -0.0013812545221298933 0.09820389002561569 -0.03704657405614853 -0.06444894522428513 -0.0036088486667722464 0.03756091371178627 -0.05443611368536949 0.01151595264673233 -0.02513411082327366 -0.02573665790259838 -0.06297454982995987 0.105521060526371 0.024984708055853844 -0.06995467841625214 0.006836583837866783 0.023199506103992462 -0.015979772433638573 -0.028216945007443428 0.013762736693024635 0.028138116002082825 0.02313343994319439 -0.011339561082422733 -0.04704100266098976 -0.020694972947239876 0.05342445150017738 0.017542395740747452 -0.058583687990903854 0.0038677952252328396 0.08121431618928909 0.09603699296712875 5.8696379710454494e-05 0.07933346182107925 -0.05538320541381836 0.006833599880337715 0.0249605905264616 0.022840987890958786 0.045573264360427856 0.030878260731697083 0.02540571428835392 0.046206891536712646 0.00755266472697258 -0.06853516399860382 0.02691536396741867 0.014091298915445805 -0.03539113327860832 0.024616574868559837 0.04761511832475662 -0.04257983714342117 0.04554101824760437 0.06080744415521622 0.03408146649599075 0.004693127702921629 0.06327785551548004 0.05056420713663101 0.004497805144637823 0.013710271567106247 0.028115641325712204 -0.024548698216676712 -0.033465366810560226 -0.011136069893836975 -0.02862372249364853 0.027643827721476555 -0.00746520422399044 -0.07531197369098663 -0.01382603868842125 0.022922247648239136 0.021392887458205223 0.002710983157157898 0.02593834325671196 0.022039294242858887 0.07419024407863617 -0.012342100031673908 0.08174712210893631 0.034800633788108826 0.07180707156658173 -0.096623994410038 -0.03984088823199272 0.06614299863576889 0.0038285083137452602 0.07594283670186996 0.06117267161607742 0.008044067770242691 0.043882280588150024 -0.0006812763167545199 -0.05803944915533066 0.04475202038884163 -0.007216118276119232 0.011391806416213512 0.020457692444324493 0.02138257957994938 -0.04337948188185692 -0.009561898186802864 0.07631690800189972 0.07286684960126877 0.012513930909335613 0.02853965386748314 -0.039054352790117264 0.04035528749227524 0.07349741458892822 0.023008063435554504 0.06705483049154282 0.03722018748521805 0.006024801172316074 -0.02399216964840889 -0.03489359840750694 0.046289198100566864 0.0016288987826555967 0.06783805042505264 0.019179439172148705 -0.04367324337363243 +0.03790536895394325 -0.021420398727059364 -0.09630240499973297 0.029938358813524246 -0.0006802036077715456 0.02935721166431904 -0.03048793226480484 0.013469051569700241 -0.09984562546014786 0.011915160343050957 -0.06310275197029114 0.014554457738995552 -0.0003714332415256649 -0.050191037356853485 -0.01801159605383873 -0.10577854514122009 -0.002088588895276189 0.014021292328834534 0.08965922147035599 -0.029942378401756287 -0.015403015539050102 0.048694804310798645 -0.015301039442420006 0.04438455402851105 0.04970637708902359 0.03870093449950218 0.07022390514612198 0.015850668773055077 0.09227367490530014 0.04334290698170662 -0.012995122000575066 -0.08348644524812698 -0.020130539312958717 -0.028155356645584106 0.006253708619624376 -0.041529420763254166 -0.007119615096598864 0.04455935209989548 0.05799335241317749 -0.022456500679254532 -0.06381013989448547 0.05714903026819229 -0.009464088827371597 -0.07073269039392471 -0.01775578036904335 0.015789959579706192 -0.05961678549647331 -0.07704579830169678 0.015404850244522095 0.006741162855178118 -0.03299378231167793 0.006842611823230982 -0.016889257356524467 -0.02645103819668293 -0.07534419000148773 0.007591691799461842 -0.005855025723576546 0.08221772313117981 0.008685771375894547 -0.007958421483635902 0.028825514018535614 0.027534306049346924 -0.01046207919716835 -0.022495966404676437 0.01347194705158472 -0.007429320365190506 0.05998428165912628 0.003095789346843958 -0.04269428178668022 0.035857848823070526 -0.0320606492459774 0.06273848563432693 -0.020059021189808846 0.07217111438512802 0.019630424678325653 -0.06408458948135376 -0.05969861149787903 -0.018084095790982246 0.03244262933731079 -0.021950600668787956 0.01725005730986595 0.024153368547558784 0.08592234551906586 0.012489489279687405 -0.02674940787255764 0.014065146446228027 -0.02369590476155281 0.0034880100283771753 -0.028196167200803757 -0.005371888633817434 0.06986405700445175 -0.06875800341367722 0.005191680509597063 0.007431476842612028 0.00728612719103694 -0.012811013497412205 0.10630052536725998 -0.014157566241919994 -0.03192713484168053 -0.0020953495986759663 -0.030883852392435074 -0.05187370628118515 0.05332999303936958 -0.016708580777049065 -0.03499677777290344 -0.07725203782320023 -0.07797373086214066 0.0030371840111911297 0.027026943862438202 -0.04159482568502426 0.07095732539892197 0.05673183500766754 -0.037833213806152344 -0.01573815383017063 0.09654776751995087 -0.01279933750629425 0.034852828830480576 0.010112650692462921 0.04710423946380615 0.0572032555937767 -0.022417323663830757 0.06900877505540848 -0.010195550508797169 -0.04469339922070503 0.012168705463409424 0.0357486754655838 -9.596048039384186e-05 0.042257167398929596 -0.03331293538212776 0.023562034592032433 -0.008466058410704136 0.031343765556812286 0.02760039083659649 0.03231656923890114 -0.0689006894826889 -0.07686210423707962 -0.016297386959195137 0.07605132460594177 0.033053021878004074 0.060368917882442474 -0.08135272562503815 0.04386939853429794 0.06627843528985977 0.04531310126185417 -0.009503921493887901 -0.035073913633823395 -0.04495289921760559 -0.01777891255915165 0.07683717459440231 -0.02701401337981224 0.010426686145365238 0.03942720592021942 0.05164431780576706 0.023266257718205452 0.04614492133259773 -0.024621397256851196 0.047533489763736725 -0.010110290721058846 0.02704090066254139 0.010138574056327343 0.003316539106890559 -0.006657053250819445 0.007409330923110247 -0.020341210067272186 0.01959281414747238 0.11582299321889877 0.028756143525242805 -0.07860419899225235 -0.018334321677684784 0.1068354994058609 -0.016717806458473206 0.003193403361365199 0.031757041811943054 -0.02971506677567959 -0.01368911936879158 -0.011225136928260326 0.03876090049743652 -0.004494563676416874 0.04404137283563614 -0.010681983083486557 0.0469469279050827 -0.11488031595945358 0.0025329880882054567 0.058927085250616074 -0.006498355884104967 0.05084148421883583 -0.014511054381728172 -0.014945309609174728 0.02389305643737316 0.024241499602794647 -0.0010597542859613895 -0.033534254878759384 -0.012988290749490261 -0.03482901304960251 0.011001750826835632 -0.013329150155186653 0.014702805317938328 0.04737769812345505 0.024222223088145256 0.06875424832105637 -0.061136405915021896 -0.013896405696868896 -0.08812493830919266 -0.010533985681831837 0.023349367082118988 0.05688752979040146 -0.04041552171111107 -0.03070123679935932 0.0288678128272295 -0.047721054404973984 -0.009198581799864769 -0.030901622027158737 -0.0208396315574646 0.030186448246240616 0.03394542261958122 0.017514364793896675 -0.040750473737716675 0.026721108704805374 -0.03180985152721405 -0.0018881680443882942 -0.05895163118839264 -0.040947917848825455 -0.08226210623979568 -0.0496598519384861 -0.00972449965775013 -0.01872291788458824 -0.005299352575093508 0.0069531709887087345 0.08434285968542099 -0.04611000046133995 0.052702896296978 0.08589627593755722 0.03024856373667717 -0.04985269904136658 0.002709334483370185 -0.012417814694344997 0.0336020290851593 -0.03187516704201698 -0.00812020618468523 -0.060389768332242966 0.009456980042159557 0.003926743753254414 -0.05422520264983177 0.03292449563741684 -9.978745219996199e-05 -0.009603389538824558 0.00841617677360773 0.018690532073378563 -0.08164714276790619 0.00887402705848217 0.017064562067389488 0.011808041483163834 0.006096006371080875 0.0453842394053936 0.031848397105932236 -0.06241573393344879 0.03701408952474594 -0.021133769303560257 0.056105416268110275 -0.04343956336379051 -0.014700467698276043 0.0050891912542283535 -0.05238114669919014 -0.028699709102511406 -0.005907329265028238 0.005341037642210722 0.058898601680994034 0.019435808062553406 -0.015586486086249352 -0.005272447597235441 0.02866436168551445 0.08654046803712845 0.02822987735271454 0.03147350251674652 -0.029828129336237907 -0.019880658015608788 0.026650696992874146 0.02241198532283306 0.04186956211924553 -0.06482642889022827 0.03965795785188675 -0.014193376526236534 -0.011962002143263817 -0.01021970808506012 0.012114664539694786 -0.021646743640303612 0.023400194942951202 -0.014092030003666878 0.0026158345863223076 -0.026065051555633545 -0.03934826701879501 -0.10231620818376541 -0.04041215777397156 0.03749166056513786 -0.030215313658118248 -0.04057181254029274 -0.0162062831223011 0.10134272277355194 0.01461795810610056 0.03414778411388397 0.12077347934246063 -0.042675383388996124 0.03799736872315407 0.05581130459904671 -0.0317586325109005 -0.054131053388118744 -0.019683735445141792 -0.009577356278896332 -0.0041816052980721 0.05614800006151199 0.05129462108016014 0.009607345797121525 0.028522077947854996 0.03331951051950455 0.014206841588020325 -0.02595558390021324 -0.008724957704544067 -0.04233989119529724 -0.04384046047925949 0.05836053937673569 0.08877889066934586 0.019050437957048416 -0.031667616218328476 0.010135229676961899 -0.04379153251647949 -0.032317064702510834 0.038342736661434174 -0.13600169122219086 0.006946624722331762 -0.05170661211013794 -0.014586709439754486 -0.07095018029212952 0.02816895954310894 0.030619829893112183 -0.011909300461411476 -0.07488235086202621 -0.10216677933931351 -0.014279838651418686 0.025682341307401657 0.06860418617725372 0.11295570433139801 0.04147204011678696 0.009564111940562725 -0.0190346147865057 -0.0352240651845932 -0.01344373356550932 -0.04559652507305145 -0.08462800830602646 0.10988186299800873 0.019267994910478592 -0.0405735969543457 -0.034415826201438904 -0.03850306198000908 0.027719922363758087 -0.07083001732826233 -0.007296078838407993 0.06576354801654816 0.01468573696911335 -0.04508141800761223 -0.015523688867688179 0.0044775791466236115 -0.04291541501879692 -0.014463690109550953 0.06241210177540779 0.03734227269887924 -0.04677622392773628 0.10669467598199844 -0.05183616653084755 -0.043307747691869736 0.03424813598394394 -0.003745219437405467 0.026994433254003525 -0.02777351438999176 -0.03147111460566521 0.06251419335603714 -0.06993883848190308 -0.02179156430065632 -0.036657825112342834 -0.010107786394655704 -0.028113752603530884 0.022655362263321877 -0.016655150800943375 -0.009648299776017666 0.03271095082163811 0.042561545968055725 -0.003592079970985651 -0.007602985482662916 -0.03229890391230583 0.06358297914266586 0.05419508367776871 -0.023594293743371964 0.1212727427482605 0.0380236841738224 -0.038122646510601044 -0.0004956763004884124 0.11954532563686371 0.08108636736869812 0.052737705409526825 -0.007600541692227125 0.0434541180729866 -0.01737702637910843 0.038969486951828 -0.005576191935688257 0.07431429624557495 0.012847996316850185 -0.03824194148182869 -0.06284139305353165 0.07234805822372437 -0.03972574323415756 -0.03285153955221176 0.023331834003329277 -0.01640321873128414 -0.04927222430706024 0.062049590051174164 0.009670842438936234 -0.05942508950829506 0.04186335206031799 0.0631713792681694 -0.052502430975437164 -0.016376491636037827 -0.048904579132795334 0.042457688599824905 0.03302522748708725 0.011113565415143967 -0.05454546585679054 -0.008050279691815376 0.05803123489022255 -0.004967179615050554 -0.057625286281108856 0.028810210525989532 0.07874680310487747 0.0648743063211441 -0.0303366556763649 0.07891302555799484 -0.04541604220867157 0.018332505598664284 0.0035557053051888943 0.014924373477697372 0.08147044479846954 0.035152655094861984 0.03798072040081024 0.021440738812088966 -0.007299549877643585 -0.02429332584142685 0.022361015900969505 0.031534843146800995 -0.04571250453591347 0.07547761499881744 0.03892327472567558 -0.06770765036344528 0.05017431825399399 0.034709636121988297 0.033921439200639725 -0.019453292712569237 0.06651315093040466 0.05593548342585564 0.03158073127269745 -0.007059046067297459 0.02436082437634468 -0.025575323030352592 0.02024582400918007 -0.0061671496368944645 -0.00781251210719347 -0.003329038619995117 0.035243600606918335 -0.03240029886364937 0.003244710387662053 0.023871900513768196 -0.003226579399779439 -0.004075917880982161 0.013784972950816154 -0.012590643018484116 0.0601828508079052 -0.01578686758875847 0.03072477877140045 0.008865934796631336 0.06498942524194717 -0.12738826870918274 -0.012984083965420723 0.03492014482617378 0.031232405453920364 0.060752347111701965 0.06337308883666992 0.018156150355935097 0.06123707816004753 -0.02529171109199524 -0.07954848557710648 0.015738895162940025 0.01448923721909523 0.05785350874066353 0.046222832053899765 0.021998558193445206 -0.0170340146869421 0.02437875233590603 0.08723226934671402 0.02239060029387474 0.03247326985001564 0.00886739231646061 -0.010092089883983135 0.026076950132846832 0.06049497425556183 0.04713765159249306 0.042060498148202896 -0.008503259159624577 0.006513975560665131 0.0024701610673218966 -0.01942904107272625 0.03629148006439209 -0.020177120342850685 0.021077878773212433 0.06254512071609497 0.0005727786337956786 +0.02459423430263996 0.009734385646879673 -0.048051685094833374 0.013405807316303253 -0.04230835288763046 0.02582983672618866 -0.016518568620085716 -0.01619218848645687 -0.0394875630736351 0.034131310880184174 -0.05944512039422989 0.004301060922443867 -0.020418893545866013 -0.05064494535326958 -0.039988476783037186 -0.12363862246274948 -0.008320163935422897 0.002801488386467099 0.09813334792852402 -0.04509195685386658 -0.018419789150357246 0.11177069693803787 0.022271808236837387 0.03493287414312363 0.016370048746466637 0.05535784363746643 0.027719778940081596 0.0015843964647501707 0.056062839925289154 0.05014568194746971 0.02191762998700142 -0.029640572145581245 0.04751429706811905 -0.07149957865476608 0.05470525845885277 -0.026913002133369446 0.017455382272601128 0.03358343616127968 0.11004716902971268 -0.041211362928152084 -0.04908481612801552 0.022077493369579315 0.035265084356069565 -0.05669787526130676 -0.06078316271305084 -0.012483005411922932 -0.10332842171192169 -0.05264980345964432 0.01189133059233427 0.008116132579743862 0.0026805137749761343 0.031399209052324295 -0.05983360484242439 -0.03612139821052551 -0.02812018431723118 -0.0009187905816361308 0.043968796730041504 0.05604786425828934 -0.0051220618188381195 0.013929758220911026 0.010138454847037792 0.055206332355737686 -0.007733531761914492 -0.045035406947135925 -0.00279801432043314 -0.029596878215670586 0.04582000523805618 0.0055727711878716946 -0.009601602330803871 0.046756561845541 0.0172463059425354 0.08844993263483047 -0.021949753165245056 0.047336988151073456 0.014557314105331898 -0.06774292886257172 -0.05175970867276192 -0.021088287234306335 -0.007989310659468174 -0.0002759020426310599 -0.009203862398862839 -0.04458204656839371 0.05403854697942734 -0.021075528115034103 -0.018837928771972656 -0.015079489909112453 -0.03810259327292442 -0.03338266909122467 -0.04382045194506645 -0.020004067569971085 0.06259333342313766 -0.09961236268281937 0.036770809441804886 0.01879016123712063 -0.003305416088551283 -0.0073591736145317554 0.08263415843248367 -0.021891575306653976 -0.02952430583536625 0.0380888506770134 0.0004157836374361068 -0.036260977387428284 0.05021773651242256 -0.015691783279180527 -0.0042740339413285255 -0.04935065284371376 -0.06746121495962143 0.010913814418017864 0.06342007964849472 -0.00881237629801035 0.08445204794406891 0.046829704195261 -0.014276226982474327 -0.04238508641719818 0.05299825966358185 -0.022193294018507004 0.04377363249659538 -0.010927397757768631 0.06279101967811584 0.057555779814720154 -0.02821950428187847 0.05037963390350342 -0.041439950466156006 -0.009422555565834045 -0.02204889804124832 0.04637197032570839 0.004006498958915472 0.03544022887945175 -0.02862667664885521 0.057827387005090714 0.003662040689960122 0.022110264748334885 0.014810927212238312 0.02425263822078705 -0.09105779230594635 -0.022327501326799393 -0.05796486511826515 0.06335854530334473 0.07174227386713028 0.046381816267967224 -0.09120365232229233 0.030483068898320198 0.08857470750808716 0.021310955286026 -0.031642891466617584 -0.021733280271291733 -0.0116080641746521 -0.04331693798303604 0.03489891439676285 -0.017255449667572975 0.029815634712576866 0.03255149722099304 0.07000559568405151 -0.0005128555349074304 0.043544869869947433 -0.0003816796524915844 0.01763768307864666 0.022725170478224754 0.02667427249252796 -0.015477212145924568 0.0075356666930019855 -0.019266877323389053 -0.026383476331830025 -0.012205477803945541 0.04476143419742584 0.07315763831138611 0.06989214569330215 -0.07347063720226288 -0.037561725825071335 0.08874332159757614 -0.019095981493592262 -0.012600051239132881 0.020358016714453697 -0.009413326159119606 -0.014790681190788746 -0.05491651967167854 0.02184535190463066 -0.004065441899001598 0.057317063212394714 -0.02624962478876114 0.012783116661012173 -0.10092100501060486 0.02067852020263672 0.013557473197579384 -0.02195979841053486 0.04130961745977402 0.03142169117927551 -0.003623106051236391 -0.0029733027331531048 0.04022808372974396 0.022825056686997414 -0.014289375394582748 -0.021032601594924927 -0.024850286543369293 0.0012734015472233295 -0.03463902324438095 0.01883542165160179 0.05099378526210785 0.05473310500383377 0.049907803535461426 -0.07107487320899963 0.039787981659173965 -0.07142934203147888 -0.023968979716300964 0.02771357074379921 0.0347854346036911 -0.01572714000940323 -0.0625128373503685 -0.008758245036005974 -0.04075237736105919 -0.007322320714592934 -0.02899906411767006 0.0025173986796289682 0.01723301038146019 0.02934630773961544 0.0030236588791012764 0.029548317193984985 -0.05008842423558235 -0.002307300455868244 0.013063272461295128 -0.01577065698802471 -0.05813254788517952 -0.03354761749505997 -0.036190908402204514 -0.04530404508113861 -0.06484660506248474 -0.01523601170629263 -0.04345216974616051 0.1086193323135376 -0.04174989461898804 0.11868888139724731 0.0894370749592781 -0.003279597032815218 0.019755864515900612 -0.011366434395313263 -0.02567892335355282 0.012853266671299934 0.0009684900287538767 -0.035767797380685806 -0.06976175308227539 0.0076677678152918816 -0.03089725784957409 -0.016488028690218925 0.029056452214717865 -0.00017124172882176936 0.0036217395681887865 0.03314270079135895 0.041659366339445114 -0.07145554572343826 -0.012112447060644627 0.012848744168877602 -0.06577469408512115 0.021081728860735893 0.05734710767865181 0.0025760966818779707 -0.08141748607158661 0.027871210128068924 -0.060522813349962234 0.08659949898719788 -0.04172324016690254 0.002937107812613249 0.02497272379696369 0.004251923877745867 -0.019434165209531784 0.01563340425491333 0.010186312720179558 0.005092355888336897 0.05615462362766266 -0.01885034888982773 0.004598268307745457 0.09718738496303558 0.09326262027025223 0.02095082588493824 0.05573675408959389 -0.0130083579570055 0.0061713880859315395 0.03629572317004204 0.048471201211214066 0.01589859649538994 -0.0687127336859703 0.058881256729364395 -0.01796938292682171 -0.00783868320286274 -0.04525023326277733 -0.027843398973345757 -0.08678339421749115 -0.004463068675249815 -0.02201216295361519 -0.010590838268399239 0.0064989239908754826 -0.0431312657892704 -0.09854510426521301 -0.09237927198410034 0.018656611442565918 -0.06731963157653809 -0.027577796950936317 -0.04762812703847885 0.02839522249996662 -0.01892310380935669 0.040546391159296036 0.0683237835764885 -0.02908244915306568 0.027560492977499962 0.030410481616854668 -0.0314006581902504 -0.0813986137509346 -0.02072816528379917 0.035026732832193375 0.010672986507415771 0.029105518013238907 0.07450726628303528 -0.01611236296594143 0.003918098285794258 0.012612317688763142 0.00604484835639596 -0.019736653193831444 -0.003740296931937337 -0.06644187122583389 -0.06778916716575623 0.009783139452338219 0.0694255530834198 0.012718616053462029 -0.014504080638289452 0.049408044666051865 -0.06060789152979851 0.01953917369246483 0.01737579144537449 -0.13928993046283722 0.027655839920043945 -0.06224149093031883 -0.005088061559945345 -0.07439081370830536 0.012682205066084862 0.04985754191875458 -0.019465811550617218 -0.04967883229255676 -0.08933716267347336 0.006109864916652441 0.01971365511417389 0.03395364433526993 0.10371030122041702 0.001528010587207973 -0.017957080155611038 -0.02644927054643631 -0.017569581046700478 -0.045314811170101166 -0.030947387218475342 -0.109250508248806 0.09420750290155411 -0.0032888262066990137 -0.06387437134981155 -0.021792208775877953 -0.04389923810958862 0.041109148412942886 -0.04658317565917969 -0.0054753064177930355 0.05652394890785217 0.03396766260266304 -0.04857287555932999 -0.006821028888225555 -0.007136761210858822 0.008781754411756992 -0.027886146679520607 0.03283701837062836 0.04100271686911583 -0.01621282659471035 0.06379381567239761 -0.03000938519835472 -0.07548398524522781 0.0637180283665657 -0.02326163835823536 0.008719829842448235 -0.06498479843139648 0.0004101925005670637 0.05660807713866234 -0.07884908467531204 -0.029563764110207558 -0.012126199901103973 0.025640791282057762 0.012087525799870491 0.0369853675365448 0.031215686351060867 -0.002017608378082514 0.04542200639843941 0.05805037170648575 0.007278102915734053 0.0016772700473666191 -0.025234777480363846 0.0048074559308588505 0.06903962045907974 0.022848187014460564 0.06340909749269485 0.02106558531522751 -0.011587265878915787 0.027268392965197563 0.04841288551688194 0.059331707656383514 0.04521071910858154 -0.015784544870257378 0.026947880163788795 0.008754324167966843 -0.01721246726810932 -0.015942659229040146 0.11563622206449509 0.004479635506868362 -0.07436338067054749 -0.06624183803796768 0.0573599748313427 -0.04345664009451866 -0.032721422612667084 -0.0022224239073693752 -0.030895138159394264 -0.040264736860990524 0.07674802094697952 -0.001320074312388897 -0.06833083182573318 0.037802159786224365 0.05782880634069443 -0.02482607588171959 -0.017015231773257256 -0.028476478531956673 0.023257168009877205 0.028832828626036644 -0.024397417902946472 -0.00827768724411726 -0.0006185662932693958 0.04591115564107895 0.03616444766521454 -0.056664250791072845 0.055674467235803604 0.05417314171791077 0.055857203900814056 -0.031807564198970795 0.05576099082827568 -0.04880349338054657 0.017295317724347115 0.014699448831379414 0.02284243516623974 0.030007267370820045 0.027523543685674667 0.032599736005067825 0.01863248459994793 0.00670720636844635 -0.06680440902709961 0.024696027860045433 -0.01637207716703415 -0.06334710121154785 0.06978161633014679 0.00415540486574173 -0.05807497352361679 0.04369603097438812 0.048214249312877655 0.010688654147088528 -0.009034932591021061 0.014995284378528595 0.007143300957977772 -0.014790697023272514 -0.00038655323442071676 0.035417426377534866 0.03481586277484894 -0.019950492307543755 0.0005146866315044463 -0.018086804077029228 0.026544472202658653 0.005925797391682863 -0.020143520087003708 0.011672100983560085 0.006928854156285524 0.00893384963274002 -0.04362734034657478 0.04355334863066673 -0.004104575142264366 0.07964865863323212 -0.03466735780239105 0.012588565237820148 -0.00857431162148714 0.04312584921717644 -0.13384124636650085 -0.013662705197930336 0.04995861276984215 0.019683022052049637 0.06432647258043289 0.09746986627578735 0.047830719500780106 0.039227064698934555 0.0013772944221273065 -0.07534430176019669 0.06227045878767967 -0.03190355375409126 0.012459083460271358 0.07889550924301147 0.016496172174811363 -0.007873974740505219 -0.010852157138288021 0.10489068180322647 0.08154842257499695 0.01598307676613331 0.008310028351843357 -0.04215218499302864 -0.023027971386909485 0.07134315371513367 0.03887854143977165 0.0844196081161499 0.05232230946421623 0.04222667217254639 -0.004726483020931482 -0.038522906601428986 0.033880818635225296 -0.007654940709471703 0.027867306023836136 0.010812644846737385 -0.04011571779847145 +0.03138476982712746 -0.03431883826851845 -0.028332263231277466 0.0005299714975990355 -0.031718406826257706 0.041029080748558044 -0.046214718371629715 -0.03070133738219738 -0.049906015396118164 0.011669150553643703 -0.012714334763586521 -0.0018328985897824168 -0.032151833176612854 -0.005354093853384256 0.033814601600170135 -0.10278446227312088 0.013899095356464386 0.008609043434262276 0.07046394050121307 -0.035490576177835464 -0.038465969264507294 0.09827177226543427 0.0601227805018425 0.05525672808289528 -0.0030798499938100576 -0.01471660751849413 0.0020060488022863865 0.04238789156079292 0.07627309858798981 0.028870251029729843 -0.011898799799382687 -0.061929650604724884 0.021309589967131615 -0.03192173317074776 0.07060503959655762 0.008188829757273197 0.01926763728260994 0.0659470409154892 0.10640660673379898 -0.04953477531671524 0.0127556212246418 0.017002588137984276 0.02044367417693138 -0.07677152752876282 -0.02185700833797455 -0.011026724241673946 -0.04693799093365669 -0.09633702784776688 0.024708716198801994 0.03140094503760338 0.003441533539444208 0.06536997109651566 -0.040327928960323334 -0.030129456892609596 -0.03541608154773712 -0.0019145229598507285 0.017675964161753654 0.04303469881415367 0.038203489035367966 0.051006533205509186 0.009343710727989674 -0.010717219673097134 0.010840384289622307 -0.01689930632710457 0.052088722586631775 -0.029549354687333107 0.08020872622728348 0.021681951358914375 -0.014385365881025791 0.05601727217435837 -0.004521693103015423 0.09563914686441422 -0.0027591309044510126 0.017689213156700134 0.028280561789870262 -0.09460776299238205 -0.04544965177774429 -0.023160628974437714 0.004648882430046797 0.020581211894750595 -0.003989574499428272 -0.01256644818931818 0.014328889548778534 0.03426126763224602 0.010715154930949211 -0.00109946692828089 -0.0021763122640550137 -0.000431377295171842 -0.052485398948192596 0.0027369647286832333 0.07839345932006836 -0.07963918149471283 0.010716697201132774 0.0007949652499519289 -0.06505466997623444 -0.04695352166891098 0.0860840231180191 0.03128132224082947 0.008894490078091621 -0.038551680743694305 -0.0031993919983506203 -0.014813966117799282 0.03184007108211517 -0.012504964135587215 -0.00010860688053071499 -0.04093162715435028 -0.06310392916202545 0.020551901310682297 0.04801442101597786 0.005528345704078674 0.031684573739767075 0.0472644604742527 -0.01668773964047432 -0.019124602898955345 0.0623537115752697 -0.01031421683728695 0.049956053495407104 -0.03686963766813278 0.05137823522090912 0.0292131919413805 -0.031892355531454086 0.06060021370649338 -0.054089803248643875 -0.010469854809343815 0.021891776472330093 0.09229795634746552 -0.002273269696161151 0.048215966671705246 -0.030143020674586296 0.05756436288356781 -0.01564190536737442 0.023056820034980774 0.014384615235030651 0.038711246103048325 -0.061034563928842545 -0.05632730945944786 -0.09802929311990738 0.0879310667514801 0.055846262723207474 0.04004805162549019 -0.08165833353996277 0.04455651342868805 0.15213574469089508 0.027696365490555763 -0.04400298744440079 -0.018543172627687454 -0.06639795750379562 -0.012061627581715584 0.04307236522436142 -0.03008207678794861 0.029963873326778412 0.024531584233045578 0.07250640541315079 -0.014541249722242355 -0.00783724058419466 -0.03470597416162491 0.019049540162086487 -0.018476154655218124 0.015813469886779785 -0.03137465566396713 -0.028161928057670593 -0.03746340796351433 0.0061344243586063385 -0.02252604253590107 0.023087913170456886 0.05011589452624321 0.04282689839601517 -0.08980747312307358 -0.008123456500470638 0.07085064053535461 -0.02087150514125824 -0.021321313455700874 0.021478451788425446 -0.04220912232995033 -0.022861003875732422 -0.036611542105674744 0.049205511808395386 0.018559642136096954 0.06770458817481995 -0.02640151046216488 0.007480551488697529 -0.09427926689386368 0.009516431950032711 0.011386185884475708 -0.028904784470796585 0.02114635892212391 0.0009076594142243266 -0.0006928440416231751 -0.04873907193541527 0.008244209922850132 0.029271883890032768 -0.03234824910759926 -0.023214519023895264 0.004906704183667898 -0.013430404476821423 -0.03289257735013962 -0.0004170351312495768 0.02913844585418701 0.019385244697332382 0.06685526669025421 -0.07080670446157455 0.05560819432139397 -0.045514050871133804 -0.0438285693526268 -0.017700398340821266 0.028414392843842506 -0.043131664395332336 -0.041550129652023315 0.02178051322698593 -0.009043493308126926 -0.04223470017313957 -0.005110116209834814 -0.058185845613479614 -0.0013172400649636984 -0.005712482146918774 0.017239991575479507 0.024693282321095467 -0.03456287458539009 -0.015762977302074432 0.026533234864473343 -0.01418494526296854 -0.01834406889975071 -0.06179548799991608 -0.05841565504670143 -0.022586051374673843 -0.02896164543926716 -0.008726430125534534 -0.004558549262583256 0.09439824521541595 -0.020903052762150764 0.09237296879291534 0.022782888263463974 0.041093338280916214 0.023087356239557266 0.022837961092591286 -0.054234039038419724 0.0358399860560894 -0.010414370335638523 -0.015901824459433556 -0.03476253151893616 0.009294134564697742 -0.03952382877469063 0.012128904461860657 -0.007030125241726637 -0.003989757504314184 -0.02198730781674385 -0.011195075698196888 0.05573422834277153 -0.06191413104534149 -0.025327686220407486 0.06347521394491196 -0.038726236671209335 -0.039620451629161835 0.039570894092321396 0.022203980013728142 -0.06855137646198273 0.04537404328584671 -0.06826632469892502 0.06212260574102402 -0.04170806705951691 -0.007080208510160446 -0.037984348833560944 -0.006507131736725569 -0.03982843831181526 0.0216369666159153 -0.00014096021186560392 0.028267983347177505 0.06269481778144836 0.013133889995515347 0.016476772725582123 0.060446374118328094 0.10534269362688065 0.03445940092206001 0.05591285228729248 -0.047091417014598846 -0.04954398423433304 -0.027074823155999184 0.02630518563091755 0.02344992570579052 -0.06588516384363174 0.03306496515870094 -0.017872463911771774 0.01993079110980034 -0.03146246448159218 0.026562299579381943 -0.047026846557855606 0.0004467617836780846 0.01625138521194458 0.01153991837054491 -0.04773254320025444 -0.020626666024327278 -0.04653133079409599 -0.02145448699593544 -0.0026023644022643566 -0.04239994287490845 0.00512103084474802 -0.03571903333067894 0.07588721066713333 -0.008412299677729607 -0.010849331505596638 0.10695035010576248 -0.01588679477572441 0.010936633683741093 0.034413084387779236 -0.0022557424381375313 -0.11419832706451416 0.028651200234889984 0.004158818628638983 0.018386848270893097 0.049207597970962524 0.07705654203891754 -0.01891075074672699 -0.0024063321761786938 0.021070702001452446 0.04170950502157211 -0.037068095058202744 -0.002136851195245981 -0.034106072038412094 -0.06136319786310196 0.0236921776086092 0.05034172907471657 -0.013173654675483704 0.02865263633430004 0.023237215355038643 -0.01634064130485058 -0.02836562879383564 -0.00958267506211996 -0.11256930232048035 0.08205604553222656 -0.02804039791226387 -0.022719791159033775 -0.10396324843168259 0.021457545459270477 0.0038506765849888325 0.00026871549198403955 -0.04245907440781593 -0.09345801174640656 0.033963676542043686 -0.00615279097110033 0.07886312156915665 0.10544686764478683 -0.01889793761074543 -0.05638866871595383 0.009736185893416405 0.01593226194381714 -0.023256998509168625 -0.06360577046871185 -0.09388044476509094 0.102473184466362 0.031145278364419937 0.010978824459016323 -0.11436277627944946 -0.06314289569854736 0.08277757465839386 -0.021434247493743896 0.0004787395882885903 -0.0016519831260666251 0.030269652605056763 -0.0812353640794754 0.005975666921585798 -0.007657467853277922 -0.010751795023679733 -0.058181166648864746 0.04351596161723137 -0.013698439113795757 -0.06115159019827843 0.06358157843351364 -0.015670713037252426 -0.06646642833948135 0.030664943158626556 -0.023378698155283928 0.02745349332690239 -0.07864411920309067 -0.02265464887022972 0.08855266124010086 -0.06219503656029701 -0.017487866804003716 -0.05779422074556351 0.022223209962248802 0.024586008861660957 0.012985109351575375 0.03622955456376076 -0.04219996929168701 0.04198722913861275 0.05953860655426979 0.0019731454085558653 -0.0026080894749611616 0.018475733697414398 0.05682817101478577 0.02955123968422413 0.00401554349809885 0.09591212868690491 0.019153792411088943 -0.01882394775748253 0.008188841864466667 0.022363048046827316 0.058805592358112335 0.0030261646024882793 -0.007987337186932564 0.07135067880153656 -0.0005477350205183029 0.024773651733994484 0.031212622299790382 0.04379979148507118 0.016399048268795013 -0.08705398440361023 -0.019518809393048286 0.02048558183014393 -0.060310568660497665 -0.04347258061170578 0.010586541146039963 -0.00219731405377388 -0.046259693801403046 0.11477792263031006 0.00965733453631401 -0.10112041980028152 -0.000701426004525274 0.06470657885074615 -0.02658734656870365 -0.037758808583021164 -0.016290074214339256 8.96535930223763e-05 0.001537523465231061 0.006382612977176905 -0.018104420974850655 -0.008284720592200756 0.05460479110479355 0.00689247902482748 -0.11352039873600006 0.003463721601292491 0.06570521742105484 0.0864189863204956 0.006015851628035307 0.05208520218729973 -0.06163054704666138 -0.0026011266745626926 0.0433887280523777 0.011299951933324337 -0.01288811769336462 0.02956940047442913 0.04032334312796593 0.0038827715907245874 0.03948453068733215 -0.08452709019184113 0.007014170289039612 -0.007451510988175869 -0.028483133763074875 0.05223511904478073 0.02952461875975132 -0.013415760360658169 0.03854546323418617 0.03668124973773956 0.05206821486353874 0.052880413830280304 0.024325111880898476 0.032559119164943695 0.003447642782703042 0.009748658165335655 -0.0012402462307363749 0.004252809565514326 -0.06113511323928833 -0.06832603365182877 -0.02506055310368538 0.02516247145831585 -0.001742273336276412 -0.08430422842502594 0.029298190027475357 -0.01467394270002842 -0.02528192289173603 0.005204217974096537 0.02737990953028202 -0.013747182674705982 0.06742866337299347 -0.03025718405842781 0.033931344747543335 0.01838032901287079 0.07789833098649979 -0.1382390260696411 -0.0074233124032616615 0.03603387996554375 0.029945190995931625 0.0800408273935318 0.04537513107061386 -0.025059260427951813 0.01841631904244423 -0.013208008371293545 -0.022023800760507584 0.020245173946022987 0.0028410693630576134 0.0051419478841125965 0.018407752737402916 0.00941342581063509 -0.015755904838442802 0.013885407708585262 0.059202890843153 0.07448950409889221 0.031032744795084 0.030298376455903053 -0.0650881826877594 0.025814319029450417 0.053781066089868546 0.06361906975507736 0.04775938019156456 0.048275239765644073 0.042589470744132996 -0.048269402235746384 -0.029941493645310402 0.012501345947384834 0.0037283203564584255 0.05651940777897835 0.020887093618512154 -0.03383054956793785 +0.02920173667371273 -0.07249482721090317 -0.0529782697558403 -0.0059825824573636055 -0.04858693853020668 0.01192227192223072 -0.006958978250622749 0.0017041817773133516 -0.061240505427122116 0.05719481781125069 -0.05551464483141899 0.038014285266399384 -0.02080489508807659 -0.04683626443147659 -0.04096073657274246 -0.11242519319057465 -0.009523934684693813 -0.017853589728474617 0.03319583088159561 -0.01410943828523159 -0.04657936096191406 0.07811767607927322 -0.016812371090054512 0.031215794384479523 -0.01864658296108246 0.023101631551980972 0.010104854591190815 0.02063680812716484 0.06750212609767914 0.011683405376970768 0.0416874960064888 -0.06334087252616882 0.007508702110499144 -0.023115249350667 -0.016076866537332535 -0.04815421625971794 -0.04056970402598381 0.028818177059292793 0.07356849312782288 -0.021711478009819984 -0.007202640641480684 0.046298425644636154 0.02362741529941559 -0.03241640329360962 0.006644790526479483 0.033282049000263214 -0.0552949532866478 -0.09447719156742096 0.024113014340400696 -0.020495114848017693 0.02614167518913746 0.07020290940999985 -0.005934889428317547 -0.024494610726833344 -0.06660295277833939 -0.0004431638808455318 -0.020518457517027855 0.014634673483669758 -0.03720461577177048 0.05706439167261124 -0.011977738700807095 0.012253111228346825 0.008141663856804371 0.00263383612036705 0.006880342960357666 -0.015372229740023613 0.0287725031375885 0.04687607288360596 -0.03721936047077179 0.027153268456459045 0.02354605123400688 0.05634339153766632 0.010912696830928326 0.05292702093720436 0.0054856897331774235 -0.0411965548992157 -0.02893250621855259 -0.005132702179253101 0.007793092168867588 -0.023451395332813263 -0.009449529461562634 0.01718599535524845 0.03651795908808708 0.0283255185931921 -0.017462337389588356 -0.005547873210161924 -0.004924970678985119 -0.043149061501026154 0.004224139731377363 0.002361482009291649 0.0641137957572937 -0.07273828983306885 0.008820406161248684 0.04196135699748993 -0.05976502224802971 -0.010409897193312645 0.06488647311925888 -0.0030850814655423164 -0.004057800397276878 -0.021328086033463478 0.009790757670998573 -0.004197452217340469 0.07167132943868637 -0.02814682386815548 0.023494049906730652 -0.03861368075013161 -0.08911743015050888 0.017712054774165154 0.04082728177309036 -0.040120430290699005 0.08704113215208054 0.06825252622365952 -0.03340594097971916 0.03743736445903778 0.12447131425142288 0.03841983899474144 -0.002509459387511015 -0.030122507363557816 0.06306949257850647 0.022282402962446213 0.018056204542517662 0.05329468473792076 -0.030394870787858963 -0.04997767508029938 0.01575547829270363 0.03965285047888756 -0.040681757032871246 0.05624986067414284 0.02184760384261608 0.04876568540930748 -0.016204440966248512 0.024097692221403122 -0.009418491274118423 0.06288306415081024 -0.06371680647134781 -0.09210654348134995 -0.077397920191288 0.016404157504439354 0.0443585030734539 0.048558127135038376 -0.0944671481847763 0.06219363585114479 0.10539799928665161 0.031050488352775574 -0.041230328381061554 -0.05524611473083496 -0.031549122184515 0.003998529631644487 0.025208784267306328 -0.01915864832699299 -0.016665829345583916 0.023107362911105156 0.0720343142747879 0.01644941233098507 0.03865080326795578 -0.00941991712898016 0.05320592597126961 -0.03834034129977226 -0.0034893453121185303 -0.032300617545843124 0.017797263339161873 0.0014061840483918786 -0.027905335649847984 -0.10042921453714371 0.0837533101439476 0.08574578166007996 0.05573320761322975 -0.029200250282883644 -0.015923889353871346 0.08633991330862045 -0.0361226350069046 -0.01022463571280241 -2.978336669912096e-05 -0.005338574759662151 -0.02087673731148243 -0.013952651992440224 0.0447356253862381 0.009008614346385002 0.07751991599798203 -0.03701086342334747 0.02788127027451992 -0.07393348217010498 0.04463394731283188 -0.014381134882569313 -0.008379186503589153 0.025372883304953575 -0.026875726878643036 -0.08665399253368378 -0.020353808999061584 -0.012262863107025623 0.011374191381037235 -0.05266127735376358 -0.029549801722168922 -0.018121387809515 0.032031334936618805 -0.05067163333296776 0.044918548315763474 0.032758235931396484 0.07727328687906265 0.035655636340379715 -0.0727851539850235 0.005542498081922531 -0.07459305226802826 -0.049067407846450806 -0.030163416638970375 0.0019137819763273 0.005833165720105171 -0.02378036640584469 0.056943438947200775 -0.026624290272593498 -0.023271413519978523 0.026989443227648735 -0.03508463874459267 0.01523127593100071 0.06260720640420914 -0.010041206143796444 -0.033900294452905655 0.032208435237407684 -0.01960771344602108 -0.02879399247467518 -0.001333559979684651 -0.012983471155166626 -0.011023261584341526 -0.05107890069484711 -0.014064286835491657 -0.09047416597604752 -0.003764423541724682 0.008922290056943893 0.1372791826725006 -0.03308319300413132 0.06834954768419266 0.034670088440179825 0.037851907312870026 0.009578783996403217 -0.012920471839606762 -0.03145657107234001 -0.020582616329193115 -0.031737957149744034 -0.01922949217259884 -0.033610448241233826 0.051890529692173004 -0.03131257742643356 -0.02669656090438366 0.040607620030641556 0.005160521250218153 -0.0321170948445797 0.023976946249604225 0.04255456477403641 -0.09389127790927887 -0.045036401599645615 0.056554216891527176 0.026817938312888145 0.04708382487297058 0.05532408133149147 0.010153206996619701 -0.06851132959127426 0.03545279800891876 -0.07144410163164139 0.027517013251781464 -0.02785124070942402 0.005876932758837938 -0.01415122952312231 -0.08988583087921143 -0.02413819171488285 0.006913663353770971 0.037883009761571884 0.05396479740738869 0.011717402376234531 -0.01297257374972105 0.02661879174411297 0.024687113240361214 0.06127157807350159 0.03315608948469162 0.010119032114744186 0.014036180451512337 -0.012331994250416756 0.02101518213748932 0.036264825612306595 -0.00838460586965084 -0.050588659942150116 0.03128669783473015 0.002118077129125595 0.018659740686416626 -0.01815485581755638 -0.009935025125741959 0.008122256025671959 0.009183547459542751 0.00535657349973917 0.004287674557417631 -0.023484401404857635 -0.0268880445510149 -0.03374871611595154 -0.05831533297896385 0.004154440946877003 -0.0038716373965144157 0.041851967573165894 -0.01135538425296545 0.04833333194255829 -0.029497165232896805 0.0561961755156517 0.11313353478908539 -0.015215273946523666 0.029505478218197823 0.008630684576928616 -0.04741206765174866 -0.09206322580575943 -0.019681692123413086 -0.01551827136427164 0.01978541910648346 0.020399294793605804 0.06281068176031113 -0.0646727904677391 -0.006970854941755533 0.0356290340423584 0.025535760447382927 -0.10795744508504868 0.00941511057317257 -0.052103497087955475 -0.00931328721344471 0.05428994819521904 0.030178247019648552 0.032173026353120804 0.022024918347597122 0.003933030180633068 -0.018839843571186066 -0.06309890002012253 0.021962663158774376 -0.12770472466945648 0.01688246615231037 -0.04785517603158951 -0.03497900813817978 -0.07008468359708786 0.032169949263334274 0.06179672107100487 0.04829215258359909 -0.07084500789642334 -0.06150674447417259 0.018927959725260735 0.013771927915513515 0.08975885063409805 0.07865782827138901 -0.028268247842788696 0.0424092561006546 -0.036339640617370605 -0.003128211945295334 -0.062034863978624344 -0.033245749771595 -0.13315333425998688 0.11772971600294113 0.04281838983297348 0.01990382932126522 -0.054390113800764084 -0.05710934102535248 0.04367822781205177 -0.029687244445085526 -0.0029481183737516403 -0.002489923033863306 -0.011990237981081009 -0.07733719795942307 0.006417388562113047 0.022445334121584892 -0.05041295289993286 -0.008205650374293327 0.08577897399663925 0.039466362446546555 -0.03874634951353073 0.09296252578496933 0.025872845202684402 -0.03294164314866066 0.006649942137300968 0.030470119789242744 0.014917652122676373 -0.001123621710576117 -0.010910125449299812 0.04656950756907463 -0.07459603250026703 -0.02455112710595131 -0.03144712746143341 0.06165667250752449 -0.01364001352339983 0.010947293601930141 0.0347316674888134 -0.05407944694161415 0.01712772250175476 -0.026053614914417267 0.04187164455652237 0.010108668357133865 -0.03779371827840805 0.033202484250068665 0.015132448635995388 0.01162837352603674 0.0688345655798912 -0.013467446900904179 -0.026249995455145836 0.02149207331240177 0.0884113609790802 0.03404877334833145 0.0018026891630142927 0.016272680833935738 0.02590927854180336 0.003976003732532263 0.01793001778423786 0.022799696773290634 0.08616774529218674 -0.01360106561332941 -0.06964582949876785 0.0020632618106901646 0.09831581264734268 -0.052520982921123505 -0.06900156289339066 0.041827570647001266 0.007189507130533457 -0.006043403409421444 0.03730739653110504 -0.024032732471823692 -0.056594569236040115 -0.031229598447680473 0.028678027912974358 -0.020878799259662628 -0.004748586565256119 -0.04083961993455887 0.07046444714069366 0.00919515360146761 -0.033896952867507935 -0.030870525166392326 -0.03438301384449005 0.009470964781939983 -0.02259378507733345 -0.04959236457943916 0.0159821268171072 0.07824940979480743 0.06250976026058197 0.014471346512436867 0.10065993666648865 -0.0798521339893341 -0.024568472057580948 0.03326897323131561 0.066037617623806 0.03634003922343254 0.08908197283744812 -0.008334352634847164 0.019985802471637726 -0.0038586065638810396 -0.0928259789943695 -2.0452238459256478e-05 -0.00799038726836443 -0.04644379764795303 0.005786709487438202 0.06403852999210358 -0.08936984091997147 -0.007061153184622526 0.012983706779778004 0.046007703989744186 0.033450543880462646 -0.0026754215359687805 0.06424032896757126 -0.007266830187290907 -0.024234311655163765 -0.050750307738780975 -0.015735726803541183 0.008254020474851131 -0.09017123281955719 0.051220644265413284 -0.018875103443861008 0.003481058869510889 -0.04121147096157074 0.03253927081823349 -0.014226422645151615 -0.08703245222568512 -0.03082050196826458 0.03233852982521057 0.006115531548857689 0.037663597613573074 0.004219127353280783 -0.0015692826127633452 0.03683223947882652 0.08088329434394836 -0.14840668439865112 0.015269538387656212 0.025600945577025414 0.058910541236400604 0.0566292442381382 0.011832449585199356 0.012801249511539936 0.06195409223437309 -0.044289033859968185 -0.09087436646223068 -0.01716816984117031 -0.0004074921307619661 0.03009280376136303 -0.0008337704348377883 0.017490258440375328 0.03469248488545418 0.006115044467151165 0.06206880882382393 0.030132872983813286 -0.011389296501874924 -0.014496389776468277 -0.027767375111579895 0.037884436547756195 0.03451838344335556 0.03943415358662605 0.015779772773385048 0.02193889394402504 0.04503641277551651 -0.023040931671857834 -0.029682358726859093 0.03546639159321785 0.017424119636416435 -0.024236362427473068 0.035743605345487595 -0.013185241259634495 +0.021102299913764 -0.03774121403694153 0.00940243061631918 -0.09063518792390823 -0.03917989134788513 0.030780477449297905 -0.03167782723903656 -0.054298389703035355 -0.05170904099941254 -0.043565522879362106 0.019174912944436073 -0.005567826796323061 0.012445039115846157 -0.000509553705342114 0.04080992192029953 -0.048209048807621 -0.029280278831720352 -0.022573573514819145 -0.018020296469330788 -0.006274827755987644 0.051077403128147125 -0.05862456187605858 0.03463805094361305 -0.00944923423230648 -0.0077010211534798145 0.055079370737075806 -0.033266108483076096 0.02067182958126068 0.047087520360946655 0.04073703661561012 0.013915296643972397 -0.027952183037996292 0.02789694257080555 -0.013010498136281967 0.009432874619960785 0.0007826962391845882 -0.013189371675252914 0.02114521712064743 0.03807741031050682 0.03921228647232056 -0.02700698934495449 -0.0379767008125782 -0.0605323426425457 -0.014227013103663921 -0.02821679413318634 -0.009756265208125114 -0.0037232222966849804 0.004801300819963217 0.000981263816356659 -0.006774746812880039 -0.07143696397542953 -0.03853905200958252 -0.058006737381219864 -0.0012327332515269518 0.07372907549142838 0.024219995364546776 0.08071865886449814 -0.015092035755515099 0.02810005284845829 0.08132503181695938 -0.05206400528550148 0.028371816501021385 -0.0703522115945816 0.0012279392685741186 0.05040304735302925 -0.008506988175213337 0.0538780502974987 -0.0587938092648983 -0.0921015590429306 -0.06204359233379364 -0.012102995999157429 0.041237469762563705 0.016127871349453926 -0.018820960074663162 -0.04845065623521805 -0.015732476487755775 0.018010592088103294 -0.017500391229987144 -0.009253893978893757 0.04175068065524101 -0.07922311127185822 -0.09630924463272095 0.11613406240940094 0.05551881343126297 0.05330758914351463 -0.10127908736467361 -0.07998093962669373 0.034601155668497086 -0.0362454429268837 -0.025861088186502457 0.06544206291437149 -0.06628356128931046 -0.0026100759860128164 -0.029368270188570023 0.024293839931488037 -0.026493338868021965 -0.011849022470414639 0.020079780369997025 0.06408814340829849 0.05879828706383705 0.0024814626667648554 -0.012571766972541809 0.048303257673978806 0.11271324753761292 0.018919112160801888 -0.00635235570371151 -0.030806202441453934 0.022029919549822807 -0.017112331464886665 -0.023805206641554832 -0.028712239116430283 0.0800572857260704 0.015477594919502735 -0.014612490311264992 -0.04163896292448044 0.005669095553457737 -0.021642938256263733 -0.037619929760694504 0.08642342686653137 -0.016992846503853798 0.046039700508117676 -0.005924393888562918 -0.025374872609972954 0.0032068095169961452 0.04246854409575462 0.03728105500340462 -0.037632666528224945 -0.044798292219638824 0.015850506722927094 -0.05043213069438934 -0.007280129007995129 0.07569189369678497 -0.042358461767435074 0.07463562488555908 -0.03595948591828346 -0.0037042193580418825 0.01323667075484991 0.03780136629939079 -0.012638791464269161 -0.042805176228284836 -0.02069701813161373 -0.05886778607964516 -0.04503792151808739 -0.06166290491819382 0.016727229580283165 -0.011841628700494766 -0.07048500329256058 -0.07497593760490417 -0.04633854329586029 0.0037952580023556948 0.02583620510995388 0.048334382474422455 0.010897897183895111 -0.0022056051529943943 0.016961829736828804 -0.004061572719365358 0.003838370321318507 -0.0033511221408843994 -0.04028564691543579 -0.0037127616815268993 -0.03395778685808182 -0.05307461693882942 -0.0273613128811121 -0.02645917423069477 0.008473810739815235 0.06466567516326904 0.12208713591098785 -0.020009925588965416 -0.09185970574617386 -0.006532320752739906 -0.004263715352863073 0.016299385577440262 0.025157228112220764 -0.09381032735109329 0.014756901189684868 -0.07110656052827835 0.03640797734260559 -0.063896045088768 -0.014838428236544132 -0.03559719771146774 0.10214870423078537 -0.0010274868691340089 -0.013493322767317295 0.010501277633011341 -0.031165149062871933 0.006355512887239456 -0.04125605523586273 -0.010710306465625763 -0.027509845793247223 -0.04053961858153343 -0.05099557340145111 0.005059539806097746 0.008039558306336403 -0.04458971694111824 -0.06737976521253586 0.03780543431639671 -0.0060387165285646915 0.08368705213069916 -0.07097933441400528 -0.022295230999588966 -0.08064769208431244 0.05856741964817047 -0.011394057422876358 -0.02701752446591854 -0.049437616020441055 0.009663469158113003 -0.07370442897081375 -0.020059792324900627 0.027433158829808235 0.018454493954777718 0.05423928052186966 -0.008942260406911373 -0.024946795776486397 0.017829790711402893 0.010781395249068737 -0.04940884932875633 -0.019172165542840958 -0.01171826384961605 0.019962014630436897 -0.0065432097762823105 -0.03355026617646217 -0.020923545584082603 -0.023234808817505836 -0.10286401212215424 -0.08346247673034668 -0.002406952902674675 -0.0049914042465388775 0.012625614181160927 -0.037100665271282196 0.0017272585537284613 -0.030204519629478455 0.06351584941148758 -0.11624739319086075 0.017737235873937607 0.06780190020799637 -0.09657905995845795 0.019203810021281242 0.008945907466113567 0.003807262284681201 -0.07052838057279587 -0.006812634412199259 0.031513918191194534 0.031456850469112396 -0.021351750940084457 -0.025991365313529968 -0.017760466784238815 -0.019976625218987465 0.03662285953760147 -0.06510747969150543 -0.02848886512219906 0.07957146316766739 -0.0011055717477574944 0.005273345857858658 -0.055145859718322754 0.034057728946208954 0.02438160590827465 0.0266315508633852 0.0328536257147789 0.05608950927853584 0.03374074772000313 0.025224940851330757 -0.03054799512028694 0.01214780006557703 0.0540284626185894 0.011256484314799309 -0.03172631189227104 0.03745127469301224 0.04350912198424339 -0.012745406478643417 -0.03523493930697441 0.010680926963686943 0.02809200994670391 0.020500345155596733 -0.022922350093722343 -0.02626791223883629 -0.013152757659554482 0.06736911088228226 0.04285889118909836 -0.01742696762084961 -0.04465160891413689 0.008257991634309292 0.0329102948307991 -0.04981183633208275 0.04169946163892746 -0.008232702501118183 -0.030649058520793915 0.01849442347884178 -0.0637999027967453 0.03783557564020157 -0.0419456772506237 0.0248287171125412 -0.03954111412167549 -0.022819800302386284 0.016584573313593864 0.007607577368617058 0.02866673655807972 0.02274368330836296 -0.02951277792453766 -0.028103629127144814 0.010334310121834278 -0.009654317982494831 -0.08866328746080399 0.011434448882937431 -0.053523950278759 -0.05504535883665085 -0.006036856677383184 0.0387142188847065 0.03732205182313919 0.0047684055753052235 -0.00527603505179286 -0.0821259543299675 -0.09179450571537018 0.005524050444364548 -0.013391174376010895 -0.08231978863477707 0.0659630298614502 -0.11415684223175049 -0.06648723781108856 -0.03183373436331749 0.10397446900606155 -0.0487094409763813 0.05663856863975525 -0.04874683916568756 -0.021289750933647156 0.0023173729423433542 -0.05013620853424072 -0.025714650750160217 0.014157244935631752 -0.035880159586668015 0.0037777209654450417 0.04829420894384384 -0.04138577729463577 0.0018857672112062573 -0.02735726535320282 -0.000559574575163424 -0.10417108237743378 -0.03140281140804291 0.037854086607694626 -0.1044062003493309 0.07677335292100906 -0.042510319501161575 -0.04538625851273537 0.0036500971764326096 0.02600236050784588 0.01595245487987995 0.02834152989089489 0.015565501525998116 -0.03697245195508003 0.052401646971702576 0.0048850891180336475 0.008450220339000225 -0.024846043437719345 0.025198280811309814 -0.037009287625551224 -0.004185768775641918 -0.029624497517943382 -0.03029523231089115 -0.0006684754625894129 -0.04768333584070206 0.014682664535939693 -0.03933844342827797 0.003489541821181774 -0.0521295890212059 -0.05469304695725441 -0.007015311624854803 -0.020933648571372032 0.018145712092518806 -0.006906962022185326 -0.08164370059967041 0.015977434813976288 0.052194539457559586 -0.052765995264053345 -0.03360521048307419 -0.02253376878798008 0.008808273822069168 -0.060501713305711746 0.07108106464147568 -0.0237620547413826 0.0032144661527127028 -0.011030548252165318 -0.040494877845048904 -0.10822111368179321 -0.06249348074197769 -0.003180334810167551 -0.03587332367897034 -0.06895825266838074 0.021959561854600906 -0.0752810537815094 -0.026216240599751472 0.046999432146549225 0.03735131025314331 0.06946032494306564 0.035873401910066605 0.044661641120910645 0.08100342005491257 0.05058114230632782 0.03931330144405365 0.007704888004809618 0.03262003883719444 -0.013017131946980953 -0.018810614943504333 0.11579108983278275 0.01164289005100727 0.02427941933274269 -0.006974908988922834 0.03344258293509483 -0.01877247542142868 -0.07669515907764435 -0.06087852269411087 0.07565222680568695 -0.06290745735168457 0.0029700743034482002 0.0002520190319046378 -0.008535291068255901 0.02716660685837269 -0.03824462369084358 0.09103754162788391 0.01876196265220642 0.03884332254528999 -0.048384130001068115 -0.030321722850203514 -0.006355616729706526 -0.06848479807376862 -0.04136621579527855 0.0028697995003312826 0.030067576095461845 0.014714401215314865 -0.030979735776782036 0.03462941199541092 0.05772345885634422 0.0759408250451088 0.08319159597158432 0.013800090178847313 0.05579577758908272 -0.0046822805888950825 0.00908602587878704 0.04666003957390785 0.049313124269247055 0.008845972828567028 0.029630374163389206 0.0593251995742321 0.051974743604660034 -0.037636179476976395 -0.060356687754392624 0.04016799479722977 0.06449766457080841 0.027060041204094887 -0.044006604701280594 -0.0743618756532669 0.0007429976831190288 -0.0006426267791539431 0.018678057938814163 0.047376204282045364 0.0196306724101305 0.07556648552417755 0.02321454882621765 0.04723893478512764 -0.018622374162077904 0.0309618953615427 -0.021048329770565033 -0.039405543357133865 -0.0009638344054110348 -0.05883423984050751 -0.06026778742671013 0.08815425634384155 -0.06068813055753708 -0.042526815086603165 0.0032565814908593893 -0.015506206080317497 0.03179815784096718 -0.013491912744939327 -0.0004925867542624474 0.06365753710269928 0.04562578722834587 0.05332005396485329 -0.05056074261665344 0.07939465343952179 -0.0633910745382309 -0.06373991817235947 0.07895436137914658 0.05510684847831726 -0.002914618467912078 0.02533474564552307 0.010889609344303608 -0.0007158673251979053 0.07420726865530014 -0.002830336568877101 -0.02107994630932808 -0.0008011097088456154 0.04736429452896118 -0.08600345999002457 0.029929379001259804 0.0007078784401528537 0.01592629961669445 0.008220040239393711 0.04475658759474754 -0.04025508835911751 -0.013463497161865234 -0.03597329556941986 -0.02845189906656742 -0.05185139924287796 -0.047762181609869 0.03386535122990608 -0.05990417301654816 0.028476078063249588 0.01634547859430313 0.015136380679905415 0.09586413949728012 -0.021581968292593956 0.055811814963817596 0.039361558854579926 -0.04339384287595749 +0.041053999215364456 -0.06726380437612534 -0.0970761626958847 -0.011934494599699974 -0.02798834629356861 0.01628004014492035 0.018174374476075172 -0.009921304881572723 -0.051758475601673126 0.033417709171772 -0.08311577886343002 0.05628886818885803 -0.019308868795633316 -0.037639960646629333 -0.030532926321029663 -0.12961916625499725 -0.01102499756962061 0.001301343785598874 0.06570664793252945 -0.018854111433029175 -0.038030561059713364 0.03439292684197426 -0.02948595955967903 0.04962526634335518 0.0022990205325186253 0.027048230171203613 0.014640779234468937 0.017053956165909767 0.04147541522979736 0.028998859226703644 0.03352360799908638 -0.05459773540496826 0.026280611753463745 -0.017337722703814507 -0.011287967674434185 -0.05533333122730255 -0.03493152931332588 0.07759184390306473 0.06111950799822807 -0.011663266457617283 -0.052198540419340134 0.010717405937612057 -0.03968466445803642 -0.054964736104011536 -0.014629550278186798 0.0019474630244076252 -0.05956365540623665 -0.08566538244485855 0.033532798290252686 -0.013815411366522312 -0.02408626116812229 0.04038553312420845 -0.00238342909142375 0.011133741587400436 -0.08973345905542374 0.001477111130952835 -0.01256821770220995 0.08625612407922745 -0.01925586722791195 0.012574001215398312 -0.03355737775564194 0.043006133288145065 -0.010283726267516613 -0.015346561558544636 0.017939792945981026 -0.012394089251756668 0.05223746597766876 0.009822015650570393 -0.04681891202926636 0.036769989877939224 -0.019357286393642426 0.04191276431083679 -0.01702488213777542 0.06320574879646301 -0.011384583078324795 -0.04747770354151726 -0.0520576648414135 -0.033436670899391174 0.004386776592582464 -0.009440237656235695 -0.03768786042928696 0.03534163162112236 0.0971934050321579 0.007247611414641142 -0.02596302330493927 -0.017039360478520393 -0.023913424462080002 -0.04595357924699783 -0.036932818591594696 -0.02039862424135208 0.0846143513917923 -0.04637838527560234 0.02579301968216896 0.010591561906039715 0.021944882348179817 0.003980569541454315 0.09035952389240265 -0.014429941773414612 -0.04025329649448395 -0.0023169158957898617 -0.010873674415051937 -0.014212613925337791 0.06822600960731506 -0.029360031709074974 0.009377419017255306 -0.05020492151379585 -0.08300000429153442 0.0511762835085392 0.02110709436237812 -0.04514295235276222 0.07568029314279556 0.06606458872556686 -0.0814267247915268 -0.022360794246196747 0.0877280905842781 0.0036007757298648357 0.05149782449007034 -0.008710971102118492 0.053180329501628876 0.037131812423467636 -0.04652443528175354 0.07847005873918533 -0.01007566973567009 -0.04231816902756691 -0.013878578320145607 0.05627959966659546 -0.03436131030321121 0.011034405790269375 -0.04028766229748726 -0.009509905241429806 -0.04842615872621536 0.05204683542251587 0.03204510360956192 0.03367850184440613 -0.07835401594638824 -0.10388761013746262 -0.0466410331428051 0.048286255449056625 0.040726520121097565 0.02462179586291313 -0.08770161122083664 0.05768384039402008 0.058411043137311935 0.07364911586046219 -0.017988895997405052 -0.030791200697422028 -0.07094378024339676 -0.020398346707224846 0.04628603160381317 -0.0038721296004951 0.005625717807561159 0.03686555474996567 0.0524834506213665 0.027112789452075958 0.0432356633245945 0.007866891101002693 0.03519958630204201 0.01361105591058731 0.03817189484834671 -0.004990779794752598 0.002172830980271101 0.012772795744240284 0.0006322154658846557 -0.030545342713594437 0.028967255726456642 0.11579500883817673 0.043319206684827805 -0.05444351211190224 0.0064069046638906 0.13469821214675903 -0.016581354662775993 0.008826053701341152 -0.00731118256226182 -0.03681740164756775 -0.025608722120523453 -0.0019655833020806313 0.0165384653955698 -0.010579034686088562 0.05963790416717529 -0.055684201419353485 0.029614359140396118 -0.08463024348020554 0.003951326943933964 0.04202428460121155 -0.0012408395996317267 0.027071159332990646 -0.010852301493287086 -0.02554992586374283 0.016598600894212723 -0.0016271224012598395 0.03858252242207527 -0.08087120205163956 -0.04080778360366821 -0.02903738059103489 -0.012153202667832375 -0.03322439268231392 0.05464368686079979 0.066083624958992 0.02602618746459484 0.05935303121805191 -0.03864799812436104 0.02310747653245926 -0.08098108321428299 -0.00940476544201374 0.04126974195241928 0.04391711577773094 -0.018291179090738297 -0.05125066265463829 0.04906514659523964 -0.025566115975379944 -0.007523945067077875 -0.02746335230767727 -0.04552338272333145 0.0276121124625206 0.059915944933891296 -0.025874732062220573 -0.023114049807190895 0.03443409129977226 -0.005731253419071436 -0.0010135184274986386 -0.05063149705529213 -0.03304444998502731 -0.06164014711976051 -0.07590176165103912 -0.029758455231785774 -0.07174805551767349 0.038942936807870865 0.031044168397784233 0.05267791822552681 -0.024936676025390625 0.06677188724279404 0.06487862020730972 0.01969262585043907 -0.03785372152924538 0.006947789806872606 -0.010412915609776974 0.02181771583855152 -0.0108652887865901 -0.03258473426103592 -0.09416139870882034 0.043377432972192764 -0.003579074749723077 -0.019614731892943382 0.04704225808382034 0.0002942996798083186 -0.035414181649684906 0.07400813698768616 0.024278609082102776 -0.11898200958967209 0.004195801913738251 0.032061588019132614 -0.003735738107934594 0.061258163303136826 0.08443823456764221 0.020357267931103706 -0.06253167986869812 0.05206079035997391 -0.04990217834711075 0.03668283671140671 -0.010374455712735653 0.034569818526506424 0.03381624445319176 -0.05171696096658707 -0.03548808768391609 -0.009363394230604172 0.013820572756230831 0.048712003976106644 0.033748138695955276 -0.022505173459649086 -0.00796844344586134 0.012917725369334221 0.05774005502462387 -0.00042697403114289045 0.05724658444523811 -0.0055351583287119865 -0.042695820331573486 0.01722310669720173 0.007188849616795778 0.01753806881606579 -0.08914107829332352 0.010639204643666744 0.006234353873878717 -0.01927327550947666 -0.011254473589360714 -0.031319569796323776 -0.0260603167116642 0.013268742710351944 -0.0031416912097483873 -0.01681608334183693 -0.04432886838912964 -0.061547618359327316 -0.052361756563186646 -0.002188851358368993 -0.007683607749640942 -0.009229219518601894 -0.05586227774620056 0.022257963195443153 0.06318768858909607 0.009168725460767746 0.051187798380851746 0.1144464984536171 -0.056762807071208954 0.02896583080291748 0.0489359125494957 -0.03417316824197769 -0.05429794266819954 -0.06780825555324554 -0.021364014595746994 0.05126680061221123 0.0557970367372036 0.06451793015003204 0.003974166698753834 0.030540315434336662 0.039594266563653946 -0.012075231410562992 -0.04616720601916313 -0.010712972842156887 -0.017069261521100998 -0.027129894122481346 0.030903687700629234 0.06783688813447952 0.02987593226134777 -0.013019507750868797 0.009794236160814762 -0.03429631143808365 -0.0443914458155632 0.01888062246143818 -0.15786385536193848 -0.007469641976058483 -0.058619312942028046 -0.017653262242674828 -0.041792407631874084 0.04140878841280937 0.049505431205034256 -0.013807808049023151 -0.07472096383571625 -0.09183664619922638 -0.0143300024792552 0.02632676437497139 0.05618160218000412 0.09621689468622208 -0.0003841108991764486 0.029232436791062355 -0.08334758132696152 -0.015802767127752304 -0.0694388672709465 -0.03309599310159683 -0.09188473224639893 0.10256354510784149 0.009722214192152023 -0.04649613797664642 -0.01108850259333849 -0.06738061457872391 0.010487199760973454 -0.03640624135732651 0.020593512803316116 0.08111263066530228 0.012866169214248657 -0.03342615067958832 0.021458540111780167 -0.03574829176068306 -0.010613045655190945 0.017800187692046165 0.0809306874871254 0.030823279172182083 -0.04435647279024124 0.08192077279090881 0.005633850581943989 0.009754045866429806 0.018716465681791306 0.022898728027939796 0.040856119245290756 -0.014313760213553905 -0.011296603828668594 0.03877004235982895 -0.07714644074440002 -0.012290826067328453 -0.01630537584424019 0.015476478263735771 -0.04393642023205757 0.01578780636191368 -0.004842268768697977 -0.029386254027485847 0.01618337631225586 0.009425892494618893 0.018924061208963394 0.015267409384250641 -0.04328394681215286 0.03876383230090141 0.044277772307395935 -0.013969118706882 0.11612705886363983 0.05570634827017784 -0.017992306500673294 0.015334929339587688 0.10472780466079712 0.0483233705163002 0.02400067448616028 0.025653457269072533 0.037590574473142624 0.030900875106453896 0.025195864960551262 0.004464497324079275 0.06667577475309372 -0.011776212602853775 -0.07110966742038727 -0.02079293504357338 0.047407131642103195 -0.09075893461704254 -0.053700752556324005 0.00811118632555008 -0.014350321143865585 -0.04238830879330635 0.0289854034781456 -0.011008748784661293 -0.04397576302289963 0.027649451047182083 0.01268577016890049 -0.05511598661541939 -0.039102703332901 -0.02496165968477726 0.06767021119594574 0.014032281003892422 0.04519563913345337 -0.034846093505620956 -0.03160882741212845 0.036367423832416534 0.03788134828209877 -0.07216615229845047 0.004804708994925022 0.07952317595481873 0.0538342110812664 -0.029399048537015915 0.0610937774181366 -0.035249385982751846 -0.005205077584832907 0.0002941775892395526 0.04248055815696716 0.08595899492502213 0.005662787239998579 0.002146276878193021 -0.004808393307030201 0.03339839354157448 -0.02583368495106697 0.0012522328179329634 0.021030576899647713 -0.013832468539476395 0.03443049266934395 0.012563451193273067 -0.03582824021577835 0.005239530466496944 0.05716361850500107 0.008829889819025993 -0.005368989892303944 0.020711196586489677 0.060547713190317154 -0.007311806082725525 -0.010948778130114079 0.025320008397102356 -0.029645953327417374 0.004752099514007568 -0.02324586734175682 -0.004615363199263811 -0.0494769848883152 0.010433775372803211 -0.028781915083527565 -0.011876795440912247 0.03474152833223343 -0.0148297268897295 -0.02790813148021698 0.03318998962640762 -0.023214131593704224 0.04993700981140137 0.002417877083644271 0.026486702263355255 0.02924848161637783 0.056192547082901 -0.12149780988693237 0.0325605683028698 0.013695941306650639 0.050647471100091934 0.04560329392552376 0.047531355172395706 -0.0031188204884529114 0.08145318180322647 -0.03765425458550453 -0.10561877489089966 -0.03142551705241203 0.014188268221914768 0.03419208154082298 0.013693282380700111 0.046428143978118896 0.0070968992076814175 0.011923957616090775 0.10529287159442902 0.03313843160867691 -0.014850153587758541 -0.01327100396156311 -0.023967644199728966 0.04348062351346016 0.03744972497224808 0.043144289404153824 0.02808281220495701 0.02811315655708313 0.059760015457868576 -0.006483564618974924 -0.04102632403373718 0.04813501238822937 0.004977806471288204 0.03066113591194153 0.022467834874987602 -0.02469624951481819 +0.10559633374214172 -0.05558424070477486 0.0011349889682605863 0.08471108227968216 -0.06196915730834007 0.08279727399349213 -0.02504146844148636 0.023117244243621826 -0.08306160569190979 -0.04954324662685394 -0.011105685494840145 0.05190755054354668 0.008020124398171902 -0.003363873576745391 -0.03675968199968338 -0.0936322882771492 0.0374978668987751 0.025957267731428146 0.0429299958050251 -0.03750765323638916 -0.026564141735434532 0.03264055401086807 0.048100847750902176 -0.007404404226690531 0.007194960489869118 -0.0247968677431345 0.06271708011627197 0.035708118230104446 0.04652567207813263 0.02502071112394333 0.04767351970076561 -0.05813860148191452 -0.012630632147192955 -0.013086802326142788 -0.04620375111699104 -0.01717386208474636 -0.020458579063415527 0.040890950709581375 0.049199413508176804 -0.04859883338212967 0.023731671273708344 0.02161148563027382 0.0316866971552372 -0.07295085489749908 0.03838484734296799 0.040578585118055344 -0.04622122645378113 -0.06592584401369095 0.023100802674889565 -0.03814685344696045 0.015102419070899487 0.06174261122941971 0.05015893280506134 0.049372538924217224 -0.06687004119157791 -0.041491247713565826 0.04048905149102211 0.08523096889257431 0.018106967210769653 0.036829859018325806 -0.018020836636424065 -0.05019392818212509 0.02170938439667225 0.018525149673223495 0.034815870225429535 0.051907844841480255 0.06946588307619095 -0.008508255705237389 0.02853040210902691 -0.004186662845313549 -0.013230929151177406 0.07354524731636047 0.029971571639180183 0.060810524970293045 0.026002220809459686 -0.06894493103027344 -0.04219084605574608 -0.05754393711686134 -0.04664973169565201 0.021142538636922836 -0.009104140102863312 0.008259635418653488 0.06077883020043373 -0.024018965661525726 -0.0073903570882976055 0.05393132194876671 0.024617725983262062 -0.06680503487586975 -0.010995249263942242 0.01564965397119522 0.02500206045806408 -0.039885614067316055 -0.034140411764383316 -0.015197932720184326 -0.053201090544462204 0.004715059883892536 0.07758072018623352 0.018339194357395172 -0.04212390258908272 0.019650906324386597 -0.029269272461533546 -0.028891509398818016 0.025350794196128845 -0.03036327287554741 0.03167511895298958 -0.019813453778624535 -0.012910360470414162 0.008339164778590202 -0.010107685811817646 -0.031551335006952286 0.08074193447828293 0.06318005174398422 -0.06179282069206238 -0.04231652617454529 0.10219819843769073 -1.4563080185325816e-05 0.0011545217130333185 -0.0763784721493721 0.04458950087428093 0.022606490179896355 -0.04369498789310455 0.13392508029937744 -0.04197008162736893 -0.07442232966423035 -0.0019564172253012657 -0.007704122923314571 0.00585115747526288 0.02665519528090954 0.01703295111656189 -0.021677033975720406 -0.00014715119323227555 0.02101292461156845 -0.018857965245842934 0.1116369441151619 -0.08790905028581619 -0.015464778989553452 -0.0934775099158287 0.0404137447476387 0.06020841747522354 0.017858168110251427 -0.019443631172180176 0.06643160432577133 0.0878254696726799 0.05532106012105942 -0.017396356910467148 -0.0040630074217915535 -0.013881243765354156 -0.003364303382113576 0.04781211540102959 0.012313498184084892 0.040994059294462204 0.018391484394669533 -0.024202700704336166 0.021892638877034187 0.03217742219567299 0.018119066953659058 0.010747512802481651 -0.04075463116168976 -0.013669862411916256 0.01896311342716217 0.010930348187685013 0.03080368973314762 0.034163132309913635 -0.01856771856546402 0.008797576650977135 0.12371993064880371 -0.03676525875926018 -0.0459822379052639 -0.04107705131173134 0.09452299028635025 -0.028170013800263405 0.010075709782540798 0.04212018474936485 -0.023880288004875183 0.04100365564227104 -0.0009326644358225167 0.011247698217630386 -0.03806295618414879 0.04961465671658516 0.02059503085911274 0.011780974455177784 -0.05453188717365265 0.012730286456644535 -0.03779293969273567 -0.0010719922138378024 -0.007815266028046608 0.006877533625811338 -0.027833830565214157 0.05824274197220802 -0.01567653939127922 -0.001997665734961629 -0.022793777287006378 -0.04621376097202301 -0.04846477136015892 0.00015690989675931633 -0.00840380135923624 0.016410864889621735 -0.018220093101263046 0.03335560858249664 0.01496119238436222 -0.009848818182945251 0.02832796797156334 -0.0526311993598938 0.030544094741344452 0.03887425363063812 0.021388154476881027 -0.0608152337372303 -0.019386915490031242 0.0072010960429906845 -0.013370556756854057 -0.011603305116295815 0.03099193423986435 0.007458540145307779 0.036689478904008865 -0.003905810881406069 0.03765434771776199 0.02942829020321369 -0.012308172881603241 0.0016335129039362073 0.0038569404277950525 -0.04473118111491203 -0.06568083167076111 -0.051642417907714844 -0.07188446819782257 -0.019247496500611305 0.017231695353984833 0.0022593766916543245 0.047867096960544586 0.09198600053787231 -0.07103124260902405 0.10166963934898376 0.06772959232330322 0.06551547348499298 -0.009503250010311604 -0.018202148377895355 -0.03795541822910309 0.011715494096279144 0.0061585609801113605 0.013485084287822247 -0.03480983525514603 0.025747355073690414 -0.0069673433899879456 0.021864380687475204 0.01601802557706833 0.06149156764149666 -0.02762753702700138 0.00595571706071496 -0.0406976118683815 -0.09519153088331223 -0.04881656542420387 0.03512798994779587 -0.010024686343967915 0.021586008369922638 0.058477986603975296 0.07423210889101028 -0.053980693221092224 0.03663644567131996 -0.07592421025037766 0.026637624949216843 0.012258755043148994 0.01397813018411398 0.009189087897539139 -0.034675925970077515 -0.07347344607114792 -0.05717974528670311 0.003921153023838997 0.04006648436188698 -0.007611985318362713 -0.01597440242767334 -0.003532010829076171 0.008011341094970703 0.1480335295200348 0.06535416841506958 -0.009329581633210182 0.0009353943751193583 -0.022117795422673225 -0.0028766815084964037 -0.023230379447340965 0.07222680002450943 -0.046533603221178055 0.020738817751407623 0.006474165711551905 -0.04142405837774277 -0.040091436356306076 -0.0339471697807312 -0.014634300023317337 0.01476092729717493 0.023946121335029602 -0.02137739770114422 0.002270644763484597 -0.025003597140312195 -0.04785008728504181 -0.0018828775500878692 0.021266406401991844 0.021415000781416893 0.016683010384440422 -0.07528136670589447 0.10062988847494125 -0.03671693056821823 -0.015631327405571938 0.14180298149585724 -0.06521429866552353 0.04146547242999077 0.03912302479147911 -0.00965270958840847 -0.07289726287126541 -0.0369846448302269 -0.001066351542249322 0.01815272681415081 0.05250469967722893 0.05833059921860695 -0.03481193631887436 0.016950611025094986 0.0751948431134224 0.006406267173588276 -0.010144265368580818 0.014599834568798542 -0.04947982728481293 -0.01211032085120678 0.09106016159057617 0.10243823379278183 -0.013129177503287792 0.012821350246667862 0.013127646408975124 0.03533592075109482 -0.057316768914461136 0.0195272546261549 -0.13103802502155304 0.03482533246278763 -0.05856061726808548 0.017748834565281868 -0.05852854996919632 0.057799894362688065 0.006012310739606619 0.053110599517822266 0.006973702926188707 -0.020445579662919044 0.015018533915281296 0.05645471438765526 0.015067261643707752 0.07499761134386063 -0.06237419322133064 0.011712618172168732 -0.021970968693494797 -0.03136063739657402 -0.05544153228402138 -0.011733701452612877 -0.07704745978116989 0.07270032912492752 -0.012142092920839787 -0.00443667359650135 -0.05872127786278725 -0.005653660744428635 0.03225385770201683 -0.017629804089665413 0.05642177537083626 0.028037477284669876 0.06377944350242615 -0.10965020954608917 0.07881295680999756 0.01605994999408722 -0.04292383790016174 0.02141101472079754 0.07287010550498962 0.019036535173654556 -0.04880586639046669 0.008966160006821156 -0.027855059131979942 -0.01507326029241085 0.04835687577724457 0.03454471752047539 0.01255461573600769 -0.03345903381705284 -0.041934411972761154 0.04240736365318298 -0.004681691527366638 -0.00805822852998972 -0.02491236850619316 0.03133115544915199 0.009320736862719059 -0.06035153940320015 0.04089382663369179 -0.05073416233062744 -0.014704599045217037 0.013529786840081215 0.019087037071585655 0.007588690146803856 -0.02039441466331482 0.04092220216989517 0.0152382617816329 0.014290799386799335 0.08221419155597687 -0.011382817290723324 0.014824873767793179 -0.02711785025894642 0.08727096021175385 0.07095126807689667 0.04323187470436096 0.012183654122054577 0.04246240854263306 0.011272656731307507 0.04135984182357788 0.014674687758088112 0.031953275203704834 -0.0011674915440380573 -0.09484652429819107 -0.04458801448345184 0.015141033567488194 -0.07230239361524582 0.0034217939246445894 0.06020043417811394 -0.05683562159538269 -0.04495939984917641 0.062210917472839355 0.009832999669015408 -0.10960173606872559 -0.02703244425356388 0.04534367099404335 0.033582527190446854 -0.027187306433916092 -0.029719868674874306 0.06168939918279648 0.024863507598638535 -0.024416867643594742 -0.06635910272598267 -0.033268071711063385 -0.006914914585649967 0.023473400622606277 -0.0041383602656424046 -0.06406852602958679 0.05076923593878746 0.1123121976852417 0.009919032454490662 0.03794408217072487 -0.05903872102499008 -0.021894235163927078 -0.009285452775657177 0.02109428681433201 0.08586777746677399 -0.009273520670831203 0.009946085512638092 0.018105613067746162 0.029811477288603783 -0.01157008484005928 -0.029418066143989563 0.019676703959703445 -0.031935952603816986 0.008769423700869083 0.03406701236963272 -0.04937208443880081 -0.01564028114080429 -0.034317128360271454 -0.016643844544887543 0.01051070261746645 0.019218675792217255 0.058177247643470764 0.0459287166595459 -0.021742600947618484 0.003169119590893388 0.015766356140375137 -0.057980768382549286 -0.048979826271533966 0.024843458086252213 0.005149717442691326 -0.054461896419525146 -0.048246074467897415 0.02280586026608944 0.021628698334097862 0.011830375529825687 0.024844257161021233 0.08017153292894363 -0.034133750945329666 0.09019797295331955 -0.01658599078655243 0.0038784919306635857 -0.009207295253872871 0.05619603022933006 -0.09537401795387268 -0.003408225253224373 0.026143960654735565 0.009970227256417274 0.06121905893087387 0.07433747500181198 -0.043534375727176666 -0.0175565667450428 -0.029459210112690926 -0.026328446343541145 0.04375613480806351 0.019015660509467125 0.03248376399278641 -0.03584110736846924 0.03218308836221695 -0.03093915805220604 -0.013744323514401913 0.06301524490118027 0.046117085963487625 0.007646351121366024 0.02978876419365406 0.03739769384264946 0.10152676701545715 0.07496651262044907 0.023134689778089523 -0.010065036825835705 0.022371754050254822 0.00945619773119688 -0.0029458394274115562 0.05536455288529396 0.0029115499928593636 -0.017422419041395187 0.03644745796918869 -0.0011866253335028887 -0.03759831190109253 +0.03893241286277771 -0.06379051506519318 -0.08954379707574844 0.0568121001124382 -0.06253500282764435 0.033952746540308 -0.025081781670451164 0.03652453422546387 -0.09218690544366837 0.0014922235859557986 -0.00814860314130783 0.01151325274258852 0.01923130266368389 -0.05741681531071663 -0.04675375670194626 -0.10572835803031921 -0.023913729935884476 -0.0022720645647495985 0.06831087172031403 -0.06164376810193062 -0.03353352099657059 0.03651874512434006 -0.024827200919389725 0.053955547511577606 0.014551877975463867 0.00619271257892251 0.025128090754151344 0.014610049314796925 0.03935974836349487 0.06143227964639664 0.016623076051473618 -0.03161587938666344 -0.0025114102754741907 -0.013581057079136372 -0.049193818122148514 -0.02189604379236698 -0.04025333374738693 0.063410185277462 0.031155863776803017 -0.023688768967986107 -0.07677651941776276 0.07612059265375137 0.0372936949133873 -0.040246035903692245 0.026487695053219795 0.03612036630511284 -0.04962316155433655 -0.054836273193359375 0.02936820685863495 -0.0067390999756753445 -0.006550977006554604 0.06327283382415771 0.07468871772289276 0.045657116919755936 -0.05500584468245506 0.03126294165849686 0.023702146485447884 0.09988900274038315 -0.015052488073706627 0.021882563829421997 0.021402116864919662 0.008984372951090336 0.007963220588862896 -0.04922834038734436 0.0572148859500885 0.04348912462592125 0.013233286328613758 0.020601216703653336 -0.02074885368347168 0.05516810715198517 -0.0285154078155756 0.07391279190778732 -0.007814921438694 0.05989659205079079 0.03261386603116989 -0.03821511194109917 -0.0842314213514328 -0.01585005596280098 -0.02359868958592415 0.009944836609065533 -0.014216700568795204 0.042156096547842026 0.08342470973730087 0.012668594717979431 -0.011447645723819733 0.0032424048986285925 -0.016528451815247536 -0.024589762091636658 0.019536888226866722 -0.008083213120698929 0.08000879734754562 -0.02439524605870247 -0.0006079912418499589 0.005237678065896034 -0.00841975212097168 0.013437069952487946 0.10691741108894348 -0.02986542135477066 -0.019983457401394844 0.04287255182862282 -0.03290941193699837 -0.07390216737985611 0.055318355560302734 -0.051195431500673294 -0.009229526855051517 -0.017560753971338272 -0.08195215463638306 0.004783981945365667 -8.488987077726051e-06 -0.04024185985326767 0.07917845994234085 0.11371723562479019 -0.06743234395980835 -0.045009795576334 0.06857828050851822 0.027519579976797104 0.017774729058146477 -0.006868754513561726 0.007838066667318344 0.05236251279711723 -0.07826501131057739 0.07618092745542526 0.00033106893533840775 -0.0409509614109993 0.018088171258568764 0.04631520435214043 -0.028828158974647522 0.02986838109791279 0.025707636028528214 -0.013401820324361324 -0.02855966053903103 0.0060405973345041275 0.06471380591392517 0.08368503302335739 -0.06508442014455795 -0.041116777807474136 -0.03944094106554985 0.067463219165802 0.030930295586586 0.03318263590335846 -0.093411885201931 0.04997297748923302 0.06179036572575569 0.02348213456571102 -0.010626283474266529 0.011340088210999966 -0.044015005230903625 0.01368112862110138 0.05024069547653198 0.03151177987456322 0.023804379627108574 0.0013634136412292719 -0.014274480752646923 0.039524536579847336 0.024258200079202652 0.030492372810840607 0.01375338714569807 0.024154553189873695 0.04470917209982872 -0.02939346432685852 0.03184982016682625 -0.009359261021018028 -0.010932370088994503 -0.028874928131699562 0.031091876327991486 0.0735190361738205 -0.002421394921839237 -0.057744741439819336 0.0018830616027116776 0.11675342172384262 0.00851984228938818 0.001492093550041318 0.021880976855754852 -0.025666026398539543 -0.01329038292169571 0.015578619204461575 0.06910604983568192 0.0093817338347435 -0.0024957102723419666 -0.06678488105535507 0.011114035733044147 -0.08112867921590805 0.019514892250299454 -0.0002494125219527632 -0.007208024617284536 0.04721590131521225 0.0327228344976902 -0.01530529372394085 -0.0013390772510319948 -0.020252985879778862 0.014908815734088421 -0.06053118035197258 0.015987742692232132 -0.040952060371637344 -0.03723398596048355 -0.007851681672036648 0.049474094063043594 0.03188686817884445 -0.0005641716998070478 0.06266381591558456 -0.028245193883776665 0.06907618045806885 -0.05774317681789398 -0.02184876799583435 0.042228251695632935 0.03838299587368965 -0.03634483367204666 -0.08416703343391418 0.014552242122590542 -0.02343863435089588 0.013341792859137058 0.0022186904679983854 -0.004287388641387224 0.054765116423368454 0.034050893038511276 0.055054113268852234 0.002141825156286359 0.014112446457147598 0.011358254589140415 -0.03615904599428177 -0.038379967212677 -0.0718129426240921 -0.058705419301986694 -0.05865142121911049 -0.006315741688013077 -0.07305114716291428 0.002236538100987673 0.04975327104330063 0.06782448291778564 -0.02846028283238411 0.0931011214852333 0.0973002016544342 0.018439078703522682 -0.04800081253051758 0.01043749786913395 -0.0017718436429277062 0.009342161938548088 0.015454387292265892 -0.02125973254442215 -0.07672999054193497 0.019890811294317245 0.01716112717986107 -0.047605548053979874 0.031665682792663574 0.03130871802568436 -0.0028796689584851265 0.016721850261092186 0.02872425504028797 -0.06646892428398132 0.0014126166934147477 0.004046773537993431 0.009741697460412979 0.011877220124006271 0.08040519803762436 0.057341061532497406 -0.04480139911174774 0.017251793295145035 -0.06234268844127655 0.0823625773191452 -0.01321559026837349 0.005349071696400642 -0.048278726637363434 -0.026536446064710617 -0.03315043821930885 -0.048882149159908295 -0.03757651150226593 0.006861649453639984 0.016668668016791344 -0.05094527825713158 0.0006177929462864995 0.010376430116593838 0.09345387667417526 -0.0047458200715482235 0.0726124569773674 -0.002052397932857275 -0.033855900168418884 0.02163802646100521 0.014274675399065018 -0.01812492311000824 -0.05568554252386093 0.033784497529268265 -0.015110207721590996 -0.03680926561355591 -0.06378975510597229 -0.030022403225302696 0.007445015944540501 0.025686418637633324 -0.02241404913365841 -0.07102961838245392 -0.05017083138227463 -0.022378183901309967 -0.034034643322229385 -0.02232394926249981 0.05668516457080841 -0.0033965911716222763 -0.039579879492521286 -0.0014909873716533184 0.07210490107536316 -0.005989684723317623 0.0660582035779953 0.13563190400600433 -0.00430196151137352 0.08664344251155853 0.0282431710511446 0.02099410444498062 -0.033351849764585495 -0.02501205913722515 0.020732365548610687 0.03133058175444603 0.05196497589349747 0.03121466189622879 0.0007069361745379865 0.045040734112262726 0.06243642419576645 0.04752491042017937 -0.01936841756105423 0.002156540984287858 -0.052411872893571854 -0.019728001207113266 0.053646087646484375 0.06448104977607727 -0.005945459008216858 -0.010965777561068535 -0.006929370574653149 -0.0058519672602415085 -0.018796125426888466 0.024781445041298866 -0.14145907759666443 0.013418618589639664 -0.0326172299683094 0.0276806578040123 -0.03519322723150253 0.02123136818408966 0.056078244000673294 0.01424909196794033 -0.02021479234099388 -0.11484527587890625 0.013057056814432144 0.04054979979991913 0.037377290427684784 0.11597581952810287 0.02334100566804409 0.05184819921851158 -0.05769705772399902 -0.00606395211070776 -0.09738776087760925 -0.03463974967598915 -0.05440331995487213 0.12558308243751526 0.01452545914798975 -0.04473410174250603 -0.031398531049489975 -0.06178879737854004 0.02036368101835251 -0.05061677470803261 0.02915753610432148 0.06886450946331024 -0.004470518324524164 -0.050122473388910294 0.017062494531273842 -0.025022653862833977 -0.0404362753033638 -0.024205831810832024 0.0661512240767479 0.01667902246117592 -0.02810480259358883 0.07106908410787582 -0.02415730431675911 -0.029882565140724182 0.01393851637840271 0.039566848427057266 0.06379280239343643 -0.03295945003628731 -0.0350150503218174 0.01614234410226345 -0.04834534972906113 -0.006114855874329805 -0.08116165548563004 0.020139211788773537 -0.07025475800037384 0.009521679021418095 -0.01572590135037899 -0.007585717830806971 -0.0065249972976744175 -0.023530583828687668 0.01968655176460743 0.015042874030768871 -0.08028920739889145 0.035686127841472626 0.01972147822380066 0.03126978129148483 0.0781945064663887 0.05175580456852913 -0.06382758170366287 0.020401205867528915 0.09146318584680557 0.08574916422367096 0.04801662638783455 0.03712882846593857 0.03778079152107239 0.022008884698152542 0.06591975688934326 0.023616936057806015 0.03619003668427467 -0.01233929954469204 -0.07483398914337158 -0.020580215379595757 0.06840227544307709 -0.06990563869476318 -0.014819455333054066 0.05414818599820137 0.0025396891869604588 -0.05680661275982857 0.009511196985840797 -0.002306732116267085 -0.07257277518510818 -0.009667606092989445 0.03401926904916763 -0.028549402952194214 0.03616826981306076 -0.03099846839904785 0.0594867579638958 0.010930475778877735 0.018659736961126328 -0.028690382838249207 -0.020912984386086464 0.06488490849733353 0.046247441321611404 -0.009427910670638084 0.0011316313175484538 0.07850795239210129 0.06121869757771492 -0.03832859918475151 0.03022700734436512 -0.04595416784286499 -0.013470618985593319 0.034574199467897415 0.014855033718049526 0.06695783883333206 -0.013502787798643112 -0.0001315442204941064 -0.022695600986480713 0.01373946201056242 -0.015005508437752724 0.023436453193426132 0.024028386920690536 -0.06404842436313629 0.08070739358663559 0.0075180563144385815 -0.0764528214931488 0.03060215152800083 0.032248321920633316 0.01613452285528183 -0.030894948169589043 0.03135591372847557 0.04091906547546387 0.01681010238826275 -0.0028083608485758305 0.039578285068273544 -0.012441565282642841 -0.025539455935359 -0.013441483490169048 -1.1838215868920088e-05 -0.009004197083413601 0.00974385254085064 -0.04353133216500282 0.026876986026763916 0.01763550378382206 -0.06205461174249649 -0.041271910071372986 0.01853424496948719 -0.029547885060310364 0.04415713623166084 -0.03483948856592178 -0.022629348561167717 -0.004926073830574751 0.008049039170145988 -0.1159098818898201 0.044433679431676865 -0.00631079962477088 0.01050128135830164 0.031033582985401154 0.07392346113920212 -0.014119938015937805 0.007333455141633749 -0.05863980948925018 -0.1119987741112709 0.02402653731405735 -0.0337587334215641 0.02925129048526287 0.028810447081923485 0.05046216398477554 0.013312294147908688 0.006433384958654642 0.10658206045627594 0.030099693685770035 0.021694889292120934 0.012653051875531673 0.016527000814676285 0.0351509228348732 0.02117972820997238 0.04757200554013252 0.02782043069601059 0.025756753981113434 0.024450693279504776 -0.002725929254665971 -0.01038291584700346 0.02496064081788063 0.025884458795189857 0.041140779852867126 0.012538031674921513 -0.04839012771844864 +-0.008200710639357567 -0.014708519913256168 -0.05602620169520378 0.018692495301365852 -0.026082653552293777 0.05232645198702812 -0.0036979743745177984 -0.012867062352597713 -0.07202740758657455 0.02313336916267872 -0.044268541038036346 0.0021508471108973026 -0.07181026041507721 -0.004722110461443663 0.002428284613415599 -0.08947587013244629 0.0335647277534008 -0.002015330595895648 0.06104891374707222 -0.06675294786691666 0.0014933183556422591 0.07252635061740875 0.053367093205451965 0.05701998993754387 0.02777683548629284 -0.0007370848907157779 0.05422640219330788 0.04066219925880432 0.10662508755922318 0.03293769806623459 0.004795372020453215 -0.07466209679841995 0.013942163437604904 -0.018480470404028893 0.04265431687235832 0.009567170403897762 0.014905101619660854 0.03596490994095802 0.10478941351175308 -0.03455556184053421 -0.011974322609603405 -0.008204837329685688 0.022621693089604378 -0.04340311139822006 0.0010111629962921143 -0.021446632221341133 -0.043623678386211395 -0.11441319435834885 0.07173316925764084 0.050162095576524734 0.01226471271365881 0.0723072811961174 -0.011318838223814964 -0.03617354482412338 -0.034542266279459 0.006441380828619003 0.0021815106738358736 0.05129484459757805 0.04456658661365509 0.01025333907455206 0.019242826849222183 -0.021088799461722374 -0.0072649684734642506 -0.020573990419507027 0.04176769033074379 -0.00419045751914382 0.04483108967542648 0.037389110773801804 -0.01932292990386486 0.031236745417118073 -0.06167365983128548 0.08780983835458755 0.009433962404727936 0.037903349846601486 0.025111833587288857 -0.03040367364883423 -0.03458365797996521 -0.05332133173942566 -0.029395760968327522 0.03477824479341507 -0.027305014431476593 -0.04759196937084198 0.04253285005688667 0.029525158926844597 0.01857380010187626 0.02827361971139908 -0.044014886021614075 -0.006272163242101669 -0.02344956062734127 0.012110277079045773 0.05281201750040054 -0.09251897037029266 0.007336837239563465 0.019533313810825348 -0.0399758443236351 -0.028501341119408607 0.06548319011926651 0.02205519936978817 0.0341486893594265 -0.02947254292666912 0.02006589248776436 -0.03520416468381882 0.06654820591211319 -0.042529474943876266 0.00016330837388522923 -0.03651571273803711 -0.08488538861274719 -0.03260194510221481 0.038271162658929825 -0.04029131680727005 0.031066274270415306 0.06113468110561371 -0.004398970864713192 -0.05336039140820503 0.04694977402687073 -0.04686598479747772 0.0028350900392979383 -0.06361270695924759 0.04517272859811783 0.026271335780620575 -0.00194209860637784 0.06586951017379761 -0.049265116453170776 0.0275762639939785 -0.0073025948368012905 0.024644382297992706 0.01670360565185547 0.05625252053141594 0.017017565667629242 0.045666322112083435 -0.004729076288640499 0.06152340769767761 0.019294751808047295 0.03864828497171402 -0.047001637518405914 -0.08141329884529114 -0.05710062012076378 0.04932047054171562 0.03621451184153557 0.05960655212402344 -0.07915989309549332 0.0687231719493866 0.12177779525518417 0.02811160311102867 -0.045663803815841675 -0.012195829302072525 -0.03765343502163887 -0.030184855684638023 0.048222772777080536 -0.007824246771633625 0.01471247710287571 0.04849345237016678 0.08046316355466843 -0.012193894013762474 -0.00724148890003562 -0.010684855282306671 0.009161489084362984 0.002102385275065899 0.045246873050928116 -0.03256507217884064 0.02844119817018509 -0.03454776853322983 0.007067245431244373 -0.0012910241493955255 0.03198205307126045 0.08138711005449295 0.04607285186648369 -0.1010284572839737 0.005202914588153362 0.0601307712495327 -0.01795552857220173 -0.015111589804291725 0.0220401082187891 -0.04197782278060913 -0.04365681856870651 -0.03375128284096718 -0.004536198452115059 -0.0016337118577212095 0.06240146979689598 -0.028400087729096413 0.02789091132581234 -0.11327226459980011 -0.003445655107498169 0.03144102916121483 -0.051116593182086945 0.0019304767483845353 -0.0036494757514446974 -0.015113448724150658 -0.04868802800774574 0.03273294121026993 0.009483416564762592 -0.004617179743945599 -0.05732332542538643 -0.011670072562992573 -0.03209804743528366 -0.044546980410814285 -0.0021041955333203077 0.029668699949979782 0.009507416747510433 0.06971653550863266 -0.09335777908563614 0.05547624081373215 -0.04998873546719551 -0.06296051293611526 0.009142016991972923 0.01800420507788658 -0.028163503855466843 -0.06694167852401733 -0.0004402245976962149 -0.029159853234887123 -0.016708897426724434 0.0022920577321201563 -0.002468446269631386 -0.002558581531047821 -0.0316433347761631 0.01976253278553486 -0.022666744887828827 -0.03872045874595642 -0.030617041513323784 0.027118174359202385 -0.01778963766992092 -0.043175697326660156 -0.03272261470556259 -0.03832594305276871 -0.026478756219148636 -0.03610893338918686 -0.011035972274839878 -0.03974152356386185 0.11433473974466324 -0.03873787820339203 0.07572069019079208 0.022803988307714462 0.008619981817901134 0.038403987884521484 0.020960720255970955 -0.06571634858846664 0.08218549191951752 -0.02288113348186016 -0.04537661001086235 -0.020326819270849228 0.016569223254919052 -0.04269726201891899 -0.012972133234143257 0.010101599618792534 -0.0189286507666111 -0.009513302706182003 -0.025994688272476196 0.05147706717252731 -0.08179373294115067 -0.046276647597551346 0.04218890517950058 -0.014173146337270737 -0.02068801410496235 0.028708012774586678 0.011314954608678818 -0.08818720281124115 0.040316011756658554 -0.04997618868947029 0.10784941166639328 -0.057872701436281204 0.03697873279452324 -0.004833213984966278 -0.004615561570972204 0.016779372468590736 0.037210363894701004 0.020800217986106873 0.012421202845871449 0.022790633141994476 -0.0029819272458553314 -0.005514577962458134 0.06175415962934494 0.10220418870449066 0.005444889422506094 0.06630388647317886 -0.001570404740050435 -0.022298503667116165 -0.03454548120498657 0.05682937428355217 -0.0022603555116802454 -0.05703761801123619 0.04137718304991722 -0.0630950778722763 0.014074699021875858 -0.02140158787369728 0.014437947422266006 -0.07079191505908966 -0.015578268095850945 0.02753482386469841 0.030043426901102066 -0.015208657830953598 -0.008915296755731106 -0.05584145337343216 -0.04853324219584465 -0.032538507133722305 -0.07499315589666367 0.02472531422972679 -0.07540778815746307 0.06384341418743134 0.014156513847410679 0.014093627221882343 0.10057857632637024 0.0011417956557124853 0.03334454074501991 0.021597443148493767 0.024415021762251854 -0.12737630307674408 0.04861912503838539 0.029530009254813194 0.011667096056044102 0.017094891518354416 0.06976379454135895 -0.02248951606452465 -0.009739604778587818 -0.02605978399515152 0.03796356916427612 -0.01251941453665495 -0.0001300503936363384 -0.006155055947601795 -0.05369286239147186 0.02732061594724655 0.05153125151991844 -0.02333192341029644 0.024170706048607826 0.016340654343366623 -0.022753272205591202 -0.024555468931794167 0.008067856542766094 -0.14098495244979858 0.0592690110206604 -0.013952626846730709 -0.02992652729153633 -0.09162138402462006 -0.013895712792873383 0.0450022891163826 -0.034563980996608734 -0.039253320544958115 -0.0930585041642189 0.01757138781249523 0.017187748104333878 0.043378252536058426 0.11004766076803207 -0.005063633434474468 -0.02137773670256138 0.020592378452420235 -0.018623681738972664 -0.011479486711323261 -0.04073135182261467 -0.10054261982440948 0.08440781384706497 0.018683552742004395 -0.0025461807381361723 -0.10135356336832047 -0.01452852226793766 0.0162259042263031 0.02100062184035778 0.014205975458025932 0.0006050749798305333 0.05103239044547081 -0.12040829658508301 -0.02291450835764408 -0.04234723374247551 -0.04214390739798546 -0.0367068387567997 0.042264729738235474 0.062255214899778366 -0.059256188571453094 0.08863596618175507 -0.022227054461836815 -0.0680650845170021 0.029347114264965057 -0.007251957897096872 0.018314016982913017 -0.033027589321136475 -0.008765527978539467 0.061241380870342255 -0.07544191181659698 -0.036635786294937134 -0.03100494295358658 -0.025559084489941597 0.012450842186808586 -0.001579503295943141 0.053860846906900406 -0.03261425718665123 0.03674693405628204 0.04764171689748764 0.027319272980093956 0.015048326924443245 0.02582196705043316 0.03164992108941078 0.05188393592834473 -0.02048404887318611 0.09261096268892288 0.010554690845310688 0.001296902191825211 -0.0026893913745880127 0.021603714674711227 0.05366767942905426 0.030130892992019653 -0.0154243940487504 0.030590029433369637 0.010282468982040882 -0.007967022247612476 0.02252952568233013 0.042957551777362823 -0.02735944278538227 -0.03671775385737419 -0.01888958364725113 0.029752468690276146 -0.06806818395853043 -0.03595496341586113 -0.014768211171030998 -0.025595352053642273 -0.07385558634996414 0.11965293437242508 0.006651001982390881 -0.08562707155942917 0.01611013151705265 0.04138968884944916 -0.04100700095295906 -0.03629208356142044 0.002522445283830166 0.043304692953825 0.05584733933210373 -0.00830933079123497 -0.02487078681588173 0.00024115109408739954 0.04064628481864929 0.05159863457083702 -0.048092711716890335 -0.008440626785159111 0.03162922337651253 0.06555897742509842 0.004602223634719849 0.05667494982481003 -0.06402482092380524 -0.04036463797092438 0.04147743433713913 0.037402667105197906 0.02239937148988247 0.015735723078250885 0.02143838070333004 0.023880666121840477 0.010758547112345695 -0.0798480361700058 -0.00023255552514456213 0.029801512137055397 -0.010785582475364208 0.061671867966651917 0.0398307628929615 -0.0351228341460228 0.07980994135141373 0.052457764744758606 0.06137750297784805 0.01770573854446411 0.010352500714361668 0.017342619597911835 0.009120924398303032 0.045794129371643066 0.044829111546278 0.01922544650733471 -0.031503550708293915 -0.0115105751901865 -0.00733925448730588 0.040431275963783264 0.009322036989033222 -0.07449643313884735 0.00018175745208282024 -0.0073417495004832745 0.024180060252547264 -0.030325809493660927 -0.007542209699749947 0.006716473959386349 0.07296957820653915 -0.020669717341661453 0.03975820168852806 0.014715973287820816 0.07335516065359116 -0.12501823902130127 0.0031592200975865126 0.005143428221344948 0.039682574570178986 0.07839889079332352 0.027915259823203087 -0.005984538234770298 0.03784622997045517 -0.0032728160731494427 -0.03664393350481987 0.043269433081150055 -0.007732688914984465 -0.0101991668343544 0.060556989163160324 0.0026693406980484724 -0.001698168576695025 0.024544833227992058 0.07971511781215668 0.09042546153068542 0.04117991402745247 0.017459383234381676 -0.009676080197095871 0.03955010324716568 0.04717934504151344 0.05783230811357498 0.06743650883436203 0.0668640211224556 0.00919106975197792 0.00012225739192217588 0.018121810629963875 0.034543897956609726 -0.0006492654792964458 0.03682837262749672 0.03220042958855629 -0.025315506383776665 +0.04903428256511688 -0.07590302079916 -0.08936519920825958 0.00443049892783165 -0.02081098034977913 0.021696308627724648 0.00864363182336092 -0.014404227957129478 -0.0657910704612732 0.038199588656425476 -0.06724588572978973 0.05968635901808739 -0.017983118072152138 -0.03805459290742874 -0.03216519579291344 -0.12363419681787491 0.0019852938130497932 0.014462439343333244 0.07074660807847977 -0.013090494088828564 -0.037129808217287064 0.061687834560871124 -0.01758795790374279 0.013157819397747517 -0.011464543640613556 0.01956966146826744 0.01774032786488533 0.005709442310035229 0.05817050859332085 0.02165934629738331 0.02354331873357296 -0.05738518759608269 0.021980728954076767 -0.014220093376934528 -0.014407075010240078 -0.04868820309638977 -0.034352775663137436 0.05927010998129845 0.06085371971130371 -0.016070596873760223 -0.04595257714390755 0.011837353929877281 -0.02152276039123535 -0.05701234191656113 -0.022693276405334473 0.011140289716422558 -0.056699566543102264 -0.08387196063995361 0.01620730198919773 -0.017496353015303612 -0.015818262472748756 0.04079233482480049 0.018035609275102615 0.019568918272852898 -0.09578423202037811 -0.02665509656071663 -0.0010316657135263085 0.10600098967552185 -0.023301279172301292 0.016616301611065865 -0.012157997116446495 0.03617120906710625 -0.006665096618235111 -0.010567876510322094 0.006577452179044485 -0.008693033829331398 0.05927830561995506 0.010742378421127796 -0.04297277703881264 0.04275215044617653 -0.019021304324269295 0.045280154794454575 0.00895067397505045 0.057948555797338486 -0.008403089828789234 -0.06349124014377594 -0.05990241467952728 -0.028965113684535027 -0.0008863513940013945 -0.012945032678544521 -0.03090292029082775 0.02886582538485527 0.07419814169406891 0.00637509161606431 -0.02833942510187626 -0.012196263298392296 -0.015449830330908298 -0.03669530153274536 -0.04844386503100395 -0.003141340333968401 0.09142349660396576 -0.049812693148851395 0.011716388165950775 0.012281765230000019 0.01697770319879055 0.0026346028316766024 0.10752951353788376 0.0114205963909626 -0.06853646039962769 -0.006034108344465494 -0.005133462604135275 -0.02010984532535076 0.06974011659622192 -0.02877180464565754 0.012224046513438225 -0.07355006039142609 -0.05588965117931366 0.04314456880092621 0.016492260619997978 -0.034336157143116 0.08185205608606339 0.05848310887813568 -0.0804116278886795 -0.03586415573954582 0.08988815546035767 -0.009989237412810326 0.04702431708574295 -0.01397494226694107 0.06631599366664886 0.048523083329200745 -0.04376674443483353 0.07165902107954025 -0.02651187963783741 -0.04398330673575401 -0.025735531002283096 0.05107065290212631 -0.019849738106131554 0.020132172852754593 -0.029899364337325096 0.002096275333315134 -0.04152483120560646 0.04930941388010979 0.02345520816743374 0.038991041481494904 -0.09458997845649719 -0.08936917781829834 -0.05294821411371231 0.06792819499969482 0.04755105450749397 0.04305136576294899 -0.0873299390077591 0.0578853003680706 0.0676732137799263 0.07938597351312637 -0.026024313643574715 -0.040332671254873276 -0.06039682403206825 -0.03453030809760094 0.05624186620116234 -0.0006165630184113979 0.031317997723817825 0.04067317768931389 0.028816288337111473 0.01796938292682171 0.061288539320230484 -0.0006860780413262546 0.02444632537662983 0.007966194301843643 0.02587037906050682 0.008945374749600887 0.0028653189074248075 -0.0003834956150967628 0.004850384779274464 -0.022902293130755424 0.02635607123374939 0.11738830804824829 0.028883542865514755 -0.059418871998786926 0.00550040602684021 0.13322094082832336 -0.019424226135015488 -0.00412612734362483 0.0015445247991010547 -0.03717474639415741 -0.02178863435983658 -0.004717474803328514 0.01669970341026783 -0.009342078119516373 0.07502458989620209 -0.047301147133111954 0.008431906811892986 -0.08228879421949387 -0.006740253418684006 0.027776367962360382 -0.004017077852040529 0.04219823330640793 0.007513062562793493 -0.028257066383957863 0.009939962066709995 0.003923261538147926 0.041420575231313705 -0.08317498862743378 -0.0425291582942009 -0.020207082852721214 0.005709588062018156 -0.040009938180446625 0.02431851625442505 0.06089429184794426 0.029435278847813606 0.06144753471016884 -0.029816970229148865 0.02006104402244091 -0.10205239057540894 -0.012421171180903912 0.016344262287020683 0.04456503689289093 -0.015392479486763477 -0.04851900413632393 0.04319104924798012 -0.02903745323419571 -0.027007637545466423 -0.026275476440787315 -0.03867393732070923 0.031566642224788666 0.04259265586733818 -0.018794531002640724 -0.01435053814202547 0.04303080588579178 -0.0009642424411140382 0.016861846670508385 -0.05493145436048508 -0.04078871011734009 -0.05662580952048302 -0.08098503202199936 -0.0064858742989599705 -0.06461575627326965 0.023611294105648994 0.021687466651201248 0.06862878799438477 -0.017880141735076904 0.08523314446210861 0.0657372698187828 0.03600923344492912 -0.03394847735762596 -0.006201330106705427 -0.029184652492403984 0.021141257137060165 -0.023610038682818413 -0.019599417224526405 -0.08615982532501221 0.039616674184799194 -0.025904716923832893 -0.015069619752466679 0.049300093203783035 0.011447462253272533 -0.034466128796339035 0.057615071535110474 0.012557631358504295 -0.10319101065397263 -0.007774869911372662 0.038231708109378815 -0.012081801891326904 0.04600222036242485 0.0683375895023346 0.018510522320866585 -0.05616919323801994 0.05345810577273369 -0.049517180770635605 0.05331585183739662 -0.013973983004689217 0.010766854509711266 0.03363683819770813 -0.05950689688324928 -0.03411538526415825 -0.0043336693197488785 0.0168035626411438 0.05865764617919922 0.021287014707922935 -0.015801813453435898 0.0014102980494499207 0.027799120172858238 0.06642895936965942 0.01357903890311718 0.04877496510744095 -0.006517421454191208 -0.02941644750535488 0.017388302832841873 0.012475679628551006 0.018234362825751305 -0.08387982845306396 0.027664538472890854 0.024222420528531075 -0.010332576930522919 -0.020781565457582474 -0.043613068759441376 -0.02992340922355652 -0.00764875952154398 -0.006289830431342125 -0.0005650186212733388 -0.028410427272319794 -0.056145165115594864 -0.06328780204057693 -0.007615912239998579 -0.005576244555413723 -0.0201072059571743 -0.05265110731124878 0.016617506742477417 0.06939074397087097 -0.010898087173700333 0.04111873358488083 0.12528096139431 -0.047682441771030426 0.030209967866539955 0.0649937242269516 -0.03267541155219078 -0.06930579245090485 -0.06394226104021072 -0.025557497516274452 0.032752394676208496 0.04661395028233528 0.07534658908843994 0.007067565806210041 0.02110672928392887 0.0493602454662323 0.005501736421138048 -0.05845537409186363 -0.008811527863144875 -0.0355813093483448 -0.015759911388158798 0.03772326186299324 0.07570014894008636 0.03312085568904877 -0.018278401345014572 0.024317918345332146 -0.024418318644165993 -0.04593127965927124 0.027377214282751083 -0.1465185433626175 -1.101760244637262e-05 -0.053150590509176254 -0.018902085721492767 -0.04554896056652069 0.03552188724279404 0.036660175770521164 -0.006027701776474714 -0.06997814029455185 -0.0713268294930458 -0.03522641584277153 0.026283621788024902 0.048100922256708145 0.10596710443496704 0.0006928592920303345 0.03208068013191223 -0.07917328178882599 -0.020717957988381386 -0.05781630799174309 -0.0476011261343956 -0.1177557185292244 0.1038324162364006 0.00843776948750019 -0.03840233013033867 -0.017462724819779396 -0.06520002335309982 0.026381706818938255 -0.038418110460042953 0.013816261664032936 0.08033639192581177 0.041574422270059586 -0.0392664410173893 0.024387190118432045 -0.02382729761302471 -0.02529873698949814 0.006714940071105957 0.08267487585544586 0.032319359481334686 -0.047632474452257156 0.0770905613899231 0.0010724255116656423 -0.012167753651738167 0.010502761229872704 0.004799284506589174 0.025869132950901985 -0.033319782465696335 -0.008526040241122246 0.054158419370651245 -0.06330262124538422 -0.024525610730051994 -0.003119892440736294 0.009029506705701351 -0.02601654827594757 0.01720389910042286 0.0015374424401670694 -0.03536805883049965 0.014679189771413803 0.025271758437156677 0.021523306146264076 -0.0014630125369876623 -0.032294128090143204 0.04305855184793472 0.054236602038145065 0.001330966711975634 0.1111592948436737 0.037217769771814346 -0.01330031082034111 0.007779472507536411 0.10717838257551193 0.041122328490018845 0.027030931785702705 0.02123005874454975 0.0473208911716938 0.015485594049096107 0.020975183695554733 0.009326702915132046 0.06440099328756332 -0.005738041363656521 -0.06893490254878998 -0.02760782465338707 0.049176789820194244 -0.08267724514007568 -0.060725100338459015 0.03339431434869766 -0.012067295610904694 -0.03876963257789612 0.045461397618055344 -0.01646779291331768 -0.06163506209850311 0.014863339252769947 0.03347570821642876 -0.04363272711634636 -0.05087471753358841 -0.037709686905145645 0.06234689801931381 0.02277371473610401 0.031595174223184586 -0.04132041335105896 -0.018278775736689568 0.04040956497192383 0.03022317960858345 -0.07117056846618652 0.0028983834199607372 0.07949310541152954 0.07381556928157806 -0.019088279455900192 0.06270752847194672 -0.04161457344889641 -0.002566447015851736 -0.0011023032711818814 0.035927727818489075 0.07977908849716187 0.009358882904052734 0.013722631148993969 0.006479273084551096 0.02876162715256214 -0.031511783599853516 -0.01673656702041626 0.013811375014483929 -0.029988255351781845 0.03965238109230995 0.014781189151108265 -0.05964956805109978 0.008700679056346416 0.05153066664934158 0.0015903525054454803 0.0032223139423877 0.02309928834438324 0.047306183725595474 -0.0019887122325599194 -0.005807612091302872 0.021827332675457 -0.013189579360187054 0.0003933013940695673 -0.033279646188020706 0.010888762772083282 -0.03220292180776596 0.005980967078357935 -0.018704965710639954 -0.0005047488957643509 0.030534885823726654 -0.015226038172841072 -0.019007449969649315 0.042589206248521805 -0.032000407576560974 0.07113505154848099 -0.010570894926786423 0.01501680351793766 0.022842634469270706 0.0667196661233902 -0.12603998184204102 0.019628554582595825 0.022768966853618622 0.04406975582242012 0.053070515394210815 0.06586254388093948 -0.011094307526946068 0.07561288774013519 -0.041849322617053986 -0.09739092737436295 -0.017729992046952248 0.013050233013927937 0.01880832202732563 0.0034316701348870993 0.03447410836815834 -0.008742576465010643 0.010402625426650047 0.09703531116247177 0.03384508565068245 -0.0026517780497670174 0.00996505469083786 -0.01038677990436554 0.05574190616607666 0.0309857539832592 0.05166425555944443 0.026519497856497765 0.03940274566411972 0.04538155347108841 -0.004973904695361853 -0.01716512441635132 0.02032024972140789 -0.016613421961665154 0.016477713361382484 0.019854281097650528 -0.01730331964790821 +-0.003757934086024761 -0.05996017903089523 -0.0899183452129364 0.029453309252858162 -0.06236733868718147 0.04786329343914986 0.0470750667154789 -0.0036442207638174295 -0.08446823060512543 -0.04585932195186615 0.013005057349801064 -0.0023127980530261993 -0.03809897601604462 -0.04605157673358917 0.052011217921972275 -0.040483634918928146 -0.0022709830664098263 0.013109605759382248 -0.02773098275065422 -0.023884447291493416 -0.0014065636787563562 -0.013503670692443848 0.011269466951489449 0.02147427387535572 -0.030746569857001305 -0.007211014162749052 0.029703740030527115 0.04598129913210869 0.04514075443148613 0.0338464230298996 0.02707386389374733 -0.007852703332901001 0.008692332543432713 -0.058180071413517 -0.04813602939248085 0.02811632677912712 0.019229678437113762 0.07385830581188202 0.09478925168514252 -0.02680102176964283 -0.0050388057716190815 0.02044614590704441 -0.07959682494401932 -0.13102956116199493 0.08984965831041336 -0.037250932306051254 -0.009789811447262764 -0.06640762090682983 0.06800836324691772 0.03171872720122337 -0.066624715924263 0.032789114862680435 -0.018467366695404053 -0.016139820218086243 -0.05822361260652542 0.012390317395329475 0.040649283677339554 0.013035688549280167 0.05625374987721443 0.08098545670509338 -0.01477727945894003 -0.032927680760622025 0.014368056319653988 0.006853835191577673 0.05437562242150307 0.024680623784661293 0.0849723219871521 -0.05722983181476593 -0.07745592296123505 -0.0386166013777256 -0.08854051679372787 0.04096280410885811 0.02278951369225979 0.016506843268871307 0.010185964405536652 -0.026627860963344574 -0.0027327761054039 -0.027662111446261406 -0.017816396430134773 0.021313287317752838 -0.06462948769330978 -0.006890919990837574 0.0718594342470169 0.005740494467318058 0.07526743412017822 -0.07082722336053848 -0.02556220069527626 0.02423821948468685 -0.0420413576066494 -0.062127918004989624 0.00899936817586422 -0.07574868202209473 -0.038301944732666016 -0.02242819033563137 -0.020323170349001884 -0.006867953110486269 0.02016400173306465 -0.06062602624297142 0.02180366963148117 0.0405297614634037 -0.033695753663778305 -0.07106576859951019 0.015699032694101334 -0.009181106463074684 0.025550156831741333 -0.020974034443497658 -0.08638420701026917 0.0015613007126376033 0.01893831603229046 -0.06124826520681381 0.040359608829021454 0.09726843237876892 -0.012119082733988762 -0.03729567304253578 0.0942644253373146 0.002987137297168374 -0.03680280223488808 -0.09505993127822876 0.04750123247504234 0.0028441986069083214 -0.034664303064346313 0.00656714104115963 0.01411332655698061 0.015374870039522648 0.014541218988597393 -0.035278044641017914 -0.048415761440992355 -0.03051309660077095 -0.015600045211613178 -0.043234653770923615 0.022852081805467606 -0.028307821601629257 0.0025330306962132454 0.03220776468515396 -0.044432252645492554 -0.0062381187453866005 0.027772720903158188 0.062154620885849 0.02779422700405121 -0.04075102508068085 0.013651636429131031 0.05043433979153633 0.021864667534828186 0.057081304490566254 -0.010835608467459679 0.011822706088423729 -0.08509430289268494 -0.018491564318537712 -0.05002767592668533 0.05246932804584503 -0.08049120754003525 0.0657946988940239 0.008808041922748089 -0.0957685187458992 0.07290517538785934 0.020817818120121956 0.034950003027915955 0.0064942678436636925 -0.009246555157005787 0.00045518288970924914 0.0019663297571241856 -0.003324354300275445 0.05767663195729256 -0.06450076401233673 -0.04254010319709778 0.05198705941438675 0.03649749606847763 -0.01825067587196827 0.01924695447087288 0.005103963427245617 -0.04629684239625931 0.00709268543869257 0.08310848474502563 -0.08332988619804382 -0.005898586008697748 0.0001164058776339516 0.001910955528728664 -0.09441352635622025 0.04518899694085121 -0.02672225423157215 0.03995248302817345 -0.09051887691020966 0.041202105581760406 -0.013252782635390759 -0.03558823838829994 -0.04532137140631676 -0.055887579917907715 -0.047986678779125214 -0.034831780940294266 -0.028391003608703613 -0.13332578539848328 -0.063237264752388 0.023345937952399254 0.020157454535365105 -0.011762917041778564 0.012440614402294159 0.040370550006628036 0.019057156518101692 -0.004175905138254166 -0.011080930009484291 -0.10993055254220963 0.029964540153741837 -0.021301649510860443 -0.04192865639925003 -0.01141347922384739 -0.03896526247262955 -0.051857635378837585 -0.0744880735874176 -0.0041068303398787975 0.008661437779664993 0.04826395958662033 0.04768197983503342 -0.054155200719833374 -0.036364153027534485 -0.005409597884863615 0.0589480884373188 -0.023860499262809753 -0.017095912247896194 0.006496312562376261 -0.046975597739219666 0.04124956578016281 0.023883497342467308 -0.0581122562289238 -0.047682248055934906 -0.011276287026703358 -0.07955388724803925 0.03641805425286293 0.02529464103281498 -0.008654676377773285 -0.009721808135509491 -0.02514464221894741 0.058792710304260254 -0.013693109154701233 -0.029705742374062538 -0.017265530303120613 -0.003047862323001027 0.05731642618775368 0.02478151209652424 -0.03986503556370735 -0.09148330986499786 0.021021900698542595 -0.01460952591150999 0.0028682409320026636 -0.04169899597764015 0.030477354303002357 -0.03756014257669449 -0.0497736819088459 -0.04271024838089943 -0.06969837099313736 -0.07704591751098633 0.021034616976976395 0.03565454110503197 -0.031230106949806213 0.04468081146478653 0.049914006143808365 -0.0713748037815094 -0.020320914685726166 -0.04391825199127197 0.06006300449371338 0.036237869411706924 0.07311613857746124 -0.02114432491362095 -0.049710702151060104 0.006507468409836292 -0.0015964092453941703 0.00534885935485363 0.016271017491817474 -0.0019548162817955017 -0.03591761738061905 -0.08547466993331909 -0.01807594485580921 0.06785982102155685 -0.01010863482952118 -0.012551359832286835 0.0195943433791399 -0.029658665880560875 -0.03036029450595379 0.004374019335955381 -0.03192014619708061 -0.0029665075708180666 0.01593622751533985 0.007880719378590584 -0.03272533416748047 0.017048481851816177 0.0013054810697212815 0.04390823096036911 0.1079382374882698 0.024799369275569916 -0.03195425868034363 -0.06696520745754242 -0.017804326489567757 -0.05455750599503517 0.0023568153847008944 0.015061081387102604 -0.051193077117204666 0.06887175142765045 -0.00027602692716754973 0.06291453540325165 0.006257609464228153 0.006379118654876947 0.09215780347585678 -0.042213182896375656 0.021199852228164673 -0.03379182517528534 -0.0981210395693779 -0.031141551211476326 0.009412064217031002 0.011104173958301544 0.019957732409238815 0.008715752512216568 0.028199730440974236 -0.10121850669384003 0.0252436064183712 -0.03654903173446655 -0.08253247290849686 0.07277842611074448 -0.010073624551296234 -0.05446219444274902 -0.0771884024143219 0.038777098059654236 -0.013744408264756203 -0.01642986759543419 -0.009297862648963928 0.001532750902697444 0.09934040904045105 -0.11446575075387955 -0.005653698928654194 -0.07607129961252213 0.012429242953658104 0.02038872241973877 0.037623729556798935 -0.020437048748135567 0.03741373494267464 0.013189643621444702 -0.04728180170059204 -0.03312535211443901 -0.06445743888616562 0.02226567268371582 0.018225982785224915 0.055190954357385635 0.05499587580561638 -0.104749895632267 -0.002135197864845395 0.06423782557249069 0.041225891560316086 -0.0577743761241436 0.012770255096256733 -0.05194281041622162 0.03580630570650101 0.008806447498500347 0.007031396962702274 -0.03684793412685394 -0.02246735990047455 -0.021643657237291336 0.010916939936578274 0.08244506269693375 -0.036601025611162186 -0.0005972926155664027 -0.05540290102362633 0.04056498035788536 -0.037452101707458496 -0.007113845553249121 -0.04038913920521736 0.006617818493396044 -0.009566651657223701 0.038444191217422485 0.0636834055185318 0.010058702901005745 -0.04308655112981796 0.003391699632629752 0.06594188511371613 0.029969144612550735 0.015372570604085922 -0.005009023938328028 0.0189555361866951 -0.07271092385053635 0.05788847431540489 -0.036156006157398224 -0.020885135978460312 -0.10597303509712219 -0.07778675109148026 0.0040074908174574375 -0.02575920894742012 -0.03240218386054039 -0.011548757553100586 -0.023389272391796112 0.040333762764930725 -0.06358156353235245 -0.024280061945319176 0.0517340749502182 0.06203015148639679 0.04083150997757912 -0.022561784833669662 -0.07739906013011932 -0.005483061075210571 0.07974742352962494 0.03147940710186958 -0.032329197973012924 0.008491878397762775 0.031015686690807343 -0.034947194159030914 0.05337299406528473 -0.0503731332719326 0.05891912803053856 -0.017376089468598366 0.017992183566093445 -0.03307736665010452 -0.03563270717859268 -0.062310073524713516 0.007207481190562248 0.0005812736344523728 -0.04625707492232323 -0.04282532259821892 -0.009602449834346771 -0.010511496104300022 -0.00539355305954814 0.013476589694619179 0.02697494998574257 -0.019888093695044518 -0.03330439329147339 0.0025479779578745365 0.007002260535955429 0.021816996857523918 -0.05062222480773926 -0.049987953156232834 0.004958335310220718 0.047602612525224686 0.03333782032132149 -0.011556508019566536 0.05368856340646744 -0.013941068202257156 0.04860187694430351 0.02622509002685547 -0.023924048990011215 -0.10421731323003769 -0.07754576951265335 -0.023943444713950157 0.045856673270463943 0.03630295768380165 0.03171785920858383 0.006406079977750778 0.07492690533399582 -0.04322832077741623 -0.04413684085011482 -0.0018173344433307648 -0.018862908706068993 0.025537243112921715 0.03559272363781929 -0.0450325571000576 -0.007890960201621056 0.07209759950637817 -0.08746889233589172 0.013279053382575512 0.048006534576416016 0.025850193575024605 0.013380017131567001 0.09923133254051208 0.009796886704862118 0.03428180143237114 0.04157543554902077 -0.06683621555566788 0.0006014718092046678 -0.012271764688193798 -0.014670184813439846 0.030369648709893227 0.023721804842352867 0.047148849815130234 0.014180446043610573 -0.00908520258963108 -0.014793009497225285 -0.044513434171676636 -0.043051689863204956 0.047702010720968246 0.032686442136764526 0.05683521181344986 -0.011587733402848244 0.003447685856372118 -0.07153508067131042 0.05583126097917557 0.0036394759081304073 0.09103749692440033 -0.01093774102628231 -0.0069403816014528275 -0.031704556196928024 0.032364122569561005 0.02278744988143444 -0.0007861653575673699 -0.05484519153833389 0.02769913524389267 0.08403830230236053 0.004512235522270203 0.06443333625793457 -0.01492395717650652 -0.013399315066635609 0.03667222708463669 0.04271406680345535 0.020543178543448448 -0.024364136159420013 0.0034254335332661867 0.0015741289826110005 0.01296585239470005 0.025252144783735275 0.025355342775583267 0.021678006276488304 0.0018535665003582835 -0.03165845945477486 0.05948084592819214 0.07211768627166748 0.036801163107156754 0.029955066740512848 -0.010846144519746304 0.012431994080543518 +0.01184793934226036 -0.07054077088832855 -0.08522239327430725 0.022613050416111946 -0.03795836493372917 0.02548304572701454 0.020110633224248886 -0.030306287109851837 -0.04122248291969299 0.030481668189167976 -0.05586826056241989 0.042691294103860855 -0.015093796886503696 -0.040036872029304504 -0.012161646969616413 -0.09614289551973343 0.0028812880627810955 0.008411378599703312 0.058183085173368454 -0.007322931662201881 -0.00748217711225152 0.04603128135204315 -0.011549797840416431 0.03868027403950691 -0.002672429196536541 0.026640666648745537 0.00328688882291317 0.03476056084036827 0.061589643359184265 0.03695574402809143 0.05147436261177063 -0.039755143225193024 0.05293619632720947 -0.08159426599740982 0.011624974198639393 -0.03482408449053764 -0.0046292869374156 0.05378764122724533 0.10085184872150421 -0.048671308904886246 -0.03958756476640701 0.0008180044824257493 -0.026855092495679855 -0.11711650341749191 -0.04447707161307335 -0.022137224674224854 -0.03778411075472832 -0.08874671161174774 0.048657070845365524 0.000499306304845959 -0.01797535829246044 0.030708221718668938 -0.008876354433596134 0.0021078058052808046 -0.0641782134771347 -0.029975298792123795 0.02802453748881817 0.0803312435746193 -0.006017305888235569 0.053023360669612885 -0.029815347865223885 0.03718872368335724 -0.025500744581222534 0.018782872706651688 -0.014294099062681198 -0.0017621342558413744 0.09872283786535263 -0.02530723251402378 -0.024105951189994812 0.015739956870675087 -0.03067512810230255 0.038250092417001724 0.020671840757131577 0.06522414088249207 -0.058549199253320694 -0.035960134118795395 -0.039786677807569504 -0.03592758625745773 0.007276250049471855 0.0384884849190712 -0.02093801647424698 -0.026248008012771606 0.08416305482387543 0.039311353117227554 0.03846564143896103 -0.03976716846227646 -0.03258824720978737 -0.0041005490347743034 -0.06307036429643631 -0.022702479735016823 0.055459242314100266 -0.04819205403327942 0.0235653817653656 0.04876576364040375 0.03392311558127403 0.025296129286289215 0.06860736012458801 -0.029892347753047943 -0.013942760415375233 0.025806734338402748 -0.02949618175625801 -0.022675439715385437 0.06561487913131714 -0.00822463445365429 0.055186156183481216 -0.06471480429172516 -0.08798743039369583 0.01634211279451847 0.0720471441745758 -0.02172747254371643 0.0772373154759407 0.08314846456050873 -0.06757393479347229 -0.06843207031488419 0.045922379940748215 -0.01459352858364582 0.04057172313332558 -0.05385797843337059 0.06648851186037064 0.06025968864560127 -0.019241387024521828 0.019195113331079483 -0.032835446298122406 -0.02091921865940094 -0.012234996072947979 0.05062074959278107 -0.00749753275886178 -0.019918572157621384 -0.05513390898704529 0.0019483541836962104 0.010659214109182358 0.0867297574877739 0.014428711496293545 0.017085019499063492 -0.08388523757457733 -0.04097197949886322 -0.0421152338385582 0.06953214108943939 0.07149659842252731 0.012869907543063164 -0.09244739264249802 0.028412112966179848 0.07406044751405716 0.05851934850215912 -0.02948964387178421 -0.04051240533590317 -0.09563005715608597 -0.049017284065485 0.020846039056777954 -0.014963141642510891 0.017992287874221802 0.059026606380939484 0.08767195791006088 -0.002334759570658207 0.04451262578368187 0.009281719103455544 0.04221201315522194 0.02673836424946785 -0.00890825130045414 0.00011932609777431935 0.015605706721544266 -0.004495490342378616 0.04210267961025238 -0.05679734796285629 0.019818630069494247 0.08051102608442307 0.04221368581056595 -0.06050623208284378 0.01550040952861309 0.09305360168218613 -0.049736686050891876 -0.012404643930494785 0.01902875490486622 -0.06450580060482025 -0.03817185014486313 -0.039062224328517914 0.009290183894336224 -0.03957042843103409 0.10225148499011993 -0.0690307691693306 -0.013907727785408497 -0.0819888561964035 -0.00416373647749424 0.01753298006951809 -0.04010070115327835 0.03577039763331413 0.001475076307542622 -0.022033443674445152 -0.03985370695590973 0.011046313680708408 -0.032084837555885315 -0.057132501155138016 -0.044320248067379 -0.015049710869789124 0.0037917974404990673 -0.0027583737391978502 0.040562957525253296 0.06096677854657173 0.04451665282249451 0.054202161729335785 -0.06443440914154053 0.055994611233472824 -0.08292309939861298 -0.03549453616142273 -0.008281661197543144 0.032372623682022095 -0.037747953087091446 -0.03013126738369465 0.009327932260930538 -0.02592177502810955 -0.03223864734172821 0.012622988782823086 -0.047256384044885635 0.007310859393328428 0.02374163828790188 0.0013612965121865273 -0.015291274525225163 0.04002093896269798 -0.012917705811560154 -0.008111800067126751 -0.022832168266177177 -0.018869847059249878 -0.04103619232773781 -0.0664416253566742 -0.044620346277952194 -0.09099266678094864 0.01168623473495245 -0.005449273623526096 0.06153218075633049 -0.03200605511665344 0.09431152790784836 0.035095732659101486 0.00890089850872755 -0.007689992897212505 -0.027009740471839905 -0.04924655333161354 0.03305172920227051 0.005854097194969654 -0.053127117455005646 -0.1038651317358017 0.04258131980895996 -0.017508702352643013 -0.0025165975093841553 0.032740477472543716 -0.001357704633846879 -0.02737039513885975 0.02593401074409485 0.03747594356536865 -0.12465967983007431 -0.03533967211842537 0.028614932671189308 -0.05786775052547455 0.05828909948468208 0.086116723716259 0.015031328424811363 -0.049308836460113525 0.0329085998237133 -0.064009889960289 0.1029270738363266 -0.01624837890267372 0.030077215284109116 0.01430539507418871 -0.015703031793236732 -0.015035262331366539 0.04933609440922737 0.017266709357500076 0.03138618916273117 0.08014562726020813 0.016813619062304497 0.004055683966726065 0.02246217243373394 0.030860723927617073 0.020802585408091545 0.0497121624648571 -0.0017668120563030243 -0.0005639743758365512 0.007580365985631943 0.04483667016029358 -0.03105965256690979 -0.06718073785305023 0.001497734454460442 0.024109413847327232 -0.01951589249074459 0.017014512792229652 -0.034769248217344284 -0.046845391392707825 0.006840202491730452 -0.0013662162236869335 0.0015140186296775937 -0.04003296047449112 -0.021088458597660065 -0.08811375498771667 -0.03710446506738663 -0.010433366522192955 -0.07297707349061966 0.007168489508330822 0.02585684135556221 0.03171355649828911 -0.02584029920399189 0.040093500167131424 0.0957464724779129 -0.05677744746208191 0.05160707235336304 0.024469425901770592 -0.055144019424915314 -0.06925027817487717 -0.06579084694385529 -0.00905095785856247 0.027881788089871407 -0.04155699163675308 0.07105713337659836 -0.024982381612062454 0.006141267251223326 0.0043739317916333675 -0.05389218032360077 -0.007752195466309786 -0.04012089967727661 -0.029320159927010536 -0.04981326311826706 0.0400691032409668 0.01718670129776001 0.022088181227445602 0.006625038105994463 0.053980182856321335 -0.011008646339178085 -0.0402027927339077 0.0026045269332826138 -0.13451316952705383 0.014478275552392006 -0.039193179458379745 0.008499300107359886 -0.04269622266292572 0.02089180238544941 0.004016471561044455 -0.02356177568435669 -0.09038525819778442 -0.03982383385300636 -0.019870927557349205 0.0006844568415544927 0.06450292468070984 0.13248009979724884 -0.06227034702897072 -0.01738041639328003 -0.06902918964624405 0.00945444405078888 -0.09846743941307068 -0.02155548520386219 -0.10771729797124863 0.08917836844921112 0.006743737030774355 -0.00010278112313244492 -0.002409482141956687 -0.061087775975465775 -0.00212355749681592 0.0008689817041158676 0.022560998797416687 0.02672710455954075 0.05334480479359627 -0.04349590092897415 0.027155205607414246 -0.029985088855028152 0.017995381727814674 -0.006861710920929909 0.018586434423923492 0.048016637563705444 -0.01922445558011532 0.05397207289934158 -0.01927514374256134 -0.05502905324101448 0.03248560056090355 0.011395719833672047 -0.0036897945683449507 -0.028120391070842743 0.019206268712878227 0.09613405913114548 -0.0816216990351677 -0.01509083341807127 0.010148536413908005 0.018208181485533714 0.011915144510567188 0.0013390611857175827 0.028951790183782578 -0.02487221546471119 0.03473474457859993 0.020724602043628693 -0.018840746954083443 0.016190791502594948 -0.02419826202094555 0.013455009087920189 0.08096998929977417 0.013789315707981586 0.06344868242740631 0.010486660525202751 -0.020360834896564484 0.04064945504069328 0.09318475425243378 0.016299981623888016 0.008454672992229462 0.02695220150053501 0.018092023208737373 -0.02391788922250271 -0.009016323834657669 -0.014143481850624084 0.0641312301158905 -0.019150475040078163 -0.034840963780879974 -0.00302682351320982 0.05134839564561844 -0.08706435561180115 -0.08114930987358093 0.0223089586943388 -0.05404432862997055 -0.010277003049850464 0.01965051144361496 -0.04685598239302635 -0.016076430678367615 0.03400808572769165 0.04816258326172829 -0.04852202534675598 -0.042878057807683945 -0.003281257813796401 0.0219680555164814 0.008009743876755238 0.02392534352838993 -0.03737393766641617 0.00993385910987854 0.010924598202109337 0.05526188760995865 -0.037823401391506195 0.03455478698015213 0.06330794841051102 0.060871049761772156 0.029690107330679893 0.09523037075996399 -0.060024525970220566 -0.017395632341504097 -0.01587590016424656 0.05286649242043495 0.02789965644478798 0.004113874863833189 0.0239814855158329 0.020953504368662834 0.008409242145717144 -0.05339372530579567 -0.005323577672243118 0.03799978271126747 -0.012623650021851063 0.051015764474868774 0.00023319096362683922 -0.026519348844885826 0.023408083245158195 0.007829579524695873 0.047315746545791626 0.0017446150304749608 0.03256582096219063 0.016622131690382957 0.028367795050144196 -0.004999636206775904 0.02573404647409916 0.018705153837800026 -0.03685583546757698 -0.03643525764346123 -0.02715316228568554 -0.0182410329580307 0.03422779589891434 -0.011963429860770702 -0.014073380269110203 -0.010960426181554794 -0.01978394389152527 -0.02411140687763691 0.01043927576392889 -0.03813520446419716 0.03787665814161301 0.010025743395090103 0.03726784139871597 0.01417482178658247 0.05344967916607857 -0.13718634843826294 0.01991250365972519 0.06831318140029907 0.07410450279712677 0.015542935580015182 0.037387602031230927 -0.01499998476356268 0.05720093473792076 -0.01710628904402256 -0.06687044352293015 -0.005222162697464228 0.022105149924755096 0.026276426389813423 0.011119666509330273 0.04027215763926506 -0.015102044679224491 0.047167956829071045 0.10380107909440994 0.05014251917600632 0.01028030551970005 -0.01631951704621315 -0.061541277915239334 0.005727316718548536 0.0436781607568264 0.017079079523682594 0.03924795985221863 0.06296340376138687 0.042508646845817566 -0.03364953398704529 0.0024828368332237005 0.05243334919214249 0.040436986833810806 0.05228671431541443 0.024416733533143997 -0.016528218984603882 +0.06057637557387352 -0.022423937916755676 -0.02776644006371498 0.07752149552106857 -0.06194780021905899 0.029679585248231888 -0.0033492634538561106 -0.034441035240888596 -0.07194557040929794 0.01518068928271532 -0.0018462726147845387 -0.042809925973415375 -0.02648092433810234 -0.04750368371605873 -0.014773106202483177 -0.12902341783046722 0.007006922736763954 -0.01027008332312107 0.10323074460029602 -0.016471143811941147 -0.02563443034887314 0.058105651289224625 0.0020682872273027897 0.026923615485429764 -0.027294166386127472 0.04142695292830467 0.029350562021136284 0.00145714299287647 0.05032157897949219 0.06178317591547966 -0.021937565878033638 -0.010376611724495888 -0.007677972316741943 -0.051286011934280396 -0.011484808288514614 -0.06899417191743851 -0.03677692264318466 0.046028826385736465 0.10916893184185028 -0.032287660986185074 -0.05060876905918121 0.058247338980436325 -0.006238099653273821 -0.035162415355443954 0.01562928967177868 0.0225903932005167 -0.05159839615225792 -0.04476610943675041 0.016703179106116295 -0.0015937320422381163 -0.013054857030510902 0.043104372918605804 -0.006875991355627775 0.045705344527959824 -0.04592793434858322 -0.01976061426103115 0.06388012319803238 0.07972239702939987 0.00768465967848897 0.05461026728153229 0.03488566726446152 -0.040738143026828766 0.034517403692007065 -0.05723082274198532 0.022237177938222885 0.042113617062568665 0.06415362656116486 -0.02985740453004837 -0.05340016633272171 0.028354888781905174 -0.002089478075504303 0.10296901315450668 0.004664952866733074 0.07926081866025925 -0.03612750396132469 -0.04082454368472099 -0.06382567435503006 -0.03663160651922226 0.009554235264658928 0.03939719870686531 0.01419808343052864 0.02593855746090412 0.01784251630306244 0.03428063914179802 -0.007853583432734013 0.01918320171535015 -0.009216796606779099 -0.033047866076231 -0.009593525901436806 -0.012729834765195847 0.04993061721324921 -0.08752971887588501 -0.009464273229241371 0.010615537874400616 0.011155716143548489 0.008835447952151299 0.06615000218153 0.03347213938832283 -0.030060768127441406 0.0001947045384440571 -0.027848368510603905 -0.08674552291631699 0.011972358450293541 -0.0305534265935421 0.032007068395614624 -0.03715955838561058 -0.05548207089304924 0.028251077979803085 -0.029204770922660828 -0.06706321984529495 0.08727850764989853 0.04791402816772461 -0.05740197375416756 -0.0728912502527237 0.06931544095277786 0.007268113549798727 0.030404336750507355 -0.03410230949521065 0.030644742771983147 0.0339910127222538 -0.06395038962364197 0.080474853515625 0.008504216559231281 -0.01407540775835514 0.017281150445342064 -0.0006101545295678079 -0.008435003459453583 0.009201296605169773 0.004700715187937021 0.039026353508234024 -0.02253357321023941 0.00714496523141861 0.03581897169351578 0.06051440164446831 -0.08766242116689682 -0.05381583794951439 -0.07058252394199371 0.07985018938779831 0.06249769777059555 0.09071491658687592 -0.05426516756415367 0.057549212127923965 0.08171546459197998 0.026749085634946823 -0.0430394746363163 0.021247809752821922 -0.01638619415462017 -0.000542016641702503 -0.015679430216550827 0.016088679432868958 0.05233359709382057 0.0631759762763977 -0.018407747149467468 -0.014059819281101227 0.00030175631400197744 0.014208853244781494 0.010721791535615921 0.0017259361920878291 0.010297928936779499 -0.014069114811718464 0.04283326491713524 -0.009167050942778587 0.007725506089627743 -0.02831685170531273 -0.016444159671664238 0.08099231123924255 0.018407924100756645 -0.053085897117853165 0.01628757268190384 0.1106862723827362 -0.0119093032553792 -0.0007690639467909932 0.06910926103591919 -0.08557375520467758 -0.029989611357450485 0.004081751219928265 0.018872611224651337 -0.03724084421992302 0.11655447632074356 -0.05539049208164215 0.023688672110438347 -0.08559367060661316 0.026384485885500908 0.00601097010076046 -0.035298269242048264 0.052540648728609085 0.03238823637366295 -0.004064669832587242 -0.006272351834923029 0.0020845055114477873 0.011618888936936855 -0.04512219503521919 0.011300542391836643 0.004515036009252071 0.00969487614929676 -0.0547785721719265 0.002464381279423833 -0.03303772583603859 0.0014626382617279887 0.035255324095487595 -0.026778550818562508 0.0478367805480957 -0.0725344866514206 0.012904859147965908 0.0013683661818504333 0.06019677221775055 -0.03525349497795105 -0.05672068148851395 0.0030370804015547037 -0.03045264258980751 0.0023121198173612356 -0.017616650089621544 -0.03503939509391785 0.006924232002347708 0.0013024467043578625 0.017808297649025917 0.03586364910006523 -0.005720146000385284 -0.011966525577008724 0.039004962891340256 -0.028550107032060623 -0.07596945017576218 -0.05902630463242531 -0.07219172269105911 -0.01867983303964138 -0.02425524778664112 0.040826473385095596 0.06158846616744995 0.06555400043725967 -0.022291431203484535 0.10066503286361694 0.07712557911872864 -0.012527886778116226 -0.01089845784008503 -0.05847146362066269 -0.009855329059064388 0.005840939469635487 0.007031656336039305 -0.014530441723763943 -0.054113537073135376 0.04202532023191452 -0.005145177245140076 -0.054005689918994904 0.04449063539505005 0.023937290534377098 -0.033384229987859726 -0.04039314016699791 0.006912602577358484 -0.05504661798477173 -0.05596945807337761 0.03665662556886673 0.019346904009580612 -0.004529691766947508 0.056712888181209564 0.032856740057468414 -0.0031642818357795477 -0.01574649102985859 -0.03438272327184677 0.06069124862551689 -0.006746670696884394 0.009175262413918972 -0.034354954957962036 0.008033418096601963 0.00910379458218813 -0.042097657918930054 0.06867408752441406 0.07472467422485352 0.02276449091732502 -0.012080186977982521 -0.005977238528430462 0.040779776871204376 0.08466587960720062 0.033747125416994095 0.08517907559871674 -0.01938246376812458 0.016921015456318855 0.0028494533617049456 0.05486224219202995 0.012386279180645943 -0.07900924235582352 0.03315191715955734 0.04327487200498581 -0.01527421735227108 -0.045559726655483246 -0.029817337170243263 -0.00876695942133665 0.0238087959587574 -0.007245873566716909 -0.04590657353401184 -0.0026360535994172096 -0.006927382200956345 -0.07237578183412552 -0.016086209565401077 0.04197894036769867 -0.04334680363535881 -0.012545734643936157 -0.06875275820493698 0.04993976652622223 -0.017852626740932465 -0.01820051483809948 0.084009550511837 -0.03992947190999985 0.051271792501211166 0.01594075746834278 -0.04264097288250923 -0.05323056876659393 -0.016213010996580124 0.037052083760499954 0.015720903873443604 0.05357648432254791 0.04869496077299118 -0.04980722814798355 0.06992029398679733 0.04168160259723663 -0.022839009761810303 -0.04547126963734627 -0.05070064589381218 -0.052024003118276596 -0.03933590650558472 0.08463357388973236 0.00821085274219513 0.08112424612045288 0.005495154298841953 0.033005330711603165 0.015359318815171719 -0.05967378616333008 0.029577234759926796 -0.12226475030183792 0.0025773742236196995 -0.00395215442404151 -0.00598943280056119 -0.05545162037014961 0.0014762887731194496 0.05600947141647339 0.01756034605205059 -0.07815411686897278 -0.07052582502365112 -0.01830989494919777 0.06899067759513855 0.01632021553814411 0.12156710773706436 -0.004773118533194065 0.034198448061943054 -0.041612014174461365 -0.0722750574350357 -0.06796851009130478 -0.054467275738716125 -0.11746188253164291 0.05995718017220497 0.032202959060668945 -0.025526637211441994 -0.00946364551782608 -0.060467708855867386 0.00020131330529693514 -0.06941016018390656 0.04804264381527901 0.06807966530323029 0.042543504387140274 -0.06115460395812988 0.004298478830605745 -0.01834009401500225 -0.0002835544291883707 0.00981004349887371 0.06137138977646828 0.018624864518642426 -0.04152342304587364 0.05164231359958649 -0.04158676788210869 -0.08080067485570908 0.041044995188713074 -0.0021361769177019596 0.041853830218315125 -0.04187610745429993 -0.026870857924222946 0.08960691839456558 -0.012718304060399532 -0.005665924400091171 -0.04690695181488991 0.021574050188064575 -0.024253690615296364 0.026173759251832962 -0.03454951196908951 -0.044315118342638016 0.01723291352391243 0.027167202904820442 0.020131858065724373 0.029689712449908257 -0.03152391314506531 0.012357141822576523 0.06832906603813171 0.0613662451505661 0.04919534921646118 -0.004315977916121483 -0.029310541227459908 0.014700300991535187 0.06900964677333832 0.03504428640007973 0.01378112006932497 -0.030151035636663437 0.022152435034513474 -0.04720892757177353 0.012808946892619133 -0.012067520059645176 0.09131881594657898 -0.005886297207325697 -0.04722168296575546 -0.053490135818719864 0.028436319902539253 -0.05592401698231697 -0.04648891091346741 0.02219126932322979 -0.02529866434633732 -0.07392296195030212 0.023281199857592583 0.00026197973056696355 -0.0328855998814106 -0.04337144270539284 0.06701590865850449 -0.0070609706453979015 0.011074461974203587 -0.041312720626592636 0.005926330108195543 0.05072014778852463 -0.010523652657866478 -0.05932537466287613 -0.006513823289424181 0.05263443663716316 0.0046460493467748165 -0.016030356287956238 0.016943946480751038 0.08713237196207047 0.060455139726400375 0.025926806032657623 0.05425253137946129 -0.0859188586473465 -0.002063723746687174 -0.01729532703757286 0.010435670614242554 0.08231066912412643 0.06021469086408615 -0.01655530370771885 0.044346414506435394 -0.022317105904221535 -0.018232114613056183 0.019280128180980682 0.03700797259807587 -0.03151305392384529 0.04660996049642563 -0.004302866756916046 -0.11411948502063751 0.010723138228058815 0.012882505543529987 0.015302808955311775 -0.03579734265804291 0.01631229743361473 0.011533663608133793 0.047743260860443115 0.020133720710873604 0.025030849501490593 0.012848257087171078 -0.041078198701143265 -0.035989146679639816 -0.005791484843939543 0.046586669981479645 -0.03547288477420807 -0.032041195780038834 -0.005665245931595564 0.04125891253352165 0.013103478588163853 -0.03345468267798424 0.02588481269776821 -0.03684762120246887 0.07546006888151169 -0.03802356868982315 0.02215636894106865 -0.0039450181648135185 0.05321068689227104 -0.0928003117442131 -0.03421024978160858 0.0634940043091774 0.025960104539990425 0.07420294731855392 0.0878717377781868 0.022799570113420486 0.030109116807579994 -0.02451934479176998 -0.08177962154150009 0.07002348452806473 0.0239807590842247 0.015365813858807087 0.0029127290472388268 0.024302663281559944 -0.04175732284784317 -0.02972320094704628 0.03783190995454788 0.07131728529930115 0.059542812407016754 0.0007791543030180037 0.007828060537576675 0.006103808991611004 0.06535787880420685 0.03688152879476547 0.047288939356803894 0.08070074766874313 -0.008405409753322601 0.000289273913949728 0.015994755551218987 0.005012009758502245 -0.01480442751199007 0.030145986005663872 -0.012064514681696892 -0.03911370784044266 +0.041498471051454544 -0.002516461070626974 0.006534512620419264 0.07336071133613586 -0.07110471278429031 -0.027576111257076263 -0.04037613794207573 -0.0003624232194852084 0.019383251667022705 -0.06304243952035904 -0.018014846369624138 -0.02513088472187519 -0.009703579358756542 -0.00030238140607252717 0.05559226870536804 -0.006684558931738138 -0.03520513325929642 0.03826582804322243 -0.02706635184586048 -0.013887724839150906 0.021371187642216682 -0.014715765602886677 -0.09434837102890015 0.040564849972724915 -0.015128650702536106 0.03824806958436966 -0.056019313633441925 0.04742416366934776 0.004853209480643272 0.022237956523895264 0.027082255110144615 -0.02340528927743435 0.026424134150147438 -0.09854699671268463 -0.06518200039863586 0.03389435634016991 -0.012933077290654182 0.08255874365568161 0.04482069984078407 -0.029029691591858864 -0.054229822009801865 0.019467754289507866 -0.0728035420179367 -0.10175493359565735 0.034554146230220795 -0.01986069418489933 0.027127590030431747 -0.019599972292780876 0.06364645063877106 0.035192638635635376 0.07111073285341263 0.01262402068823576 -0.05137481540441513 -0.04739883169531822 -0.012845195829868317 0.009963873773813248 0.053454019129276276 -0.09449620544910431 -0.040756989270448685 0.05295218154788017 -0.08493631333112717 -0.0007899054326117039 0.0047666653990745544 0.03161394223570824 -0.04356983304023743 -0.0077938721515238285 0.020647283643484116 0.07617682963609695 -0.009807238355278969 -0.06557949632406235 0.017635585740208626 0.09384043514728546 -0.06135348975658417 -0.04279264807701111 0.02452148124575615 -0.08506250381469727 -0.016376694664359093 0.04453442245721817 0.00104693160392344 -0.006875273771584034 -0.003505473956465721 -0.06148657575249672 0.1049523800611496 -0.0030271434225142 -0.019115524366497993 -0.06121935322880745 -0.006313146557658911 -0.03333127871155739 0.03422371298074722 0.039265524595975876 0.011708511039614677 0.06048828363418579 -0.03960472717881203 0.06301385164260864 0.017128216102719307 0.04924736171960831 0.023261617869138718 -0.12414009869098663 -0.021742289885878563 0.0013383878394961357 -0.030797000974416733 -0.02846830151975155 0.017257723957300186 0.0039403787814080715 0.051261018961668015 0.0016773848328739405 -0.06098345294594765 0.003508826484903693 0.04147658124566078 0.05785832181572914 0.05958951637148857 0.05249470844864845 0.06380841135978699 0.10591716319322586 0.04148807004094124 0.0025893407873809338 0.02318520098924637 -0.06847748160362244 -0.02331562526524067 0.02546018362045288 0.014821585267782211 0.016781015321612358 -0.0003243583778385073 -0.06063796207308769 0.005872679408639669 0.011178083717823029 -0.08396800607442856 -0.037041790783405304 0.006857625208795071 -0.014219827950000763 0.10393049567937851 0.04882654547691345 -0.022640636190772057 -0.0036312539596110582 0.034959983080625534 0.05384476110339165 0.00020035586203448474 0.022787639871239662 0.018368400633335114 -0.0221061073243618 0.0065332879312336445 0.022012988105416298 -0.008138524368405342 -0.06378540396690369 0.06371200084686279 0.010082692839205265 0.016506904736161232 -0.03868831321597099 -0.07522284239530563 -0.007614646572619677 -0.07070495188236237 -0.031604766845703125 0.04314371198415756 -0.09161001443862915 0.0363406240940094 0.04431220516562462 0.07355630397796631 0.02188248001039028 -0.018018463626503944 0.003214774187654257 -0.041658349335193634 -0.04809488356113434 -0.0006101959152147174 -0.08555662631988525 -0.05676763877272606 -0.03870851919054985 0.03483283147215843 0.031437747180461884 -0.04493489861488342 -0.03159709274768829 -0.024825694039463997 0.040987394750118256 0.062347136437892914 0.043555524200201035 0.0666111558675766 -0.007875320501625538 0.014481932856142521 -0.05265376344323158 0.031309325248003006 -0.01247838418930769 0.006607207003980875 -0.04123511537909508 -0.007941081188619137 -0.058412957936525345 -0.03286154568195343 0.0005338154151104391 -0.017568986862897873 -0.00813942588865757 0.0032188966870307922 0.021507911384105682 -0.09962674230337143 -0.048080820590257645 0.04262557998299599 0.07850329577922821 -0.02772466279566288 0.04970457777380943 -0.026350734755396843 0.043837979435920715 -0.005390318110585213 -0.04770846664905548 -0.06892314553260803 0.017698289826512337 -0.0103715555742383 0.059031892567873 -0.007499516475945711 -0.09276223182678223 0.04168940335512161 0.038979366421699524 0.0017954579088836908 -0.03870423510670662 -0.0009001391590572894 0.01449489127844572 0.01895010843873024 0.019765658304095268 0.0736331194639206 -0.018025556579232216 -0.04560534283518791 0.03644344583153725 0.03798339515924454 -0.06761269271373749 0.0451938733458519 0.0063570342026650906 -0.08185777813196182 0.02137291617691517 -0.047113630920648575 -0.06716659665107727 -0.02841183915734291 0.018099315464496613 -0.020256461575627327 -0.013698093593120575 0.007640901952981949 -0.011557603254914284 -0.0032976181246340275 -0.04950091615319252 -0.01007936429232359 -0.01031278446316719 -0.08607293665409088 0.10342923551797867 0.020210009068250656 -0.062090881168842316 -0.06164226308465004 0.005761908367276192 0.04416566714644432 -0.022160949185490608 0.013610858470201492 0.04084248095750809 0.0772058516740799 0.03174121677875519 -0.0003276550560258329 -0.0008813152089715004 -0.06869829446077347 -0.07683837413787842 0.017245041206479073 0.04261266440153122 -0.032796792685985565 -0.002089639427140355 -0.001800641301088035 -0.04946911707520485 0.011836565099656582 0.0016545376274734735 -0.006383280735462904 -0.0003591624554246664 -0.016567133367061615 -0.03985380008816719 0.08248074352741241 -0.025606026872992516 -0.04480883106589317 0.0143109280616045 -0.0186294075101614 0.053990039974451065 -0.05411650985479355 -0.04175416752696037 0.065937340259552 -0.02450691908597946 0.03153342008590698 -0.01405791100114584 0.030345341190695763 -0.025605246424674988 -0.08163122087717056 -0.008195309899747372 -0.09599143266677856 -0.03026271052658558 -0.01390276663005352 0.029180195182561874 -0.042231712490320206 0.10632485896348953 0.007588198408484459 -0.011327072978019714 -0.03789553418755531 -0.01897977665066719 -0.018358226865530014 -0.0853058397769928 -0.02320188283920288 0.004086395259946585 -0.07103582471609116 -0.010433022864162922 0.04311807453632355 -0.043302375823259354 -0.01369007583707571 -0.025214925408363342 -0.05860653519630432 -0.08285883814096451 0.04618905112147331 -0.034348905086517334 -0.06342355906963348 0.017445357516407967 -0.052142415195703506 0.03346974402666092 0.07932845503091812 0.004618037026375532 0.034095682203769684 0.01910308562219143 0.018087752163410187 0.07647264003753662 -0.010023082606494427 -0.02948055975139141 -0.018015872687101364 -0.059116121381521225 -0.0776643306016922 0.06758348643779755 -0.02773119881749153 0.00597486924380064 -0.00512916874140501 0.027108702808618546 0.08729694038629532 -0.035155508667230606 -0.02243301458656788 0.011699838563799858 0.01680944673717022 0.011177724227309227 0.011822781525552273 -0.006173965986818075 0.013024701736867428 -0.03119088150560856 -0.06509269028902054 -0.050158001482486725 -0.016204744577407837 0.01779833994805813 -0.0061903540045022964 0.06409994512796402 -0.019321059808135033 -0.0811358317732811 0.0008522715652361512 0.02305290661752224 0.11021289229393005 -0.06407128274440765 0.03828098997473717 0.029326921328902245 0.01219871174544096 -0.07707924395799637 -0.003053003689274192 0.0450141578912735 -0.05457393452525139 -0.04264683648943901 0.01265048049390316 0.013559161685407162 -0.06067598611116409 -0.014868197962641716 0.020174775272607803 -0.040350425988435745 0.009240206331014633 0.03518969938158989 0.008766252547502518 -0.006352477706968784 -0.03413520008325577 -0.010304066352546215 -0.009287445805966854 -0.020845206454396248 0.005481102038174868 -0.021076150238513947 0.015226536430418491 -0.04479733854532242 0.055409807711839676 -0.03589471057057381 -0.007913823239505291 -0.04822598025202751 0.061112500727176666 0.021637097001075745 -0.030910087749361992 -0.023232560604810715 -0.04737289994955063 -0.017797322943806648 0.014313564635813236 0.048842400312423706 -0.0461946465075016 -0.04941728338599205 -0.06902820616960526 -0.03939735144376755 -0.07099690288305283 -0.041555255651474 0.008754841051995754 -0.05687345564365387 0.0012040345463901758 -0.045842405408620834 -0.028465187177062035 0.03304010257124901 -0.029477501288056374 -0.008065245114266872 0.02146478183567524 0.03345680981874466 -0.040240343660116196 0.01834702305495739 -0.06381699442863464 0.05318458005785942 0.023553894832730293 -0.03985476866364479 0.009375021792948246 0.04493935778737068 -0.0365498885512352 0.033113062381744385 -0.0255631934851408 0.01738923043012619 0.032148752361536026 -0.014219655655324459 0.035927530378103256 0.018332336097955704 0.004036357626318932 0.0015053397510200739 0.05142593011260033 -0.05963423103094101 -0.036159273236989975 0.00511739868670702 -0.04713161662220955 -0.1087077185511589 -0.02920985408127308 0.004098269622772932 -0.038711123168468475 0.02318512462079525 -0.022330038249492645 0.055963121354579926 0.030585329979658127 -0.0609545037150383 -0.019727127626538277 -0.015331041067838669 -0.04103104770183563 0.046479057520627975 -0.012336141429841518 0.042977944016456604 -0.0014575235545635223 0.016965506598353386 0.05663779005408287 0.058502402156591415 -0.02583777904510498 -0.1028592586517334 -0.03733362257480621 -0.007425839081406593 -0.0036794499028474092 0.005638584028929472 -0.003226298140361905 0.018890444189310074 -0.06500961631536484 -0.043033283203840256 -0.02000376023352146 0.09619127959012985 0.006180102936923504 -0.025792544707655907 0.06870479881763458 -0.04178516939282417 -0.004728600382804871 0.02850014716386795 -0.04638771712779999 -0.09233289211988449 -0.03149670735001564 -0.0280182845890522 0.04256393387913704 0.031184108927845955 0.031974174082279205 -0.0361107736825943 -0.04982965067028999 0.009476926177740097 -0.008842038922011852 -0.07954514771699905 0.0034085477236658335 0.026080435141921043 -0.027982201427221298 -0.0774756520986557 -0.0038087288849055767 -0.07443757355213165 0.05513331666588783 0.044585999101400375 0.04610287398099899 -0.011625138111412525 -0.0023026035632938147 -0.0024137997534126043 -0.049951884895563126 0.03947191685438156 0.010189070366322994 -0.07047062367200851 -0.007088940124958754 0.09826985001564026 -0.0420474074780941 0.05052947252988815 0.028722591698169708 -0.016905920580029488 0.0266913753002882 0.022756924852728844 -0.043936919420957565 0.018648769706487656 -0.04669518768787384 -0.03431793674826622 0.07173100858926773 -0.06055639311671257 0.06284978985786438 -0.06251407414674759 0.09376873075962067 -0.015234649181365967 -0.01646243967115879 0.07580678910017014 0.09747617691755295 -0.014368501491844654 0.026678597554564476 -0.030464807525277138 +0.04859809949994087 -0.011476660147309303 0.013945144601166248 0.06836928427219391 -0.07620767503976822 -0.019309151917696 -0.0030305797699838877 0.037050411105155945 -0.0008925320580601692 -0.03315205127000809 -0.05435315892100334 0.014763498678803444 0.01404746063053608 0.047312669456005096 0.02768867276608944 -0.012229097075760365 -0.045772455632686615 0.017072254791855812 -0.029361329972743988 -0.06034068763256073 0.03426850214600563 -0.025647489354014397 -0.04326868802309036 0.07045182585716248 0.03490027040243149 0.021665658801794052 -0.060526292771101 0.00984277855604887 0.0016719221603125334 0.016286766156554222 0.03941170498728752 -0.01260155625641346 0.026378491893410683 -0.06186181306838989 -0.0562000647187233 0.04003637656569481 -0.019914686679840088 0.0935930386185646 -0.032459989190101624 -0.022282332181930542 -0.05191294103860855 0.02245485410094261 -0.0602731853723526 -0.03618476167321205 0.019603293389081955 0.01359851285815239 0.04692176729440689 0.0034113696310669184 0.04441114887595177 0.014066942036151886 0.06494685262441635 0.0029956065118312836 0.006021074950695038 -0.04164544865489006 -0.01773577183485031 0.019760293886065483 0.04865780472755432 -0.03626496344804764 -0.045326944440603256 0.04331853985786438 -0.11964162439107895 -0.029354026541113853 -0.004220093600451946 -0.009858262725174427 -0.03434661403298378 -0.003501538187265396 -0.01942032016813755 0.11003854125738144 0.028521323576569557 -0.05689651146531105 0.024420462548732758 0.09488549083471298 -0.046104732900857925 -0.020104506984353065 0.06220578774809837 -0.06402799487113953 -0.02309209108352661 0.05984385311603546 -0.0165207851678133 0.021287910640239716 -0.006017219740897417 -0.08307957649230957 0.1275411993265152 -0.015161523595452309 -0.08252182602882385 -0.015636296942830086 -0.011206421069800854 -0.0374872088432312 0.04090510681271553 0.027167312800884247 0.0017179137794300914 0.09793040156364441 -0.058976639062166214 0.046079959720373154 0.041930001229047775 -0.0005781108047813177 0.022404175251722336 -0.12927162647247314 -0.04587852582335472 0.036232076585292816 -0.005302363075315952 0.0010413499549031258 0.048439230769872665 -0.006850229110568762 0.07091525942087173 0.026512444019317627 -0.06096753105521202 -0.02271391451358795 0.015867197886109352 0.014282707124948502 0.04500128701329231 0.07671003043651581 0.05121677368879318 0.041359852999448776 0.024646414443850517 -0.015973882749676704 0.03285067528486252 -0.06335677206516266 -0.06071273982524872 -0.008816511370241642 0.028133928775787354 0.0792248323559761 0.00025883910711854696 -0.08703568577766418 -0.01672728732228279 0.0160696841776371 -0.08985286206007004 -0.007712171413004398 0.09801773726940155 -0.05068053677678108 0.11571966111660004 0.06220106780529022 0.0006285817362368107 0.04657489061355591 0.055370595306158066 0.032529931515455246 -0.007023236248642206 0.022641798481345177 0.013254747726023197 -0.018384400755167007 -0.018406489863991737 0.036647286266088486 0.009596026502549648 -0.08115041255950928 0.07824898511171341 0.06421659141778946 0.004279436077922583 -0.04255833849310875 -0.010444832034409046 -0.011758703738451004 -0.04192022979259491 -0.08102632313966751 0.0075587322935462 -0.05246301740407944 -0.01966133713722229 0.047615356743335724 0.018763890489935875 0.04906658083200455 -0.044264208525419235 -0.02228982001543045 -0.0644860565662384 -0.011646447703242302 -0.02060936577618122 -0.04627987742424011 -0.025424500927329063 0.004136408679187298 -0.018801700323820114 0.018208393827080727 -0.06822256743907928 -0.014675070531666279 0.0013579907827079296 -0.01092302892357111 0.03607802465558052 0.07075198739767075 0.072972871363163 -0.014018288813531399 0.02274184301495552 -0.04594383388757706 -0.002446704776957631 -0.01789400540292263 0.008348721079528332 -0.007909403182566166 0.030622029677033424 -0.04668179526925087 -0.007976081222295761 -0.016977157443761826 0.044021084904670715 -0.03496799245476723 0.01804945059120655 -0.02227492444217205 -0.028125181794166565 -0.026532717049121857 0.042144279927015305 0.06377892196178436 -0.04386540502309799 0.0637575089931488 -0.03965209051966667 0.04459585249423981 -0.018354669213294983 -0.0060537587851285934 -0.047395799309015274 0.05452054366469383 0.008547812700271606 0.0607592947781086 0.031051229685544968 -0.07076939195394516 0.054589517414569855 0.03836081176996231 0.02043920010328293 -0.08284156769514084 -0.012341784313321114 0.012232640758156776 0.0171009860932827 0.08527561277151108 0.09007253497838974 0.014552503824234009 -0.0014128184411674738 -0.012906181626021862 0.04366394132375717 -0.048196375370025635 -0.01541212573647499 -0.01088897418230772 -0.08674823492765427 -0.01954079046845436 -0.0658840760588646 -0.03335026651620865 -0.04083719477057457 0.051430292427539825 0.0007353596738539636 0.003552207723259926 -0.025316473096609116 0.02375776320695877 -0.026418516412377357 -0.04524364322423935 -0.000350329268258065 -0.015667429193854332 -0.06488385051488876 0.09395264089107513 0.03872013837099075 -0.07940207421779633 -0.07748028635978699 0.013567649759352207 0.057557057589292526 -0.003411839483305812 0.04866975545883179 0.041356705129146576 0.09884000569581985 0.03451292961835861 -0.005256075877696276 0.006025500129908323 -0.004401077050715685 -0.048081573098897934 0.013873073272407055 0.03871089592576027 -0.04656992852687836 -0.008013200014829636 0.013629189692437649 -0.03492414206266403 -0.009441548958420753 0.011217598803341389 0.025463491678237915 -0.006056551355868578 -0.032505497336387634 -0.007946327328681946 0.017305349931120872 -0.07146044820547104 -0.039301637560129166 0.007531687151640654 0.0035824330989271402 0.08283877372741699 -0.05773996189236641 -0.03773624822497368 0.033230267465114594 0.02332657389342785 -0.009227919392287731 -0.07565750181674957 0.02713124454021454 -0.0035984439309686422 -0.06961217522621155 -0.005889587569981813 -0.06308610737323761 -0.0457615964114666 -0.05169086158275604 -0.008413520641624928 -0.047194577753543854 0.08282337337732315 -0.008930988609790802 -0.07689034193754196 -0.054566990584135056 -0.020478902384638786 -0.022835638374090195 -0.05192558839917183 0.009934285655617714 0.008791238069534302 -0.034877631813287735 -0.02764619141817093 0.012769585475325584 -0.040495142340660095 -0.03507588431239128 0.013031636364758015 -0.02204972319304943 -0.08739255368709564 0.073923759162426 0.0006726479041390121 -0.019051048904657364 -0.0015183653449639678 -0.06771555542945862 0.008847545832395554 0.09849540144205093 0.028181031346321106 0.001999686472117901 0.04444248229265213 0.0061614676378667355 0.1033259853720665 0.007040103897452354 -0.013455762527883053 -0.0028183413669466972 -0.021761741489171982 -0.0462428443133831 0.04316189885139465 -0.02609473094344139 -0.009016535244882107 -0.018340520560741425 0.0013034575385972857 0.05615152418613434 0.02410690113902092 -0.04933701083064079 -0.020339470356702805 0.014209127053618431 -0.0074339378625154495 0.020965902134776115 0.011634266003966331 0.0033151975367218256 -0.04987677186727524 -0.06696856766939163 -0.055910855531692505 -0.0001539987133583054 0.057150278240442276 -0.011385845020413399 0.041945479810237885 -0.03857766464352608 -0.05618055537343025 0.018045485019683838 -0.003543828846886754 0.0876641497015953 -0.0678306594491005 0.011638927273452282 0.07220015674829483 0.01696065627038479 -0.09027376770973206 0.02121426910161972 0.049384068697690964 -0.03394610807299614 -0.06911919265985489 0.014352400787174702 0.02142283506691456 -0.058868784457445145 0.022139469161629677 -0.011754833161830902 -0.04464465752243996 -0.002445278689265251 0.014035305939614773 0.02102583274245262 0.008135142736136913 -0.018562469631433487 -0.01616189442574978 -0.02235267125070095 -0.0011107552563771605 0.027516953647136688 -0.004788067191839218 0.024635713547468185 -0.018263356760144234 0.06879696249961853 -0.056429482996463776 -0.02295021526515484 -0.047628603875637054 0.050495851784944534 -0.0053495257161557674 -0.009509633295238018 -0.011570773087441921 -0.07012474536895752 -0.019731776788830757 0.015384335070848465 0.03442384675145149 -0.06287951022386551 -0.008211489766836166 -0.05867982283234596 -0.0689438059926033 -0.07652150839567184 -0.06391727924346924 -0.00033304677344858646 -0.032368507236242294 0.03858008608222008 -0.007306224666535854 -0.004616268444806337 0.0009268260910175741 0.009056451730430126 0.025029536336660385 0.05397377535700798 0.03577905520796776 -0.02920004352927208 0.0567375011742115 -0.00999650452286005 0.04700538143515587 0.003046214347705245 -0.07198937237262726 0.04345904663205147 0.027951423078775406 -0.059430669993162155 0.09473023563623428 -0.041042935103178024 -0.011643165722489357 -0.02407318539917469 -0.0009816810488700867 0.01834430918097496 0.007451928686350584 -0.004727050196379423 -0.07844751328229904 0.07747037708759308 -0.07657071948051453 -0.023296253755688667 0.04305657371878624 -0.043735262006521225 -0.07870306074619293 -0.04363280162215233 -0.01205294206738472 -0.023877769708633423 0.032574571669101715 -0.009267342276871204 0.017057204619050026 0.05341159924864769 -0.031679730862379074 -0.048402175307273865 -0.0044696819968521595 -0.009361217729747295 0.04330277070403099 -0.0012701210798695683 0.0790560245513916 0.04295025020837784 -0.029827872291207314 0.00460449093952775 -0.0012475994881242514 0.028702853247523308 -0.08511306345462799 0.011588924564421177 0.004552604164928198 -0.0330374576151371 -0.006846905220299959 0.011433083564043045 -0.005784238688647747 -0.057129982858896255 -0.011760988272726536 -0.027814410626888275 0.0706426128745079 0.03276892378926277 0.006986313499510288 0.046029943972826004 -0.004095771815627813 0.04005681723356247 -0.0009211767464876175 -0.023697566241025925 -0.05438082665205002 -0.0138133205473423 -0.0502903051674366 0.023792224004864693 -0.007469152566045523 -0.018540406599640846 -0.01983856037259102 -0.03606802970170975 0.0018298804061487317 0.008186564780771732 -0.07684876769781113 0.01149235013872385 0.018300773575901985 -0.04082436114549637 -0.06482383608818054 0.013234037905931473 -0.045571357011795044 0.0544416569173336 0.06920278817415237 0.028580715879797935 0.007599970325827599 -0.005894046742469072 -0.024022309109568596 -0.02757320925593376 0.0027234486769884825 -0.007377550937235355 -0.06860409677028656 0.005908477120101452 0.06546220928430557 -0.0733613669872284 0.012280731461942196 0.024280790239572525 -0.04843030124902725 0.05530440807342529 0.020370347425341606 -0.05415598303079605 0.0875806137919426 0.0027829885948449373 0.0003152406425215304 0.05509983003139496 -0.0947665125131607 0.11071296036243439 -0.055006880313158035 0.06158814579248428 -0.0019336171681061387 -0.011799450032413006 0.10649903863668442 0.0954393669962883 0.015631916001439095 -0.008350119926035404 -0.08384548872709274 +0.03882107883691788 -0.017629671841859818 0.009312845766544342 0.03618047013878822 -0.05526513606309891 -0.0331689678132534 -0.008849957957863808 0.009624093770980835 0.02281593531370163 -0.04330437630414963 -0.022861797362565994 0.0010959181236103177 -0.0038522672839462757 -0.00954345054924488 0.026165936142206192 -0.03682204335927963 -0.0638936311006546 0.027156595140695572 -0.03236536309123039 -0.025887945666909218 0.05538446456193924 0.03611455857753754 -0.05607311800122261 0.03909870237112045 -0.011905991472303867 0.04501226916909218 -0.03151720017194748 -0.0006345598958432674 -0.02551320753991604 0.020237497985363007 0.06985864788293839 0.0058118198066949844 0.04914730787277222 -0.0463845357298851 -0.027349812909960747 0.06038432940840721 -0.027570508420467377 0.11194154620170593 0.006573399528861046 -0.007460541557520628 -0.02909577265381813 -0.04328594729304314 -0.06067236512899399 -0.057679783552885056 0.0136194359511137 -0.011305403895676136 -0.0013667793245986104 -0.016136234626173973 0.012647278606891632 0.024864057078957558 0.09551022946834564 -0.026596929877996445 -0.03753169998526573 -0.0037895627319812775 0.012558232061564922 0.011229369789361954 0.05356908217072487 -0.05501529574394226 -0.042023979127407074 0.026618190109729767 -0.0691637173295021 0.00026305243954993784 0.01577557995915413 0.009170036762952805 -0.022213341668248177 -0.03026452288031578 -0.005468623712658882 0.07173111289739609 0.0034557629842311144 -0.030850093811750412 0.03100205771625042 0.08748266845941544 -0.07825271040201187 -0.056160714477300644 0.06878369301557541 -0.06051940843462944 -0.031483765691518784 0.053016744554042816 -0.010898666456341743 -0.02549014240503311 0.011544905602931976 -0.037790149450302124 0.1271267682313919 -0.08019302785396576 -0.07311074435710907 -0.03685985878109932 -0.0068119303323328495 -0.06567788124084473 0.06806015968322754 0.022695576772093773 0.006893712095916271 0.07790426164865494 -0.05676720291376114 0.06190215423703194 0.026309041306376457 0.013319015502929688 0.022800205275416374 -0.10077622532844543 -0.0769491195678711 -0.007533378433436155 0.009889809414744377 -0.02429882623255253 0.055016353726387024 0.0021758624352514744 0.05467402562499046 0.025708025321364403 -0.02590559795498848 -0.010781950317323208 0.004156339913606644 0.06253185868263245 0.019991770386695862 0.0813450813293457 0.07209617644548416 0.04797753319144249 0.07170171290636063 -0.020326610654592514 0.007472484838217497 -0.02726919576525688 -0.032587140798568726 0.02175328880548477 -0.006644549313932657 0.034549273550510406 -0.02933656983077526 -0.0727682113647461 -0.05781911686062813 0.030602360144257545 -0.09847461432218552 -0.04658593237400055 0.057426512241363525 -0.045057181268930435 0.13367080688476562 0.04305742681026459 -0.03972925990819931 0.0033198457676917315 0.04346267879009247 0.03124052658677101 -0.005944897886365652 0.026613907888531685 -0.015777448192238808 -0.03255763277411461 0.006101745180785656 0.053165361285209656 -0.01465174276381731 -0.03688573092222214 0.03167206794023514 0.028531163930892944 0.04991517961025238 -0.025691216811537743 -0.06764759868383408 0.007296852767467499 -0.07512427866458893 -0.06321414560079575 -0.01580008678138256 -0.0856873169541359 0.018433529883623123 0.02951567806303501 -0.010675959289073944 0.03680300712585449 -0.014135734178125858 -0.00600539892911911 -0.07560231536626816 -0.03941962867975235 -0.029014229774475098 -0.05335838720202446 -0.05713993310928345 -0.026144111528992653 0.0006932938122190535 0.005015041679143906 -0.02984032779932022 -0.030469520017504692 -0.018931547179818153 -0.015523836016654968 0.03330342099070549 0.09546223282814026 0.07652120292186737 0.03648056462407112 -0.019947726279497147 -0.03985165059566498 -0.0020039714872837067 -0.03011646866798401 0.014844291843473911 -0.030017588287591934 0.026869993656873703 -0.039548274129629135 0.004196613561362028 -0.0018868312472477555 0.06226543337106705 0.0027236496098339558 0.03494337946176529 0.010318649001419544 -0.017008835449814796 -0.04599050059914589 0.052657127380371094 0.08554927259683609 -0.02981608547270298 0.016733750700950623 -0.022447848692536354 0.06909430772066116 -0.009945187717676163 -0.06017424538731575 -0.04004298895597458 0.008956109173595905 0.020114228129386902 0.07531370967626572 0.02300097793340683 -0.07605896145105362 0.10446226596832275 0.033443812280893326 0.04119567573070526 -0.08505315333604813 0.011084756813943386 0.003224355401471257 0.0010256425011903048 0.05967016518115997 0.06415372341871262 -0.05897966027259827 -0.011433687061071396 0.006219156086444855 0.04238380864262581 -0.025799434632062912 -0.01682332716882229 0.0008353631710633636 -0.08428233861923218 0.040554601699113846 -0.03131229057908058 -0.08082723617553711 -0.043901313096284866 0.020032236352562904 -0.020503703504800797 -0.029746226966381073 -0.01280792336910963 0.037003446370363235 -0.011936954222619534 -0.03477887064218521 -0.0011282259365543723 0.0012333985650911927 -0.11123264580965042 0.1111861914396286 -0.009171965532004833 -0.0664593055844307 -0.08842780441045761 0.023356538265943527 0.042220838367938995 0.015893490985035896 0.028631895780563354 0.046138349920511246 0.11081754416227341 -0.0030096089467406273 0.0028433643747121096 0.01550429780036211 -0.05415133759379387 -0.05867686867713928 0.006778066046535969 0.015692543238401413 -0.056555941700935364 -0.04992401972413063 -0.00468852836638689 -0.04591505229473114 -0.01969286985695362 0.015744809061288834 0.046912986785173416 -0.010748140513896942 -0.03225765377283096 -0.020863002166152 0.013879207894206047 -0.03699631243944168 -0.012025558389723301 0.04240291193127632 -0.025423947721719742 0.028210528194904327 0.005623975303024054 -0.022632062435150146 0.031444430351257324 -0.015110273845493793 0.047548290342092514 -0.017328066751360893 0.0746079683303833 -0.039838045835494995 -0.07188721746206284 -0.01930815540254116 -0.06870325654745102 -0.04487597942352295 -0.03387802094221115 -0.03918951004743576 -0.04530254378914833 0.09131591022014618 -0.0036750053986907005 -0.061020154505968094 -0.048385731875896454 -0.004544022958725691 -0.02614443004131317 -0.05781743302941322 -0.010764889419078827 -0.010765401646494865 -0.06617304682731628 -0.036208126693964005 0.05502329021692276 -0.06123580038547516 -0.00867218803614378 -0.011343889869749546 -0.021077433601021767 -0.05324321985244751 0.030237337574362755 0.0006456474657170475 -0.04761188477277756 -0.0038234032690525055 -0.08111291378736496 0.04547153413295746 0.09319228678941727 0.06284458190202713 0.055601105093955994 0.042516496032476425 0.06314864754676819 0.11699079722166061 0.0009142258204519749 -0.013524053618311882 -0.004480157978832722 -0.03153708204627037 -0.045246902853250504 0.029368219897150993 -0.01612018793821335 -0.027738535776734352 -0.025306181982159615 0.015557905659079552 0.06881187856197357 -0.009762796573340893 0.0024706318508833647 -0.00955380778759718 0.035916127264499664 0.0065343002788722515 0.02144797518849373 0.003741827327758074 0.017312921583652496 -0.029569150879979134 -0.06367254257202148 -0.035393305122852325 -0.01949118822813034 0.014067241922020912 -0.009761299006640911 0.04267651587724686 -0.032135751098394394 -0.0826830193400383 -0.007213049568235874 -0.002793521387502551 0.11039852350950241 -0.053186871111392975 0.004597657825797796 0.06278704851865768 -0.012941351160407066 -0.1073279082775116 -0.008396190591156483 0.04989897459745407 -0.05241593345999718 -0.05017697438597679 -0.01786551997065544 0.05952155217528343 -0.023873131722211838 -0.02783760242164135 0.012567649595439434 -0.03949418663978577 -0.009249826893210411 0.023915652185678482 0.03181733191013336 0.025265714153647423 0.0036174249835312366 -0.015297288075089455 -0.012313898652791977 0.03130748122930527 0.02819604054093361 -0.03105904348194599 -8.228847582358867e-05 -0.04425825923681259 0.025165503844618797 -0.0477726049721241 -0.04715327173471451 -0.050905633717775345 0.07562094181776047 0.005331519991159439 -0.03561558946967125 -0.02437480352818966 -0.019357046112418175 -0.009711159393191338 0.047242794185876846 0.006737150717526674 -0.03966055065393448 -0.03840591758489609 -0.05181771144270897 -0.060699839144945145 -0.10269497334957123 -0.036892060190439224 -0.000535887957084924 -0.05977337434887886 0.00583530031144619 -0.03354541212320328 -0.011862433515489101 -0.003096969798207283 -0.021648382768034935 0.054860759526491165 0.04027931019663811 0.035712260752916336 -0.03546832501888275 0.034163787961006165 0.009170734323561192 0.06599177420139313 0.039003849029541016 -0.035021644085645676 -0.00036491616629064083 0.01689404994249344 -0.020314203575253487 0.06112142279744148 -0.028668588027358055 -0.0005108824116177857 0.009738778695464134 -0.013727325946092606 0.013982008211314678 -0.0013264070730656385 0.015986284241080284 -0.051888346672058105 0.045547809451818466 -0.09900464117527008 -0.036471299827098846 0.031821925193071365 -0.022838475182652473 -0.08078626543283463 -0.05887220427393913 -0.017975401133298874 -0.025751160457730293 0.022709043696522713 -0.029961204156279564 0.010002411901950836 0.01442510262131691 -0.0361955463886261 -0.05240907520055771 -0.03826438635587692 -0.0018708608113229275 0.05347878113389015 -0.010726259090006351 0.05787993222475052 0.019057847559452057 0.012309306301176548 -0.008263940922915936 -0.0016227730084210634 0.004497691057622433 -0.08828745782375336 -0.005218460690230131 -0.043145205825567245 -0.026340458542108536 0.014154063537716866 -0.02242613397538662 0.032022129744291306 -0.05734611302614212 -0.03156481310725212 -0.06520590931177139 0.09785830229520798 -0.03511267900466919 0.021180439740419388 0.0061963386833667755 -0.03520817309617996 -0.006429397035390139 0.031282100826501846 -0.043272603303194046 -0.05687295272946358 0.01891227252781391 -0.006719985511153936 0.020972302183508873 0.019151458516716957 0.00024428684264421463 -0.021709918975830078 -0.05171419307589531 -0.016378488391637802 0.02201261557638645 -0.0794837698340416 0.019261205568909645 0.03712272644042969 -0.08092191815376282 -0.05370524898171425 0.009718951769173145 -0.02508925274014473 0.05040263757109642 -0.003590523498132825 0.0639483630657196 -0.02733764424920082 -0.00894117821007967 0.008851557038724422 -0.022456295788288116 0.008970847353339195 0.010934541933238506 -0.06083254516124725 -0.031649164855480194 0.05871563032269478 -0.04061546549201012 0.012529044412076473 0.08050142228603363 -0.04563906043767929 0.03121943213045597 0.04601044952869415 -0.03852827101945877 0.042587753385305405 -0.0009651426807977259 -0.02900894358754158 0.07164271920919418 -0.08424127846956253 0.11115213483572006 -0.08622239530086517 0.09422368556261063 0.00454840250313282 -0.014479352161288261 0.0680289939045906 0.06957537680864334 -0.009341229684650898 0.015373371541500092 -0.043901871889829636 +-0.054023806005716324 -0.08369556814432144 -0.02233423851430416 0.03817403316497803 -0.03171123191714287 0.03704051673412323 -0.04995390772819519 -0.01827852800488472 0.00754517363384366 -0.08305690437555313 -0.048438962548971176 -0.0090969642624259 -0.042165812104940414 -0.006984504871070385 0.02486274018883705 0.029503127560019493 -0.06369750946760178 -0.034628018736839294 0.055920299142599106 -0.049151718616485596 -0.011201051995158195 0.05478493869304657 -0.031910136342048645 0.04500049352645874 0.04700123891234398 0.006996572483330965 -0.02911757305264473 0.049833036959171295 0.0024843260180205107 0.08520720154047012 0.024566492065787315 -0.005940956994891167 0.05289611592888832 0.0027520384173840284 0.003254170995205641 0.04211609065532684 -0.025634655728936195 0.09417279064655304 0.008050286211073399 0.02247089520096779 0.08220534026622772 -0.07984039187431335 -0.02446523681282997 -0.05690130963921547 0.004785418510437012 -0.0710194930434227 -0.030465317890048027 -0.036456651985645294 -0.005155111663043499 0.07996995002031326 0.07950890064239502 -0.006323120556771755 0.017364919185638428 -0.038273464888334274 -0.001947062904946506 0.030989279970526695 0.022672466933727264 -0.005804486107081175 0.03863224387168884 0.0434839203953743 0.00619024271145463 -0.05036528408527374 0.053620148450136185 0.014146356843411922 -0.01571664959192276 0.06402591615915298 0.051963623613119125 0.033244334161281586 -0.09484469145536423 -0.06012443080544472 -0.005784991662949324 0.03897795453667641 -0.009984791278839111 1.1477724910946563e-05 -0.008861803449690342 0.008401179686188698 0.017930250614881516 0.024434713646769524 0.046019699424505234 0.017865439876914024 0.030764080584049225 -0.05300822854042053 0.05091807246208191 -0.0036263458896428347 0.061015356332063675 -0.06377588957548141 -0.0038209648337215185 -0.028779111802577972 -0.005314898677170277 -0.026856832206249237 0.09752387553453445 0.004165777005255222 0.014009230770170689 -0.0019121948862448335 0.009044324047863483 -0.016231216490268707 0.0704476535320282 -0.057670414447784424 0.001669169869273901 0.05343448370695114 0.02334250882267952 -0.029836468398571014 0.08469749987125397 0.03413299843668938 0.017274005338549614 0.03255026042461395 -0.018473898991942406 0.05289308354258537 0.04580863192677498 0.027435658499598503 0.001992253353819251 0.05499107018113136 0.05821744352579117 0.014741764403879642 0.021458344534039497 -0.012468255124986172 -0.038519348949193954 0.025491314008831978 0.027380652725696564 0.02363412082195282 0.00036595528945326805 0.03631158173084259 -0.03863674774765968 -0.0032336346339434385 0.014453046955168247 0.06230435520410538 -0.011324439197778702 0.006771868094801903 0.023120632395148277 -0.016050688922405243 0.0528578907251358 -0.018609698861837387 0.012879198417067528 0.015232748351991177 -0.030654577538371086 0.011382116936147213 0.018565678969025612 0.055010054260492325 0.02399868704378605 0.02552650310099125 -0.014417017810046673 -0.023823264986276627 0.02089534141123295 -0.04319965839385986 0.021736735478043556 0.00221127737313509 -0.062237806618213654 0.011467529460787773 -0.06419596821069717 -0.06964527070522308 -0.035235971212387085 0.042047709226608276 0.0065510086715221405 -0.128589928150177 0.0014278817689046264 -0.010731138288974762 0.054650697857141495 0.03605193644762039 -0.006184339057654142 0.09562753885984421 -0.08534882217645645 -0.06033235415816307 0.07566642761230469 -0.06043243780732155 -0.04835107922554016 -0.001956165535375476 0.023689649999141693 -0.042319703847169876 -0.02294835075736046 -0.003930227365344763 -0.015595984645187855 0.033151254057884216 0.10829006880521774 0.016223860904574394 0.07174047827720642 0.004152970388531685 0.03888796642422676 -0.05990181490778923 -0.036930736154317856 -0.0352499894797802 0.004050157498568296 0.03512812405824661 -0.03019731491804123 0.022254593670368195 -0.07972858101129532 0.0015212481375783682 0.005754308775067329 0.04282242804765701 -0.018992625176906586 0.015108405612409115 0.0064233154989778996 -0.05546140298247337 0.06116999313235283 0.04035719484090805 -0.048352181911468506 0.0575854629278183 0.03607126697897911 0.134440079331398 -0.09231401979923248 -0.03903079405426979 -0.04990480840206146 0.01257260236889124 0.04388168454170227 0.0006044837064109743 -0.023675959557294846 -0.0666312426328659 0.061752475798130035 0.051923301070928574 0.017833828926086426 -0.03767731785774231 0.009694811888039112 0.0017667640931904316 -0.007315917406231165 0.08780105412006378 0.059266116470098495 0.0029762887861579657 -0.040442921221256256 -0.013967500999569893 -0.0029259352013468742 -0.0636231005191803 -0.0286334827542305 0.009316680952906609 -0.08167579025030136 -0.027297377586364746 -0.04926792532205582 -0.017117701470851898 0.023213190957903862 -0.06008637323975563 -0.01242020819336176 0.032582201063632965 0.01493541058152914 0.028737748041749 -0.03552190959453583 0.00878784991800785 -0.03272128477692604 0.004678265191614628 -0.012083780951797962 0.0266020055860281 -0.0734277218580246 -0.05117444694042206 -0.10570202767848969 0.023540804162621498 -0.029294081032276154 -0.04800610989332199 0.03495161607861519 0.031070329248905182 0.06866386532783508 0.059214357286691666 -0.011008069850504398 -0.033565253019332886 -0.03156169503927231 -0.019393466413021088 -0.0636574849486351 -0.025767603889107704 0.035353660583496094 0.01184990257024765 -0.0005384605028666556 -0.11969268321990967 -0.025804530829191208 0.06785821914672852 0.024944571778178215 -0.009592422284185886 -0.020742908120155334 0.011897186748683453 0.009233369491994381 -0.001858449773862958 -0.016089895740151405 0.03870309516787529 -0.01767994835972786 0.0009405401651747525 -0.06846828758716583 0.04556705430150032 -0.022226674482226372 0.013296808116137981 -0.004474602174013853 -0.03642326965928078 0.06612672656774521 -0.0515831783413887 -0.04255698248744011 -0.02864849381148815 -0.0022799319121986628 -0.010196805000305176 0.007663701195269823 -0.0010464574443176389 0.01788240484893322 0.017761830240488052 -0.03575194254517555 -0.02352731116116047 0.005074940621852875 -0.03497549518942833 -0.0026023469399660826 -0.013551164418458939 0.06129977107048035 -0.043712422251701355 -0.02492538094520569 0.02900320664048195 0.017095418646931648 -0.0014699511229991913 0.02893134206533432 0.06767907738685608 -0.0038350268732756376 -0.03934604674577713 0.06554363667964935 0.006487854290753603 -0.06715396791696548 0.035000577569007874 -0.01886487752199173 0.03766031935811043 0.04678229242563248 0.0016363359754905105 -0.0328163206577301 0.04981992766261101 0.07332438230514526 0.005144375376403332 -0.055666737258434296 0.01951761543750763 -0.05655905604362488 0.0035068122670054436 -0.025237929075956345 0.05222358927130699 0.036611158400774 -0.004754385910928249 -0.04269704595208168 -0.060576681047677994 0.08088158816099167 -0.017251931130886078 -0.0305746141821146 -0.05022753030061722 0.025062156841158867 0.04823591187596321 0.030696619302034378 -0.02025529555976391 0.009240924380719662 -0.00760887935757637 -0.0356258749961853 -0.01675805263221264 -0.061176300048828125 0.06224226951599121 -0.04991227388381958 0.040769703686237335 -0.006695253308862448 -0.050050780177116394 0.05991094559431076 0.002801264636218548 0.032133352011442184 -0.080474354326725 -0.01224791444838047 0.00314147025346756 -0.038921818137168884 -0.05100740119814873 -0.07360732555389404 -0.05003414303064346 -0.08311188220977783 -0.034185755997896194 -0.022918062284588814 -0.019362933933734894 0.010243460536003113 -0.06771965324878693 -0.02579273097217083 -0.04258446395397186 -0.01055687665939331 0.039725370705127716 0.0003376077802386135 -0.0015752405161038041 -0.01816493645310402 -0.0642315223813057 -0.06355983018875122 -0.0017644853796809912 -0.0650918111205101 -0.06348433345556259 0.06576479226350784 0.023554442450404167 -0.07213907688856125 -0.008383035659790039 -0.0014203984756022692 -0.09715985506772995 -0.003067638026550412 -0.02896158955991268 0.014536401256918907 -0.027817821130156517 -0.06528892368078232 0.019625363871455193 0.026463566347956657 -0.024015849456191063 -0.042712096124887466 -0.10776334255933762 0.009120100177824497 -0.03978194668889046 -0.0168338343501091 -0.03507222607731819 0.07102800160646439 -0.012546922080218792 0.08023694902658463 -0.09033509343862534 0.022305848076939583 -0.06625436246395111 0.019209539517760277 0.047006137669086456 0.0578157901763916 0.04335126280784607 -0.018594788387417793 0.0775001049041748 -0.05955442413687706 -0.02525109238922596 -0.005806675646454096 -0.0198944341391325 0.03649638593196869 -0.05560246855020523 -0.011952174827456474 0.009793141856789589 -0.07586607336997986 -0.013845865614712238 0.01799289882183075 -0.08206764608621597 0.0713360458612442 -0.03727024793624878 -0.010740997269749641 -0.01923871785402298 0.005428970325738192 -0.07349714636802673 0.010500124655663967 -0.04283365607261658 0.03995562344789505 0.001091850339435041 -0.043253183364868164 -0.07200378179550171 0.023017870262265205 0.025943178683519363 -0.03251024708151817 -0.039845120161771774 0.023675652220845222 -0.02744442969560623 0.0018619706388562918 -0.014134314842522144 0.037419725209474564 -0.04991636425256729 0.11302924156188965 0.0020900836680084467 -0.06941987574100494 -0.01208185963332653 -0.009431824088096619 -0.03295678645372391 -0.003896173322573304 -0.023364774882793427 -0.04372046887874603 0.026679202914237976 0.003442687913775444 -0.008374455384910107 0.030054446309804916 0.02103547938168049 -0.02193892002105713 -0.052905019372701645 -0.03657422587275505 0.07793550938367844 0.023362204432487488 0.02087252028286457 0.027294980362057686 -0.08591626584529877 -0.04638892784714699 0.03713421896100044 -0.047438185662031174 -0.0711580291390419 -0.07955802977085114 0.014916675165295601 0.09747442603111267 -0.05196342617273331 0.013024039566516876 -0.10487224161624908 -0.03644869476556778 -0.010571176186203957 -0.01604939065873623 -0.0531267486512661 -0.047179486602544785 0.0549844428896904 -0.04044957458972931 -0.0011533006327226758 0.046141959726810455 -0.030260836705565453 0.054337985813617706 0.055983711034059525 0.005536393728107214 -0.05073898658156395 -0.02389039471745491 0.009143311530351639 -0.015574431978166103 -0.002094363095238805 0.019790731370449066 -0.07074225693941116 -0.08108022063970566 0.056180838495492935 -0.02108093723654747 0.1090114563703537 0.057040780782699585 -0.06293241679668427 0.015244974754750729 0.10425818711519241 0.002130600856617093 -0.024859031662344933 -0.004853145219385624 -0.012184490449726582 0.030842071399092674 0.015847254544496536 0.0517890490591526 -0.03366105630993843 0.10503626614809036 -0.020808925852179527 0.024773748591542244 -0.03184164687991142 0.010954467579722404 0.09566570818424225 0.03139482066035271 -0.06868299096822739 +0.012229369021952152 0.00783365499228239 0.0013614366762340069 0.025560835376381874 -0.07120707631111145 -0.07625434547662735 -0.017848914489150047 0.008038566447794437 0.022167347371578217 -0.021764300763607025 -0.02973269671201706 0.037958547472953796 -0.022788681089878082 0.018427088856697083 0.0009704828844405711 -0.028896501287817955 -0.09293565154075623 -0.05364135652780533 -0.028701376169919968 -0.038239918649196625 0.026164881885051727 0.0002529011690057814 -0.08932303637266159 0.043981507420539856 0.012571363709867 0.004895755555480719 -0.048027973622083664 -0.03164621815085411 -0.0068649002350866795 0.0009868702618405223 0.061375949531793594 -0.028028063476085663 0.056747667491436005 -0.06668982654809952 -0.06326136738061905 0.06300707161426544 0.014318251982331276 0.08022982627153397 0.04371599480509758 -0.013735425658524036 -0.041501276195049286 -0.004850553348660469 -0.04079309105873108 -0.05865729600191116 -0.00939488597214222 -0.03747955337166786 -0.052442412823438644 -0.028590619564056396 0.03794064745306969 0.026017362251877785 0.08593492954969406 -0.023025454953312874 -0.04278862476348877 -0.02290101908147335 -0.03387366235256195 -0.018761903047561646 0.0023067013826221228 -0.044930778443813324 -0.081112340092659 -0.006939592771232128 -0.05397099629044533 0.021649552509188652 7.422635098919272e-05 0.03555484861135483 -0.006922271568328142 -0.009961195290088654 0.013218949548900127 0.07246144860982895 0.029518406838178635 -0.015918612480163574 0.05323394387960434 0.04889524728059769 -0.03819624334573746 0.0007987514254637063 0.01691729947924614 -0.04474719241261482 -0.003431471064686775 0.04606351628899574 0.016161471605300903 0.05760595202445984 0.029955673962831497 -0.01727713830769062 0.08549133688211441 -0.03071950003504753 0.008722010999917984 -0.039198003709316254 0.003959916066378355 -0.030381886288523674 0.04578941687941551 0.014935116283595562 0.04658794030547142 0.0705418661236763 -0.049845144152641296 0.043396592140197754 -0.025856712833046913 0.03193138167262077 0.057354897260665894 -0.10252922773361206 -0.02679472044110298 0.020491763949394226 -0.005362352821975946 -0.01834268495440483 0.042549632489681244 -0.04675198346376419 0.04673246666789055 0.03525255247950554 -0.03544534742832184 0.01339816115796566 0.059235792607069016 -0.002514264080673456 0.10757530480623245 0.06267417222261429 0.07012595236301422 0.09112237393856049 0.07124654948711395 0.010145212523639202 0.02391037717461586 -0.07032331824302673 -0.008319152519106865 0.028198478743433952 -0.017853738740086555 0.046084098517894745 -0.04691662639379501 -0.03078288584947586 -0.018824197351932526 0.004515752196311951 -0.08939842879772186 -0.021310867741703987 0.028767013922333717 0.01865004561841488 0.08051936328411102 0.039374738931655884 0.014494390226900578 0.020935039967298508 0.03052004612982273 0.017872203141450882 0.014530357904732227 0.01562967710196972 0.005338881630450487 -0.043034639209508896 -0.03935589641332626 0.05551658198237419 0.015056280419230461 -0.00581335136666894 0.010848761536180973 0.03360556811094284 -0.0076139867305755615 0.023900924250483513 -0.037351805716753006 -0.028567291796207428 -0.10374615341424942 -0.03488238900899887 0.00513801071792841 -0.0917675569653511 0.058807190507650375 0.07783056050539017 0.06048941612243652 0.05082652345299721 -0.033763691782951355 0.01735137589275837 -0.003799552796408534 -0.04825756326317787 0.050593215972185135 -0.09511645138263702 -0.018961701542139053 -0.007707534823566675 0.0004425967636052519 0.05069969221949577 -0.0203428752720356 -0.004769516177475452 -0.03197365254163742 -0.07282661646604538 0.011735419742763042 0.08321285247802734 0.018087739124894142 -0.023217448964715004 0.011903066188097 -0.07062255591154099 0.00700375996530056 -0.017658766359090805 0.02906300500035286 -0.09690230339765549 0.016430314630270004 -0.06619912385940552 -0.04325833544135094 -0.010790722444653511 -0.02247348241508007 -0.014165571890771389 -0.008997374214231968 0.030932044610381126 -0.10706965625286102 -0.05427044257521629 0.012030263431370258 0.0571705624461174 -0.010537933558225632 0.05732192099094391 0.05829300731420517 0.06371287256479263 0.0552268847823143 -0.0063495575450360775 -0.08733923733234406 -0.033181458711624146 -0.011189546436071396 0.0574246346950531 0.03370597958564758 -0.07219623029232025 0.10438494384288788 0.03642753139138222 0.037801455706357956 -0.0523526594042778 -0.0323413647711277 0.04349054396152496 0.031681086868047714 0.037224702537059784 0.08110351115465164 -0.03929787501692772 -0.015584285371005535 0.029269203543663025 0.0395825132727623 -0.07538943737745285 -0.016399133950471878 0.025693168863654137 -0.006220026407390833 0.024468490853905678 -0.00994860753417015 -0.09823165088891983 -0.055937591940164566 -0.02785758674144745 0.0023867797572165728 -0.05963388457894325 0.008414838463068008 0.050112057477235794 -0.005474563222378492 -0.013279465958476067 -0.01594661921262741 -0.00433671148493886 -0.05805801600217819 0.08605655282735825 -0.03730953112244606 -0.06836289912462234 -0.019597237929701805 0.010740280151367188 0.012066825293004513 0.04484567418694496 0.0217415913939476 0.03479158133268356 0.12207642942667007 0.009804089553654194 -0.03125381097197533 -0.04353635385632515 -0.048230163753032684 -0.0662631243467331 0.028726276010274887 0.044599492102861404 -0.03787969425320625 -0.08456791192293167 -0.013450595550239086 -0.07072591781616211 -0.009233687072992325 -0.007749119773507118 0.05249962583184242 0.037313543260097504 -0.06613912433385849 -0.06664220988750458 0.06221369281411171 0.039318542927503586 -0.031923603266477585 0.00944002065807581 -0.040398623794317245 0.044455189257860184 -0.028577862307429314 -0.023608960211277008 -0.0014674098929390311 -0.011137502267956734 0.011988346464931965 -0.0026098452508449554 0.08493853360414505 -0.03336222469806671 -0.020051179453730583 -0.02744852751493454 -0.0481267012655735 -0.026148928329348564 -0.002966707106679678 0.025005655363202095 -0.008488963358104229 0.06659995764493942 0.002711803885176778 -0.014043813571333885 0.024236714467406273 -0.0008242676849476993 -0.04539237171411514 -0.0631474182009697 0.003659648122265935 0.005700518377125263 -0.07083268463611603 0.01285955123603344 0.024959735572338104 -0.01803508587181568 -0.032528337091207504 0.09397922456264496 -0.037822071462869644 -0.02397073805332184 0.011597116477787495 0.003460030537098646 -0.05904074013233185 -0.020678533241152763 -0.08573482185602188 0.0008787686820141971 0.07598143070936203 -0.003651436185464263 0.045276109129190445 0.0421140193939209 0.06782180070877075 0.062412913888692856 0.004381589591503143 -0.05104536935687065 0.04347259923815727 -0.0533452071249485 -0.10538315027952194 0.06897542625665665 -0.007588054519146681 0.033925626426935196 -0.028684942051768303 0.008624193258583546 0.05101123824715614 -0.016565894708037376 -0.0014951879857107997 -0.009265225380659103 0.012213299982249737 -0.00442885747179389 0.0643388107419014 0.023992342874407768 -0.02960694581270218 0.024987563490867615 -0.06112176179885864 -0.06846939027309418 -0.0987057238817215 0.023998839780688286 0.0352022685110569 0.042332686483860016 0.028413746505975723 -0.07273441553115845 0.0025405138731002808 -0.019891679286956787 0.09813831746578217 -0.1005573570728302 -0.015587566420435905 -0.05893924459815025 0.030568750575184822 -0.1141250878572464 -0.05320286378264427 0.0008695780416019261 -0.045249223709106445 -0.03682372346520424 -0.0043432703241705894 0.050833430141210556 -0.06477756053209305 -0.01691058650612831 0.023066533729434013 -0.0169563926756382 0.017410442233085632 0.02991645410656929 0.004252745304256678 0.05944403260946274 0.03984754532575607 -0.04278232902288437 0.019740251824259758 0.0222234595566988 0.015594362281262875 -0.015223436057567596 0.06267870962619781 -0.047337669879198074 0.07507029920816422 0.006088831927627325 -0.026631293818354607 -0.09133416414260864 0.016949545592069626 0.0014759330078959465 -0.0022496446035802364 -0.01938249170780182 0.015630707144737244 0.02385745570063591 0.03552519157528877 0.024024102836847305 -0.05820462852716446 -0.022569045424461365 -0.05629502236843109 -0.005854132119566202 -0.05180422216653824 0.011186303570866585 0.02897769585251808 -0.08461829274892807 0.034934964030981064 -0.038058314472436905 -0.03163551166653633 0.005646892357617617 -0.0285954587161541 -0.0012890163343399763 0.005544691346585751 0.016578448936343193 -0.012274658307433128 0.020480509847402573 -0.016137143597006798 0.022269560024142265 0.008859367109835148 -0.032904960215091705 0.041593410074710846 0.045089706778526306 -0.03356172516942024 0.021497078239917755 -0.015757223591208458 -0.028965922072529793 -0.013209660537540913 -0.041847046464681625 0.010033732280135155 0.03315119445323944 -0.015926983207464218 -0.01835874654352665 -0.009601151570677757 -0.041214827448129654 -0.05552109703421593 0.039376020431518555 -0.005707253701984882 -0.10130131989717484 -0.026089567691087723 0.015057619661092758 -0.06081494688987732 0.04549609497189522 0.028137221932411194 0.03362978994846344 0.04537609592080116 -0.02932221256196499 -0.009333022870123386 0.01392038632184267 -0.03294267877936363 -0.028166428208351135 -0.03235742822289467 0.04490496590733528 -0.02702023833990097 0.052648477256298065 0.07453085482120514 -0.015652507543563843 0.010093165561556816 -0.029850415885448456 -0.05462103709578514 0.012228736653923988 -0.04207950830459595 0.01581355184316635 0.048330843448638916 0.010105888359248638 -0.05369299277663231 -0.05808083340525627 -0.07534889876842499 0.05377738177776337 -0.018581602722406387 0.04099879786372185 0.01705731824040413 -0.0689205750823021 -0.012028350494801998 0.001536099356599152 0.031459689140319824 -0.10829168558120728 0.029792513698339462 -0.061923786997795105 -0.010644553229212761 -0.019247815012931824 0.05342233553528786 0.0240006223320961 -0.11318979412317276 -0.014843588694930077 0.00963194202631712 -0.03491659462451935 0.013194586150348186 -0.021323801949620247 -0.02988622523844242 -0.05532549321651459 -0.044543202966451645 -0.09603114426136017 0.0710395947098732 0.01817844808101654 0.010993526317179203 0.0021475525572896004 -0.008096516132354736 0.02732783369719982 -0.017377810552716255 -0.01855950802564621 0.021763836964964867 -0.05849824473261833 -0.008513321168720722 0.07385686784982681 0.023195920512080193 0.057615507394075394 0.06909243017435074 -0.019640687853097916 0.034912656992673874 0.025893211364746094 -0.041660137474536896 0.0197727233171463 -0.017958952113986015 -0.04736603423953056 0.061974428594112396 0.02115578204393387 0.03241235390305519 -0.028906265273690224 0.10877040028572083 -0.0019970517605543137 -0.04044704884290695 0.03898998349905014 0.044692639261484146 -0.026725715026259422 0.07668954133987427 -0.001180768827907741 +0.005845316220074892 -0.05040774494409561 -0.005296595860272646 0.012310133315622807 -0.07834335416555405 -0.054319534450769424 0.011025479063391685 0.04437132552266121 -0.007324552629143 -0.04210318252444267 -0.017270322889089584 -0.0014826871920377016 0.005193805787712336 0.019784308969974518 0.01826965995132923 -0.039127167314291 -0.059636086225509644 0.008287293836474419 -0.06309709697961807 -0.036385126411914825 0.04376118630170822 0.027460766956210136 -0.05591469630599022 0.03945162519812584 -0.013152365572750568 -0.007552339695394039 -0.04957307502627373 0.013006494380533695 0.02472759410738945 0.02096732333302498 0.08723824471235275 -0.021701056510210037 0.04785063862800598 -0.05602811276912689 -0.039285678416490555 0.052570562809705734 -0.044370073825120926 0.10740067064762115 0.023378198966383934 -0.017795152962207794 -0.035435911267995834 -0.012775145471096039 -0.002310287905856967 -0.03108314983546734 0.026775436475872993 -0.029357971623539925 0.005071383435279131 -0.030846288427710533 0.01438049878925085 0.03919601067900658 0.08430119603872299 0.02137570269405842 0.020727986469864845 -0.009416399523615837 -0.001297292299568653 0.020020946860313416 0.01735823042690754 -0.0601702481508255 -0.06189586967229843 0.031232956796884537 -0.06819017976522446 0.008592771366238594 0.0042004710994660854 0.022028397768735886 -0.0063696145080029964 -0.025550683960318565 -0.01741660013794899 0.10403124988079071 0.017893915995955467 -0.029690993949770927 0.007814369164407253 0.07924892753362656 -0.06101372092962265 -0.07275332510471344 0.03757863491773605 -0.03719000890851021 0.013262150809168816 0.018050650134682655 -0.03217311203479767 -0.014988579787313938 -0.0188986137509346 -0.029217276722192764 0.11272057145833969 -0.029132749885320663 -0.025372110307216644 -0.0462791807949543 -0.013712598942220211 -0.0686797946691513 0.07084767520427704 0.016260677948594093 0.04526512324810028 0.057485438883304596 -0.04248600825667381 0.04574204981327057 6.33621821179986e-05 0.01030008215457201 0.006214888766407967 -0.13360679149627686 -0.025228917598724365 -0.011631719768047333 0.01736827939748764 -0.0035265106707811356 0.0884854644536972 -0.00043963774805888534 0.044705405831336975 0.06238158419728279 -0.06759501993656158 -0.0024779040832072496 0.023940129205584526 0.045002177357673645 0.019511617720127106 0.14087235927581787 0.07302968204021454 0.0514444001019001 0.03897770866751671 -0.009289969690144062 -0.024609407410025597 -0.027991099283099174 -0.02666684426367283 -0.0008436240023002028 0.011003966443240643 0.033451106399297714 -0.026584573090076447 -0.062432728707790375 -0.04599566385149956 0.07248598337173462 -0.10318169742822647 -0.021269431337714195 0.08778262138366699 -0.020194729790091515 0.10374436527490616 0.06929372251033783 -0.02298392727971077 0.03792613372206688 0.07276810705661774 0.004377696197479963 -0.01728985458612442 0.0015046891057863832 -0.0003463224566075951 -0.04352429881691933 -0.061345718801021576 0.060554370284080505 0.012581279501318932 -0.055497899651527405 -0.004569911397993565 0.060482513159513474 0.028556618839502335 -0.03283485025167465 -0.061598505824804306 0.014345517382025719 -0.06360478699207306 -0.09117724001407623 -0.003033918561413884 -0.07951321452856064 0.025613142177462578 0.049186818301677704 -0.004404083825647831 0.0378907173871994 0.0022137686610221863 -0.015464271418750286 -0.043470948934555054 -0.07036518305540085 -0.012329250574111938 -0.08049043267965317 0.0029372666031122208 -0.009328397922217846 0.010819459334015846 0.0033733039163053036 -0.037384096533060074 -0.05262437462806702 -0.017020709812641144 -0.025435952469706535 0.01111532747745514 0.07579878717660904 0.034610144793987274 0.01826545223593712 0.009221014566719532 -0.02017674408853054 -0.0060390629805624485 -0.04927171766757965 0.011644325219094753 -0.045655764639377594 0.02835206873714924 -0.09009169787168503 -0.021222015842795372 -0.0015580381732434034 0.02083709090948105 -0.04059436917304993 -0.022338880226016045 -0.031540367752313614 -0.024647939950227737 -0.06324056535959244 0.019101059064269066 0.06426475197076797 -0.03303682431578636 0.04336249455809593 -0.016363831236958504 0.07807951420545578 -0.026475101709365845 -0.02877930924296379 -0.07296127825975418 0.04703391343355179 0.02095063589513302 -0.014067194424569607 -0.006931798066943884 -0.07293019443750381 0.07561394572257996 0.008866185322403908 0.035455260425806046 -0.07807404547929764 0.022433890029788017 0.05353495106101036 0.01583106629550457 0.05715519189834595 0.043734095990657806 -0.04049540311098099 -0.02249189279973507 0.009204993955790997 0.03793776407837868 -0.06527671962976456 0.017733294516801834 0.008717923425137997 -0.055733442306518555 0.042132988572120667 -0.03259006515145302 -0.10772569477558136 -0.030319279059767723 -0.004839058965444565 -0.008019688539206982 -0.05524666607379913 -0.00800749659538269 0.027306219562888145 -0.0046387845650315285 -0.013627379201352596 0.003946390468627214 -0.015123610384762287 -0.07437828183174133 0.08268097043037415 -0.010034800507128239 -0.058802418410778046 -0.058357398957014084 -0.020130423828959465 0.010214491747319698 0.007543070707470179 0.01019356120377779 0.02169288694858551 0.10035371035337448 0.03968087211251259 -0.053393375128507614 -0.0012121460167691112 -0.045531392097473145 -0.051764946430921555 -0.01431287545710802 0.026350386440753937 -0.04260849952697754 -0.06610080599784851 0.021503470838069916 -0.08502969145774841 -0.0008234405540861189 -0.021791674196720123 0.05980025231838226 -0.04588010534644127 -0.021009253337979317 -0.003713375423103571 0.04316382482647896 -0.024720603600144386 -0.060042109340429306 0.013251141645014286 -0.01493056956678629 0.04993319883942604 -0.01296977698802948 -0.018611231818795204 0.03704104945063591 -0.005064194090664387 0.03950406238436699 -0.02884913794696331 0.0679582878947258 -0.023120803758502007 -0.09460193663835526 -0.034198544919490814 -0.05993284285068512 -0.07469142973423004 0.002836642088368535 -0.029254009947180748 -0.030269287526607513 0.08600462973117828 0.013116499409079552 -0.042997606098651886 -0.026608262211084366 -0.04510655254125595 -0.016188571229577065 -0.029009191319346428 -0.03110819309949875 -0.01678755134344101 -0.05372622236609459 0.015088589861989021 0.03700270503759384 -0.07802428305149078 -0.021910864859819412 0.03942776471376419 0.003735407954081893 -0.013961310498416424 0.07060183584690094 -0.06020369753241539 0.007817938923835754 -0.011690711602568626 -0.056164536625146866 0.03386019170284271 0.07844545692205429 0.045930102467536926 0.04261219874024391 0.03041449747979641 0.0290504340082407 0.09652803838253021 0.028590451925992966 -0.03320711478590965 -0.008995919488370419 -0.02201533131301403 -0.06560403853654861 0.04383714124560356 -0.04336646944284439 -0.024290695786476135 0.010226570069789886 4.5027270971331745e-05 0.07721880823373795 -0.015206494368612766 -0.021266711875796318 -0.01144065149128437 0.041968315839767456 -0.016862478107213974 0.015104279853403568 -0.0018540937453508377 -0.015851585194468498 0.013180463574826717 -0.05114633962512016 -0.05836126208305359 -0.039101194590330124 0.03871064633131027 -0.03249504044651985 0.06629341095685959 -0.013673372566699982 -0.07602682709693909 0.009469864889979362 0.007985436357557774 0.12000920623540878 -0.06694253534078598 0.01794852502644062 0.014506355859339237 0.038747258484363556 -0.0943504199385643 0.010148588567972183 -0.006485148333013058 -0.012759402394294739 -0.0659923180937767 0.0279373899102211 0.041842736303806305 -0.06825944781303406 -0.041423045098781586 -0.012534113600850105 -0.03317999467253685 -0.005470201373100281 0.011783257126808167 -0.02064354158937931 0.05520020052790642 0.029527638107538223 -0.014822612516582012 0.008872873149812222 0.039410367608070374 0.026410536840558052 -0.05450192466378212 0.03916991502046585 -0.04035654291510582 0.06885816156864166 -0.017455169931054115 -0.06444238871335983 -0.06233885511755943 0.03529604151844978 -0.025342922657728195 -0.010377414524555206 -0.04552400857210159 -0.0040955329313874245 0.009780626744031906 0.02887170948088169 -0.006271703168749809 -0.0789889320731163 0.005584344733506441 -0.010482621379196644 -0.049132417887449265 -0.08214104175567627 -0.06949163228273392 0.02469148486852646 -0.05049598962068558 -0.004742736462503672 -0.02694656141102314 0.015600201673805714 0.0013710149796679616 -0.02599254995584488 0.04924210160970688 0.06117818132042885 0.021978279575705528 -0.013839561492204666 0.05862421542406082 0.028698239475488663 0.038135770708322525 -0.0068769012577831745 -0.03263984993100166 0.0344734825193882 0.038948334753513336 -0.04170018434524536 0.015850787982344627 -0.035148464143276215 0.03673670068383217 -0.01936575584113598 -0.024806197732686996 0.01057613454759121 -0.015870168805122375 -0.011446733959019184 -0.04534723237156868 0.06401915103197098 -0.07488749176263809 -0.03623603656888008 0.04244926571846008 -0.05025336891412735 -0.08358532935380936 -0.014488807879388332 -0.040671207010746 -0.023054642602801323 0.054184943437576294 -0.0038192004431039095 0.03775835782289505 -0.0009820156265050173 -0.03398401662707329 -0.0234829131513834 0.0035870226565748453 -0.014026246033608913 -0.008142933249473572 0.034920286387205124 0.07042016088962555 -0.001164709683507681 0.003874697955325246 0.01583138294517994 -0.046857479959726334 0.019885579124093056 -0.11708332598209381 -0.005382356699556112 -0.005204812623560429 -0.00040197165799327195 0.018488118425011635 0.017566289752721786 0.041071951389312744 -0.06915757805109024 -0.01560754794627428 -0.031943343579769135 0.062273286283016205 -0.02049338072538376 0.030580509454011917 -0.0014872380997985601 -0.043711837381124496 -0.04300427436828613 0.013857267796993256 -0.023120688274502754 -0.07763296365737915 0.019873708486557007 -0.022514482960104942 0.035997021943330765 -0.010680570267140865 0.046174004673957825 -0.030061939731240273 -0.12188974767923355 -0.013417195528745651 0.006581445690244436 -0.02913513593375683 0.007780534215271473 0.037622932344675064 -0.07599503546953201 -0.048940323293209076 -0.003840548451989889 -0.048000287264585495 0.04800441488623619 -0.03171161562204361 0.038306258618831635 -0.05059249699115753 -0.021308813244104385 -0.005622328724712133 -0.04938941076397896 0.029127473011612892 -0.009913221932947636 -0.07430384308099747 -0.04101597145199776 0.06949145346879959 -0.021057236939668655 0.016516536474227905 0.09196054190397263 -0.03606712818145752 0.04515286535024643 0.01750320754945278 -0.017475556582212448 0.011537153273820877 -0.02216162160038948 -0.005118661560118198 0.021690286695957184 -0.08286037296056747 0.07671449333429337 -0.05912632867693901 0.10274230688810349 0.030674904584884644 0.00528015336021781 0.09456823766231537 0.07917681336402893 0.010342435911297798 0.018536489456892014 -0.06884394586086273 +0.008685002103447914 -0.05747591704130173 -0.008816282264888287 0.007374340668320656 -0.08168601989746094 -0.059578631073236465 0.00614955136552453 0.04362526535987854 -0.015821268782019615 -0.04166438803076744 -0.015534763224422932 -0.0036852809134870768 -0.0020291071850806475 0.018372492864727974 0.024366311728954315 -0.04263497143983841 -0.062433648854494095 0.01842031627893448 -0.058652590960264206 -0.03304752707481384 0.04902120679616928 0.029033513739705086 -0.05185506120324135 0.037399206310510635 -0.013038873672485352 0.00130267848726362 -0.05057823657989502 0.014200862497091293 0.032780542969703674 0.021643633022904396 0.08341490477323532 -0.025571634992957115 0.0545017346739769 -0.050243087112903595 -0.03041098080575466 0.04273022338747978 -0.05435346066951752 0.10959938168525696 0.02958313561975956 -0.010985681787133217 -0.03612431883811951 -0.021036647260189056 -0.01426986325532198 -0.027580181136727333 0.029250936582684517 -0.03391135111451149 -0.005390708334743977 -0.031540483236312866 0.0013474059524014592 0.049565136432647705 0.07592689990997314 0.014880350790917873 0.017687251791357994 -0.0038731475360691547 -0.00043606426334008574 0.017262820154428482 0.01450888067483902 -0.05552663654088974 -0.06792135536670685 0.03891678899526596 -0.06256388872861862 0.012286671437323093 0.0012196768075227737 0.027465680614113808 -0.005025703459978104 -0.02986280992627144 -0.004764724988490343 0.09711766242980957 0.007220900617539883 -0.0368182510137558 0.012213354930281639 0.07985388487577438 -0.06554137915372849 -0.06676171720027924 0.027355223894119263 -0.03267844766378403 0.02161356993019581 0.023479679599404335 -0.02092120610177517 -0.017537254840135574 -0.014615785330533981 -0.021701961755752563 0.11357756704092026 -0.028179002925753593 -0.024920044466853142 -0.044226162135601044 -0.012182514183223248 -0.05861079692840576 0.06387462466955185 0.009095420129597187 0.04968127980828285 0.04014540836215019 -0.045682549476623535 0.04166390746831894 0.004538477398455143 0.014990875497460365 0.005461523309350014 -0.1304382085800171 -0.03227199614048004 -0.01173325628042221 0.011254805140197277 -0.007252139039337635 0.09273523092269897 0.013534367084503174 0.04480265453457832 0.05836501345038414 -0.06181749328970909 0.007328034844249487 0.016903124749660492 0.034542202949523926 0.01852012425661087 0.1366134136915207 0.07790844142436981 0.04592689871788025 0.04620473459362984 -0.00905799400061369 -0.027323581278324127 -0.01818671077489853 -0.025848940014839172 0.0026893983595073223 0.01659526117146015 0.0354774072766304 -0.026452837511897087 -0.05479833111166954 -0.053353987634181976 0.07783874869346619 -0.11392999440431595 -0.027701353654265404 0.08636703342199326 -0.02558293007314205 0.10322558879852295 0.0667860358953476 -0.02416088990867138 0.031146101653575897 0.07197899371385574 -0.0075862524099648 -0.009562748484313488 0.0007111658342182636 -0.0027055416721850634 -0.04012775421142578 -0.059714943170547485 0.05805349349975586 0.008989434689283371 -0.05982527881860733 -0.015425210818648338 0.05748548358678818 0.02108435332775116 -0.030481748282909393 -0.07560218870639801 0.003929242491722107 -0.06852991878986359 -0.08283469825983047 -0.012805772013962269 -0.08719107508659363 0.027735047042369843 0.0362340547144413 -0.011043926700949669 0.037656646221876144 -0.003518269397318363 -0.011273924261331558 -0.05214788392186165 -0.0646628737449646 -0.008665781468153 -0.07944337278604507 0.005813170224428177 0.003198449732735753 0.0103923249989748 0.005411909893155098 -0.04162083938717842 -0.04216320440173149 -0.03086126036942005 -0.026010656729340553 0.00999603234231472 0.06151631847023964 0.0332096628844738 0.015993410721421242 0.004130389541387558 -0.020840482786297798 -0.005743827670812607 -0.0496395006775856 0.020803231745958328 -0.04502992331981659 0.03773879259824753 -0.07379018515348434 -0.014806466177105904 -0.011198284104466438 0.014913531951606274 -0.051429737359285355 -0.017253452911973 -0.028986603021621704 -0.020699329674243927 -0.06427663564682007 0.028891654685139656 0.07072142511606216 -0.03697103634476662 0.04432697221636772 -0.023580871522426605 0.08328407257795334 -0.03591416776180267 -0.02863428182899952 -0.05923691391944885 0.04552652686834335 0.020991992205381393 -0.014572834596037865 -0.019098469987511635 -0.07435771822929382 0.0698075070977211 0.01499343290925026 0.03149788826704025 -0.07702555507421494 0.03158678114414215 0.04860427975654602 0.004492925014346838 0.05923120677471161 0.03979504853487015 -0.050561461597681046 -0.022057456895709038 0.01592496782541275 0.029079748317599297 -0.061224550008773804 0.010849990881979465 0.01182591263204813 -0.05763836205005646 0.03606860339641571 -0.041161708533763885 -0.10541649162769318 -0.01332797296345234 -0.0017102910205721855 -0.019895385950803757 -0.06163252890110016 -0.012233477085828781 0.0331764854490757 -0.006249912548810244 -0.02045658975839615 -0.0006540147005580366 -0.006573839578777552 -0.07537928223609924 0.08099161833524704 -0.005664944648742676 -0.05640903115272522 -0.07244967669248581 -0.01716865971684456 0.00538458488881588 0.01640688255429268 0.012101758271455765 0.023128371685743332 0.10337311029434204 0.043327100574970245 -0.0548102892935276 -0.003147316398099065 -0.04365489259362221 -0.03936421871185303 -0.00976434163749218 0.024180943146348 -0.046471256762742996 -0.06084318459033966 0.02200806885957718 -0.07865395396947861 -0.011652213521301746 -0.009419026784598827 0.06858879327774048 -0.05519961938261986 -0.02953975275158882 0.003222464583814144 0.029728760942816734 -0.01693483255803585 -0.04542054235935211 0.016780082136392593 -0.016221506521105766 0.048350561410188675 -0.016637783497571945 -0.020874088630080223 0.044187840074300766 -0.005722763016819954 0.04761654511094093 -0.02644682303071022 0.07223368436098099 -0.02523774467408657 -0.09513556212186813 -0.03800944238901138 -0.06472022831439972 -0.07403617352247238 -0.006732210051268339 -0.030490923672914505 -0.018786951899528503 0.0901748538017273 0.026893720030784607 -0.04293722286820412 -0.028243346139788628 -0.048862431198358536 -0.01125283632427454 -0.03940381482243538 -0.0190004650503397 -0.017390361055731773 -0.055093683302402496 0.018787967041134834 0.03423656150698662 -0.07499628514051437 -0.018154384568333626 0.039812639355659485 0.0018258608179166913 -0.028091086074709892 0.07354598492383957 -0.053851354867219925 0.00028861386817879975 -0.011415865272283554 -0.05877027288079262 0.03516785055398941 0.07708043605089188 0.04839491471648216 0.03011249005794525 0.0345449298620224 0.04803711920976639 0.10403154045343399 0.022632302716374397 -0.0218651182949543 -0.02189195156097412 -0.02505500242114067 -0.060784582048654556 0.04975352808833122 -0.050889480859041214 -0.01988711580634117 0.0034299029503017664 -0.0026713262777775526 0.07452481240034103 -0.02387361414730549 -0.02590840682387352 -0.008774416521191597 0.037035275250673294 -0.007417780347168446 0.013330722227692604 -0.0006730224122293293 -0.0276789590716362 0.025435347110033035 -0.03951428458094597 -0.06227808818221092 -0.04238119721412659 0.042305752635002136 -0.04918065667152405 0.0713837668299675 -0.013459259644150734 -0.07563327252864838 0.018972720950841904 0.00913967378437519 0.11546226590871811 -0.06433866173028946 0.01730753295123577 0.016326861456036568 0.038233790546655655 -0.08592303842306137 0.008714881725609303 -0.0071103936061263084 -0.01271249633282423 -0.06032991036772728 0.025185957551002502 0.04910594969987869 -0.06407712399959564 -0.05240233987569809 -0.009496929123997688 -0.03477342799305916 -0.011487267911434174 0.01359636802226305 -0.013818446546792984 0.05569272115826607 0.020374178886413574 -0.016522051766514778 0.011441410519182682 0.045884862542152405 0.026032093912363052 -0.06264891475439072 0.04233970865607262 -0.03479120507836342 0.07008803635835648 -0.020145881921052933 -0.061191193759441376 -0.052665580064058304 0.042357880622148514 -0.021540027111768723 -0.006977085489779711 -0.05149241164326668 0.0031064937356859446 0.010469076223671436 0.03201466053724289 -0.004752203822135925 -0.06753979623317719 -0.01318142656236887 -0.0043023256585001945 -0.05898333340883255 -0.0866989940404892 -0.06546729058027267 0.02156357280910015 -0.043109506368637085 -0.0011165596079081297 -0.031032638624310493 0.017074644565582275 -0.0016388266813009977 -0.032494645565748215 0.05929652601480484 0.061832938343286514 0.02569163404405117 -0.02004568837583065 0.06088057532906532 0.03037070669233799 0.03998775780200958 -0.009212911128997803 -0.025462696328759193 0.03673850744962692 0.024473246186971664 -0.03794723376631737 0.009539227001369 -0.03989778831601143 0.037658970803022385 -0.02152235619723797 -0.03507497161626816 0.011530166491866112 -0.015680622309446335 -0.0026816052850335836 -0.04745020717382431 0.06667197495698929 -0.08930357545614243 -0.02603459358215332 0.045066799968481064 -0.0462193600833416 -0.07806264609098434 -0.023268496617674828 -0.04436349868774414 -0.013017375022172928 0.04318283498287201 -0.007890602573752403 0.031062431633472443 0.004801295232027769 -0.027981651946902275 -0.024294767528772354 0.0004822666523978114 -0.01501856092363596 -0.003197452751919627 0.03875281289219856 0.06470891088247299 -0.0014699612511321902 0.017982887104153633 0.008255482651293278 -0.03926778584718704 0.004162369295954704 -0.11332601308822632 -0.0029676659032702446 -0.006635264027863741 0.0048927548341453075 0.018631979823112488 0.014942800626158714 0.03956359997391701 -0.06713832914829254 -0.014163484796881676 -0.030702026560902596 0.0648827776312828 -0.014904464595019817 0.0316804014146328 0.0010107035050168633 -0.03791644051671028 -0.04644500091671944 0.0156188840046525 -0.023214180022478104 -0.07954728603363037 0.015019012615084648 -0.015887632966041565 0.05431649833917618 -0.0063135758973658085 0.041404470801353455 -0.03737734258174896 -0.11500997096300125 -0.004081263672560453 0.00921686366200447 -0.025903955101966858 0.008546443656086922 0.03805696964263916 -0.07929056882858276 -0.04778958112001419 0.0037086820229887962 -0.04770519956946373 0.043496910482645035 -0.024075614288449287 0.04662533476948738 -0.05632563680410385 -0.022625241428613663 0.011820600368082523 -0.04893770068883896 0.02872694842517376 -0.0049189189448952675 -0.0761982873082161 -0.03444047272205353 0.0672607272863388 -0.029533255845308304 0.024814574047923088 0.09058983623981476 -0.04570741951465607 0.04852516949176788 0.013753954321146011 -0.011296029202640057 0.010666973888874054 -0.02819894254207611 -0.016771629452705383 0.017421241849660873 -0.08055149763822556 0.07271275669336319 -0.06406192481517792 0.10476639121770859 0.029745325446128845 0.0011225895723327994 0.10237794369459152 0.06389874964952469 0.007676942273974419 0.02241496928036213 -0.07843542098999023 +0.03992699459195137 -0.0031530505511909723 -5.2964638598496094e-05 0.06399698555469513 -0.05536423996090889 -0.03159976750612259 -0.04228418692946434 0.02258848212659359 0.02297123707830906 -0.04334794729948044 -0.01694568432867527 -0.025403384119272232 -0.03584596514701843 -0.017306070774793625 0.043142400681972504 -0.02638922445476055 -0.06515869498252869 0.018062783405184746 -0.04291708394885063 -0.02421141043305397 0.018832946196198463 0.06858762353658676 -0.08393707126379013 0.04809545353055 -0.01751605235040188 0.026412641629576683 -0.04766261577606201 0.022017931565642357 -0.05996719375252724 0.043824680149555206 0.04532090574502945 0.0023186071775853634 0.05558673292398453 -0.03928114473819733 -0.043634116649627686 0.05477379634976387 -0.01582845114171505 0.09256567060947418 0.03665464371442795 -0.038319144397974014 -0.03634246811270714 0.013222580775618553 -0.005723449867218733 -0.07739285379648209 0.017260616645216942 0.006869322620332241 -0.0035962152760475874 -0.04577463120222092 0.03495214879512787 0.03537214919924736 0.1295759230852127 0.007322649005800486 -0.024107884615659714 -0.023494873195886612 -0.0006167099345475435 0.011181583628058434 0.04457133635878563 -0.09350265562534332 -0.04657876864075661 0.017066791653633118 -0.0830342024564743 0.012610258534550667 0.013112270273268223 -0.010500405915081501 -0.022340746596455574 -0.015106571838259697 -0.01680000126361847 0.07976582646369934 0.046910662204027176 -0.012280198745429516 0.022240832448005676 0.09515349566936493 -0.08003441989421844 -0.06685739755630493 0.0726495236158371 -0.05739834904670715 -0.03644506633281708 0.03179587796330452 -0.014368297532200813 0.007965078577399254 0.023978179320693016 -0.0443187952041626 0.10749535262584686 -0.06861508637666702 -0.030974213033914566 -0.026433654129505157 -0.023771392181515694 -0.08795615285634995 0.04959418252110481 0.031753335148096085 0.004747652914375067 0.08100887387990952 -0.012409841641783714 0.04707940295338631 -0.0032548655290156603 0.037045545876026154 0.04117909446358681 -0.09998490661382675 -0.01724322885274887 -0.014891018159687519 -0.013536394573748112 0.015130959451198578 0.04854926839470863 0.0010230400366708636 0.06018209084868431 0.025264248251914978 -0.04071449488401413 -0.01928597316145897 0.033039990812540054 0.06599929928779602 0.03149168938398361 0.051780715584754944 0.08493752032518387 0.05172489583492279 0.03931252285838127 -0.004689883906394243 0.01977706514298916 -0.04398979991674423 -0.03511101379990578 0.02528323419392109 -0.03885398805141449 0.03662474825978279 -0.02987794019281864 -0.056078169494867325 -0.006300821900367737 0.030719056725502014 -0.07021144777536392 -0.04821173846721649 0.03925313055515289 -0.02966674044728279 0.11556938290596008 0.04508466273546219 -0.020791031420230865 0.0032144812867045403 0.04029252752661705 0.04277043789625168 -0.011172369122505188 0.009231649339199066 -0.00028757224208675325 -0.010295643471181393 0.00395833607763052 0.05459541454911232 -0.016331788152456284 -0.04531430825591087 0.054871395230293274 0.015647457912564278 0.02422858588397503 -0.031114671379327774 -0.08062982559204102 0.022845888510346413 -0.08653192222118378 -0.08730968087911606 0.0013298917328938842 -0.0614822655916214 0.009310485795140266 0.04777290299534798 0.03461499139666557 0.038618169724941254 -0.015109979547560215 -0.028878020122647285 -0.03688402473926544 -0.04619350656867027 -0.03419932723045349 -0.07564104348421097 -0.046247292309999466 -0.051134143024683 -0.002983188722282648 0.014551607891917229 -0.030276667326688766 -0.038287725299596786 -0.015541072003543377 0.031692445278167725 0.030117616057395935 0.11539451777935028 0.0815737247467041 0.03349853307008743 0.018696017563343048 -0.030363596975803375 -0.015154746361076832 -0.022424349561333656 0.001982901943847537 -0.0448005236685276 0.01928863301873207 -0.054439976811409 -0.006049967370927334 0.0063385749235749245 0.05803557112812996 0.02440173178911209 0.04874301701784134 0.05156455934047699 -0.029412493109703064 -0.05389970913529396 0.05512900650501251 0.08790580183267593 -0.026560688391327858 0.037341874092817307 0.005629653111100197 0.07136683911085129 -0.007419415283948183 -0.042869068682193756 -0.04995042085647583 0.03234152868390083 0.03173038735985756 0.0553835853934288 0.0396399050951004 -0.06199886277318001 0.09714183956384659 0.029925769194960594 0.00907378550618887 -0.02283080853521824 0.018470901995897293 0.02069457806646824 0.037009697407484055 0.02567889168858528 0.06470237672328949 -0.016684647649526596 -0.015064871869981289 -0.023957090452313423 0.03603668138384819 -0.07095552235841751 0.013424555771052837 -0.015675459057092667 -0.06607913225889206 0.07459386438131332 -0.015261435881257057 -0.09647650271654129 -0.033365122973918915 -0.0007492791628465056 0.020587127655744553 -0.007017693016678095 0.04385615140199661 0.009349371306598186 -0.010740883648395538 -0.02265097014605999 0.006724162492901087 -0.033820152282714844 -0.12055318057537079 0.1139223575592041 -0.008558769710361958 -0.04085474833846092 -0.043503932654857635 0.0027508395723998547 0.02832220122218132 -0.013824090361595154 0.01256078202277422 0.07882124185562134 0.102862149477005 0.04933638498187065 0.015670940279960632 0.01897049881517887 -0.08063392341136932 -0.06548202782869339 0.009196261875331402 0.0051157413981854916 -0.012762465514242649 -0.04609385505318642 -0.0065527078695595264 -0.07094740122556686 0.004960066173225641 -0.023885974660515785 0.011943207122385502 -0.010684465989470482 0.0047248350456357 -0.05448875576257706 0.05508570000529289 -0.021312177181243896 -0.0745774507522583 0.0574747771024704 -0.0305451862514019 0.02581661008298397 -0.02174326404929161 -0.017414847388863564 0.038634080439805984 -0.01329814549535513 0.05476682633161545 0.004135860595852137 0.06141712889075279 -0.029722178354859352 -0.09143419563770294 -0.00459623197093606 -0.06694689393043518 -0.04762175679206848 -0.005738494452089071 -0.03947659954428673 -0.06182793527841568 0.07124387472867966 -0.005252325441688299 -0.029558204114437103 -0.062444597482681274 0.02257586270570755 -0.049913302063941956 -0.06356120109558105 -0.02959175780415535 -0.004246746189892292 -0.06446246802806854 -0.0437932051718235 0.017008807510137558 -0.06842567771673203 -0.024791233241558075 -0.01591014675796032 -0.03739695996046066 -0.039752859622240067 0.03147212415933609 -0.02344387397170067 -0.0247633159160614 0.012820310890674591 -0.05600758269429207 0.047094110399484634 0.08971160650253296 0.03564693406224251 0.05065927281975746 0.06374698132276535 0.03885800018906593 0.09019532799720764 0.03407891467213631 -0.03867945075035095 -0.0229649618268013 -0.015304670669138432 -0.049288198351860046 0.045073501765728 -0.002666278975084424 -0.032608211040496826 0.021391037851572037 0.011271744035184383 0.06572657823562622 0.0025159118231385946 -0.02352583222091198 -0.026423778384923935 0.03889637067914009 0.0021870583295822144 0.021224886178970337 -0.008250124752521515 0.013633660040795803 -0.0019583359826356173 -0.07226632535457611 0.003009629435837269 -0.045016124844551086 0.009665625169873238 0.012587481178343296 0.027069348841905594 -0.0057513355277478695 -0.05294909328222275 -0.014318146742880344 -0.00018551624089013785 0.10866273194551468 -0.07632353901863098 0.025436662137508392 0.05039381608366966 -0.007764042355120182 -0.11163625866174698 -0.04356435313820839 0.041554152965545654 -0.05274127796292305 -0.050782181322574615 0.023820742964744568 0.03078423999249935 -0.06935443729162216 -0.04864870384335518 -0.010675158351659775 -0.04394816234707832 0.0006791707710362971 0.01930348575115204 0.01806637831032276 0.009762430563569069 -0.010036523453891277 -0.021210376173257828 -0.03445781394839287 -0.0001558165531605482 0.01937129534780979 -0.024471169337630272 -0.0030550514347851276 -0.04287661612033844 0.02125975489616394 -0.055877916514873505 -0.06195444241166115 -0.040041178464889526 0.03990617394447327 0.006044489331543446 -0.021515386179089546 0.004041398409754038 -0.02210617996752262 -0.02385551482439041 0.03313426673412323 0.01007662620395422 -0.05581088736653328 -0.015467481687664986 -0.02611139975488186 -0.036387450993061066 -0.05537992715835571 -0.031633973121643066 -0.013732615858316422 -0.06105586141347885 0.01578354835510254 -0.03274288401007652 -0.01666426472365856 0.01410049106925726 -0.015764614567160606 0.03504739701747894 0.04962208867073059 0.022884203121066093 -0.008413603529334068 0.002238751854747534 -0.017124440521001816 0.028953751549124718 0.05055844783782959 -0.060686416923999786 -0.01614682376384735 0.029739543795585632 -0.04698121175169945 0.03209296986460686 -0.027986304834485054 -0.010602938942611217 0.05587606877088547 -0.00814185943454504 0.01526820007711649 -0.00952525157481432 0.0135158970952034 -0.04076668992638588 0.050865285098552704 -0.06193419173359871 -0.03456462174654007 0.006932536605745554 -0.03161406144499779 -0.09787388145923615 -0.014498751610517502 -0.017406074330210686 -0.047723278403282166 0.05256376042962074 -0.017955711111426353 0.01625780388712883 0.010088751092553139 -0.081767238676548 -0.06416826695203781 -0.06014927476644516 0.013155502267181873 0.02777058444917202 0.01843871735036373 0.04464413970708847 -0.026526980102062225 -0.012003714218735695 -0.017739716917276382 -0.006144016049802303 0.0004800860770046711 -0.07254265993833542 -0.019290145486593246 -0.02918701246380806 -0.026587095111608505 0.01893765479326248 0.0031456106808036566 0.0021409832406789064 -0.06160162016749382 -0.025713277980685234 -0.036467090249061584 0.08285373449325562 -0.054870687425136566 -0.019070830196142197 0.03265923634171486 -0.041376352310180664 -0.0009358541574329138 0.04780828207731247 -0.04578477516770363 -0.07037899643182755 -0.004449091386049986 -0.021431326866149902 0.01790367253124714 0.015712393447756767 0.025467079132795334 -0.06125209480524063 -0.05588393285870552 -0.022087542340159416 0.007021196186542511 -0.05773494392633438 -0.025738080963492393 0.014633659273386002 -0.09432000666856766 -0.07607921212911606 -0.014767416752874851 -0.07229964435100555 0.08219312131404877 0.007387855555862188 0.02243521809577942 -0.006870086770504713 -0.001596988644450903 -0.01511910930275917 -0.0398450568318367 -0.004984778817743063 -0.001520586316473782 -0.04732572287321091 -0.060094378888607025 0.07031068205833435 -0.003169369651004672 0.01415415108203888 0.09669892489910126 -0.011214560829102993 0.02993692271411419 0.05628006532788277 -0.010186484083533287 0.024582475423812866 0.00281401420943439 -0.019121361896395683 0.08823493123054504 -0.05097983032464981 0.08461753278970718 -0.05091143772006035 0.1080111712217331 -0.00125116016715765 -0.017155971378087997 0.05077081173658371 0.11062946170568466 0.0019202363910153508 0.014797262847423553 -0.06333677470684052 +0.00732398359104991 -0.03567681461572647 -0.023220591247081757 0.04231588914990425 -0.0837918370962143 -0.042293522506952286 -0.005166375543922186 0.07723577320575714 0.011193612590432167 -0.039779625833034515 -0.04009469226002693 0.016735577955842018 0.013883200474083424 0.022366158664226532 0.004962886683642864 -0.026153916493058205 -0.05243698135018349 -0.004253902472555637 -0.07736836373806 -0.051389481872320175 0.02472776733338833 0.03328365087509155 -0.06899324804544449 0.06283421069383621 -0.0028684651479125023 -0.004493332467973232 -0.04972081631422043 0.0118517791852355 -0.012829913757741451 0.0443059578537941 0.07248682528734207 0.01819089613854885 0.08774916082620621 -0.05200817435979843 -0.05037105455994606 0.0508200041949749 -0.032418593764305115 0.08385831117630005 0.01704331673681736 -0.0076728989370167255 -0.033138569444417953 -0.0002508598263375461 -0.017578735947608948 -0.06096315383911133 0.03610182926058769 0.0057688308879733086 0.020349781960248947 -0.013817568309605122 0.03280403092503548 0.0189196914434433 0.05449493229389191 0.01892080344259739 0.03756194934248924 -0.0025837330613285303 -0.0043515413999557495 0.021399861201643944 0.021778767928481102 -0.03310389071702957 -0.02166166342794895 -0.014062603004276752 -0.084618479013443 -0.010992594063282013 0.0027672674041241407 -0.020870691165328026 -0.019162829965353012 0.01831657625734806 -0.0006120752077549696 0.09406153112649918 0.049959052354097366 -0.01738240383565426 0.02749931439757347 0.043817974627017975 -0.06716123223304749 -0.010809304192662239 0.044531967490911484 -0.011767078191041946 -0.008774183690547943 0.026664743199944496 -0.05167459696531296 0.010620642453432083 0.00946898851543665 -0.0032133387867361307 0.13922137022018433 -0.04357726871967316 -0.048822540789842606 -0.04330052435398102 0.01035490445792675 -0.07478105276823044 0.05217970907688141 -0.03978641703724861 0.0012880410067737103 0.07223228365182877 -0.019692083820700645 0.029299110174179077 0.010386637412011623 0.04657600075006485 0.004261571913957596 -0.1404513269662857 -0.028975507244467735 0.02640853077173233 -0.010686603374779224 0.012495690956711769 0.0774865597486496 -0.045669931918382645 0.045492324978113174 0.06026928871870041 -0.03938858211040497 -0.03368067741394043 0.014601143077015877 0.0004348939983174205 0.034370727837085724 0.11068325489759445 0.02149236388504505 0.0025995781179517508 0.05179181322455406 0.014779320918023586 0.01984342187643051 -0.034153979271650314 -0.03435901924967766 -0.014003169722855091 -0.034438569098711014 0.05553506687283516 -0.017282210290431976 -0.06384437531232834 -0.03366292640566826 0.04165024682879448 -0.09554019570350647 -0.03324571251869202 0.0748760849237442 -0.07402649521827698 0.11756717413663864 0.029507914558053017 -0.024838697165250778 0.032823607325553894 0.05697820708155632 0.002787173492833972 -0.013255448080599308 0.0014506375882774591 0.030930373817682266 -0.06402072310447693 -0.04311591014266014 0.07168702036142349 -0.01212647557258606 -0.04448214918375015 0.07732240110635757 0.089168481528759 -0.006189912557601929 -0.029994426295161247 -0.05495651438832283 0.020708315074443817 -0.061544377356767654 -0.10097800195217133 -0.01668703928589821 -0.04075714573264122 -0.004484805278480053 0.0564555749297142 0.009487208910286427 0.019266026094555855 -0.012931207194924355 -0.047152988612651825 -0.05566442385315895 -0.012627762742340565 -0.00023750943364575505 -0.0615922287106514 -0.004055103752762079 -0.0025443192571401596 -0.022187184542417526 0.0339432992041111 -0.031986676156520844 -0.02701302245259285 -0.006306648254394531 -0.0164248775690794 0.012850240804255009 0.08613718301057816 0.03781284764409065 0.023399094119668007 0.009471234865486622 -0.04903943091630936 -0.011046082712709904 -0.04332227259874344 0.01878134347498417 -0.05839381366968155 0.048696547746658325 -0.05399756506085396 0.01706112176179886 -0.0013799993321299553 0.02114315703511238 -0.030810663476586342 0.02282702550292015 -0.04034561663866043 -0.014703644439578056 -0.05604388564825058 0.01888461783528328 0.07632661610841751 -0.022789523005485535 0.03943789377808571 0.031208138912916183 0.04280581325292587 -0.027939165011048317 0.001895069726742804 -0.07588609308004379 0.05740661546587944 0.04231219366192818 0.03148361295461655 0.03528953716158867 -0.07330062240362167 0.0717020183801651 0.00031657342333346605 0.012095784768462181 -0.04990537464618683 0.05151311308145523 0.06523507088422775 0.001250491593964398 0.08839941024780273 0.0659082755446434 0.02956162765622139 0.003262692131102085 -0.03311331197619438 0.035315267741680145 -0.11124591529369354 0.0013000218896195292 0.004109776578843594 -0.08003858476877213 0.024129536002874374 -0.04498327150940895 -0.0914076492190361 -0.027083445340394974 0.020116962492465973 0.02208511345088482 -0.023272674530744553 -0.014104440808296204 0.014616928994655609 0.011880582198500633 -0.020351557061076164 -0.01981387659907341 0.0059270490892231464 -0.05721494182944298 0.09071556478738785 -0.004871171433478594 -0.07704613357782364 -0.015538466162979603 0.02879890240728855 0.043965499848127365 -0.01815522089600563 0.035953644663095474 0.02004842832684517 0.0981987863779068 0.0029596637468785048 -0.03543872386217117 -0.029688695445656776 -0.036679524928331375 -0.04225765913724899 -0.018502594903111458 0.043420273810625076 0.008673327974975109 -0.06539933383464813 0.0459829680621624 -0.09642181545495987 -0.008575611747801304 0.0011855489574372768 0.0613357238471508 -0.03616325557231903 -0.009706215932965279 -0.060216233134269714 -0.01937689818441868 -0.04311315342783928 -0.030814792960882187 0.03498231992125511 -0.02586275339126587 0.016529439017176628 -0.03702956810593605 -0.0020858673378825188 0.004163643810898066 0.007939347997307777 0.030229439958930016 -0.05187277868390083 0.06006598472595215 -0.006449780892580748 -0.05757284536957741 -0.01346284057945013 -0.018033089116215706 -0.07136372476816177 -0.017569418996572495 -0.023033976554870605 -0.02110966481268406 0.08824024349451065 0.04741921275854111 -0.05331464484333992 -0.08395320922136307 -0.0332815945148468 -0.046411801129579544 0.0006137516465969384 0.007553246337920427 -0.012821468524634838 -0.06025819107890129 -0.005372888874262571 0.016914116218686104 -0.055042218416929245 -0.008139594458043575 0.06732987612485886 0.024836469441652298 -0.06368090957403183 0.05921490862965584 -0.015720892697572708 -0.028076309710741043 -0.004062278661876917 -0.062089793384075165 -0.0049757822416722775 0.06815655529499054 0.048620425164699554 0.019363632425665855 0.02211816795170307 0.04112512618303299 0.07162315398454666 -0.046263206750154495 0.008317152038216591 -0.0021495071705430746 0.000836799677927047 -0.027168162167072296 0.043844401836395264 -0.03020990826189518 -0.01888098195195198 0.016354287043213844 -0.024525457993149757 0.0565342977643013 -0.013267835602164268 -0.024136226624250412 -0.05389183759689331 0.03482992947101593 -0.0014646765775978565 0.05438942834734917 0.01411988865584135 0.02532144822180271 -0.012350370176136494 -0.07297350466251373 -0.030052633956074715 -0.05618256703019142 0.026529856026172638 0.030667569488286972 0.0068664029240608215 0.0034976224415004253 -0.07032983005046844 -0.0004687095351982862 -0.02017766423523426 0.10738526284694672 -0.09845703095197678 0.0001443160290364176 0.04076376184821129 0.023108763620257378 -0.09828182309865952 0.0046965680085122585 0.006474222056567669 -0.04582548141479492 -0.062380917370319366 0.040322087705135345 0.05135543644428253 -0.06553370505571365 -0.02887910231947899 -0.0219371747225523 0.008527571335434914 -0.028272856026887894 0.023058095946907997 0.016065621748566628 0.06290963292121887 0.03430140018463135 -0.003400961635634303 -0.011949948966503143 0.055321868509054184 0.03406317159533501 -0.007731512188911438 0.07191238552331924 -0.004037202801555395 0.05490042641758919 -0.07761790603399277 -0.07342828810214996 -0.05055566132068634 0.015488097444176674 -0.02853677235543728 0.013632661662995815 -0.06142809987068176 -0.047260962426662445 -0.012958675622940063 0.04014543816447258 -0.02522047981619835 -0.08638011664152145 0.02033865824341774 -0.006786350626498461 -0.09523800015449524 -0.07467807084321976 -0.037712305784225464 0.013400969095528126 -0.03747298941016197 0.02554432861506939 -0.05289660394191742 -0.0020022490061819553 0.026224695146083832 0.01781213842332363 0.02250855043530464 0.08608157932758331 0.031000038608908653 0.010736574418842793 0.05457811430096626 0.0015491920057684183 0.049494896084070206 0.007170079275965691 -0.055690947920084 0.021566197276115417 0.02131049521267414 -0.07903598248958588 0.028613954782485962 -0.03826327621936798 -0.06214967370033264 0.007965320721268654 -0.043663039803504944 -0.014567309059202671 0.036668650805950165 0.019091807305812836 -0.0738741010427475 0.06452907621860504 -0.03688287362456322 -0.02009565941989422 0.0357171855866909 -0.004399693105369806 -0.06633111089468002 -0.05664112791419029 -0.05881843343377113 -0.03215520456433296 0.08516743779182434 -0.01919851265847683 0.002478267764672637 0.032952968031167984 -0.042302053421735764 -0.0661957785487175 -0.0033108636271208525 0.011258096434175968 -0.028190679848194122 0.012633288279175758 0.06863866001367569 0.04701709374785423 -0.006414687726646662 -0.010733581148087978 -0.06902174651622772 0.01609000191092491 -0.03001897595822811 0.013767204247415066 0.016221435740590096 -0.024712717160582542 -0.00608045095577836 0.012706941924989223 0.02474639192223549 -0.05416058748960495 -0.017857899889349937 -0.05502382293343544 0.05134804919362068 -0.0010069044074043632 0.026459239423274994 0.006817243993282318 -0.06368780881166458 -0.020326299592852592 0.041719526052474976 -0.04377749189734459 -0.07837279886007309 -0.0013024762738496065 -0.05900529399514198 0.014514526352286339 -0.002817603526636958 0.018127769231796265 -0.00786596443504095 -0.08422262966632843 -0.009444286115467548 -0.00348140811547637 -0.01871197484433651 -0.0027222007047384977 0.05000688135623932 -0.035594768822193146 -0.031610604375600815 -0.05874256789684296 -0.06668400019407272 0.09507304430007935 0.025684382766485214 0.038965605199337006 -0.03436236456036568 -0.035381950438022614 -0.04035833105444908 -0.02688753604888916 -0.03754156455397606 -0.008132451213896275 -0.06562069803476334 -0.010670769959688187 0.07917210459709167 -0.010583913885056973 0.03646731376647949 0.0900372862815857 -0.04278189316391945 0.032506536692380905 0.011784286238253117 0.013928018510341644 0.03488106653094292 0.012103479355573654 -0.0037931285332888365 0.048729877918958664 -0.04729350283741951 0.07829010486602783 -0.03462290018796921 0.08167699724435806 0.015519729815423489 -0.011696014553308487 0.0657711997628212 0.09145918488502502 0.05184502899646759 0.002545849187299609 -0.053404416888952255 +0.046007055789232254 -0.01570994220674038 -0.0008640674059279263 0.0208086296916008 -0.059961505234241486 -0.04935824126005173 0.0009433460072614253 0.05647798627614975 0.003646818222478032 -0.02055685967206955 -0.011741923168301582 -5.244651038083248e-05 -0.0010736158583313227 0.018460778519511223 0.0324229933321476 -0.03264118358492851 -0.08563664555549622 0.002511132974177599 -0.0620277002453804 -0.02920292317867279 0.04649560898542404 0.0015450792852789164 -0.08038228750228882 0.022550832480192184 -0.012275565415620804 0.015425278805196285 -0.05417429283261299 0.01922994665801525 -0.012351762503385544 -0.002667799824848771 0.042880088090896606 -0.02633979357779026 0.06875316053628922 -0.06742703914642334 -0.050610970705747604 0.08437638729810715 -0.055143091827631 0.13346266746520996 0.019248507916927338 -0.0376090444624424 -0.061486903578042984 0.004733774811029434 -0.023555973544716835 -0.06418808549642563 0.042463988065719604 0.024794653058052063 -0.011630536057054996 -0.020089730620384216 0.016737855970859528 0.019484730437397957 0.1021987721323967 -0.02827952429652214 -0.014351652935147285 0.005371020641177893 -0.03117731213569641 0.024245217442512512 0.04367504268884659 -0.030155299231410027 -0.07560254633426666 -0.00029688034555874765 -0.08426035195589066 -0.0025964679662138224 -0.014296818524599075 0.012900887057185173 -0.044059474021196365 -0.04175128787755966 -0.006212655454874039 0.05689128860831261 0.027348052710294724 0.007015509530901909 0.010959667153656483 0.08037576079368591 -0.07515229284763336 -0.09044897556304932 0.04357483610510826 -0.06282395869493484 -0.03349032253026962 0.05078866705298424 -0.027445564046502113 0.02137797884643078 0.0017398437485098839 -0.0010435119038447738 0.1258004903793335 -0.0718211680650711 -0.03878743201494217 -0.016147561371326447 -0.004562989342957735 -0.05907357111573219 0.041938457638025284 0.05889758840203285 -0.003491470357403159 0.06404692679643631 -0.043108582496643066 0.012779158540070057 0.037091974169015884 0.03418416157364845 0.03878500685095787 -0.09097471088171005 -0.04516986384987831 -0.027265826240181923 0.002033050637692213 -0.01065970491617918 0.05589472874999046 0.029279975220561028 0.050939809530973434 0.01968459039926529 -0.02002873085439205 0.01860789582133293 0.014586081728339195 0.053058646619319916 -0.0008487814920954406 0.08433477580547333 0.087553471326828 -3.0779037842876278e-06 0.05672431364655495 -0.035063598304986954 0.024403490126132965 -0.04650871083140373 -0.02808108739554882 -0.0021102498285472393 -0.031501106917858124 0.018489744514226913 -0.04196222499012947 -0.08321212977170944 -0.034218721091747284 0.014972253702580929 -0.08197544515132904 -0.05181289464235306 0.018242156133055687 -0.0525987409055233 0.09917515516281128 0.07720024138689041 -0.02738383412361145 0.010913385078310966 0.06242327392101288 0.023698337376117706 0.050418779253959656 0.06157037243247032 -0.022696293890476227 -0.02627689205110073 0.018964441493153572 0.035805050283670425 -0.018717899918556213 -0.029919201508164406 0.02495601586997509 0.044957567006349564 0.04927594214677811 -0.020103376358747482 -0.1005953773856163 0.02265119180083275 -0.06434650719165802 -0.08874426037073135 -0.05420675873756409 -0.07299569249153137 0.018538223579525948 0.054691363126039505 -0.024002937600016594 0.057527199387550354 -0.0041732932440936565 -0.0015533840050920844 -0.031152937561273575 -0.056958455592393875 -0.010852048173546791 -0.06065526604652405 -0.058509379625320435 -0.04031915217638016 0.0022800294682383537 -0.01752236671745777 -0.024456113576889038 -0.01106623187661171 -0.014945784583687782 -0.01572398655116558 0.015699010342359543 0.05146428942680359 0.08655326813459396 0.0440886914730072 0.011065395548939705 -0.05966419726610184 -0.023460905998945236 -0.0546739436686039 -0.0004156706272624433 -0.04868447780609131 -0.011519539169967175 -0.05464858561754227 0.024457991123199463 -0.00646178750321269 0.05204937234520912 -0.008830602280795574 0.041851576417684555 0.016911759972572327 -0.02005617879331112 -0.038630519062280655 0.042319245636463165 0.05392991006374359 -0.0036569295916706324 0.04409915208816528 -0.02398919127881527 0.041610926389694214 -0.048732955008745193 -0.06386186927556992 -0.037644971162080765 0.05115382745862007 0.015521487221121788 0.03232371062040329 0.017194703221321106 -0.030766364187002182 0.07621324807405472 0.016702814027667046 0.03530900180339813 -0.056710947304964066 0.014334101229906082 0.011237552389502525 0.015168868005275726 -0.013877898454666138 0.07279394567012787 -0.06176226586103439 -0.03744170442223549 0.024675564840435982 0.052801501005887985 -0.017170554026961327 -0.004349227994680405 0.010370618663728237 -0.09581899642944336 0.05283927917480469 -0.04621287062764168 -0.10411912202835083 -0.029865572229027748 0.03149264305830002 -0.06664402782917023 -0.04178519546985626 -0.015807414427399635 0.024717848747968674 -0.02607942931354046 -0.05193975195288658 0.0001110435405280441 -0.01445789821445942 -0.06128449738025665 0.08440428972244263 -0.012727309949696064 -0.04882686957716942 -0.05914445221424103 0.024904189631342888 0.023805875331163406 0.003129545133560896 0.009781445376574993 0.035573262721300125 0.09397654980421066 0.0008828886202536523 -0.022830119356513023 0.04984831064939499 -0.06603801250457764 -0.04411507025361061 0.0024802079424262047 0.028235657140612602 -0.03774284943938255 -0.004378984682261944 -0.014993916265666485 -0.02071608044207096 -0.004216169007122517 0.030706698074936867 0.0475563183426857 -0.01222884003072977 -0.006612577009946108 -0.02436378225684166 0.045792486518621445 -0.0345400907099247 -0.03604589030146599 0.05414701998233795 -0.01293459814041853 0.037291519343853 -0.027000250294804573 -0.027476690709590912 0.023313498124480247 -0.004275290761142969 0.05609338730573654 -0.04410550370812416 0.0802479013800621 -0.03838449716567993 -0.0699068158864975 -0.02829458937048912 -0.10519715398550034 -0.03233421593904495 -0.011608040891587734 -0.07217716425657272 -0.042089495807886124 0.08794912695884705 0.04090198874473572 0.004198381677269936 -0.0701378807425499 -0.06022097170352936 0.005636552348732948 -0.05713144689798355 -0.007760129403322935 0.013694897294044495 -0.06420402973890305 -0.06488938629627228 0.06785302609205246 -0.03408423811197281 -0.01488549169152975 -0.023999420925974846 -0.03450898081064224 -0.04808424040675163 0.028448987752199173 -0.0512564517557621 -0.0024418551474809647 0.018462054431438446 -0.07434331625699997 0.02228953130543232 0.11895336955785751 0.06569249927997589 0.03829294070601463 0.05438058078289032 0.01866675540804863 0.1273549348115921 0.021945547312498093 -0.029508162289857864 -0.020684298127889633 -0.030941318720579147 -0.08321039378643036 0.029221966862678528 -0.034334875643253326 -0.015495256520807743 -0.029014049097895622 -0.011709137819707394 0.04824243113398552 -0.003934172447770834 -0.048147451132535934 -0.01028326153755188 0.020414048805832863 -0.03257265314459801 0.0305583905428648 0.02614551968872547 0.008966061286628246 -0.02050786279141903 -0.05444063991308212 -0.020693505182862282 -0.03278082609176636 0.017940180376172066 -0.03389237821102142 0.017762446776032448 -0.0215667262673378 -0.031429652124643326 0.005154687911272049 0.009686735458672047 0.09969358146190643 -0.061230748891830444 0.015582707710564137 0.05947834625840187 0.022423377260565758 -0.10616325587034225 -0.006646259687840939 0.05638064816594124 -0.03283367305994034 -0.047093410044908524 -0.0077026910148561 0.02986452728509903 -0.04594527184963226 -0.00349225290119648 0.013394315727055073 -0.038793906569480896 -0.012142744846642017 0.032799817621707916 0.032038625329732895 0.03419635817408562 -0.022928718477487564 -0.022510668262839317 0.01593022421002388 0.02363256923854351 0.06877519190311432 -0.059660445898771286 0.009630433283746243 -0.06312800943851471 0.04286209121346474 -0.026670774444937706 -0.055768340826034546 -0.029648831114172935 0.06608595699071884 0.006476724985986948 -0.06191420927643776 -0.01576637104153633 0.009584027342498302 -0.029030626639723778 0.02136416733264923 0.023900456726551056 -0.029139360412955284 -0.05305870622396469 -0.02620612643659115 -0.04803378880023956 -0.11373770982027054 -0.04676537215709686 0.021829450502991676 -0.06594722718000412 0.00868266262114048 -0.022709032520651817 -0.022064819931983948 0.001752103096805513 -0.010148529894649982 0.03417682647705078 0.0680764764547348 0.0521051287651062 -0.026171501725912094 0.03668717294931412 0.014038541354238987 0.019509807229042053 0.027388431131839752 0.0107116112485528 -0.00114136200863868 -0.0027455927338451147 -0.02972814068198204 0.032245222479104996 -0.02562905102968216 0.02418353781104088 -0.007641769014298916 -0.027702970430254936 0.0227950606495142 -0.003278059186413884 0.02512422949075699 -0.017048323526978493 0.026703255251049995 -0.0886666476726532 -0.013183509930968285 0.03715301677584648 -0.028033258393406868 -0.09545250982046127 -0.03829576447606087 0.004365830682218075 -0.019370131194591522 0.019233664497733116 0.0008786209509707987 -0.0008226624922826886 0.008386754430830479 -0.03819300979375839 -0.049179863184690475 -0.0583096407353878 0.005439263302832842 0.05873039737343788 -0.03721797466278076 0.05562400072813034 0.015010382980108261 -0.028314469382166862 0.009057227522134781 -0.0074318586848676205 0.019548770040273666 -0.06540913879871368 -0.03452387452125549 -0.02675527334213257 -0.004142875783145428 0.03818744793534279 -0.03859197348356247 0.021443713456392288 -0.0566682443022728 -0.02865680865943432 -0.04177435487508774 0.062360942363739014 -0.021776316687464714 0.005894250236451626 0.06507149338722229 -0.03167445585131645 0.004247010685503483 -0.016177238896489143 -0.052407655864953995 -0.039515554904937744 0.040183838456869125 -0.021816441789269447 0.04561269283294678 0.043421968817710876 0.006541905924677849 0.01177793089300394 -0.08628645539283752 -0.011145565658807755 0.003148870076984167 -0.08870571106672287 0.020495494827628136 0.004456738010048866 -0.08381691575050354 -0.048495933413505554 0.015761034563183784 -0.00991808157414198 0.08086815476417542 -0.020116379484534264 0.04113679751753807 -0.03684549033641815 -0.02646208181977272 -0.028275616466999054 -0.03161948546767235 0.021606320515275 0.0008008463773876429 -0.04861157760024071 -0.011670445092022419 0.07197058945894241 -0.0363546758890152 0.01921970583498478 0.09409437328577042 -0.03659992292523384 0.031351715326309204 0.027450915426015854 -0.031846921890974045 -0.00467465678229928 -0.014791914261877537 -0.04753765091300011 0.04357420653104782 -0.07508926093578339 0.07962165772914886 -0.09780816733837128 0.08934736251831055 0.03813133016228676 -0.006234799977391958 0.07241812348365784 0.08085037022829056 -0.026790998876094818 0.0009042313322424889 -0.04693680256605148 +0.011780218221247196 -0.049433283507823944 -0.022538628429174423 0.016480274498462677 -0.025918371975421906 -0.05518573522567749 -0.04309991002082825 0.04789012297987938 0.0009005775791592896 -0.041669949889183044 -0.01323638390749693 -0.03976217284798622 -0.03714970499277115 -0.01978249102830887 0.06833713501691818 -0.05301913619041443 -0.03368915989995003 0.05294277146458626 -0.010706937871873379 -0.015852918848395348 0.02149980142712593 0.07237187772989273 -0.03620403632521629 0.042587488889694214 -0.02837689220905304 -0.022865071892738342 -0.05316833779215813 0.061991218477487564 0.005892335902899504 0.1077747717499733 0.059385236352682114 -0.06829190999269485 0.07672614604234695 -0.08075739443302155 0.034955400973558426 0.02229643613100052 -0.038297947496175766 0.07633022218942642 0.09902042150497437 -0.03381534665822983 0.0008585540344938636 -0.011981319636106491 0.025310322642326355 -0.07993491739034653 0.02756459452211857 0.015444175340235233 -0.06868251413106918 -0.07876957952976227 -0.01325371116399765 0.03876245766878128 0.09167500585317612 -0.01728523150086403 -0.02162144146859646 0.004442537669092417 -0.03814294561743736 -0.05304490774869919 0.03965837508440018 -0.05769870802760124 -0.03444718196988106 0.04032805934548378 -0.09352975338697433 0.010123070329427719 -0.0011310507543385029 0.025209272280335426 -0.04770497605204582 -0.05060768872499466 0.05248429626226425 0.0347161740064621 0.01549314334988594 0.00565111730247736 0.0397859588265419 0.049383267760276794 -0.05197303369641304 -0.10483681410551071 -0.0009456573752686381 -0.05468354374170303 0.035847898572683334 0.0013424274511635303 0.01270467322319746 0.04731205850839615 0.026246655732393265 -0.0019450935069471598 0.10952881723642349 -0.019521189853549004 0.022787148132920265 -0.042108260095119476 -0.014281324110925198 -0.03842920437455177 0.03300913795828819 -0.011379699222743511 0.030129004269838333 0.010180567391216755 0.01060367189347744 0.012574344873428345 0.004133069887757301 0.011535529978573322 0.01328901294618845 -0.05270744115114212 -0.014232703484594822 0.0035988909658044577 -0.029481353238224983 0.045842304825782776 0.06547603011131287 0.08414647728204727 0.04168388620018959 0.025031715631484985 -0.02245422825217247 0.05321158468723297 0.10317050665616989 0.0713590756058693 -0.005287583451718092 0.0891665369272232 0.05166701227426529 -0.01916971430182457 0.04081633687019348 -0.00993876252323389 -0.009882689453661442 -0.012628267519176006 0.018546948209404945 0.03622066229581833 0.0026879506185650826 0.018240777775645256 -0.06969070434570312 -0.06431060284376144 0.021173063665628433 0.10595174133777618 -0.09474288672208786 -0.01362962182611227 -0.009954327717423439 0.0014091625344008207 0.08245053887367249 0.040984250605106354 -0.029265038669109344 0.04061412438750267 0.0633322075009346 0.05580432340502739 -0.02320389822125435 0.03506048396229744 0.016757261008024216 -0.029268061742186546 -0.06138712912797928 0.03483244404196739 -0.0007642255513928831 -0.004577011335641146 0.018157323822379112 0.023822622373700142 -0.015075412578880787 -0.03311655670404434 -0.06606389582157135 -0.019406957551836967 -0.06165260449051857 -0.0442359559237957 0.04998590797185898 -0.05042852833867073 0.011003391817212105 -0.026778971776366234 -0.0012338875094428658 -0.015886403620243073 -0.019975464791059494 -0.010743116028606892 -0.07366632670164108 -0.07458849251270294 -0.012852173298597336 -0.039466314017772675 0.005323807708919048 0.0016426360234618187 0.014341609552502632 0.006165217608213425 -0.0567278191447258 -0.031450092792510986 -0.023450113832950592 -0.01662401296198368 0.005788316484540701 0.0827205553650856 0.020433207973837852 0.038492392748594284 0.05683236941695213 -0.04727959260344505 0.01680927909910679 -0.07213051617145538 -0.006254666950553656 -0.0485498271882534 0.028167778626084328 -0.04742388054728508 -0.0036640053149312735 -0.011597703211009502 0.017496639862656593 -0.02372569777071476 0.024518057703971863 -0.005733550991863012 0.007004548329859972 -0.06885375082492828 0.0405755415558815 0.0473732128739357 0.035245735198259354 0.009078550152480602 -0.004950325004756451 0.0744640901684761 -0.03403790667653084 -0.012773764319717884 -0.05918525904417038 0.051780328154563904 0.05695176497101784 -0.009309712797403336 -0.018564550206065178 0.013748280704021454 0.08043964952230453 0.038146838545799255 0.02720005251467228 -0.011823213659226894 0.031822480261325836 0.062181588262319565 -0.04176117479801178 0.013943657279014587 0.03640371561050415 -0.04990638792514801 -0.0037081032060086727 -0.0009711519815027714 0.046361036598682404 -0.0631398931145668 0.029933441430330276 0.020763076841831207 -0.0712537094950676 0.04465063288807869 -0.05445683002471924 -0.10813766717910767 0.0037590893916785717 -0.020378196612000465 -0.024023408070206642 -0.03780459985136986 0.032114576548337936 0.010884879156947136 0.022537613287568092 0.05263696610927582 -0.0044638351537287235 -0.05130331963300705 -0.06531469523906708 0.07548541575670242 -0.0629766657948494 -0.037520457059144974 -0.054779231548309326 -0.015421271324157715 0.0492158979177475 -0.0014390501892194152 0.0263702142983675 0.03378619626164436 0.06637264043092728 0.06515847891569138 -0.03428463637828827 0.023297393694519997 -0.020471220836043358 -0.0662962794303894 -0.02342410758137703 -0.019800353795289993 -0.009974068030714989 -0.06532757729291916 0.06463651359081268 -0.09827930480241776 0.00519712595269084 -0.06063006445765495 0.005587685853242874 -0.04569769650697708 0.02313763089478016 -0.05936453118920326 0.07314829528331757 0.0019368062494322658 -0.032688599079847336 0.09045344591140747 -0.03352930024266243 0.004108883440494537 -0.030373653396964073 -0.01390807144343853 0.07107039541006088 -0.01783798262476921 -0.004472212865948677 -0.03910967335104942 0.08267483860254288 -0.007598232012242079 -0.03967917338013649 -0.05901020020246506 -0.05730787664651871 -0.013868259266018867 0.05567978322505951 -0.02566896378993988 0.0006124912179075181 0.03388265520334244 0.06947828084230423 0.006644922308623791 -0.028898388147354126 -0.06550362706184387 -0.02274801954627037 -0.06709228456020355 -0.03802729398012161 -0.026623792946338654 -0.05719230696558952 -0.004684775602072477 0.06331094354391098 -0.04232688620686531 -0.02905767224729061 0.008369442075490952 0.016406605020165443 -0.057218533009290695 -0.007290369365364313 -0.058880794793367386 -0.037632785737514496 0.028744112700223923 -0.037682484835386276 0.01567780040204525 0.06473680585622787 0.04925383999943733 0.03948485851287842 0.04572669416666031 0.030125221237540245 0.06944765895605087 -0.016541339457035065 -0.017857767641544342 -0.04006236791610718 -0.048031408339738846 -0.02289431355893612 0.017956256866455078 -0.013265453279018402 -0.0064045749604702 0.06082252785563469 -0.015313459560275078 0.042148519307374954 -0.03719192370772362 -0.01507547777146101 -0.030869558453559875 0.06732392311096191 -0.049451861530542374 0.0340087004005909 -0.020999092608690262 0.01829480566084385 0.007308147847652435 -0.020734211429953575 -0.03461316227912903 -0.06964041292667389 0.06160755455493927 -0.07220727950334549 0.014738407917320728 0.01954888366162777 -0.045473042875528336 -0.04529457911849022 0.04278000071644783 0.08864343911409378 -0.05276273563504219 0.008774742484092712 -0.005986848380416632 0.042329151183366776 -0.08634921908378601 0.01357200276106596 -0.031140794977545738 -0.07450926303863525 -0.0015926863998174667 0.03256269916892052 0.02102077379822731 -0.08951369673013687 -0.006797310896217823 -0.019034815952181816 -0.03890013322234154 0.021264079958200455 0.08025065064430237 -0.019890431314706802 0.06850618124008179 0.014946692623198032 -0.0654742643237114 -0.021288899704813957 0.013091502711176872 -0.00551815377548337 -0.018434714525938034 0.023816287517547607 -0.06521400064229965 -0.009846998378634453 -0.044376567006111145 -0.037662383168935776 -0.03191583976149559 0.03050357662141323 -0.008591003715991974 0.023865293711423874 0.00021043985907454044 0.05007919296622276 -0.008840997703373432 -0.004404555074870586 0.03348147124052048 -0.04278431460261345 -0.021558715030550957 -0.008498835377395153 -0.04032367840409279 -0.048977989703416824 -0.02444552257657051 0.028738999739289284 -0.01252425741404295 0.0052585843950510025 -0.04577099531888962 0.050574176013469696 0.0006727786967530847 -0.02119477093219757 0.023900482803583145 0.07513823360204697 0.047743044793605804 0.011934638023376465 0.00679709343239665 0.006836442742496729 0.03869985044002533 0.07069192081689835 -0.03459900617599487 0.001879765884950757 -0.014894033782184124 -0.04168746992945671 -0.04541021212935448 -0.018314287066459656 0.010026847012341022 0.023456666618585587 -0.02228599600493908 0.02699482999742031 -0.03873914107680321 0.0387456975877285 0.013803481124341488 0.051198095083236694 -0.03569205477833748 -0.010805947706103325 -0.05954765900969505 -0.028394896537065506 -0.08443401753902435 -0.050788965076208115 -0.009621283039450645 -0.0263343658298254 0.044951703399419785 -0.07256714254617691 0.017590804025530815 0.017076987773180008 0.004389960318803787 -0.012713014148175716 0.029661739245057106 0.027839861810207367 -0.01158706285059452 0.02787541225552559 0.012488136999309063 -0.051304154098033905 0.017467088997364044 0.0034881785977631807 -0.06984377652406693 0.005958758760243654 -0.04073451831936836 -0.022306030616164207 0.00706894276663661 -0.0076955039985477924 0.007430942729115486 0.027466565370559692 0.04076820984482765 -0.07599186152219772 -0.018936287611722946 -0.05152110382914543 0.08346306532621384 -0.013340483419597149 0.05180206149816513 -0.028430327773094177 -0.07794104516506195 -0.09028856456279755 0.055198054760694504 -0.06243071332573891 -0.10899519920349121 -0.05439721792936325 -0.01943785510957241 0.05804799497127533 -0.0027693319134414196 0.03383682668209076 -0.06627244502305984 -0.10398108512163162 0.04603805020451546 0.030484970659017563 -0.015879571437835693 -0.009026175364851952 0.013045432977378368 -0.030773591250181198 0.008649947121739388 -0.00030565905035473406 -0.07641825079917908 0.04378023371100426 0.042484086006879807 0.0038924089167267084 -0.07554616779088974 -0.0075629595667123795 -0.026039881631731987 -0.06734243780374527 0.037818364799022675 -0.03777915984392166 -0.0334198921918869 -0.01429793145507574 0.06692548096179962 -0.005644975230097771 0.02625049278140068 0.053790368139743805 -0.014959759078919888 0.01850898750126362 0.05799823999404907 0.03422913700342178 -0.012879311107099056 -0.06494473665952682 0.0020772998686879873 0.0620497427880764 -0.051615532487630844 0.066704660654068 -0.04852290824055672 0.1420537233352661 0.041292089968919754 -0.015382373705506325 0.05905589833855629 0.03828122839331627 0.0343719944357872 0.03182797133922577 -0.11060358583927155 +0.06503985077142715 0.021357543766498566 0.01801002025604248 0.0683806836605072 -0.07315951585769653 -0.03975703567266464 -0.019109833985567093 0.016427945345640182 0.0028529614210128784 -0.05298897624015808 -0.02150031365454197 -0.03542647510766983 0.0012378948740661144 0.013105768710374832 0.029104094952344894 -0.04926018416881561 -0.05619414895772934 0.0320567786693573 -0.017794761806726456 -0.03752164542675018 0.02719435840845108 0.009769704192876816 -0.06694971770048141 0.05016665905714035 0.01752641424536705 0.014173300936818123 -0.029903223738074303 0.029000524431467056 0.001438116654753685 0.04108855128288269 0.07942819595336914 -0.02281193993985653 0.0541420616209507 -0.05539954453706741 -0.0519813597202301 0.03428690880537033 -0.026140816509723663 0.11428074538707733 0.028940517455339432 -0.03937852382659912 -0.05484312027692795 -0.012252616696059704 -0.012569062411785126 -0.04135243594646454 0.03376953303813934 0.013107878156006336 -0.023323779925704002 -0.02682476118206978 0.04931369051337242 0.012541064992547035 0.10686381906270981 -0.013533937744796276 -0.03959319740533829 -0.022059697657823563 0.007578584365546703 -0.004711476154625416 0.057250820100307465 -0.06655685603618622 -0.04181976988911629 0.023145535960793495 -0.0891667976975441 -0.021819354966282845 0.017777448520064354 -0.012159816920757294 -0.01837964914739132 -0.032721489667892456 -0.000327136367559433 0.07555463910102844 0.012593118473887444 -0.012187871150672436 0.036633990705013275 0.11009541898965836 -0.07766623049974442 -0.054939743131399155 0.06397540122270584 -0.08832176774740219 -0.012193692848086357 0.03933986276388168 -0.01251851674169302 0.028757378458976746 0.006490732543170452 -0.03855018690228462 0.129438579082489 -0.04655953869223595 -0.05497736111283302 -0.006256613414734602 -0.011896532960236073 -0.0690116211771965 0.06238045543432236 0.03422343358397484 -0.00700647197663784 0.04760034382343292 -0.05176341533660889 0.05231193080544472 0.012364261783659458 0.007992994971573353 0.041004739701747894 -0.0858260914683342 -0.02209443785250187 0.015385439619421959 -0.02337312325835228 -0.005421848502010107 0.0403829887509346 0.000936289899982512 0.03636046126484871 0.03660624846816063 -0.03914421796798706 0.007919235154986382 0.03958011418581009 0.07582353055477142 0.02869805134832859 0.058120641857385635 0.08059942722320557 0.03373261168599129 0.05067051574587822 -0.0024714022874832153 0.02459884248673916 -0.06647209078073502 -0.03631063923239708 0.020190905779600143 0.005942110437899828 0.07662754505872726 -0.03866990655660629 -0.0573197677731514 -0.0388370081782341 0.019154924899339676 -0.07707434147596359 -0.039056237787008286 0.0640743300318718 -0.0024614061694592237 0.13475775718688965 0.054611217230558395 -0.02287420444190502 0.06791950017213821 0.05174512788653374 0.030929284170269966 -0.0045641642063856125 0.01477437186986208 -0.004071471747010946 -0.03501078858971596 0.0022510208655148745 0.04442182183265686 0.0019232981139793992 -0.06703287363052368 0.061148062348365784 0.05584609881043434 0.06012216955423355 -0.04712679237127304 -0.05928363278508186 -0.019235165789723396 -0.0671975165605545 -0.059160616248846054 0.014296057634055614 -0.05001487210392952 -0.01743439771234989 0.013183755800127983 -0.004378579556941986 -0.002982863923534751 -0.019468193873763084 -0.016450637951493263 -0.05921927094459534 -0.02604711800813675 0.0005005868151783943 -0.05620859935879707 -0.056019313633441925 -0.02163119614124298 -0.006736550480127335 0.018866972997784615 -0.06705783307552338 -0.025320930406451225 -0.003362582763656974 0.012972512282431126 0.04576054587960243 0.10422157496213913 0.06523938477039337 0.019865425303578377 0.022328557446599007 -0.03395739197731018 0.015888938680291176 -0.022460419684648514 0.04629926756024361 -0.039336588233709335 0.02685263194143772 -0.049848876893520355 0.027735745534300804 -0.0052977632731199265 0.058088287711143494 -0.010011190548539162 0.059185534715652466 0.032578542828559875 -0.048527877777814865 -0.0326458141207695 0.01885620690882206 0.06957580894231796 -0.030072612687945366 0.044219572097063065 -0.036008626222610474 0.03649316355586052 0.0006465943297371268 -0.03759804368019104 -0.04241817444562912 0.02762759104371071 0.024752411991357803 0.07655502110719681 0.04005764052271843 -0.07187599688768387 0.08045036345720291 0.04279184713959694 0.017846446484327316 -0.055039677768945694 0.007234221324324608 0.011026911437511444 0.022433508187532425 0.054422784596681595 0.07046893984079361 -0.003240135731175542 0.006346229463815689 -0.024297956377267838 0.04844051972031593 -0.0392911434173584 0.005694252904504538 -0.02307361550629139 -0.09509969502687454 0.050259239971637726 -0.08498357981443405 -0.07123696058988571 -0.020802553743124008 0.03333616256713867 -0.002664635656401515 -0.0582006573677063 -0.002806380158290267 0.008402896113693714 0.007326945196837187 -0.015113865956664085 -0.026203710585832596 -0.02372935600578785 -0.10757435858249664 0.13508574664592743 0.021088186651468277 -0.0648086667060852 -0.05687874183058739 0.010260666720569134 0.03215621039271355 -0.022852100431919098 0.03095054067671299 0.05075792968273163 0.09226030111312866 0.024534128606319427 -0.009199858643114567 0.02956985868513584 -0.05067601799964905 -0.0653749406337738 0.007036345545202494 0.013253611512482166 -0.051053259521722794 -0.015363854356110096 0.0221757460385561 -0.053764279931783676 0.011567959561944008 -0.025258980691432953 0.006246762350201607 -0.0035289868246763945 -0.021965300664305687 -0.04660870134830475 0.06038034334778786 -0.03874456509947777 -0.04513410106301308 0.055595044046640396 -0.006305461749434471 0.03767829015851021 0.0030170800164341927 -0.007905900478363037 0.048632871359586716 0.0010470389388501644 0.026026180014014244 -0.013190160505473614 0.08120495826005936 -0.007041957229375839 -0.038332223892211914 0.0005737001192755997 -0.06293941289186478 -0.06603846698999405 -0.02967251092195511 -0.029148651286959648 -0.005610359832644463 0.057809118181467056 -0.0037904167547822 -0.023708434775471687 -0.05456641688942909 0.002635918091982603 -0.02150328829884529 -0.08228083699941635 -0.04083293676376343 0.005345490295439959 -0.05247475951910019 -0.02754690870642662 -0.005317919887602329 -0.03120855800807476 -0.0012877477565780282 -0.02778293751180172 -0.03469308093190193 -0.07711578160524368 0.03197837248444557 -0.044293563812971115 -0.022039424628019333 0.012795678339898586 -0.03778412938117981 0.05105314031243324 0.08957462012767792 0.06820105016231537 0.03271576762199402 0.06150049716234207 0.050062716007232666 0.1206611692905426 -0.0031383640598505735 -0.021635275334119797 -0.009960629045963287 -0.05789371207356453 -0.059590306133031845 0.059377264231443405 -0.013710963539779186 -0.04072617366909981 0.020366370677947998 0.012373468838632107 0.05331062152981758 -0.014757918193936348 -0.04706532135605812 -0.032225217670202255 0.03952847048640251 -0.04454411193728447 0.025963084772229195 -0.0023184027522802353 0.023688513785600662 -0.027025118470191956 -0.05793933570384979 -0.02034704014658928 -0.04307926073670387 0.026582298800349236 -0.007145254872739315 0.026962004601955414 -0.03268624469637871 -0.04260261729359627 -0.03774116560816765 0.013901499100029469 0.09696745872497559 -0.05128715932369232 -0.009767500683665276 0.04377847537398338 0.026566360145807266 -0.09414579719305038 0.004576348699629307 0.027218276634812355 -0.02983325906097889 -0.030433598905801773 0.017230160534381866 0.031227346509695053 -0.08561748266220093 0.017255494371056557 -0.0012551648542284966 -0.03523216024041176 -0.01717735268175602 0.01020287349820137 0.0338953398168087 0.015768464654684067 -0.01344515010714531 -0.04764345660805702 -0.03433628007769585 -0.015796052291989326 0.023744987323880196 -0.011578676290810108 0.027118222787976265 -0.07035073637962341 0.010570628568530083 -0.06269951164722443 -0.03156536445021629 -0.049040138721466064 0.05419135466217995 0.021365216001868248 -0.027780424803495407 -0.0030401393305510283 -0.009817104786634445 -0.013018637895584106 0.0008083084248937666 0.029701871797442436 -0.07288005948066711 -0.027549922466278076 -0.058900367468595505 -0.037012409418821335 -0.06604108959436417 -0.03817683085799217 -0.014820072799921036 -0.0728338360786438 0.018231740221381187 -0.0005963788134977221 -0.015098176896572113 -0.0051547023467719555 -0.0021969389636069536 0.05440271273255348 0.05081966891884804 0.014845087192952633 0.002757010515779257 0.03835009038448334 0.0028260971885174513 0.043487221002578735 0.05853241682052612 -0.05523213744163513 -0.01841863803565502 0.0072898720391094685 -0.0644039511680603 0.0645119845867157 -0.034934114664793015 0.006023092195391655 0.00031484622741118073 0.007556340657174587 0.07197706401348114 -0.02180476300418377 0.024413028731942177 -0.007136893924325705 0.05033206567168236 -0.05121687799692154 -0.035433344542980194 0.02566266991198063 -0.02608666382730007 -0.09286662191152573 -0.049194809049367905 0.007538347505033016 -0.05155425891280174 0.04919975623488426 -0.01904941350221634 0.02471712790429592 0.017951881512999535 -0.04551655054092407 -0.08648674935102463 -0.03761545196175575 -0.004893929231911898 0.07761160284280777 -0.03557824715971947 0.03761855512857437 0.025275634601712227 0.00963425263762474 0.0214069951325655 0.00042033224599435925 -0.0031841143500059843 -0.08235611021518707 -0.01605791039764881 -0.023704731836915016 -0.026135766878724098 0.0034680748358368874 0.0016213457565754652 0.025109868496656418 -0.04672887176275253 -0.02067774534225464 -0.07800907641649246 0.08853127807378769 -0.012897252105176449 0.007842428982257843 0.016892770305275917 -0.049896422773599625 0.01176060177385807 0.027859026566147804 -0.055571433156728745 -0.06668658554553986 -0.002256011590361595 0.006619456224143505 0.012707093730568886 0.011176113970577717 0.016652947291731834 -0.03157096356153488 -0.037709277123212814 0.019921770319342613 0.04140327498316765 -0.06892585754394531 0.014311371371150017 -0.004029741510748863 -0.0625913068652153 -0.07870636135339737 0.007687062490731478 -0.05516502261161804 0.06948211044073105 0.0459759421646595 0.011027966625988483 -0.010407483205199242 -0.014344176277518272 -0.0020195473916828632 -0.06895152479410172 -0.002588049042969942 0.0048004561103880405 0.00017310479597654194 -0.024632062762975693 0.0733390748500824 -0.029363488778471947 0.022957390174269676 0.050582848489284515 -0.043668922036886215 0.015053635463118553 0.048627499490976334 -0.034465353935956955 0.05958882346749306 -0.006462528835982084 -0.021091297268867493 0.10319381207227707 -0.0889420211315155 0.09720460325479507 -0.07087520509958267 0.07235483080148697 0.02373369224369526 -0.014636148698627949 0.06649061292409897 0.07779525220394135 -0.002469911938533187 0.03428560867905617 -0.07500117272138596 +0.046010393649339676 -0.022691015154123306 -0.027555039152503014 0.03446536511182785 -0.08406639844179153 -0.022015850991010666 0.005297920200973749 0.021140379831194878 -0.0024388115853071213 -0.014152545481920242 -0.012108871713280678 0.02305181324481964 0.0008957748068496585 0.008302469737827778 0.02526959963142872 -0.04656899347901344 -0.076052725315094 -0.019908439368009567 -0.0323956124484539 -0.05077299103140831 0.013883913867175579 0.0178688894957304 -0.05965537950396538 0.05581038445234299 -0.0030484015587717295 0.044314462691545486 -0.05411709472537041 -0.008466104045510292 -0.011123193427920341 0.015378137119114399 0.051888685673475266 -0.028648508712649345 0.05031399056315422 -0.03962422162294388 -0.06087076663970947 0.07528044283390045 -0.01741633750498295 0.12746329605579376 0.029505304992198944 -0.027990568429231644 -0.059424664825201035 -0.00559620326384902 -0.03965049982070923 -0.06421422958374023 0.02298198826611042 0.005636002868413925 0.002855964470654726 -0.023932458832859993 0.04482768103480339 0.014142468571662903 0.08414501696825027 0.009255717508494854 -0.03007381036877632 -0.022462163120508194 -0.025493834167718887 0.018032850697636604 0.034004561603069305 -0.042044151574373245 -0.07516493648290634 0.04585977643728256 -0.07658107578754425 0.0004796680004801601 0.0029728307854384184 0.0016253041103482246 -0.010360019281506538 -0.04051718860864639 0.007664143573492765 0.0779200941324234 0.01890416257083416 -0.003366155782714486 0.0282122939825058 0.10210773348808289 -0.05720045417547226 -0.034900035709142685 0.042632363736629486 -0.0735064446926117 -0.0491473414003849 0.04129324480891228 -0.012616212479770184 0.013571768067777157 -0.006942566018551588 -0.026683242991566658 0.12003175169229507 -0.04059775173664093 -0.061639029532670975 -0.0215750802308321 -0.017663640901446342 -0.06646600365638733 0.05077417939901352 0.017043402418494225 0.026161646470427513 0.06481923162937164 -0.07619637995958328 0.043317679315805435 0.032691311091184616 0.024501757696270943 0.058114808052778244 -0.09873954951763153 -0.04691106453537941 -0.020336223766207695 -0.008315995335578918 -0.027320656925439835 0.06091677397489548 -0.007651915308088064 0.05103539302945137 0.00925288163125515 -0.058648787438869476 0.004472372122108936 0.020171284675598145 0.016551025211811066 0.050540741533041 0.08068631589412689 0.07559091597795486 0.031159713864326477 0.08942891657352448 -0.0189971886575222 0.03339669853448868 -0.06999243050813675 -0.02470548450946808 0.0038676150143146515 -0.019618909806013107 0.055199138820171356 -0.011197453364729881 -0.08724799752235413 -0.04770469292998314 0.014806533232331276 -0.1263732761144638 -0.020391928032040596 0.05644191801548004 -0.03747930750250816 0.10773997753858566 0.0726710706949234 -0.015372829511761665 0.031847696751356125 0.012596259824931622 -0.009134499356150627 -0.01325799897313118 0.049882907420396805 0.009088428691029549 0.0008311043493449688 -0.012888161465525627 0.05491892248392105 0.03309096023440361 -0.044504422694444656 0.021397806704044342 0.02298164926469326 0.019650835543870926 -0.014520685188472271 -0.0648740902543068 0.006930125877261162 -0.06141262501478195 -0.0633384957909584 -0.0023767470847815275 -0.05937179923057556 0.0019479815382510424 0.05504939332604408 0.016193794086575508 0.04149641469120979 -0.010336721315979958 -0.034745462238788605 -0.03653956577181816 -0.02091560885310173 -0.010528896935284138 -0.09168397635221481 -0.028790965676307678 -0.01524641364812851 0.005282058380544186 -0.003327852115035057 -0.02681777812540531 0.014938757754862309 -0.016322648152709007 -0.00972718931734562 0.03074229136109352 0.06876194477081299 0.08069124817848206 0.012905526906251907 0.008073708973824978 -0.05410195514559746 0.03166498243808746 -0.04043692350387573 -0.00363304209895432 -0.05567801371216774 0.019836632534861565 -0.045649949461221695 -0.019295936450362206 -0.009133110754191875 0.06240971013903618 -0.00714696804061532 0.016758298501372337 0.00937507301568985 -0.034321852028369904 -0.07087869942188263 0.03612302616238594 0.06716930121183395 -0.04423566535115242 0.017069121822714806 0.014263637363910675 0.06406977027654648 -0.00984529871493578 -0.01611744798719883 -0.061238110065460205 0.031064005568623543 -0.004504297859966755 0.05371106043457985 0.03310905396938324 -0.046480443328619 0.08911925554275513 -0.0032011091243475676 0.025334851816296577 -0.0815763846039772 -0.018629679456353188 0.004867254756391048 0.0036542071029543877 0.027340851724147797 0.09973064810037613 -0.04139241576194763 -0.015533292666077614 0.008000019006431103 0.05598581209778786 -0.04391200840473175 -0.034617844969034195 -0.03960959240794182 -0.08067130297422409 -0.007526872679591179 -0.031136197969317436 -0.10044670850038528 -0.023717930540442467 0.04008621349930763 -0.0004023413348477334 -0.03862636908888817 0.017607320100069046 0.054269127547740936 -0.015435056760907173 -0.0299362912774086 0.0005399486981332302 -0.03179645910859108 -0.07629529386758804 0.08818534016609192 -0.005852328613400459 -0.0883847028017044 -0.04540550336241722 0.010976213961839676 0.04367963969707489 0.0015776485670357943 0.034690044820308685 0.043890003114938736 0.10599114745855331 0.030734756961464882 -0.03373974934220314 0.011852816678583622 -0.03787628188729286 -0.04651283472776413 0.02579762041568756 0.05905012786388397 -0.05052321031689644 -0.04538600519299507 -0.003678633365780115 -0.057253655046224594 0.014310593716800213 0.01572495512664318 0.05308670178055763 -0.027005769312381744 -0.043151937425136566 -0.05062327906489372 0.019851189106702805 -0.018364397808909416 -0.012871112674474716 0.049929000437259674 -0.017805472016334534 0.0405670702457428 -0.003090804908424616 -0.009661324322223663 0.021630821749567986 0.03322029486298561 0.03329196944832802 -0.04278907924890518 0.06348547339439392 0.0005426589632406831 -0.07913205027580261 -0.030404478311538696 -0.0725434347987175 -0.04257351532578468 -0.017595916986465454 -0.044499631971120834 -0.0583377480506897 0.06567195802927017 0.006454231683164835 -0.028587402775883675 -0.06104409694671631 -0.015176499262452126 -0.009496218524873257 -0.07273676246404648 -0.020034566521644592 0.019402066245675087 -0.07320569455623627 -0.03665033355355263 0.01951870508491993 -0.022861042991280556 -0.024913104251027107 0.0014183594612404704 -0.006692150142043829 -0.06866823136806488 0.03801923990249634 -0.01035741250962019 -0.028021201491355896 -0.029839899390935898 -0.09751811623573303 0.03637752681970596 0.11855629086494446 0.07218215614557266 0.056895431131124496 0.02341540716588497 0.046921685338020325 0.11526712775230408 0.019222546368837357 -0.03021516464650631 -0.0032418507616966963 -0.030699675902724266 -0.0754552036523819 0.04946845397353172 -0.027805276215076447 -0.003901936113834381 -0.02709849551320076 0.008242577314376831 0.045838210731744766 0.015081902034580708 -0.03496759012341499 -0.03020094521343708 0.03805416822433472 0.0016314317472279072 0.05312884971499443 -0.0036660409532487392 -0.004344991873949766 -0.004109268542379141 -0.05509624630212784 -0.06497194617986679 -0.04360564798116684 0.03862332925200462 0.010741062462329865 0.07071453332901001 0.021581929177045822 -0.08073876798152924 0.012077861465513706 -0.02189464494585991 0.10321725904941559 -0.09655735641717911 -0.011023137718439102 0.004128980450332165 0.03259868547320366 -0.10401491075754166 -0.014751628041267395 0.033847909420728683 -0.05030452087521553 -0.05083876848220825 0.00831426028162241 0.0449104942381382 -0.03965398296713829 -0.017287107184529305 -0.007216365076601505 -0.04621848091483116 -0.020516766235232353 -0.005157297011464834 0.024910183623433113 0.014309972524642944 -0.01877663843333721 -0.030288441106677055 0.01923445239663124 0.020656194537878036 0.03192325308918953 -0.028575534000992775 0.017170194536447525 -0.023344431072473526 0.04018119350075722 -0.054518911987543106 -0.018183086067438126 -0.05187922716140747 0.08172411471605301 0.0055005247704684734 -0.01086763571947813 -0.021517161279916763 -0.024987973272800446 -0.020030543208122253 0.014193125069141388 0.012524275109171867 -0.033393241465091705 -0.03368271887302399 -0.04392080754041672 -0.0500187911093235 -0.08575651794672012 -0.026795227080583572 0.0141282444819808 -0.03595368191599846 0.027669686824083328 -0.020897110924124718 -0.024157565087080002 0.012658682651817799 -0.006254087667912245 0.0347495898604393 0.05043637007474899 0.05763942003250122 -0.0270315483212471 0.03697488456964493 0.02177816443145275 0.06629450619220734 0.01431613601744175 -0.03782298043370247 0.0286214929074049 0.029225585982203484 -0.06836731731891632 0.04262521117925644 -0.01755952462553978 -0.005009952001273632 -0.005412256810814142 -0.0029013915918767452 0.01271002646535635 -0.01326399389654398 0.013118916191160679 -0.04108629748225212 0.03442447632551193 -0.09628981351852417 -0.018794531002640724 0.053906217217445374 -0.022852493450045586 -0.08775970339775085 -0.05079461634159088 0.018145181238651276 -0.015068617649376392 0.05282004550099373 -0.012164528481662273 0.015780100598931313 0.06875356286764145 -0.017710085958242416 -0.060102347284555435 -0.017637228593230247 -0.02198745124042034 0.04722598195075989 -0.02365938015282154 0.06981823593378067 0.01110418327152729 0.028853289783000946 -0.01304586511105299 0.010970440693199635 0.018203867599368095 -0.07625699788331985 -0.015254728496074677 -0.021008746698498726 -0.04930694401264191 0.02554614096879959 0.011867133900523186 -0.007704375311732292 -0.04543245956301689 -0.0237786415964365 -0.033880725502967834 0.0769391879439354 -0.01682274416089058 0.013502213172614574 0.037233468145132065 -0.016490094363689423 0.016030073165893555 -0.006290890742093325 -0.04610177129507065 -0.08080486208200455 0.022993167862296104 -0.012734738178551197 0.009950809180736542 -0.02217741683125496 0.019131189212203026 0.003894261782988906 -0.08412235230207443 -0.01876254752278328 0.014402464963495731 -0.08593221008777618 0.03288235515356064 0.014026343822479248 -0.07374395430088043 -0.04492856562137604 0.02020816132426262 -0.06904563307762146 0.07448887825012207 0.009198969230055809 0.05723797529935837 0.013004882261157036 -0.008872431702911854 -0.015721749514341354 -0.033259596675634384 -0.0005501153646036983 -0.021503835916519165 -0.03659734129905701 -0.03251800313591957 0.05979533493518829 -0.039699241518974304 0.0376192107796669 0.06479351222515106 -0.03579533472657204 0.06379228085279465 0.05570698156952858 -0.05065155774354935 0.05296911671757698 0.01175572257488966 -0.03565539792180061 0.08048095554113388 -0.04846147075295448 0.09518089145421982 -0.059603411704301834 0.09035065770149231 -0.009519565850496292 -0.030736524611711502 0.08039865642786026 0.08976243436336517 -0.0027551797684282064 0.025495389476418495 -0.04151010140776634 +0.0884537622332573 -0.027008192613720894 -0.010936160571873188 0.06355750560760498 -0.08059199154376984 -0.02369418367743492 -0.010881409049034119 0.05214536935091019 -0.04019586741924286 -0.04609492048621178 -0.06694041937589645 0.025633681565523148 -0.0028407920617610216 -0.004054042976349592 -0.011230002157390118 0.00044431007700040936 -0.036053597927093506 0.007525722961872816 -0.02189617045223713 -0.028164301067590714 0.02819444052875042 -0.040672529488801956 -0.08317368477582932 0.05435778945684433 0.032260045409202576 0.036971721798181534 0.006595424376428127 0.017678488045930862 -0.0018440070562064648 0.0016716632526367903 0.039230696856975555 -0.05229451507329941 -0.027524540200829506 -0.04496604949235916 -0.10689674317836761 0.026108190417289734 -0.04010229930281639 0.1148599237203598 -0.052859216928482056 -0.013644792139530182 -0.05351092293858528 0.044746316969394684 -0.05179278925061226 -0.02792874164879322 0.03876292333006859 -0.011073846369981766 0.03323904424905777 0.023833945393562317 0.010873604565858841 0.029229702427983284 0.07988648116588593 0.019646726548671722 0.0050420998595654964 -0.0363408587872982 -0.01958049274981022 0.06324377655982971 -0.0032779406756162643 -0.018830090761184692 -0.03242838382720947 0.03351651504635811 -0.0570969358086586 -0.014339670538902283 0.033797550946474075 0.017872679978609085 -0.01504229661077261 0.020049309358000755 0.0032246331684291363 0.10074162483215332 0.02617400512099266 -0.06005800887942314 0.00591533025726676 0.07402171939611435 -0.047470204532146454 0.0008121886057779193 0.03226031735539436 -0.05006888508796692 -0.025188827887177467 0.03579585254192352 0.03647252917289734 -0.03469245135784149 0.01236784178763628 -0.012412822805345058 0.11762981116771698 -0.011634337715804577 -0.09415104240179062 -0.002621312625706196 0.0060991994105279446 -0.05224614962935448 0.07143030315637589 0.033338092267513275 -0.010724646039307117 0.07650237530469894 -0.07331106066703796 0.051021214574575424 -0.01794251799583435 -0.003527396358549595 0.025629494339227676 -0.13907507061958313 -0.044509902596473694 -0.01051999256014824 -0.004242458380758762 -0.05494977906346321 0.006570084020495415 -0.026351112872362137 0.0523475743830204 0.04329649731516838 -0.04748280346393585 -0.022142549976706505 0.007582431193441153 -0.006432426627725363 0.05144498869776726 0.062188852578401566 0.05837550014257431 0.10952270030975342 0.11231740564107895 0.011689354665577412 0.02791697531938553 -0.0608094222843647 -0.06252837181091309 -0.014017059467732906 0.009930592030286789 0.06906764209270477 0.02892010658979416 -0.10074397921562195 -0.029207000508904457 -0.010030196979641914 -0.0928030014038086 -0.0029143947176635265 0.07484999299049377 0.0014220398152247071 0.07072218507528305 0.03521875664591789 -0.0073396069929003716 0.002078674267977476 0.013426797464489937 -0.020337754860520363 -0.008813461288809776 0.01728290133178234 0.035164959728717804 -0.009228178299963474 0.03465944528579712 0.023982157930731773 0.027938198298215866 -0.056010738015174866 0.027249975129961967 0.01700255088508129 0.06619351357221603 -0.013543548993766308 -0.029845941811800003 0.017935289070010185 -0.0736553966999054 -0.08432178944349289 -0.007397517096251249 -0.059145815670490265 0.004041730426251888 0.025844288989901543 0.05755256116390228 0.008716948330402374 -0.04127927124500275 0.01464366540312767 -0.015666786581277847 -0.019404133781790733 -0.00018032107618637383 -0.08909939974546432 -0.014938630163669586 0.03146776929497719 -0.03851193189620972 0.019990764558315277 -0.05703778192400932 -0.015195010229945183 -0.003842684207484126 -0.0015984411584213376 0.03622354939579964 0.08568475395441055 0.08992530405521393 0.025294138118624687 0.02227817475795746 -0.012104906141757965 0.0013394023990258574 0.01994173601269722 0.0034519426990300417 -0.025618936866521835 0.042061690241098404 -0.07052698731422424 -0.0025251880288124084 -0.015297421254217625 -0.004742719233036041 -0.023452291265130043 0.04878813028335571 -0.0014298484893515706 -0.04123317077755928 -0.027334490790963173 0.03328241407871246 0.04138540104031563 -0.009090502746403217 0.08555074781179428 0.004329484421759844 0.06157224625349045 -0.006403981242328882 -0.03579897806048393 -0.038856521248817444 -0.009107115678489208 -0.014303799718618393 0.05238476023077965 0.04684102162718773 -0.0927778035402298 0.07002560049295425 0.08494126796722412 0.01694743148982525 -0.0967065617442131 -0.006557524669915438 0.01903662458062172 0.041895970702171326 0.07526402920484543 0.06429670751094818 -0.013433368876576424 -0.05365804210305214 0.05606777220964432 -0.01567784696817398 -0.024336887523531914 -0.04669864475727081 -0.014410935342311859 -0.06657951325178146 0.01832805946469307 -0.034600887447595596 -0.025104613974690437 -0.05540049076080322 0.04575059190392494 0.001649088109843433 -0.05818017199635506 -0.012068632990121841 0.027660414576530457 0.0020247851498425007 -0.11713063716888428 -0.010811456479132175 0.01413238886743784 -0.08358335494995117 0.07740706205368042 0.02743379957973957 -0.08747858554124832 -0.04805677384138107 0.0019818125292658806 0.012605861760675907 0.02280995063483715 0.05113783851265907 0.06120796129107475 0.09906791150569916 0.005409405566751957 -0.028441013768315315 -0.002550768665969372 -0.0632210299372673 0.014723634347319603 0.03404689207673073 0.065440833568573 -0.05688022822141647 -0.03220801055431366 -0.035079602152109146 -0.014215890318155289 -0.0500795878469944 0.025840172544121742 0.04641491547226906 -0.01863943226635456 -0.07825586199760437 -0.019850146025419235 -0.01208497304469347 -0.024998951703310013 -0.0014727000379934907 -0.03041072189807892 -0.008608332835137844 0.09159412980079651 -0.06265421211719513 -0.021534884348511696 0.026960134506225586 -0.0460774190723896 -0.004744266159832478 -0.028190631419420242 0.04479643329977989 -0.06340771913528442 -0.03762199357151985 -0.008341478183865547 -0.07869908213615417 -0.06801829487085342 -0.06277044117450714 -0.0288139246404171 -0.022923940792679787 0.12977848947048187 -0.009181976318359375 -0.03317185118794441 -0.034136246889829636 -0.005585663020610809 -0.018654655665159225 -0.05329267680644989 0.0003485044580884278 0.039180006831884384 -0.0041627828031778336 -0.0031386148184537888 0.00612980080768466 0.0007590306340716779 0.006420322228223085 0.00018773872579913586 0.008414251729846 -0.06781875342130661 0.08093289285898209 -0.006075053941458464 -0.02245670184493065 0.018052686005830765 -0.07707104086875916 0.007314636372029781 0.07438738644123077 0.061199288815259933 0.04615195468068123 0.02931644581258297 0.016667811200022697 0.1250283271074295 0.02453150413930416 -0.04125447943806648 -0.010704949498176575 -0.031685102730989456 -0.06030627340078354 0.06466212868690491 0.013639349490404129 -0.007024380378425121 -0.0386374369263649 0.02695208601653576 0.049860451370477676 0.009282726794481277 -0.023228542879223824 -0.02206839807331562 -0.01856973022222519 0.001632091822102666 0.01329878717660904 0.010598584078252316 -0.00968138873577118 -0.019835127517580986 0.0005541424034163356 -0.056990500539541245 0.010026391595602036 0.02923758514225483 0.005745333153754473 0.0806451290845871 -0.033811215311288834 -0.03729361295700073 0.03990795463323593 -0.010511874221265316 0.0377044714987278 -0.065521240234375 0.018666958436369896 0.061089206486940384 0.045522600412368774 -0.06871777027845383 0.002563952235504985 0.05955588072538376 -0.006145014893263578 -0.0832543596625328 -0.07260514050722122 0.041291482746601105 -0.015223149210214615 -0.03387007862329483 -0.0036492308136075735 -0.02460121549665928 0.017795735970139503 0.0011652196990326047 0.040419578552246094 0.024493679404258728 -0.024006709456443787 0.011321171186864376 0.03040097840130329 -0.01735452190041542 0.06888384371995926 -0.04011785238981247 -2.1042046682850923e-06 0.0039217849262058735 0.08920016884803772 -0.028935028240084648 -0.029457159340381622 -0.026243122294545174 0.017345907166600227 -0.008203222416341305 -0.001435045269317925 -0.04247864708304405 -0.04157596081495285 0.01888270303606987 0.013183120638132095 0.030535316094756126 -0.028436247259378433 -0.019060516729950905 -0.006236230488866568 -0.06747012585401535 -0.08153074234724045 -0.08682961761951447 -0.006919334176927805 -0.04708090052008629 -0.005236595869064331 -0.03658723458647728 -0.05679727718234062 0.04566618800163269 -0.010147018358111382 0.03809052333235741 0.04043170064687729 0.017981750890612602 -0.028865115717053413 0.06739219278097153 -0.011916275136172771 0.04746764153242111 -0.015937399119138718 -0.05654272437095642 0.017169583588838577 0.03767983242869377 -0.0023950545582920313 0.08797575533390045 -0.0019144366960972548 0.021654212847352028 -0.016255512833595276 -0.017835931852459908 0.019423356279730797 0.005631337407976389 -0.017960451543331146 -0.036487776786088943 0.04947515204548836 -0.06001252308487892 -0.03909016400575638 0.08591223508119583 -0.027311913669109344 -0.0728793516755104 -0.036800842732191086 -0.05775468423962593 -0.020120354369282722 0.018290497362613678 0.028145896270871162 0.015119516290724277 0.026620641350746155 -0.05972747877240181 -0.03338999301195145 -0.043117862194776535 -0.06197265535593033 0.06782418489456177 -0.016347963362932205 0.08205050975084305 0.07448256760835648 0.039458610117435455 -0.00873558595776558 0.01263554859906435 -0.008217692375183105 -0.07355145364999771 -0.00760229816660285 0.004517148248851299 -0.020359842106699944 0.0252103079110384 0.018907682970166206 -0.028416674584150314 -0.04101790860295296 -0.025081835687160492 -0.032857172191143036 0.044426146894693375 0.010574288666248322 0.0009128649835474789 0.058590032160282135 -0.04625607281923294 -0.007902679033577442 -0.0253065787255764 0.014007439836859703 -0.06104806438088417 0.05323323979973793 0.0011862210230901837 0.009753354825079441 -0.006756034214049578 0.03138837218284607 0.005820232443511486 -0.06845954060554504 -0.002819126471877098 0.022269969806075096 -0.04751068353652954 0.031959641724824905 0.02569529227912426 -0.10380519926548004 -0.06906836479902267 0.03383304178714752 -0.022633599117398262 0.020190399140119553 -0.010056215338408947 0.0202168021351099 -0.010036446154117584 0.012740232981741428 0.022954316809773445 0.0012808294268324971 0.02950022928416729 -0.03380390629172325 -0.06753039360046387 0.0028267682064324617 0.09308319538831711 -0.052833303809165955 0.019550101831555367 0.03305502235889435 -0.02799786999821663 0.02966708317399025 -0.013677921146154404 -0.028642594814300537 0.0363786406815052 -0.0034736166708171368 -0.006914188619703054 0.0617317296564579 -0.048852842301130295 0.020296825096011162 -0.07264931499958038 0.048571258783340454 -0.017693612724542618 -0.009066532365977764 0.1047147810459137 0.04589250311255455 -0.0028903961647301912 0.04133063927292824 -0.05638730525970459 +0.07321443408727646 0.003151471260935068 -0.030881861224770546 0.012983701191842556 -0.07145331054925919 -0.058264486491680145 0.0035091196186840534 0.031853627413511276 -0.013336120173335075 -0.01652183011174202 -0.02944384329020977 -0.010414010845124722 0.004573664162307978 -0.016617469489574432 0.020903613418340683 -0.03846568986773491 -0.06822393834590912 -0.010519229806959629 -0.043116793036460876 -0.0072390236891806126 0.02073381468653679 0.011774984188377857 -0.11558125913143158 0.0499529130756855 0.005046857055276632 0.03434064984321594 -0.03654146194458008 0.005310984794050455 -0.017028627917170525 0.010992768220603466 0.04819870367646217 -0.016660088673233986 0.04331417754292488 -0.033382952213287354 -0.06506361812353134 0.053916119039058685 -0.03855045512318611 0.13456881046295166 0.024659572169184685 -0.038712695240974426 -0.09404293447732925 0.016849497333168983 -0.021856145933270454 -0.06377170234918594 -0.012871767394244671 0.0014843614771962166 0.008809234015643597 -0.018137041479349136 0.05756432190537453 0.021873779594898224 0.08052580058574677 -0.0026274132542312145 -0.011756100691854954 -0.02115453965961933 0.0019454139983281493 0.033795129507780075 0.03174058347940445 -0.045125603675842285 -0.06911107897758484 0.01944725774228573 -0.08400274813175201 0.020661333575844765 0.007052142638713121 -0.005186574067920446 -0.0034405242186039686 -0.06440766900777817 -0.007108989171683788 0.08498387783765793 0.03262776508927345 0.0006814181106165051 0.00838506780564785 0.07713766396045685 -0.08219720423221588 -0.06076730415225029 0.03190641477704048 -0.07658302038908005 -0.052059393376111984 0.03210480138659477 0.0036466277670115232 -0.012250443920493126 -0.02753293327987194 -0.023301376029849052 0.12470956146717072 -0.03684988245368004 -0.06801504641771317 -0.04775265231728554 -0.028318824246525764 -0.08658833056688309 0.05591682344675064 0.03409542143344879 0.007489398587495089 0.08145702630281448 -0.06406663358211517 0.0395352765917778 0.027778608724474907 0.01242328342050314 0.051108893007040024 -0.11900968104600906 -0.03952397033572197 -0.031444694846868515 -0.028168566524982452 -0.0005653165280818939 0.041964299976825714 -0.006857802625745535 0.043735601007938385 0.004777869675308466 -0.050141673535108566 0.01679486408829689 0.04103652387857437 0.05792359635233879 0.01915881223976612 0.05280803516507149 0.08477024734020233 0.04859130084514618 0.04475266486406326 -0.00456012599170208 0.04639022797346115 -0.043523263186216354 -0.03652985394001007 -0.011022105813026428 -0.03304176777601242 0.030244367197155952 -0.00044924169196747243 -0.07659944891929626 -0.04352116212248802 0.05298667028546333 -0.08751657605171204 -0.05620085075497627 0.03010442480444908 -0.009015871211886406 0.08073825389146805 0.0886072963476181 -0.02290414460003376 0.005516664125025272 0.03920550271868706 -0.008443489670753479 0.005018996074795723 0.05794484168291092 0.00027973458054475486 -0.026387974619865417 0.007557433098554611 0.011790599673986435 -0.005176524166017771 -0.07401598244905472 0.02139929123222828 0.03808609023690224 0.03940803185105324 -0.05940920487046242 -0.05433722957968712 0.028883136808872223 -0.04546710476279259 -0.08259733021259308 0.009051462635397911 -0.04216006025671959 -0.003014578949660063 0.0664350762963295 0.02830173261463642 0.03411360830068588 -0.004584789276123047 -0.01016579195857048 -0.04672607406973839 -0.0454598106443882 -0.010254250839352608 -0.0938684344291687 -0.05787409842014313 -0.04547043517231941 0.017493385821580887 0.015222080051898956 -0.02983867935836315 -0.015833530575037003 0.011209866963326931 0.010793925262987614 0.014686338603496552 0.08766781538724899 0.07769489288330078 0.031367477029561996 0.01192387007176876 -0.023248419165611267 0.0258120559155941 -0.040525954216718674 -0.00373525801114738 -0.039606571197509766 0.011656131595373154 -0.06225349381566048 0.008064753375947475 0.02449941448867321 0.05750502645969391 0.01317361369729042 0.01696603000164032 0.027464112266898155 -0.030750855803489685 -0.06529415398836136 0.004521800205111504 0.0602397657930851 -0.03238122537732124 0.05567030608654022 -0.019596120342612267 0.06906753778457642 -0.010992567986249924 -0.03128543123602867 -0.06600429862737656 0.04159730672836304 -0.013256036676466465 0.05705203488469124 0.05441105738282204 -0.05824801325798035 0.07252954691648483 0.013716381974518299 0.0021915158722549677 -0.06797850131988525 -0.006371359806507826 -0.008941438049077988 0.02174696885049343 0.0258218701928854 0.07994198799133301 -0.02661105990409851 -0.01206185668706894 0.017208212986588478 0.05257571116089821 -0.04231506213545799 -0.013090945780277252 -0.01569415256381035 -0.08606640249490738 0.05275929719209671 -0.02421773225069046 -0.09874477982521057 -0.03083660453557968 0.048662979155778885 -0.006707814987748861 -0.027014056220650673 0.009416305460035801 0.01012260839343071 -0.004128945525735617 -0.0655096098780632 0.013168858364224434 -0.04850463941693306 -0.10446982830762863 0.0984639823436737 0.023862000554800034 -0.10482098907232285 -0.026420490816235542 -0.014145629480481148 0.015982693061232567 -0.0295601487159729 0.026067888364195824 0.04873216524720192 0.10065723955631256 0.016134019941091537 -0.008861592970788479 0.02969146892428398 -0.07168907672166824 -0.05284712091088295 0.01853066496551037 0.04771437495946884 -0.05743569880723953 -0.028978893533349037 0.01495791133493185 -0.027948202565312386 0.004053111653774977 -0.021824834868311882 0.0256931334733963 -0.014033415354788303 -0.025677641853690147 -0.05008118972182274 0.060833629220724106 -0.059903137385845184 -0.05172270908951759 0.053518377244472504 0.003008668776601553 0.061005834490060806 -0.004421620164066553 -0.031078841537237167 0.01962832547724247 0.011143983341753483 0.008861633017659187 -0.0008461311808787286 0.06411994993686676 -0.020365506410598755 -0.08857464045286179 -0.013656582683324814 -0.08417484909296036 -0.04535149037837982 -0.01381361298263073 -0.022923652082681656 -0.060966357588768005 0.0761195570230484 -0.007484682369977236 -0.03867676481604576 -0.060045670717954636 0.0015082249883562326 -0.04589679092168808 -0.06314810365438461 -0.03429615870118141 0.015881022438406944 -0.04415353015065193 -0.07336568832397461 0.046410899609327316 -0.04308110848069191 -0.018097026273608208 -0.01806686446070671 -0.031446076929569244 -0.06811776012182236 0.023364245891571045 -0.03805246204137802 -0.021304944530129433 0.010340075939893723 -0.07398587465286255 0.027724996209144592 0.10072676092386246 0.0686720460653305 0.05672169104218483 0.03526461869478226 0.00034731230698525906 0.11144065856933594 0.01729513145983219 -0.04601334407925606 -0.01475444994866848 -0.03551596403121948 -0.06576809287071228 0.029932726174592972 -0.025660809129476547 -0.010596108622848988 -0.012616140767931938 0.017271561548113823 0.0443207249045372 0.02789279632270336 -0.05597589164972305 -0.021064626052975655 0.003077923785895109 -0.03574643284082413 0.030280956998467445 0.012922583147883415 0.015349755063652992 -0.03318425640463829 -0.05555221065878868 -0.049550898373126984 -0.03666878119111061 -0.00730549544095993 -0.009870906360447407 0.06895265728235245 -0.014070297591388226 -0.025812184438109398 -0.015343091450631618 -0.03764050826430321 0.10342620313167572 -0.06422444432973862 0.008903446607291698 0.030848557129502296 0.043006930500268936 -0.09872308373451233 -0.030526192858815193 0.0749896988272667 -0.03658551350235939 -0.0684792697429657 -0.005091401282697916 0.0007692382205277681 -0.04945937544107437 -0.015163336880505085 0.024692950770258904 -0.04404931142926216 -0.011755350977182388 -0.007785195950418711 0.02371916174888611 -0.002962008584290743 -0.02175210788846016 -0.013448256067931652 0.011778436601161957 -0.007309077773243189 0.05693436414003372 -0.03347760811448097 -0.013068425469100475 -0.034381866455078125 0.03400303050875664 -0.06009311228990555 -0.04135787859559059 -0.0600569061934948 0.044653333723545074 0.02051609940826893 -0.031913984566926956 -0.024967322126030922 -0.003945890814065933 -0.03363579884171486 0.008025149814784527 0.009059824980795383 -0.04145847633481026 -0.019811563193798065 -0.028829822316765785 -0.026630697771906853 -0.065093033015728 -0.028279149904847145 -0.01286667212843895 -0.045131806284189224 0.011115328408777714 -0.007585844956338406 -0.024262648075819016 0.030110305175185204 -0.02586267702281475 0.02452734485268593 0.06060950458049774 0.03456580638885498 0.0008938207756727934 0.0377206951379776 0.008456752635538578 0.03620688244700432 0.03204463794827461 -0.03695374354720116 -0.00638207932934165 0.04196827486157417 -0.06780373305082321 0.0415724515914917 -0.022302377969026566 0.03529844805598259 -0.0006718662334606051 -0.004473258275538683 0.013467246666550636 -0.014044509269297123 0.02696107141673565 -0.02983635663986206 0.02835608460009098 -0.06601064652204514 -0.03381238877773285 0.04585711285471916 -0.05394340306520462 -0.0636405423283577 0.00030247855465859175 -0.00863740686327219 -0.017707429826259613 0.05534939840435982 -0.007614295929670334 0.06371074914932251 0.04008059948682785 -0.08007611334323883 -0.08212757855653763 -0.04980957508087158 0.006910540163516998 0.07119160145521164 -0.036065567284822464 0.047110483050346375 0.03440496698021889 -0.002396950265392661 0.014376980252563953 -0.00427534244954586 0.021746661514043808 -0.0958452969789505 -0.016857337206602097 -0.014365184120833874 -0.017748089507222176 0.05117743834853172 -0.015738580375909805 0.0034988922998309135 -0.03264470025897026 -0.0055034467950463295 -0.030244557186961174 0.06336383521556854 -0.009393776766955853 -0.014842547476291656 0.035108782351017 -0.04523097723722458 0.011620482429862022 -0.015071891248226166 -0.027795884758234024 -0.05083773657679558 0.01992213912308216 -0.013967742212116718 0.010079088620841503 0.022719204425811768 0.048997264355421066 -0.008592960424721241 -0.08536500483751297 -0.02056046947836876 0.008085054345428944 -0.0761818140745163 0.01605493575334549 0.022707100957632065 -0.08123062551021576 -0.06238601729273796 -0.002823764458298683 -0.044563181698322296 0.04523715749382973 -0.02952176332473755 0.03430905193090439 -0.005585171282291412 0.012206187471747398 -0.03572984039783478 -0.02981656789779663 -0.005879134871065617 -0.0173901729285717 -0.038984186947345734 -0.052827607840299606 0.08429364860057831 -0.021925058215856552 0.01697358675301075 0.07036980986595154 -0.005532219540327787 0.023092515766620636 0.029810534790158272 -0.045549578964710236 0.04380328953266144 -0.012361645698547363 -0.03741716966032982 0.07722645252943039 -0.06730055809020996 0.08131612092256546 -0.060938186943531036 0.0971115380525589 -0.01984136737883091 -0.04384226351976395 0.0858316645026207 0.08985882252454758 0.0018192854477092624 0.028048239648342133 -0.034550804644823074 +0.0666869729757309 -0.06705203652381897 0.01747470535337925 0.005147828254848719 -0.04305684566497803 -0.0047402880154550076 -0.016904251649975777 0.023737790063023567 -0.006163561716675758 -0.05948175862431526 -0.004499714355915785 0.028613755479454994 -0.02732120081782341 0.0059724655002355576 0.004418130498379469 -0.040190890431404114 -0.01924072951078415 0.015484211035072803 -0.03234328702092171 -0.036071691662073135 0.037259139120578766 0.027972394600510597 -0.03599994629621506 0.027176078408956528 -0.025193404406309128 -0.0006934195407666266 -0.038838449865579605 0.003333216067403555 -0.0009978062007576227 0.052007272839546204 0.07395730167627335 -0.04875204712152481 0.04155388101935387 -0.03314914554357529 -0.059139642864465714 0.053285930305719376 -0.046207841485738754 0.10339023172855377 0.022655842825770378 0.018999971449375153 -0.03280605003237724 -0.02960456721484661 -0.047912389039993286 -0.01736598275601864 0.017262406647205353 -0.006641009822487831 0.018512660637497902 -0.017449963837862015 0.03295557573437691 0.03152691200375557 0.09368225932121277 0.010180270299315453 0.001949834986589849 0.01382644847035408 0.026808006688952446 0.04150136932730675 0.028778333216905594 -0.038706377148628235 -0.03447087109088898 -0.00043418435961939394 -0.08674909919500351 -0.007003763224929571 -0.004990038927644491 0.024380363523960114 0.018607838079333305 -0.025523461401462555 -0.030823875218629837 0.0912952795624733 0.016735592857003212 -0.04563448950648308 -0.00027588155353441834 0.10927590727806091 -0.06775664538145065 -0.08319424092769623 0.05382406711578369 -0.05255817994475365 -0.004783809185028076 -0.002227021148428321 -0.020727530121803284 -0.017328845337033272 -0.03423497825860977 -0.04750460758805275 0.12140871584415436 -0.03869922459125519 -0.017690155655145645 -0.030962582677602768 -0.011114554479718208 -0.08164216578006744 0.09056972712278366 0.030045216903090477 0.03742515668272972 0.034405700862407684 -0.042435456067323685 0.055709391832351685 -0.02629273757338524 -0.03017304465174675 0.015600142069160938 -0.05389273911714554 -0.02417105808854103 -0.00974782183766365 0.048257119953632355 0.008989494293928146 0.07524304836988449 -0.012608646415174007 0.10255276411771774 0.037345901131629944 -0.052689820528030396 -0.008517436683177948 0.041560228914022446 0.022883882746100426 0.03252169117331505 0.13234440982341766 0.04401085898280144 0.03672170266509056 0.06041295453906059 0.022707227617502213 0.020050961524248123 -0.06390491873025894 0.0071528395637869835 0.0017642740858718753 -0.0014506978914141655 0.04848489165306091 -0.045914553105831146 -0.07212888449430466 -0.020142750814557076 0.06025273725390434 -0.06593619287014008 -0.04316418245434761 0.09217198193073273 -0.018983159214258194 0.08617983758449554 0.07753622531890869 -0.051999568939208984 0.04909881576895714 0.03283064439892769 -0.01246173121035099 -0.06545035541057587 0.028607647866010666 0.03805965557694435 -0.038951072841882706 -0.021323738619685173 0.0793343037366867 -0.005554867908358574 -0.03425899147987366 0.030838122591376305 0.024210887029767036 0.06197335198521614 -0.03084002621471882 -0.04804113134741783 0.041229572147130966 -0.027977442368865013 -0.09488476067781448 0.012374422512948513 -0.060004398226737976 0.016797244548797607 0.0584888719022274 0.015566032379865646 0.02616898901760578 0.016141977161169052 -0.024144811555743217 -0.07298821955919266 -0.08890888839960098 -0.06591004878282547 -0.06276660412549973 -0.010949437506496906 0.019842499867081642 0.031673017889261246 0.024518007412552834 -0.07308691740036011 -0.03408900275826454 0.015831148251891136 -0.04344956576824188 0.01183822751045227 0.09576577693223953 0.08215659856796265 0.06321422010660172 -0.03093693032860756 -0.023983603343367577 0.0013011773116886616 -0.002996232360601425 0.044420026242733 -0.06542575359344482 0.0123244384303689 -0.06608914583921432 0.01233038678765297 0.000889189715962857 0.04094995558261871 0.015799617394804955 -0.003207472153007984 -0.019403215497732162 -0.0021571421530097723 -0.05618078261613846 -0.0023793992586433887 0.0213074441999197 -0.004224539268761873 0.014325817115604877 -0.01950024627149105 0.09929588437080383 -0.009109579026699066 -0.039948225021362305 -0.05938494950532913 0.02043415606021881 0.03804789483547211 0.0023994031362235546 0.03212064132094383 -0.05904232710599899 0.08733811229467392 0.031101178377866745 0.08397939801216125 -0.08060474693775177 -0.0204838365316391 0.0008997399127110839 0.041194941848516464 0.041334159672260284 0.014826368540525436 -0.06584867835044861 -0.01770893856883049 0.012453936040401459 0.05611947178840637 -0.04057438299059868 -0.04542398825287819 -0.008942896500229836 -0.03039347007870674 0.02623605541884899 -0.01602807641029358 -0.08202925324440002 -0.0919208750128746 0.018121831119060516 0.02708320878446102 -0.052530329674482346 -0.001117273815907538 0.02508491650223732 -0.028811724856495857 -0.006003366783261299 0.06034335494041443 -0.07214263826608658 -0.07439085096120834 0.06978379189968109 -0.0063178869895637035 -0.045766204595565796 -0.047117721289396286 -0.02143903821706772 0.06542282551527023 0.019435355439782143 0.03756938874721527 0.029570406302809715 0.06731630116701126 -0.01662786304950714 -0.05420559272170067 -0.009340839460492134 0.0109016764909029 -0.029466252774000168 0.006490865256637335 0.012011643499135971 -0.03575902059674263 -0.08799275010824203 0.01085684448480606 -0.054847802966833115 0.00994699914008379 -0.030292021110653877 0.016969697549939156 -0.02158832736313343 0.004463671240955591 0.004916460253298283 0.014186838641762733 -0.031046634539961815 0.02202128805220127 -0.005472707096487284 -0.045161500573158264 0.03063817322254181 -0.024132877588272095 0.035852979868650436 0.016048984602093697 -0.04659731686115265 -0.02109435945749283 -0.034572504460811615 0.06273405998945236 -0.0530378594994545 -0.07042478024959564 -0.07952240109443665 -0.04889041930437088 -0.03913126885890961 -0.001405608025379479 -0.01887447200715542 -0.02518174797296524 0.08410228043794632 -0.02097487263381481 -0.058011747896671295 -0.00013615674106404185 -0.030824216082692146 -0.04472788795828819 -0.02947663702070713 -0.020955465734004974 -0.009553449228405952 -0.01920531876385212 0.0004825174401048571 0.021080175414681435 -0.06651827692985535 -0.0040146103128790855 -0.004670875612646341 0.032692499458789825 -0.0016788298962637782 0.023558776825666428 0.006453292444348335 -0.019573837518692017 -0.028527816757559776 -0.06381039321422577 0.045853592455387115 0.06128446385264397 0.08198776841163635 0.06283646076917648 0.0018261680379509926 0.03559725359082222 0.10612914711236954 0.04581761360168457 -0.053516171872615814 -0.0046459645964205265 -0.020674873143434525 -0.04670262709259987 0.05086144432425499 0.006439779885113239 0.021413978189229965 -0.010722428560256958 -0.0022042274940758944 0.052605342119932175 0.0013542389497160912 0.009090529754757881 -0.018028371036052704 0.04591500014066696 -0.023329949006438255 0.004091671202331781 -0.013788129203021526 0.022838084027171135 -0.0039916024543344975 -0.029708608984947205 -0.05038449913263321 -0.021454881876707077 0.03288868069648743 -0.027925563976168633 0.06295496225357056 -0.010578696615993977 -0.06024005264043808 -0.007778145372867584 0.019015811383724213 0.078802689909935 -0.025281615555286407 0.017099585384130478 -0.005433803424239159 0.04494825750589371 -0.14022131264209747 0.02138254977762699 -0.007721878122538328 -0.03433402255177498 -0.0813886970281601 0.004668538458645344 0.03998459503054619 -0.020723596215248108 -0.046203989535570145 -0.06247067078948021 -0.029192538931965828 -0.02697407826781273 -0.010153845883905888 0.01053417194634676 0.08524428308010101 0.04211267828941345 -0.033244408667087555 0.018225086852908134 0.006971287075430155 0.024812916293740273 -0.009340541437268257 -0.024699071422219276 -0.05647028982639313 0.022972937673330307 -0.06627297401428223 -0.054421354085206985 -0.07246477901935577 0.0115083958953619 -0.026299243792891502 -0.001886110519990325 -0.018755098804831505 -0.03434614837169647 -0.03445788100361824 -0.037936050444841385 0.04299502447247505 -0.041515931487083435 0.02151631936430931 -0.011838994920253754 -0.028064526617527008 -0.08256159722805023 -0.04679375886917114 0.002503781346604228 -0.014177527278661728 0.0006124670035205781 -0.01264658197760582 -0.014897745102643967 0.0370350256562233 0.00792667269706726 0.011946036480367184 0.06731041520833969 0.006533937994390726 0.007646892219781876 0.06684790551662445 0.05757579952478409 0.027459261938929558 0.03287750110030174 -0.060817886143922806 -0.028866909444332123 0.013917208649218082 -0.044298313558101654 0.036750685423612595 0.008575995452702045 0.013213403522968292 -0.03458915278315544 -0.015819596126675606 0.004638706333935261 -0.04724148288369179 0.018585948273539543 -0.02220231108367443 0.08732828497886658 -0.07558201998472214 -0.051968663930892944 0.02697552554309368 -0.04771672934293747 -0.08512630313634872 -0.03590802848339081 -0.05359791964292526 -0.03874170035123825 0.04743581637740135 -0.026912175118923187 0.0018844364676624537 0.04855235666036606 0.008438090793788433 -0.04558534547686577 0.017604755237698555 -0.023055674508213997 -0.0005503493011929095 0.03910761699080467 0.06623928248882294 0.006890384946018457 0.018571730703115463 0.02608788199722767 -0.041289087384939194 0.03176610544323921 -0.11218871921300888 -0.01162358745932579 -0.013889772817492485 -0.01546624954789877 0.0028508356772363186 0.0007663971045985818 0.012681326828897 -0.05280885845422745 0.00890785176306963 -0.03773077204823494 0.10401133447885513 -0.00982829462736845 0.012792587280273438 -0.01982155442237854 -0.06659329682588577 -0.03929428383708 0.025131840258836746 -0.02938716486096382 -0.07480398565530777 0.03891389071941376 -0.022369029000401497 -0.008075260557234287 -0.0546761080622673 0.03949471190571785 0.00723913824185729 -0.08804114162921906 -0.018249116837978363 0.001226958236657083 -0.05963711440563202 0.04669339582324028 0.027917001396417618 -0.10413509607315063 -0.0829014852643013 0.022201986983418465 -0.07574314624071121 0.007875889539718628 -0.04761875420808792 0.032779425382614136 0.006226655561476946 0.010458802804350853 -0.0391971617937088 -0.014990931376814842 0.04784172773361206 -0.007862299680709839 -0.05517807975411415 -0.026431577280163765 0.05044716224074364 -0.027584651485085487 0.0014593614032492042 0.07758402079343796 0.009416431188583374 0.014908438548445702 0.06350759416818619 -0.036389440298080444 0.03443571552634239 0.002923575695604086 0.028936687856912613 0.04524136707186699 -0.04317762330174446 0.07997190952301025 -0.08352774381637573 0.1263275146484375 0.017417700961232185 0.015220952220261097 0.08785635232925415 0.04467609152197838 -0.00577335711568594 0.025555167347192764 -0.062005311250686646 +0.012194216251373291 -0.04084918648004532 -0.026966679841279984 0.04212747514247894 -0.0765887200832367 -0.023548554629087448 -0.0033950188662856817 0.03244272619485855 0.0026332007255405188 -0.04985114559531212 -0.055237822234630585 0.030699770897626877 0.013082562945783138 0.03318078815937042 0.027532357722520828 -0.032525356858968735 -0.06699865311384201 0.010766992345452309 -0.01359452586621046 -0.051910776644945145 0.022566400468349457 -0.0038276135455816984 -0.048301175236701965 0.09557432681322098 0.04227159917354584 0.03545033559203148 -0.04074275866150856 -0.015111168846487999 -0.0002904845750890672 0.030761564150452614 0.059937819838523865 -0.02380526438355446 0.02785366401076317 -0.043364476412534714 -0.06790774315595627 0.06399522721767426 -0.022185420617461205 0.12260349094867706 0.0015300262020900846 0.010348092764616013 -0.044574689120054245 -0.005233329255133867 -0.07120336592197418 -0.04905316233634949 0.013865252956748009 -0.010343593545258045 0.008796444162726402 -0.003411333542317152 0.01786773093044758 0.025002513080835342 0.06965286284685135 0.017508942633867264 -0.0304217878729105 -0.023926354944705963 -0.03946584463119507 0.0318768136203289 0.016854336485266685 -0.04280434548854828 -0.03867379203438759 0.01294602919369936 -0.08992191404104233 0.008475175127387047 0.006774942856281996 -0.0019072368741035461 -0.008133018389344215 0.0016443009953945875 -0.023795975372195244 0.0796983540058136 0.005460462532937527 -0.029178094118833542 0.02448289841413498 0.07240235805511475 -0.050243183970451355 -0.017039800062775612 0.05053070932626724 -0.029091056436300278 -0.020216703414916992 0.03619494289159775 -0.0154398949816823 -0.010014583356678486 0.025043867528438568 -0.027898378670215607 0.13721799850463867 -0.024788858368992805 -0.04332064092159271 -0.0207595843821764 0.004837516229599714 -0.039501599967479706 0.04501256346702576 0.0024388276506215334 0.02530696615576744 0.08083520829677582 -0.046598516404628754 0.06476609408855438 0.035488344728946686 -0.021381348371505737 0.0062699345871806145 -0.15300244092941284 -0.048846617341041565 0.019981786608695984 0.01881513185799122 -0.016826152801513672 0.07114186882972717 -0.03111160919070244 0.05392030254006386 0.03759021311998367 -0.07729025185108185 -0.010201094672083855 0.021881012246012688 -0.013813302852213383 0.041318248957395554 0.10675657540559769 0.028513336554169655 0.06055714562535286 0.07105764001607895 0.0005821384256705642 0.009586187079548836 -0.039687857031822205 -0.05986887961626053 0.0022174157202243805 0.0010200276738032699 0.059577275067567825 0.0038699309807270765 -0.07922330498695374 -0.03323650732636452 0.008056649938225746 -0.12821903824806213 0.010193814523518085 0.07311753183603287 -0.04354981333017349 0.11402248591184616 0.04132304713129997 -0.011679529212415218 0.026653792709112167 0.03672654554247856 0.010505120269954205 0.0030291324947029352 0.008600311353802681 -0.0013172805774956942 -0.030217016115784645 -0.03300480544567108 0.07122455537319183 0.025703517720103264 -0.029015855863690376 0.06560295075178146 0.03324340656399727 0.012566863559186459 0.0032984106801450253 -0.02721666730940342 -0.023487024009227753 -0.07808735221624374 -0.08000336587429047 0.029538359493017197 -0.05380687117576599 0.016080347821116447 0.04074518755078316 0.05326998606324196 0.05906062200665474 -0.006641804240643978 -0.034715957939624786 -0.05511697754263878 -0.0018850177293643355 -0.024236414581537247 -0.06246063858270645 0.021396880969405174 0.01558959111571312 -0.032029204070568085 0.0073001328855752945 -0.05380920693278313 -0.015619233250617981 -0.009239823557436466 -0.028238445520401 0.023164667189121246 0.08137484639883041 0.05446489900350571 -0.009137389250099659 0.013908149674534798 -0.06788179278373718 -0.030009765177965164 0.00458594411611557 0.022576548159122467 -0.05295340344309807 0.03822057321667671 -0.03453322872519493 -0.020956795662641525 -0.018364261835813522 0.033862847834825516 -0.02280842326581478 -0.0024434535298496485 -0.040747322142124176 -0.03264255449175835 -0.0509420670568943 0.0568251796066761 0.050106972455978394 -0.030365483835339546 0.029582787305116653 0.014734914526343346 0.07608923316001892 0.005905694793909788 0.023557858541607857 -0.058269329369068146 0.020705973729491234 0.010722504928708076 0.05428572744131088 0.04227861762046814 -0.05957121402025223 0.0790095329284668 0.022037554532289505 0.054713174700737 -0.08518163114786148 0.0026404266245663166 0.015080097131431103 -0.013484287075698376 0.08405154198408127 0.08266198635101318 -0.03812476992607117 -0.017473705112934113 0.01644877903163433 0.05383748188614845 -0.07869523018598557 -0.029791271314024925 -0.013231135904788971 -0.06524255871772766 -0.02136952430009842 -0.03199658542871475 -0.07703396677970886 -0.04819219559431076 0.03186507523059845 -0.012292981147766113 -0.038690727204084396 -0.026797592639923096 0.06281102448701859 -0.01846584863960743 -0.027423730120062828 0.011455217376351357 0.005324152763932943 -0.056761015206575394 0.06967479735612869 -0.02150079607963562 -0.08844920992851257 -0.07034684717655182 0.008543401025235653 0.036087196320295334 0.04321146383881569 0.03451050445437431 0.06486129015684128 0.09548909962177277 0.04132765904068947 -0.05280854180455208 0.01630224473774433 -0.014721102081239223 -0.033130474388599396 0.013977188616991043 0.06213567033410072 -0.031206253916025162 -0.06283242255449295 0.00561579829081893 -0.06811872124671936 -0.014318968169391155 0.014524316415190697 0.04054304212331772 -0.031123358756303787 -0.04746465012431145 -0.0240881759673357 -0.016790272668004036 -0.023706408217549324 0.009244092740118504 -0.012363906018435955 -0.03946462646126747 0.07305168360471725 -0.05167384445667267 -0.043204694986343384 -0.006020580418407917 0.01001299824565649 0.01488765049725771 -0.05580776184797287 0.04192563518881798 -0.031599029898643494 -0.06302732974290848 -0.02502126805484295 -0.05672222375869751 -0.08332474529743195 -0.0443689189851284 -0.0156073784455657 -0.030699148774147034 0.09027007967233658 0.004329056944698095 -0.07877445220947266 -0.03138906508684158 -0.04297865927219391 -0.008801049552857876 -0.04856444150209427 0.014979126863181591 -0.013260167092084885 -0.055207397788763046 -0.02755626104772091 0.026155225932598114 -0.02994387038052082 -0.007722232956439257 0.06613814830780029 0.012069234624505043 -0.058589089661836624 0.06608396023511887 0.006888228002935648 -0.02743886224925518 -0.028548739850521088 -0.10713045299053192 0.03127533197402954 0.09152519702911377 0.02460034005343914 0.026935312896966934 0.03425004333257675 0.05198248103260994 0.09137056022882462 -0.003997801337391138 -0.015697186812758446 0.015424528159201145 -0.03218269720673561 -0.05851414427161217 0.06161892041563988 -0.015209387056529522 0.0047820620238780975 -0.028175726532936096 -0.006893534678965807 0.029734062030911446 0.03160843998193741 -0.000235248458920978 -0.03215130418539047 0.034353431314229965 0.002348013687878847 0.025243664160370827 -0.02675633132457733 -0.001607243437319994 -0.0020396821200847626 -0.05384073406457901 -0.07988562434911728 -0.03531977906823158 0.05034200847148895 0.007918905466794968 0.05960250645875931 -0.017846604809165 -0.06980657577514648 0.021693266928195953 -0.02025742083787918 0.10503941774368286 -0.08039134740829468 0.008702917955815792 0.05239792913198471 0.030496209859848022 -0.08219844102859497 0.0038457384798675776 0.025915602222085 -0.059918325394392014 -0.06695135682821274 -0.004039929714053869 0.05583320930600166 -0.04499443992972374 -0.05267120152711868 -0.019018448889255524 -0.027152687311172485 0.01171888504177332 0.01445870939642191 0.02019338868558407 0.05155550315976143 0.019778631627559662 -0.016573801636695862 0.043987371027469635 0.03177051618695259 0.0243961364030838 -0.03166945278644562 0.029898058623075485 -0.01132743339985609 0.09462920576334 -0.040547680109739304 -0.024417825043201447 -0.07876089960336685 0.033206552267074585 -0.03285876289010048 0.003049603197723627 -0.04528772458434105 -0.026791349053382874 -0.011457638815045357 0.022198742255568504 0.035664383322000504 -0.06196698918938637 -0.02677391842007637 -0.05624212324619293 -0.0696621686220169 -0.06701185554265976 -0.04389479383826256 0.007468523923307657 -0.029640503227710724 0.04431227222084999 -0.0620749406516552 -0.020902788266539574 0.019347934052348137 0.0006334920763038099 0.023030303418636322 0.02831428498029709 0.033988550305366516 -0.02659744955599308 0.05628739669919014 0.004356087185442448 0.05113470181822777 -0.005189673975110054 -0.050612255930900574 0.04970855638384819 0.05083639547228813 -0.042555492371320724 0.051450781524181366 -0.04190122336149216 -0.021941006183624268 0.003430645214393735 -0.017586715519428253 -0.00586717901751399 0.009993396699428558 -0.0024016532115638256 -0.07641030102968216 0.036631930619478226 -0.07755438983440399 -0.04373907670378685 0.03388955816626549 -0.05797501280903816 -0.07237721979618073 -0.06083323061466217 -0.036195747554302216 -0.019863879308104515 0.03798743709921837 0.002540244022384286 0.017143819481134415 0.0737142562866211 -0.031140990555286407 -0.04510659724473953 0.01969173364341259 -0.031140107661485672 0.01706153340637684 0.007300528232008219 0.059413712471723557 0.02434528060257435 0.003984578885138035 0.00345939421094954 -0.016201438382267952 0.01634080894291401 -0.05615382269024849 0.013937478885054588 0.0006612641736865044 -0.051280513405799866 0.009805350564420223 0.028656762093305588 0.029887527227401733 -0.06106499582529068 0.00045206042705103755 -0.041032981127500534 0.05432498827576637 0.016303472220897675 0.04070422798395157 0.014511657878756523 -0.019167520105838776 0.014738506637513638 0.024742498993873596 -0.015481592155992985 -0.07122635841369629 0.011754775419831276 -0.053663741797208786 0.031282924115657806 -0.023470981046557426 -0.016910942271351814 0.010487196035683155 -0.07438091188669205 0.0027537387795746326 -0.0108346464112401 -0.050488561391830444 0.004750716034322977 0.02075601927936077 -0.05839065462350845 -0.06222721189260483 0.0005835345946252346 -0.060507066547870636 0.049943096935749054 0.017287123948335648 0.05577492713928223 -0.034232012927532196 -0.015324873849749565 0.003171361982822418 0.004062578547745943 0.029477974399924278 -0.023893512785434723 -0.07106512784957886 0.000946815765928477 0.08646552264690399 -0.02842225693166256 0.010468296706676483 0.07616563141345978 -0.014090979471802711 0.05744005739688873 0.013806067407131195 -0.0481046698987484 0.045626137405633926 0.009074239991605282 -0.023181689903140068 0.05974511429667473 -0.057346656918525696 0.08867914974689484 -0.05337151512503624 0.09248946607112885 0.0003929768572561443 -0.005346084479242563 0.11071357876062393 0.07097883522510529 0.020817115902900696 0.046952929347753525 -0.059009380638599396 +0.002700724871829152 -0.031189506873488426 0.004735927563160658 0.03393308073282242 -0.06280001997947693 -0.05002657324075699 0.0001550720480736345 0.020240267738699913 0.04593099653720856 -0.03836015239357948 -0.007882440462708473 0.012459270656108856 0.01556952390819788 0.04162876307964325 0.03849637880921364 -0.022380873560905457 -0.06399185955524445 0.004888765513896942 -0.04664255306124687 -0.03588392958045006 0.04236473888158798 0.009213023819029331 -0.07034942507743835 0.04840938001871109 -0.03172208368778229 0.01750364899635315 -0.0729951560497284 0.010933086276054382 -0.029561325907707214 0.019833913072943687 0.06182790547609329 -0.017746826633810997 0.07152800261974335 -0.07261865586042404 -0.03454719856381416 0.0326913520693779 -0.037686001509428024 0.1031135842204094 0.020116670057177544 -0.0261272881180048 -0.03160792961716652 -0.005714193917810917 -0.06761568039655685 -0.04603457450866699 0.004314036574214697 -0.026366189122200012 0.010489361360669136 -0.010943560861051083 0.018232695758342743 0.010386507958173752 0.03999081999063492 0.020226066932082176 -0.02207537740468979 -0.03480910509824753 -0.018898585811257362 -0.0033272055443376303 0.051325902342796326 -0.10142944008111954 -0.07406248897314072 0.0429655946791172 -0.07943163067102432 0.01557113416492939 0.019357971847057343 0.013024933636188507 -0.012462220154702663 -0.023023400455713272 0.015320593491196632 0.05475053936243057 0.022664761170744896 -0.030952366068959236 0.04302040860056877 0.06312423199415207 -0.054053351283073425 -0.057788826525211334 0.029895639047026634 -0.016442354768514633 0.011162027716636658 0.037399474531412125 -0.007880236953496933 0.02569470927119255 -0.010293284431099892 -0.04130542650818825 0.10091286152601242 -0.0008163675083778799 -0.02379227988421917 -0.06880240887403488 0.022196359932422638 -0.036909591406583786 0.034091923385858536 -0.025065654888749123 0.005290853325277567 0.07399076223373413 -0.054922886192798615 0.0715905949473381 0.037600960582494736 0.029424279928207397 -0.005449476186186075 -0.14477571845054626 -0.03535260260105133 0.0034861029125750065 -0.0011564262676984072 -0.008614948950707912 0.048640068620443344 0.019565002992749214 0.050151124596595764 0.057577311992645264 -0.051361456513404846 0.0300145260989666 0.04101134091615677 0.04389755055308342 0.03132505714893341 0.08374112844467163 0.032428815960884094 0.0549524687230587 0.017516423016786575 -0.02008405514061451 -0.002165287034586072 -0.017257481813430786 -0.01970156468451023 0.009173578582704067 0.006341395899653435 0.0003800330450758338 -0.02690775692462921 -0.05469900742173195 -0.04828986898064613 0.05482161045074463 -0.12718847393989563 -0.028663307428359985 0.04746434837579727 -0.03696059063076973 0.10644987225532532 0.04399910196661949 -0.003640022361651063 0.00822613388299942 0.060191258788108826 0.04432663321495056 0.00013884849613532424 0.010176303796470165 -0.009110230021178722 -0.049900755286216736 -0.03715205192565918 0.06823525577783585 0.006037758197635412 -0.0574088916182518 0.04425419867038727 0.04624662548303604 -0.011936192400753498 -0.026798700913786888 -0.0899934396147728 -0.006865316070616245 -0.09483761340379715 -0.07762537151575089 0.012898338958621025 -0.08054427802562714 0.007864972576498985 0.03985391557216644 0.035488419234752655 0.041471026837825775 -0.030207229778170586 -0.02395797334611416 -0.06057371199131012 -0.021950216963887215 -0.003200110048055649 -0.061029355973005295 -0.022448088973760605 -0.02920975536108017 0.016134750097990036 0.049121368676424026 -0.02454490028321743 -0.03267157822847366 0.007518400438129902 -0.0032653037924319506 0.021854130551218987 0.05688941478729248 0.021499862894415855 -0.004661760292947292 0.0035223360173404217 -0.05605927109718323 0.014689774252474308 -0.027484524995088577 0.01185187604278326 -0.03346413001418114 0.026575153693556786 -0.055406294763088226 -0.015825072303414345 -0.011040190234780312 0.0007351840613409877 -0.023730836808681488 -0.021660607308149338 -0.053290192037820816 -0.0672559067606926 -0.08509387075901031 0.03495470806956291 0.08328990638256073 -0.031408846378326416 0.03358794003725052 0.011063098907470703 0.05402425676584244 -0.015322914347052574 0.00933304987847805 -0.04343752562999725 0.04656301811337471 0.004692858550697565 0.029314639046788216 -0.031401026993989944 -0.06386976689100266 0.05972854420542717 -7.928894774522632e-05 0.026169758290052414 -0.05870839208364487 0.025268200784921646 0.03558659553527832 -0.023373238742351532 0.04882923513650894 0.07199748605489731 -0.03550766035914421 -0.014099028892815113 0.020091045647859573 0.06855172663927078 -0.08262484520673752 0.02765013463795185 0.011924170888960361 -0.06422042846679688 0.02467995323240757 -0.02508772350847721 -0.10167267918586731 -0.017193663865327835 -0.01625092141330242 -0.033275019377470016 -0.039559148252010345 -0.02375425025820732 0.016240078955888748 0.006113950628787279 -0.03450969606637955 -0.01425604522228241 0.01135925855487585 -0.06768597662448883 0.1066451296210289 -0.010015136562287807 -0.059396371245384216 -0.032673753798007965 -0.009638129733502865 0.04508170485496521 -0.013083528727293015 0.013269787654280663 0.044888366013765335 0.1200956255197525 0.045618969947099686 -0.014170568436384201 -0.014061378315091133 -0.03997139260172844 -0.07931698113679886 0.008509152568876743 0.06019550934433937 -0.03252066299319267 -0.015515529550611973 0.016550149768590927 -0.055799394845962524 -0.013486934825778008 -0.0028324800077825785 0.04662144184112549 -0.0143791688606143 -0.02183816209435463 -0.04064255580306053 0.032609570771455765 0.004818157758563757 -0.030696900561451912 0.024498647078871727 -0.009171769954264164 0.06092260405421257 -0.019429374486207962 -0.0679178386926651 0.033643584698438644 -0.0059442766942083836 0.04851134866476059 -0.02389402501285076 0.048503030091524124 -0.0303714107722044 -0.1039697602391243 -0.032549332827329636 -0.03974098339676857 -0.05923004075884819 -0.010848719626665115 0.0026142816059291363 -0.05108915641903877 0.10637658834457397 0.0046617090702056885 -0.049982789903879166 -0.033603545278310776 -0.01845720410346985 -0.012274300679564476 -0.07585487514734268 0.011841610074043274 -0.02391211688518524 -0.07619639486074448 -0.015283109620213509 0.044677186757326126 -0.08161955326795578 -0.016353612765669823 0.0277448408305645 -0.03224692493677139 -0.06674090772867203 0.06073269993066788 -0.037287600338459015 -0.06342758238315582 0.0031136428005993366 -0.08359244465827942 0.01917661726474762 0.07308405637741089 0.010190622881054878 0.025479691103100777 0.024968400597572327 0.060869865119457245 0.08245600759983063 -0.02925412729382515 -0.012931587174534798 0.0007403655909001827 -0.012233760207891464 -0.06321585923433304 0.03703482821583748 -0.0766318291425705 0.0029103572014719248 0.008690220303833485 -0.024029990658164024 0.07745635509490967 -0.02017485350370407 -0.007819882594048977 0.014560951851308346 0.06630586087703705 0.015171836130321026 0.0562356635928154 0.016132794320583344 -0.018321841955184937 0.00600588321685791 -0.06364213675260544 -0.05754038691520691 -0.031051287427544594 0.021183960139751434 -0.025857865810394287 0.051498301327228546 -0.007833467796444893 -0.09068933129310608 0.011935495771467686 -0.00033478435943834484 0.10535372048616409 -0.09042003750801086 -0.00515448022633791 0.030919179320335388 -0.02998276613652706 -0.10293611139059067 -0.014482196420431137 0.02337714657187462 -0.0397004708647728 -0.046692490577697754 0.03435086831450462 0.04440239816904068 -0.07426617294549942 -0.028284145519137383 0.030795138329267502 -0.0194111131131649 -0.022917931899428368 0.07526460289955139 0.006624117493629456 0.029014142230153084 -0.030311530455946922 0.0029159439727663994 -0.02170211263000965 0.05136660486459732 0.03669141232967377 -0.025378094986081123 0.052566129714250565 -0.01871827431023121 0.09290352463722229 -0.02311842143535614 -0.04151006042957306 -0.07636894285678864 0.06395726650953293 0.00680782413110137 -0.007850357331335545 -0.04016575962305069 -0.006395893637090921 -0.006859756540507078 0.02850992977619171 -0.0017210718942806125 -0.07766091823577881 -0.00319299497641623 -0.021874163299798965 -0.06532518565654755 -0.0577789731323719 -0.039430778473615646 0.017312748357653618 -0.0799621045589447 0.0013384895864874125 -0.04585590213537216 0.0020042818505316973 0.00962437130510807 -0.05062731355428696 -0.0014837507624179125 0.04999176412820816 0.026239970698952675 -0.029428593814373016 0.04975263774394989 -0.011210858821868896 0.041702497750520706 0.017887579277157784 -0.011804629117250443 0.05488770082592964 0.02221631444990635 -0.06213298812508583 0.01942950300872326 -0.055438946932554245 0.01114580873399973 0.039277564734220505 -0.024045029655098915 0.01376102864742279 0.022501468658447266 -0.001986989052966237 -0.06454067677259445 0.057425327599048615 -0.057962339371442795 -0.019098319113254547 0.008004941046237946 -0.042366258800029755 -0.08284538239240646 -0.013004971668124199 -0.01330273412168026 -0.06232014670968056 0.04681580886244774 -0.010621684603393078 0.03479190543293953 0.03018159046769142 -0.06748218089342117 -0.03806581720709801 0.01221949141472578 -0.028236670419573784 -0.010163561441004276 -0.004981104750186205 0.07698547840118408 -0.00033062053262256086 0.020062314346432686 0.010985505767166615 -0.016649840399622917 0.0015003079315647483 -0.07522230595350266 -0.0035867050755769014 -0.017473416402935982 -0.02776597999036312 -0.019244153052568436 -0.022187968716025352 0.05744495987892151 -0.08810960501432419 -0.022342022508382797 -0.036002758890390396 0.08412383496761322 -0.029905321076512337 -0.02082693576812744 0.011261739768087864 -0.024578968062996864 -0.026899095624685287 0.03563887998461723 -0.021458232775330544 -0.08959285914897919 -0.013845033943653107 -0.05574377253651619 0.0512663759291172 0.013831479474902153 0.010896939784288406 -0.025398319587111473 -0.0892503410577774 -0.03456488624215126 -0.005720257759094238 -0.06272570043802261 0.00373639864847064 0.019577983766794205 -0.051881179213523865 -0.050655197352170944 -0.025030124932527542 -0.05250438675284386 0.0698605552315712 0.013517132960259914 0.04390789940953255 -0.03192676976323128 -0.03367111086845398 -0.0223920326679945 -0.04964052140712738 0.026218803599476814 0.00913036148995161 -0.10495404154062271 -0.032498907297849655 0.07352057099342346 -0.03413857892155647 0.04027397185564041 0.07219014316797256 -0.03207022324204445 0.02658243477344513 0.0067909094505012035 -0.031943656504154205 0.015489138662815094 -0.04414179548621178 -0.0340387299656868 0.04440658912062645 -0.04748917371034622 0.074641153216362 -0.0483272485435009 0.09611956775188446 -0.013245784677565098 -0.008936525322496891 0.07527967542409897 0.08137547224760056 0.01728268340229988 -0.0031071044504642487 -0.05758531019091606 +0.0172245055437088 -0.021281909197568893 -0.02061752788722515 0.03770262375473976 -0.0915745422244072 -0.06636278331279755 -0.022169971838593483 0.073765829205513 0.01513090543448925 -0.02622983418405056 -0.05141124874353409 -0.0031783152371644974 0.003721846267580986 0.011944573372602463 0.04291137680411339 -0.017044514417648315 -0.06357279419898987 -0.019882038235664368 -0.05328673496842384 -0.046627677977085114 0.02825157344341278 0.03453925997018814 -0.0745200514793396 0.06342042237520218 0.015826918184757233 0.015227247029542923 -0.07351371645927429 0.01248924620449543 -0.010337715968489647 0.034946564584970474 0.03709692507982254 0.008810343220829964 0.05383025109767914 -0.0801793709397316 -0.046060048043727875 0.05819347873330116 -0.01889689452946186 0.09478340297937393 0.01750119775533676 -0.03362206369638443 -0.03326310217380524 0.017009461298584938 -0.013965407386422157 -0.0673128068447113 0.014322840608656406 -0.01017370168119669 0.00849522277712822 -0.03675171732902527 0.021311530843377113 0.03346838802099228 0.09240183234214783 -0.01287718303501606 -0.0058104610070586205 -0.03833046555519104 -0.02727460116147995 0.017138389870524406 0.011585788801312447 -0.05361632630228996 -0.04446536675095558 -0.0005359898204915226 -0.1010531634092331 0.011933729983866215 -0.02607676573097706 0.0007012579008005559 -0.036639582365751266 -0.0005129182245582342 -0.0009620275814086199 0.09276220947504044 0.04637604206800461 -0.02077968418598175 0.03652879223227501 0.06462787836790085 -0.06919699907302856 -0.040925998240709305 0.03974036127328873 -0.03867129236459732 -0.005844417028129101 0.04014622047543526 -0.017820175737142563 0.015663303434848785 0.03738527372479439 -0.031655509024858475 0.12001754343509674 -0.05402498319745064 -0.03491818532347679 -0.03923358395695686 -0.02467166818678379 -0.05343801528215408 0.04369919374585152 0.0019055521115660667 0.02288995496928692 0.08699580281972885 -0.01249644160270691 0.03200644627213478 0.004327965900301933 0.03847179561853409 0.026247583329677582 -0.15364018082618713 -0.02913549914956093 0.013898313976824284 -0.022326327860355377 0.0016083869850263 0.07111171633005142 -0.014961152337491512 0.04476138949394226 0.04807596281170845 -0.042440250515937805 -0.02939070388674736 0.03308522701263428 0.03774415701627731 0.02748236618936062 0.07777474075555801 0.07742570340633392 0.044747043401002884 0.023799432441592216 -0.013639057986438274 0.017068974673748016 -0.035657357424497604 -0.046721670776605606 0.017642516642808914 -0.0153645696118474 0.04060547426342964 -0.028368208557367325 -0.07591715455055237 -0.006474008783698082 0.03930053859949112 -0.0773458182811737 -0.016969338059425354 0.052996449172496796 -0.04548231512308121 0.11470165103673935 0.03241325542330742 -0.00756502291187644 0.027751803398132324 0.06516142934560776 0.042569391429424286 0.013439586386084557 0.011702383868396282 0.028851468116044998 -0.044078897684812546 -0.050033967941999435 0.047413747757673264 0.005481108091771603 -0.04626065492630005 0.05228932574391365 0.0701645016670227 -0.00038644333835691214 -0.028900552541017532 -0.04527664557099342 0.009767829440534115 -0.08119632303714752 -0.09337473660707474 0.008183252066373825 -0.06663170456886292 0.023220058530569077 0.0551433190703392 0.023687995970249176 0.039507072418928146 -0.016983455047011375 -0.016964992508292198 -0.03842238709330559 -0.06276700645685196 -0.0015637282049283385 -0.0676836222410202 -0.009077810682356358 -0.030235596001148224 -0.007221342530101538 0.005291094537824392 -0.028865965083241463 -0.042678721249103546 -0.017050640657544136 -0.01965237781405449 0.012281914241611958 0.10655248910188675 0.03941284865140915 0.008405040949583054 0.038958966732025146 -0.03379673510789871 -0.018637901172041893 -0.04043314605951309 0.003932121209800243 -0.06356744468212128 0.0306533295661211 -0.06122809275984764 -0.021594060584902763 -0.005872613284736872 0.024698033928871155 -0.015174261294305325 0.024160537868738174 6.42687373328954e-05 -0.019080135971307755 -0.044448837637901306 0.040424808859825134 0.08400765061378479 -0.011976927518844604 0.08674874156713486 0.02136171981692314 0.06443731486797333 -0.02384919300675392 -0.020052270963788033 -0.07078356295824051 0.04842438921332359 0.04140438139438629 0.03264879062771797 0.024881651625037193 -0.059018660336732864 0.10635944455862045 0.033681415021419525 0.020091185346245766 -0.056610096246004105 0.028496522456407547 0.06537744402885437 0.01825372874736786 0.06851174682378769 0.08452210575342178 -0.009590914472937584 -0.00824729073792696 -0.03339892253279686 0.017001444473862648 -0.0766715332865715 0.02383154071867466 0.025452595204114914 -0.07454611361026764 0.0449131615459919 -0.048854682594537735 -0.09798874706029892 -0.04941800981760025 -0.006933931261301041 0.0033645236399024725 -0.01807084120810032 -0.008174114860594273 0.020625632256269455 -0.010325209237635136 -0.029667267575860023 -0.028914785012602806 0.009263455867767334 -0.06044777110219002 0.09449724107980728 -0.02305775135755539 -0.07475469261407852 -0.04876060038805008 0.023347610607743263 0.018017183989286423 0.0021198007743805647 0.012752673588693142 0.05304330587387085 0.11190835386514664 0.036582592874765396 -0.012440089136362076 0.010918384417891502 -0.06433453410863876 -0.05126110464334488 -0.01425013318657875 0.016629653051495552 -0.0379871167242527 -0.057676851749420166 0.017691131681203842 -0.10221733897924423 -0.021671026945114136 -0.03179094195365906 0.04646662250161171 -0.017250286415219307 -0.014472724869847298 -0.052936356514692307 0.0484008714556694 -0.024985797703266144 -0.08231543749570847 0.03290897235274315 -0.036232661455869675 0.03552878275513649 -0.044212501496076584 -0.02027074247598648 0.026712793856859207 0.008670195937156677 0.0059667304158210754 -0.04639105126261711 0.05441892519593239 -0.03440894931554794 -0.059516895562410355 1.1193106729479041e-05 -0.05274629965424538 -0.055187374353408813 -0.009838538244366646 -0.0280289389193058 -0.019423551857471466 0.08955443650484085 0.028179701417684555 -0.03063477948307991 -0.05074406787753105 -0.030167635530233383 -0.03859884291887283 -0.025667987763881683 -0.0018739316146820784 0.017264554277062416 -0.07327894121408463 -0.031339388340711594 0.040397610515356064 -0.06426165997982025 -0.029796553775668144 0.06322070211172104 -0.03143783286213875 -0.05376805365085602 0.04799533635377884 -0.037145089358091354 -0.022341260686516762 0.015158087015151978 -0.06676052510738373 0.008240923285484314 0.09488385915756226 0.0332806222140789 0.025561334565281868 0.06612497568130493 0.015307879075407982 0.06468410044908524 -0.006325961090624332 -0.01951569691300392 0.006887928117066622 -0.010980930179357529 -0.06258101761341095 0.022128092125058174 -0.01886427029967308 -0.018671290948987007 0.0018708317074924707 -0.011485510505735874 0.050783295184373856 0.0032959713134914637 -0.04704924672842026 -0.023854579776525497 0.014492872171103954 -0.012189188972115517 0.04611814022064209 0.029468342661857605 0.003050287254154682 -0.017284438014030457 -0.07560896873474121 -0.03386632725596428 -0.07989779859781265 0.03831639513373375 0.011020385660231113 0.01742127165198326 -0.0009798379614949226 -0.04113144427537918 -0.018937276676297188 -0.0006319346721284091 0.11897547543048859 -0.09721207618713379 0.026180177927017212 0.03371676802635193 0.017097990959882736 -0.104343481361866 -0.013013744726777077 0.01795322075486183 -0.0555068701505661 -0.06166493892669678 0.015174861997365952 0.03534998372197151 -0.07373504340648651 -0.0361042320728302 0.008392926305532455 -0.03008045069873333 0.009283717721700668 0.04417242109775543 -0.0021449378691613674 0.0531744584441185 0.024588806554675102 -0.012798079289495945 0.00489170104265213 0.015640992671251297 0.03314073383808136 -0.020729705691337585 0.043098729103803635 -0.027642078697681427 0.0628322884440422 -0.03770485147833824 -0.06994961202144623 -0.058678001165390015 0.020790643990039825 -0.009980587288737297 -0.0021201777271926403 -0.04771191626787186 -0.0185853224247694 -0.008276484906673431 0.06624995172023773 0.018844489008188248 -0.055241916328668594 -0.006473463959991932 -0.029834508895874023 -0.053506769239902496 -0.080593541264534 -0.06259198486804962 0.030336447060108185 -0.07081810384988785 0.03891719505190849 -0.05181478336453438 0.003313326509669423 -0.004327013622969389 -0.007791308686137199 0.02065582387149334 0.046910662204027176 0.03263154253363609 -0.011929858475923538 0.040540438145399094 -0.014528901316225529 0.05826801806688309 0.007442181464284658 -0.06066051498055458 0.03754222020506859 0.03588389232754707 -0.04513755440711975 0.030657747760415077 -0.03479862958192825 -0.035387419164180756 0.009336795657873154 -0.046188972890377045 0.017269829288125038 0.0481589175760746 0.020355762913823128 -0.06035393103957176 0.04480340704321861 -0.05278230458498001 -0.03029012866318226 0.0223365630954504 -0.009938539005815983 -0.08278942108154297 -0.03377445787191391 -0.04148118197917938 -0.03295894339680672 0.06180369108915329 -0.011837616562843323 0.02136116474866867 0.022658806294202805 -0.061445605009794235 -0.036711666733026505 -0.01860130950808525 0.02680615708231926 0.008771735243499279 0.02394489012658596 0.05421144515275955 0.0024762621615082026 -0.009682429023087025 0.015250002034008503 -0.05219779908657074 0.033021241426467896 -0.040004223585128784 0.005185317248106003 -0.0029210697393864393 -0.010404017753899097 0.02149873413145542 0.021482447162270546 0.03469950705766678 -0.07575228065252304 -0.025687962770462036 -0.050987593829631805 0.0463455393910408 0.010411393828690052 0.02897750958800316 0.027686912566423416 -0.06353110820055008 -0.024535423144698143 0.01145838387310505 -0.012891046702861786 -0.0756160318851471 -0.002757698530331254 -0.05781546235084534 0.02500024251639843 -0.007200880907475948 0.026446806266903877 -0.016135169193148613 -0.0928252562880516 -0.00917865615338087 0.008253121748566628 -0.02594282478094101 -0.004085086286067963 0.036270368844270706 -0.030678074806928635 -0.04992152750492096 -0.05247153341770172 -0.06347782164812088 0.08534131199121475 0.03799210488796234 0.005570146720856428 -0.040383823215961456 -0.013593751937150955 -0.008371053263545036 -0.030443593859672546 -0.016878213733434677 -0.015063348226249218 -0.06546422094106674 -0.025802984833717346 0.09467973560094833 0.014583192765712738 0.01878940872848034 0.0888950377702713 -0.04706249758601189 0.031103042885661125 0.009088762104511261 0.017659563571214676 0.015650805085897446 -0.014089543372392654 -0.03538508713245392 0.06353335082530975 -0.052034586668014526 0.07010389119386673 -0.044520895928144455 0.09633064270019531 0.01791374571621418 -0.05214747041463852 0.071225106716156 0.09290729463100433 0.035101268440485 0.004414577968418598 -0.05667106434702873 +0.048144806176424026 -0.019100923091173172 -0.04245712235569954 0.041414253413677216 -0.07867791503667831 -0.046391811221838 -0.0029581543058156967 0.03275011479854584 -0.003258496057242155 -0.036743275821208954 -0.030806099995970726 -0.0032855463214218616 0.023901253938674927 0.011875293217599392 0.02446836419403553 -0.013881511054933071 -0.042993441224098206 0.04775103181600571 -0.0296819768846035 -0.027781443670392036 0.024185147136449814 -0.004883718676865101 -0.057417478412389755 0.04287285730242729 0.009463201276957989 0.02286001667380333 -0.03425728529691696 -0.004267587326467037 0.0075304233469069 0.024421878159046173 0.03378923237323761 -0.015676649287343025 0.044474709779024124 -0.04919963702559471 -0.08255418390035629 0.051451798528432846 -0.04902966693043709 0.11973759531974792 0.004257795866578817 -0.020505113527178764 -0.10274755954742432 0.007517049554735422 -0.0781988799571991 -0.05181800574064255 0.02556184120476246 0.021964672952890396 0.02221655659377575 0.02113935351371765 0.032546266913414 0.036731332540512085 0.03784154728055 0.009123965166509151 -0.005803869571536779 -0.014365668408572674 -0.017210233956575394 0.02441331185400486 0.07089094817638397 -0.044370368123054504 -0.04753175750374794 0.03237810358405113 -0.0789111778140068 -0.01455352921038866 0.023259608075022697 0.001699063228443265 -0.010275019332766533 -0.04376908391714096 -0.010328381322324276 0.07352631539106369 -0.0022743339650332928 -0.022578299045562744 -0.00383388320915401 0.07292548567056656 -0.04144289344549179 -0.045499611645936966 0.04667845368385315 -0.0715189278125763 -0.046921730041503906 0.0469500757753849 -0.012890709564089775 -0.01247342862188816 -0.02358955144882202 -0.04597220942378044 0.13744989037513733 -0.030849149450659752 -0.08349799364805222 -0.044194359332323074 -0.01346072368323803 -0.040922071784734726 0.025971664115786552 0.005647222511470318 -0.008088517934083939 0.06062119081616402 -0.07147137075662613 0.04511665180325508 0.033986158668994904 0.008241464383900166 0.020296745002269745 -0.12493035942316055 -0.06206992268562317 0.01104728039354086 -0.016940070316195488 -0.029044976457953453 0.0301703792065382 0.00029649256612174213 0.035070233047008514 0.0020570431370288134 -0.05736977234482765 0.0023367018438875675 0.020655309781432152 0.026134449988603592 0.017681460827589035 0.05891092121601105 0.05724237486720085 0.025212183594703674 0.06446027010679245 -0.0015150259714573622 0.022735469043254852 -0.044052280485630035 -0.04173623025417328 -0.009645167738199234 0.009728310629725456 0.01658620871603489 0.01467494759708643 -0.06766017526388168 -0.047471847385168076 0.012906421907246113 -0.11508196592330933 -0.035187382251024246 0.040551088750362396 -0.044371992349624634 0.10751979798078537 0.041931625455617905 -0.045399297028779984 0.013507308438420296 0.03266078606247902 0.022874455899000168 0.012290101498365402 0.05205610394477844 -0.0046969265677034855 -0.04231973737478256 -0.0007725579780526459 0.042975109070539474 -0.015019801445305347 -0.08325338363647461 0.084532231092453 0.05329958721995354 0.05540981516242027 -0.05722620710730553 -0.07961253076791763 0.01015695184469223 -0.06639126688241959 -0.06123073026537895 -0.0017939741956070065 -0.05556250363588333 0.0004754101682920009 0.03093673661351204 0.005612998269498348 0.03387074172496796 -0.01651684194803238 -0.03232097998261452 -0.06452278047800064 0.0016003747005015612 -0.010162286460399628 -0.06897436827421188 -0.04657227173447609 -0.02735828049480915 -0.008433084934949875 0.03170819208025932 -0.06477063149213791 -0.028475841507315636 0.006543747615069151 -0.0030277532059699297 0.06938107311725616 0.0660436823964119 0.07527368515729904 0.004404367879033089 0.0006125581567175686 -0.05391161888837814 0.002609384013339877 -0.013927132822573185 0.022243039682507515 -0.02710963599383831 0.022163838148117065 -0.045689988881349564 0.03991681709885597 -0.0035446544643491507 0.055445458739995956 -0.029745599254965782 0.003136088140308857 -0.029953764751553535 -0.0667920932173729 -0.06104573607444763 0.04635849595069885 0.07691073417663574 -0.035317547619342804 0.0296760406345129 -0.05352392420172691 0.04176652058959007 -0.018955375999212265 -0.005820162128657103 -0.04444089159369469 0.055172935128211975 -0.020095953717827797 0.05788707360625267 0.01366511918604374 -0.08765972405672073 0.06552735716104507 -0.010990653187036514 0.012975476682186127 -0.06263651698827744 0.022938484326004982 0.0201222226023674 -0.025251833721995354 0.05187828838825226 0.07639583200216293 0.014095031656324863 0.0036412696354091167 0.010120905935764313 0.08199822902679443 -0.05527716875076294 -0.0033398251980543137 -0.008228366263210773 -0.09228431433439255 -0.0006947469664737582 -0.03292030096054077 -0.08199550211429596 -0.0360860750079155 0.06148059293627739 -0.02533186413347721 -0.019518354907631874 -0.035365913063287735 0.0088429544121027 0.022855553776025772 -0.052570000290870667 -0.015188680961728096 -0.012494917027652264 -0.07860749959945679 0.08394929766654968 0.039621222764253616 -0.09654679894447327 -0.05102325230836868 -0.022241832688450813 0.03517390415072441 -0.0446745902299881 0.04118359088897705 0.06905543059110641 0.05156034976243973 0.0026824427768588066 0.012630710378289223 0.010361069813370705 -0.03547344356775284 -0.047066789120435715 0.002429431304335594 0.06131473183631897 -0.04407908022403717 -0.008085604757070541 0.018814347684383392 -0.02250532992184162 0.00611493457108736 0.025860104709863663 0.008756608702242374 -0.03814113885164261 -0.05494096130132675 -0.02160690538585186 0.006360143423080444 -0.07390692085027695 -0.004468205384910107 -0.0004205034638289362 -0.01603434607386589 0.06978543847799301 -0.01411628257483244 -0.04010094702243805 0.02210710570216179 -0.002781517570838332 0.022334134206175804 -0.008698969148099422 0.0607539601624012 0.006993155926465988 -0.07794873416423798 0.004784658085554838 -0.048988908529281616 -0.06941163539886475 -0.04308820888400078 -0.016482798382639885 -0.0413832925260067 0.10709389299154282 0.019218934699892998 -0.06210221350193024 -0.08419349789619446 -0.024557296186685562 -0.02067956142127514 -0.07913044840097427 -0.007570027373731136 0.004582719411700964 -0.07356712967157364 -0.05575234070420265 0.023222506046295166 -0.020624244585633278 -0.0005409343866631389 -0.005453595891594887 -0.010378489270806313 -0.08556762337684631 0.04731570556759834 -0.009446056559681892 -0.04482020437717438 -0.0024179916363209486 -0.05287347361445427 0.019312407821416855 0.06671443581581116 0.04049798846244812 0.008820908144116402 0.012435702607035637 0.014701728709042072 0.1055290475487709 -0.022577812895178795 0.004536907654255629 -0.019801752641797066 -0.06471456587314606 -0.03734496608376503 0.04686249420046806 -0.04723554849624634 -0.024057229980826378 -0.011918325908482075 0.008932061493396759 0.0511290617287159 0.016635892912745476 -0.040571533143520355 -0.022060202434659004 0.020708689466118813 -0.010036516934633255 0.04632198065519333 -0.005285533145070076 0.0187616515904665 -0.047040775418281555 -0.06890830397605896 -0.036211613565683365 -0.0005720711196772754 0.007709725294262171 -0.010185377672314644 0.04596439003944397 -0.03991233929991722 -0.04610750824213028 0.005698904395103455 0.0030446345917880535 0.11743080615997314 -0.05636456608772278 -0.014340586960315704 0.0772806704044342 0.03264758735895157 -0.060820627957582474 0.019263168796896935 0.05732176825404167 -0.04819919168949127 -0.057232871651649475 -0.003984558861702681 0.02338126115500927 -0.06933937221765518 -0.0019913366995751858 0.0028303884901106358 -0.027475176379084587 -0.010749271139502525 -0.018818529322743416 0.024825016036629677 0.011281303130090237 -0.03054727241396904 0.001896269735880196 0.02195027284324169 0.013485191389918327 0.038642220199108124 -0.040519390255212784 -0.001999716740101576 -0.005585517268627882 0.04975193366408348 -0.07363435626029968 -0.018091348931193352 -0.048238176852464676 0.04953186586499214 0.00362587021663785 -0.047294531017541885 -0.045892976224422455 -0.033857304602861404 -0.02191103994846344 0.01662810519337654 0.015721343457698822 -0.06075075641274452 -0.04385434463620186 -0.0670037493109703 -0.06566570699214935 -0.09068235754966736 -0.028300898149609566 0.013319795951247215 -0.059927668422460556 0.0026102594565600157 -0.03720065951347351 -0.03221197426319122 0.017356613650918007 -0.00010491342982277274 0.011646241880953312 0.06713851541280746 0.027419015765190125 -0.021881770342588425 0.05615582317113876 -0.013050669804215431 0.05201290547847748 0.03773154318332672 -0.034884724766016006 -0.005767901428043842 0.026501985266804695 -0.07995995879173279 0.0715007483959198 -0.04119817167520523 0.025873389095067978 -0.00759505107998848 0.011772851459681988 0.017766328528523445 -0.010693274438381195 0.039811182767152786 -0.02870248816907406 0.057082440704107285 -0.07633154094219208 -0.037676889449357986 0.038954462856054306 -0.03877781331539154 -0.07651623338460922 -0.04005095735192299 0.009377709589898586 -0.002963973442092538 0.035980578511953354 -0.019818201661109924 0.047640375792980194 0.03937634825706482 -0.060214072465896606 -0.08533738553524017 -0.046412404626607895 -0.038091741502285004 0.060129471123218536 -0.029823170974850655 0.036581531167030334 0.05086962878704071 0.007201236207038164 0.008804356679320335 0.020229240879416466 -0.01973884552717209 -0.08454607427120209 -0.01263557467609644 -0.02110137976706028 -0.04899544641375542 0.011874166317284107 -0.037027448415756226 0.005494742188602686 -0.014619878493249416 0.008614093996584415 -0.049671247601509094 0.09343526512384415 0.01245428528636694 -0.03742663189768791 0.047261793166399 -0.008638918399810791 0.04465189948678017 0.04614326357841492 -0.059295158833265305 -0.0549456924200058 -0.008093374781310558 -0.003249769564718008 0.05373638868331909 0.06300471723079681 0.01137025561183691 -0.01350195799022913 -0.03522834926843643 0.010251945815980434 -0.004468585830181837 -0.08848161995410919 0.0357978530228138 0.0259291660040617 -0.07036865502595901 -0.07059943675994873 -0.002091885544359684 -0.04488997533917427 0.06317292898893356 0.017689062282443047 0.0653047040104866 -0.03485124930739403 -0.0019423221237957478 -0.03461223468184471 -0.03381861373782158 0.02191409468650818 -0.0024572706315666437 -0.04153189808130264 -0.006204982288181782 0.07750015705823898 -0.05553804710507393 0.009971985593438148 0.041217368096113205 -0.0408967062830925 0.035009246319532394 0.021179091185331345 -0.05263879895210266 0.08503679186105728 0.00105155142955482 -0.05088493227958679 0.05740053206682205 -0.08301126956939697 0.09950702637434006 -0.0503811314702034 0.07790222764015198 0.003750374773517251 -0.0060047549195587635 0.09607662260532379 0.06627747416496277 -0.01723134145140648 0.013343779370188713 -0.06820163875818253 +0.06166790798306465 0.011693333275616169 0.052497897297143936 0.07889555394649506 -0.06806899607181549 -0.028999650850892067 -0.028495533391833305 -0.011422603391110897 0.02251611277461052 -0.018572146072983742 -0.011912097223103046 -0.026799174025654793 -0.006368245929479599 0.025210101157426834 0.02576645463705063 -0.045861344784498215 -0.07166305929422379 -0.0021029971539974213 -0.008549454621970654 -0.01812744140625 0.06933361291885376 0.02157784067094326 -0.08088299632072449 0.06336218118667603 -0.010557729750871658 0.05104433000087738 -0.048225823789834976 0.029784323647618294 -0.0038603420834988356 -0.016486147418618202 0.06393541395664215 0.002259714063256979 0.05559417977929115 -0.10660682618618011 -0.029186127707362175 0.02660088986158371 -0.028426339849829674 0.08259152621030807 0.057928264141082764 -0.04941440746188164 -0.05266762897372246 0.03049509972333908 -0.03743444010615349 -0.0724809467792511 0.013651804998517036 0.008531881496310234 -0.002888638759031892 -0.0183426421135664 0.04424780234694481 0.02347703091800213 0.10852309316396713 -0.01428813673555851 -0.05164841562509537 -0.0398511067032814 0.00762005802243948 -0.001225562416948378 0.08594706654548645 -0.0911545604467392 -0.06015894189476967 0.039249807596206665 -0.07582806795835495 0.00033810458262450993 0.008700896054506302 -0.001301608164794743 -0.0406804196536541 -0.022971436381340027 0.008564271032810211 0.06648003309965134 0.017086884006857872 -0.028728503733873367 0.06164881959557533 0.11754018068313599 -0.08193793147802353 -0.0128550473600626 0.04844960942864418 -0.05768295377492905 -0.012885636650025845 0.0716509148478508 -0.021367721259593964 0.02642430178821087 0.029881460592150688 -0.04779680073261261 0.074109748005867 -0.015422963537275791 -0.027009833604097366 -0.04113554581999779 0.03059985488653183 -0.05353430286049843 0.03687383607029915 0.0488971509039402 -0.009000810794532299 0.05577302351593971 -0.0391668863594532 0.0840570405125618 0.026601243764162064 0.04045882076025009 0.019213905557990074 -0.10831437259912491 -0.028190387412905693 0.011610872112214565 0.00489717535674572 -0.010209978558123112 0.035214636474847794 -0.015200220048427582 0.0697450265288353 0.014227138832211494 -0.06623609364032745 0.009079858660697937 0.033920880407094955 0.06052640825510025 0.08710575103759766 0.057551056146621704 0.06835207343101501 0.05915907397866249 0.0368732213973999 -0.011331983841955662 0.02603287249803543 -0.06441758573055267 -0.019780095666646957 0.04101593419909477 0.00733037106692791 0.041193701326847076 -0.03839228302240372 -0.06648484617471695 -0.023087380453944206 0.019173868000507355 -0.061229292303323746 -0.04502038285136223 0.05519219487905502 0.0012465812033042312 0.1315569430589676 0.061767466366291046 -0.02988165244460106 0.019401950761675835 0.036402132362127304 0.06244584918022156 0.0007746188784949481 0.03903907537460327 0.004501155111938715 -0.012115840800106525 -0.0021168412640690804 0.038558244705200195 0.02423687092959881 -0.08411621302366257 0.045667216181755066 0.0321517176926136 0.029602443799376488 -0.014729480259120464 -0.06516596674919128 -0.04037334397435188 -0.06559830158948898 -0.04063204303383827 0.008757228031754494 -0.08834757655858994 0.007272313814610243 0.05461778864264488 0.025080809369683266 0.05455123633146286 -0.0312957763671875 -0.023336950689554214 -0.0521562360227108 -0.046304501593112946 -0.01042885147035122 -0.07465384900569916 -0.04242270067334175 -0.052798181772232056 0.03387027233839035 0.021536096930503845 -0.04631664231419563 -0.01976107433438301 -0.019595174118876457 -0.00901008676737547 0.04231880605220795 0.03056819550693035 0.07733045518398285 -0.00211473205126822 -0.0033176077995449305 -0.04071380943059921 0.03152594342827797 -0.017385663464665413 0.008931273594498634 -0.04995638132095337 0.0011282601626589894 -0.07752649486064911 -0.023507598787546158 0.009307594038546085 0.01729401759803295 -0.01969204470515251 -0.005389743950217962 0.02580961026251316 -0.0704643651843071 -0.030077356845140457 0.05903511494398117 0.07225551456212997 -0.006739452481269836 0.03718552365899086 -0.04148407280445099 0.023544125258922577 0.015087132342159748 -0.03928450122475624 -0.05480989068746567 0.04100075736641884 -0.009161454625427723 0.06934763491153717 0.0011660447344183922 -0.06994960457086563 0.05022682994604111 0.02596302144229412 0.02089783363044262 -0.06091925501823425 -0.006025549955666065 0.006206787656992674 0.012763666920363903 0.025461355224251747 0.0750761330127716 -0.015537980012595654 -0.009848256595432758 0.0005628187791444361 0.05007492005825043 -0.05753891170024872 0.042190950363874435 0.002065646229311824 -0.06207270920276642 0.06123502925038338 -0.05956573411822319 -0.08562503755092621 -0.04901248216629028 0.011742068454623222 0.010238660499453545 -0.035533156245946884 0.026737630367279053 0.010490464977920055 -0.0181215051561594 -0.029254380613565445 -0.014845914207398891 -0.015146015211939812 -0.11049097031354904 0.11327250301837921 0.020785003900527954 -0.03747142478823662 -0.05892249569296837 0.021866247057914734 0.03316837176680565 0.00716905202716589 0.02134980633854866 0.025697197765111923 0.08225328475236893 0.02426164411008358 -0.0012009702622890472 0.012202925980091095 -0.061805810779333115 -0.09186267852783203 0.012815681286156178 0.039055053144693375 -0.03244036063551903 -0.011546247638761997 -0.029462309554219246 -0.03342677280306816 0.012500688433647156 -0.002372774062678218 -0.015458657406270504 0.006605468690395355 0.003431574674323201 -0.0360226184129715 0.06553523242473602 -0.026034492999315262 -0.03082948736846447 0.0445462130010128 0.01861731708049774 0.07324452698230743 -0.0011990888742730021 -0.02382637746632099 0.05424615740776062 0.0019156564958393574 0.04041829705238342 -0.010037598200142384 0.048997070640325546 -0.003169671632349491 -0.09095966070890427 -0.024618815630674362 -0.07218468189239502 -0.030771875753998756 -0.011455265805125237 -0.021883120760321617 -0.027607522904872894 0.08979111164808273 0.0016782002057880163 -0.051745034754276276 -0.052044812589883804 -0.002045574365183711 0.002812156919389963 -0.07775624096393585 -0.038280583918094635 0.007901244796812534 -0.08182450383901596 -0.01574297808110714 0.023158224299550056 -0.057560212910175323 -0.0422821044921875 -0.03449871391057968 -0.05327046662569046 -0.05690564960241318 0.03978174924850464 -0.03141385689377785 -0.05211694538593292 -0.001975425286218524 -0.08185871690511703 0.05797494575381279 0.09504148364067078 0.01086448971182108 0.03326128050684929 0.012154112569987774 0.030519142746925354 0.12156622111797333 -0.009590457193553448 -0.0487486869096756 0.0020297023002058268 -0.06679333746433258 -0.07718895375728607 0.06803667545318604 -0.04093076288700104 0.01568625122308731 -0.01112492848187685 -0.005880509503185749 0.07901905477046967 -0.015814607962965965 -0.01653626188635826 -0.008436361327767372 0.02792069874703884 -0.023294838145375252 -0.004814173560589552 0.0036926560569554567 0.0020193178206682205 -0.008910936303436756 -0.04812011867761612 -0.06148704141378403 -0.0325247161090374 0.011906982399523258 -0.022693803533911705 0.04160613194108009 -0.0016422158805653453 -0.06690315902233124 0.009391793981194496 0.007540345191955566 0.09856108576059341 -0.06311894208192825 0.016019515693187714 0.019487114623188972 0.0035588431637734175 -0.08490679413080215 -0.006992565002292395 0.03649758920073509 -0.06023844704031944 -0.010929598473012447 -0.0047737788408994675 0.01723180152475834 -0.05835516005754471 -0.0036740878131240606 0.012893103063106537 -0.03498067334294319 0.025646861642599106 0.044927164912223816 0.032214853912591934 0.013192807324230671 -0.028681514784693718 -0.012212969362735748 -0.024854442104697227 -0.01132711861282587 0.0004960434744134545 -0.019497910514473915 0.015981819480657578 -0.049510229378938675 0.03133847936987877 -0.025399239733815193 -0.004311972763389349 -0.05748334527015686 0.03829655051231384 0.015139843337237835 -0.010594320483505726 0.01810550130903721 -0.013922919519245625 -0.011890137568116188 0.005813860334455967 0.05800139158964157 -0.058569636195898056 -0.03160485625267029 -0.05382696911692619 -0.03380041569471359 -0.09119414538145065 -0.028431927785277367 0.012616627849638462 -0.08136559277772903 0.006029264070093632 -0.03065584972500801 -0.003217133926227689 0.014694740064442158 -0.03850378096103668 0.01722811348736286 0.034700069576501846 0.021009933203458786 -0.048191137611866 0.009739519096910954 -0.02260490134358406 0.04639504849910736 0.03746413439512253 -0.03016497939825058 -9.890022192848846e-05 0.0605015829205513 -0.014429772272706032 0.01914120279252529 -0.011515620164573193 0.0024821748957037926 0.019617240875959396 -0.011955899186432362 0.02506416290998459 -0.006426233798265457 -0.013139111921191216 -0.013478024862706661 0.043429382145404816 -0.04670011252164841 -0.04321502521634102 0.0055967229418456554 -0.04917977750301361 -0.12505294382572174 -0.028833338990807533 0.0007157349609769881 -0.0410749614238739 0.004651614464819431 0.0010503075318410993 0.03691604360938072 0.040735747665166855 -0.04324088618159294 -0.026703299954533577 -0.004100842867046595 -0.03173045814037323 0.04817083477973938 -0.0287069883197546 0.06517625600099564 0.008862129412591457 0.001963646151125431 0.04830875247716904 0.023892715573310852 -0.017254438251256943 -0.1124362125992775 -0.0191058237105608 -0.033567819744348526 -0.03522316366434097 0.03969033807516098 -0.008449063636362553 -0.002863833913579583 -0.06075350195169449 -0.04887525364756584 -0.03260596841573715 0.09396494179964066 -0.01794763095676899 -0.006306944880634546 0.04665762558579445 -0.03841919079422951 0.008640731684863567 0.029520414769649506 -0.04800225421786308 -0.08143705129623413 -0.003196097444742918 -0.010398655198514462 0.01919568143785 0.014846508391201496 0.0034964310470968485 -0.010901560075581074 -0.06958959996700287 -0.015611746348440647 0.019235774874687195 -0.07824958115816116 0.013853560201823711 -0.011888385750353336 -0.058767035603523254 -0.07789920270442963 0.017435168847441673 -0.06983664631843567 0.049468591809272766 0.03903521969914436 0.036180440336465836 0.02277330681681633 -0.005557594355195761 0.01843571662902832 -0.0578950010240078 -0.007931963540613651 0.020230043679475784 -0.020757216960191727 -0.005574349779635668 0.06282823532819748 -0.017962893471121788 0.020135335624217987 0.08012110739946365 -0.022989902645349503 0.020338168367743492 0.044027991592884064 -0.03928869217634201 0.0013109237188473344 -0.04629892855882645 -0.0564824603497982 0.09490388631820679 -0.05696076527237892 0.1032288521528244 -0.06878861039876938 0.08540365844964981 -0.018477989360690117 -0.015121670439839363 0.06845457851886749 0.07515658438205719 -0.02368760108947754 0.015404474921524525 -0.039421383291482925 +0.04930616915225983 0.009347820654511452 -0.0021885258611291647 0.026871947571635246 -0.05663895234465599 -0.05628003925085068 -0.013039532117545605 0.011938372626900673 0.006371914874762297 -0.04346277937293053 -0.0315178781747818 -0.023652929812669754 -0.01846667006611824 -0.014773618429899216 0.06387045979499817 -0.060448914766311646 -0.06890662759542465 0.008852435275912285 -0.009951679967343807 -0.01326035987585783 0.05699713155627251 0.021408595144748688 -0.05670272186398506 0.08690112084150314 0.022843820974230766 0.021870410069823265 -0.016233408823609352 0.009539203718304634 0.0010175439529120922 0.03464769944548607 0.07158225029706955 -0.02566348761320114 0.027371954172849655 -0.054546765983104706 -0.0036636318545788527 0.04083116725087166 -0.022268464788794518 0.10846813768148422 0.047369543462991714 -0.020354995504021645 -0.040938861668109894 -0.0018995836144313216 -0.06451382488012314 -0.06276101619005203 0.02078811451792717 0.010079087689518929 -0.010590038262307644 -0.031701087951660156 0.049533769488334656 0.0412658154964447 0.09642673283815384 -0.012263336218893528 -0.06978052109479904 -0.03248398378491402 0.013732130639255047 0.016439665108919144 0.05281391739845276 -0.06842154264450073 -0.0397074930369854 0.040397632867097855 -0.08764942735433578 0.0018834765069186687 0.02476908080279827 -0.00894763134419918 0.015506257303059101 -0.05639684200286865 -0.011143934912979603 0.06572834402322769 0.0010108735878020525 -0.028656035661697388 0.02954157255589962 0.12435322999954224 -0.10806623101234436 -0.05700797587633133 0.08955245465040207 -0.07103249430656433 -0.019054284319281578 0.030958550050854683 0.002531308215111494 0.013322346843779087 0.012209262698888779 -0.04170691594481468 0.11721162497997284 -0.05499548465013504 -0.059898678213357925 -0.046676862984895706 -0.007796258665621281 -0.04340476915240288 0.07917531579732895 0.04254746809601784 0.014393164776265621 0.05382683500647545 -0.04756869748234749 0.046834979206323624 -0.009971761144697666 -0.02193649299442768 0.0180191770195961 -0.08419261872768402 -0.04182765260338783 -0.020819278433918953 0.0026127882301807404 -0.022352347150444984 0.04805711284279823 -0.0008817785419523716 0.04660685360431671 0.030487477779388428 -0.06193162500858307 0.018128305673599243 0.04731820896267891 0.06801995635032654 0.03550636023283005 0.07215559482574463 0.0821528211236 0.062357135117053986 0.08065277338027954 -0.005360564682632685 0.008913044817745686 -0.04844757542014122 -0.04222307726740837 0.026546582579612732 -0.004725823178887367 0.054017048329114914 -0.006538516376167536 -0.0634882003068924 -0.014164609834551811 0.05584782361984253 -0.09863831847906113 -0.053327515721321106 0.040011096745729446 -0.010509157553315163 0.12932419776916504 0.04389398917555809 -0.024351004511117935 0.01207495667040348 0.059148430824279785 0.023281358182430267 -0.010956598445773125 0.05594810098409653 -0.023660972714424133 -0.0430142804980278 -0.008349557407200336 0.05689460039138794 0.010347165167331696 -0.04512033239006996 0.05689864978194237 0.03941458836197853 0.04052390530705452 -0.004857451654970646 -0.04496990889310837 -0.023154767230153084 -0.09655777364969254 -0.04908746853470802 0.03789355605840683 -0.07086357474327087 -0.027072498574852943 0.010208841413259506 0.020177138969302177 0.020092127844691277 -0.014334369450807571 -0.02258923649787903 -0.06547441333532333 -0.056427083909511566 -0.038275670260190964 -0.06936365365982056 -0.043122515082359314 -0.019201714545488358 0.013809422962367535 0.015329211950302124 -0.04980026185512543 -0.0447855070233345 -0.006946861743927002 -0.027614492923021317 0.04733254387974739 0.07501131296157837 0.056407228112220764 0.017796341329813004 -0.00035558917443268 -0.0539579875767231 0.00674659525975585 -0.02142775058746338 0.033972736448049545 -0.06354312598705292 0.04435648024082184 -0.041568316519260406 0.005401270929723978 -0.005599658470600843 0.04388526454567909 -0.017615649849176407 -0.003248739754781127 0.009959914721548557 -0.048789508640766144 -0.05392387881875038 0.06312086433172226 0.0739530473947525 -0.027701733633875847 0.0021834929939359426 -0.010668110102415085 0.03578787297010422 0.01142068300396204 -0.03339572250843048 -0.07628597319126129 0.006795193068683147 0.016438903287053108 0.0649767816066742 0.04054781422019005 -0.07669702172279358 0.08878756314516068 0.016963886097073555 0.03783164545893669 -0.052065134048461914 -0.004189903382211924 0.01520785503089428 -0.02932155318558216 0.014973897486925125 0.05588485673069954 -0.026904743164777756 -0.0004102730890735984 -0.01024543959647417 0.06827513128519058 -0.04741766303777695 -0.01408403366804123 0.0072593349032104015 -0.09633681178092957 0.043363142758607864 -0.03407924994826317 -0.07428426295518875 -0.038696371018886566 0.034639015793800354 -0.0013424811186268926 -0.0361606664955616 -0.0162542425096035 0.00734261330217123 0.008722509257495403 -0.01289808563888073 0.02573985420167446 -0.003141364548355341 -0.11333317309617996 0.12474822252988815 -0.01623276062309742 -0.06337074935436249 -0.07214493304491043 0.003497558180242777 0.04597444832324982 -0.0031703589484095573 0.04347560182213783 0.05063868686556816 0.06746667623519897 0.015919523313641548 0.004179156851023436 0.004104635678231716 -0.02077501267194748 -0.04395761713385582 -0.011865551583468914 0.027554892003536224 -0.048317328095436096 -0.06881360709667206 0.01050243154168129 -0.027491455897688866 0.010543891228735447 -0.019576771184802055 0.019871974363923073 -0.03586031496524811 -0.028816426172852516 -0.04029109701514244 0.054060198366642 -0.03322276845574379 -0.021085619926452637 0.07036513090133667 -0.022107712924480438 0.04719410091638565 0.0012074074475094676 -0.013183939270675182 0.0206606462597847 -0.003348807105794549 0.00939912535250187 -0.03459413722157478 0.05340170860290527 -0.013449895195662975 -0.06306817382574081 -0.02186751551926136 -0.07185262441635132 -0.07440386712551117 -0.00393336359411478 -0.027373071759939194 -0.007897933013737202 0.07515691220760345 0.015752378851175308 -0.059169284999370575 -0.05535675212740898 -0.014972817152738571 -0.027539409697055817 -0.06638311594724655 -0.03290771692991257 -0.008450360037386417 -0.07918313890695572 -0.014315186068415642 0.034923769533634186 -0.04679371789097786 -0.017988521605730057 -0.010926004499197006 -0.007968035526573658 -0.05580560117959976 0.011016711592674255 -0.014446943067014217 -0.0345613993704319 -0.024981128051877022 -0.04232402145862579 0.05594997480511665 0.0836695209145546 0.0671781450510025 0.05402180552482605 0.02067655883729458 0.048149000853300095 0.12139581888914108 -0.00011729024845408276 -0.03248760476708412 -0.0060969325713813305 -0.06763791292905807 -0.07999049872159958 0.02981627732515335 -0.02526969648897648 -0.03168995678424835 -0.0030737617053091526 0.015786917880177498 0.05918039008975029 -0.023221293464303017 0.013316838070750237 -0.031006060540676117 0.03794890269637108 -0.0037720249965786934 0.006464477628469467 -0.015761997550725937 0.021538926288485527 -0.01892693154513836 -0.0641109049320221 -0.060274895280599594 -0.061726514250040054 0.047078587114810944 -0.0013915494782850146 0.06907918304204941 -0.01000136323273182 -0.06674282997846603 -0.048242565244436264 0.041277285665273666 0.11727005243301392 -0.035982776433229446 0.014129792340099812 0.05496704950928688 0.018567116931080818 -0.07513314485549927 0.013334346003830433 0.015332816168665886 -0.05055403336882591 -0.024094730615615845 -0.019900109618902206 0.06530439853668213 -0.06333831697702408 -0.021851837635040283 0.006482092197984457 -0.056620024144649506 0.007860985584557056 0.009842798113822937 0.011630087159574032 0.031939003616571426 -0.007267031352967024 -0.022507043555378914 0.003912780899554491 -0.007076622918248177 0.01663355715572834 0.005678264424204826 -0.007339420262724161 -0.043647993355989456 0.02491081692278385 -0.07195134460926056 -0.01755494251847267 -0.07059647887945175 0.06735876947641373 -0.03272687643766403 -0.0183743666857481 0.0016822079196572304 -0.002871995558962226 -0.011620732955634594 0.01737586036324501 0.03404546529054642 -0.05069020390510559 -0.014788150787353516 -0.0455935001373291 -0.03385566920042038 -0.07917074859142303 -0.02005752921104431 -0.023716900497674942 -0.05029163509607315 -0.0055681271478533745 -0.04178515821695328 0.013825612142682076 -0.004534497391432524 -0.007895706221461296 0.030132032930850983 0.026700377464294434 0.03852584585547447 -0.012645040638744831 0.031342506408691406 0.029112737625837326 0.05454830452799797 0.025964977219700813 -0.04992391914129257 -0.007270133588463068 0.029695143923163414 -0.043796174228191376 0.047658178955316544 -0.0324651375412941 0.009231195785105228 -0.024690499529242516 0.017939100041985512 0.014209895394742489 -0.037394095212221146 0.016224289312958717 -0.014809166081249714 0.03501301631331444 -0.06749914586544037 -0.05630934238433838 0.03107152320444584 -0.04376073554158211 -0.07658101618289948 -0.03205706179141998 -0.014666736125946045 -0.026434892788529396 0.023393215611577034 -0.04685329645872116 0.021876968443393707 0.03633597120642662 -0.0305007416754961 -0.04129296913743019 -0.01701413094997406 -0.04768209531903267 0.04554393142461777 -0.012458503246307373 0.05814635008573532 0.0006897908169776201 0.029139477759599686 0.014438038691878319 -0.01660097949206829 0.009070371277630329 -0.10823281854391098 0.012396941892802715 -0.035285841673612595 -0.015303021296858788 0.015137269161641598 -0.006655402947217226 0.041158527135849 -0.020914362743496895 -0.028846951201558113 -0.04193494841456413 0.11495617032051086 -0.023851851001381874 0.023181630298495293 0.023292211815714836 -0.033487092703580856 0.0010850203689187765 0.021853765472769737 -0.056822218000888824 -0.08543018251657486 -0.009986089542508125 -0.01692531257867813 0.011572725139558315 0.007360975258052349 0.006647039204835892 -0.009135429747402668 -0.047093138098716736 0.002048108959570527 0.016128113493323326 -0.041425466537475586 0.029286878183484077 0.004592734854668379 -0.05001302808523178 -0.0512765571475029 -0.006954136770218611 -0.05742834135890007 0.05004969239234924 0.0050849393010139465 0.04546164721250534 0.0016174581833183765 0.0067800008691847324 0.021475741639733315 -0.013666943646967411 0.005120750516653061 0.009635942056775093 -0.04693318530917168 0.0033950137440115213 0.06884579360485077 -0.032431021332740784 0.0026473691686987877 0.06569629907608032 -0.01965961419045925 0.023044487461447716 0.06768102943897247 -0.03678297996520996 0.03676407411694527 -0.02485736273229122 -0.02745893970131874 0.09174386411905289 -0.08032701909542084 0.1056695207953453 -0.07558128982782364 0.08571743965148926 -0.010128285735845566 -0.03663543984293938 0.09454535692930222 0.07130864262580872 -0.008778347633779049 0.050020165741443634 -0.07558242231607437 +0.02219366282224655 -0.034046098589897156 -0.02229766920208931 0.01850266195833683 -0.07905048131942749 -0.03853502497076988 -0.021443869918584824 0.06570754200220108 -0.019494015723466873 -0.07053660601377487 0.010530559346079826 0.0016647815937176347 -0.014723041094839573 0.03077513910830021 0.060160957276821136 -0.051846735179424286 -0.06121203675866127 -0.0003842381411232054 -0.056012433022260666 -0.044335100799798965 0.049252837896347046 0.007049639709293842 -0.05022628605365753 0.051016442477703094 -0.004169894848018885 0.0009083186741918325 -0.035286795347929 0.01639174483716488 0.020390398800373077 0.04225970059633255 0.05127115920186043 -0.04238584265112877 0.03666089475154877 -0.03712519630789757 -0.043400246649980545 0.07694888859987259 -0.057387206703424454 0.13642209768295288 0.04908858239650726 0.014429212547838688 -0.04920864477753639 -0.01379462145268917 -0.05572756379842758 -0.04214794561266899 0.055116698145866394 -0.027822639793157578 0.006706118583679199 -0.03345756605267525 0.026692675426602364 0.044732529670000076 0.057508014142513275 0.013883448205888271 0.00918615609407425 0.0064454153180122375 -0.0149705670773983 0.051505137234926224 0.013714153319597244 -0.04189019277691841 -0.045956630259752274 0.011388955637812614 -0.05820361524820328 -0.02120201103389263 -0.005362687632441521 0.008003751747310162 0.025946352630853653 -0.005892347078770399 -0.005873705726116896 0.07259437441825867 0.006255290471017361 -0.040602900087833405 -0.004464191850274801 0.09009513258934021 -0.08452192693948746 -0.0832461416721344 0.044130150228738785 -0.040893979370594025 -0.008731834590435028 0.002350960625335574 -0.01850776933133602 0.009673899970948696 -0.019301213324069977 -0.00045577099081128836 0.12635351717472076 -0.03348362445831299 -0.02102234773337841 -0.035112909972667694 -0.011928591877222061 -0.041850242763757706 0.0708179771900177 0.016192838549613953 0.036070264875888824 0.046370163559913635 -0.0625542402267456 0.0036543416790664196 0.0028819898143410683 0.0005886113503947854 0.011525669135153294 -0.11039461940526962 -0.025000527501106262 -0.03383147716522217 0.0014938995009288192 -0.018656687811017036 0.08961519598960876 -0.004807961639016867 0.06309188902378082 0.06464622169733047 -0.06342910975217819 0.007731047458946705 -0.002265120390802622 -0.002853386802598834 0.01036736462265253 0.1350371241569519 0.06775902956724167 0.038785409182310104 0.07250300794839859 -0.006903383880853653 -0.004290716722607613 -0.026016730815172195 -0.05284787341952324 -0.03128752112388611 -0.040010783821344376 0.05756714195013046 -0.014422319829463959 -0.04099968820810318 -0.024306895211338997 0.045033738017082214 -0.13299044966697693 -0.03092111647129059 0.07089506834745407 -0.04913908243179321 0.08178380131721497 0.06768520176410675 0.0023107407614588737 0.011820594780147076 0.08595901727676392 -0.015262709930539131 0.0038428993429988623 0.03786836937069893 -0.005073392763733864 -0.029940910637378693 -0.022207025438547134 0.0694366991519928 -0.0034201350063085556 -0.04566683992743492 0.0073112729005515575 0.0771557092666626 0.0025568511337041855 0.0004001874476671219 -0.07889622449874878 0.029931161552667618 -0.07105095684528351 -0.0818680077791214 -0.031245389953255653 -0.08865012973546982 0.01784895732998848 0.05610918626189232 0.03305957093834877 0.03821861743927002 0.015236679464578629 -0.021244114264845848 -0.04506517946720123 -0.06443533301353455 -0.003807189641520381 -0.0668841004371643 -0.019765248522162437 0.000810954486951232 0.006781850475817919 0.0004106691631022841 -0.026187827810645103 -0.020103592425584793 -0.017390387132763863 -0.02070344239473343 0.024683868512511253 0.04190476983785629 0.03623039647936821 0.02324015647172928 -0.009303084574639797 -0.07139088213443756 -0.017522649839520454 -0.029637634754180908 0.03861048072576523 -0.0806003212928772 0.018124191090464592 -0.05067793279886246 -0.018730055540800095 -0.011115627363324165 0.0041770595125854015 -0.006246611475944519 -0.01705964468419552 -0.030597126111388206 -0.034774571657180786 -0.06957511603832245 0.04467734321951866 0.06947480142116547 -0.04665931314229965 0.03622845932841301 0.0010646668961271644 0.052177540957927704 -0.05163230746984482 -0.02595425397157669 -0.07191238552331924 0.03486877307295799 0.033903542906045914 0.010072721168398857 0.015969784930348396 -0.05038004368543625 0.05358610302209854 -0.012019621208310127 0.036169759929180145 -0.06489253044128418 0.023645466193556786 0.029110660776495934 -0.005729798227548599 0.028529677540063858 0.02817707322537899 -0.05245530232787132 -0.032269176095724106 0.012258241884410381 0.045768119394779205 -0.07869308441877365 -0.02404508925974369 0.00636639166623354 -0.07375621795654297 0.021510766819119453 -0.004234989173710346 -0.07888039946556091 -0.016807597130537033 0.03178318589925766 -0.03574639931321144 -0.047651976346969604 -0.036800093948841095 0.04290749877691269 -0.014926728792488575 -0.034133266657590866 0.03470718115568161 -0.006636973470449448 -0.05172974616289139 0.0728432834148407 -0.010175340808928013 -0.05726328492164612 -0.07845820486545563 0.0056434995494782925 0.03493073210120201 -0.0007266185712069273 0.02574225515127182 0.03416731581091881 0.06243276223540306 0.014022143557667732 -0.041831523180007935 -0.011653201654553413 -0.030939484015107155 -0.00046481797471642494 -0.038273852318525314 0.02749701403081417 -0.0023670399095863104 -0.06696293503046036 0.028424853459000587 -0.05001075938344002 -0.01128422748297453 -0.005265925545245409 0.08510318398475647 -0.07117784023284912 -0.01359418872743845 -0.007386506535112858 0.0031396709382534027 -0.012864886783063412 -0.00864423718303442 0.004779060371220112 -0.05288948863744736 0.0378672294318676 -0.06192529946565628 -0.000579534622374922 0.01546450611203909 0.0064119333401322365 0.02397593855857849 -0.04565536230802536 0.052953463047742844 -0.04990890994668007 -0.0815870389342308 -0.060244180262088776 -0.06832119077444077 -0.06603546440601349 -0.006811206229031086 -0.026751434430480003 -0.015863312408328056 0.11787200719118118 0.051330287009477615 -0.03181786462664604 -0.0454835370182991 -0.056043464690446854 -0.0032213267404586077 -0.036149293184280396 0.030463932082057 -0.013090593740344048 -0.06821351498365402 -0.0015162911731749773 0.02659466862678528 -0.04383061081171036 0.008084763772785664 0.027543023228645325 0.00604085111990571 -0.028177805244922638 0.03869276121258736 -0.050653956830501556 -0.015886977314949036 -0.030629338696599007 -0.044175442308187485 0.03955088183283806 0.07748893648386002 0.08034195750951767 0.02314562350511551 0.00925462320446968 0.07417993992567062 0.08960919082164764 0.022078771144151688 -0.004443592857569456 -0.009898633696138859 -0.02234475128352642 -0.07913821935653687 0.06770852953195572 -0.048641279339790344 0.002300855703651905 -0.0247911736369133 -0.024361127987504005 0.08325847238302231 -0.023667143657803535 -0.006491003092378378 -0.0006183445802889764 0.053413063287734985 0.03872797638177872 0.03841577097773552 -0.0018579872557893395 -0.029538357630372047 0.02443162351846695 -0.05170494690537453 -0.06682068854570389 -0.08430729806423187 0.05271908640861511 -0.007111468352377415 0.06111588329076767 0.005582261830568314 -0.07815329730510712 0.01911298930644989 0.04363682121038437 0.09793170541524887 -0.04987027123570442 0.018144017085433006 0.02423517405986786 0.019512221217155457 -0.10211368650197983 -0.009493918158113956 -0.01286599412560463 -0.026382848620414734 -0.08875937759876251 0.02670319378376007 0.06747186928987503 -0.05049997568130493 -0.05888913944363594 -0.03476489707827568 -0.05075981840491295 -0.017964810132980347 0.014849592931568623 -0.02081441506743431 0.06019173935055733 0.016087569296360016 -0.0389377698302269 0.04347073286771774 0.04310853034257889 0.0302947498857975 -0.05164996534585953 0.02696867845952511 -0.02333674021065235 0.09501055628061295 -0.06036490201950073 -0.05684177204966545 -0.055981289595365524 0.058418888598680496 -0.043088190257549286 -0.034620948135852814 -0.08578818291425705 -0.020561980083584785 -0.03708820044994354 0.016751835122704506 -0.00953117199242115 -0.052764758467674255 -0.028657812625169754 -0.003861986333504319 -0.06393416970968246 -0.07955361157655716 -0.04741058498620987 0.02405228093266487 -0.02006651647388935 0.008644656278192997 -0.05073947831988335 -0.017850231379270554 0.014870189130306244 -0.008462286554276943 0.03327593579888344 0.03746334835886955 0.06331979483366013 -0.02719702199101448 0.08188489079475403 0.03619372844696045 0.020831547677516937 -0.007157124578952789 0.0035635028034448624 0.023716295138001442 -0.00017649929213803262 -0.04734514281153679 0.02548026852309704 -0.04816208779811859 0.0247646514326334 -0.045954424887895584 -0.03250887617468834 0.004644031636416912 -0.0022097239270806313 0.0003870836226269603 -0.050191137939691544 0.05980631709098816 -0.09272918105125427 -0.009524824097752571 0.03375299647450447 -0.039597656577825546 -0.07775815576314926 -0.04622418433427811 -0.04713507369160652 -0.008462460711598396 0.03242216631770134 0.004697054624557495 0.006499066017568111 0.03033630922436714 -0.025945644825696945 -0.022373657673597336 -0.013899102807044983 -0.027926843613386154 -0.026754159480333328 0.024590836837887764 0.044700197875499725 0.006414681673049927 0.028112269937992096 0.024503162130713463 -0.018231874331831932 0.01017258781939745 -0.07108001410961151 -0.001912004896439612 0.02279968187212944 -0.003865598002448678 0.0090970229357481 0.010399511083960533 0.03836345672607422 -0.0482138954102993 -0.010001162067055702 -0.030403297394514084 0.07336357235908508 -0.0037990801502019167 0.03139914944767952 0.032487474381923676 -0.018207311630249023 -0.016204021871089935 -0.0014831522712484002 -0.03813774883747101 -0.08278144150972366 0.01274156104773283 -0.03357303515076637 0.026882166042923927 -0.031246548518538475 0.02183656394481659 0.014807746745646 -0.10060109943151474 0.0010525563266128302 -0.03868737444281578 -0.03763381764292717 0.03500999137759209 0.018062131479382515 -0.0562344528734684 -0.05548425763845444 -0.02171296998858452 -0.05533013492822647 0.042026031762361526 -0.049081992357969284 0.044778481125831604 -0.025724416598677635 -0.020589841529726982 -0.021534008905291557 -0.030313754454255104 0.03518417850136757 0.0104863615706563 -0.07492875307798386 -0.014312081038951874 0.0725930780172348 -0.025535330176353455 0.03121223673224449 0.07651755958795547 -0.023420225828886032 0.02131255529820919 0.03872980549931526 0.006962500046938658 0.009543020278215408 -0.0018102070316672325 -0.01113175693899393 0.035823266953229904 -0.03908994421362877 0.07209181785583496 -0.07522716373205185 0.10097682476043701 0.022877726703882217 0.01939868927001953 0.09507147967815399 0.055526088923215866 0.02414577268064022 0.03197800740599632 -0.05383278429508209 +-0.0052253613248467445 -0.05608852952718735 0.0019387784413993359 0.04408285394310951 -0.042936693876981735 -0.03730779141187668 -0.04446540027856827 0.03470800071954727 -0.0049643563106656075 -0.07120448350906372 -0.02484850212931633 -0.03368363529443741 -0.008609794080257416 -0.0030970554798841476 0.021699558943510056 0.005662594921886921 -0.046371083706617355 0.025220336392521858 -0.002673603128641844 -0.033094920217990875 0.017994213849306107 0.06632282584905624 -0.043529558926820755 0.05645693838596344 0.0056577627547085285 -0.02011720836162567 -0.034684713929891586 0.0386817641556263 0.01851169392466545 0.08334147185087204 0.029336588457226753 -0.06697108596563339 0.04602142423391342 -0.06572840362787247 0.001721301581710577 0.0377320721745491 -0.01253840234130621 0.07850629836320877 0.06506162881851196 -0.06406678259372711 0.01354339811950922 -0.0036793614272028208 0.03444499149918556 -0.08775666356086731 -0.0059132627211511135 -0.0024174670688807964 -0.04422620311379433 -0.05487164109945297 -0.0018089791992679238 0.08301583677530289 0.0837249755859375 0.0039407433941960335 -0.0034723819699138403 -0.018078694120049477 -0.012766425497829914 -0.031013110652565956 0.04815911129117012 -0.08013387024402618 -0.019621960818767548 0.04316376522183418 -0.057558823376894 -0.006632970180362463 0.04114188998937607 0.06985960155725479 -0.0337967574596405 -0.028701752424240112 0.03381947800517082 0.07601498067378998 0.03195649012923241 -0.02402709238231182 -0.002192440675571561 0.06152089685201645 -0.016574719920754433 -0.04400645196437836 -0.002574366284534335 -0.037142977118492126 0.006426700856536627 -0.0002505301090423018 0.014738345518708229 -0.00043033636757172644 0.05349745228886604 -0.05300768092274666 0.0954582616686821 -0.0037317457608878613 0.022419696673750877 -0.0278770849108696 -0.0028439387679100037 -0.07602956891059875 0.044650185853242874 -0.018382271751761436 0.05441022664308548 0.05116630718111992 -0.01801077462732792 0.04661724716424942 -0.019120942801237106 0.021232282742857933 0.02515237405896187 -0.11085198819637299 -0.008866298012435436 -0.00642765685915947 -0.02032109722495079 0.007809586822986603 0.04621065780520439 0.06848552823066711 0.007328598294407129 0.003701611887663603 -0.04282129928469658 0.014967226423323154 0.08051363378763199 0.05787161365151405 0.008632916957139969 0.10479390621185303 0.07749368250370026 0.03381888568401337 0.02567034214735031 -0.024139100685715675 -0.04058058559894562 -0.0013296774122864008 0.017335811629891396 0.02760547213256359 0.0318792462348938 0.020714743062853813 -0.04045001044869423 -0.10390540212392807 0.022384822368621826 0.11132640391588211 -0.05427474156022072 0.00981533620506525 0.010825586505234241 0.010902059264481068 0.09389066696166992 0.04043202847242355 -0.05815213918685913 0.052512336522340775 0.03614272549748421 0.047650519758462906 -0.049211304634809494 0.03495554253458977 0.010871660895645618 0.0011607601772993803 -0.0720539316534996 0.043521396815776825 0.03733733668923378 -0.051766738295555115 0.008395595476031303 0.020701047033071518 0.009828999638557434 -0.01599564030766487 -0.061753250658512115 -0.03145000711083412 -0.037660665810108185 -0.05296904966235161 0.04558132588863373 -0.08448762446641922 0.0015154429711401463 0.0246074628084898 -0.003514346433803439 0.014049246907234192 -0.028731420636177063 0.02573024109005928 -0.07210195064544678 -0.07542181015014648 0.017378821969032288 -0.0713711753487587 -0.02719104290008545 -0.00451828446239233 -0.0019245666917413473 -0.005458011757582426 -0.06466357409954071 -0.05282808467745781 -0.00838512647897005 -0.009671294130384922 0.05900868773460388 0.09222375601530075 0.07122942060232162 0.025785263627767563 0.04794757068157196 -0.023372121155261993 0.009744139388203621 -0.03459126129746437 -0.011902870610356331 -0.03433572128415108 0.019782917574048042 -0.07423978298902512 -0.056188665330410004 -0.010021486319601536 0.02341831475496292 -0.005390583071857691 -0.002605319954454899 -0.027302203699946404 -0.012745609506964684 -0.0445975624024868 0.03049832209944725 0.030933525413274765 0.00013086776016280055 0.03336108848452568 -0.021578693762421608 0.09762944281101227 -0.047533873468637466 -0.007215403951704502 -0.07688717544078827 0.056452322751283646 0.03292081132531166 -0.002042451174929738 -0.016973719000816345 -0.012341299094259739 0.07017731666564941 0.053348690271377563 0.020296473056077957 -0.06634635478258133 0.03670301288366318 0.07403501868247986 0.008123029954731464 0.05962303280830383 0.04763079807162285 -0.02829398773610592 -0.0140564339235425 0.0007263539591804147 0.030164668336510658 -0.06664151698350906 0.012442650273442268 0.0097213014960289 -0.07804404199123383 0.03002612106502056 -0.025682155042886734 -0.06136470288038254 -0.027498889714479446 -0.03553769737482071 0.008283491246402264 -0.05079100653529167 0.05045926198363304 0.022051822394132614 0.016689321026206017 0.02977355383336544 -0.02224096842110157 -0.049861107021570206 -0.04945744201540947 0.06927932798862457 -0.04626177251338959 -0.023348040878772736 -0.058978963643312454 -0.014696712605655193 -0.008000779896974564 -0.005631688050925732 0.0049618021585047245 0.04686763137578964 0.0779334008693695 0.07500269263982773 -0.03454330191016197 -0.005703352391719818 -0.060873545706272125 -0.10381175577640533 -0.036824941635131836 0.021380793303251266 -0.00575558515265584 -0.055746302008628845 0.00889640860259533 -0.12008746713399887 -0.01230952050536871 -0.027825428172945976 -0.0021351089235395193 -0.04859581217169762 0.008099676109850407 -0.05213461443781853 0.0461602658033371 -0.00785014871507883 -0.050597257912158966 0.038743339478969574 -0.0022141069639474154 0.031072579324245453 -0.0065289749763906 0.005025526974350214 0.09442512691020966 -0.014528971165418625 0.006718127056956291 -0.005377898458391428 0.07909567654132843 -0.013206757605075836 -0.03752872347831726 -0.040289390832185745 -0.06698253005743027 -0.05054449662566185 0.038268644362688065 -0.015062343329191208 -0.023381583392620087 0.04964155703783035 0.017355389893054962 -0.0190809965133667 0.0045939660631120205 -0.029280202463269234 -0.03544556349515915 -0.07132694125175476 -0.045003075152635574 0.0009768554009497166 -0.04039556160569191 -0.00278351828455925 0.013213090598583221 -0.04875706508755684 -0.04147220402956009 0.018076248466968536 0.010868340730667114 -0.04866955801844597 0.07358196377754211 -0.01579858362674713 -0.016291113570332527 0.03323865309357643 -0.05155176296830177 0.016669226810336113 0.05537565425038338 0.014444521628320217 0.0462246835231781 0.05513179302215576 0.022813918069005013 0.0754665806889534 0.009076658636331558 -0.027301345020532608 -0.03968893364071846 -0.014605757780373096 -0.041595835238695145 0.05923868343234062 0.00040271380566991866 -0.009983090683817863 0.04344482719898224 -0.014154249802231789 0.06999117136001587 0.0008238937007263303 -0.011698552407324314 -0.039854977279901505 0.05100119858980179 -0.05565916746854782 0.041763268411159515 -0.07230066508054733 0.0012913452228531241 -0.014640895649790764 -0.030948858708143234 -0.03317015990614891 -0.024523019790649414 0.051498301327228546 -0.05695652589201927 0.05246592313051224 0.01981407217681408 -0.05487740784883499 -0.0014869620790705085 0.004205092787742615 0.09032030403614044 -0.08027368038892746 0.0006018764688633382 0.008139422163367271 0.024044621735811234 -0.07972278445959091 -0.01513294130563736 -0.042619384825229645 -0.047214724123477936 -0.017808694392442703 -0.007172819226980209 0.0019827571231871843 -0.07601264119148254 -0.03646237030625343 -0.0297987200319767 -0.043540697544813156 0.037356000393629074 0.03413863107562065 0.006155065260827541 0.06206890940666199 0.02571670524775982 -0.05632326006889343 -0.03947296366095543 -0.012413491494953632 -0.02774306945502758 -0.02050809934735298 0.04065604507923126 -0.02187199518084526 -0.005514421500265598 -0.04107652232050896 -0.028771717101335526 -0.045697733759880066 0.016099972650408745 -0.04815886914730072 0.01582358591258526 0.032655227929353714 0.009475120343267918 0.030229780822992325 0.04726531729102135 0.02458852156996727 -0.028969405218958855 -0.03144758939743042 -0.011834262870252132 -0.0009628534317016602 -0.03175721317529678 -0.05014469847083092 0.04241471365094185 -0.028383437544107437 0.009792470373213291 -0.05324307456612587 0.024481462314724922 -0.0077438997104763985 0.00025206632562913 0.04008224233984947 0.04963160306215286 0.022649820894002914 -0.015171494334936142 0.018742568790912628 -0.02147740125656128 0.031321778893470764 0.04683127626776695 -0.05891122296452522 0.010635889135301113 0.03980059176683426 -0.035467393696308136 0.0006455901893787086 -0.039491865783929825 0.01677384227514267 0.01425385382026434 -0.0005750366835854948 0.04345262050628662 -0.07008417695760727 0.0037405521143227816 0.009666983969509602 0.06054720655083656 -0.042179785668849945 -0.05926686152815819 -0.04350174218416214 -0.021735621616244316 -0.10214519500732422 -0.031485579907894135 -0.019496750086545944 -0.011184255592525005 0.04897978901863098 -0.04074938967823982 0.020366521552205086 0.03675694018602371 -0.015386234037578106 -0.004665331915020943 0.04992296174168587 0.028321770951151848 -0.010686255991458893 0.06385979801416397 0.013842756859958172 -0.03745623305439949 -0.003035181201994419 0.004607164300978184 -0.060279954224824905 0.005599634721875191 -0.08041536808013916 -0.035579267889261246 0.03369130194187164 -0.012865654192864895 0.03582250699400902 0.052343886345624924 0.029522646218538284 -0.08534330874681473 -0.04944480210542679 -0.0066660367883741856 0.0671030580997467 -0.005076000466942787 0.03267602622509003 0.015628697350621223 -0.09797362983226776 -0.09953862428665161 0.053988777101039886 -0.03871631994843483 -0.10664238035678864 -0.050740502774715424 0.005808370653539896 0.06064251810312271 -0.023490628227591515 0.07157253473997116 -0.10196232795715332 -0.10369037091732025 0.014098911546170712 0.026992393657565117 -0.040637657046318054 -0.020751530304551125 0.03598292917013168 -0.05497080460190773 -0.008612561039626598 0.018674436956644058 -0.04970337077975273 0.008648755960166454 0.023317458108067513 0.012600753456354141 -0.06601255387067795 0.009964936412870884 -0.01934671960771084 -0.09549789130687714 0.043834272772073746 -0.009719417430460453 -0.046628210693597794 -0.06199333444237709 0.09799693524837494 -0.017446106299757957 0.025194695219397545 0.06852695345878601 -0.03517009690403938 0.05051891878247261 0.046630021184682846 0.004519984591752291 0.012248920276761055 -0.044001709669828415 -0.007953383028507233 0.07269534468650818 -0.05718564614653587 0.06359473615884781 -0.048230625689029694 0.13732153177261353 0.022711770609021187 -0.005037692375481129 0.05400790646672249 0.06278134882450104 0.04665597528219223 0.03933953121304512 -0.10070743411779404 +0.03252687305212021 0.02519146353006363 -0.0033353669568896294 -0.0022032451815903187 -0.10960739105939865 -0.06572362780570984 0.009752399288117886 0.05187203735113144 -0.03229423984885216 -0.05911986529827118 -0.03965000435709953 -0.05067944899201393 -0.0006943768821656704 0.016690775752067566 0.009753541089594364 -0.04812806844711304 -0.07431493699550629 0.01125173270702362 -0.02983906865119934 -0.043924689292907715 0.05998694896697998 -0.011553442105650902 -0.08881097286939621 0.04917460307478905 0.047943904995918274 -0.028199579566717148 -0.03458355367183685 0.00566559424623847 0.007745194248855114 0.020212315022945404 0.05888482183218002 -0.015782378613948822 0.048184752464294434 -0.030314791947603226 -0.03518673777580261 0.021000612527132034 -0.04254275932908058 0.09754230827093124 0.043423909693956375 -0.08556237071752548 -0.05446793511509895 0.0030957800336182117 -0.040545422583818436 -0.02341422624886036 0.02877533994615078 -0.010981692932546139 -0.06461072713136673 -0.03348030894994736 0.0460064634680748 0.040728725492954254 0.061705805361270905 -0.014715772122144699 -0.018195366486907005 -0.023229945451021194 -0.0025385671760886908 0.014016546308994293 0.00867865514010191 -0.03530283644795418 -0.05578817054629326 0.03826604783535004 -0.05902820825576782 0.020758947357535362 0.03756779804825783 0.02089783176779747 0.003909674007445574 -0.04710621014237404 -0.000998049508780241 0.10792865604162216 0.025894800201058388 -0.010359995998442173 -0.01691802218556404 0.07825223356485367 -0.06566283851861954 -0.022559039294719696 0.07917289435863495 -0.04363667592406273 -0.006910555996000767 0.0422927588224411 0.005654217675328255 0.0032181781716644764 -0.003938688896596432 -0.030794234946370125 0.12037953734397888 -0.03992769867181778 -0.04376719519495964 -0.04973805323243141 0.018155692145228386 -0.0623810850083828 0.08030860871076584 0.028936930000782013 0.008158468641340733 0.05039283260703087 -0.05824204534292221 0.05478953197598457 -0.015411310829222202 0.005886574741452932 0.020549342036247253 -0.13769789040088654 -0.05229926109313965 0.001350419595837593 0.014919876120984554 -0.02324051782488823 0.04240432009100914 -0.004179964307695627 -0.0012366482987999916 0.051613785326480865 -0.029419122263789177 0.032506123185157776 0.01594231091439724 0.029718831181526184 0.02433585748076439 0.08362635225057602 0.09756308048963547 0.04636207967996597 0.03010408952832222 -0.0029290709644556046 -0.017283190041780472 -0.01902535744011402 -0.024356357753276825 0.024050021544098854 0.002718805568292737 0.05480102449655533 -0.007594873663038015 -0.033545058220624924 -0.043705061078071594 0.08485490083694458 -0.06835722923278809 -0.02024967037141323 0.05386461317539215 -0.006202945951372385 0.08267228305339813 0.04371163621544838 -0.03419535234570503 0.03101402148604393 0.10064706951379776 0.010095511563122272 0.04911688715219498 0.031129296869039536 -0.06661132723093033 -0.057016801089048386 -0.04224997013807297 0.04422162473201752 -0.008887461386620998 -0.0866200402379036 0.018672356382012367 0.06696514785289764 0.039060868322849274 -0.02089342288672924 -0.055639855563640594 -0.01425536721944809 -0.09018970280885696 -0.09278880804777145 -0.01220704521983862 -0.1024073138833046 0.011306985281407833 0.04475271701812744 -0.015936503186821938 0.024788958951830864 -0.016321402043104172 0.017812024801969528 -0.04474516585469246 -0.05109491944313049 0.002467252081260085 -0.0697287917137146 -0.027155445888638496 -0.016969500109553337 0.007097275927662849 0.05404812842607498 -0.06387395411729813 -0.011421709321439266 0.024645453318953514 0.0010218028910458088 0.026309126988053322 0.060339078307151794 0.010729944333434105 0.0015650071436539292 0.023064499720931053 -0.019723141565918922 -0.030669452622532845 -0.02098444104194641 0.07338413596153259 -0.038168005645275116 0.06714221090078354 -0.05373143404722214 0.020559580996632576 -0.020781945437192917 0.025437723845243454 -0.05811062082648277 0.0013163505354896188 -0.021624496206641197 -0.03774157166481018 -0.0660783126950264 0.0310550257563591 0.044929374009370804 -0.022388456389307976 0.030538858845829964 -0.03418119251728058 0.04527977481484413 -0.02402222901582718 -0.009202007204294205 -0.04222489148378372 0.050130605697631836 0.016781894490122795 0.05983220040798187 0.024475008249282837 -0.09049833565950394 0.034869320690631866 0.0031795790418982506 0.013461877591907978 -0.04608927294611931 0.07058478891849518 0.03182898834347725 0.006414515897631645 0.05420158430933952 0.04441240057349205 -0.005256136413663626 0.01882762648165226 0.00016286715981550515 0.0803714320063591 -0.05839928239583969 0.029602820053696632 0.04887307435274124 -0.09743692725896835 0.04907212033867836 -0.035608600825071335 -0.06176886707544327 -0.0024612369015812874 0.027546683326363564 -0.04398789256811142 -0.061547424644231796 -0.020676473155617714 0.014453222043812275 -0.015491537749767303 -0.030115138739347458 0.004062331281602383 0.043247025460004807 -0.07987872511148453 0.07964406162500381 -0.00046659281360916793 -0.052191734313964844 -0.05445215851068497 0.0015620302874594927 -0.01440387312322855 0.004908960312604904 0.054233502596616745 0.044522613286972046 0.1087479367852211 0.011341662146151066 0.011250652372837067 -0.023299891501665115 -0.07439646869897842 -0.05806040018796921 -0.028940314427018166 0.039869822561740875 -0.045800771564245224 -0.06744205206632614 0.031820882111787796 -0.041555702686309814 -0.01519178505986929 -0.003144147340208292 0.03565663844347 -0.01684371940791607 -0.03222839906811714 -0.03566645830869675 0.039424117654561996 -0.03081457130610943 -0.04745585098862648 0.01702313870191574 -0.000496895459946245 0.0566340908408165 0.0009801579872146249 -0.03058927319943905 0.02910783141851425 0.013642344623804092 0.044307731091976166 -0.01620548963546753 0.06473081558942795 -0.04859231039881706 -0.056554049253463745 -0.044530682265758514 -0.07002358883619308 -0.08659791946411133 -0.021748656406998634 -0.04364408552646637 -0.003381875343620777 0.08883374184370041 0.020391404628753662 -0.05288583040237427 -0.06263695657253265 -0.03150622919201851 -0.044459160417318344 -0.05695153400301933 -0.03289797157049179 -0.017212187871336937 -0.054865628480911255 -0.016349023208022118 0.03322130814194679 -0.03822411224246025 -0.033803947269916534 0.043383318930864334 -0.002704241080209613 -0.0745467096567154 0.06983233988285065 -0.01583223044872284 -0.003044439246878028 0.03270250931382179 -0.049176402390003204 0.005940754432231188 0.08474726229906082 0.04153408110141754 0.007561301346868277 0.04920664057135582 0.06105537340044975 0.10431353002786636 0.01499154046177864 -0.06818970292806625 -0.024827685207128525 -0.06898818165063858 -0.08294776827096939 0.03437747061252594 -0.04056260362267494 -0.03740315139293671 -0.02629145234823227 -0.030754506587982178 0.07756148278713226 -0.034769970923662186 0.0017653024988248944 -0.04921860247850418 0.012256392277777195 -0.055048588663339615 0.022019390016794205 -0.002696244278922677 -0.028555534780025482 0.024330466985702515 -0.04133230075240135 -0.0374823696911335 -0.05453861504793167 0.009866793639957905 -0.019751641899347305 0.025231700390577316 -0.008115587756037712 -0.01653989776968956 0.020833777263760567 -0.014251425862312317 0.08061619848012924 -0.0476258359849453 0.020388241857290268 0.043040454387664795 0.008156835101544857 -0.05885445326566696 -0.015266784466803074 0.0013944467063993216 -0.006466625723987818 -0.0012677378254011273 -0.012114998884499073 0.06295731663703918 -0.05694980174303055 -0.015208998695015907 0.007160242181271315 -0.037519458681344986 -0.018555399030447006 0.002202289644628763 0.016548005864024162 0.05825328081846237 -0.02400066889822483 -0.018050532788038254 0.009028686210513115 -0.006677424535155296 0.010976425372064114 -0.013560541905462742 0.05876181647181511 -0.008347883820533752 0.06800109148025513 -0.037169262766838074 -0.06200598180294037 -0.07199550420045853 0.039380837231874466 -0.0365002378821373 -0.037952668964862823 -0.008115279488265514 0.0351436585187912 0.020217249169945717 0.05131089314818382 0.016264168545603752 -0.04537883773446083 -0.014154809527099133 -0.020441990345716476 -0.02031657285988331 -0.06606069952249527 -0.014127855189144611 -0.013670897111296654 -0.06210356578230858 -0.0028990814462304115 -0.04757225513458252 -0.010062675923109055 0.003157225204631686 -0.01630324497818947 0.02905150130391121 0.04209158569574356 0.03438480570912361 0.006295227445662022 0.04741862788796425 0.015201276168227196 0.014716926962137222 -0.005886461585760117 -0.053338825702667236 0.028568372130393982 0.032518159598112106 -0.02867359295487404 0.05961397662758827 -0.046423137187957764 0.0416608564555645 -0.04427973926067352 0.01941419579088688 0.016396239399909973 -0.06620413810014725 -0.0028825518675148487 -0.004856790415942669 0.05508335307240486 -0.045924313366413116 -0.07454317063093185 0.04296470806002617 -0.03789224475622177 -0.0928172916173935 0.026430495083332062 -0.032453540712594986 -0.0262455977499485 0.036329157650470734 -0.02152303233742714 0.017229868099093437 0.03278582543134689 -0.08393718302249908 -0.06100763753056526 -0.04500827565789223 -0.012799329124391079 0.027663735672831535 0.008356448262929916 0.047465041279792786 0.051397912204265594 -0.026072746142745018 0.021373776718974113 -0.03946952149271965 0.020034579560160637 -0.09126313775777817 -0.00044350724783726037 -0.004881052765995264 -0.006718446034938097 0.059736497700214386 0.011037679389119148 0.039159588515758514 -0.017362244427204132 -0.04295777902007103 -0.04133987054228783 0.04087253287434578 -0.04553885757923126 -0.014061282388865948 0.02460082434117794 -0.026361219584941864 0.0005762844230048358 0.04016807675361633 -0.029744308441877365 -0.05079726129770279 0.008783881552517414 -0.04303188621997833 0.05960836634039879 0.06160921975970268 0.0374760776758194 -0.025216417387127876 -0.059145569801330566 -0.023329701274633408 0.02049454301595688 -0.049989696592092514 0.020149430260062218 -0.007691678125411272 -0.056544605642557144 -0.07312345504760742 -0.03585401177406311 -0.020534414798021317 0.05288611724972725 -0.026185989379882812 0.028912076726555824 -0.04193947836756706 0.009919535368680954 0.03477681055665016 -0.06464293599128723 -0.007498424965888262 0.004957091063261032 -0.0820661336183548 -0.008724956773221493 0.0996217280626297 -0.04662080481648445 0.03450990468263626 0.06804928183555603 -0.050149716436862946 0.030595524236559868 0.011987832374870777 -0.03372301161289215 0.0316365584731102 -0.01328221894800663 -0.03446456789970398 0.03984470292925835 -0.06847701221704483 0.08088483661413193 -0.058655545115470886 0.09791047126054764 0.005025024525821209 -0.02749326266348362 0.09183783084154129 0.04631062597036362 -0.0054873572662472725 0.022036608308553696 -0.09430532902479172 +0.06327813118696213 0.03375604376196861 0.013285582885146141 0.020097998902201653 -0.12282588332891464 -0.049561336636543274 -0.032488077878952026 0.019911272451281548 0.02323225513100624 -0.021152295172214508 -0.023802148178219795 -0.029764449223876 -0.0026445419061928988 -0.010469170287251472 0.025283033028244972 -0.03971606120467186 -0.07347140461206436 -0.03033135086297989 -0.011408197693526745 -0.016215234994888306 0.03933999687433243 0.014443378895521164 -0.06648819893598557 0.07731881737709045 0.02802939899265766 0.043669477105140686 -0.04527876153588295 0.011011508293449879 -0.05339612439274788 0.017250701785087585 0.0515911728143692 0.016214855015277863 0.00890268199145794 -0.02466859295964241 -0.051104843616485596 0.062015652656555176 -0.03236540034413338 0.1138385459780693 0.03216686472296715 -0.03727513924241066 -0.029324360191822052 0.028862018138170242 -0.02453932911157608 -0.013097526505589485 0.00601513497531414 -0.002565623726695776 -0.026006370782852173 -0.009210560470819473 0.022899990901350975 0.010948865674436092 0.10258008539676666 -0.0054073939099907875 -0.04406002163887024 -0.030338337644934654 -0.00026177166728302836 0.04193561151623726 0.03639397770166397 -0.08134639263153076 -0.06084591522812843 0.04424072429537773 -0.06564473360776901 0.020783832296729088 0.021513495594263077 -0.01164475828409195 0.023693088442087173 -0.03301947936415672 -0.01725587248802185 0.08529655635356903 0.01790846884250641 0.0028518494218587875 0.06640709936618805 0.09664779901504517 -0.08196661621332169 -0.04054000973701477 0.06471683830022812 -0.06080983579158783 -0.06032481789588928 0.0789521262049675 0.004342313855886459 -0.008400370366871357 0.024922212585806847 -0.03928288817405701 0.06396631896495819 -0.04361533746123314 -0.06473086029291153 -0.03554680943489075 -0.015175768174231052 -0.06443822383880615 0.06422652304172516 0.04625782370567322 0.00762820802628994 0.08087955415248871 -0.0729040652513504 0.0443372018635273 -0.0029468464199453592 -0.009471798315644264 0.03686714172363281 -0.11808802932500839 -0.03701359033584595 -0.01157289370894432 -0.0036514359526336193 -0.015257107093930244 0.0024930881336331367 -0.012427442707121372 0.045522626489400864 0.0631631538271904 -0.03250463306903839 0.033772338181734085 0.017488446086645126 0.07304766029119492 0.039080362766981125 0.018071182072162628 0.117811419069767 0.0901816114783287 0.049512799829244614 0.003513979958370328 -0.007855006493628025 -0.030352449044585228 -0.06185377761721611 0.004373097792267799 -0.018007058650255203 0.04250616952776909 0.0020600988063961267 -0.05993416905403137 -0.027514036744832993 0.03049696423113346 -0.09654958546161652 -0.000750772887840867 0.04399321600794792 -0.006988667417317629 0.07548896223306656 0.025465909391641617 -0.023886315524578094 0.006825168151408434 0.05918608605861664 0.04947502911090851 0.012388485483825207 0.021808622404932976 -0.03594013303518295 -0.01834075152873993 -0.0024355752393603325 -0.003353710053488612 0.028802406042814255 -0.08804094791412354 0.011001707054674625 0.020483238622546196 0.05816783756017685 0.01178253348916769 -0.06467775255441666 -0.020901333540678024 -0.09439212083816528 -0.07295528054237366 0.010531540960073471 -0.06925057619810104 -0.00717605696991086 0.06629914045333862 0.03395215421915054 0.03213146701455116 -0.019737254828214645 -0.020830413326621056 -0.026780465617775917 -0.011814362369477749 -0.025729317218065262 -0.08908087015151978 -0.018987705931067467 -0.07231908291578293 0.0044750249944627285 0.015138165093958378 -0.03336421400308609 -0.029811955988407135 -0.010298414155840874 -0.003248484106734395 0.02114778757095337 0.09994268417358398 0.07604477554559708 0.009265162982046604 0.03462308645248413 -0.020239640027284622 -0.011686095036566257 -0.028947073966264725 0.0009711209568195045 -0.013513730838894844 0.04733527824282646 -0.060467202216386795 -0.014600375667214394 -0.0028607884887605906 0.05608073249459267 0.007554355077445507 0.014467542991042137 0.010378151200711727 -0.021952031180262566 -0.0674259290099144 0.06135083734989166 0.07180079817771912 -0.02712537720799446 0.03397151082754135 -0.005885445978492498 0.04078134521842003 0.018022984266281128 -0.02072325348854065 -0.03797466307878494 0.0332736074924469 0.006832095794379711 0.09051428735256195 0.05093010514974594 -0.07737671583890915 0.08812473714351654 0.007140387315303087 0.019824549555778503 -0.05592329427599907 0.00782029889523983 0.0297734085470438 0.0052790287882089615 0.030880197882652283 0.08783827722072601 -0.03196847066283226 0.02736232988536358 -0.017306189984083176 0.06605707108974457 -0.057200606912374496 0.02282855659723282 -0.008353378623723984 -0.06325313448905945 0.0503968745470047 -0.02898308075964451 -0.08192581683397293 -0.030202392488718033 0.0395209975540638 -0.012148010544478893 -0.029893908649683 0.0062312176451087 0.022055668756365776 -0.0018515161937102675 -0.028585977852344513 0.011028697714209557 0.012247533537447453 -0.12522795796394348 0.09947976469993591 -0.013856302946805954 -0.05795183777809143 -0.06150699779391289 0.01607782393693924 0.014393358491361141 -0.0013921019854024053 0.045179277658462524 0.07960214465856552 0.09494545310735703 0.04660185053944588 0.0331227108836174 0.015221181325614452 -0.0718238577246666 -0.041633013635873795 0.010357585735619068 0.03341895714402199 -0.05695728957653046 -0.029615983366966248 -0.002564468653872609 -0.0511358343064785 -0.03267049044370651 0.010793520137667656 0.019031545147299767 -0.04133045673370361 -0.047730959951877594 -0.0506550632417202 0.029829055070877075 -0.02616015076637268 -0.06032225117087364 0.035501930862665176 -0.02367538958787918 0.08552277088165283 -0.0035523215774446726 -0.042389266192913055 0.014154959470033646 0.022096997126936913 0.02409694343805313 0.006082707084715366 0.04713142290711403 -0.038272589445114136 -0.08342861384153366 -0.019241660833358765 -0.06772832572460175 -0.06174109876155853 -0.0006328254821710289 -0.040970079600811005 -0.0322100855410099 0.09092233330011368 -0.002633908996358514 -0.05083392187952995 -0.06883417814970016 0.021114440634846687 -0.004058179445564747 -0.04106952250003815 -0.032268721610307693 0.016390133649110794 -0.05918412283062935 -0.05333442986011505 0.038145918399095535 -0.03227575868368149 -0.04673207551240921 0.0033531293738633394 -0.062493227422237396 -0.0548497773706913 -0.0030491980724036694 -0.03908352926373482 -0.023343082517385483 0.01567005179822445 -0.06930335611104965 0.051740799099206924 0.12502941489219666 0.043793920427560806 0.0322461873292923 0.008583289571106434 0.02084510214626789 0.10966408252716064 0.01701425202190876 -0.06997667998075485 0.011418337933719158 -0.06147295609116554 -0.056400056928396225 0.024831576272845268 -0.047945089638233185 -0.03442121669650078 -0.0199715755879879 0.0009572222479619086 0.048264846205711365 0.03312860056757927 -0.01897338218986988 -0.005546277388930321 0.023964595049619675 -0.0033988661598414183 0.024358538910746574 -0.004103143699467182 -0.016299327835440636 -0.003253377741202712 -0.001670590601861477 -0.025768723338842392 -0.05224081873893738 0.035017941147089005 0.017406340688467026 0.04458009824156761 -0.041798435151576996 -0.048772308975458145 0.009854266420006752 -0.010526309721171856 0.09035144746303558 -0.0736120343208313 0.037409767508506775 0.047064993530511856 -0.008665724657475948 -0.051102057099342346 -0.021851733326911926 0.06246957927942276 -0.05289322882890701 -0.02053607627749443 -0.027867600321769714 0.023073792457580566 -0.06600956618785858 -0.049749597907066345 0.032338980585336685 -0.048526279628276825 0.035341545939445496 0.005290137138217688 0.015327868983149529 -0.009805666282773018 -0.04034480080008507 0.004449462052434683 0.007923007942736149 -0.0026678917929530144 0.03696303442120552 -0.035457544028759 -0.0077996449545025826 -0.015058744698762894 0.056080207228660583 -0.03520970791578293 -0.02037208527326584 -0.0600067637860775 0.0661064013838768 -0.007392908446490765 0.01046967227011919 -0.012755078263580799 0.028144964948296547 -0.006086085457354784 0.03588734194636345 0.017003729939460754 -0.06591805070638657 -0.025117915123701096 -0.03271203860640526 -0.01799795776605606 -0.06407465785741806 -0.04123803973197937 0.010481826029717922 -0.0891142413020134 0.005423562601208687 -0.03331301733851433 -0.023924119770526886 -0.03185029327869415 -0.050696637481451035 0.011005852371454239 0.01819043606519699 0.03132560849189758 0.0031154565513134003 0.029845619574189186 0.01888410933315754 0.0307600237429142 0.02670041285455227 -0.06050010398030281 0.03407711163163185 0.05822031944990158 -0.008424397557973862 0.05258550867438316 -0.017188450321555138 0.03297353535890579 0.012685291469097137 0.003464306006208062 0.02073059044778347 -0.032405827194452286 -0.016352247446775436 -0.059239380061626434 0.036510732024908066 -0.053906407207250595 -0.035488709807395935 0.0474935881793499 -0.050740912556648254 -0.08630028367042542 0.01168089359998703 -0.03180263191461563 -0.023595144972205162 -0.0054428717121481895 0.0021853477228432894 0.03363398462533951 0.04190387576818466 -0.0883743017911911 -0.04388420283794403 -0.06592229753732681 -0.005661914125084877 0.06733518838882446 -0.0032765932846814394 0.04888887703418732 -0.003436633385717869 0.0071560381911695 -0.002978007774800062 0.006238260772079229 0.01969520002603531 -0.07866004854440689 0.00192402140237391 -0.05227060243487358 -0.05201034992933273 0.0372166708111763 0.009561615064740181 0.020829182118177414 -0.04708359017968178 -0.042689722031354904 -0.055525731295347214 0.08050066977739334 -0.045400578528642654 0.004049880430102348 0.024957606568932533 -0.015159638598561287 0.01457269862294197 -0.0037798318080604076 -0.02293490245938301 -0.07904750108718872 0.00829285103827715 -0.01373712532222271 0.009950300678610802 0.024064894765615463 0.015597917139530182 -0.017388785257935524 -0.07598762214183807 -0.009161666966974735 0.03980981186032295 -0.05873619019985199 0.010217842645943165 -0.012998433783650398 -0.0775981917977333 -0.07313423603773117 -0.015103902667760849 -0.023293232545256615 0.0484166294336319 -0.015593218617141247 0.03366465866565704 -0.008987851440906525 0.004705745726823807 0.03649139031767845 -0.05755365639925003 -0.014352775178849697 0.008801046758890152 -0.020986095070838928 -0.03910304978489876 0.06069844588637352 -0.007494557648897171 0.008450806140899658 0.07750304788351059 -0.030711229890584946 -0.007304750382900238 0.05127815902233124 -0.06054472550749779 0.025244586169719696 -0.0022172918543219566 -0.06442724168300629 0.07093019038438797 -0.05160941928625107 0.08328720182180405 -0.03487017750740051 0.0889960527420044 -0.05237872153520584 -0.05906001478433609 0.06789274513721466 0.06148280203342438 -0.011776403523981571 0.027377689257264137 -0.05228907987475395 +0.01740347035229206 -0.043630022555589676 0.0026652675587683916 0.010967826470732689 -0.03396134823560715 -0.04324032738804817 0.009388772770762444 0.05277732014656067 -0.017660818994045258 -0.054339613765478134 -0.03923853486776352 0.012726698070764542 -0.010571800172328949 -0.009520761668682098 0.024664629250764847 -0.022346459329128265 -0.08837983757257462 0.010174013674259186 -0.06415281444787979 -0.05509215593338013 -0.009768946096301079 0.03021187335252762 -0.07215999811887741 0.046889789402484894 -0.009709076955914497 0.023605965077877045 -0.04020412638783455 -0.02084248885512352 -0.012155815958976746 0.029159896075725555 0.06947468221187592 0.002723671728745103 0.09460419416427612 -0.04165080934762955 -0.029047049582004547 0.05057278648018837 -0.032790038734674454 0.10685655474662781 -0.015990296378731728 -0.009187530726194382 -0.04384380206465721 -0.014380845241248608 -0.012818684801459312 -0.07100677490234375 0.030153919011354446 -0.007970232516527176 0.013450603000819683 0.005835092160850763 0.005233314353972673 0.02546091191470623 0.07751153409481049 0.026473987847566605 0.002851598197594285 -0.020530998706817627 -0.0011282392079010606 0.041283927857875824 0.0204528346657753 -0.025569096207618713 -0.056719888001680374 0.04841618984937668 -0.11085090786218643 -0.010712831281125546 0.03245174139738083 0.006130230613052845 -0.041358016431331635 -0.02880384773015976 -0.04817007854580879 0.09889437258243561 0.021329089999198914 -0.04453460872173309 0.032280031591653824 0.057765696197748184 -0.04608374089002609 -0.05607602000236511 0.028713267296552658 -0.03487671539187431 0.003401433117687702 0.022346654906868935 -0.006518245674669743 -0.009259065613150597 0.007137069012969732 -0.007527523208409548 0.12856948375701904 -0.037200238555669785 -0.037027761340141296 -0.049492884427309036 -0.002861937740817666 -0.0567423440515995 0.08994697779417038 0.00026437186170369387 0.007357554975897074 0.07425572723150253 -0.012242322787642479 0.015810247510671616 0.023697301745414734 -0.011056257411837578 -0.030030159279704094 -0.09941218793392181 -0.04869717359542847 -0.02047659456729889 0.02704791910946369 0.022565605118870735 0.07161717861890793 0.029429182410240173 0.08061390370130539 0.026187477633357048 -0.02275971695780754 -0.01254594512283802 0.053607337176799774 -0.018464958295226097 0.008798939175903797 0.13121330738067627 0.035144735127687454 0.029538147151470184 0.06984802335500717 0.026808541268110275 0.021668419241905212 -0.03022710420191288 -0.01669749803841114 -0.021545683965086937 -0.018694033846259117 0.018946362659335136 0.003938095178455114 -0.09147088974714279 -0.0364038459956646 0.05746028199791908 -0.09645365923643112 -0.055103693157434464 0.08932822942733765 -0.039661962538957596 0.12067854404449463 0.05273406207561493 -0.01030617207288742 0.010029125027358532 0.03700966015458107 -0.01080921571701765 -0.022947318851947784 0.018552100285887718 0.003337712027132511 -0.038867682218551636 -0.00044257304398342967 0.053398169577121735 -0.046420466154813766 -0.050694070756435394 0.034393008798360825 0.025386175140738487 0.009412684477865696 -0.033571504056453705 -0.0493178591132164 0.034181807190179825 -0.03151350095868111 -0.09379282593727112 -0.007476005237549543 -0.0537702701985836 -0.011631925590336323 0.05380719155073166 0.0010252121137455106 0.017835039645433426 -0.012354806065559387 -0.03275240212678909 -0.07328949868679047 -0.04034087434411049 -0.03671403229236603 -0.09792780876159668 -0.017013126984238625 -0.024993812665343285 -0.015162916854023933 0.06170148402452469 -0.06454553455114365 -0.022539451718330383 -0.010694647207856178 -0.031246835365891457 -0.017611907795071602 0.07119696587324142 0.0638929083943367 0.035265035927295685 0.0028946043457835913 -0.06673046946525574 -0.0005395484040491283 -0.0342065654695034 -0.003636847250163555 -0.009497914463281631 0.05508771166205406 -0.050095900893211365 0.022748976945877075 -0.01917017623782158 0.04259568080306053 -0.0174594447016716 0.014386333525180817 0.0075256736017763615 0.00855858251452446 -0.03390567749738693 0.041604962199926376 0.04703723266720772 0.0017267694929614663 0.02350914105772972 0.012185991741716862 0.07229997962713242 -0.02472854033112526 -0.045385174453258514 -0.060388512909412384 0.012482650578022003 0.04373965412378311 0.02613067626953125 0.015213181264698505 -0.0582563579082489 0.0836014375090599 0.04695397615432739 0.01299295388162136 -0.06713898479938507 0.006084507331252098 -0.0008873188635334373 0.004193563014268875 0.05910515785217285 0.06793970614671707 -0.042869072407484055 -0.021601606160402298 0.03171005845069885 0.047852933406829834 -0.055422719568014145 -0.060618069022893906 0.01251663826406002 -0.07795574516057968 0.01146052684634924 -0.02737116813659668 -0.08823581039905548 -0.023318476974964142 0.05262431129813194 -0.021826529875397682 0.0003390756028238684 -0.0016685628797858953 0.02325635962188244 -0.03819720447063446 -0.019074758514761925 0.009255294688045979 -0.04978608712553978 -0.084454745054245 0.08251489698886871 0.00939583033323288 -0.09755407273769379 -0.06198566406965256 -0.017076140269637108 0.05332368612289429 -0.00013688286708202213 0.050426870584487915 0.025289902463555336 0.08964670449495316 0.013220575638115406 -0.0391022190451622 0.0025850008241832256 -0.003303789533674717 -0.03370780125260353 0.0069021498784422874 0.0465923435986042 -0.053597159683704376 -0.04855591803789139 0.004374923650175333 -0.027061209082603455 -0.006273257080465555 0.02017933875322342 0.05732095614075661 -0.044478341937065125 -0.004767775069922209 -0.003921351861208677 0.007673205807805061 -0.05170971900224686 0.0025986505206674337 0.0532718151807785 0.006344961933791637 0.053925689309835434 -0.048338714987039566 -0.03472679480910301 0.026555750519037247 -0.021804092451930046 0.017349516972899437 -0.07213867455720901 0.07199598103761673 0.0014005560660734773 -0.08324534446001053 -0.00608050636947155 -0.08859682828187943 -0.02764970064163208 -0.0218772292137146 -0.05857916548848152 -0.058898285031318665 0.07684466242790222 0.03042004071176052 -0.07002437114715576 -0.03661518916487694 -0.07103944569826126 -0.038277581334114075 -0.028750764206051826 -0.010655676014721394 -0.021133383736014366 -0.009057409130036831 -0.0008138864068314433 0.058415062725543976 -0.07979337871074677 -0.004704550374299288 0.043421242386102676 0.006512701045721769 -0.05999580770730972 0.06333482265472412 -0.02085793763399124 -0.024614408612251282 -0.0006933578406460583 -0.08782988786697388 0.010154258459806442 0.07391716539859772 0.0620885044336319 0.024335801601409912 0.03920267894864082 0.028255654498934746 0.1118335872888565 0.012444084510207176 -0.009192788042128086 -0.028416238725185394 -0.00795248243957758 -0.04126764088869095 0.02391485497355461 -0.013992762193083763 -0.003756533609703183 -0.018410684540867805 0.006999127566814423 0.05333004146814346 0.011202138848602772 -0.02344246208667755 -5.606305421679281e-05 0.027680860832333565 -0.014631246216595173 0.03003033809363842 0.011722751893103123 0.027992432937026024 -0.011531440541148186 -0.056175246834754944 -0.05673479661345482 -0.0032744307536631823 0.053510211408138275 -0.040453363209962845 0.05275927484035492 -0.03797876834869385 -0.06256343424320221 0.008283798582851887 -0.02491070330142975 0.0989382341504097 -0.06469839066267014 0.02155805379152298 0.05858318880200386 0.056074488908052444 -0.10287350416183472 0.010948597453534603 0.036349304020404816 -0.04206293821334839 -0.07539196312427521 -0.0045463573187589645 0.03778073564171791 -0.051619887351989746 -0.044575970619916916 -0.004547481425106525 -0.04261201620101929 -0.026821071282029152 0.000492956314701587 0.02825200743973255 0.028473101556301117 0.0011391988955438137 -0.017173659056425095 -0.008816029876470566 0.030599532648921013 0.03556377440690994 -0.014151503331959248 0.018024876713752747 -0.03265540674328804 0.023090213537216187 -0.0682191401720047 -0.04105529189109802 -0.017980504781007767 0.06049424037337303 -0.027649903669953346 0.020657282322645187 -0.0023464474361389875 -0.06642743200063705 -0.029770152643322945 -0.0058324518613517284 0.0004844671057071537 -0.04565955325961113 -0.017323650419712067 -0.00401722127571702 -0.08755180984735489 -0.08398637920618057 -0.06712641566991806 -0.010279756039381027 -0.020283736288547516 0.021862702444195747 -0.05730760470032692 0.045771703124046326 0.017748719081282616 0.016757216304540634 0.05104009434580803 0.06113016977906227 0.04453841596841812 -0.028229551389813423 0.022831056267023087 0.003578015137463808 0.04785826802253723 -0.0010562395909801126 -0.04078465327620506 0.012456843629479408 0.0002808432618621737 -0.04337723180651665 0.050246428698301315 -0.017956940457224846 0.003737563733011484 -0.004129217937588692 -0.05283964052796364 -0.02263842150568962 0.014141451567411423 -0.012791892513632774 -0.04301739111542702 0.0432993546128273 -0.054762400686740875 -0.025594113394618034 0.02042311057448387 -0.04573792219161987 -0.07069186121225357 -0.062090903520584106 -0.04301181808114052 -0.023682016879320145 0.06038951873779297 -0.012976763769984245 0.019242702051997185 0.03146671876311302 -0.026050759479403496 -0.06761963665485382 0.0035391473211348057 -0.02233574353158474 0.011745406314730644 -0.0008685227949172258 0.059890370815992355 0.00892837718129158 0.011624936945736408 -0.03441436216235161 -0.04449854791164398 0.023044437170028687 -0.11386832594871521 0.0124115701764822 -0.0031163895037025213 -0.022744670510292053 0.011628974229097366 0.0009339580428786576 -0.004124898463487625 -0.057672396302223206 -0.012126055546104908 -0.0024307004641741514 0.050175897777080536 -0.007823485881090164 0.032308343797922134 -0.0019307538168504834 -0.046502288430929184 -0.03913126885890961 0.0312533974647522 -0.04636303707957268 -0.0751664862036705 0.01827121712267399 -0.04349028691649437 0.040268249809741974 -0.01347597036510706 0.02985904924571514 -0.03755885362625122 -0.09788093715906143 -0.006867602001875639 -0.026959974318742752 -0.05028512328863144 -0.025779949501156807 0.03664020076394081 -0.10500942915678024 -0.02569311484694481 0.012240037322044373 -0.03056999482214451 0.0430249385535717 0.007155721541494131 0.055293191224336624 -0.0468955896794796 -0.01865914650261402 -0.023566601797938347 0.004177187569439411 0.013363735750317574 -0.03010805882513523 -0.08720558881759644 -0.023811375722289085 0.06879279017448425 -0.0814661979675293 0.030773313716053963 0.07006587833166122 -0.05972980707883835 0.05636196210980415 0.005470316857099533 -0.04779799282550812 0.04471831023693085 0.0026326668448746204 -0.021259842440485954 0.018618596717715263 -0.08843893557786942 0.059968095272779465 -0.0671653002500534 0.09573324769735336 0.0039673056453466415 -0.01014700997620821 0.08316177874803543 0.09657405316829681 0.008161784149706364 0.026397332549095154 -0.08626406639814377 +0.020163634791970253 0.0030472504440695047 0.04475552961230278 -0.003531613852828741 -0.07311013340950012 -0.0038198719266802073 0.006805660668760538 -0.01448962464928627 -0.07178009301424026 -0.04864248260855675 0.0536014586687088 -0.05530768632888794 -0.0006741416291333735 -0.024907950311899185 0.03711332008242607 -0.012726978398859501 -0.0648118332028389 0.016361191868782043 -0.044063955545425415 -0.013673589564859867 0.07337062805891037 -0.04347243532538414 -0.07622520625591278 -0.010941320098936558 -0.03470654413104057 0.010074576362967491 -0.03576863184571266 0.00659960275515914 -0.036129847168922424 0.024416416883468628 -0.008052690885961056 -0.024088142439723015 0.010785755701363087 -0.03552623093128204 -0.05624447390437126 0.0057998839765787125 0.06408967822790146 0.08049969375133514 0.04889391362667084 -0.08410313725471497 -0.0628090351819992 0.03795143961906433 -0.028693731874227524 -0.0252726711332798 0.005467682611197233 -0.019943028688430786 0.017262756824493408 -0.018036216497421265 0.05375819280743599 0.03139117360115051 0.021245455369353294 0.020308302715420723 -0.06739635020494461 -0.02521529421210289 0.06989157944917679 0.011459428817033768 0.03960425779223442 -0.01791580393910408 -0.04712391272187233 0.08016090840101242 -0.044931817799806595 0.021854380145668983 -0.03394642099738121 -0.03641790524125099 0.006149953231215477 -0.00896504893898964 0.015693088993430138 0.04840691387653351 0.02711397036910057 -0.04216223582625389 -0.04735787212848663 0.0919317901134491 -0.031526222825050354 -0.05070870369672775 0.051684506237506866 -0.03142767772078514 0.007035496179014444 0.004490968305617571 -0.017042012885212898 -0.010945509187877178 -0.09021146595478058 -0.07198809832334518 0.1572709083557129 -0.04426282271742821 -0.02961410954594612 -0.05414414778351784 -0.022123567759990692 -0.02795061655342579 0.04320555180311203 0.040381643921136856 -0.028958532959222794 0.012138985097408295 -0.08297041058540344 0.08638732880353928 -0.04726863652467728 -0.0043939086608588696 0.03949834033846855 -0.10589318722486496 0.007332721259444952 0.018492206931114197 -0.04271314665675163 -0.06292218714952469 0.0195172056555748 0.005866173654794693 0.014557202346622944 -0.0036355957854539156 -0.04221367835998535 -0.033979546278715134 -0.030430389568209648 0.0003566720988601446 -0.005134889855980873 0.10185481607913971 0.04455481469631195 0.06329642236232758 0.005557629279792309 0.04424991458654404 0.044767990708351135 -0.05296776071190834 0.03262108564376831 0.0070648882538080215 0.00518141221255064 0.019171465188264847 0.028603950515389442 0.00614745169878006 0.040928687900304794 0.05900752544403076 -0.07049047946929932 -0.021019309759140015 0.058170802891254425 -0.026998581364750862 0.069188192486763 0.06726381182670593 -0.0026668966747820377 0.051746394485235214 0.04827980324625969 -0.0026569454930722713 0.0050764307379722595 0.04240870475769043 -0.04216248542070389 -0.0673217922449112 -0.0008107544272206724 0.004935138858854771 -0.02543732523918152 -0.04042849689722061 -0.01486813835799694 0.05951148644089699 0.02546650916337967 -0.07144945859909058 -0.03463999927043915 0.09006227552890778 -0.04621649533510208 -0.10133323818445206 -0.030473195016384125 -0.10375040024518967 0.023196492344141006 0.039047710597515106 0.018298309296369553 0.05548999831080437 -0.027589544653892517 0.03653622046113014 -0.019733550027012825 -0.11975942552089691 -0.06848437339067459 -0.03610136732459068 -0.037772875279188156 0.03347430378198624 0.03725177422165871 -0.006436568219214678 -0.025191208347678185 -0.014438403770327568 0.07008469104766846 0.051106926053762436 0.015058810822665691 0.005045481026172638 -0.008774146437644958 -0.045508529990911484 0.061377786099910736 -0.01634090393781662 -0.01800672709941864 0.004548429045826197 0.09506867080926895 -0.03240964561700821 0.08126109093427658 -0.06454075127840042 -0.03590758517384529 -0.013298183679580688 0.008379771374166012 -0.0007785891066305339 0.006988921668380499 -0.02886759489774704 -0.06582803279161453 0.0005185577902011573 0.009067525155842304 0.03376102074980736 -0.0582263320684433 0.06084180250763893 0.0004834065621253103 0.07448125630617142 -0.07203050702810287 -0.021495850756764412 -0.05883760005235672 0.03203677758574486 0.010147111490368843 0.012159937992691994 -0.02259606309235096 -0.01391628198325634 -0.047278594225645065 0.0256106648594141 -0.0358581468462944 -0.053680289536714554 0.07725955545902252 -0.02667400985956192 0.0862855389714241 0.015232957899570465 -0.00438213674351573 -0.04140068590641022 0.005262577906250954 -0.007127564400434494 0.03962300717830658 0.004316601436585188 0.01592264138162136 -0.005945152137428522 -0.03975421190261841 -0.032375674694776535 -0.02578454092144966 -0.00878468994051218 -0.029559997841715813 0.025081714615225792 -0.009804039262235165 -0.016553031280636787 -0.00858346838504076 0.07691249251365662 -0.11920462548732758 -0.024992426857352257 0.05696101114153862 0.01552469190210104 -0.035088930279016495 0.05671281740069389 0.008919928222894669 -0.045672137290239334 -0.027334226295351982 0.03431426361203194 0.011844288557767868 0.052559465169906616 0.0021975054405629635 0.01728425733745098 0.0602404810488224 0.02538379840552807 -0.00199329387396574 -0.051571205258369446 -0.04480576515197754 -0.045603301376104355 -0.00780459214001894 -0.01774575747549534 -0.013003385625779629 -0.04717668145895004 -0.03820464760065079 -0.010504386387765408 0.03942030668258667 -0.04047587886452675 0.04407520592212677 -0.02080533653497696 0.0023719032760709524 0.05710047855973244 0.00265224976465106 -1.68643455253914e-05 -0.04000793397426605 -0.027036719024181366 -0.0003225416294299066 0.017692115157842636 -0.0028349615167826414 0.02544170245528221 0.01636999472975731 -0.024915507063269615 0.015062759630382061 -0.01861262321472168 0.014712990261614323 -0.051080942153930664 -0.05258231610059738 -0.04495072737336159 -0.08406957238912582 -0.03394739702343941 -0.06491692364215851 -0.023914720863103867 -0.04047702997922897 0.05431940406560898 0.013174299150705338 -0.06888893991708755 -0.019220983609557152 -0.02968222089111805 -0.031642451882362366 -0.046702176332473755 -0.05698108300566673 0.07343093305826187 -0.018989909440279007 0.0232757069170475 0.00646994961425662 -0.05821704864501953 -0.03233610838651657 -0.007162499241530895 -0.018214654177427292 -0.040315836668014526 0.09649690240621567 -0.0004326478228904307 0.007678069174289703 0.01801915466785431 -0.022844675928354263 0.060306958854198456 0.021808629855513573 0.013350729830563068 0.07531865686178207 0.02613699994981289 0.03930258750915527 0.02724556252360344 0.0422297902405262 -0.015511355362832546 -0.049749698489904404 -0.06458288431167603 -0.11909854412078857 0.06778006255626678 -0.02097824215888977 0.03961711749434471 -0.05881573632359505 0.036663223057985306 0.07686017453670502 -0.03462333604693413 0.017263032495975494 -0.016972234472632408 -0.003747564274817705 -0.01458553597331047 0.011999960988759995 -0.04068015143275261 -0.022906886413693428 0.000442283897427842 -0.04685723036527634 -0.04659751430153847 -0.0030096485279500484 -0.009179752320051193 -0.03862548619508743 0.05959576368331909 0.007304114755243063 -0.02178700640797615 -0.014798789285123348 0.03141907975077629 0.03039252944290638 -0.02398828975856304 0.021751543506979942 0.011878246441483498 0.01793643832206726 -0.08783502131700516 -0.03142029792070389 0.031169362366199493 0.0431985966861248 -0.018779926002025604 0.004500077571719885 0.07527539879083633 -0.01403865497559309 0.0005374281900003552 -0.05453566834330559 0.003859285032376647 -0.02728801965713501 0.0402601957321167 -0.035112638026475906 -0.01868666708469391 -0.049198638647794724 -0.009475572034716606 -0.022488495334982872 -0.03531249240040779 -0.04099126160144806 0.033786192536354065 0.050210293382406235 -0.021880481392145157 0.03864527493715286 -0.040949154645204544 -0.08086927980184555 -0.07328687608242035 0.06901267915964127 -0.07626429200172424 -0.03960205242037773 -0.02574671059846878 -0.0007169665768742561 -0.03293490782380104 0.052884574979543686 0.0076880850829184055 0.019591709598898888 -0.0059928931295871735 0.017783673480153084 -0.07687948644161224 -0.06492914259433746 -0.0005960658891126513 -0.005061446689069271 -0.013132932595908642 -0.0009975596331059933 -0.02170083485543728 0.0031520037446171045 0.06247195601463318 0.02036099135875702 0.005727594718337059 0.00683485297486186 0.023501520976424217 -0.020834438502788544 0.07190050929784775 0.01768193207681179 0.025332313030958176 -0.043021876364946365 -0.05426326021552086 0.017580725252628326 -0.0014916331274434924 -0.023828430101275444 0.12509828805923462 -0.04568467661738396 -0.005078968591988087 -0.02974816970527172 0.047047022730112076 -0.009777242317795753 -0.00855192355811596 -0.027116935700178146 0.01773400418460369 0.0955342948436737 -0.029854996129870415 -0.06689722836017609 -0.0018421645509079099 -0.06762060523033142 -0.11733068525791168 0.03124995343387127 0.0072066099382936954 -0.0306685883551836 0.037053026258945465 0.016027498990297318 0.07510567456483841 0.049486760050058365 -0.023397279903292656 -0.010524495504796505 -0.013503171503543854 -0.04093735292553902 0.03769277036190033 0.03303735703229904 0.07826058566570282 0.03218938037753105 -0.019164754077792168 0.033454280346632004 0.04631291329860687 0.008398480713367462 -0.10716810077428818 0.03792787715792656 -0.0010026111267507076 0.057317767292261124 0.026136580854654312 -0.03772728890180588 0.0017744816141203046 -0.02367853745818138 -0.006947149056941271 0.02048330008983612 -0.0009840669808909297 -0.01094500720500946 -0.0583471842110157 0.08593230694532394 -0.015947606414556503 -0.006330556236207485 0.009516497142612934 -0.003012582194060087 -0.004726670682430267 0.0350169762969017 -0.05970850586891174 0.015876535326242447 0.006400726269930601 0.026914173737168312 0.035892996937036514 -0.045601729303598404 -0.07089727371931076 0.001981545938178897 -0.03865869343280792 0.03500362113118172 0.01044455450028181 -0.03461279720067978 -0.12052613496780396 -0.005480020307004452 -0.01212911307811737 -0.05014358460903168 -0.007053666282445192 -0.014510306529700756 -0.00721898814663291 0.0742979422211647 0.0027679812628775835 -0.012758363969624043 0.0984109416604042 0.011764672584831715 -0.11712034046649933 -0.03308594226837158 0.11353221535682678 -0.069837786257267 0.05093885958194733 0.0017931073671206832 0.023441152647137642 0.04452455788850784 0.018006108701229095 0.013788145035505295 0.02651035226881504 -0.031576693058013916 0.008728653192520142 0.004017454572021961 -0.05471304804086685 0.0587216354906559 -0.06160621717572212 0.05772598460316658 -0.0043439706787467 0.004461548291146755 0.10706931352615356 0.07896646857261658 0.07022461295127869 -0.01752111315727234 -0.059800729155540466 +0.05080700293183327 -0.03493307903409004 0.0068503995425999165 0.06596678495407104 -0.06467990577220917 -0.029313843697309494 6.994255818426609e-05 0.020610887557268143 -0.010436663404107094 -0.03405757248401642 -0.015469089150428772 -0.016832593828439713 -0.005497743841260672 0.012563102878630161 0.03670959919691086 -0.02919822558760643 -0.0591052770614624 0.017996780574321747 -0.024855680763721466 -0.036367692053318024 0.034669432789087296 0.010198403149843216 -0.06604944169521332 0.0576089546084404 -0.007348461076617241 0.02884945645928383 -0.051844507455825806 0.027558643370866776 -0.01095687597990036 0.037073396146297455 0.049962807446718216 -0.02711029350757599 0.03473693132400513 -0.07254540920257568 -0.058908767998218536 0.03909997642040253 -0.04243830591440201 0.1177317202091217 0.020928123965859413 -0.034273549914360046 -0.06228704750537872 0.011506184004247189 -0.031990982592105865 -0.049659620970487595 0.061829689890146255 0.023348983377218246 0.01961088925600052 -0.03371240571141243 0.049410779029130936 0.035765714943408966 0.11124377697706223 -0.0031887185759842396 -0.01653238572180271 -0.020413365215063095 -0.023017264902591705 0.007071642205119133 0.05165662616491318 -0.05514328554272652 -0.0657462328672409 0.04989958181977272 -0.09224382042884827 -0.035598479211330414 0.011566616594791412 -0.006167626939713955 -0.039180874824523926 -0.018866317346692085 -0.011869056150317192 0.08638116717338562 0.003590811276808381 -0.025721073150634766 0.02338532544672489 0.11992673575878143 -0.062401559203863144 -0.05931184068322182 0.040976062417030334 -0.06585069745779037 -0.0075218044221401215 0.04159722849726677 -0.010816561058163643 0.016522789373993874 -0.00836267787963152 -0.03393084183335304 0.12530362606048584 -0.042987603694200516 -0.054377246648073196 -0.022149283438920975 -0.010583728551864624 -0.06588423252105713 0.06741675734519958 0.04124649241566658 0.007029528263956308 0.0626692920923233 -0.05063958466053009 0.05230752378702164 0.034146498888731 0.00978696346282959 0.03757072985172272 -0.09820903837680817 -0.032582662999629974 -0.0027892880607396364 -0.012144720181822777 -0.012352773919701576 0.06173304095864296 0.01263184193521738 0.06599177420139313 0.019623536616563797 -0.06481830775737762 0.011312109418213367 0.022549398243427277 0.04357905685901642 0.029065603390336037 0.08201801031827927 0.07807867974042892 0.033253420144319534 0.05926792323589325 -0.023557821288704872 0.015989696606993675 -0.05977878347039223 -0.03270159289240837 0.006998030934482813 0.01164921186864376 0.06080712378025055 -0.01774093508720398 -0.08604159206151962 -0.012107294984161854 0.027145231142640114 -0.10731139779090881 -0.018313316628336906 0.08241729438304901 -0.03393497318029404 0.12538330256938934 0.057924382388591766 -0.019023803994059563 0.054940544068813324 0.04625186696648598 0.019210029393434525 -0.011540371924638748 0.044802404940128326 0.005007468163967133 -0.0013397629372775555 -5.9535959735512733e-05 0.0545739009976387 0.00044206908205524087 -0.06418341398239136 0.03849899023771286 0.050931740552186966 0.04102331027388573 -0.03852299973368645 -0.0610324926674366 0.015333225019276142 -0.06649816036224365 -0.06477400660514832 -0.0032632092479616404 -0.06835848093032837 -0.012314298190176487 0.030568767338991165 0.005645090714097023 0.03350000083446503 -0.011306176893413067 -0.013026118278503418 -0.06511718034744263 -0.05870432406663895 -0.026553530246019363 -0.06551973521709442 -0.04519123211503029 -0.028590865433216095 0.014660854823887348 -0.0030102599412202835 -0.03641097620129585 -0.027782728895545006 -0.005820837803184986 0.009188205003738403 0.03946875408291817 0.0701831504702568 0.081402488052845 0.03802790120244026 0.01466797012835741 -0.039334964007139206 0.027022268623113632 -0.03712303563952446 0.0045600575394928455 -0.030082684010267258 0.012871218845248222 -0.05777173489332199 -0.012298882938921452 -0.013014017604291439 0.04989694058895111 -0.019344234839081764 0.02189798839390278 0.008077929727733135 -0.023467538878321648 -0.059073589742183685 0.049632251262664795 0.07920318841934204 -0.02699430286884308 0.039368946105241776 -0.03322671353816986 0.05205105245113373 -0.039046648889780045 -0.04435930773615837 -0.041687361896038055 0.047545384615659714 0.010019993409514427 0.05231278017163277 0.019473649561405182 -0.04741809144616127 0.08479664474725723 0.026167480275034904 0.022339364513754845 -0.08655926585197449 0.005491163115948439 0.004317395389080048 0.02001337893307209 0.036773115396499634 0.08291321247816086 -0.02533072791993618 -0.026004569604992867 0.0014943411806598306 0.054747313261032104 -0.03539588302373886 0.0016286730533465743 -0.017196692526340485 -0.09083962440490723 0.02469794638454914 -0.05313761159777641 -0.0795004740357399 -0.02218024991452694 0.04953853413462639 -0.00950081180781126 -0.01647259294986725 0.00360541301779449 0.02446705475449562 -0.02199999988079071 -0.023083338513970375 -0.006430197041481733 -0.02192080393433571 -0.09811537712812424 0.09923755377531052 0.0100558428093791 -0.06027648597955704 -0.07146766781806946 0.014356892555952072 0.03975505381822586 -0.003259778255596757 0.04028839245438576 0.029709748923778534 0.08245065063238144 0.03867369145154953 -0.0067759668454527855 0.030700650066137314 -0.045329220592975616 -0.040589358657598495 -0.005004809703677893 0.016527147963643074 -0.045213036239147186 -0.018446730449795723 -0.004492324311286211 -0.054572928696870804 -0.006332408171147108 -0.009936634451150894 0.018838658928871155 -0.021973636001348495 -0.01910851150751114 -0.005257151089608669 0.04605710878968239 -0.03310014307498932 -0.04076685383915901 0.02806004509329796 -0.004656421951949596 0.050905223935842514 -0.03966287150979042 -0.014938604086637497 0.0509367398917675 0.01762363500893116 0.020841000601649284 -0.05386083200573921 0.06284233182668686 -0.009843084029853344 -0.08864418417215347 -0.034171782433986664 -0.08261308819055557 -0.03932495042681694 -0.01010474655777216 -0.04349888488650322 -0.03329967334866524 0.08289460092782974 0.011017285287380219 -0.03495920076966286 -0.07491140812635422 -0.03287158161401749 -0.013624131679534912 -0.06046586111187935 -0.019575875252485275 0.005316560156643391 -0.04731351137161255 -0.030349062755703926 0.020163560286164284 -0.04265604913234711 -0.01757516898214817 -0.030515557155013084 -0.016231944784522057 -0.05710676312446594 0.055758703500032425 -0.039200346916913986 -0.021406186744570732 0.02145092561841011 -0.07637807726860046 0.04764387756586075 0.10862613469362259 0.07923377305269241 0.04535995423793793 0.04862518236041069 0.033478591591119766 0.11636704951524734 0.01574091799557209 -0.031192515045404434 -0.023172063753008842 -0.0275404192507267 -0.06293822079896927 0.04700386896729469 -0.02276897430419922 -0.005551410373300314 -0.003909970633685589 -0.008272439241409302 0.07982891798019409 -0.005040883086621761 -0.04440620169043541 -0.024795079603791237 0.030389120802283287 -0.024252865463495255 0.013781012035906315 0.009448950178921223 0.01827158033847809 -0.011015880852937698 -0.05162905901670456 -0.04966254159808159 -0.030382346361875534 0.04536477103829384 -0.023964721709489822 0.04047677665948868 -0.014646539464592934 -0.042407382279634476 0.014760795049369335 0.01691362075507641 0.09307277947664261 -0.05288558080792427 0.010833489708602428 0.038748349994421005 0.020669132471084595 -0.1107582300901413 0.008525202982127666 0.030226631090044975 -0.04758111387491226 -0.06246460601687431 0.011037229560315609 0.03588514402508736 -0.05078190192580223 -0.009472345001995564 -0.009054169990122318 -0.06117026507854462 -0.006411309819668531 0.021251676604151726 0.03390691056847572 0.030308565124869347 -0.01712125539779663 -0.05309848487377167 -0.016163742169737816 -0.01214143168181181 0.02506108209490776 -0.03855794295668602 0.011671556159853935 -0.030701400712132454 0.0315360464155674 -0.05543360859155655 -0.035070497542619705 -0.03580857440829277 0.06475730240345001 0.0059378426522016525 -0.029446624219417572 -0.02214071713387966 -0.030882127583026886 -0.02825831063091755 0.004494606051594019 0.027786489576101303 -0.05965756997466087 -0.016999874264001846 -0.042987048625946045 -0.05987121909856796 -0.10221157968044281 -0.06161588057875633 0.013727216050028801 -0.05109533667564392 0.021850917488336563 -0.027656977996230125 0.004397314507514238 0.005554840434342623 -0.004105599131435156 0.035673514008522034 0.055783361196517944 0.04293965920805931 -0.02694544568657875 0.036984194070100784 -0.0013833476696163416 0.0503733791410923 0.02737503871321678 -0.04692663624882698 0.010227656923234463 0.016555411741137505 -0.05731026828289032 0.04245096445083618 -0.02767973020672798 0.015547612681984901 -0.01509411446750164 -0.016605287790298462 0.050079233944416046 -0.007610107772052288 -0.0021649471018463373 -0.028469908982515335 0.06197293475270271 -0.07051576673984528 -0.020956996828317642 0.016758304089307785 -0.029817868024110794 -0.10013338178396225 -0.051303911954164505 -0.0038804677315056324 -0.01661248318850994 0.04145907983183861 -0.022041961550712585 0.01713753305375576 0.029360612854361534 -0.03495727851986885 -0.05278397351503372 -0.023029958829283714 -0.00877167284488678 0.05185863748192787 -0.0004365804197732359 0.06854789704084396 0.022045647725462914 -0.001906967838294804 -0.007990006357431412 -0.003103142837062478 0.010534604080021381 -0.09083262830972672 -0.016183624044060707 -0.02421068772673607 -0.011253722943365574 0.014772377908229828 0.012429913505911827 -0.0012518481817096472 -0.06002530828118324 -0.019782841205596924 -0.04308996722102165 0.09016997367143631 -0.0021057662088423967 0.0149850407615304 0.03638777881860733 -0.036218758672475815 -0.009655816480517387 0.004600200802087784 -0.05706218630075455 -0.08359580487012863 -0.0038991952314972878 -0.004209218081086874 0.025113781914114952 -0.0017583353910595179 0.008553986437618732 -0.016127178445458412 -0.06285306066274643 -0.011534628458321095 0.015031724236905575 -0.07554271817207336 0.01071124617010355 0.01742260903120041 -0.08131247013807297 -0.057233210653066635 0.020572541281580925 -0.04827139526605606 0.06178949773311615 0.020222466439008713 0.016597971320152283 -0.0046272873878479 -0.006728336215019226 -0.017432887107133865 -0.04969555884599686 0.018322471529245377 -0.019313843920826912 -0.0436394028365612 -0.020066414028406143 0.06654424965381622 -0.043440576642751694 0.03758233040571213 0.054356638342142105 -0.0507587194442749 0.04286376014351845 0.054686110466718674 -0.030012590810656548 0.03926781937479973 0.0003864451718982309 -0.00910253543406725 0.08123767375946045 -0.08414586633443832 0.10237469524145126 -0.08198917657136917 0.09819842129945755 0.027740048244595528 -0.0056528677232563496 0.08189025521278381 0.08340667933225632 0.004129448905587196 0.0036610581446439028 -0.08264313638210297 +0.07352782785892487 0.01838613860309124 0.0385904386639595 0.07166887819766998 -0.08495904505252838 -0.040025968104600906 -0.03548189997673035 0.0033126575872302055 0.013641060329973698 -0.024167058989405632 -0.009177256375551224 -0.015818173065781593 0.0032580664847046137 0.007371103391051292 0.0010078920749947429 -0.03507969528436661 -0.07834511250257492 -0.022295694798231125 -0.02537720277905464 0.005501972511410713 0.0800669714808464 0.017992276698350906 -0.08628755807876587 0.057628508657217026 0.001177899306640029 0.06931614130735397 -0.010816986672580242 0.014723721891641617 -0.01731104589998722 -0.010558459907770157 0.05458446964621544 0.00546798063442111 0.03027782402932644 -0.07706184685230255 -0.05207933112978935 0.04666261747479439 -0.028352243825793266 0.10091415047645569 0.05306428670883179 -0.041095469146966934 -0.07022522389888763 0.024621937423944473 -0.037274930626153946 -0.06415005773305893 -0.011286364868283272 0.008632983081042767 0.006956759374588728 -0.005812468472868204 0.05513237044215202 0.032739728689193726 0.10353817045688629 -0.012440853752195835 -0.036544278264045715 -0.021796466782689095 0.017989199608564377 0.028659919276833534 0.07790914177894592 -0.06920801848173141 -0.05950314551591873 0.023234637454152107 -0.05843159183859825 -0.010392062366008759 4.840745896217413e-05 -0.0032416859176009893 -0.01695086434483528 -0.012017126195132732 -0.0036020271945744753 0.07000243663787842 0.039163265377283096 -0.03708212450146675 0.041877079755067825 0.11099883168935776 -0.07908258587121964 -0.00909950491040945 0.03502313047647476 -0.05601012706756592 -0.05421970784664154 0.046427104622125626 -0.023979712277650833 0.008467367850244045 0.010485557839274406 -0.05684081092476845 0.1065593883395195 -0.03869038447737694 -0.057110145688056946 -0.034072425216436386 0.013272514566779137 -0.0770115926861763 0.04751218110322952 0.06101050227880478 -0.02169501595199108 0.07322628051042557 -0.06413445621728897 0.07432951778173447 0.010389385744929314 0.03265569359064102 0.04031125828623772 -0.12391500920057297 -0.03586549684405327 -0.0047349645756185055 -0.02189047634601593 -0.015416126698255539 0.03833693265914917 -0.021484874188899994 0.07510006427764893 0.007896799594163895 -0.0624813474714756 -0.005277944263070822 0.010585459880530834 0.04474852979183197 0.07666052132844925 0.04980888217687607 0.08134929090738297 0.07078002393245697 0.052136629819869995 -0.014104645699262619 0.027389459311962128 -0.051718682050704956 -0.038860030472278595 -0.001729870680719614 -0.003540582489222288 0.05041023716330528 -0.025239311158657074 -0.06078953295946121 -0.023597348481416702 0.007366342470049858 -0.07474903762340546 -0.042038943618535995 0.05130559578537941 -0.016346855089068413 0.1135355681180954 0.08090435713529587 -0.043275270611047745 0.004243725910782814 0.03416574373841286 0.03469576686620712 -0.011002673767507076 0.05010800436139107 -0.002170297782868147 0.005216198042035103 0.019411414861679077 0.020106468349695206 0.009141447022557259 -0.09200044721364975 0.0290482509881258 0.04838409274816513 0.04807788133621216 -0.021654266864061356 -0.061136700212955475 -0.007469074800610542 -0.0536189079284668 -0.046692684292793274 -0.005252382252365351 -0.07828906923532486 -0.002923651598393917 0.07886044681072235 0.048611391335725784 0.06297597289085388 -0.03821196034550667 -0.001960691763088107 -0.034140296280384064 -0.0423719584941864 -0.006633685901761055 -0.09141699224710464 -0.05455916002392769 -0.05066646263003349 0.02781795896589756 -0.0029567936435341835 -0.03201810270547867 -0.025813251733779907 -0.012534551322460175 0.001509132911451161 0.0446772575378418 0.0467604324221611 0.09810925275087357 -0.004901218228042126 -0.020830532535910606 -0.050403397530317307 0.026787621900439262 -0.003337801666930318 0.013268410228192806 -0.04082448035478592 -0.0031412679236382246 -0.08016123622655869 -0.02684265375137329 0.030531784519553185 0.024562416598200798 0.008896727114915848 -0.00722167594358325 0.024546826258301735 -0.06660706549882889 -0.02634563483297825 0.032695915549993515 0.06308318674564362 -0.02614968828856945 0.053725775331258774 -0.03606351837515831 0.03200530633330345 0.01143760234117508 -0.04197940230369568 -0.06796290725469589 0.03905515745282173 -0.03822878748178482 0.0882226973772049 0.037740517407655716 -0.06315489113330841 0.04782472550868988 0.02035800740122795 -0.0005586679326370358 -0.08251464366912842 0.003573537804186344 0.003930179867893457 0.03943725302815437 0.032127514481544495 0.06545685976743698 -0.013931254856288433 -0.01649986021220684 0.006236201152205467 0.04666499048471451 -0.05921708419919014 0.0064717247150838375 -0.016544286161661148 -0.059275269508361816 0.05159221589565277 -0.029622869566082954 -0.0541103333234787 -0.06456486135721207 0.03712812066078186 0.03554696962237358 -0.03164634481072426 0.02339598350226879 0.015181226655840874 -0.01905001886188984 -0.048476070165634155 -0.002224974101409316 -0.01831371709704399 -0.12670624256134033 0.10142512619495392 0.025661511346697807 -0.05297677218914032 -0.049560997635126114 0.03229970484972 0.02178458496928215 -0.0029410761781036854 0.028588593006134033 0.04594910517334938 0.06668241322040558 0.022053098306059837 0.009932453744113445 -0.012485804967582226 -0.0828695297241211 -0.07238524407148361 0.012354881502687931 0.03795982897281647 -0.00671949191018939 -0.020311294123530388 -0.02106161043047905 -0.0277547687292099 -0.003152391640469432 0.006105893757194281 0.019486481323838234 -0.011249301955103874 -0.021037615835666656 -0.021826688200235367 0.038957349956035614 -0.04098034277558327 -0.0317898690700531 0.025312408804893494 0.013092474080622196 0.08691289275884628 -0.011859407648444176 -0.008305205963551998 0.0452842153608799 0.003710920223966241 0.04343080148100853 0.03411346301436424 0.06131695955991745 -0.01743670366704464 -0.08899161964654922 -0.02750377357006073 -0.07926721125841141 -0.042638733983039856 -0.025654656812548637 -0.015462053939700127 -0.05093364790081978 0.08902899920940399 -0.007969885133206844 -0.05995531752705574 -0.061253782361745834 0.0331062488257885 -0.012413129210472107 -0.06988707184791565 -0.030570240691304207 0.01590506173670292 -0.0786554291844368 -0.032228607684373856 0.0019551708828657866 -0.05045139789581299 -0.04155633971095085 -0.027253765612840652 -0.05744187906384468 -0.05647486075758934 0.040288668125867844 -0.026553405448794365 -0.050490036606788635 -0.019069910049438477 -0.07609402388334274 0.05539247766137123 0.08224308490753174 0.01432841643691063 0.05325955152511597 -0.006050433032214642 0.01702374964952469 0.09927910566329956 -0.008650514297187328 -0.03546413034200668 -0.005609613843262196 -0.05104770138859749 -0.06900247186422348 0.08650952577590942 -0.03826897591352463 0.016732221469283104 -0.027943607419729233 0.01531419437378645 0.07719158381223679 0.012196524068713188 -0.016917673870921135 -0.016357330605387688 0.014461386017501354 -0.012130684219300747 0.018160495907068253 -0.015399892814457417 0.004461649339646101 -0.01903853751718998 -0.030753714963793755 -0.058610204607248306 -0.022569697350263596 -0.004650191403925419 0.00710167596116662 0.04545952007174492 -0.0011079355608671904 -0.06757114082574844 0.017622532323002815 -0.01159032341092825 0.08750462532043457 -0.061548106372356415 0.01760842464864254 0.03467420116066933 1.4444375665334519e-05 -0.08732395619153976 -0.030384011566638947 0.0605345144867897 -0.036303162574768066 -0.056934654712677 -0.015615951269865036 0.014575546607375145 -0.051277659833431244 -0.013424543663859367 -0.009635240770876408 -0.03291388973593712 0.038624122738838196 0.02044091932475567 0.03989683836698532 -0.011851134710013866 -0.0017810860881581903 -0.030079422518610954 -0.009944380261003971 -0.015316097065806389 0.007251160219311714 -0.03364638611674309 0.00038681612932123244 -0.03750539571046829 0.0451057031750679 -0.0506308488547802 -0.012746823020279408 -0.06497323513031006 0.03295416384935379 0.013561021536588669 -0.035631876438856125 0.004109843634068966 -0.02853267267346382 -0.008685694076120853 0.02797364443540573 0.0259788129478693 -0.051765602082014084 -0.04618766903877258 -0.041651539504528046 -0.0323239304125309 -0.0911102220416069 -0.01567428559064865 0.01162167452275753 -0.07791945338249207 -0.01370326615869999 -0.022672202438116074 -0.02568049542605877 0.01752668246626854 -0.02062869444489479 0.02727949433028698 0.021195773035287857 0.014488309621810913 -0.042307063937187195 0.026186665520071983 -0.015650125220417976 0.03829801455140114 0.019560454413294792 -0.02456078678369522 -0.010642471723258495 0.06492818146944046 -0.03335319831967354 0.04696867987513542 -0.02951672486960888 -0.004085691645741463 0.005823104176670313 0.0018187110545113683 0.006504001561552286 -0.003074745647609234 -0.009898093529045582 -0.02547743171453476 0.039797134697437286 -0.06337878108024597 -0.0328977070748806 0.03510301187634468 -0.04916521534323692 -0.11404558271169662 -0.02411186322569847 -0.016172150149941444 -0.03479225933551788 -0.005232205148786306 0.03659779950976372 0.036400165408849716 0.04514659568667412 -0.06562602519989014 -0.02382580377161503 -0.014235269278287888 -0.030197788029909134 0.046654265373945236 -0.023600496351718903 0.06751994788646698 0.030576925724744797 0.007034975569695234 0.038013044744729996 0.04782336950302124 -0.018749764189124107 -0.0992654487490654 -0.02559530735015869 -0.0018611627165228128 -0.03186063468456268 0.03102053329348564 -0.00012055197294102982 -0.015111061744391918 -0.043597180396318436 -0.03768134117126465 -0.01993318647146225 0.08771231025457382 -0.011451050639152527 -0.008312691934406757 0.06746658682823181 -0.04037502408027649 0.02143682911992073 0.007879597134888172 -0.02840101346373558 -0.0769023671746254 0.015686694532632828 -0.007099652662873268 -0.000916118617169559 0.021614348515868187 0.003400996560230851 -0.001669553341343999 -0.05658969283103943 -0.031222175806760788 0.016138175502419472 -0.06413190066814423 0.029460065066814423 -0.0006777732050977647 -0.06989926844835281 -0.07922650873661041 0.009786815382540226 -0.05328049510717392 0.013328065164387226 -0.001014996087178588 0.038788434118032455 0.03216782212257385 0.017725199460983276 0.007361889351159334 -0.04012410715222359 -0.007176893763244152 0.035867366939783096 -0.012017713859677315 -0.02733905240893364 0.05905017629265785 -0.01333867758512497 0.015897514298558235 0.07823002338409424 -0.007374056149274111 0.023647159337997437 0.06088877096772194 -0.04416274651885033 0.014876672066748142 -0.017519667744636536 -0.06121611222624779 0.09981810301542282 -0.059031855314970016 0.09615437686443329 -0.0664861798286438 0.09296255558729172 -0.024840792641043663 -0.006228546146303415 0.07024761289358139 0.07208652794361115 0.00021605419169645756 0.03915639966726303 -0.024288492277264595 +-0.011461573652923107 -0.03737691417336464 0.00229413784109056 0.03393097594380379 -0.0831635370850563 -0.08299946784973145 -0.009696790017187595 0.03774302825331688 0.011403577402234077 -0.01956804282963276 -0.008367669768631458 0.0035710909869521856 -0.047221697866916656 -0.0028905048966407776 0.019514797255396843 -0.005867960397154093 -0.07461192458868027 -0.010710560716688633 -0.06151442974805832 -0.027011334896087646 0.047922439873218536 0.022533230483531952 -0.10818986594676971 0.022487586364150047 -0.03728891536593437 -0.005354085937142372 -0.07742352038621902 0.03167447820305824 -0.023531626909971237 0.03663939610123634 0.050087932497262955 -0.02248617820441723 0.08300703018903732 -0.061480239033699036 -0.04690251871943474 0.03552386164665222 -0.023263899609446526 0.07870891690254211 0.0529954731464386 -0.012690939009189606 -0.04846145212650299 0.018245846033096313 3.567731982911937e-05 -0.04851357638835907 0.03152371197938919 -0.004675219766795635 0.005082074552774429 -0.05101972818374634 0.05932283401489258 0.05715450271964073 0.10586031526327133 0.026942716911435127 -0.0014873150503262877 -0.04048794507980347 -0.003032016335055232 -0.0014005491975694895 0.008593500591814518 -0.04887789115309715 -0.09457062184810638 0.0277209784835577 -0.10536316782236099 0.01572495698928833 -0.019083593040704727 0.00785223301500082 -0.037719111889600754 0.0011299513280391693 -0.017549993470311165 0.10727649927139282 0.018861887976527214 -0.05807361751794815 0.02737443521618843 0.08529330044984818 -0.06408070772886276 -0.05785344913601875 0.02343038283288479 -0.030532147735357285 0.024398529902100563 0.04058169946074486 -0.027010852470993996 0.020617900416254997 -0.03490801528096199 -0.046367354691028595 0.11974675953388214 -0.048029519617557526 -0.006608898751437664 -0.04960240051150322 -0.016048967838287354 -0.05681919679045677 0.05225350335240364 0.03416882082819939 0.025373132899403572 0.04788987711071968 -0.02874520607292652 0.029655873775482178 -0.01420997828245163 0.057729534804821014 0.05274864286184311 -0.1070004403591156 0.0012505664490163326 0.006011417601257563 -0.014964393340051174 0.010237295180559158 0.0827241837978363 0.0012890220386907458 0.07175766676664352 0.02239813655614853 -0.036678388714790344 0.007499585393816233 0.0540039986371994 0.029859595000743866 0.05921158939599991 0.0907539576292038 0.08996900171041489 0.057348769158124924 0.03064468875527382 0.003347894409671426 0.011175153777003288 -0.040773600339889526 0.0011427134741097689 0.016368944197893143 -0.007742391899228096 0.03028932958841324 -0.027683373540639877 -0.029545454308390617 0.0026101511903107166 0.05130410194396973 -0.09134022146463394 -0.026910966262221336 0.060941606760025024 -0.04258212819695473 0.09607939422130585 0.062304358929395676 0.013279701583087444 0.020948000252246857 0.07756387442350388 0.011904987506568432 -0.004733240231871605 0.016841303557157516 0.012840603478252888 -0.025580206885933876 -0.025392858311533928 0.05076908692717552 -0.025888966396450996 -0.040032338351011276 0.015040295198559761 0.047651153057813644 -0.01496349461376667 -0.016671212390065193 -0.0702967718243599 0.042271438986063004 -0.07248494029045105 -0.07239644974470139 -0.0021169253159314394 -0.09142167121171951 0.017727654427289963 0.0714416652917862 0.041404347866773605 0.049211274832487106 -0.024017062038183212 0.004482873249799013 -0.02524164877831936 -0.08480555564165115 -0.025713616982102394 -0.073966845870018 -0.014049886725842953 -0.009585353545844555 0.0359455905854702 0.020114600658416748 -0.025208646431565285 -0.030856283381581306 -0.02427085116505623 -0.0002041868428932503 0.0036404079291969538 0.05784968286752701 0.030717993155121803 0.00406741164624691 0.015068945474922657 -0.054148126393556595 0.012790119275450706 -0.06456974148750305 0.011689187958836555 -0.05952819809317589 0.0411117784678936 -0.04978509247303009 -0.04733326658606529 -0.0032580771949142218 -0.007703769952058792 -0.029813721776008606 -0.002909017028287053 0.02996603585779667 -0.031897153705358505 -0.05452294647693634 0.017637697979807854 0.0916990339756012 -0.023237504065036774 0.058136992156505585 0.017762724310159683 0.09019321948289871 -0.04026766121387482 -0.039014436304569244 -0.08100248128175735 0.03334665298461914 0.01481872983276844 -0.004704456776380539 0.007773610297590494 -0.06697346270084381 0.07379889488220215 0.02821383997797966 -0.010489949025213718 -0.05635129660367966 0.031575169414281845 0.04238416254520416 0.07167331874370575 0.011615739203989506 0.059673044830560684 -0.041325125843286514 -0.03840775787830353 0.0039023272693157196 0.041823990643024445 -0.07369977235794067 0.030450958758592606 0.01101172249764204 -0.03819667920470238 0.02486962266266346 -0.035473257303237915 -0.10365524888038635 -0.009044528007507324 -0.015947746112942696 0.004520880989730358 0.00044049086864106357 0.023393290117383003 0.01602153107523918 -0.04413415491580963 -0.005556243937462568 0.004432464949786663 -0.009715139865875244 -0.06218639761209488 0.08850041776895523 -0.025130053982138634 -0.041132356971502304 -0.04165750741958618 0.014919448643922806 0.03687653690576553 0.01855183206498623 0.004907542373985052 0.025683756917715073 0.10620220005512238 0.07206558436155319 -0.017639951780438423 -0.03944264352321625 -0.07253296673297882 -0.05109594762325287 0.016966212540864944 0.012018225155770779 -0.03447747975587845 -0.03818446770310402 0.0008205214398913085 -0.09491187334060669 0.018775837495923042 -0.018291352316737175 0.04428581893444061 -0.009746643714606762 -0.018130939453840256 0.006954689975827932 0.0634443461894989 0.010429616086184978 -0.08783861994743347 0.026761073619127274 -0.020249029621481895 0.0333046056330204 -0.06302513927221298 -0.010661878623068333 0.025761928409337997 0.008106574416160583 0.050018858164548874 -0.046860214322805405 0.05365223437547684 -0.02020375430583954 -0.11068777740001678 -0.03192748874425888 -0.08484254032373428 -0.04445214569568634 0.02676915004849434 -0.02014913037419319 -0.03139548376202583 0.06715259701013565 0.03411996737122536 -0.01973666250705719 -0.043643735349178314 -0.021052837371826172 -0.03174438327550888 -0.034273695200681686 -0.021345308050513268 -0.007611189037561417 -0.06359819322824478 0.008111389353871346 0.0307893268764019 -0.08273901790380478 -0.01852353662252426 0.050457343459129333 -0.048734329640865326 -0.02579931914806366 0.05081557855010033 -0.03378232941031456 -0.016175396740436554 0.019379369914531708 -0.057171788066625595 0.030056945979595184 0.09843070805072784 0.015970535576343536 0.045260149985551834 0.06134141609072685 0.0258374884724617 0.04359126463532448 0.02644522674381733 -0.04219791665673256 -0.010785073041915894 -0.018703974783420563 -0.06240785866975784 0.03315712884068489 -0.040756307542324066 0.014382023364305496 -0.005142484791576862 -0.004485632758587599 0.07973878085613251 -0.024260366335511208 -0.028385162353515625 -0.018680285662412643 0.022191695868968964 0.015264385379850864 0.0062467074021697044 0.03382789343595505 -0.02140664868056774 0.03764277696609497 -0.06205157935619354 -0.02836945652961731 -0.06762119382619858 0.03744871914386749 -0.02828919142484665 0.031719572842121124 0.013324190862476826 -0.05181126669049263 0.02001224271953106 0.015389191918075085 0.0909196063876152 -0.0759686604142189 0.040078289806842804 -0.009073717519640923 0.027901457622647285 -0.11937659233808517 -0.02770593948662281 0.015796581283211708 -0.016344977542757988 -0.0480254590511322 0.05693965032696724 0.018198633566498756 -0.07002177834510803 -0.020522108301520348 -0.011011178605258465 -0.047228988260030746 -0.021363640204072 0.043186213821172714 -0.0011759608751162887 0.026344984769821167 0.021933402866125107 -0.0357871875166893 -0.03200194984674454 0.013752027414739132 0.006302061025053263 -0.03418244794011116 0.04352783039212227 -0.035450782626867294 0.04841530695557594 -0.023757724091410637 -0.07627090811729431 -0.05945810303092003 0.04444143921136856 -0.000682527432218194 -0.015145399607717991 -0.017620176076889038 -0.024759231135249138 0.0013146995333954692 0.03477661684155464 0.008799994364380836 -0.053867071866989136 0.00774870440363884 0.006600585300475359 -0.0655302032828331 -0.09201716631650925 -0.03625024855136871 0.00773069029673934 -0.042736854404211044 0.028503388166427612 -0.04496312513947487 0.029338141903281212 0.00454249931499362 -0.02362089790403843 0.01653233915567398 0.06186273694038391 0.02806917019188404 0.02882990427315235 -0.003332676598802209 -0.010251489467918873 0.028000377118587494 -0.012481487356126308 -0.04126126319169998 0.03650428354740143 0.02755839191377163 -0.05952540412545204 -0.004578493069857359 -0.04841601476073265 -0.02045428194105625 -0.0003401131252758205 -0.042091015726327896 -0.004594133701175451 0.02966013364493847 -0.003952082246541977 -0.03419184684753418 0.04423099756240845 -0.04574179649353027 0.0024400674737989902 0.0404161736369133 -0.0027584810741245747 -0.10398375242948532 -0.016553359106183052 -0.032806914299726486 -0.03558585047721863 0.06717189401388168 -0.007003646343946457 0.030448464676737785 0.010542000643908978 -0.05455884337425232 -0.014902574010193348 -0.002234086161479354 -0.0017712009139358997 -0.014055210165679455 0.033662501722574234 0.08213933557271957 -0.03215688839554787 0.0017940016696229577 0.013988858088850975 -0.012746698223054409 0.03144096955657005 -0.07908368855714798 -0.00924934633076191 -0.010861909948289394 0.034556906670331955 -0.002385232364758849 0.021801427006721497 0.008061309345066547 -0.06881558150053024 -0.023434046655893326 -0.01230494026094675 0.07965178787708282 -0.026454126462340355 -0.0008221471798606217 0.04135824367403984 -0.06189711391925812 -0.03485107421875 0.009479735046625137 -0.0018004170851781964 -0.09636850655078888 0.005675276275724173 -0.0802384689450264 0.03653091937303543 0.011300391517579556 0.04482278600335121 -0.02641916275024414 -0.09645534306764603 -0.029676195234060287 -0.001963484100997448 -0.017696162685751915 -0.008940014988183975 0.016794268041849136 -0.059584345668554306 -0.045376069843769073 -0.04042784869670868 -0.07353031635284424 0.0960765853524208 0.016624361276626587 0.003668650519102812 -0.019609857350587845 -0.012314965948462486 0.013266156427562237 -0.024837955832481384 0.006959099322557449 0.004741044249385595 -0.08570903539657593 -0.039781730622053146 0.06725428998470306 -0.0018211494898423553 0.0798187106847763 0.0769873857498169 -0.023262379691004753 0.06430013477802277 0.05392613634467125 0.0031803303863853216 0.009048116393387318 -0.008141493424773216 -0.021396391093730927 0.018369346857070923 -0.02775518223643303 0.058741819113492966 -0.037740737199783325 0.11256913095712662 0.01840886101126671 -0.02951267920434475 0.06581679731607437 0.09332434833049774 0.012154712341725826 0.009391886182129383 -0.05699476972222328 +0.03302904590964317 0.0229178536683321 0.023339811712503433 0.07663576304912567 -0.08100968599319458 -0.03428065404295921 0.0030152860563248396 0.005598404444754124 0.015739895403385162 -0.034829169511795044 0.012922253459692001 -0.0326455794274807 0.0240183025598526 0.021254904568195343 0.02661236748099327 -0.04300645738840103 -0.06699556112289429 0.003613570937886834 -0.013946874998509884 -0.053888238966464996 0.018985189497470856 -0.0031774051021784544 -0.06990958750247955 0.04846002906560898 0.006541665643453598 0.006732604932039976 -0.0576603002846241 0.00045971942017786205 -0.008004505187273026 0.011920806020498276 0.0665433257818222 0.00492647523060441 0.04279617592692375 -0.06824921816587448 -0.04643787071108818 0.02459436096251011 -0.0031090471893548965 0.0938989594578743 0.017461759969592094 -0.06034693121910095 -0.04599247872829437 0.01776111125946045 -0.026462161913514137 -0.04485756903886795 0.0022646060679107904 -0.016051139682531357 -0.005106281489133835 -0.012519990094006062 0.05378599464893341 0.003974542021751404 0.08204800635576248 0.0026916973292827606 -0.03402598202228546 -0.05402487516403198 -0.005631758365780115 -0.007188544608652592 0.05119149014353752 -0.08979129791259766 -0.08285513520240784 0.05781622231006622 -0.08555402606725693 0.011689803563058376 0.015620820224285126 -0.0015973327681422234 -0.0047589559108018875 -0.04362417384982109 -0.0076619163155555725 0.07660029083490372 0.021840324625372887 -0.027787206694483757 0.049388136714696884 0.12254678457975388 -0.08021863549947739 -0.04118357598781586 0.07374555617570877 -0.07246425747871399 -0.00564350001513958 0.053402818739414215 -0.007231653667986393 0.029204566031694412 0.00012157550372648984 -0.06144821271300316 0.08022654056549072 -0.016338059678673744 -0.01812722533941269 -0.028133930638432503 0.016880031675100327 -0.04855518788099289 0.06412249803543091 0.022421224042773247 0.008257187902927399 0.06442081183195114 -0.0750073492527008 0.07182999700307846 0.030959466472268105 0.01918298564851284 0.03696981444954872 -0.1320471167564392 -0.03211342915892601 0.03874831274151802 -0.008671337738633156 -0.019803812727332115 0.03462325409054756 -0.006043279077857733 0.03117794543504715 0.04743589833378792 -0.06982091069221497 0.018342837691307068 0.05153591185808182 0.06660225987434387 0.07818645983934402 0.07345423847436905 0.06912394613027573 0.05898907780647278 -0.0036107017658650875 0.006152593996375799 0.01540975272655487 -0.04674890264868736 -0.027419043704867363 0.05673794075846672 0.015946440398693085 0.04477698728442192 -0.02509172074496746 -0.05654614046216011 -0.03838202729821205 0.03527560830116272 -0.06937691569328308 -0.02453831024467945 0.06824146211147308 -0.001851608045399189 0.12716391682624817 0.040105000138282776 0.013804718852043152 0.05774872004985809 0.059459615498781204 0.06648306548595428 -0.007331295404583216 0.008127957582473755 -0.009028310887515545 -0.021282581612467766 -0.039287421852350235 0.05856585502624512 0.024427730590105057 -0.07991664111614227 0.03574144095182419 0.06365492194890976 0.01538238674402237 -0.01205260120332241 -0.0410921685397625 -0.030174151062965393 -0.06548987329006195 -0.06155812740325928 0.021315930411219597 -0.07799314707517624 0.011351612396538258 0.05923443287611008 0.02230668254196644 0.04902006685733795 -0.017680006101727486 -0.018061814829707146 -0.04415798559784889 -0.02700600028038025 -0.0035682939924299717 -0.06684199720621109 -0.04228823632001877 -0.04476312920451164 0.011246060021221638 0.03929685056209564 -0.05659372732043266 -0.016118792816996574 0.008274460211396217 0.008298033848404884 0.04354707524180412 0.06999031454324722 0.03794737905263901 -0.0006741425604559481 0.025540051981806755 -0.03076261840760708 0.011019348166882992 -0.02561374008655548 0.028732426464557648 -0.036356788128614426 0.03566930443048477 -0.057451214641332626 -0.01420859806239605 0.005466090049594641 0.04588308185338974 -0.014058082364499569 -0.00805407389998436 0.003059966955333948 -0.08554092049598694 -0.05010112002491951 0.04339273273944855 0.05479028820991516 -0.030976787209510803 0.04734766483306885 -0.02382304146885872 0.03647252172231674 0.020911097526550293 -0.011395080015063286 -0.04683345556259155 0.02323741838335991 0.015724964439868927 0.050804320722818375 0.00984478835016489 -0.07294384390115738 0.04937693476676941 0.012748942710459232 0.016623318195343018 -0.06369972229003906 -0.015958966687321663 0.006153727415949106 0.020497160032391548 0.043457645922899246 0.07795275002717972 0.006854200270026922 0.021758878603577614 -0.010337668471038342 0.07317332178354263 -0.058841582387685776 0.05354302003979683 -0.0067533026449382305 -0.07073068618774414 0.03768095001578331 -0.05125143378973007 -0.08099488168954849 -0.028144853189587593 0.0060476865619421005 -0.011694096028804779 -0.04441579431295395 0.0020089654717594385 0.03944960981607437 -0.015394880436360836 -0.02848494052886963 -0.025645677000284195 0.0077031757682561874 -0.09060288965702057 0.12367518991231918 0.019479485228657722 -0.05719657614827156 -0.05721314623951912 -0.0031488845124840736 0.004538028500974178 -0.01649797149002552 0.03839400038123131 0.04156338423490524 0.10341022908687592 0.0396997407078743 0.00870192889124155 0.009598645381629467 -0.05464077368378639 -0.09245076030492783 0.018700793385505676 0.049399297684431076 -0.06394055485725403 -0.015481297858059406 -0.0007691630162298679 -0.0684710219502449 0.0194063913077116 -0.023456266149878502 0.00179356150329113 0.004413834307342768 -0.009043194353580475 -0.045630499720573425 0.06568951159715652 -0.032705482095479965 -0.0732756108045578 0.030183183029294014 0.008597965352237225 0.049635570496320724 0.006251049228012562 -0.01935681328177452 0.04604062810540199 0.017773911356925964 0.01785494014620781 -0.01934681460261345 0.03401467576622963 -0.021030589938163757 -0.08823435753583908 -0.00504881888628006 -0.05565762147307396 -0.045182403177022934 -0.02133450098335743 -0.007986526004970074 -0.03895413875579834 0.07156793773174286 -0.0072948443703353405 -0.04721839353442192 -0.04750122129917145 -0.01378664281219244 -0.019576545804739 -0.09480615705251694 -0.036075226962566376 0.02044443041086197 -0.06072371453046799 -0.016704831272363663 0.012677988968789577 -0.052894044667482376 -0.02704530768096447 0.0052376179955899715 -0.041954752057790756 -0.0530536063015461 0.05844022333621979 -0.042137738317251205 -0.02414631098508835 0.0024858834221959114 -0.06699060648679733 0.05240519717335701 0.08508952707052231 0.024743137881159782 0.02559308335185051 0.04692695289850235 0.04793018847703934 0.09562066197395325 0.03115243837237358 -0.044596247375011444 0.027868177741765976 -0.05164071172475815 -0.08597911149263382 0.034434933215379715 -0.03210729733109474 -0.01463543064892292 0.004328777547925711 -0.0030253706499934196 0.08557035028934479 -0.010657832957804203 -0.0254344679415226 0.006870492827147245 0.0648813247680664 -0.02867056615650654 0.03142283111810684 0.023947011679410934 -0.008587967604398727 0.007468853145837784 -0.0642046257853508 -0.029799818992614746 -0.04494703188538551 0.03305064141750336 -0.015873391181230545 0.0613650418817997 0.0023907136637717485 -0.06855686753988266 -0.009653426706790924 0.0017945232102647424 0.11412055045366287 -0.08571886271238327 -0.0013816269347444177 0.022058486938476562 0.007740586064755917 -0.10206626355648041 -0.01812145672738552 0.021528780460357666 -0.038544557988643646 -0.014011313207447529 0.026013154536485672 0.02783132903277874 -0.06761223822832108 0.0011981892166659236 0.02536780759692192 -0.04013975337147713 -0.0039305598475039005 0.02629273384809494 -0.013805302791297436 0.0015268252464011312 -0.04343470185995102 -0.010998492129147053 -0.03672851249575615 -0.014470868743956089 0.0014339699409902096 0.002175753004848957 0.04463980719447136 -0.043406352400779724 0.04646511748433113 -0.019026799127459526 -0.025065356865525246 -0.0845041498541832 0.06361336261034012 0.004620345775038004 -0.01448887586593628 -0.013624346815049648 -0.015515755861997604 -0.005022414028644562 0.01143574994057417 0.02694931998848915 -0.07480104267597198 -0.011648896150290966 -0.06273240596055984 -0.017138155177235603 -0.043504394590854645 -0.04297221824526787 0.004144812934100628 -0.07808955758810043 0.009156649000942707 -0.02815988101065159 -0.0011390737490728498 -0.015805430710315704 -0.029747765511274338 0.02338341809809208 0.040230512619018555 0.014992699958384037 -0.030321408063173294 0.04748867452144623 -0.005909173283725977 0.04988580569624901 0.03125493600964546 -0.058484774082899094 0.03250749781727791 0.05514388531446457 -0.04143170267343521 0.03944598510861397 -0.022669553756713867 0.013081841170787811 -0.002949874382466078 -0.003051642095670104 0.04071897640824318 -0.017365921288728714 -0.022165663540363312 -0.014431177638471127 0.04821423068642616 -0.03323746100068092 -0.03415924310684204 0.01283160038292408 -0.0527254194021225 -0.08568861335515976 -0.0035616527311503887 0.01548116933554411 -0.05105825141072273 0.04173578694462776 -0.005137890577316284 0.05307779461145401 0.02857312373816967 -0.05802730843424797 -0.0497199222445488 -0.006618783809244633 -0.027700627222657204 0.030169859528541565 -0.029413865879178047 0.041939038783311844 -0.016679203137755394 -0.009962833486497402 0.02899421937763691 -0.0002795912732835859 0.02363261766731739 -0.09849352389574051 -0.0027837390080094337 -0.041849229484796524 -0.03290485218167305 0.029367836192250252 -0.0008694088901393116 0.022145820781588554 -0.06503254175186157 -0.04914378002285957 -0.029955023899674416 0.06473053246736526 -0.017581487074494362 -0.008607217110693455 0.02201918140053749 -0.013029644265770912 0.010999929159879684 0.02546285279095173 -0.015993667766451836 -0.04909282177686691 -0.0034451447427272797 -0.026413382962346077 0.0197062436491251 0.006295138504356146 0.04680453985929489 -0.03416161239147186 -0.07202143967151642 -0.03599129989743233 0.03304853290319443 -0.09792204946279526 -0.002062659477815032 -0.009697581641376019 -0.057068999856710434 -0.07909003645181656 -0.008703503757715225 -0.0586719773709774 0.0734400674700737 0.03613727167248726 0.019993416965007782 0.004964506719261408 -0.008680080063641071 -0.0020386686082929373 -0.08627277612686157 0.000886287132743746 0.0050407289527356625 -0.04011255502700806 -0.04372997209429741 0.07613128423690796 -0.02020213194191456 0.03570500388741493 0.04626450687646866 -0.04326387867331505 0.04491107165813446 0.017954090610146523 -0.053892090916633606 0.04244483262300491 -0.021343160420656204 -0.03851763531565666 0.07521060854196548 -0.07872825115919113 0.10851116478443146 -0.05378686264157295 0.07664526998996735 -0.013623662292957306 -0.033161938190460205 0.07615695148706436 0.10806506127119064 -0.015578379854559898 0.0004488153208512813 -0.04768188297748566 +0.02550019882619381 -0.011690123938024044 0.041779182851314545 -0.0038763596676290035 -0.0797497108578682 -0.049431752413511276 0.029599634930491447 0.0012809516629204154 0.02172447368502617 -0.02819235809147358 -0.0412297397851944 -0.006283348426222801 0.008194481022655964 0.023742545396089554 0.045587874948978424 -0.04962466284632683 -0.027248745784163475 0.02195429429411888 -0.045664187520742416 -0.012589683756232262 0.039439622312784195 -0.006497764028608799 -0.05122948810458183 0.0362643226981163 -0.00918770581483841 -0.0029147425666451454 -0.07425332814455032 0.034905094653367996 -0.006656206678599119 0.012317201122641563 0.06175230070948601 -0.02294226735830307 0.028108004480600357 -0.06380971521139145 -0.03081415593624115 0.011587384156882763 -0.04476756229996681 0.07950985431671143 0.00784511398524046 -0.02618357725441456 -0.012787440791726112 0.008677216246724129 -0.030630024150013924 -0.015498210676014423 0.028246436268091202 0.008894482627511024 0.022097041830420494 -0.008687215857207775 0.02464333549141884 -0.0018339065136387944 0.0942147970199585 0.03391307592391968 -0.04267753288149834 -0.04266243800520897 0.017014697194099426 -0.01629454270005226 0.025573285296559334 -0.06363602727651596 -0.07066106796264648 0.07121814042329788 -0.11034242063760757 0.013657189905643463 0.014049881137907505 -0.017682015895843506 -0.023017259314656258 -0.04248955845832825 -0.018113374710083008 0.09504467993974686 -0.0035568876191973686 -0.028123971074819565 0.04928067699074745 0.10935234278440475 -0.07645133882761002 -0.08524274080991745 0.07393193244934082 -0.05955072492361069 0.04187047481536865 0.047710396349430084 -0.027577469125390053 -0.0036384148988872766 -0.05375422537326813 -0.06316729635000229 0.10229901224374771 -0.05303817242383957 -0.0700221061706543 -0.06347491592168808 -0.0013284365413710475 -0.06829230487346649 0.052138712257146835 0.048665307462215424 0.019536178559064865 0.04117020592093468 -0.03795689716935158 0.054904669523239136 -0.003885352984070778 -0.011583833955228329 0.007043700199574232 -0.09472113847732544 -0.024097487330436707 -0.0005934418877586722 0.01595827378332615 -0.010294835083186626 0.03939991816878319 0.008458550088107586 0.03883393108844757 0.0694512128829956 -0.030903378501534462 0.0559968501329422 0.02807447873055935 0.0933462455868721 0.013498412445187569 0.05571509897708893 0.07393012195825577 0.08062591403722763 0.029157619923353195 -0.0017529820324853063 -0.001726991729810834 -0.055168259888887405 -0.018139967694878578 0.0024846612941473722 0.04183170199394226 0.05246036872267723 -0.004179009236395359 -0.07006720453500748 -0.015080790035426617 0.05830278992652893 -0.10254132002592087 -0.01060077641159296 0.05678243935108185 -0.014408718794584274 0.09752876311540604 0.046818289905786514 -0.0262954942882061 0.045203980058431625 0.05452525243163109 0.0251317135989666 -0.009992615319788456 0.006762731354683638 -0.013050606474280357 -0.07499004155397415 -0.019803907722234726 0.028504865244030952 0.020352104678750038 -0.04773181676864624 0.03634274750947952 0.04219059273600578 0.05544532835483551 -0.057155217975378036 -0.06626597046852112 -0.007614112924784422 -0.08443383127450943 -0.09578501433134079 0.013858244754374027 -0.05032544955611229 -0.0024626641534268856 -0.006967826746404171 0.011449386365711689 0.003916820511221886 -0.02255239151418209 0.0015487252967432141 -0.044295597821474075 -0.05009537935256958 -0.061330560594797134 -0.04825417697429657 0.01241077296435833 0.008935037069022655 0.04108026251196861 0.01641838252544403 -0.07016276568174362 -0.05441710352897644 0.007794358301907778 0.01405774150043726 0.020305197685956955 0.05359688028693199 0.028376324102282524 -0.014790583401918411 0.04166746139526367 -0.026173779740929604 0.0014154925011098385 -0.029615700244903564 0.022909818217158318 -0.009425334632396698 0.049511395394802094 -0.07285072654485703 0.0007356491405516863 -0.018838252872228622 0.013119676150381565 -0.0760236456990242 0.007956402376294136 -0.025156108662486076 -0.021300287917256355 -0.06014537811279297 0.02013104222714901 0.07082514464855194 -0.03246789425611496 0.016619905829429626 -0.016417182981967926 0.032662782818078995 -0.02322484366595745 -0.04834557697176933 -0.0411975234746933 0.02929355390369892 0.010591846890747547 0.022747550159692764 -0.01923387683928013 -0.10256867110729218 0.05381901562213898 0.01427373941987753 0.02070748433470726 -0.04340497776865959 0.026520827785134315 0.0259777270257473 0.00322753400541842 0.013481172733008862 0.07232517749071121 -0.04732653871178627 0.010843348689377308 -0.010374993085861206 0.057813432067632675 -0.02785036712884903 0.04611743241548538 -0.004783664830029011 -0.0767788216471672 -0.004616546910256147 -0.07767169922590256 -0.06902044266462326 -0.005878965370357037 0.023938937112689018 -0.013844595290720463 -0.035228971391916275 -0.020272081717848778 -0.001387189025990665 -0.011863416992127895 -0.0012152681592851877 0.015868768095970154 0.02474883943796158 -0.09911161661148071 0.0870918408036232 0.001354038598947227 -0.04235909506678581 -0.046015143394470215 -0.027111612260341644 0.0492057241499424 0.008806559257209301 0.04034978896379471 0.022463759407401085 0.11514320224523544 0.03515824303030968 -0.015355230309069157 -0.008720504119992256 -0.005301783327013254 -0.0385536327958107 0.010513094253838062 0.008278409019112587 -0.06601101905107498 -0.01466379128396511 0.026467422023415565 -0.06269612163305283 -0.020344391465187073 -0.010240421630442142 0.01423577219247818 -0.00524634076282382 -0.028263788670301437 -0.014357184059917927 0.05342930555343628 -0.006651686504483223 -0.071875661611557 0.031793493777513504 -0.004122861661016941 0.07372379302978516 -0.00647406280040741 -0.03182308003306389 0.029405565932393074 -0.017675243318080902 0.03190917521715164 -0.0719243660569191 0.0363665334880352 -0.019276674836874008 -0.06886950880289078 -0.028266141191124916 -0.05402780696749687 -0.07290444523096085 -0.001495412434451282 -0.02848537638783455 -0.03150051459670067 0.06001848727464676 -0.005231399089097977 -0.03881571441888809 -0.06482041627168655 -0.04020314663648605 -0.013815523125231266 -0.032180264592170715 -0.03973560035228729 -0.030583282932639122 -0.03229755163192749 0.00873999111354351 0.03923511132597923 -0.07232356816530228 -0.038947321474552155 -0.007039508316665888 -0.01161711011081934 -0.070294089615345 0.04335162043571472 -0.051688045263290405 0.002211038488894701 0.005823400802910328 -0.04464062675833702 0.03269803524017334 0.09830253571271896 0.05102848634123802 0.0430026613175869 0.027593517675995827 0.002988398540765047 0.11337097734212875 0.010252514854073524 -0.06748221814632416 -0.019457843154668808 -0.05788828060030937 -0.08398433029651642 0.012159667909145355 -0.04347889497876167 -0.009971809573471546 0.009115761145949364 0.014473349787294865 0.05026139318943024 -0.03653498366475105 -0.028426796197891235 -0.011151488870382309 0.024339444935321808 -0.024196716025471687 -0.029926855117082596 0.013229165226221085 0.027813443914055824 -0.00570891797542572 -0.03966455161571503 -0.05684386193752289 -0.0025886890944093466 0.04898804426193237 -0.0297333225607872 0.06449999660253525 -0.06560498476028442 -0.0563722662627697 -0.030273975804448128 0.029744505882263184 0.11100194603204727 -0.032637834548950195 0.03628414869308472 0.036012958735227585 0.019036969169974327 -0.08934871852397919 0.04241378232836723 0.024250561371445656 -0.006869801785796881 -0.014978214167058468 0.014410744421184063 0.05208635330200195 -0.0646548867225647 0.0017646660562604666 0.018140969797968864 -0.003653737483546138 -0.00019644061103463173 0.0441601499915123 -0.010710473172366619 0.034147702157497406 -0.04789289832115173 0.007960999384522438 -0.0324820801615715 0.010360750369727612 0.04132479429244995 -0.009402759373188019 0.021384689956903458 -0.04697592929005623 0.0641767829656601 -0.014048843644559383 -0.04210875928401947 -0.04574177414178848 0.05762869492173195 -0.00885725487023592 -0.0010701263090595603 -0.004244564566761255 0.0046159373596310616 0.006235147826373577 -0.003460332052782178 0.01676456443965435 -0.0656157061457634 0.040142908692359924 -0.03244609385728836 -0.05400702729821205 -0.08029378205537796 -0.062074169516563416 -0.012034596875309944 -0.051372162997722626 -0.012586994096636772 0.012066327966749668 0.014442085288465023 -0.013345055282115936 -0.031415462493896484 0.0015936099225655198 0.060614295303821564 0.04050349444150925 0.010674149729311466 0.05205228179693222 0.025487162172794342 0.048862360417842865 -0.021098030731081963 -0.08152248710393906 0.047843944281339645 0.018948987126350403 -0.04262975975871086 0.04723423719406128 -0.04861610382795334 0.03082466684281826 0.002739271381869912 0.019457828253507614 0.021309880539774895 -0.026930296793580055 -0.02126207761466503 -0.030040282756090164 0.0980818122625351 -0.07270853221416473 -0.04467214271426201 0.0437624454498291 -0.06149657815694809 -0.08581611514091492 0.021483013406395912 -0.03946605697274208 -0.05734080821275711 0.02667774073779583 -0.049266502261161804 0.03584874048829079 0.007745004259049892 -0.039145827293395996 -0.022888462990522385 -0.014722345396876335 -0.03434673696756363 0.046828754246234894 0.007064053323119879 0.09683673828840256 0.019113125279545784 -0.0030275245662778616 0.013742843642830849 -0.019963525235652924 0.04867001995444298 -0.12175840884447098 0.013816269114613533 -0.06248657405376434 0.02254560776054859 -0.03274748474359512 -0.011013721115887165 0.05828390270471573 -0.0878991186618805 -0.0203985758125782 -0.05259143188595772 0.06809266656637192 -0.029760103672742844 -0.0024425361771136522 0.020227832719683647 -0.03364510089159012 -0.03262527287006378 0.0008700768812559545 -0.04481841251254082 -0.08571530878543854 0.0017538241809234023 -0.05268662050366402 0.03862117975950241 0.02813306264579296 0.0075888242572546005 -0.006318495608866215 -0.06118547543883324 -0.005945260636508465 0.04153161123394966 -0.03171023353934288 0.021155348047614098 0.034232039004564285 -0.04865795001387596 -0.053214576095342636 0.014880496077239513 -0.0265166275203228 0.053693242371082306 0.027798201888799667 0.021952616050839424 -0.016771508380770683 -0.006364395841956139 0.011968882754445076 -0.027422389015555382 0.046923115849494934 -0.0040449644438922405 -0.08866047114133835 -0.0018552480032667518 0.0843784287571907 -0.07091088593006134 0.032543428242206573 0.04630599543452263 -0.04149550944566727 0.022620264440774918 0.02989618293941021 -0.054212767630815506 0.030387679114937782 -0.03886563703417778 0.019547726958990097 0.0224261824041605 -0.1065661758184433 0.08546575158834457 -0.06403400748968124 0.08377042412757874 0.01358509436249733 -0.026422224938869476 0.09508459270000458 0.07990459352731705 0.0002953641815111041 -0.021310405805706978 -0.0968942791223526 +0.05888843908905983 -0.0044569228775799274 -0.023066001012921333 -0.004693448543548584 -0.08980879187583923 -0.0403420589864254 -0.019833723083138466 0.04749958589673042 -0.036318544298410416 -0.044961895793676376 -0.02623213455080986 -0.028034670278429985 0.005633185151964426 0.013558746315538883 0.06297950446605682 -0.06920583546161652 -0.08238670229911804 -0.00534621300175786 -0.04308857023715973 -0.0015557145234197378 0.0630810484290123 -0.008528484962880611 -0.07765325903892517 0.03784043714404106 0.022276954725384712 0.036548785865306854 -0.02445785515010357 0.019955281168222427 0.0027905378956347704 0.00970371812582016 0.04259791225194931 -0.03668689727783203 -0.002559355925768614 -0.049710050225257874 -0.04813099652528763 0.055877622216939926 -0.04314553737640381 0.11914147436618805 0.04984242096543312 -0.07135557383298874 -0.06547047197818756 0.01786576397716999 -0.07129166275262833 -0.07410997152328491 0.02489616721868515 -0.021060165017843246 -0.02321324311196804 -0.05515041947364807 0.05823449417948723 0.013644172810018063 0.052330970764160156 -0.029895564541220665 -0.0434940867125988 -0.018255002796649933 -0.03268745169043541 0.023756831884384155 0.012549404986202717 -0.04573502019047737 -0.05187937617301941 0.018644990399479866 -0.05791636183857918 0.022825811058282852 -0.0024851833004504442 0.02920614369213581 0.028669260442256927 -0.05749042332172394 0.017826369032263756 0.039647944271564484 0.01800611801445484 0.008312125690281391 -0.03184981644153595 0.10063108056783676 -0.07359888404607773 -0.07740956544876099 0.059226345270872116 -0.06081415340304375 -0.029239622876048088 -0.005028193350881338 0.007343951612710953 -0.005273592192679644 -0.0025676696095615625 -0.024917302653193474 0.14831151068210602 -0.04526900500059128 -0.03467565029859543 -0.050160497426986694 -0.014134172350168228 -0.05009760707616806 0.05882924050092697 0.056497808545827866 0.03139505535364151 0.05998637527227402 -0.05775579437613487 0.04119941219687462 -0.0005445416900329292 0.013462846167385578 0.0523257739841938 -0.1249827966094017 -0.03453048691153526 -0.0466100238263607 0.002689681714400649 -0.04861724004149437 0.05945703387260437 0.01953294686973095 0.006623131688684225 0.022254176437854767 -0.04743609577417374 0.030508605763316154 0.009924574755132198 0.058297451585531235 0.0014249860541895032 0.07982524484395981 0.09726724028587341 0.06515628844499588 0.03267427906394005 -0.0466645322740078 -0.02514035254716873 -0.039873186498880386 -0.02222427912056446 0.025594666600227356 -0.017793525010347366 0.013400604017078876 -0.022595614194869995 -0.058188021183013916 -0.018676582723855972 0.049646444618701935 -0.09052901715040207 -0.018475936725735664 -0.0013819605810567737 -0.03748663142323494 0.0827791839838028 0.060418251901865005 -0.0412263497710228 0.02735884115099907 0.07248295098543167 0.029470179229974747 0.06082097068428993 0.07437259703874588 -0.06028919667005539 -0.040124718099832535 -0.023936882615089417 0.04942825809121132 0.0016403524205088615 -0.035568125545978546 0.02278911881148815 0.04194576293230057 0.03685620054602623 -0.028693046420812607 -0.06048636883497238 0.027775848284363747 -0.10529866814613342 -0.05710947513580322 0.010290398262441158 -0.07977941632270813 0.029084831476211548 0.046940386295318604 0.03354118391871452 0.022013211622834206 -0.004215820226818323 0.006480715237557888 -0.03670148551464081 -0.0864252895116806 -0.009345638565719128 -0.07232248038053513 -0.04582086578011513 -0.028477462008595467 0.027930893003940582 -0.018077120184898376 -0.0229366272687912 -0.0307046826928854 0.03024156205356121 0.0023894126061350107 0.025076674297451973 0.06085687130689621 0.028300544247031212 0.0037497212179005146 0.0007839265163056552 -0.039035044610500336 -0.02962549775838852 0.003848677035421133 0.03994870185852051 -0.06451202929019928 0.006027062423527241 -0.05732171982526779 -0.0040130699053406715 -0.00892119575291872 0.01807975210249424 -0.014477844350039959 0.00705915130674839 -0.03031212091445923 -0.0549149215221405 -0.07474158704280853 0.01894562877714634 0.04064098745584488 -0.0322069451212883 0.057437412440776825 -0.019140494987368584 0.043768443167209625 -0.0200017299503088 -0.018144160509109497 -0.06491810083389282 0.05192498490214348 -0.038004226982593536 0.06486966460943222 0.024625305086374283 -0.05103054270148277 0.050224099308252335 -0.014885668642818928 0.03429873660206795 -0.05170934647321701 0.03580819070339203 0.015581537038087845 0.008150510489940643 0.005501689855009317 0.05309208482503891 -0.04228578135371208 -0.02392168715596199 0.033839151263237 0.0809626579284668 -0.04012623801827431 0.017106633633375168 0.03545353189110756 -0.10350708663463593 0.05540689453482628 0.0018803097773343325 -0.06710465252399445 -0.043758850544691086 0.010650893673300743 -0.03483152016997337 -0.06711059808731079 -0.005891169421374798 0.03425721824169159 -0.005600516684353352 -0.04495532810688019 0.031953830271959305 0.004921414889395237 -0.06848250329494476 0.08014275878667831 -0.02450312301516533 -0.07149053364992142 -0.05342276021838188 0.006035082042217255 -0.0020994809456169605 0.002241102047264576 0.016847429797053337 0.05092320218682289 0.08972612768411636 -0.0005507678142748773 0.0014439517399296165 0.03090033121407032 -0.07474217563867569 -0.06222832202911377 -0.026658203452825546 0.0304621160030365 -0.01959797367453575 -0.06289336830377579 0.018052589148283005 -0.022921063005924225 0.0018094489350914955 -0.036615774035453796 0.04657469317317009 -0.010328030213713646 -0.015999607741832733 -0.05777466669678688 0.08346197009086609 -0.023293927311897278 -0.044881634414196014 0.025818685069680214 -0.02825106307864189 0.04292664676904678 0.007543159183114767 -0.017232023179531097 0.028667394071817398 -0.006523451767861843 0.035968292504549026 -0.014057627879083157 0.05710155889391899 -0.0709102600812912 -0.05596359446644783 -0.035305868834257126 -0.07267039269208908 -0.08158189058303833 -0.016042856499552727 -0.021230995655059814 -0.03907763212919235 0.09711667895317078 0.011062567122280598 -0.01427332405000925 -0.034692153334617615 -0.021870022639632225 -0.016618378460407257 -0.07138391584157944 -0.024312064051628113 0.014173188246786594 -0.09051232784986496 -0.06022178381681442 0.05489848181605339 -0.03564903512597084 -0.0507960319519043 0.00601950054988265 -0.016265830025076866 -0.06553516536951065 0.034267716109752655 -0.03177514299750328 -0.009407945908606052 0.004028939176350832 -0.06470129638910294 0.04485875740647316 0.07509755343198776 0.06791729480028152 0.042939845472574234 0.029154110699892044 0.018358083441853523 0.09646537899971008 0.009274636395275593 -0.0362907350063324 -0.017357181757688522 -0.07035578042268753 -0.11683004349470139 0.05153089389204979 -0.025060800835490227 -0.02257435768842697 -0.030010513961315155 -0.021579178050160408 0.06261762231588364 -0.04096793010830879 0.003568398766219616 -0.032290972769260406 0.009833935648202896 -0.038900282233953476 0.0501389242708683 -0.011366666294634342 0.0034051949623972178 -0.02015521191060543 -0.042653802782297134 -0.05552307143807411 -0.07659078389406204 0.018205370754003525 -0.013576668687164783 0.02669447287917137 0.00643555074930191 -0.01673334650695324 -0.009664276614785194 0.015708453953266144 0.09754883497953415 -0.020693859085440636 0.033089529722929 0.02579638548195362 0.012486623600125313 -0.08108174800872803 -0.036152780055999756 -0.005242523737251759 -0.0175608042627573 -0.03342340141534805 -0.014030033722519875 0.052219461649656296 -0.0572516992688179 -0.032973963767290115 0.021143553778529167 -0.02666538767516613 0.003679984947666526 0.01960557885468006 0.006662564817816019 0.053313616663217545 -0.012390650808811188 -0.039111457765102386 0.06053338572382927 -0.017602993175387383 0.040867045521736145 -0.02042662724852562 0.03119625337421894 -0.024127250537276268 0.07948794960975647 -0.03204992786049843 -0.06983214616775513 -0.09077531099319458 0.05862048268318176 0.002841467969119549 -0.052884358912706375 -0.03461030498147011 0.03224698826670647 -0.02218121849000454 0.05222848430275917 0.010072324424982071 -0.01942502148449421 -0.03244946151971817 -0.030939634889364243 -0.01935351826250553 -0.06696967780590057 0.00528918020427227 -0.0025829884689301252 -0.055777955800294876 0.0013173933839425445 -0.042065542191267014 -0.02146824635565281 0.044959064573049545 -0.03500683233141899 0.010040262714028358 0.009777351282536983 0.044752512127161026 -0.01703677326440811 0.05744641274213791 0.011743896640837193 0.034641824662685394 0.008488801307976246 -0.006642427295446396 0.002136929426342249 0.03695878013968468 -0.05073250085115433 0.05254136770963669 -0.032213788479566574 0.039785873144865036 -0.006726242136210203 0.02876146510243416 0.03877727687358856 -0.05240190029144287 0.035247690975666046 -0.007156273350119591 0.01795324496924877 -0.07750309258699417 -0.06456361711025238 0.031797830015420914 -0.039449892938137054 -0.09327232837677002 0.027701254934072495 -0.007572282571345568 -0.02742200344800949 0.024311866611242294 -0.010927699506282806 0.012436113320291042 0.04879293963313103 -0.06857649981975555 -0.02885359898209572 -0.04131997749209404 -0.013701366260647774 0.046105798333883286 -0.007460401859134436 0.05526455491781235 0.03105316311120987 -0.010604687966406345 0.050250619649887085 -0.00560831418260932 0.007127008400857449 -0.06582460552453995 -0.01872823014855385 -0.00989637803286314 -0.0068024201318621635 0.05701453611254692 -0.010197759605944157 0.06002388894557953 -0.015240118838846684 -0.025489160791039467 -0.025899719446897507 0.06802322715520859 0.006429692730307579 0.0037749854382127523 0.0496809184551239 -0.044561538845300674 0.011646202765405178 -0.017218507826328278 -0.033047184348106384 -0.045610178261995316 0.014959882013499737 -0.04435546696186066 0.0451992005109787 0.036325037479400635 0.03870385140180588 0.0273390281945467 -0.06886336207389832 -0.0169865433126688 -0.009660325013101101 -0.05397499352693558 0.05539235472679138 0.01047385111451149 -0.0138448067009449 -0.07070140540599823 -0.03682371601462364 -0.058839350938797 0.039156049489974976 -0.04923605918884277 0.02939423732459545 -0.008248522877693176 0.02942134439945221 0.0034581718500703573 -0.035250186920166016 0.018935365602374077 0.0019122147932648659 -0.07672221958637238 -0.014952694065868855 0.10948465764522552 -0.02378932014107704 0.026781806722283363 0.07579369097948074 0.010677914135158062 0.005295419134199619 0.01872626505792141 -0.027287505567073822 -0.008378743194043636 -0.015458430163562298 -0.027567129582166672 0.07286109030246735 -0.047005508095026016 0.054031793028116226 -0.09723222255706787 0.09571525454521179 -0.0067746941931545734 -0.04195127636194229 0.08253753930330276 0.04442250728607178 0.002879832172766328 0.0462508462369442 -0.03282841667532921 +0.024479323998093605 0.0003247964777983725 -0.006420562509447336 0.058079589158296585 -0.07597880065441132 -0.029166074469685555 -0.006482925731688738 0.04040597751736641 -0.005923648364841938 -0.034969523549079895 0.013117426075041294 -0.035344526171684265 0.0018895522225648165 0.014917703345417976 0.03212588280439377 -0.046617425978183746 -0.09142923355102539 -0.003019272582605481 -0.03605286777019501 -0.05845150351524353 0.035352081060409546 0.005442366935312748 -0.06530961394309998 0.048855893313884735 -0.004828921984881163 0.01237068697810173 -0.03890705108642578 0.006659323815256357 -0.0069982255809009075 0.007694595959037542 0.05931772664189339 -0.006538392044603825 0.0312647707760334 -0.049050141125917435 -0.05531792342662811 0.06551223993301392 -0.01744886301457882 0.1133948415517807 0.011606813408434391 -0.05599534511566162 -0.040687400847673416 0.015185214579105377 -0.022527800872921944 -0.04157625883817673 0.04593342915177345 -0.0033562006428837776 -0.01315181516110897 -0.010044206865131855 0.027055401355028152 0.01305039506405592 0.1036287322640419 0.0031568973790854216 -0.016977710649371147 -0.04601538926362991 -0.026598013937473297 0.02961812913417816 0.027443982660770416 -0.06393183767795563 -0.0579155795276165 0.052707489579916 -0.0708535835146904 -0.0039045445155352354 0.016398975625634193 -0.010119696147739887 -0.011336993426084518 -0.03672114759683609 -0.019870255142450333 0.09293342381715775 0.011012502014636993 -0.008272361010313034 0.022455330938100815 0.10617894679307938 -0.06720959395170212 -0.061383266001939774 0.09816817194223404 -0.0723516121506691 -0.02443101815879345 0.04999189078807831 -0.022361943498253822 0.015448135323822498 0.008557277731597424 -0.015922408550977707 0.10473296046257019 -0.02434542216360569 -0.038808826357126236 -0.029832564294338226 0.028702476993203163 -0.04791286960244179 0.0773007795214653 0.03809642046689987 0.0008210181258618832 0.07384674996137619 -0.06806261837482452 0.05558066815137863 0.0124886529520154 0.00909251905977726 0.03723583370447159 -0.12148548662662506 -0.04381629452109337 0.005291538778692484 0.022032730281352997 -0.025257471948862076 0.052026551216840744 -0.003071751445531845 0.02158023789525032 0.04673447832465172 -0.06196971610188484 0.007190377451479435 0.026263270527124405 0.03871334344148636 0.05814654380083084 0.10446229577064514 0.07465452700853348 0.05380379036068916 0.05506134405732155 0.0013088530395179987 0.005704554263502359 -0.044307779520750046 -0.03614383935928345 0.03393099829554558 0.0008991824579425156 0.04444827139377594 -0.02531331032514572 -0.063285693526268 -0.03626911714673042 0.018992342054843903 -0.09625827521085739 0.003575090551748872 0.08076687157154083 -0.017209883779287338 0.11037112772464752 0.03389408811926842 0.003725942224264145 0.042484745383262634 0.06650573760271072 0.05050559714436531 0.017699137330055237 0.03225310891866684 -0.034530144184827805 -0.0008064938010647893 -0.021543163806200027 0.05915563553571701 0.018028756603598595 -0.06047236546874046 0.04105527698993683 0.0573137141764164 0.026944464072585106 0.010232385247945786 -0.046824902296066284 -0.008128688670694828 -0.08193899691104889 -0.06989981979131699 -0.01028237771242857 -0.09976399689912796 0.015336384065449238 0.041687797755002975 0.0102553591132164 0.04562985897064209 -0.010000653564929962 -0.031049339100718498 -0.03250101953744888 -0.04893850162625313 -0.015477806329727173 -0.07487981021404266 -0.022794626653194427 -0.05058097466826439 -0.002370957052335143 0.015718718990683556 -0.054417431354522705 -0.012712888419628143 0.025193745270371437 -0.002042253501713276 0.03475607931613922 0.06984590739011765 0.053093649446964264 0.023411596193909645 0.03279251977801323 -0.03810242563486099 -0.028389660641551018 -0.024526868015527725 0.026199856773018837 -0.03330029547214508 0.026163531467318535 -0.07416007667779922 -0.008334388025105 0.0009244601824320853 0.03908621519804001 -0.020756393671035767 -0.003182553919032216 -0.010058199986815453 -0.04742982238531113 -0.0598435141146183 0.07490900903940201 0.044116005301475525 -0.006729745306074619 0.029038986191153526 -0.01701110042631626 0.05117492005228996 -0.018659312278032303 -0.02204316109418869 -0.06094873696565628 0.02646862156689167 0.024169884622097015 0.03849836811423302 0.014271987602114677 -0.060701239854097366 0.07829438894987106 -0.0015880195423960686 0.037078212946653366 -0.06032386049628258 0.01488411147147417 0.014521983452141285 0.0072479541413486 0.04093187674880028 0.07375745475292206 -0.0029322076588869095 -0.015121610835194588 0.009140072390437126 0.0761965960264206 -0.06860676407814026 0.035901084542274475 0.003927140962332487 -0.08417972922325134 0.037243958562612534 -0.024747004732489586 -0.08303630352020264 -0.04240889847278595 0.02528524398803711 -0.024280346930027008 -0.030942728742957115 -0.015833934769034386 0.04440881684422493 -0.02997696027159691 -0.029227005317807198 -0.004043512046337128 0.013699800707399845 -0.0930827409029007 0.0915885716676712 -0.00681192334741354 -0.05970655754208565 -0.07445981353521347 0.010482462123036385 0.014347709715366364 -0.011529343202710152 0.05521787330508232 0.05585191026329994 0.0867626890540123 0.034747444093227386 0.01639517769217491 0.02196054905653 -0.06711310893297195 -0.05421804264187813 -0.01791856810450554 0.028400443494319916 -0.03515728935599327 -0.04837615042924881 -0.00725052785128355 -0.05491194874048233 0.015609968453645706 -0.005949780810624361 0.023087939247488976 -0.030629649758338928 -0.022109173238277435 -0.03805556893348694 0.04033605381846428 -0.05088186636567116 -0.03765394166111946 0.016072247177362442 -0.008738012053072453 0.04420682415366173 -0.013269311748445034 -0.011461202055215836 0.01974359340965748 0.01352037861943245 0.037289153784513474 -0.04778013378381729 0.04938630759716034 -0.02881794236600399 -0.08674748986959457 -0.014554738067090511 -0.0690365806221962 -0.0515567772090435 -0.008469464257359505 -0.06500304490327835 -0.036159589886665344 0.1024584174156189 0.01865798607468605 -0.03630515933036804 -0.06449977308511734 -0.0503191314637661 0.0053520300425589085 -0.05870259180665016 -0.02894643321633339 0.01662042923271656 -0.073160819709301 -0.017641663551330566 0.04395541548728943 -0.034864746034145355 -0.019328344613313675 0.013622159138321877 -0.012880273163318634 -0.03196166455745697 0.049365390092134476 -0.04398222267627716 -0.009009440429508686 -0.002724296413362026 -0.06099652126431465 0.04276585578918457 0.09548015892505646 0.05541345849633217 0.029795175418257713 0.0345296673476696 0.04084701091051102 0.09939707815647125 0.046961959451436996 -0.0483756884932518 0.024017514660954475 -0.06369474530220032 -0.06721614301204681 0.036401815712451935 -0.025120900943875313 -0.020760394632816315 -0.022674424573779106 -0.02584247849881649 0.09330599755048752 -0.021644197404384613 -0.00285571301355958 -0.0005882629193365574 0.0642133355140686 -0.018594687804579735 0.03690525144338608 0.007971230894327164 -0.007519345264881849 0.01986146904528141 -0.050793685019016266 -0.03822232782840729 -0.05573529750108719 0.04142585024237633 -0.0210654865950346 0.036816634237766266 0.007362800184637308 -0.05703068524599075 0.024794960394501686 0.019126836210489273 0.11296620965003967 -0.07627518475055695 -0.00565557973459363 0.0491882860660553 0.0224720798432827 -0.08897628635168076 -0.009937964379787445 -0.006147210020571947 -0.05517847090959549 -0.012871499173343182 0.0018817804520949721 0.04155878350138664 -0.06379467993974686 -0.020027099177241325 -0.006021536886692047 -0.0471147857606411 0.013342776335775852 0.021073967218399048 -0.019110694527626038 0.02189648151397705 -0.04524900019168854 -0.030845142900943756 0.006364327389746904 0.008042044937610626 0.012367365881800652 -0.05508566275238991 0.04999496787786484 -0.03094867616891861 0.04711905121803284 -0.029517538845539093 -0.05587083846330643 -0.0725710391998291 0.059045515954494476 -0.01792384497821331 -0.03074929676949978 -0.036751117557287216 -0.016616778448224068 -0.009151449427008629 0.018317388370633125 0.023920180276036263 -0.06710534542798996 -0.03591623902320862 -0.05172545090317726 -0.04489448666572571 -0.07819081842899323 -0.059800390154123306 0.024929432198405266 -0.0653320848941803 0.00930296815931797 -0.07013385742902756 -0.012670203112065792 -0.012950033880770206 -0.010355775244534016 0.03414097800850868 0.057716771960258484 0.043754804879426956 -0.03141666576266289 0.06293340027332306 0.013146872632205486 0.04105339199304581 0.02029714174568653 -0.027409415692090988 0.03334486857056618 0.035783551633358 -0.010547955520451069 0.05983611196279526 -0.01079113595187664 0.03646136075258255 -0.0076829842291772366 0.0010555338812991977 0.02499210648238659 -0.03564455360174179 -0.025887513533234596 -0.012687092646956444 0.029567936435341835 -0.04868117347359657 -0.029775964096188545 0.014395699836313725 -0.04881441593170166 -0.11373905092477798 -0.028859132900834084 0.00012461052392609417 -0.023483561351895332 0.021217549219727516 -0.0024843099527060986 0.013782437890768051 0.02666541375219822 -0.05379784107208252 -0.04361867904663086 -0.036932844668626785 -0.03435707837343216 0.017529303207993507 -0.010771792382001877 0.05286747217178345 -0.005563884973526001 -0.0064544761553406715 0.006252884864807129 -0.0015127458609640598 0.012284340336918831 -0.08457803726196289 -0.015104198828339577 -0.02986346185207367 -0.051234688609838486 0.04680192843079567 0.011877436190843582 0.004466910380870104 -0.04177538678050041 -0.04193762689828873 -0.036758262664079666 0.07754676043987274 -0.03252173960208893 0.014660588465631008 0.01937841810286045 -0.016553068533539772 0.01667109876871109 0.022670159116387367 -0.025174560025334358 -0.05176880583167076 0.026827875524759293 -0.029776310548186302 0.03496439382433891 0.00434068450704217 0.03639109805226326 -0.012433165684342384 -0.1067982092499733 -0.027778128162026405 0.011334484443068504 -0.08633489906787872 0.014823595061898232 -0.01497676782310009 -0.07735814899206161 -0.049249641597270966 0.009617150761187077 -0.0353132039308548 0.08275635540485382 -0.01351897418498993 0.029574738815426826 -0.012913395650684834 -0.024198660627007484 -0.0042508505284786224 -0.06754017621278763 0.0027524202596396208 -0.02137639932334423 -0.054520439356565475 -0.03419937193393707 0.06472693383693695 -0.03092036582529545 0.0264706052839756 0.07715485244989395 -0.039062272757291794 0.040854956954717636 0.030246790498495102 -0.04282161593437195 0.01828712970018387 0.0020319283939898014 -0.03950626775622368 0.04982827603816986 -0.0590168721973896 0.10146879404783249 -0.08615847676992416 0.0931519865989685 -0.001821403973735869 -0.015028649009764194 0.06958793848752975 0.08550238609313965 -0.014109820127487183 0.027325468137860298 -0.053883664309978485 +0.03946946561336517 0.03075443208217621 0.02959243580698967 0.03232797980308533 -0.11044922471046448 0.0015441077994182706 -0.03427981585264206 0.009638860821723938 0.01691192202270031 -0.07210739701986313 0.010801027528941631 -0.017361275851726532 -0.017544928938150406 -0.0013074890011921525 0.02583462931215763 -0.02465756982564926 -0.07376730442047119 -0.04302018880844116 -0.03913947939872742 -0.0476151667535305 0.05564609169960022 -0.03357455134391785 -0.05333022400736809 0.07020760327577591 -0.002365293214097619 0.04666735604405403 -0.02125079184770584 0.040684644132852554 -0.05870373174548149 0.04890847206115723 0.05661793425679207 -0.023302298039197922 0.019309069961309433 -0.045963186770677567 -0.061988722532987595 0.08439541608095169 0.03101399354636669 0.11582096666097641 0.056057751178741455 -0.0523742213845253 -0.0117379454895854 0.003998736850917339 -0.036757539957761765 -0.04225895181298256 0.04077273607254028 -0.038776859641075134 -0.018993133679032326 -0.01634441502392292 0.06801963597536087 0.009158073924481869 0.06682997196912766 0.028019417077302933 -0.06081240624189377 -0.031178882345557213 0.012378097511827946 0.04766833409667015 0.04380892589688301 -0.07057397812604904 -0.025171691551804543 0.053330760449171066 -0.051995497196912766 -0.009948252700269222 0.0044763581827282906 -0.010938250459730625 0.033962611109018326 0.008000635541975498 0.018957164138555527 0.0688706785440445 0.030110886320471764 -0.017452280968427658 0.020907549187541008 0.10516046732664108 -0.05673487111926079 -0.04034262150526047 0.053682539612054825 -0.05187287554144859 -0.05015752092003822 0.02395826205611229 -0.03045189566910267 0.034921661019325256 -0.026798801496624947 -0.0600261352956295 0.12936735153198242 -0.02754531055688858 -0.029790261760354042 -0.04992574080824852 -0.01664230227470398 -0.05288483574986458 0.07184459269046783 0.027542173862457275 -0.004965487401932478 0.060439109802246094 -0.08228440582752228 0.05266231298446655 -0.023903680965304375 0.011266801506280899 0.04989573732018471 -0.11002202332019806 0.012417256832122803 -0.005765595007687807 -0.023361725732684135 -0.050905171781778336 -0.0047510224394500256 -0.00460507906973362 0.040799450129270554 0.06814505159854889 -0.03648756816983223 0.012079481966793537 0.021704627200961113 0.03767484799027443 0.04645920917391777 0.07521306723356247 0.07912599295377731 0.08096905052661896 0.06716767698526382 -0.002762302290648222 0.0003982100752182305 -0.08773774653673172 -0.01411120779812336 -0.013200750574469566 -0.018643394112586975 0.05593494698405266 -0.009764712303876877 -0.037047360092401505 -0.0027622815687209368 0.0102928401902318 -0.11534493416547775 0.004947981797158718 0.03683452680706978 -0.03263857588171959 0.0736372321844101 0.053911395370960236 -0.006333112251013517 0.033407215029001236 0.03695003688335419 0.03409436717629433 -0.007034861948341131 0.02389248088002205 -0.03088122420012951 -0.03522060066461563 0.011080270633101463 0.007141674403101206 0.01512827631086111 -0.047750916332006454 0.01691472716629505 0.02375747449696064 0.0357954278588295 -0.0023909241426736116 -0.06921660155057907 0.019225407391786575 -0.09857923537492752 -0.05740424245595932 0.021312536671757698 -0.09286028146743774 -0.01543418038636446 0.07725416868925095 0.050270047038793564 0.02332756482064724 -0.010810739360749722 -0.007662213407456875 -0.002092315349727869 -0.04196398705244064 -0.006941612809896469 -0.07659631222486496 -0.039656493812799454 -0.02899441309273243 0.025972187519073486 -0.00025399160222150385 -0.016995174810290337 -0.019138315692543983 0.026354005560278893 0.0222457442432642 0.024970658123493195 0.06752695143222809 0.0670977532863617 -0.008970649912953377 0.024326086044311523 -0.06192823499441147 -0.0007375752902589738 -0.017095090821385384 0.029198933392763138 -0.034332770854234695 0.02456636168062687 -0.0716148093342781 -0.0485227033495903 -0.029474768787622452 -0.003406794276088476 0.0382583886384964 0.020753052085638046 -0.0067895944230258465 -0.06956201046705246 -0.06261134147644043 0.010281901806592941 0.03583453968167305 -0.06336822360754013 0.03167514130473137 0.05333695560693741 0.052709970623254776 -0.02270505577325821 -0.012802896089851856 -0.07905831933021545 0.03141338378190994 0.008324971422553062 0.0777149647474289 0.05201401934027672 -0.05047356337308884 0.045604635030031204 -0.012193286791443825 -0.008163667283952236 -0.056314144283533096 0.03379364684224129 0.025520607829093933 0.055756453424692154 0.017975810915231705 0.06538930535316467 -0.029625559225678444 -0.011493934318423271 -0.008933058008551598 0.06794856488704681 -0.07015106827020645 -0.006915662903338671 -0.043375227600336075 -0.07573030143976212 0.002188272774219513 -0.04163843393325806 -0.04929567128419876 -0.03066343069076538 0.021687477827072144 -0.007417816668748856 -0.057194784283638 0.013492811471223831 0.03908354043960571 -0.0366971455514431 -0.008900677785277367 0.043348416686058044 2.004877205763478e-05 -0.06703272461891174 0.1128832995891571 -0.049334920942783356 -0.0652213990688324 -0.03377062454819679 0.05267758667469025 0.0641462579369545 -0.00906720943748951 0.04260844737291336 0.05818415433168411 0.10280103981494904 0.04489845782518387 -0.014024302363395691 -0.034914225339889526 -0.06891913712024689 -0.06866442412137985 0.005534282419830561 0.03576977178454399 -0.00032054667826741934 -0.057797085493803024 -0.006301705725491047 -0.05602925643324852 0.019958924502134323 0.007282931357622147 0.07467573881149292 -0.030559727922081947 -0.021464332938194275 -0.04959257319569588 0.027896227315068245 -0.0034750080667436123 -0.0502324141561985 0.03350415453314781 -0.03754618391394615 0.03561192750930786 -0.011877498589456081 0.011242163367569447 0.011774792335927486 0.010332971811294556 0.04186569154262543 -0.023327190428972244 0.04667001590132713 -0.03531850501894951 -0.057521626353263855 -0.05713916942477226 -0.07845761626958847 -0.07365584373474121 -0.004864179529249668 -0.01872362196445465 -0.043693386018276215 0.05926844850182533 0.008421354927122593 -0.010977253317832947 -0.042363233864307404 0.003693357342854142 -0.0031555453315377235 -0.051979001611471176 -0.04328195005655289 0.02543627843260765 -0.06913252174854279 -0.0019058333709836006 0.01079457439482212 -0.02168550342321396 -0.027132924646139145 0.0032906883861869574 -0.04249481111764908 -0.0704851746559143 0.023605111986398697 -0.03204263746738434 -0.02649841643869877 0.00616530142724514 -0.05438363924622536 0.061061449348926544 0.10902039706707001 0.049816492944955826 0.07266610860824585 -0.012390609830617905 0.045333728194236755 0.06288953870534897 -0.010255470871925354 -0.007588975131511688 0.0012333655031397939 -0.037996161729097366 -0.10475480556488037 0.06084497645497322 -0.03084859624505043 -0.02314711920917034 -0.03145407885313034 0.011268199421465397 0.0664423257112503 -0.0062162005342543125 0.0074787442572414875 -0.018537776544690132 0.05020313709974289 0.010251520201563835 0.07985220104455948 -0.03760962188243866 -0.007660512812435627 0.0023702739272266626 -0.02564259245991707 -0.03680923208594322 -0.060476139187812805 0.052502501755952835 0.03932308033108711 0.031816281378269196 0.000973811314906925 -0.09538295865058899 -0.0012192606227472425 0.022377552464604378 0.0634416863322258 -0.09170465916395187 0.03182879090309143 0.020312558859586716 -0.013634112663567066 -0.10036096721887589 -0.04599962756037712 0.017310962080955505 -0.012314734980463982 -0.03982265666127205 0.010024279356002808 0.06663940846920013 -0.05810723081231117 -0.02343592420220375 -0.015571522526443005 -0.014991823583841324 -0.016958585008978844 0.04476628080010414 0.009128117002546787 -0.026640303432941437 -0.035656169056892395 -0.02845592424273491 -0.014187462627887726 -0.015436760149896145 0.025557497516274452 0.002524321200326085 0.056434109807014465 -0.017503082752227783 0.05272730439901352 -0.05028871074318886 -0.03597142919898033 -0.0786866545677185 0.10241445899009705 -0.024561578407883644 -0.0016695403028279543 -0.02123616263270378 -0.016725001856684685 -0.004355855286121368 0.03910032659769058 0.0023503813426941633 -0.04456141218543053 -0.02470238320529461 -0.0028629833832383156 -0.04377380758523941 -0.06465287506580353 -0.020751886069774628 0.012680823914706707 -0.059762705117464066 0.011447131633758545 -0.03317396342754364 -0.03698156774044037 -0.0017588938353583217 0.00019697648531291634 0.011112702079117298 0.009324310347437859 0.03224603086709976 0.016935428604483604 0.048696212470531464 0.007419740781188011 0.02281074784696102 -0.006669323891401291 -0.04364370182156563 0.03001120314002037 0.0026881436351686716 -0.04633159190416336 0.10325225442647934 -0.028505543246865273 -0.008791348896920681 -0.0034884123597294092 0.02634686790406704 0.03883703052997589 -0.0291365385055542 -0.013192989863455296 -0.033854346722364426 0.0438401997089386 -0.04610467329621315 -0.013825315982103348 0.036592382937669754 -0.023854637518525124 -0.12345632910728455 -0.011203906498849392 -0.0034300051629543304 -0.05578688532114029 0.04773098975419998 0.01587413065135479 0.01281383354216814 0.04874233156442642 -0.04697063937783241 -0.03295350819826126 -0.032928455621004105 -0.03715695068240166 0.020028064027428627 0.002152304397895932 0.09191802889108658 0.007793057709932327 0.01483538281172514 0.020137974992394447 0.03754035383462906 0.0065253060311079025 -0.06559191644191742 -0.018258804455399513 1.6382393368985504e-05 -0.031294625252485275 0.006661243736743927 0.015401593409478664 0.0450211837887764 -0.03513539582490921 -0.056411344558000565 -0.045263100415468216 0.08029886335134506 -0.03800678253173828 -0.00027507584309205413 0.04485183581709862 -0.034514039754867554 0.01479033101350069 -0.004183280747383833 -0.03577548637986183 -0.08529376983642578 -0.007970087230205536 -0.03632284328341484 0.00023918025544844568 -0.02726322039961815 0.017584286630153656 0.01308459136635065 -0.062190569937229156 -0.030182447284460068 0.017277566716074944 -0.05426798015832901 0.03534481301903725 -0.015538986772298813 -0.034819595515728 -0.06855303794145584 -0.019083399325609207 -0.03757135570049286 0.03893475979566574 -0.023813728243112564 0.022141510620713234 0.01580490544438362 0.009842216968536377 0.006176428869366646 -0.0701788067817688 0.036607526242733 0.02336764894425869 -0.04823929816484451 -0.043184276670217514 0.06685933470726013 -0.012921108864247799 0.07721807807683945 0.04098900035023689 -0.007007332053035498 0.025919781997799873 0.0888705626130104 -0.060735736042261124 0.007972624152898788 -0.0007190977339632809 -0.02503150887787342 0.06546173244714737 -0.016190554946660995 0.05942145735025406 -0.050850335508584976 0.09366053342819214 -0.04374901205301285 -0.01636907272040844 0.0591423436999321 0.07867461442947388 0.055061448365449905 0.05015195906162262 -0.047502268105745316 +0.06533224880695343 -0.036479681730270386 -0.029626429080963135 0.06596184521913528 -0.05070963129401207 0.0025627254508435726 0.011801428161561489 -0.007984867319464684 0.01351251732558012 -0.05604591593146324 -0.004076128825545311 -0.025363754481077194 0.021514199674129486 0.009710917249321938 -0.004722935613244772 -0.04787763953208923 -0.038010213524103165 0.0570029653608799 -0.021878086030483246 -0.0161807369440794 -0.0018488019704818726 -0.041807789355516434 -0.07330835610628128 0.021596742793917656 -0.031607646495103836 0.026257580146193504 -0.032294176518917084 0.014547094702720642 -0.018818723037838936 0.037079960107803345 0.06969287991523743 -0.008880776353180408 0.017708392813801765 -0.033638108521699905 -0.0965399295091629 0.02886810339987278 -0.03698727861046791 0.10995757579803467 -0.01826697215437889 -0.02694270946085453 -0.0944974347949028 0.00651384424418211 -0.07960128039121628 -0.06036289781332016 0.05119730159640312 0.009304753504693508 0.025883441790938377 0.014480745419859886 0.05580156296491623 -0.022644219920039177 0.06211930513381958 0.00982371810823679 -0.011700359173119068 0.004972638096660376 -0.0361943319439888 0.013980056159198284 0.03532392904162407 -0.030269436538219452 -0.02606615424156189 0.06303801387548447 -0.08077434450387955 -0.026235144585371017 0.038660939782857895 0.0025895664002746344 -0.021573776379227638 -0.02808127924799919 -0.0029158787801861763 0.07266676425933838 -0.019717220216989517 -0.013523259200155735 -0.025850685313344002 0.07752852886915207 -0.029171355068683624 -0.0451851561665535 0.057584695518016815 -0.10155358910560608 -0.04126907140016556 0.03080500103533268 -0.009956016205251217 -0.009427128359675407 -0.03530871495604515 -0.014767972752451897 0.15856407582759857 0.004485554061830044 -0.05766015127301216 -0.027554882690310478 0.023198863491415977 -0.06692170351743698 0.06088773533701897 0.03064369410276413 -0.004863232374191284 0.06668121367692947 -0.05196182802319527 0.07517901062965393 0.05242284759879112 0.019856847822666168 0.05010973662137985 -0.0787588357925415 -0.04362275078892708 0.006528706289827824 0.018457021564245224 -0.02462761290371418 0.024141056463122368 -0.004488387610763311 0.046676382422447205 0.003703728085383773 -0.06274284422397614 0.015066834166646004 0.02743561565876007 0.025161828845739365 0.05642424523830414 0.09625937789678574 0.010479219257831573 0.02220422774553299 0.06391988694667816 0.02529238536953926 0.03904048353433609 -0.07851044833660126 -0.005022508557885885 0.032145652920007706 0.0073399292305111885 0.03821714222431183 -0.002707075560465455 -0.0770546942949295 -0.04207179695367813 -0.016908397898077965 -0.10482241213321686 -0.0245402529835701 0.03922078385949135 -0.026350917294621468 0.08802098035812378 0.06354083865880966 -0.031214449554681778 0.048482466489076614 0.021081652492284775 0.01866253651678562 -0.0147390803322196 0.018898891285061836 -0.0032964313868433237 -0.004125585779547691 0.014161995612084866 0.06405433267354965 -0.02668481320142746 -0.02927297167479992 0.09264146536588669 0.012260676361620426 0.041735678911209106 -0.029339918866753578 -0.05783606693148613 0.025131870061159134 -0.039367903023958206 -0.04192899167537689 0.025752585381269455 -0.02727278135716915 -0.003072619903832674 0.025914475321769714 0.02224624715745449 0.011161376722157001 -0.005965416319668293 -0.06168792024254799 -0.04493795707821846 0.011317692697048187 -0.028497183695435524 -0.07982778549194336 -0.03378548100590706 -0.01710459403693676 -0.00018109445227310061 0.03142668306827545 -0.05958443135023117 0.015020779334008694 0.04858741909265518 0.0358620323240757 0.052812326699495316 0.060601212084293365 0.07683899253606796 0.03734353929758072 -0.00784552562981844 -0.04541186988353729 0.016590604558587074 -0.023998945951461792 0.02971869334578514 0.010415829718112946 -0.008787940256297588 -0.051383472979068756 0.034127067774534225 0.03474665433168411 0.04856857657432556 -0.015364320948719978 0.023316457867622375 -0.02175994962453842 -0.05226374417543411 -0.08160330355167389 0.023518098518252373 0.026011653244495392 -0.007005298975855112 -0.0030776432249695063 -0.039947960525751114 0.06790994852781296 0.004166556987911463 -0.018499670550227165 -0.029198043048381805 0.028601793572306633 -0.02065204083919525 0.08031466603279114 0.041673727333545685 -0.06344813853502274 0.056595392525196075 -0.0002330801507923752 0.05466098338365555 -0.0490129180252552 -0.0030398783273994923 -0.03577064722776413 0.003481984604150057 0.04627086594700813 0.08410528302192688 0.011582473292946815 -0.02031124010682106 0.06758725643157959 0.09544423967599869 -0.043137408792972565 0.010271153412759304 -0.041270818561315536 -0.09916198998689651 -0.01972154900431633 -0.037447113543748856 -0.064118392765522 -0.026109199970960617 0.08449123054742813 -0.031995758414268494 -0.024522796273231506 0.012210874818265438 0.02025742642581463 -0.02150091715157032 -0.041671764105558395 0.010197608731687069 -0.023654425516724586 -0.10821781307458878 0.0711185485124588 0.023630863055586815 -0.10107765346765518 -0.016261577606201172 0.0025659676175564528 0.05080198124051094 -0.02522283047437668 0.056745849549770355 0.04349871724843979 0.06548334658145905 0.007611383218318224 -0.015880916267633438 0.035349290817976 -0.0383191742002964 -0.05937713012099266 0.03908400237560272 0.050609346479177475 -0.033754076808691025 -0.015211496502161026 0.0027854389045387506 -0.04248366877436638 0.040895964950323105 0.006792982574552298 -0.023229623213410378 -0.011790384538471699 -0.011806459166109562 -0.03750418499112129 0.026458129286766052 -0.06892893463373184 0.02774633839726448 0.017629550769925117 -0.006532719824463129 0.020840417593717575 -0.01123689766973257 -0.023135092109441757 0.02282506413757801 0.010081593878567219 0.02908833883702755 -0.03469401225447655 0.05730452761054039 0.0018730924930423498 -0.08988966792821884 -0.028203628957271576 -0.07185350358486176 -0.022252239286899567 -0.02664882130920887 -0.006773686036467552 -0.06956887245178223 0.07285696268081665 -0.005205022171139717 -0.03709139674901962 -0.08618009090423584 -0.040792956948280334 -0.016721075400710106 -0.07322200387716293 -0.04182935878634453 -0.008529068902134895 -0.03509720042347908 -0.04295003414154053 0.04411676153540611 -0.009233785793185234 0.005431237164884806 -0.04071081057190895 0.026175539940595627 -0.06752697378396988 0.04005765914916992 0.0011648612562566996 -0.04333430901169777 0.023817449808120728 -0.08645755052566528 0.032240960747003555 0.09283172339200974 0.07356004416942596 0.02154497243463993 0.012972231954336166 0.034847136586904526 0.09239623695611954 -0.0009363002027384937 -0.043022990226745605 -0.01945257931947708 -0.05396820232272148 -0.01526427362114191 0.05614599585533142 -0.025674771517515182 -0.0018657665932551026 0.006131164729595184 0.002112895017489791 0.052882034331560135 -0.023362068459391594 -0.014171630144119263 -0.023758312687277794 0.0398440808057785 -0.036995213478803635 0.0313708670437336 -0.005169058684259653 0.056428465992212296 -0.0340731255710125 -0.045967139303684235 -0.050690263509750366 0.02070525474846363 0.0003610221028793603 -3.6974986869608983e-05 0.026553723961114883 -0.001576158800162375 -0.05388857051730156 0.01140756905078888 -0.04693394526839256 0.09268863499164581 -0.05770965665578842 -0.03115653805434704 0.05193089321255684 0.042307235300540924 -0.09066617488861084 0.02763969451189041 0.028479037806391716 -0.053437501192092896 -0.04329884424805641 0.0020874261390417814 0.014423629269003868 -0.027570074424147606 0.010491250082850456 -0.018006185069680214 -0.0008721070480532944 -0.03552095219492912 -0.0005047558806836605 0.028392205014824867 0.008915194310247898 -0.040834665298461914 -0.041049834340810776 0.007354391273111105 -0.01893627643585205 0.027605880051851273 -0.03691661357879639 0.010073492303490639 -0.010412863455712795 0.009754742495715618 -0.0388089194893837 -0.030345173552632332 -0.05479898303747177 0.06418795138597488 0.028371747583150864 -0.03248550742864609 -0.02172621712088585 -0.04938114434480667 -0.05183755233883858 -0.04356709495186806 0.022754430770874023 -0.07279506325721741 -0.023871079087257385 -0.07570698112249374 -0.05226323753595352 -0.07199142873287201 -0.0167221762239933 -0.00805719941854477 -0.013462135568261147 0.010447971522808075 -0.03160129487514496 -0.03268216922879219 0.06243593618273735 0.007290326990187168 0.014888036996126175 0.09610237926244736 -0.004536256194114685 -0.0071027930825948715 0.0456966906785965 -0.009660983458161354 0.05274851247668266 0.06271784007549286 -0.04822010174393654 -0.02408275380730629 0.023537229746580124 -0.06899549812078476 0.06031770631670952 0.015565876848995686 0.02813068963587284 0.020754942670464516 0.005544587038457394 0.013186175376176834 -0.03648576885461807 0.010591287165880203 -0.0036618199665099382 0.030088074505329132 -0.038899388164281845 -0.029170449823141098 0.017986536026000977 -0.049241047352552414 -0.07247992604970932 -0.048425186425447464 0.03467843309044838 -0.03855990990996361 0.04107195511460304 -0.04534858092665672 0.02517537772655487 0.05627742409706116 -0.0594281442463398 -0.08388146013021469 -0.020923186093568802 -0.035066280514001846 0.07010563462972641 -0.04849040508270264 0.05599471181631088 0.054106105118989944 -0.00375087046995759 -0.013054431416094303 0.0244823656976223 0.003451654687523842 -0.059831131249666214 -0.01528874970972538 -0.012147173285484314 -0.06564145535230637 0.010429710149765015 -8.012139005586505e-05 -0.010656897909939289 -0.027525966987013817 -0.009029852226376534 -0.04478132724761963 0.08580893278121948 -0.0007046970422379673 -0.009656520560383797 -0.007323544938117266 -0.03108314611017704 0.05657872557640076 0.040565505623817444 -0.04718974977731705 -0.04185288026928902 0.01077783852815628 -0.02971062995493412 0.021858667954802513 0.024816172197461128 0.023436112329363823 -0.012338335625827312 -0.055302005261182785 0.0023798812180757523 0.00019150557636749 -0.13178551197052002 0.007723227143287659 0.02163238450884819 -0.06463470309972763 -0.041319698095321655 0.03399103134870529 -0.06998225301504135 0.08289749920368195 0.008352094329893589 0.07243809849023819 0.0053526186384260654 -0.018532495945692062 -0.04472798481583595 -0.04850823059678078 0.01720581203699112 -0.056277867406606674 -0.030045902356505394 -0.005746450740844011 0.0626741573214531 -0.07626960426568985 0.043615538626909256 0.030176613479852676 0.015069027431309223 0.05197475850582123 0.046043429523706436 -0.09190486371517181 0.06296372413635254 0.03517447039484978 -0.008151366375386715 0.05914941802620888 -0.08009067922830582 0.09095655381679535 -0.08490019291639328 0.09821818023920059 -0.008751251734793186 0.006532380823045969 0.05875280871987343 0.0891609936952591 -0.016086187213659286 0.03654791787266731 -0.030057422816753387 +0.022382454946637154 -0.005490126088261604 0.004425330087542534 0.012217861600220203 -0.08774487674236298 -0.027623796835541725 -0.02755415067076683 0.04499297961592674 0.023160895332694054 -0.05264835059642792 -0.03252158686518669 -0.005503067746758461 -0.018253425136208534 0.009154374711215496 0.023429280146956444 -0.03841736167669296 -0.06360892206430435 -0.019397815689444542 -0.04542791470885277 -0.060897018760442734 0.033580098301172256 0.026246292516589165 -0.05804652348160744 0.07235901802778244 0.007888277061283588 0.017714446410536766 -0.0607181116938591 0.02933713234961033 -0.043345753103494644 0.05484151467680931 0.08216915279626846 -0.005733879748731852 0.07141394168138504 -0.0608992762863636 -0.04496842622756958 0.054151780903339386 -0.025467799976468086 0.08108169585466385 0.039902493357658386 -0.042163826525211334 -0.029920559376478195 0.004240759182721376 -0.00809508003294468 -0.03992825374007225 0.04489637911319733 -0.011095773428678513 -0.017543883994221687 -0.02633015438914299 0.03415929153561592 0.012881353497505188 0.09794401377439499 0.010753102600574493 -0.02328159287571907 -0.034866370260715485 0.00910276174545288 0.03865784779191017 0.02052515186369419 -0.07787762582302094 -0.04132254049181938 0.026134463027119637 -0.09533468633890152 0.022901762276887894 0.004835754632949829 0.000249191332841292 -0.00752646429464221 -0.009770924225449562 -0.018631529062986374 0.09332257509231567 0.037209220230579376 -0.008077790029346943 0.03982892259955406 0.0812329649925232 -0.06233636289834976 -0.04688809812068939 0.055045925080776215 -0.026906078681349754 0.002167661441490054 0.02984737791121006 -0.02548076957464218 0.02922419086098671 0.014254006557166576 -0.03681774437427521 0.11670610308647156 -0.034085750579833984 -0.013248774223029613 -0.05958414077758789 -0.022592181339859962 -0.06949383020401001 0.07819521427154541 0.0033975106198340654 0.013584182597696781 0.066648930311203 -0.00029363055364228785 0.04890107735991478 -0.010553247295320034 0.022761929780244827 -0.004185544326901436 -0.10708324611186981 0.012738161720335484 0.005486772395670414 0.020976923406124115 0.011928074061870575 0.049905210733413696 -0.003376850625500083 0.059023451060056686 0.0810701921582222 -0.04353457689285278 0.00035630937782116234 0.054162513464689255 0.03639249503612518 0.03602218255400658 0.09212994575500488 0.07661666721105576 0.04947194457054138 0.041175372898578644 0.011702236719429493 -0.0041059451177716255 -0.05808408930897713 -0.013988038524985313 0.01510279905050993 -0.01410482358187437 0.034374434500932693 -0.02082231640815735 -0.05927150323987007 -0.014095050282776356 0.049506235867738724 -0.08628014475107193 -0.021878210827708244 0.06698859483003616 -0.03352193906903267 0.10465048253536224 0.048017486929893494 -0.027659591287374496 0.033854465931653976 0.04947401583194733 0.041640061885118484 -0.002013188786804676 -0.0042785159312188625 -0.002209531841799617 -0.061511095613241196 -0.04075150936841965 0.04357665777206421 -0.011929675005376339 -0.06830047816038132 0.05552419275045395 0.017425332218408585 0.025781946256756783 -0.020803045481443405 -0.07137980312108994 0.0072580487467348576 -0.09929897636175156 -0.09341658651828766 0.03060692548751831 -0.049698490649461746 -0.0027875045780092478 0.05633010342717171 0.021805454045534134 0.007272430695593357 -0.0038252153899520636 -0.05318306386470795 -0.028666319325566292 -0.04476679861545563 -0.030474886298179626 -0.08768738806247711 0.016816753894090652 -0.046828676015138626 0.025126781314611435 0.047021277248859406 -0.062059227377176285 -0.038603637367486954 -0.0011945138685405254 -0.005138033535331488 -0.00394296133890748 0.09868043661117554 0.046998023986816406 0.014459526166319847 0.026007136330008507 -0.03119780495762825 -0.021201707422733307 -0.0268833190202713 0.02481873705983162 -0.04404836148023605 0.035878509283065796 -0.0679367259144783 -0.005635015666484833 -0.0293147973716259 0.020249824970960617 -0.006893017794936895 0.023096119984984398 0.005357017740607262 -0.02677042782306671 -0.06933072209358215 0.03568832576274872 0.049878232181072235 -0.01664678007364273 0.03359115123748779 0.045160405337810516 0.06942299753427505 -0.010207941755652428 -0.01761387288570404 -0.06023157760500908 0.04639584198594093 0.05228712409734726 0.03821852430701256 0.03549278900027275 -0.0711880773305893 0.09282301366329193 0.0007640466210432351 0.025691034272313118 -0.02959156595170498 0.043538279831409454 0.05613281950354576 0.02406698279082775 0.04088350385427475 0.07124526798725128 -0.021327324211597443 -0.007088310085237026 -0.025965681299567223 0.06139659881591797 -0.10568394511938095 0.0075326417572796345 0.0007959234644658864 -0.049434464424848557 0.050348665565252304 -0.049646370112895966 -0.10912733525037766 -0.03933968022465706 0.0018343115225434303 0.0061533087864518166 -0.045945003628730774 0.020896829664707184 0.006217137444764376 -0.022743456065654755 0.01935560815036297 0.022892765700817108 -0.020154301077127457 -0.09214171767234802 0.09759485721588135 -0.03833677992224693 -0.05591975152492523 -0.032886773347854614 0.01397587452083826 0.056524306535720825 -0.008735998533666134 0.03683090955018997 0.06174638494849205 0.10338957607746124 0.043954722583293915 -0.02368532307446003 0.004426221828907728 -0.05075483024120331 -0.06200810894370079 0.003559019649401307 0.026782037690281868 -0.02392786182463169 -0.07645998150110245 0.017708580940961838 -0.07484845072031021 0.014781166799366474 -0.02488008327782154 0.029283883050084114 -0.028187770396471024 0.010453112423419952 -0.05529606342315674 0.04958682134747505 -0.015357818454504013 -0.055953800678253174 0.0560329370200634 -0.03313799574971199 0.039700668305158615 -0.02160884439945221 -0.02214221842586994 0.01811246946454048 -0.005478797480463982 0.03500112146139145 -0.039982736110687256 0.07711414247751236 -0.00907299853861332 -0.08052915334701538 -0.04037334397435188 -0.04732438176870346 -0.0718228667974472 0.008021212182939053 -0.04629746824502945 -0.019343459978699684 0.06847018003463745 0.01568610779941082 -0.036509040743112564 -0.05615251511335373 -0.02523493953049183 -0.01881701685488224 -0.029936175793409348 -0.05347127094864845 -0.01370667852461338 -0.06667464226484299 0.0006687517161481082 0.03599809855222702 -0.07283221185207367 -0.029729800298810005 0.042032867670059204 -0.017839152365922928 -0.045420512557029724 0.029885118827223778 -0.04398411884903908 -0.01384809147566557 0.02359963394701481 -0.07023321092128754 0.0375913567841053 0.09640073031187057 0.042653847485780716 0.02119886688888073 0.02208082191646099 0.037380002439022064 0.08848466724157333 -0.004007589537650347 -0.03130210563540459 -0.016185736283659935 -0.028883080929517746 -0.06333113461732864 0.03723711520433426 -0.02786118909716606 -0.03374125808477402 0.006169111933559179 -0.02107403241097927 0.048566702753305435 0.0009253238094970584 -0.006479570642113686 -0.027269063517451286 0.041359663009643555 -0.02292742021381855 0.049897778779268265 0.003784716594964266 0.003162068547680974 0.021577833220362663 -0.045959390699863434 -0.03858301043510437 -0.06555265933275223 0.05401380732655525 0.003306356258690357 0.01616988144814968 -0.005519811529666185 -0.057288140058517456 -0.006836199667304754 0.005882450379431248 0.10049596428871155 -0.07827837765216827 0.04600975289940834 0.0262799970805645 0.01600540056824684 -0.10260337591171265 -0.0028945293743163347 -0.0014214020920917392 -0.04175443574786186 -0.044272903352975845 0.02774074301123619 0.04912225902080536 -0.08042094111442566 -0.059055496007204056 -0.0066376784816384315 -0.028037885203957558 -0.017148246988654137 0.024670355021953583 0.011631539091467857 0.0366954430937767 0.0030249517876654863 -0.010538478381931782 -0.007923326455056667 -0.0026971413753926754 0.02645721286535263 -0.0032824710942804813 0.03662226349115372 -0.03269897401332855 0.04560835286974907 -0.046855855733156204 -0.05482823774218559 -0.05056295916438103 0.043659843504428864 -0.012959802523255348 0.028043271973729134 -0.002226415788754821 -0.010901681147515774 -0.015654081478714943 0.0214869175106287 0.022069286555051804 -0.08241622895002365 0.006672672927379608 -0.0026610959321260452 -0.051147136837244034 -0.07802800834178925 -0.04355012625455856 -0.0022348833736032248 -0.07028644531965256 0.030473075807094574 -0.044486477971076965 0.019469497725367546 0.011993277817964554 -0.006526210345327854 0.01680927723646164 0.06298258155584335 0.019245048984885216 0.019224809482693672 0.02206192910671234 0.013400579802691936 0.028059782460331917 0.01662597991526127 -0.05839795619249344 0.02033313922584057 0.026147376745939255 -0.04073915630578995 0.0403439886868 -0.014807971194386482 -0.006122478749603033 0.029040660709142685 -0.023862583562731743 0.018869783729314804 -0.014945138245821 0.024232009425759315 -0.03728632628917694 0.05760698392987251 -0.030803469941020012 -0.035000771284103394 0.019143760204315186 -0.03248172253370285 -0.10796863585710526 -0.005368869286030531 -0.0357285775244236 -0.06509657204151154 0.07616850733757019 -0.007927932776510715 0.005741175264120102 0.03090507537126541 -0.057905085384845734 -0.06280511617660522 -0.018539108335971832 -0.003896075999364257 0.002786214929074049 0.0312621146440506 0.0749613419175148 -0.009934053756296635 -0.001032728236168623 0.004678697790950537 -0.05272074043750763 0.016262037679553032 -0.07388563454151154 0.004418882541358471 -0.012354527600109577 -0.044076189398765564 0.01776493340730667 0.023083776235580444 0.03986632451415062 -0.05025557801127434 -0.02582560107111931 -0.050556834787130356 0.0661652460694313 -0.04526170715689659 0.004802792798727751 -0.010358495637774467 -0.05893757939338684 -0.012763208709657192 0.0410061813890934 -0.05283777415752411 -0.09727973490953445 -0.02148810401558876 -0.04924499988555908 0.03826097771525383 -0.01948508247733116 0.013627104461193085 -0.024503257125616074 -0.09132158011198044 -0.008787941187620163 0.00044401895138435066 -0.02343887835741043 -0.0033095625694841146 0.007538010366261005 -0.07327999919652939 -0.06945861130952835 -0.03637707605957985 -0.07330837845802307 0.08368970453739166 0.0030171882826834917 0.019953599199652672 -0.026628782972693443 -0.022014440968632698 0.010006153956055641 -0.06321833282709122 0.0012131578987464309 -0.020550571382045746 -0.046033598482608795 -0.03214544802904129 0.06779926270246506 -0.0015276006888598204 0.03907923400402069 0.0931258350610733 -0.021198922768235207 0.024013372138142586 0.04908718913793564 -0.03202710673213005 0.0018198717152699828 -0.008815285749733448 -0.028701700270175934 0.0522351898252964 -0.03921936824917793 0.06225243955850601 -0.051780372858047485 0.11481370776891708 -0.003389671677723527 -0.03102291375398636 0.07059802114963531 0.08069455623626709 0.02103632688522339 0.03343430906534195 -0.08990401774644852 +-0.012414969503879547 -0.053787630051374435 -0.02894447185099125 0.00208616117015481 -0.10235167294740677 -0.041637733578681946 -0.008783390745520592 0.033985793590545654 0.007899255491793156 -0.04914580285549164 -0.04653019458055496 0.0047602602280676365 0.00391701515763998 -0.012053145095705986 0.028941873461008072 -0.021616555750370026 -0.0678916722536087 -0.010002519004046917 -0.038796134293079376 -0.024864230304956436 0.022852858528494835 0.015782024711370468 -0.06256311386823654 0.06169625371694565 0.010738811455667019 0.029158923774957657 -0.058732178062200546 0.0040521337650716305 -0.027411693707108498 0.06494899839162827 0.048908036202192307 -0.003950159065425396 0.032154861837625504 -0.04889754205942154 -0.05522124469280243 0.04445064812898636 -0.02804097905755043 0.1037859320640564 0.02746935747563839 -0.02881641499698162 -0.031121518462896347 -0.003126932308077812 -0.04718994349241257 -0.06010652706027031 0.012978523038327694 -0.026812592521309853 0.0037078086752444506 -0.027401624247431755 0.021762188524007797 0.04215405881404877 0.07391932606697083 0.02964545413851738 -0.01733010821044445 -0.022620875388383865 -0.026999466121196747 0.032337039709091187 0.0009729615412652493 -0.035275302827358246 -0.05391013249754906 0.05751661956310272 -0.0777239054441452 0.01922389678657055 0.002692479407414794 0.022624829784035683 -0.016314685344696045 0.00040254052146337926 -0.019238470122218132 0.0840686708688736 0.0036828278098255396 -0.029862048104405403 -0.002260122448205948 0.07688252627849579 -0.04412829875946045 -0.039751507341861725 0.022123878821730614 -0.021481139585375786 -0.025386298075318336 0.009631884284317493 0.00041967802098952234 -0.017735039815306664 -0.00043079923489131033 -0.057094987481832504 0.13965997099876404 -0.05090895667672157 -0.022949667647480965 -0.07088290899991989 -0.03132413327693939 -0.053912483155727386 0.05602865666151047 0.009918981231749058 0.04878601059317589 0.06361047923564911 -0.016283372417092323 0.05208737403154373 0.002775650005787611 0.009082495234906673 0.02904346212744713 -0.14680089056491852 -0.02096625231206417 -0.0032932746689766645 0.007269399240612984 -0.022309329360723495 0.07212488353252411 0.012278810143470764 0.05966901406645775 0.04361782595515251 -0.0667150467634201 0.006351865362375975 0.029666779562830925 0.011307952925562859 0.023923130705952644 0.11484064906835556 0.05970226228237152 0.06081247702240944 0.05125868320465088 0.008699259720742702 -0.0186051893979311 -0.02640790306031704 -0.02197837270796299 0.005453481338918209 0.004967379383742809 0.0254278015345335 0.005448059178888798 -0.06814680993556976 0.011512222699820995 0.058201804757118225 -0.10989812761545181 6.045786358299665e-05 0.033818166702985764 -0.05665283650159836 0.08695252984762192 0.049701932817697525 -0.018354713916778564 0.010759255848824978 0.04111390560865402 0.006876657716929913 -0.006430888548493385 0.017033899202942848 -0.006384788081049919 -0.031712546944618225 -0.055173609405756 0.04307593032717705 -0.004638157319277525 -0.03256700932979584 0.025388803333044052 0.022258995100855827 0.009758561849594116 -0.01316027157008648 -0.07251741737127304 0.024640226736664772 -0.08870438486337662 -0.07706137746572495 0.03254276141524315 -0.0758008062839508 0.02611444890499115 0.0549759715795517 0.049672048538923264 0.049788083881139755 -0.004514634609222412 -0.0036182941403239965 -0.022153910249471664 -0.054986827075481415 -0.02655426785349846 -0.09732988476753235 0.01616981439292431 -0.006277823820710182 0.015806332230567932 -0.004302107263356447 -0.029922952875494957 -0.03478629142045975 -0.0034823762252926826 0.003950712736696005 0.0303769763559103 0.07053958624601364 0.0322636142373085 -0.010668416507542133 0.02363944984972477 -0.05765267834067345 -0.02452455461025238 -0.035604171454906464 0.009146489202976227 -0.03213924914598465 0.04129417985677719 -0.050738271325826645 -0.037041548639535904 -0.0033185817301273346 0.02371879294514656 -0.013020438142120838 -0.02020895481109619 -0.03658609464764595 -0.021133223548531532 -0.07863761484622955 0.04699425399303436 0.047717127948999405 -0.03287571296095848 0.03420369699597359 0.04621683806180954 0.08975884318351746 -0.025783060118556023 -0.020121734589338303 -0.06303723901510239 0.03655679151415825 0.008139492012560368 0.020394090563058853 0.010949474759399891 -0.05914687365293503 0.07602649182081223 0.004927781410515308 0.021698089316487312 -0.0660681501030922 0.03664303943514824 0.05096476897597313 0.01326060388237238 0.04610666632652283 0.08716359734535217 -0.04777943715453148 -0.012417567893862724 0.020873915404081345 0.05788771063089371 -0.08151561766862869 -0.008120909333229065 0.009713343344628811 -0.07288835197687149 -0.022225596010684967 -0.010694533586502075 -0.09014362096786499 -0.02495887130498886 0.01761123724281788 -0.008327425457537174 -0.016071848571300507 0.012372691184282303 0.04007530212402344 -0.03707655519247055 -0.006347430404275656 0.014293462038040161 0.020727531984448433 -0.06823451071977615 0.05512389540672302 -0.05434512719511986 -0.08631248027086258 -0.04778742045164108 0.012360279448330402 0.011065810918807983 0.025932161137461662 0.03107399307191372 0.06345909088850021 0.1027769148349762 0.06379251927137375 -0.034753408282995224 -0.024643421173095703 -0.04867706075310707 -0.044517360627651215 0.01091313548386097 0.040012139827013016 -0.017157617956399918 -0.0671611800789833 0.008710198104381561 -0.10236933827400208 -0.010214913636446 0.012110930867493153 0.06268112361431122 -0.056890614330768585 -0.02760167047381401 -0.005082306917756796 0.02281823568046093 -0.007638023234903812 -0.046836428344249725 0.018410712480545044 -0.03992501646280289 0.051996324211359024 -0.04362965375185013 -0.02288113534450531 0.016343051567673683 0.01075144112110138 0.03215702995657921 -0.032521165907382965 0.062325261533260345 -0.032026827335357666 -0.09125759452581406 -0.0509013794362545 -0.07437248528003693 -0.06828795373439789 -0.001640776521526277 -0.02019060030579567 -0.054667335003614426 0.07478082180023193 0.01948297955095768 -0.058861978352069855 -0.05899117514491081 -0.05304679274559021 -0.02906845323741436 -0.025759655982255936 -0.015181504189968109 -0.00968175008893013 -0.06424114108085632 -0.007416925858706236 0.04882919043302536 -0.07074154168367386 -0.030817942693829536 0.08260493725538254 0.010263729840517044 -0.0527278408408165 0.0758589431643486 -0.016419334337115288 -0.017698774114251137 0.007675500586628914 -0.08764024078845978 0.02410050295293331 0.08704822510480881 0.017446499317884445 0.039061326533555984 0.022991685196757317 0.029687179252505302 0.05256262049078941 -0.0008470993489027023 -0.04117455706000328 -0.04395775496959686 -0.0210314579308033 -0.07754982262849808 0.03981269523501396 -0.03576882928609848 -0.0017869037110358477 -0.032749373465776443 0.006941427942365408 0.044820692390203476 0.0037491912953555584 -0.0020703314803540707 -0.03923877328634262 0.018397962674498558 0.008177682757377625 0.03964848443865776 -0.022393008694052696 -0.0017495969077572227 0.005134665872901678 -0.046689897775650024 -0.06422345340251923 -0.035750862210989 0.04783684015274048 0.005277595017105341 0.05696843937039375 0.00048674424760974944 -0.07807306200265884 0.023559357970952988 -0.018291354179382324 0.10525187104940414 -0.09687048941850662 0.04569080471992493 0.027156565338373184 0.02041352353990078 -0.08111295104026794 -0.014806356281042099 0.017597587779164314 -0.04514956474304199 -0.07422133535146713 -6.249790749279782e-05 0.06128827482461929 -0.03781478852033615 -0.0749664455652237 -0.01937197707593441 -0.02838812582194805 0.004013973753899336 0.0235595703125 -0.008065316826105118 0.03318368270993233 0.020007150247693062 -0.020299261435866356 0.01902037486433983 0.012476710602641106 0.004649341572076082 -0.026118170469999313 0.03627774491906166 0.006395104341208935 0.07237298041582108 -0.023783618584275246 -0.0357670895755291 -0.07933991402387619 0.046307165175676346 -0.045881424099206924 0.0033614966087043285 -0.029186144471168518 -0.019135208800435066 -0.002660586265847087 0.06003083288669586 -0.0016177932266145945 -0.048770371824502945 -0.024605639278888702 -0.00329141435213387 -0.06261703372001648 -0.07851415872573853 -0.03138720616698265 0.02853291667997837 -0.03758645057678223 0.017874741926789284 -0.06392169743776321 0.016270950436592102 0.00963857863098383 -0.003740989835932851 0.01874467357993126 0.035165730863809586 0.027498843148350716 -0.013386988081037998 0.04439089074730873 0.005665430333465338 0.04914553463459015 -0.041857168078422546 -0.06882748007774353 0.05562638118863106 0.05132533237338066 -0.058910906314849854 0.029819391667842865 -0.04432842135429382 -0.008833149448037148 0.004765328951179981 -0.024696234613656998 -0.023487186059355736 0.004539228975772858 -0.010401902720332146 -0.045063912868499756 0.05283666029572487 -0.07804328948259354 -0.03827819600701332 0.024978896602988243 -0.03794524818658829 -0.06988483667373657 -0.009326165542006493 -0.04985389858484268 -0.02410924807190895 0.0437302328646183 -0.012081216089427471 0.020445264875888824 0.04717991501092911 -0.061653438955545425 -0.004089495167136192 0.010298681445419788 -0.012409777380526066 -0.003058995120227337 0.05642656609416008 0.07526182383298874 -0.009664038196206093 -0.0012681146617978811 -0.014540063217282295 -0.02366762049496174 0.03483128920197487 -0.07071588933467865 0.008282030001282692 0.007311290130019188 -0.0071481335908174515 0.0029054542537778616 0.033964645117521286 0.03668482229113579 -0.06988094002008438 -0.023368321359157562 -0.0036773926112800837 0.04344227537512779 -0.009417424909770489 0.018643472343683243 0.030035993084311485 -0.04394984990358353 -0.03132937476038933 0.0207280945032835 -0.025668852031230927 -0.09187783300876617 -0.0036497453693300486 -0.06552702188491821 0.06204855814576149 0.005737903527915478 0.014271561987698078 -0.027105143293738365 -0.08679910004138947 -0.030534574761986732 -0.010650185868144035 -0.03675629198551178 -0.013037102296948433 0.051531001925468445 -0.059130359441041946 -0.03998217731714249 -0.02260163240134716 -0.06085019186139107 0.051439542323350906 0.002366713248193264 0.04963936284184456 -0.05673058331012726 0.008610210381448269 0.01118595153093338 0.0009967605583369732 0.03674444928765297 -0.027167344465851784 -0.10391375422477722 -0.023882439360022545 0.08911878615617752 -0.03591747209429741 0.05179081857204437 0.07440678030252457 -0.01675877906382084 0.0696251317858696 0.04470039904117584 -0.03127576410770416 0.00268258317373693 -0.0009555575670674443 -0.025267014279961586 0.025602078065276146 -0.06315084546804428 0.0634383112192154 -0.041407931596040726 0.12424127012491226 0.0015353362541645765 -0.023754969239234924 0.08429855108261108 0.09495726227760315 0.04761350527405739 0.02997877635061741 -0.07899541407823563 +0.014002226293087006 -0.04577925428748131 -0.014569098129868507 0.042247019708156586 -0.06277886778116226 -0.02285018377006054 -0.026006974279880524 0.01842617802321911 -0.014219092205166817 -0.036621805280447006 -0.06006805598735809 -0.00464880745857954 0.016916576772928238 0.009319799952208996 0.03912578523159027 -0.03105875849723816 -0.08668111264705658 0.019443953409790993 -0.0073477537371218204 0.006622628308832645 0.02568967640399933 0.0296874288469553 -0.0743853896856308 0.05409197136759758 0.03345004469156265 0.058627787977457047 -0.04107825830578804 -0.00031969102565199137 -0.010770262219011784 0.04656291753053665 0.029754364863038063 -0.0064254687167704105 0.03291233256459236 -0.08760880678892136 -0.033734966069459915 0.041632551699876785 -0.024954134598374367 0.10253670066595078 0.03788120672106743 -0.04545389115810394 -0.07086717337369919 0.02277073822915554 -0.06455839425325394 -0.11894319206476212 -0.009202432818710804 -0.01312115229666233 0.004305452108383179 -0.025936158373951912 0.026538189500570297 0.04470284283161163 0.07670539617538452 -0.028288917616009712 -0.044858235865831375 -0.011257102712988853 -0.04849802702665329 0.0037558868061751127 0.03045303001999855 -0.011565779335796833 -0.0562516450881958 0.031016774475574493 -0.06244393065571785 0.015900803729891777 0.00804151501506567 0.020473921671509743 -0.05222282186150551 -0.00987250916659832 0.013812643475830555 0.040678758174180984 0.020923929288983345 -0.01114911213517189 0.0022743050940334797 0.08559936285018921 -0.0450437068939209 -0.026419784873723984 -0.0037960584741085768 -0.030649617314338684 -0.023533817380666733 0.016000349074602127 0.02430211380124092 -0.012304815463721752 0.04883229732513428 -0.047881029546260834 0.16004538536071777 -0.05138683691620827 -0.01498226448893547 -0.05077962204813957 -0.006867355667054653 -0.04554241523146629 0.024467917159199715 0.03875605762004852 0.03959260880947113 0.06890273839235306 -0.005959310103207827 0.05860816314816475 0.05105690658092499 0.01403171569108963 0.04073423147201538 -0.1492990106344223 -0.05520005151629448 0.003946521319448948 0.006903147324919701 -0.027307897806167603 0.08018554002046585 0.022499850019812584 0.055206045508384705 -0.006676388438791037 -0.059628572314977646 0.005842460785061121 0.03549238294363022 0.016212038695812225 0.019281508401036263 0.09038577228784561 0.056621670722961426 0.03498915955424309 0.028459247201681137 -0.02452687919139862 0.008806527592241764 -0.017246726900339127 -0.006811478640884161 0.0342375822365284 -0.00403783330693841 0.0009995730360969901 -0.0024368646554648876 -0.08938523381948471 0.007860035635530949 0.040750473737716675 -0.09132789075374603 -0.01462919358164072 -0.012612270191311836 -0.04859447479248047 0.1268855780363083 0.05505573749542236 -0.04667837172746658 -0.0018742723623290658 0.02155088260769844 0.03374132886528969 0.025431150570511818 0.07090926915407181 -0.00499925808981061 -0.008863336406648159 -0.03250076249241829 0.044214826077222824 -0.010276570916175842 -0.026089122518897057 0.044556550681591034 0.027870412915945053 0.013184953480958939 -0.032495710998773575 -0.05866442620754242 0.0018014766974374652 -0.06312354654073715 -0.05724746361374855 0.023832082748413086 -0.062183767557144165 0.028018567711114883 0.04757312685251236 0.05842726305127144 0.072751984000206 -0.02544831857085228 0.008869191631674767 -0.06009746342897415 -0.05791812017560005 -0.021205097436904907 -0.08379566669464111 -0.014115422032773495 -0.02222898229956627 0.004441718105226755 -0.03642239421606064 -0.02818930335342884 -0.023360159248113632 -0.01234518177807331 -0.005465264897793531 0.03779013827443123 0.05275397375226021 0.06054392084479332 -0.024929560720920563 0.014007648453116417 -0.07771457731723785 -0.021768679842352867 -0.006761983502656221 -0.01334065105766058 -0.033880241215229034 0.00417416961863637 -0.035907480865716934 -0.029254697263240814 0.010785243473947048 0.052482955157756805 -0.004494049586355686 -0.009710067883133888 -0.019546587020158768 -0.03290000930428505 -0.044847406446933746 0.0622711181640625 0.05596812814474106 -0.008456183597445488 0.05632154643535614 -0.010155622847378254 0.07703331857919693 -0.007771753240376711 -0.002751255640760064 -0.05822243168950081 0.04755260795354843 -0.03969119116663933 0.06943230330944061 0.017062529921531677 -0.031123552471399307 0.05590923875570297 0.03282218798995018 0.015524069778621197 -0.08070328086614609 0.003189418464899063 -0.008972945623099804 0.0037930116523057222 0.039802707731723785 0.08462334424257278 -0.03995300084352493 -0.019494138658046722 0.05314091220498085 0.06514458358287811 -0.04206680506467819 -0.016388894990086555 0.01924620382487774 -0.09001307189464569 -0.0024257514160126448 -0.012716315686702728 -0.06116257607936859 -0.04659011587500572 0.011384062469005585 -0.017633721232414246 -0.010655544698238373 0.04761151969432831 0.05659424886107445 -0.034605298191308975 -0.024299928918480873 0.002143018413335085 -0.0011165242176502943 -0.0710049495100975 0.044475752860307693 -0.039357032626867294 -0.082792729139328 -0.07344599813222885 0.016232870519161224 0.0027148292865604162 0.04321529343724251 0.024930376559495926 0.05138062313199043 0.07487151771783829 0.03587399423122406 -0.02118728496134281 0.025872595608234406 -0.054639674723148346 -0.08427947014570236 -0.0064286901615560055 0.04940151795744896 -0.014597591012716293 -0.04248511791229248 -0.008890350349247456 -0.05853605642914772 -0.0019545138347893953 0.009598308242857456 0.018057066947221756 -0.019526707008481026 0.009420211426913738 -0.02030688151717186 0.042140550911426544 -0.018029218539595604 -0.01802424155175686 0.03537970408797264 -0.005768929608166218 0.0746578797698021 -0.03388024866580963 -0.042541272938251495 0.03233026713132858 0.008929722011089325 0.014782646670937538 -0.02101484127342701 0.06800082325935364 -0.033298324793577194 -0.08118628710508347 -0.04486715421080589 -0.07839998602867126 -0.042648252099752426 -0.03127529099583626 -0.005794860422611237 -0.0652436837553978 0.05534329637885094 0.011974571272730827 -0.06763678789138794 -0.05350162088871002 -0.05437008664011955 -0.02978450618684292 -0.07770976424217224 -0.021334774792194366 -0.004717533010989428 -0.08676833659410477 -0.05777658894658089 0.049590058624744415 -0.045320186764001846 -0.05720587074756622 0.042563240975141525 0.0019457004964351654 -0.07272803038358688 0.08054471015930176 0.013461064547300339 -0.03242383897304535 0.007068904582411051 -0.1269415318965912 0.044112078845500946 0.05738820880651474 0.014006768353283405 0.04357549175620079 0.05213302746415138 0.014238331466913223 0.08195033669471741 -0.018422922119498253 -0.021375078707933426 -0.06202784925699234 -0.04377683624625206 -0.10274246335029602 0.06642309576272964 -0.003936741966754198 0.022469570860266685 -0.037078384310007095 0.013193434104323387 0.03376384079456329 0.02597535029053688 -0.0045758942142128944 -0.04810042679309845 0.007999055087566376 -0.029069172218441963 0.03713236004114151 -0.03772880509495735 0.019808020442724228 -0.043070316314697266 -0.05377453193068504 -0.07637223601341248 -0.015093601308763027 0.025348646566271782 -0.01754670962691307 0.03621715307235718 0.014205258339643478 -0.02793865092098713 0.007888010703027248 -0.036070019006729126 0.10257930308580399 -0.0562482550740242 0.02194356732070446 0.03945644572377205 0.025351569056510925 -0.09176121652126312 -0.027545608580112457 0.03677917644381523 -0.06516382098197937 -0.060524679720401764 -0.034275420010089874 0.029010677710175514 -0.020035888999700546 -0.0425674244761467 0.001871652202680707 -0.025673439726233482 0.027728097513318062 0.04113280400633812 0.02062102220952511 0.03902685269713402 0.016822755336761475 -0.04242199659347534 0.03204353153705597 -0.02247898280620575 -0.011884220875799656 -0.004668327979743481 -0.002387531567364931 -0.005667895544320345 0.04825873300433159 -0.019930025562644005 -0.01255018636584282 -0.07479364424943924 0.024644162505865097 -0.015559269115328789 -0.0128428740426898 0.0051021878607571125 0.0007874614675529301 -0.024949070066213608 0.05366905778646469 0.020476574078202248 -0.013121903873980045 -0.061369869858026505 -0.04862974211573601 -0.05244183912873268 -0.08899465203285217 0.010225184261798859 0.019073806703090668 -0.03497815132141113 0.021850327029824257 -0.07847472280263901 0.016544301062822342 0.047891635447740555 -0.005478403065353632 0.014322851784527302 0.0252224188297987 0.043320003896951675 -0.06366932392120361 0.022317569702863693 -0.03527675196528435 0.05288514494895935 -0.001226309803314507 -0.047354113310575485 0.013213491067290306 0.05675811693072319 -0.04124753177165985 0.01672273874282837 -0.044186968356370926 -0.03336493670940399 0.029436912387609482 -0.01381287258118391 -0.012864302843809128 -0.0009835732635110617 0.010530557483434677 -0.0171021968126297 0.03029640205204487 -0.0837232917547226 -0.054294854402542114 -0.011356777511537075 -0.04528075456619263 -0.06995505839586258 -0.013846849091351032 -0.01390691939741373 -0.012871025130152702 0.03090268187224865 -0.02164473943412304 0.030825460329651833 0.07974694669246674 -0.060241684317588806 -0.01573064737021923 0.017849735915660858 -0.007262304425239563 0.04318871721625328 0.014716805890202522 0.04759223759174347 0.0014404631219804287 -0.034435827285051346 0.009152795188128948 -0.02530004270374775 0.005702822934836149 -0.05464766547083855 -0.011903975158929825 0.01523634698241949 -0.025912435725331306 0.048055216670036316 0.014870893210172653 0.015444762073457241 -0.0376189649105072 -0.015728190541267395 -6.169631433294853e-06 0.03685315325856209 0.04869978502392769 0.011025871150195599 0.056157346814870834 -0.051346007734537125 -0.006506448145955801 0.02906092256307602 -0.045915015041828156 -0.07176412642002106 -0.020368793979287148 -0.03992500901222229 0.06854134798049927 0.03408188372850418 0.002264506882056594 -0.012196744792163372 -0.05961650609970093 -0.02084706723690033 -0.02650650590658188 -0.0658990740776062 -0.0056880465708673 0.03933211788535118 -0.0460173524916172 -0.05663168430328369 -0.006089712027460337 -0.08189032226800919 0.02186659723520279 0.03949820250272751 0.05600471794605255 -0.027401959523558617 0.03699347376823425 0.005048518069088459 0.008118799887597561 0.04504260793328285 -0.01973409578204155 -0.07782937586307526 0.00045635062269866467 0.11820680648088455 -0.040258582681417465 0.04191998392343521 0.05956527590751648 0.004657292738556862 0.0640416219830513 0.021872976794838905 -0.02437690645456314 0.006927683018147945 -0.021566249430179596 -0.04526223614811897 0.07731698453426361 -0.0716872587800026 0.0845826044678688 -0.06714046001434326 0.12348180264234543 -0.003983431030064821 -0.022898169234395027 0.08393549174070358 0.07606367766857147 0.038716088980436325 0.04108887165784836 -0.05313882231712341 +-0.014548031613230705 -0.0389380007982254 -0.02724343352019787 0.016424745321273804 -0.08019264787435532 -0.027343548834323883 -0.03764432296156883 0.0589863546192646 -0.004615176003426313 -0.07161125540733337 -0.056507546454668045 0.005732166115194559 0.02476421929895878 0.016899626702070236 0.0094869090244174 -0.038083650171756744 -0.05257836729288101 -0.017955733463168144 0.00044158758828416467 -0.0487218014895916 0.02185095101594925 0.008292973972856998 -0.07583139091730118 0.08923455327749252 0.06160959228873253 -0.023085571825504303 -0.040261123329401016 0.043012235313653946 0.0024816985242068768 0.08696399629116058 0.04362460598349571 -0.054089680314064026 0.031828902661800385 -0.063051737844944 -0.0673905611038208 0.022571949288249016 -0.07104312628507614 0.09433615207672119 0.03809918835759163 -0.02994108572602272 -0.04267393797636032 0.042723651975393295 0.00401119003072381 -0.04442259296774864 0.02371535263955593 0.022661814466118813 -0.03416987881064415 -0.04776022955775261 0.015322321094572544 0.032303351908922195 0.08049549907445908 0.01975826360285282 0.0016793739050626755 -0.01667424663901329 -0.030610136687755585 0.040445782244205475 0.0071461396291852 -0.03716795891523361 -0.032826293259859085 0.004860973451286554 -0.06306284666061401 0.025304757058620453 0.009610109962522984 0.010116164572536945 -0.006827345117926598 0.03980071842670441 -0.029639920219779015 0.06264360249042511 0.004326065070927143 0.002159483963623643 -0.006665822584182024 0.06582925468683243 -0.04214626923203468 -0.02196129411458969 0.03546985983848572 0.006816723383963108 -0.00453186733648181 0.008875962346792221 -0.005293909925967455 0.02490517497062683 0.030962662771344185 -0.0287796538323164 0.1285683512687683 -0.02477223053574562 0.03301955386996269 -0.05520571395754814 -0.02162603661417961 -0.05540936067700386 0.04727661609649658 0.012991753406822681 0.055342897772789 0.04797294735908508 0.03351437300443649 0.042610589414834976 -0.014489351771771908 -0.007132040802389383 0.016914136707782745 -0.1295005977153778 0.03531014174222946 0.026294516399502754 0.011210320517420769 -0.006402898579835892 0.07722926884889603 -0.00024684055824764073 0.03477117419242859 0.07387896627187729 -0.08528711646795273 0.023447800427675247 0.04897946119308472 0.01920740120112896 0.012048576958477497 0.12274503707885742 0.03529180958867073 0.04551830142736435 0.03236079588532448 0.01833057962357998 -0.028642861172556877 -0.0038383002392947674 -0.020146755501627922 0.010298607870936394 -0.012969428673386574 0.05270495265722275 -0.013259073719382286 -0.0808144360780716 0.05350988358259201 0.06328567117452621 -0.05540809780359268 0.00828497763723135 0.02650153823196888 -0.020737046375870705 0.05536697804927826 0.05152207985520363 -0.005500456318259239 0.051968272775411606 0.037913087755441666 0.01773158833384514 0.022947542369365692 0.016719525679945946 -0.008997038938105106 -0.04991436377167702 -0.0756128579378128 0.046148110181093216 0.010230978950858116 -0.04120075702667236 0.05624806880950928 0.02223958633840084 0.0017995652742683887 0.0035332555416971445 -0.05769777670502663 -0.016310755163431168 -0.08441238105297089 -0.09976826608181 0.028737351298332214 -0.014514871872961521 0.027262277901172638 0.037941835820674896 0.05651605501770973 0.03379010781645775 0.00878817681223154 -0.001678707543760538 0.0026869457215070724 -0.0488746352493763 -0.011828433722257614 -0.07660671323537827 0.05050140619277954 0.010516036301851273 0.023824624717235565 -0.006832896266132593 -0.06416958570480347 -0.017649896442890167 -0.0009538205922581255 0.013470870442688465 0.0389222651720047 0.05269858241081238 0.021755553781986237 -0.008207850158214569 0.08501549065113068 -0.048533931374549866 -0.06886604428291321 -0.028216229751706123 0.04980075731873512 -0.07365420460700989 0.010329454205930233 -0.05031931772828102 -0.02761327661573887 0.007259036879986525 -0.000331283692503348 -0.02293218858540058 -0.010588675737380981 -0.03411248326301575 -0.03590846434235573 -0.058533791452646255 0.05262313783168793 -0.0014917792286723852 -0.01120629720389843 0.04821931943297386 0.06210927292704582 0.07057312875986099 -0.024281885474920273 0.002586446702480316 -0.05512404814362526 0.05438290908932686 0.033887483179569244 -0.009887163527309895 0.020580865442752838 -0.027605364099144936 0.03368525207042694 -0.004850978963077068 0.05471397936344147 -0.026361435651779175 0.06025507301092148 0.07097741961479187 0.0072382185608148575 0.04355192184448242 0.07955637574195862 -0.025262832641601562 -0.03521418198943138 0.004572328180074692 0.0402495302259922 -0.1177147850394249 -0.0011382036609575152 0.008197452872991562 -0.062260475009679794 0.0052132317796349525 -0.031515467911958694 -0.09754983335733414 -0.029381439089775085 0.004619637504220009 -0.0008371665608137846 -0.05342062562704086 0.00938290823251009 0.02917967177927494 -0.021561287343502045 -0.008217794820666313 0.021410109475255013 0.016992002725601196 -0.04047785699367523 0.03720958158373833 -0.06494216620922089 -0.03370376303792 -0.01511876005679369 0.02013583481311798 -0.02256200462579727 0.0240373145788908 0.00793501827865839 0.07081132382154465 0.06579139828681946 0.07010376453399658 -0.0716707780957222 0.0054231309331953526 -0.042520228773355484 -0.017775794491171837 -0.013272833079099655 0.040955785661935806 0.03389379382133484 -0.043984830379486084 0.014479496516287327 -0.09527028352022171 0.00215069018304348 -0.013204138725996017 -0.004563711117953062 -0.048612579703330994 -0.003678726265206933 -0.02877259999513626 0.025720668956637383 0.0029039655346423388 -0.05114022642374039 0.015518469735980034 -0.05256527662277222 0.06142060086131096 -0.06184319406747818 -0.01407402753829956 0.01186745148152113 0.004279931075870991 0.021801603958010674 -0.03023221716284752 0.08278784900903702 -0.035803426057100296 -0.05845262482762337 -0.06965412199497223 -0.0329873152077198 -0.08056514710187912 -0.0018484550528228283 -0.03461622819304466 -0.0008456401992589235 0.06952561438083649 0.021262040361762047 -0.04454071447253227 -0.05742473155260086 -0.07532310485839844 -0.01512108463793993 -0.03254874795675278 -0.027529438957571983 -0.01334443874657154 -0.030945109203457832 -0.01545962505042553 0.035677067935466766 -0.033293467015028 -0.011981572955846786 0.09365712851285934 0.04916985332965851 -0.02404225617647171 0.0879901722073555 -0.05263752117753029 0.003335546003654599 0.03770247846841812 -0.052787259221076965 0.016399741172790527 0.07115431874990463 -0.002576813567429781 -0.0041163647547364235 0.035297684371471405 0.04431251809000969 0.07322196662425995 0.008865583688020706 -0.06535247713327408 -0.04383838549256325 -0.03211335092782974 -0.08334412425756454 0.07851563394069672 -0.010508794337511063 -0.005183614324778318 -0.010447634384036064 -0.04805572330951691 0.02015751041471958 0.0042456998489797115 0.006593146361410618 -0.07152139395475388 0.020905176177620888 -0.04201393947005272 0.025502175092697144 -0.03664306178689003 0.0018887531477957964 0.03317231312394142 -0.033340029418468475 -0.05534489080309868 -0.08342405408620834 0.038042102009058 0.0013721074210479856 0.05514969676733017 0.011133727617561817 -0.009373859502375126 0.025857599452137947 -0.004146340768784285 0.08059295266866684 -0.08558272570371628 0.037851229310035706 0.022873984649777412 0.04320918023586273 -0.05944439396262169 -0.007849172689020634 -0.01566205732524395 -0.0412457212805748 -0.04938296973705292 -0.02296484261751175 0.034509774297475815 -0.043753694742918015 -0.07772164046764374 -0.037983283400535583 -0.018474016338586807 0.016026752069592476 0.018625684082508087 -0.014035079628229141 0.08622289448976517 0.03405231237411499 -0.022185856476426125 0.03332776948809624 -0.017444821074604988 -0.007262531202286482 -0.015922555699944496 0.04680394008755684 -0.012182952836155891 0.07622580975294113 -0.013835962861776352 -0.02264115773141384 -0.0818476602435112 -0.009901892393827438 -0.08915724605321884 -0.003232389222830534 -0.019750623032450676 0.018740499392151833 -0.021547943353652954 0.019187480211257935 0.02257419377565384 -0.09555009007453918 -0.003406521398574114 0.007615603040903807 -0.04964671656489372 -0.02413610741496086 -0.04215380549430847 0.027956180274486542 -0.03216950222849846 0.03589046001434326 -0.06900691986083984 0.023125456646084785 0.048531074076890945 0.04192253574728966 0.012528356164693832 0.05489461123943329 0.018729956820607185 0.006023370195180178 0.07751113176345825 0.012156462296843529 -0.011317330412566662 -0.019221952185034752 -0.05778321251273155 0.03055630251765251 0.07016819715499878 -0.041324589401483536 0.003584312740713358 -0.04227476194500923 0.010311255231499672 0.016831588000059128 -0.032875411212444305 0.009763556532561779 -0.028110306710004807 0.0005515955272130668 -0.001506194588728249 0.04533425346016884 -0.010393714532256126 -0.07211119681596756 0.012573418207466602 -0.05319202318787575 -0.07099197804927826 0.007990820333361626 -0.06675583869218826 -0.04421176388859749 0.03550134226679802 0.01922568678855896 0.01543625071644783 0.04688486456871033 -0.05085223540663719 -0.024088628590106964 0.03940270468592644 -0.004144645296037197 -0.02063657157123089 0.07050157338380814 0.04599063843488693 0.010984712280333042 -0.03342706337571144 0.03140750527381897 -0.07209423929452896 0.03441479429602623 -0.05114342272281647 0.011564753018319607 0.04216088354587555 -0.023661378771066666 0.019408060237765312 0.035170573741197586 0.04018368571996689 -0.0709674209356308 -0.017442850396037102 -0.010370571166276932 -0.0008342970977537334 -0.007229935843497515 0.025801915675401688 0.043848272413015366 -0.06924290955066681 -0.036631837487220764 0.020373200997710228 -0.030935104936361313 -0.09344888478517532 -0.021209735423326492 -0.0762772485613823 0.0851542130112648 -0.016054289415478706 -0.006931908428668976 -0.0268329456448555 -0.11040737479925156 -0.017272600904107094 -0.025694001466035843 -0.015738101676106453 -0.019555004313588142 0.008381322026252747 -0.06672940403223038 -0.06256337463855743 -0.01522008329629898 -0.07967565208673477 0.06095558777451515 0.0032701194286346436 0.013889589346945286 -0.06375624239444733 -0.01131060067564249 0.0007555437623523176 -0.021009407937526703 0.030656199902296066 -0.050656553357839584 -0.06488344073295593 -0.02337249554693699 0.12731267511844635 0.004825713112950325 0.03360386937856674 0.102850042283535 0.010383104905486107 0.048697929829359055 0.02491348423063755 -0.005220921244472265 -0.03908287361264229 -0.02374703250825405 -0.007517253514379263 0.02961686998605728 -0.03273370862007141 0.045623768121004105 -0.05498270317912102 0.11087559908628464 0.04052114859223366 0.014080286957323551 0.08042951673269272 0.07665150612592697 0.05098909139633179 0.04190817102789879 -0.10199347883462906 +0.05923936516046524 0.04083222150802612 0.003450424410402775 0.028467660769820213 -0.07019445300102234 -0.06053052097558975 -0.012901097536087036 0.015687141567468643 0.05307697132229805 -0.04248695820569992 0.025410015136003494 -0.038969285786151886 -0.023595917969942093 0.0023865015245974064 0.031784139573574066 -0.031366001814603806 -0.06452660262584686 -0.0023612005170434713 -0.013167258352041245 -0.03359365090727806 0.011389953084290028 0.0050214240327477455 -0.06674126535654068 0.03229011595249176 -0.0056990510784089565 -0.020374003797769547 -0.05254779011011124 -0.012315028347074986 -0.0460396334528923 0.060492485761642456 0.045612234622240067 -0.009588375687599182 0.07367124408483505 -0.02859857678413391 -0.03768985718488693 0.06947695463895798 -0.004642480053007603 0.13494154810905457 0.07205363363027573 -0.0248162429779768 -0.05551140382885933 -0.024702822789549828 -0.04863360524177551 -0.018683891743421555 0.0122782988473773 0.011754577979445457 -0.0631791353225708 -0.03710038959980011 0.059324830770492554 0.03283493220806122 0.11224599927663803 -0.03090118244290352 -0.08324205875396729 -0.0033486471511423588 -0.035673804581165314 0.011142674833536148 0.05616060271859169 -0.07981002330780029 -0.07332579046487808 0.006806318182498217 -0.08437992632389069 -0.0033467186149209738 -0.006750260014086962 -0.014475250616669655 0.0012847597245126963 -0.048932500183582306 -0.009352250024676323 0.053812406957149506 0.03264313563704491 -0.005175686441361904 0.03713071718811989 0.10123679041862488 -0.09461219608783722 -0.09262630343437195 0.06685630977153778 -0.08486625552177429 -0.04600336402654648 0.047654032707214355 -0.013462281785905361 0.06423750519752502 -0.01682935282588005 -0.04359804838895798 0.09681452065706253 -0.0773007869720459 -0.0035794011782854795 -0.01391240768134594 -0.00636453740298748 -0.050957001745700836 0.05372077226638794 0.05291462317109108 -0.016089100390672684 0.023458683863282204 -0.06107475608587265 0.019670279696583748 0.004088647197932005 -0.020226627588272095 0.05411248654127121 -0.06590216606855392 -0.04853035509586334 0.011411396786570549 -0.011836174875497818 0.01798475719988346 0.030919887125492096 0.008641829714179039 0.06372804194688797 0.04150286689400673 -0.028808804228901863 0.03605649620294571 0.054372724145650864 0.052884235978126526 0.02718966081738472 0.02985488250851631 0.0861632227897644 0.0050056688487529755 0.03424753248691559 0.005270396824926138 0.04977642372250557 -0.0511021725833416 -0.012734674848616123 0.01807324029505253 -0.0334324948489666 0.05314686521887779 -0.060740865767002106 -0.015901656821370125 -0.025961952283978462 0.0068702613934874535 -0.08426306396722794 -0.05160465091466904 0.013488282449543476 -0.0011169839417561889 0.07787608355283737 0.04682954028248787 -0.010332834906876087 0.019578974694013596 0.07957568764686584 0.030488373711705208 0.002104439539834857 0.02258298546075821 -0.016155308112502098 -0.012445073574781418 0.023521555587649345 0.05896533653140068 -0.028524940833449364 -0.034830689430236816 0.04065367579460144 0.06228802353143692 0.04724143445491791 0.004143525846302509 -0.08666069805622101 -0.0023556489031761885 -0.06877156347036362 -0.07276232540607452 0.005344086792320013 -0.07927875220775604 0.0012182726059108973 0.06403879821300507 0.01042875461280346 0.06929483264684677 0.013977592810988426 -0.015816619619727135 -0.03704794496297836 -0.03473888337612152 -0.029470257461071014 -0.05006770044565201 -0.05976342409849167 -0.056657664477825165 0.022457489743828773 0.025336023420095444 -0.0235234834253788 -0.0014376492472365499 0.005493967328220606 0.007339769508689642 0.02886362187564373 0.09469077736139297 0.0736151933670044 0.030630916357040405 0.008172301575541496 -0.08077304810285568 -0.001711956923827529 -0.04746919870376587 0.05781794339418411 -0.05582793802022934 0.004910157062113285 -0.025443250313401222 0.03043139912188053 0.007248013745993376 0.07326173782348633 0.03853185474872589 0.009800390340387821 0.03998260945081711 -0.05225463584065437 -0.058289606124162674 0.038181617856025696 0.05865361914038658 -0.0042425720021128654 -0.00029610245837830007 -0.01418678555637598 0.051277726888656616 0.01917325332760811 -0.02227616310119629 -0.03611598163843155 0.019937589764595032 0.053338538855314255 0.07136566191911697 0.06661152839660645 -0.023967986926436424 0.08681213110685349 0.004049439914524555 0.0390266589820385 -0.02034398540854454 -0.01862012967467308 -0.023572014644742012 0.009803001768887043 -0.019665170460939407 0.060180820524692535 -0.043427664786577225 0.02018311247229576 -0.03273104503750801 0.10609564930200577 -0.020381104201078415 0.019858604297041893 -0.007487467490136623 -0.06809353828430176 0.04660850763320923 -0.04258265718817711 -0.09824375808238983 -0.020260531455278397 0.02480350062251091 -0.054143667221069336 -0.018902840092778206 -0.017197681590914726 0.0143832266330719 -0.026196492835879326 -0.011904505081474781 0.012673553079366684 -0.0069130053743720055 -0.07689840346574783 0.09982471168041229 -0.025845184922218323 -0.03334551677107811 -0.027309468016028404 0.016618410125374794 0.04687722399830818 -0.024729754775762558 0.0325932577252388 0.07098011672496796 0.0635404959321022 0.029225118458271027 0.018077442422509193 0.008318164385855198 -0.0462518036365509 -0.050723519176244736 0.0075591676868498325 0.010875919833779335 -0.05671323090791702 -0.03782377392053604 0.021387772634625435 -0.05501285940408707 0.006495846435427666 -0.001752435346134007 0.017791301012039185 0.0006260167574509978 -0.012143376283347607 -0.03808602690696716 0.054699480533599854 -0.006738159339874983 -0.038636863231658936 0.039197854697704315 -0.054689809679985046 0.006581415887922049 -0.020394781604409218 -0.0061365156434476376 0.009039731696248055 0.025151394307613373 0.009959451854228973 0.006684786640107632 0.056606438010931015 -0.0546041801571846 -0.0727403536438942 -0.05775913968682289 -0.08390645682811737 -0.01528729684650898 0.01078018732368946 -0.0192814189940691 -0.023903362452983856 0.031501784920692444 0.0202342476695776 -0.006534859538078308 -0.06372027099132538 -0.01409302931278944 -0.05572119727730751 -0.08678222447633743 -0.017690135166049004 -0.00977142434567213 -0.06072283908724785 -0.0678628534078598 0.010414082556962967 -0.01326893549412489 0.011679299175739288 -0.016875341534614563 -0.0589660219848156 -0.04068562388420105 -0.035924267023801804 -0.040955089032649994 -0.0557212196290493 -0.0016512173460796475 -0.035300642251968384 0.04395030066370964 0.11223884671926498 0.06447338312864304 0.044747572392225266 0.04159758985042572 0.0638287290930748 0.05527462810277939 0.026443561539053917 -0.06202254816889763 0.014599906280636787 -0.03504611924290657 -0.06874466687440872 0.0027347607538104057 -0.03195735067129135 -0.018679644912481308 -0.0014137027319520712 -0.007123361807316542 0.042426180094480515 0.01968410611152649 -0.03299751132726669 -0.0021361755207180977 0.07349628955125809 -0.02570459246635437 0.04683639481663704 0.0033425705041736364 -0.004718668293207884 0.018499938771128654 -0.05867723375558853 0.022228453308343887 -0.0799298956990242 0.006361723877489567 0.01973763480782509 0.016894593834877014 -0.006895160768181086 -0.04127644747495651 -0.03480996936559677 0.01847437582910061 0.08789847046136856 -0.06702768057584763 -0.015428779646754265 0.024232657626271248 -0.0216074138879776 -0.1133696585893631 -0.03396115079522133 0.04666540399193764 -0.04948835074901581 -0.027211710810661316 0.021643539890646935 0.026332061737775803 -0.05591274052858353 0.009019963443279266 -0.022093862295150757 -0.06327733397483826 -0.03348350524902344 0.02816871739923954 0.00773779209703207 0.01555850263684988 -0.02272169478237629 -0.05320411175489426 -0.0005407786229625344 0.008258883841335773 0.021930407732725143 -0.0071353851817548275 -0.017309412360191345 -0.06474607437849045 0.012614094652235508 -0.05006040632724762 -0.03883841261267662 -0.09033150225877762 0.06973908841609955 -0.0018007750622928143 -0.06556625664234161 -0.015176596119999886 0.019756430760025978 -0.03436317667365074 -0.017403002828359604 0.036168891936540604 -0.0505778044462204 -0.03318716958165169 -0.059375304728746414 0.018948519602417946 -0.0696704238653183 -0.013251109048724174 0.016914060339331627 -0.07056904584169388 -0.012049435637891293 -0.02359086461365223 -0.04165388643741608 -0.04870373010635376 0.008350792340934277 -0.001913161133415997 0.034080248326063156 0.015471680089831352 0.02207230217754841 0.029395274817943573 0.018873941153287888 0.016070399433374405 0.06664803624153137 -0.04738076776266098 -0.017907442525029182 -0.028199577704072 -0.06023378297686577 0.024886921048164368 -0.040924567729234695 -0.003060184419155121 -0.0302675049751997 0.0022041485644876957 0.03216129541397095 -0.0215491633862257 0.014347991906106472 -0.009651358239352703 0.03229932859539986 -0.051483456045389175 -0.007896463386714458 0.01777138188481331 -0.030422264710068703 -0.08048500120639801 -0.023963071405887604 0.03136208653450012 -0.051765188574790955 0.027215775102376938 -0.03168866038322449 0.027055134996771812 0.024562301114201546 -0.07029452174901962 -0.09032940864562988 -0.060366373509168625 -0.0051222993060946465 0.03596953675150871 -0.02651241049170494 0.0149633027613163 -0.03200146183371544 -0.0020042755641043186 0.005848746746778488 0.005021592136472464 0.036190759390592575 -0.046102214604616165 -0.034992754459381104 -0.04070640727877617 -0.016792060807347298 -0.004670493304729462 -0.01853753998875618 0.02905372530221939 -0.03803161904215813 -0.019127123057842255 -0.07261499762535095 0.10187580436468124 -0.05718199163675308 -0.01727290265262127 0.017565883696079254 0.0030081290751695633 0.02016073279082775 0.04568374156951904 -0.0289112888276577 -0.05452200397849083 0.02034577541053295 -0.02593647502362728 -0.017022164538502693 0.029116569086909294 0.018252957612276077 -0.013054369948804379 -0.03199917823076248 -0.03885524719953537 0.03523321449756622 -0.09822247922420502 0.019197113811969757 -0.044995274394750595 -0.07390750199556351 -0.07629861682653427 -0.01837931014597416 -0.048188019543886185 0.08013756573200226 -0.012755917385220528 0.023289693519473076 0.006659926846623421 -0.00796505343168974 -0.02826252579689026 -0.050790850073099136 0.027788477018475533 0.019223423674702644 -0.013217004016041756 -0.03459390252828598 0.049153465777635574 0.011737911030650139 0.015531902201473713 0.06076965853571892 -0.03580016270279884 0.021626697853207588 0.09121359139680862 -0.05280621722340584 0.03186243399977684 0.0023503804113715887 -0.06415002793073654 0.0870278924703598 -0.04669341444969177 0.11460498720407486 -0.04274804890155792 0.1260940581560135 0.020258674398064613 -0.01802346482872963 0.05761760100722313 0.07279235124588013 -0.027395188808441162 0.010531877167522907 -0.05109884962439537 +0.035705097019672394 -0.014264406636357307 0.04485584422945976 0.07584460824728012 -0.042579248547554016 -0.022098736837506294 -0.026977550238370895 0.0035038411151617765 0.03057858906686306 -0.026212044060230255 -0.015453064814209938 0.004895959515124559 -0.05129852518439293 0.006964665837585926 -0.017544208094477654 0.006478935945779085 -0.05429937317967415 0.006077457685023546 -0.027516141533851624 -0.044945716857910156 0.00873157661408186 0.033727943897247314 -0.08606751263141632 0.055187124758958817 -0.033623505383729935 -0.004829308018088341 -0.060672398656606674 0.01648278348147869 -0.06568272411823273 0.032162442803382874 0.03258199244737625 -0.04026849567890167 0.08461851626634598 -0.06497026979923248 -0.045703183859586716 0.040189653635025024 0.02729298360645771 0.07934324443340302 0.05058155581355095 -0.05908556655049324 -0.020681098103523254 0.03107191063463688 0.015839189291000366 -0.07630198448896408 -0.012851535342633724 0.004755476955324411 -0.01703486405313015 -0.0278747770935297 0.03638013079762459 0.05637155473232269 0.12012997269630432 0.03312985226511955 -0.021987788379192352 -0.01876037009060383 -0.012264049611985683 -0.01833553984761238 0.04336104169487953 -0.07982517033815384 -0.06737973541021347 0.0034704229328781366 -0.09716764837503433 0.017839575186371803 0.01104623731225729 0.029199901968240738 -0.04846994951367378 -0.016714531928300858 0.00900799036026001 0.10026111453771591 0.09342440962791443 -0.018522368744015694 0.034917376935482025 0.0844128429889679 -0.055780719965696335 -0.01440173014998436 0.01262625865638256 -0.040264278650283813 -0.0260989461094141 0.03367670252919197 -0.01125727966427803 0.029529284685850143 0.028046077117323875 -0.049070775508880615 0.08618384599685669 -0.02308511734008789 0.008923782035708427 0.014305523596704006 0.01798928529024124 -0.10119848698377609 0.03312312811613083 0.011985658667981625 -0.0012779940152540803 0.0691252276301384 -0.028506755828857422 0.06600842624902725 -0.005028058309108019 0.059503406286239624 0.04766001179814339 -0.10177268087863922 0.00264159357175231 0.0029642321169376373 -0.011656377464532852 0.03396199643611908 0.0042169950902462006 -0.0015926089836284518 0.07399018108844757 0.004913903772830963 -0.04323059320449829 -0.010565780103206635 0.07227057963609695 0.015521585941314697 0.08977702260017395 0.0678112655878067 0.05032267048954964 0.03725693002343178 0.028385555371642113 0.017572704702615738 0.06107969582080841 -0.07030840963125229 0.015652846544981003 0.030578022822737694 -0.01746254973113537 0.04504535347223282 -0.04169103130698204 -0.08206522464752197 0.010883199982345104 0.046138450503349304 -0.03939457982778549 -0.026778848841786385 0.01689189299941063 -0.0039289346896111965 0.08681580424308777 0.0745190978050232 -0.020213497802615166 0.015482314862310886 0.021902430802583694 0.019134854897856712 -0.0677342638373375 -0.0034297264646738768 0.03840671107172966 0.006825147196650505 -0.01916024461388588 0.06388477981090546 0.02124389074742794 -0.025982333347201347 0.01944713108241558 0.007300623692572117 0.017110243439674377 -0.000575198617298156 -0.06664960086345673 0.001247487380169332 -0.041688352823257446 -0.09803956001996994 0.017688611522316933 -0.07428555935621262 0.0037125663366168737 0.10165825486183167 0.02917257696390152 0.07544352859258652 -0.02319173328578472 -0.012133208103477955 -0.02502310276031494 -0.0359417200088501 -0.015843145549297333 -0.06803654879331589 -0.043062467128038406 -0.0029361210763454437 -0.014185820706188679 0.03047686070203781 -0.04398336634039879 -0.0039730374701321125 -0.010861490853130817 -0.004350369796156883 0.008313491940498352 0.09286980330944061 0.09792067855596542 0.038082271814346313 0.015538533218204975 -0.027649367228150368 0.0214215200394392 -0.028625788167119026 -0.01468251645565033 -0.06352762132883072 0.024846989661455154 -0.06418579816818237 -0.030919326469302177 -0.009948057122528553 0.024982355535030365 0.03701053559780121 0.04344690963625908 0.039684735238552094 -0.029849287122488022 -0.027632612735033035 0.007637709844857454 0.036235783249139786 0.0029589212499558926 0.03142140060663223 0.016683606430888176 0.08879624307155609 -0.003327553626149893 -0.003112130332738161 -0.056659452617168427 0.02908151224255562 0.02928083762526512 0.027576105669140816 0.0436830036342144 -0.01625378243625164 0.06339766830205917 0.07123301178216934 0.008025381714105606 -0.05765927582979202 -0.012553112581372261 0.021537743508815765 0.08221055567264557 0.014837820082902908 0.06013054400682449 -0.03850546106696129 -0.008093170821666718 0.004911560565233231 0.027327297255396843 -0.05028378590941429 0.00011350300337653607 -0.027549423277378082 -0.030467620119452477 0.041433218866586685 -0.03633330762386322 -0.07967185229063034 -0.044302888214588165 -0.02169189043343067 0.023533815518021584 -0.04243527725338936 0.08521881699562073 0.031429536640644073 -0.029537258669734 -0.00993913784623146 0.0051645031198859215 -0.06215168535709381 -0.05421324446797371 0.0916142538189888 -0.01754310354590416 -0.014442522078752518 -0.0051242271438241005 0.007378011010587215 0.02619355544447899 0.036667291074991226 0.0009514419361948967 0.03934607282280922 0.13460524380207062 0.06383642554283142 -0.045997221022844315 -0.014340067282319069 -0.07211719453334808 -0.11718428134918213 0.06135983392596245 0.058669764548540115 -0.019483085721731186 -0.04824168235063553 -0.04096028208732605 -0.09023640304803848 0.0011160837020725012 -0.0006355479126796126 0.01090641226619482 0.022035419940948486 0.028480593115091324 -0.053954895585775375 0.028280196711421013 0.014595241285860538 -0.05135072395205498 0.0325443334877491 0.009817918762564659 0.037355951964855194 -0.029383983463048935 0.0029924267437309027 0.05457942932844162 -0.01806338131427765 0.02231578342616558 -0.012573174200952053 0.044955600053071976 -0.02354838326573372 -0.05537799373269081 -0.057626161724328995 -0.10135100036859512 -0.02692519687116146 0.017217032611370087 -0.010873852297663689 -0.06102216988801956 0.0420878529548645 0.006424413062632084 -0.012364232912659645 -0.0143626993522048 -0.0019303516019135714 -0.0643082857131958 -0.0758199393749237 -0.03168761730194092 0.018087994307279587 -0.028174009174108505 -0.028975849971175194 -0.012310908176004887 -0.046264663338661194 -0.028258860111236572 -0.012711145915091038 -0.02903471328318119 -0.04103396460413933 0.051901914179325104 0.023127226158976555 -0.006250773090869188 0.01888592168688774 -0.10543030500411987 0.014241831377148628 0.09952717274427414 0.005528406705707312 0.08789742738008499 0.06987863779067993 0.025695672258734703 0.0839153528213501 0.04930218681693077 -0.06597500294446945 -0.011024112813174725 0.02270513027906418 -0.06835999339818954 0.05806942656636238 0.01773601397871971 0.033777475357055664 0.027154671028256416 0.01798447221517563 0.04468623921275139 0.032310958951711655 -0.02553137019276619 -0.0408533550798893 0.047911807894706726 -0.04274311289191246 0.012458176352083683 -0.028045836836099625 -0.00810585543513298 0.01751943863928318 -0.05063031241297722 -0.004554774146527052 -0.006353253033012152 0.017038360238075256 -0.007563358172774315 0.038079869002103806 0.028587019070982933 -0.06320008635520935 0.00809473730623722 -0.03848208859562874 0.0614900104701519 -0.1172543615102768 0.010903572663664818 7.962435483932495e-05 0.025582363829016685 -0.13990619778633118 -0.05404796823859215 0.04006496071815491 -0.042524032294750214 -0.03512014076113701 0.022049861028790474 0.009751024655997753 -0.044998280704021454 -0.01763044483959675 -0.03422228991985321 -0.022692283615469933 0.00248695258051157 0.04785395786166191 0.04532833397388458 0.030424004420638084 -0.0007824926287867129 -0.028753746300935745 -0.0596720390021801 -0.008238107897341251 0.025488805025815964 0.006004720460623503 0.016720246523618698 -0.032431792467832565 0.020846275612711906 -0.027801159769296646 -0.03474235534667969 -0.03968307003378868 0.007934574037790298 -0.01627308875322342 0.017058489844202995 0.060746658593416214 -0.008422743529081345 0.010708145797252655 0.011393805034458637 0.05803899094462395 -0.015965623781085014 0.003471490228548646 0.001141246291808784 0.002218292560428381 -0.04093746468424797 -0.03141823783516884 -0.012510452419519424 -0.02964046411216259 0.028708962723612785 -0.011319387704133987 -0.036220528185367584 0.017216064035892487 -0.01295564416795969 0.01020003855228424 0.06151290610432625 -0.0018684865208342671 0.006399008445441723 -0.03074432723224163 -0.0272750835865736 0.012260796502232552 0.04814859852194786 -0.09085483849048615 0.0010923061054199934 0.04944877699017525 -0.04195627570152283 0.0027506763581186533 -0.01559237390756607 -0.04372746869921684 0.022642269730567932 -0.0019620582461357117 -0.0016021692426875234 -0.014665533788502216 -0.01687147654592991 -0.021580779924988747 0.055771518498659134 -0.03594547137618065 -0.031943678855895996 -0.0037972950376570225 -0.027555329725146294 -0.11103584617376328 -0.023183181881904602 -0.006229650229215622 -0.05255736783146858 0.07148102670907974 -0.013710380531847477 0.0167709868401289 0.04431841894984245 -0.04123079404234886 -0.03432120010256767 0.01311960443854332 0.008764520287513733 0.0010924164671450853 0.00014013805775903165 0.057183053344488144 -0.032548848539590836 -0.029561862349510193 -0.00841466337442398 -0.02165307104587555 0.030111847445368767 -0.06461101770401001 -0.04624130576848984 0.004169314168393612 -0.011020125821232796 0.036321353167295456 0.033182293176651 -0.023354416713118553 -0.10286662727594376 -0.033417731523513794 -0.0011114651570096612 0.04711703956127167 -0.05026598647236824 -0.01320033147931099 0.03796263411641121 -0.05849212408065796 -0.037324193865060806 0.03564785420894623 -0.0018313913606107235 -0.07533685863018036 0.005123187322169542 -0.031161803752183914 -0.004301241599023342 -0.020943714305758476 0.05260290578007698 -0.04311104863882065 -0.078855961561203 -0.0356719046831131 0.04007842764258385 -0.07783742249011993 -0.0407029427587986 -0.0004693811060860753 -0.10111906379461288 -0.05955655500292778 0.02311570756137371 -0.07020558416843414 0.04851300269365311 0.022652151063084602 0.01094839721918106 0.009257654659450054 0.007432105485349894 -0.03107062354683876 -0.05583682283759117 0.03080790303647518 0.003728691954165697 -0.048986051231622696 -0.036020781844854355 0.06888023018836975 0.004268578253686428 0.03931375965476036 0.07511107623577118 0.0003015674592461437 0.0759008377790451 0.04599134996533394 -0.028865378350019455 0.016808733344078064 -0.02684463933110237 -0.008457743562757969 0.07954825460910797 -0.020083745941519737 0.06805159151554108 -0.01846112310886383 0.13182777166366577 -0.001864752033725381 -0.02150901034474373 0.06284968554973602 0.1129055991768837 0.003778972662985325 0.0089345658197999 -0.0589175708591938 +0.0173697117716074 -0.013546195812523365 -0.02555275894701481 0.00869770161807537 -0.06994669139385223 -0.0735756903886795 -0.037653639912605286 0.042823318392038345 0.039857782423496246 -0.06338609009981155 -0.04081205651164055 -0.024796107783913612 -0.017664318904280663 0.02087104320526123 0.029205402359366417 -0.020980047062039375 -0.04719337075948715 0.006020018830895424 -0.02815834991633892 -0.031991079449653625 0.008573425933718681 0.03634851798415184 -0.03932403028011322 0.09691005200147629 0.00534812593832612 -0.04516631364822388 -0.06301124393939972 -0.005306633189320564 -0.0131046948954463 0.05506091192364693 0.017554059624671936 -0.010728909634053707 0.05445762723684311 -0.05868836119771004 -0.003178860293701291 0.03158903121948242 -0.011114596389234066 0.07374054938554764 0.06582978367805481 -0.04125445708632469 -0.027332976460456848 0.021226568147540092 -0.062026992440223694 -0.07879464328289032 0.0054727112874388695 -0.00943543016910553 -0.03565158694982529 -0.015264884568750858 0.0043376716785132885 0.0817234069108963 0.02134176716208458 -0.009874639101326466 -0.019756320863962173 0.002635719021782279 -0.00511584896594286 0.011772055178880692 0.031196758151054382 -0.09338968992233276 0.005537206307053566 0.01310223899781704 -0.0730368122458458 0.008831456303596497 0.05092386156320572 0.05592135339975357 0.022243017330765724 -0.035261549055576324 0.025310158729553223 0.08145802468061447 0.05398920178413391 -0.02254263497889042 -0.00169146410189569 0.030679138377308846 -0.050167471170425415 0.008949670009315014 0.02935853786766529 -0.038744594901800156 -0.01714727282524109 0.015283317305147648 0.025462230667471886 0.015920499339699745 0.06784047186374664 -0.01104282308369875 0.07670456171035767 0.002262119436636567 -0.0060258712619543076 -0.04632182419300079 0.0073095750994980335 -0.0684954896569252 0.03583747521042824 -0.07093854248523712 0.044976770877838135 0.07689529657363892 0.0022341194562613964 0.017146393656730652 -0.049747832119464874 0.04042968526482582 -0.02337794564664364 -0.1222442239522934 -0.010905550792813301 -0.01047523133456707 -0.00941033847630024 0.01831705868244171 3.6251825804356486e-05 -0.007107364013791084 0.019355935975909233 0.04385912045836449 -0.06752268224954605 -0.00186066678725183 0.03818114846944809 -0.012067819945514202 0.05098478123545647 0.08510378003120422 0.0536009781062603 0.04919089749455452 0.04948992282152176 0.03397113457322121 0.013617217540740967 -0.012707522138953209 -0.03132528439164162 0.0051847100257873535 -0.03164360299706459 0.036975208669900894 0.012468114495277405 -0.0724245235323906 0.024109991267323494 0.09529951959848404 -0.07370251417160034 -0.049551211297512054 -0.012281220406293869 -0.0033497700933367014 0.055196184664964676 0.003556214738637209 -0.049294449388980865 -0.004492699168622494 0.06041482463479042 0.021080417558550835 -0.04812268167734146 0.008931657299399376 0.022414235398173332 -0.05675281956791878 -0.08039452880620956 0.08320222049951553 0.017254775390028954 -0.05400433391332626 0.061694782227277756 0.06151111423969269 -0.022825093939900398 0.03412730246782303 -0.0832367092370987 -0.02842913754284382 -0.08440141379833221 -0.0729266032576561 0.025241872295737267 -0.07688040286302567 -0.005780126433819532 0.06097831204533577 -0.00036102041485719383 0.026256375014781952 -0.031118154525756836 -0.056321509182453156 -0.05659083276987076 -0.015627464279532433 0.025152653455734253 -0.09109067171812057 -0.02593797631561756 -0.01875484175980091 -0.017968490719795227 0.07874515652656555 -0.06098966673016548 -0.03368361294269562 -0.01693061739206314 -0.05485890060663223 0.05735313892364502 0.08119364827871323 0.03982534259557724 0.018561847507953644 0.015387486666440964 -0.023606877774000168 -0.011837371625006199 -0.02669088914990425 0.03814924135804176 -0.08045247942209244 0.05720198154449463 -0.07003194838762283 -0.00537861417979002 -0.02307024411857128 -0.004184845834970474 -0.018982890993356705 -0.013568449765443802 -0.05122268944978714 -0.047756943851709366 -0.0663139596581459 0.0672118067741394 0.06402656435966492 -0.009072018787264824 0.015606564469635487 0.01729028858244419 0.05040203779935837 0.00044247013283893466 0.015875015407800674 -0.07980430871248245 0.050158724188804626 0.06204129010438919 0.03386659547686577 0.03464905172586441 -0.05958493798971176 0.07773023098707199 0.010741837322711945 0.056625958532094955 -0.00478471489623189 0.05009292811155319 0.09975601732730865 -0.062109850347042084 0.0539972260594368 0.048871949315071106 0.017106477171182632 0.03713162615895271 -0.03378501534461975 0.03376884013414383 -0.11164965480566025 0.011139006353914738 0.05896677076816559 -0.05441972240805626 0.03534998372197151 -0.0020279278978705406 -0.07100166380405426 -0.023433517664670944 0.01576923206448555 -0.012921634130179882 -0.038326870650053024 0.006480212789028883 -0.0022743106819689274 0.030130552127957344 -0.0025124552194029093 -0.007519470527768135 0.0017288712551817298 -0.06284315139055252 0.08211936801671982 -0.01783597283065319 -0.040498036891222 -0.010805711150169373 -0.00455484027042985 0.007657227572053671 -0.015578413382172585 0.008175034075975418 0.04686820134520531 0.06905345618724823 0.015007334761321545 -0.013629075139760971 -0.03593099117279053 -0.03398580849170685 -0.07141279429197311 -0.030591806396842003 0.07352140545845032 0.004027397837489843 -0.10650578886270523 0.0027453030925244093 -0.08429215103387833 -0.0476771742105484 -0.0031102073844522238 0.019623897969722748 -0.05720140039920807 0.006663303356617689 -0.09801303595304489 -0.00873484741896391 -0.01298347394913435 -0.013132849708199501 0.03384717181324959 -0.03587447106838226 0.012705069035291672 -0.01656683161854744 -0.022886889055371284 0.04427681118249893 0.001505173509940505 -0.017810914665460587 -0.006666441913694143 0.05808381736278534 -0.005999201908707619 -0.014313596300780773 -0.03607215732336044 -0.045419979840517044 -0.0479138121008873 0.008524646982550621 0.011452073231339455 0.006541519425809383 0.10668069869279861 0.07064612209796906 -0.043625328689813614 -0.044475506991147995 -0.02985350787639618 -0.0830499604344368 -0.030972862616181374 0.0108017697930336 0.0019045488443225622 -0.055289968848228455 -0.006849302910268307 0.010955095291137695 -0.04591045901179314 -0.030395561829209328 0.04419836774468422 0.012901067733764648 -0.04381249472498894 0.02579343691468239 0.0227484330534935 -0.049409233033657074 0.016357148066163063 -0.043973226100206375 -0.0308736190199852 0.05782923474907875 0.025186022743582726 -0.004287606570869684 0.010847286321222782 0.06804440170526505 0.07457120716571808 -0.023097099736332893 -0.027410838752985 -0.022198500111699104 -0.011769795790314674 -0.04241397604346275 0.05233687162399292 -0.044844113290309906 -0.0013832100667059422 0.052007947117090225 -0.019768008962273598 0.06310835480690002 -0.014664808288216591 0.00032631552312523127 -0.04165687412023544 0.021114155650138855 -0.0161814633756876 0.057214733213186264 -0.041977282613515854 -0.011160239577293396 -0.0021511621307581663 -0.0719151645898819 -0.04721326380968094 -0.06761227548122406 0.04162624850869179 0.024789217859506607 0.043233469128608704 0.03113723360002041 -0.07459571957588196 -0.01824551448225975 -0.016865752637386322 0.11946774274110794 -0.10352466255426407 -0.013206071220338345 0.03874407336115837 0.012941459193825722 -0.046538691967725754 -0.0034084038343280554 -0.0388641431927681 -0.07566830515861511 -0.02638707123696804 -0.024575166404247284 0.054231319576501846 -0.07877811789512634 -0.07631175965070724 -0.00949501059949398 -0.014854373410344124 0.01765046827495098 0.01982509158551693 0.007268812507390976 0.1001698225736618 0.017769696190953255 4.171222826698795e-05 0.002702361438423395 0.028112970292568207 0.011408357881009579 0.010692819021642208 0.03546396642923355 0.03701833635568619 0.04910612478852272 -0.06285308301448822 -0.036762308329343796 -0.03377038985490799 0.00464641721919179 -0.08957070857286453 0.033593710511922836 -0.009139268659055233 0.004998614080250263 0.001046665944159031 0.058569539338350296 0.025042477995157242 -0.05254285782575607 -0.00577223114669323 -0.011678038164973259 0.001573139918036759 -0.040248677134513855 -0.020037639886140823 0.030347831547260284 -0.03850424662232399 0.020464202389121056 -0.06709636747837067 -0.006795413792133331 0.010930930264294147 0.004396962001919746 -0.01883258856832981 0.04891548305749893 0.004974107723683119 -0.00953024160116911 0.020509228110313416 -0.019483907148241997 0.03648119792342186 0.05812269076704979 -0.08502218872308731 -0.0028538869228214025 0.040964629501104355 -0.04488084837794304 0.018190205097198486 -0.042472489178180695 -0.003919722978025675 -0.017195794731378555 -0.02177279256284237 -0.013547106646001339 -0.018121974542737007 0.021962318569421768 -0.03318825736641884 0.053799934685230255 -0.02410227246582508 -0.08484891802072525 -0.018692560493946075 -0.03143993392586708 -0.07321552187204361 -0.01304557267576456 -0.028724364936351776 -0.008392475545406342 0.046381063759326935 -0.06404919922351837 0.02190452814102173 0.05433078110218048 -0.04870593175292015 -0.0249578058719635 0.003407539799809456 -0.004112273454666138 -0.044032227247953415 0.033288225531578064 -0.001079494715668261 -0.007787267677485943 0.02467322163283825 0.004093209281563759 -0.08873210102319717 0.003715133760124445 -0.03698905557394028 0.0013212112244218588 0.04235009104013443 -0.03761109709739685 0.02927023358643055 0.029603775590658188 0.03329978138208389 -0.05358634516596794 -0.04170103371143341 -0.033058278262615204 0.062479157000780106 -0.031046297401189804 0.019897809252142906 0.0029217295814305544 -0.06772665679454803 -0.03369256854057312 0.06780491769313812 -0.034289080649614334 -0.1055060625076294 -0.06021541357040405 -0.040921371430158615 0.008860521018505096 -0.013244520872831345 0.06037254258990288 -0.049786556512117386 -0.08879878371953964 0.023692863062024117 -0.004651423543691635 -0.024602452293038368 -0.016786759719252586 0.027666594833135605 -0.01663948781788349 -0.02263939194381237 -0.05925935506820679 -0.07694967836141586 0.0528014712035656 0.01371732447296381 0.05333435535430908 -0.0369727686047554 -0.009523057378828526 -0.006818233523517847 -0.06335383653640747 -0.012162875384092331 0.0015517942374572158 -0.06670050323009491 0.01257530227303505 0.09553447365760803 -0.008795006200671196 -0.006852678954601288 0.07904796302318573 -0.038973890244960785 0.028532084077596664 0.0171185452491045 0.0016352543607354164 0.029604779556393623 -0.04753759875893593 -0.04955122247338295 0.06913922727108002 -0.021383481100201607 0.05476541072130203 -0.010253993794322014 0.13571499288082123 -0.009495851583778858 -0.056954603642225266 0.08064158260822296 0.06899958848953247 0.014261382631957531 0.02659306675195694 -0.0839984267950058 +0.034295454621315 -0.02876030094921589 0.0022199449595063925 0.013059740886092186 -0.11187174171209335 -0.03821970522403717 -0.02185484766960144 0.05423777922987938 -0.029301557689905167 -0.03885960206389427 0.00657276064157486 -0.019523898139595985 -0.014047889038920403 0.008336481638252735 0.035828765481710434 -0.03854867443442345 -0.07550007104873657 0.014073002152144909 -0.05181502550840378 -0.03509395569562912 0.03520360589027405 0.03644890338182449 -0.04464614391326904 0.018760941922664642 -0.005879384931176901 0.0022717800457030535 -0.05021638050675392 -0.0022697639651596546 -0.008643429726362228 0.0234625656157732 0.05993207171559334 0.010982140898704529 0.05902386084198952 -0.028777338564395905 -0.056947290897369385 0.06674826890230179 -0.0437510684132576 0.12111205607652664 0.03904854506254196 -0.02886883355677128 -0.04362291842699051 0.0033304505050182343 -0.03537382185459137 -0.030107246711850166 0.03889237344264984 -0.024072840809822083 0.002777819288894534 -0.010349373333156109 0.012299465015530586 0.04607810080051422 0.06817594170570374 -0.004305154085159302 0.0005935616791248322 -0.008552527986466885 0.010309483855962753 0.047842297703027725 0.028523631393909454 -0.04968162626028061 -0.06284839659929276 0.02246754616498947 -0.07391288876533508 0.014378618448972702 0.010567683726549149 0.02186834067106247 0.028386909514665604 -0.04012977331876755 -0.015302952378988266 0.08128803223371506 0.0128440847620368 -0.02829909883439541 0.020209891721606255 0.10933750122785568 -0.07631070911884308 -0.07209361344575882 0.047186266630887985 -0.041427116841077805 -0.015413409098982811 0.035984937101602554 -0.013601560145616531 -0.03779090568423271 0.014162648469209671 -0.024699406698346138 0.10539473593235016 -0.05165170878171921 -0.022326461970806122 -0.029031723737716675 -0.015796467661857605 -0.06358909606933594 0.06997539848089218 0.019581176340579987 0.027812393382191658 0.04393099620938301 -0.073692686855793 0.018796171993017197 -0.005503426305949688 0.008021696470677853 0.00786516722291708 -0.1175576001405716 -0.04290290176868439 -0.015009945258498192 0.034094516187906265 -0.017361698672175407 0.05916385352611542 0.005401922389864922 0.05011789873242378 0.05589376017451286 -0.033379632979631424 -0.005236340221017599 0.003957719076424837 0.028063267469406128 0.012467996217310429 0.1095319390296936 0.11020876467227936 0.03761421889066696 0.035504214465618134 0.019595345482230186 -0.018680069595575333 -0.016249453648924828 -0.011411605402827263 0.017945125699043274 -0.022976024076342583 -0.0012059526052325964 0.0005090117338113487 -0.05595490708947182 -0.05174165219068527 0.05979591980576515 -0.07957678288221359 -0.03581933677196503 0.06766045093536377 -0.059726715087890625 0.11945241689682007 0.030184289440512657 -0.05360138416290283 0.024558551609516144 0.07706452161073685 0.024606993421912193 0.0028318059630692005 0.03283620625734329 -0.020112350583076477 -0.04492109641432762 -0.03742018714547157 0.06493206322193146 -0.008624051697552204 -0.08027493953704834 0.005175350699573755 0.0633460134267807 0.0546744130551815 -0.008286367170512676 -0.09555406868457794 0.032493822276592255 -0.06777984648942947 -0.0897066593170166 -0.03507501631975174 -0.10625653713941574 0.022852148860692978 0.08986976742744446 -0.013886244036257267 0.03571876510977745 -0.0026925220154225826 -0.032933298498392105 -0.06347958743572235 -0.05302172526717186 -0.030244937166571617 -0.08734113723039627 -0.03387967124581337 -0.04700439050793648 -0.004909433890134096 0.018347006291151047 -0.05787942185997963 -0.04437298700213432 -0.02218582294881344 -0.03473541513085365 0.022747762501239777 0.07980592548847198 0.06035567447543144 0.03613806143403053 -0.004160703159868717 -0.030723195523023605 -0.027605511248111725 -0.02586282044649124 0.03417482599616051 -0.04885472357273102 0.06663740426301956 -0.05041348189115524 0.01497951615601778 -0.02483857050538063 0.06875153630971909 -0.0016339143039658666 0.006119314581155777 -0.025945333763957024 -0.016994070261716843 -0.055017728358507156 0.055868931114673615 0.08395969867706299 -0.013741773553192616 0.048436764627695084 -0.04226534813642502 0.06601565331220627 -0.030277039855718613 -0.021252136677503586 -0.05552598461508751 0.04776598885655403 0.031557388603687286 0.024377549067139626 0.008989120833575726 -0.08222757279872894 0.07817134261131287 0.010004106909036636 0.034303683787584305 -0.07637057453393936 0.0285861324518919 0.04017603397369385 0.011660303920507431 0.03639012947678566 0.02788378670811653 -0.03993178531527519 0.019798636436462402 -0.004816603846848011 0.07153818011283875 -0.04646240174770355 0.011811895295977592 0.03380020335316658 -0.05996883288025856 0.053977400064468384 -0.01551678404211998 -0.09337079524993896 -0.04016343131661415 0.01488006766885519 -0.03361302614212036 -0.04151392728090286 -0.007329990155994892 0.043903548270463943 -0.015367323532700539 -0.017922986298799515 0.0010596539359539747 -0.013836964964866638 -0.0686667338013649 0.08153648674488068 -0.004300463479012251 -0.049359433352947235 -0.08787926286458969 -0.008477949537336826 0.0031410623341798782 0.0008971427450887859 0.024005502462387085 0.04225045442581177 0.05946189910173416 1.0135323464055546e-05 -0.002529778517782688 0.006118368357419968 -0.05387987196445465 -0.04887818172574043 -0.025135958567261696 0.03929155319929123 -0.06089663505554199 -0.05338577553629875 0.00018075427215080708 -0.05501451715826988 -0.001561230979859829 0.012335529550909996 0.0437474325299263 -0.06295713782310486 -0.005547079257667065 -0.004787871148437262 0.004690160974860191 -0.02939631976187229 -0.024477502331137657 0.006550941616296768 -0.014788176864385605 0.04545962065458298 -0.002590057672932744 -0.004836686886847019 0.02501138485968113 -0.014525292441248894 0.02152707800269127 -0.014722203835844994 0.05286944657564163 -0.045377377420663834 -0.09136059135198593 -0.021999234333634377 -0.062254808843135834 -0.068573959171772 -0.015343219973146915 -0.05338820815086365 -0.018453679978847504 0.11892025917768478 0.043579280376434326 -0.05807379260659218 -0.04480478912591934 -0.043740350753068924 -0.00937101524323225 -0.04116123914718628 -0.023234350606799126 0.020613979548215866 -0.08182653784751892 -0.028141863644123077 0.03193800151348114 -0.06096665933728218 -0.02644267864525318 0.01883498765528202 -0.025840522721409798 -0.028703128919005394 0.03617892041802406 -0.026911459863185883 0.004528309218585491 -0.003959043882787228 -0.06855045258998871 0.06416334211826324 0.06572329998016357 0.069528728723526 0.02552633546292782 0.022273028269410133 0.032668158411979675 0.11499318480491638 0.02822350151836872 -0.02418883517384529 -0.018780948594212532 -0.05129697173833847 -0.06765705347061157 0.048278044909238815 -0.04017837718129158 -0.028501953929662704 -0.01787225529551506 -0.008822597563266754 0.08922155946493149 -0.0024117426946759224 -0.005824278574436903 -0.00620845053344965 0.048358254134655 -0.005567849148064852 0.031172286719083786 -0.0020903125405311584 -0.023135431110858917 -0.0018226158572360873 -0.035904593765735626 -0.012996720150113106 -0.04098131135106087 0.038224343210458755 -0.036328669637441635 0.041296783834695816 -0.025857549160718918 -0.049805980175733566 0.011898357421159744 0.02256239764392376 0.10760410875082016 -0.044292889535427094 0.03061136230826378 0.03942776098847389 0.02841140516102314 -0.07563907653093338 0.0019168887520208955 0.010332799516618252 -0.034163955599069595 -0.04092306271195412 0.00357659999281168 0.03929826617240906 -0.06937535852193832 -0.06359510868787766 -0.005991086829453707 -0.03869068995118141 -0.011054562404751778 -0.0242807324975729 -0.0032598664984107018 0.04686666652560234 -0.0011442519025877118 0.0037120773922652006 0.025086557492613792 0.019220931455492973 0.021932654082775116 -0.029689446091651917 0.003879401134327054 -0.024149883538484573 0.04803534597158432 -0.05158267170190811 -0.05876358970999718 -0.05674850940704346 0.053863175213336945 -0.03210880234837532 -0.00019711510685738176 -0.03967722877860069 -0.0005007698782719672 -0.02467265911400318 0.036055393517017365 -0.001930236117914319 -0.047164689749479294 -0.030296236276626587 -0.0019981248769909143 -0.04203043133020401 -0.09893189370632172 -0.04637724161148071 0.016227837651968002 -0.0659538209438324 0.0010093663586303592 -0.06710708886384964 0.006790714804083109 0.0006690602167509496 -0.03828322887420654 0.02372630126774311 0.055261239409446716 0.03301812708377838 -0.019654428586363792 0.050954967737197876 0.03290504962205887 0.03754455968737602 0.028300194069743156 -0.03735899180173874 0.002010843250900507 0.030141334980726242 -0.020443474873900414 0.03434671834111214 -0.027187291532754898 0.015123543329536915 -0.017872938886284828 -0.0143224336206913 0.009570692665874958 -0.033280931413173676 0.015432317741215229 -0.03219105675816536 0.06460846215486526 -0.08207424730062485 -0.04188098385930061 0.038051966577768326 -0.032356929033994675 -0.08559627085924149 -0.01204539556056261 -0.04958101734519005 -0.0022465246729552746 0.037610676139593124 -0.012541311793029308 0.021609025076031685 0.030523143708705902 -0.0505441352725029 -0.04507100209593773 -0.05048223212361336 -0.019158698618412018 0.024141469970345497 0.018681129440665245 0.034540675580501556 -0.014672007411718369 -0.008545510470867157 -0.0027275087777525187 -0.037539418786764145 0.008847876451909542 -0.1049482598900795 0.004269537050276995 -0.04011010006070137 -0.012701615691184998 0.05419137701392174 -0.024831973016262054 0.02542562410235405 -0.02619095705449581 -0.01658802665770054 -0.02521839179098606 0.08271916955709457 -0.01336321048438549 -0.0027216782327741385 0.029549993574619293 -0.025800608098506927 -0.011302080005407333 0.03331318497657776 -0.043978363275527954 -0.055969465523958206 0.021151790395379066 -0.010895339772105217 0.04386678338050842 0.022715061902999878 0.05465953052043915 -0.011348037049174309 -0.08829183131456375 -0.004850748460739851 0.0016285170568153262 -0.06362607330083847 0.030154507607221603 0.023455047979950905 -0.09414102882146835 -0.09556808322668076 -0.019030572846531868 -0.03858304023742676 0.048732392489910126 -0.02565987966954708 0.061291925609111786 -0.04254366084933281 -0.00472473818808794 0.011556961573660374 -0.055893246084451675 0.023438557982444763 0.02008039318025112 -0.05727507546544075 -0.02487199753522873 0.08513694256544113 -0.03193042799830437 0.01396634429693222 0.08458715677261353 -0.04766547307372093 0.004044879227876663 0.009418157860636711 -0.009885765612125397 0.024985553696751595 0.004802086856216192 -0.05217674374580383 0.029145264998078346 -0.06529778242111206 0.08203613758087158 -0.05101775750517845 0.09016022831201553 -0.010076195001602173 -0.030943239107728004 0.09662403911352158 0.05713317170739174 -0.015507413074374199 0.008360006846487522 -0.05813770368695259 +0.04586847499012947 0.008794116787612438 0.005602643359452486 0.07263460755348206 -0.10417933762073517 -0.03421296924352646 -0.0035671971272677183 0.0223979651927948 -0.0078115155920386314 -0.04677613824605942 -0.0266717616468668 -0.043592777103185654 -0.028840746730566025 0.016021206974983215 0.02761799842119217 -0.03155142441391945 -0.04982567951083183 0.023574644699692726 -0.006502051837742329 -0.049655430018901825 0.03745456412434578 0.0007596475770696998 -0.06766937673091888 0.06361036747694016 0.016585543751716614 -0.013388723134994507 -0.049001313745975494 0.02848074398934841 -0.018360957503318787 0.046817123889923096 0.05149925500154495 -0.011800755746662617 0.027813231572508812 -0.06859316676855087 -0.052997708320617676 0.0386810228228569 -0.049710363149642944 0.11469264328479767 0.03331306576728821 -0.04760017991065979 -0.05521661043167114 0.028694046661257744 -0.05554219335317612 -0.03826631233096123 0.07000141590833664 0.002354860305786133 -0.02094016969203949 -0.03488224744796753 0.05409296602010727 0.04448363184928894 0.09989026188850403 -0.01237475872039795 -0.023473089560866356 -0.026949333027005196 -0.02868053689599037 0.01697923056781292 0.04698743671178818 -0.05903036519885063 -0.03823373094201088 0.06254258006811142 -0.06543983519077301 -0.038497183471918106 0.06219581887125969 0.004916562233120203 -0.01522782351821661 -0.0032824042718857527 0.0014587178593501449 0.09124181419610977 -0.001207025721669197 -0.02440030314028263 0.005935727618634701 0.11097510904073715 -0.053257573395967484 -0.03762068226933479 0.06600715965032578 -0.06391916424036026 -0.02326936647295952 0.06808284670114517 0.03019607998430729 0.031189071014523506 0.014916252344846725 -0.046766363084316254 0.08732043206691742 -0.02630588412284851 -0.03816607594490051 -0.026990653946995735 0.00126513687428087 -0.0441882461309433 0.07247442752122879 0.03290213644504547 -0.005308761727064848 0.05677401274442673 -0.06314504891633987 0.046884313225746155 0.004902830813080072 -0.0076713720336556435 0.025638345628976822 -0.11190871894359589 -0.031648267060518265 0.014107891358435154 0.020890917629003525 -0.03165620565414429 0.021607784554362297 -0.011748027987778187 0.06822050362825394 0.05884949490427971 -0.059398628771305084 0.013065030798316002 0.027083514258265495 0.030416056513786316 0.03788289055228233 0.07097265869379044 0.10208573937416077 0.03931037709116936 0.05861080810427666 -0.010749812237918377 -0.00525340111926198 -0.06102607399225235 -0.051980726420879364 0.014952837489545345 -0.009377524256706238 0.056220922619104385 -0.012163401581346989 -0.046980369836091995 -0.017454635351896286 0.017371613532304764 -0.09053511917591095 -0.012071795761585236 0.07323610037565231 0.009345542639493942 0.10163356363773346 0.016300629824399948 -0.005070930812507868 0.0235562976449728 0.0810069739818573 0.04234867915511131 0.017601238563656807 0.04252023994922638 -0.00957566685974598 -0.007403717841953039 0.005933796986937523 0.06017642468214035 0.016707459464669228 -0.07658557593822479 0.029223738238215446 0.05599266290664673 0.036875952035188675 -0.0006165635422803462 -0.08137469738721848 0.006630791816860437 -0.09966124594211578 -0.0664440467953682 -0.006828953977674246 -0.10761389136314392 -0.0027127463836222887 0.03958766907453537 0.010991447605192661 0.029597122222185135 -0.034748777747154236 -0.017498396337032318 -0.045351140201091766 -0.03230736032128334 0.00030094647081568837 -0.07159445434808731 -0.050768934190273285 -0.0449921153485775 -0.0014375902246683836 0.03354273736476898 -0.0377618633210659 -0.02682904526591301 -0.013949510641396046 -0.008368921466171741 0.06867098808288574 0.0751211941242218 0.04674677178263664 0.0263788141310215 0.02426053024828434 -0.04318924620747566 0.0119865071028471 -0.04371805489063263 0.018262995406985283 -0.04022859409451485 0.05291164666414261 -0.056020285934209824 -0.009912560693919659 -0.018331820145249367 0.05041415989398956 -0.031540147960186005 0.0007531261071562767 0.002871360396966338 -0.05638054385781288 -0.060349125415086746 0.08084414154291153 0.09423598647117615 -0.009496364742517471 0.032060183584690094 -0.03846321627497673 0.02940504252910614 0.0003211821604054421 -0.03841625899076462 -0.04739055410027504 0.05186690390110016 0.023713983595371246 0.06278736144304276 0.03164535388350487 -0.09415880590677261 0.0755423977971077 0.023496046662330627 0.02836473472416401 -0.06625039130449295 0.007421114481985569 0.030337903648614883 -2.833424514392391e-05 0.03623398393392563 0.06384233385324478 0.005875172559171915 0.004309631418436766 -0.006176488008350134 0.06080489605665207 -0.03493552654981613 0.03388523310422897 0.02783740870654583 -0.08342897146940231 0.05043035373091698 -0.033992208540439606 -0.08284910768270493 -0.014147271402180195 0.03568011149764061 -0.03722899779677391 -0.01823231764137745 -0.0009180224733427167 0.017651384696364403 -0.019937029108405113 -0.03617892414331436 -0.018576614558696747 0.01340548973530531 -0.09079539775848389 0.10208173841238022 -0.005373206455260515 -0.05581298843026161 -0.06749666482210159 0.0010499792406335473 0.01887771487236023 -0.003614612855017185 0.054101623594760895 0.04977976158261299 0.06781448423862457 0.024241328239440918 0.02773052267730236 -0.011441824026405811 -0.05745017156004906 -0.033710986375808716 -0.02253543585538864 0.039637815207242966 -0.06120613217353821 -0.03299468755722046 -0.018687674775719643 -0.044914912432432175 -0.012710579670965672 0.01511143147945404 0.0210989098995924 -0.02453162707388401 -0.02653610333800316 -0.007403901778161526 0.043841637670993805 -0.01728329248726368 -0.039362583309412 0.018707245588302612 -0.012393342331051826 0.05679881200194359 -0.03135174885392189 -0.04507448151707649 0.031981997191905975 0.02570422738790512 0.0155108030885458 -0.02813166379928589 0.048732053488492966 -0.030873551964759827 -0.09234457463026047 -0.0350465290248394 -0.06260325759649277 -0.04559049755334854 -0.017937658354640007 -0.03795190155506134 -0.012388445436954498 0.11034678667783737 0.015948612242937088 -0.04109597206115723 -0.08179011195898056 -0.020847337320446968 -0.01910400576889515 -0.06796301156282425 -0.01397435087710619 -0.010803287848830223 -0.062359023839235306 -0.010771437548100948 0.015230496414005756 -0.022528139874339104 -0.016641998663544655 -0.013464909046888351 -0.012378928251564503 -0.0455668643116951 0.048532724380493164 -0.03785186633467674 -0.04236343130469322 0.03502136468887329 -0.04627051204442978 0.03300371393561363 0.10960401594638824 0.052443262189626694 0.0163775272667408 0.026322899386286736 0.056920237839221954 0.1036415547132492 0.01834774576127529 -0.06689233332872391 -0.0227266326546669 -0.05844947695732117 -0.0780826136469841 0.03468906506896019 -0.0513036884367466 -0.029378656297922134 -0.004866810981184244 -0.014555058442056179 0.0979333147406578 -0.016039550304412842 -0.02416745200753212 -0.03291962295770645 0.037029992789030075 0.00163640221580863 0.014815669506788254 0.01364617794752121 -0.028990648686885834 -0.00321591435931623 -0.04805636405944824 -0.029944004490971565 -0.042336367070674896 0.041158441454172134 -0.003295361762866378 0.03195379301905632 -0.018149422481656075 -0.049376748502254486 0.027753662317991257 0.02061774581670761 0.07286139577627182 -0.05836113914847374 0.0053427680395543575 0.04240214079618454 -0.006334435660392046 -0.07038882374763489 0.011205863207578659 0.028065314516425133 -0.048856694251298904 -0.043031007051467896 -0.02004934474825859 0.049290403723716736 -0.06296761333942413 -0.0007527528214268386 -0.006184089463204145 -0.07383529841899872 -0.011825009249150753 0.022478463128209114 0.012833312153816223 0.033967092633247375 -0.025345267727971077 -0.016156421974301338 0.0031574296299368143 -0.006740881595760584 -0.006194967310875654 -0.025144627317786217 0.0025751639623194933 -0.007085397839546204 0.05949084088206291 -0.018629806116223335 -0.01894116960465908 -0.05453328415751457 0.055572569370269775 -0.01688113436102867 -0.03491704538464546 -0.018382644280791283 -0.0023342410568147898 0.001691104844212532 0.0074123190715909 0.027477554976940155 -0.06704011559486389 -0.014596191234886646 -0.032400112599134445 -0.03854374587535858 -0.09966855496168137 -0.031306102871894836 0.025867827236652374 -0.0831514447927475 -0.007698028814047575 -0.053074344992637634 -0.018021054565906525 -0.009012822061777115 -0.03156327083706856 0.006679396145045757 0.038996439427137375 0.03570430353283882 -0.031164471060037613 0.02760303020477295 -0.014081069268286228 0.04113411158323288 0.035638827830553055 -0.05103995278477669 0.01740933023393154 0.024005794897675514 -0.02205085940659046 0.047184474766254425 -0.03440694883465767 0.02854977734386921 -0.02899692766368389 -0.00357834598980844 0.030042381957173347 -0.022670285776257515 -0.027854187414050102 -0.024801762774586678 0.05263347551226616 -0.04639006406068802 -0.03754362463951111 0.020014332607388496 -0.01729506626725197 -0.10599441081285477 -0.017255369573831558 -0.00742940790951252 -0.012383519671857357 0.02268015593290329 -0.019989406690001488 0.028852563351392746 0.010213382542133331 -0.08006700873374939 -0.037823259830474854 -0.06643491983413696 -0.035751715302467346 0.03982582688331604 -0.012541511096060276 0.0558730885386467 0.018887417390942574 0.004795611370354891 -0.0103274742141366 -0.0054364935494959354 0.006796922069042921 -0.08921627700328827 -0.005989608354866505 -0.028203576803207397 -0.0319245383143425 0.03893822059035301 0.003532824572175741 -0.01034594140946865 -0.022462226450443268 -0.05724845454096794 -0.04838176816701889 0.08892473578453064 -0.04250088334083557 -0.017633069306612015 0.041221048682928085 -0.004063835367560387 0.016866805031895638 0.041182391345500946 -0.05696845054626465 -0.07196616381406784 0.005035410635173321 0.0037636307533830404 0.025906674563884735 0.038963280618190765 0.022395677864551544 -0.03648878261446953 -0.056596290320158005 -0.020453432574868202 0.0008875227067619562 -0.09310247004032135 0.01314388494938612 -0.010888276621699333 -0.0795414000749588 -0.0752975270152092 -0.006716355215758085 -0.0474301278591156 0.08236735314130783 0.017157448455691338 0.03901253268122673 -0.015909725800156593 -0.013789406046271324 0.017412694171071053 -0.050905030220746994 0.009134365245699883 -0.00866133626550436 -0.050138335675001144 0.0015972262481227517 0.0766611397266388 -0.04001397639513016 0.02560345083475113 0.044179707765579224 -0.05738677829504013 0.013109730556607246 0.05427210032939911 -0.019509539008140564 0.046802178025245667 -0.0011603472521528602 -0.03599855676293373 0.07625861465930939 -0.06061989814043045 0.11250628530979156 -0.03796316310763359 0.07847237586975098 -0.0025697979144752026 0.0023406976833939552 0.08467276394367218 0.06993528455495834 -0.024126354604959488 -0.006409660913050175 -0.08083418011665344 +0.012635655701160431 -0.049873825162649155 -0.02821008861064911 0.04612592235207558 -0.05917513370513916 -0.028345072641968727 0.014294101856648922 0.07246478646993637 -0.0013715128879994154 -0.05054832249879837 -0.00011441125388955697 0.004453704692423344 0.04358256980776787 0.020417196676135063 0.012756885029375553 -0.026167139410972595 -0.06812908500432968 0.023198453709483147 -0.04312599077820778 -0.047894030809402466 0.018341494724154472 0.021506760269403458 -0.07394121587276459 0.021247558295726776 -0.009949027560651302 -0.006992862559854984 -0.046279676258563995 -0.009185154922306538 0.010071944445371628 0.034122712910175323 0.056211914867162704 -0.030055565759539604 0.04875001683831215 -0.051084134727716446 -0.046378858387470245 0.060808394104242325 -0.04151898995041847 0.11512526869773865 -0.0033638933673501015 -0.019954916089773178 -0.07637855410575867 0.01687612198293209 -0.009011715650558472 -0.05430560186505318 0.02664474956691265 0.012613537721335888 0.025056367740035057 -0.0045130993239581585 0.02014734223484993 0.016747400164604187 0.06644488871097565 0.020316245034337044 0.012239756062626839 0.0062158419750630856 -0.005222395062446594 0.03330490365624428 0.04526128992438316 -0.04160643368959427 -0.061634767800569534 0.024207666516304016 -0.05649328604340553 0.002452258951961994 0.023886019363999367 0.00017466871940996498 -0.02577311173081398 -0.009470334276556969 -0.01820393279194832 0.06988596171140671 0.04689296334981918 -0.024116480723023415 -0.019869809970259666 0.07021944969892502 -0.05272483453154564 -0.07593227177858353 0.057395271956920624 -0.033098526298999786 -0.015480897389352322 0.011624041944742203 -0.034906595945358276 -0.01637079194188118 -0.0073384628631174564 -0.01891852542757988 0.14228928089141846 -0.04074538126587868 -0.0520084910094738 -0.020348789170384407 -0.0006031832890585065 -0.06828165799379349 0.07529648393392563 0.015569116920232773 0.01492016389966011 0.07420632988214493 -0.04497001692652702 0.044888488948345184 0.023396478965878487 0.02537284418940544 0.003863316960632801 -0.1370542049407959 -0.05742863565683365 -0.01249331422150135 0.014822004362940788 -0.04120634123682976 0.09169251471757889 -0.0015628895489498973 0.027393091470003128 0.03395870700478554 -0.058956630527973175 -0.035345274955034256 0.008670350536704063 0.029710449278354645 -0.012200361117720604 0.1490197479724884 0.03832096606492996 0.012813550420105457 0.04440837725996971 -0.015266794711351395 0.0066355024464428425 -0.011102824471890926 -0.033992428332567215 0.0049353293143212795 -0.03328482061624527 0.011094304732978344 0.00942963920533657 -0.09403384476900101 -0.05015239864587784 0.03901335969567299 -0.11576171964406967 -0.03817395493388176 0.06635144352912903 -0.03481614962220192 0.1190028190612793 0.06125672534108162 -0.017715446650981903 0.025014901533722878 0.05673232302069664 0.018984396010637283 -0.006211970001459122 0.036657754331827164 0.01054031029343605 -0.029346873983740807 -0.02750215120613575 0.08410242199897766 0.003477763384580612 -0.043491750955581665 0.046250224113464355 0.06243690848350525 0.04100288078188896 -0.01806946098804474 -0.0711764544248581 0.04826362058520317 -0.0256230216473341 -0.1229533925652504 -0.028730804100632668 -0.03854651376605034 -0.0038593255449086428 0.04194007068872452 -0.007890895940363407 0.05124518647789955 0.0019000143511220813 -0.04248407110571861 -0.04021189361810684 -0.04573387652635574 -0.04836718365550041 -0.06673427671194077 -0.006056616082787514 -0.009203328751027584 -0.022158153355121613 -0.006507918704301119 -0.0272507481276989 -0.014230792410671711 0.016181521117687225 0.00037160070496611297 0.03837008774280548 0.07247573882341385 0.05750284343957901 0.011615750379860401 0.020482832565903664 -0.047068651765584946 -0.0222601480782032 -0.043068692088127136 -0.0069387443363666534 -0.03740498051047325 0.02237953245639801 -0.07676470279693604 -0.00550424586981535 0.016242144629359245 0.08214715868234634 -0.029294613748788834 -0.004947154317051172 -0.05361045151948929 -0.021120881661772728 -0.035654954612255096 0.05017746612429619 0.060695771127939224 -0.03419109061360359 0.02031725086271763 -0.0067966594360768795 0.05981070175766945 -0.033272866159677505 -0.016422709450125694 -0.05402796342968941 0.06593969464302063 0.025960173457860947 0.003531399415805936 0.008233511820435524 -0.03869040310382843 0.06016510725021362 -0.002840418601408601 0.029537184163928032 -0.07163135707378387 0.015500384382903576 0.011186233721673489 0.005612950772047043 0.045812319964170456 0.050658002495765686 -0.028551308438181877 -0.031508348882198334 0.018962284550070763 0.05907832086086273 -0.0404357947409153 -0.01021536160260439 -0.025145752355456352 -0.07993493974208832 0.01981962099671364 -0.013113327324390411 -0.0943564623594284 -0.03430604189634323 0.007880947552621365 -0.026426222175359726 -0.04033370316028595 0.009180997498333454 0.04637816548347473 -0.011780119501054287 -0.04469684883952141 0.0013215284561738372 -0.002329685492441058 -0.05625646561384201 0.07891017943620682 -0.010237284936010838 -0.0596369206905365 -0.04629286006093025 -0.004515846725553274 0.029830625280737877 0.0035896131303161383 -0.0016659139655530453 0.04718863591551781 0.06860293447971344 0.018040750175714493 -0.04258917644619942 0.02587883360683918 -0.04723546653985977 -0.05014391988515854 -0.016549088060855865 0.07068460434675217 -0.03981148824095726 -0.034466374665498734 -0.008091463707387447 -0.05127423629164696 0.035587236285209656 -0.004933129530400038 0.036429498344659805 -0.057622406631708145 0.011273879557847977 -0.024851597845554352 -0.0018466461915522814 -0.03101896494626999 -0.023760488256812096 0.026204856112599373 -0.030869048088788986 0.03884634003043175 -0.004818249028176069 -0.030550001189112663 0.02071215957403183 0.011837010271847248 0.04712669178843498 -0.039895184338092804 0.059515077620744705 -0.024112099781632423 -0.10620124638080597 -0.014381051994860172 -0.06372580677270889 -0.06610006839036942 -0.034886062145233154 -0.06223597750067711 -0.07656961679458618 0.0831366777420044 0.008023079484701157 -0.04875916987657547 -0.06703371554613113 -0.04011855274438858 -0.002168439095839858 -0.054234132170677185 -0.04111054539680481 0.013754389248788357 -0.05933753401041031 -0.025597888976335526 0.030432000756263733 -0.06950356066226959 -0.011453702114522457 0.01518428884446621 0.018887903541326523 -0.01975005306303501 0.10362722724676132 -0.032356519252061844 0.004780052695423365 -0.011848327703773975 -0.06674833595752716 0.04978334903717041 0.06255113333463669 0.055061399936676025 0.03705689311027527 0.041211776435375214 0.04392319545149803 0.11378173530101776 0.03728915750980377 -0.0157118272036314 -0.016379225999116898 -0.025940844789147377 -0.06011670082807541 0.03751125559210777 -0.040631189942359924 -0.02789885550737381 0.004037618637084961 -0.0006911555537953973 0.05273538827896118 0.02303382009267807 -0.0005391263985075057 -0.020719299092888832 0.0468793660402298 0.0002923529827967286 0.04761473089456558 -0.013020467944443226 -0.01211431436240673 -0.017517268657684326 -0.06964102387428284 -0.03625047579407692 -0.004844107199460268 0.023646079003810883 -0.0085218520835042 0.05604962259531021 0.015581849031150341 -0.05334964394569397 0.006976129021495581 -0.011507917195558548 0.10252822935581207 -0.08164163678884506 -0.01335849054157734 0.05954530090093613 0.02117484249174595 -0.09496276825666428 0.008773674257099628 0.0278178621083498 -0.011435105465352535 -0.06139663606882095 -0.0014344395603984594 0.03819328919053078 -0.023241940885782242 -0.020543018355965614 -0.022165080532431602 -0.03846447542309761 -0.03363792970776558 0.014601796865463257 -0.0027353446930646896 0.052479736506938934 0.008014161139726639 0.009733670391142368 0.01861867494881153 0.03787964954972267 0.020601410418748856 -0.01293210033327341 0.008726225234568119 -0.02142231911420822 0.05427725985646248 -0.042697805911302567 -0.07574629783630371 -0.04187702015042305 0.05990882217884064 -0.04719574376940727 -0.02385863848030567 -0.03878690302371979 -0.016896171495318413 -0.0206054225564003 0.03508913144469261 -0.014039048925042152 -0.04876362532377243 0.000304916116874665 -0.026700671762228012 -0.08303869515657425 -0.10080278664827347 -0.06328511238098145 0.031148210167884827 -0.04656717926263809 -0.014650404453277588 -0.05405985563993454 0.010898340493440628 0.03866603597998619 0.015765951946377754 0.047925740480422974 0.07070593535900116 0.04007979854941368 -0.03387240692973137 0.052980922162532806 0.021879374980926514 0.061503563076257706 0.003751900279894471 -0.0169359240680933 0.01262047328054905 0.03368567302823067 -0.04480127990245819 0.036883942782878876 -0.03360112011432648 0.018845949321985245 0.00561334565281868 -0.019387738779187202 -0.011812293902039528 -0.014346028678119183 0.0014294221764430404 -0.039087481796741486 0.06856799870729446 -0.050237156450748444 -0.041620414704084396 0.04446372389793396 -0.04057667404413223 -0.07531453669071198 -0.02520379237830639 -0.0009398265974596143 -0.023732822388410568 0.07536952942609787 -0.0028068572282791138 0.026697974652051926 0.03644397482275963 -0.038134705275297165 -0.06249683350324631 -0.0018098748987540603 -0.02660158835351467 0.03449614718556404 0.014976759441196918 0.05641637742519379 0.02047591842710972 -0.008550688624382019 -0.022573722526431084 -0.051659900695085526 0.016845818608999252 -0.08992620557546616 0.02371538244187832 0.00017735564324539155 -0.03305647149682045 0.02017790824174881 -0.029104700312018394 0.01562059111893177 -0.04882382974028587 0.0016259971307590604 -0.01660960167646408 0.04053430259227753 -0.01696816459298134 -0.021506307646632195 0.02690078131854534 -0.023856116458773613 -0.014530833810567856 0.03559489920735359 -0.05287513881921768 -0.04410761594772339 0.034599557518959045 -0.01385706290602684 0.018388846889138222 0.0011333499569445848 0.02971881628036499 -0.01596040092408657 -0.10711228102445602 -0.039268624037504196 -0.02424132637679577 -0.06565526127815247 0.024188920855522156 0.029964325949549675 -0.08815242350101471 -0.05116982385516167 -0.020099369809031487 -0.041060272604227066 0.06159847602248192 -0.0237668976187706 0.04829636588692665 -0.04187500849366188 -0.0019640366081148386 -0.03402215242385864 -0.037705712020397186 0.048723917454481125 -0.05022702366113663 -0.06362823396921158 -0.056290607899427414 0.09134235978126526 -0.054098740220069885 -0.0009107627556659281 0.08117637783288956 -0.023954520002007484 0.06721027940511703 0.00693032331764698 -0.0023485138081014156 0.03557942062616348 -0.003347937483340502 -0.017811788246035576 0.04808638617396355 -0.09203041344881058 0.08726014941930771 -0.07418377697467804 0.06866694241762161 0.030117187649011612 0.01913050375878811 0.09345946460962296 0.1083955317735672 0.013856525532901287 -0.014143596403300762 -0.063724085688591 +-0.03369642794132233 -0.054533302783966064 -0.019351428374648094 0.015181019902229309 -0.029400018975138664 -0.015720995143055916 -0.05722527205944061 -0.009208654053509235 0.05708420276641846 -0.042588189244270325 0.0012571642873808742 -0.010725592263042927 -0.0306900292634964 0.0064063300378620625 0.0763191506266594 0.03370462357997894 0.021853968501091003 -0.016755236312747 0.012920192442834377 -0.0010756116826087236 0.031005917116999626 0.030860604718327522 0.01223248615860939 0.11111986637115479 0.005919291637837887 -0.004504410549998283 -0.05026844143867493 0.09465865790843964 0.010142849758267403 0.10104275494813919 -0.004526839125901461 -0.02828478254377842 -0.01104043424129486 -0.024297267198562622 0.048910051584243774 0.04867202788591385 -0.028251945972442627 0.07687021046876907 0.024539418518543243 0.04772122949361801 0.07345221936702728 -0.061329685151576996 -0.010553641244769096 -0.048413194715976715 -0.007045811973512173 -0.061544593423604965 0.009971896186470985 -0.03832055255770683 -0.023978598415851593 0.11046120524406433 0.07226832211017609 -0.012443015351891518 0.012967453338205814 -0.010317378677427769 0.02727261744439602 0.004265943076461554 -0.021796206012368202 -0.037772949784994125 0.0663658082485199 0.0560673326253891 0.0024757757782936096 -0.03393033146858215 0.01403989177197218 0.03126908466219902 0.018936576321721077 0.020706184208393097 0.05158751830458641 0.03328816220164299 -0.035813406109809875 -0.015146158635616302 0.009462617337703705 0.03420219197869301 -0.06103964522480965 -0.035846907645463943 -0.013671699911355972 -0.0044233244843780994 0.017399761825799942 0.019030043855309486 0.057534072548151016 0.022512590512633324 0.038541391491889954 -0.03234608471393585 0.00927012413740158 0.002084150677546859 0.03889569640159607 -0.06537868827581406 -0.018474532291293144 0.0019366082269698381 0.009445746429264545 -0.054478783160448074 0.08372180908918381 0.02963981404900551 0.009262030944228172 0.0028803786262869835 -0.014310223050415516 -0.00887774582952261 0.04389927536249161 -0.0509706512093544 0.05651010945439339 0.008295625448226929 -0.029593126848340034 -0.004586323164403439 0.020104290917515755 0.025260094553232193 0.034042537212371826 0.0735880434513092 -0.04991575703024864 0.04039471969008446 0.056677836924791336 0.07285018265247345 -0.02380840666592121 0.03677854686975479 0.06331370025873184 0.022564854472875595 0.023069916293025017 -0.016633503139019012 -0.015219433233141899 0.0022370237857103348 -0.06401005387306213 -0.006958432029932737 0.019450264051556587 0.07406139373779297 -0.04740667715668678 -0.04741036146879196 0.058097586035728455 0.07818698137998581 -0.0662706270813942 0.007241785991936922 -0.00983063131570816 0.022290591150522232 0.0005419472581706941 -0.003900957526639104 0.03699363395571709 -0.016743892803788185 0.011151234619319439 0.006077886559069157 -0.04243855178356171 0.02297828160226345 0.06901076436042786 0.0039267935790121555 -0.005965817719697952 -0.02901245653629303 0.08189229667186737 -0.01700437441468239 -0.027268854901194572 0.032345566898584366 -0.06300787627696991 0.041068077087402344 -0.06351606547832489 -0.05575581267476082 -0.05650104209780693 0.004931984003633261 0.04672856628894806 -0.05615316703915596 -0.02477164752781391 -0.05961892753839493 0.005370915401726961 0.020563557744026184 -0.007396448403596878 0.011221243999898434 -0.05909552052617073 -0.05797912925481796 0.06223369762301445 0.006955997087061405 0.008950202725827694 -0.007327921688556671 0.024532940238714218 -0.06630440801382065 0.006167021580040455 -0.05009438842535019 -0.02878396213054657 -0.015377920120954514 0.061634164303541183 0.043640974909067154 0.04267507046461105 0.028749458491802216 0.04002852365374565 0.012189281173050404 -0.01736622117459774 -0.07132256776094437 -0.058481283485889435 -0.022922424599528313 -0.02265450730919838 -0.02683226764202118 -0.09959675371646881 -0.012254389002919197 -0.025681963190436363 0.03536045551300049 -0.05208112671971321 -0.007510609459131956 0.02673497423529625 -0.03634857013821602 0.0809299573302269 0.04020063206553459 -0.05667577683925629 0.05486532300710678 0.03896096721291542 0.08515655249357224 -0.07315009832382202 -0.05541834607720375 -0.02754729986190796 0.03166116029024124 0.10341125726699829 -0.038322385400533676 0.005626052618026733 -0.036356233060359955 0.07783391326665878 0.0325196199119091 0.01342051848769188 -0.03546943515539169 -0.007611891254782677 0.0553295761346817 -0.04214479774236679 0.04549746587872505 0.05179000645875931 -0.029503945261240005 0.00263702729716897 -0.026411354541778564 -0.06762244552373886 -0.05020445957779884 -0.0006689002038910985 0.006544046103954315 -0.04788472503423691 -0.01056526880711317 -0.032694220542907715 -0.03895970806479454 0.015542441047728062 -0.01737353764474392 -0.029478175565600395 -0.0004703881568275392 0.004333370830863714 -0.0074549089185893536 -0.0049463906325399876 -0.006631558761000633 0.011918003670871258 0.024084076285362244 -0.027091681957244873 0.059816449880599976 -0.0857822448015213 -0.02899092063307762 -0.0840536579489708 0.036656733602285385 0.02091340348124504 -0.008725889027118683 0.026620643213391304 0.05711304396390915 0.0633217915892601 0.0791473463177681 -0.009713076055049896 -0.0029267878271639347 -0.04476934298872948 0.0142125329002738 -0.04206202179193497 -0.032910268753767014 -0.0030144283082336187 -0.04033871740102768 -0.010827625170350075 -0.12663669884204865 -0.06811855733394623 0.003971185069531202 0.034610506147146225 -0.09634701907634735 0.016542550176382065 -0.03841156139969826 0.008204306475818157 -0.02944556437432766 -0.06228666007518768 0.07408326119184494 -0.0512494221329689 -0.023569097742438316 -0.033173296600580215 0.024244189262390137 0.011925031431019306 0.054912544786930084 -0.05515240505337715 -0.05267466604709625 0.015385366976261139 -0.037972331047058105 -0.0436040423810482 -0.0459464006125927 -0.036279983818531036 -0.03176448494195938 0.034944113343954086 0.020012089982628822 0.057018812745809555 0.030178654938936234 0.024927424266934395 0.01414478849619627 -0.04561628773808479 -0.05912701040506363 -0.0013458867324516177 0.03697336092591286 0.06569795310497284 -0.019496893510222435 -0.01342234667390585 0.02089669182896614 0.031404364854097366 -0.02422725223004818 0.032681338489055634 0.010172835551202297 0.037156835198402405 -0.009492519311606884 -0.004163589794188738 -0.027313144877552986 -0.016168005764484406 0.03681420534849167 0.006737434770911932 0.024945449084043503 0.08400937914848328 0.041299715638160706 0.0030940871220082045 0.029596591368317604 0.04993712157011032 0.007347074802964926 -0.003477790392935276 0.025655480101704597 -0.02211909182369709 0.03858546167612076 -0.019903605803847313 -0.02882431633770466 -0.0253189355134964 -0.01671222411096096 0.0031108020339161158 -0.026960382238030434 0.020400015637278557 0.014997689984738827 -0.07324406504631042 0.023053115233778954 0.03671485185623169 0.07763352990150452 0.0277866143733263 -0.0017237699357792735 -0.028196632862091064 -0.023451991379261017 -0.01027585007250309 -0.029868116602301598 -0.0892292782664299 0.09295659512281418 -0.05206412449479103 0.08279130607843399 0.014906708151102066 -0.0764576643705368 -0.030813109129667282 0.03898695111274719 0.10575410723686218 -0.07756775617599487 -0.012309298850595951 0.03248243406414986 -0.01365103293210268 -0.061383698135614395 -0.0031903949566185474 -0.07807106524705887 -0.09040958434343338 -0.03325175493955612 -0.017640920355916023 0.034968920052051544 -0.0011820136569440365 -0.08465497940778732 -0.005936361849308014 -0.025050165131688118 0.007743672002106905 0.09342997521162033 -0.06381530314683914 0.00583223719149828 -0.017361938953399658 -0.03355943039059639 -0.05048919841647148 0.02376719005405903 -0.00997565034776926 -0.06685306876897812 0.010407901369035244 0.045755598694086075 -0.018281953409314156 0.0158949363976717 0.005310367327183485 -0.024501590058207512 0.007614674046635628 -0.04730335250496864 0.02246558479964733 -0.06033501401543617 -0.006369245704263449 0.03220512345433235 0.03420643508434296 0.0033518020063638687 0.002560017164796591 -0.06406844407320023 0.014999156817793846 0.002104852581396699 -0.04464422166347504 -0.06743822991847992 0.0711037889122963 0.01505034789443016 0.05360470712184906 -0.03722640126943588 -0.009453007951378822 -0.10913431644439697 -0.022972876206040382 0.023531224578619003 0.05569516122341156 0.036890726536512375 0.00744888698682189 0.07511386275291443 0.03495527803897858 -0.006612017750740051 -0.003477668622508645 -0.05132484808564186 0.07794223725795746 -0.043699607253074646 0.006226911675184965 -0.013684272766113281 -0.032853953540325165 0.005110543221235275 -0.004028966184705496 -0.06919301301240921 0.031635526567697525 -0.00010989877046085894 -0.000537694024387747 -0.05120569467544556 0.02820410020649433 -0.07062452286481857 0.07165348529815674 -0.06411968171596527 0.0008152704103849828 0.020710745826363564 -0.0329924151301384 -0.0516224205493927 0.041973572224378586 0.01081532146781683 -0.06342361122369766 -0.0163535438477993 -0.010019888170063496 -0.006000744178891182 0.04717157781124115 -0.019894858822226524 0.080448217689991 -0.025460142642259598 0.08405127376317978 -0.019347280263900757 -0.08518288284540176 0.03302684798836708 -0.012416617944836617 -0.06309976428747177 0.03426338732242584 0.018916906788945198 -0.015454466454684734 0.02049415558576584 0.023045193403959274 0.005850303918123245 0.056264787912368774 0.08671145141124725 -0.061489932239055634 -0.06348980963230133 -0.034188345074653625 0.07871353626251221 0.0269145667552948 0.07598044723272324 -0.02825908176600933 -0.07871808856725693 -0.08334740251302719 -0.013327636756002903 -0.031171226873993874 -0.08954106271266937 -0.07825097441673279 0.03568486496806145 0.04155714437365532 -0.11170803755521774 0.039189066737890244 -0.08983595669269562 -0.09658891707658768 0.028760109096765518 -0.0011827429989352822 -0.019172482192516327 -0.03420413285493851 0.05618029832839966 -0.01372253056615591 0.07583256810903549 0.014963450841605663 -0.019663803279399872 0.039875585585832596 0.004184892401099205 0.007495200727134943 -0.045506082475185394 -0.051275599747896194 -0.005320457275956869 -0.05151817202568054 0.008760424330830574 0.001301914919167757 -0.020680783316493034 -0.04901650547981262 0.020133240148425102 0.030915962532162666 0.056638628244400024 0.04537251591682434 -0.009301861748099327 0.014199294149875641 0.0925159677863121 0.046529799699783325 -0.022445669397711754 -0.060096051543951035 -0.01513709221035242 0.04002569243311882 0.024237068369984627 0.048732686787843704 -0.05313974618911743 0.11409801989793777 -0.021777715533971786 -0.03248047083616257 0.014018332585692406 0.03195829316973686 0.121965192258358 0.029871031641960144 -0.05099503695964813 +0.0441698394715786 -0.06849054247140884 -0.038723159581422806 0.07149077951908112 -0.06063409522175789 -0.025898732244968414 -0.014867404475808144 0.021043479442596436 0.007584326900541782 -0.0732915922999382 -0.03679623827338219 0.010745804756879807 0.026966875419020653 0.04355024918913841 0.04814176261425018 -0.01962522231042385 -0.04220923036336899 0.04908458888530731 -0.012688792310655117 -0.012929323129355907 0.031837042421102524 -0.029537536203861237 -0.04470483586192131 0.06388586759567261 0.013943076133728027 0.03900735080242157 -0.04203372821211815 0.012351739220321178 0.02512945793569088 0.021831655874848366 0.03170314431190491 -0.03892019763588905 -0.009696565568447113 -0.06954209506511688 -0.06611726433038712 0.060699138790369034 -0.04554348066449165 0.107021264731884 -0.007180419284850359 0.004222470801323652 -0.07010138779878616 0.0241476409137249 -0.10546133667230606 -0.10628306865692139 0.03086245059967041 0.006086540874093771 0.03346596285700798 -0.002509797690436244 0.024707607924938202 0.017032794654369354 0.04086114093661308 -0.005634700413793325 -0.026595402508974075 -0.00667383149266243 -0.05902044102549553 -0.000841988658066839 0.045265380293130875 -0.045775748789310455 -0.011029727756977081 0.055273279547691345 -0.087293341755867 -0.026571059599518776 0.027327943593263626 0.039045438170433044 -0.01747424714267254 0.0035969307646155357 0.020865367725491524 0.04348568990826607 -0.011684004217386246 -0.054171137511730194 -0.0178539976477623 0.05248066037893295 -0.0023273653350770473 -0.027575718238949776 0.03412503004074097 -0.06965029984712601 -0.011258002370595932 0.03861355781555176 0.0031791594810783863 -0.00010768134234240279 0.022471843287348747 -0.030066991224884987 0.14424610137939453 0.017228050157427788 -0.036397602409124374 -0.028337387368083 0.019823530688881874 -0.01539075281471014 0.0195427518337965 0.013985623605549335 0.02135012298822403 0.09327049553394318 -0.048509079962968826 0.057119935750961304 0.03987240791320801 0.008098985068500042 0.013989550061523914 -0.13091397285461426 -0.0548255480825901 0.005164328031241894 -0.005265805404633284 -0.03910892456769943 0.04620087146759033 0.008996873162686825 0.05484814569354057 -0.011730581521987915 -0.06391425430774689 4.932941010338254e-05 0.025458091869950294 0.003504654625430703 0.03582385182380676 0.09226839244365692 0.03005259670317173 0.055255793035030365 0.0666700005531311 -0.03358564153313637 -0.005245100241154432 -0.06115567311644554 -0.05495446175336838 0.013498570770025253 0.013049768283963203 0.03137080371379852 0.0019600926898419857 -0.0988505557179451 -0.018184207379817963 -0.021744882687926292 -0.1394423246383667 -0.004685600288212299 0.03365059569478035 -0.03491932153701782 0.10510627925395966 0.040633831173181534 -0.03341821953654289 0.027594244107604027 0.029260432347655296 0.05785954371094704 0.016888882964849472 0.043542344123125076 0.009725719690322876 -0.015386913903057575 0.007075428031384945 0.06578196585178375 0.01850125379860401 -0.022411223500967026 0.09023115783929825 0.0115302549675107 -0.01418238878250122 -0.0040129697881639 -0.04399013891816139 -0.009700873866677284 -0.06290663033723831 -0.035285864025354385 0.029995381832122803 -0.04262472316622734 0.01162258256226778 0.008507243357598782 0.058738622814416885 0.030269071459770203 -0.052143119275569916 -0.040789514780044556 -0.06549433618783951 0.004168784245848656 -0.0037919713649898767 -0.07184415310621262 -0.004194315988570452 0.0075422897934913635 -0.028866374865174294 0.008764040656387806 -0.05534727871417999 -0.022241530939936638 -0.008879981935024261 -0.019769685342907906 0.06390725076198578 0.04046899080276489 0.0748409852385521 -0.017149396240711212 0.0011272126575931907 -0.08413972705602646 -0.00036725247628055513 0.009047763422131538 -0.0019253977807238698 -0.02362128719687462 -0.002489047357812524 -0.05455698072910309 -0.03431392088532448 -0.0006142212077975273 0.007994094863533974 -0.05674085021018982 -0.01423459779471159 -0.05177271366119385 -0.07447472959756851 -0.05598161742091179 0.06376143544912338 0.061064887791872025 -0.01879354566335678 0.043152522295713425 -0.03913925588130951 0.06494423002004623 0.00306002888828516 0.002572476165369153 -0.052621956914663315 0.04797264561057091 -0.032936904579401016 0.0759783536195755 0.014975756406784058 -0.06540600955486298 0.05535287410020828 0.02242516539990902 0.05704592913389206 -0.05991070345044136 0.003363577416166663 0.0136363934725523 -0.04184018820524216 0.0651903823018074 0.07452581077814102 -0.00843329168856144 -0.04053782299160957 0.05992100387811661 0.056155476719141006 -0.06245929375290871 -0.0004910512361675501 -0.008060435764491558 -0.08582985401153564 -0.03749997913837433 -0.02149282768368721 -0.05041883513331413 -0.04585172235965729 0.05565682053565979 -0.037573281675577164 -0.027744129300117493 -0.012136324308812618 0.03683805465698242 -0.0010199215030297637 -0.05287384241819382 0.002722016302868724 -0.016326282173395157 -0.07064658403396606 0.06534899026155472 0.0052381642162799835 -0.09550465643405914 -0.06231163814663887 -0.004391162656247616 0.060254745185375214 0.011623851954936981 0.031037596985697746 0.06523606926202774 0.044290151447057724 0.026331009343266487 -0.02810973860323429 0.0242164246737957 -0.015523653477430344 -0.037761393934488297 0.0018418862018734217 0.05797286331653595 -0.020469510927796364 -0.02428758144378662 -0.0141776567324996 -0.04765404760837555 -0.002548458520323038 0.012878334149718285 -0.005461063235998154 -0.03550172969698906 -0.04366883635520935 -0.042231056839227676 0.011808489449322224 -0.04039851576089859 0.027482450008392334 -0.004482796881347895 -0.033706631511449814 0.06330886483192444 -0.058400508016347885 -0.06274212151765823 0.036694154143333435 0.0011026561260223389 0.020206863060593605 -0.05055902153253555 0.03342491015791893 -0.017415767535567284 -0.08001012355089188 0.0033532697707414627 -0.06791441142559052 -0.04283049330115318 -0.048668812960386276 0.013301242142915726 -0.04881366714835167 0.10806959867477417 0.011607452295720577 -0.05004458874464035 -0.03870916739106178 -0.030691904947161674 0.012366287410259247 -0.08165394514799118 0.018174225464463234 -0.013410823419690132 -0.056019511073827744 -0.02709769271314144 0.042833611369132996 -0.011257817968726158 -0.030348701402544975 0.0022887815721333027 0.013337010517716408 -0.07878059148788452 0.0612824410200119 0.009850963950157166 -0.07280102372169495 -0.00492201978340745 -0.09530367702245712 0.019720768555998802 0.09162587672472 0.012657801620662212 -0.008210992440581322 0.013899765908718109 0.03349968418478966 0.08727876842021942 -0.02879265695810318 0.007907145656645298 0.00022423028713092208 -0.05781625956296921 -0.027542119845747948 0.07669100910425186 -0.0469621978700161 0.00839150045067072 0.0019210975151509047 -0.01113240234553814 0.05385769158601761 -0.005248613189905882 -0.019098347052931786 -0.003909839317202568 0.01618756726384163 0.010443847626447678 0.03789021447300911 -0.02013956382870674 0.022027011960744858 -0.053283218294382095 -0.041024960577487946 -0.09316513687372208 0.00014101008127909154 0.041797224432229996 -0.013204069808125496 0.049622077494859695 -0.005309558939188719 -0.07292382419109344 0.009689859114587307 -0.01789925992488861 0.11687404662370682 -0.056864868849515915 -0.006520562805235386 0.06544528156518936 0.02209884114563465 -0.06786862015724182 0.04110366851091385 0.010934345424175262 -0.05573900789022446 -0.05746820941567421 -0.018954360857605934 0.02783873677253723 -0.06578000634908676 -0.017134135589003563 -0.007154053542762995 -0.009086276404559612 0.021799791604280472 0.02984776347875595 0.026107393205165863 0.03873145580291748 -0.006058206781744957 -0.022922856733202934 0.04697049781680107 0.004312976263463497 0.012776761315762997 -0.049692027270793915 0.008297118358314037 0.0008829249418340623 0.0764569416642189 -0.02782794088125229 -0.014902000315487385 -0.042185451835393906 0.057907216250896454 0.007195069454610348 -0.019573358818888664 -0.03113102726638317 -0.05320926383137703 -0.022551516070961952 0.0012327708536759019 0.040304820984601974 -0.04773436486721039 -0.048080332577228546 -0.09030564874410629 -0.06634611636400223 -0.07646230608224869 -0.025482170283794403 0.026276404038071632 -0.02132631465792656 0.023208903148770332 -0.06228525936603546 -0.022312836721539497 0.05687379091978073 -0.008729593828320503 0.0016292522195726633 0.038141846656799316 0.027457311749458313 -0.05401533097028732 0.04231316223740578 -0.039281848818063736 0.060045722872018814 0.03567357733845711 -0.015612722374498844 0.019647907465696335 0.03281332924962044 -0.04853786900639534 0.05189225822687149 -0.016360241919755936 0.004018847364932299 0.03188452497124672 -0.01936882920563221 0.0004069558926858008 -0.0013981279917061329 0.016085248440504074 -0.052869196981191635 0.025639574974775314 -0.06861941516399384 -0.039190225303173065 0.012206477113068104 -0.05507058650255203 -0.0898565948009491 -0.07000227272510529 0.014952911995351315 -0.014466826803982258 0.010273019783198833 -0.013478469103574753 0.02378462813794613 0.07620108872652054 -0.027860797941684723 -0.021691443398594856 0.017320571467280388 -0.043817922472953796 0.044896479696035385 -0.017192140221595764 0.04859862104058266 0.03767542913556099 0.021826205775141716 0.018541639670729637 0.024674033746123314 -0.012557176873087883 -0.0420725978910923 0.004933701362460852 0.010165300220251083 -0.06421127915382385 0.008590823039412498 0.012791136279702187 0.020677734166383743 -0.04720774665474892 -0.03006814420223236 -0.032643042504787445 0.09061820060014725 0.052101366221904755 0.023248691111803055 0.03985874354839325 -0.032089754939079285 0.036860834807157516 0.033018529415130615 -0.04103526100516319 -0.08061540126800537 -0.013966682367026806 -0.04840438812971115 0.040348686277866364 0.001674311002716422 0.00024082687741611153 -0.012207671999931335 -0.06945125758647919 0.04645943269133568 -0.03489058092236519 -0.07937371730804443 0.02098751999437809 0.03001294657588005 -0.016416138038039207 -0.03676991909742355 0.005639692768454552 -0.07848615199327469 0.05405551567673683 0.03903938829898834 0.07473709434270859 -0.021944737061858177 -0.012166204862296581 -0.018106525763869286 -0.025109324604272842 0.030260177329182625 -0.023457329720258713 -0.05249335244297981 0.015786660835146904 0.09507390856742859 -0.06664125621318817 0.01041876059025526 0.045247163623571396 0.010320782661437988 0.04906423017382622 0.01851881667971611 -0.051752474159002304 0.06662245094776154 0.007198929321020842 -0.03158888220787048 0.0706419050693512 -0.06284081935882568 0.06538745015859604 -0.07696673274040222 0.08727510273456573 -0.017301777377724648 0.014148159883916378 0.09277445822954178 0.058545373380184174 0.004151305183768272 0.04775843024253845 -0.03589735925197601 +0.04156508669257164 -0.01802360825240612 -0.008733125403523445 0.03384571522474289 -0.060429129749536514 0.01203183364123106 -0.05224640294909477 0.03554414585232735 -0.0024780170060694218 -0.07635565847158432 -0.0656658187508583 -0.028935344889760017 -0.04409584775567055 0.003073156112805009 0.05748274549841881 -0.04755164682865143 -0.05477017164230347 0.03626587241888046 -0.04084927588701248 -0.037410419434309006 0.0009544255444779992 0.06667830049991608 -0.023838143795728683 0.07359418272972107 0.013830428011715412 0.04199691116809845 -0.03682142496109009 0.036597222089767456 -0.030514098703861237 0.08628912270069122 0.05065498501062393 0.002887590089812875 0.07751308381557465 -0.061449505388736725 -0.0018759076483547688 0.057646751403808594 -0.012775549665093422 0.09655864536762238 0.06380616873502731 -0.04048362374305725 -0.012907645665109158 -0.00235736183822155 -0.04141630604863167 -0.1196998730301857 0.03201994299888611 -0.02670811116695404 -0.02991093322634697 -0.04097535088658333 0.0009629242122173309 0.0399281308054924 0.06872009485960007 -0.02036449871957302 -0.04167507588863373 -0.007249267306178808 -0.022918688133358955 0.025657612830400467 0.04049103707075119 -0.06359163671731949 0.019120197743177414 0.029985465109348297 -0.08541722595691681 -0.003237583674490452 0.019978316500782967 0.011734644882380962 -0.028210705146193504 -0.009441407397389412 0.041075512766838074 0.05052598565816879 0.03862825036048889 -0.014305775985121727 0.008240269497036934 0.06942746043205261 -0.05519460514187813 -0.033805422484874725 0.02106611616909504 -0.04390452429652214 -0.021094080060720444 0.011443781666457653 0.011453877203166485 0.015192339196801186 0.06631745398044586 -0.040355660021305084 0.1438693404197693 -0.04005158692598343 0.003030759282410145 -0.034957531839609146 -0.03721670061349869 -0.07198227941989899 0.018910346552729607 -0.026881812140345573 0.01917828433215618 0.03799288347363472 0.02759328857064247 0.009361364878714085 0.019377317279577255 0.01651555299758911 -0.005800401791930199 -0.10569426417350769 -0.006039232946932316 -0.0041397628374397755 0.007029072847217321 0.030393444001674652 0.04466386139392853 0.04441998526453972 0.07408524304628372 0.039358336478471756 -0.03874373063445091 -0.019573140889406204 0.041888248175382614 -0.002689226297661662 0.005358710419386625 0.08871430158615112 0.06827867031097412 -0.0061406418681144714 0.0545569472014904 -0.0016637988155707717 0.006937291007488966 -0.05261818692088127 -0.0016330081271007657 0.0029395611491054296 -0.03269703686237335 0.0377982035279274 -0.023145580664277077 -0.07398540526628494 0.0006427256157621741 0.0379134863615036 -0.07573457807302475 -0.04819025471806526 0.0042174141854047775 -0.0474836640059948 0.11487934738397598 0.04317047446966171 -0.06493216007947922 -0.0010272231884300709 0.020504744723439217 0.0243049468845129 -0.004693310707807541 0.006042132619768381 0.021295903250575066 -0.025894273072481155 -0.015017209574580193 0.04731171950697899 -0.022319626063108444 -0.035433243960142136 0.05808093771338463 0.005461483262479305 -0.008929855190217495 -0.04395066574215889 -0.10374461859464645 -0.004266954027116299 -0.08053030073642731 -0.07080807536840439 0.024930447340011597 -0.058712951838970184 0.005964746233075857 0.03955730050802231 0.01930573582649231 0.013255016878247261 -0.029518403112888336 -0.05391857773065567 -0.06652380526065826 -0.008167421445250511 -0.009536799974739552 -0.09073847532272339 -0.018447231501340866 -0.012535287998616695 -0.008364260196685791 0.010232968255877495 -0.06500091403722763 -0.02575874887406826 -0.0453839935362339 0.0048575433902442455 0.027354631572961807 0.08689021319150925 0.08969604223966599 0.016268689185380936 0.01447692047804594 -0.06918362528085709 -0.020160311833024025 -0.01814888045191765 0.017036838456988335 -0.04007734730839729 0.03471514210104942 -0.030606327578425407 0.011973143555223942 -0.03231359273195267 0.03934972733259201 0.012155400589108467 0.06738677620887756 0.015890059992671013 -0.012137128971517086 -0.04479701817035675 0.05999825894832611 0.060956116765737534 -0.0027473410591483116 0.034333735704422 0.008796336129307747 0.08247607201337814 -0.015148712322115898 -0.01696079969406128 -0.06954624503850937 0.0562734492123127 0.051837678998708725 0.05991564691066742 0.03986212983727455 -0.04202745854854584 0.06812066584825516 0.037892259657382965 0.02202899381518364 -0.014539201743900776 0.04167407751083374 0.0298375952988863 -0.015974633395671844 0.04584247246384621 0.06160802021622658 -0.012215692549943924 0.000885403249412775 -0.026615183800458908 0.01872895285487175 -0.07651087641716003 -0.02314019203186035 0.006383699364960194 -0.09638765454292297 0.034871865063905716 -0.05658767744898796 -0.07357988506555557 -0.011343155987560749 0.011347027495503426 -0.006116093136370182 -0.027338184416294098 0.046328842639923096 0.02987641841173172 -0.027022138237953186 0.003858489217236638 0.008572722785174847 -0.05615833401679993 -0.07602924853563309 0.07548554241657257 -0.0331437774002552 -0.06942124664783478 -0.051383018493652344 0.008696307428181171 0.04212947562336922 -0.011841613799333572 0.027475843206048012 0.060210056602954865 0.08108647167682648 0.030081531032919884 -0.04578149691224098 0.012740234844386578 -0.02592957206070423 -0.061385925859212875 -0.010283291339874268 0.01815921440720558 0.00971655361354351 -0.07983372360467911 0.015015541575849056 -0.06696352362632751 -0.012346240691840649 0.012900012545287609 0.045081727206707 -0.03762255609035492 0.038878556340932846 -0.06171596422791481 0.016486231237649918 -0.018209831789135933 -0.008249380625784397 0.08919594436883926 -0.026103109121322632 0.004282503388822079 -0.02785755693912506 -0.014421574771404266 0.05205400660634041 -0.01865532249212265 0.022167595103383064 -0.02277364954352379 0.07756534218788147 -0.003967992030084133 -0.0500834621489048 -0.038887497037649155 -0.05433512106537819 -0.03699292987585068 -0.02288174256682396 -0.019593508914113045 -0.03967423737049103 0.044605087488889694 0.055481769144535065 -0.03591961786150932 -0.05362476408481598 -0.03457784652709961 -0.05491126701235771 -0.07299209386110306 -0.02747388184070587 -0.023126598447561264 -0.06473691016435623 -0.02199716679751873 0.010824579745531082 -0.03995819389820099 -0.03711770474910736 0.003404236165806651 0.009535795077681541 -0.10021660476922989 0.026360996067523956 -0.00962879229336977 -0.05558750405907631 0.014453594572842121 -0.07386612147092819 0.02487477846443653 0.07635634392499924 0.052236467599868774 0.010469458065927029 0.021689366549253464 0.042435988783836365 0.08464610576629639 -0.04470427334308624 0.01559781190007925 -0.08383920788764954 -0.005307849030941725 -0.058944057673215866 0.06941892951726913 -0.004356519319117069 -0.026286978274583817 0.023640740662813187 0.003998664673417807 0.031938597559928894 0.00011332968279020861 -0.033242881298065186 -0.058061882853507996 0.0340043380856514 -0.021638013422489166 0.05228507146239281 -0.05634687468409538 0.02853451296687126 -0.027109624817967415 -0.058100342750549316 -0.037725962698459625 -0.03411586210131645 0.05138179287314415 -0.0014380313223227859 0.014905593357980251 -0.010139977559447289 -0.07123713940382004 -0.023179464042186737 -0.008602604269981384 0.09023939818143845 -0.07080644369125366 0.030013691633939743 0.05185645818710327 0.009941197000443935 -0.08880859613418579 -0.015619940124452114 0.012428989633917809 -0.06317225843667984 -0.06727276742458344 0.0020104236900806427 0.041879523545503616 -0.07457588613033295 -0.06575807929039001 -0.04130159318447113 -0.01631246879696846 -0.011168940924108028 0.02860952354967594 0.027056539431214333 0.03117942437529564 0.005647334270179272 -0.019640596583485603 0.0008802319061942399 0.002415768336504698 0.005834757816046476 0.0127644632011652 0.007597549352794886 -0.01970973238348961 0.016217665746808052 -0.06415896117687225 -0.02658390812575817 -0.02817847952246666 0.040037669241428375 -0.016756853088736534 0.03327489271759987 0.013147995807230473 -0.030097313225269318 -0.04221349209547043 0.016498150303959846 0.011535110883414745 -0.03195236250758171 -0.04828890040516853 0.0041862353682518005 -0.05326182767748833 -0.06147359311580658 -0.003036500420421362 -0.002815870800986886 -0.006055929232388735 0.027855627238750458 -0.046341150999069214 0.001566207385621965 0.04039661958813667 0.013224581256508827 0.034280285239219666 0.057756923139095306 0.027400873601436615 -0.035807061940431595 0.013053533621132374 -0.03596995770931244 0.051093753427267075 0.05681091547012329 -0.06272784620523453 -0.03810578212141991 -0.018636854365468025 -0.045237038284540176 0.03713428974151611 -0.03869377076625824 -0.05264666676521301 0.04785466939210892 -0.019543668255209923 0.003926492296159267 -0.020251808688044548 0.050579510629177094 -0.049895279109478 0.062270570546388626 -0.08598066866397858 -0.031164756044745445 -0.024082105606794357 -0.024761667475104332 -0.09088170528411865 -0.046877097338438034 -0.03281698748469353 -0.0282845851033926 0.04940536618232727 -0.05122654512524605 0.0064261071383953094 0.045468758791685104 -0.046226900070905685 -0.06265276670455933 -0.028638578951358795 0.016449136659502983 0.011019785888493061 0.02713920548558235 0.04177163541316986 -0.0028981510549783707 -0.006595395039767027 -0.038390692323446274 -0.03446485474705696 -0.022786546498537064 -0.05128650739789009 -0.0011591528309509158 0.019397152587771416 -0.04546510800719261 0.027959348633885384 0.017372284084558487 0.010304841212928295 -0.03473182022571564 -0.03621324524283409 -0.026582861319184303 0.05775976553559303 0.0008510909392498434 0.02076449804008007 0.023777825757861137 -0.047352295368909836 -0.003412042511627078 0.07378926873207092 -0.08311738073825836 -0.07094556838274002 -0.05437187850475311 -0.017850534990429878 0.05892670527100563 -0.004767498001456261 0.00429051136597991 -0.07246201485395432 -0.037485454231500626 0.028421318158507347 -0.018597833812236786 -0.05216073989868164 -0.028981657698750496 0.04384402930736542 -0.04809029772877693 -0.05405258759856224 0.013873215764760971 -0.09408902376890182 0.044911399483680725 0.0572766475379467 0.08024429529905319 -0.02632918581366539 -0.012107028625905514 -0.011182954534888268 -0.02911457233130932 0.023700783029198647 -0.011284801177680492 -0.04584476351737976 -0.0018124462803825736 0.10107411444187164 -0.029611904174089432 0.02002466842532158 0.07412724941968918 -0.02442939579486847 0.028844431042671204 0.052296899259090424 -0.007241916377097368 0.011642040684819221 -0.01122297439724207 -0.030448460951447487 0.08742015808820724 -0.060546521097421646 0.08612165600061417 -0.04494217783212662 0.12224221974611282 -0.010607227683067322 -0.00650649331510067 0.0857023224234581 0.08270330727100372 0.04591219872236252 0.035504862666130066 -0.09172710031270981 +0.01036520954221487 -0.03737454116344452 -0.02819015271961689 0.037554781883955 -0.08455086499452591 -0.04254794493317604 0.00025630451273173094 0.03929785639047623 -0.006725276354700327 -0.04647339880466461 -0.05219518393278122 0.0315852016210556 0.015303942374885082 0.03478532284498215 0.03105429746210575 -0.04825742170214653 -0.06707344949245453 -0.000963343947660178 -0.01471334882080555 -0.03447249159216881 0.029531430453062057 -0.015793707221746445 -0.05978371575474739 0.05897054076194763 0.03548397496342659 0.021201716735959053 -0.03417249396443367 -0.0021316767670214176 0.03197620064020157 0.017411934211850166 0.07343641668558121 -0.043042540550231934 -0.003960041794925928 -0.05508650466799736 -0.08003079891204834 0.06143869459629059 -0.024999286979436874 0.12290342152118683 0.006601071450859308 0.016653262078762054 -0.04297229275107384 -6.672923336736858e-05 -0.05237375572323799 -0.03616148605942726 0.021190714091062546 -0.03058108314871788 0.0007976830238476396 -0.019190475344657898 0.020025892183184624 0.0014207800850272179 0.07337416708469391 0.009863674640655518 -0.019672401249408722 -0.026617852970957756 -0.04737198352813721 0.016712982207536697 -0.0030208968091756105 -0.029733730480074883 -0.048408087342977524 0.01716584712266922 -0.07771050184965134 -0.0038767396472394466 -0.0010769375367090106 0.005955005530267954 -0.009918497875332832 0.00789335835725069 -0.012965479865670204 0.0802718847990036 -0.015062480233609676 -0.04022761806845665 0.021218908950686455 0.05528974160552025 -0.033976320177316666 -0.04365575313568115 0.04445374757051468 -0.052908167243003845 0.006917500402778387 0.02892838977277279 -0.009443232789635658 -0.009722298011183739 0.00013956028851680458 -0.016967345029115677 0.13271771371364594 -0.02116919867694378 -0.04806927964091301 -0.02487737312912941 -0.008988319896161556 -0.03335662558674812 0.04833175987005234 0.028346413746476173 0.042386867105960846 0.07870620489120483 -0.06196263059973717 0.053557686507701874 0.0061646876856684685 -0.022876430302858353 0.027759937569499016 -0.1450488567352295 -0.04666601121425629 0.01604541204869747 0.006167056504637003 -0.03056565299630165 0.08437993377447128 -0.04453955963253975 0.04457700252532959 0.045076366513967514 -0.07401207089424133 0.003082015784457326 0.023381847888231277 0.008219695650041103 0.04633553326129913 0.11104704439640045 0.04410107061266899 0.09880954772233963 0.08467521518468857 6.804987060604617e-05 -0.006134055554866791 -0.04397721216082573 -0.060251716524362564 -0.006087171845138073 0.007065097335726023 0.0663008838891983 -0.0006425922038033605 -0.061122193932533264 -0.03111003339290619 -0.004443239886313677 -0.13823895156383514 0.027412021532654762 0.07641568034887314 -0.007793622091412544 0.09417948126792908 0.04602934047579765 0.011015200987458229 0.04587506502866745 0.05288819968700409 0.01941544935107231 0.017245573922991753 0.01106460765004158 0.003004875034093857 -0.04134345427155495 -0.04121142998337746 0.05169029161334038 0.03704536333680153 -0.010684529319405556 0.03536667674779892 0.04789470508694649 0.014061924070119858 -0.0005985720199532807 -0.007593452464789152 -0.01579020544886589 -0.08271438628435135 -0.05606169253587723 0.026936763897538185 -0.06761244684457779 0.04522152617573738 0.03032596968114376 0.07260576635599136 0.033357586711645126 -0.015932220965623856 -0.0012480276636779308 -0.034211743623018265 -0.03061625175178051 0.003943463787436485 -0.07359772175550461 0.027572039514780045 0.02852598764002323 -0.024128101766109467 -0.004789142403751612 -0.04162653535604477 -0.01713157445192337 -0.01018373854458332 -0.03783423826098442 0.02754071354866028 0.0859202966094017 0.021064508706331253 -0.03288061171770096 0.02858903259038925 -0.06913365423679352 -0.015722937881946564 0.0003065517812501639 0.025164540857076645 -0.051010459661483765 0.02769569680094719 -0.0710211917757988 -0.04760044813156128 -0.008497707545757294 0.0033232583664357662 -0.047105465084314346 -0.006920217536389828 -0.04008249565958977 -0.05422957241535187 -0.051627352833747864 0.028099309653043747 0.059029992669820786 -0.026433171704411507 0.05777464807033539 0.013995648361742496 0.07027019560337067 0.02154560200870037 0.000484529125969857 -0.07906004786491394 -0.002959376899525523 -0.009111082181334496 0.04197164624929428 0.025651976466178894 -0.07003070414066315 0.0876699760556221 0.02867067977786064 0.05885334312915802 -0.08859695494174957 -0.011470114812254906 0.031081365421414375 0.000430974701885134 0.08142496645450592 0.07868294417858124 -0.04582364857196808 -0.032061781734228134 0.03054444119334221 0.039434291422367096 -0.07429178804159164 -0.008090212009847164 0.00011099621769972146 -0.043980732560157776 -0.01815616898238659 -0.027482783421874046 -0.07359953224658966 -0.04534348100423813 0.01580345630645752 -0.005017280112951994 -0.0497150793671608 -0.03851921111345291 0.06461615860462189 -0.003796183969825506 -0.02068052813410759 -0.0032149655744433403 0.01449571643024683 -0.059673722833395004 0.06235986575484276 -0.023900097236037254 -0.09595286846160889 -0.07734301686286926 -0.005303751677274704 0.02776111103594303 0.04601196572184563 0.02600952610373497 0.04651426151394844 0.09110620617866516 0.026906028389930725 -0.05899593234062195 0.00818476639688015 -0.018589124083518982 -0.019448542967438698 0.002698940923437476 0.03876843303442001 -0.038565024733543396 -0.06629829853773117 0.015762828290462494 -0.07796213775873184 -0.013584622181952 -0.023425770923495293 0.047904521226882935 -0.013168229721486568 -0.07748541235923767 -0.017596689984202385 0.022724907845258713 -0.0027386839501559734 -0.01140481699258089 -0.03530282527208328 -0.052702415734529495 0.08015573769807816 -0.05856730416417122 -0.03868207335472107 -0.007897200994193554 0.0014642250025644898 0.005637770984321833 -0.04999825358390808 0.04997390881180763 -0.04321504384279251 -0.042623866349458694 -0.010559756308794022 -0.05024200677871704 -0.06777936220169067 -0.032307568937540054 0.001862460863776505 -0.020703429356217384 0.09871380031108856 -0.004033369943499565 -0.04889220371842384 0.0024953170213848352 -0.031039919704198837 0.006563978269696236 -0.03926703333854675 0.005906717386096716 -0.00439588725566864 -0.055770352482795715 0.006174291949719191 0.03757547587156296 -0.02220230922102928 -0.017224358394742012 0.08040034770965576 -0.0037603238597512245 -0.030862247571349144 0.04779680445790291 -0.02606731280684471 -0.03325508162379265 -0.03348083794116974 -0.08218778669834137 0.03346624970436096 0.08063965290784836 0.023495573550462723 0.03364648297429085 0.029693404212594032 0.03856611251831055 0.07766233384609222 0.002285337308421731 -0.029172709211707115 0.045746006071567535 -0.06984399259090424 -0.06871318072080612 0.06941332668066025 -0.016651717945933342 0.011937793344259262 -0.026588603854179382 0.005496852099895477 0.04967579245567322 -0.0006521102623082697 0.0015628956025466323 -0.01935405842959881 0.017499666661024094 0.0025269631296396255 0.022107915952801704 -0.008375137113034725 -0.00800078734755516 -0.0057739028707146645 -0.0459464006125927 -0.09800851345062256 -0.05400506407022476 0.05437830463051796 0.013716421090066433 0.05848712474107742 -0.018797773867845535 -0.07105988264083862 0.014702651649713516 0.004793865606188774 0.10083886981010437 -0.06903474032878876 0.004468422383069992 0.005070373881608248 0.04087633267045021 -0.07993147522211075 0.00539071811363101 0.009217488579452038 -0.0399121530354023 -0.06749375909566879 -0.00020409289572853595 0.04769999161362648 -0.05950288474559784 -0.024160906672477722 -0.0105390390381217 -0.02329763025045395 0.03785112872719765 0.021763332188129425 -0.010866059921681881 0.06278349459171295 0.03964883089065552 -0.0321081280708313 0.05392103269696236 0.03196563199162483 0.024511830881237984 -0.04899558424949646 0.04557947814464569 -0.035724569112062454 0.11230172961950302 -0.010151494294404984 -0.04000227153301239 -0.09266948699951172 0.028074730187654495 -0.014673243276774883 0.0002787289849948138 -0.07667072862386703 -0.013248530216515064 0.007193115074187517 0.0255780927836895 0.019034966826438904 -0.07787048816680908 -0.018272673711180687 -0.06800757348537445 -0.06613843888044357 -0.06641019880771637 -0.05145096033811569 0.03512725606560707 -0.04706619307398796 0.03333884850144386 -0.04934243485331535 -0.018277877941727638 0.0235222689807415 -0.019512256607413292 0.022958867251873016 0.013286848552525043 0.04003145918250084 -0.02177582122385502 0.06691049784421921 0.0017552857752889395 0.053355872631073 -0.015547641552984715 -0.02939746342599392 0.059407565742731094 0.05677741393446922 -0.02762397937476635 0.05201674625277519 -0.03466189280152321 0.010460463352501392 -0.013047636486589909 -0.025744473561644554 0.012105881236493587 0.021330170333385468 -0.026411576196551323 -0.06489614397287369 0.026186693459749222 -0.07109732180833817 -0.04620833694934845 0.04829396679997444 -0.04743867740035057 -0.08613085001707077 -0.05377982556819916 -0.0306050106883049 -0.034409407526254654 0.028306415304541588 0.01992850936949253 0.03882720693945885 0.0492868535220623 -0.024332890287041664 -0.006525012198835611 0.025729598477482796 -0.04173848405480385 0.007469542324542999 -0.000960455450695008 0.05559548735618591 0.02144811861217022 0.032524511218070984 0.049901045858860016 -0.004385926760733128 0.017945263534784317 -0.06163204461336136 -0.0018366535659879446 0.008083997294306755 -0.04305735230445862 -0.006233133841305971 0.04827958717942238 0.033532630652189255 -0.06246240809559822 -0.010874170809984207 -0.07580424845218658 0.05799483135342598 0.026230130344629288 0.06104036048054695 0.008680014871060848 -0.04386846721172333 0.00187731406185776 -0.008311486802995205 0.01312168873846531 -0.08490464836359024 0.03177031874656677 -0.05809604376554489 0.004863305948674679 -0.026587391272187233 0.009690066799521446 0.031452447175979614 -0.10915254801511765 0.02006499655544758 -0.010974233970046043 -0.03049507737159729 0.028249118477106094 0.014651145786046982 -0.02111160010099411 -0.0541636161506176 -0.014421291649341583 -0.0642346441745758 0.04263315722346306 0.00921980757266283 0.024875380098819733 -0.03627678006887436 -0.01304696500301361 0.01449707429856062 0.0029029345605522394 0.030615368857979774 -0.024938318878412247 -0.07167497277259827 -0.006046167109161615 0.09475484490394592 -0.020675720646977425 0.018304493278265 0.055654413998126984 -0.009532795287668705 0.031525205820798874 0.013176915235817432 -0.035356998443603516 0.03546540439128876 -0.0004891594289802015 -0.00226487684994936 0.052702099084854126 -0.047699544578790665 0.06129450723528862 -0.05567661672830582 0.08330225944519043 0.007975244894623756 0.0010703192092478275 0.09063372761011124 0.049799006432294846 0.013433707877993584 0.05770938843488693 -0.032042019069194794 +0.060610901564359665 -0.02120746485888958 -0.027652863413095474 0.016901126131415367 -0.04040061682462692 -0.06646287441253662 -0.014212161302566528 0.0266600102186203 0.013888499699532986 -0.03903563320636749 -0.056963831186294556 -0.03039846569299698 -0.006216157227754593 0.01888374797999859 0.03659962862730026 -0.04622090607881546 -0.05279788374900818 0.022445011883974075 -0.010611609555780888 -0.02238200046122074 0.039679188281297684 0.005922435782849789 -0.05536641180515289 0.06873572617769241 0.021118760108947754 -0.006123703438788652 -0.029250506311655045 -0.004942983388900757 0.02945009432733059 0.02686714194715023 0.0960150733590126 -0.009996370412409306 0.047135740518569946 -0.006890306249260902 -0.023872626945376396 0.02085231989622116 -0.05351419746875763 0.08881989121437073 0.008830900304019451 0.01190901268273592 -0.06177191436290741 -0.027080561965703964 -0.040982093662023544 -0.014620614238083363 0.03174138814210892 0.016922177746891975 -0.011458393186330795 -0.01219556387513876 0.011938763782382011 0.0420408695936203 0.09027353674173355 -0.009753787890076637 0.022222569212317467 0.003174565499648452 -0.016858207061886787 -0.008414247073233128 0.057577669620513916 -0.06579961627721786 -0.039011694490909576 0.013577811419963837 -0.09637949615716934 -0.009172368794679642 0.017089689150452614 -0.004163747187703848 -0.006554503459483385 -0.06274701654911041 -0.024473320692777634 0.10370272397994995 -0.013962927274405956 -0.027648385614156723 0.022998984903097153 0.06017766520380974 -0.09262771904468536 -0.043567366898059845 0.06461748480796814 -0.06418372690677643 -0.008074571378529072 0.03566258028149605 -0.03176918253302574 0.00720199616625905 0.004255059640854597 -0.014941719360649586 0.1042187362909317 -0.02456226758658886 -0.07201589643955231 -0.03955484926700592 -0.008697673678398132 -0.05829000845551491 0.055435311049222946 0.022512810304760933 0.04630670323967934 0.05981530621647835 -0.02835623174905777 0.012955007143318653 0.03263815864920616 0.006842209957540035 0.013446833938360214 -0.07254526019096375 -0.05884723365306854 -0.0003119885514024645 0.01912865601480007 0.03184103965759277 0.06800210475921631 -0.007167053874582052 0.023320358246564865 0.03147004917263985 -0.061369553208351135 0.023540204390883446 0.028874613344669342 0.04988847300410271 0.044694624841213226 0.07046036422252655 0.05290112644433975 0.01653202436864376 0.0545995756983757 0.012933327816426754 0.0019482183270156384 -0.034164514392614365 -0.030790245160460472 0.027991799637675285 0.014559966512024403 0.08188176155090332 -0.014005214907228947 -0.06815911084413528 -0.04362756013870239 0.06171190366148949 -0.09272050857543945 -0.05382421612739563 0.07093650847673416 -0.02197311818599701 0.0966397374868393 0.06373622268438339 -0.0345953106880188 0.03716565668582916 0.06849309056997299 0.009437373839318752 -0.011979363858699799 0.0024688676930963993 -0.016000285744667053 -0.044366080313920975 -0.04517577216029167 0.04807955399155617 -0.02886047214269638 -0.07726245373487473 0.0950033888220787 0.059075161814689636 0.0405784472823143 -0.0201751459389925 -0.02949548326432705 -0.053378842771053314 -0.056592945009469986 -0.028676874935626984 0.017868105322122574 -0.043369609862565994 -0.024354329332709312 0.022129062563180923 -0.030669106170535088 0.0290022324770689 0.02835669368505478 -0.04944618046283722 -0.08440089225769043 -0.026167461648583412 -0.008297433145344257 -0.05174532160162926 -0.020049018785357475 -0.004254657309502363 -0.015130024403333664 0.04677607864141464 -0.07406648248434067 -0.031438637524843216 0.012526708655059338 -0.02623600885272026 0.04314463958144188 0.08254088461399078 0.076631098985672 0.030077092349529266 -0.01806403510272503 -0.038138289004564285 -0.013797035440802574 -0.04910315200686455 0.025206860154867172 -0.012771910056471825 -0.0045165084302425385 -0.06318584829568863 0.03627751022577286 0.0094429487362504 0.04149959608912468 -0.034259337931871414 0.009302773512899876 -0.011770677752792835 -0.010889842174947262 -0.07607969641685486 0.05466420203447342 0.062118176370859146 -0.03554312884807587 -0.0059524658136069775 -0.05000543221831322 0.055987484753131866 -0.01888255961239338 -0.013142515905201435 -0.04513021931052208 0.023449715226888657 0.03254794329404831 0.0625091940164566 0.040396250784397125 -0.07344476878643036 0.10966815799474716 0.0005678338347934186 0.048409830778837204 -0.024514034390449524 -0.0011962158605456352 0.02959950640797615 -0.040567170828580856 0.07614536583423615 0.08343716710805893 0.005380334332585335 0.020465489476919174 -0.016260478645563126 0.09322933107614517 -0.07744055986404419 -0.0058495826087892056 -0.013221818953752518 -0.09125857800245285 0.03807700797915459 -0.05156031250953674 -0.084991954267025 -0.008588980883359909 0.035125188529491425 -0.024450885131955147 -0.018668727949261665 -0.018664300441741943 -0.0056485929526388645 0.04656914621591568 0.004729257896542549 0.015352320857346058 -0.034342020750045776 -0.10104374587535858 0.09243708103895187 0.02992643415927887 -0.07799367606639862 -0.06258431822061539 -0.01226176880300045 0.03601080924272537 -0.03844434395432472 0.04178891330957413 0.036802370101213455 0.08863124251365662 0.015905793756246567 -0.014576463028788567 0.04057040065526962 -0.01996873877942562 -0.058243926614522934 0.00020524697902146727 0.005154494196176529 -0.042475808411836624 -0.05603726580739021 0.06273617595434189 -0.05235515534877777 -0.0005094325169920921 -0.015599886886775494 -0.011127274483442307 -0.031167907640337944 -0.02687668427824974 -0.05728738754987717 0.04046465456485748 -0.07885799556970596 -0.021915076300501823 0.03332431614398956 -0.026096155866980553 0.03540245443582535 -0.006578847765922546 -0.0036874618381261826 0.02074243128299713 0.010685612447559834 -0.006195543799549341 -0.04030372574925423 0.07763618230819702 0.026940371841192245 -0.05465231463313103 -0.015091112814843655 -0.060531821101903915 -0.06640096753835678 0.03307723626494408 -0.001815731287933886 -0.008911814540624619 0.06151141971349716 0.023571372032165527 -0.07633781433105469 -0.05905337259173393 -0.02631429396569729 -0.0381055511534214 -0.021537087857723236 -0.012572032399475574 -0.03152656927704811 -0.04726701229810715 -0.03800234943628311 0.03461141511797905 -0.03578069806098938 -0.0020121843554079533 0.014976575039327145 -0.003569297958165407 -0.06770434230566025 -0.008690593764185905 -0.014604432508349419 -0.011370218358933926 0.00428480701521039 -0.043572258204221725 0.03215959668159485 0.09194999188184738 0.08232438564300537 -0.024477634578943253 0.03697558119893074 0.025807050988078117 0.12492092698812485 -0.02223515510559082 -0.02851778082549572 -0.004046163521707058 -0.06041312217712402 0.012041672132909298 0.03531564772129059 -0.017929451540112495 -0.03311711549758911 0.015651585534214973 -0.034220192581415176 0.0418490506708622 -0.005823641084134579 -0.02368262968957424 -0.025824738666415215 0.010036160238087177 -0.030948713421821594 0.006642697844654322 0.009582859463989735 0.020071642473340034 -0.019746320322155952 -0.07885714620351791 -0.04603637009859085 -0.05940583348274231 0.029900802299380302 -0.012969493865966797 0.026743289083242416 -0.048696987330913544 -0.04784529656171799 0.0006359458202496171 0.006633572746068239 0.12490317970514297 -0.043591275811195374 -0.005294191651046276 0.047789566218853 0.038699835538864136 -0.06344249099493027 0.0018708494026213884 -0.0007585135754197836 -0.06145787984132767 -0.03194282948970795 0.02290622889995575 0.00643579475581646 -0.06494356691837311 -0.009629280306398869 -0.003994964994490147 -0.0446556955575943 0.011287366971373558 -0.03068312257528305 0.01611553132534027 0.05264994874596596 0.0036261167842894793 -0.041028931736946106 -0.019954219460487366 0.022636592388153076 0.0559893473982811 -0.042396336793899536 0.027554312720894814 -0.018223116174340248 -0.0017645212356001139 -0.07742947340011597 -0.05108479782938957 -0.05231127515435219 0.02462719939649105 -0.013032963499426842 0.0020551683846861124 -0.023141436278820038 -0.018599875271320343 -0.037255413830280304 -0.004253698978573084 0.010956366546452045 -0.1127198189496994 -0.00909061823040247 -0.06731252372264862 -0.025354988873004913 -0.06812148541212082 -0.0525318942964077 -0.008733493275940418 -0.014961468987166882 0.04149631783366203 -0.00010908079275395721 0.013051547110080719 -0.021741103380918503 -0.014961965382099152 0.06865707039833069 0.09378761798143387 0.003499777987599373 0.034793101251125336 0.04131021350622177 0.02811693400144577 0.0229953583329916 0.04940227419137955 -0.06082724779844284 -0.0086780721321702 0.02057466469705105 -0.07676409184932709 0.024954834952950478 -0.02186322957277298 0.035459261387586594 -0.040889348834753036 -0.015896961092948914 0.03381139039993286 -0.05694466084241867 0.027640126645565033 -0.05766821652650833 0.054524753242731094 -0.06183980777859688 -0.0557563379406929 0.036358460783958435 -0.04063830524682999 -0.04547801613807678 -0.05074203759431839 -0.006343993358314037 -0.010811406187713146 0.049566980451345444 -0.05297664552927017 0.012466386891901493 0.03192705661058426 -0.03377252072095871 -0.08349297940731049 -0.022581765428185463 0.02726125530898571 0.023229701444506645 0.008490429259836674 0.020143110305070877 0.01959502510726452 -0.007552580442279577 0.014163510873913765 -0.06756461411714554 0.010535815730690956 -0.0691138431429863 -0.01631847210228443 0.00027964217588305473 -0.032140959054231644 -0.002768691163510084 0.0267013106495142 0.0255251694470644 -0.04902166128158569 0.016275813803076744 -0.09746087342500687 0.10690560936927795 -0.0021725203841924667 0.05290425941348076 -0.039396919310092926 -0.04116605594754219 0.015482205897569656 0.04231317341327667 -0.03897622600197792 -0.07463987171649933 -0.036032967269420624 -0.01561459619551897 0.017879432067275047 -0.0020081044640392065 0.01278237346559763 -0.02267671562731266 -0.05625569447875023 0.06095074489712715 0.04277312383055687 -0.04136716574430466 -0.0009121008333750069 0.027090132236480713 -0.04576064646244049 -0.021823205053806305 -0.002941451035439968 -0.0625373050570488 0.07864805310964584 0.009712686762213707 0.026631904765963554 -0.030865900218486786 -0.00857474748045206 -0.012593669816851616 -0.05899538844823837 -0.028996072709560394 -0.017587652429938316 -0.01788228191435337 0.0052418699488043785 0.036148540675640106 -0.03476196527481079 -0.003851920133456588 0.08587905764579773 -0.044073209166526794 0.027246424928307533 0.05492246150970459 -0.051730550825595856 0.04624013975262642 0.01369973924010992 -0.0016261825803667307 0.06333482265472412 -0.0948915109038353 0.09774813055992126 -0.06257136911153793 0.10648875683546066 0.03939276933670044 -0.02591043710708618 0.06535965204238892 0.030166981741786003 -0.018606098368763924 0.05057057738304138 -0.09192506223917007 +0.0018680266803130507 -0.07862680405378342 -0.03500379994511604 0.04676136001944542 -0.0024066271726042032 -0.022728458046913147 -0.0005973025690764189 0.019074758514761925 -0.00047567387809976935 -0.1015775203704834 -0.019914066419005394 0.018425021320581436 -0.027532028034329414 -0.01635974831879139 0.016045911237597466 0.015758445486426353 -0.008147588931024075 0.028984367847442627 0.00428435392677784 -0.05433772876858711 -0.018414940685033798 0.03739016130566597 -0.07872765511274338 0.004237632267177105 -0.021038111299276352 -0.037876781076192856 -0.03490239009261131 0.005887727718800306 0.022321512922644615 0.0950673371553421 0.021033875644207 -0.058301571756601334 0.08005993068218231 -0.049441494047641754 -0.05136025324463844 0.021734360605478287 -0.0428968220949173 0.0975286215543747 0.00628247857093811 0.016633493825793266 -0.04182529076933861 -0.027376020327210426 -0.021634066477417946 -0.08829828351736069 0.002198884030804038 -0.02747558243572712 0.009361456148326397 0.004014044068753719 -0.014047801494598389 0.0731557086110115 0.07834944874048233 0.03259504213929176 0.028228892013430595 -0.011727775447070599 0.003659344045445323 -0.004347567446529865 0.032867055386304855 -0.00270069926045835 -0.021436281502246857 0.06286367774009705 -0.062313470989465714 -0.023094866424798965 0.05546784773468971 0.031347356736660004 -0.054146233946084976 0.018910201266407967 0.013633590191602707 0.07536829262971878 -0.014129528775811195 -0.08716079592704773 -0.025404775515198708 0.03396378085017204 -0.007514210417866707 -0.050729598850011826 -0.0005016748327761889 -0.037338852882385254 0.041760288178920746 0.0014858429785817862 0.031255315989255905 0.020045064389705658 -0.023465288802981377 -0.039937276393175125 0.10927218943834305 -0.01627812348306179 0.026171637699007988 -0.07826016843318939 -0.009954973123967648 -0.055718958377838135 0.04293569177389145 -0.030355267226696014 0.048442643135786057 0.03152383491396904 -0.003141955006867647 0.021514220163226128 -0.0024414509534835815 0.00047423416981473565 0.011104379780590534 -0.06984648108482361 -0.03497615084052086 0.020667703822255135 0.0036344672553241253 -0.01410373393446207 0.06303131580352783 0.021944133564829826 0.08118882030248642 0.01734975539147854 -0.02862267754971981 0.014229953289031982 0.09148956090211868 -0.013466652482748032 0.02904144674539566 0.11577600985765457 0.018625007942318916 0.007517841644585133 0.06993293762207031 0.03707984834909439 0.039338964968919754 -0.03296735882759094 0.030315924435853958 0.007997427135705948 -0.015904510393738747 0.041348446160554886 -0.0038052916061133146 -0.07772915065288544 -0.0036283410154283047 0.0546564906835556 -0.06413058191537857 -0.07015412300825119 0.04951232299208641 0.023294003680348396 0.0674939975142479 0.05889572203159332 0.011872886680066586 0.0017975153168663383 -0.028409872204065323 -0.005565696395933628 -0.045225102454423904 0.04212290421128273 0.08740007132291794 -0.03252361714839935 0.0038829294499009848 0.04684104397892952 -0.02877015434205532 -0.03010871447622776 0.03720269724726677 0.013562999665737152 -0.015397152863442898 -0.04810037091374397 -0.08249245584011078 0.023074187338352203 -0.007492367643862963 -0.0664103627204895 -0.0127255879342556 -0.07286462187767029 0.032963018864393234 0.010343227535486221 0.034833334386348724 0.02863810770213604 -0.012797771953046322 0.031332068145275116 -0.05163813382387161 -0.06843665987253189 0.017701424658298492 -0.08297919481992722 -0.01557133998721838 0.04093069210648537 0.010869964025914669 0.060524117201566696 -0.08494120836257935 -0.001892800210043788 -0.0017587481997907162 -0.0007403155905194581 0.0791502296924591 0.03730643540620804 0.0676942840218544 0.022895827889442444 0.02446349710226059 -0.08538199216127396 0.023601211607456207 -0.0356617197394371 0.005720026325434446 -0.03288266435265541 -0.0007122307433746755 -0.06323480606079102 -0.03607596829533577 0.014676065184175968 0.009517891332507133 -0.0008522223797626793 -0.0168033204972744 0.02559300884604454 -0.047720495611429214 -0.057869862765073776 0.04470854997634888 0.0408148355782032 0.005626763217151165 0.03528517857193947 0.025547634810209274 0.13144581019878387 -0.0578259713947773 -0.06076851114630699 -0.05433778464794159 -0.010755314491689205 0.06514367461204529 -0.025683065876364708 -0.01713726297020912 -0.06351875513792038 0.07036296278238297 0.05125008523464203 0.010614035651087761 -0.04067634046077728 0.0008122158469632268 0.0044424463994801044 0.0077153583988547325 0.05589543282985687 0.040471937507390976 -0.03224774822592735 -0.032651156187057495 0.03494821488857269 0.012954930774867535 -0.05938776955008507 -0.05860770493745804 -0.02115168608725071 -0.052301883697509766 -0.03586782515048981 -0.01595788262784481 -0.07928428798913956 -0.010848878882825375 0.004801181610673666 -0.020662162452936172 -0.008055108599364758 0.025523420423269272 0.023956123739480972 -0.03536403551697731 -0.0319308303296566 -0.011405499652028084 -0.04915852099657059 -0.04988386854529381 0.04183986037969589 -0.013623778708279133 -0.0851072147488594 -0.034447114914655685 -0.060757994651794434 0.03930820897221565 -0.020116956904530525 0.055899109691381454 0.057795681059360504 0.05586230754852295 0.006223090924322605 -0.05918607860803604 -0.055330097675323486 -0.013546423986554146 -0.011741102673113346 -0.0041496302001178265 0.026922354474663734 -0.033003512769937515 -0.04397699609398842 -0.014154745265841484 -0.08328109979629517 0.013403943739831448 0.00421571172773838 -0.002211174927651882 -0.02681443654000759 0.003496066899970174 -0.003952002618461847 0.0028258254751563072 0.0029503903351724148 0.011761646717786789 0.017974408343434334 -0.03607764467597008 0.019509892910718918 -0.06816592812538147 0.01586848683655262 0.026284409686923027 -0.039338842034339905 -0.025953615084290504 -0.036151863634586334 0.07814142107963562 -0.015309248119592667 -0.0808306410908699 -0.04708327353000641 -0.0478888563811779 0.015357714146375656 -0.006380920764058828 -0.014993172138929367 -0.047325845807790756 0.05777183920145035 0.004838970955461264 -0.045128751546144485 -0.022137057036161423 -0.06323546171188354 -0.06109444424510002 -0.0764145776629448 0.0025459816679358482 -0.032701436430215836 -0.0044769104570150375 0.035504017025232315 0.026033421978354454 -0.049493931233882904 0.035189319401979446 0.031898077577352524 0.05692845582962036 -0.041365012526512146 0.07426496595144272 -0.0007509533315896988 -0.0758238434791565 0.024518154561519623 -0.057345740497112274 0.005446900147944689 0.04158208891749382 0.02874191664159298 0.01237616129219532 0.046473655849695206 0.07437065988779068 0.06959137320518494 0.009896110743284225 -0.01728193648159504 -0.054450612515211105 -0.016145460307598114 -0.037711452692747116 0.04734779894351959 0.012340422719717026 0.044613562524318695 -0.016416674479842186 0.0077967592515051365 0.0720025897026062 -0.0020360087510198355 -0.023929709568619728 -0.0005801671650260687 0.02818276919424534 0.020465794950723648 0.035831499844789505 0.015376079827547073 0.007713404484093189 0.0066314213909208775 -0.07890834659337997 -0.06558728218078613 -0.006091197486966848 0.012173372320830822 -0.035673532634973526 0.0949312224984169 0.02087443321943283 -0.06870294362306595 0.0015584062784910202 -0.006515234708786011 0.08099576830863953 -0.09391976147890091 -0.022244710475206375 -0.00763368234038353 0.036318231374025345 -0.1438097357749939 -0.011138261295855045 0.003937771078199148 -0.04837788641452789 -0.09303584694862366 -0.023032700642943382 0.03117435798048973 0.002177560469135642 -0.0272035151720047 -0.04950143024325371 -0.02347855642437935 -0.03685948997735977 0.02560568042099476 -0.02020653709769249 0.05037360265851021 -0.003760990221053362 -0.012034481391310692 -0.040252380073070526 -0.009121883660554886 -0.02007089927792549 -0.020850256085395813 -0.0104023776948452 -0.016212264075875282 -0.012600164860486984 -0.03323440998792648 -0.014713377691805363 -0.027972042560577393 0.0019480016781017184 -0.03976866975426674 -0.005727696232497692 -0.022421667352318764 -0.07718852162361145 -0.018772155046463013 -0.03753922879695892 0.006648866459727287 -0.024109361693263054 -0.023766161873936653 -0.002891665091738105 -0.049848370254039764 -0.06141876056790352 -0.05409328639507294 0.04532267898321152 0.004119974561035633 0.014357107691466808 -0.05811415985226631 0.009834581054747105 0.034194231033325195 0.03284738212823868 0.033226728439331055 0.10544417798519135 0.0300332922488451 -0.032065052539110184 0.05830857530236244 -0.025607354938983917 0.020729869604110718 0.007536289747804403 -0.05275842547416687 -0.008015844039618969 -0.03271231800317764 -0.037536460906267166 0.015220647677779198 -0.015623798593878746 0.0052216993644833565 -0.008861646056175232 -0.07912635803222656 -0.017560403794050217 -0.005092231556773186 -0.00992369931191206 0.01850990019738674 0.08237966150045395 -0.05555921047925949 -0.032513346523046494 -0.021608253940939903 -0.01143462024629116 -0.05883149057626724 -0.06022987887263298 -0.033505216240882874 -0.0356985479593277 0.09003718942403793 -0.023310227319598198 0.044288210570812225 0.018507253378629684 -0.019128695130348206 -0.0419183075428009 0.0189981609582901 -0.0300486758351326 -0.03992107883095741 0.03460137918591499 0.01292525976896286 -0.010583057068288326 0.03580700606107712 0.00133548304438591 -0.045588552951812744 0.021997306495904922 -0.08240853250026703 -0.022954562678933144 0.03676888346672058 -0.013432064093649387 0.0015353873604908586 0.0032083343248814344 -0.0210798941552639 -0.06588409841060638 -0.033057380467653275 -0.04027940332889557 0.03999900817871094 -0.006397713907063007 -0.02523506060242653 0.020002521574497223 -0.08129027485847473 -0.06269002705812454 0.08867558091878891 -0.03757541999220848 -0.09573061764240265 -0.020702892914414406 -0.014986896887421608 0.05226375162601471 -0.04112153872847557 0.06625722348690033 -0.07034553587436676 -0.09829917550086975 -0.00792890228331089 -0.036882732063531876 -0.08025659620761871 -0.006257121451199055 0.04996315389871597 -0.11769294738769531 -0.029153402894735336 0.034601446241140366 -0.06432412564754486 0.036050308495759964 0.023688366636633873 0.030073115602135658 -0.05409868061542511 0.004114694893360138 -0.05103617534041405 -0.014908206649124622 0.06593403965234756 -0.045387253165245056 -0.07543869316577911 -0.0577310174703598 0.10159188508987427 -0.056917283684015274 0.06456064432859421 0.031769026070833206 -0.035734277218580246 0.06747934967279434 0.058590661734342575 0.006665559019893408 0.04487564414739609 -0.012240150943398476 0.004510102793574333 0.024959130212664604 -0.02795633114874363 0.05115456134080887 -0.04665961489081383 0.1336655616760254 0.024986006319522858 0.057755328714847565 0.049018941819667816 0.0603308230638504 0.042360592633485794 0.013630733825266361 -0.0975051075220108 +0.03512358292937279 -0.02378249540925026 -0.0179046168923378 0.04794175550341606 -0.07486961781978607 -0.022050131112337112 0.02078304998576641 0.027609309181571007 -0.007281750440597534 -0.04858716204762459 -0.030399447306990623 0.0011725876247510314 -0.010933281853795052 0.012266851961612701 0.011120914481580257 -0.04760105907917023 -0.047236911952495575 -0.008337454870343208 -0.010064918547868729 -0.03535715490579605 0.02379537560045719 -0.004531193058937788 -0.08059075474739075 0.07594721764326096 0.021154504269361496 0.0016777368728071451 -0.032405201345682144 0.016284234821796417 -0.003212643088772893 0.05158400163054466 0.07152558863162994 -0.04601534456014633 0.007054909132421017 -0.06259100139141083 -0.06126740202307701 0.03772446885704994 -0.06932585686445236 0.12039514631032944 0.029514892026782036 -0.008009999059140682 -0.0578899122774601 0.023917799815535545 -0.057683221995830536 -0.037277232855558395 0.04977487772703171 -0.006962785962969065 0.0017160590505227447 -0.025699209421873093 0.06313832849264145 0.036159686744213104 0.0974888950586319 0.012472281232476234 -0.014020129106938839 -0.022491058334708214 -0.03588828071951866 0.045248426496982574 0.012855315580964088 -0.05455558001995087 -0.06290875375270844 0.03382681682705879 -0.056045036762952805 -0.007622610777616501 0.04932471737265587 0.010259806178510189 0.0018280638614669442 -0.009836160577833652 -0.02453884296119213 0.08150877803564072 -0.002103805309161544 -0.0264422670006752 -0.0012739631347358227 0.1274133175611496 -0.08657222986221313 -0.050869591534137726 0.04650689661502838 -0.041141100227832794 -0.016630612313747406 0.018182093277573586 0.023229796439409256 0.0071077896282076836 -0.0100841810926795 -0.030819155275821686 0.09275228530168533 -0.02100980095565319 -0.01786119118332863 -0.03843481093645096 0.004299952182918787 -0.06939104944467545 0.09546739608049393 0.03588190674781799 0.036933016031980515 0.04701119288802147 -0.0495915412902832 0.04558531194925308 0.026048164814710617 -0.020983239635825157 0.02534932643175125 -0.11874962598085403 -0.02219070866703987 -0.009959273971617222 0.041067734360694885 -0.03195292130112648 0.06116170808672905 -0.01758173666894436 0.07342970371246338 0.06682085245847702 -0.09698241949081421 0.03938417509198189 0.04517972841858864 0.024262994527816772 0.05330703780055046 0.10897298902273178 0.07408623397350311 0.05482868850231171 0.06684187799692154 -0.016217438504099846 -0.010216746479272842 -0.046457502990961075 -0.044650111347436905 0.002693519461899996 -0.013274907134473324 0.057807620614767075 -0.0018109690863639116 -0.07648198306560516 -0.019019152969121933 0.032712023705244064 -0.10125242918729782 -0.015853961929678917 0.06170085072517395 0.006864335387945175 0.08329013735055923 0.05060010030865669 -0.0011229716474190354 0.014062559232115746 0.053807053714990616 -0.0065125408582389355 -0.006300480104982853 0.04508869722485542 0.01157307717949152 0.00869842804968357 -0.01169558521360159 0.07662893831729889 0.0233612023293972 -0.04870222136378288 0.01637364737689495 0.03775664046406746 0.042577896267175674 0.01111847348511219 -0.06993377208709717 0.008867545984685421 -0.08048320561647415 -0.07736833393573761 0.019709747284650803 -0.07071851193904877 0.005910149775445461 0.055278223007917404 0.05731730908155441 0.04545684903860092 0.009796224534511566 -0.008978440426290035 -0.028546273708343506 -0.049049604684114456 -0.02321830578148365 -0.08680547773838043 -0.017231445759534836 -0.012295852415263653 0.03051428683102131 0.011318124830722809 -0.03194978088140488 -0.025530675426125526 -0.0061575062572956085 -0.00418401462957263 0.05217533931136131 0.06262184679508209 0.060939136892557144 0.045802805572748184 -0.002215748652815819 -0.05165465548634529 0.014139313250780106 -0.03146437183022499 0.0033286502584815025 -0.0675307959318161 0.015980154275894165 -0.055194634944200516 -0.025981631129980087 0.007108134683221579 0.03344087675213814 -0.015539858490228653 -0.03251706808805466 -0.014363161288201809 -0.0481361486017704 -0.08873958885669708 0.05288185924291611 0.04310017451643944 -0.01497432217001915 0.01158090215176344 0.0029893091414123774 0.04909437149763107 0.00577264791354537 -0.0315951369702816 -0.06561242043972015 0.024409078061580658 0.0021479781717061996 0.02124890312552452 0.04967329278588295 -0.0715063214302063 0.06976400315761566 -0.000262018438661471 0.05084771662950516 -0.08788581192493439 -0.024383913725614548 0.004312496166676283 0.012412548996508121 0.006639947183430195 0.06577221304178238 -0.0329178124666214 -0.038855768740177155 0.03502769395709038 0.0661233440041542 -0.05712183192372322 -0.005113684106618166 -0.0064576598815619946 -0.07509490102529526 0.040103621780872345 -0.007247249595820904 -0.09333068877458572 -0.023814592510461807 0.025310184806585312 -0.018462346866726875 -0.04820569232106209 0.0055586062371730804 0.03362330049276352 -0.02005017176270485 -0.045962076634168625 0.021077388897538185 0.0024087156634777784 -0.08296497166156769 0.07823159545660019 -0.027179554104804993 -0.056861549615859985 -0.04688216745853424 -0.015415788628160954 0.010509084910154343 0.008303603157401085 0.05203524976968765 0.03381897881627083 0.07728320360183716 0.02652653679251671 -0.03615614026784897 -0.0008425020496360958 -0.04240837320685387 -0.013333398848772049 -0.003827203530818224 0.0681845024228096 -0.040438346564769745 -0.0520317517220974 -0.009831673465669155 -0.050562575459480286 -0.00423740828409791 0.005683801136910915 0.03171541541814804 -0.026503659784793854 -0.012052861042320728 -0.009681475348770618 0.045263588428497314 -0.0002479645481798798 -0.027374671772122383 0.01473522000014782 -0.024878837168216705 0.05961734056472778 -0.04241976886987686 -0.027927640825510025 0.012651505880057812 0.018634416162967682 0.009448815137147903 -0.03650546818971634 0.05315811559557915 -0.04436351731419563 -0.10954781621694565 -0.08013874292373657 -0.061636537313461304 -0.06164954602718353 0.008837108500301838 -0.0208437480032444 -0.03588227555155754 0.09040815383195877 -0.0022030649706721306 -0.03748105838894844 -0.06685708463191986 -0.03661863133311272 -0.023089392110705376 -0.06513158231973648 -0.02227797731757164 -0.022861627861857414 -0.04708075523376465 -0.010478685609996319 0.01781461387872696 -0.03872948884963989 -0.005839641205966473 0.004127849824726582 0.02609654702246189 -0.01920085959136486 0.059910841286182404 -0.04806401953101158 -0.02188817784190178 0.007078598719090223 -0.07910425215959549 0.044605933129787445 0.09892120957374573 0.07561033219099045 0.05011618882417679 0.004848940763622522 0.05297718569636345 0.10994666814804077 0.03563416376709938 -0.08422353863716125 -0.021340036764740944 -0.025371797382831573 -0.10733283311128616 0.0400235541164875 -0.032069429755210876 0.005045666825026274 -0.017803115770220757 -0.013867028057575226 0.07173842936754227 0.0014635089319199324 0.0003235414915252477 -0.033444952219724655 0.04153059795498848 -0.002412485657259822 0.0038617358077317476 0.004879975691437721 -0.015085640363395214 0.031169075518846512 -0.03755805641412735 -0.07369101047515869 -0.04524577409029007 0.04839691147208214 0.007202166598290205 0.0834905207157135 0.009872499853372574 -0.057183559983968735 0.039390355348587036 0.008553064428269863 0.072664774954319 -0.056657545268535614 0.0251313503831625 0.008805925026535988 0.017159409821033478 -0.10326742380857468 -0.00557043869048357 0.022799186408519745 -0.03392383083701134 -0.08653652667999268 -0.019512981176376343 0.04695936664938927 -0.014881936833262444 -0.04630245268344879 -0.005979293957352638 -0.07635287940502167 -0.014126668684184551 0.012676470912992954 0.006409905850887299 0.05731715261936188 0.006032383069396019 -0.015630701556801796 0.035723548382520676 -0.007487112656235695 0.016454162076115608 -0.024373240768909454 -0.010396507568657398 -0.014298752881586552 0.0866248831152916 -0.014130388386547565 -0.015914790332317352 -0.07829635590314865 0.03805400803685188 -0.025898903608322144 -0.024383673444390297 -0.03319525346159935 -0.0026382687501609325 -0.015544258058071136 -0.022236265242099762 0.022470518946647644 -0.0673302486538887 0.01353511493653059 -0.009602165780961514 -0.028180262073874474 -0.08272770047187805 -0.03682661056518555 0.016606753692030907 -0.044636182487010956 -0.01894121617078781 -0.046521201729774475 -0.01624392904341221 0.023758219555020332 -0.021220451220870018 0.007410610094666481 0.041109319776296616 0.03389235958456993 -0.024768656119704247 0.05026436969637871 0.013787509873509407 0.03984852507710457 -0.004426545463502407 -0.034337058663368225 0.01432777289301157 0.05230389162898064 -0.03610417991876602 -0.0002741822972893715 -0.02868764102458954 0.03803067281842232 -0.03693711757659912 -0.02382814697921276 0.012582167983055115 -0.03457934781908989 -0.026481682434678078 -0.019512329250574112 0.048565540462732315 -0.059547729790210724 -0.03738503158092499 0.03886685147881508 -0.04448910430073738 -0.07377666980028152 0.0010468455730006099 -0.03716934099793434 -0.015366572886705399 0.037624210119247437 -0.0071069011464715 0.030404796823859215 0.029246820136904716 -0.0621974840760231 -0.027486221864819527 -0.008593905717134476 -0.052503906190395355 0.009294594638049603 0.0008751183049753308 0.07704287767410278 0.013701967895030975 0.013909606263041496 -0.0040227072313427925 -0.02845555916428566 0.02591859921813011 -0.09531727433204651 -0.009089230559766293 -0.010905938223004341 -0.017967285588383675 0.03093644604086876 0.020424554124474525 0.0037612109445035458 -0.038582928478717804 -0.03884349763393402 -0.016910430043935776 0.06667661666870117 -0.02733498439192772 0.0027507920749485493 0.03041723370552063 -0.02247564122080803 -0.016036124899983406 -0.0008786363177932799 -0.03567861393094063 -0.07669389247894287 0.019019192084670067 -0.008940479718148708 0.018725132569670677 -0.0016504921950399876 0.03255987539887428 -0.00377472210675478 -0.08634695410728455 -0.04893285036087036 -0.016643274575471878 -0.07198503613471985 0.016994819045066833 0.007808077614754438 -0.09850422292947769 -0.06015867367386818 0.004405392333865166 -0.06204191967844963 0.05944899842143059 -0.041997574269771576 0.044370319694280624 0.0038053521420806646 -0.006342268083244562 0.004626401700079441 -0.018804242834448814 0.04014082998037338 -0.03593766689300537 -0.06306029111146927 -0.012813279405236244 0.07905398309230804 -0.017581192776560783 0.0341385081410408 0.06397677212953568 -0.018006643280386925 0.0377231203019619 0.05416618660092354 -0.042080219835042953 0.0012972602853551507 -0.0009545966750010848 -0.007369304541498423 0.06943313777446747 -0.056340791285037994 0.09687750786542892 -0.06673562526702881 0.09743254631757736 0.010745682753622532 0.012818622402846813 0.10323938727378845 0.07737501710653305 -0.017423825338482857 0.020597493276000023 -0.06075329706072807 +0.017751673236489296 -0.06229736655950546 -0.018199458718299866 0.06329984217882156 -0.06663612276315689 0.011808495968580246 0.00494147464632988 0.048425257205963135 -0.014828761108219624 -0.042653638869524 -0.011186014860868454 0.02749401517212391 0.005292415618896484 0.005090950056910515 0.01822075992822647 -0.028755342587828636 -0.05214328318834305 0.04072074592113495 -0.06683648377656937 -0.04569442197680473 0.002726293634623289 0.03538083657622337 -0.0522402860224247 0.014792362228035927 -0.045813556760549545 0.015070592053234577 -0.05539345368742943 0.011293058283627033 -0.004310305695980787 0.035692885518074036 0.07709105312824249 -0.026096144691109657 0.031066706404089928 -0.05560218542814255 -0.04846028983592987 0.06964915245771408 -0.012226302176713943 0.08469890803098679 0.0015603316714987159 -0.0017697371076792479 -0.020149728283286095 0.0029744261410087347 -0.024274460971355438 -0.07219170033931732 0.06431159377098083 0.001984394621104002 0.034753262996673584 -0.022220801562070847 0.03534836694598198 -0.004498280119150877 0.06810522824525833 0.034489382058382034 0.006636457983404398 -0.014188061468303204 -0.030886515974998474 0.02004658430814743 0.027886781841516495 -0.04312562197446823 -0.03147302567958832 0.04857195168733597 -0.06341499090194702 -0.008772848173975945 0.027516935020685196 0.005931236781179905 -0.04409667104482651 0.011141559109091759 -0.001625375123694539 0.08831121772527695 0.022101443260908127 -0.03148453310132027 -0.002896649995818734 0.08699935674667358 -0.03499320521950722 -0.06239703297615051 0.06317219138145447 -0.07012636959552765 -0.03655683994293213 0.016335872933268547 -0.031302303075790405 -0.040759701281785965 -0.011927792802453041 -0.029084188863635063 0.12357032299041748 -0.029242344200611115 -0.06775018572807312 -0.03061150200664997 0.004594358149915934 -0.05854317545890808 0.0687420442700386 0.009835717268288136 0.02578543871641159 0.06905461847782135 -0.05123802274465561 0.03992370516061783 0.022157888859510422 0.02201256714761257 0.02297333814203739 -0.11225514858961105 -0.06410625576972961 -0.008484726771712303 0.03560671582818031 -0.02563927136361599 0.08102938532829285 -0.007022982928901911 0.05151847377419472 0.015935160219669342 -0.051636822521686554 -0.04793445020914078 0.0004872442514169961 0.02307054027915001 0.028867758810520172 0.15053807199001312 0.02808995731174946 0.04363367706537247 0.09137945622205734 -0.026622237637639046 -0.0012891468359157443 -0.05495402589440346 -0.027150874957442284 -0.004137069918215275 -0.022324930876493454 0.03180530294775963 -0.008712343871593475 -0.09464068710803986 -0.044004373252391815 0.01665707677602768 -0.12921802699565887 0.0039042015559971333 0.08228552341461182 -0.04347006231546402 0.1185966208577156 0.028048984706401825 -0.01934068463742733 0.025574659928679466 0.03749380260705948 0.015276514925062656 -0.037221431732177734 0.028497492894530296 0.031071919947862625 0.009740646928548813 -0.012248899787664413 0.08352386206388474 0.019209271296858788 -0.004628796596080065 0.04315349459648132 0.01933480054140091 0.017553910613059998 -0.020339632406830788 -0.042299576103687286 0.059380773454904556 -0.03325541317462921 -0.08925533294677734 -0.0057573989033699036 -0.07021458446979523 0.02757340669631958 0.031409185379743576 0.018749698996543884 0.011293342337012291 -0.02169903554022312 -0.041037287563085556 -0.052415765821933746 -0.040358930826187134 -0.050215546041727066 -0.061790645122528076 -0.0108345253393054 0.008037472143769264 -0.01824064739048481 -0.006375760771334171 -0.017050830647349358 -0.019205298274755478 -0.012629232369363308 0.0051614693365991116 0.030471911653876305 0.09351465106010437 0.06338221579790115 0.025749526917934418 0.013392867520451546 -0.04305802285671234 0.018121622502803802 -0.03676469251513481 -0.04256663843989372 -0.03851056098937988 0.037359900772571564 -0.07546666264533997 -0.023623453453183174 0.002895117737352848 0.0589250847697258 -0.03144121915102005 0.016605393961071968 -0.0489472933113575 -0.003763714572414756 -0.056751035153865814 0.04777192324399948 0.07311368733644485 -0.019576050341129303 -0.005602492485195398 -0.0009474113467149436 0.05675126239657402 -0.007114966865628958 -0.03075779415667057 -0.08209926635026932 0.03972609341144562 0.0032672120723873377 0.011371663771569729 0.013453690335154533 -0.06023489683866501 0.07345423847436905 0.017096474766731262 0.03414422273635864 -0.08298759907484055 -0.016506250947713852 0.019570881500840187 0.019312992691993713 0.056048501282930374 0.0623135082423687 -0.022442549467086792 -0.047740548849105835 0.027023447677493095 0.045476265251636505 -0.04308854416012764 -0.008748062886297703 -0.019436411559581757 -0.08560039103031158 0.0017952332273125648 0.0008531890343874693 -0.08270596712827682 -0.031698815524578094 0.005571666173636913 0.005085342563688755 -0.0037427544593811035 0.024894822388887405 0.051904212683439255 -0.00788402184844017 -0.032858990132808685 0.0024629742838442326 -0.022306188941001892 -0.06366930902004242 0.08784947544336319 -0.009584066458046436 -0.07665672898292542 -0.05747493728995323 0.004429981578141451 0.07976881414651871 0.012773248367011547 0.024324029684066772 0.008556884713470936 0.09927196055650711 0.020520485937595367 -0.0398474745452404 0.0016462597995996475 -0.029144734144210815 -0.05327419191598892 -0.010226448997855186 0.05358671396970749 -0.024511590600013733 -0.05967049300670624 0.005385281052440405 -0.064319908618927 0.03145712614059448 0.018335023894906044 0.054669756442308426 -0.03619542345404625 -0.0174727663397789 -0.030752969905734062 0.010408628731966019 -0.03302615135908127 -0.008992588147521019 0.020492587238550186 -0.029180143028497696 0.014196070842444897 -0.018636634573340416 -0.026472395285964012 0.03647690638899803 0.0010883754584938288 0.04738159850239754 -0.07354850322008133 0.044330205768346786 -0.023402340710163116 -0.08588772267103195 -0.021017035469412804 -0.053090352565050125 -0.03997613862156868 -0.016406835988163948 -0.04613166302442551 -0.08854273706674576 0.08664020895957947 -0.002940072678029537 -0.03718956187367439 -0.0455123595893383 -0.021489154547452927 -0.013481417670845985 -0.03309067338705063 -0.03476574644446373 0.003246353706344962 -0.05409183353185654 0.0065599060617387295 0.034891292452812195 -0.05874824523925781 -0.030482394620776176 0.0052638608030974865 0.03542632982134819 -0.03368522599339485 0.0828777626156807 -0.014185968786478043 -0.018917879089713097 -0.02276705577969551 -0.06992750614881516 0.024366451427340508 0.07471020519733429 0.07126696407794952 0.07646377384662628 0.00868445634841919 0.027160214260220528 0.09967947751283646 0.03158264607191086 -0.032835785299539566 -0.012028456665575504 -0.030525825917720795 -0.051264531910419464 0.038348183035850525 -0.016885774210095406 -0.0264276210218668 -0.007986069656908512 0.026004396378993988 0.0780363604426384 -0.015237689949572086 0.01668410189449787 -0.027356382459402084 0.0507848747074604 0.02901516482234001 0.029982849955558777 -0.026490947231650352 7.165626448113471e-05 -0.030856970697641373 -0.05552245303988457 -0.04629269242286682 0.012262219563126564 0.04734228551387787 0.00982640590518713 0.0493074432015419 0.005463501904159784 -0.11089159548282623 0.03802826255559921 0.003512275405228138 0.08250822871923447 -0.06872011721134186 0.00526626780629158 0.017235850915312767 0.02535775862634182 -0.08735387772321701 0.017327921465039253 0.01742546260356903 -0.028299076482653618 -0.051962725818157196 0.01663283072412014 0.04504578560590744 -0.023512279614806175 -0.002695007249712944 -0.026422999799251556 -0.04759540408849716 -0.026149200275540352 0.01744069531559944 -0.005153548903763294 0.035789694637060165 0.015939950942993164 -0.0008130103233270347 0.010103327222168446 0.059611521661281586 -0.004306751303374767 -0.01635931432247162 0.02404949814081192 -0.033758848905563354 0.05125401169061661 -0.04022245109081268 -0.058388851583004 -0.03699136897921562 0.07697305828332901 -0.012691776268184185 0.0019740271382033825 -0.03725067526102066 -0.056337982416152954 -0.009385605342686176 0.01768161542713642 -0.01288590021431446 -0.041571859270334244 0.012630465440452099 -0.029905492439866066 -0.10808281600475311 -0.10262812674045563 -0.050437137484550476 0.03688399866223335 -0.016421237960457802 -0.018797067925333977 -0.048768434673547745 -0.0049055530689656734 0.05431501939892769 -0.002001678803935647 0.03441733121871948 0.04318571463227272 0.06649930775165558 -0.03217767924070358 0.0308647770434618 0.0019566307310014963 0.10030186921358109 0.002186867641285062 -0.03705237805843353 0.01996470056474209 0.03174707666039467 -0.04173000529408455 0.04222455993294716 -0.010452057234942913 -0.002922592218965292 0.021627075970172882 -4.407543383422308e-05 -0.011221838183701038 -0.00984919536858797 -0.01831783913075924 -0.04944736883044243 0.06980674713850021 -0.07942665368318558 -0.0331350676715374 0.04076104238629341 -0.02954152785241604 -0.10618937760591507 -0.05445709452033043 -0.005731930490583181 -0.001832923968322575 0.058677393943071365 -0.03355042636394501 0.014499238692224026 0.031546834856271744 0.0006004645838402212 -0.02867165394127369 -0.00592848239466548 -0.03513573855161667 0.027563175186514854 0.01148719061166048 0.09854524582624435 0.01696135103702545 0.01884934864938259 -0.032220806926488876 -0.00438283896073699 0.005519302561879158 -0.09368610382080078 0.00037067316588945687 -0.015688830986618996 -0.037700898945331573 -0.009465906769037247 0.006860154215246439 -0.015657246112823486 -0.052893105894327164 -0.027935676276683807 -0.016707098111510277 0.09001278132200241 -0.02124844305217266 0.011853311210870743 0.015452860854566097 -0.025201937183737755 -0.02496591955423355 0.02424127236008644 -0.06068810820579529 -0.06932073086500168 0.04575911909341812 -0.02342533878982067 -0.005873866379261017 -0.004543349612504244 0.033946238458156586 -0.01812591776251793 -0.09413737058639526 -0.020750004798173904 -0.00640153931453824 -0.0611795112490654 0.03398555889725685 0.0367795005440712 -0.06294801086187363 -0.0340145044028759 -0.0011728095123544335 -0.06498783081769943 0.07226987928152084 0.007089091464877129 0.060254570096731186 -0.01356382854282856 -0.004998368676751852 -0.02086290717124939 -0.009931440465152264 0.0357513353228569 -0.05322747677564621 -0.09424413740634918 -0.021132903173565865 0.05828607827425003 -0.07614531368017197 0.017859255895018578 0.043580129742622375 -0.03321274742484093 0.059318434447050095 0.02133731171488762 -0.01597866788506508 0.04705845192074776 0.01655604876577854 0.03094780631363392 0.04526378959417343 -0.07045163959264755 0.08694379031658173 -0.06424979865550995 0.05045749247074127 0.01207028515636921 0.023618366569280624 0.07934930175542831 0.10469339787960052 0.0021566725336015224 -0.007092159241437912 -0.03527699410915375 +0.02835571952164173 0.01047481782734394 0.015852205455303192 0.05113505944609642 -0.06820625811815262 -0.036698561161756516 0.00029199771233834326 0.01607831008732319 0.026058891788125038 -0.050312504172325134 -0.004326630849391222 0.006673856172710657 -0.023353401571512222 0.016097115352749825 0.01358956377953291 -0.027437129989266396 -0.055530451238155365 -0.009071656502783298 -0.03817439079284668 -0.06426393985748291 0.02961578220129013 0.013071504421532154 -0.08346505463123322 0.054189037531614304 -0.006003131624311209 0.00025400894810445607 -0.06068652123212814 0.004173749592155218 -0.03181213513016701 0.02727111056447029 0.0706377774477005 -0.01847478747367859 0.07939731329679489 -0.0552220344543457 -0.06773139536380768 0.05039084702730179 -0.004219407215714455 0.0908544585108757 0.0565156452357769 -0.03269856795668602 -0.04294018819928169 -0.0032540280371904373 -0.020712411031126976 -0.05096723884344101 0.011069286614656448 -0.0036951012443751097 -0.015892906114459038 -0.04193531349301338 0.06885471940040588 0.01786351576447487 0.08876635134220123 0.011282742954790592 -0.028291484341025352 -0.035102106630802155 -0.0029225151520222425 -0.0016850352985784411 0.0480632558465004 -0.10070875287055969 -0.07454727590084076 0.007184550166130066 -0.11707785725593567 0.020012812688946724 -0.005959609989076853 0.017169861122965813 -0.0111527806147933 -0.023991283029317856 -0.02570381760597229 0.08956205099821091 0.03691831976175308 -0.04130825400352478 0.03430015966296196 0.08746127784252167 -0.06296253204345703 -0.039360642433166504 0.0521576851606369 -0.04769354313611984 -0.00880818348377943 0.03927486017346382 -0.036841340363025665 0.03219612315297127 -0.012819463387131691 -0.05868726596236229 0.09394276887178421 -0.03253692016005516 0.0066926805302500725 -0.027010323479771614 -0.016299210488796234 -0.08098014444112778 0.05887772515416145 0.00807278323918581 0.0036942139267921448 0.07386601716279984 -0.05207681655883789 0.05968646705150604 0.017812006175518036 0.030634939670562744 0.015649979934096336 -0.1096506416797638 -0.008081050589680672 0.01726178638637066 -0.010376689955592155 0.028371956199407578 0.04558415338397026 -0.018334364518523216 0.07411548495292664 0.028619278222322464 -0.0577535405755043 -0.0009245340479537845 0.05721478909254074 0.030484268441796303 0.07512463629245758 0.08035681396722794 0.06811284273862839 0.0499483123421669 0.021394066512584686 0.003164628054946661 0.01591446064412594 -0.06582783907651901 -0.011774911545217037 0.018006617203354836 -0.014830254018306732 0.051569826900959015 -0.032009340822696686 -0.05295678228139877 -0.02983851544559002 0.027027133852243423 -0.06285273283720016 -0.04418240115046501 0.07301808148622513 -0.025531938299536705 0.10941456258296967 0.07718782126903534 -0.010574109852313995 0.04586566612124443 0.055943287909030914 0.03924575820565224 -0.01586519367992878 -0.010785013437271118 0.0008636683342047036 -0.03811714053153992 -0.02666940726339817 0.06922432780265808 -0.013077857904136181 -0.05798117816448212 0.03704486042261124 0.026810429990291595 0.0058961291797459126 -0.02208813466131687 -0.05299864336848259 0.0005669905804097652 -0.06680872291326523 -0.07815191894769669 0.022331221029162407 -0.07272395491600037 0.02859657257795334 0.10545489192008972 0.03208623826503754 0.04793033376336098 -0.0032318714074790478 -0.020899716764688492 -0.03580216318368912 -0.028071532025933266 -0.009520815685391426 -0.07309603691101074 -0.04250285401940346 -0.027401141822338104 0.02071782387793064 0.06417105346918106 -0.05199897661805153 -0.018329322338104248 -0.01832970231771469 -0.0012719695223495364 0.012988012284040451 0.08790722489356995 0.05944738909602165 0.02413828670978546 -0.004334644880145788 -0.054518889635801315 0.026185881346464157 -0.024357765913009644 0.03867826238274574 -0.07345257699489594 0.026004990562796593 -0.05320505052804947 -0.027209529653191566 -0.01678585074841976 0.02554251067340374 0.009946546517312527 0.019165512174367905 0.03430349752306938 -0.07011985778808594 -0.05960138887166977 0.006147101521492004 0.05659977346658707 -0.02385067008435726 0.03144615516066551 0.007433386519551277 0.06834641098976135 0.013933300040662289 -0.016956090927124023 -0.06633224338293076 0.019722918048501015 0.038133326917886734 0.045232634991407394 0.0425502210855484 -0.05481095239520073 0.07011187076568604 0.013292916119098663 0.02825508825480938 -0.05444937199354172 0.007153888698667288 0.028885001316666603 0.049699727445840836 0.028942912817001343 0.06416435539722443 -0.036912549287080765 -0.008207057602703571 -0.025877948850393295 0.06306014955043793 -0.09263619035482407 0.017198415473103523 -0.012367566116154194 -0.034587312489748 0.048420291393995285 -0.03589223325252533 -0.11086622625589371 -0.03069116920232773 0.0034337867982685566 0.006323883309960365 -0.04295859858393669 0.004341762978583574 0.026157842949032784 -0.02720821648836136 -0.0004212191270198673 0.005537050310522318 -0.05090901628136635 -0.07139210402965546 0.11287923902273178 0.00010176654905080795 -0.04259011894464493 -0.027768654748797417 -0.0013699684059247375 0.0419277660548687 -0.0018940252484753728 0.01354142650961876 0.039605140686035156 0.1088709607720375 0.03306691348552704 -0.03639089688658714 -0.009575880132615566 -0.05007030442357063 -0.08058886975049973 0.03574651479721069 0.03910328447818756 -0.038053203374147415 -0.05167873203754425 0.004959057550877333 -0.07464577257633209 0.01976831629872322 -0.029402511194348335 0.017291095107793808 0.024429962038993835 -0.008860197849571705 -0.0390470027923584 0.057149942964315414 -0.0017379571218043566 -0.05884026736021042 0.018389636650681496 -0.021233918145298958 0.02905845455825329 -0.030266117304563522 -0.019884711131453514 0.037742894142866135 -0.0019076879834756255 0.03725680708885193 -0.010070965625345707 0.04929841682314873 -0.016101446002721786 -0.08389836549758911 -0.03148311376571655 -0.067754365503788 -0.03631077706813812 0.0031235883943736553 -0.0029707136563956738 -0.04432987421751022 0.06996302306652069 -0.000248305092100054 -0.03870508819818497 -0.014694424346089363 0.01313575729727745 -0.04473569989204407 -0.07828452438116074 -0.030432485044002533 -0.007926754653453827 -0.04966883733868599 -0.01940811239182949 0.011721651069819927 -0.0671006441116333 -0.019687743857502937 0.013507185503840446 -0.04995445907115936 -0.042022235691547394 0.024963490664958954 -0.030330028384923935 -0.04044302925467491 0.006142294965684414 -0.08296342194080353 0.03203639015555382 0.10867483913898468 0.01123696006834507 0.04140159487724304 0.03812173381447792 0.054411835968494415 0.07785345613956451 0.01815170794725418 -0.043607573956251144 0.02760794572532177 -0.012082405388355255 -0.062136147171258926 0.05279789865016937 -0.025192510336637497 0.0038211066275835037 0.007806565146893263 -0.009962103329598904 0.07971039414405823 0.002582163317129016 -0.015444543212652206 -0.010580378584563732 0.04694242402911186 -0.027410825714468956 0.02429298311471939 0.012296481989324093 -0.007139535620808601 0.029527515172958374 -0.07941938191652298 -0.03255714848637581 -0.05277799442410469 0.014467629604041576 0.009204860776662827 0.043037064373493195 0.00013395046698860824 -0.08075197786092758 0.001574514084495604 -0.005525641608983278 0.09586136788129807 -0.08750613033771515 0.03382338583469391 -0.008415499702095985 -0.001281562726944685 -0.1326519399881363 -0.031170133501291275 0.04031117260456085 -0.03119490295648575 -0.05905485153198242 0.06144411489367485 0.02976130321621895 -0.0792585015296936 -0.01861777901649475 -0.008439278230071068 -0.04741205275058746 -0.01906725764274597 0.007658148650079966 0.028457826003432274 0.026450462639331818 0.019445979967713356 -0.016592511907219887 -0.030938727781176567 0.0011917056981474161 0.018361110240221024 -0.001295894500799477 0.03415573015809059 -0.0668007954955101 0.060501791536808014 -0.04760441556572914 -0.04066648706793785 -0.06953447312116623 0.053295452147722244 0.010452576912939548 -0.015046079643070698 -0.00012983367196284235 -0.031884707510471344 -0.02299167402088642 0.001655604806728661 0.035688843578100204 -0.07748717069625854 0.011438153684139252 -0.032291706651449203 -0.010876884683966637 -0.041736673563718796 -0.030172904953360558 -0.010534577071666718 -0.057598914951086044 0.03023955039680004 -0.009530994109809399 -0.0129372738301754 0.02023858204483986 -0.020916927605867386 0.011726419441401958 0.03742138668894768 0.008351224474608898 0.005185224115848541 0.0030543541070073843 -0.009813081473112106 0.024245521053671837 0.0416165255010128 -0.044678956270217896 0.008336678147315979 0.048824530094861984 -0.05996290221810341 0.02419566921889782 -0.02555643394589424 -0.014492915011942387 0.006036621052771807 -0.021923869848251343 0.020123140886425972 0.002669408218935132 0.006578014697879553 -0.04252276197075844 0.05225568637251854 -0.04351050406694412 -0.03970953822135925 0.021470405161380768 -0.03876486420631409 -0.11671507358551025 -0.029469864442944527 -0.005353233776986599 -0.0687890350818634 0.07128024101257324 0.01450416911393404 0.0433560311794281 0.029131675139069557 -0.044068560004234314 -0.06162058934569359 0.007276564836502075 -0.0007915716269053519 -0.009549260139465332 -0.014333637431263924 0.05354563519358635 -0.00630372017621994 -0.009522031992673874 0.03230014815926552 0.001187139772810042 0.026837192475795746 -0.0920790359377861 -0.01801677979528904 -0.015986325219273567 -0.02214932255446911 0.015227786265313625 0.01399829052388668 0.018909959122538567 -0.08199597895145416 -0.04082435369491577 -0.040709398686885834 0.07033909112215042 -0.05064170062541962 -0.001329260179772973 0.02264159917831421 -0.03307204693555832 0.001279716962017119 0.036397408694028854 -0.013076121918857098 -0.07165064662694931 -0.0007060147472657263 -0.05883024260401726 0.0010894094593822956 -0.0106441555544734 0.027734674513339996 -0.023511016741394997 -0.06908661872148514 -0.023627087473869324 0.0088798301294446 -0.07178770750761032 -0.008815622888505459 -0.004783693701028824 -0.06829437613487244 -0.09185715764760971 -0.021506663411855698 -0.06766907870769501 0.0727684274315834 0.005670784041285515 0.025211738422513008 -0.0035436146426945925 -0.02145564742386341 -0.02069850265979767 -0.06526892632246017 0.0020205220207571983 0.015760550275444984 -0.04435201361775398 -0.04678236320614815 0.07232934981584549 0.009530923329293728 0.028160028159618378 0.07904971390962601 -0.022082149982452393 0.03997252881526947 0.0450412854552269 -0.050802960991859436 0.034315451979637146 0.00519158598035574 -0.01760099083185196 0.07136086374521255 -0.044151920825242996 0.0898292288184166 -0.03419032692909241 0.10456803441047668 0.007086149882525206 -0.004674724768847227 0.07807285338640213 0.1025264635682106 -0.018186017870903015 0.011744971387088299 -0.043918635696172714 +0.028440212830901146 -0.021824466064572334 0.0005659805028699338 0.0480647087097168 -0.04625632241368294 -0.026807120069861412 -0.01559600979089737 -0.002952723065391183 -0.005153239239007235 -0.0325293242931366 0.012271714396774769 -0.014897461980581284 -0.024278366938233376 -0.020023319870233536 -0.025966528803110123 -0.015835216268897057 -0.059979941695928574 0.03518405184149742 -0.0319606252014637 -0.03881433606147766 0.01598784141242504 0.04963444545865059 -0.07178983837366104 0.022322678938508034 -0.022907929494976997 -0.000483450829051435 -0.05370163172483444 -0.005831393878906965 -0.004850267898291349 0.054748211055994034 0.011355554684996605 -0.0031770183704793453 0.09344898164272308 -0.0552961491048336 -0.030109237879514694 0.08259246498346329 0.019386811181902885 0.08163783699274063 0.057290829718112946 -0.0018026857869699597 -0.07792479544878006 0.02449779026210308 -0.018026070669293404 -0.09457029402256012 -0.001112743397243321 0.026765922084450722 -0.036801233887672424 -0.02440962754189968 0.05534506216645241 0.0630105659365654 0.08696427196264267 -0.030221672728657722 -0.03959895297884941 0.01650753803551197 0.010363029316067696 -0.006324856076389551 0.062297675758600235 -0.011432778090238571 -0.03971751779317856 0.009991632774472237 -0.04638107493519783 -0.0022544239182025194 -0.002347805304452777 -0.027126723900437355 -0.02543596737086773 -0.013737618923187256 0.014191030524671078 0.09118076413869858 0.029529396444559097 -0.010278506204485893 0.010807903483510017 0.08551905304193497 -0.045042894780635834 -0.02387937903404236 0.06587795913219452 -0.08294876664876938 -0.02916904166340828 0.09936177730560303 -0.031522106379270554 0.016995016485452652 -0.022660110145807266 -0.05276239290833473 0.14545145630836487 -0.06904894858598709 0.0002591257216408849 -0.03220289945602417 0.007792085409164429 -0.0581609345972538 0.025958359241485596 0.02287525311112404 0.019976209849119186 0.011913331225514412 -0.03880881518125534 0.04197809472680092 -0.009563306346535683 0.01263325847685337 0.09054995328187943 -0.0797043889760971 -0.047755610197782516 0.06858605146408081 -0.020298374816775322 -0.008421983569860458 0.052137430757284164 -0.02261747047305107 0.05511786416172981 -0.03275890648365021 -0.02326945587992668 -0.02013205923140049 0.051573675125837326 0.006249952130019665 0.06401611864566803 0.0859224796295166 0.073684923350811 -0.010291828773915768 0.05168130621314049 0.01611229032278061 0.06324543803930283 -0.06319676339626312 0.03641008585691452 0.028056439012289047 -0.02359585464000702 0.041239768266677856 -0.05825839191675186 -0.0353989340364933 -0.005226519424468279 0.016320284456014633 -0.07626768946647644 -0.04094894602894783 0.036886490881443024 -0.006577143911272287 0.10319480299949646 0.030730053782463074 -0.04342903569340706 0.038254816085100174 0.013035718351602554 0.011908024549484253 -0.005189014598727226 0.053932685405015945 0.027830583974719048 -0.013939760625362396 0.011681578122079372 0.049613021314144135 -0.023720404133200645 -0.019249649718403816 0.03462015092372894 0.040820058435201645 0.0019976929761469364 -0.03586346656084061 -0.059551507234573364 0.016745254397392273 -0.023899279534816742 -0.08383525162935257 -0.03553534671664238 -0.06475012004375458 0.036572981625795364 0.05728783458471298 0.0018554971320554614 0.08602981269359589 -0.0316905751824379 -0.013799525797367096 -0.07212097942829132 -0.045288585126399994 -0.054438360035419464 -0.06199843809008598 -0.03153535723686218 0.00069718953454867 0.034690942615270615 0.0012534719426184893 -0.045525722205638885 0.010393493808805943 -0.0246624443680048 -0.027348045259714127 0.0283811055123806 0.06042994558811188 0.10570373386144638 0.013693547807633877 0.03383985161781311 -0.058811962604522705 -0.011800172738730907 -0.056563474237918854 0.04261139780282974 -0.06976964324712753 0.025831906124949455 -0.029394257813692093 0.0035649784840643406 0.026230864226818085 0.05261870473623276 -0.02579112909734249 0.005267815664410591 0.04580455645918846 -0.05137358233332634 -0.021579938009381294 0.032865967601537704 0.06249804422259331 -0.009972131811082363 0.017464246600866318 -0.043305397033691406 0.11418494582176208 0.004987421445548534 -0.014576883055269718 -0.09056615829467773 0.046246882528066635 0.007537506520748138 0.04050949215888977 0.04321364685893059 -0.05634263530373573 0.04096481576561928 0.013910707086324692 0.019134046509861946 -0.049432773143053055 0.010542958043515682 -0.04664294421672821 0.050210874527692795 0.03017430007457733 0.04937247186899185 0.009229286573827267 -0.0038941223174333572 -0.01370400469750166 0.04534735530614853 -0.03097144141793251 0.00929231010377407 -0.025933243334293365 -0.05422041565179825 -0.008665302768349648 -0.0582546703517437 -0.09320299327373505 -0.0569579154253006 0.02309618704020977 0.021936772391200066 0.002736624563112855 0.03728162869811058 0.06909438967704773 -0.06784136593341827 -0.024814331904053688 0.03275991603732109 -0.044247105717659 -0.06995346397161484 0.058736544102430344 -0.005469754803925753 -0.039795149117708206 -0.032727669924497604 0.022132163867354393 0.042913567274808884 0.022509433329105377 0.03780454024672508 0.02275710739195347 0.05405421555042267 0.010228807106614113 -0.005843640770763159 -0.03412030637264252 -0.019427891820669174 -0.05134681612253189 -0.007742741145193577 0.0013781915185973048 -0.0210738368332386 -0.0659981518983841 -0.02103741094470024 -0.07727767527103424 0.03598203510046005 0.019480984658002853 -0.013701038435101509 0.003145730821415782 -0.017102431505918503 -0.013895616866648197 -0.004996612202376127 -0.04876210540533066 -0.01507770735770464 0.03789094462990761 -0.04119433835148811 -0.009616917930543423 -0.011023953557014465 0.028374390676617622 0.008466868661344051 0.008428881876170635 0.025187784805893898 -0.025122391059994698 0.07110282778739929 -0.005572002846747637 -0.08942817896604538 -0.04501067474484444 -0.0371960811316967 0.009699233807623386 -0.03329955041408539 -0.010744649916887283 -0.03454701974987984 0.011459280736744404 0.0332539901137352 -0.0486147403717041 -0.0657908022403717 -0.03228284791111946 -0.08765145391225815 -0.08492210507392883 -0.05214415863156319 0.003974140156060457 -0.030347805470228195 -0.026873018592596054 0.00920590478926897 0.006378150079399347 -0.030828392133116722 0.007501242682337761 0.017599817365407944 -0.029398348182439804 0.03404099866747856 0.047539517283439636 -0.07057037949562073 -0.008910014294087887 -0.04907659441232681 0.025357671082019806 0.0854254737496376 0.033969201147556305 0.049253806471824646 0.03607449680566788 0.05036543309688568 0.057044897228479385 0.03528263419866562 -0.02075195126235485 -0.0054017906077206135 -0.04621550813317299 -0.05388950556516647 0.043752532452344894 0.0055460091680288315 0.021180206909775734 -0.006671462208032608 0.012308591045439243 0.0331982858479023 0.017203811556100845 -0.04426518827676773 -0.048499178141355515 0.0337674617767334 -0.035187676548957825 0.02044321410357952 -0.030033865943551064 0.03941380977630615 -0.002568235620856285 -0.05776141583919525 -0.007693593390285969 -0.04962960258126259 0.004242949187755585 -0.01380089670419693 0.03968769311904907 0.02535398304462433 -0.0211965162307024 -0.01650421880185604 -0.028125440701842308 0.1072901114821434 -0.062422629445791245 -0.04320088401436806 0.0027504186145961285 0.05648919567465782 -0.13566818833351135 -0.01628277264535427 0.028537873178720474 -0.053176600486040115 -0.007627355400472879 -0.012415156699717045 4.915232057101093e-05 -0.026328111067414284 0.005014793481677771 -0.049787621945142746 -0.008635974489152431 -0.0373278371989727 0.01008414663374424 0.0020881888922303915 0.03276100382208824 0.0054143923334777355 -0.030769238248467445 0.0069298953749239445 0.005561713129281998 -0.04340207204222679 -0.0012959165032953024 -0.007341963239014149 -0.03338952735066414 -0.038447022438049316 -0.05230820178985596 -0.051591090857982635 -0.06981457024812698 0.03695252910256386 -0.030014611780643463 -0.03794654831290245 -0.010756690055131912 -0.016089484095573425 -0.026145312935113907 -0.008957727812230587 0.031641311943531036 -0.016640679910779 -0.01816067099571228 -0.07179601490497589 -0.055759068578481674 -0.08438006788492203 0.029561618342995644 0.022210542112588882 0.00950782559812069 0.020545948296785355 -0.0519026517868042 -0.031168822199106216 0.03263888880610466 0.06874778866767883 0.0024602788034826517 0.08336953073740005 0.028177212923765182 -0.0027206195518374443 0.03156038001179695 -0.0242691021412611 0.0417325533926487 0.07193117588758469 -0.07444320619106293 -0.05030640959739685 -0.005647465121001005 -0.0367952324450016 0.042833153158426285 -0.010975778102874756 -0.05722790211439133 -0.007946229539811611 -0.013716913759708405 -0.017624767497181892 -0.02800895646214485 0.022944292053580284 -0.00720120407640934 0.04351898655295372 -0.04012983292341232 -0.029174325987696648 0.017170727252960205 -0.018662452697753906 -0.11682258546352386 -0.04629254713654518 0.02932438999414444 0.009690595790743828 0.03239245340228081 -0.060382310301065445 0.06538919359445572 0.06377391517162323 0.00033422300475649536 -0.09796373546123505 -0.01811932772397995 -0.00653522415086627 0.02354750782251358 0.011511744931340218 0.04398169741034508 0.004263238050043583 -0.007212681230157614 0.01379754301160574 0.005778142251074314 -0.0004593539924826473 -0.07177544385194778 -0.014381366781890392 -0.03585374355316162 -0.047377604991197586 0.05280574411153793 -0.010763872414827347 -0.05299360677599907 0.007264384999871254 -0.040118418633937836 -0.039808228611946106 0.07910356670618057 0.0110502103343606 -0.0048280078917741776 0.03767886012792587 -0.04476005584001541 0.019126811996102333 0.06535720080137253 -0.0343017503619194 -0.045955583453178406 0.014379072934389114 -0.03243992105126381 0.01952948234975338 0.02216130681335926 0.0584682933986187 -0.040437936782836914 -0.07120777666568756 -0.0445348359644413 1.1516286576807033e-05 -0.09210850298404694 0.00672603864222765 -0.0024013258516788483 -0.07266426086425781 -0.06454011052846909 0.012253114022314548 -0.10353612154722214 0.06009616330265999 0.03160122409462929 0.06866604834794998 0.03467319905757904 0.011430568061769009 -0.02904421091079712 -0.025588661432266235 0.007208806928247213 0.011403067037463188 -0.025740623474121094 -0.04975097253918648 0.0846736803650856 0.007336883805692196 0.053834468126297 0.06556157022714615 -0.015269930474460125 0.0868588238954544 0.07955333590507507 -0.04007784277200699 0.09036917239427567 0.006453555542975664 -0.04432429373264313 0.05002434179186821 -0.021041639149188995 0.14228174090385437 -0.05758792906999588 0.13754943013191223 0.0001761441380949691 -0.0030093141831457615 0.06820033490657806 0.08431567996740341 -0.011923449113965034 0.009749372489750385 -0.024927152320742607 +0.01674993894994259 -0.07807806879281998 0.003571521257981658 0.05214259400963783 -0.07360649853944778 -0.0003524578642100096 -0.0060873981565237045 0.025613389909267426 -0.005950626917183399 -0.054046280682086945 -0.011446192860603333 0.032967206090688705 -0.004717279225587845 0.02461456134915352 0.026033297181129456 -0.029037291184067726 -0.05065567046403885 0.025178659707307816 -0.06350894272327423 -0.03995351493358612 0.02194664254784584 0.025363462045788765 -0.03887682780623436 0.02293981797993183 -0.04728534445166588 0.01071009412407875 -0.05245736241340637 0.018155325204133987 0.0026362386997789145 0.02812524326145649 0.0744013637304306 -0.028963685035705566 0.02992563135921955 -0.04555324465036392 -0.0557040236890316 0.08209773898124695 -0.020539216697216034 0.10292332619428635 -0.00024697190383449197 0.021498478949069977 -0.008398858830332756 -0.017684027552604675 -0.02941618487238884 -0.06529808044433594 0.06214933097362518 -0.004327195696532726 0.04113338142633438 -0.022557910531759262 0.02771661803126335 0.010030010715126991 0.08436764031648636 0.040629319846630096 0.0020918429363518953 -0.005773817654699087 -0.013482225127518177 0.01064915768802166 0.031241316348314285 -0.035614047199487686 -0.01255526952445507 0.046172209084033966 -0.0714106634259224 -0.035252053290605545 0.027959473431110382 0.004588036797940731 -0.021116500720381737 0.026336144655942917 0.0004999077063985169 0.08907774835824966 -0.0010001860791817307 -0.04070442542433739 0.005304432939738035 0.08466101437807083 -0.024532027542591095 -0.06195434555411339 0.05751556530594826 -0.06478696316480637 -0.014649608172476292 0.01855027675628662 -0.04276995733380318 -0.026140566915273666 -0.017547544091939926 -0.027397271245718002 0.13402962684631348 -0.031100044026970863 -0.060389403253793716 -0.03166770190000534 0.008962499909102917 -0.06068965047597885 0.06045861542224884 0.016456495970487595 0.03589387238025665 0.06950390338897705 -0.056047551333904266 0.036953747272491455 -0.004705929663032293 0.007870221510529518 0.027834679931402206 -0.09377691149711609 -0.04349889978766441 -0.012536558322608471 0.03833800554275513 -0.030245451256632805 0.08174211531877518 -0.01930982619524002 0.05861947685480118 0.02875763550400734 -0.03988541662693024 -0.036680079996585846 -0.008163414895534515 0.02050134167075157 0.021026691421866417 0.1447487771511078 0.03383905440568924 0.057023074477910995 0.09746469557285309 -0.019155019894242287 -0.004311850760132074 -0.0700814500451088 -0.023517053574323654 -0.01509202178567648 -0.016410566866397858 0.052664484828710556 -0.025005066767334938 -0.08588699996471405 -0.033363863825798035 0.008789210580289364 -0.13549357652664185 0.01002164650708437 0.09529227763414383 -0.04297249764204025 0.11386048048734665 0.03194885328412056 -0.023075375705957413 0.04726158827543259 0.03212585672736168 0.009324304759502411 -0.04629233106970787 0.028939859941601753 0.02809106558561325 -0.013137869536876678 -0.00016520541976206005 0.08350193500518799 0.03275448828935623 -0.0005926824524067342 0.041531845927238464 0.03287731856107712 0.015960339456796646 -0.013486329466104507 -0.04689113050699234 0.053570233285427094 -0.04092640057206154 -0.07280483096837997 -0.015557502396404743 -0.07489494234323502 0.015628891065716743 0.023203479126095772 0.019119830802083015 0.007188367657363415 -0.026139454916119576 -0.03532189875841141 -0.06032474711537361 -0.05143275484442711 -0.03499120473861694 -0.055784013122320175 -0.008370359428226948 0.020043697208166122 -0.016229556873440742 -0.01889171078801155 -0.025371141731739044 -0.03419950231909752 -0.00999141950160265 -0.01635965146124363 0.036032967269420624 0.08039072901010513 0.06235485151410103 0.014378917403519154 0.009190320037305355 -0.055969640612602234 0.010468279011547565 -0.031981512904167175 -0.019348710775375366 -0.040312301367521286 0.02933170273900032 -0.08277356624603271 -0.04127158597111702 -0.0027072415687143803 0.032816700637340546 -0.031478848308324814 0.007439993787556887 -0.049181416630744934 -0.004825080279260874 -0.047071073204278946 0.03626953437924385 0.08305346220731735 -0.03381984308362007 0.010302460752427578 0.001130877062678337 0.06796324998140335 -0.025226332247257233 -0.04000338912010193 -0.08926952630281448 0.03623788803815842 0.005989365745335817 0.021310513839125633 0.009926030412316322 -0.07546313852071762 0.08432584255933762 0.025091033428907394 0.04581194743514061 -0.08559151738882065 -0.004649632144719362 0.030292866751551628 0.016883401200175285 0.07038906961679459 0.057079728692770004 -0.03852967545390129 -0.04080613702535629 0.018334440886974335 0.037727080285549164 -0.0356447771191597 -0.014961629174649715 -0.02081741765141487 -0.0756133422255516 -0.021354543045163155 -0.013407116755843163 -0.07132992893457413 -0.043491557240486145 0.012795940041542053 0.0061494274996221066 -0.010329402051866055 0.01284205075353384 0.05137082189321518 -0.013777777552604675 -0.01585087925195694 0.009899993427097797 -0.029363976791501045 -0.05961659550666809 0.08493474125862122 -0.015323998406529427 -0.07901319861412048 -0.05868672952055931 0.008536596782505512 0.08424985408782959 0.02133822999894619 0.01904330775141716 0.00988516490906477 0.09061779081821442 0.020187484100461006 -0.04720989242196083 -0.015067944303154945 -0.016468148678541183 -0.04200684279203415 -0.01958419941365719 0.028932135552167892 -0.020006805658340454 -0.058941762894392014 -0.0011142962612211704 -0.0833057314157486 0.012901155278086662 0.019395500421524048 0.05842718854546547 -0.039485376328229904 -0.030538035556674004 -0.019623294472694397 -0.002885272726416588 -0.023890458047389984 0.0005433118203654885 0.0056528858840465546 -0.034136123955249786 0.021985096856951714 -0.02280622348189354 -0.0014428402064368129 0.022313017398118973 -0.005502188578248024 0.03761567547917366 -0.08298713713884354 0.047654520720243454 -0.02656424418091774 -0.06712596118450165 -0.017935296520590782 -0.049982450902462006 -0.052445538341999054 -0.017381535843014717 -0.040584586560726166 -0.060861535370349884 0.09018567949533463 -0.005324623081833124 -0.03943413868546486 -0.029175788164138794 -0.02889413572847843 -0.0006851683720014989 -0.007876593619585037 -0.004578618798404932 -0.011968852952122688 -0.046841248869895935 0.017493318766355515 0.02662704512476921 -0.04891323670744896 -0.016784198582172394 0.011138241738080978 0.03362894803285599 -0.03110126033425331 0.0671548843383789 -0.011598018929362297 -0.020387230440974236 -0.034119416028261185 -0.06064031645655632 0.035322386771440506 0.08655549585819244 0.07349412888288498 0.06645414233207703 0.008364252746105194 0.03160938620567322 0.09184364974498749 0.015864089131355286 -0.021201075986027718 -0.0017305229557678103 -0.035885993391275406 -0.04545051231980324 0.061179887503385544 -0.016516072675585747 -0.010541224852204323 -0.006616145838052034 0.01132588554173708 0.08108663558959961 -0.027149075642228127 0.0030224532820284367 -0.023674774914979935 0.04912228137254715 0.03850672021508217 0.02287227101624012 -0.026048801839351654 0.011184895411133766 -0.03784225508570671 -0.052076555788517 -0.05713281407952309 -0.008840575814247131 0.05496254935860634 0.0010511785512790084 0.048894964158535004 -0.015701226890087128 -0.11272836476564407 0.022070718929171562 0.01055966317653656 0.09666788578033447 -0.05833316221833229 -0.008862837217748165 0.014368075877428055 0.03395521640777588 -0.09600042551755905 0.025928523391485214 -0.015268484130501747 -0.03214605152606964 -0.05370209366083145 0.011345124803483486 0.04963783174753189 -0.041635289788246155 -0.004956756718456745 -0.04510754346847534 -0.018017800524830818 -0.01678612269461155 0.02417905256152153 -0.005336992908269167 0.049453672021627426 0.024540772661566734 -0.028566323220729828 0.006728451699018478 0.0641130581498146 8.149624773068354e-05 -0.0390099436044693 0.03491658344864845 -0.028570502996444702 0.04121057316660881 -0.03564091771841049 -0.060992948710918427 -0.04518558830022812 0.06510544568300247 -0.022058002650737762 -0.002184848301112652 -0.043037619441747665 -0.0652410089969635 -0.004080701153725386 0.007460637018084526 -0.015100831165909767 -0.05174601078033447 0.006024261470884085 -0.03533367067575455 -0.10365337133407593 -0.10619712620973587 -0.055617835372686386 0.04147779569029808 -0.015163094736635685 0.005955058615654707 -0.04051157832145691 -0.008085159584879875 0.03229496255517006 -0.0014230977976694703 0.0322335846722126 0.04692433401942253 0.05873715505003929 -0.017700182273983955 0.050671592354774475 0.011404342018067837 0.07924865186214447 0.001604126300662756 -0.04253978282213211 0.02856631763279438 0.011273398995399475 -0.049995727837085724 0.05740906298160553 -0.026104720309376717 -0.012023803777992725 0.012901240959763527 -0.0005258318851701915 0.0012277489295229316 -0.006125904619693756 -0.02486983686685562 -0.05777086690068245 0.06108390539884567 -0.08460594713687897 -0.03348207101225853 0.04151498153805733 -0.022821614518761635 -0.10729789733886719 -0.0717797726392746 -0.02171083725988865 -0.008632785640656948 0.05143451690673828 -0.025515655055642128 0.001189649454317987 0.033013489097356796 0.01192151103168726 -0.012727185152471066 -0.00277691544033587 -0.032711680978536606 0.016944726929068565 0.019078155979514122 0.09562838822603226 0.018684346228837967 0.029319968074560165 -0.009390240535140038 -0.006625698413699865 0.018867632374167442 -0.08479290455579758 -0.0027782830875366926 -0.00986490398645401 -0.024044668301939964 -0.025502806529402733 0.011662856675684452 0.00655327970162034 -0.06677758693695068 -0.021214662119746208 -0.03958965465426445 0.1040748655796051 -0.008917509578168392 0.04059015214443207 0.011664682999253273 -0.04987436160445213 -0.02630542404949665 0.01771281287074089 -0.05806911736726761 -0.09306469559669495 0.04601563885807991 -0.03241663798689842 -0.011490224860608578 -0.03801672160625458 0.027829818427562714 0.0018891762010753155 -0.10274606943130493 0.0028851411771029234 -0.002959177363663912 -0.04899156466126442 0.043755482882261276 0.04634983465075493 -0.05134267359972 -0.02936408296227455 0.012359959073364735 -0.06649240851402283 0.06648646295070648 0.009359065443277359 0.05285906046628952 -0.013427670113742352 -0.014584432356059551 -0.021732177585363388 -0.006625144276767969 0.0351654589176178 -0.026100927963852882 -0.08381301909685135 -0.01769261620938778 0.06146375834941864 -0.07431217283010483 0.028107762336730957 0.0611022524535656 -0.029039165005087852 0.042825691401958466 0.043129656463861465 -0.014004496857523918 0.052716802805662155 0.022675396874547005 0.03287516161799431 0.040453437715768814 -0.05391785874962807 0.07685039192438126 -0.0658331885933876 0.06766392290592194 0.01482535619288683 0.025964723899960518 0.06579266488552094 0.07816849648952484 0.02413671463727951 0.011845945380628109 -0.033688727766275406 +0.04412132129073143 -0.045821305364370346 0.019640304148197174 0.06079516559839249 -0.06398286670446396 -0.05185166746377945 -0.030105549842119217 0.03868525102734566 0.008569428697228432 0.0105955945327878 -0.0389665812253952 0.007740893866866827 -0.0020390732679516077 0.016098791733384132 0.04892578721046448 -0.01631239429116249 -0.08533031493425369 -0.012364654801785946 -0.04160464555025101 -0.024900322780013084 0.058750323951244354 -0.008068765513598919 -0.06416376680135727 0.061451807618141174 -0.024412427097558975 0.06621421873569489 -0.0491088330745697 0.03137383237481117 -0.020011816173791885 -0.028708888217806816 0.020808424800634384 -0.008707590401172638 0.03772540017962456 -0.08738268166780472 -0.05889664962887764 0.03658628091216087 -0.025002699345350266 0.09725917130708694 -0.01089110504835844 -0.04097607359290123 -0.04898931831121445 0.06125184893608093 -0.031554579734802246 -0.05999941751360893 0.04826664179563522 0.028639888390898705 0.05624346062541008 -0.0027117629069834948 -0.0014847497222945094 0.01824609562754631 0.08762945234775543 0.02394890785217285 0.001364426570944488 -0.032013047486543655 -0.03371107578277588 0.009452379308640957 0.06422468274831772 -0.046990275382995605 -0.08173827826976776 0.04539557546377182 -0.115605428814888 -0.02003341354429722 -0.02809992991387844 -0.015365063212811947 -0.04867640882730484 -0.007428577169775963 0.0025742710568010807 0.08343510329723358 0.020290682092308998 -0.03517618030309677 0.06971604377031326 0.07732643187046051 -0.05155106261372566 -0.02648470364511013 0.022777575999498367 -0.035105060786008835 -0.009098934009671211 0.07015866786241531 -0.04694613814353943 0.01833907514810562 0.023050537332892418 -0.008782252669334412 0.12453699111938477 -0.022628940641880035 -0.08530312031507492 -0.017241766676306725 -0.0013155760243535042 -0.03426479920744896 0.022184228524565697 0.048115454614162445 -0.009506163187325 0.09685447067022324 -0.04511330649256706 0.042370785027742386 0.024073554202914238 0.06341883540153503 0.022619925439357758 -0.11299891769886017 -0.03778071701526642 -0.02177654206752777 -0.03692727908492088 -0.0220907311886549 0.032662950456142426 0.012216181494295597 0.05265083163976669 0.011229874566197395 -0.03970569744706154 -0.005286604631692171 0.00044254123349674046 0.027351219207048416 0.051394984126091 0.05470800772309303 0.04669324681162834 0.06357832252979279 0.06424999982118607 -0.002875762525945902 0.02702252008020878 -0.051376912742853165 -0.023595470935106277 0.014401677064597607 0.015362565405666828 0.022750910371541977 0.011600695550441742 -0.1050884872674942 0.0037577173206955194 0.011181198991835117 -0.11268151551485062 -0.011193347163498402 0.05211137980222702 -0.08596459776163101 0.11694169789552689 0.060170747339725494 -0.009023028425872326 0.02553359977900982 0.032666582614183426 0.04257180541753769 0.00210025766864419 0.030866824090480804 -0.0114035839214921 -0.030611414462327957 -0.021310225129127502 0.02276703529059887 0.0063047027215361595 -0.054705630987882614 0.056923940777778625 0.04029739648103714 0.017091745510697365 -0.018961599096655846 -0.05009838193655014 -0.004261424299329519 -0.08249107748270035 -0.04892180860042572 -0.022599106654524803 -0.06016726791858673 -0.02331295795738697 0.05119641497731209 0.012953457422554493 0.04898901283740997 -0.031081967055797577 -0.030151305720210075 -0.02986614592373371 -0.03527480363845825 -0.024481629952788353 -0.07541831582784653 -0.023011377081274986 -0.022098861634731293 -0.01822594180703163 -0.011045373044908047 -0.02580125257372856 -0.015625974163413048 -0.01251449529081583 -0.019543472677469254 0.00718496460467577 0.0247378908097744 0.07889508455991745 -0.0025351964868605137 0.030754294246435165 -0.05064302310347557 0.002745546866208315 -0.04218696057796478 -0.01803443767130375 -0.006146756000816822 0.013584118336439133 -0.06680438667535782 -0.017656750977039337 -0.0258927084505558 -0.00593162328004837 -0.03737446665763855 0.040858469903469086 -0.00914543867111206 -0.024385327473282814 -0.03414597734808922 0.05618315562605858 0.09015565365552902 -0.021895617246627808 0.06553997844457626 -0.0023000517394393682 0.03263910487294197 -0.06024402752518654 -0.01275193877518177 -0.04163437709212303 0.04477456584572792 -0.02114218845963478 0.056379273533821106 -0.025169173255562782 -0.034729838371276855 0.07804695516824722 0.029836900532245636 0.004315034952014685 -0.06386200338602066 0.02907242253422737 0.047753315418958664 0.0005947756581008434 0.03753058612346649 0.10284243524074554 -0.025957873091101646 -0.034255776554346085 0.023367775604128838 0.031349875032901764 -0.04799562692642212 0.006028186064213514 -0.013663648627698421 -0.07977066189050674 -0.0031107880640774965 -0.07045159488916397 -0.06713499873876572 -0.037888556718826294 0.04312373325228691 -0.0038376101292669773 -0.0059117283672094345 -0.0015954803675413132 0.016302531585097313 0.0037143996451050043 -0.038073766976594925 -0.01676497980952263 -0.0006260225200094283 -0.0708477795124054 0.08663978427648544 0.010372372344136238 -0.05649934709072113 -0.06262217462062836 0.039793550968170166 0.039071109145879745 0.014536145143210888 0.011416698805987835 0.031049324199557304 0.09212322533130646 0.04691566526889801 -0.007342389319092035 0.028415463864803314 -0.04187973216176033 -0.05167297273874283 0.028973305597901344 0.034215401858091354 -0.02962867170572281 0.014472175389528275 -0.021349603310227394 -0.03411182388663292 -0.015928082168102264 0.01246203389018774 0.034017570316791534 -0.029405955225229263 -0.0421912781894207 -0.02263088896870613 0.014467747882008553 -0.027127720415592194 -0.03637397661805153 0.021526146680116653 0.00923010241240263 0.09446345269680023 -0.057131778448820114 -0.02407011389732361 0.04202825948596001 -0.01018017902970314 0.03913160413503647 -0.07601570338010788 0.032821692526340485 0.015671193599700928 -0.07011721283197403 0.009896334260702133 -0.09775753319263458 -0.04270000755786896 -0.01086476631462574 -0.046065520495176315 -0.04479050636291504 0.11537652462720871 0.05354320630431175 -0.033368539065122604 -0.06280545145273209 -0.0504373274743557 0.02832428738474846 -0.0346364751458168 0.003869079053401947 0.04228891059756279 -0.07326984405517578 -0.037489909678697586 0.059756800532341 -0.033068038523197174 -0.04061201214790344 0.00011005981650669128 -0.056878939270973206 -0.0831301137804985 0.04784174636006355 -0.01795278862118721 -0.011379698291420937 0.003132607089355588 -0.09444102644920349 0.03125928342342377 0.10544479638338089 0.027575865387916565 0.029377669095993042 0.04422391578555107 -0.019574735313653946 0.12109725922346115 -0.019099337980151176 0.005358716007322073 0.0031200917437672615 -0.03024671971797943 -0.035089001059532166 0.05928054079413414 -0.028888342902064323 0.00938402209430933 -0.0059420326724648476 -0.005371538922190666 0.061220500618219376 -0.0165460966527462 -0.03294674679636955 -0.010661638341844082 0.005393036175519228 -0.003409381490200758 0.020247403532266617 0.021850714460015297 0.026182685047388077 -0.027700502425432205 -0.04307575151324272 -0.05198018252849579 -0.024454614147543907 0.047840606421232224 -0.02260836772620678 0.020170031115412712 -0.026204904541373253 -0.04373028129339218 0.019171934574842453 0.014398026280105114 0.09929191321134567 -0.09211540967226028 0.023112976923584938 0.07250862568616867 0.03461171314120293 -0.06948443502187729 0.009131557308137417 0.0497024804353714 -0.06144869700074196 -0.031007925048470497 -0.001981722889468074 0.0234367772936821 -0.07371177524328232 -0.009291878901422024 0.017271196469664574 -0.005672180559486151 0.04483635351061821 0.04313456639647484 0.04067854955792427 0.015798380598425865 -0.044991832226514816 -0.01933165453374386 -0.015263190492987633 0.007048564963042736 0.08554064482450485 -0.04864979162812233 0.04454705864191055 -0.004106780514121056 0.05210118368268013 -0.05255356431007385 -0.03579748794436455 -0.01234631147235632 0.06521113961935043 -0.0073011694476008415 0.013695823960006237 -0.021650657057762146 -0.03694186732172966 -0.020437203347682953 0.05073581635951996 0.024562858045101166 -0.06195346638560295 -0.02718305215239525 -0.032099705189466476 -0.09592656046152115 -0.09460804611444473 -0.08990179002285004 0.0054074120707809925 -0.055923447012901306 0.04752051830291748 -0.046062443405389786 0.022484229877591133 0.007160707842558622 -0.01819862425327301 0.02899610996246338 0.06526169925928116 0.0426061674952507 -0.03388001769781113 0.025748929008841515 -0.01866062358021736 0.04196679964661598 0.0022286635357886553 -0.0365346223115921 0.04823862761259079 0.04031006991863251 -0.03927651420235634 0.051442671567201614 -0.013204609975218773 -0.010944339446723461 0.015970826148986816 -0.021733075380325317 0.021528298035264015 0.039572037756443024 -0.010982164181768894 -0.06577941030263901 0.035515882074832916 -0.058314014226198196 -0.010916863568127155 0.04823143407702446 -0.016126010566949844 -0.09530562907457352 -0.06966156512498856 -0.01743893511593342 -0.03134578466415405 0.015118000097572803 0.0007111531449481845 -0.0042822943069040775 0.04538847133517265 -0.025214359164237976 -0.012283035553991795 -0.002718130126595497 -0.02699490264058113 0.03909306973218918 -0.007187738548964262 0.0900445431470871 0.024927983060479164 -0.011003888212144375 -0.0007471514400094748 0.007004871033132076 -0.0012316986685618758 -0.07106255739927292 -0.007892398163676262 -0.01631162501871586 -0.015193804167211056 0.00725238723680377 -0.004654846154153347 -0.0012966332724317908 -0.08790502697229385 -0.0026776802260428667 -0.030523035675287247 0.07283545285463333 0.022236213088035583 0.03263694792985916 0.07217609137296677 -0.03382658585906029 0.002929854905232787 -0.027457496151328087 -0.019559303298592567 -0.09624211490154266 -0.015541103668510914 -0.05190744623541832 0.046491384506225586 0.0015448677586391568 -0.024538634344935417 0.019566984847187996 -0.08223135024309158 0.016034528613090515 0.025498786941170692 -0.04346463084220886 0.0025370570365339518 0.026228001341223717 -0.03846311941742897 -0.02617078460752964 0.023124558851122856 -0.033428262919187546 0.06555747985839844 0.054628886282444 0.023560963571071625 -0.011667915619909763 -0.012772566638886929 -0.010764718055725098 -0.03073253482580185 -0.005510103423148394 -0.0035763601772487164 -0.06582168489694595 0.011435209773480892 0.06669336557388306 -0.04983954504132271 0.037320371717214584 0.07111141830682755 -0.04471593350172043 0.047063156962394714 0.006959473714232445 -0.026652861386537552 0.005658309441059828 -0.027614137157797813 -0.02993937022984028 0.039816226810216904 -0.06619054824113846 0.04852425307035446 -0.05942215397953987 0.07611348479986191 -0.009299593046307564 -0.05042514577507973 0.06955651938915253 0.08068356662988663 0.01119124423712492 0.008248548954725266 -0.06995582580566406 +0.02632606402039528 0.038879476487636566 0.005463321693241596 0.03738723322749138 -0.08339522778987885 -0.06275558471679688 -0.01207956112921238 0.029920438304543495 0.04506640508770943 -0.01159784197807312 -0.014732785522937775 -0.0021240513306111097 -0.011481160297989845 0.02258460968732834 0.03235233575105667 -0.04997938126325607 -0.07981803268194199 -0.008520036935806274 -0.04801502823829651 -0.030113469809293747 0.04350338876247406 0.04170937463641167 -0.0712929368019104 0.04233833774924278 -0.016251463443040848 0.021278489381074905 -0.052524298429489136 0.0005336240283213556 -0.03532709181308746 0.01390389446169138 0.07112692296504974 -0.0006557322922162712 0.06400726735591888 -0.055247046053409576 -0.026625946164131165 0.05525319650769234 -0.016627488657832146 0.1009565219283104 0.04299013316631317 -0.034024544060230255 -0.0423419252038002 -0.014215288683772087 -0.02595353312790394 -0.030968766659498215 -0.007461098022758961 -0.007922869175672531 -0.023774845525622368 -0.018985159695148468 0.02633476071059704 0.006673290394246578 0.09329566359519958 -0.01357429288327694 -0.05081937462091446 -0.04231373220682144 0.0023705405183136463 0.009448378346860409 0.043057557195425034 -0.0959315374493599 -0.06107834726572037 0.02659457176923752 -0.08492008596658707 0.02785372920334339 0.011857608333230019 -0.009750347584486008 -0.020278146490454674 -0.035877395421266556 -0.00716796750202775 0.0728088840842247 0.04901374131441116 -0.012042270973324776 0.05444039776921272 0.07617930322885513 -0.07130200415849686 -0.060328103601932526 0.06419739127159119 -0.05558394640684128 -0.03144615516066551 0.036920759826898575 -0.013699442148208618 0.02511603571474552 0.013441439718008041 -0.04782576486468315 0.09910565614700317 -0.045402608811855316 -0.06519722938537598 -0.042848341166973114 -0.011067036539316177 -0.06946676969528198 0.05017377808690071 0.010652984492480755 -0.01276632584631443 0.08886128664016724 -0.05110234394669533 0.05088484287261963 0.009928957559168339 0.024672837927937508 0.0068444302305579185 -0.11929409950971603 -0.0456874705851078 -0.006732435431331396 0.008503069169819355 0.010915299877524376 0.050164904445409775 -0.005732065532356501 0.04574336111545563 0.057323116809129715 -0.04145286604762077 -0.008507650345563889 0.022698311135172844 0.0577264130115509 0.032985735684633255 0.056320417672395706 0.08010698854923248 0.06442277133464813 0.04266774281859398 -0.021010832861065865 0.021605612710118294 -0.029171647503972054 -0.05101906880736351 -0.0017078144010156393 -0.022093044593930244 0.038781605660915375 -0.0281527116894722 -0.04960894584655762 -0.06047317385673523 0.01904231496155262 -0.11018247157335281 -0.03176508843898773 0.052807435393333435 -0.004174954257905483 0.10357585549354553 0.049798037856817245 -0.0074477423913776875 -0.0030884467996656895 0.06654137372970581 0.045624684542417526 -0.004017835017293692 0.009944072924554348 -0.010141139850020409 -0.01976989209651947 -0.011616402305662632 0.05493845418095589 0.013288798741996288 -0.05991900712251663 0.03743910789489746 0.05802064761519432 0.02216392755508423 -0.018975336104631424 -0.07289036363363266 0.0017133323708549142 -0.08354420959949493 -0.08040904253721237 0.0022517526522278786 -0.07392159104347229 0.008212354965507984 0.04259093850851059 0.013216288760304451 0.03372776508331299 -0.04538464546203613 -0.04027241840958595 -0.026444772258400917 -0.022624464705586433 -0.013389657251536846 -0.06008273735642433 -0.024732081219553947 -0.05226226896047592 0.004809660837054253 0.0285149198025465 -0.03463650122284889 -0.024390367791056633 -0.010744049213826656 -0.004469148349016905 0.018645623698830605 0.11061864346265793 0.03380856290459633 -0.01135972235351801 0.015981195494532585 -0.04440702870488167 0.00865592435002327 -0.0328405424952507 0.011139489710330963 -0.04935803264379501 0.03912393003702164 -0.0737420916557312 -0.016012022271752357 -0.0015304869739338756 0.05477680265903473 -0.005577939096838236 0.014652770012617111 0.006004061549901962 -0.0382641963660717 -0.04256230965256691 0.051894962787628174 0.09217128902673721 -0.02104431949555874 0.0278182253241539 0.0032890622969716787 0.04121160879731178 0.0212650578469038 -0.024148182943463326 -0.06673908233642578 0.033921316266059875 0.025571396574378014 0.05646005645394325 0.03454616293311119 -0.06355046480894089 0.1036645770072937 0.011470183730125427 0.02016918733716011 -0.04841042309999466 0.010243352502584457 0.035164013504981995 -0.003155807498842478 0.04174482077360153 0.07318209111690521 -0.04037456214427948 0.0008750167908146977 -0.025684671476483345 0.048188094049692154 -0.055844996124506 0.019475746899843216 0.007878611795604229 -0.04723638668656349 0.06075547635555267 -0.01983337663114071 -0.09633984416723251 -0.02826879918575287 -0.008113018237054348 -0.008477955125272274 -0.02198699489235878 -0.0019299943232908845 0.015604095533490181 -0.010612414218485355 -0.022382818162441254 -0.02328922227025032 -0.0005481367115862668 -0.10748567432165146 0.12526528537273407 -0.015884919092059135 -0.05988025665283203 -0.04335343465209007 0.0033763053361326456 0.04823186248540878 -0.004943060223013163 0.010300865396857262 0.07234473526477814 0.1121247336268425 0.04149129241704941 0.01510196179151535 0.0025627699214965105 -0.07273242622613907 -0.07425536215305328 0.007209069561213255 0.03883315250277519 -0.053473200649023056 -0.048656292259693146 0.010494545102119446 -0.03931377828121185 0.00013089313870295882 -0.015260773710906506 0.05330219492316246 -0.004906394053250551 -0.019827483221888542 -0.05776641145348549 0.05028630420565605 -0.010719412006437778 -0.05303328111767769 0.0499119870364666 -0.01799699291586876 0.04821363463997841 0.014461804181337357 -0.06505054235458374 0.026890520006418228 0.019486701115965843 0.047974664717912674 0.008302873931825161 0.06490422785282135 -0.020539551973342896 -0.07493925094604492 -0.006559756584465504 -0.05189325287938118 -0.05047990009188652 -0.024204200133681297 -0.04202738776803017 -0.05907619372010231 0.08041201531887054 -0.009717362001538277 -0.04017087072134018 -0.045907162129879 0.029813870787620544 -0.02353273145854473 -0.06607968360185623 -0.029629021883010864 -0.00784365739673376 -0.09694091230630875 -0.03583851829171181 0.024730414152145386 -0.08324796706438065 -0.029101498425006866 0.012042089365422726 -0.06044550985097885 -0.04760703444480896 0.017842112109065056 -0.052910659462213516 -0.04012656956911087 -0.018438391387462616 -0.05284370481967926 0.0342593677341938 0.08546076714992523 0.02794378250837326 0.04804930090904236 0.03143841028213501 0.0454496368765831 0.08897126466035843 0.01005074568092823 -0.04276367649435997 0.008261879906058311 -0.044761717319488525 -0.06140650808811188 0.029049770906567574 -0.0552784688770771 -0.025637811049818993 0.0020422153174877167 0.01686905138194561 0.06797441840171814 0.0061875260435044765 -0.004523055162280798 0.0007562318933196366 0.049009911715984344 0.01053511630743742 0.051798898726701736 0.0024949652142822742 -0.040127161890268326 2.3759708710713312e-05 -0.07319674640893936 -0.03861338645219803 -0.04805520921945572 0.01117695402354002 0.01021940540522337 0.031961601227521896 -0.007693168241530657 -0.08221277594566345 -0.006734680384397507 -0.0015119095332920551 0.10677853971719742 -0.08138763159513474 -0.010143415071070194 0.03682582452893257 -0.022272814065217972 -0.08447159081697464 -0.02660651132464409 0.042318135499954224 -0.04017624631524086 -0.04011710360646248 0.014631137251853943 0.04351729899644852 -0.07892849296331406 0.0007801916217431426 0.012486874125897884 -0.05175577476620674 -0.0014408213319256902 0.04792080819606781 -0.0020402376540005207 0.00922134704887867 -0.0024364213459193707 -0.0064199804328382015 -0.014653350226581097 0.049518465995788574 0.015729911625385284 -0.020296480506658554 0.017080700024962425 -0.05780636519193649 0.07277897000312805 -0.028588902205228806 -0.05130289867520332 -0.06070926785469055 0.05621690675616264 0.016520563513040543 -0.025305919349193573 -0.016627201810479164 0.00741185387596488 0.0009179011103697121 0.04105190932750702 0.003465053392574191 -0.06607259809970856 -0.016243312507867813 -0.03801102191209793 -0.04090188071131706 -0.08796722441911697 -0.030142968520522118 0.019024498760700226 -0.09813456237316132 -0.012109215371310711 -0.0249616801738739 -0.007327395956963301 -0.014522303827106953 -0.045263953506946564 0.02363891713321209 0.029447780922055244 0.034242622554302216 -0.01800365373492241 0.019064651802182198 0.007663011085242033 0.06535007804632187 0.029407424852252007 -0.026270825415849686 0.029822001233696938 0.028564242646098137 -0.03210270032286644 0.05301802605390549 -0.06046585738658905 0.0074339876882731915 0.03272093087434769 0.010999472811818123 0.006442510988563299 0.01177934929728508 0.004922516644001007 -0.0531003400683403 0.040030982345342636 -0.06906193494796753 -0.02763872593641281 0.031741876155138016 -0.03860443830490112 -0.10724470019340515 -0.008687525056302547 0.0032855598255991936 -0.05716197192668915 0.04126478731632233 0.007654726039618254 0.036399152129888535 0.012780210003256798 -0.07917941361665726 -0.0465252660214901 -0.043207377195358276 -0.013331371359527111 0.030785514041781425 -0.029595185071229935 0.05583672225475311 -0.004561888985335827 0.022765235975384712 -0.0012280781520530581 -0.0036655731964856386 0.003619606141000986 -0.07798751443624496 -0.010935846716165543 -0.014089476317167282 -0.04439782351255417 -0.0018447606125846505 -0.015719745308160782 0.020625974982976913 -0.05780058354139328 -0.019881002604961395 -0.05762035399675369 0.0843145027756691 -0.07144174724817276 -0.012945987284183502 0.006757310591638088 -0.015647100284695625 0.014427687972784042 0.034961264580488205 -0.022327950224280357 -0.06932397186756134 0.021283382549881935 -0.03188392147421837 -0.005582259967923164 0.019255539402365685 0.0061755552887916565 -0.02302657440304756 -0.07702980190515518 -0.030459249392151833 0.01684386469423771 -0.04965052008628845 0.03416755795478821 -0.012262470088899136 -0.061571262776851654 -0.05843280255794525 -0.024078350514173508 -0.04324238374829292 0.07305122166872025 0.01080660242587328 0.03748030215501785 -0.009132037870585918 -0.021704435348510742 0.013950152322649956 -0.04033491760492325 0.001921088551171124 -0.010362121276557446 -0.04871315509080887 -0.04264038801193237 0.05554332584142685 -0.020649459213018417 -0.010550135746598244 0.07600957900285721 -0.04014782980084419 0.016690775752067566 0.03237594664096832 -0.021363161504268646 0.029870931059122086 -0.02638198807835579 -0.05611307919025421 0.07917310297489166 -0.056012775748968124 0.10225039720535278 -0.039894767105579376 0.08107634633779526 -0.0035114691127091646 -0.02944740653038025 0.07818622887134552 0.08675912022590637 -0.006192707922309637 0.013825413770973682 -0.05008542537689209 +-0.002135628368705511 -0.025840377435088158 -0.03037729114294052 0.02164996787905693 -0.0646250769495964 -0.028055846691131592 -0.034770477563142776 0.04149337857961655 0.009618840180337429 -0.0777876153588295 -0.06304951757192612 -0.0023835108149796724 0.0095121581107378 0.009742422960698605 0.019466321915388107 -0.028358856216073036 -0.043172989040613174 -0.007038792595267296 -0.001222080085426569 -0.03060467727482319 0.04968732222914696 -0.008502045646309853 -0.08354108780622482 0.09456309676170349 0.05805332213640213 0.00804691668599844 -0.031578581780195236 0.050784457474946976 -0.00018226275278721005 0.09561924636363983 0.037894878536462784 -0.05948212742805481 0.010324675589799881 -0.07040519267320633 -0.0556400790810585 0.03162137791514397 -0.05996495112776756 0.08743750303983688 0.03728345036506653 -0.015531022101640701 -0.053666528314352036 0.033992964774370193 -0.03452321141958237 -0.057095833122730255 0.020592132583260536 0.007296930067241192 -0.025254273787140846 -0.04142976552248001 0.02890738472342491 0.043375164270401 0.08299509435892105 -0.00716064590960741 -0.019791414961218834 -0.01704183779656887 -0.026390811428427696 0.03217582777142525 0.011628192849457264 -0.04673569276928902 -0.0249739158898592 0.014068668708205223 -0.05691208690404892 0.02687535434961319 0.00619930075481534 0.010576334781944752 -0.015703564509749413 0.03010290302336216 -0.014293121173977852 0.06753372400999069 0.0009619214688427746 -0.014542377553880215 -0.016021745279431343 0.07108829915523529 -0.05553879216313362 -0.03027145378291607 0.03849465399980545 -0.005335407797247171 -0.005460693500936031 0.020751522853970528 0.004307846073061228 0.02218807116150856 0.019756842404603958 -0.051478464156389236 0.15026916563510895 -0.027700090780854225 0.014270813204348087 -0.07283180207014084 -0.0289609432220459 -0.04997509345412254 0.05477503314614296 0.024018412455916405 0.05455601587891579 0.05969745293259621 0.02079843170940876 0.05474982038140297 0.007556180004030466 -0.0012270971201360226 0.026774700731039047 -0.13376423716545105 0.017410995438694954 0.02353283390402794 0.004418003838509321 -0.020209206268191338 0.06678391247987747 0.008652853779494762 0.0394502654671669 0.06330006569623947 -0.08058091998100281 0.027156058698892593 0.05306188017129898 0.034219417721033096 0.019511377438902855 0.10529232770204544 0.055447228252887726 0.05761222541332245 0.03632097691297531 -0.00982406735420227 -0.028026912361383438 -0.018604714423418045 -0.02369997836649418 0.015079250559210777 0.004468053113669157 0.055834852159023285 -0.01038967166095972 -0.08316779136657715 0.04553729668259621 0.04687642306089401 -0.08312056958675385 -0.0006056389538571239 0.01397558394819498 -0.017303597182035446 0.06076120585203171 0.06370887905359268 -0.014189662411808968 0.025515273213386536 0.038986485451459885 0.026067662984132767 0.035463567823171616 0.022980716079473495 -0.011494245380163193 -0.038789283484220505 -0.04706300422549248 0.03122214786708355 -0.009692784398794174 -0.03758952021598816 0.06293929368257523 0.011810378171503544 0.00890006311237812 -0.010997306555509567 -0.061989136040210724 -0.019817180931568146 -0.09782708436250687 -0.08495207130908966 0.04075595736503601 -0.024658752605319023 0.025014949962496758 0.026807991787791252 0.0640651136636734 0.04418914020061493 0.0009095052955672145 0.0051932139322161674 -0.006805179174989462 -0.05620129778981209 -0.022759970277547836 -0.06698404252529144 0.037375230342149734 0.013062364421784878 0.04125697538256645 -0.011598863638937473 -0.05660216510295868 -0.028323763981461525 0.003277987241744995 0.01901037059724331 0.04407019168138504 0.058973025530576706 0.047450028359889984 -0.007265050429850817 0.061806418001651764 -0.058854840695858 -0.05848625302314758 -0.029003437608480453 0.03712926805019379 -0.06262394040822983 -0.010854995809495449 -0.04982776939868927 -0.044255100190639496 0.008545495569705963 -0.009362713433802128 -0.021395036950707436 -0.009458606131374836 -0.020054765045642853 -0.048787832260131836 -0.06814544647932053 0.05789944902062416 0.009867409244179726 -0.02275018021464348 0.04219586402177811 0.04257470741868019 0.0893111377954483 -0.02681170217692852 -0.008270715363323689 -0.06253248453140259 0.04464436694979668 0.019902020692825317 0.020773816853761673 0.03708279877901077 -0.03916742280125618 0.04814665764570236 -0.0033383199479430914 0.04616175964474678 -0.03573903441429138 0.054310690611600876 0.04201445356011391 0.01458406075835228 0.03781019523739815 0.08445874601602554 -0.0348108634352684 -0.05289402976632118 0.02242845855653286 0.04216080904006958 -0.10741066187620163 -0.004532946273684502 -0.008151886984705925 -0.07482948899269104 0.005207007750868797 -0.034729573875665665 -0.08334784209728241 -0.03162519633769989 0.004873163066804409 -0.014656958170235157 -0.04776684194803238 0.008191293105483055 0.027635719627141953 -0.03407575562596321 -0.022614169865846634 0.04363798722624779 0.017100118100643158 -0.06260544061660767 0.04888011887669563 -0.07269372791051865 -0.04168200120329857 -0.032377999275922775 0.027469942346215248 0.004803963005542755 0.027397116646170616 0.022921497002243996 0.08193787187337875 0.07924230396747589 0.06680822372436523 -0.05312168598175049 0.0071412427350878716 -0.05558657646179199 -0.0221724770963192 -0.008143714629113674 0.02471906878054142 0.018191572278738022 -0.055959973484277725 0.00964824203401804 -0.07741999626159668 0.0019614812918007374 -0.015755545347929 -0.002535969717428088 -0.0347927063703537 -0.004021060653030872 -0.03268280252814293 0.04274052008986473 -0.00346121983602643 -0.052789513021707535 0.02474459633231163 -0.06505052745342255 0.05221448466181755 -0.06035096198320389 -0.03211956098675728 0.015230447985231876 0.007102007046341896 0.024561166763305664 -0.02872495725750923 0.08310685306787491 -0.03514979034662247 -0.0798112079501152 -0.08243190497159958 -0.04906364157795906 -0.07531244307756424 -8.563383744331077e-05 -0.0066840206272900105 -0.019613703712821007 0.059867944568395615 0.012939696200191975 -0.04535861685872078 -0.06178702041506767 -0.054881274700164795 -0.027284694835543633 -0.05641508847475052 -0.03942743316292763 -0.025227369740605354 -0.04516560211777687 -0.025175686925649643 0.04816336929798126 -0.03650917485356331 -0.020817816257476807 0.06572584062814713 0.034423667937517166 -0.04414881765842438 0.07024119794368744 -0.036453235894441605 -0.02108794078230858 0.04840627312660217 -0.06253157556056976 0.027571700513362885 0.0870291069149971 0.00934774149209261 0.007202502340078354 0.034010495990514755 0.04666228964924812 0.07181945443153381 -0.0020217588171362877 -0.05162150785326958 -0.04983250051736832 -0.03178859502077103 -0.08495055884122849 0.06681308150291443 -0.01619674637913704 -0.0005780697683803737 -0.020135123282670975 -0.03330451250076294 0.019949017092585564 0.006980334408581257 0.010243121534585953 -0.05258065089583397 0.008117524906992912 -0.02589813619852066 0.029282668605446815 -0.03419407084584236 0.0023626748006790876 0.021013855934143066 -0.04296453669667244 -0.07493089139461517 -0.07501517981290817 0.03502759337425232 0.004244665615260601 0.05563774332404137 0.008993152529001236 -0.016842080280184746 0.019475603476166725 -0.00017775337619241327 0.08883435279130936 -0.07084904611110687 0.04162484034895897 0.03544847294688225 0.018510619178414345 -0.08840783685445786 -0.01672607660293579 0.004387918394058943 -0.038912151008844376 -0.06701791286468506 -0.029714778065681458 0.03794579580426216 -0.02799677848815918 -0.06889042258262634 -0.02075095660984516 -0.03045685403048992 0.010214559733867645 0.03904346749186516 -0.007738654967397451 0.06585460901260376 0.02704341523349285 -0.023067282512784004 0.030236952006816864 -0.030753040686249733 -0.0005816942430101335 -0.016269292682409286 0.025362897664308548 -0.012313347309827805 0.07996850460767746 -0.01412225142121315 -0.030306963250041008 -0.08060630410909653 0.014055091887712479 -0.060840100049972534 -0.020072724670171738 -0.022531136870384216 0.01817019097507 -0.029351290315389633 0.025002852082252502 0.02892816998064518 -0.07885725796222687 -0.008120834827423096 -0.0143502838909626 -0.046203259378671646 -0.04997284337878227 -0.026381345465779305 0.018209092319011688 -0.022737670689821243 0.0279970932751894 -0.06178693100810051 0.00661046477034688 0.04857330024242401 0.028891077265143394 0.013079509139060974 0.05402394011616707 0.018101191148161888 0.001877644332125783 0.06830322742462158 -0.0013812638353556395 0.0029582404531538486 -0.012776557356119156 -0.049318403005599976 0.022307923063635826 0.052834294736385345 -0.03191050887107849 0.02281356416642666 -0.04230000451207161 0.009450349025428295 0.018750052899122238 -0.029919834807515144 0.0116276228800416 -0.03012806735932827 0.016469115391373634 -0.017756115645170212 0.050018683075904846 -0.033762332051992416 -0.060687679797410965 0.013263325206935406 -0.049555107951164246 -0.08379821479320526 0.007127966731786728 -0.04419131204485893 -0.04409242421388626 0.03387558460235596 0.0017753986176103354 0.02654794603586197 0.049909282475709915 -0.06234148517251015 -0.030052902176976204 0.026565775275230408 0.0011419106740504503 -0.0024933849927037954 0.06119731068611145 0.06134546920657158 0.019931644201278687 -0.02347448654472828 0.029926203191280365 -0.05012655630707741 0.017069503664970398 -0.04665544256567955 0.0018075999105349183 0.0423893965780735 -0.02673659473657608 0.02186313271522522 0.0365811251103878 0.043570782989263535 -0.05679143965244293 -0.030619598925113678 -0.028745271265506744 0.02315422147512436 0.001506411237642169 0.020723165944218636 0.039359595626592636 -0.06717479974031448 -0.018944833427667618 0.020142097026109695 -0.02370954491198063 -0.0899990051984787 -0.039846040308475494 -0.07091452926397324 0.08540382236242294 -0.006952669471502304 -0.010653450153768063 -0.030003301799297333 -0.09042022377252579 -0.01778700202703476 -0.029734795913100243 -0.02704070508480072 -0.00950690172612667 0.015345588326454163 -0.05467572808265686 -0.054186753928661346 -0.01334335282444954 -0.07754050940275192 0.05207169055938721 -0.003561978926882148 0.029360070824623108 -0.04179753363132477 -0.002349959686398506 0.01235169731080532 -0.025298548862338066 0.04572822526097298 -0.04826994985342026 -0.0687524750828743 -0.024170905351638794 0.12442504614591599 0.0058620888739824295 0.04386606067419052 0.0883636549115181 0.022271284833550453 0.0551861897110939 0.050370119512081146 -0.025291230529546738 -0.027737481519579887 -0.02118847332894802 -0.011039881967008114 0.044724393635988235 -0.0395432785153389 0.06859266757965088 -0.08053842931985855 0.1296084076166153 0.02986263670027256 0.01113596186041832 0.09091383963823318 0.07022710889577866 0.04829806089401245 0.05758815258741379 -0.09195204824209213 +0.014514723792672157 -0.06686318665742874 -0.09423527121543884 -0.02848677709698677 -0.07896509021520615 -0.0742996484041214 0.02728314884006977 0.028932681307196617 -0.02107941545546055 -0.006352986674755812 -0.07302562892436981 0.008288521319627762 0.02620280161499977 -0.05777790769934654 0.03226453438401222 -0.018602143973112106 -0.04397454112768173 0.0052793147042393684 -0.03476522117853165 0.019341226667165756 0.005726413801312447 0.023859841749072075 -0.055827293545007706 0.0483211949467659 0.01944299414753914 0.04404695704579353 -0.017538484185934067 0.00930043775588274 0.013000432401895523 0.03328638896346092 0.00026171948411501944 -0.012908478267490864 0.03212476894259453 -0.04432956129312515 -0.046887174248695374 0.010840021073818207 -0.025657540187239647 0.11620936542749405 0.03144148364663124 -0.01547953486442566 -0.06515811383724213 0.015554946847259998 -0.05293746292591095 -0.09800534695386887 -0.0076920329593122005 0.03899994120001793 0.011909186840057373 -0.03811600059270859 0.02041834220290184 0.056228190660476685 0.03478262573480606 0.005698557943105698 -0.07746621966362 -0.05661962926387787 -0.024168042466044426 0.021988602355122566 0.01813950203359127 -0.022835614159703255 -0.03142625465989113 0.06108696386218071 -0.10422008484601974 0.01924269087612629 -0.0271590705960989 -0.00926651619374752 -0.023121781647205353 -0.036268819123506546 0.023075228556990623 0.027107486501336098 -0.031938113272190094 -0.04627346992492676 -0.00656490633264184 0.03888915106654167 -0.03673579916357994 -0.011388839222490788 0.011359483003616333 -0.04654809832572937 0.00059009890537709 0.023981522768735886 -6.283393304329365e-05 -0.041758403182029724 -0.04219697043299675 -0.035873912274837494 0.1754796952009201 -0.08872116357088089 -0.06433583796024323 -0.06232825666666031 -0.05320300534367561 -0.05336452275514603 -0.02643786184489727 -0.02024858258664608 -0.0016625059070065618 -0.009078718721866608 -0.008382409811019897 0.01738765463232994 -0.018822237849235535 -0.004488404840230942 0.03853722661733627 -0.13426339626312256 -0.023956026881933212 0.010569585487246513 -0.077456533908844 -0.01637420430779457 0.07110580056905746 0.031183170154690742 0.012918966822326183 -0.0399889312684536 -0.07117358595132828 0.002129769418388605 0.027558187022805214 0.0024359209928661585 -0.014803348109126091 0.02928268164396286 0.06371302902698517 0.03848777338862419 0.09645622968673706 0.011655761860311031 0.02505127526819706 -0.014539415016770363 0.009298127144575119 -0.014240847900509834 0.029939059168100357 0.023286890238523483 0.02495943009853363 -0.07379168272018433 0.01953161507844925 0.020780475810170174 -0.10366740077733994 -0.026448547840118408 -0.014375356957316399 -0.06199780851602554 0.0826587900519371 0.025032643228769302 -0.061844609677791595 0.018564069643616676 -0.01600600965321064 -0.040713559836149216 0.005921093747019768 0.03847605735063553 0.028448475524783134 -0.05200676992535591 0.002913879230618477 0.018979903310537338 -0.004037314094603062 -0.019849568605422974 0.0452263206243515 0.023442266508936882 -0.009202142246067524 -0.06730090081691742 -0.06245562061667442 0.023319920524954796 -0.08771207183599472 -0.03701893985271454 0.04087696596980095 -0.01723933406174183 0.018680527806282043 -0.02535077929496765 0.04583467170596123 0.016952427104115486 -0.03591674193739891 0.009896841831505299 -0.04548916965723038 -0.009511942975223064 -0.03130483254790306 -0.1038137897849083 0.010461674071848392 0.04030745476484299 0.049757763743400574 -0.03928647190332413 -0.04619109630584717 -0.02719215676188469 -0.03724875673651695 0.04140616953372955 0.05655529350042343 0.02729136310517788 0.05796933174133301 -0.028598541393876076 0.04609375819563866 -0.06021459028124809 0.010967669077217579 -0.02556658908724785 0.06319120526313782 -0.041426289826631546 0.06132711097598076 0.001713695120997727 0.007851739414036274 0.0026262751780450344 -0.0011181479785591364 -0.07021374255418777 0.019166873767971992 0.0018871224019676447 -0.04071759805083275 -0.03448936343193054 0.027403445914387703 0.06698965281248093 -0.01988772489130497 0.0592302568256855 0.03095141053199768 0.09598536044359207 -0.027823923155665398 -0.03682078421115875 -0.0835358276963234 0.022568969056010246 -0.01710398867726326 0.010147510096430779 0.0039818743243813515 -0.04895815998315811 0.04595782980322838 0.013282430358231068 0.001137383165769279 -0.0410747304558754 0.08389750868082047 0.03523814678192139 -0.043815553188323975 0.02096737176179886 0.0993555337190628 -0.015097261406481266 -0.029146244749426842 -0.03355831652879715 -0.0036454685032367706 -0.0379536934196949 0.01286362111568451 0.007420503068715334 -0.09000737220048904 -0.05579607933759689 -0.07116822898387909 -0.08063448220491409 -0.0024990313686430454 0.05574026703834534 0.027260448783636093 0.00514516094699502 -0.045073699206113815 0.029826471582055092 -0.015843283385038376 -0.045683201402425766 -0.02756362222135067 0.025156693533062935 -0.0604335218667984 0.021229669451713562 -0.003666035830974579 -0.10562264919281006 0.0008097847457975149 0.0073010241612792015 -0.008999664336442947 -0.025946365669369698 -0.00019398897711653262 0.04936380684375763 0.030831316486001015 0.04498058184981346 -0.039558958262205124 -0.014882269315421581 -0.021653836593031883 0.03602908179163933 0.01930432952940464 0.012045382522046566 -0.024231165647506714 -0.037756819278001785 0.014681132510304451 -0.08839856833219528 -0.0390671044588089 0.01252299826592207 0.038447801023721695 -0.036785874515771866 -0.10504868626594543 0.0028653177432715893 -0.010381081141531467 -0.02479277364909649 -0.02521684020757675 0.029206015169620514 -0.024572273716330528 0.009025010280311108 -0.031524889171123505 0.02166822925209999 0.020320281386375427 -0.019490597769618034 0.020581794902682304 -0.01794959418475628 0.05476115643978119 0.0020633188541978598 -0.04505962133407593 0.02460261806845665 -0.04351750761270523 -0.04881714656949043 -0.0465487502515316 -0.018358822911977768 -0.006121898535639048 0.04109691083431244 0.07394997030496597 -0.03748234733939171 -0.09326303750276566 -0.04274020716547966 -0.05393088608980179 -0.05436844751238823 -0.020564325153827667 0.015477824956178665 -0.030430754646658897 -0.023597300052642822 0.017726508900523186 -0.000610123504884541 0.010424005798995495 0.035460442304611206 0.023301880806684494 -0.10302708297967911 0.039071135222911835 -0.02803058922290802 -0.08749804645776749 -0.008754724636673927 -0.037021901458501816 -0.00402434729039669 0.0686308965086937 0.02978578396141529 0.026392841711640358 0.0012522070901468396 -0.01500849612057209 0.00609987648203969 -0.06790121644735336 0.018584737554192543 -0.04442376270890236 -0.03219226002693176 -0.03262030705809593 0.023911332711577415 -0.015915755182504654 -0.007795094512403011 -0.007274051196873188 0.01188839040696621 0.005001612938940525 -0.014963794499635696 -0.07809050381183624 -0.08034192025661469 -0.03079853765666485 -0.030845381319522858 0.007730451412498951 -0.020121973007917404 0.07923517376184464 -0.02114810422062874 -0.04696628823876381 -0.05175436660647392 -0.036233335733413696 0.012460214085876942 -0.015947584062814713 0.10025183111429214 -0.01889355108141899 -0.029338078573346138 -0.04341757297515869 -0.004245420917868614 0.11220049858093262 -0.060069698840379715 0.009919038973748684 0.04834097623825073 0.060758814215660095 -0.02704782970249653 0.019808329641819 0.04440722241997719 -0.030180394649505615 -0.04776442050933838 -0.03000803478062153 0.01815899647772312 -0.05595726892352104 -0.05039402097463608 -0.037249963730573654 0.010722082108259201 0.018385734409093857 -0.007921742275357246 0.012529049068689346 0.006501671392470598 -0.0009761392720974982 -0.0011439683148637414 0.05107908695936203 0.008038579486310482 0.014520755968987942 -0.03168748691678047 0.01132283080369234 0.015059199184179306 0.014488080516457558 -0.05853841453790665 -0.029804175719618797 -0.06998676061630249 0.04001114144921303 -0.02181619219481945 -0.03225811943411827 -0.06258154660463333 -0.05243523418903351 -0.003445504931733012 0.03559551388025284 -0.005206224974244833 -0.02071540057659149 -0.0469585619866848 -0.014859165996313095 -0.09045034646987915 -0.07251474261283875 -0.0242056455463171 0.007932639680802822 0.01168644055724144 0.0091745276004076 -0.04480480030179024 0.021849853917956352 0.04034204035997391 0.05992025136947632 0.015965715050697327 0.05996442213654518 0.021733123809099197 -0.006604858674108982 0.05890843644738197 -0.03056793287396431 0.10440734028816223 -0.009693237021565437 -0.060556329786777496 -0.010701277293264866 0.0157639030367136 -0.09160540997982025 0.032653506845235825 -0.07709015905857086 -0.04692653566598892 0.01639922708272934 -0.009948804043233395 -0.01578254997730255 0.039827924221754074 0.07309883832931519 -0.019978953525424004 0.01764259859919548 -0.07597164064645767 -0.020187169313430786 0.057587869465351105 -0.01719365268945694 -0.03830886259675026 -0.04848458617925644 -0.0398835651576519 0.013400956057012081 0.005777995567768812 -0.04434416443109512 0.07059818506240845 0.027523458003997803 -0.0387544110417366 -0.04676807299256325 -0.005761601962149143 -0.023049434646964073 0.050759367644786835 0.02140626683831215 0.06005582958459854 0.05318787321448326 0.041365865617990494 -0.03393243998289108 0.03241627290844917 0.010166725143790245 -0.061826035380363464 0.046706125140190125 -0.034779880195856094 0.03855770453810692 -0.016737600788474083 -0.01735905557870865 0.011789599433541298 -0.02294110134243965 0.0007893474539741874 0.004240485839545727 0.04654749110341072 0.0396929606795311 0.024852722883224487 0.08694471418857574 -0.053605202585458755 -0.01740563102066517 0.008764535188674927 -0.023426704108715057 -0.05246727541089058 0.0004353571857791394 -0.054278429597616196 0.06870289891958237 0.045247990638017654 0.0009899731958284974 -0.022472528740763664 -0.026312872767448425 -0.007363944314420223 0.018444236367940903 -0.0026112196501344442 0.010431387461721897 0.10260868817567825 -0.017850510776042938 -0.009172579273581505 0.02699313685297966 -0.05938258767127991 0.04784431308507919 0.05221003293991089 0.06877875328063965 -0.0481979139149189 0.0013148203724995255 -0.0026605187449604273 0.06293535232543945 0.022666320204734802 -0.02678227238357067 -0.06346653401851654 -0.01813480630517006 0.13349458575248718 -0.018534861505031586 0.025659698992967606 0.0659300908446312 -0.035797834396362305 0.08002656698226929 0.03329020366072655 -0.004073762334883213 0.026400215923786163 -0.015119294635951519 -0.06031167507171631 0.05501178279519081 -0.08372089266777039 0.06338493525981903 -0.05140657350420952 0.09000064432621002 0.012993081472814083 -0.05272487550973892 0.11784465610980988 0.07799223065376282 0.04641678184270859 0.009131792932748795 -0.05459349602460861 +0.03753487393260002 0.03175141662359238 0.019970647990703583 0.04383163899183273 -0.10950936377048492 -0.03334587439894676 -0.022381270304322243 0.0019954147282987833 0.015319068916141987 -0.05399281904101372 -0.0076100705191493034 -0.01432129554450512 -0.0044732242822647095 -0.011907453648746014 0.02724982239305973 -0.021785257384181023 -0.07248137146234512 -0.020784607157111168 -0.020231623202562332 -0.044032204896211624 0.04636513441801071 -0.013317643664777279 -0.056188199669122696 0.07351343333721161 0.011895077303051949 0.025763453915715218 -0.03612798824906349 0.027110232040286064 -0.03574349731206894 0.0544513575732708 0.05665380507707596 -0.012955761514604092 0.04490495100617409 -0.0657443031668663 -0.04560475796461105 0.05890722945332527 0.017700985074043274 0.1164264976978302 0.05027831718325615 -0.04407001659274101 -0.03343375027179718 0.0005627053324133158 -0.038455285131931305 -0.0437946543097496 0.02889823354780674 -0.007763080298900604 -0.0151379918679595 -0.011798354797065258 0.06299982964992523 0.028909489512443542 0.06893287599086761 0.009391283616423607 -0.05912186950445175 -0.034006666392087936 0.02129123918712139 0.028345119208097458 0.07107851654291153 -0.052501384168863297 -0.038636405020952225 0.06440840661525726 -0.0677003413438797 -0.015227897092700005 0.014569681137800217 -0.019713204354047775 0.008599353954195976 4.5356220653047785e-05 0.0157930925488472 0.07540648430585861 0.012526744045317173 -0.027083227410912514 0.04163254424929619 0.11333048343658447 -0.06062285974621773 -0.023546921089291573 0.047887708991765976 -0.0722314640879631 -0.05106863006949425 0.05024860054254532 -0.01248930487781763 0.042015183717012405 -0.019078915938735008 -0.07172998785972595 0.1227472797036171 -0.04035494849085808 -0.05671378970146179 -0.05780607834458351 -0.02830669656395912 -0.03981620445847511 0.05777933821082115 0.02036171220242977 0.00015803540009073913 0.05810884013772011 -0.07579140365123749 0.043325960636138916 -0.011025544255971909 0.0024796866346150637 0.04816999286413193 -0.10215526819229126 -0.0161249078810215 0.019823063164949417 -0.041049957275390625 -0.04235035181045532 0.005059321876615286 -0.001578018651343882 0.04815712943673134 0.048672500997781754 -0.040511272847652435 0.011490252800285816 0.028343481943011284 0.05249633267521858 0.04582751542329788 0.0627664104104042 0.08249775320291519 0.061008039861917496 0.07257655262947083 0.0003253735776524991 0.023879459127783775 -0.07117415964603424 -0.027936281636357307 -0.01006509829312563 -0.010704264976084232 0.06414151191711426 -2.9043416361673735e-05 -0.04339102283120155 -0.006719004362821579 0.0332721546292305 -0.10802307724952698 -0.023975705727934837 0.04460180923342705 -0.02565794810652733 0.10185006260871887 0.043481748551130295 -0.00103594153188169 0.03223529830574989 0.034504130482673645 0.028951184824109077 -0.017934150993824005 0.04695199802517891 -0.01070493459701538 -0.040695808827877045 0.0002767886617220938 0.003664347343146801 0.011695284396409988 -0.06910982728004456 0.03227466717362404 0.04712461680173874 0.02917627990245819 -0.023020582273602486 -0.0625714510679245 -0.0017325549852102995 -0.0817015990614891 -0.0515085905790329 0.012923273257911205 -0.08908570557832718 -0.026062868535518646 0.05033409968018532 0.022757375612854958 0.022774361073970795 -0.03395480662584305 0.004857979714870453 -0.02884402871131897 -0.03538699448108673 0.0027252689469605684 -0.07432369142770767 -0.060467422008514404 -0.029475515708327293 0.019172020256519318 0.010075661353766918 -0.02873343788087368 -0.021100878715515137 -0.007978918962180614 0.0059194546192884445 0.05179595202207565 0.06646935641765594 0.06175762787461281 -0.01455681212246418 0.04113852605223656 -0.06046552211046219 0.027607234194874763 -0.045993465930223465 0.025513073429465294 -0.03731800243258476 0.04538251832127571 -0.05416421964764595 -0.026818176731467247 -0.017438262701034546 0.03160740062594414 0.014735011383891106 0.01444070041179657 0.009752192534506321 -0.0680442601442337 -0.05416890233755112 0.03458210825920105 0.07493811845779419 -0.061860691756010056 0.03441470116376877 0.025745483115315437 0.03904842212796211 -0.014873056672513485 -0.023061739280819893 -0.07449811697006226 0.0336570180952549 0.009416504763066769 0.07552602887153625 0.04131199046969414 -0.06716757267713547 0.05715164914727211 0.008402838371694088 -0.013326902873814106 -0.06442976742982864 0.01650642789900303 0.03396102413535118 0.020791994407773018 0.03575057536363602 0.0771038681268692 -0.007194944191724062 0.00942531693726778 -0.028892429545521736 0.058941587805747986 -0.05295355245471001 -0.018314942717552185 -0.026888327673077583 -0.09179221093654633 -0.005061101634055376 -0.06364257633686066 -0.05875976011157036 -0.01589217036962509 0.0419151596724987 -0.006727219093590975 -0.026439711451530457 -0.00016199579113163054 0.021141277626156807 -0.01641065627336502 -0.016794053837656975 0.0018209744011983275 0.005761278327554464 -0.08426596969366074 0.13434745371341705 -0.020137595012784004 -0.08065015077590942 -0.04861242324113846 0.0448458157479763 0.05985773727297783 -0.020154882222414017 0.0463399700820446 0.04671841114759445 0.09040296822786331 0.04546433687210083 0.0015901211882010102 -0.039155252277851105 -0.0480966754257679 -0.06490394473075867 -0.0010782197350636125 0.040596913546323776 -0.029154200106859207 -0.029718054458498955 0.004125209059566259 -0.049317989498376846 0.018604671582579613 0.02267109975218773 0.0552094466984272 -0.035417310893535614 -0.04563511162996292 -0.030454138293862343 0.03167865797877312 -0.022703198716044426 -0.05329171568155289 0.05922326073050499 -0.016315627843141556 0.05011284723877907 -0.012104326859116554 -0.00833930540829897 0.025041984394192696 0.026778122410178185 0.020374195650219917 -0.023024659603834152 0.06379026174545288 -0.003456133184954524 -0.05379711091518402 -0.03623790293931961 -0.07017619162797928 -0.05677488073706627 -0.021396495401859283 -0.02420196495950222 -0.022977974265813828 0.056722767651081085 0.010322083719074726 -0.039660628885030746 -0.06539024412631989 0.0008980081765912473 -0.019940560683608055 -0.06352907419204712 -0.036083072423934937 0.02459818683564663 -0.07157009094953537 -0.00446065841242671 0.011309176683425903 -0.025500234216451645 -0.021606018766760826 0.00424443744122982 -0.042422566562891006 -0.08215821534395218 0.03660665825009346 -0.02878476120531559 -0.040646813809871674 0.007455380633473396 -0.03822098672389984 0.041229166090488434 0.10208573937416077 0.04270705580711365 0.06178295612335205 0.009396246634423733 0.05235816538333893 0.08743389695882797 -0.024198750033974648 -0.007750603836029768 -0.02021072246134281 -0.05240486562252045 -0.09602807462215424 0.05109605938196182 -0.040599413216114044 -0.03369960933923721 -0.026101501658558846 0.03706108406186104 0.07121371477842331 -0.002777926390990615 -0.015453718602657318 -0.031211672350764275 0.03705042973160744 0.010145924054086208 0.06288173049688339 -0.022114966064691544 -0.003916639368981123 -0.023410379886627197 -0.050802234560251236 -0.0413200818002224 -0.05124710127711296 0.04653333127498627 0.029501350596547127 0.0526396706700325 -0.009793037548661232 -0.09118480980396271 -0.016200728714466095 0.021075932309031487 0.07986099272966385 -0.09324754774570465 0.009646350517868996 0.03303277865052223 0.00238543632440269 -0.07557947188615799 -0.015337645076215267 0.0449829176068306 -0.028717579320073128 -0.03451697155833244 -0.005357875023037195 0.06101919710636139 -0.0626833587884903 0.010063276626169682 0.003978464752435684 -0.039577558636665344 -0.01949445530772209 0.029574228450655937 0.012118254788219929 -0.030285412445664406 -0.03022271953523159 -0.02155425027012825 -0.03587818890810013 -0.013131718151271343 0.001548502128571272 0.010093022137880325 0.03580460324883461 -0.03043133020401001 0.024669647216796875 -0.06499233841896057 0.0015702032251283526 -0.06435945630073547 0.09909044951200485 -0.029621563851833344 -0.011402792297303677 -0.009302350692451 -0.02050909399986267 -0.0005295529845170677 0.0405932255089283 0.00857020728290081 -0.05765043944120407 -0.0324082151055336 -0.023707564920186996 -0.058831505477428436 -0.07911719381809235 -0.023052824661135674 0.01866559125483036 -0.0743410736322403 0.008882786147296429 -0.029661787673830986 -0.003976366017013788 -0.019017549231648445 0.012747094966471195 0.022395094856619835 0.019241536036133766 0.042050041258335114 0.0008411119342781603 0.04599643126130104 0.0026636093389242887 0.042029645293951035 0.0031449683010578156 -0.06365692615509033 0.024518297985196114 0.003706471063196659 -0.06224736571311951 0.09519660472869873 -0.046435512602329254 -0.0119468430057168 -0.02419980801641941 0.017495986074209213 0.03815801814198494 -0.007984369993209839 -0.0036324444226920605 -0.017647692933678627 0.050812359899282455 -0.05524544417858124 -0.025595298036932945 0.042286310344934464 -0.021384000778198242 -0.09843304008245468 -0.03060903027653694 0.004087458364665508 -0.03207086771726608 0.044362712651491165 -0.007189327385276556 0.03637462481856346 0.03801480308175087 -0.033929068595170975 -0.043781716376543045 -0.033073555678129196 -0.04194144159555435 0.04758107662200928 -0.010635839775204659 0.0791783258318901 0.012348368763923645 0.020651374012231827 0.01664082705974579 0.02638102136552334 0.006726507563143969 -0.09000427275896072 -0.0061568510718643665 -0.007929137907922268 -0.021728835999965668 -0.005221815779805183 -0.0047782668843865395 0.027560850605368614 -0.02869122102856636 -0.04916355758905411 -0.0521685816347599 0.09216654300689697 -0.029222842305898666 -0.005093584768474102 0.0584108792245388 -0.02792210876941681 0.015653671696782112 0.006728128995746374 -0.057765182107686996 -0.09885861724615097 -0.02508249133825302 -0.019225168973207474 0.0074269515462219715 0.002575451275333762 0.0013329656794667244 -0.012197745032608509 -0.040761422365903854 -0.016609802842140198 0.033888448029756546 -0.055880628526210785 0.03462965413928032 -0.013232128694653511 -0.04499991610646248 -0.071153424680233 -0.014069790951907635 -0.037506990134716034 0.05204997956752777 0.03591493144631386 0.02617858536541462 0.0003006926563102752 0.011399637907743454 0.015964919701218605 -0.052074138075113297 0.013916120864450932 0.023731274530291557 -0.04227906093001366 -0.022040609270334244 0.06323414295911789 -0.03699972853064537 0.06064143031835556 0.018372002989053726 -0.050566427409648895 0.037385329604148865 0.08265625685453415 -0.0486229844391346 0.05051853507757187 -0.020046554505825043 -0.03966908156871796 0.07051709294319153 -0.05489806830883026 0.08970347046852112 -0.03281205892562866 0.0729610025882721 -0.02452288568019867 -0.023935049772262573 0.07228226214647293 0.08864682167768478 0.041060902178287506 0.03059731423854828 -0.07844617962837219 +0.06494390219449997 -0.06458471715450287 -0.048707667738199234 0.02941654436290264 -0.055049143731594086 -0.04506920278072357 0.009624697268009186 0.044259268790483475 -0.005133649799972773 -0.06100679561495781 -0.0673116147518158 0.017289236187934875 0.031445637345314026 0.04254462942481041 0.050232894718647 -0.03910944610834122 -0.03197804093360901 0.02594258077442646 -0.021204737946391106 0.0003321052936371416 0.021186040714383125 -0.03280166909098625 -0.06591923534870148 0.0580696165561676 0.025937141850590706 0.03364361822605133 -0.03804013878107071 0.016815796494483948 0.0252118781208992 0.02708061970770359 0.04737575352191925 -0.04384168982505798 -0.008392516523599625 -0.07512522488832474 -0.07581959664821625 0.02414700575172901 -0.08139607310295105 0.12798550724983215 -0.00563314463943243 0.0002566793991718441 -0.0884714275598526 0.009056759998202324 -0.09933622181415558 -0.0749107077717781 0.041489988565444946 0.0007462609210051596 0.03574909269809723 -0.021558022126555443 0.02574840746819973 0.00838688388466835 0.052905138581991196 -0.024676864966750145 -0.022030383348464966 -0.013825218193233013 -0.07209249585866928 0.017395107075572014 0.006373195443302393 -0.03566141426563263 -0.03324153274297714 0.038617704063653946 -0.10728752613067627 -0.025679847225546837 0.009563376195728779 0.0351964607834816 -0.037404127418994904 -0.009288283064961433 0.00809205137193203 0.04892977327108383 -0.012303057126700878 -0.0519130676984787 -0.00978950597345829 0.04125473275780678 -0.02738732472062111 -0.04738214239478111 -0.00022477543097920716 -0.05968841537833214 0.01920490898191929 0.006546473130583763 0.025910794734954834 -0.005152334459125996 0.0003742414992302656 -0.001110679586417973 0.15281547605991364 -0.008089439943432808 -0.050738826394081116 -0.04180324822664261 -0.008354445919394493 -0.04459410160779953 0.03753739222884178 0.017365606501698494 0.01524944044649601 0.08175905793905258 -0.021947870030999184 0.03799200803041458 0.046890560537576675 -0.011815132573246956 -0.0066796550527215 -0.13108187913894653 -0.04868132993578911 -0.018639296293258667 -0.00844848807901144 -0.0013990654842928052 0.07412457466125488 0.01116082165390253 0.07135120779275894 0.017919393256306648 -0.07677840441465378 0.021821295842528343 0.02439814619719982 -0.0005691250553354621 0.005245136562734842 0.07963818311691284 0.035083066672086716 0.0593232661485672 0.07068678736686707 -0.024682972580194473 0.011846225708723068 -0.04193727299571037 -0.053377725183963776 -0.01852375827729702 0.013709841296076775 0.051535218954086304 0.008465271443128586 -0.10631060600280762 -0.017418788745999336 0.0006179806659929454 -0.13306210935115814 -0.01931033283472061 0.04151640832424164 -0.02754042111337185 0.08447451144456863 0.06726257503032684 -0.032738201320171356 0.026615213602781296 0.04273482412099838 0.007962609641253948 0.016970502212643623 0.032039739191532135 0.026767568662762642 -0.03158702328801155 0.003557598916813731 0.05622226372361183 -0.010399576276540756 -0.03578405827283859 0.0663204938173294 0.03545594587922096 0.004451229237020016 -0.040903232991695404 -0.03878146409988403 0.010155080817639828 -0.06884601712226868 -0.05144823342561722 0.03574874997138977 -0.022134101018309593 0.017202790826559067 0.005394030828028917 0.06276102364063263 0.005767042748630047 -0.024072714149951935 -0.019041430205106735 -0.0665585920214653 -0.020693544298410416 0.0037323941942304373 -0.08448752015829086 0.004605074878782034 0.004496618174016476 0.004281747154891491 0.015112381428480148 -0.05001526698470116 -0.0231041107326746 -0.007792091462761164 0.00043664968688972294 0.034031059592962265 0.05447982996702194 0.054480575025081635 0.0034110855776816607 -0.003687637858092785 -0.06863576173782349 0.02119474485516548 0.00682792579755187 0.017109055072069168 -0.023693611845374107 -0.012415749952197075 -0.05821075290441513 -0.010139228776097298 -0.003513613250106573 -0.0038154597859829664 -0.05050543695688248 0.0037881052121520042 -0.03645892068743706 -0.04228581115603447 -0.07020703703165054 0.0346541628241539 0.05823482200503349 -0.0001319121365668252 0.06849037110805511 -0.020632384344935417 0.06138235330581665 -0.004991564899682999 -0.028351204469799995 -0.03872331604361534 0.029477907344698906 -0.013389265164732933 0.0677420124411583 0.02740972675383091 -0.04873044043779373 0.07343330979347229 0.03449379280209541 0.061357978731393814 -0.06945855170488358 0.005661488976329565 0.009457522071897984 -0.04205090180039406 0.0601191483438015 0.08813611418008804 -0.03877265751361847 -0.0506707988679409 0.05222756415605545 0.04034572094678879 -0.05490053445100784 -0.012859550304710865 0.01856306754052639 -0.08238188177347183 -0.006780666299164295 -0.030701743438839912 -0.05941622704267502 -0.02548626810312271 0.07166420668363571 -0.04055691510438919 -0.029011273756623268 -0.038153309375047684 0.013239209540188313 0.000234850071137771 -0.05726988986134529 -0.005902939476072788 -0.009528683498501778 -0.08575901389122009 0.04537595063447952 0.017391275614500046 -0.1086699590086937 -0.047154657542705536 -0.011771634221076965 0.04610614478588104 -0.001717594568617642 0.03333715721964836 0.04350819066166878 0.05502801761031151 0.008403349667787552 -0.04904234781861305 0.0470680370926857 -0.020189162343740463 0.0016413102857768536 0.0013895874144509435 0.03955917805433273 -0.038766004145145416 -0.03461537882685661 0.02275356836616993 -0.04026918485760689 -0.04842213913798332 -0.023167138919234276 0.016225403174757957 -0.016562534496188164 -0.0419793576002121 -0.02650185115635395 0.038700640201568604 -0.026710039004683495 0.01486513577401638 -0.008905244991183281 -0.025652319192886353 0.06930430233478546 -0.08326231688261032 -0.06126949191093445 0.041842021048069 -0.00446091266348958 -0.014287594705820084 -0.04987477883696556 0.057015057653188705 -0.035969991236925125 -0.06409966945648193 -0.02458634413778782 -0.07344234734773636 -0.029682595282793045 -0.036392223089933395 0.009681740775704384 -0.02765207178890705 0.10983777791261673 0.017126627266407013 -0.03955584764480591 -0.048011962324380875 -0.04808882251381874 -0.01437789760529995 -0.05670267343521118 0.022357294335961342 -0.026667756959795952 -0.028815709054470062 -0.03515827655792236 0.051006853580474854 -0.025499291718006134 -0.006381541956216097 0.005649675615131855 0.013567906804382801 -0.08026190847158432 0.039324965327978134 -0.04260313883423805 -0.07136286795139313 0.018355978652834892 -0.10267792642116547 0.0036876860540360212 0.08814933151006699 0.06267457455396652 -0.0037561082281172276 0.02149306610226631 0.021173549816012383 0.08686723560094833 -0.03963286057114601 -0.018518459051847458 -0.018181560561060905 -0.03177101910114288 -0.03955088183283806 0.05917561799287796 -0.03436300903558731 0.01871613785624504 -0.005855689290910959 -0.022706957533955574 0.04951747506856918 -0.006541382521390915 -0.04388994351029396 -0.008580798283219337 -0.009076274000108242 -0.027474110946059227 0.024531573057174683 0.017633739858865738 0.03307580202817917 -0.03807585686445236 -0.04026997461915016 -0.11284446716308594 -0.018390977755188942 0.030782010406255722 -0.013151988387107849 0.053786758333444595 -0.023517174646258354 -0.03849425166845322 0.004378783982247114 -0.015676448121666908 0.09847238659858704 -0.03137972578406334 0.01404563058167696 0.04404982924461365 0.02688850462436676 -0.08425426483154297 0.038041356950998306 0.02422321029007435 -0.045877620577812195 -0.10586631298065186 -0.015296007506549358 0.028346991166472435 -0.04889025166630745 -0.03074651211500168 -0.002118195639923215 -0.02662775106728077 0.019605405628681183 0.02649172767996788 0.03342987969517708 0.06544366478919983 0.01281745731830597 -0.04339863732457161 0.058527182787656784 -0.004230199381709099 0.05204255133867264 -0.051798105239868164 -0.004161689896136522 -0.009687875397503376 0.09627960622310638 -0.031191881746053696 -0.026986166834831238 -0.041322261095047 0.03256921470165253 0.026449434459209442 -0.025365585461258888 -0.06109791621565819 -0.044868018478155136 -0.04227514564990997 -0.01522747427225113 0.0279917623847723 -0.0624099038541317 -0.028851758688688278 -0.060977302491664886 -0.05661509186029434 -0.08573373407125473 -0.05652962252497673 0.017084231600165367 -0.02444317378103733 0.019597584381699562 -0.03602157160639763 -0.0047918688505887985 0.06648179888725281 -0.011466934345662594 0.007258416619151831 0.0436505526304245 0.030840281397104263 -0.044447124004364014 0.05865469202399254 -0.023906903341412544 0.06025901436805725 0.018574826419353485 -0.018403662368655205 0.013868767768144608 0.02254277653992176 -0.058792173862457275 0.029389357194304466 -0.028803709894418716 0.025229264050722122 0.004650494549423456 -0.04649937525391579 0.018788333982229233 0.030601365491747856 0.02482684515416622 -0.049482621252536774 0.03730738162994385 -0.0758504793047905 -0.0342336967587471 0.01933968812227249 -0.05747227743268013 -0.061009492725133896 -0.05571528151631355 -0.024511052295565605 -0.03251439705491066 0.021658536046743393 -0.011337044648826122 0.031695958226919174 0.047747984528541565 -0.05536404997110367 -0.03425807133316994 0.011639636941254139 -0.018000172451138496 0.04450191557407379 -0.017653431743383408 0.04804164916276932 0.06766466051340103 0.025030024349689484 0.019437873736023903 -0.011936258524656296 0.013567493297159672 -0.04459691420197487 0.002084937645122409 0.023378951475024223 -0.022375572472810745 -0.006311703007668257 0.027558745816349983 0.032288797199726105 -0.06340378522872925 -0.0023265520576387644 -0.05110781639814377 0.06257691234350204 0.05185989290475845 0.04171290248632431 0.018745018169283867 -0.05301988869905472 -0.0018640109337866306 -0.0023977283854037523 -0.028102800250053406 -0.0875522568821907 -0.004546942189335823 -0.050021860748529434 0.028225822374224663 -0.005466535687446594 -0.007450043689459562 0.013206987641751766 -0.07172976434230804 0.03826574608683586 -0.029875382781028748 -0.052379310131073 0.021586673334240913 0.052041150629520416 -0.027877114713191986 -0.03699539229273796 0.0037270733155310154 -0.06646963953971863 0.037048518657684326 0.012891175225377083 0.04161292687058449 -0.03288354352116585 -0.01664424128830433 -0.02628418616950512 -0.0027608931995928288 0.03359835594892502 -0.049336615949869156 -0.0638025552034378 0.023675955832004547 0.10786468535661697 -0.056390419602394104 0.008610954508185387 0.04510575160384178 -0.009862024337053299 0.02253265306353569 0.0030280500650405884 -0.03380168601870537 0.028038853779435158 -0.005192152224481106 -0.013499259017407894 0.0802697092294693 -0.08122772723436356 0.047233812510967255 -0.09262669086456299 0.10496418178081512 0.02031002566218376 0.002669098088517785 0.10490363091230392 0.04323315620422363 0.016479993239045143 0.03706170991063118 -0.05055952072143555 +0.040831539779901505 -0.004017997533082962 0.018907979130744934 0.09516486525535583 -0.09466711431741714 -0.03744667395949364 -0.04045895114541054 0.04476195201277733 0.021330248564481735 -0.07508236914873123 -0.030382268130779266 -0.053654611110687256 -0.015055784024298191 -0.003232451155781746 0.005396252032369375 -0.00755443936213851 -0.05249367654323578 0.043561216443777084 -0.03974000737071037 -0.04746768996119499 -0.02275095134973526 0.01602105237543583 -0.06509318202733994 0.030652707442641258 0.0024613188579678535 -0.004850773606449366 -0.04892987012863159 0.00978081300854683 -0.03716699406504631 0.059576988220214844 0.042052026838064194 0.03172767534852028 0.03526170551776886 -0.04937555268406868 -0.05925450101494789 0.05422380566596985 -0.032868485897779465 0.09188917279243469 -0.02401406690478325 -0.04528876766562462 -0.03555827960371971 0.011131851002573967 -0.011793570592999458 -0.06649690866470337 0.05628734081983566 -0.004610874690115452 -0.00727086840197444 -0.012132934294641018 0.03212076425552368 0.03567146882414818 0.1379644125699997 0.01588192582130432 0.0031008608639240265 -0.006028834730386734 -0.044720359146595 0.029039056971669197 0.011403676122426987 -0.03534549102187157 -0.026210298761725426 0.04147003963589668 -0.07727588713169098 -0.04637037590146065 0.04933327063918114 0.025493523105978966 -0.046938978135585785 0.02061883918941021 -0.03847234696149826 0.11803711950778961 0.035466425120830536 -0.02643640711903572 0.0031182437669485807 0.1060815155506134 -0.050350986421108246 -0.04891602694988251 0.063030906021595 -0.08995146304368973 -0.05720597878098488 0.03706534579396248 0.01020154170691967 0.006718319840729237 0.05202460289001465 -0.04405335336923599 0.10712815821170807 -0.05520784482359886 -0.03032928705215454 0.011340069584548473 0.009907282888889313 -0.06193748116493225 0.09109164774417877 0.06129933521151543 0.004935215227305889 0.07908101379871368 -0.006213075947016478 0.023761877790093422 -0.005235742311924696 0.026505859568715096 0.047479379922151566 -0.10265415906906128 -0.0362650603055954 -0.00036979958531446755 0.024458730593323708 -0.012179799377918243 0.022806448861956596 0.009268932975828648 0.0693909227848053 0.05022839456796646 -0.016060011461377144 -0.03005073219537735 0.0289072934538126 0.030741240829229355 0.03861663118004799 0.08348528295755386 0.07947170734405518 0.03681465983390808 0.03352998569607735 0.0105315912514925 0.010290087200701237 -0.059128712862730026 -0.0584367960691452 0.03219995275139809 -0.016587916761636734 0.05080002546310425 -0.040051840245723724 -0.06443250179290771 -0.0003895955451298505 -0.0022617215290665627 -0.046614669263362885 -0.010286951437592506 0.04803597927093506 -0.01946844533085823 0.1069035530090332 0.010438960045576096 -0.0051601724699139595 0.01756584458053112 0.07194630056619644 0.047479625791311264 -0.020447274670004845 -0.009556172415614128 0.007233563810586929 0.028247401118278503 0.011677621863782406 0.06942550092935562 -0.022512827068567276 -0.04264433681964874 0.05635916069149971 0.03890226036310196 0.05162147432565689 0.01025751419365406 -0.07454105466604233 0.034755121916532516 -0.04993707314133644 -0.08221711218357086 -0.004992284346371889 -0.07337885349988937 -0.0007148042786866426 0.05578974261879921 0.013418000191450119 0.024081088602542877 -0.015596932731568813 -0.025147825479507446 -0.016365783289074898 -0.030841616913676262 -0.013401507399976254 -0.0789949968457222 -0.04763171821832657 -0.05923132598400116 -0.044203877449035645 0.01969623938202858 -0.04720606654882431 -0.03087230958044529 -0.00986013188958168 0.016903551295399666 0.046860188245773315 0.114028699696064 0.07082373648881912 0.044072870165109634 0.015133812092244625 -0.03792700916528702 -0.0325939767062664 -0.03760548308491707 -0.0061678229831159115 -0.0055511873215436935 0.026375843212008476 -0.0479249507188797 0.02274804562330246 0.02080344781279564 0.0655088871717453 0.00998961552977562 0.03807744383811951 0.035173337906599045 -0.00935530848801136 -0.026359565556049347 0.06043354421854019 0.05589917674660683 0.005469353869557381 0.04003102332353592 -0.02625117637217045 0.038187406957149506 0.0014001289382576942 -0.06578587740659714 -0.025171129032969475 0.03397995978593826 0.03209898993372917 0.06991120427846909 0.05171526223421097 -0.08842378109693527 0.0925213173031807 0.06368526071310043 0.015752680599689484 -0.0421682707965374 -0.004901095759123564 0.02273905836045742 0.05719120055437088 0.05298741161823273 0.06838705390691757 0.016986656934022903 -0.00024177222803700715 0.021058974787592888 0.04580439627170563 -0.025175252929329872 0.018649708479642868 0.010691231116652489 -0.10590473562479019 0.04114817455410957 -0.028948424383997917 -0.050491753965616226 -0.03777262195944786 0.03930150344967842 -0.026378251612186432 -0.00025572863523848355 0.04884485900402069 0.001866898383013904 -0.02623932622373104 -0.038574736565351486 -0.028158750385046005 0.0074044992215931416 -0.10144341737031937 0.09561913460493088 0.0009384223376400769 -0.05848366394639015 -0.058981895446777344 0.016181718558073044 0.006212983280420303 -0.007171740289777517 0.048024002462625504 0.07235034555196762 0.0866965800523758 0.0448443703353405 0.030514761805534363 0.0034413288813084364 -0.08167092502117157 -0.06275779753923416 0.0055878739804029465 0.027529381215572357 -0.04108932986855507 -0.018809430301189423 -0.01258531492203474 -0.0904715359210968 -0.011843832209706306 0.03320831060409546 0.022511424496769905 -0.03314290568232536 0.01202573161572218 -0.02322596125304699 0.04729478806257248 -0.05092644318938255 -0.06372305005788803 0.031695444136857986 -0.017933905124664307 0.03577769547700882 -0.04893571883440018 -0.014034206978976727 0.05755827948451042 0.007583362516015768 0.035331111401319504 -0.025467609986662865 0.05824330076575279 -0.04476364329457283 -0.07195057719945908 -0.0027339423540979624 -0.09953179210424423 -0.04234825447201729 -0.014721577987074852 -0.047776754945516586 -0.052740491926670074 0.076675646007061 0.0049357227981090546 -0.01053515262901783 -0.08692286908626556 -0.03746689110994339 -0.04165549576282501 -0.03971456363797188 -0.008951808325946331 -0.01114712655544281 -0.035011887550354004 -0.02878282032907009 0.011516940779983997 -0.03941190615296364 -0.00355715723708272 0.010660194791853428 -0.015595834702253342 -0.04359700530767441 0.07310672104358673 -0.020081549882888794 0.00365848490037024 0.035701826214790344 -0.043180566281080246 0.013286583125591278 0.10255183279514313 0.050499171018600464 0.015297776088118553 0.07676416635513306 0.02668634243309498 0.07381311058998108 0.05881097912788391 -0.06906221807003021 -0.03662577271461487 -0.013424444943666458 -0.04718530923128128 0.028284715488553047 -0.001959337154403329 -0.04904814437031746 0.012070814147591591 0.01873835176229477 0.060988519340753555 -0.003114921972155571 -0.0426783561706543 -0.020081311464309692 0.04463228955864906 -0.0044247121550142765 0.02423391118645668 0.007662045303732157 0.014086127281188965 -0.02385185845196247 -0.04248466342687607 0.031780701130628586 -0.010201974771916866 0.04216381162405014 0.020986638963222504 -0.009710033424198627 -0.02573130466043949 -0.04751776158809662 0.012809843756258488 -0.026108479127287865 0.08879999816417694 -0.07900445908308029 0.01901012286543846 0.08368746191263199 0.022908901795744896 -0.08533546328544617 0.00025535692111589015 0.02099391259253025 -0.04655437171459198 -0.05453085899353027 -0.01365378312766552 0.026713158935308456 -0.05266012251377106 -0.018562545999884605 -0.02241687662899494 -0.04869437590241432 -0.011756733991205692 0.012966901063919067 0.014708153903484344 0.017512233927845955 -0.002886856673285365 -0.05057745426893234 -0.016703229397535324 -0.01792103424668312 0.0031070190016180277 -0.030086608603596687 0.003631220431998372 -0.017264027148485184 0.016705503687262535 -0.017067451030015945 -0.0398847833275795 -0.02068953774869442 0.038690000772476196 -0.007497122511267662 -0.03712339699268341 0.019807137548923492 -0.04917304962873459 0.005237537436187267 0.021966062486171722 0.023130852729082108 -0.04467739164829254 -0.03705272823572159 -0.04550578072667122 -0.026459885761141777 -0.07999221235513687 -0.05507008731365204 0.00891456101089716 -0.06659495085477829 -0.0018610050901770592 -0.052771568298339844 -0.026183288544416428 -0.030838746577501297 0.01063627377152443 0.04335954785346985 0.03923606127500534 0.004106373060494661 -0.01843869499862194 0.004806114826351404 -0.03382765129208565 0.040196046233177185 0.028144855052232742 -0.09432759135961533 -0.0017288047820329666 0.02270868793129921 -0.03626811504364014 0.04688528925180435 -0.013085836544632912 -0.001986253308132291 0.0015462873270735145 -0.014576920308172703 0.015191294252872467 -0.005626930855214596 -0.034943122416734695 -0.007216759957373142 0.03586667403578758 -0.037521980702877045 -0.020801831036806107 0.017856653779745102 -0.008295373059809208 -0.0766378715634346 -0.03557366877794266 -0.020479906350374222 -0.02752804383635521 0.027079470455646515 -0.026029445230960846 -0.018900886178016663 -0.006239541806280613 -0.09805110096931458 -0.03995542600750923 -0.06798025220632553 -0.004127450753003359 0.05116656795144081 0.008274633437395096 0.03281009569764137 -0.015011431649327278 -0.02555534802377224 -0.0367882139980793 -0.008772789500653744 0.033652130514383316 -0.05215967446565628 -0.02048063836991787 -0.00834058690816164 -0.025574220344424248 0.01679563708603382 0.033686261624097824 -0.012816594913601875 -0.06302440166473389 -0.044243354350328445 -0.010866339318454266 0.05763613060116768 -0.026926111429929733 0.0019344700267538428 0.024317920207977295 -0.02883945219218731 0.004273988772183657 0.049365587532520294 -0.04690300300717354 -0.05858900025486946 0.023839985951781273 -0.013628211803734303 0.026012340560555458 0.03618154674768448 0.04651811718940735 -0.08033721894025803 -0.04136252775788307 -0.010586442425847054 0.012861580587923527 -0.09372866898775101 -0.041208457201719284 0.011852345429360867 -0.09530565142631531 -0.04890793189406395 -0.009385463781654835 -0.05262500047683716 0.10043332725763321 0.03267236426472664 0.031569067388772964 -0.029143935069441795 -0.006155898328870535 7.799106242600828e-05 -0.04364063963294029 -0.0014844955876469612 -0.017330504953861237 -0.03641741722822189 -0.012931599281728268 0.05533125624060631 -0.04868827760219574 0.03338561952114105 0.053254712373018265 -0.055862415581941605 0.05471811816096306 0.038985688239336014 -0.03406064584851265 0.049600064754486084 0.038470130413770676 -0.03206820413470268 0.055322058498859406 -0.08693291246891022 0.07083349674940109 -0.042585041373968124 0.09338721632957458 0.02214699052274227 -0.01296122744679451 0.02982441335916519 0.11675065010786057 -0.017806053161621094 0.014574168249964714 -0.07053976505994797 +0.021053364500403404 -0.03655913472175598 -0.03384029492735863 0.02908587083220482 -0.07671231031417847 -0.02947954088449478 -0.012945067137479782 0.06993553787469864 -0.005661049857735634 -0.058705247938632965 -0.025656694546341896 0.012171573005616665 0.01397240161895752 0.015067756175994873 0.007324108853936195 -0.050201449543237686 -0.06529925763607025 -0.004294582176953554 -0.04826296120882034 -0.060367584228515625 0.041480906307697296 0.01161729171872139 -0.051769036799669266 0.06745660305023193 0.012960505671799183 0.005694146268069744 -0.02318987064063549 0.01421511359512806 0.004164690617471933 0.0480809211730957 0.08620846271514893 -0.016044827178120613 0.04089297354221344 -0.04545038938522339 -0.05046701803803444 0.07426268607378006 -0.06077434495091438 0.1199747696518898 -0.0032243365421891212 0.011568143032491207 -0.05748848617076874 -0.005840092431753874 -0.026229199022054672 -0.031717732548713684 0.053137946873903275 -0.0014623733004555106 0.007249535992741585 -0.011216928251087666 0.020032135769724846 0.014374788850545883 0.07528763264417648 0.005137252621352673 0.02807212620973587 0.00511153182014823 -0.006064375396817923 0.06732328981161118 0.027690410614013672 -0.02877708710730076 -0.02157261222600937 0.015515954233705997 -0.06060280650854111 -0.020211128517985344 0.016295425593852997 -0.014950800687074661 0.005455102771520615 0.017191117629408836 -0.021863572299480438 0.09097965806722641 0.012340101413428783 -0.021298568695783615 0.008718404918909073 0.0634641945362091 -0.057563722133636475 -0.05131128430366516 0.06082265451550484 -0.03621453791856766 -0.025779802352190018 0.02553124725818634 -0.02812138758599758 0.01166585087776184 -0.004576996900141239 -0.003235073760151863 0.14763039350509644 -0.02627917192876339 -0.054675716906785965 -0.044925156980752945 -0.011507382616400719 -0.054327815771102905 0.0889308899641037 0.005802219267934561 0.0179713387042284 0.08073684573173523 -0.03336707502603531 0.024828145280480385 0.008571270853281021 -0.005850715562701225 -0.00020854981266893446 -0.11921476572751999 -0.031017186120152473 0.006371319759637117 0.021547749638557434 -0.015863768756389618 0.08741101622581482 -0.02198808081448078 0.05478638410568237 0.08126368373632431 -0.06460076570510864 -0.02174203097820282 0.007379232440143824 0.00868278555572033 0.012332161888480186 0.1443525105714798 0.044305115938186646 0.03133770078420639 0.07879502326250076 -0.0005989805795252323 -0.003779603634029627 -0.026250211521983147 -0.05704358592629433 -0.024267898872494698 -0.03191512078046799 0.05378897115588188 -0.014460360631346703 -0.06471161544322968 -0.0385146290063858 0.03300657868385315 -0.12641775608062744 -0.017530381679534912 0.09882206469774246 -0.04065253213047981 0.09343482553958893 0.05045422166585922 -0.00642276369035244 0.027699505910277367 0.06397542357444763 0.007830279879271984 -0.0025385122280567884 0.02471957542002201 0.0010175592033192515 -0.0372159481048584 -0.02859567292034626 0.05570165812969208 -0.006741236429661512 -0.05803690478205681 0.046848274767398834 0.06480121612548828 0.015418843366205692 -0.010378274135291576 -0.04583459720015526 0.026688557118177414 -0.06433098018169403 -0.09001536667346954 -0.017945798113942146 -0.04192148894071579 -0.003319224575534463 0.03738982230424881 0.015926524996757507 0.02145356871187687 -0.0026100119575858116 -0.04759339243173599 -0.039998117834329605 -0.035334598273038864 -0.016894778236746788 -0.07546596229076385 0.006957515608519316 -0.017425864934921265 -0.004347205627709627 0.007086385041475296 -0.03929468244314194 -0.02340412326157093 -0.00570126436650753 -0.024286698549985886 0.01929575391113758 0.07955951243638992 0.04624996334314346 0.02638069912791252 0.020389791578054428 -0.04868151620030403 -0.032172758132219315 -0.04973596706986427 0.021617088466882706 -0.04192622750997543 0.021449388936161995 -0.06610722839832306 -0.0008861195528879762 0.010354770347476006 0.03144616633653641 -0.02181066758930683 -0.004688158165663481 -0.03539580851793289 -0.01836887188255787 -0.05942409858107567 0.05156935006380081 0.05472352355718613 -0.03307362273335457 0.03321472182869911 0.017034437507390976 0.062639020383358 -0.02457227185368538 -0.021688686683773994 -0.0769832506775856 0.05101558566093445 0.03220582753419876 0.025377532467246056 0.0413225032389164 -0.06607849150896072 0.08014947175979614 -0.008765041828155518 0.04819142818450928 -0.06610237807035446 0.02858240157365799 0.041437000036239624 -0.012221687473356724 0.08053142577409744 0.05493035912513733 -0.007391166407614946 -0.03728373721241951 0.005323546007275581 0.04399408400058746 -0.08607114851474762 -0.0268947035074234 -0.005621185526251793 -0.07304305583238602 0.0268678218126297 -0.027761023491621017 -0.09139015525579453 -0.04550008103251457 0.037187088280916214 -0.009275125339627266 -0.031722795218229294 -0.02451479621231556 0.03326353803277016 -0.009510636329650879 -0.03381015732884407 0.02061496116220951 -0.008068076334893703 -0.08398112654685974 0.0818968117237091 -0.016870278865098953 -0.08539101481437683 -0.056184135377407074 0.020190652459859848 0.04414942115545273 -0.012506076134741306 0.04030332341790199 0.04279780760407448 0.06682951748371124 0.01913057640194893 -0.033326707780361176 0.00382663169875741 -0.03140554949641228 -0.009746143594384193 -0.030259406194090843 0.03487471863627434 -0.006815145257860422 -0.06834028661251068 0.030170045793056488 -0.05155646428465843 0.004213893320411444 0.0032103420235216618 0.06539178639650345 -0.06316061317920685 -0.025303037837147713 -0.018665827810764313 -0.0038095032796263695 -0.05696568265557289 -0.01203357707709074 0.026371773332357407 -0.04234941303730011 0.04614539071917534 -0.04402954876422882 -0.021560439839959145 -0.0015995765570551157 0.01037958450615406 0.025039054453372955 -0.0476309135556221 0.08331532776355743 -0.019759485498070717 -0.08512545377016068 -0.03645631670951843 -0.034586600959300995 -0.066202811896801 -0.027906518429517746 -0.05107211321592331 -0.0256101842969656 0.10254094749689102 0.021470360457897186 -0.059891000390052795 -0.07039094716310501 -0.04757044464349747 -0.004292742349207401 -0.01505438145250082 -0.007480186875909567 -0.01977522484958172 -0.05256402865052223 -0.0020138113759458065 0.04690634831786156 -0.0398595817387104 0.0043657985515892506 0.04852685704827309 0.030281923711299896 -0.02211342379450798 0.056221239268779755 -0.05274852365255356 -0.01973787508904934 -0.012265894562005997 -0.04512486234307289 0.02521332912147045 0.08056437969207764 0.06995052844285965 0.012399420142173767 0.0030119060538709164 0.051897916942834854 0.09665844589471817 0.0027733861934393644 -0.00671991566196084 -0.008428695611655712 -0.029202109202742577 -0.037643007934093475 0.05375008285045624 -0.03310249373316765 -0.035365764051675797 -0.009162288159132004 -0.02238434925675392 0.06592556089162827 -0.001167249632999301 -0.001203044201247394 -0.02911611832678318 0.04574865475296974 0.011930572800338268 0.05186877027153969 0.003145400667563081 0.00045237797894515097 -0.0010545110562816262 -0.0473489873111248 -0.06096293032169342 -0.06258206814527512 0.04856488108634949 0.00513096060603857 0.042832717299461365 -0.008703642524778843 -0.06657297164201736 0.02282704971730709 0.0020072124898433685 0.09866674989461899 -0.06787559390068054 -0.0016318566631525755 0.057590384036302567 0.035831864923238754 -0.08196556568145752 0.016625599935650826 0.0030497792176902294 -0.040369778871536255 -0.08564472198486328 -0.004987072199583054 0.0475434809923172 -0.04743558540940285 -0.038996994495391846 -0.03044065274298191 -0.03964472562074661 -0.01517192367464304 0.00857609324157238 -0.011295653879642487 0.04831364005804062 0.031029094010591507 -0.02246197499334812 0.03718845918774605 0.04204961657524109 0.022749636322259903 -0.047783952206373215 0.029307859018445015 -0.019404981285333633 0.06322943419218063 -0.05350746214389801 -0.058469418436288834 -0.05692586302757263 0.04314139485359192 -0.041230179369449615 -0.017891766503453255 -0.07132106274366379 -0.03252304717898369 -0.023551421239972115 0.013950575143098831 -0.016527468338608742 -0.10250173509120941 -0.010458611883223057 -0.0184163935482502 -0.09752410650253296 -0.09248176962137222 -0.059485048055648804 0.027274049818515778 -0.04026735946536064 0.009678163565695286 -0.058721281588077545 0.009497704915702343 0.022247621789574623 0.021202029660344124 0.04751313105225563 0.07264914363622665 0.041642963886260986 -0.01538144052028656 0.08433862775564194 0.027860518544912338 0.037531450390815735 0.008452563546597958 -0.01730734296143055 0.020466523244976997 0.017830269411206245 -0.039682790637016296 0.055030811578035355 -0.03074677474796772 0.01935810223221779 -0.01528051495552063 -0.0341058224439621 0.000519859604537487 -0.0033323979005217552 0.0068370262160897255 -0.0575886107981205 0.042367447167634964 -0.048975810408592224 -0.023474635556340218 0.05106160789728165 -0.03999234363436699 -0.07103770226240158 -0.04905276373028755 -0.043049413710832596 -0.01632017269730568 0.046098195016384125 0.011096145957708359 0.008274441584944725 0.02070092037320137 -0.03530218452215195 -0.05328897759318352 -0.01645752787590027 -0.024813108146190643 -0.005681609269231558 0.02282235585153103 0.0701674371957779 0.036306239664554596 0.012448519468307495 -0.0026004277169704437 -0.049644775688648224 0.009007925167679787 -0.07063290476799011 0.015443137846887112 0.024127354845404625 -0.05192679166793823 0.010005597025156021 0.006093318574130535 0.015432456508278847 -0.029365550726652145 -0.004230036400258541 -0.04947768524289131 0.06532034277915955 -0.015934603288769722 0.03919032961130142 -0.004591392818838358 -0.03361748903989792 0.005042851436883211 0.016190389171242714 -0.04817265272140503 -0.0747314915060997 0.01365011278539896 -0.029825124889612198 0.02476973459124565 -0.025854697450995445 -0.0008800001232884824 -0.006485689431428909 -0.11149799823760986 -0.00980181060731411 -0.022933388128876686 -0.03301273658871651 0.02508094161748886 0.023724984377622604 -0.07639019936323166 -0.04195920377969742 -0.01421272661536932 -0.0542387031018734 0.06814731657505035 -0.02821981906890869 0.049220602959394455 -0.037949204444885254 -0.03115721419453621 -0.018931090831756592 -0.027498653158545494 0.002797540742903948 -0.03747051954269409 -0.05337945744395256 -0.02681550942361355 0.0603550486266613 -0.028697311878204346 0.013031353242695332 0.08825992792844772 -0.029411599040031433 0.033408526331186295 0.03567078709602356 -0.015432437881827354 0.026406819000840187 0.008038775064051151 -0.012649249285459518 0.03578954562544823 -0.06246670335531235 0.0873575359582901 -0.07137244194746017 0.08802998811006546 0.021735645830631256 0.01961427740752697 0.08781521767377853 0.06855004280805588 0.02707459218800068 0.03570365533232689 -0.06793168187141418 +0.026330340653657913 -0.03916891664266586 -0.0019865846261382103 -0.004150546155869961 -0.04376200586557388 -0.06641820818185806 -0.010271679610013962 0.02031070366501808 -0.009589174762368202 -0.0782369002699852 -0.05115634948015213 -0.028299866244196892 -0.011541252955794334 -0.010238278657197952 0.03711232170462608 -0.04179200902581215 -0.05057666450738907 0.025949066504836082 -0.04160464555025101 -0.02087167464196682 0.03326493501663208 0.02468697912991047 -0.04800890386104584 0.03964363411068916 0.004757030867040157 0.014740919694304466 -0.025223281234502792 0.006363223306834698 0.027403634041547775 0.059715818613767624 0.0640767440199852 -0.01806914433836937 0.049923527985811234 -0.04190649837255478 -0.024450132623314857 0.040005531162023544 -0.0289104413241148 0.09485338628292084 0.014580752700567245 0.009152069687843323 -0.04665729030966759 -0.021898681297898293 -0.01080726832151413 -0.058779630810022354 0.022907530888915062 -0.016404224559664726 -0.0038233152590692043 -0.009490630589425564 -0.009217235259711742 0.04947827011346817 0.09219963103532791 -0.0005414960323832929 -0.014739527367055416 -0.005190548952668905 0.01960090920329094 -0.004422233439981937 0.027108285576105118 -0.032060232013463974 -0.02703876607120037 0.036925338208675385 -0.09387220442295074 -0.01105817873030901 0.008097557350993156 1.9005025023943745e-05 -0.019832424819469452 -0.034920647740364075 -0.014509682543575764 0.10221721231937408 -0.015883417800068855 -0.04866034537553787 0.01717781089246273 0.06848706305027008 -0.061804745346307755 -0.0696486383676529 0.037564169615507126 -0.06812169402837753 0.03820161148905754 0.02168056182563305 -0.020094361156225204 -0.011979005299508572 -0.012983638793230057 -0.03020685352385044 0.16105064749717712 -0.06009560450911522 -0.04322628676891327 -0.056023575365543365 -0.03740297257900238 -0.07169181853532791 0.0642598420381546 0.01613793894648552 0.05485484376549721 0.03852823004126549 -0.008769577369093895 0.011998198926448822 -0.00730959651991725 -0.005918068811297417 0.016164394095540047 -0.08256845921278 -0.025369446724653244 -0.00480391550809145 -0.005479241721332073 0.0029409199487417936 0.06928665190935135 0.025290504097938538 0.03843480721116066 0.03502630442380905 -0.025211116299033165 0.01197719294577837 0.04287593066692352 0.03484947234392166 0.014808328822255135 0.1059335395693779 0.08290529996156693 0.042738914489746094 0.06475057452917099 0.0196351557970047 -0.0011235965648666024 -0.04262259230017662 0.00431973347440362 0.004447047132998705 0.020716138184070587 0.06265892088413239 -0.01257340982556343 -0.0727856382727623 -0.009899997152388096 0.06164705008268356 -0.09921422600746155 -0.04206660017371178 0.06440731137990952 -0.02076948806643486 0.11399302631616592 0.065301813185215 -0.043545566499233246 0.04943972826004028 0.03902999311685562 -5.6567718274891376e-05 -0.021205149590969086 0.003278197953477502 0.005490825977176428 -0.0685005784034729 -0.029538650065660477 0.0316360779106617 -0.04314161092042923 -0.04296783357858658 0.0419209785759449 0.04331256449222565 0.0398971289396286 -0.06218304857611656 -0.05547579005360603 0.0016513183945789933 -0.057237837463617325 -0.06167779117822647 0.0054879020899534225 -0.05011242255568504 0.005782793276011944 0.011061613447964191 -0.004864387679845095 0.002462830627337098 -0.0007550533628091216 -0.0069912998005747795 -0.0695384219288826 -0.06955886632204056 -0.02547634392976761 -0.07955044507980347 -0.0031667435541749 0.025921378284692764 0.013760112226009369 0.017637133598327637 -0.09186117351055145 -0.059807781130075455 -0.009213350713253021 -0.02447371557354927 0.02616301365196705 0.0778271034359932 0.06679881364107132 0.011807220056653023 0.012959879823029041 -0.055973298847675323 -0.012936468236148357 -0.0357777364552021 0.047899533063173294 -0.023910624906420708 0.02718673087656498 -0.06599584966897964 0.001848217099905014 0.0025339454878121614 0.007369657047092915 -0.03570478409528732 0.030906405299901962 0.017054961994290352 -0.014731932431459427 -0.04865610599517822 0.019725581631064415 0.061627186834812164 -0.025921473279595375 0.038316600024700165 -0.018031077459454536 0.10413387417793274 -0.047479018568992615 -0.05435238033533096 -0.07863491028547287 0.0005029379390180111 0.033095408231019974 0.03653424233198166 0.014869973063468933 -0.07603532075881958 0.09501423686742783 0.036603014916181564 0.02317621372640133 -0.051657333970069885 0.04559694230556488 0.02560211718082428 0.014637267217040062 0.06697391718626022 0.05933016538619995 -0.0379292331635952 -0.002418596763163805 -0.006444484926760197 0.036462314426898956 -0.05756659060716629 -0.024352990090847015 -0.01941901445388794 -0.0853591114282608 -0.0022657213266938925 -0.06901510059833527 -0.06577444821596146 -0.023310374468564987 0.03294696286320686 -0.006016931030899286 -0.039651140570640564 -0.004725412931293249 0.032470475882291794 -0.019581709057092667 0.01748514361679554 0.02212916873395443 -0.040083661675453186 -0.10128872841596603 0.06959221512079239 0.0013192174956202507 -0.08620915561914444 -0.06450814753770828 -0.018086416646838188 0.029847830533981323 -0.0027097463607788086 0.036965981125831604 0.034717269241809845 0.08269522339105606 0.022198263555765152 -0.047947224229574203 -0.0018338061636313796 -0.013279062695801258 -0.034389711916446686 -0.013438276946544647 -0.03152163699269295 -0.040544427931308746 -0.07459751516580582 0.0317758210003376 -0.0860721692442894 -0.011708972975611687 -0.02966880239546299 0.022140096873044968 -0.040275223553180695 -0.019084563478827477 -0.010672101750969887 0.03025008738040924 -0.03388439118862152 -0.033596038818359375 0.03960450366139412 -0.030346697196364403 0.026327036321163177 -0.020034167915582657 0.02168569713830948 0.038803085684776306 -0.033370185643434525 0.002322313142940402 -0.04896020144224167 0.10341472178697586 0.015425877645611763 -0.04356905445456505 -0.022134792059659958 -0.06249250844120979 -0.05762587860226631 0.00946713611483574 -0.014836283400654793 -0.012071788311004639 0.04018803685903549 0.03866364806890488 -0.06045902892947197 -0.0341862216591835 -0.05174339935183525 -0.04813561215996742 -0.03763189539313316 -0.04147273674607277 -0.025464380159974098 -0.025414029136300087 0.010034422390162945 0.030982453376054764 -0.05491103231906891 -0.009482241235673428 0.031094815582036972 0.00828253012150526 -0.06418807059526443 0.02486962080001831 -0.02414429746568203 -0.020813189446926117 0.013052895665168762 -0.04673973098397255 0.035919517278671265 0.0781019851565361 0.08322200179100037 0.013687250204384327 0.04775924235582352 0.030433395877480507 0.09242615848779678 -0.014242881909012794 0.0002654453564900905 -0.03981027752161026 -0.044296398758888245 -0.040016304701566696 0.057206012308597565 -0.0021008916664868593 -0.0017844465328380466 0.00855060201138258 0.012065308168530464 0.03867664933204651 -0.021081572398543358 -0.036736391484737396 -0.01711806282401085 0.00622606510296464 -0.034352857619524 0.00858896505087614 -0.008382470346987247 0.05117226764559746 -0.014078624546527863 -0.06548558920621872 -0.07433157414197922 -0.045758992433547974 0.04835402965545654 -0.027491804212331772 0.050242431461811066 -0.04846484214067459 -0.0465797558426857 -0.04411880671977997 0.01316798571497202 0.12603259086608887 -0.030217505991458893 0.015131114982068539 0.02972925826907158 0.06713502109050751 -0.11806222051382065 0.011386857368052006 -0.00834878720343113 -0.020518247038125992 -0.06748682260513306 -0.0010157993528991938 0.03156518563628197 -0.0696607157588005 -0.038993798196315765 -0.021854301914572716 -0.00864273402839899 0.006077388767153025 -0.0007169244345277548 -0.005179580766707659 0.04974357783794403 0.026708489283919334 -0.04732629284262657 -0.013807209208607674 -0.0087614506483078 0.02533770352602005 -0.03042556717991829 0.02091289311647415 -0.0408509187400341 -0.0024900250136852264 -0.05980430915951729 -0.06073395162820816 -0.03476805239915848 0.03904313966631889 -0.02728770487010479 0.004511035047471523 -0.019358597695827484 -0.0296156108379364 -0.032585419714450836 0.00809671264141798 0.00021168428065720946 -0.06382952630519867 -0.008736543357372284 -0.034578002989292145 -0.05718665197491646 -0.07718721032142639 -0.04862019419670105 -0.006261210888624191 -0.00026775395963341 0.03682154417037964 -0.011374931782484055 0.0315527617931366 0.007146118674427271 0.021614449098706245 0.07094060629606247 0.07819222658872604 0.011431197635829449 0.008541744202375412 0.05136795714497566 0.006197783164680004 0.04662594944238663 0.022672023624181747 -0.06928961724042892 -0.02300875633955002 -0.008120259270071983 -0.05420694872736931 0.05525897815823555 -0.03538849949836731 0.003853489877656102 -0.024144615978002548 -0.029313230887055397 0.021381039172410965 -0.020685037598013878 0.024417819455266 -0.026584306731820107 0.06904832273721695 -0.07077440619468689 -0.055343128740787506 0.020300228148698807 -0.03168613091111183 -0.08197562396526337 -0.056363221257925034 -0.03740008547902107 -0.02689202129840851 0.05274565517902374 -0.04517069458961487 0.044986072927713394 0.01682705618441105 -0.016317864879965782 -0.056328706443309784 0.005540578160434961 0.00723438523709774 0.018068654462695122 0.03212420642375946 0.044972099363803864 0.016090216115117073 0.02372928336262703 0.020004533231258392 -0.04786063730716705 0.01955460198223591 -0.08951476216316223 0.009938757866621017 0.003283013589680195 -0.0020354394800961018 -0.0013523470843210816 0.03374243527650833 0.03306486830115318 -0.06333523988723755 -0.008383174426853657 -0.07303982228040695 0.05882350355386734 0.022138694301247597 0.06458505988121033 -0.01203148066997528 -0.0891110971570015 -0.03449888527393341 0.03221835568547249 -0.03169175982475281 -0.08998558670282364 -0.026676278561353683 -0.03448091447353363 0.04572627320885658 -0.02198185585439205 0.03890478238463402 -0.029118865728378296 -0.07855172455310822 0.051138736307621 0.0156844574958086 -0.013681541197001934 -0.005814115982502699 0.06293143332004547 -0.05314495041966438 -0.032418057322502136 0.015161298215389252 -0.060767482966184616 0.026514807716012 0.02415682189166546 0.029746240004897118 -0.04531307518482208 0.004750785883516073 0.0044401343911886215 -0.032786279916763306 0.03213115781545639 -0.006916035898029804 -0.04073762148618698 -0.02175888791680336 0.09360228478908539 -0.03415706008672714 0.03895362466573715 0.0702085942029953 -0.040769800543785095 0.04556048661470413 0.05827438458800316 -0.02914191596210003 0.04955558106303215 0.0073904311284422874 -0.0008835300686769187 0.03347965329885483 -0.09903880953788757 0.07532008737325668 -0.08091804385185242 0.13030317425727844 0.04537101835012436 -0.013568353839218616 0.07387460768222809 0.04860839247703552 0.029950322583317757 0.060200441628694534 -0.09410587698221207 +0.04540681093931198 -0.022060249000787735 -0.024707389995455742 0.009226447902619839 -0.048304252326488495 -0.05102994665503502 -0.02666483446955681 0.031842175871133804 -0.014394782483577728 -0.08322198688983917 -0.05286237969994545 -0.03123554401099682 -0.019326556473970413 -0.00862693227827549 0.03737233206629753 -0.056317828595638275 -0.0529995933175087 0.033054567873477936 -0.01989678107202053 -0.03280166909098625 0.017223725095391273 0.0008602077141404152 -0.050835996866226196 0.06771494448184967 0.02285884879529476 0.00552818039432168 -0.022523915395140648 0.015352127142250538 0.02735026739537716 0.08501690626144409 0.07490287721157074 -0.03848377615213394 0.04760848358273506 -0.05286082625389099 -0.021196847781538963 0.04014609009027481 -0.03995342180132866 0.11100958287715912 0.02689512073993683 0.0007146238931454718 -0.07136353105306625 -0.012550577521324158 -0.035482726991176605 -0.0680302232503891 0.029041768983006477 -0.013623546808958054 -0.020716212689876556 -0.01166424248367548 0.015962934121489525 0.04827500507235527 0.07866480201482773 -0.009207756258547306 -0.016518259420990944 -0.0009695615735836327 -0.006222767289727926 0.027372058480978012 0.029709691181778908 -0.026362352073192596 -0.015203524380922318 0.037548668682575226 -0.10045862197875977 -0.008463867008686066 0.01917305774986744 0.017862312495708466 -0.009946692734956741 -0.040597669780254364 -0.011043285019695759 0.09042620658874512 -0.01082999724894762 -0.03684093430638313 -0.0020179355051368475 0.08337670564651489 -0.07011396437883377 -0.06479351967573166 0.027434779331088066 -0.08532212674617767 -0.007009499706327915 0.003368726000189781 0.013359901495277882 0.014068848453462124 0.005119624547660351 -0.03036201372742653 0.16156664490699768 -0.018382418900728226 -0.02465551532804966 -0.04998157173395157 -0.03861667960882187 -0.050882089883089066 0.07632654160261154 0.017310280352830887 0.05397958680987358 0.04328266903758049 -0.00239773653447628 0.0017825710820034146 0.013576927594840527 -0.016111932694911957 0.012908067554235458 -0.07706966996192932 -0.015179678797721863 -0.004785499535501003 0.01215500570833683 0.010020428337156773 0.05682414397597313 0.03785074129700661 0.057907864451408386 0.03827819973230362 -0.05750742182135582 0.01657700538635254 0.06903979182243347 0.01836840808391571 0.025821123272180557 0.12793710827827454 0.06546523422002792 0.022879809141159058 0.065047487616539 0.022303273901343346 0.015210303477942944 -0.051179997622966766 -0.014995238743722439 0.007629592437297106 -0.00075020786607638 0.06113085523247719 -0.012321527116000652 -0.07798437774181366 -0.00022443674970418215 0.06689678132534027 -0.09244105964899063 -0.0497090220451355 0.03715052455663681 -0.007243048865348101 0.09123998880386353 0.07876966893672943 -0.024030618369579315 0.03100535087287426 0.051237668842077255 0.00042447171290405095 -0.0248134545981884 0.026811156421899796 0.01065440010279417 -0.03820859268307686 -0.03383668512105942 0.037642575800418854 -0.03831036388874054 -0.049095846712589264 0.056762028485536575 0.034250423312187195 0.02451791986823082 -0.03411346673965454 -0.05095350369811058 -0.0030507808551192284 -0.04479384422302246 -0.05145080015063286 0.04070444777607918 -0.04235661029815674 -0.008501207455992699 0.02666436694562435 0.009149322286248207 0.005356884095817804 0.0033048996701836586 -0.03334881737828255 -0.05974583327770233 -0.05641927570104599 -0.01476083043962717 -0.08424843102693558 -0.015798307955265045 0.010383613407611847 0.009314731694757938 0.027038902044296265 -0.09788542985916138 -0.033086441457271576 -0.007106998469680548 -0.028599409386515617 0.03312258422374725 0.07679089903831482 0.06471890211105347 0.026454459875822067 0.012232019565999508 -0.06346780061721802 -0.009175813756883144 -0.04852796718478203 0.0359724797308445 -0.041604772210121155 0.01650283858180046 -0.05068381875753403 0.01530272513628006 0.010123662650585175 0.024265918880701065 -0.006524957716464996 0.015117262490093708 0.011252914555370808 -0.022311493754386902 -0.054582055658102036 0.03901347890496254 0.02819746360182762 -0.013436296954751015 0.02637057565152645 -0.016410773620009422 0.09028659015893936 -0.023120883852243423 -0.03643130883574486 -0.08385162055492401 0.019816001877188683 0.03455471619963646 0.036102671176195145 0.05062440410256386 -0.05460672453045845 0.08211216330528259 0.033650416880846024 0.04112671688199043 -0.04494784027338028 0.007488157134503126 0.01912660337984562 -0.0054061501286923885 0.05148761346936226 0.05988701432943344 -0.026753433048725128 -0.009743516333401203 0.021529771387577057 0.0569026879966259 -0.061692431569099426 -0.04526697099208832 -0.006861328613013029 -0.09969830513000488 0.009132343344390392 -0.05664663016796112 -0.07144910097122192 -0.025746585801243782 0.0490509495139122 -0.03272268548607826 -0.03920518979430199 0.009407375939190388 0.022605637088418007 -0.019732804968953133 -2.8603300961549394e-05 0.034856464713811874 -0.05978638678789139 -0.08892495185136795 0.08332083374261856 -0.008574512787163258 -0.10439416766166687 -0.06284867227077484 -0.011880659498274326 0.03835119307041168 -0.012974533252418041 0.04459654912352562 0.04556020349264145 0.0675327256321907 0.031792618334293365 -0.05362947657704353 0.017508674412965775 -0.011896711774170399 -0.047154899686574936 -0.002387186512351036 0.015566753223538399 -0.03541834279894829 -0.07365527749061584 0.03711767867207527 -0.05228649079799652 0.017228994518518448 -0.016086706891655922 0.02006741613149643 -0.05409252643585205 0.008418525569140911 -0.0240947213023901 0.050939202308654785 -0.058007530868053436 -0.01053426880389452 0.06402497738599777 -0.02773255668580532 0.031396422535181046 -0.033672768622636795 -0.0030817657243460417 0.03946720436215401 -0.008173862472176552 -0.02575128898024559 -0.048305630683898926 0.10150321573019028 0.013848526403307915 -0.048773739486932755 -0.04970797523856163 -0.08377809077501297 -0.04878206178545952 0.007666419725865126 -0.009483406320214272 -0.015131721273064613 0.04709230735898018 0.04184173420071602 -0.053930021822452545 -0.04181133583188057 -0.07060794532299042 -0.04429684951901436 -0.05837327241897583 -0.03949149325489998 -0.021402418613433838 -0.03497534245252609 -0.011179269291460514 0.04247254133224487 -0.03956019505858421 0.0011895758798345923 0.0231380183249712 0.020695416256785393 -0.06716470420360565 0.022530296817421913 -0.03065412864089012 -0.017586255446076393 0.01639445684850216 -0.04558476060628891 0.026915863156318665 0.08266833424568176 0.08593626320362091 0.005880167707800865 0.03201554715633392 0.03308672830462456 0.10227303206920624 -0.003470648778602481 -0.016911841928958893 -0.05876617878675461 -0.050399281084537506 -0.0542544424533844 0.057454291731119156 -0.007731663528829813 -0.009400810115039349 0.004573250189423561 0.013564026914536953 0.030262986198067665 -0.006050156429409981 -0.024601086974143982 -0.0283895805478096 0.020789582282304764 -0.03635278716683388 0.028325477614998817 -0.019879691302776337 0.02810213714838028 -0.021641798317432404 -0.06138349324464798 -0.07980574667453766 -0.05311386287212372 0.06211389601230621 -0.028798110783100128 0.05561867356300354 -0.02254987135529518 -0.05035001039505005 -0.029355525970458984 0.006033014971762896 0.10708001255989075 -0.04010415077209473 0.014289338141679764 0.039526768028736115 0.08448386192321777 -0.0932328999042511 0.014046862721443176 -0.003458939725533128 -0.04315105080604553 -0.07644185423851013 -0.014641146175563335 0.022844670340418816 -0.06007257103919983 -0.028010006994009018 -0.02452969178557396 -0.04633454233407974 -0.008768894709646702 -0.002042226493358612 -0.006859432440251112 0.04124223068356514 0.026310401037335396 -0.05519940331578255 0.013540275394916534 -0.022242870181798935 0.014309282414615154 -0.01402537152171135 0.001548925880342722 -0.04122987017035484 0.004264300689101219 -0.06060656160116196 -0.023671036586165428 -0.04539979621767998 0.04118933901190758 -0.034529637545347214 -1.654881543800002e-06 -0.0031205688137561083 -0.02236839011311531 -0.04770893231034279 -0.019648900255560875 0.030395539477467537 -0.06305532902479172 -0.03240295499563217 -0.028419196605682373 -0.042530227452516556 -0.07312295585870743 -0.03169408440589905 -0.0060870591551065445 0.007253040559589863 0.030628899112343788 -0.025504281744360924 0.029251502826809883 0.019807778298854828 0.02386152744293213 0.058116614818573 0.07364469766616821 0.01286371424794197 0.003712783334776759 0.04592570289969444 0.010579756461083889 0.04042188823223114 0.037235625088214874 -0.06064833328127861 -0.03083127737045288 0.0012707047862932086 -0.06167074665427208 0.04407433792948723 -0.026406507939100266 0.024491826072335243 -0.040583230555057526 -0.020815305411815643 0.016300223767757416 -0.04018364101648331 0.036983903497457504 -0.0014134668745100498 0.04436115920543671 -0.05899721011519432 -0.04879508912563324 0.010141131468117237 -0.050772879272699356 -0.06537144631147385 -0.05105268955230713 -0.017700156196951866 -0.012832987122237682 0.05180280655622482 -0.04382526874542236 0.0382448211312294 0.036665380001068115 -0.022604376077651978 -0.055657897144556046 0.006318237632513046 -0.008679362945258617 0.02827058918774128 0.009737829677760601 0.032873790711164474 0.006950512994080782 0.015502085909247398 0.01939174346625805 -0.04985011741518974 0.017044195905327797 -0.08596796542406082 0.002277662977576256 0.037425849586725235 -0.02344830520451069 0.01883426494896412 0.02854735031723976 0.019483782351017 -0.036906175315380096 -0.00149914575740695 -0.0385705791413784 0.06663336604833603 0.02148277685046196 0.054720908403396606 -0.01146883238106966 -0.06600495427846909 -0.004570568446069956 0.028923295438289642 -0.049582161009311676 -0.0807754173874855 -0.037373580038547516 -0.02739187702536583 0.046996958553791046 -0.02338222973048687 0.03164811059832573 -0.035258807241916656 -0.07706824690103531 0.05163813754916191 -0.003010106971487403 -0.043884553015232086 -0.0004637623205780983 0.03054153546690941 -0.05773262679576874 -0.03443968668580055 0.017335698008537292 -0.08076032996177673 0.03608756512403488 0.0211965162307024 0.046176616102457047 -0.040278200060129166 0.005541463848203421 -0.0033449737820774317 -0.032168805599212646 0.03673715889453888 -0.03679877892136574 -0.030288128182291985 0.005746474955230951 0.07969509065151215 -0.04434843733906746 0.02676364779472351 0.04954613000154495 -0.017940634861588478 0.051153361797332764 0.06154945492744446 -0.0425063855946064 0.04016062244772911 -0.008466673083603382 -0.01594913937151432 0.04784691333770752 -0.09374921768903732 0.08181709051132202 -0.0750846266746521 0.1273079663515091 0.034674081951379776 -0.014371010474860668 0.0971560999751091 0.0607990063726902 0.017548583447933197 0.08012773841619492 -0.1020585149526596 +0.01572122797369957 -0.09283414483070374 -0.037784017622470856 0.01567283272743225 -0.040621329098939896 -0.04826189950108528 -0.018485289067029953 0.030686253681778908 -0.008782359771430492 0.0012149697868153453 -0.0854560062289238 0.016224732622504234 -0.007699445355683565 0.0179882999509573 0.03181327134370804 -0.021488860249519348 -0.03156418725848198 0.016205068677663803 0.0029623275622725487 0.03151789307594299 0.037003010511398315 0.04781381040811539 -0.0509190559387207 0.053680893033742905 0.021248724311590195 -0.0026337443850934505 -0.044039007276296616 0.05355549231171608 0.01082257367670536 0.07994506508111954 0.06607800722122192 -0.04447507858276367 0.02577218785881996 -0.08463349938392639 -0.009109295904636383 -0.013004070147871971 -0.07451038807630539 0.05164099857211113 0.05341767892241478 -0.011038671247661114 -0.021098587661981583 -0.0019656831864267588 -0.024805132299661636 -0.06697636842727661 0.03792453557252884 0.01334504596889019 -0.0409635454416275 -0.08318564295768738 0.006319826003164053 0.06846227496862411 0.09021879732608795 -0.07229165732860565 0.0010173171758651733 0.010631988756358624 -0.07613695412874222 -0.06802605092525482 0.005141228437423706 -0.026986362412571907 -0.0362333282828331 0.006706141866743565 -0.04758287966251373 0.017183691263198853 0.014703501015901566 0.04306793585419655 -0.04831748083233833 -0.005206996574997902 0.0544331893324852 0.011332711204886436 -0.0019476712914183736 0.016083193942904472 0.021685762330889702 0.0420520044863224 -0.0429275743663311 -0.022817159071564674 -0.03950899839401245 0.017319455742836 0.05998356267809868 0.0019028359092772007 0.03859228640794754 0.01767539605498314 0.05632895603775978 -0.006580920424312353 0.1078084260225296 -0.053967226296663284 0.018462728708982468 -0.06771228462457657 -0.011420547030866146 -0.04768180102109909 0.01062075886875391 -0.011824541725218296 0.0786922350525856 0.01802196353673935 0.03674773499369621 0.019743476063013077 0.022753199562430382 0.02343003824353218 0.040257565677165985 -0.0956297442317009 -0.02366233430802822 0.03854847699403763 0.01009729877114296 0.01215017307549715 0.09506537020206451 0.032346028834581375 0.02012128196656704 0.035284433513879776 -0.0504881888628006 0.057111434638500214 0.06034048646688461 0.06069301441311836 0.0023656634148210287 0.04640772566199303 0.058890461921691895 0.002637570956721902 0.030498072504997253 -0.053096648305654526 -0.051889609545469284 -0.004356153775006533 0.023980388417840004 0.05575327202677727 0.03173162043094635 0.033695291727781296 -0.05599050968885422 -0.09802933782339096 0.020182760432362556 0.06672985851764679 -0.08561726659536362 0.0012419060803949833 -0.018696395680308342 -0.01834813319146633 0.07670975476503372 -0.006388673093169928 -0.060273677110672 0.04668493568897247 0.017315467819571495 0.029600828886032104 0.02186436578631401 0.0433955155313015 0.0320187583565712 -0.03406890854239464 -0.05499492585659027 0.055800311267375946 0.007017586380243301 0.0062251100316643715 0.03246396780014038 0.0436282753944397 0.0036339638754725456 -0.024867922067642212 -0.05480052903294563 -0.027753522619605064 -0.10832536965608597 -0.008417499251663685 0.03216779604554176 -0.026674780994653702 0.03435646370053291 -0.029303858056664467 -0.002942246152088046 0.018193261697888374 -0.02355160377919674 0.021577034145593643 -0.08049326390028 -0.07303185760974884 0.015881042927503586 -0.023425966501235962 0.028978362679481506 0.014475593343377113 0.02889898605644703 -0.03670582175254822 -0.013239272870123386 -0.05571979656815529 -0.03264991566538811 -0.027258364483714104 0.02993326634168625 0.08590108901262283 0.038717061281204224 0.020897120237350464 0.02746186964213848 -0.025761669501662254 -0.012244687415659428 -0.04575946554541588 -0.0344783216714859 -0.04936078190803528 -0.011777476407587528 -0.05430768430233002 -0.027599800378084183 -0.03149280697107315 0.008397404104471207 -0.06213244050741196 0.004918849561363459 -0.041995588690042496 0.0016508320113644004 -0.0755489394068718 0.05947404354810715 0.05937467887997627 0.015509365126490593 0.05627404525876045 0.00632842630147934 0.07503114640712738 -0.011670866049826145 -0.012038317508995533 -0.03415115177631378 0.057782623916864395 -0.002089889720082283 0.021237187087535858 0.016404761001467705 -0.026320748031139374 0.11159110814332962 0.028427431359887123 0.04043879732489586 -0.044804349541664124 0.01893896609544754 0.0633106380701065 -0.03239452838897705 0.046579886227846146 0.09159938991069794 -0.029800012707710266 -0.01667112298309803 0.01224695984274149 0.036120202392339706 -0.04038803651928902 0.029375914484262466 0.05094197019934654 -0.05116943269968033 0.04666080325841904 -0.035815298557281494 -0.10056528449058533 -0.003785663517192006 -0.05225284397602081 -0.019014740362763405 -0.025571953505277634 0.04519466683268547 0.023907965049147606 0.04100560024380684 0.011548077687621117 -0.029158633202314377 0.014306051656603813 -0.04986058920621872 0.046872157603502274 -0.08540657162666321 -0.04053695872426033 -0.03964158520102501 0.013961183838546276 0.003011085791513324 0.03745882958173752 0.022798726335167885 0.016055898740887642 0.0891326293349266 0.028086068108677864 -0.03153444826602936 0.04511744901537895 -0.0575532503426075 -0.04573853313922882 -0.025029944255948067 -0.0016699825646355748 -0.018824631348252296 -0.0720786303281784 0.027986420318484306 -0.10495351999998093 -0.0524962916970253 -0.025274386629462242 -0.0005637687863782048 0.007784475106745958 -0.009093591012060642 -0.06991897523403168 0.06927076727151871 0.013331551104784012 -0.05850641429424286 0.03895197808742523 -0.04160545393824577 0.002351670525968075 -0.015097396448254585 -0.017846062779426575 0.041101839393377304 0.003186905523762107 -0.016734670847654343 -0.034478627145290375 0.09291499853134155 -0.03902434557676315 -0.03211211785674095 -0.059910163283348083 -0.011459647677838802 -0.04042612016201019 0.026775741949677467 0.013292545452713966 0.017205029726028442 0.025344830006361008 0.038265760987997055 -0.009118983522057533 -0.05143563076853752 -0.050315119326114655 -0.05441250279545784 -0.02375800348818302 -0.012904495932161808 -0.030997009947896004 -0.05308719351887703 -0.03811565414071083 0.04204858839511871 -0.02362690679728985 -0.05024447664618492 0.051494941115379333 0.051762476563453674 -0.052071209996938705 0.020083541050553322 -0.02292688377201557 -0.03572728857398033 0.06557530909776688 -0.09066969901323318 0.024887213483452797 0.051296260207891464 0.05902162194252014 0.022433320060372353 0.05965602397918701 0.0076499199494719505 0.07335133850574493 -0.06060408428311348 -0.022806016728281975 -0.050768084824085236 -0.03796358034014702 -0.04963240027427673 0.016066724434494972 0.018888643011450768 -0.00909559428691864 0.01997261308133602 -0.05334852263331413 0.025856345891952515 -0.017781300470232964 -0.027298476547002792 -0.07263942807912827 -0.016949504613876343 -0.0630565881729126 0.03659939393401146 0.009817885234951973 0.017408065497875214 -0.014796308241784573 -0.020869337022304535 -0.03773318603634834 -0.08309494704008102 0.045145537704229355 -0.046985771507024765 0.00012207278632558882 0.007150702644139528 0.008479468524456024 0.008688440546393394 0.0061103953048586845 0.09367455542087555 -0.03140450641512871 0.0070961941964924335 -0.020764319226145744 0.02025187574326992 -0.0773543119430542 -0.017294609919190407 -0.04522160068154335 -0.07344747334718704 -0.02009720914065838 -0.022568371146917343 0.02678847685456276 -0.024069489911198616 -0.03472568467259407 0.020686184987425804 -0.007164769805967808 0.028791941702365875 0.06851225346326828 0.01669316180050373 0.12469974160194397 0.05100376158952713 -0.05408593267202377 0.0038853769656270742 0.009166656993329525 0.016387300565838814 -0.018340375274419785 0.03381863236427307 0.012041990645229816 0.018294550478458405 0.01697874628007412 -0.053756702691316605 -0.05832045525312424 -0.026563027873635292 0.010758095420897007 0.022243987768888474 -0.03631244972348213 0.05636458098888397 0.01460842601954937 0.034863218665122986 -0.0040067825466394424 -0.057378001511096954 -0.0009912037057802081 -0.01883602701127529 -0.03337584063410759 -0.09840305149555206 -0.007963106967508793 0.05662459507584572 -0.032857295125722885 0.02722875401377678 -0.05366506800055504 0.04477534070611 0.01652671955525875 -0.03707036375999451 0.008509360253810883 0.07161086052656174 0.022045189514756203 0.020416706800460815 0.027773110195994377 -0.011889315210282803 0.0427580252289772 0.025972744449973106 -0.059768129140138626 0.01607673428952694 0.011207183822989464 -0.0489819310605526 -0.057940300554037094 -0.032097842544317245 -0.029970455914735794 0.024797623977065086 -0.054705556482076645 0.05506798252463341 -0.026586197316646576 0.04800838604569435 -0.02271818183362484 0.034018177539110184 -0.05108530819416046 -0.03544091060757637 -0.01599174365401268 0.01406787522137165 -0.042914118617773056 -0.0010398362064734101 -0.0254651065915823 -0.00112828123383224 0.05919559299945831 -0.06254788488149643 -0.0011639016447588801 0.01993485912680626 -0.024890797212719917 -0.00919380970299244 0.0015659424243494868 0.06312349438667297 0.0019143532263115048 0.0443996787071228 0.032231491059064865 -0.0025741904973983765 -0.015633665025234222 -0.002094097202643752 -0.12773765623569489 0.000602160464040935 0.021806150674819946 -0.05054851993918419 -0.000149219500599429 0.013203519396483898 0.017270684242248535 0.040608134120702744 0.048871636390686035 -0.04399825260043144 -0.029038792476058006 -0.08925902843475342 0.07131221145391464 0.04412457346916199 0.0730186253786087 -0.019827894866466522 -0.12000128626823425 -0.08706170320510864 0.02627987042069435 -0.03981049358844757 -0.10247814655303955 -0.05004982277750969 -0.01247366052120924 0.0566469170153141 0.014792554080486298 0.032258257269859314 -0.024817848578095436 -0.0780787542462349 0.013060067780315876 0.03618903458118439 0.006512115243822336 0.010334312915802002 0.051119234412908554 -0.015139659866690636 0.013411957770586014 -0.03302629664540291 -0.09591446816921234 0.07447027415037155 0.034755438566207886 -0.005914578214287758 -0.051136989146471024 0.009175372309982777 0.019817322492599487 -0.027152612805366516 0.00818097684532404 -0.05543976649641991 -0.05043884366750717 0.00903866346925497 0.09685204923152924 0.02275802753865719 0.05249538645148277 0.07594158500432968 -0.029337549582123756 0.023780403658747673 0.026414573192596436 0.03272268548607826 -0.04772516340017319 -0.04075515270233154 0.005731404293328524 0.08803241699934006 -0.022300373762845993 0.043418508023023605 -0.06747481971979141 0.13399434089660645 0.056484073400497437 -0.04205642640590668 0.05498509481549263 -0.014573012478649616 0.03856267035007477 0.02648814208805561 -0.07846703380346298 +0.014721982181072235 -0.0675918310880661 -0.025469312444329262 0.03835906460881233 -0.09412994980812073 -0.050266724079847336 -0.0007440801127813756 0.03845877945423126 -0.022162407636642456 -0.0754166916012764 0.00884224846959114 -0.00878265779465437 -0.01293317973613739 0.014868607744574547 0.0621139258146286 -0.03067498467862606 -0.036377936601638794 0.033257365226745605 -0.05518985912203789 -0.013069655746221542 0.03364576771855354 -0.006083630956709385 -0.05245107412338257 0.024695970118045807 -0.0225150678306818 -0.0059590726159513 -0.046584468334913254 0.0396282821893692 0.017417266964912415 0.05673641338944435 0.051087018102407455 -0.02808804251253605 0.016167687252163887 -0.05222408473491669 -0.06896959990262985 0.048434097319841385 -0.072954922914505 0.13179509341716766 0.03752144053578377 0.012272803112864494 -0.05154931917786598 -0.01967640034854412 -0.05499815195798874 -0.055460426956415176 0.07280873507261276 -0.031072143465280533 0.029200559481978416 -0.044588521122932434 0.04007994011044502 0.05777042359113693 0.06528466194868088 0.013902713544666767 0.017139026895165443 0.010468102991580963 -0.026663370430469513 0.018768828362226486 0.011232896707952023 -0.036007143557071686 -0.04723209887742996 0.05010312795639038 -0.07834747433662415 -0.03191647306084633 0.007112630642950535 0.036378759890794754 0.009656303562223911 0.009453192353248596 -0.0030277245678007603 0.06075538322329521 -0.03080129250884056 -0.06528779119253159 -0.019778374582529068 0.0954257920384407 -0.05395130813121796 -0.0916348397731781 0.0027309420984238386 -0.05027533695101738 0.016748478636145592 -0.00785901676863432 -0.004846017807722092 -0.008786745369434357 -0.03819720819592476 -0.01973351463675499 0.1306554228067398 -0.03803326189517975 -0.0036660449113696814 -0.04437442123889923 -0.032179564237594604 -0.04986809194087982 0.06221769005060196 0.02188064157962799 0.04772588610649109 0.04588969424366951 -0.055008165538311005 0.002642951440066099 0.0139697827398777 0.011767715215682983 0.01974094659090042 -0.11132914572954178 -0.016391480341553688 -0.018069369718432426 -0.015074769966304302 -0.02573629841208458 0.0820724219083786 0.021583963185548782 0.06955010443925858 0.05233683064579964 -0.060728125274181366 0.023896273225545883 0.00044143409468233585 0.02604888565838337 -0.0021350267343223095 0.1205127015709877 0.08073214441537857 0.04742852598428726 0.045340556651353836 -0.017522456124424934 -0.031859029084444046 -0.03105781599879265 -0.04524153470993042 -0.01674858294427395 -0.010954257100820541 0.04266057536005974 -0.0052424026653170586 -0.04867617040872574 -0.013082748278975487 0.03490374982357025 -0.12543009221553802 -0.02846774086356163 0.05824343115091324 -0.05795721337199211 0.08350730687379837 0.050230514258146286 -0.005544696003198624 0.03365345299243927 0.07486291229724884 0.004324958194047213 -0.0063722217455506325 0.028272336348891258 0.007549980189651251 -0.02499156817793846 -0.008113627322018147 0.06414708495140076 -0.018069785088300705 -0.03693544864654541 -0.007295410614460707 0.07349705696105957 0.003666781820356846 -0.023999048396945 -0.09170284122228622 0.057570621371269226 -0.06858853995800018 -0.04702530801296234 -0.020611237734556198 -0.08809570223093033 0.03216486796736717 0.04314883053302765 0.028303129598498344 0.02207174338400364 -0.0004656895762309432 0.007405126933008432 -0.04585603252053261 -0.06884109973907471 0.008220699615776539 -0.06605516374111176 -0.03765207529067993 -0.006381516344845295 0.016254324465990067 -0.01313929446041584 -0.021405460312962532 -0.050420016050338745 -0.03933523967862129 0.009005043655633926 0.045673172920942307 0.03962713107466698 0.03246600925922394 0.03139742836356163 -0.007363141980022192 -0.0626690536737442 0.009384112432599068 -0.0462755486369133 0.017040517181158066 -0.048787251114845276 0.017184574156999588 -0.05207616090774536 -0.0403008908033371 -0.014886445365846157 0.005631761159747839 -0.019730860367417336 -0.01556291151791811 -0.022451739758253098 -0.03940137103199959 -0.07605670392513275 0.038975298404693604 0.08867909014225006 -0.04834098741412163 0.06419099122285843 -0.02442747727036476 0.06327302753925323 -0.06048073247075081 -0.06084613502025604 -0.05530780926346779 0.044430043548345566 0.014773846603929996 0.008228207007050514 0.006414977367967367 -0.06922926753759384 0.05883151665329933 0.00791323184967041 0.01978100836277008 -0.07285694777965546 0.0320957787334919 0.042537838220596313 0.007650120183825493 0.027958106249570847 0.03083212487399578 -0.05293258652091026 -0.03534199669957161 0.026853088289499283 0.03653848171234131 -0.04819804057478905 0.014200704172253609 0.014923064038157463 -0.07391276955604553 0.008124674670398235 -0.01608351431787014 -0.07679038494825363 0.010655396617949009 0.04161686450242996 -0.056771568953990936 -0.024223919957876205 -0.019877495244145393 0.030393438413739204 -0.01755150593817234 -0.03334100544452667 -0.001947302371263504 -0.0029174669180065393 -0.0630645677447319 0.08090324699878693 -0.010155829600989819 -0.07008004933595657 -0.08184614777565002 -0.006417067255824804 0.018836917355656624 -0.0037644589319825172 0.02022664248943329 0.024017833173274994 0.051776133477687836 0.03137863054871559 -0.032770685851573944 -0.005031079053878784 -0.05422307923436165 -0.003650564467534423 -0.026181211695075035 0.01599586196243763 -0.027058502659201622 -0.03100649081170559 0.016280464828014374 -0.0822632685303688 -0.019575173035264015 -0.0005720581975765526 0.07121523469686508 -0.060329824686050415 -0.02015691064298153 0.02247472293674946 0.03475377336144447 -0.010040944442152977 -0.050348423421382904 -0.007247154135257006 -0.04032357409596443 0.025574853643774986 -0.07268010824918747 -0.012829688377678394 0.04759752377867699 0.007084284909069538 0.02749115414917469 -0.034822218120098114 0.04679704084992409 -0.05221135914325714 -0.09643269330263138 -0.037155233323574066 -0.08377665281295776 -0.049478158354759216 -0.012397987768054008 -0.010630154982209206 -0.024287916719913483 0.11034287512302399 0.04528896138072014 -0.012033707462251186 -0.05453905463218689 -0.057358089834451675 -0.007214994635432959 -0.036332178860902786 0.02700655162334442 -0.021668562665581703 -0.05130819231271744 -0.002194584347307682 0.03196511045098305 -0.05458493158221245 0.006739161908626556 0.0071872989647090435 -0.0034139067865908146 -0.0337541326880455 0.05515208840370178 -0.07411562651395798 -0.01563524641096592 0.013287736102938652 -0.04709859937429428 0.0476444773375988 0.08499781787395477 0.07100635766983032 0.02488788217306137 0.028624022379517555 0.05083901807665825 0.06779993325471878 0.010842244140803814 0.0008000291418284178 -0.03646114096045494 -0.0210096538066864 -0.06687082350254059 0.05955630540847778 -0.0491461344063282 -0.007562416605651379 -0.0020801927894353867 -0.0027651635464280844 0.11317052692174911 -0.04396241530776024 -0.03706987947225571 0.004047223832458258 0.03195622190833092 0.03077773191034794 0.021761454641819 0.018029838800430298 -0.011623634956777096 0.007094731088727713 -0.04481121152639389 -0.050016067922115326 -0.052961528301239014 0.05089268088340759 -0.028906455263495445 0.05860539525747299 -0.017314445227384567 -0.0769914984703064 0.01836167275905609 0.036152634769678116 0.1088532954454422 -0.04062628000974655 0.03708299249410629 0.025920262560248375 0.022724447771906853 -0.093657948076725 0.008185125887393951 -0.0038394173607230186 -0.020093858242034912 -0.10337933897972107 0.03261459991335869 0.058668967336416245 -0.05601727217435837 -0.045863065868616104 -0.01549436990171671 -0.043045226484537125 -0.018759019672870636 0.019803976640105247 -0.016756931319832802 0.043447110801935196 0.02212565764784813 -0.04660384729504585 0.016250433400273323 0.017069309949874878 0.01655137538909912 -0.07045863568782806 0.02022312767803669 -0.02063601277768612 0.08008340746164322 -0.025494717061519623 -0.05136319622397423 -0.03661526367068291 0.06752444803714752 -0.007378020323812962 -0.04940874129533768 -0.08857223391532898 -0.03789711371064186 -0.023207686841487885 0.014175670221447945 -0.020172879099845886 -0.0604020394384861 -0.03208027780056 -0.0075829424895346165 -0.0598650723695755 -0.09497026354074478 -0.05742678791284561 0.03760354593396187 -0.030505267903208733 0.0026588260661810637 -0.04580092802643776 0.0071590496227145195 0.008208340965211391 -0.031475864350795746 0.028503641486167908 0.038811661303043365 0.04313945397734642 -0.022569386288523674 0.0637936219573021 0.0022081283386796713 0.03438296914100647 -0.007414066698402166 -0.014634506776928902 0.025037134066224098 -0.0044256956316530704 -0.06320196390151978 0.011493277736008167 -0.05612960457801819 0.03098408319056034 -0.032171834260225296 -0.047130338847637177 0.02869085595011711 0.012487965635955334 -0.0014582100557163358 -0.03176083415746689 0.05687091499567032 -0.09486592561006546 0.002067280001938343 0.025736011564731598 -0.03136156126856804 -0.06367122381925583 -0.038782425224781036 -0.0447247251868248 0.0012397877871990204 0.04257962852716446 -0.0009311552275903523 0.025112517178058624 -0.008918202482163906 -0.04093364253640175 0.0035284983459860086 -0.029714960604906082 -0.017898723483085632 -0.004071651492267847 0.02341240458190441 0.03749636188149452 0.0012142366031184793 0.012501112185418606 0.009330196306109428 -0.0023698429577052593 0.015495865605771542 -0.07260322570800781 -0.014170840382575989 0.008470549248158932 0.042460206896066666 -0.0021873638033866882 0.004397829063236713 0.04793565720319748 -0.06319859623908997 -0.022806979715824127 -0.027091408148407936 0.07851647585630417 0.010799052193760872 0.031500279903411865 0.04271559417247772 -0.03552680090069771 -0.02835758961737156 0.00027939051506109536 -0.047367021441459656 -0.08431190252304077 -0.005844770465046167 -0.024927666410803795 0.041005369275808334 0.0008298787288367748 0.03992119058966637 -0.017704874277114868 -0.07726503163576126 0.012133592739701271 -0.02306230552494526 -0.045050717890262604 0.021376388147473335 0.04967998340725899 -0.053112491965293884 -0.050571803003549576 -0.01772819086909294 -0.04449152573943138 0.05490459129214287 -0.024610688909888268 0.040462933480739594 -0.0546673908829689 -0.01573619619011879 -0.011331437155604362 -0.039998020976781845 0.05133168026804924 0.00022222919506020844 -0.07416068762540817 -0.019074134528636932 0.08380965888500214 -0.04041849076747894 0.05487300455570221 0.04634374752640724 -0.03989378735423088 0.030558766797184944 0.03446095436811447 0.00621863454580307 0.013429545797407627 0.005037520546466112 -0.0035422397777438164 0.0276040006428957 -0.07175834476947784 0.05582341551780701 -0.062087103724479675 0.10222696512937546 0.03857710584998131 0.019699472934007645 0.09327498823404312 0.06419230997562408 0.02590121515095234 0.012305604293942451 -0.05948282778263092 +0.03272497281432152 -0.03969959914684296 -0.03989733010530472 -0.006375533994287252 -0.06184709072113037 -0.04749022796750069 -0.009455676190555096 0.04375947266817093 -0.01708202064037323 -0.07507863640785217 -0.059310246258974075 -0.007310884539037943 -0.01606842875480652 -0.005444374866783619 0.04266194999217987 -0.04697316512465477 -0.04581847041845322 0.02411152608692646 -0.04368533939123154 -0.02776661515235901 0.013604162260890007 0.019390810281038284 -0.04931676760315895 0.044559214264154434 0.007785807829350233 0.003515535267069936 -0.029848668724298477 0.023472696542739868 0.020838158205151558 0.06248202919960022 0.06497902423143387 -0.04297283664345741 0.04191124811768532 -0.048189882189035416 -0.04959834739565849 0.057826653122901917 -0.04309765622019768 0.11113524436950684 0.031599074602127075 0.004741906188428402 -0.06280667334794998 -0.004693611990660429 -0.01901816762983799 -0.07514301687479019 0.04883414879441261 0.007982825860381126 -0.00041764439083635807 -0.020246105268597603 0.021139763295650482 0.03501364588737488 0.07924731820821762 0.012056408450007439 -0.023143066093325615 -0.025824258103966713 -0.003711136756464839 0.02709287777543068 0.025410989299416542 -0.03906293585896492 -0.00866963341832161 0.03337404876947403 -0.11630994826555252 -0.01121593452990055 0.017638899385929108 0.01008826494216919 -0.016655851155519485 -0.03265920653939247 -0.019419925287365913 0.08655459433794022 -0.020640475675463676 -0.04160706326365471 -0.011557107791304588 0.06397717446088791 -0.042883675545454025 -0.07980616390705109 0.04258099943399429 -0.08493128418922424 0.011332995258271694 -0.00042505052988417447 -0.016909606754779816 -0.015495935454964638 -0.025901369750499725 -0.027716076001524925 0.16433870792388916 -0.04692927375435829 -0.04613509029150009 -0.05716729164123535 -0.05046487972140312 -0.07750069350004196 0.051386117935180664 0.009694647043943405 0.040119994431734085 0.04223036766052246 -0.002903951797634363 -0.007415066938847303 -0.014689709059894085 -0.011476504616439342 0.007861723192036152 -0.08341516554355621 -0.00485633872449398 -0.016409313306212425 0.009221317246556282 0.01068575493991375 0.06993520259857178 0.020617637783288956 0.043953970074653625 0.021915366873145103 -0.05243039131164551 0.005864889360964298 0.05045222118496895 0.02217492088675499 0.0030406101141124964 0.11065670102834702 0.08151716738939285 0.04535955563187599 0.09171224385499954 0.011241806671023369 0.0019466443918645382 -0.05818742886185646 -0.009016751311719418 -0.022712061181664467 -0.006826675496995449 0.052138637751340866 0.003715401515364647 -0.08404426276683807 9.718101500766352e-05 0.038209304213523865 -0.10450749844312668 -0.028163112699985504 0.046107251197099686 -0.022615280002355576 0.09257609397172928 0.06069407984614372 -0.048248883336782455 0.04336225986480713 0.035540129989385605 0.004483257886022329 -0.015578280203044415 0.03158361837267876 0.02009614184498787 -0.058682505041360855 -0.011975442990660667 0.04082358255982399 -0.02587268128991127 -0.039603423327207565 0.0675189346075058 0.026502955704927444 0.03274109214544296 -0.05220145732164383 -0.05929512158036232 0.032736681401729584 -0.060504261404275894 -0.0597384087741375 0.03035535290837288 -0.039002981036901474 0.009021193720400333 0.017323823645710945 0.022007517516613007 -0.019659534096717834 -0.004104134626686573 -0.032365866005420685 -0.05731933191418648 -0.053986016660928726 -0.02568270079791546 -0.09161068499088287 -0.0019210452446714044 0.012913794256746769 0.021691910922527313 0.01615535467863083 -0.09827373176813126 -0.05248558521270752 -0.009233580902218819 -0.008639352396130562 0.04384174570441246 0.08353535830974579 0.07019960880279541 0.011960970237851143 0.019619092345237732 -0.066596120595932 -0.0051616947166621685 -0.024680202826857567 0.03544169291853905 -0.04544973373413086 0.025202998891472816 -0.07064047455787659 -0.00032275242847390473 -0.005977874156087637 0.014367422088980675 -0.03220198675990105 0.030701028183102608 0.003459782572463155 -0.0203140527009964 -0.05418076738715172 0.02618424780666828 0.053822506219148636 -0.014725873246788979 0.03246742859482765 -0.0017405254766345024 0.09020449966192245 -0.03360051289200783 -0.056292083114385605 -0.10357150435447693 0.023597341030836105 0.027852671220898628 0.022533979266881943 0.04085695371031761 -0.07199766486883163 0.09297991544008255 0.015383237972855568 0.03677651658654213 -0.04110011085867882 0.04106726124882698 0.0440293587744236 -0.0003173743316438049 0.03916938975453377 0.06879924237728119 -0.02969496324658394 -0.024081705138087273 -0.013977382332086563 0.050298940390348434 -0.07274694740772247 -0.019779587164521217 -0.005581037141382694 -0.08323056250810623 -0.00018085935153067112 -0.04526004195213318 -0.0825887992978096 -0.026732906699180603 0.0425698347389698 -0.004302929621189833 -0.025614069774746895 -0.0055170520208776 0.02140694670379162 -0.012568253092467785 0.014232898131012917 0.024984432384371758 -0.059710029512643814 -0.08285084366798401 0.06297889351844788 -0.004005483351647854 -0.10266795754432678 -0.047625791281461716 -0.027320390567183495 0.054097436368465424 -0.03088340163230896 0.02541046030819416 0.043185725808143616 0.05391671881079674 0.018972747027873993 -0.05458163097500801 0.013657552190124989 -0.016457991674542427 -0.023728132247924805 -0.017295245081186295 0.0036313519813120365 -0.02419661544263363 -0.07700131833553314 0.031722232699394226 -0.07197149842977524 0.008027736097574234 -0.02376018837094307 0.01715659908950329 -0.040750063955783844 -0.020023344084620476 -0.024259647354483604 0.04057689383625984 -0.044523827731609344 -0.022546378895640373 0.03408246487379074 -0.039346158504486084 0.024338869377970695 -0.033364035189151764 0.009319070726633072 0.026642590761184692 -0.026561319828033447 -0.002638230798766017 -0.058382801711559296 0.09444726258516312 0.014286523684859276 -0.04052411764860153 -0.013412161730229855 -0.05970613658428192 -0.060513030737638474 0.009118861518800259 -0.03220519796013832 -0.020057935267686844 0.06153557449579239 0.04152686521410942 -0.03945046290755272 -0.0469677709043026 -0.04742083698511124 -0.03252662718296051 -0.032920535653829575 -0.04518327862024307 -0.01969381980597973 -0.035850510001182556 -0.0031155806500464678 0.03192237392067909 -0.04197803884744644 -0.0016431414987891912 0.018008744344115257 0.017115255817770958 -0.05775700882077217 0.012283407151699066 -0.046873945742845535 -0.027492230758070946 0.009551582857966423 -0.036538898944854736 0.025667399168014526 0.08528821170330048 0.086626335978508 0.014150233007967472 0.01201506145298481 0.0023349151015281677 0.08220986276865005 -0.015840698033571243 -0.01021559163928032 -0.03791642561554909 -0.06191885471343994 -0.04426167532801628 0.05636226385831833 -0.006318974308669567 -0.014370578341186047 0.007527015637606382 0.0028753927908837795 0.042397212237119675 -0.0117493886500597 -0.0344177782535553 -0.040454234927892685 0.005123922601342201 -0.031576476991176605 0.017282819375395775 -0.019415488466620445 0.04971924051642418 -0.02704262174665928 -0.06938176602125168 -0.0728735476732254 -0.04464706778526306 0.05813426524400711 -0.016354402527213097 0.050918374210596085 -0.041198380291461945 -0.05231279507279396 -0.03004230372607708 0.027760086581110954 0.115464948117733 -0.026247281581163406 0.0266568660736084 0.028468508273363113 0.07804502546787262 -0.08862590789794922 0.023280199617147446 -0.008253178559243679 -0.027954746037721634 -0.07504191994667053 0.0013229699106886983 0.0170177910476923 -0.08274105936288834 -0.03206691890954971 -0.03933025896549225 -0.029118908569216728 0.006817576941102743 -0.015179702080786228 -0.00325794517993927 0.048454344272613525 0.03082231804728508 -0.036224864423274994 0.023135408759117126 -0.0031300599221140146 0.02066950313746929 -0.03195121884346008 0.005176199600100517 -0.03824074938893318 0.015254252590239048 -0.06493552029132843 -0.05419713631272316 -0.0393243283033371 0.03890307620167732 -0.021289896219968796 -0.00428550411015749 -0.024186883121728897 -0.049460627138614655 -0.03779356926679611 -0.011806972324848175 0.010028029792010784 -0.06514275074005127 -0.013055852614343166 -0.02576974593102932 -0.06540443003177643 -0.0886489748954773 -0.044781871140003204 0.009678224101662636 -0.0005144895403645933 0.031214037910103798 -0.021654417738318443 0.022812265902757645 0.039732612669467926 0.02710713818669319 0.039081424474716187 0.07358430325984955 0.030953383073210716 0.018676526844501495 0.038486771285533905 -0.003075241344049573 0.06003277376294136 0.03049137070775032 -0.05054574832320213 -0.03413127735257149 0.006394306663423777 -0.06866537034511566 0.056001629680395126 -0.041824810206890106 0.01945214532315731 -0.011419168673455715 -0.00957383494824171 0.018016891553997993 -0.026676174253225327 0.04656454920768738 -0.01412191428244114 0.05276462063193321 -0.06583652645349503 -0.055113427340984344 0.02422924153506756 -0.037976521998643875 -0.09843457490205765 -0.04922279715538025 -0.030888410285115242 -0.013460513204336166 0.05907409265637398 -0.03620615229010582 0.045484039932489395 0.019344711676239967 -0.02226419933140278 -0.05435733124613762 -0.012665408663451672 -0.009835893288254738 0.02653392031788826 0.01701158471405506 0.046376001089811325 0.02355198748409748 0.025723418220877647 0.0188169963657856 -0.029691053554415703 0.021566463634371758 -0.09073463827371597 0.009279279038310051 0.007592845242470503 -0.015731975436210632 -0.002779952948912978 0.020951643586158752 0.020705172792077065 -0.039227016270160675 0.0005685262731276453 -0.054488617926836014 0.07845941185951233 0.009638024494051933 0.04378635808825493 0.009116251021623611 -0.08313596248626709 -0.009055995382368565 0.02773185633122921 -0.06137575954198837 -0.08634597063064575 -0.016134316101670265 -0.04022200405597687 0.032689161598682404 -0.012828294187784195 0.034676432609558105 -0.0120833246037364 -0.08125120401382446 0.05720876529812813 -0.012524154968559742 -0.018716342747211456 0.021952033042907715 0.05572933703660965 -0.04666641354560852 -0.036918334662914276 0.006522050127387047 -0.07476955652236938 0.053818460553884506 0.01188671588897705 0.03685762733221054 -0.04615546017885208 -0.002854349324479699 -0.012774698436260223 -0.015192564576864243 0.04129095375537872 -0.03621033951640129 -0.03775773197412491 -0.011552682146430016 0.1008160263299942 -0.039222054183483124 0.01940189115703106 0.06557194888591766 -0.02366931363940239 0.03458443656563759 0.06328994780778885 -0.026831958442926407 0.04279078543186188 0.01193862035870552 -0.003614549757912755 0.049056798219680786 -0.08162302523851395 0.0673900917172432 -0.07320617884397507 0.11343264579772949 0.04064629226922989 -0.006666769273579121 0.09153418987989426 0.05856923386454582 0.018406124785542488 0.052276648581027985 -0.08421557396650314 +0.030015522614121437 -0.03010062500834465 -0.01099184900522232 0.031886905431747437 -0.07127949595451355 -0.08735696971416473 0.0006247610435821116 0.058305613696575165 0.043685995042324066 -0.027196595445275307 -0.06035551428794861 -0.015556581318378448 0.03426571190357208 0.029900167137384415 0.03132179379463196 -0.01254779752343893 -0.04624929279088974 0.028117015957832336 -0.04725280776619911 -0.016284316778182983 0.017368024215102196 -0.025810621678829193 -0.070747010409832 0.03529477119445801 0.011702613905072212 0.02614126168191433 -0.07897637039422989 -0.0016416172729805112 0.033739324659109116 -0.0012422245927155018 0.027224082499742508 0.0151741998270154 0.027514319866895676 -0.07658471167087555 -0.052298661321401596 0.04592195525765419 -0.05570395290851593 0.09036373347043991 -0.032145921140909195 0.004697698634117842 -0.0650164783000946 0.014644484035670757 -0.0684615895152092 -0.05342232808470726 0.013545101508498192 -0.0002238977322122082 0.034213192760944366 0.011440572328865528 0.011608711443841457 0.0064378343522548676 0.059155046939849854 -0.023716406896710396 0.002457112306728959 -0.004221918061375618 -0.032628390938043594 0.009458890184760094 0.024330096319317818 -0.04847276210784912 -0.056855708360672 0.017958855256438255 -0.11533592641353607 -0.02829045057296753 -0.015069774352014065 0.030356161296367645 -0.05605859309434891 -0.03379509225487709 -0.021071167662739754 0.09987109154462814 -0.0020067989826202393 -0.05716460198163986 0.027059350162744522 0.029442306607961655 -0.04825321584939957 -0.05773446336388588 0.02882940135896206 -0.07140108197927475 0.002563982969149947 0.07827343046665192 -0.010782711207866669 -0.015878714621067047 0.014701398089528084 -0.029786964878439903 0.11977455019950867 -0.024218866601586342 -0.06979275494813919 -0.01661747135221958 -0.009976760484278202 -0.034316956996917725 0.044662926346063614 0.03168287128210068 0.01539689302444458 0.09365132451057434 -0.03404928743839264 0.03599558770656586 0.03690239042043686 0.036830343306064606 0.004554802551865578 -0.1349429339170456 -0.06438066065311432 0.007517513819038868 -0.022090880200266838 -0.005715150386095047 0.05000479519367218 0.0007193669443950057 0.05154396966099739 0.014591393060982227 -0.03432069718837738 -0.004972132854163647 0.02544168010354042 0.03663567081093788 0.021420931443572044 0.06725185364484787 0.06464414298534393 0.055090609937906265 0.02156190387904644 0.005640407092869282 0.01102349441498518 -0.030117493122816086 -0.06469538807868958 0.001517577562481165 0.035658542066812515 0.014662214554846287 -0.002096593612805009 -0.0824449211359024 -0.02184845507144928 0.0021294422913342714 -0.09722782671451569 -0.030598828569054604 0.03873899206519127 -0.03665310889482498 0.10540049523115158 0.04710214585065842 -0.02790224179625511 0.02212580479681492 0.08947290480136871 0.04923981428146362 0.030386025086045265 -0.005737722851336002 0.00958928931504488 -0.04810239374637604 -0.02994908206164837 0.02789490856230259 -0.023223839700222015 -0.055310845375061035 0.07154691219329834 0.06489332765340805 0.027528168633580208 -0.023462379351258278 -0.057482991367578506 -0.017958056181669235 -0.04828134551644325 -0.059841036796569824 0.011751184239983559 -0.048327893018722534 0.011535040102899075 0.04479747638106346 0.010288465768098831 0.034792155027389526 -0.02320694737136364 -0.024663623422384262 -0.05894065648317337 -0.01168876700103283 -0.010751415975391865 -0.08082903176546097 -0.01874670572578907 -0.025966111570596695 -0.017487404868006706 0.030957646667957306 -0.050286028534173965 -0.02970779873430729 -0.01457685511559248 -0.037979211658239365 0.03069750778377056 0.0740634948015213 0.05493037402629852 -0.0016369959339499474 0.0030522060114890337 -0.051594436168670654 -0.011730324476957321 -0.045117832720279694 0.012203209102153778 0.00637750793248415 0.010320370085537434 -0.05301123484969139 0.017785875126719475 0.009120029397308826 0.018787896260619164 -0.06931870430707932 0.01143836509436369 -0.02626911737024784 -0.03424058482050896 -0.02425001934170723 0.027406373992562294 0.07799772173166275 -0.007069441489875317 0.06345583498477936 -0.060129985213279724 0.03759109973907471 -0.002975062932819128 -0.04193795844912529 -0.0417199544608593 0.03595768287777901 0.010135682299733162 0.05779346451163292 -0.00834442675113678 -0.08768221735954285 0.09313932061195374 0.045429639518260956 0.050836533308029175 -0.059206683188676834 0.003802309511229396 0.02946622297167778 -0.01618821546435356 0.06463129818439484 0.09687076508998871 -0.01585586927831173 -0.010351737029850483 0.030438292771577835 0.03398901969194412 -0.0498301200568676 0.03894646093249321 0.031098779290914536 -0.07922171801328659 0.003899129806086421 -0.07258577644824982 -0.07138784974813461 -0.039747316390275955 0.05185890570282936 -0.039387915283441544 -0.013731531798839569 -0.05749654769897461 -0.005337419454008341 0.0004619208921212703 -0.040433619171381 -0.03411294147372246 0.013522263616323471 -0.0775492712855339 0.06770263612270355 0.02876020222902298 -0.0749926045536995 -0.07573893666267395 0.002496774308383465 0.01847328245639801 -0.00201268563978374 0.012057824991643429 0.037044160068035126 0.07642940431833267 0.00040567797259427607 -0.004386833403259516 0.028525356203317642 -0.01617787405848503 -0.034921228885650635 0.018715038895606995 0.02656155824661255 -0.07601778209209442 0.008885745890438557 0.01593642123043537 -0.061625320464372635 -0.041423749178647995 -0.0011905176797881722 0.014064640738070011 -0.016764046624302864 -0.041203033179044724 -0.015335277654230595 0.03782479837536812 -0.05854783579707146 -0.02997438609600067 0.00393163226544857 -0.030827051028609276 0.06791546940803528 -0.0613875575363636 -0.06680657714605331 0.03346936032176018 -0.0010131534654647112 0.011598780751228333 -0.045862827450037 0.04447563737630844 -0.007978023029863834 -0.06884080916643143 0.034870944917201996 -0.08581310510635376 -0.024614568799734116 -0.02467964217066765 0.02071690931916237 -0.03155450522899628 0.11496350169181824 0.03304367884993553 -0.03283116593956947 -0.04809184372425079 -0.048659976571798325 -0.008271670900285244 -0.0327942930161953 0.012688581831753254 0.001669307705014944 -0.04250179976224899 -0.03109118901193142 0.07237549871206284 -0.051425106823444366 -0.025283049792051315 0.03264375030994415 -0.06108018383383751 -0.06687155365943909 0.0324113667011261 -0.021892383694648743 -0.04874252900481224 0.012259315699338913 -0.06141750514507294 -0.0032647293992340565 0.0989735871553421 0.014293518848717213 -0.03155410289764404 0.04253651946783066 -0.0067343027330935 0.07995350658893585 -0.02000303752720356 -0.017659613862633705 0.023157989606261253 -0.03668438643217087 -0.009390804916620255 0.01985708251595497 -0.06592916697263718 0.0063385311514139175 0.016382908448576927 -0.0028407799545675516 0.03199663385748863 -0.004259544424712658 -0.0674307718873024 0.019129501655697823 -0.014933520928025246 -0.017341217026114464 0.0133433248847723 0.041258394718170166 0.03542451187968254 -0.06143505498766899 -0.057812780141830444 -0.051074765622615814 -0.0036866399459540844 0.041584562510252 -0.014957335777580738 0.018476760014891624 -0.06065722554922104 -0.041112545877695084 -0.012109734117984772 -0.019017914310097694 0.13387885689735413 -0.07062206417322159 0.010641785338521004 0.0754198431968689 0.025638461112976074 -0.07235241681337357 0.05088198930025101 0.05691518262028694 -0.05557143688201904 -0.06550361216068268 0.0026941129472106695 -0.005370711907744408 -0.07884352654218674 -0.00880520325154066 0.031452763825654984 -0.02171890065073967 0.022544119507074356 0.022616997361183167 0.02419523149728775 0.04705710709095001 0.009651117958128452 -0.008549503982067108 0.02174064703285694 0.02702585980296135 0.06522831320762634 -0.046474624425172806 0.02167920395731926 -0.029572630301117897 0.07485134899616241 -0.030306292697787285 -0.053424954414367676 -0.03605864569544792 0.04625783488154411 0.01656300202012062 -0.013025672174990177 -0.05042354390025139 -0.03164919465780258 -0.018728936091065407 0.03619740158319473 0.03515274077653885 -0.06926967948675156 -0.030548570677638054 -0.09486287832260132 -0.05092781409621239 -0.09282571822404861 -0.07242331653833389 0.0256331879645586 -0.06399931758642197 0.023975234478712082 -0.026870565488934517 -0.008132650516927242 -0.013069325126707554 -0.019852520897984505 0.007565892767161131 0.05816149711608887 0.00788072682917118 -0.03393551707267761 0.033793747425079346 -0.0337999127805233 0.06470737606287003 0.02998359315097332 -0.0314674898982048 0.032346561551094055 0.04305035248398781 -0.03394914045929909 0.042408980429172516 -0.023870453238487244 0.02001338079571724 -0.006491808220744133 -0.06658969819545746 0.007933120243251324 0.058419935405254364 0.007903273217380047 -0.07689966261386871 0.041476111859083176 -0.055765073746442795 -0.02129480056464672 0.03775980696082115 -0.027416426688432693 -0.06535597890615463 -0.06067577004432678 -0.009664650075137615 -0.03156327083706856 -0.0024376725777983665 -0.02925446256995201 0.03669445589184761 0.03444132208824158 -0.05879614129662514 -0.030100760981440544 0.005303498357534409 0.008755950257182121 0.04892323166131973 -0.016451170668005943 0.029086461290717125 0.027737077325582504 0.008394279517233372 0.024936754256486893 -0.006850970443338156 0.01496120449155569 -0.06170542910695076 0.0067937131971120834 -0.009814728982746601 -0.026036085560917854 -0.010996932163834572 0.006935274228453636 0.027971763163805008 -0.08271726220846176 -0.017768992111086845 -0.05580713227391243 0.06413421034812927 0.05171908065676689 0.03314743936061859 0.016505779698491096 -0.04314859211444855 0.0029051064047962427 -0.001976719358935952 -0.0006019379943609238 -0.05717009678483009 0.000567686278373003 -0.05354534834623337 0.03670657053589821 0.038451988250017166 0.01706348918378353 -0.02458634227514267 -0.08045383542776108 0.03642522916197777 -0.0129240145906806 -0.07222883403301239 -0.020894065499305725 0.05641831457614899 8.75279656611383e-05 -0.0200594924390316 -0.022426649928092957 -0.03313887491822243 0.06622860580682755 0.05279719457030296 0.05676611140370369 -0.05042530596256256 -0.04040807485580444 -0.01860077865421772 -0.028149276971817017 -0.006884872447699308 -0.0036493914667516947 -0.05528128892183304 0.005868180654942989 0.08575595915317535 -0.04919339343905449 0.0014149550115689635 0.061059750616550446 -0.04826635494828224 0.02247176133096218 -0.010690530762076378 -0.05475638434290886 0.05735310539603233 -0.012758000753819942 -0.04945695027709007 0.03466074541211128 -0.11391276121139526 0.07613450288772583 -0.06733275949954987 0.09122766554355621 0.012888596393167973 -0.04634977504611015 0.07466259598731995 0.08976679295301437 -0.03397641330957413 0.0010199319804087281 -0.031613510102033615 +0.024866092950105667 -0.047276146709918976 0.0034881019964814186 0.005419546738266945 -0.07884451001882553 -0.06125229224562645 -0.019418183714151382 0.029643550515174866 0.0016838132869452238 -0.04928969964385033 -0.033586058765649796 0.0013155477354303002 0.026814013719558716 0.014429769478738308 0.0652502104640007 -0.024588651955127716 -0.049100808799266815 -0.004178277682512999 -0.031336914747953415 -0.007980495691299438 0.07200270891189575 -0.011468318291008472 -0.06638314574956894 0.06533817201852798 0.013917461037635803 0.03029332123696804 -0.05249837785959244 0.020043974742293358 0.020292337983846664 0.03612862154841423 0.03662832826375961 -0.026683853939175606 0.03223631531000137 -0.0774010419845581 -0.03338438272476196 0.03623192757368088 -0.0597839280962944 0.10936494916677475 0.024357542395591736 -0.017560984939336777 -0.04997849836945534 -0.0060544912703335285 -0.06385106593370438 -0.08578620851039886 0.0022812101524323225 -0.005290260072797537 0.023935949429869652 -0.02362973615527153 0.01252823043614626 0.04842545464634895 0.06490345299243927 -0.007949457503855228 -0.02005888521671295 -0.006704780273139477 0.005901736207306385 -0.006411713548004627 0.04043709486722946 -0.0324224978685379 -0.047370512038469315 0.055544883012771606 -0.08643297106027603 -0.007304312661290169 -0.004493624437600374 0.03882919251918793 -0.017005013301968575 -0.02303488180041313 0.008781888522207737 0.05141226202249527 -0.0040397304110229015 -0.04040838032960892 0.010646500624716282 0.07436945289373398 -0.0648365318775177 -0.046745654195547104 0.012927860952913761 -0.024281887337565422 0.004768209531903267 0.026281092315912247 0.008393622934818268 0.0050748963840305805 0.012424291111528873 -0.047212064266204834 0.13929547369480133 -0.045962657779455185 -0.030336203053593636 -0.07416599988937378 -0.015719130635261536 -0.026926901191473007 0.05223843827843666 0.01660335436463356 0.03418390825390816 0.06688416749238968 -0.041665803641080856 0.05183741822838783 0.014689887873828411 0.017929021269083023 0.011932950466871262 -0.12459995597600937 -0.024362048134207726 -0.014239991083741188 -0.015610811300575733 -0.038562364876270294 0.062499646097421646 0.021969454362988472 0.062471888959407806 0.029359225183725357 -0.05046263337135315 0.014877716079354286 0.02990923449397087 0.03912697359919548 0.00016428972594439983 0.10203319787979126 0.06159861758351326 0.04274093732237816 0.045955318957567215 -0.004001342225819826 -0.008041538298130035 -0.03786742687225342 -0.029260659590363503 0.011309312656521797 0.017631666734814644 0.032512813806533813 -0.01377791166305542 -0.10134044289588928 0.015852300450205803 0.06411943584680557 -0.10331884771585464 -0.043848417699337006 0.028459135442972183 -0.04652220383286476 0.10936536639928818 0.07524192333221436 -0.02800154872238636 0.022237498313188553 0.05100838840007782 0.024610672146081924 0.008864317089319229 0.05581164360046387 -0.0011364866513758898 -0.07358935475349426 -0.02648627758026123 0.0332462377846241 0.004770304076373577 -0.051128800958395004 0.0299859419465065 0.05030360445380211 0.014918196946382523 -0.0226307213306427 -0.07755327969789505 0.002834482118487358 -0.07620179653167725 -0.059453628957271576 0.009937944822013378 -0.062426142394542694 0.008558935485780239 0.028314687311649323 0.012197981588542461 0.035721078515052795 -0.018197715282440186 0.0016139763174578547 -0.05939912050962448 -0.07452431321144104 -0.0009102685726247728 -0.0657883808016777 -0.015440655872225761 0.0025781842414289713 0.018460188060998917 -0.0014617423294112086 -0.04342450201511383 -0.04446364566683769 -0.0026990293990820646 -0.034893687814474106 0.04693141579627991 0.03203713893890381 0.03640694171190262 -0.01035990845412016 0.006950598210096359 -0.06826743483543396 -0.006353097967803478 -0.03892065957188606 0.01160253956913948 -0.051415033638477325 0.01975969225168228 -0.06303281337022781 -0.03004138357937336 -0.006380817387253046 0.007419869303703308 -0.030350949615240097 -0.024104801937937737 -0.039388034492731094 -0.046149712055921555 -0.03934350237250328 0.05314813181757927 0.05798168107867241 -0.03508469834923744 0.05785859748721123 0.004450479056686163 0.049075283110141754 -0.044363878667354584 -0.05337603762745857 -0.05165281146764755 0.03933000937104225 0.017935167998075485 0.03831801936030388 -0.018910637125372887 -0.0600208081305027 0.06210080161690712 0.024318795651197433 0.0239045862108469 -0.07710146903991699 0.025620387867093086 0.05068562179803848 -0.019977951422333717 0.042904388159513474 0.08313048630952835 -0.06612072885036469 0.0008397366036660969 0.029717499390244484 0.04347650706768036 -0.05041362717747688 -0.014722522348165512 0.024728471413254738 -0.09070509672164917 -0.011945780366659164 -0.03351328894495964 -0.08221662789583206 -0.04005908966064453 0.03514915704727173 -0.03755112364888191 -0.044687215238809586 -0.017310721799731255 0.02777860313653946 -0.016557039692997932 -0.02794801816344261 0.009918955154716969 0.006006485782563686 -0.06084161996841431 0.07863747328519821 -0.021643396466970444 -0.0841173604130745 -0.06656934320926666 0.020892804488539696 0.02508259192109108 0.02805505320429802 0.023509318009018898 0.047759514302015305 0.08214400708675385 0.010441847145557404 -0.033848658204078674 -0.008634580299258232 -0.033952746540308 -0.04309343919157982 0.0019602312240749598 0.029189608991146088 -0.041706714779138565 -0.035592276602983475 -0.0020399182103574276 -0.06289034336805344 -0.024797264486551285 -0.0015241869259625673 0.039272770285606384 -0.06101010739803314 -0.013593527488410473 -0.021420031785964966 0.02796393260359764 -0.02680589258670807 -0.022651229053735733 0.03974044695496559 -0.02649998478591442 0.059934839606285095 -0.02283954620361328 -0.014902068302035332 0.04001753777265549 -0.006273453123867512 0.0012295839842408895 -0.04646429792046547 0.06179773434996605 -0.025068258866667747 -0.0708041787147522 -0.03269342705607414 -0.08886963129043579 -0.05996482074260712 -0.014925005845725536 -0.005817164201289415 -0.02035568654537201 0.10439180582761765 0.04081308841705322 -0.0644342228770256 -0.05567575991153717 -0.06953851133584976 -0.002299555344507098 -0.03519149497151375 0.011067195795476437 0.005047483369708061 -0.06160605326294899 -0.014302761293947697 0.06694296002388 -0.06713282316923141 -0.023880766704678535 0.034449681639671326 0.00969522725790739 -0.08218522369861603 0.0536634661257267 -0.022358566522598267 -0.03212272748351097 0.009849809110164642 -0.08088985830545425 0.03356427326798439 0.0875055193901062 0.03159632161259651 0.012659703381359577 0.021548038348555565 0.03055448643863201 0.10094737261533737 -0.02818019688129425 -0.011286844499409199 -0.033388007432222366 -0.04912043362855911 -0.08078312128782272 0.047181837260723114 -0.05515618249773979 0.018911372870206833 -0.038245413452386856 -0.014195721596479416 0.042808402329683304 -0.01522641908377409 -0.026023048907518387 -0.0024950935039669275 0.0021918369457125664 0.006040545646101236 0.03634333983063698 0.012412847951054573 0.006586769595742226 -0.04869744926691055 -0.05356147512793541 -0.08772669732570648 -0.04278990998864174 0.04189552366733551 -0.03913307189941406 0.074443019926548 -0.018181070685386658 -0.0710560530424118 -0.02173600159585476 0.010916819795966148 0.13103832304477692 -0.06576211750507355 0.026995094493031502 0.03980180621147156 0.02785339392721653 -0.09634577482938766 0.018280569463968277 0.011132761836051941 -0.04886830225586891 -0.06051598861813545 -0.02344675548374653 0.06366754323244095 -0.04467472806572914 -0.03942383825778961 0.002599158091470599 -0.011332722380757332 0.01331015769392252 0.04191635921597481 -0.0004808578232768923 0.05099964886903763 0.005558613687753677 -0.018888400867581367 0.007802966516464949 0.008596936240792274 0.026314133778214455 -0.016326474025845528 0.028194909915328026 -0.010305834002792835 0.06169360876083374 -0.03366829454898834 -0.02222791314125061 -0.05716366320848465 0.05517028272151947 -0.04195423796772957 -0.01380373165011406 -0.02795087732374668 -0.01373740378767252 -0.020611582323908806 0.045151080936193466 0.013791878707706928 -0.029740488156676292 -0.041609879583120346 -0.028087584301829338 -0.057810597121715546 -0.10079215466976166 -0.03616956248879433 0.025898925960063934 -0.03921455517411232 0.022207733243703842 -0.03525402769446373 0.017875954508781433 0.009163500741124153 -0.02321462705731392 0.024350864812731743 0.04582078009843826 0.03795531392097473 -0.03815753385424614 0.06581057608127594 0.02651973068714142 0.04560689628124237 -0.018834300339221954 -0.03825195133686066 0.04844753444194794 0.03681759536266327 -0.052623651921749115 0.035792455077171326 -0.03335670754313469 -0.002515699015930295 -0.014289629645645618 -0.037455253303050995 -0.0077055771835148335 0.015399203635752201 0.008723966777324677 -0.03444655239582062 0.061855945736169815 -0.07892386615276337 -0.04370614513754845 0.010905778035521507 -0.03729791194200516 -0.06986130028963089 -0.04065801948308945 -0.02926451526582241 -0.02806100808084011 0.02197863534092903 -0.00859429594129324 0.024040790274739265 0.053417354822158813 -0.025092603638768196 0.006999516859650612 0.024203304201364517 0.003233056515455246 0.030599717050790787 0.008065568283200264 0.050967440009117126 0.019425293430685997 0.016356609761714935 0.03648332506418228 -0.03210766986012459 0.03344621881842613 -0.07321804016828537 0.013897033408284187 0.008637508377432823 0.009685290977358818 0.014242514036595821 -0.002739853225648403 0.06254495680332184 -0.08712568879127502 -0.038859885185956955 -0.022378938272595406 0.056037940084934235 0.03366445004940033 0.03999408334493637 0.04648841172456741 -0.06756262481212616 -0.046375375241041183 0.00209559453651309 -0.04461071640253067 -0.09619279950857162 -0.006417504977434874 -0.045890334993600845 0.06038735434412956 -0.010839223861694336 0.01166990865021944 0.0028863048646599054 -0.10089221596717834 0.01126757264137268 -0.01091949176043272 -0.05636061355471611 0.017541110515594482 0.06341173499822617 -0.03154529631137848 -0.02714754454791546 -0.011158065870404243 -0.05016938969492912 0.028343018144369125 0.020273230969905853 0.049498215317726135 -0.05754925310611725 0.0031921747140586376 -0.008438123390078545 -0.017951389774680138 0.030033955350518227 0.0047892555594444275 -0.07568143308162689 0.004195443820208311 0.10979355126619339 -0.05757422372698784 0.03797413036227226 0.07683845609426498 -0.0133244339376688 0.034005001187324524 0.028831847012043 -0.008118439465761185 0.011379098519682884 -0.03425062820315361 -0.033798906952142715 0.0505518838763237 -0.0787397250533104 0.06720256060361862 -0.0893106609582901 0.10527046769857407 0.009930524043738842 -0.02806120179593563 0.08983329683542252 0.06635160744190216 0.044066768139600754 0.026579352095723152 -0.06282146275043488 +0.028446031734347343 0.03912839666008949 0.04627536982297897 0.03882092610001564 -0.1231783777475357 -0.01791594736278057 -0.03695739433169365 -0.00852220505475998 0.018114004284143448 -0.04716504365205765 0.0174945667386055 -0.023018503561615944 -0.013178535737097263 -0.005853667389601469 0.04198071360588074 -0.024406980723142624 -0.07763785123825073 -0.03792363405227661 -0.03484141454100609 -0.04022606462240219 0.05320334807038307 -0.021413937211036682 -0.045973412692546844 0.07319971174001694 -0.004681628663092852 0.03430069610476494 -0.05130124092102051 0.03131352365016937 -0.059243857860565186 0.04377014562487602 0.03789940103888512 0.001507670502178371 0.03792557120323181 -0.06795914471149445 -0.04495713859796524 0.07660820335149765 0.03595449775457382 0.10956735908985138 0.06779143959283829 -0.05777537450194359 -0.014680474065244198 0.00964441429823637 -0.037512630224227905 -0.05402974411845207 0.025691663846373558 -0.018007345497608185 -0.005902520380914211 -0.013565601781010628 0.07114013284444809 0.023110484704375267 0.06865037977695465 0.02521449327468872 -0.061823002994060516 -0.028332030400633812 0.02351188473403454 0.028484027832746506 0.06733085215091705 -0.050262581557035446 -0.03964909166097641 0.06263259798288345 -0.06692676246166229 -0.018404465168714523 -0.006034893449395895 -0.020942358300089836 0.02025841735303402 0.0023923476692289114 0.015310261398553848 0.06697244942188263 0.022444037720561028 -0.01252043154090643 0.042668793350458145 0.12703672051429749 -0.06541161984205246 -0.032107219099998474 0.04513021185994148 -0.06907686591148376 -0.06684808433055878 0.0422530435025692 -0.024498537182807922 0.05126553773880005 -0.02251063659787178 -0.07732464373111725 0.10860076546669006 -0.04080525413155556 -0.035895101726055145 -0.05325561761856079 -0.021065667271614075 -0.03431389853358269 0.04932194948196411 0.034536655992269516 -0.0011809670832008123 0.05917542800307274 -0.08125664293766022 0.04186638072133064 -0.016643688082695007 0.014400659129023552 0.061609815806150436 -0.09684838354587555 0.008772403001785278 0.011024427600204945 -0.04103120416402817 -0.04483312368392944 -0.009767035953700542 -0.0056143347173929214 0.05759434401988983 0.05002209171652794 -0.03759222850203514 0.014677744358778 0.015815654769539833 0.04685210809111595 0.05407923460006714 0.06290547549724579 0.08188559859991074 0.06162642315030098 0.04993646219372749 0.006981931161135435 0.02671435847878456 -0.08760938793420792 -0.02757878042757511 -0.012533540837466717 -0.022632045671343803 0.054661110043525696 -0.01022013183683157 -0.0261499285697937 0.024825312197208405 0.03140873834490776 -0.09665358066558838 -0.008368321694433689 0.0261601060628891 -0.044970862567424774 0.08852778375148773 0.04791319742798805 0.006407030858099461 0.029858505353331566 0.043075378984212875 0.04156000167131424 -0.01811140589416027 0.053381092846393585 -0.023593168705701828 -0.03561639413237572 -0.0031355281826108694 -0.005287799518555403 0.021738752722740173 -0.05672738328576088 0.015655551105737686 0.05053889378905296 0.020070120692253113 -0.006265035830438137 -0.06927735358476639 0.012669107876718044 -0.08228161931037903 -0.04997873678803444 0.0074035353027284145 -0.10633179545402527 -0.019104698672890663 0.08055762201547623 0.039345141500234604 0.04086950048804283 -0.02542496845126152 0.004605026450008154 -0.011241720989346504 -0.05192853510379791 0.0005628142389468849 -0.06728330999612808 -0.06773124635219574 -0.04223325476050377 0.024007471278309822 -0.007120190653949976 -0.012290995568037033 -0.023125922307372093 0.003119289642199874 0.004725935868918896 0.04173029214143753 0.044590871781110764 0.04893055558204651 -0.02077340893447399 0.03704696148633957 -0.06545743346214294 0.01360437273979187 -0.04144415259361267 0.018144182860851288 -0.04461367055773735 0.04093172028660774 -0.05640972778201103 -0.04344847798347473 -0.017687732353806496 0.019065890461206436 0.040495891124010086 0.003512854687869549 0.0023243732284754515 -0.06901330500841141 -0.04990024492144585 0.029002372175455093 0.06144580990076065 -0.06860843300819397 0.03565851226449013 0.03729519248008728 0.02010485716164112 -0.02612500637769699 -0.023511290550231934 -0.07918825000524521 0.04264224320650101 0.003951250575482845 0.07299092411994934 0.033840104937553406 -0.05264275521039963 0.033671412616968155 -0.004134644288569689 -0.02269073948264122 -0.05822247266769409 0.015417602844536304 0.037683457136154175 0.04152487963438034 0.006757441908121109 0.06891920417547226 -0.0159128587692976 0.0251321978867054 -0.028726812452077866 0.06865814328193665 -0.056033212691545486 -0.002043273067101836 -0.022295815870165825 -0.0835396870970726 -0.014089408330619335 -0.04786613956093788 -0.04830889031291008 -0.02719646506011486 0.04081500321626663 -0.005772559903562069 -0.021810077130794525 0.013239175081253052 0.03289748355746269 -0.03923260048031807 0.0003494298434816301 0.023309554904699326 0.004627692513167858 -0.06556912511587143 0.12376488000154495 -0.030262518674135208 -0.06867291033267975 -0.04775914177298546 0.05970829725265503 0.055544301867485046 -0.006843026727437973 0.04326494410634041 0.037480078637599945 0.09133409708738327 0.04869852215051651 0.010498815216124058 -0.05166454240679741 -0.0501791350543499 -0.082123301923275 0.0004082901286892593 0.03314792364835739 -0.00022425834322348237 -0.0280006043612957 -0.006008553318679333 -0.05809508264064789 0.020163744688034058 0.027049437165260315 0.06946059316396713 -0.03918313980102539 -0.017992282286286354 -0.02614164724946022 0.03335481137037277 -0.017448095604777336 -0.06458700448274612 0.05325073376297951 -0.014245055615901947 0.0500459186732769 -0.017342044040560722 0.01016544084995985 0.016600802540779114 0.029588978737592697 0.02171705663204193 -0.029849478974938393 0.040171604603528976 -0.015069695189595222 -0.049757640808820724 -0.049294132739305496 -0.08303855359554291 -0.053300417959690094 -0.00642215134575963 -0.018459836021065712 -0.03299233317375183 0.05972360819578171 0.020323220640420914 -0.028899161145091057 -0.06400086730718613 -0.011840112507343292 -0.004672724287956953 -0.041531872004270554 -0.018645504489541054 0.036795713007450104 -0.08145005255937576 -0.004522667732089758 0.013767522759735584 -0.029212702065706253 -0.03803428262472153 0.0033759968355298042 -0.05575083568692207 -0.07344228774309158 0.027777891606092453 -0.025971967726945877 -0.018060753121972084 -0.00281076249666512 -0.04107781872153282 0.04707072302699089 0.10741977393627167 0.02857957035303116 0.07178561389446259 -0.0058245970867574215 0.03670299053192139 0.06417345255613327 -0.011734125204384327 -0.01265163253992796 -0.01600128598511219 -0.04883287474513054 -0.12051820009946823 0.057232603430747986 -0.04486953839659691 -0.0085865193977952 -0.03814427927136421 0.03463109955191612 0.07380988448858261 -0.008232617750763893 -0.012411602772772312 -0.02283046767115593 0.04553079605102539 0.02271915413439274 0.06222601234912872 -0.026251841336488724 -0.006531201768666506 -0.022118637338280678 -0.04337983950972557 -0.03506239503622055 -0.05681469291448593 0.056909020990133286 0.033484771847724915 0.036857496947050095 -0.0019216308137401938 -0.10359803587198257 -0.014384330250322819 0.029047025367617607 0.07769972831010818 -0.09600470960140228 0.030121004208922386 0.021466342732310295 -0.0004156040959060192 -0.08377764374017715 -0.030680209398269653 0.03517194464802742 -0.03426544368267059 -0.02877766452729702 0.013198178261518478 0.06813529878854752 -0.06482234597206116 0.0022666845470666885 -0.00481933169066906 -0.02501196600496769 -0.005225722678005695 0.04707362875342369 -0.0035147005692124367 -0.04223024845123291 -0.03946249932050705 -0.03119666501879692 -0.03697165846824646 -0.014343032613396645 -0.0029432394076138735 0.011227582581341267 0.049535349011421204 -0.02578950673341751 0.035702433437108994 -0.055158790200948715 0.0014541555428877473 -0.07117870450019836 0.09966646879911423 -0.039171651005744934 -0.009865141473710537 -0.0023470004089176655 -0.017166895791888237 -0.006237119436264038 0.0494672991335392 0.011947563849389553 -0.03811405599117279 -0.03925686702132225 -0.012971551157534122 -0.04734795168042183 -0.07082658261060715 -0.005225867033004761 0.024093108251690865 -0.07017840445041656 0.01698346994817257 -0.024693800136446953 -0.018889818340539932 -0.02982916682958603 -0.0009653376182541251 -0.0015344915445894003 0.0002553498779889196 0.04907587170600891 -0.002948038512840867 0.04128066450357437 0.006608899217098951 0.02466326579451561 -0.012482169084250927 -0.06268466264009476 0.042198460549116135 0.012642832472920418 -0.060540035367012024 0.09173066169023514 -0.04323720932006836 -0.024652281776070595 -0.025866618379950523 0.028975090011954308 0.02425113134086132 -0.0030160637106746435 -0.024296142160892487 -0.016443530097603798 0.04926581680774689 -0.0565127432346344 -0.01548841968178749 0.019156573340296745 -0.029426248744130135 -0.10785013437271118 -0.015401084907352924 0.0024156791623681784 -0.03056575357913971 0.02944905310869217 0.004732956178486347 0.022830896079540253 0.04816288873553276 -0.03014358878135681 -0.003503059968352318 -0.03157920762896538 -0.0359230637550354 0.02713019773364067 -0.007620212156325579 0.08075958490371704 -0.013035996817052364 0.001230894005857408 0.032403334975242615 0.04463856294751167 0.022517839446663857 -0.07481265068054199 -0.012975117191672325 -0.006612236145883799 -0.009441407397389412 0.0013782811583951116 -0.00023309592506848276 0.033186085522174835 -0.04381084442138672 -0.05684688314795494 -0.026068005710840225 0.08006658405065536 -0.027534689754247665 -0.0036911044735461473 0.07634047418832779 -0.019312085583806038 0.018639784306287766 -0.01239174883812666 -0.058032963424921036 -0.09261548519134521 -0.020229609683156013 -0.03629838675260544 0.0023610256612300873 -0.0047447863034904 0.0031636846251785755 0.013830328360199928 -0.04621661454439163 -0.025624720379710197 0.026321273297071457 -0.06182260438799858 0.026671195402741432 -0.015798645094037056 -0.023855412378907204 -0.07338447123765945 -0.0224129781126976 -0.036958880722522736 0.04091254621744156 0.028030341491103172 0.018841566517949104 0.011596588417887688 0.020391734316945076 0.003311462001875043 -0.05201021209359169 0.02036598138511181 0.0497579462826252 -0.049781009554862976 -0.011870752088725567 0.05404650792479515 -0.031311407685279846 0.07462113350629807 0.020141704007983208 -0.025986185297369957 0.028605801984667778 0.09096135199069977 -0.04635772854089737 0.028697874397039413 -0.019538501277565956 -0.03610002249479294 0.056997790932655334 -0.03605543449521065 0.0832357332110405 -0.023301666602492332 0.07906216382980347 -0.03763960674405098 -0.03121344745159149 0.05781898647546768 0.09927047789096832 0.052814584225416183 0.022975346073508263 -0.05618614703416824 +0.03855818882584572 0.025736883282661438 0.0366453193128109 0.048278480768203735 -0.07877831906080246 -0.04754090681672096 -0.02174185775220394 0.021123461425304413 0.01689504086971283 -0.045774150639772415 -0.051728397607803345 -0.0014415455516427755 -0.010619712062180042 0.02260584942996502 0.011092599481344223 -0.047042395919561386 -0.07409103959798813 -0.0021004953887313604 -0.019550858065485954 -0.0675826370716095 0.03215954825282097 0.011068591848015785 -0.0780002772808075 0.043079495429992676 0.021978745236992836 0.021004237234592438 -0.06772308051586151 0.005743630230426788 -0.008060475811362267 0.019162708893418312 0.06150682643055916 -0.02463528700172901 0.0778483971953392 -0.067960724234581 -0.036978092044591904 0.0229609664529562 -0.026265842840075493 0.07330154627561569 0.023565424606204033 -0.036610689014196396 -0.03051522746682167 -0.002771420869976282 -0.026072070002555847 -0.03808446601033211 0.0128086032345891 0.008333698846399784 -0.03467128425836563 -0.017011824995279312 0.027404513210058212 -0.0019135158509016037 0.0882326140999794 -0.009858249686658382 -0.029290465638041496 -0.04049846902489662 0.001615779590792954 -0.011289890855550766 0.053268250077962875 -0.06697846204042435 -0.07882996648550034 0.02724570222198963 -0.1048855409026146 0.002557865111157298 0.008771647699177265 0.010069722309708595 -0.05165326967835426 -0.021012822166085243 4.338846338214353e-05 0.10429399460554123 0.014515969902276993 -0.04450931400060654 0.06576469540596008 0.09222301095724106 -0.06315670907497406 -0.01667586714029312 0.05081355944275856 -0.0738225057721138 -0.008614753372967243 0.06658681482076645 -0.002682712161913514 0.038791462779045105 0.015973631292581558 -0.05900600552558899 0.10281147807836533 -0.03153549134731293 -0.057660430669784546 -0.021184856072068214 -0.009654106572270393 -0.06692921370267868 0.05223638191819191 0.020921841263771057 0.021257812157273293 0.06745614111423492 -0.04166559502482414 0.04125406965613365 0.024595659226179123 0.043566178530454636 0.0307911429554224 -0.0922711044549942 -0.03860100731253624 0.021786410361528397 -0.009954788722097874 0.004984221886843443 0.04502512887120247 0.011880110949277878 0.049838002771139145 0.030865656211972237 -0.021028680726885796 0.020667098462581635 0.030804116278886795 0.036620449274778366 0.07783236354589462 0.060590144246816635 0.08278017491102219 0.059681788086891174 0.04451785981655121 -0.00658032950013876 0.020588664337992668 -0.048690181225538254 -0.02180550992488861 0.01596505381166935 0.008304436691105366 0.07476749271154404 -0.029104674234986305 -0.062126144766807556 -0.02735338918864727 0.03989865258336067 -0.06988905370235443 -0.030100781470537186 0.06900530308485031 -0.020147116854786873 0.11799967288970947 0.06591026484966278 -0.007650778163224459 0.043985042721033096 0.05242066830396652 0.03439464047551155 0.0042941817082464695 0.007597421295940876 -0.006435740739107132 -0.02383536659181118 -0.03898264840245247 0.03055662102997303 -0.007680009584873915 -0.08070643246173859 0.05192555487155914 0.028595229610800743 0.014973323792219162 -0.030873415991663933 -0.05820992588996887 -0.04398166760802269 -0.06218975782394409 -0.06342851370573044 -0.005496421363204718 -0.07947219163179398 0.01105676032602787 0.05260978266596794 0.01998441107571125 0.013679702766239643 -0.041913989931344986 0.013496258296072483 -0.044173747301101685 -0.02277248539030552 0.006769498810172081 -0.0759342834353447 -0.04586472734808922 0.0024648508988320827 0.008571554906666279 0.060133542865514755 -0.08262822031974792 0.005000153556466103 -0.02807963453233242 -0.002963043749332428 0.0363561250269413 0.07362064719200134 0.05264968425035477 -0.008794405497610569 0.02490833029150963 -0.054153211414813995 0.020519515499472618 -0.030557869002223015 0.04293164610862732 -0.037022024393081665 0.0374138206243515 -0.03750722482800484 -0.0032716928981244564 -0.00964383501559496 0.021278182044625282 -0.03019513003528118 0.05928288772702217 0.034360602498054504 -0.04454196244478226 -0.045218776911497116 0.024038473144173622 0.0682225376367569 -0.028426790609955788 0.035646069794893265 -0.006611797492951155 0.04202818498015404 -0.007945259101688862 -0.036646757274866104 -0.05151627957820892 0.009789599105715752 0.013398041017353535 0.07181926816701889 0.00787294004112482 -0.07649312168359756 0.06969662755727768 0.050487738102674484 0.02137279324233532 -0.05511495843529701 0.011981697753071785 0.031373802572488785 0.030240587890148163 0.059810489416122437 0.09388210624456406 -0.02725018933415413 -0.004347240086644888 -0.014282491989433765 0.041871245950460434 -0.0713164433836937 -0.011282727122306824 -0.006711251102387905 -0.07985510677099228 0.02046528458595276 -0.07674473524093628 -0.06152505427598953 -0.009950496256351471 0.010764023289084435 0.0020866221748292446 -0.043358586728572845 0.0015209442935883999 0.02630617469549179 -0.016763299703598022 -0.008324733935296535 -0.027828393504023552 -0.017298096790909767 -0.09392964839935303 0.1115650162100792 0.02494136430323124 -0.05271252989768982 -0.06444984674453735 0.016033543273806572 0.029132230207324028 0.002026383299380541 0.030167870223522186 0.029706664383411407 0.14341047406196594 0.03391661494970322 -0.0160291139036417 -0.017896456643939018 -0.031814150512218475 -0.07630643248558044 0.029062120243906975 0.025793401524424553 -0.037418901920318604 -0.007598687428981066 0.02262519672513008 -0.05093403905630112 -0.011655135080218315 0.009996605105698109 0.025878626853227615 0.027410073205828667 -0.03504377231001854 -0.04006488621234894 0.04970073699951172 -0.0008011607569642365 -0.03943489119410515 0.049341391772031784 -0.0008555222884751856 0.06337526440620422 -0.03236379846930504 -0.03211122006177902 0.057570379227399826 -0.005005760584026575 0.040434058755636215 -0.032398272305727005 0.09349104762077332 0.002326695015653968 -0.032553330063819885 -0.024423856288194656 -0.0612923763692379 -0.03243265673518181 -0.014372649602591991 -0.019525403156876564 -0.03163151815533638 0.07293267548084259 -0.0058169737458229065 -0.044107407331466675 -0.026731066405773163 0.013540362939238548 -0.0244111530482769 -0.08577175438404083 -0.016252225264906883 -0.0020324522629380226 -0.051563043147325516 -0.004628525581210852 0.013545547612011433 -0.05571848899126053 -0.036718446761369705 0.024376628920435905 -0.06334086507558823 -0.09518660604953766 0.050752799957990646 -0.016292845830321312 -0.043253421783447266 0.014970441348850727 -0.06630296260118484 0.002895472338423133 0.10275439918041229 0.02250121347606182 0.00353261805139482 0.05614393204450607 0.06527871638536453 0.12259291112422943 -0.006347199436277151 -0.05072743818163872 -0.018032589927315712 -0.04558593034744263 -0.0659116730093956 0.07725699245929718 -0.02501324936747551 0.010297529399394989 -0.013606405816972256 0.00046644778922200203 0.06352455914020538 -0.026081806048750877 -0.022053325548768044 -0.026129961013793945 0.014321302995085716 -0.019611474126577377 0.02096477709710598 0.015441451221704483 -0.007472265977412462 0.005290981847792864 -0.06424366682767868 -0.06055973470211029 -0.0364217534661293 0.03939357027411461 -0.0011161452857777476 0.0319831557571888 -0.02626516856253147 -0.07000632584095001 0.022619137540459633 -0.008600499480962753 0.06838241964578629 -0.0792502835392952 0.019024820998311043 0.0066737644374370575 0.005380770191550255 -0.09934255480766296 -0.022476309910416603 0.047202274203300476 -0.02832399681210518 -0.03640984743833542 0.017228972166776657 0.02434321492910385 -0.06935390830039978 0.01011259201914072 0.01787538081407547 -0.055809203535318375 -0.0015262083616107702 0.021232645958662033 0.042229145765304565 0.02460300736129284 -0.007383760530501604 -0.033065032213926315 -0.048531558364629745 0.001021407195366919 0.010740786790847778 -0.000720126845408231 0.05765116214752197 -0.06916289776563644 0.04965442791581154 -0.051659878343343735 -0.020476577803492546 -0.04067758470773697 0.05957411974668503 0.014947825111448765 0.00032822994398884475 0.02621198631823063 -0.019403530284762383 -0.01280151680111885 0.024849871173501015 0.03540889173746109 -0.07121574878692627 -0.021055547520518303 -0.04573525860905647 -0.052289534360170364 -0.053041666746139526 -0.030142851173877716 -0.008062782697379589 -0.0655762329697609 0.03944870084524155 0.006564358714967966 0.0011394013417884707 0.0027735780458897352 -0.013794397003948689 0.045048199594020844 0.038158491253852844 0.036092840135097504 -0.021896902471780777 0.01815386489033699 -0.02630094438791275 0.04611515253782272 0.02630334161221981 -0.04926644265651703 0.020900463685393333 0.03285840153694153 -0.0458788126707077 0.05429307743906975 -0.04769296944141388 -0.00017948338063433766 -0.0012986842775717378 -0.019477562978863716 0.042413435876369476 -0.0003766576701309532 0.0033790820743888617 -0.030027177184820175 0.06685153394937515 -0.0655730664730072 -0.055215369910001755 0.036827679723501205 -0.017495885491371155 -0.11425917595624924 -0.04258817061781883 -0.008779033087193966 -0.05958132818341255 0.02786908857524395 -0.00296594831161201 0.014713026583194733 0.04448798671364784 -0.030960023403167725 -0.04690571129322052 0.007640994153916836 -0.0043142023496329784 0.031703703105449677 -0.014006447978317738 0.06517887115478516 0.017949070781469345 0.01622685231268406 0.0337163507938385 0.005944561213254929 0.006836174987256527 -0.08805439621210098 -0.012656155042350292 0.002951953560113907 -0.0343836285173893 -0.014249082654714584 0.021725693717598915 -0.006779660936444998 -0.0923294872045517 -0.04151516035199165 -0.0564938448369503 0.05989282205700874 -0.031526584178209305 0.007125945296138525 0.038391731679439545 -0.041672270745038986 -0.0018219067715108395 0.01022289413958788 -0.025125304237008095 -0.09080041944980621 -0.01707099936902523 -0.047953490167856216 0.03695372864603996 0.011062662117183208 -0.005010567139834166 -0.032562002539634705 -0.04884433373808861 0.011276252567768097 0.03470972925424576 -0.059664878994226456 -0.00044055815669707954 -0.0004824663628824055 -0.0484648235142231 -0.07555148750543594 0.006493124179542065 -0.0577625073492527 0.06395439058542252 0.08376221358776093 0.015163193456828594 -0.0061429343186318874 -0.009299187920987606 0.02710598334670067 -0.05362773686647415 -0.017423227429389954 0.014078638516366482 -0.0538804866373539 -0.009208481758832932 0.06964137405157089 -0.05577024817466736 0.042840681970119476 0.05109994858503342 -0.07256178557872772 0.034597110003232956 0.03785344958305359 -0.05137105658650398 0.05142083764076233 -0.013813845813274384 -0.019890714436769485 0.06517161428928375 -0.0746118426322937 0.08902086317539215 -0.05196183919906616 0.07938932627439499 0.020514370873570442 -0.023845741525292397 0.06258998066186905 0.07597073167562485 -0.025042489171028137 0.017627466470003128 -0.08297919481992722 +0.03040706180036068 -0.023685839027166367 -0.011097284965217113 0.03486006334424019 -0.10418520867824554 -0.01831059716641903 -0.0005910262116231024 0.05556332692503929 -0.006976157892495394 -0.04202686622738838 -0.015021925792098045 0.014803016558289528 0.0047042337246239185 0.022906575351953506 0.006381792016327381 -0.022093039005994797 -0.06662280112504959 -0.024549201130867004 -0.05097696930170059 -0.05353989824652672 0.030318139120936394 -0.0011089229956269264 -0.043182291090488434 0.04126008599996567 -0.000442743010353297 0.011645453050732613 -0.022859016433358192 0.005933009088039398 -0.0160180926322937 0.03143223375082016 0.05169977992773056 -0.02618470788002014 0.01512147393077612 -0.0360412672162056 -0.07320403307676315 0.08276038616895676 -0.03170877695083618 0.1336669623851776 -0.004604567773640156 -0.03424925357103348 -0.04287313297390938 0.004576887935400009 -0.02910991571843624 -0.025493981316685677 0.03973444551229477 -0.011266370303928852 0.01074458658695221 -0.00346747855655849 0.03972841054201126 0.028045469895005226 0.08761367946863174 0.04194192588329315 0.005250594578683376 -0.033850088715553284 -0.03105439618229866 0.059735607355833054 0.01985928975045681 -0.025778379291296005 -0.044775884598493576 0.053246356546878815 -0.05530292168259621 -0.03215404599905014 0.02687695249915123 -0.004498991183936596 0.006924428977072239 0.0007738435524515808 -0.026387760415673256 0.09803634136915207 0.03162294626235962 -0.02009986713528633 -0.010739881545305252 0.10540708154439926 -0.039263252168893814 -0.06312955915927887 0.069965660572052 -0.05410432070493698 -0.05045801028609276 0.00852798018604517 -0.023617208003997803 0.007562772836536169 -0.03538929671049118 -0.05641026049852371 0.13089922070503235 -0.047368232160806656 -0.066790372133255 -0.0388704314827919 -0.001517504220828414 -0.061997342854738235 0.072665736079216 0.03747500851750374 0.008328242227435112 0.06538911163806915 -0.07227734476327896 0.030038397759199142 -0.017458027228713036 -0.016255682334303856 0.049652643501758575 -0.12883338332176208 -0.03536684066057205 -0.01300932839512825 0.03027939796447754 -0.04183456301689148 0.05821520462632179 -0.006877699866890907 0.050990279763936996 0.06284448504447937 -0.05927291512489319 -0.005653387401252985 0.013071345165371895 0.011214455589652061 0.023151079192757607 0.10990163683891296 0.07102037221193314 0.050527311861515045 0.07822848111391068 -0.02124042622745037 -0.0015668224077671766 -0.05786558613181114 -0.03921031579375267 -0.031179483979940414 -0.007044859696179628 0.05957939103245735 -0.01844252459704876 -0.07087339460849762 -0.029360394924879074 0.009416189976036549 -0.11961720138788223 0.0220482237637043 0.08065107464790344 -0.028712112456560135 0.07303890585899353 0.04561610892415047 -0.0008596365223638713 0.028811898082494736 0.0419401191174984 0.004412366077303886 -0.01638961397111416 0.048602428287267685 -0.001632930594496429 0.0020688162185251713 0.0030734820757061243 0.058145731687545776 0.030732151120901108 -0.05156131461262703 0.02265373431146145 0.06441043317317963 0.047093067318201065 -0.008794103749096394 -0.05884175002574921 0.051696229726076126 -0.06903940439224243 -0.08814536035060883 -0.014722772873938084 -0.08262254297733307 -0.004134991206228733 0.05440274253487587 0.026210417971014977 0.04561633616685867 -0.012413246557116508 -0.01603136584162712 -0.01277904212474823 -0.05109066516160965 -0.019093086943030357 -0.07394413650035858 -0.00857831072062254 -0.01726412959396839 0.004971873480826616 -0.020415890961885452 -0.03324350714683533 -0.023340562358498573 0.03366229683160782 -0.0013385881902649999 0.04390251263976097 0.07777376472949982 0.06612330675125122 0.0005336555186659098 0.014741815626621246 -0.05656396225094795 -0.022082526236772537 -0.019312117248773575 0.00030808194424025714 -0.028524862602353096 0.020048541948199272 -0.08821475505828857 -0.02203967235982418 -0.004006965085864067 0.03878908231854439 -0.00821656920015812 -0.02086152695119381 -0.04182330518960953 -0.025413023307919502 -0.05703367665410042 0.03685680031776428 0.038553282618522644 -0.037784360349178314 0.03650211542844772 0.01420389674603939 0.05584952235221863 -0.02830686792731285 -0.027365263551473618 -0.07200685143470764 0.05236120522022247 -0.004399510100483894 0.02270229533314705 0.03826673701405525 -0.06653594225645065 0.07481123507022858 -0.018310289829969406 0.01470611710101366 -0.08724025636911392 0.008332420140504837 0.026381297037005424 0.03492175415158272 0.042381759732961655 0.07429615408182144 -0.012756279669702053 -0.019993845373392105 0.00612277165055275 0.07023979723453522 -0.04119343310594559 -0.016757505014538765 -0.016785819083452225 -0.08101707696914673 -0.007391063030809164 -0.0006051948294043541 -0.06281422078609467 -0.05077245458960533 0.026400387287139893 -0.000127248844364658 -0.022545933723449707 8.197792340070009e-05 0.041889339685440063 -0.026316696777939796 -0.04315304011106491 0.016167733818292618 0.008508973754942417 -0.06008763983845711 0.06939924508333206 -0.022379130125045776 -0.08294323831796646 -0.04454883188009262 -0.00044477154733613133 0.03927500545978546 -0.01751326024532318 0.055828582495450974 0.06654766947031021 0.08418987691402435 0.03444826602935791 -0.00582857197150588 -0.024802161380648613 -0.05426832288503647 -0.030162593349814415 -0.01735294982790947 0.05122677981853485 -0.02283499389886856 -0.057271216064691544 -0.0014398670755326748 -0.05936935171484947 8.990294736577198e-05 0.02339985780417919 0.07911434024572372 -0.04693770036101341 -0.039526719599962234 -0.011379306204617023 0.009339665062725544 -0.04314138740301132 -0.04227466136217117 -0.0076059275306761265 -0.027562923729419708 0.06332939863204956 -0.019078074023127556 0.01151569839566946 0.004906141199171543 0.020499804988503456 0.025771358981728554 -0.04580000787973404 0.05118580535054207 -0.04334161803126335 -0.0848984569311142 -0.04092351719737053 -0.05620212480425835 -0.07935807853937149 -0.018016556277871132 -0.061694398522377014 -0.06745532155036926 0.08308660238981247 -0.004364588297903538 -0.0342395044863224 -0.07209493219852448 -0.03281903266906738 -0.012966894544661045 -0.031273990869522095 -0.011654006317257881 0.004747009836137295 -0.05862535908818245 -0.01588406041264534 0.004218477755784988 -0.03157432749867439 -0.01260434091091156 0.03141625598073006 0.018889250233769417 -0.03591248765587807 0.06945709139108658 -0.037723902612924576 -0.0022694841027259827 -0.02504214458167553 -0.048588890582323074 0.0324510894715786 0.08948735892772675 0.07168871909379959 0.05513006076216698 0.0022427295334637165 0.008306512609124184 0.07462622225284576 0.0418664813041687 -0.03891180083155632 -0.002081679878756404 -0.03189652040600777 -0.08509775996208191 0.030283857136964798 -0.024415360763669014 -0.028552716597914696 -0.04214923083782196 -0.004960137885063887 0.06736503541469574 0.01802433840930462 -0.018267029896378517 -0.0283438041806221 0.051966968923807144 0.010662597604095936 0.06288764625787735 -0.012089868076145649 -0.014956752769649029 -0.004597929306328297 -0.03833957388997078 -0.032959889620542526 -0.033796221017837524 0.05201658606529236 0.011231832206249237 0.04630758985877037 -0.0049071661196649075 -0.07033287733793259 0.03751881793141365 0.013792783953249454 0.08332452178001404 -0.07847192138433456 -0.002487467136234045 0.04197986423969269 0.01997849904000759 -0.0956687405705452 -0.018151134252548218 -0.0012133457930758595 -0.015402519144117832 -0.07083578407764435 -0.013274977914988995 0.05072353035211563 -0.03875551000237465 -0.013224680908024311 -0.047137487679719925 -0.035665202885866165 -0.010781371034681797 0.014716504141688347 -0.01748833805322647 0.019883345812559128 -0.015592629089951515 -0.030168442055583 0.025077026337385178 0.02369355410337448 0.02725943550467491 -0.04233686253428459 0.024774495512247086 0.008883802220225334 0.06884194910526276 -0.02845882624387741 -0.053089726716279984 -0.0792936235666275 0.05108877643942833 -0.03280002996325493 -0.038224246352910995 -0.045578353106975555 -0.04618500545620918 0.01548097375780344 0.02348974533379078 -0.016662636771798134 -0.0443725660443306 -0.013419329188764095 -0.010820981115102768 -0.05993551388382912 -0.1021096482872963 -0.05848193168640137 0.04630954563617706 -0.05140482261776924 -0.01443438045680523 -0.04442385956645012 -0.029276158660650253 -0.01378729660063982 0.01610046997666359 0.02769819088280201 0.0458679124712944 0.04588095471262932 -0.007029391825199127 0.08077812939882278 0.026095816865563393 0.04488721117377281 -0.032710667699575424 -0.04791606590151787 0.03893599286675453 0.014554615132510662 -0.0576864629983902 0.08702614903450012 -0.04166600853204727 0.022310422733426094 -0.035521071404218674 0.025867119431495667 0.0077413534745574 -0.03555728495121002 -0.03186454251408577 -0.03992260619997978 0.051968470215797424 -0.07748264819383621 -0.011002699844539165 0.0620436891913414 -0.0234282985329628 -0.09607033431529999 -0.009077661670744419 -0.025851625949144363 -0.016420092433691025 0.0410030335187912 0.013182798400521278 0.0009746833820827305 0.022480739280581474 -0.05839696526527405 -0.032241180539131165 -0.04464453458786011 -0.04614567384123802 0.010249290615320206 0.01771264337003231 0.09043268114328384 0.02340840734541416 0.003366375109180808 -0.015492796897888184 -0.0011752533027902246 0.0379352904856205 -0.08306793123483658 -0.016957689076662064 -0.004021689761430025 -0.03555998206138611 0.00527713168412447 0.010632605291903019 0.0037647972349077463 -0.029610922560095787 -0.01854763925075531 -0.021275075152516365 0.0771123394370079 -0.022849272936582565 -0.003369047539308667 0.037990618497133255 -0.015356678515672684 0.010940520092844963 0.0025433062110096216 -0.030674461275339127 -0.06514747440814972 0.04860144481062889 -0.024188192561268806 0.012682468630373478 -0.009002039209008217 0.03358149528503418 0.003295623930171132 -0.08657702803611755 -0.054810259491205215 -0.00015161922783590853 -0.0666094496846199 0.055813685059547424 0.007984461262822151 -0.08664585649967194 -0.03927924856543541 0.005009502172470093 -0.03783322125673294 0.06145390123128891 -0.04401645064353943 0.030734572559595108 0.0010207630693912506 0.006111269351094961 -0.02401353046298027 -0.021477803587913513 0.03814704716205597 -0.02386688068509102 -0.07012827694416046 -0.04332933574914932 0.058201033622026443 -0.04393354058265686 0.036313362419605255 0.058142758905887604 -0.04042608290910721 0.05816974490880966 0.06138041242957115 -0.04177480190992355 0.03385213389992714 0.02276833914220333 -0.01558277290314436 0.041722651571035385 -0.04430312663316727 0.0816987082362175 -0.060233309864997864 0.09035749733448029 0.0016231642803177238 0.008175215683877468 0.07537855952978134 0.07644811272621155 0.030139369890093803 0.013480977155268192 -0.067044198513031 +0.05106502026319504 -0.0015907202614471316 9.6830990514718e-05 0.022177154198288918 -0.07949890941381454 -0.025645045563578606 -0.004732299596071243 0.021813206374645233 0.003114142455160618 -0.0252850204706192 -0.007803384680300951 -0.02773430198431015 -0.008456175215542316 -0.018358303233981133 0.035916078835725784 -0.03983428701758385 -0.07387024909257889 0.00026772532146424055 -0.015972433611750603 -0.03878437355160713 0.0345642976462841 0.00840214267373085 -0.059510450810194016 0.028085405007004738 -0.004759624600410461 0.04042332246899605 -0.057049281895160675 -0.005034658592194319 -0.052737802267074585 0.048532601445913315 0.047212108969688416 -0.008878601714968681 0.039173342287540436 -0.03727879747748375 -0.05002544820308685 0.052931737154722214 -0.028697865083813667 0.10443747788667679 0.022864049300551414 -0.0637616366147995 -0.0559869185090065 0.005222853273153305 -0.03658052906394005 -0.04307914152741432 0.03635447099804878 0.024908997118473053 -0.021261541172862053 -0.024236461147665977 0.024650096893310547 -0.004817641340196133 0.10752596706151962 -0.019185638055205345 -0.041655488312244415 -0.016537487506866455 -0.02562093921005726 0.0016326633049175143 0.045978885143995285 -0.03712931647896767 -0.07869241386651993 0.0838678851723671 -0.09108760952949524 -0.01025981642305851 0.013462900184094906 0.006308091338723898 -0.04108106344938278 -0.05017378553748131 -0.015495192259550095 0.0693201944231987 0.008482087403535843 -0.001465180073864758 0.018904633820056915 0.09343114495277405 -0.03785644844174385 -0.07191871851682663 0.06084730476140976 -0.07246598601341248 -0.04703577607870102 0.055190395563840866 0.013247395865619183 0.02338351495563984 0.0032135131768882275 -0.04978151619434357 0.11922229826450348 -0.0635218471288681 -0.060939326882362366 -0.030751604586839676 -0.028278039768338203 -0.04882429540157318 0.07729237526655197 0.0519658699631691 -0.010430194437503815 0.06804997473955154 -0.061648786067962646 0.052738744765520096 0.030192261561751366 0.00495821051299572 0.04490732029080391 -0.06587677448987961 -0.05100564658641815 -0.01630902849137783 0.01076953113079071 -0.018118439242243767 0.035474877804517746 0.03970659524202347 0.0748606026172638 0.012869961559772491 -0.023282503709197044 0.017681023105978966 0.0340384803712368 0.03585914522409439 0.02150011993944645 0.0680815726518631 0.09351582080125809 0.010132196359336376 0.06890404969453812 -0.0030062436126172543 0.006571518257260323 -0.06296652555465698 -0.011558987200260162 0.025428444147109985 -0.0006444416358135641 0.02747214585542679 -0.013675159774720669 -0.07901213318109512 -0.011958116665482521 0.017506808042526245 -0.10314001142978668 -0.01577530801296234 0.05294518172740936 -0.03420981764793396 0.10683716833591461 0.06692355871200562 -0.023150509223341942 0.03137659654021263 0.05057698115706444 0.04779704287648201 0.01790626347064972 0.05187216401100159 -0.036906857043504715 -0.005897650495171547 0.002848757663741708 0.028662461787462234 -0.02181217074394226 -0.0517197884619236 0.029616529121994972 0.0006755245267413557 0.052993521094322205 -0.015080457553267479 -0.07758701592683792 0.026543334126472473 -0.07638997584581375 -0.06674814224243164 0.00016425129433628172 -0.07076416909694672 -0.002907979302108288 0.04300202056765556 -0.004988058470189571 0.02712315134704113 -0.022395316511392593 -0.0270390585064888 -0.03217875212430954 -0.039525847882032394 -0.04462321475148201 -0.08493483066558838 -0.030183428898453712 -0.04625893384218216 0.005835817661136389 0.02279130183160305 -0.043956369161605835 0.00020388653501868248 0.018904484808444977 -0.0020234263502061367 0.03203250467777252 0.08253809809684753 0.06569458544254303 0.020561039447784424 0.018526801839470863 -0.06346814334392548 0.008178340271115303 -0.045725226402282715 0.004763069562613964 -4.160308526479639e-05 0.03739757463335991 -0.04826714098453522 0.0039323135279119015 -0.008390218950808048 0.09039252251386642 -0.004063709639012814 0.0335722453892231 0.013846238143742085 -0.01719566620886326 -0.06684061884880066 0.06599270552396774 0.05204618722200394 0.001418314641341567 5.2022358431713656e-05 -0.005118599161505699 0.05436762422323227 -0.013012250885367393 -0.051054488867521286 -0.021421577781438828 0.027934325858950615 0.02091558650135994 0.07762771844863892 0.017257481813430786 -0.030939841642975807 0.09954960644245148 0.011319332756102085 0.026851767674088478 -0.06168963015079498 0.0033773635514080524 0.005971943493932486 0.011592196300625801 0.007565743289887905 0.09910199791193008 -0.05387042835354805 0.013021957129240036 0.015066946856677532 0.09924453496932983 -0.026479370892047882 -0.014885743148624897 -0.011088895611464977 -0.08275037258863449 0.005346677266061306 -0.01903425343334675 -0.09092670679092407 -0.02537306398153305 0.05579651892185211 -0.03310161456465721 -0.01227665413171053 0.017911911010742188 0.042235467582941055 -0.049964312463998795 0.007316334173083305 0.012505710124969482 -0.02169669419527054 -0.10598058253526688 0.07202519476413727 -0.023588092997670174 -0.07455510646104813 -0.06143222749233246 0.016568582504987717 0.047892238944768906 0.01070514414459467 0.06258422881364822 0.07324597239494324 0.08355549722909927 0.02643904648721218 0.02165374718606472 0.017552657052874565 -0.041215069591999054 -0.04908919706940651 0.025967977941036224 0.010691951960325241 -0.06551538407802582 -0.034324340522289276 -0.012663018889725208 -0.035562664270401 0.014043877832591534 0.003671824000775814 0.019075650721788406 -0.03369311988353729 -0.019231220707297325 -0.015784690156579018 0.04324708506464958 -0.020861122757196426 -0.014088439755141735 0.056398969143629074 -0.019910067319869995 0.04455150291323662 -0.006740436889231205 -0.030782656744122505 0.030308280140161514 0.01750813238322735 0.028077010065317154 -0.034622710198163986 0.07745936512947083 -0.0030828756280243397 -0.09308476746082306 -0.03941987454891205 -0.09449990093708038 -0.011438298970460892 0.0049474104307591915 -0.06685062497854233 -0.06806919723749161 0.06830846518278122 0.01371210440993309 -0.04926999285817146 -0.07973169535398483 -0.023201413452625275 0.00220749294385314 -0.06958947330713272 -0.0482911691069603 0.015964936465024948 -0.06538061052560806 -0.03900009021162987 0.058913443237543106 -0.04464411363005638 -0.04546494409441948 -0.01052093505859375 -0.023000406101346016 -0.06733007729053497 0.012940016575157642 -0.015348929911851883 -0.033761247992515564 0.028026042506098747 -0.0925738587975502 0.04208987206220627 0.12129660695791245 0.058996740728616714 0.029496565461158752 0.025874491780996323 0.03421647846698761 0.10521575808525085 0.024040140211582184 -0.06398917734622955 -0.030321383848786354 -0.06323752552270889 -0.05239548161625862 0.01749979704618454 -0.04516591876745224 -0.007846008986234665 -0.04084750637412071 -0.0034083472564816475 0.04647272080183029 0.010195253416895866 -0.009584221057593822 -0.012490138411521912 0.02977851778268814 -0.01564367301762104 0.047798603773117065 0.011589731089770794 0.00040644113323651254 -0.01695491559803486 -0.03567561134696007 -0.04250068962574005 -0.011659001931548119 0.03722662478685379 -0.011530940420925617 0.017342371866106987 -0.008807147853076458 -0.054277997463941574 0.011552419513463974 -0.0030842749401926994 0.07610899955034256 -0.06701670587062836 0.02031574584543705 0.03157838061451912 -0.0009841350838541985 -0.10005732625722885 0.0025134410243481398 0.056455399841070175 -0.052549343556165695 -0.03700893744826317 -0.007574428338557482 0.046909723430871964 -0.045709237456321716 -0.00399716105312109 -0.010214157402515411 -0.06496111303567886 -0.001822952413931489 0.009005975909531116 0.024252839386463165 0.0006234343163669109 -0.03523585572838783 -0.036437101662158966 -0.004664162173867226 -0.016148649156093597 0.013528773561120033 -0.014879030175507069 -0.00606851652264595 -0.031885478645563126 0.019642531871795654 -0.04417547583580017 -0.0245047677308321 -0.04105331748723984 0.10026631504297256 0.003993213642388582 -0.014608803205192089 0.023821484297513962 -0.0026997653767466545 -0.03836248815059662 0.01711416430771351 0.023293450474739075 -0.03239493817090988 -0.038213834166526794 -0.03901318460702896 -0.04463258013129234 -0.10341949015855789 -0.014930211007595062 0.013853264041244984 -0.06118636950850487 0.010297926142811775 -0.025482794269919395 0.006981320679187775 -0.0013319693971425295 -0.019615547731518745 0.028836192563176155 0.05000535398721695 0.04157067462801933 -0.026509340852499008 0.008340285159647465 0.0277511328458786 0.052734579890966415 0.030330313369631767 -0.040741149336099625 0.021342318505048752 0.02173369936645031 -0.03436368703842163 0.062425415962934494 0.005811529234051704 0.018448414281010628 0.001053779968060553 0.0004738174902740866 -0.0011369059793651104 -0.030085546895861626 -0.003023503115400672 -0.022357279434800148 0.05253623425960541 -0.06857120990753174 -0.030952390283346176 0.011462508700788021 -0.022634334862232208 -0.11213982105255127 -0.035079218447208405 0.03000805340707302 -0.041137415915727615 0.019077956676483154 -0.015553492121398449 0.007732488680630922 0.05388754978775978 -0.049057334661483765 -0.04530101642012596 -0.034855011850595474 -0.001259013544768095 0.06834645569324493 -0.01814885064959526 0.06347335129976273 -0.002215114189311862 0.0062887887470424175 -0.033375926315784454 0.011274772696197033 0.030804703012108803 -0.07381051033735275 0.00015182833885774016 -0.03826785832643509 -0.05733458325266838 0.02446829527616501 0.008500611409544945 -0.015061050653457642 -0.048914551734924316 -0.04298285022377968 -0.04001949355006218 0.07372259348630905 -0.04497861489653587 -0.00543322553858161 0.02371153049170971 -0.00959496945142746 0.01378349307924509 0.024204891175031662 -0.05311145260930061 -0.06753700971603394 0.020920811221003532 -0.024455728009343147 0.034690555185079575 0.027044909074902534 -0.0019438373856246471 -0.015672186389565468 -0.06860599666833878 -0.016418347135186195 0.013371527194976807 -0.10836915671825409 0.010698848403990269 0.0008338376064784825 -0.08772115409374237 -0.04722372442483902 0.013389094732701778 -0.03501572832465172 0.060593921691179276 0.016847098246216774 0.04032105952501297 -0.02181130275130272 0.00749792717397213 -0.002241656417027116 -0.0405423603951931 0.01469224039465189 -0.03118171915411949 -0.03796713426709175 -0.02008420042693615 0.05307437479496002 -0.0711100846529007 0.028430001810193062 0.05051979050040245 -0.027693534269928932 0.03583354502916336 0.08039145171642303 -0.05610789731144905 0.044499993324279785 0.029360469430685043 -0.0399068258702755 0.06276953220367432 -0.08055109530687332 0.1016751304268837 -0.06985616683959961 0.0994202271103859 -0.0051150876097381115 -0.021927624940872192 0.0572163462638855 0.07810480147600174 -0.0188283808529377 0.010273952037096024 -0.07676375657320023 +0.03302812948822975 0.0431031659245491 0.03295046463608742 0.03856504335999489 -0.1213231086730957 -0.06404297053813934 -0.03497052192687988 0.025608455762267113 0.051939111202955246 -0.005111047066748142 -0.008042212575674057 -0.01366434432566166 -0.007315876893699169 -0.0013575187185779214 0.0264278631657362 -0.018281858414411545 -0.06322523206472397 -0.01593152806162834 -0.03375688195228577 -0.01052716001868248 0.058939527720212936 0.0037157016340643167 -0.06199611723423004 0.05595435947179794 -0.001842322526499629 0.036858730018138885 -0.06208835914731026 0.02563546411693096 -0.04493950679898262 0.016011107712984085 0.02587738074362278 0.0057532573118805885 0.024737674742937088 -0.06124797835946083 -0.024597449228167534 0.05910158157348633 -0.007778130937367678 0.06618534028530121 0.049701061099767685 -0.029231613501906395 -0.02322690561413765 0.050164975225925446 -0.029978487640619278 -0.032645951956510544 0.007254968862980604 0.00988108478486538 -0.013220510445535183 -0.00036165217170491815 0.02909008599817753 0.022753924131393433 0.0800853818655014 -0.0030569175723940134 -0.05438116192817688 -0.029402300715446472 0.005135098937898874 0.007488178089261055 0.05123533681035042 -0.0864236131310463 -0.08116927742958069 0.046162042766809464 -0.07022443413734436 0.03700369969010353 -0.0005210282397456467 -0.0038354620337486267 -0.0007212847704067826 -0.022781742736697197 0.004824845585972071 0.08128319680690765 0.04277952387928963 -0.022199071943759918 0.0821475014090538 0.10258524864912033 -0.08799830079078674 -0.034061893820762634 0.05666505917906761 -0.050177644938230515 -0.04343167319893837 0.0942460298538208 -0.02387918345630169 0.005166498012840748 0.019966116175055504 -0.06577565521001816 0.07147828489542007 -0.051307547837495804 -0.06159733980894089 -0.03801700845360756 -0.007670488674193621 -0.04622925817966461 0.04633484035730362 0.04488660767674446 0.006799393333494663 0.0721246674656868 -0.07515973597764969 0.03382933512330055 -0.0017343817744404078 0.04851611703634262 0.03654448688030243 -0.12132421135902405 -0.043392106890678406 0.004293311852961779 -0.02360241487622261 -0.03193099796772003 -0.008220666088163853 0.002024582354351878 0.033917881548404694 0.0531894713640213 -0.011714202351868153 0.025266095995903015 0.01673164591193199 0.07885006815195084 0.06042560562491417 0.014193674549460411 0.11672969907522202 0.08789802342653275 0.033882174640893936 -0.014321930706501007 -0.00837880652397871 -0.03163246065378189 -0.040519606322050095 0.017961544916033745 -0.003530642483383417 0.0255975853651762 0.008035090751945972 -0.06700506806373596 -0.014705518260598183 0.017279338091611862 -0.11286375671625137 -0.006170428358018398 0.005257913842797279 -0.034547075629234314 0.08416057378053665 0.01960439234972 -0.023701943457126617 -0.011669936589896679 0.06514322757720947 0.0731097087264061 0.008428633213043213 0.017079127952456474 -0.025387510657310486 -0.020850438624620438 -0.008320504799485207 0.00511918542906642 0.022211896255612373 -0.06536972522735596 0.018090276047587395 0.032864172011613846 0.041046928614377975 0.022000335156917572 -0.08684662729501724 -0.02200338803231716 -0.09136231988668442 -0.07152052968740463 -0.00517156021669507 -0.07155124098062515 -0.00354329077526927 0.07197638601064682 0.021682962775230408 0.050954706966876984 -0.044930651783943176 -0.020048536360263824 -0.005960436537861824 -0.007095093373209238 -0.04434623941779137 -0.06079588457942009 -0.012353682890534401 -0.04690076410770416 0.015433933585882187 0.005557221360504627 -0.025978701189160347 -0.0275673046708107 -0.035366807132959366 -0.007499978877604008 0.022244693711400032 0.06788045167922974 0.07469851523637772 -0.021039897575974464 0.03589308634400368 -0.04523172229528427 -0.007516174111515284 -0.053360164165496826 -0.019009847193956375 -0.029416801407933235 0.05123275890946388 -0.056202035397291183 -0.0369129478931427 -0.016571011394262314 0.03007102571427822 -0.025432288646697998 0.012240947224199772 -0.0008644178742542863 -0.043054673820734024 -0.043854642659425735 0.06793953478336334 0.08926539123058319 -0.03487083688378334 0.01969628408551216 -0.0058854795061051846 0.020918214693665504 0.0070055024698376656 -0.013925489038228989 -0.05244313180446625 0.04249425232410431 -0.003036139765754342 0.07356877624988556 0.02824963815510273 -0.07459291815757751 0.06399639695882797 -0.003731249365955591 -0.01008363626897335 -0.044575951993465424 0.020365141332149506 0.04549432545900345 0.017455579712986946 -0.004386643413454294 0.08360721915960312 -0.03678121045231819 0.01755150593817234 -0.012518956325948238 0.05871104449033737 -0.048931945115327835 0.04803827404975891 -0.016146648675203323 -0.058553487062454224 0.02202296257019043 -0.044839948415756226 -0.07000663131475449 -0.01629663072526455 0.009617798030376434 -0.02159102074801922 -0.02388816513121128 0.020975708961486816 0.023011399433016777 -0.0030193980783224106 -0.027206694707274437 0.00617646798491478 0.04023974388837814 -0.09239227324724197 0.10893750190734863 -0.03337641432881355 -0.016414949670433998 -0.059604063630104065 0.03824184089899063 0.042530763894319534 0.02069871686398983 0.026264961808919907 0.06558240950107574 0.09896597266197205 0.054573215544223785 0.03601304069161415 -0.017870886251330376 -0.07529541105031967 -0.06534983962774277 0.02420211024582386 0.049462128430604935 -0.055876243859529495 -0.014221996068954468 -0.013435028493404388 -0.05194355919957161 -0.012230613268911839 0.03425880894064903 0.02814370207488537 -0.0343894362449646 -0.03200303018093109 -0.06081769987940788 0.02189101278781891 -0.0012121207546442747 -0.08270386606454849 0.046596165746450424 -0.034229736775159836 0.06725849211215973 -0.0013334817485883832 -0.05070570483803749 0.03401144593954086 0.025187192484736443 0.05590232461690903 -0.01155647449195385 0.02608678676187992 -0.02024998888373375 -0.08945274353027344 -0.021555334329605103 -0.07713285088539124 -0.05726587772369385 0.003379134926944971 -0.022076264023780823 -0.05264166370034218 0.07280503213405609 0.034444574266672134 -0.025655057281255722 -0.08123067766427994 0.017626795917749405 -0.002592487260699272 -0.06037864834070206 -0.046906739473342896 0.02561189793050289 -0.09097152203321457 -0.042229775339365005 0.03485351800918579 -0.04375153407454491 -0.07043518871068954 0.0027476672548800707 -0.07999294251203537 -0.06997797638177872 0.007545347325503826 -0.020963439717888832 -0.02154834195971489 0.00863434188067913 -0.06120135635137558 0.04880721867084503 0.11845213919878006 0.01390093844383955 0.04342777654528618 0.009550216607749462 0.013465316034853458 0.09829474985599518 0.012106490321457386 -0.04436219111084938 0.009812496602535248 -0.05827208608388901 -0.0697830319404602 0.01569923385977745 -0.0672910064458847 -0.023579375818371773 -0.009160700254142284 0.02306552231311798 0.04676053300499916 0.01697562448680401 -0.0027099044527858496 0.007253760937601328 0.027177687734365463 0.024973567575216293 0.03275488689541817 -0.005458674859255552 -0.03333303704857826 0.0012204834492877126 -0.015022425912320614 -0.011200504377484322 -0.04016273468732834 0.04613140597939491 0.020407233387231827 0.03584142029285431 -0.01932486891746521 -0.07010392844676971 0.00524495542049408 0.011138448491692543 0.10077796131372452 -0.08833590149879456 0.04165901616215706 0.049463264644145966 -0.021389754489064217 -0.05861954391002655 -0.016796790063381195 0.06802190095186234 -0.03321165591478348 0.006976274773478508 -0.012466014362871647 0.030790546908974648 -0.06114481762051582 -0.015628479421138763 0.04492725059390068 -0.03337833285331726 0.02500901184976101 0.0443340502679348 0.0038528223522007465 -0.011975599452853203 -0.0413772352039814 0.030522678047418594 -0.015448520891368389 0.012943131849169731 0.030211566016077995 -0.00026876037009060383 0.004256275482475758 -0.017338888719677925 0.0725499838590622 -0.02442500740289688 -0.027673201635479927 -0.03470219299197197 0.09564369916915894 -0.013397560454905033 0.009962241165339947 -0.0011620044242590666 0.03219274431467056 0.009775789454579353 0.06576349586248398 0.014445935375988483 -0.04113034904003143 -0.00979613233357668 -0.03637457638978958 -0.036656007170677185 -0.09110455960035324 -0.028863729909062386 0.017051272094249725 -0.07954341173171997 -0.015448851510882378 -0.03771667554974556 -0.014133509248495102 -0.03589213266968727 -0.04764543101191521 -0.007048327475786209 0.021837811917066574 0.04176883026957512 0.004359307698905468 0.002571726683527231 0.0014648468932136893 0.05321352556347847 0.007927344180643559 -0.05838543921709061 0.04825637862086296 0.05211265757679939 -0.004049528390169144 0.04093978926539421 -0.0327269583940506 -0.007810880430042744 0.020415429025888443 0.010493027046322823 -0.0001633467327337712 -0.014036011882126331 -0.009947135113179684 -0.05846778675913811 0.055987268686294556 -0.055033255368471146 -0.013341661542654037 0.06412074714899063 -0.02472345158457756 -0.10788784176111221 0.013152568601071835 -0.004419032949954271 -0.028823914006352425 -0.0005180939333513379 -0.013285547494888306 0.032829344272613525 0.042496323585510254 -0.062116097658872604 -0.015763161703944206 -0.04223126918077469 -0.02039487659931183 0.0543307401239872 -0.007159967441111803 0.06761490553617477 -0.01751980371773243 0.004115454386919737 -0.0035976769868284464 0.017178170382976532 0.008508347906172276 -0.06623005121946335 -0.0005453215562738478 -0.04859774187207222 -0.029895076528191566 0.015507981181144714 -0.01084346603602171 0.024848265573382378 -0.05705714225769043 -0.061063386499881744 -0.03893991559743881 0.08300270885229111 -0.0403771810233593 -0.011602836661040783 0.05946260690689087 -0.005024703685194254 0.008240900933742523 0.000575220794416964 -0.018337372690439224 -0.0860786885023117 -0.013536777347326279 -0.03948323428630829 0.019377991557121277 0.04910038784146309 0.0149603933095932 -0.01853875443339348 -0.06312112510204315 -0.017321007326245308 0.04385516420006752 -0.0460241474211216 0.026569416746497154 -0.014891591854393482 -0.0376727320253849 -0.049677591770887375 -0.03602642938494682 -0.026929762214422226 0.0662437379360199 0.021636752411723137 0.05266478657722473 0.007834300398826599 0.0062833866104483604 0.052067022770643234 -0.0683460533618927 0.008282821625471115 0.023447368294000626 -0.0377698689699173 -0.022900544106960297 0.0656619593501091 -0.012294666841626167 0.03243521600961685 0.05453411117196083 -0.04024878516793251 0.03178590536117554 0.043627601116895676 -0.050259094685316086 0.022166401147842407 -0.026459017768502235 -0.0710463896393776 0.04971461743116379 -0.04924214631319046 0.0877300351858139 -0.02835015207529068 0.07943947613239288 -0.04480374604463577 -0.07086383551359177 0.07940562069416046 0.08148570358753204 -0.01958046667277813 0.0025549945421516895 -0.045854341238737106 +0.017701320350170135 -0.004326010588556528 -0.020638713613152504 0.059875402599573135 -0.0785340815782547 -0.04496462270617485 -0.003020929405465722 0.015781141817569733 0.00448226323351264 -0.030621351674199104 -0.01848912611603737 -0.007728531491011381 0.0009278322104364634 -0.0074021886102855206 0.013900164514780045 -0.008623836562037468 -0.07501870393753052 -0.002093150280416012 -0.014624794945120811 -0.031965725123882294 0.04632159322500229 -0.023135295137763023 -0.10104355961084366 0.07438415288925171 0.02377627231180668 0.03386164456605911 -0.03763500973582268 -0.009166926145553589 -0.027230946347117424 0.02670593559741974 0.056882161647081375 -0.002441895892843604 0.01596985012292862 -0.03371331840753555 -0.07184365391731262 0.04562177136540413 -0.019929086789488792 0.0991978868842125 -0.005203010514378548 -0.009572487324476242 -0.05682970955967903 0.010137994773685932 -0.06315242499113083 -0.03621484711766243 0.00984072033315897 -0.01405095960944891 0.00334069412201643 0.0021461627911776304 0.032823022454977036 0.030594581738114357 0.09082982689142227 -0.008480947464704514 -0.015757521614432335 -0.027634404599666595 -0.01727796532213688 0.01916947402060032 0.018612796440720558 -0.05246202275156975 -0.06610734760761261 0.05267275869846344 -0.059190887957811356 0.016997942700982094 0.021944498643279076 -0.0001144472262240015 -0.017498543485999107 -0.0046265609562397 -0.014838212169706821 0.09155727922916412 0.003928810823708773 -0.0350835919380188 0.031680136919021606 0.06826423853635788 -0.061105210334062576 -0.011253985576331615 0.04953520745038986 -0.029070382937788963 -0.03395147621631622 0.07519390434026718 0.02043072320520878 0.001686682808212936 0.01949511095881462 -0.03308205306529999 0.1053754985332489 -0.013271204195916653 -0.044642917811870575 -0.04645020142197609 0.012831849046051502 -0.025524703785777092 0.07919623702764511 0.023918932303786278 0.002477092668414116 0.10065990686416626 -0.08180743455886841 0.08338851481676102 0.04097554832696915 0.005583302117884159 0.028685668483376503 -0.14695170521736145 -0.058554571121931076 0.028342019766569138 0.00209568883292377 -0.03347904980182648 0.03740055114030838 -0.026459477841854095 0.052953820675611496 0.04078104719519615 -0.05931783840060234 0.0006138112512417138 0.028596047312021255 0.01623111590743065 0.06630486994981766 0.07418126612901688 0.06119026988744736 0.07684852927923203 0.05561712756752968 0.014266162179410458 0.007324570324271917 -0.03302806615829468 -0.05947582423686981 0.02996193617582321 0.007605001330375671 0.039313945919275284 0.009592623449862003 -0.05865743011236191 -0.03409517928957939 0.01147373579442501 -0.12004519999027252 -0.010220350697636604 0.073884978890419 -0.015145097859203815 0.1020217016339302 0.03873883932828903 0.011791681870818138 -0.0032142840791493654 0.057578667998313904 0.031434860080480576 0.024786194786429405 0.01552655640989542 -0.02546718344092369 -0.008540247566998005 -0.005870806984603405 0.02930174022912979 -0.0022827694192528725 -0.062375087291002274 0.034941382706165314 0.02940542809665203 0.014198454096913338 0.014026875607669353 -0.03811914101243019 -0.02033017948269844 -0.08917376399040222 -0.06412215530872345 0.008867225609719753 -0.08167898654937744 0.016184287145733833 0.04903282970190048 0.050361357629299164 0.0658179298043251 -0.02876042015850544 -0.009700417518615723 -0.03299456462264061 -0.016824135556817055 -0.010586312972009182 -0.07711837440729141 -0.012764361687004566 -0.030454855412244797 -0.018634049221873283 0.03980175778269768 -0.028636090457439423 -0.013053965754806995 -0.0005153407691977918 -0.008867496624588966 0.029913095757365227 0.07994900643825531 0.05018917843699455 0.009925402700901031 0.023524612188339233 -0.04932350292801857 -0.01257618609815836 -0.033842455595731735 0.0022972726728767157 -0.020768487825989723 0.04183162376284599 -0.04533876106142998 -0.03340364247560501 0.0065531618893146515 0.03661210462450981 -0.014514872804284096 -0.017353039234876633 -0.0043046725913882256 -0.06313353031873703 -0.0627591460943222 0.08262680470943451 0.06304357945919037 -0.02333240769803524 0.034799136221408844 0.004031816963106394 0.07251626253128052 0.009203468449413776 -0.0065702046267688274 -0.045353591442108154 0.0015531496610492468 0.00985253881663084 0.07204489409923553 0.034874025732278824 -0.0794234499335289 0.08329421281814575 0.03343464806675911 0.020178012549877167 -0.08025053888559341 -0.007663211319595575 0.0063439616933465 0.0060113826766610146 0.06955260038375854 0.08513623476028442 -0.023002682253718376 -0.018362421542406082 0.048957254737615585 0.05853519216179848 -0.07255642861127853 -6.274264887906611e-05 -0.004053011536598206 -0.056867942214012146 0.015288528986275196 -0.01307255681604147 -0.08213374018669128 -0.03428838402032852 0.033367548137903214 -0.03460352495312691 -0.014340541325509548 -0.015909025445580482 0.04542927071452141 -0.03172075375914574 -0.05699101835489273 0.0025538336485624313 0.02397625707089901 -0.10243285447359085 0.09122948348522186 -0.01726250909268856 -0.08161646127700806 -0.07131675630807877 0.024221932515501976 0.01664590649306774 0.03355993703007698 0.06164427101612091 0.07210570573806763 0.10213954746723175 0.04353715106844902 0.01437648106366396 -0.00532555254176259 -0.0697801262140274 -0.03419322893023491 0.026613280177116394 0.04636339098215103 -0.06019546836614609 -0.04089481383562088 -0.01650950126349926 -0.04364476725459099 -0.007274847012013197 0.01925116404891014 0.02733463980257511 -0.030403153970837593 -0.05521165579557419 -0.022370580583810806 0.015415826812386513 -0.03142635151743889 -0.020783932879567146 0.005386774428188801 -0.021349050104618073 0.07021671533584595 -0.046249013394117355 -0.07113933563232422 -0.0003145192749798298 0.01810416206717491 0.023061292245984077 -0.015886327251791954 0.04443566873669624 -0.03465583547949791 -0.11181586980819702 -0.02160906046628952 -0.08012297749519348 -0.04503469914197922 -0.029546624049544334 -0.006666228175163269 -0.04301224648952484 0.10588684678077698 -0.002707629231736064 -0.0791543498635292 -0.055784668773412704 -0.01724632829427719 -0.012216150760650635 -0.06029224768280983 -0.00675742095336318 0.0009884076425805688 -0.057448145002126694 -0.020258653908967972 0.05957207456231117 -0.036633457988500595 -0.017083166167140007 0.045470818877220154 -0.019533805549144745 -0.052496638149023056 0.05528721585869789 -0.005815095733851194 -0.04241354763507843 0.01765207014977932 -0.09782074391841888 0.03438889607787132 0.0982285887002945 0.00751440180465579 0.02528190240263939 0.034681495279073715 0.062023043632507324 0.08875604718923569 0.016227087005972862 -0.04933326318860054 0.00782173965126276 -0.050053004175424576 -0.047207482159137726 0.03933897987008095 -0.040788643062114716 0.00350018753670156 -0.04458235949277878 -0.000730707251932472 0.0685185045003891 0.016936004161834717 0.0076023852452635765 0.007791778538376093 0.022953584790229797 0.02637643925845623 0.032648179680109024 0.018289675936102867 -0.03570358827710152 0.00719702010974288 -0.03941982239484787 -0.06398206949234009 -0.02968149073421955 0.01998930796980858 -0.0021944409236311913 0.06636171042919159 -0.007012671325355768 -0.06706807017326355 0.04470657557249069 -0.029729284346103668 0.09664347022771835 -0.09328269958496094 0.00740086380392313 0.051264550536870956 0.0023743638303130865 -0.0828118845820427 -0.016604742035269737 0.06311888992786407 -0.061662718653678894 -0.052539266645908356 -0.017488734796643257 0.045990925282239914 -0.0322839580476284 -0.035707633942365646 0.020487559959292412 -0.05582920089364052 0.01145585160702467 0.021480752155184746 0.005922467447817326 -0.0020324240904301405 -0.01858886331319809 -0.004173679742962122 0.006161578930914402 0.0107179069891572 0.008111082017421722 -0.043936409056186676 0.025393648073077202 -0.010715091601014137 0.08135388791561127 -0.02104664035141468 -0.0251646526157856 -0.07398509979248047 0.05557259917259216 -0.012876644730567932 -0.014440197497606277 -0.04033832997083664 -0.006255922373384237 -0.008285287767648697 0.0308978408575058 0.02092672698199749 -0.07087841629981995 -0.0379936546087265 -0.05443086475133896 -0.055046405643224716 -0.07791711390018463 -0.0321337915956974 0.008059692569077015 -0.06292566657066345 0.01309917401522398 -0.0711771547794342 -0.021024322137236595 0.0011666214559227228 -0.042556360363960266 0.021694576367735863 0.042098268866539 0.026535414159297943 -0.03398781642317772 0.04419746622443199 0.0014048921875655651 0.03401898965239525 0.00010420299804536626 -0.03570719063282013 0.06748485565185547 0.05923492833971977 -0.005393229424953461 0.0491507425904274 -0.014185981824994087 0.007109956815838814 0.008999207988381386 -0.03640802949666977 -0.016099974513053894 0.011457632295787334 -0.03093881532549858 -0.05683811381459236 0.029401615262031555 -0.04942672699689865 -0.0296805240213871 0.03166196867823601 -0.052407197654247284 -0.0765528455376625 -0.030733350664377213 -0.007441266439855099 -0.02438393048942089 0.02227410301566124 0.01967199705541134 0.040918439626693726 0.05246345326304436 -0.07682139426469803 -0.034381311386823654 -0.019383249804377556 -0.024518631398677826 0.02911900356411934 -0.014850901439785957 0.05691530555486679 0.005600204225629568 0.010829681530594826 -0.009027699008584023 0.0032408577390015125 0.0005518991965800524 -0.06013229489326477 -0.004147940780967474 -0.006396942306309938 -0.04823493957519531 0.03703184053301811 0.021877849474549294 -0.004400153644382954 -0.04612454026937485 -0.046817127615213394 -0.038360852748155594 0.05978260189294815 -0.021276848390698433 0.008695852011442184 0.021001016721129417 -0.009826134890317917 0.013259166851639748 0.02327798306941986 0.0057555753737688065 -0.06645044684410095 0.0178757943212986 -0.03680785745382309 0.0349038802087307 0.015284037217497826 0.011375878006219864 -0.022249115630984306 -0.09293052554130554 -0.03051319159567356 0.0015305513516068459 -0.0802524983882904 -0.013338658027350903 0.004876279272139072 -0.08649706840515137 -0.0560712032020092 -0.00919250026345253 -0.033472735434770584 0.060427144169807434 0.0019480009796097875 0.05160222202539444 -0.03181390464305878 -0.013767031021416187 0.023275302723050117 -0.02936553955078125 0.0022012460976839066 -0.021978678181767464 -0.07323003560304642 -0.021989107131958008 0.07153111696243286 -0.03511412814259529 0.03531745821237564 0.06153411418199539 -0.012286209501326084 0.04402964934706688 0.019020849838852882 -0.05139375105500221 0.03923099860548973 0.005561470985412598 -0.04707920178771019 0.0497254878282547 -0.05524720624089241 0.09376027435064316 -0.05764537677168846 0.08939891308546066 -0.02882273681461811 -0.017458289861679077 0.08928599208593369 0.07849224656820297 -0.006549326237291098 0.04667797312140465 -0.039322178810834885 +0.07224701344966888 0.030314913019537926 0.049683135002851486 0.08997809886932373 -0.08113428205251694 -0.022584112361073494 -0.03622658923268318 0.006950104609131813 0.026196451857686043 -0.028442980721592903 -0.03465588763356209 -0.03087383694946766 -0.00913745816797018 0.03624076768755913 0.020692652091383934 -0.06192605942487717 -0.044139470905065536 0.016914015635848045 -0.012021949514746666 -0.021500851958990097 0.06811819970607758 0.002215291140601039 -0.07035976648330688 0.07244922965765 -0.010894021019339561 0.014361817389726639 -0.037098824977874756 0.06277737766504288 -0.02350766770541668 0.003605310805141926 0.07862995564937592 -0.018045689910650253 0.036178309470415115 -0.08748757094144821 -0.04191473871469498 0.002430360997095704 -0.040091998875141144 0.07177974283695221 0.04086034744977951 -0.05547644570469856 -0.04341660067439079 0.0627928376197815 -0.01411063876003027 -0.043343912810087204 0.04243439435958862 0.03145599365234375 0.005780935753136873 -0.0005102351424284279 0.027484728023409843 -0.005697628017514944 0.09307307749986649 0.024772342294454575 -0.006763516925275326 -0.03134724497795105 0.012811102904379368 -0.008898609317839146 0.08820264786481857 -0.08766044676303864 -0.033989470452070236 0.04193294048309326 -0.08981754630804062 -0.013394670560956001 0.037566881626844406 -0.02441457286477089 -0.028654346242547035 -0.009303840808570385 0.014021454378962517 0.0849233865737915 0.0288385059684515 -0.016156893223524094 0.05522747337818146 0.10075263679027557 -0.08038004487752914 -0.011507137678563595 0.07034136354923248 -0.06678655743598938 -0.019809257239103317 0.05815254524350166 -0.030275439843535423 0.03457978367805481 0.017943162471055984 -0.03391353413462639 0.08105456829071045 0.0027759179938584566 -0.07873209565877914 -0.025770580396056175 0.0243519376963377 -0.07727956026792526 0.0312926284968853 0.030860602855682373 -0.021136632189154625 0.07338964939117432 -0.03955918550491333 0.06067826598882675 0.008433706127107143 0.05380656197667122 0.014278999529778957 -0.09451405704021454 -0.0015701286029070616 0.006959458813071251 -0.002571734832599759 0.00026288253138773143 -0.00401652604341507 -0.027057403698563576 0.05095004662871361 0.054556798189878464 -0.06308680772781372 0.019486941397190094 0.018858736380934715 0.07000380754470825 0.0893886536359787 0.052315853536129 0.048834990710020065 0.05738721042871475 0.057981666177511215 0.013456005603075027 0.025287970900535583 -0.0720575600862503 -0.04075068235397339 0.01576775498688221 -0.007408805191516876 0.07962459325790405 -0.0035053205210715532 -0.07483559846878052 -0.00817448366433382 0.026923768222332 -0.07338105142116547 -0.027934610843658447 0.051862943917512894 -0.0032232042867690325 0.10182787477970123 0.061426904052495956 -0.01681864820420742 0.03005489706993103 0.049985453486442566 0.06366751343011856 -0.021337119862437248 0.017169222235679626 0.0033894204534590244 -0.035746555775403976 -0.016427747905254364 0.028495635837316513 0.03521067276597023 -0.08596160262823105 0.08020984381437302 0.043429918587207794 0.040505748242139816 -0.015482314862310886 -0.06584244221448898 -0.03729918226599693 -0.07807297259569168 -0.058557868003845215 0.0034441433381289244 -0.05554330348968506 -0.02894759178161621 0.0356873944401741 0.019632577896118164 0.007039164192974567 -0.0430326834321022 -0.04900875687599182 -0.026813644915819168 -0.0015443343436345458 -0.0010181738762184978 -0.059776559472084045 -0.03069794923067093 -0.015263469889760017 -0.006685690488666296 0.03820602968335152 -0.07192914187908173 -0.018179308623075485 0.0028981883078813553 0.00918069202452898 0.06022587791085243 0.04774723947048187 0.06318661570549011 -0.003093248000368476 0.025868194177746773 -0.028080608695745468 0.023688904941082 -0.025789741426706314 0.0061445459723472595 -0.03157510608434677 0.027337413281202316 -0.10022415965795517 -0.0028413666877895594 0.004888210445642471 0.007146529387682676 -0.03315772861242294 0.04363780468702316 -0.006042341236025095 -0.0571349635720253 -0.04632018133997917 0.05222771689295769 0.07376538962125778 -0.01833263225853443 0.022466927766799927 -0.023691298440098763 -0.008225815370678902 -0.0016037721652537584 -0.023030607029795647 -0.05078646168112755 0.05048653483390808 0.0004011066921520978 0.06979480385780334 0.018651308491826057 -0.07819752395153046 0.03981498256325722 0.014068450778722763 0.01115900743752718 -0.03017258271574974 0.022080592811107635 0.05869383364915848 0.003278109710663557 0.03645594045519829 0.07782211154699326 0.025482427328824997 0.017191382125020027 -0.020948870107531548 0.05021805688738823 -0.08624362200498581 0.04166414588689804 -0.025328578427433968 -0.07643204182386398 0.050848234444856644 -0.06710737198591232 -0.06049291417002678 -0.01617034152150154 0.029754221439361572 0.01941768266260624 -0.04755968227982521 0.033021479845047 -0.006660186219960451 0.026821324601769447 -0.016754766926169395 -0.011960858479142189 -0.008471212349832058 -0.11669357120990753 0.12328063696622849 0.03328756242990494 -0.040098849684000015 -0.031512968242168427 0.013079771772027016 0.046150092035532 -0.016639521345496178 0.030855366960167885 0.03216353431344032 0.09681518375873566 0.02957621030509472 -0.0069243102334439754 0.002179916249588132 -0.05676944926381111 -0.08809229731559753 0.019520826637744904 0.048029761761426926 0.0010788521030917764 -0.005059815011918545 -0.00139436696190387 -0.03582285717129707 0.010486679151654243 -0.006606842391192913 -0.01909567043185234 -0.010996160097420216 0.004432972986251116 -0.06833964586257935 0.037402115762233734 -0.028796086087822914 -0.04187380522489548 0.04899441823363304 0.02033761516213417 0.0823882520198822 -0.002553509082645178 -0.02164730243384838 0.050353363156318665 -0.001887463848106563 0.03567192330956459 -0.026648059487342834 0.05081498995423317 0.025011572986841202 -0.050649479031562805 -0.022211289033293724 -0.05247285217046738 -0.06354483217000961 0.00402872497215867 -0.02799028716981411 -0.028033731505274773 0.10094338655471802 0.017493057996034622 -0.04839455336332321 -0.08501814305782318 0.013706229627132416 0.010329175740480423 -0.05381393805146217 -0.042060449719429016 0.010131126269698143 -0.0711490735411644 -0.006241864990442991 0.0041055828332901 -0.04240364208817482 -0.04007195681333542 -0.04748261347413063 -0.028562625870108604 -0.07565217465162277 0.03154356777667999 -0.037975843995809555 -0.017056340351700783 0.020058507099747658 -0.052697498351335526 0.03720110282301903 0.09517627954483032 0.029956841841340065 0.019344722852110863 0.0021615782752633095 0.020066794008016586 0.14658032357692719 -0.024061255156993866 -0.053501635789871216 -0.01402292586863041 -0.07739433646202087 -0.05018985643982887 0.08437690883874893 -0.04524993151426315 -0.0065477387979626656 0.026788681745529175 -0.0010509664425626397 0.07509821653366089 -0.03143800422549248 -0.005178047809749842 -0.0414162203669548 0.027445001527667046 -0.018205173313617706 -0.006414444651454687 -0.005246813874691725 0.004756895825266838 -0.019235655665397644 -0.04720594361424446 -0.052905380725860596 -0.017451874911785126 0.02536024898290634 0.009619130752980709 0.02064398303627968 -0.019618287682533264 -0.07603330165147781 0.008516860194504261 0.0196442361921072 0.0746568813920021 -0.07320911437273026 0.014528985135257244 0.04290854558348656 0.012124833650887012 -0.05831797048449516 0.007342742756009102 0.03369133919477463 -0.04180910065770149 -0.005336669739335775 0.007456628140062094 0.024609046056866646 -0.08204364031553268 0.022341398522257805 0.00114768638741225 -0.008992273360490799 0.03644874319434166 0.0419967919588089 0.025058483704924583 0.014875574968755245 -0.04616708308458328 0.005097134504467249 -0.060088858008384705 -0.008873729035258293 0.03207869827747345 -0.00909450277686119 0.03494426608085632 -0.026750139892101288 0.04692940413951874 -0.042310189455747604 -0.011656524613499641 -0.02553105354309082 0.029789112508296967 -0.006212898995727301 0.02144872210919857 0.022932279855012894 -0.008304177783429623 -0.010519982315599918 0.0031107997056096792 0.03127547726035118 -0.0991128459572792 0.011240299791097641 -0.022528616711497307 -0.056999869644641876 -0.06474719196557999 -0.038941364735364914 -0.005978533532470465 -0.06668230891227722 0.00897522084414959 0.0027578750159591436 -0.010135005228221416 0.02896641567349434 -0.04168839007616043 0.023495277389883995 0.07184907048940659 0.01834424026310444 -0.004612874239683151 0.014797565527260303 -0.010931853204965591 0.03180501610040665 0.04461078345775604 -0.059179555624723434 -0.0004951431765221059 0.06430371105670929 -0.034609604626894 0.0431627593934536 -0.018378792330622673 0.016375241801142693 0.02081325463950634 0.022585153579711914 0.025262946262955666 -0.031442686915397644 -0.020086664706468582 -0.028770167380571365 0.07792245596647263 -0.025957847014069557 -0.052268873900175095 0.020317699760198593 -0.04527823254466057 -0.11977757513523102 -0.019247472286224365 -0.015150678344070911 -0.055508702993392944 0.02246544137597084 -0.007786020636558533 0.022868124768137932 0.026082243770360947 -0.052721261978149414 -0.025107722729444504 -0.021592896431684494 -0.031215179711580276 0.042097508907318115 -0.036046504974365234 0.07556481659412384 0.04144306480884552 -0.007068510167300701 0.03004681132733822 -0.0006633026641793549 -0.009771011769771576 -0.089359350502491 -0.005072992295026779 -0.007921162992715836 -0.04801938310265541 0.006985824555158615 0.0037407679483294487 -0.005784318782389164 -0.07352110743522644 -0.03614097833633423 -0.06259546428918839 0.08311166614294052 -0.04395807534456253 -0.011603699065744877 0.04062967374920845 -0.04019685462117195 0.02581172250211239 0.025449030101299286 -0.058880265802145004 -0.09105469286441803 -0.02857249043881893 -0.017557654529809952 0.005441989749670029 0.020094623789191246 -0.008783158846199512 -0.005571461748331785 -0.06258317083120346 0.03068227507174015 0.040945909917354584 -0.055350493639707565 0.013151847757399082 -0.010918406769633293 -0.045243144035339355 -0.06472380459308624 0.009886189363896847 -0.061870794743299484 0.06884342432022095 0.0551447756588459 0.015951288864016533 0.013188658282160759 -0.008201093412935734 0.007422763388603926 -0.07755129784345627 -0.01478754635900259 0.0011122312862426043 -0.01532050035893917 0.021739274263381958 0.06235021725296974 -0.04288686066865921 0.01465039886534214 0.056335531175136566 -0.014514884911477566 0.0027228198014199734 0.04770982265472412 -0.02445221319794655 0.01597897708415985 -0.03647360950708389 -0.002546863630414009 0.08719334006309509 -0.06490110605955124 0.08923709392547607 -0.040211595594882965 0.05701655149459839 -0.01409642118960619 -0.005540631711483002 0.06498275697231293 0.07601643353700638 -0.0032264129258692265 0.0075427512638270855 -0.07999426126480103 +-0.006825899239629507 -0.04739980027079582 -0.032191064208745956 -0.009084461256861687 -0.08063153922557831 -0.09152744710445404 -0.012586923316121101 0.05591190233826637 -0.01292065903544426 -0.009943847544491291 -0.046181000769138336 0.011778691783547401 -0.00623438972979784 -0.009575853124260902 0.026430534198880196 0.00026795821031555533 -0.06556500494480133 0.008809673599898815 -0.02525367960333824 -0.00039395460044033825 0.0468214713037014 -0.0063310046680271626 -0.06470850855112076 0.029269983991980553 0.024411486461758614 -0.029067769646644592 -0.0637063980102539 0.02061069756746292 0.0009482507593929768 0.08696401864290237 0.035205498337745667 -0.06888213753700256 0.06404544413089752 -0.08169996738433838 -0.023415464907884598 0.016803815960884094 -0.03447258844971657 0.06289553642272949 0.08720768988132477 -0.028581850230693817 -0.0734427198767662 0.016217518597841263 -0.025498749688267708 -0.05879179760813713 0.02494325116276741 0.055369723588228226 -0.03850824385881424 -0.06939543783664703 0.062185391783714294 0.07377295196056366 0.053077030926942825 -0.03621172159910202 -0.0157674178481102 0.0121913468465209 -0.04151012748479843 -0.04301374405622482 0.057364869862794876 -0.025704851374030113 -0.1043103039264679 0.022327076643705368 -0.10960356891155243 0.009171620942652225 -0.03174752742052078 0.049695976078510284 -0.04349203780293465 -0.032165806740522385 0.017473367974162102 0.037839680910110474 0.01929306611418724 -0.0388217531144619 0.00365159148350358 0.05529709905385971 -0.03372050076723099 -0.05262650549411774 -0.04040171951055527 -0.016575615853071213 0.01094814296811819 0.007035427261143923 0.004094835836440325 0.05001704394817352 -0.024082913994789124 -0.07314829528331757 0.1599704772233963 -0.06886257231235504 -0.004373401403427124 -0.04804375767707825 -0.0668296217918396 -0.0335068441927433 0.024157816544175148 0.022923676297068596 0.04180636256933212 0.023621471598744392 -0.022220421582460403 -0.011385168880224228 0.0029573349747806787 0.04118891805410385 0.043573860079050064 -0.0938459113240242 -0.013128300197422504 0.03862195834517479 -0.05466439202427864 0.010922504588961601 0.08426810801029205 0.06704670190811157 0.03973233699798584 -0.009485018439590931 -0.049577727913856506 0.03916630893945694 0.061714477837085724 0.02650158293545246 0.002405534964054823 0.07148341089487076 0.09156344830989838 -0.002341891871765256 0.022674493491649628 -0.02132539264857769 -0.025915252044796944 -0.017074082046747208 0.02520040236413479 0.006032460834830999 0.02590218558907509 0.007153863087296486 -0.010198325850069523 -0.060141418129205704 0.05907436087727547 0.07883980125188828 -0.1061038225889206 -0.02516142837703228 -0.027547961100935936 -0.0704784095287323 0.08125105500221252 0.06096802279353142 -0.049058567732572556 0.04772800952196121 0.0773405134677887 0.029435211792588234 0.015231968834996223 0.06717386096715927 -0.010795742273330688 -0.05268574878573418 -0.06759220361709595 0.025673313066363335 -0.04882408306002617 -0.03625420853495598 0.0327264703810215 0.06728453934192657 0.0030846111476421356 -0.03000519797205925 -0.07135039567947388 0.01634349673986435 -0.07554321736097336 -0.03061656653881073 0.023138415068387985 -0.04772505164146423 0.006728739477694035 0.05286790058016777 0.008314509876072407 0.04885377734899521 -0.03334394842386246 0.0387495718896389 -0.04552968218922615 -0.07422804087400436 -0.014121792279183865 -0.058722659945487976 -0.022505350410938263 0.019459933042526245 0.03791975975036621 -0.008532690815627575 -0.03343211114406586 -0.03818867728114128 -0.037725336849689484 -0.021801764145493507 0.041825830936431885 0.0532219298183918 0.03259021043777466 -0.024250950664281845 0.036252766847610474 -0.09206590801477432 -0.0012342961272224784 -0.08136244118213654 0.012014992535114288 -0.051116943359375 0.031156640499830246 -0.02928457409143448 -0.021054010838270187 -0.032720185816287994 0.025361549109220505 -0.05421428382396698 -0.004533577244728804 -0.034521035850048065 -0.04934470355510712 -0.04639490693807602 0.0266555268317461 0.0592181533575058 -0.030652115121483803 0.042556360363960266 0.005113555584102869 0.05543893203139305 -0.03712262585759163 -0.012635305523872375 -0.08050933480262756 0.07309503853321075 -0.010208401829004288 0.011143182404339314 0.010697864927351475 -0.005168076604604721 0.05739664286375046 0.012002326548099518 -0.004339945036917925 -0.04361303150653839 0.036627188324928284 0.08249708265066147 0.006259436719119549 -0.012615720741450787 0.07796894013881683 -0.041720688343048096 -0.010235044173896313 -0.002407519146800041 0.09142021834850311 -0.051653824746608734 0.00550442049279809 0.037796150892972946 -0.050719503313302994 -0.011241063475608826 -0.043872807174921036 -0.08705904334783554 0.0033708789851516485 -0.005896338261663914 -0.028752125799655914 -0.00316597823984921 0.011898452416062355 0.026369662955403328 0.0026683050673455 0.041423387825489044 0.0017580880085006356 -0.018969111144542694 -0.018839001655578613 0.05558085814118385 -0.05552570894360542 -0.039746832102537155 -0.04330433905124664 0.027312306687235832 0.022820675745606422 0.013260235078632832 -0.000547432922758162 0.016481129452586174 0.05241145193576813 0.05264008045196533 -0.022159725427627563 -0.021746916696429253 -0.029233286157250404 -0.06507611274719238 0.007517375983297825 0.022326482459902763 -0.012612994760274887 -0.033971626311540604 0.045300889760255814 -0.07164153456687927 0.003006471088156104 0.002053887350484729 0.03944060578942299 -0.01863996498286724 -0.0306782778352499 -0.002743176417425275 0.06396637856960297 0.003239738754928112 -0.07665500789880753 0.03587896004319191 -0.041221991181373596 0.03126620873808861 -0.061189595609903336 -0.02278515323996544 0.04531555622816086 0.008164525032043457 0.002780123148113489 -0.022946761921048164 0.09518180787563324 0.004208939615637064 -0.04502028226852417 -0.05438581109046936 -0.08185534179210663 -0.03358861058950424 0.02571084350347519 0.022404994815587997 -0.019986974075436592 0.025211261585354805 0.07915230840444565 -0.020392941311001778 -0.056090597063302994 -0.044563885778188705 -0.04401310160756111 -0.05540941283106804 -0.02947872318327427 0.007210046052932739 -0.06798297166824341 -0.025752153247594833 0.03456898778676987 -0.035138219594955444 -0.05870847776532173 0.06506515294313431 -0.027608858421444893 -0.07066403329372406 0.030711250379681587 -0.028298456221818924 -0.023255135864019394 0.03690351918339729 -0.04529305920004845 0.010379410348832607 0.06073198840022087 0.002867859322577715 0.01697108894586563 0.033982645720243454 -0.009208652190864086 0.041991785168647766 -0.03968174010515213 -0.005324554163962603 -0.06533747166395187 -0.05551645904779434 -0.06869406998157501 0.04103840887546539 -0.03556055203080177 0.007459043525159359 0.004974044393748045 -0.01007347833365202 0.03861904516816139 -0.00021090504014864564 -0.025930535048246384 -0.07140485942363739 -0.01799437403678894 -0.042673151940107346 0.057534828782081604 -0.008551095612347126 -0.0040579685010015965 -0.01832037791609764 -0.05024028941988945 -0.026468312367796898 -0.0549018457531929 0.06580324470996857 -0.03896455094218254 0.01791222393512726 -0.0007783619221299887 -0.02623497135937214 0.007397881709039211 0.03316543251276016 0.08154747635126114 -0.053881868720054626 0.04099663719534874 -0.004027337767183781 0.038538798689842224 -0.0673627033829689 -0.010610848665237427 0.027409087866544724 -0.020688142627477646 -0.04778795689344406 0.03064962662756443 0.011747411452233791 -0.07380308210849762 0.016664063557982445 -0.015331720933318138 -0.05783015489578247 0.016576291993260384 0.024445706978440285 0.015568963252007961 0.0566054992377758 0.06157783418893814 -0.06131359562277794 -0.0051078698597848415 0.0017267807852476835 -0.003424761351197958 0.018818827345967293 0.04025717079639435 -0.027147753164172173 0.04149024188518524 -0.049599360674619675 -0.044213131070137024 -0.06228356435894966 0.050662633031606674 -0.032737601548433304 -0.018274255096912384 0.0011625011684373021 0.026961766183376312 -0.0035736251156777143 0.05952445790171623 0.0012785661965608597 -0.05774643272161484 -0.025555778294801712 -0.01584581844508648 -0.053436070680618286 -0.10351549834012985 0.014583456330001354 0.04123743996024132 -0.03449779003858566 0.012780901975929737 -0.023846417665481567 0.06577614694833755 0.005130603443831205 0.0073713515885174274 -0.00420122966170311 0.0523621030151844 0.033760808408260345 0.02892952971160412 0.0008801623480394483 -0.012881224974989891 0.030978823080658913 0.002025273162871599 -0.0400865375995636 0.024644795805215836 0.023276817053556442 -0.10642501711845398 -0.009442519396543503 -0.08387227356433868 -0.026381507515907288 -0.039687491953372955 -0.020532047376036644 0.014687552116811275 -0.00877496600151062 0.055809203535318375 -0.005715387407690287 0.05824672430753708 -0.049723364412784576 -0.03134699538350105 0.027241507545113564 -0.0017531004268676043 -0.0776539072394371 -0.006414499133825302 0.02101457305252552 -0.00752577418461442 0.05314427241683006 -0.01893189176917076 0.03156480938196182 0.04506722465157509 -0.00767182745039463 0.004980923142284155 0.03390141576528549 0.023092305287718773 -0.003341547679156065 0.03613828867673874 0.04236389324069023 -0.02260984480381012 -0.021697843447327614 0.017337987199425697 -0.05239660665392876 0.016415242105722427 -0.03498866409063339 -0.027805138379335403 0.03729221224784851 0.04350784793496132 -0.024363815784454346 0.009316034615039825 0.021868525072932243 -0.042475201189517975 -0.00992094911634922 -0.019848210737109184 0.06792473793029785 0.025152094662189484 0.02222517691552639 0.07060506939888 -0.06162693724036217 -0.045911747962236404 0.004957206081598997 -0.04349043220281601 -0.09890592098236084 -0.055601779371500015 -0.061406444758176804 0.060322314500808716 0.05935598909854889 0.009895306080579758 -0.017545022070407867 -0.04974684491753578 0.006011229939758778 0.01773916371166706 -0.0032407192047685385 0.015243533998727798 0.03515022620558739 0.0006241274531930685 -0.02374601550400257 -0.05711051821708679 -0.07387614995241165 0.05438249558210373 0.05580086633563042 0.0059337676502764225 -0.0653950497508049 0.03526695445179939 -0.0042116972617805 -0.026207521557807922 0.047645073384046555 -0.0036378041841089725 -0.0685906708240509 0.01084420271217823 0.0951056033372879 -0.030672136694192886 0.05836945399641991 0.03457856923341751 -0.03464813157916069 0.07007262110710144 0.058148372918367386 -0.004219310823827982 0.009451478719711304 -0.03499535843729973 -0.020701024681329727 0.04481607675552368 -0.07859466224908829 0.06400357931852341 -0.03048420138657093 0.1241055428981781 0.07150053977966309 -0.03750103712081909 0.10282276570796967 0.05235089734196663 0.012622201815247536 0.009781607426702976 -0.10529884696006775 +0.08069192618131638 -0.03892521187663078 -0.027607250958681107 0.0333181656897068 -0.08797287940979004 -0.05332806706428528 0.007252350449562073 0.057919301092624664 -0.06982439756393433 -0.011764982715249062 -0.02701825276017189 0.04487839713692665 0.014203422702848911 0.043635379523038864 0.008262883871793747 -0.06089772284030914 -0.07487205415964127 -0.009221682325005531 -0.017355849966406822 0.011134465225040913 0.08255650848150253 -0.027630750089883804 -0.06651327013969421 0.018770337104797363 0.024818360805511475 -0.006678394041955471 0.00669701537117362 0.008045000955462456 0.04121096804738045 -0.03273672237992287 0.07749151438474655 -0.07957101613283157 0.006423326209187508 -0.08723394572734833 -0.059569042176008224 0.03783845901489258 -0.06061394885182381 0.10571523755788803 0.04979619011282921 -0.06606145948171616 -0.08947232365608215 0.04243580996990204 -0.05891753360629082 -0.09071335941553116 0.018685253337025642 0.008149558678269386 -0.033854804933071136 -0.035157907754182816 0.06155489757657051 0.015153314918279648 0.029727190732955933 -0.031161537393927574 0.0018121436005458236 -0.0011612873058766127 -0.05854114890098572 -0.020793423056602478 0.028258739039301872 0.029370969161391258 -0.06429223716259003 0.010034702718257904 -0.04885620251297951 0.0017720084870234132 0.026507653295993805 0.06675027310848236 0.023221047595143318 -0.03999457508325577 0.05307852476835251 -0.00387936900369823 0.042088400572538376 -0.0011081640841439366 -0.03202946111559868 0.07047741115093231 -0.018375182524323463 -0.015952711924910545 0.011862145736813545 -0.04877462238073349 -0.005108220502734184 -0.019538285210728645 0.023486996069550514 0.036955248564481735 -0.0011572533985599875 0.004187068436294794 0.11898984760046005 -0.01269393041729927 -0.02353416010737419 -0.026336409151554108 0.04289485141634941 -0.02143370732665062 0.025817889720201492 0.039850883185863495 0.008081694133579731 0.0462086983025074 -0.0871196985244751 0.027414541691541672 -0.01770653761923313 0.018978571519255638 0.05825335532426834 -0.10832755267620087 -0.05032246187329292 -0.00694527942687273 0.00815283041447401 -0.058384571224451065 0.05514507368206978 -0.012152626179158688 0.033140841871500015 -0.009829655289649963 -0.04732051491737366 0.04129716381430626 0.046656470745801926 0.010796057060360909 0.05970418453216553 0.0898502841591835 0.05480905994772911 0.022696418687701225 0.07666808366775513 -0.057762064039707184 -0.010988104157149792 -0.07065333425998688 -0.014423760585486889 0.024334030225872993 -0.025828611105680466 0.021957194432616234 -0.037748850882053375 -0.06894437223672867 -0.043098390102386475 0.023418482393026352 -0.08269739896059036 -0.018881315365433693 0.0020625328179448843 -0.0037212097086012363 0.07339373975992203 0.050690796226263046 -0.027362432330846786 0.040871791541576385 0.038802746683359146 0.03465777635574341 0.0452776663005352 0.13400842249393463 -0.0033484373707324266 -0.044334784150123596 -0.005717776715755463 0.07050061970949173 0.053715672343969345 -0.006143557373434305 0.005247552879154682 0.0608709454536438 0.014974567107856274 0.004939612932503223 -0.01856025494635105 0.027380123734474182 -0.07532424479722977 -0.016655951738357544 -0.011611291207373142 -0.07088415324687958 0.030153537169098854 0.041870079934597015 0.031362470239400864 0.020737603306770325 -0.06431259959936142 0.024283381178975105 -0.03346477821469307 -0.06250640749931335 0.05732274428009987 -0.060835398733615875 -0.035704001784324646 0.02051570639014244 -0.014452263712882996 -0.0012962054461240768 -0.030732735991477966 -0.007893556728959084 0.009243510663509369 -0.08233339339494705 0.03884415328502655 0.01895999163389206 0.0150674507021904 -0.015781201422214508 -0.027692358940839767 -0.06293811649084091 0.019763978198170662 0.022631308063864708 -0.006409459747374058 -0.09771916270256042 0.017307743430137634 -0.0908365249633789 -0.010944867506623268 -0.01799859292805195 -0.0016167308203876019 -0.06385549157857895 -0.029921939596533775 -0.05567774176597595 -0.09604904055595398 -0.04883838817477226 -0.0004953512107022107 0.02033453993499279 0.010062210261821747 0.08132246136665344 -0.020988186821341515 0.006941540632396936 0.031965021044015884 0.0009554533171467483 -0.07031147181987762 0.05648418888449669 -0.09386950731277466 0.042045336216688156 0.034758683294057846 -0.049418892711400986 0.02609262987971306 0.0011153469095006585 0.023810379207134247 -0.08221399039030075 -0.016294198110699654 0.04777134209871292 -0.002859609667211771 0.0038240887224674225 0.026507897302508354 -0.003934756852686405 -0.012760285288095474 0.06772562116384506 0.08168289810419083 -0.02196764200925827 -0.011558088473975658 0.0561186745762825 -0.04980018734931946 0.0413084551692009 0.024142419919371605 -0.06174003332853317 -0.06437215954065323 0.0033372158650308847 -0.01649785414338112 -0.09732759743928909 0.020275723189115524 0.04953056946396828 0.04111028090119362 -0.06007600575685501 -0.011232688091695309 -0.01071829441934824 -0.026064397767186165 0.07285148650407791 -0.009564503096044064 -0.09407247602939606 -0.02546965889632702 -0.01947665587067604 0.016686899587512016 0.02743944153189659 0.04084339737892151 0.012974989600479603 0.05198850855231285 -0.04940173402428627 -0.031654052436351776 -0.0072061773389577866 -0.0557895302772522 -0.06630688160657883 -0.009804129600524902 0.09921587258577347 -0.014002813026309013 -0.06711927801370621 -0.012501255609095097 0.0012851790525019169 0.017497332766652107 -0.012040230445563793 0.04316684603691101 0.0141294552013278 -0.04618222266435623 -0.0637146532535553 0.06125079095363617 -0.01702166721224785 0.00329569517634809 0.0031528505496680737 0.010802319273352623 0.07380591332912445 0.007625996600836515 -0.0036047922912985086 0.017708970233798027 -0.014900226145982742 0.0005051232874393463 -0.01708095893263817 0.056636590510606766 -0.05955580994486809 -0.01636177860200405 -0.02427927404642105 -0.04635358601808548 -0.06412021815776825 -0.034654222428798676 -0.019492903724312782 -0.012733718380331993 0.09928303956985474 0.022780008614063263 -0.010018532164394855 -0.013259278610348701 -0.012323135510087013 0.00720177311450243 -0.0785880908370018 0.002959775272756815 0.029486212879419327 -0.08616486191749573 -0.01825331337749958 0.02202901616692543 0.009311697445809841 -0.06057826057076454 0.020320923998951912 0.036326125264167786 -0.04577644541859627 0.04582921415567398 -0.0042932480573654175 -0.02451854571700096 -0.023260198533535004 -0.09337738901376724 0.013407040387392044 0.04016781225800514 0.034686122089624405 0.05001576244831085 -0.0004812517436221242 7.318437565118074e-05 0.11331154406070709 -0.01577448658645153 -0.01757526956498623 0.019175289198756218 -0.11439166218042374 -0.116811104118824 0.06449989229440689 -0.01820419915020466 0.005398952402174473 -0.03777512162923813 -0.017847126349806786 0.07080044597387314 -0.03498893231153488 0.005783615168184042 -0.058768901973962784 -0.0047432123683393 -0.05231066048145294 0.06316728889942169 0.022973090410232544 -0.018879851326346397 -0.034384045749902725 -0.007007112260907888 -0.07324465364217758 -0.05155516788363457 0.02161930687725544 -0.03411325067281723 0.022476956248283386 0.05415239557623863 -0.03119712322950363 0.008996252901852131 0.008318486623466015 0.06070577725768089 -0.02395920641720295 -0.004830443300306797 -0.026174193248152733 0.06176268309354782 -0.06455431878566742 -0.01086285151541233 -0.02665737271308899 0.0004665543092414737 -0.012711958959698677 -0.039013005793094635 0.053399860858917236 -0.05442430078983307 0.04383985698223114 0.013788816519081593 0.008464936167001724 0.027228351682424545 0.027213580906391144 0.025921298190951347 0.0832553505897522 0.019737765192985535 -0.030333565548062325 0.06678738445043564 -0.008078341372311115 0.03055867925286293 -0.014567822217941284 0.03404729440808296 -0.010330199263989925 0.08167218416929245 0.006328328046947718 -0.02758307009935379 -0.07982619851827621 0.0037076612934470177 0.02052067592740059 -0.0328093096613884 -0.010999190621078014 0.02427276037633419 0.0468430332839489 0.01875201240181923 0.019694944843649864 -0.0006552448612637818 -0.027278438210487366 -0.016765812411904335 -0.026659222319722176 -0.09382858872413635 0.040966641157865524 0.03278016299009323 -0.06614001095294952 -0.0189775750041008 -0.04093119502067566 -0.016298461705446243 0.07421016693115234 -0.049473680555820465 -0.0048781586810946465 0.018952542915940285 0.042094942182302475 -0.01635662280023098 0.034225281327962875 0.011284434236586094 0.029984360560774803 0.0005098512629047036 0.02197982184588909 0.0011604070896282792 0.048836853355169296 -0.05720493569970131 0.017837172374129295 0.0005066883750259876 0.013381876982748508 -0.04765670746564865 0.021196451038122177 0.006129912566393614 -0.05187804624438286 0.022732866927981377 0.029931366443634033 -0.014452110975980759 -0.047921985387802124 -0.05345354601740837 0.052184853702783585 -0.016500206664204597 -0.08920646458864212 0.005784652661532164 0.011942896991968155 -0.00823633000254631 0.036867592483758926 0.03852534666657448 0.004602196626365185 0.047725990414619446 -0.006503065582364798 0.020052963867783546 -0.00647493964061141 -0.06851654499769211 0.02462293952703476 -0.07824821770191193 0.058345455676317215 0.05444565787911415 0.011970347724854946 0.08261721581220627 -0.020080704241991043 0.005539062432944775 -0.0362621508538723 -0.0401325561106205 0.0061051324009895325 -0.021740853786468506 0.07170247286558151 -0.013723021373152733 0.018338412046432495 0.021788422018289566 -0.04509668052196503 -0.031087718904018402 0.07470137625932693 0.03451316058635712 0.008809668943285942 0.06379377841949463 -0.06768869608640671 0.017852842807769775 -0.01951274462044239 -0.02979777753353119 -0.05527662858366966 0.0555347315967083 -0.02459423616528511 0.00034161825897172093 0.04113197326660156 0.061681054532527924 0.08056336641311646 -0.09165496379137039 0.004118761979043484 0.0027179040480405092 -0.041557133197784424 0.11297697573900223 -0.025719398632645607 -0.013375547714531422 -0.04586482048034668 -0.04454420134425163 -0.07696793228387833 0.03992265835404396 -0.034908294677734375 0.006253231782466173 0.0013935924507677555 0.04797298461198807 0.0022513126023113728 -0.014200636185705662 -0.0018976242281496525 0.0056921932846307755 -0.037171583622694016 0.04001348838210106 0.0845833271741867 -0.02656819112598896 0.028113536536693573 0.03853827342391014 0.022458026185631752 0.019460871815681458 0.0015593613497912884 -0.0028515576850622892 0.008978293277323246 -0.027219710871577263 -0.02640504390001297 0.08471623808145523 0.0018957845168188214 0.009993663989007473 -0.06386569142341614 0.05041270703077316 -0.012396403588354588 -0.009040195494890213 0.08215122669935226 -0.016838088631629944 -0.016522035002708435 0.05000930279493332 -0.012010657228529453 +0.02252422831952572 -0.050792377442121506 -0.009451202116906643 0.007777441293001175 -0.057942505925893784 -0.06568913906812668 0.010568812489509583 0.02944065071642399 0.009848629124462605 -0.04162004217505455 -0.033810436725616455 0.007696535438299179 0.018936948850750923 0.026619330048561096 0.045675553381443024 -0.022013751789927483 -0.05849160999059677 0.007043781224638224 -0.0038292785175144672 0.006754292640835047 0.07181782275438309 -0.02845783904194832 -0.07697629183530807 0.03041381575167179 0.024526620283722878 0.02806887775659561 -0.039118774235248566 -0.01580698974430561 0.02644529566168785 0.023491783067584038 0.0477793887257576 -0.023202739655971527 0.03777068108320236 -0.05198388174176216 -0.04748031497001648 0.016843967139720917 -0.07201606780290604 0.10526494681835175 0.02186674252152443 -0.009391373954713345 -0.06513053178787231 -0.03288581594824791 -0.0955861359834671 -0.059568747878074646 -0.02023635059595108 -0.01907172054052353 -0.0009307409054599702 -0.0001210229893331416 -0.002458045957610011 0.04441358521580696 0.0614151693880558 -0.04006800055503845 -0.01189950667321682 0.016882864758372307 -0.01533481478691101 -0.026830166578292847 0.03286134824156761 -0.017618462443351746 -0.08083566278219223 0.045674946159124374 -0.08859865367412567 0.009142794646322727 -0.001519960816949606 0.06179153174161911 -0.03260162100195885 -0.04390616714954376 0.0027888191398233175 0.03051968477666378 -0.008280646055936813 -0.06471327692270279 0.0010572252795100212 0.04025253653526306 -0.05091370642185211 -0.04370119795203209 -0.008874720893800259 0.0047057499177753925 0.029601886868476868 0.01997467130422592 0.017473215237259865 0.0018519472796469927 0.016779160127043724 -0.03913462907075882 0.13403117656707764 -0.04472517594695091 -0.011190664954483509 -0.05775567889213562 0.0007604951970279217 -0.0352243036031723 0.05075421556830406 0.022032173350453377 0.026416156440973282 0.06751257181167603 -0.05727320536971092 0.06290176510810852 0.05127151310443878 0.021233106032013893 -0.006484093144536018 -0.12462817877531052 -0.07489009201526642 0.004551929421722889 0.007783783134073019 -0.030270490795373917 0.07781902700662613 0.025710241869091988 0.06701800972223282 0.017117522656917572 -0.039397504180669785 0.0406397208571434 0.03647756949067116 0.010845263488590717 0.01544049009680748 0.08957427740097046 0.04969393089413643 0.020496081560850143 0.027482829988002777 0.004288398660719395 -0.016751859337091446 -0.012578040361404419 -0.012979412451386452 0.03426564484834671 0.03193964436650276 0.016591742634773254 0.0031442369800060987 -0.09124534577131271 -0.029049891978502274 0.03598852455615997 -0.0999392420053482 -0.06336305290460587 0.019750552251935005 -0.04241715371608734 0.10124322772026062 0.08741100132465363 -0.039141442626714706 0.008519144728779793 0.05084683373570442 0.0339391753077507 0.03979356959462166 0.04227650910615921 -0.017977938055992126 -0.0646258294582367 -0.022968364879488945 0.042092420160770416 -0.029089314863085747 -0.043193623423576355 0.027976468205451965 0.05365082249045372 0.028493637219071388 -0.006103861145675182 -0.084467314183712 -0.02357640117406845 -0.06209985166788101 -0.036791253834962845 -0.00347061431966722 -0.07496035099029541 0.028806328773498535 0.04612543061375618 0.003843484679237008 0.07450919598340988 -0.017327385023236275 0.019017357379198074 -0.05960199981927872 -0.04755210876464844 0.004463658202439547 -0.0647272989153862 -0.006894808728247881 0.012728307396173477 -0.0016804696060717106 0.02797107957303524 -0.058025069534778595 -0.012448446825146675 0.007723563816398382 -0.04545051231980324 0.04629455506801605 0.024783141911029816 0.04329013079404831 -0.013813205994665623 -0.03210259974002838 -0.09794137626886368 -0.0178610160946846 -0.020403221249580383 0.022217389196157455 -0.016842162236571312 0.008245454169809818 -0.0556778647005558 -0.021975573152303696 -0.017070572823286057 0.031998347491025925 -0.041055385023355484 -0.030676867812871933 -0.04677135869860649 -0.05152374505996704 -0.04059171304106712 0.058497294783592224 0.03661045804619789 -0.00871824286878109 0.04490099474787712 -0.024115614593029022 0.06764546781778336 -0.026349607855081558 -0.0390569232404232 -0.015491606667637825 0.0169198140501976 0.01771969348192215 0.055355146527290344 -0.013661340810358524 -0.04935140907764435 0.07565663009881973 0.029257217422127724 0.03776247426867485 -0.07560570538043976 0.013274194672703743 0.014308638870716095 -0.03028436377644539 0.04154662787914276 0.07248468697071075 -0.09242211282253265 0.007687068544328213 0.06655328720808029 0.07584718614816666 -0.04174929857254028 -0.018153829500079155 0.030921457335352898 -0.05244322121143341 -0.015526832081377506 -0.021344061940908432 -0.07632900029420853 -0.024169372394680977 0.02889692224562168 -0.07708036154508591 -0.05112016201019287 -0.02714221179485321 0.04203104227781296 -0.030484890565276146 -0.022090204060077667 -0.007743653375655413 0.016645872965455055 -0.059167154133319855 0.04981718957424164 -0.033135730773210526 -0.0740860104560852 -0.08568611741065979 -0.0021402921993285418 0.00769174937158823 0.05335408076643944 0.040481045842170715 0.06400170922279358 0.07251746207475662 -0.019456401467323303 -0.03388241305947304 0.003127142321318388 -0.03692667931318283 -0.04306311532855034 0.0305472481995821 0.04436296597123146 -0.06945270299911499 -0.03202900290489197 -0.01147518027573824 -0.04073195159435272 -0.026456758379936218 0.009051012806594372 0.02801787480711937 -0.027232879772782326 -0.01213841699063778 -0.009466206654906273 0.013560442253947258 -0.007307757157832384 0.016284313052892685 0.002966848900541663 -0.031202856451272964 0.06526787579059601 -0.030590631067752838 -0.04438081756234169 0.01949065737426281 -0.008047621697187424 0.007001912221312523 -0.012341855093836784 0.059037577360868454 -0.04037036746740341 -0.08345453441143036 -0.034388717263936996 -0.10408367961645126 -0.030205607414245605 -0.029896071180701256 0.009341023862361908 -0.044442903250455856 0.09721525758504868 0.033483292907476425 -0.07323946058750153 -0.033740367740392685 -0.06294064968824387 -0.00028479844331741333 -0.06389057636260986 0.016117647290229797 -0.01064396183937788 -0.06793411821126938 -0.02968587726354599 0.07419576495885849 -0.07152741402387619 -0.030702263116836548 0.04896239936351776 -0.01105149369686842 -0.07968118786811829 0.041765712201595306 0.0030465018935501575 -0.048439186066389084 0.010701699182391167 -0.125961035490036 0.0497075691819191 0.06912047415971756 0.0017764130607247353 -0.01185764279216528 0.03361371532082558 0.048241421580314636 0.10230889916419983 -0.03444944694638252 -0.01339841727167368 -0.018795961514115334 -0.0647539347410202 -0.051268309354782104 0.043536476790905 -0.05524877458810806 0.04977646842598915 -0.05249139294028282 -0.023860381916165352 0.04633258655667305 0.0024841600097715855 -0.0002722201752476394 0.014824994839727879 -0.01340786088258028 -0.010893628932535648 0.04115338623523712 0.02763448655605316 -0.01618131436407566 -0.02199186384677887 -0.045815639197826385 -0.08834787458181381 -0.00787583738565445 0.01696566678583622 -0.055762480944395065 0.05029091611504555 -0.013360055163502693 -0.057850029319524765 0.011029999703168869 -0.019937055185437202 0.1175725907087326 -0.06941881775856018 0.019221121445298195 0.03909602388739586 -0.0014335777377709746 -0.10309246927499771 -0.00036574408295564353 0.037592995911836624 -0.05339286848902702 -0.0669528990983963 -0.0231949295848608 0.06112455576658249 -0.017819512635469437 -0.033301983028650284 0.008217443712055683 -0.01055727805942297 0.018887188285589218 0.036357857286930084 0.025745602324604988 0.06731027364730835 0.010973988100886345 -0.016252810135483742 0.00948795024305582 0.011475245468318462 0.03656994551420212 -0.02419421263039112 0.01998414844274521 -0.014384884387254715 0.07716237753629684 -0.01488522533327341 -0.033487576991319656 -0.0643000528216362 0.03851141035556793 -0.013550498522818089 -0.013289223425090313 -0.028719952329993248 0.0030528835486620665 -0.01805085875093937 0.03661777079105377 0.019890815019607544 -0.025960756465792656 -0.06548122316598892 -0.04680174961686134 -0.02690345048904419 -0.11327967047691345 -0.020816514268517494 0.031976837664842606 -0.05042232945561409 0.013771025463938713 -0.04803317040205002 0.014486636966466904 0.0036061867140233517 -0.05350368097424507 0.022192537784576416 0.05768604949116707 0.015179837122559547 -0.04665978252887726 0.047835737466812134 0.020605267956852913 0.030677614733576775 -0.0165781881660223 -0.009067722596228123 0.05084019526839256 0.030173666775226593 -0.02482202649116516 0.01981261558830738 -0.02876320853829384 0.0037813158705830574 -0.01854885183274746 -0.06794802844524384 -0.026332378387451172 0.003055162262171507 0.005401470232754946 -0.04162580147385597 0.056251853704452515 -0.0901481956243515 -0.039273470640182495 0.008424059487879276 -0.03811173513531685 -0.056818462908267975 -0.038788530975580215 -0.015315311029553413 -0.04682376980781555 0.024331307038664818 0.014784019440412521 0.016077766194939613 0.07044529914855957 -0.042127400636672974 0.0022336584515869617 0.031198738142848015 0.0020253965631127357 0.015396464616060257 -0.015164797194302082 0.013353797607123852 0.014786504209041595 -0.0012049035867676139 0.021061167120933533 -0.0373852401971817 0.01756354607641697 -0.05079350247979164 -0.012731868773698807 0.016791315749287605 -0.0032572713680565357 0.0229684729129076 -0.009897075593471527 0.05164238065481186 -0.07732239365577698 -0.03426866605877876 -0.04913857951760292 0.042711902409791946 0.030469657853245735 0.02230033464729786 0.02565104514360428 -0.052057377994060516 -0.02472604811191559 0.03591877967119217 -0.009896716102957726 -0.06275548785924911 0.0020703806076198816 -0.04574470594525337 0.06295560300350189 0.020641004666686058 0.007922869175672531 0.006772803608328104 -0.08625857532024384 0.004321559797972441 -0.016379043459892273 -0.08497743308544159 0.017062557861208916 0.04923417419195175 -0.0454706996679306 -0.028477216139435768 -0.008831134997308254 -0.02138654887676239 0.01390200573951006 0.002268662443384528 0.06341595202684402 -0.0718248188495636 0.005014864727854729 0.003436317900195718 -0.021755633875727654 0.044400110840797424 -0.006421416532248259 -0.07033329457044601 0.0011472504120320082 0.10760577768087387 -0.06851089000701904 0.029496321454644203 0.07318494468927383 -0.010799611918628216 0.03653767332434654 0.015305409207940102 -0.03591766208410263 0.002494243672117591 -0.019002454355359077 -0.053580623120069504 0.04699568450450897 -0.08456707000732422 0.06741681694984436 -0.08743901550769806 0.1275806576013565 0.009550400078296661 -0.01299422886222601 0.09525403380393982 0.03200121596455574 0.007059704978018999 0.030473023653030396 -0.05959230288863182 +0.03480322286486626 -0.0704117864370346 0.009192604571580887 0.05128411576151848 -0.03233935683965683 -0.04498939588665962 -0.026623286306858063 0.024688685312867165 -0.02502404898405075 -0.047703977674245834 -0.032178763300180435 -0.0050819264724850655 -0.011967794969677925 0.027510568499565125 0.03564130887389183 -0.03778675198554993 -0.10359200090169907 0.02959851361811161 -0.026649679988622665 -0.03604709357023239 0.02675226517021656 0.020907726138830185 -0.09572748094797134 0.05147142335772514 -0.012914956547319889 0.013174657709896564 -0.06618492305278778 0.014293478801846504 0.005091520957648754 0.001824515755288303 0.05557253956794739 -0.042971089482307434 0.06550091505050659 -0.0592992790043354 -0.05423092842102051 0.03407041355967522 -0.04242749884724617 0.10958979278802872 0.005612777080386877 -0.011021262034773827 -0.06871198117733002 0.04281648248434067 -0.008895082399249077 -0.06420126557350159 0.04590418189764023 0.0283028744161129 0.00233720475807786 -0.0247485414147377 0.010610468685626984 0.02841171994805336 0.10544335842132568 0.027908701449632645 0.0013481524074450135 -0.017748793587088585 -0.02197522111237049 0.005208783317357302 0.04980775713920593 -0.04686116427183151 -0.06837760657072067 0.023563208058476448 -0.09968623518943787 -0.010732683353126049 0.011878040619194508 -0.017514387145638466 -0.04330192133784294 -0.006775532383471727 -0.026392076164484024 0.09197349846363068 -0.0025232122279703617 -0.028116781264543533 0.021836938336491585 0.07751080393791199 -0.04580039158463478 -0.053888749331235886 0.057971592992544174 -0.05919705331325531 0.020445285364985466 0.05174264684319496 -0.02737245336174965 0.012738214805722237 0.001052460283972323 0.004563717637211084 0.13068519532680511 -0.0125604048371315 -0.03220817446708679 -0.024579783901572227 0.02263435535132885 -0.047159723937511444 0.03030700609087944 0.04542994126677513 0.03398798033595085 0.0632694885134697 -0.007965072989463806 0.04413387551903725 0.006000691559165716 0.011867620050907135 0.03552825748920441 -0.09706203639507294 -0.02223285846412182 0.003848664928227663 0.004770438652485609 0.009807035326957703 0.08668804168701172 0.0027064362075179815 0.05390019342303276 -0.007601466961205006 -0.059227101504802704 0.011372745968401432 0.03208228573203087 0.016109148040413857 0.04758566990494728 0.11745666712522507 0.034487925469875336 0.05632695183157921 0.06544791907072067 0.012928328476846218 0.030774032697081566 -0.04529232159256935 -0.021197481080889702 0.014551259577274323 -0.01448892429471016 0.05041375011205673 -0.024050595238804817 -0.06548578292131424 0.0031048262026160955 0.04956641420722008 -0.10055854916572571 -0.02688591554760933 0.08845680207014084 -0.020601417869329453 0.11488977074623108 0.05858637019991875 0.003550806548446417 0.0560673363506794 0.043686624616384506 0.01466869655996561 0.010899757035076618 0.03727506101131439 -0.005934508517384529 -0.032070089131593704 -0.019011737778782845 0.05685557425022125 -0.007567911874502897 -0.04179920628666878 0.07276368886232376 0.025808246806263924 -0.003558270400390029 -0.024780895560979843 -0.037281583994627 -0.003976612351834774 -0.05724376440048218 -0.08061759918928146 -0.01964886486530304 -0.06351544708013535 0.006613271310925484 0.021457280963659286 0.03388925641775131 0.046109698712825775 -0.01925116963684559 -0.019006365910172462 -0.07599140703678131 -0.06811627000570297 -0.0333581380546093 -0.07677139341831207 -0.011065649800002575 0.00885923020541668 -0.014951847493648529 0.02373749017715454 -0.0646369457244873 -0.011095061898231506 0.003043562173843384 -0.013383770361542702 0.016171613708138466 0.0443776398897171 0.06665827333927155 0.0044032372534275055 0.04151435196399689 -0.04659465700387955 -0.025347428396344185 -0.014065450988709927 0.024395165964961052 -0.03601917251944542 0.015555688180029392 -0.07040421664714813 -0.00016234294162131846 0.003058562520891428 0.006892296485602856 -0.05088045448064804 0.022511770948767662 0.0027602557092905045 -0.026286330074071884 -0.04550909250974655 0.05282815173268318 0.06764636933803558 -0.020309709012508392 0.051484644412994385 -0.019768359139561653 0.08213087171316147 -0.038108982145786285 -0.018049273639917374 -0.05349184572696686 0.039014749228954315 -0.002924558473750949 0.02346440590918064 -0.009756785817444324 -0.05113370716571808 0.057306379079818726 0.04813108220696449 0.041499290615320206 -0.04284887760877609 0.01637151837348938 -0.001460125669836998 0.018943320959806442 0.05861444026231766 0.0740082785487175 -0.018899627029895782 -0.04481230303645134 0.026951735839247704 0.05098217725753784 -0.07691586017608643 -0.009498780593276024 -0.006815326400101185 -0.07031991332769394 0.015504338778555393 -0.04829440638422966 -0.08894302695989609 -0.030889209359884262 0.02704240381717682 -0.0004239481932017952 -0.014874172396957874 0.010799403302371502 0.037273652851581573 -0.021576333791017532 -0.024845393374562263 0.019337883219122887 -0.04219493642449379 -0.08785196393728256 0.08159396797418594 0.0326029434800148 -0.061494093388319016 -0.06502090394496918 -0.005387209355831146 0.03366752713918686 0.022642046213150024 0.008412735536694527 0.021909087896347046 0.09878264367580414 0.05325578525662422 -0.04353208467364311 0.03673607110977173 -0.01637112908065319 -0.04829776659607887 -0.00233578123152256 0.01512489840388298 0.0007018357282504439 -0.01630169153213501 -0.011473366990685463 -0.046713687479496 0.009775948710739613 -0.013891786336898804 -0.01311581302434206 -0.014601697213947773 -0.026314806193113327 -0.008684166707098484 0.033946502953767776 -0.034443870186805725 -0.015550882555544376 0.01554560661315918 -0.006454343441873789 0.0762699618935585 -0.06842517852783203 -0.019933298230171204 0.024824537336826324 -0.021408600732684135 0.03760618716478348 -0.079208143055439 0.07557176053524017 -0.008409242145717144 -0.07203938812017441 -0.007984434254467487 -0.07687430828809738 -0.04494180530309677 -0.014935114420950413 -0.04570801183581352 -0.024173010140657425 0.09341157227754593 0.012272548861801624 -0.05981067940592766 -0.026912979781627655 -0.05087985470890999 -0.007340668700635433 -0.04473479837179184 0.0012805262813344598 0.00019531563157215714 -0.017292680218815804 -0.009085956029593945 0.03741658851504326 -0.04575776681303978 -0.019881250336766243 0.021575724706053734 -0.010179081931710243 -0.03590897470712662 0.08083809167146683 -0.010864623822271824 -0.014784451574087143 0.009002921171486378 -0.07415974885225296 0.029381049796938896 0.08725521713495255 0.03419230878353119 0.008507482707500458 0.07528962939977646 0.03946821019053459 0.12928687036037445 0.02601197548210621 -0.033807091414928436 -0.01209387369453907 -0.05912237986922264 -0.047766052186489105 0.0904783234000206 -0.00637847650796175 0.02302294224500656 -0.0016073717270046473 -0.02639349177479744 0.058821920305490494 -0.020553162321448326 -0.03215543180704117 -0.03278256952762604 0.009391534142196178 -0.029410388320684433 -0.017866047099232674 -0.005921666976064444 0.026400987058877945 0.002607637317851186 -0.05701708793640137 -0.06648405641317368 -0.04153919965028763 0.04141568765044212 -0.05452745407819748 0.03990350291132927 -0.022874148562550545 -0.020724764093756676 0.029576504603028297 0.002300721127539873 0.09520263224840164 -0.05351683869957924 0.003247699700295925 0.03396017849445343 0.06883574277162552 -0.09277494251728058 -0.00703677162528038 0.006494189612567425 -0.04609531909227371 -0.02538607083261013 0.010616939514875412 0.006391477771103382 -0.07311229407787323 -0.030695337802171707 -0.016167042776942253 -0.026931744068861008 0.01448986865580082 0.023860972374677658 0.028759486973285675 0.058489300310611725 -0.01984155923128128 -0.05038512870669365 -0.010922028683125973 0.013520164415240288 0.024478474631905556 -0.06129048392176628 0.048460979014635086 -0.038347721099853516 0.02571248821914196 -0.049075447022914886 -0.0626433789730072 -0.04339105263352394 0.022740749642252922 -0.025265520438551903 0.003032136708498001 -0.007560505531728268 -0.029738804325461388 -0.03623504191637039 -0.007783872075378895 0.041229769587516785 -0.07728499174118042 -0.018610021099448204 -0.04125700891017914 -0.0987730398774147 -0.05976412817835808 -0.05933179333806038 0.0008580398862250149 -0.023084405809640884 0.06790314614772797 -0.0454244501888752 0.02006431482732296 0.052127715200185776 0.011207676492631435 0.04568267613649368 0.06921378523111343 0.03779815882444382 -0.01234742533415556 0.036394890397787094 -0.018610119819641113 0.008722675032913685 0.027831440791487694 -0.03583480045199394 0.0016812661197036505 0.0269766952842474 -0.051349371671676636 0.034119654446840286 -0.022978445515036583 0.02704099379479885 0.015314655378460884 -0.03825274109840393 0.025141194462776184 -0.011492523364722729 -0.015105871483683586 -0.0330546610057354 0.04221383109688759 -0.04186141490936279 -0.05965953692793846 0.010151725262403488 -0.06513198465108871 -0.11009518802165985 -0.05282231420278549 -0.020243540406227112 -0.019011953845620155 0.03182682767510414 -0.011777069419622421 0.021514244377613068 0.052346087992191315 -0.014194749295711517 -0.05598216503858566 0.007262301165610552 -0.021144837141036987 0.026638126000761986 0.024911057204008102 0.06406272202730179 0.007534690201282501 -0.006021983455866575 0.03573044389486313 -0.01826053485274315 -0.0028712276834994555 -0.09778573364019394 -0.0040845712646842 -0.011478385888040066 -0.026569906622171402 0.009351029060781002 0.016089648008346558 -0.014689979143440723 -0.07525265961885452 0.010360834188759327 -0.03685497120022774 0.0769137367606163 0.012618652544915676 0.023698804900050163 0.032960064709186554 -0.06636177003383636 -0.0090996865183115 0.014052252285182476 -0.0351649634540081 -0.09003538638353348 0.007577606476843357 -0.05955004319548607 0.046069372445344925 -0.011972150765359402 0.013213468715548515 -0.010576760396361351 -0.10998591780662537 0.024797745048999786 -0.011304586194455624 -0.03913705050945282 -0.023625647649168968 -0.0009740255773067474 -0.07980702072381973 -0.06845516711473465 0.018977927044034004 -0.08351874351501465 0.06712804734706879 0.034471649676561356 -0.003785267472267151 -0.022278346121311188 -0.004058638121932745 -0.013308273628354073 -0.014414261095225811 0.005720075219869614 -0.01756664551794529 -0.07899914681911469 -0.012484638951718807 0.08084272593259811 -0.05403291806578636 0.03483716398477554 0.09552904218435287 -0.013214100152254105 0.05177369341254234 0.020047619938850403 -0.026848891749978065 0.03191286697983742 -0.017492683604359627 0.0037501580081880093 0.03841888904571533 -0.0528239831328392 0.055847372859716415 -0.0852498784661293 0.10032334923744202 0.026396648958325386 0.0072677480056881905 0.06842910498380661 0.07213194668292999 -0.002103293314576149 0.03312214836478233 -0.08841554075479507 +0.041142452508211136 0.004038689192384481 -0.013646704144775867 0.04905233532190323 -0.07767851650714874 -0.056815583258867264 -0.005600369535386562 0.04480323567986488 0.0018946294439956546 -0.039034027606248856 -0.02541101537644863 -0.0036224774084985256 0.023764869198203087 0.01942973956465721 0.006663295440375805 -0.03398900106549263 -0.06951827555894852 0.01799400895833969 -0.01670929417014122 -0.0539635494351387 0.019965190440416336 0.02383861131966114 -0.06915409117937088 0.04689549282193184 0.0298600010573864 0.003692832076922059 -0.046607695519924164 -0.012554466724395752 0.008056696504354477 0.024993935599923134 0.04633432254195213 -0.035707987844944 0.05313107743859291 -0.04894599691033363 -0.055702921003103256 0.07026407122612 -0.04403771460056305 0.12305191159248352 0.004922407679259777 -0.031226670369505882 -0.07346762716770172 0.012016667053103447 -0.008797743357717991 -0.039277397096157074 -0.0002656052529346198 0.026672182604670525 -0.022241396829485893 0.006870342418551445 0.013826440088450909 0.020025676116347313 0.09689993411302567 0.0005136295803822577 -0.012562118470668793 -0.02121991105377674 -0.013322531245648861 0.013859564438462257 0.051266904920339584 -0.04151063784956932 -0.07305756211280823 0.02263793721795082 -0.07205789536237717 0.000595945748500526 0.0285334512591362 -0.0044559575617313385 -0.02545209601521492 -0.041358571499586105 -0.019423846155405045 0.09668248891830444 0.03063243255019188 -0.0014981819549575448 0.030200589448213577 0.08936087787151337 -0.05310610309243202 -0.05764239653944969 0.06911834329366684 -0.08492700010538101 -0.0401473268866539 0.06306758522987366 -0.006479625590145588 0.014249894767999649 0.007189613301306963 -0.0382789745926857 0.1140158474445343 -0.04010172188282013 -0.07079170644283295 -0.013250341638922691 0.0015969007508829236 -0.06202109903097153 0.053117696195840836 0.03226758539676666 0.010417859070003033 0.07539952546358109 -0.06826765835285187 0.04467497020959854 0.02303634211421013 -0.00362986302934587 0.042756590992212296 -0.11719048768281937 -0.06436879187822342 0.008799748495221138 -0.004514898173511028 -0.018018409609794617 0.048875000327825546 0.002201963448897004 0.03282790631055832 0.024834653362631798 -0.03550906851887703 0.014073731377720833 0.04119134321808815 0.04987224563956261 0.03057360090315342 0.07397224009037018 0.08707065135240555 0.03143167495727539 0.058819789439439774 -0.01796216145157814 0.025750422850251198 -0.033879272639751434 -0.05391443148255348 0.0008166695479303598 -0.0072546773590147495 0.049327295273542404 -0.021196691319346428 -0.08005352318286896 -0.05397256463766098 0.031032754108309746 -0.10087823122739792 -0.01433101948350668 0.06381309777498245 0.002081100130453706 0.11325167119503021 0.05644731596112251 -0.016868848353624344 0.032445814460515976 0.04695197567343712 0.031760357320308685 0.00968318060040474 0.04996981471776962 -0.0054120272397994995 -0.013467224314808846 -0.01562528684735298 0.03992408514022827 0.022291218861937523 -0.07609298825263977 0.04678768664598465 0.047652292996644974 0.053794678300619125 -0.029171636328101158 -0.059744711965322495 -0.017898138612508774 -0.0470636785030365 -0.10120058059692383 -0.016119375824928284 -0.05381585657596588 0.0004627388552762568 0.03063938207924366 0.005920458119362593 0.039106909185647964 -0.027913782745599747 -0.01072482019662857 -0.045730046927928925 -0.019155964255332947 -0.011132033541798592 -0.0722569078207016 -0.025645598769187927 -0.024229248985648155 -0.02074274979531765 0.018777834251523018 -0.07395622879266739 -0.01189515832811594 -0.0026217112317681313 -0.018728697672486305 0.04669032245874405 0.09455936402082443 0.07560029625892639 0.00590096740052104 0.03967242315411568 -0.0452243871986866 -0.006930709816515446 -0.026897236704826355 0.009914296679198742 -0.039148084819316864 0.027490613982081413 -0.05880952626466751 0.014006456360220909 0.015041469596326351 0.07785831391811371 -0.026316294446587563 0.014544152654707432 0.005532576236873865 -0.03739049658179283 -0.04845651611685753 0.044468868523836136 0.06146395951509476 -0.020228054374456406 0.033146508038043976 -0.03744465485215187 0.054801687598228455 -0.005875651724636555 -0.012415070086717606 -0.04732127860188484 0.04179047420620918 0.0019143198151141405 0.04879879578948021 0.025877902284264565 -0.06738005578517914 0.08093392103910446 0.01918676868081093 0.02496827393770218 -0.07478291541337967 -0.0019848502706736326 0.013264933601021767 0.005319541785866022 0.05321953818202019 0.07782677561044693 -0.012873096391558647 0.0009805008303374052 0.0027463589794933796 0.06486830115318298 -0.048117853701114655 -0.015138750895857811 -0.025272196158766747 -0.08659593015909195 0.021383078768849373 -0.040331535041332245 -0.08507690578699112 -0.04197108373045921 0.03409745916724205 -0.013420984148979187 -0.04811025783419609 -0.005353094078600407 0.0345008410513401 0.002839548047631979 -0.03969702497124672 -0.015892744064331055 -0.018548499792814255 -0.09503169357776642 0.09149052202701569 0.01792094111442566 -0.07182957231998444 -0.06284117698669434 -0.020983126014471054 0.02056831680238247 -0.011294975876808167 0.04277122765779495 0.07493099570274353 0.09070917218923569 0.03466597571969032 -0.0031867672223597765 0.017443107441067696 -0.043554238975048065 -0.05420517176389694 -0.0031088346149772406 0.04866907000541687 -0.05474985018372536 -0.015899619087576866 0.010813348926603794 -0.04742730036377907 0.004830705467611551 0.008048408664762974 0.007283871527761221 -0.028444413095712662 -0.04434114322066307 -0.03819248825311661 0.024675024673342705 -0.045088715851306915 -0.031183574348688126 0.03281440585851669 -0.010092436335980892 0.0857076421380043 -0.00896257534623146 -0.03990541398525238 0.027593830600380898 0.012848981656134129 0.027436211705207825 -0.018608322367072105 0.08497757464647293 -0.009590770117938519 -0.06972736120223999 -0.010726086795330048 -0.055426958948373795 -0.0629977434873581 -0.0275910384953022 -0.05650489404797554 -0.04180770739912987 0.07687221467494965 -0.010928532108664513 -0.050340745598077774 -0.06131165102124214 -0.011964148841798306 -0.01134983915835619 -0.0909208133816719 -0.027364162728190422 0.004452016670256853 -0.05805401876568794 -0.04566345363855362 0.017728229984641075 -0.027821151539683342 -0.02075098268687725 0.010732138529419899 -0.016344400122761726 -0.057148393243551254 0.05976526066660881 -0.02506842277944088 -0.015936972573399544 -0.006890560500323772 -0.06170326843857765 0.019021065905690193 0.09549069404602051 0.04269222915172577 0.02636953443288803 0.0548640638589859 0.039409954100847244 0.13231565058231354 0.03619886934757233 -0.045593585819005966 -0.0028526345267891884 -0.05983418598771095 -0.06202755495905876 0.04646727442741394 -0.03181722015142441 -0.020933594554662704 -0.010303034447133541 0.009159687906503677 0.04031209275126457 0.03613409399986267 -0.039440326392650604 -0.019456902518868446 0.04287118837237358 -0.026875587180256844 0.0364781953394413 -0.004940368235111237 -0.006953372620046139 -0.014675325714051723 -0.050496190786361694 -0.04324466735124588 -0.022014234215021133 0.02481977269053459 -0.01204331312328577 0.055446188896894455 -0.016996778547763824 -0.03766987472772598 0.002059451537206769 -0.014348052442073822 0.10501440614461899 -0.07447018474340439 -0.021218515932559967 0.05054484307765961 0.03666152060031891 -0.09192433953285217 0.0025836012791842222 0.047949157655239105 -0.03463231772184372 -0.03918744996190071 -0.015340028330683708 0.016822315752506256 -0.06742128729820251 0.005067792255431414 0.004290583077818155 -0.052789412438869476 0.003786579705774784 -0.00030159312882460654 0.013314162380993366 0.023584267124533653 -0.01996113359928131 -0.018242930993437767 0.007413723040372133 0.008323537185788155 0.01978132873773575 -0.04219319671392441 -0.0006029930664226413 -0.048534244298934937 0.045376162976026535 -0.047991249710321426 -0.021836744621396065 -0.04703252390027046 0.04304027557373047 -0.0058462051674723625 -0.035488974303007126 -0.002662832383066416 0.004909535404294729 -0.002757730195298791 0.012736614793539047 0.0304107703268528 -0.054806679487228394 -0.03238542005419731 -0.06583255529403687 -0.04380793124437332 -0.07133843749761581 -0.042144306004047394 0.01636507362127304 -0.07159902155399323 0.0064904410392045975 -0.024101324379444122 -0.026630952954292297 -0.0071179806254804134 0.002394935116171837 0.04160180315375328 0.0597611740231514 0.04479604586958885 -0.02417094074189663 0.04972434043884277 0.00962095707654953 0.03973971679806709 0.03611130639910698 -0.0387997031211853 0.01310246717184782 0.036993689835071564 -0.042997606098651886 0.05698954313993454 -0.03528241440653801 0.03398628532886505 -0.006595277693122625 0.00646876310929656 0.02104300819337368 -0.03292584419250488 0.006760907359421253 -0.018311558291316032 0.051614005118608475 -0.06839936971664429 -0.045924924314022064 0.04099865257740021 -0.04708219692111015 -0.09522410482168198 -0.03127524256706238 0.005131498910486698 -0.02081814967095852 0.031273625791072845 -0.001520685851573944 0.037776969373226166 0.040839534252882004 -0.048762284219264984 -0.07774831354618073 -0.026639774441719055 -0.023039868101477623 0.06271953880786896 -0.02301320619881153 0.04022713005542755 0.018463172018527985 0.006518959067761898 0.013205938041210175 -0.008609116077423096 0.016008520498871803 -0.08923176676034927 -0.009459814056754112 -0.0193556509912014 -0.06592944264411926 0.029315205290913582 -0.0015822222921997309 -0.0035271451342850924 -0.047517336905002594 -0.014719907194375992 -0.05308754742145538 0.06329565495252609 -0.019091293215751648 -0.014434435404837132 0.03421594575047493 -0.020159713923931122 0.017682429403066635 0.024669045582413673 -0.039764586836099625 -0.06705363094806671 0.02120417170226574 -0.0045212325640022755 0.03634025901556015 0.027073722332715988 0.021452646702528 -0.028684400022029877 -0.082585908472538 -0.00202383054420352 0.017984014004468918 -0.08167541027069092 0.023769576102495193 -0.011766458861529827 -0.10230521857738495 -0.07008999586105347 0.01274428702890873 -0.039712242782115936 0.06111079826951027 0.017779920250177383 0.03188898414373398 -0.02595391310751438 -0.0032340127509087324 -0.012175379320979118 -0.051893386989831924 0.011520749889314175 -0.011699194088578224 -0.022769322618842125 -0.03860975056886673 0.07355830818414688 -0.03996313735842705 0.0023356396704912186 0.06356003135442734 -0.04582830145955086 0.04572046548128128 0.032347291707992554 -0.04752129688858986 0.08147669583559036 -0.0026317364536225796 -0.046400606632232666 0.06570146232843399 -0.08053608238697052 0.10850611329078674 -0.05929611250758171 0.08433989435434341 0.015674438327550888 -0.004093796946108341 0.08067649602890015 0.07697618752717972 -0.02095331810414791 0.02307688072323799 -0.07870196551084518 +0.06120112165808678 -0.01962697133421898 0.0040221745148301125 0.0027874575462192297 -0.07945582270622253 -0.08646202832460403 -0.031749311834573746 0.08497671782970428 -0.004497643560171127 -0.04227311164140701 -0.05727672949433327 -0.0036056519020348787 0.017830494791269302 0.008912833407521248 0.04153822734951973 -0.014221149496734142 -0.045901648700237274 0.005349806975573301 -0.041513461619615555 -0.017402129247784615 0.0781669020652771 0.011913876980543137 -0.0559859573841095 0.0531548410654068 0.030496522784233093 0.010763305239379406 -0.03586765378713608 0.03088662214577198 0.002511061495169997 0.028271866962313652 0.02068782038986683 -0.04148854315280914 0.04286433756351471 -0.058666862547397614 -0.020531071349978447 0.023729849606752396 -0.0667264387011528 0.09460868686437607 0.011205680668354034 -0.032303497195243835 -0.0494939386844635 0.03427691385149956 -0.019221140071749687 -0.04607635736465454 0.02709437720477581 0.05233113095164299 0.006530703976750374 -0.014926746487617493 -0.012441830709576607 0.04720142483711243 0.07211451232433319 -0.014785713516175747 -0.010212008841335773 -0.024995582178235054 0.011442714370787144 0.010624362155795097 0.043737608939409256 -0.038429345935583115 -0.054905232042074203 0.021828047931194305 -0.10587359964847565 -0.009412841871380806 -0.009141219779849052 0.012039809487760067 -0.030220642685890198 -0.031562793999910355 0.003220997517928481 0.08013848960399628 0.03857823461294174 -0.04505747929215431 0.032374750822782516 0.06717675924301147 -0.0805019661784172 -0.04416991025209427 0.04895609989762306 -0.04276368021965027 0.010017982684075832 0.04934293031692505 -0.008162971585988998 -0.0016666335286572576 0.014176907017827034 -0.02787412330508232 0.13927815854549408 -0.08259224891662598 -0.09773281961679459 -0.027465054765343666 -0.01915513537824154 -0.057241808623075485 0.040637288242578506 0.0194187443703413 -0.008593365550041199 0.05430135130882263 -0.03290170803666115 0.00419213529676199 -0.022068187594413757 0.028279775753617287 0.012519719079136848 -0.10856803506612778 -0.03399631008505821 -0.02362058125436306 -0.04613572731614113 -0.0027484132442623377 0.044863250106573105 0.038790520280599594 0.03682209923863411 0.02710121124982834 -0.010979650542140007 0.008844653144478798 0.014090300537645817 0.045592308044433594 -0.008635942824184895 0.04842761531472206 0.10220722109079361 0.03379032388329506 0.07432761043310165 -0.012157956138253212 0.007078771013766527 -0.011639535427093506 -0.035786453634500504 -0.014839868992567062 0.011268068104982376 0.060483016073703766 -0.0004048254922963679 -0.10729449987411499 0.009726817719638348 0.06839819252490997 -0.09040811657905579 -0.038563210517168045 0.04030894488096237 -0.0626126378774643 0.10776042938232422 0.05594364181160927 -0.05206867679953575 0.022775568068027496 0.07163021713495255 0.01663016900420189 0.009908351115882397 0.04439062625169754 0.001423325389623642 -0.07150495797395706 -0.008336393162608147 0.019429977983236313 -0.014025619253516197 -0.08220534026622772 0.05413876473903656 0.05778275430202484 0.044966861605644226 -0.03486333042383194 -0.07241256535053253 0.0025882686022669077 -0.08070948719978333 -0.10098037123680115 -0.025686798617243767 -0.03809557855129242 -0.028872819617390633 0.008246766403317451 -0.014762908220291138 -0.0011461729882284999 -0.039552588015794754 0.002403711900115013 -0.06350947171449661 -0.04466075077652931 -0.023991581052541733 -0.05915983021259308 -0.01446892973035574 0.01744658313691616 -0.000646955450065434 0.011223668232560158 -0.07798714190721512 -0.04411998391151428 -0.01453969907015562 -0.015065866522490978 0.035940635949373245 0.061381611973047256 0.07766430079936981 0.005732267629355192 0.02503185160458088 -0.039950840175151825 -0.01601300574839115 -0.02195700816810131 0.03440658375620842 -0.03719625994563103 0.052219923585653305 -0.04936232790350914 0.025435762479901314 -0.021520618349313736 0.008628123439848423 -0.05447996035218239 0.058702822774648666 -0.010496847331523895 -0.0019119374919682741 -0.02592950500547886 0.04457707703113556 0.07836578786373138 -0.017516955733299255 0.06617001444101334 -0.013047573156654835 0.03714685142040253 -0.06816688925027847 -0.05185384675860405 -0.0335080586373806 0.0428449884057045 0.031392741948366165 0.044942066073417664 0.004524869378656149 -0.0539548359811306 0.0650871992111206 0.039380621165037155 0.003692700993269682 -0.05704092979431152 0.07492972165346146 0.07229475677013397 -0.004342477302998304 0.03778831660747528 0.07567286491394043 -0.02877025306224823 0.002467493060976267 -0.03400244191288948 0.024310177192091942 -0.053500063717365265 -0.01870117150247097 0.013364174403250217 -0.10381104797124863 0.022129489108920097 -0.06432542949914932 -0.04632365703582764 -0.02317507565021515 0.04495793953537941 -0.00648256903514266 -0.046669088304042816 -0.03176732733845711 0.003236456774175167 0.018898621201515198 -0.035457320511341095 -0.0005700322799384594 0.016387129202485085 -0.08120308071374893 0.0750039592385292 0.022657182067632675 -0.04294346272945404 -0.059350091964006424 0.02670114114880562 0.03455743566155434 -0.010754204355180264 0.023861927911639214 0.05614370107650757 0.08014348149299622 0.015110352076590061 -0.007468237541615963 0.0008991024806164205 -0.04354635626077652 -0.010410000570118427 -0.010496887378394604 0.005385469179600477 -0.02952319011092186 -0.02512187510728836 0.020710153505206108 -0.04601077735424042 -0.06005053222179413 -0.0031806814949959517 0.02558823861181736 -0.05626038834452629 -0.04050397127866745 -0.03302539139986038 -0.005532110575586557 -0.03207659721374512 -0.04113349691033363 0.04506724327802658 -0.015872379764914513 0.06467393040657043 -0.0369880236685276 0.0073234024457633495 0.06069200113415718 -0.028144359588623047 0.014222543686628342 -0.052237171679735184 0.08124872297048569 -0.014644998125731945 -0.03115859255194664 -0.013440048322081566 -0.0737261176109314 -0.07871966809034348 -0.006241403520107269 -0.055474650114774704 0.010413172654807568 0.10005579888820648 0.07120052725076675 -0.04956429824233055 -0.09058358520269394 -0.024885332211852074 -0.01691177487373352 -0.037613656371831894 -0.005570149514824152 0.023749088868498802 -0.03982599824666977 -0.02772052027285099 0.022727016359567642 -0.04336973652243614 -0.021329062059521675 0.0028500414919108152 -0.013630359433591366 -0.09856821596622467 0.034134991466999054 -0.02174992673099041 -0.020557653158903122 0.03370222449302673 -0.04659692570567131 0.0010546570410951972 0.09035854041576385 0.07026357203722 -0.002913985401391983 0.044643886387348175 0.012694630771875381 0.12328333407640457 -0.024699967354536057 -0.003436160273849964 -0.03636588528752327 -0.03430252894759178 -0.037222616374492645 0.03602660074830055 -0.03826940432190895 -0.022378114983439445 -0.012004587799310684 -0.025855690240859985 0.029508322477340698 -0.004143802914768457 -0.04771901294589043 -0.03152400255203247 -0.010373582132160664 -0.02315298095345497 0.018344713374972343 0.017096221446990967 0.020985117182135582 -0.03345733880996704 -0.03322187811136246 -0.03776436671614647 -0.03796946629881859 0.0461256317794323 -0.028681859374046326 0.03852476552128792 -0.040962181985378265 -0.020758602768182755 -0.024898435920476913 0.03883044421672821 0.08964136242866516 -0.03840119391679764 0.03834117576479912 0.08167341351509094 0.021026795729994774 -0.07846608757972717 0.02332291193306446 0.02972416952252388 -0.0048113251104950905 -0.03771521896123886 -0.023542338982224464 0.0353645421564579 -0.07152356207370758 -0.029043596237897873 -0.00599493645131588 -0.023312965407967567 0.026587193831801414 0.016877273097634315 0.03724270313978195 0.05151462182402611 -0.012909515760838985 -0.008297390304505825 -0.014772159978747368 -0.003715111641213298 0.06548120826482773 -0.01488411333411932 0.01110444962978363 -0.007855908013880253 0.04406159371137619 -0.08555138856172562 -0.05606299266219139 -0.003417566418647766 0.04982813447713852 -0.03539269417524338 -0.007500004954636097 -0.004518292844295502 -0.014555200934410095 -0.012940379790961742 0.06009279191493988 0.012167016044259071 -0.029565131291747093 -0.015816649422049522 -0.0004511841107159853 -0.07658234238624573 -0.09656767547130585 -0.0695922002196312 -0.009599721990525723 -0.037219371646642685 0.018043024465441704 -0.011521355248987675 0.017160579562187195 0.007762897294014692 0.015604889020323753 0.051070764660835266 0.07169442623853683 0.04260997474193573 0.0034049679525196552 0.046614278107881546 0.02084745652973652 0.0431365966796875 0.011817090213298798 -0.052159592509269714 0.00040965978405438364 0.013715438544750214 -0.0485771968960762 0.05546580255031586 -0.046808067709207535 -0.004637742880731821 -0.020012006163597107 -0.014233402907848358 0.014318311586976051 -0.0018698724452406168 0.04792937636375427 -0.0433548279106617 0.09052644670009613 -0.06847485154867172 -0.0366445928812027 0.05314456671476364 -0.0083250030875206 -0.08524118363857269 -0.0447128564119339 -0.05586102977395058 -0.024402417242527008 0.009190059266984463 -0.026516519486904144 -0.0004439564363565296 0.02542976289987564 -0.034336935728788376 -0.04482634365558624 -0.017907002940773964 0.018380677327513695 0.058127086609601974 0.021290024742484093 0.061034344136714935 0.053689513355493546 0.013510859571397305 0.003708590054884553 -0.04147176817059517 0.027583017945289612 -0.06145651265978813 0.03640061244368553 -0.011836809106171131 0.010654681362211704 -0.004023035988211632 0.001515243318863213 0.036229923367500305 -0.07365435361862183 -0.020247885957360268 -0.04497511684894562 0.06395129859447479 0.011197280138731003 0.021990470588207245 0.06467775255441666 -0.06876805424690247 -0.04133150354027748 -0.005617816001176834 -0.03973083570599556 -0.09160546213388443 -0.013574455864727497 -0.04026609659194946 0.054484039545059204 0.021702518686652184 -0.004723010119050741 -0.00789326336234808 -0.05645131692290306 0.041105322539806366 0.03283856809139252 -0.0059436047449707985 0.025542574003338814 0.04772919788956642 -0.05285090580582619 -0.034574445337057114 -0.014216730371117592 -0.02294972352683544 0.04100646451115608 0.03164597973227501 0.008324834518134594 -0.04455462470650673 0.006077433004975319 0.006734127178788185 -0.03475300222635269 0.001949226832948625 0.017631493508815765 -0.04778329282999039 0.007960768416523933 0.10020048916339874 -0.04522665962576866 0.012972036376595497 0.07746502757072449 -0.05658181011676788 0.02683802880346775 0.029248448088765144 0.015398594550788403 0.034532345831394196 -0.017662251368165016 -0.02964191697537899 0.059153009206056595 -0.08876406401395798 0.05692051351070404 -0.09102831035852432 0.08139623701572418 0.031107479706406593 -0.04251628741621971 0.08985266834497452 0.043645698577165604 0.026746658608317375 0.002402976155281067 -0.1090032160282135 +0.0024272336158901453 -0.05989371985197067 -0.045824699103832245 0.0824299231171608 -0.08106473833322525 -0.06343254446983337 -0.0036556601990014315 0.041777003556489944 -0.04475880414247513 -0.010610923171043396 -0.03878934308886528 -0.016087664291262627 -0.03300394490361214 -0.0197706650942564 0.016628319397568703 0.009698471985757351 -0.0627666637301445 0.04547936096787453 -0.04060953110456467 -0.03591732308268547 0.03256164863705635 0.020576344802975655 -0.10058079659938812 0.054856643080711365 0.01218008529394865 0.00458165816962719 -0.04712902382016182 0.005491407122462988 0.012097576633095741 0.026256486773490906 0.018182143568992615 -0.014910570345818996 0.03557729348540306 -0.030860289931297302 -0.06728669255971909 0.04976101219654083 -0.02432123012840748 0.08200372010469437 0.0025163372047245502 0.0017035235650837421 -0.05771378055214882 0.013672486878931522 -0.036158714443445206 -0.06045539304614067 0.04683571308851242 0.019581954926252365 0.017331628128886223 -0.045922089368104935 0.05986132472753525 0.0889120027422905 0.1027723029255867 0.0038554405327886343 0.02657625637948513 0.004016130231320858 -0.021034736186265945 -0.009975006803870201 0.020953528583049774 -0.02512677013874054 -0.05766289308667183 0.006819476373493671 -0.05846400558948517 -0.00951853021979332 0.007870551198720932 -0.0060742502100765705 -0.026609886437654495 0.011711394414305687 0.0061363764107227325 0.11482692509889603 0.009979506023228168 -0.03622236102819443 -0.0022350624203681946 0.0805768221616745 -0.05839627981185913 -0.010188826359808445 0.041345223784446716 -0.02561492845416069 -0.017078498378396034 0.0672762542963028 -0.011438329704105854 -0.011839467100799084 0.013322879560291767 -0.021733080968260765 0.13817466795444489 -0.042362019419670105 -0.05586061254143715 0.001446736278012395 -0.0018369946628808975 -0.043211933225393295 0.059355683624744415 0.028151048347353935 0.02624807134270668 0.07093588262796402 -0.06856538355350494 0.05599680542945862 0.0119763920083642 0.04912002384662628 0.0621773898601532 -0.1398438662290573 -0.06508735567331314 0.03134872019290924 -0.03253795951604843 -0.049099646508693695 0.07882456481456757 -0.03693452104926109 0.013489359989762306 -0.006208224222064018 -0.039720043540000916 -0.040815677493810654 -0.006876056082546711 0.014071500860154629 0.03474276140332222 0.06985043734312057 0.08079124242067337 0.041867319494485855 0.04413097724318504 -0.018839320167899132 0.0006143799982964993 -0.0362900085747242 -0.054122619330883026 0.03979535028338432 0.0030452837236225605 0.03600478917360306 -0.006131862755864859 -0.038968391716480255 -0.023545900359749794 0.024604598060250282 -0.10753452777862549 -0.008726242929697037 0.07541293650865555 -0.052974481135606766 0.1274208277463913 0.005882425233721733 -0.0161377415060997 0.02613206021487713 0.06250064820051193 -0.0027257453184574842 0.02224128134548664 0.028773784637451172 -0.006741413846611977 0.0013297128025442362 -0.02164393849670887 0.06572838872671127 0.0013010113034397364 -0.03949761390686035 0.03988517448306084 0.06973832845687866 0.012056765146553516 -0.021900998428463936 -0.042730581015348434 0.013260853476822376 -0.07713945209980011 -0.06255273520946503 -0.03322222828865051 -0.08662499487400055 0.010862848721444607 0.02712973952293396 0.01352999173104763 0.06456682831048965 -0.025967301800847054 0.012024054303765297 -0.05677231773734093 -0.05352918431162834 -0.01997571811079979 -0.048814959824085236 -0.04603257775306702 0.008512076921761036 -0.042017094790935516 -0.008770844899117947 -0.003546640044078231 -0.030954135581851006 -0.035639867186546326 -0.005827009677886963 0.038714684545993805 0.08513818681240082 0.05022476613521576 0.03505721315741539 0.03059583343565464 -0.0212249755859375 -0.019429316744208336 -0.05893060192465782 0.001380106550641358 -0.05292315408587456 0.0558980368077755 -0.01344774104654789 -0.01922905258834362 -0.009844254702329636 0.046437811106443405 -0.05765344947576523 0.015081353485584259 0.006345583125948906 -0.030778244137763977 -0.03861211612820625 0.057420309633016586 0.1178450733423233 -0.05411611497402191 0.05136020854115486 -0.04076429456472397 0.07561928778886795 -0.04714971408247948 -0.0005443895352073014 -0.06715159863233566 0.05170253664255142 -0.008702153339982033 0.04034584388136864 0.019458144903182983 -0.0976012647151947 0.0884079784154892 0.05263668671250343 -0.00500531168654561 -0.07394088804721832 0.027189774438738823 0.02611628733575344 0.026707187294960022 0.08058404922485352 0.045114047825336456 0.01329654548317194 -0.042443450540304184 0.019774187356233597 0.013588056899607182 -0.03292679786682129 0.022522905841469765 0.0017231006640940905 -0.07811278849840164 0.026214584708213806 -0.042739637196063995 -0.07965116202831268 -0.025871939957141876 0.006933184806257486 -0.0011208576615899801 0.004436952993273735 -0.0007112004677765071 0.03553730994462967 -0.0023358208127319813 -0.05967434123158455 -0.02671987935900688 0.010783410631120205 -0.06081908196210861 0.0968029648065567 -0.004774575587362051 -0.05273503437638283 -0.07999615371227264 0.020729830488562584 -0.014447302557528019 0.037856411188840866 0.021533271297812462 0.03354763239622116 0.09466437250375748 0.04485425725579262 0.02302379347383976 -0.014507139101624489 -0.06933058053255081 -0.024142678827047348 -0.01027576345950365 0.01953992061316967 -0.04694290831685066 -0.032065391540527344 -0.00035566583392210305 -0.07950590550899506 -0.0051970165222883224 0.018821636214852333 0.046325214207172394 -0.019510144367814064 -0.06748862564563751 -0.006453219335526228 0.008707372471690178 -0.0332166962325573 -0.055580299347639084 -0.005555795505642891 -0.03035827726125717 0.03269335255026817 -0.05883152410387993 -0.03454464673995972 0.012706339359283447 0.010747002437710762 0.05154018476605415 -0.03278910741209984 0.03324946388602257 -0.03261195123195648 -0.0883331149816513 0.01980082131922245 -0.06765129417181015 -0.07345956563949585 -0.04578157886862755 -0.014200236648321152 -0.021688880398869514 0.09818385541439056 0.015429025515913963 -0.03452106937766075 -0.059235505759716034 -0.016507258638739586 -0.04171288385987282 -0.04515380039811134 0.017166560515761375 0.0019028818933293223 -0.06331607699394226 -0.025645093992352486 0.019817642867565155 -0.01643446832895279 -0.015857957303524017 0.03969321772456169 -0.010283004492521286 -0.05303439870476723 0.10116919875144958 0.021372798830270767 -0.0033732219599187374 0.0016763329040259123 -0.045893047004938126 0.025258099660277367 0.08077225834131241 0.020138490945100784 0.03978055715560913 0.09059404581785202 0.043795689940452576 0.07907214015722275 0.027186140418052673 -0.01158476434648037 -0.015462945215404034 -0.027538780122995377 -0.029603980481624603 0.05152973532676697 -0.0012020044960081577 -0.019529346376657486 0.011504564434289932 0.004330618306994438 0.0804847702383995 -0.021785136312246323 -0.03348122909665108 -0.0585448332130909 -0.000708036997821182 0.026160795241594315 0.0028434123378247023 0.009036208502948284 -0.012786628678441048 -0.001083133276551962 -0.061398137360811234 -0.005720228888094425 -0.04636237025260925 0.022240621969103813 -0.01414934080094099 0.03505014255642891 -0.0039189597591757774 -0.018467165529727936 0.03858477994799614 -0.017328418791294098 0.10292579978704453 -0.07570730149745941 -0.006029544863849878 0.057499952614307404 0.038873814046382904 -0.07172563672065735 -0.010093600489199162 0.03657237067818642 -0.05259178951382637 -0.04396132752299309 0.011508198454976082 0.03828989714384079 -0.049231402575969696 -0.015161252580583096 -0.0034627707209438086 -0.05077182129025459 -0.014288672246038914 0.0005120398127473891 0.028962455689907074 0.046567242592573166 0.02016649767756462 -0.030311230570077896 0.010996843688189983 0.030120210722088814 0.003392682643607259 -0.056832458823919296 0.04654240980744362 -0.00385523634031415 0.049394391477108 -0.053797706961631775 -0.07944001257419586 -0.044925618916749954 0.025951053947210312 -0.01405002735555172 -0.04651933163404465 -0.06212877482175827 -0.009790030308067799 0.02037992887198925 0.063625268638134 0.012021981179714203 -0.048927128314971924 -0.02111409232020378 -0.05866052210330963 -0.08253955096006393 -0.09057808667421341 -0.029470151290297508 -0.0016184510895982385 -0.04127383977174759 0.025629309937357903 -0.07478581368923187 -0.02534271590411663 -0.0024166402872651815 -0.017484959214925766 0.032179996371269226 0.0578332282602787 0.04128413647413254 -0.015039699152112007 0.02738315984606743 -0.032988909631967545 0.04557310789823532 0.005541963502764702 -0.05277952179312706 0.04469844698905945 0.03374800086021423 -0.04957732558250427 0.028063038364052773 -0.050952017307281494 -0.031217582523822784 -0.0057801916263997555 -0.026786217465996742 0.015893101692199707 0.014365491457283497 0.005689702928066254 -0.05459339916706085 0.03272778540849686 -0.06261226534843445 -0.02919493056833744 0.05917660892009735 0.006271096412092447 -0.06756465882062912 -0.051448922604322433 -0.017221443355083466 0.029960790649056435 0.05818910896778107 -0.02123061940073967 0.010041049681603909 0.034087084233760834 -0.04693301022052765 -0.04340243712067604 -0.04702502489089966 -0.005653988104313612 0.024544361978769302 0.028165021911263466 0.05141483247280121 0.01779758743941784 -0.010864980518817902 -0.028599875047802925 -0.013482930138707161 -0.026176756247878075 -0.048333220183849335 -0.021220995113253593 -0.007778363302350044 0.016543954610824585 0.0399329736828804 0.00710990559309721 -0.026582062244415283 -0.023758353665471077 -0.010574114508926868 -0.029092729091644287 0.06910264492034912 0.010951965115964413 0.006387334782630205 0.05976167693734169 -0.02295384183526039 -0.0036927873734384775 0.027274787425994873 -0.020097574219107628 -0.05480750650167465 0.012400452047586441 -0.009720290079712868 0.0464925691485405 0.042237233370542526 0.03582139313220978 -0.04456670582294464 -0.05232319235801697 -0.02427820675075054 0.014018816873431206 -0.039157114923000336 -0.012085550464689732 0.0436822809278965 -0.06151799112558365 -0.05322176218032837 -0.022226087749004364 -0.05423365905880928 0.09172583371400833 0.0319480337202549 0.03721895441412926 -0.03801478445529938 -0.0007271153153851628 0.008836030960083008 -0.015449040569365025 -0.01838555559515953 -0.00852595828473568 -0.08231407403945923 -0.022898713126778603 0.08308585733175278 -0.02433968149125576 0.040971267968416214 0.07433643937110901 -0.04800812900066376 0.06389392167329788 0.0024299905635416508 0.01616322249174118 0.07127892225980759 0.013860468752682209 -0.010243188589811325 0.04965556040406227 -0.05934612825512886 0.09368078410625458 -0.03401277959346771 0.07679129391908646 0.026339903473854065 -0.026861773803830147 0.09277184307575226 0.08073411881923676 -0.01277836412191391 0.012422218918800354 -0.05558563396334648 +0.03465953469276428 -0.026303991675376892 -0.025571081787347794 0.04255791753530502 -0.07350044697523117 -0.028754649683833122 -0.0035899861250072718 0.04100850224494934 -0.004843811970204115 -0.06125391274690628 -0.0344596691429615 -0.035951897501945496 0.016877857968211174 0.0013826413778588176 0.031482599675655365 -0.06201238930225372 -0.07649169117212296 0.02358057349920273 -0.012243791483342648 -0.058213021606206894 0.0060790786519646645 0.010739177465438843 -0.06601182371377945 0.04501015320420265 0.013739265501499176 0.020042570307850838 -0.044359758496284485 0.0018276649061590433 -0.012144467793405056 0.04154413565993309 0.07479513436555862 -0.012273238971829414 0.05604758486151695 -0.07465095072984695 -0.05860431492328644 0.035096921026706696 -0.040205154567956924 0.13109776377677917 0.012055949307978153 -0.07331854850053787 -0.06922043859958649 0.0035103841219097376 -0.032534170895814896 -0.07154981791973114 0.04348514974117279 -0.016548901796340942 -0.02011222019791603 -0.021059593185782433 0.014275231398642063 0.0029504732228815556 0.09139276295900345 0.009176610969007015 -0.02209819294512272 -0.02008911222219467 -0.04189901426434517 0.02462877333164215 0.0318257100880146 -0.04046614468097687 -0.0605480894446373 0.04190376028418541 -0.08492257446050644 -0.005339822731912136 0.02197359874844551 0.016768110916018486 -0.03552964702248573 -0.03851312771439552 -0.004691663198173046 0.06641305238008499 0.006367582827806473 0.00024350511375814676 -0.0015025106258690357 0.0899290144443512 -0.05765416473150253 -0.06405063718557358 0.04792654886841774 -0.07090645283460617 -0.016806192696094513 0.01354573667049408 0.009359467774629593 0.015636160969734192 0.020306088030338287 -0.009358485229313374 0.13953107595443726 -0.037932269275188446 -0.03031860664486885 -0.01915695145726204 -0.009143232367932796 -0.05646869167685509 0.06642203032970428 0.022143013775348663 0.010699019767343998 0.05442981421947479 -0.018937550485134125 0.057525891810655594 0.030761219561100006 0.02117268554866314 0.025636468082666397 -0.12012838572263718 -0.029319707304239273 -0.009480084292590618 0.009142206981778145 -0.029974626377224922 0.056792426854372025 0.018862634897232056 0.04362170398235321 0.041064776480197906 -0.06608139723539352 0.011044099926948547 0.04740418121218681 0.03121105022728443 0.029685864225029945 0.11743530631065369 0.055068936198949814 0.015294774435460567 0.055489908903837204 0.011287221685051918 0.014948638156056404 -0.0488223060965538 -0.02165449596941471 0.04604503512382507 -0.012324611656367779 0.020713485777378082 -0.0181647390127182 -0.06835437566041946 -0.028572671115398407 0.041220568120479584 -0.07933378219604492 -0.029486386105418205 0.03972319886088371 -0.02730710059404373 0.12780746817588806 0.06262701749801636 -0.01063245814293623 0.03866497054696083 0.05023610219359398 0.03551061078906059 0.014762171544134617 0.02444325014948845 -0.009619612246751785 -0.03715725243091583 -0.04834549129009247 0.0658266693353653 -0.008293496444821358 -0.046206194907426834 0.05068284645676613 0.02837866172194481 0.04641206935048103 -0.025869684293866158 -0.07720352709293365 0.008868138305842876 -0.08443117886781693 -0.07248766720294952 0.02127099223434925 -0.06968054920434952 0.014244609512388706 0.03594214841723442 0.014958648942410946 0.021896615624427795 0.016260016709566116 -0.02815506048500538 -0.03360230103135109 -0.042476002126932144 0.0007562035461887717 -0.10053861886262894 -0.030503280460834503 -0.03240935876965523 -0.014038635417819023 0.022367550060153008 -0.05695740133523941 -0.00887517910450697 0.014685689471662045 0.0039180004969239235 0.04277784749865532 0.07552991062402725 0.03288830816745758 0.02464889921247959 0.014986124821007252 -0.04532531276345253 -0.011228961870074272 -0.024929219856858253 0.03309805318713188 -0.03515954688191414 0.022871598601341248 -0.04951167479157448 0.02961713634431362 0.00439674174413085 0.05316450819373131 -0.004342956934124231 0.03384143114089966 0.0010343913454562426 -0.04727914556860924 -0.07032936811447144 0.040382642298936844 0.04158147796988487 -0.003908188082277775 0.03906422480940819 0.008681739680469036 0.05695343390107155 -0.015320010483264923 -0.03015446849167347 -0.03168051317334175 0.029434222728013992 0.018915416672825813 0.043615978211164474 0.004184254445135593 -0.049581341445446014 0.08057792484760284 0.019821636378765106 0.04027721658349037 -0.05616767331957817 0.01890181191265583 0.025668535381555557 0.0009497826686128974 0.03985913097858429 0.0790054127573967 -0.018714314326643944 -0.005265634506940842 0.023710433393716812 0.0728587731719017 -0.05978686735033989 0.0017353291623294353 0.0046160356141626835 -0.10326908528804779 0.038234785199165344 -0.04670066758990288 -0.1037614569067955 -0.031114822253584862 0.025841593742370605 -0.0327632911503315 -0.06893233209848404 0.011472172103822231 0.03647492453455925 -0.010367527604103088 -0.014102429151535034 -0.022028282284736633 -0.002623768523335457 -0.08464706689119339 0.08293735235929489 -0.0065587288700044155 -0.09579934179782867 -0.05276305228471756 -0.007277250289916992 -0.005326246842741966 -0.011276023462414742 0.0306625384837389 0.05783071741461754 0.09646768867969513 0.02482832968235016 -0.035244207829236984 0.04153168201446533 -0.05470465496182442 -0.07419703900814056 0.013425170443952084 0.04812601953744888 -0.03934672474861145 -0.03980370983481407 0.0059803081676363945 -0.0703788548707962 0.017515338957309723 -0.019204333424568176 0.02799621783196926 -0.026702286675572395 0.0020755452569574118 -0.02889254502952099 0.057372916489839554 -0.0221262127161026 -0.023042144253849983 0.04609747231006622 -0.008567233569920063 0.04845056310296059 -0.016595754772424698 -0.013654207810759544 0.03615843877196312 -0.01027596089988947 0.030478261411190033 -0.0321500338613987 0.08940603584051132 -0.017608432099223137 -0.06403886526823044 -0.025403952226042747 -0.07766145467758179 -0.06156346574425697 -0.012361007742583752 -0.05391758307814598 -0.03159688040614128 0.08815927058458328 0.022078583016991615 -0.030709927901625633 -0.06303329765796661 -0.06513547897338867 -0.0005960856797173619 -0.08029057830572128 -0.032032597810029984 0.007929537445306778 -0.07318668812513351 -0.02090943045914173 0.043853759765625 -0.04312814772129059 0.0009455715189687908 0.02021673135459423 -0.0013369639636948705 -0.05610683187842369 0.06854959577322006 -0.0415654182434082 -0.013268038630485535 0.02033223584294319 -0.0888780876994133 0.03454182296991348 0.0866633877158165 0.05785764381289482 0.01927362009882927 0.05728384852409363 0.05212041735649109 0.1081712394952774 0.004685431718826294 -0.03470807895064354 -0.03092874400317669 -0.04631773382425308 -0.08395009487867355 0.050743717700242996 -0.017214888706803322 -0.023797709494829178 -0.002336792415007949 -0.005650436505675316 0.05017608776688576 -0.01903759501874447 -0.02142704650759697 -0.04064187780022621 0.04714784771203995 -0.0468607097864151 0.04143356531858444 0.011218760162591934 0.02290058694779873 -0.0027965973131358624 -0.06629544496536255 -0.04845389723777771 -0.03562534973025322 0.03507107496261597 -0.01100139133632183 0.026713838800787926 0.004778677597641945 -0.04978179931640625 -0.010472217574715614 -0.007199058774858713 0.09642086178064346 -0.0838095173239708 0.012872987426817417 0.04106971248984337 0.040516503155231476 -0.09612233191728592 -0.0018716574413701892 0.017568985000252724 -0.04975347965955734 -0.05512030050158501 0.0025909016840159893 0.05074106529355049 -0.05717269703745842 -0.03595823422074318 -0.0032520839013159275 -0.03525211662054062 -0.008313392288982868 0.017551323398947716 0.01662120409309864 0.04126853495836258 -0.015195414423942566 -0.03588731214404106 0.016463719308376312 -0.020162619650363922 0.03242658078670502 -0.027019403874874115 0.03210139274597168 -0.03156265988945961 0.03572649136185646 -0.0296173132956028 -0.031132476404309273 -0.06111651659011841 0.0475967638194561 -0.005771331023424864 -0.0168774276971817 -0.010649636387825012 -0.006652844604104757 -0.019847363233566284 0.02350260689854622 0.03126073256134987 -0.05913597345352173 -0.044997844845056534 -0.031950172036886215 -0.04915454983711243 -0.06918085366487503 -0.04115351662039757 0.00231660227291286 -0.07213550060987473 0.025907259434461594 -0.046365100890398026 0.004726580809801817 0.02334539033472538 -0.0049116951413452625 0.052798692137002945 0.05899159610271454 0.016898108646273613 -0.039301320910453796 0.03524365648627281 -0.00636604567989707 0.049552273005247116 0.030196266248822212 -0.03816152364015579 -0.0003000263241119683 0.039349354803562164 -0.05480550602078438 0.02952960692346096 -0.011551221832633018 0.02625710889697075 -0.001640926580876112 -0.020690565928816795 0.02950756810605526 -0.009482651017606258 0.012445272877812386 0.006093916483223438 0.03284498304128647 -0.05038129538297653 -0.049063436686992645 0.0025534541346132755 -0.03257998824119568 -0.07614224404096603 -0.03958314657211304 -0.005242136772722006 -0.04767770320177078 0.05624404177069664 -0.015996085479855537 0.01339677907526493 0.023351319134235382 -0.06495218724012375 -0.05555347725749016 -0.014649570919573307 -0.02652570605278015 0.0413358174264431 -0.013202105648815632 0.04404687136411667 0.005896596238017082 -0.0037648642901331186 0.006688233930617571 -0.025883609429001808 0.01862957514822483 -0.07708209753036499 0.0021749106235802174 -0.015149512328207493 -0.04176371544599533 0.03853931277990341 0.01018248125910759 0.02714805118739605 -0.059819646179676056 -0.012684264220297337 -0.037428971379995346 0.03758123517036438 -0.017832834273576736 0.0014545919839292765 0.01357273943722248 -0.037834860384464264 0.002144810976460576 0.03641941025853157 -0.05660392343997955 -0.05630554258823395 0.003591694636270404 -0.013532636687159538 0.0601966567337513 0.017347371205687523 0.018550937995314598 -0.01675121672451496 -0.07696491479873657 -0.0019167925929650664 0.0017104237340390682 -0.08774279803037643 -0.016734417527914047 0.02248922921717167 -0.0810387060046196 -0.06813331693410873 0.0008948330068960786 -0.06520460546016693 0.07720606029033661 0.017642829567193985 0.027319878339767456 -0.059177808463573456 -0.00702599436044693 -0.011102691292762756 -0.045124538242816925 0.022627010941505432 -0.03413524478673935 -0.04560893028974533 -0.011593363247811794 0.08558940142393112 -0.035236623138189316 0.03371062129735947 0.07177986949682236 -0.028995197266340256 0.0476241260766983 0.028418531641364098 -0.02911240980029106 0.01142781414091587 -0.006812948267906904 -0.03622531518340111 0.07003982365131378 -0.09141944348812103 0.07222705334424973 -0.06726729869842529 0.10032236576080322 0.02603115513920784 -0.012446853332221508 0.0651981309056282 0.09286349266767502 -0.0011139546986669302 0.026033222675323486 -0.08391492813825607 +-0.03343713656067848 -0.0671733170747757 0.04692067950963974 0.0245143361389637 -0.08518032729625702 -0.08525922149419785 0.0008774753659963608 0.009770948439836502 0.020194170996546745 -0.007436403539031744 0.017573852092027664 0.016004420816898346 0.006667011417448521 0.021737918257713318 0.0060540735721588135 0.02776184305548668 -0.08393450826406479 0.019793102517724037 -0.07622405886650085 0.003242064965888858 0.025759808719158173 0.024381374940276146 -0.05421430245041847 -0.005928145255893469 -0.06534816324710846 0.0066043660044670105 -0.07765567302703857 -0.007857740856707096 -0.004878422245383263 -0.011222188360989094 0.011337277479469776 0.015638330951333046 0.07541398704051971 -0.05875543877482414 -0.03587150201201439 0.05389240384101868 -0.007873275317251682 0.07691708207130432 0.013281485065817833 -0.006810142658650875 -0.04101118445396423 0.009050693362951279 0.006367919966578484 -0.0631956085562706 0.00014321814524009824 -0.0023129316978156567 0.037289902567863464 0.022047992795705795 -0.004680500831454992 0.07986574620008469 0.06959190219640732 0.037131547927856445 -0.00612684478983283 -0.006974451243877411 0.023172322660684586 -0.021812576800584793 0.03675073757767677 -0.03428429365158081 -0.0896715447306633 0.06970004737377167 -0.08383125066757202 0.001649235375225544 0.013417893089354038 0.036381568759679794 -0.03882640227675438 -0.014427375979721546 -0.024989068508148193 0.09114521741867065 0.02259925566613674 -0.06181670352816582 0.04355371743440628 0.06287685036659241 -0.012226509861648083 -0.04193764179944992 -0.012140029110014439 -0.021900977939367294 0.02616499364376068 0.052974801510572433 -0.04553340747952461 -0.042946211993694305 -0.010764922946691513 -0.0476953499019146 0.10789273679256439 -0.05622582137584686 -0.027330132201313972 -0.042716726660728455 0.015210196375846863 -0.06091926619410515 0.02632412128150463 0.01660836488008499 0.030882736667990685 0.0640239343047142 -0.05181626230478287 0.02558840811252594 -0.015918105840682983 0.057217322289943695 0.013588463887572289 -0.12428401410579681 -0.040439408272504807 0.0003441237495280802 -0.003181091509759426 -0.01738746277987957 0.04883527010679245 0.026171082630753517 0.03709392994642258 -0.0014243166660889983 -0.00867992453277111 -0.006786251440644264 0.006922251544892788 0.014496982097625732 0.02078942395746708 0.09606978297233582 0.0761924460530281 0.07021738588809967 0.023781463503837585 0.014522615820169449 -0.002366789383813739 -0.007625141646713018 0.0098446449264884 -0.006806737743318081 0.025341175496578217 -0.012874945998191833 0.010728678666055202 -0.0841498076915741 -0.014677298255264759 0.03851344808936119 -0.11545732617378235 -0.013376234099268913 0.04022396728396416 -0.05532631278038025 0.10418173670768738 0.02402470074594021 -0.039602503180503845 0.019567275419831276 0.03486361354589462 0.025708075612783432 -0.0444747619330883 0.017725788056850433 0.003980786539614201 -0.03221331164240837 -0.010130029171705246 0.04892360791563988 0.0007439557230100036 -0.04365531727671623 -0.013786408118903637 0.06949183344841003 0.017089810222387314 -0.0024056660477072 -0.09510704129934311 0.04178693890571594 -0.021577846258878708 -0.06823410093784332 -0.05228656157851219 -0.08532439172267914 0.012246980331838131 0.06985385715961456 -0.02753753401339054 0.07289984822273254 -0.05498356372117996 -0.00728653697296977 -0.050281133502721786 -0.047887206077575684 -0.03620591014623642 -0.06664891541004181 -0.004373328760266304 -0.022514209151268005 0.0001458627375541255 -0.008587252348661423 -0.040531616657972336 -0.04908863455057144 -0.03629850968718529 -0.036294758319854736 0.015422726981341839 0.026419198140501976 0.064546599984169 -0.0330791138112545 0.014522400684654713 -0.052666082978248596 -0.008143402636051178 -0.05204492807388306 -0.02846660651266575 -0.002984986174851656 0.056968919932842255 -0.08479250967502594 -0.05539396405220032 -0.023198813199996948 0.021142737939953804 -0.05745107680559158 -0.03382791206240654 -0.03509195148944855 -0.011407892219722271 0.007644380442798138 0.04909881204366684 0.0936443880200386 -0.033497877418994904 0.04964569956064224 -0.03390827775001526 0.07415521144866943 -0.05034811049699783 -0.043570879846811295 -0.061743635684251785 0.05148008093237877 -0.005651216953992844 0.00111191940959543 -0.034625355154275894 -0.06981285661458969 0.05657713860273361 0.03135281801223755 -0.023846164345741272 -0.08608227968215942 0.03999301791191101 0.03687319532036781 0.03706391155719757 0.03418085351586342 0.062197353690862656 -0.06455675512552261 0.0047840094193816185 0.027140216901898384 0.036989904940128326 -0.011492900550365448 0.029831882566213608 0.013176333159208298 -0.023391729220747948 -0.04546840488910675 -0.02529609017074108 -0.06399741023778915 -0.01698196679353714 0.014235935173928738 -0.029578644782304764 0.014350478537380695 0.03367699310183525 0.0465327650308609 -0.04408595710992813 -0.004001750610768795 -0.023683782666921616 0.007294675800949335 -0.05261445790529251 0.06123807653784752 -0.006359640508890152 -0.033529944717884064 -0.06871923059225082 0.003916929941624403 0.023913584649562836 0.04777838662266731 -0.01034494861960411 0.017346646636724472 0.07045184075832367 0.05316831171512604 -0.007911919616162777 -0.034373894333839417 -0.059517789632081985 -0.07765465974807739 0.010134605690836906 0.04970380663871765 -0.062131330370903015 -0.00494323531165719 -0.05410332977771759 -0.08766623586416245 -0.02060435526072979 0.05639718845486641 0.04383797571063042 -0.05592483654618263 -0.018221460282802582 0.02054367959499359 -0.023611491546034813 -0.018659168854355812 -0.05702928453683853 -0.006810580380260944 0.010555179789662361 0.058521486818790436 -0.008655527606606483 -0.020848188549280167 0.05018167942762375 0.004670125897973776 0.05873076245188713 -0.04054810851812363 0.037384264171123505 -0.00021283238311298192 -0.09301616251468658 0.015848703682422638 -0.10120977461338043 -0.038297925144433975 -0.023313753306865692 -0.036280229687690735 -0.06715502589941025 0.06743448227643967 0.052427738904953 -0.045239418745040894 -0.04605869948863983 -0.05907715857028961 -0.010394353419542313 -0.010951578617095947 -0.014224814251065254 0.014398797415196896 -0.042188361287117004 -0.004924866836518049 0.026676135137677193 -0.0864916741847992 -0.04405954107642174 0.03917624428868294 -0.04180727154016495 -0.030432257801294327 0.08436134457588196 -0.0005305918748490512 0.00782622117549181 -0.00604240782558918 -0.07950612902641296 0.04298848286271095 0.06764008104801178 -0.0005193361430428922 0.043059106916189194 0.04578990861773491 -0.009184237569570541 0.06739654392004013 0.03095981851220131 0.003090565325692296 -0.013049291446805 -0.03175829350948334 -0.04650908708572388 0.0367516428232193 -0.05383710190653801 0.024864202365279198 -0.007335677742958069 0.02973228506743908 0.07332313805818558 0.015858255326747894 -0.03972470387816429 0.024859625846147537 0.01626189798116684 0.012377161532640457 0.01812013052403927 -0.013191320933401585 -0.01285969465970993 -0.01592324487864971 -0.0369209460914135 -0.01835356466472149 0.02179579995572567 0.04643196240067482 -0.06773413717746735 0.0528610423207283 -0.031003067269921303 -0.07077272981405258 0.022394569590687752 -0.019971905276179314 0.14161433279514313 -0.07581201195716858 -0.00031759653938934207 0.04713498055934906 0.048546284437179565 -0.077044777572155 0.006689230911433697 0.011476906947791576 -0.019459156319499016 -0.013243701308965683 -0.002936854027211666 0.016958113759756088 -0.05698183551430702 -0.02499302290380001 -0.001082250731997192 0.012340199202299118 0.013504364527761936 0.03501968830823898 -0.0038005379028618336 0.019960708916187286 -0.0030120769515633583 -0.008183040656149387 -0.03778688237071037 0.05533991754055023 0.002447884762659669 -0.04601491615176201 0.03194992616772652 0.007145560346543789 0.02974153310060501 -0.0016366560012102127 -0.06091558560729027 -0.006702770479023457 0.06250764429569244 -0.04046665132045746 0.0029685867484658957 -0.0080803781747818 -0.035048168152570724 0.031173450872302055 0.0651368722319603 -0.021067211404442787 -0.013339703902602196 -0.032745346426963806 -0.026373501867055893 -0.0733332633972168 -0.13148358464241028 -0.06388411670923233 0.052777212113142014 -0.04077419638633728 0.009350457228720188 -0.0600571446120739 0.04025847837328911 -0.03314005583524704 -0.017354687675833702 0.01696523278951645 0.054486677050590515 0.03125554695725441 -0.016741937026381493 0.0056515466421842575 -0.012481230311095715 0.057073481380939484 -0.02400120161473751 -0.05976850539445877 0.05652150884270668 0.02793825976550579 -0.028163950890302658 0.03535846248269081 -0.062189195305109024 -0.016736378893256187 0.010219598188996315 -0.023629914969205856 -0.02980339713394642 0.021930471062660217 -0.04035060852766037 -0.04018901661038399 0.055174194276332855 -0.06732486188411713 -0.006517106667160988 0.03363877907395363 -0.028257373720407486 -0.09835315495729446 -0.024326590821146965 -0.014174464158713818 0.008536174893379211 0.032701052725315094 -0.008160566911101341 0.04362236708402634 0.02506144531071186 -0.018978888168931007 0.01102403737604618 0.004784611985087395 -0.015917988494038582 0.020262712612748146 0.022496577352285385 0.04364839196205139 -0.03251789137721062 -0.0058031571097671986 -0.0169824305921793 -0.00973226223140955 0.02389913983643055 -0.09783296287059784 -0.009882650338113308 -0.025873428210616112 0.026897069066762924 0.003699294989928603 -0.015929406508803368 0.01301936898380518 -0.0857163742184639 -0.023025918751955032 0.011576012708246708 0.06170611083507538 0.008850925602018833 0.016012251377105713 0.048642903566360474 -0.0561576783657074 -0.0513247475028038 0.02507321909070015 -0.01706857979297638 -0.08717652410268784 0.018612392246723175 -0.046038489788770676 0.04005996882915497 0.022355295717716217 0.06776346266269684 -0.03308863937854767 -0.11169840395450592 -0.014914660714566708 0.008936881087720394 -0.03870478272438049 0.0031324673909693956 0.04963778704404831 -0.06704874336719513 -0.007783239707350731 -0.0006866306648589671 -0.013449996709823608 0.04007699713110924 0.02454949915409088 0.06028193235397339 -0.045272983610630035 -0.0015836969250813127 0.014683734625577927 -0.03747693821787834 0.0522959940135479 0.020193764939904213 -0.07899992913007736 -0.0441654808819294 0.08084211498498917 -0.07030462473630905 0.05891532823443413 0.0647817850112915 -0.06649842113256454 0.0939318835735321 -0.00045168231008574367 -0.02880268357694149 0.04592813923954964 -0.022718170657753944 -0.06407831609249115 -0.016372503712773323 -0.07006655633449554 0.0536283403635025 -0.0385344997048378 0.10899770259857178 0.003977584652602673 -0.042069509625434875 0.07493037730455399 0.09079014509916306 0.01385105587542057 -0.0126634007319808 -0.047290414571762085 +0.034731507301330566 -0.017001312226057053 0.02360996976494789 0.04639144241809845 -0.04833762347698212 -0.018105382099747658 -0.016323326155543327 0.003439826425164938 0.038512565195560455 -0.04796505719423294 -0.02864459902048111 -0.005543762352317572 -0.005990389734506607 0.0016251326305791736 0.023645449429750443 -0.02790752612054348 -0.052650365978479385 0.03583678975701332 -0.0345941036939621 -0.03399508073925972 0.04730556905269623 0.034495167434215546 -0.043281156569719315 0.04103875532746315 -0.023443682119250298 0.053573597222566605 -0.028699439018964767 0.008967028930783272 -0.02666684426367283 0.013617191463708878 0.06380588561296463 0.02000872604548931 0.05763428285717964 -0.049293190240859985 -0.025317315012216568 0.0587485134601593 -0.020584899932146072 0.10711383819580078 -0.0065357983112335205 -0.00791227724403143 -0.020358024165034294 -0.04609013348817825 -0.06024406477808952 -0.06045224890112877 0.0168691985309124 -0.02396990917623043 0.019151883199810982 0.004627732094377279 0.0003538895398378372 0.02597859874367714 0.08760105073451996 -0.008944539353251457 -0.028673354536294937 -0.009694957174360752 0.021359175443649292 0.0177978053689003 0.06204564869403839 -0.0647469013929367 -0.023022696375846863 0.028400808572769165 -0.07494905591011047 -0.012368333525955677 0.0221131332218647 0.007502662017941475 -0.030001120641827583 -0.026939818635582924 -0.0038206574972718954 0.08417357504367828 0.002409809036180377 -0.039513345807790756 0.03675062209367752 0.0801849439740181 -0.07467123866081238 -0.048557575792074203 0.06255245953798294 -0.05726722255349159 -0.02765050157904625 0.05471442639827728 -0.025056753307580948 -0.036400631070137024 0.01727227494120598 -0.04006253182888031 0.12462186068296432 -0.06495943665504456 -0.0791999101638794 -0.03256983682513237 -0.0009074800764210522 -0.07432443648576736 0.0596267394721508 0.009651395492255688 -0.0008244646014645696 0.0821409597992897 -0.0485556498169899 0.06293555349111557 0.03374709561467171 0.028165102005004883 0.005046128761023283 -0.103326216340065 -0.06938179582357407 -0.01188032329082489 0.016815105453133583 -0.0201733261346817 0.0371522456407547 0.0015561458421871066 0.050375133752822876 0.0320771150290966 -0.02337717078626156 -0.021192606538534164 1.445008547307225e-05 0.0572713240981102 0.02120427042245865 0.07869478315114975 0.0590999573469162 0.048668261617422104 0.06316127628087997 -0.008264518342912197 0.013953544199466705 -0.028370501473546028 -0.02430587448179722 0.018771694973111153 0.0024711426813155413 0.028616327792406082 -0.01925789564847946 -0.08049178868532181 -0.06278686225414276 0.024298449978232384 -0.08988671004772186 -0.04396327584981918 0.056098826229572296 -0.053443294018507004 0.1360216587781906 0.04307122901082039 -0.04778895154595375 -0.0031968967523425817 0.03380001708865166 0.03608167916536331 -0.023762637749314308 0.006143350154161453 -0.007063453085720539 -0.034469448029994965 0.0052695926278829575 0.05064374953508377 -0.015018068253993988 -0.04945912957191467 0.04559578001499176 0.028927583247423172 0.055484648793935776 -0.0312493983656168 -0.07635770738124847 0.0009694852633401752 -0.06365185976028442 -0.05753035470843315 -0.011866415850818157 -0.08529231697320938 0.005266840104013681 0.036374300718307495 -0.01983962394297123 0.032707907259464264 -0.006029532290995121 -0.02481822669506073 -0.08010976016521454 -0.021456899121403694 -0.026475487276911736 -0.05106138065457344 -0.05908948555588722 -0.03238658234477043 -0.004645051434636116 0.008893999271094799 -0.04186871275305748 -0.03237740695476532 -0.012866707518696785 -0.008414746262133121 0.036296192556619644 0.08815539628267288 0.08903326094150543 0.03622326999902725 -0.029167812317609787 -0.035394225269556046 -0.0019702406134456396 -0.027439115568995476 0.009869950823485851 -0.009243274107575417 0.019025590270757675 -0.042851049453020096 0.006858444306999445 -0.006819105241447687 0.05166352912783623 0.011835074052214622 0.04417537897825241 0.0055377609096467495 -0.00843384861946106 -0.03440584987401962 0.04890957474708557 0.0863543450832367 -0.0316614955663681 0.013950526714324951 -0.031105829402804375 0.06784207373857498 -0.02523701824247837 -0.057151418179273605 -0.03834236413240433 0.012521454133093357 0.028523053973913193 0.07779021561145782 0.01357226725667715 -0.08290627598762512 0.10115807503461838 0.034179918467998505 0.03428613767027855 -0.08323497325181961 0.02009812369942665 0.004261398687958717 0.0006324528367258608 0.07261060923337936 0.06643256545066833 -0.049529533833265305 -0.00685459841042757 0.0024114325642585754 0.03430463373661041 -0.02842879481613636 -0.009208916686475277 -0.008374427445232868 -0.08869988471269608 0.03292009234428406 -0.047424715012311935 -0.06717909127473831 -0.04343010112643242 0.020065713673830032 -0.019774027168750763 -0.025942137464880943 -0.007702173199504614 0.02592514641582966 -0.008772125467658043 -0.029024317860603333 -0.007723623886704445 -0.003948550671339035 -0.10410791635513306 0.1074371263384819 0.002040326129645109 -0.06411014497280121 -0.08999527990818024 0.021603133529424667 0.04697620868682861 0.00044177647214382887 0.022941607981920242 0.043928228318691254 0.11039387434720993 -0.003810120513662696 0.0003856539260596037 0.018604611977934837 -0.05480900779366493 -0.07556793093681335 0.011032991111278534 0.02210896648466587 -0.05566688999533653 -0.03749465569853783 -0.007356259971857071 -0.049965761601924896 -0.022328602150082588 0.024998510256409645 0.04243626818060875 -0.012747582979500294 -0.01284860260784626 -0.022894715890288353 -0.0018629690166562796 -0.047850098460912704 -0.005762121174484491 0.03693242743611336 -0.012408195994794369 0.03047523833811283 0.01058591902256012 -0.0157041996717453 0.038212183862924576 -0.020936070010066032 0.048128459602594376 -0.024620359763503075 0.06309857219457626 -0.022375255823135376 -0.06831583380699158 -0.010069360956549644 -0.06929827481508255 -0.04981256276369095 -0.03216538205742836 -0.03492071479558945 -0.051143914461135864 0.09445297718048096 0.0019578540232032537 -0.060826752334833145 -0.04968041926622391 -0.014115802943706512 -0.01969403401017189 -0.049290768802165985 -0.01034417375922203 -0.014171049930155277 -0.06671173125505447 -0.03621191158890724 0.0496356338262558 -0.06394295394420624 0.002872226294130087 -0.023798491805791855 -0.02892257086932659 -0.0644189864397049 0.03126299008727074 0.005815587472170591 -0.04280529543757439 -0.0026118021924048662 -0.08146271854639053 0.048577163368463516 0.08988893777132034 0.06309688091278076 0.04582492634654045 0.03802572935819626 0.04872928932309151 0.1151515394449234 -0.0121775446459651 0.004351796582341194 -0.0050506205298006535 -0.016931774094700813 -0.028157873079180717 0.0327027253806591 -0.012606978416442871 -0.027438180521130562 -0.012623692862689495 0.015262143686413765 0.06880763918161392 -0.006633899174630642 -0.0031048827804625034 -0.0024419387336820364 0.04413996636867523 0.007942656986415386 0.018657639622688293 -0.0029738517478108406 0.028834901750087738 -0.04038059711456299 -0.07186093926429749 -0.028459394350647926 0.0004952212912030518 0.016433756798505783 -0.012378516606986523 0.03325166180729866 -0.046934694051742554 -0.09036976844072342 -0.007564791012555361 -0.005793147720396519 0.1139829084277153 -0.05873831734061241 0.0010604384588077664 0.082126684486866 -0.013465388678014278 -0.10454895347356796 -0.003352914936840534 0.04566425457596779 -0.06010466068983078 -0.05054860934615135 -0.01287766546010971 0.0466303825378418 -0.025817716494202614 -0.029826847836375237 0.00807204656302929 -0.022947438061237335 -0.009666625410318375 0.026934145018458366 0.03619696572422981 0.01621525175869465 -0.009290206246078014 -0.007720388006418943 -0.028469128534197807 0.03237028792500496 0.040988922119140625 -0.031379394233226776 0.00350451678968966 -0.02914133109152317 0.014469731599092484 -0.051657434552907944 -0.04483369365334511 -0.03699411451816559 0.07176591455936432 0.006028267554938793 -0.021949540823698044 -0.02199995145201683 -0.041658464819192886 -0.010912454687058926 0.04622526839375496 0.005739707034081221 -0.041852936148643494 -0.04060744494199753 -0.05120793730020523 -0.06230024993419647 -0.10181871801614761 -0.0566672645509243 -0.00607577059417963 -0.05191407725214958 0.015534795820713043 -0.032706595957279205 -0.014635024592280388 -0.011029626242816448 -0.020366525277495384 0.05757373198866844 0.05516214296221733 0.026440301910042763 -0.037250541150569916 0.029735757037997246 -0.006389921065419912 0.06887942552566528 0.04638873413205147 -0.04389572516083717 -0.0038162311539053917 0.014046364463865757 -0.0165039524435997 0.07020751386880875 -0.030927296727895737 -0.004454440902918577 0.0198553204536438 -0.009428833611309528 0.01879599317908287 0.0031928049866110086 0.013656163588166237 -0.06189242750406265 0.05287962034344673 -0.09622542560100555 -0.027182722464203835 0.023327946662902832 -0.016760317608714104 -0.07840459793806076 -0.07009153813123703 -0.025022083893418312 -0.029239727184176445 0.028957655653357506 -0.04025111719965935 0.005163534078747034 0.010516522452235222 -0.04200522601604462 -0.057577237486839294 -0.036942142993211746 0.0008134352974593639 0.05030961334705353 -0.009604614228010178 0.05339984595775604 0.02380073070526123 0.0028340427670627832 -0.015249837189912796 -0.0009445114410482347 -0.0005145614850334823 -0.0931578278541565 -0.0062210639007389545 -0.03834923729300499 -0.031473904848098755 0.011231270618736744 -0.025010284036397934 0.03437773138284683 -0.06703448295593262 -0.02150403894484043 -0.06338149309158325 0.09659615904092789 -0.02915887162089348 0.018327273428440094 -0.0024242918007075787 -0.035854436457157135 -0.0016066216630861163 0.04382152855396271 -0.047412898391485214 -0.05287567526102066 -0.00016702906577847898 0.0010023342911154032 0.02759845182299614 0.009756451472640038 -0.0013639421667903662 -0.03005046769976616 -0.04323076829314232 -0.004709629341959953 0.02076438069343567 -0.08810233324766159 0.007789638824760914 0.053282562643289566 -0.07588929682970047 -0.04402589797973633 0.025874771177768707 -0.017521295696496964 0.04853810742497444 0.00810533668845892 0.07538484781980515 -0.027119852602481842 -0.021151848137378693 -0.0018161663319915533 -0.03712636977434158 0.015048002824187279 0.014274210669100285 -0.05509648472070694 -0.03137265145778656 0.0564127080142498 -0.0462777353823185 0.015715455636382103 0.0785205066204071 -0.05430971086025238 0.03135758265852928 0.04061100259423256 -0.044902700930833817 0.042634572833776474 -0.0033946516923606396 -0.029766082763671875 0.06611474603414536 -0.08934814482927322 0.11197620630264282 -0.07970412075519562 0.09630643576383591 -0.0034332559444010258 -0.016768477857112885 0.060222361236810684 0.07574547082185745 -5.92958640481811e-05 0.009056388400495052 -0.04466184228658676 +0.05859271436929703 0.028600571677088737 0.014369233511388302 0.031596314162015915 -0.10093862563371658 -0.023817172273993492 -0.009915524162352085 0.027630141004920006 -0.008674618788063526 -0.028993431478738785 -0.02718113176524639 -0.010034690611064434 0.017805466428399086 0.028641413897275925 0.03225077688694 -0.029539745301008224 -0.04692989960312843 -0.012405863031744957 0.012324792332947254 -0.05901280418038368 0.023163190111517906 -0.011070666834712029 -0.050009261816740036 0.08394969254732132 0.058925364166498184 0.004427891690284014 -0.057690102607011795 0.0038622950669378042 -0.0029355022124946117 0.031861562281847 0.04762033000588417 -0.04035792127251625 0.010467407293617725 -0.034647684544324875 -0.037754859775304794 0.03795353323221207 -0.04436802864074707 0.09946085512638092 0.01133477222174406 -0.05198875442147255 -0.025852466002106667 0.0048073334619402885 -0.03359433263540268 -0.007621574681252241 0.0008267498342320323 0.012597046792507172 -0.026361025869846344 -0.008300496265292168 0.03425673395395279 0.012191355228424072 0.08222528547048569 -0.010794779285788536 -0.02690780907869339 -0.046957872807979584 -0.006440463941544294 0.009808911941945553 0.039192840456962585 -0.0702638328075409 -0.06164679676294327 0.07995879650115967 -0.07396095991134644 8.967093890532851e-05 0.04733801260590553 0.018709499388933182 0.0002059163380181417 -0.04946119710803032 -0.003946020733565092 0.08784540742635727 0.022020237520337105 -0.008404780179262161 0.04881845787167549 0.10035821050405502 -0.050852712243795395 -0.030699988827109337 0.0571785494685173 -0.057802651077508926 -0.035104963928461075 0.05943530425429344 0.043633121997117996 0.028129253536462784 0.022880081087350845 -0.06915207952260971 0.05349258333444595 0.003961417358368635 -0.05703474581241608 -0.03553123399615288 0.0030321239028126 -0.03890427574515343 0.08052792400121689 0.020241394639015198 0.012098599225282669 0.08113540709018707 -0.09280935674905777 0.05916110798716545 0.022312218323349953 -0.03651157021522522 0.011816111393272877 -0.11100243777036667 -0.04759659618139267 0.01357690617442131 0.016354262828826904 -0.014586606994271278 0.017586378380656242 0.012381237000226974 0.039310675114393234 0.05825694650411606 -0.04873456805944443 0.03999095410108566 0.04556341469287872 0.04998265579342842 0.025784259662032127 0.04272627457976341 0.09182470291852951 0.06245375797152519 0.0331820547580719 -0.014848046004772186 -0.006461319513618946 -0.04053983837366104 -0.0640311911702156 0.002695386530831456 0.025585398077964783 0.06624838709831238 -0.005916376132518053 -0.09254531562328339 -0.029209615662693977 0.056193944066762924 -0.09490809589624405 0.012999257072806358 0.07681526243686676 0.0284337867051363 0.0795198604464531 0.03765653446316719 -0.008564219810068607 0.0404699333012104 0.05455643683671951 0.043894246220588684 7.274618837982416e-05 0.048497311770915985 -0.01839420571923256 -0.004936975426971912 -0.020211687311530113 0.013329206965863705 0.06238105520606041 -0.1146647036075592 0.019901961088180542 0.035369861871004105 0.03671873360872269 -0.0011905854335054755 -0.035139523446559906 -0.050914205610752106 -0.05961357802152634 -0.0751827284693718 0.028665844351053238 -0.06259939819574356 -0.021229561418294907 0.026687387377023697 0.011971483007073402 0.015517453663051128 -0.041665833443403244 -0.00770921166986227 -0.057055335491895676 -0.016431117430329323 -0.0025715017691254616 -0.06152156740427017 -0.012769609689712524 -0.039301130920648575 -0.001398734631948173 0.046173568814992905 -0.07470019161701202 -0.009724644012749195 0.012513828463852406 -0.013559752143919468 0.04473598673939705 0.09079667925834656 0.05219114571809769 -0.0028351745568215847 0.052273478358983994 -0.021600985899567604 0.010626699775457382 -0.020077401772141457 -0.0076736463233828545 -0.012209372594952583 0.05050353705883026 -0.06201814115047455 -0.02020321972668171 -0.026903728023171425 0.07211881130933762 -0.024769630283117294 -0.018012965098023415 -0.028859492391347885 -0.03100815787911415 -0.053070180118083954 0.07063799351453781 0.036667175590991974 -0.026554973796010017 0.02389536425471306 -0.02573375776410103 0.02226889319717884 0.012467137537896633 -0.007490145042538643 -0.02969503588974476 0.04537079855799675 0.028053412213921547 0.06638214737176895 0.02427978254854679 -0.0695987120270729 0.06787123531103134 0.02568044140934944 0.02497326210141182 -0.07555632293224335 -0.031296662986278534 0.02291964553296566 -0.02419479377567768 0.0587814562022686 0.09235375374555588 -0.022848796099424362 0.032027628272771835 -0.0027183492202311754 0.07440657913684845 -0.04110366478562355 -0.00509840901941061 0.005287669133394957 -0.07244472950696945 0.01672288030385971 -0.029404275119304657 -0.060768112540245056 -0.025455068796873093 0.03763018548488617 -0.027593271806836128 -0.03634900972247124 -0.00815652683377266 0.022284654900431633 -0.0025504999794065952 -0.025876875966787338 -0.003655626904219389 -0.008729510009288788 -0.08951283246278763 0.09735502302646637 0.003665237221866846 -0.06495210528373718 -0.07725443691015244 -0.012963800691068172 0.030803503468632698 -0.004953448195010424 0.0767824649810791 0.07146622985601425 0.09717365354299545 0.03879088535904884 0.02527070976793766 0.006582962349057198 -0.027029190212488174 -0.04693378508090973 0.0004393246490508318 0.059023793786764145 -0.0823633000254631 -0.020210355520248413 0.014824377372860909 -0.025643689557909966 -0.026337502524256706 0.00954512506723404 0.0075491019524633884 -0.03428598865866661 -0.03839243948459625 -0.057171307504177094 0.03791643679141998 -0.04124728962779045 -0.03137990087270737 0.03141925856471062 0.0010431178379803896 0.09971324354410172 -0.0031337356194853783 -0.06256339699029922 0.037787534296512604 0.03491879999637604 -0.02353074587881565 -0.02966470457613468 0.04190902039408684 -0.027878910303115845 -0.06607895344495773 -0.03074151836335659 -0.05886272341012955 -0.04973837360739708 -0.022256210446357727 -0.03275644779205322 -0.02990046516060829 0.0873795747756958 -0.03179234638810158 -0.06301762163639069 -0.0473884642124176 -0.0054668826051056385 -0.001677026622928679 -0.06789335608482361 -0.01641935482621193 0.007417941931635141 -0.035333774983882904 -0.027828363701701164 0.0241067074239254 -0.030741754919290543 -0.04830621927976608 0.006317596882581711 -0.014891529455780983 -0.08424010872840881 0.04292678460478783 -0.03364291414618492 -0.01950003392994404 0.010396615602076054 -0.0637354925274849 0.02367909997701645 0.10170967876911163 0.03823832422494888 0.00761005375534296 0.013883971609175205 0.03334687277674675 0.1348850429058075 0.033594850450754166 -0.07986406981945038 -0.0017641788581386209 -0.07065804302692413 -0.06918637454509735 0.021117910742759705 -0.04486621916294098 -0.01911066100001335 -0.029523629695177078 -0.019218917936086655 0.05547681078314781 0.038227055221796036 -0.02331329882144928 0.0009104833588935435 0.03628529980778694 -0.015519711188971996 0.04452912509441376 -0.0008271905826404691 -0.049027714878320694 -0.019366050139069557 -0.009229700081050396 -0.05868489667773247 -0.0221855491399765 0.06165085360407829 -0.029157713055610657 0.07935631275177002 -0.029057059437036514 -0.0548955462872982 0.027070017531514168 -0.0055819968692958355 0.07781033217906952 -0.06906421482563019 0.004212404601275921 0.03235529735684395 0.0004933880991302431 -0.056093864142894745 0.009490112774074078 0.029999662190675735 -0.052952155470848083 -0.017613183706998825 -0.028035925701260567 0.03217405080795288 -0.056051261723041534 0.0009030636283569038 0.01906641758978367 -0.08075955510139465 0.01569058746099472 0.006762997712939978 0.00454253563657403 0.011398842558264732 -0.05435171350836754 -0.00898693036288023 -0.006588974967598915 -0.002342558465898037 0.0025261996779590845 -0.0025835330598056316 0.01049965713173151 -0.020575614646077156 0.06870433688163757 -0.0366479866206646 0.012022479437291622 -0.05668879672884941 0.05898174270987511 -0.01577802561223507 0.009189012460410595 0.009478416293859482 0.014053905382752419 0.0079171322286129 -0.0011754563311114907 0.03959725797176361 -0.05119600147008896 -0.025679592043161392 -0.052658163011074066 -0.009224742650985718 -0.060279328376054764 -0.048952605575323105 0.022366352379322052 -0.07423339784145355 -0.0011276090517640114 -0.01742604561150074 -0.014410650357604027 -0.037807587534189224 -0.044106099754571915 0.00700463866814971 0.026574384421110153 0.05900122597813606 -0.027965031564235687 0.05883226916193962 0.03460332378745079 0.03736981749534607 0.010788786225020885 -0.06188610568642616 0.0768219605088234 0.045892804861068726 -0.01872982457280159 0.06693746149539948 -0.024090435355901718 0.055075909942388535 -0.017991861328482628 0.01721489615738392 0.0342787504196167 -0.06347013264894485 -0.026478828862309456 -0.0320393368601799 0.07092917710542679 -0.057494256645441055 -0.04693333059549332 0.01991303451359272 -0.06456481665372849 -0.0841783881187439 0.008742638863623142 0.0010622491827234626 -0.022036677226424217 0.012835448607802391 0.0016169293085113168 0.02388092689216137 0.07004713267087936 -0.0475163608789444 -0.03884848952293396 -0.021403271704912186 -0.012322597205638885 0.06062517315149307 -0.01466179545968771 0.037159960716962814 0.006638271268457174 0.012442459352314472 0.0014227128122001886 -0.020665382966399193 0.029033392667770386 -0.09493318200111389 -0.007572470232844353 -0.014176545664668083 -0.06192196533083916 0.03117743507027626 0.01753973588347435 0.00622630724683404 -0.05194338783621788 -0.049231141805648804 -0.03391677886247635 0.07038243860006332 -0.026750274002552032 -0.005637293681502342 0.016438443213701248 -9.377491369377822e-05 -0.0071424334309995174 0.007082663476467133 -0.04235038906335831 -0.08136023581027985 0.001206675311550498 0.004132661037147045 0.023965224623680115 -0.008829163387417793 0.019100356847047806 -0.037621255964040756 -0.0816979706287384 -0.01118718646466732 0.03241661563515663 -0.09062239527702332 0.032382551580667496 -0.019276970997452736 -0.07815282791852951 -0.058806464076042175 0.014417017810046673 -0.022593652829527855 0.03051116317510605 0.021297788247466087 0.023644106462597847 -0.012782738544046879 0.003768947906792164 0.008159392513334751 -0.07528453320264816 0.00705379992723465 -0.023650050163269043 -0.03954426571726799 -0.023217329755425453 0.06584551185369492 -0.07448743283748627 0.001283446210436523 0.030063306912779808 -0.05385414883494377 0.006813849788159132 0.02675575390458107 -0.06296250969171524 0.06462327390909195 -0.024726198986172676 -0.03314615413546562 0.08098819106817245 -0.06961189955472946 0.10228085517883301 -0.051303401589393616 0.07224158942699432 -0.03075852058827877 -0.03403152897953987 0.09799809008836746 0.05502475053071976 -0.011177887208759785 0.012307942844927311 -0.09285753220319748 +0.07100369781255722 -0.03133566305041313 -0.03758911043405533 0.02816830202937126 -0.0575435571372509 -0.039236851036548615 -0.013114947825670242 0.035126011818647385 -0.042863260954618454 -0.04712510108947754 -0.03153012692928314 -0.052637044340372086 -0.020632153376936913 -0.03893556445837021 0.05217321217060089 -0.07228536158800125 -0.07472659647464752 0.049377623945474625 -0.02975498139858246 -0.01763521134853363 -0.0027585437055677176 0.0455218069255352 -0.06108660250902176 0.021931763738393784 -0.017740435898303986 0.003831904148682952 -0.01920662447810173 -0.006425101775676012 -0.010798758827149868 0.04480357840657234 0.09309381246566772 0.007172827143222094 0.03681836277246475 -0.0019779056310653687 -0.03486011177301407 0.026295756921172142 -0.02284252643585205 0.11833566427230835 0.0036584928166121244 -0.043180789798498154 -0.040332112461328506 -0.0037803289014846087 -0.01668822020292282 -0.06950892508029938 0.0426396019756794 -0.009544018656015396 -0.03191026672720909 -0.037425171583890915 -0.0014581892173737288 0.009780914522707462 0.08726741373538971 -0.002602496650069952 -0.003776857163757086 -0.01065740641206503 -0.03144189342856407 -0.004657207988202572 0.020416390150785446 -0.027360837906599045 -0.019129445776343346 0.056185778230428696 -0.08548404276371002 -0.001902218908071518 0.046276479959487915 0.002712805289775133 0.001177120371721685 -0.06744685024023056 -0.0042982446029782295 0.06914116442203522 -0.009499408304691315 0.003818740602582693 -0.010475145652890205 0.08067835867404938 -0.0687515065073967 -0.07433313876390457 0.08918943256139755 -0.10394870489835739 -0.03263983502984047 0.010573181323707104 0.018717879429459572 -0.031347859650850296 0.022861385717988014 0.009017243050038815 0.12371866405010223 -0.055939991027116776 -0.06215200200676918 -0.024997932836413383 -0.012103463523089886 -0.05730956047773361 0.06747022271156311 0.013275371864438057 0.02889363467693329 0.044290877878665924 -0.037646207958459854 0.01333512831479311 -0.004244923125952482 -0.00847508292645216 0.05285962298512459 -0.07031173259019852 -0.05914866179227829 -0.023721257224678993 0.02390352450311184 -0.0018786322325468063 0.048394642770290375 0.01907220296561718 0.028193900361657143 0.010599073022603989 -0.03308592364192009 -0.0036806962452828884 0.037484947592020035 0.0470738485455513 0.02426624484360218 0.10709375888109207 0.058507051318883896 0.012500902637839317 0.08901370316743851 0.030632788315415382 0.004890818148851395 -0.04784473776817322 -0.012951580807566643 0.05426013842225075 -0.0316956453025341 0.048199862241744995 -0.022984614595770836 -0.07217565178871155 -0.03866303712129593 0.056957319378852844 -0.07263607531785965 -0.04345471411943436 0.05295960232615471 -0.012699741870164871 0.11133316159248352 0.019051510840654373 -0.014663963578641415 0.045860230922698975 0.052476558834314346 0.01589050330221653 -0.0110122449696064 0.0265598576515913 -0.014765709638595581 -0.031233636662364006 -0.016567444428801537 0.07226955890655518 -0.015692221000790596 -0.009840209037065506 0.047399986535310745 0.024199794977903366 0.03584571182727814 -0.020688220858573914 -0.037087395787239075 0.03203097730875015 -0.07134011387825012 -0.04834191873669624 0.00838848203420639 -0.07306331396102905 0.014102868735790253 0.009569243527948856 -0.026546979323029518 -0.015441114082932472 -0.003346503945067525 -0.04608461260795593 -0.07388342171907425 -0.044294655323028564 -0.015229444019496441 -0.07506539672613144 -0.04814726114273071 -0.0048327320255339146 -0.04819261655211449 0.030549408867955208 -0.058645687997341156 -0.02169181779026985 0.021846532821655273 -0.01649148389697075 0.03661626577377319 0.12158604711294174 0.04638252779841423 0.05834539607167244 0.009417134337127209 -0.022665472701191902 -0.009629722684621811 -0.03441695496439934 0.01982431858778 -0.02785869874060154 0.06716657429933548 -0.05851103737950325 0.05346570163965225 0.0100589320063591 0.07981422543525696 -0.008194412104785442 0.06285222619771957 0.005351942963898182 0.0015581371262669563 -0.06981112062931061 0.0568501353263855 0.05886964872479439 0.010291943326592445 0.016714558005332947 -0.02203199453651905 0.07126636058092117 0.004635970573872328 -0.0444607175886631 -0.04700242727994919 0.0014281414914876223 0.03112667426466942 0.05232382193207741 0.037982724606990814 -0.06248445063829422 0.11145710200071335 0.037573520094156265 0.04401993378996849 -0.037879083305597305 0.00048133585369214416 0.020005837082862854 -0.011200686916708946 0.06236335635185242 0.0670749843120575 -0.0006968158995732665 0.033867839723825455 0.005056330002844334 0.06864967942237854 -0.030200012028217316 -0.009142911061644554 0.014679565094411373 -0.11569180339574814 0.05165212228894234 -0.008551946841180325 -0.09511721134185791 -0.014620442874729633 0.035380326211452484 -0.020936675369739532 -0.025312136858701706 0.019468093290925026 0.04565217345952988 0.015013732016086578 -0.01950725167989731 -0.007247413974255323 -0.03243722766637802 -0.10595755279064178 0.1051245778799057 0.008833453059196472 -0.11904162913560867 -0.05585407093167305 -0.022593040019273758 0.011265798471868038 -0.013097614981234074 0.047161765396595 0.04629248380661011 0.09926936775445938 -0.0030194439459592104 -0.007173897232860327 0.04201691970229149 -0.04161890968680382 -0.05485696718096733 0.00021055532852187753 0.006029103882610798 -0.0564582385122776 -0.08377790451049805 0.015977703034877777 -0.06220075860619545 0.014433080330491066 -0.0300979632884264 0.016307510435581207 -0.040970295667648315 -0.022031666710972786 -0.057633206248283386 0.04349358752369881 -0.06300552934408188 -0.012873626314103603 0.06050741299986839 -0.017104484140872955 -0.010488379746675491 0.0298189427703619 0.02051079086959362 0.03291809558868408 -0.01862686313688755 -0.0018731500022113323 -0.04010063782334328 0.07520608603954315 -0.018678992986679077 -0.03774426132440567 0.014530980959534645 -0.06534449756145477 -0.04518576338887215 0.002458153758198023 -0.05614350363612175 -0.032586727291345596 0.07673589885234833 0.03309188783168793 -0.05389765277504921 -0.048936016857624054 -0.03235365450382233 -0.05027655139565468 -0.043954476714134216 -0.03494279086589813 0.019902413710951805 -0.03760587051510811 -0.03216535970568657 0.04699881374835968 -0.03449513390660286 -0.008179799653589725 0.003087700344622135 0.035211533308029175 -0.05629274994134903 0.009686088189482689 -0.005543809849768877 -0.014886499382555485 0.018108675256371498 -0.05506764352321625 0.03485485166311264 0.07758484780788422 0.11563272029161453 0.03216243162751198 0.05725919082760811 0.03507902845740318 0.11870728433132172 0.020876284688711166 -0.04280892759561539 -0.017354009672999382 -0.07757435739040375 -0.026278382167220116 0.0179261676967144 0.011139629408717155 -0.05454343557357788 0.00403964938595891 0.00761224702000618 0.05416463315486908 -0.04264703020453453 -0.01258179359138012 -0.042834434658288956 0.02815648354589939 -0.03641644865274429 0.022612424567341805 0.0029007401317358017 0.03562207520008087 -0.03849927335977554 -0.06149415299296379 -0.01487842109054327 -0.0485076941549778 0.02674797549843788 -0.017938798293471336 0.023743467405438423 -0.020895149558782578 -0.05031895264983177 -0.02992207370698452 0.0010116735938936472 0.10153661668300629 -0.047479208558797836 -0.00755154388025403 0.034431930631399155 0.06224973127245903 -0.06971988826990128 -0.00985559169203043 -0.005104775074869394 -0.054731328040361404 -0.010455193929374218 -0.014300988055765629 0.043574009090662 -0.06199038401246071 -0.020014753565192223 -0.007330009713768959 -0.02669253759086132 -0.006387230474501848 -0.022133583202958107 -0.003315994283184409 0.041595134884119034 -0.014950809068977833 -0.03069857880473137 -0.00397034827619791 0.00743468850851059 0.0295769851654768 -0.020799333229660988 0.021132856607437134 -0.022672923281788826 -0.02885168418288231 -0.053610771894454956 -0.06579311192035675 -0.054926224052906036 0.05332763120532036 -0.012014014646410942 0.010804512538015842 -0.017238186672329903 -0.015140826813876629 -0.030569056048989296 0.009022695943713188 -0.00651508430019021 -0.04397260770201683 -0.019043894484639168 -0.023095598444342613 -0.0495375320315361 -0.05551416426897049 -0.025749046355485916 -0.009799501858651638 -0.014870071783661842 0.023093659430742264 -0.03741953894495964 0.011075511574745178 0.02591848373413086 -0.01937582716345787 0.07802912592887878 0.06596633046865463 0.015932902693748474 0.009623252786695957 0.030679170042276382 0.026680482551455498 0.06928566843271255 0.06491534411907196 -0.07448343932628632 -0.04061610996723175 0.013525083661079407 -0.05582708492875099 0.05004412680864334 0.01903941109776497 0.022746941074728966 -0.010187742300331593 0.0032807362731546164 0.01505931094288826 -0.05533531680703163 0.011626815423369408 -0.014810671098530293 0.024956537410616875 -0.05652610585093498 -0.06464115530252457 0.011225270107388496 -0.021566132083535194 -0.062111109495162964 -0.051514845341444016 -0.008697240613400936 -0.003508205758407712 0.04961971193552017 -0.06801284104585648 0.02049224078655243 0.012904544360935688 -0.03969820216298103 -0.07160106301307678 -0.064525306224823 0.007335867267102003 0.060185909271240234 -0.020544281229376793 0.025761589407920837 0.007689544931054115 0.014641845598816872 -0.027319375425577164 -0.04125497490167618 0.021814852952957153 -0.07321026176214218 0.009653741493821144 -0.0475214384496212 -0.03485993295907974 0.03965826332569122 0.009762060828506947 0.0015094539849087596 -0.029485126957297325 -0.023138994351029396 -0.061387114226818085 0.08884523808956146 -0.017031574621796608 0.045636072754859924 -0.02704286202788353 -0.05667472630739212 -0.00299450708553195 0.04488586261868477 -0.04215870425105095 -0.036287982016801834 0.03336525708436966 -0.010751300491392612 0.009932895191013813 0.01725132018327713 0.07323592156171799 -0.033500511199235916 -0.07702983915805817 0.03690257668495178 0.037164799869060516 -0.07527514547109604 -0.0020084441639482975 0.02688053995370865 -0.06871373951435089 -0.030864661559462547 -0.0003038022550754249 -0.06745516508817673 0.08112581074237823 0.007531036157160997 0.031922053545713425 -0.04394841566681862 0.014733645133674145 -0.004356267862021923 -0.0196713674813509 -0.02323519065976143 -0.04353950545191765 -0.04464549943804741 -0.011151407845318317 0.06970469653606415 -0.05263371020555496 0.006079551298171282 0.06479131430387497 -0.02956215664744377 0.02196073904633522 0.03453069180250168 -0.01133564580231905 0.05105287581682205 0.03365757688879967 0.002294248202815652 0.06818890571594238 -0.0801566019654274 0.07099489867687225 -0.06599073857069016 0.07334021478891373 0.0026695511769503355 -0.03857412934303284 0.04790540039539337 0.062099434435367584 -0.009483644738793373 0.040039658546447754 -0.06451531499624252 +0.020561151206493378 -0.006282460410147905 -0.011869220063090324 0.030236897990107536 -0.0905773863196373 -0.06239813566207886 0.00688365800306201 0.03631066903471947 0.002796574030071497 -0.031803302466869354 -0.06182866543531418 -0.012076406739652157 -0.007860618643462658 0.002343901200219989 0.05420505255460739 -0.01999322697520256 -0.06525146961212158 0.000820928777102381 -0.013519927859306335 -0.015086529776453972 0.04738001152873039 -0.03164006024599075 -0.08476652950048447 0.056535907089710236 0.04152587801218033 -0.005478444509208202 -0.0454898327589035 0.03441692516207695 -0.018916254863142967 0.04138679802417755 0.058143895119428635 -0.03893519565463066 0.039129938930273056 -0.06989502906799316 -0.07528591901063919 0.020562510937452316 -0.049974989145994186 0.10340836644172668 0.03764037415385246 -0.05813615024089813 -0.06040119379758835 0.03067384846508503 -0.03712962940335274 -0.05189698562026024 0.05689889192581177 0.03834499791264534 -0.0024374849162995815 -0.029456673189997673 0.04577131196856499 0.02860521897673607 0.10390081256628036 0.0072141895070672035 -0.025702528655529022 -0.02888704277575016 -0.029666181653738022 -0.009557855315506458 0.04696673899888992 -0.037086308002471924 -0.0811895802617073 0.04866563901305199 -0.11906354874372482 -0.008936773985624313 0.012124155648052692 0.011904810555279255 -0.043000634759664536 -0.023590316995978355 -0.015773877501487732 0.05711711198091507 -0.006244446150958538 -0.025993620976805687 0.007198624778538942 0.08264587074518204 -0.05478774756193161 -0.05361976847052574 0.0320204496383667 -0.032681725919246674 0.0012490215012803674 0.03308245167136192 -0.0027563900221139193 0.0434233583509922 -0.0008643152541480958 -0.0484396331012249 0.12889938056468964 -0.06323844194412231 -0.04037151858210564 -0.03796791285276413 -0.0395258367061615 -0.0451776385307312 0.04174307361245155 0.05931989476084709 -0.0030890286434441805 0.059365931898355484 -0.0323595255613327 0.0328737273812294 0.011111266911029816 0.02176942117512226 0.023860299959778786 -0.09722071886062622 -0.004753338173031807 -0.0004354815755505115 -0.017273152247071266 -0.02150905318558216 0.03799270838499069 0.016635403037071228 0.05477446690201759 0.03462003543972969 -0.051071930676698685 0.0433943010866642 0.0501302108168602 0.05364914983510971 0.01764725148677826 0.051014747470617294 0.08888379484415054 0.03072397969663143 0.061907172203063965 0.007221205625683069 -0.010085372254252434 -0.06680282950401306 -0.02689477428793907 0.015511680394411087 0.010990946553647518 0.03508848696947098 0.026145022362470627 -0.07140105962753296 0.02311028353869915 0.021685350686311722 -0.08374202996492386 -0.037712693214416504 0.011054816655814648 -0.04833783954381943 0.11265578866004944 0.06980286538600922 -0.019119860604405403 0.03134223818778992 0.06028600409626961 0.04162321239709854 0.047099485993385315 0.047008492052555084 -0.03324827924370766 -0.07136745750904083 -0.014350876212120056 0.019636519253253937 -0.018236080184578896 -0.048745688050985336 0.06988432258367538 0.0345301553606987 0.05591563880443573 -0.02001037448644638 -0.09026960283517838 -0.008462374098598957 -0.11704672873020172 -0.052166491746902466 0.017907872796058655 -0.061006445437669754 -0.015294894576072693 0.03406946733593941 0.021135682240128517 0.026466935873031616 -0.018737170845270157 0.01190462987869978 -0.007197433616966009 -0.03640135005116463 -0.00020990593475289643 -0.08501838892698288 -0.029475213959813118 -0.012688746675848961 -0.006850683130323887 0.016937194392085075 -0.05244063213467598 -0.03732255846261978 -0.0069406223483383656 0.004441831260919571 0.0665445625782013 0.04938242584466934 0.04361886903643608 -0.011083884164690971 0.03642037883400917 -0.0873214527964592 -0.008122161030769348 -0.04114219546318054 0.01594805158674717 -0.026585666462779045 0.03388631343841553 -0.05360012874007225 0.0015294714830815792 -0.03495655208826065 0.03850937634706497 -0.04290469363331795 0.029128599911928177 0.0028726723976433277 -0.06829309463500977 -0.057051096111536026 0.05239426717162132 0.06699671596288681 -0.018157334998250008 0.03941792622208595 0.017574241384863853 0.018442239612340927 -0.029878437519073486 -0.043432291597127914 -0.039374057203531265 0.031095139682292938 0.011270549148321152 0.04887804761528969 0.012749866582453251 -0.06498803943395615 0.07836562395095825 0.019349312409758568 0.004581334535032511 -0.032127007842063904 0.02877192199230194 0.07093246281147003 5.572732334258035e-05 -0.016102546826004982 0.09721735119819641 -0.02704300545156002 -0.0021389340981841087 0.0049523403868079185 0.08536894619464874 -0.06140074506402016 0.006313210818916559 0.011009412817656994 -0.08486805111169815 0.009838328696787357 -0.05824540555477142 -0.09034396708011627 0.004310857970267534 0.039733968675136566 -0.040654506534338 -0.03285668045282364 -0.010409834794700146 -0.006493863184005022 0.002059601480141282 0.009525797329843044 -0.014908830635249615 0.01340580265969038 -0.06817761808633804 0.08476027846336365 -0.033462025225162506 -0.061547040939331055 -0.04718465730547905 0.006687993183732033 0.017384186387062073 -0.0006693775067105889 0.03334487974643707 0.06259503960609436 0.0696718767285347 0.030911311507225037 -0.017839079722762108 0.006121132057160139 -0.047227852046489716 -0.04067542776465416 0.025672929361462593 0.037796057760715485 -0.04009971395134926 -0.0014863163232803345 -0.0009721520473249257 -0.04655735194683075 0.01193890068680048 0.009384894743561745 0.013336650095880032 -0.022164590656757355 -0.03468361496925354 -0.015147766098380089 0.06933993846178055 0.003429640317335725 -0.06256726384162903 0.043511345982551575 -0.013666762970387936 0.07628561556339264 -0.05159259960055351 -0.040058720856904984 0.012874298729002476 -0.004107981454581022 0.03179831802845001 -0.039435189217329025 0.06704234331846237 0.005694225430488586 -0.05947733297944069 -0.011430785059928894 -0.10108702629804611 -0.07212937623262405 0.009394997730851173 -0.032801784574985504 -0.01779376156628132 0.07653676718473434 0.042719271034002304 -0.024285683408379555 -0.08538350462913513 -0.04502928629517555 0.011966320686042309 -0.05416582524776459 -0.031805168837308884 0.004042403772473335 -0.08044354617595673 -0.016074035316705704 0.042716704308986664 -0.035614170134067535 -0.028621183708310127 0.018358750268816948 -0.033097170293331146 -0.08000388741493225 0.03536351025104523 -0.04734500125050545 -0.0019516412867233157 0.04225674644112587 -0.06559417396783829 0.03719358518719673 0.10238716006278992 0.010713955387473106 0.01346465852111578 0.04305592551827431 0.005972872022539377 0.10826840251684189 -0.031635407358407974 -0.04196838662028313 -0.04642219841480255 -0.07593882828950882 -0.08688419312238693 0.04542251303792 -0.04571131616830826 -0.02068597637116909 -0.012603268958628178 0.001198982703499496 0.04926279932260513 -0.014619325287640095 -0.023685360327363014 -0.05377240478992462 -0.009533853270113468 -0.025248579680919647 0.017435166984796524 0.01776360347867012 0.01113992091268301 -0.0232768002897501 -0.06399497389793396 -0.04023578017950058 -0.02191423997282982 0.04536299407482147 -0.0021436791867017746 0.024244338274002075 -0.034589510411024094 -0.040979571640491486 -0.008350495249032974 0.036229584366083145 0.09232359379529953 -0.07431657612323761 0.054738979786634445 0.051820509135723114 0.01861524023115635 -0.06192566454410553 0.018137698993086815 0.058222696185112 -0.029641810804605484 -0.04459959268569946 0.009737001731991768 0.05398023873567581 -0.08679813146591187 0.003674448700621724 0.006043677683919668 -0.03709499165415764 0.020551156252622604 0.010764436796307564 0.03479231148958206 0.02376001700758934 -0.017003994435071945 -0.013831167481839657 -0.0198329146951437 -0.030433671548962593 0.04588091000914574 -0.011186905205249786 0.027823662385344505 -0.03438495844602585 0.06064334884285927 -0.035029880702495575 -0.011665981262922287 -0.04537167772650719 0.055117592215538025 -0.020222539082169533 -0.016032911837100983 0.017835497856140137 0.003367251018062234 -0.005815192125737667 0.032351601868867874 0.024393238127231598 -0.07698079943656921 -0.027750136330723763 -0.018747441470623016 -0.043990228325128555 -0.0953865647315979 -0.02931312471628189 0.0010920427739620209 -0.08716659992933273 0.01664620079100132 -0.02455512434244156 0.022420449182391167 -0.0011588673805817962 -0.023243475705385208 0.012230024673044682 0.05973758548498154 0.028473244979977608 0.004899839870631695 0.008035236969590187 0.0020649682264775038 0.01046687550842762 -0.013901684433221817 -0.04170200973749161 0.03396553546190262 0.03890706226229668 -0.06701333820819855 0.033932432532310486 -0.04470401629805565 0.004648123402148485 -0.011185855604708195 -0.011921650730073452 0.0184171162545681 -0.006289134733378887 0.006860960274934769 -0.005583081394433975 0.05225445330142975 -0.05617928132414818 -0.04584947228431702 0.036679841578006744 -0.01824916899204254 -0.08555576950311661 -0.01583819091320038 -0.005204927176237106 -0.05690419301390648 0.0475689060986042 0.00481035141274333 0.012126162648200989 0.02109510637819767 -0.06343463808298111 -0.014296403154730797 -0.02596203051507473 -0.02554762177169323 0.04533248767256737 -0.019815456122159958 0.0604807548224926 0.005662696436047554 -0.025029484182596207 0.007488580420613289 -0.017076384276151657 0.02395801618695259 -0.06938372552394867 -0.01294872909784317 -0.011765801347792149 0.011646159924566746 -0.004213427659124136 0.000905970751773566 0.035351019352674484 -0.05334850028157234 -0.035480398684740067 -0.051350172609090805 0.0578497052192688 -0.02094232104718685 -0.011076223105192184 0.08585093915462494 -0.03936578705906868 0.006394098978489637 0.011722998693585396 -0.06328294426202774 -0.08979903161525726 -0.021724548190832138 -0.041874345391988754 0.06142658740282059 0.06342907249927521 -0.019506225362420082 0.0014305926160886884 -0.043630123138427734 0.021698683500289917 0.009507403708994389 -0.050000909715890884 -0.004429123364388943 0.01592177338898182 -0.050857096910476685 -0.058847274631261826 -0.018596148118376732 -0.029996564611792564 0.09085451066493988 0.046019047498703 0.014267919585108757 -0.064828060567379 -0.0051979138515889645 0.009575233794748783 -0.021987149491906166 0.02756897732615471 -0.0052178543992340565 -0.05476471781730652 0.027635131031274796 0.10131340473890305 -0.0571170374751091 0.04258444532752037 0.051841624081134796 -0.023970898240804672 0.02825179696083069 0.05395121872425079 -0.032425954937934875 0.003776992205530405 -0.00983391422778368 -0.02336954139173031 0.05718546733260155 -0.09615860879421234 0.05867089703679085 -0.04241906479001045 0.07523495703935623 0.02703963778913021 -0.01448020152747631 0.08302637189626694 0.08442123979330063 -0.003436301602050662 0.017675552517175674 -0.10942770540714264 +0.04177292436361313 -0.026636488735675812 -0.013213098049163818 0.06229618936777115 -0.07512318342924118 -0.042796455323696136 -0.030786730349063873 0.03051573410630226 0.013172670267522335 -0.02851679176092148 -0.023317908868193626 -0.006844594608992338 -0.014485353603959084 -0.002524757757782936 0.033121947199106216 -0.029988978058099747 -0.08471034467220306 0.017897548153996468 -0.034076303243637085 -0.02281651459634304 0.04346621781587601 0.010472861118614674 -0.08142966032028198 0.0550215020775795 -0.0025869563687592745 0.04185697063803673 -0.04830189794301987 0.006423787213861942 -0.03247508779168129 0.01370343565940857 0.05890896916389465 -0.010219748131930828 0.028288068249821663 -0.04789389669895172 -0.06017259508371353 0.06876260787248611 -0.03687940910458565 0.1124122217297554 0.011090153828263283 -0.009954329580068588 -0.05652092024683952 0.01752253621816635 -0.05382797494530678 -0.054498009383678436 0.03551974147558212 0.007910535670816898 0.004965192638337612 -0.026586312800645828 0.027957044541835785 0.020966481417417526 0.11155574023723602 -0.0008506911690346897 -0.011638103984296322 0.0009160270565189421 -0.038044191896915436 0.025809109210968018 0.04832763969898224 -0.06623014807701111 -0.07329191267490387 0.025104016065597534 -0.07509229332208633 -0.0026011846493929625 -1.5326460925280116e-05 0.0021591349504888058 -0.02511494606733322 -0.006766411475837231 -0.011825431138277054 0.0807974636554718 0.016897158697247505 -0.025479359552264214 0.0280630961060524 0.08300212025642395 -0.0684913694858551 -0.05650784447789192 0.053658533841371536 -0.057172201573848724 -0.05320066958665848 0.06243881955742836 -0.010362118482589722 0.007525941357016563 0.019810477271676064 -0.0245947428047657 0.1188117042183876 -0.03780962526798248 -0.056491829454898834 -0.01255556009709835 -0.007600152399390936 -0.04084305092692375 0.05566500872373581 0.06024836748838425 0.006668469402939081 0.09340283274650574 -0.05594629421830177 0.05329710990190506 0.02842005155980587 0.02742336131632328 0.039329543709754944 -0.1188058853149414 -0.055293820798397064 -0.009094148874282837 -0.005777162965387106 -0.017544986680150032 0.05730896070599556 -0.005211957730352879 0.0711774230003357 0.023872297257184982 -0.054607242345809937 -0.009107465855777264 0.0069138603284955025 0.03817381337285042 0.04521865397691727 0.07691929489374161 0.07128839939832687 0.061334554105997086 0.06685767322778702 -0.01142616756260395 0.006643110886216164 -0.04429548978805542 -0.06251438707113266 0.017490467056632042 -0.019246919080615044 0.025848399847745895 -0.017495399340987206 -0.05387153476476669 -0.023862138390541077 0.006311700213700533 -0.12286952137947083 -0.02450517751276493 0.05240869149565697 -0.046469904482364655 0.11226899176836014 0.05599430203437805 -0.01058600191026926 -0.004545337520539761 0.06857533752918243 0.03933975100517273 0.020134204998612404 0.022450167685747147 -0.025725847110152245 -0.0009860813152045012 -0.005439335014671087 0.04289517551660538 -0.009113358333706856 -0.04301151633262634 0.04507233947515488 0.02028292790055275 0.02694515511393547 0.0024300143122673035 -0.06646594405174255 0.0026307213120162487 -0.09092669188976288 -0.06652669608592987 -0.009271850809454918 -0.07761882245540619 0.013640510849654675 0.05391450971364975 0.04601230472326279 0.06372136622667313 -0.018549876287579536 -0.023494889959692955 -0.032611358910799026 -0.02933482825756073 -0.027942854911088943 -0.08491447567939758 -0.0346708744764328 -0.03756973147392273 -0.024401197209954262 0.002857190789654851 -0.01060558669269085 -0.018935251981019974 -0.027556678280234337 -0.005824437364935875 0.02662847749888897 0.08217684179544449 0.07361926883459091 0.019269604235887527 0.009488647803664207 -0.05578922480344772 -0.019080976024270058 -0.03968242183327675 -0.006843619979918003 -0.02714373730123043 0.013536863960325718 -0.04734606668353081 -0.007504210341721773 0.009372379630804062 0.046152181923389435 -0.009425736032426357 0.018102522939443588 0.008007068186998367 -0.045206669718027115 -0.06106327846646309 0.06929352134466171 0.08761420845985413 -0.03052903153002262 0.032082635909318924 -0.013353526592254639 0.0566507950425148 6.8536406615749e-05 -0.023962857201695442 -0.04593444615602493 0.0325297974050045 -0.010117561556398869 0.0676635354757309 0.022576555609703064 -0.06332268565893173 0.09009724855422974 0.0309457890689373 0.03551655635237694 -0.05563737452030182 -0.008089270442724228 0.019182661548256874 0.006788086611777544 0.03578437492251396 0.07387900352478027 -0.03330931067466736 -0.03876316919922829 0.03773827478289604 0.05704973265528679 -0.06018693372607231 0.0022657138761132956 -0.0075434851460158825 -0.06911496073007584 0.04189346730709076 -0.02078903652727604 -0.09455541521310806 -0.04112608730792999 0.025975512340664864 -0.0205887071788311 -0.014409610070288181 0.0030197252053767443 0.02924947626888752 -0.004680325277149677 -0.04579000920057297 0.009952450171113014 -0.009226521477103233 -0.10667292773723602 0.09683812409639359 -0.006453360430896282 -0.060431983321905136 -0.0755576491355896 0.022597163915634155 0.02910177782177925 0.019100172445178032 0.020451294258236885 0.06173763796687126 0.09492315351963043 0.04689569026231766 0.0046698846854269505 0.022753126919269562 -0.058199193328619 -0.046084024012088776 0.02285800501704216 0.030580168589949608 -0.026196129620075226 -0.02418285422027111 -0.004752380307763815 -0.041689515113830566 -0.0024951540399342775 0.01880580000579357 0.039987754076719284 -0.02865162491798401 -0.04526353254914284 -0.01900571957230568 0.03585068881511688 -0.02719339169561863 -0.02942848950624466 0.02352101542055607 -0.034058697521686554 0.07068488001823425 -0.05852644890546799 -0.05831897258758545 0.019757041707634926 -0.0027714259922504425 0.05827014148235321 -0.014103693887591362 0.05825817584991455 -0.034776151180267334 -0.10446170717477798 -0.015218839049339294 -0.092528335750103 -0.04550829902291298 -0.018311290070414543 -0.02384955808520317 -0.05756530538201332 0.11056135594844818 0.006995723117142916 -0.04264012351632118 -0.05568347126245499 -0.007723047398030758 0.001721080276183784 -0.060310959815979004 0.0016644856659695506 -0.0012724404223263264 -0.0761205330491066 -0.03661984205245972 0.055220890790224075 -0.03650163859128952 -0.028009911999106407 0.007844730280339718 -0.0448969304561615 -0.04200970381498337 0.04173097759485245 -0.020768925547599792 -0.03126158192753792 -0.007051702588796616 -0.07836543768644333 0.039007578045129776 0.10685224831104279 0.01999850571155548 0.03333132341504097 0.038198791444301605 0.03984212875366211 0.10585872828960419 0.0214291550219059 -0.03866155445575714 -0.006734922993928194 -0.04194344952702522 -0.044027481228113174 0.06060520187020302 -0.03710435703396797 -0.016443252563476562 -0.00964350625872612 0.007547101937234402 0.06551744043827057 0.00016914965817704797 -0.008673880249261856 -0.013683021068572998 0.02874170057475567 0.024813616648316383 0.02019749954342842 0.0018201543716713786 -0.00919889472424984 -0.009335980750620365 -0.04352152720093727 -0.036000821739435196 -0.029701706022024155 0.028035521507263184 0.00382375530898571 0.0349995419383049 -0.01927555352449417 -0.07033703476190567 0.03341827914118767 -0.004949413239955902 0.09832438081502914 -0.08046956360340118 0.02208670787513256 0.06092344969511032 0.005082090850919485 -0.07764418423175812 -0.012737223878502846 0.06718071550130844 -0.05856692045927048 -0.061006687581539154 0.007034371141344309 0.03155728429555893 -0.06016039848327637 -0.03260320797562599 0.002286257455125451 -0.05857070907950401 0.020208926871418953 0.019264182075858116 0.024915428832173347 0.010437141172587872 -0.004744513891637325 -0.026075759902596474 0.018412146717309952 0.027132444083690643 0.03522180765867233 -0.06194228678941727 0.008169653825461864 -0.03782689943909645 0.07110617309808731 -0.038217995315790176 -0.04162264242768288 -0.05360287055373192 0.06332246214151382 0.0033008672762662172 -0.028872687369585037 -0.026483695954084396 -0.007990754209458828 -0.018590502440929413 0.03481472656130791 0.02097788080573082 -0.07556507736444473 -0.04553326591849327 -0.0539848655462265 -0.06691953539848328 -0.08390707522630692 -0.03637995943427086 0.005909566767513752 -0.06868163496255875 0.008989372290670872 -0.0469837561249733 -0.022914402186870575 0.009983373805880547 -0.03551395982503891 0.032110653817653656 0.03840965777635574 0.033832862973213196 -0.03663642704486847 0.021080082282423973 -0.009768137708306313 0.03026535175740719 0.027516966685652733 -0.01868148148059845 0.028308743610978127 0.046850766986608505 -0.03255808725953102 0.031393349170684814 -0.021624719724059105 0.01402695570141077 0.02233949303627014 -0.02460535801947117 0.0009031648514792323 0.008412202820181847 -0.008191372267901897 -0.06462851911783218 0.029485099017620087 -0.0771508738398552 -0.02514771744608879 0.04400559514760971 -0.0456480011343956 -0.08907920867204666 -0.04393751919269562 -0.0035028946585953236 -0.025445640087127686 0.007144574541598558 0.008052514865994453 0.009803460910916328 0.034852489829063416 -0.06197648495435715 -0.029029252007603645 -0.03692358732223511 -0.023477887734770775 0.03793927654623985 -0.0004998440272174776 0.06581912934780121 -0.00893714465200901 0.0020335682202130556 -0.005668893922120333 0.019730782136321068 -0.012736165896058083 -0.06967712938785553 -0.01935473456978798 -0.015689773485064507 -0.040401242673397064 0.012360701337456703 0.005028681363910437 -0.005234549753367901 -0.05840660631656647 -0.01802508533000946 -0.03686301037669182 0.09083938598632812 -0.027115177363157272 0.007522094063460827 0.04354934021830559 -0.004334987141191959 0.02141682244837284 0.01031485665589571 -0.02929660491645336 -0.07495397329330444 0.01880844309926033 -0.027369892224669456 0.02957666479051113 0.03133346512913704 -0.010109849274158478 -0.021471671760082245 -0.07557998597621918 -0.007336786016821861 0.0015831883065402508 -0.06981934607028961 -0.010643528774380684 0.007584101520478725 -0.07954733818769455 -0.06747054308652878 -0.002993353409692645 -0.05725523829460144 0.07420162111520767 0.0035113266203552485 0.05013345181941986 -0.025369711220264435 -0.011450272053480148 0.0007053883746266365 -0.02072964981198311 0.004291013814508915 -0.0019863322377204895 -0.06462500244379044 -0.013494282960891724 0.05244465917348862 -0.03583044931292534 0.012024334631860256 0.08605024218559265 -0.009985008276998997 0.03562457486987114 0.037670694291591644 -0.040919214487075806 0.02505524829030037 0.0007304218597710133 -0.03305482491850853 0.06081022322177887 -0.06996618211269379 0.08527713268995285 -0.05774741992354393 0.09263575822114944 -0.0029177898541092873 -0.005203717388212681 0.0764908418059349 0.08799636363983154 -0.029054535552859306 0.031981006264686584 -0.04711489751935005 +-0.012312834151089191 -0.024785323068499565 -0.03844685107469559 0.004343963228166103 -0.07653612643480301 -0.03494187071919441 -0.027920322492718697 0.05067683383822441 -0.00649194186553359 -0.07146701961755753 -0.06478908658027649 -0.002633440773934126 0.015199592337012291 0.00013319247227627784 0.016166791319847107 -0.042126867920160294 -0.05288565531373024 -0.015049519017338753 -0.010170376859605312 -0.041279230266809464 0.031032145023345947 0.0006340827094390988 -0.08268658071756363 0.08547914773225784 0.05702732130885124 -0.008626565337181091 -0.032090961933135986 0.03775201365351677 -0.0005972615326754749 0.0975721925497055 0.0539572536945343 -0.04633455350995064 0.02494620531797409 -0.0483599454164505 -0.06259092688560486 0.02407304383814335 -0.06552377343177795 0.0851592868566513 0.03101448155939579 -0.020885080099105835 -0.054399747401475906 0.027376355603337288 -0.009171240031719208 -0.04266975075006485 0.03193185105919838 0.02275962010025978 -0.02660481259226799 -0.043871548026800156 0.0284319669008255 0.028260616585612297 0.08309067785739899 0.012168576940894127 -0.005286748055368662 -0.02447502687573433 -0.02416134625673294 0.03606851398944855 0.0023982336279004812 -0.030766254290938377 -0.02835962176322937 0.02434179186820984 -0.07129012048244476 0.025880716741085052 0.014171955175697803 5.607322964351624e-05 -0.012485639192163944 0.026279378682374954 -0.039050906896591187 0.08021007478237152 -0.011196792125701904 -0.0036219435278326273 -0.011651318520307541 0.06937307119369507 -0.04588088020682335 -0.029509637504816055 0.047768209129571915 -0.009912311099469662 -0.013176565989851952 0.00998845137655735 -0.004782685078680515 0.01651882193982601 0.012916133739054203 -0.04039239138364792 0.15053114295005798 -0.032814376056194305 0.0014248539227992296 -0.07825850695371628 -0.03685130178928375 -0.05488915741443634 0.0679788887500763 0.021331412717700005 0.05624061077833176 0.058275628834962845 0.026411481201648712 0.03847105801105499 -0.001029333332553506 -0.011305442079901695 0.02110050804913044 -0.11500822007656097 0.019867265596985817 0.01596689596772194 0.019768306985497475 -0.0067313723266124725 0.07886641472578049 0.0061481124721467495 0.03292669728398323 0.06674139201641083 -0.07513672858476639 0.021902482956647873 0.04736731946468353 0.024987637996673584 0.011792097240686417 0.11947571486234665 0.047558821737766266 0.049657199531793594 0.04588020592927933 0.011706648394465446 -0.031437184661626816 -0.013747809454798698 -0.017285795882344246 0.00854428205639124 -0.004059982486069202 0.05940084531903267 -0.0016421886393800378 -0.08269239962100983 0.04327000305056572 0.05972570180892944 -0.07577221840620041 0.005832199472934008 0.03623434156179428 -0.026356372982263565 0.061518341302871704 0.05992758274078369 -0.00865982286632061 0.04403051733970642 0.04292090982198715 0.010893836617469788 0.023670019581913948 0.020769476890563965 -0.023885738104581833 -0.04480714350938797 -0.06243413686752319 0.03776182234287262 -0.017628123983740807 -0.043784093111753464 0.06830193847417831 0.015001659281551838 0.008872264064848423 -0.01302783377468586 -0.04756183922290802 -0.0033469614572823048 -0.08645439147949219 -0.08685845881700516 0.03811880946159363 -0.012747016735374928 0.01786554418504238 0.028449825942516327 0.04962308332324028 0.017246246337890625 0.007859637960791588 -0.00903787650167942 -0.0012366923037916422 -0.05340610817074776 -0.026975292712450027 -0.07580099999904633 0.04526465758681297 0.007596973795443773 0.035181671380996704 0.0019993563182651997 -0.06759363412857056 -0.025344915688037872 0.010065404698252678 0.02068234421312809 0.03686223924160004 0.06421031057834625 0.023604271933436394 -0.00558238010853529 0.07305961847305298 -0.05733610689640045 -0.05572980269789696 -0.040704190731048584 0.04560039937496185 -0.0577380545437336 0.012398573569953442 -0.04790665581822395 -0.026972053572535515 0.013939364813268185 0.007630647625774145 -0.02551998384296894 -0.007239897735416889 -0.023039348423480988 -0.02667330950498581 -0.07305745780467987 0.05559275671839714 0.007861397229135036 -0.016999240964651108 0.026216916739940643 0.05565119534730911 0.07792643457651138 -0.02818218432366848 -0.009825151413679123 -0.0680321529507637 0.04000047594308853 0.027259672060608864 0.012728137895464897 0.036878928542137146 -0.04068109765648842 0.05449647456407547 -0.014022700488567352 0.044604554772377014 -0.029739223420619965 0.06054609268903732 0.05893567577004433 0.00814466830343008 0.047080811113119125 0.0913785845041275 -0.026620902121067047 -0.03745901212096214 0.010879572480916977 0.05888567492365837 -0.11286424845457077 -0.013360567390918732 -0.001634735381230712 -0.08121518045663834 -0.0050981012172997 -0.024922948330640793 -0.0918489396572113 -0.021169478073716164 0.021790046244859695 -0.006124002393335104 -0.030343614518642426 0.006701881997287273 0.02327662892639637 -0.03022918291389942 -0.0007333739195019007 0.036640189588069916 0.009440483525395393 -0.06407855451107025 0.0444038026034832 -0.06438765674829483 -0.05836196616292 -0.020464973524212837 0.0220328401774168 0.0026182858273386955 0.014506158418953419 0.028853707015514374 0.0731240063905716 0.07236756384372711 0.06879514455795288 -0.05217652767896652 0.0010607762960717082 -0.04418560117483139 -0.016864614561200142 -0.013108099810779095 0.023280495777726173 0.016215145587921143 -0.0586349293589592 0.030581049621105194 -0.08155722171068192 0.015981709584593773 -0.016017094254493713 -0.0007904816302470863 -0.05037955194711685 -0.011447625234723091 -0.027852049097418785 0.040561921894550323 -0.01448037475347519 -0.05043630301952362 0.030611645430326462 -0.05343262106180191 0.05001749098300934 -0.05046791210770607 -0.022936999797821045 0.0096952049061656 0.015068179927766323 0.021806659176945686 -0.04052266851067543 0.0922359898686409 -0.013505212962627411 -0.07043283432722092 -0.07011034339666367 -0.040438417345285416 -0.07903090864419937 0.01049975585192442 -0.03300885856151581 -0.018011145293712616 0.056607287377119064 0.016350429505109787 -0.05942748859524727 -0.07073570787906647 -0.0655955821275711 -0.02621304802596569 -0.029668355360627174 -0.04741302505135536 -0.027912013232707977 -0.03919438272714615 -0.019653888419270515 0.05205795541405678 -0.042406145483255386 -0.014510136097669601 0.08885446935892105 0.04990019276738167 -0.042081478983163834 0.06915966421365738 -0.048030268400907516 -0.0015251076547428966 0.04359111934900284 -0.04971291497349739 0.018040938302874565 0.08227012306451797 0.022488908842206 0.0004593297780957073 0.02968323789536953 0.03826266527175903 0.07128553092479706 0.0021051564253866673 -0.06759417057037354 -0.055679064244031906 -0.042888447642326355 -0.07112302631139755 0.0636013001203537 -0.014862705953419209 -0.013747765682637691 -0.02327178604900837 -0.03588321432471275 0.02249174937605858 -0.001812333008274436 0.017363356426358223 -0.06478118151426315 0.011952693574130535 -0.030813923105597496 0.028578070923686028 -0.03091641329228878 0.008126427419483662 0.02228856459259987 -0.047886691987514496 -0.0713607668876648 -0.07993318885564804 0.03612899035215378 0.009560874663293362 0.05140245705842972 0.0011262594489380717 -0.016032211482524872 0.023269621655344963 -0.004594998899847269 0.0877169668674469 -0.06715499609708786 0.04063178598880768 0.027408238500356674 0.04267353564500809 -0.06578972935676575 -0.004464115481823683 -0.007549022790044546 -0.03820464387536049 -0.05730808153748512 -0.020851122215390205 0.037524301558732986 -0.0404118150472641 -0.060937441885471344 -0.030316632241010666 -0.03496621176600456 0.0045501310378313065 0.006263034883886576 -0.01741001382470131 0.06519471108913422 0.035348355770111084 -0.030672283843159676 0.028336377814412117 -0.02303837426006794 -0.011028187349438667 -0.012920304201543331 0.03843884915113449 -0.014200970530509949 0.06356938928365707 -0.027901483699679375 -0.02754271775484085 -0.07838519662618637 0.016185108572244644 -0.0741095095872879 -0.012128571979701519 -0.015802135691046715 0.006590820383280516 -0.03671839460730553 0.01695217378437519 0.00996414665132761 -0.09795703738927841 0.0036414789501577616 -0.004232548642903566 -0.05786847695708275 -0.042586274445056915 -0.029618749395012856 0.01313506718724966 -0.01740589551627636 0.03263222798705101 -0.06151479110121727 0.03396860137581825 0.04793349280953407 0.039659224450588226 0.023590436205267906 0.05915216729044914 0.02477915771305561 0.018091341480612755 0.06817477941513062 0.01884738728404045 0.007552723400294781 -0.02272750996053219 -0.06117263063788414 0.02715156599879265 0.06105615571141243 -0.050637874752283096 0.025555836036801338 -0.04145709425210953 0.013949297368526459 0.011236067861318588 -0.01814185455441475 0.0029549964237958193 -0.034758102148771286 0.008963635191321373 -0.005459037609398365 0.04513179510831833 -0.02158639207482338 -0.07283841073513031 0.022625038400292397 -0.04793432354927063 -0.07568447291851044 0.003639333415776491 -0.05243244767189026 -0.04067951813340187 0.044211115688085556 0.0020749387331306934 0.02282288484275341 0.0466030016541481 -0.05752169340848923 -0.036855388432741165 0.02727554552257061 0.0010770871303975582 -0.004683701787143946 0.06121589243412018 0.061322107911109924 0.0236953254789114 -0.02400600165128708 0.01841682195663452 -0.06394651532173157 0.03657102584838867 -0.05780009552836418 0.015417528338730335 0.043107904493808746 -0.026587555184960365 0.01162565965205431 0.04145467281341553 0.03416145592927933 -0.05465133860707283 -0.016967445611953735 -0.02016734890639782 0.016086023300886154 -0.012917980551719666 0.03242911025881767 0.026879796758294106 -0.06535360217094421 -0.02084476314485073 0.0223255418241024 -0.03515314683318138 -0.09629478305578232 -0.026950597763061523 -0.08373606204986572 0.0830087959766388 -0.006960786879062653 -0.010721585713326931 -0.026928354054689407 -0.0970543697476387 -0.010721378959715366 -0.024336425587534904 -0.015070394612848759 -0.009329745545983315 0.017073139548301697 -0.06051518768072128 -0.046638328582048416 -0.016528960317373276 -0.07673000544309616 0.06713956594467163 0.0029057622887194157 0.02570323459804058 -0.05550215765833855 -0.005497728008776903 0.010882046073675156 -0.014398619532585144 0.024986285716295242 -0.0642239972949028 -0.06828160583972931 -0.019466640427708626 0.11589868366718292 -0.014664653688669205 0.040827956050634384 0.08799155801534653 0.0074498956091701984 0.05370667576789856 0.0455402247607708 -0.022803664207458496 -0.01726796105504036 0.0008259251480922103 -0.0011526348534971476 0.025634074583649635 -0.05009405314922333 0.06302519887685776 -0.06539984047412872 0.11154830455780029 0.040520958602428436 0.005438824184238911 0.08066748082637787 0.07511311769485474 0.04838986694812775 0.05886608362197876 -0.10252313315868378 +0.03577898070216179 -0.03528829291462898 0.03575725108385086 0.013862431980669498 -0.06363355368375778 -0.060104645788669586 0.014818469993770123 0.026073893532156944 0.00010257097892463207 -0.01293198298662901 0.003677709959447384 0.024634087458252907 -0.01020672544836998 0.010742425918579102 0.007925350219011307 -0.03267800062894821 -0.07471253722906113 -0.0013409984530881047 -0.06460075080394745 -0.01836589351296425 0.011890853755176067 0.04926879331469536 -0.09954182803630829 -0.008471054024994373 -0.04262687638401985 0.032491300255060196 -0.08824095129966736 -0.010185029357671738 -0.01643129624426365 -0.004324057605117559 0.04434922710061073 -0.028668208047747612 0.10639883577823639 -0.0535070076584816 -0.0451384000480175 0.034735579043626785 -0.0371212437748909 0.09044892340898514 0.06737460941076279 -0.04195500537753105 -0.04703553393483162 -0.026745356619358063 0.011169064790010452 -0.06872197240591049 -0.015570792369544506 0.02136414498090744 -0.015383767895400524 -0.05209767445921898 0.053651828318834305 0.009242258965969086 0.09888216853141785 0.012355383485555649 -0.02957487851381302 -0.01018900889903307 -0.0004376770812086761 -0.02861667424440384 0.02150573767721653 -0.04755396768450737 -0.12635883688926697 0.020905084908008575 -0.12046462297439575 0.012062418274581432 -0.02834351733326912 0.04251345992088318 -0.06968355178833008 -0.05318307504057884 -0.020494522526860237 0.07417605817317963 0.048994895070791245 -0.034550223499536514 0.039291754364967346 0.07801640778779984 -0.0422845222055912 -0.06330005824565887 -0.00875629298388958 -0.05493791401386261 0.0049393498338758945 0.015347765758633614 -0.023944737389683723 -0.00022294717200566083 -0.031235622242093086 -0.03547753766179085 0.10279954969882965 -0.06642453372478485 -0.017879435792565346 -0.007821164093911648 -0.002726437523961067 -0.10333051532506943 0.04454663768410683 0.03554798662662506 0.0013852822594344616 0.043662458658218384 -0.04175671562552452 0.052626751363277435 0.022660085931420326 0.052113257348537445 0.03604141250252724 -0.07911980897188187 -0.03746416047215462 -0.030911527574062347 -0.02895192988216877 0.044353779405355453 0.09341392666101456 0.03048471361398697 0.09108607470989227 -0.04341089352965355 -0.011222302913665771 0.018558410927653313 0.03954453021287918 0.019111257046461105 0.03292253613471985 0.07302092760801315 0.07088304311037064 0.026541955769062042 0.029704982414841652 -0.017084037885069847 0.037321191281080246 -0.04397537559270859 0.00435015931725502 -0.015362092293798923 -0.0062655056826770306 0.03148258849978447 -0.05302697792649269 -0.06690730154514313 -0.03310150280594826 0.04869293421506882 -0.06997468322515488 -0.04815029352903366 0.05543041601777077 -0.03392462804913521 0.10725422948598862 0.10796809941530228 -0.037742603570222855 0.04428146779537201 0.04061952978372574 -0.01374638918787241 -0.024016546085476875 0.027588488534092903 0.016600221395492554 -0.001964639639481902 -0.0016667923191562295 0.05227818340063095 -0.014488747343420982 -0.040241923183202744 -0.020181557163596153 0.01819617860019207 0.012435243465006351 -0.05273096263408661 -0.07528003305196762 0.038977544754743576 -0.003995917737483978 -0.0853610560297966 -0.011611192487180233 -0.06179709732532501 0.030893471091985703 0.08021079003810883 0.017993750050663948 0.03386746346950531 -0.027470532804727554 0.022061673924326897 -0.05595382675528526 -0.061834659427404404 -0.0261517446488142 -0.08434737473726273 -0.039571575820446014 -0.0108457887545228 0.03305811434984207 0.030682839453220367 -0.03721955791115761 0.010115725919604301 -0.029005851596593857 0.008125522173941135 -0.021091202273964882 0.05749999359250069 0.05581135302782059 0.014351267367601395 -0.02231444977223873 -0.05125071108341217 0.0644921287894249 -0.020174818113446236 0.009228172712028027 -0.04838969558477402 0.028175445273518562 -0.04516148567199707 -0.012256399728357792 -0.0059739951975643635 0.044376667588949203 -0.018697349354624748 0.02955404482781887 0.04135476425290108 0.0019949041306972504 -0.029946980997920036 -0.03592599183320999 0.0530756451189518 -0.0068387119099497795 0.03551948443055153 -0.01749381609261036 0.06039341539144516 -0.012933055870234966 -0.06369874626398087 -0.035338666290044785 0.03343947231769562 -0.001421102206222713 0.027037151157855988 -0.005904376041144133 -0.019294409081339836 0.05340978503227234 0.05196831375360489 3.4983324439963326e-05 -0.0798133835196495 0.002028818940743804 -0.010405309498310089 0.06799252331256866 0.0014777507167309523 0.0652133896946907 -0.10043903440237045 -0.019249621778726578 0.016061127185821533 0.04086727276444435 -0.03280321881175041 -0.010246899910271168 0.0001748861832311377 -0.035840872675180435 0.01868760958313942 -0.029801053926348686 -0.09481937438249588 -0.009192727506160736 0.025893205776810646 0.019161181524395943 -0.03189965710043907 0.03320914879441261 0.02525106631219387 -0.05019683018326759 0.0028951040003448725 -0.01720666140317917 -0.06554051488637924 -0.07943609356880188 0.07273288816213608 0.027039511129260063 -0.04034006595611572 -0.035125624388456345 -0.007392784580588341 0.03773839771747589 0.032850220799446106 -0.0003731207689270377 0.004278513137251139 0.11878490447998047 0.02931976690888405 -0.04786873608827591 -0.00790185946971178 -0.040800999850034714 -0.0688028559088707 0.050321437418460846 0.027610288932919502 -0.043245021253824234 -0.009521395899355412 0.005599767901003361 -0.0668288990855217 -0.011091955006122589 -0.016024149954319 0.04272694140672684 0.02217409946024418 -0.007787186652421951 -0.005182673688977957 0.05458960309624672 0.013566075824201107 -0.030900008976459503 0.03852385655045509 0.013725717552006245 0.04603227972984314 -0.03234640136361122 -0.016435319557785988 0.0718345046043396 -0.0024694204330444336 0.06557642668485641 -0.011751159094274044 0.06911784410476685 -0.024879151955246925 -0.07306334376335144 -0.02801791951060295 -0.11032431572675705 0.0020047747530043125 -0.006873705890029669 -0.03691665828227997 -0.07282675057649612 0.050699904561042786 -0.0047814915888011456 -0.010183972306549549 -0.012545312754809856 0.0075910380110144615 -0.03221976011991501 -0.06469854712486267 -0.013076434843242168 -0.00283900392241776 -0.02320241928100586 -0.023301180452108383 0.012445872649550438 -0.09856733679771423 -0.04347992315888405 -0.0018473472446203232 -0.05930080637335777 -0.06159666180610657 0.052439186722040176 -0.02339961938560009 -0.03082612156867981 -0.013473868370056152 -0.10806106775999069 0.012893890030682087 0.09731650352478027 0.020046185702085495 0.06470680236816406 0.056012723594903946 0.029905810952186584 0.08481460064649582 0.03406631201505661 -0.058404482901096344 -0.01176073681563139 -0.004512028302997351 -0.0589570589363575 0.05080278962850571 -0.03453268110752106 0.05602407827973366 -0.012732254341244698 0.009784476831555367 0.0520089752972126 0.001228609587997198 -0.05771675333380699 -0.009934889152646065 0.011472797952592373 -0.04422621428966522 0.0029955196660012007 0.013280544430017471 0.006707793101668358 0.015990806743502617 -0.03206511214375496 -0.04657631367444992 0.002571807010099292 0.00682449946179986 -0.04460841789841652 0.03865484148263931 0.0061837490648031235 -0.05945894122123718 0.01433675829321146 -0.04450253024697304 0.07453712821006775 -0.06313541531562805 0.03460700809955597 -0.03801590949296951 0.02315978892147541 -0.13709251582622528 -0.023444948717951775 0.05587645247578621 -0.011493569239974022 -0.055039383471012115 0.06298484653234482 0.01478544995188713 -0.05475645512342453 -0.008189866319298744 -0.013739610090851784 -0.042921289801597595 -0.01881800964474678 0.01971634477376938 0.0677022710442543 0.03275377303361893 0.023288948461413383 -0.06059575080871582 -0.030999260023236275 0.024916986003518105 0.01609300822019577 -0.02309863083064556 0.02516964077949524 -0.08542485535144806 0.04077823832631111 -0.05131693184375763 -0.04789864644408226 -0.02474876306951046 0.05204955115914345 0.051806990057229996 -0.018650604411959648 0.032404348254203796 -0.026288431137800217 -0.010292393155395985 0.005503376014530659 0.031499769538640976 0.004023243207484484 -0.022108281031250954 -0.019032960757613182 -0.031877901405096054 -0.07387489080429077 -0.01908578909933567 -0.0016662352718412876 -0.04073254391551018 0.015932727605104446 0.01867849752306938 0.0022246858570724726 0.026924891397356987 -0.02649482898414135 0.024200059473514557 0.023695286363363266 0.04298332333564758 -0.016567563638091087 -0.026745833456516266 -0.0011015492491424084 0.04884284734725952 0.006148576270788908 -0.021238770335912704 0.015707217156887054 0.03176300600171089 -0.07514046132564545 -0.009949722327291965 -0.03323065862059593 -0.010353381745517254 0.016322331503033638 -0.03626325726509094 -0.004322086460888386 0.02444888837635517 0.0020934464409947395 -0.01930752582848072 0.05843130499124527 -0.08563467860221863 -0.011904876679182053 0.018160635605454445 -0.03426985442638397 -0.11378419399261475 -0.03947380185127258 -0.011424257420003414 -0.05176225304603577 0.04196343198418617 0.011229485273361206 0.01836230792105198 0.052898380905389786 -0.0158519446849823 -0.03305104374885559 0.03314860537648201 0.022580469027161598 0.03405293449759483 -0.016765553504228592 0.05322302505373955 -0.001785202999599278 0.014337848871946335 0.013413934037089348 0.029153944924473763 0.03457186371088028 -0.09954307973384857 -0.028925132006406784 -0.018921377137303352 0.021580545231699944 -0.0051183016039431095 0.014586403965950012 -0.007946901954710484 -0.11373312026262283 -0.02029605582356453 0.007599606644362211 0.05204790458083153 -0.026471653953194618 -0.0031761364080011845 0.04009805992245674 -0.05961679667234421 -0.059538744390010834 -0.0036070365458726883 -0.025443704798817635 -0.0810389444231987 0.05415648967027664 -0.05073975771665573 0.006526260171085596 0.010669764131307602 0.03552006185054779 -0.018961794674396515 -0.0788990929722786 -0.02958006225526333 0.010148498229682446 -0.060461096465587616 -0.00153833266813308 0.02086053043603897 -0.07693760097026825 -0.0550723597407341 0.005769876763224602 -0.04938393458724022 0.02612815983593464 0.01577705331146717 0.01543648261576891 -0.007536690682172775 0.001473733107559383 -0.02606530487537384 -0.021460263058543205 0.0057007018476724625 0.015116452239453793 -0.053926918655633926 -0.05134681984782219 0.0596492625772953 -0.051178645342588425 0.04155163839459419 0.07527564465999603 -0.03252245485782623 0.05261991173028946 0.030584778636693954 -0.034032389521598816 0.033691078424453735 -0.00753364572301507 -0.02136271446943283 0.06169847771525383 -0.06357113271951675 0.056081708520650864 -0.06030000001192093 0.11217661201953888 0.026811771094799042 -0.017779555171728134 0.06048323214054108 0.0959075540304184 -0.017459820955991745 -0.010884585790336132 -0.035938650369644165 +0.01332886517047882 -0.08328069001436234 -0.012133204378187656 0.04465889558196068 -0.03466068580746651 -0.033764682710170746 0.008302726782858372 0.017292413860559464 -0.00954844057559967 -0.055548567324876785 -0.006804298143833876 -0.025363516062498093 -0.02167133241891861 0.01406702771782875 0.03998921439051628 -0.026079434901475906 -0.07522469013929367 0.04163391888141632 -0.06446563452482224 -0.018044868484139442 0.008695472963154316 0.03923488408327103 -0.05342700704932213 0.021539822220802307 -0.07433051615953445 -0.0021271000150591135 -0.055955372750759125 0.015710245817899704 -0.0021112130489200354 0.02026304230093956 0.03630611300468445 0.011282656341791153 0.06836049258708954 -0.08930619060993195 -0.048694461584091187 0.0483219288289547 -0.013412543572485447 0.11119876056909561 0.03609181568026543 -0.035251859575510025 -0.06240292638540268 0.034595854580402374 -0.028023088350892067 -0.1101033166050911 0.08042390644550323 -0.011154546402394772 0.019388295710086823 -0.013383857905864716 -0.008559070527553558 0.06247719004750252 0.06776218861341476 0.018058819696307182 0.00047756804269738495 -0.0012509037042036653 -0.04688616469502449 0.005532523617148399 0.04352385550737381 -0.03417086973786354 -0.02280670404434204 0.051561810076236725 -0.0795743390917778 -0.023728331550955772 0.02625722438097 0.0046897102147340775 -0.04889444261789322 -0.007481193635612726 -0.0006479641888290644 0.0763164535164833 -0.004761015996336937 -0.027100495994091034 -0.020727206021547318 0.06536292284727097 -0.024387983605265617 -0.05413350462913513 0.029944535344839096 -0.06694534420967102 0.018712753430008888 0.02493438310921192 -0.04299668222665787 -0.015558550134301186 -0.0019470973638817668 0.017977919429540634 0.12654495239257812 -0.03838328644633293 -0.0020895800553262234 -0.0600496344268322 0.012607327662408352 -0.06615407019853592 0.010418107733130455 -0.0013273324584588408 0.03537335991859436 0.042998865246772766 0.012643441557884216 0.009759485721588135 0.006271440535783768 0.035755354911088943 0.013597806915640831 -0.10499216616153717 -0.030386339873075485 -0.013729559257626534 0.015182480216026306 0.0020485662389546633 0.053227439522743225 0.012961002998054028 0.05314875766634941 -0.0006672784802503884 -0.06453769654035568 -0.005318149924278259 0.014381070621311665 -0.009408078156411648 0.04357793554663658 0.14303630590438843 0.03423488885164261 0.014241351746022701 0.07919567078351974 0.013721218332648277 0.024399420246481895 -0.05239890143275261 0.022556515410542488 0.009057706221938133 -0.028284307569265366 0.022872209548950195 -0.0010124484542757273 -0.0822475403547287 -0.0008483025594614446 0.030166663229465485 -0.09425079077482224 -0.04440918564796448 0.04015791788697243 -0.044115908443927765 0.09985854476690292 0.029403885826468468 -0.03022126480937004 0.025708340108394623 0.01894260197877884 0.015006303787231445 -0.018000362440943718 0.031913552433252335 0.025071611627936363 -0.031653180718421936 -0.01351482979953289 0.08533810079097748 -0.031028810888528824 -0.002583236200734973 0.04242130368947983 0.048956576734781265 -0.004345261491835117 -0.02991008572280407 -0.08789747208356857 0.0495535247027874 -0.058668721467256546 -0.06304628401994705 -0.04305555671453476 -0.10223371535539627 0.042451098561286926 0.049801409244537354 -0.019892839714884758 0.05687985196709633 -0.0027195203583687544 -0.04227682203054428 -0.058164387941360474 -0.066217802464962 -0.01265030913054943 -0.08704354614019394 -0.028272680938243866 -0.01794927753508091 0.0025919999461621046 0.006304745562374592 -0.036602482199668884 -0.032871369272470474 -0.015222933143377304 -0.016571763902902603 0.03689737245440483 0.01888797990977764 0.07946206629276276 0.03296515345573425 0.0092897554859519 -0.05863044410943985 -0.0011418134672567248 -0.04017111286520958 0.00413485337048769 -0.04307650402188301 0.006737122777849436 -0.10066955536603928 -0.011738159693777561 -0.008469677530229092 -0.00039347659912891686 -0.035887353122234344 0.0065462891943752766 -0.01229830365628004 -0.028468815609812737 -0.0674370676279068 0.07038215547800064 0.08031558245420456 0.013041272759437561 0.03281278535723686 -0.022591959685087204 0.08714324235916138 -0.057674188166856766 -0.04427540302276611 -0.07155713438987732 0.045388445258140564 0.01788417622447014 0.0014801474753767252 -0.007657886017113924 -0.039464399218559265 0.06578074395656586 -0.0007396764704026282 0.03386847674846649 -0.039047472178936005 0.05145575478672981 0.022876612842082977 -0.0014155869139358401 0.025997400283813477 0.06018565222620964 -0.006856756750494242 -0.024758126586675644 0.011502590030431747 0.04346638545393944 -0.058582305908203125 0.024865396320819855 0.015755925327539444 -0.08111760020256042 0.004385671578347683 -0.023179233074188232 -0.09922485798597336 -0.00865041371434927 0.04027881845831871 -0.036201391369104385 0.00723030511289835 0.024253390729427338 0.04202849790453911 -0.03598110377788544 -0.01825067028403282 -0.006325962953269482 -0.019601015374064445 -0.06547144800424576 0.053063616156578064 0.002265626797452569 -0.07071945071220398 -0.03779355436563492 -0.010590544901788235 0.030318457633256912 -0.0021201367489993572 0.013397261500358582 -0.002025738125666976 0.056685350835323334 0.013911944814026356 -0.05037297308444977 0.0180099718272686 -0.04458002746105194 -0.05547219142317772 -0.03604023903608322 0.022648895159363747 0.0009003209415823221 -0.066324383020401 -0.040569182485342026 -0.07977323234081268 0.004905820824205875 0.010513829998672009 0.015027175657451153 -0.03890044987201691 0.014321147464215755 -0.005931565538048744 0.012898974120616913 -0.030485540628433228 -0.019767334684729576 0.00917325634509325 -0.007792360614985228 -0.0008241007453761995 -0.03615045174956322 0.0129071194678545 0.044848546385765076 -0.009756562300026417 0.03469610586762428 -0.07379022240638733 0.0616307258605957 0.008871912024915218 -0.07983791083097458 -0.02937564067542553 -0.07704982161521912 -0.006896242965012789 0.007408969569951296 -0.05239301919937134 -0.044117849320173264 0.08417078107595444 0.08503081649541855 -0.03246567025780678 -0.06822950392961502 -0.10125134140253067 -0.0437171570956707 -0.029592491686344147 -0.020145900547504425 0.0009845751337707043 -0.04468522593379021 -0.006762659642845392 0.042796410620212555 -0.046082936227321625 -0.016097895801067352 -0.004189180675894022 0.02899722196161747 -0.018919184803962708 0.05753787234425545 -0.01886868104338646 -0.031015440821647644 0.027489500120282173 -0.08421719819307327 0.0199179295450449 0.0817750096321106 0.07290064543485641 0.03764884173870087 0.03765175864100456 0.02552010491490364 0.08449546992778778 -3.451522206887603e-05 -0.0027211231645196676 -0.035320863127708435 -0.02477635070681572 -0.059350818395614624 0.05466708168387413 -0.016156265512108803 0.012454874813556671 0.007761647924780846 -0.0023109072353690863 0.0973004698753357 -0.041114673018455505 -0.0323849581182003 -0.0227385051548481 0.021375028416514397 -0.03395567834377289 0.008511980064213276 -0.013836082071065903 0.04473865404725075 0.00047864075168035924 -0.08875879645347595 -0.05349196866154671 -0.027699263766407967 0.023319687694311142 -0.024345234036445618 0.021332142874598503 0.007633006665855646 -0.05843397602438927 0.012077530845999718 0.009547768160700798 0.12720400094985962 -0.06748265027999878 -0.0026412683073431253 0.03024214506149292 0.055663470178842545 -0.10015694797039032 0.00217183749191463 -0.018789751455187798 -0.05616092309355736 -0.043334584683179855 -0.00286252424120903 0.04130767285823822 -0.048595380038022995 -0.043607521802186966 -0.027698233723640442 0.00846390426158905 -0.0009495046106167138 0.031400684267282486 -0.0033260732889175415 0.06784544140100479 -0.014589661732316017 -0.021936621516942978 -0.00282641826197505 0.017333615571260452 0.020199941471219063 -0.06204763799905777 0.02893795818090439 0.006818393711000681 0.0021160277538001537 -0.0223183985799551 -0.06312666833400726 -0.0145357521250844 0.03771942853927612 -0.04228109493851662 -0.009189693257212639 -0.042061109095811844 -0.054952263832092285 -0.039305709302425385 0.011389981023967266 0.0021559318993240595 -0.045726366341114044 -0.014963783323764801 -0.013485576026141644 -0.07514586299657822 -0.10561677813529968 -0.05879952758550644 0.053540073335170746 -0.00547085190191865 0.031070679426193237 -0.07831049710512161 0.02173510007560253 0.05123318359255791 0.025811269879341125 0.028242213651537895 0.0832124724984169 0.0282958522439003 -0.03506205976009369 0.026251250877976418 -0.03904204070568085 0.04943102225661278 0.032330963760614395 -0.04894070327281952 -0.03726312890648842 -0.005747986026108265 -0.03934097662568092 0.020612390711903572 -0.010021054185926914 0.0031823597382754087 -0.007863798178732395 -0.04246882349252701 -0.0014323715586215258 0.0032145483419299126 -0.015091088600456715 -0.012703219428658485 0.04530045762658119 -0.06159605085849762 -0.04354847967624664 -0.019623801112174988 -0.03427105396986008 -0.11361969262361526 -0.06031430512666702 -0.013528547249734402 0.013012601993978024 0.05454494059085846 -0.056544769555330276 0.043836064636707306 0.0004945009713992476 -0.019301507622003555 -0.03878486901521683 -0.027105940505862236 -0.02601592242717743 -0.01159219816327095 0.01743343099951744 0.052369773387908936 0.011274614371359348 -0.018267294391989708 -0.004822468850761652 -0.02803702838718891 0.0030702739022672176 -0.0850641280412674 -0.017670197412371635 -0.01785905659198761 -0.006695887073874474 0.03971157968044281 0.0029210704378783703 -0.0043912651017308235 -0.05346911773085594 -0.028109727427363396 -0.039253976196050644 0.06708495318889618 0.003678728826344013 0.031503111124038696 0.03155439347028732 -0.06491480767726898 -0.014811351895332336 0.05588550865650177 -0.056436579674482346 -0.07424638420343399 -0.009932258166372776 -0.04163455590605736 0.03711751475930214 0.009321575053036213 0.05607065185904503 -0.01161926705390215 -0.1034649908542633 0.011212444864213467 -0.02200521156191826 -0.06144281104207039 -0.013171770609915257 0.036049287766218185 -0.06502256542444229 -0.027210941538214684 0.01421397551894188 -0.06380386650562286 0.07476357370615005 0.0025192101020365953 0.05125010386109352 -0.03285757079720497 -0.01260413322597742 -0.03132705017924309 -0.02873891033232212 0.03759003058075905 -0.02736789360642433 -0.08051040768623352 0.000397137482650578 0.09150274097919464 -0.03322112187743187 0.0453018844127655 0.07482469081878662 -0.04921332746744156 0.07472708821296692 0.028829272836446762 -0.007814997807145119 0.00324535951949656 -0.004992785397917032 -0.019077448174357414 0.018477950245141983 -0.05301579833030701 0.06414834409952164 -0.0639716237783432 0.127369225025177 0.03239333629608154 0.01682659238576889 0.062314294278621674 0.08494164049625397 0.01791137270629406 -0.0007317385170608759 -0.06598562002182007 +0.028020381927490234 -0.04825945198535919 -0.009985201992094517 0.06819631904363632 -0.08935754001140594 -0.039456695318222046 0.012538784183561802 0.02007361687719822 -0.0020599975250661373 -0.06896766275167465 0.01183493435382843 -0.03744645044207573 0.01655932329595089 0.008441810496151447 0.04217403009533882 -0.00861291866749525 -0.044931355863809586 0.046461071819067 -0.014858396723866463 -0.05340420827269554 -0.011588078923523426 -0.015364835038781166 -0.0555744469165802 0.035067033022642136 -0.002424607053399086 -0.021905750036239624 -0.08064471185207367 -0.004547571297734976 -0.01776670478284359 0.042942196130752563 0.02815890684723854 -0.010271754115819931 0.022531617432832718 -0.0370936244726181 -0.09913606941699982 0.0520213358104229 -0.04697432368993759 0.13228283822536469 -0.01466272585093975 -0.028271906077861786 -0.05669145658612251 0.017404060810804367 -0.03192778676748276 -0.03908952698111534 0.048068832606077194 0.026156313717365265 0.01916971057653427 -0.004804732743650675 0.03220836818218231 0.022481154650449753 0.09900679439306259 0.04219547286629677 -0.0019778183195739985 -0.012885204516351223 -0.03109351545572281 0.006662665866315365 0.051240574568510056 -0.05382698029279709 -0.06111166998744011 0.07116437703371048 -0.11074052006006241 -0.04304683208465576 0.032369423657655716 0.006096414290368557 -0.01335280854254961 -0.015916017815470695 -0.04813786968588829 0.07898633927106857 -0.02179081365466118 -0.03633977472782135 -0.008998525328934193 0.09967687726020813 -0.024070993065834045 -0.08946332335472107 0.06963134557008743 -0.08565875887870789 -0.016970930621027946 0.04667581245303154 -0.007207435555756092 0.011469786055386066 -0.027252083644270897 -0.046910837292671204 0.09628771245479584 -0.0302641149610281 -0.02269105426967144 -0.0032279903534799814 -0.0015473244711756706 -0.04317475110292435 0.05474931001663208 0.037701476365327835 0.0045159184373915195 0.06478461623191833 -0.0663781613111496 0.0478692427277565 0.014025527983903885 -0.02073219045996666 0.034894078969955444 -0.10504423081874847 -0.026324769482016563 0.02399187907576561 -0.009279887191951275 -0.024694113060832024 0.035066232085227966 0.011622739024460316 0.06455965340137482 0.01931781694293022 -0.05784497410058975 0.018082598224282265 0.033094439655542374 0.0357653982937336 0.01621324196457863 0.08971711993217468 0.06395429372787476 0.02856948785483837 0.028580907732248306 0.020112553611397743 0.0050405883230268955 -0.06238012760877609 -0.062153007835149765 0.012613042257726192 0.004217228386551142 0.037506334483623505 -0.006825747899711132 -0.0568978488445282 0.002175702014937997 0.01011037826538086 -0.08857075870037079 -0.007225252687931061 0.08430497348308563 -0.02356060966849327 0.10471600294113159 0.025860657915472984 0.007415966130793095 0.07335595786571503 0.06254512071609497 0.05633821338415146 -0.001388491247780621 0.025659048929810524 -0.005747631192207336 -0.019615378230810165 0.0011261634062975645 0.06006539613008499 0.006333096884191036 -0.05605105310678482 0.056380074471235275 0.04624582454562187 0.03734734654426575 -0.012296181172132492 -0.07170682400465012 0.02833372913300991 -0.053573425859212875 -0.08233031630516052 -0.0041842334903776646 -0.07459864020347595 0.006659605074673891 0.0343598909676075 0.021992916241288185 0.042419519275426865 -0.008306620642542839 -0.014766519889235497 -0.04783978313207626 -0.030408082529902458 -0.02537313848733902 -0.07033266127109528 -0.04192766547203064 -0.030384322628378868 -0.030232476070523262 0.031149236485362053 -0.0656476616859436 -0.034819845110177994 0.017030442133545876 0.012468334287405014 0.07404342293739319 0.07027432322502136 0.05438583716750145 0.028369270265102386 0.03987475112080574 -0.05199754238128662 -0.01402801088988781 -0.024535391479730606 0.023875802755355835 -0.008869405835866928 0.04238198697566986 -0.052891455590724945 0.004080629907548428 0.002048018155619502 0.07302679121494293 -0.022743849083781242 -0.0025841013994067907 -0.01551505271345377 -0.052042704075574875 -0.057850394397974014 0.060368478298187256 0.06014415621757507 -0.024066144600510597 0.03976861760020256 -0.040481723845005035 0.050132155418395996 -0.02816815674304962 -0.042604733258485794 -0.017638372257351875 0.04737842082977295 0.031241977587342262 0.027655713260173798 -0.0008771244902163744 -0.07224303483963013 0.06560433655977249 0.026100419461727142 0.03764873370528221 -0.05439803749322891 0.005478634499013424 0.019785147160291672 0.011137117631733418 0.03626231104135513 0.06599611788988113 -0.004215251188725233 0.015683967620134354 0.0004913851735182106 0.08367830514907837 -0.04288705065846443 0.03447270020842552 -0.01132902316749096 -0.07897554337978363 -0.01299141626805067 -0.03297394886612892 -0.08651138842105865 -0.024843556806445122 0.06937149912118912 -0.04322395473718643 -0.00935540534555912 -0.02493985928595066 0.03322349116206169 -0.031630732119083405 -0.020868942141532898 -0.016439519822597504 -0.01271800883114338 -0.07815168797969818 0.08403800427913666 0.026245979592204094 -0.07450652122497559 -0.06456238776445389 -0.031522903591394424 0.009840581566095352 -0.01617586985230446 0.04271630197763443 0.06807486712932587 0.05123987793922424 0.046083733439445496 0.007678111083805561 0.015482700429856777 -0.0207014549523592 -0.026312677189707756 0.00494609447196126 0.02431345544755459 -0.04998484626412392 0.016384074464440346 -0.018081380054354668 -0.08616865426301956 0.001593353459611535 0.006430997047573328 -0.010949366725981236 -0.04497114196419716 -0.03336348012089729 0.0195928942412138 0.025403616949915886 -0.04359142482280731 -0.04315323755145073 -0.017172228544950485 -0.02477172017097473 0.05850265175104141 -0.06133861467242241 -0.02289268560707569 0.024965183809399605 0.004047156311571598 0.014011365361511707 -0.04481777548789978 0.03309893235564232 -0.03047335334122181 -0.09363558143377304 0.013399895280599594 -0.08158046752214432 -0.04048977419734001 -0.02408525161445141 -0.04290707781910896 -0.039035454392433167 0.1063041165471077 0.002108740620315075 -0.04306440055370331 -0.06910257041454315 -0.050154510885477066 0.004669404588639736 -0.056220848113298416 0.014572419226169586 0.009405143558979034 -0.015268894843757153 -0.020449323579669 0.019743027165532112 -0.036990463733673096 0.0016950143035501242 -0.004495490808039904 -0.016045475378632545 -0.03393949940800667 0.0730263888835907 -0.041568607091903687 -0.012389475479722023 0.023508204147219658 -0.048080746084451675 0.034521572291851044 0.10947485268115997 0.026432350277900696 -0.0016483261715620756 0.051414333283901215 0.036344122141599655 0.08207035064697266 0.04820965230464935 -0.04811152070760727 -0.0010647368617355824 -0.053124476224184036 -0.042112670838832855 0.03741168603301048 -0.04441526532173157 -0.0071638417430222034 0.007871802896261215 -0.009198080748319626 0.07858754694461823 0.0018432553624734282 -0.06123916059732437 -0.0011038134107366204 0.04378361254930496 -0.0073631019331514835 0.005517831537872553 0.018462548032402992 0.01781066693365574 -0.013610011897981167 -0.048999011516571045 -0.012451255694031715 -0.000565340043976903 0.0474250502884388 -0.02742667868733406 0.04746406152844429 -0.044022832065820694 -0.052000705152750015 0.007516671437770128 0.010636541992425919 0.1072036400437355 -0.07512623071670532 0.01093731727451086 0.06229376420378685 0.030201366171240807 -0.08490510284900665 0.03220602497458458 0.03537015616893768 -0.04626212641596794 -0.05512017756700516 0.021165557205677032 0.030089007690548897 -0.0822739228606224 -0.016230260953307152 -0.0240059494972229 -0.044769544154405594 -0.000573967001400888 -0.0008881185203790665 0.0012536405120044947 0.016529180109500885 -0.040397919714450836 -0.02643880434334278 -0.010321537032723427 -0.007631994783878326 0.005541746970266104 -0.06042347848415375 0.013499736785888672 -0.027548545971512794 0.04154319688677788 -0.033073123544454575 -0.03179386258125305 -0.04690714180469513 0.058896660804748535 -0.020357957109808922 -0.04092741012573242 -0.026860063895583153 -0.045514095574617386 -0.02196456491947174 -0.015886804088950157 0.03880408778786659 -0.07071369886398315 -0.02961939200758934 -0.06091468781232834 -0.045694734901189804 -0.060763947665691376 -0.06728774309158325 0.033164381980895996 -0.06705006211996078 0.021832145750522614 -0.034609511494636536 -0.017706451937556267 -0.019736282527446747 -0.004703224170953035 0.009534185752272606 0.0517144650220871 0.01775852032005787 -0.023006586357951164 0.05126773193478584 -0.007303810212761164 0.025769447907805443 0.030148057267069817 -0.05812489986419678 0.028225654736161232 0.02505417913198471 -0.06460069864988327 0.05345901846885681 -0.02460944838821888 0.0429680235683918 -0.014406566508114338 -0.02273632399737835 0.026223763823509216 -0.009775586426258087 -0.032389432191848755 -0.017759187147021294 0.0623810738325119 -0.04453667625784874 -0.034845877438783646 -0.0025795884430408478 -0.06022750586271286 -0.08430285006761551 -0.041072215884923935 -0.0006614048033952713 -0.015884073451161385 0.024677950888872147 -0.001313500921241939 0.03350932523608208 0.020008506253361702 -0.053315140306949615 -0.03906968981027603 -0.036518681794404984 -0.028527364134788513 0.04314452409744263 0.00039637950249016285 0.02405369281768799 -0.012577210552990437 -0.012674846686422825 -0.005433052312582731 0.021240955218672752 0.04128972813487053 -0.084792360663414 0.007406511344015598 -0.04743557423353195 -0.018733570352196693 0.0008279539179056883 -0.005299378652125597 0.005031993612647057 -0.08162207156419754 -0.022429833188652992 -0.02782152220606804 0.06810109317302704 -0.010903396643698215 -0.018824610859155655 0.047636471688747406 -0.006141536869108677 0.012624961324036121 0.03624798357486725 -0.051118236035108566 -0.05165097489953041 0.021517189219594002 -0.023842498660087585 0.03580017015337944 0.023955004289746284 0.03208579123020172 -0.03764775022864342 -0.06737446784973145 0.003043746342882514 0.00029288549558259547 -0.11091696470975876 -0.022794120013713837 0.013865034095942974 -0.0944344773888588 -0.08148195594549179 0.00709661515429616 -0.029564684256911278 0.07897934317588806 0.02567029744386673 0.014014732092618942 -0.060016412287950516 -0.009843869134783745 -0.04264847934246063 -0.04724959656596184 0.0371195450425148 -0.011324670165777206 -0.047174062579870224 -0.02976253628730774 0.0754079595208168 -0.06567277014255524 0.01716672070324421 0.04705816134810448 -0.03885031118988991 0.03812604397535324 0.03918435797095299 -0.04543051868677139 0.07927598804235458 0.029777389019727707 -0.018360422924160957 0.03771980106830597 -0.09918533265590668 0.08695243299007416 -0.04272164776921272 0.08222632110118866 0.024064211174845695 0.018571022897958755 0.07270203530788422 0.1071159765124321 -0.018568651750683784 -0.02200794406235218 -0.08666286617517471 +0.00232991692610085 -0.052666060626506805 -0.05610397085547447 0.051728058606386185 -0.07537893950939178 -0.04760459065437317 -0.0012704224791377783 0.06703782081604004 -0.007805871311575174 -0.058378055691719055 -0.029135551303625107 -0.01686975732445717 -0.02548329532146454 -0.014723556116223335 0.03343736752867699 0.015215353108942509 -0.04326201230287552 0.033916015177965164 -0.05671604350209236 -0.053174376487731934 0.012045071460306644 0.03296377882361412 -0.0546635240316391 0.03972778469324112 -0.0014277349691838026 0.003803203348070383 -0.020472068339586258 0.006932328455150127 0.00015911993978079408 0.04421908035874367 0.012662636116147041 -0.007100232411175966 0.05172240734100342 -0.01847543939948082 -0.07604966312646866 0.06366167962551117 -0.0219821035861969 0.10766977071762085 0.011266251094639301 -0.04320763051509857 -0.0425909049808979 -0.017482442781329155 -0.03146437555551529 -0.07472285628318787 0.04647659510374069 -0.003914559260010719 0.015696419402956963 -0.032149787992239 0.02460451051592827 0.07854900509119034 0.0784478411078453 0.02974032796919346 0.017895234748721123 -0.009907880797982216 -0.01960190199315548 0.019424233585596085 0.022146640345454216 -0.05087992176413536 -0.027487941086292267 0.04136931523680687 -0.08604633063077927 -0.024459386244416237 0.017384914681315422 0.03145280480384827 -0.01649809442460537 -0.00837007537484169 -0.008054260164499283 0.10093056410551071 0.029113169759511948 -0.05429316684603691 -0.03560726344585419 0.04552009701728821 -0.016675682738423347 -0.0380508229136467 0.04172079637646675 -0.022496741265058517 -0.013782442547380924 0.01539598312228918 -0.03262089192867279 -0.01515611819922924 0.010773804038763046 -0.03402382880449295 0.14998438954353333 -0.05532267689704895 -0.03854881599545479 -0.01335450541228056 -0.03265649080276489 -0.07563339173793793 0.057155542075634 -0.007558215409517288 -0.0048879277892410755 0.07814818620681763 -0.04421759769320488 0.04355093091726303 -0.016391148790717125 0.045613210648298264 0.003989026881754398 -0.13375040888786316 -0.046098493039608 -0.020697003230452538 -0.03182819485664368 -0.02526693418622017 0.05614917352795601 0.00725066801533103 0.02677970938384533 0.011963844299316406 -0.03390859439969063 -0.04966280236840248 0.012131692841649055 -0.0056449901312589645 -0.005871168803423643 0.08133455365896225 0.07525325566530228 0.02588913030922413 0.0620625764131546 0.00014133927470538765 -0.01509174332022667 -0.035803038626909256 -0.027080196887254715 0.007420226465910673 0.005444660782814026 0.02114323526620865 0.01722731813788414 -0.0706399455666542 -0.033194344490766525 0.01211947575211525 -0.09499882906675339 -0.030970359221100807 0.056673940271139145 -0.06842614710330963 0.11183479428291321 0.03748956322669983 -0.04721305891871452 0.018559740856289864 0.036158237606287 0.00883781909942627 -0.005288049578666687 -0.003656493965536356 -0.007108672987669706 -0.029787428677082062 -0.013665678910911083 0.07527156174182892 -0.02117776870727539 -0.04978002607822418 0.04566885903477669 0.04565758258104324 0.025563305243849754 -0.03479867801070213 -0.08872417360544205 0.03600403293967247 -0.0796804428100586 -0.07121673226356506 -0.012880933471024036 -0.07687105983495712 0.001739608938805759 0.04506360739469528 -0.014563673175871372 0.03370165824890137 -0.010998565703630447 -0.023861616849899292 -0.030272474512457848 -0.020850906148552895 -0.0052474853582680225 -0.0892561674118042 -0.031224537640810013 -0.01716267503798008 -0.03799749165773392 0.01827680505812168 -0.03976371884346008 -0.031258340924978256 -0.014624358154833317 0.014472628943622112 0.047468025237321854 0.08671239763498306 0.07088688760995865 0.02908948063850403 0.00616926234215498 -0.04872406646609306 -0.01771794818341732 -0.028723251074552536 0.025876764208078384 -0.02177872322499752 0.04360204562544823 -0.04536597803235054 -0.007812516763806343 -0.04203246533870697 0.04316418245434761 -0.02929273620247841 0.027625977993011475 0.00046342721907421947 -0.031871113926172256 -0.04340125992894173 0.042031317949295044 0.08452199399471283 -0.03402632102370262 0.040700893849134445 -0.009455409832298756 0.08678565174341202 -0.06060837581753731 -0.01984885334968567 -0.0499584935605526 0.0489577017724514 0.044064961373806 0.033039387315511703 0.009839272126555443 -0.07413624227046967 0.1015203669667244 0.015612161718308926 -0.003113530343398452 -0.04363527521491051 0.07654192298650742 0.059826791286468506 0.0024685021489858627 0.0640595555305481 0.04655780643224716 -0.006088270805776119 -0.02697049267590046 -0.0064439792186021805 0.02164377085864544 -0.060167402029037476 0.004172171466052532 -0.0015811799094080925 -0.07591583579778671 0.007601091172546148 -0.027317306026816368 -0.08062513917684555 -0.016938915476202965 0.03214277699589729 -0.008413733914494514 -0.016600508242845535 -0.009881246834993362 0.004066396038979292 -0.002254160586744547 -0.02647368051111698 -0.03274933993816376 -0.006749380379915237 -0.05815475061535835 0.07219968736171722 -0.018791604787111282 -0.057191863656044006 -0.0522720143198967 -0.011081891134381294 0.007218522485345602 -0.02014651522040367 0.02248920127749443 0.08909225463867188 0.057300470769405365 0.0288751982152462 -0.0019867499358952045 -0.01739654876291752 -0.07058564573526382 -0.023490354418754578 -0.005710902623832226 0.032770562916994095 -0.042564619332551956 -0.057407453656196594 -0.002745966427028179 -0.0879303365945816 -0.005976554471999407 0.004977460019290447 0.05760208144783974 -0.05370417982339859 -0.04273122921586037 -0.02307765558362007 -0.00928430538624525 -0.028746364638209343 -0.03855473920702934 -0.00264123291708529 -0.039252590388059616 0.0171204786747694 -0.03934735432267189 -0.010582552291452885 0.038958244025707245 -0.009498468600213528 0.0652301236987114 -0.0075006308034062386 0.03648693487048149 -0.011960567906498909 -0.08593983948230743 0.028311381116509438 -0.08239762485027313 -0.07069312036037445 -0.03875939920544624 -0.04626995697617531 -0.0503571480512619 0.09787485748529434 0.04117914289236069 -0.015794042497873306 -0.061977360397577286 -0.0291818268597126 -0.03890968859195709 -0.05449838936328888 -0.007773295044898987 -0.006019454915076494 -0.06895137578248978 -0.019883794710040092 0.013746997341513634 -0.03949594497680664 0.00011043144331779331 0.026775948703289032 -0.003176565980538726 -0.06647533923387527 0.07468704879283905 -0.0027357356157153845 -0.021536003798246384 -0.000702970486599952 -0.04909173771739006 0.02309480868279934 0.07556939125061035 0.02140848897397518 0.023102689534425735 0.058366965502500534 0.03459283709526062 0.060437727719545364 0.008054675534367561 0.022328585386276245 -0.01837567239999771 0.0028794072568416595 -0.004777648951858282 0.03966512903571129 -0.01678878627717495 -0.049621254205703735 0.025553448125720024 0.0008507908205501735 0.08236263692378998 -0.008753414265811443 -0.032650988548994064 -0.035064972937107086 0.02581130899488926 0.005287803243845701 0.054831601679325104 -0.01582511141896248 0.008303666487336159 -0.00017689455125946552 -0.07340719550848007 0.004965684376657009 -0.016840871423482895 0.016556458547711372 0.0021190340630710125 0.02868729829788208 -0.0023398424964398146 -0.054931674152612686 0.0031170982401818037 -0.009687499143183231 0.12430309504270554 -0.10406259447336197 0.005683046765625477 0.08675360679626465 0.008208056911826134 -0.07724394649267197 0.004371472634375095 0.014329114928841591 -0.04213275760412216 -0.07049652934074402 0.01971692405641079 0.06203705072402954 -0.07856553047895432 -0.0482330396771431 -0.04552586004137993 -0.020399319007992744 -0.019315898418426514 -0.02145991288125515 0.03135320171713829 0.038208965212106705 0.006340603344142437 -0.01556391455233097 0.004292172845453024 0.0169618371874094 0.03689580038189888 -0.04872659221291542 0.031448088586330414 0.010985483415424824 0.042690109461545944 -0.07513001561164856 -0.07319671660661697 -0.018206266686320305 0.049171581864356995 -0.02376502752304077 -0.03745028376579285 -0.046390242874622345 -0.0608021505177021 0.016552075743675232 0.06542275100946426 -0.007737381849437952 -0.037803392857313156 -0.03855093941092491 -0.027473801746964455 -0.046190377324819565 -0.08194311708211899 -0.06704247742891312 0.005542681086808443 -0.046303607523441315 0.009304240345954895 -0.0763605609536171 -0.016233744099736214 -0.005548229441046715 0.014894339255988598 0.04178876802325249 0.07093805074691772 0.01969882845878601 -0.018822574988007545 0.024575330317020416 -0.021774113178253174 0.04367872327566147 0.009269915521144867 -0.050975680351257324 0.020643843337893486 0.005859146360307932 -0.058690257370471954 0.06232728436589241 -0.04062686115503311 -0.016106389462947845 0.009815244935452938 -0.01636345498263836 0.0032846892718225718 0.0005799573264084756 0.021984217688441277 -0.04997383430600166 0.04992179572582245 -0.07469531148672104 -0.017909418791532516 0.042122144252061844 0.012128414586186409 -0.08206361532211304 -0.06344491243362427 -0.025274980813264847 -0.024077339097857475 0.07868854701519012 -0.012994421645998955 -0.0055389138869941235 0.013577505946159363 -0.06794555485248566 -0.06272304058074951 -0.04604281857609749 -0.012137548066675663 -0.0034015225246548653 0.034385766834020615 0.02638901397585869 0.018908552825450897 -0.004304641392081976 -0.058648090809583664 -0.00910747516900301 -0.011593673378229141 -0.06756366789340973 -0.017628973349928856 0.005569510627537966 -0.008734943345189095 0.026526810601353645 0.0047149998135864735 0.01283508725464344 -0.03632509335875511 -0.019025515764951706 -0.026606660336256027 0.06189696118235588 -0.02364915795624256 -0.009454498998820782 0.04648776724934578 -0.025009365752339363 -0.0038454020395874977 0.07631321996450424 -0.038175348192453384 -0.06241707503795624 -0.0064747948199510574 -0.013313661329448223 0.057097334414720535 0.02024688385426998 0.03689193353056908 -0.0741158202290535 -0.04757506772875786 -0.010377591475844383 -0.011122355237603188 -0.057472847402095795 -0.009006929583847523 0.05918852239847183 -0.0761636346578598 -0.03315762057900429 -0.0077695236541330814 -0.025391533970832825 0.07829927653074265 -0.005997935310006142 0.06801558285951614 -0.06485656648874283 -0.025043625384569168 -0.030519410967826843 -0.048575449734926224 0.01117794867604971 -0.014788009226322174 -0.064079150557518 -0.05668453127145767 0.09513436257839203 -0.03626716881990433 0.020627304911613464 0.08114100247621536 -0.059206411242485046 0.06804558634757996 0.022119347006082535 -0.003963733557611704 0.056148458272218704 0.028777429834008217 -0.03402956947684288 0.04828500747680664 -0.06913041323423386 0.06301453709602356 -0.032782554626464844 0.10908205807209015 0.012337525375187397 -0.005945115815848112 0.08064042031764984 0.09746148437261581 0.017690878361463547 0.01261792704463005 -0.0863945260643959 +0.02729630470275879 -0.022307289764285088 0.03168628364801407 0.0193279217928648 -0.06700780987739563 -0.061454176902770996 0.029881605878472328 0.029186328873038292 -0.013162392191588879 0.013390650041401386 0.007442769128829241 0.017840862274169922 -0.017556119710206985 0.015228195115923882 0.005904904566705227 -0.055984579026699066 -0.09366118907928467 -0.0035204177256673574 -0.07026004791259766 -0.0005393322207964957 0.0013903968501836061 0.045738499611616135 -0.11485190689563751 -0.01048972550779581 -0.047226130962371826 0.020504331216216087 -0.07934314012527466 -0.001151092816144228 -0.021330060437321663 -0.01719398982822895 0.049990516155958176 -0.013926231302320957 0.10245797783136368 -0.05561843141913414 -0.03947708010673523 0.022536342963576317 -0.04491506516933441 0.09669701009988785 0.07200460135936737 -0.05883624777197838 -0.06895427405834198 -0.00020280915487091988 0.018923617899417877 -0.07384543120861053 0.0020399854984134436 0.017963262274861336 -0.008551123552024364 -0.056017860770225525 0.06922884285449982 0.009732815437018871 0.10155240446329117 0.009175281971693039 -0.02270634099841118 -0.008216806687414646 -0.012300598435103893 -0.014937072061002254 -0.006376716308295727 -0.019114898517727852 -0.13676579296588898 0.022076480090618134 -0.11197193711996078 0.02188614197075367 -0.012331348843872547 0.03269584849476814 -0.06492963433265686 -0.056429244577884674 -0.0289433766156435 0.07071743905544281 0.05385691300034523 -0.0109562361612916 0.030010022222995758 0.09520868957042694 -0.05949564278125763 -0.05954108387231827 -0.011829421855509281 -0.050412628799676895 0.0003452898235991597 0.0042472584173083305 -0.015670282766222954 -0.005963668692857027 -0.021889816969633102 -0.005112707149237394 0.10151631385087967 -0.0679120197892189 -0.014298053458333015 -0.0024832547642290592 0.005868962500244379 -0.11239506304264069 0.05414546653628349 0.05598997697234154 0.004212598316371441 0.04736021161079407 -0.029648758471012115 0.035558778792619705 0.03130847588181496 0.061189692467451096 0.04071051627397537 -0.07645253092050552 -0.03176888823509216 -0.051116637885570526 -0.0051094233058393 0.04119597002863884 0.09558305889368057 0.018821267411112785 0.08351791650056839 -0.03065642900764942 -0.02342149429023266 0.026872172951698303 0.02993916906416416 0.015705227851867676 0.033851198852062225 0.08376773446798325 0.07139036804437637 0.022069556638598442 0.02367846667766571 -0.011687039397656918 0.045405253767967224 -0.03066728636622429 0.0025829675141721964 -0.007796894293278456 -0.0340002216398716 0.023854294791817665 -0.028913721442222595 -0.06872901320457458 -0.03697536885738373 0.049649953842163086 -0.06186294928193092 -0.05367426574230194 0.032497942447662354 -0.034923236817121506 0.09711981564760208 0.10613097250461578 -0.02016790769994259 0.02620074339210987 0.05105798318982124 -0.03163154050707817 -0.016705676913261414 0.041692592203617096 0.0035126334987580776 0.013959860429167747 -0.0010389704257249832 0.06742440909147263 -0.01250906940549612 -0.02602872997522354 -0.039293501526117325 0.03671436384320259 0.008640049956738949 -0.03063998743891716 -0.07638835161924362 0.057257842272520065 -0.0019169820006936789 -0.08547520637512207 -0.02593320794403553 -0.05341958627104759 0.02135845459997654 0.09373202174901962 0.00867463368922472 0.0418410524725914 -0.02315687946975231 0.005744838155806065 -0.03348597511649132 -0.05949933081865311 -0.027862511575222015 -0.08719044178724289 -0.040597300976514816 -0.03180226311087608 0.030506649985909462 0.008955420926213264 -0.01598954387009144 0.025447266176342964 -0.03393300250172615 0.011156939901411533 -0.03463328257203102 0.03732949495315552 0.03712252900004387 0.02113812230527401 -0.020379751920700073 -0.04286176711320877 0.05892622470855713 -0.03945986554026604 -0.007766352500766516 -0.05402813479304314 0.033727508038282394 -0.042022455483675 -0.009502565488219261 -0.0021550531964749098 0.05891021341085434 -0.01988336816430092 0.021859152242541313 0.04549679532647133 0.017502980306744576 -0.026816371828317642 -0.021408608183264732 0.0551387183368206 0.0031692108605057 0.0338052362203598 -0.01815159060060978 0.04014259949326515 -0.00708130095154047 -0.06181160733103752 -0.03645942732691765 0.04007158428430557 -0.01385833602398634 0.020104127004742622 0.01659344509243965 -0.012097149156033993 0.04115837439894676 0.03728887811303139 -0.006456358823925257 -0.0784454345703125 -0.00718710757791996 -0.0250743068754673 0.06678703427314758 -0.02955789305269718 0.061533503234386444 -0.0958184003829956 -0.0223553366959095 0.03867953270673752 0.04242129623889923 -0.011316782794892788 -0.0014076647348701954 0.01759263128042221 -0.04060287028551102 0.03457362949848175 -0.014278312213718891 -0.09427221864461899 0.013716292567551136 0.037199798971414566 -0.00016481606871820986 -0.01978999748826027 0.059292905032634735 0.024061674252152443 -0.059043169021606445 -0.010297120548784733 -0.018356410786509514 -0.043677423149347305 -0.07888864725828171 0.06885731220245361 0.013651569373905659 -0.03494976460933685 -0.031064437702298164 -0.0009883567690849304 0.015337915159761906 0.04604026675224304 -0.004556234460324049 -0.013705410063266754 0.10746337473392487 0.027775533497333527 -0.044747497886419296 0.011980993673205376 -0.0642714872956276 -0.06822793930768967 0.045694611966609955 0.05733507126569748 -0.050684135407209396 -0.00775660527870059 -0.011285937391221523 -0.04600459337234497 0.0038120439276099205 -0.008235509507358074 0.04999232664704323 0.017304636538028717 0.021140994504094124 -0.004194275010377169 0.06453673541545868 0.013342791236937046 -0.043020594865083694 0.0574871189892292 0.03946228697896004 0.04560801759362221 -0.02142324484884739 -0.028287677094340324 0.06079179421067238 0.028951872140169144 0.07161742448806763 -0.022661717608571053 0.05450883507728577 -0.02439011074602604 -0.08653037250041962 -0.03400072455406189 -0.12539039552211761 0.0017660509329289198 -0.008621389046311378 -0.05870158225297928 -0.07964549213647842 0.04457363113760948 0.013082130812108517 0.0036877731326967478 -0.042301442474126816 -0.019835883751511574 -0.029803793877363205 -0.05319015681743622 -0.026905862614512444 -0.0014686303911730647 -0.03645322471857071 -0.04125150665640831 0.02287883311510086 -0.09555875509977341 -0.04517638310790062 -0.009171481244266033 -0.04687061533331871 -0.0392049141228199 0.058281056582927704 -0.03349202871322632 0.00909087061882019 -0.009189916774630547 -0.11687131971120834 0.025231949985027313 0.09396270662546158 0.041037946939468384 0.08006712049245834 0.06761831045150757 0.01935405097901821 0.09742453694343567 0.05944890156388283 -0.07745398581027985 -0.026176849380135536 -0.0039062644354999065 -0.08653543144464493 0.03913618251681328 -0.03384912386536598 0.0460645854473114 -0.012558220885694027 0.01910741627216339 0.05998381972312927 -0.004267717711627483 -0.0463612861931324 -0.023922167718410492 0.01309056393802166 -0.051004741340875626 -0.00974008534103632 0.018519552424550056 -0.0038709102664142847 0.025538256391882896 -0.03418305888772011 -0.04053880274295807 -0.004592918325215578 0.0047722188755869865 -0.04357999190688133 0.03282729163765907 0.02973022125661373 -0.03477417305111885 0.021232297644019127 -0.05745486170053482 0.07377850264310837 -0.0546228364109993 0.03188079223036766 -0.027405602857470512 0.04099294915795326 -0.11737354844808578 -0.026404041796922684 0.051691263914108276 -0.011601820588111877 -0.04234938696026802 0.048262666910886765 0.019039468839764595 -0.03452945873141289 -0.004151888657361269 0.0019291144562885165 -0.044922877103090286 -0.02876407839357853 0.017923301085829735 0.057605765759944916 0.036037180572748184 0.01620631292462349 -0.058820389211177826 -0.018081778660416603 0.01738061010837555 0.01972164586186409 -0.017718825489282608 0.012465683743357658 -0.06846167147159576 0.04450163617730141 -0.025425603613257408 -0.0455210842192173 -0.016182219609618187 0.050385355949401855 0.04209262132644653 -0.02408609166741371 0.035779062658548355 -0.00593010988086462 -0.011990158818662167 0.005644422955811024 0.01580369472503662 0.009717066772282124 -0.015158374793827534 0.0010957519989460707 -0.025827761739492416 -0.08650687336921692 -0.011568738147616386 -0.01314414944499731 -0.034457359462976456 0.007240783888846636 -0.0035219520796090364 0.021363096311688423 0.03625413402915001 -0.03528296574950218 0.020876139402389526 0.029308006167411804 0.05417223647236824 -0.017743071541190147 -0.04153232276439667 0.008957249112427235 0.04466937109827995 -0.007638286333531141 -0.020191272720694542 0.014374264515936375 0.04475955292582512 -0.06136118620634079 -0.03183746337890625 -0.03386124223470688 -0.0034330340567976236 0.00809611938893795 -0.026396557688713074 -0.01969180814921856 0.018118441104888916 -0.014259546995162964 -6.95859343977645e-05 0.027899490669369698 -0.07715021073818207 -0.0010766125051304698 0.02906075306236744 -0.03512069210410118 -0.0895102396607399 -0.009609970264136791 -0.013348699547350407 -0.03632152080535889 0.050293441861867905 0.0037425747141242027 0.01514318585395813 0.041887592524290085 -0.037225428968667984 -0.024862907826900482 0.010838666930794716 0.009744320996105671 0.04352797195315361 -0.0387776680290699 0.051178522408008575 -0.0037610495928674936 -0.015811152756214142 -0.007128285709768534 0.006306752562522888 0.0462663471698761 -0.10002133250236511 -0.02894592471420765 -0.017888015136122704 0.03647549822926521 0.028745483607053757 0.0054670581594109535 -0.014746065251529217 -0.08283563703298569 -0.0162026509642601 0.03469763696193695 0.0324123352766037 -0.033922143280506134 -0.0031060436740517616 0.046587202697992325 -0.04736440256237984 -0.04166674241423607 -0.022145191207528114 -0.03042002022266388 -0.06350718438625336 0.0627521499991417 -0.050706155598163605 0.0028290036134421825 0.02922724559903145 0.044845547527074814 -0.005348813720047474 -0.08638131618499756 -0.04860415309667587 -0.0034421803429722786 -0.0634641945362091 -0.0019714070949703455 0.005920117255300283 -0.0818617194890976 -0.04176631569862366 0.0015471952501684427 -0.044454194605350494 0.04721923545002937 -0.004350697156041861 0.02893078699707985 0.007800104096531868 -0.003304435173049569 -0.01092492789030075 -0.009631899185478687 -0.001625623321160674 -0.007514327298849821 -0.05663478001952171 -0.03571523725986481 0.06324506551027298 -0.054151926189661026 0.04963879659771919 0.07007060945034027 -0.024947328492999077 0.0635470598936081 0.01157756894826889 -0.025952089577913284 0.007638982962816954 -0.013173221610486507 -0.02849859558045864 0.0524064339697361 -0.06211113929748535 0.0543137826025486 -0.05617306008934975 0.09975765645503998 0.018090706318616867 -0.03571803867816925 0.06730050593614578 0.11305558681488037 -0.022779101505875587 -0.013459122739732265 -0.024251148104667664 +0.07109864056110382 -0.039891861379146576 0.013921510428190231 0.0056035141460597515 -0.1004648357629776 -0.07937466353178024 0.036369241774082184 0.014789547771215439 0.01702265627682209 -0.037167053669691086 0.03283090144395828 0.006300012115389109 -0.025630133226513863 0.029714953154325485 0.03895149379968643 -0.006415692623704672 -0.053300999104976654 0.008967521600425243 -0.05455484613776207 0.008357450366020203 0.04445355758070946 -0.015441104769706726 -0.03852050006389618 0.00615082448348403 -0.04261143133044243 -0.005650926381349564 -0.06699945777654648 0.001673318212851882 -0.031321775168180466 -0.0013001355109736323 0.030990172177553177 -0.01732676289975643 0.056411370635032654 -0.039764031767845154 -0.05229390785098076 0.052915628999471664 -0.050408944487571716 0.11352525651454926 0.06189913675189018 -0.02733798511326313 -0.0399567075073719 -0.02070927619934082 -0.08854610472917557 -0.05017146095633507 0.04940193518996239 0.037838954478502274 -0.012983766384422779 -0.022199813276529312 0.06695570051670074 0.04775801673531532 0.06257214397192001 -0.03259431943297386 -0.09255862981081009 -0.017561450600624084 -0.015421739779412746 -0.01291427481919527 0.03984896466135979 -0.06890429556369781 -0.06184040382504463 0.06098640710115433 -0.13371874392032623 -0.005693121813237667 0.022433001548051834 0.05859300121665001 0.01999962329864502 -0.05464496091008186 0.008225705474615097 0.015214699320495129 0.009815521538257599 -0.06150227412581444 0.01695096679031849 0.09983783215284348 -0.02673247642815113 -0.06266780942678452 0.023683257400989532 -0.057388510555028915 0.02736487053334713 0.028092725202441216 -0.01452199462801218 0.017388606444001198 -0.02823404036462307 -0.031046004965901375 0.09450483322143555 -0.05535829812288284 -0.0030232639983296394 -0.027655787765979767 0.03273414075374603 -0.06334587186574936 0.041858404874801636 0.01888025552034378 -0.028868092224001884 0.026773622259497643 -0.08157874643802643 0.013521560467779636 -0.01562601886689663 0.0030879054684191942 -0.001808049390092492 -0.061442747712135315 -0.049920231103897095 -0.020373331382870674 0.007055379915982485 -0.0017202779417857528 0.02405133657157421 0.052172742784023285 0.06685556471347809 -0.0076652891002595425 0.010224073193967342 0.05447472631931305 0.026537830010056496 0.023151392117142677 0.008211501874029636 0.02423110231757164 0.1098908856511116 0.02557825855910778 0.04351245239377022 -0.04680614545941353 -0.007852387614548206 -0.06524781882762909 0.004213403910398483 0.0021165679208934307 0.0024039403069764376 0.014470364898443222 -0.02706502377986908 -0.06958393007516861 -0.052086640149354935 -0.006874719634652138 -0.10149244964122772 -0.050303928554058075 0.031183136627078056 -0.050416070967912674 0.09048232436180115 0.0072807250544428825 -0.08267389237880707 0.047912441194057465 0.05087299272418022 0.03646065294742584 -0.0022720571141690016 0.06045261025428772 -0.008096360601484776 -0.025385843589901924 0.07768598943948746 0.09276025742292404 -0.007251558359712362 -0.034306928515434265 0.022419681772589684 0.041770316660404205 0.02547088824212551 0.00929317157715559 -0.10955026000738144 0.04748200625181198 -0.06464067846536636 -0.04248657822608948 -0.017689190804958344 -0.08476465195417404 -0.013075597584247589 0.042633578181266785 -0.021397389471530914 0.012637239880859852 -0.068670354783535 -0.016314227133989334 -0.075662761926651 -0.027475804090499878 -0.035447776317596436 -0.05481546372175217 -0.05463536083698273 -0.040764495730400085 0.03571166843175888 0.04436490312218666 -0.05501070246100426 -0.04290771484375 -0.021784409880638123 -0.018560213968157768 0.02303389646112919 0.03312309458851814 0.08775188028812408 0.03817330300807953 -0.04337810352444649 -0.07385622709989548 0.04813842475414276 0.0010723196901381016 0.03916100040078163 -0.0432569794356823 0.05430988222360611 -0.03574015572667122 -0.0020695049315690994 -0.06298094987869263 0.03507959842681885 -0.0486750565469265 -0.004548535216599703 -0.011074263602495193 -0.034205470234155655 -0.05123564600944519 0.03231823444366455 0.07699388265609741 0.015050246380269527 0.024900468066334724 -0.05467629060149193 0.04588911682367325 -0.015119334682822227 -0.05123477429151535 -0.027630658820271492 0.05913933739066124 0.009906178340315819 0.06603877246379852 0.03949859365820885 -0.06168943643569946 0.07313321530818939 0.015441549941897392 0.035955239087343216 -0.05127326399087906 0.042296119034290314 0.01014968752861023 -0.013127157464623451 -0.03338833153247833 0.02857976034283638 -0.06878428906202316 0.001179317943751812 -0.009593927301466465 0.09254554659128189 0.01563950628042221 0.035388581454753876 0.039035141468048096 -0.05065280944108963 0.011187899857759476 -0.029334524646401405 -0.06483617424964905 -0.008171901106834412 0.06105900555849075 -0.07327619194984436 -0.023303812369704247 -0.02584882266819477 0.0027736506890505552 -0.04010850563645363 -0.02261548489332199 -0.015973756089806557 -0.011406686156988144 -0.06873387098312378 0.09835801273584366 -0.008598320186138153 -0.03265039995312691 -0.027485279366374016 -0.0022557037882506847 0.08136647939682007 -0.004166037309914827 0.033717259764671326 0.036281004548072815 0.02600356750190258 0.00018005003221333027 0.018452810123562813 -0.010194895789027214 -0.041391801089048386 -0.020602582022547722 -0.002355217933654785 0.04337962716817856 -0.08421924710273743 -0.01943039707839489 -0.03603560850024223 -0.03275139629840851 -0.029939724132418633 0.03695528954267502 0.022403592243790627 -0.00695172930136323 -0.0336725227534771 -0.023074310272932053 0.020823020488023758 0.0069366442039608955 0.0002239588211523369 0.014490471221506596 -0.0070314062759280205 0.0017651121597737074 -0.012072194367647171 -0.025168526917696 0.04909359663724899 0.003193422919139266 0.040458448231220245 -0.031130939722061157 0.020996645092964172 -0.0578109547495842 -0.07765096426010132 -0.009936073794960976 -0.09499689936637878 -0.020261457189917564 -0.02625170350074768 -0.05344262719154358 -0.015276394784450531 0.07823053002357483 0.04197930544614792 0.005823615472763777 -0.054210275411605835 -0.0027611299883574247 -0.01704835332930088 -0.06784547120332718 0.0055623105727136135 -0.010528742335736752 -0.04311521723866463 -0.043834980577230453 0.0055992561392486095 -0.047360874712467194 -0.028348250314593315 -0.05982533469796181 -0.04828622192144394 -0.07238662242889404 -0.006030588410794735 -0.023701263591647148 -0.0692562460899353 0.015524782240390778 -0.08022918552160263 0.03482499346137047 0.11877176910638809 0.06873562932014465 0.032975032925605774 0.007567614316940308 0.03514481335878372 0.07170750200748444 -0.015610338188707829 -0.018098851665854454 0.0024146202486008406 -0.03993228077888489 -0.04184763878583908 0.00465254345908761 -0.07458478212356567 -0.0030779866501688957 0.0030068133492022753 -0.03054712899029255 0.09666895121335983 -0.027402551844716072 -0.0438508577644825 0.016296209767460823 0.025614377111196518 -0.025410110130906105 0.0322260782122612 0.02531043067574501 0.005478230305016041 0.005684616509824991 -0.0012597896857187152 -0.009027890861034393 -0.014865508303046227 0.029507681727409363 -0.05412616953253746 0.018895220011472702 -0.015448343940079212 -0.04940253496170044 -0.012873207218945026 0.011959664523601532 0.09269753098487854 -0.012796686962246895 0.018453802913427353 0.037701357156038284 -0.019487053155899048 -0.08266984671354294 0.03737398982048035 0.003891510423272848 -0.008677140809595585 -0.007677408866584301 0.0012189678382128477 0.049773674458265305 -0.08291646093130112 -0.0018201104830950499 0.004145829938352108 -0.02028638869524002 -0.039851922541856766 0.027937550097703934 0.07312431931495667 0.041151344776153564 -0.030762266367673874 -0.024555647745728493 0.0052976966835558414 0.009690400213003159 0.02363666705787182 -0.029046090319752693 -0.012024159543216228 -0.02813507243990898 0.02949523739516735 -0.03925146162509918 -0.0533202663064003 -0.018689041957259178 0.09967296570539474 0.04124518111348152 -0.047175753861665726 0.0075604962185025215 -0.030666902661323547 -0.00030498605337925255 -0.023215746507048607 0.039973385632038116 0.006591673940420151 -0.024527380242943764 -0.023597704246640205 -0.006116431672126055 -0.13556960225105286 -0.01910257898271084 0.021956197917461395 -0.06975225359201431 -0.025469325482845306 -0.04462824761867523 0.0011552784126251936 -0.012770446948707104 -0.03213135153055191 -0.04092349484562874 0.02725357376039028 0.02220303565263748 0.015372122637927532 -0.004547007381916046 0.005210766103118658 0.05946529656648636 0.04381213337182999 -0.014466733671724796 -0.009404432959854603 -0.05007553473114967 -0.05839693546295166 0.03225415199995041 -0.042851269245147705 -0.011523124761879444 -0.004949634894728661 -0.005701588932424784 0.024885986000299454 -0.025228669866919518 0.04615212231874466 -0.005283523816615343 0.02698454260826111 -0.0709194466471672 -0.00273850467056036 0.0354878231883049 -0.01744353398680687 -0.11353736370801926 -0.026780175045132637 0.004035275429487228 -0.01711324043571949 0.022018160670995712 -0.02371666394174099 -0.00513734994456172 0.033491235226392746 -0.030989330261945724 -0.042545657604932785 -0.05710253119468689 -0.03714417293667793 0.06218796595931053 -0.04591646045446396 0.05068647116422653 0.014226214028894901 0.02596409246325493 -0.02733861468732357 0.025511613115668297 0.025612857192754745 -0.055639419704675674 -0.010167429223656654 -0.07641398906707764 0.035088974982500076 0.001657708897255361 -0.05470006912946701 0.04721839725971222 -0.02988232858479023 -0.05480649322271347 -0.026445114985108376 0.13944295048713684 -0.031107403337955475 -0.015732672065496445 0.05169518291950226 -0.03775329515337944 -0.0033324402756989002 0.034210171550512314 -0.05778658390045166 -0.07146166265010834 0.03413533791899681 -0.045468345284461975 -0.0024995324201881886 0.04407352954149246 0.04036315903067589 0.007468354422599077 -0.023772383108735085 -0.006063787266612053 0.028041820973157883 -0.06397499889135361 0.08011866360902786 -0.005021062213927507 -0.057244401425123215 -0.05021204054355621 -0.015127153135836124 -0.007731663528829813 0.0721055343747139 -0.015392561443150043 0.052257705479860306 0.00281925848685205 -0.014085828326642513 0.013444576412439346 -0.050539530813694 0.026531172916293144 0.03012891113758087 -0.030465302988886833 -0.0026543729472905397 0.06550604104995728 -0.055885471403598785 0.022532731294631958 0.055133845657110214 -0.06076428294181824 0.015049967914819717 0.04613347351551056 -0.049367308616638184 0.04535467550158501 0.01699322834610939 -0.08383367210626602 0.06477441638708115 -0.0438770093023777 0.04901363328099251 -0.06692925095558167 0.0952129140496254 -0.008506854996085167 -0.0375530980527401 0.09691556543111801 0.026162071153521538 -0.03914089500904083 -0.013481078669428825 -0.04667229950428009 +0.0163924191147089 0.015504357405006886 -0.021841175854206085 0.03514670208096504 -0.09905214607715607 -0.03828372061252594 0.009877878241240978 0.03209361806511879 0.023097140714526176 -0.013759586028754711 -0.02250763028860092 0.05316320061683655 0.018619157373905182 0.052000317722558975 0.007034593727439642 -0.04584010690450668 -0.032378263771533966 -0.0016960063949227333 -0.010249457322061062 -0.04893440380692482 0.008836592547595501 0.0021832173224538565 -0.0864623486995697 0.01874430663883686 0.011591563001275063 -0.0105411596596241 -0.05948318913578987 -0.013661115430295467 0.007336160633713007 0.01851443015038967 0.05206620693206787 -0.042970333248376846 0.06403214484453201 -0.045549940317869186 -0.09360771626234055 0.013272966258227825 -0.05277452617883682 0.1112145483493805 0.039571113884449005 -0.0252213291823864 -0.07802928239107132 -0.021325401961803436 -0.06216073036193848 -0.006208779755979776 -0.01587684452533722 -0.016493961215019226 -0.002169594168663025 -0.004246138501912355 0.030889853835105896 0.005156484432518482 0.0573074035346508 0.026320332661271095 -0.013918716460466385 -0.04121076315641403 -0.029135772958397865 0.008314894512295723 0.00508617889136076 -0.04025900363922119 -0.10416367650032043 0.028174221515655518 -0.07308089733123779 0.03867041692137718 0.008271295577287674 0.019124360755085945 -0.03220000118017197 -0.017772424966096878 -0.009120100177824497 0.08554481714963913 0.025353193283081055 -0.028632862493395805 0.034579094499349594 0.07167951762676239 -0.05096377432346344 -0.022293908521533012 0.02346966788172722 -0.03577364236116409 -0.023223215714097023 0.02118922583758831 0.005969969090074301 0.006350226234644651 -0.020133767277002335 -0.04730891063809395 0.09296057373285294 -0.026606569066643715 -0.05030020326375961 -0.04682055488228798 -0.005477620288729668 -0.06374432891607285 0.03455865755677223 0.005391019396483898 0.01206697802990675 0.0615193173289299 -0.07318118214607239 0.07071712613105774 0.0335620678961277 0.022276857867836952 0.012290320359170437 -0.1318059116601944 -0.0633702501654625 0.0039351144805550575 0.018050041049718857 -0.007190510164946318 0.06655306369066238 -0.04348739609122276 0.05915794521570206 0.05711115524172783 -0.06911463290452957 0.018639415502548218 0.02066667564213276 0.0022422331385314465 0.056542109698057175 0.06487210839986801 0.031431443989276886 0.06439298391342163 0.05348500981926918 0.01962653547525406 0.047338828444480896 -0.019635023549199104 -0.029023338109254837 -0.004011385142803192 -0.005985409487038851 0.059138257056474686 0.010337315499782562 -0.06278111040592194 -0.07042327523231506 0.01909411884844303 -0.10342379659414291 -0.019282594323158264 0.04910014942288399 -0.0042139156721532345 0.06783223897218704 0.08649974316358566 0.009883414022624493 -0.004868469201028347 0.03061544895172119 -0.015795910730957985 -0.011964602395892143 0.010324105620384216 0.022224625572562218 -0.026566294953227043 -0.04597402736544609 0.06931161880493164 0.027569791302084923 -0.06860616058111191 0.025543196126818657 0.05411861464381218 0.025883404538035393 -0.02603580430150032 -0.07233237475156784 -0.011203259229660034 -0.05374160781502724 -0.09192605316638947 0.001230575842782855 -0.06050465628504753 0.052524205297231674 0.06167428568005562 0.0463421531021595 0.046610984951257706 -0.009881015866994858 -0.009219386614859104 -0.0024517218116670847 0.004029216710478067 0.013793525286018848 -0.06779683381319046 0.013977402821183205 0.0022453381679952145 0.012969821691513062 0.04902103170752525 -0.055389154702425 0.04061521217226982 -0.00908447615802288 0.01507417019456625 0.03950616717338562 0.06132601201534271 0.003874382935464382 -0.03906070813536644 0.013639349490404129 -0.05831632390618324 0.03040650673210621 -0.012863016687333584 0.03184531256556511 -0.06983118504285812 0.02493884041905403 -0.05278961360454559 -0.015272227115929127 -0.0033602763433009386 0.04279720410704613 -0.016409408301115036 -0.018816977739334106 -0.02085956744849682 -0.059921570122241974 -0.06698343902826309 0.0297520961612463 0.06327259540557861 -0.021347176283597946 0.02223723568022251 0.01789579540491104 0.04007595404982567 0.021229075267910957 0.00594130577519536 -0.026301942765712738 0.0071020713075995445 0.009909163229167461 0.027630597352981567 0.00639726547524333 -0.06772693246603012 0.05826430022716522 -0.004871939774602652 0.02306249365210533 -0.0715545043349266 -0.018257271498441696 0.021720394492149353 -0.006018155254423618 0.046340301632881165 0.08642928302288055 -0.06427774578332901 0.0020868892315775156 0.025889141485095024 0.05785880982875824 -0.06414713710546494 -0.012483475729823112 0.0004887855029664934 -0.028793619945645332 -0.01492489967495203 -0.004573643673211336 -0.09613201767206192 -0.0057601043954491615 0.012553730048239231 -0.01831422932446003 -0.044105179607868195 -0.01060429960489273 0.023585952818393707 -0.00013395099085755646 -0.046945277601480484 -0.036711186170578 0.027212463319301605 -0.05477007478475571 0.05865975841879845 0.0038914098404347897 -0.06471434980630875 -0.02885712869465351 -0.02657882124185562 0.026376567780971527 0.01689256727695465 0.02928277477622032 0.07053635269403458 0.10731375962495804 0.018832437694072723 -0.03810423985123634 -0.0264400877058506 -0.053811971098184586 -0.04562435671687126 0.04484395682811737 0.10066524893045425 -0.06892229616641998 -0.02770608849823475 0.030887803062796593 -0.04745518043637276 0.001208509667776525 0.006513162981718779 0.036351583898067474 0.0013970605796203017 -0.04218006134033203 -0.037508927285671234 0.013921770267188549 0.023459726944565773 -0.005494407843798399 -0.021930493414402008 -0.019893864169716835 0.09145646542310715 -0.019670644775032997 -0.05967194586992264 0.018877753987908363 0.027957143262028694 0.022515591233968735 0.007624031975865364 0.046152565628290176 -0.03533293679356575 -0.07552231848239899 -0.05720454454421997 -0.04698699340224266 -0.04659028723835945 -0.03999460116028786 -0.015208428725600243 -0.05752541869878769 0.0981423407793045 -0.02184189297258854 -0.049262549728155136 -0.04683411493897438 -0.016164854168891907 -0.02291712909936905 -0.08444558829069138 -0.0021235814783722162 -0.015227245166897774 -0.08736173063516617 -0.03178894519805908 0.012269419617950916 -0.05303852632641792 0.0037200902588665485 0.05364112928509712 -0.007837893441319466 -0.06291835010051727 0.058115098625421524 -0.027306225150823593 -0.03304625675082207 -0.033937711268663406 -0.09320791810750961 0.013107167556881905 0.06034557521343231 0.0073597426526248455 0.03774385154247284 0.027909621596336365 0.06650619208812714 0.09894546866416931 0.02632530964910984 -0.0846552774310112 5.173138924874365e-05 -0.047797221690416336 -0.08455142378807068 0.05579031631350517 -0.045069701969623566 0.025837184861302376 -0.049081724137067795 0.014451070688664913 0.05473754554986954 0.021182937547564507 0.0069205318577587605 -0.008527996018528938 0.046349164098501205 0.013301030732691288 0.04264030233025551 0.01089703943580389 -0.07102563232183456 0.030332740396261215 -0.06969921290874481 -0.07106781750917435 -0.022450000047683716 -0.018479671329259872 0.02152620442211628 0.08510684221982956 0.018814750015735626 -0.07765582948923111 0.04216601699590683 -0.027898821979761124 0.08496467024087906 -0.10248959809541702 -0.016421543434262276 -0.017126087099313736 0.002896648831665516 -0.08460047096014023 -0.01847292110323906 0.0513455867767334 -0.04146977514028549 -0.059675462543964386 0.018113143742084503 0.0559694729745388 -0.01611567661166191 0.0013676413800567389 -0.008682994171977043 -0.040728744119405746 -0.02193397469818592 0.006910358089953661 -0.009583903476595879 0.044932711869478226 -0.007423616014420986 0.003485569264739752 0.017074957489967346 0.03969598188996315 0.017544539645314217 -0.010569782927632332 0.010987081564962864 -0.03137607127428055 0.12729622423648834 -0.015335983596742153 0.006427518557757139 -0.07411240041255951 0.01956481859087944 0.0025661769323050976 -0.030773501843214035 -0.04518134519457817 -0.0006792482454329729 0.00030449841869995 0.010319773107767105 0.01220722682774067 -0.053995802998542786 -0.017848096787929535 -0.04199686646461487 -0.025751400738954544 -0.06746623665094376 -0.03548230975866318 0.021783696487545967 -0.06876455992460251 -0.009502716362476349 -0.025657789781689644 -0.03874155506491661 0.023714637383818626 -0.04035314545035362 -0.0005233488627709448 0.04234883561730385 0.051259174942970276 -0.03142522647976875 0.05711457133293152 0.02714802511036396 0.046021316200494766 -0.027623863890767097 -0.047089241445064545 0.0716874971985817 0.0660187378525734 -0.04839594289660454 0.015927741304039955 -0.05265180021524429 0.01656017079949379 -0.0015685504768043756 0.0029578106477856636 -0.017112400382757187 0.016838226467370987 -0.017783192917704582 -0.021969804540276527 0.07510104030370712 -0.09312909096479416 -0.035079751163721085 0.057399503886699677 -0.04280950874090195 -0.06683758646249771 -0.004017223138362169 -0.01726372353732586 -0.06965866684913635 0.05777042359113693 0.021802350878715515 0.0411035418510437 0.054131750017404556 -0.07295027375221252 -0.04305878281593323 0.005628954619169235 -0.04610568284988403 0.011246238835155964 -0.032128944993019104 0.03440842777490616 0.02743568830192089 0.019286388531327248 0.026256728917360306 -0.0012819438707083464 0.030029963701963425 -0.08372452110052109 -0.029327819123864174 0.016544200479984283 -0.03917919844388962 -0.0074313548393547535 0.00037332408828660846 0.009559322148561478 -0.07449544221162796 0.006213771644979715 -0.043806858360767365 0.03398573026061058 -0.048889946192502975 -0.04719860851764679 0.029774757102131844 0.009084232151508331 0.004819559399038553 0.03600525110960007 -0.005123698618263006 -0.08705902844667435 0.034723009914159775 -0.04357104003429413 0.02169240452349186 0.01495947316288948 0.0022331250365823507 0.008921703323721886 -0.07702852785587311 -0.04327169060707092 -0.0008835683693177998 -0.08661625534296036 0.05551335960626602 -0.006492707412689924 -0.08665302395820618 -0.08366542309522629 -0.004172618500888348 -0.060975898057222366 0.06016715615987778 0.010063664056360722 0.052543945610523224 -0.016472557559609413 -0.015925008803606033 -0.004671542905271053 -0.021158603951334953 0.035485800355672836 -0.0338144525885582 -0.07570380717515945 -0.016835490241646767 0.08580116182565689 -0.0505145788192749 0.023337824270129204 0.03392105549573898 -0.03513206169009209 0.0446903258562088 -0.004986897576600313 -0.030142873525619507 0.03557105362415314 -0.027267038822174072 -0.03338833898305893 0.05390883982181549 -0.03332212567329407 0.08266844600439072 -0.019528206437826157 0.0851459875702858 0.0067195589654147625 -0.0021155080758035183 0.09656529128551483 0.07225791364908218 -0.009243404492735863 0.0013863258063793182 -0.050165243446826935 +0.06386351585388184 -0.013517242856323719 0.011548052541911602 -0.010036448948085308 -0.09201863408088684 -0.06221505627036095 -0.010545427910983562 0.03896331787109375 -0.002964561339467764 -0.022474845871329308 -0.046942539513111115 -0.031902916729450226 -0.02217293158173561 -0.0013041161000728607 0.02456737495958805 -0.04755796119570732 -0.0715700164437294 0.0006710565648972988 -0.04091935604810715 -0.043099530041217804 0.06074383854866028 0.008487800136208534 -0.07312308996915817 0.04699426889419556 0.0019454816356301308 0.018525920808315277 -0.06437656283378601 0.016687538474798203 -0.007762756198644638 -0.007161715999245644 0.06416495144367218 -0.0003760156105272472 0.07381661981344223 -0.06734035909175873 -0.03241317346692085 0.04047050327062607 -0.020076556131243706 0.10395514219999313 0.03338313475251198 -0.058630164712667465 -0.04753688722848892 0.0006944524357095361 -0.037526022642850876 -0.03029012493789196 0.02782222256064415 -0.014839835464954376 -0.024361345916986465 -0.029217230156064034 0.037271980196237564 0.027767585590481758 0.09678003191947937 -0.00042237568413838744 -0.02733718976378441 -0.024359701201319695 0.010310472920536995 0.027360815554857254 0.038875166326761246 -0.04572039842605591 -0.06369351595640182 0.018289033323526382 -0.10044333338737488 0.011830199509859085 -0.02834232710301876 -0.010934465564787388 -0.015759501606225967 -0.05349003151059151 0.009195372462272644 0.11362295597791672 0.027561504393815994 -0.018135322257876396 0.03269222378730774 0.08233895897865295 -0.08536795526742935 -0.05528866872191429 0.06780652701854706 -0.06536425650119781 0.005891269072890282 0.06079705059528351 -0.03419378399848938 0.015566965565085411 -0.030293600633740425 -0.030354438349604607 0.1292073279619217 -0.05035897344350815 -0.06292674690485 -0.04617979750037193 -0.003474149387329817 -0.055811695754528046 0.052245404571294785 0.04628117009997368 0.00039695893065072596 0.03855413943529129 -0.034720633178949356 0.05946904048323631 -0.027008377015590668 0.02182711847126484 0.031504783779382706 -0.11454008519649506 -0.04091796651482582 0.008487594313919544 -0.009160701185464859 -0.007814553566277027 0.05144674703478813 -0.016704151406884193 0.04029034450650215 0.036809973418712616 -0.03046533092856407 0.011280645616352558 0.031503546983003616 0.05153069645166397 0.03967621549963951 0.06506693363189697 0.083498015999794 0.04981941357254982 0.039061013609170914 0.012873024679720402 0.03635561838746071 -0.06619502604007721 -0.008266865275800228 0.028760278597474098 0.006859844084829092 0.035207655280828476 -0.039727117866277695 -0.021831786260008812 -0.031993553042411804 0.07335247844457626 -0.07556381076574326 -0.037851978093385696 0.06292831152677536 -0.026332708075642586 0.10187456011772156 0.057237450033426285 -0.03605562448501587 0.03384009748697281 0.07231537252664566 0.021399369463324547 0.02082463912665844 0.023553485050797462 -0.012378343380987644 -0.0828511118888855 -0.03953542932868004 0.017881318926811218 -0.008358779363334179 -0.07290259003639221 0.0385415181517601 0.055269986391067505 0.04706241562962532 -0.05619741603732109 -0.048759229481220245 -0.003169103991240263 -0.09038224071264267 -0.08182850480079651 0.004665670450776815 -0.09834538400173187 0.007117706350982189 0.04254961386322975 -0.0006462002638727427 0.03709552437067032 0.003238535486161709 -0.0035408097319304943 -0.06173977628350258 -0.0853656753897667 -0.03038080222904682 -0.0770384669303894 -0.024590549990534782 -0.023272186517715454 0.027521509677171707 0.03367919847369194 -0.051091764122247696 -0.02213415317237377 0.016355091705918312 -0.020419077947735786 -0.007843987084925175 0.06887359917163849 0.04061967879533768 0.007351992651820183 0.014293920248746872 -0.0067417072132229805 -0.017278021201491356 -0.030869169160723686 0.056142713874578476 -0.03276693448424339 0.037623316049575806 -0.06510904431343079 0.03597140312194824 -0.019387278705835342 0.006023773457854986 -0.04058786481618881 0.025352826341986656 0.010532185435295105 -0.025463515892624855 -0.054611049592494965 0.0018004109151661396 0.06814001500606537 -0.025439433753490448 0.057144612073898315 -0.02026216685771942 0.06754783540964127 -0.02923642471432686 -0.02687448263168335 -0.05389154329895973 0.05366982892155647 0.01585695706307888 0.04672577604651451 0.0022912505082786083 -0.0914846807718277 0.07357046753168106 0.025352012366056442 0.020277244970202446 -0.03787845000624657 0.0420309342443943 0.02392524480819702 0.02125551365315914 0.0473414845764637 0.052412308752536774 -0.01414701621979475 0.005492690950632095 -0.022765466943383217 0.057259369641542435 -0.048706766217947006 0.035864993929862976 0.02811441756784916 -0.07195102423429489 0.055870287120342255 -0.09305005520582199 -0.09516569972038269 -0.052775245159864426 0.011210029013454914 0.0009674258180893958 -0.04696568101644516 -0.01819062978029251 -0.0014975890517234802 -0.011483633890748024 -0.01683826744556427 0.01579437218606472 0.0015140925534069538 -0.08797042816877365 0.09471799433231354 0.01353074237704277 -0.0698605626821518 -0.055966489017009735 0.006731265224516392 0.03253276273608208 -0.004957782104611397 0.03388860076665878 0.025117604061961174 0.12235751003026962 0.009533324278891087 -0.001495335134677589 0.0004773528780788183 -0.039377979934215546 -0.06708064675331116 0.003039874602109194 0.0033838278613984585 -0.05119650438427925 -0.06182722747325897 0.03394080325961113 -0.056606922298669815 -0.007238740101456642 -0.02785377763211727 0.041199564933776855 0.008212634362280369 -0.03306833654642105 -0.02360694482922554 0.060011766850948334 -0.04538533091545105 -0.053497180342674255 0.02993224933743477 -0.015570295043289661 0.06077859178185463 -0.020360687747597694 0.004821970127522945 0.012237867340445518 -0.026358693838119507 0.024670448154211044 -0.04526706039905548 0.060184236615896225 -0.03645786643028259 -0.05640758201479912 -0.0249699205160141 -0.07158973067998886 -0.06485621631145477 -0.01244655903428793 -0.036381106823682785 0.004009817261248827 0.08598671108484268 0.01877758465707302 -0.033729519695043564 -0.04482167959213257 -0.03714602440595627 -0.03286905959248543 -0.03008061833679676 -0.02485671080648899 0.004719561897218227 -0.06084776669740677 -0.007038269191980362 0.051484718918800354 -0.045806583017110825 -0.02799304388463497 0.022614385932683945 -0.04802488908171654 -0.06587433815002441 0.029425032436847687 -0.018587905913591385 -0.020206307992339134 0.00046242278767749667 -0.04897918552160263 0.0215293001383543 0.09937760978937149 0.047770481556653976 0.030307916924357414 0.04235151782631874 0.011910012923181057 0.09620323777198792 -0.005069436505436897 -0.03328775614500046 0.005797126796096563 -0.061379775404930115 -0.06472337245941162 0.02172347530722618 -0.016369719058275223 -0.02066303789615631 -0.005835996940732002 -0.011179479770362377 0.05283892899751663 -0.03264224901795387 -0.04195784032344818 -0.04210781678557396 0.006163654383271933 -0.05310199409723282 0.005992391612380743 0.027525272220373154 0.02487560734152794 0.0005960442358627915 -0.04659998044371605 -0.030264539644122124 -0.06335289776325226 0.028597643598914146 -0.03124965727329254 0.011147580109536648 -0.030158162117004395 -0.0255126953125 -0.02253272384405136 0.011992336250841618 0.09822414815425873 -0.059070248156785965 0.030882729217410088 0.031832776963710785 0.03824257850646973 -0.09250298887491226 -0.002767378930002451 0.020526222884655 -0.03928237408399582 -0.013653572648763657 0.017933527007699013 0.037418972700834274 -0.07161380350589752 -0.014311963692307472 0.002251064172014594 -0.013298911973834038 -0.007161075249314308 0.031081819906830788 0.0235796719789505 0.044792063534259796 -0.028243426233530045 -0.021324096247553825 0.004866353701800108 0.004474682733416557 0.058511972427368164 -0.027541322633624077 0.046419598162174225 -0.03776058927178383 0.026373770087957382 -0.054890088737010956 -0.0811220034956932 -0.07538267225027084 0.027620509266853333 0.0013197564985603094 -0.007740786764770746 -0.026803817600011826 0.006008626893162727 0.010831781663000584 0.036818791180849075 0.04978802055120468 -0.050192877650260925 -0.01263335719704628 -0.033629655838012695 -0.052273403853178024 -0.0933178961277008 -0.04750116914510727 -0.011615773662924767 -0.07223803550004959 0.028098730370402336 -0.022096365690231323 -0.00727707939222455 -0.009684962220489979 -0.01352632138878107 0.020697830244898796 0.06572889536619186 0.02369491383433342 0.018565088510513306 0.04051786661148071 0.002828085096552968 0.030237900093197823 0.014689031057059765 -0.06382425129413605 0.012884719297289848 0.009486513212323189 -0.04411359876394272 0.05618191510438919 -0.01859395205974579 0.015879344195127487 -0.03037501871585846 -0.008603984490036964 0.03328053653240204 -0.013583456166088581 0.025086339563131332 -0.03171779215335846 0.05450347438454628 -0.05401553213596344 -0.04182281345129013 0.04627532884478569 -0.0316380076110363 -0.09573999047279358 -0.00980681274086237 -0.03553416207432747 -0.039134688675403595 0.042499661445617676 -0.03910524398088455 0.0133487144485116 0.026275532320141792 -0.04858734831213951 -0.06351078301668167 -0.045837923884391785 -0.013280161656439304 0.034196946769952774 0.020946191623806953 0.07676420360803604 0.02425437793135643 -0.009852562099695206 0.046259041875600815 -0.02237832359969616 0.013977236114442348 -0.1036546379327774 -0.0069959829561412334 -0.044339295476675034 0.0007553093018941581 0.030056817457079887 -0.008879275061190128 0.035056985914707184 -0.03867778927087784 0.0023915742058306932 -0.07067328691482544 0.08308558911085129 -0.016508828848600388 -0.004963873885571957 0.009000415913760662 -0.04957815259695053 -0.0016528437845408916 0.01701704040169716 -0.03201631084084511 -0.0630962923169136 0.006787396967411041 -0.03913723677396774 0.03509790822863579 0.02580122835934162 0.021992117166519165 0.00630527175962925 -0.06656522303819656 -0.010334552265703678 0.04160185530781746 -0.03328271210193634 0.018135162070393562 0.01543524581938982 -0.0451793409883976 -0.08119632303714752 -0.020258018746972084 -0.054394885897636414 0.05944833159446716 0.0026249645743519068 0.0018302323296666145 -0.022366445511579514 0.010757260955870152 0.004249316640198231 -0.04046432301402092 -0.010984563268721104 0.017894232645630836 -0.06968995183706284 -0.009802117012441158 0.0630815178155899 -0.013389728032052517 0.0334317609667778 0.08731476217508316 -0.04110968858003616 0.019438305869698524 0.03644557297229767 -0.03368762880563736 0.019816428422927856 -0.04419759288430214 -0.029575355350971222 0.04576454684138298 -0.06130098178982735 0.07311098277568817 -0.05815454572439194 0.12035328149795532 0.00014503912825603038 -0.05783138796687126 0.0800391361117363 0.052531588822603226 -0.005612569861114025 0.006322819273918867 -0.08574756234884262 +0.01811225526034832 0.01436321996152401 -0.015245934017002583 0.024783233180642128 -0.0871250107884407 -0.07442451268434525 -0.006941836327314377 -0.012653359211981297 0.0016333844978362322 -0.016987964510917664 -0.01966242305934429 -0.03637592867016792 -0.0049851564690470695 -0.005852080415934324 0.05414927005767822 -0.026654386892914772 -0.0713580995798111 0.022488493472337723 -0.03777741268277168 0.0021021924912929535 0.021483352407813072 0.0059067318215966225 -0.08573922514915466 0.04331960529088974 -0.0009643406956456602 0.006359177641570568 -0.05175115913152695 -0.004020117688924074 -0.0011764649534597993 0.004776878748089075 0.006602881010621786 0.0058600748889148235 0.05434824898838997 -0.05920858681201935 -0.06619291007518768 0.04753042757511139 -0.012653609737753868 0.10909900814294815 0.05527167394757271 -0.05231284350156784 -0.077939473092556 0.016705932095646858 -0.06871866434812546 -0.08405780792236328 0.012692010961472988 0.01874113827943802 0.0005358322523534298 -0.004179749172180891 0.039922188967466354 0.06128134950995445 0.08153027296066284 0.006387644913047552 -0.06327328085899353 -0.03470304608345032 -0.015729863196611404 -0.005486251786351204 0.04791633412241936 -0.04436185210943222 -0.061575137078762054 0.05135039985179901 -0.07682810723781586 0.01002668496221304 0.014694875106215477 -0.007592095527797937 -0.02294415980577469 -0.05258382856845856 -0.0011633331887423992 0.07908321171998978 -0.013762040995061398 -0.0017224325565621257 0.01839393563568592 0.09816404432058334 -0.06261453032493591 -0.0334307923913002 0.0507347546517849 -0.08423459529876709 -0.044092971831560135 0.0641191378235817 -0.00704950699582696 0.004882025066763163 -0.0031243544071912766 -0.03977520018815994 0.11511837691068649 -0.05442399904131889 -0.045339953154325485 -0.06746126711368561 0.001842114725150168 -0.038738932460546494 0.009931410662829876 0.0467761792242527 0.0075722383335232735 0.047276515513658524 -0.05289369449019432 0.047850027680397034 0.0024153280537575483 0.015694858506321907 0.04733049497008324 -0.10809726268053055 -0.04731714725494385 -0.005564793013036251 -0.018428582698106766 -0.02746276929974556 0.016148556023836136 -0.009562055580317974 0.021279551088809967 -0.004657065961509943 -0.047270677983760834 0.02640378288924694 0.019444623962044716 0.040630191564559937 0.04255107790231705 0.03102581948041916 0.08304805308580399 0.05983707308769226 0.0616595558822155 0.024896729737520218 0.04463830217719078 -0.05619543045759201 -0.015299231745302677 0.018216270953416824 0.0034632852766662836 0.019880885258316994 0.00861792080104351 -0.045088402926921844 -0.0013245947193354368 0.024345720186829567 -0.08619014918804169 -0.03989269956946373 -0.009470131248235703 -0.024892881512641907 0.10446763038635254 0.037924546748399734 -0.0390808992087841 -0.004686250351369381 0.031337443739175797 0.011945116333663464 0.022501297295093536 0.06095777451992035 -0.0341649129986763 -0.03975000977516174 -0.0045714364387094975 0.032005537301301956 -0.004564552567899227 -0.05438694730401039 0.05958733335137367 0.0517849363386631 0.037293002009391785 -0.03642091527581215 -0.09325382113456726 -0.016346443444490433 -0.09156045317649841 -0.05083085969090462 -0.007493007928133011 -0.09619981050491333 0.026044795289635658 0.033193353563547134 0.02204693853855133 0.05402173846960068 -0.02351950854063034 0.00032470605219714344 -0.029462046921253204 -0.03735898807644844 -0.0022137693595141172 -0.08873231709003448 -0.055481549352407455 -0.04650063440203667 0.015720024704933167 0.01652955263853073 -0.04909742996096611 -0.02984580770134926 -0.014014648273587227 0.0064643253572285175 0.0686892420053482 0.02897721901535988 0.04703211784362793 -0.017103955149650574 0.038239262998104095 -0.06586899608373642 -9.346973092760891e-05 -0.030796105042099953 0.04034320265054703 -0.056782789528369904 0.029330771416425705 -0.04418005049228668 0.014842112548649311 0.00826114509254694 0.0318613164126873 -0.02798609435558319 -0.016798745840787888 0.017867084592580795 -0.08661368489265442 -0.05856615677475929 0.06745482981204987 0.09139429032802582 -0.017761042341589928 0.020253540948033333 -0.032404109835624695 0.03163481503725052 -0.016168950125575066 -0.02378915250301361 -0.06886275857686996 0.01961669512093067 -0.020669614896178246 0.0606951080262661 -0.0038130437023937702 -0.09225770831108093 0.0567641481757164 0.002468427177518606 0.00200245575979352 -0.027689071372151375 0.024753917008638382 0.021658694371581078 -0.025080803781747818 -0.000277554034255445 0.08214025944471359 -0.006614387966692448 0.013010825961828232 0.012989452108740807 0.07450000196695328 -0.043231185525655746 0.032587021589279175 0.023753201588988304 -0.09727784246206284 -0.007270297966897488 -0.032181985676288605 -0.08386138826608658 -0.02095508947968483 0.05899465084075928 -0.03265818953514099 0.002972461748868227 -0.017398657277226448 0.00043411305523477495 -0.00843051727861166 -0.033475760370492935 -0.018402835354208946 0.017697390168905258 -0.08953576534986496 0.07455634325742722 0.011410333216190338 -0.07067377120256424 -0.03772401809692383 -0.006205025594681501 -0.0008933052886277437 -0.013850349932909012 0.035727083683013916 0.05465621501207352 0.05676400661468506 0.024403538554906845 0.028949789702892303 -0.02081192471086979 -0.05483186990022659 -0.05808072164654732 -0.006023293361067772 0.03550304099917412 -0.03927476704120636 -0.015533252619206905 -0.0004652466159313917 -0.04403802007436752 0.005488829221576452 0.03602871298789978 -0.0006704630795866251 -0.027801724150776863 -0.05200137197971344 -0.028163835406303406 0.0464191734790802 -0.033635322004556656 -0.03273795172572136 0.024607758969068527 0.00397129263728857 0.06406185775995255 -0.010819430463016033 -0.032365016639232635 0.019063353538513184 0.002706848783418536 0.03419872745871544 -0.005701197311282158 0.04954540729522705 0.0030799054075032473 -0.0639648586511612 -0.005864489357918501 -0.08180356025695801 -0.04900120943784714 -0.016210535541176796 -0.0189727321267128 -0.024297159165143967 0.0857650637626648 0.03788217157125473 -0.04240712895989418 -0.08820727467536926 -0.05768376961350441 -0.03714549541473389 -0.0711430087685585 -0.016056226566433907 -0.000798580062109977 -0.09544224292039871 -0.043834805488586426 0.04131721332669258 -0.014784141443669796 -0.018868720158934593 0.004771700594574213 -0.02517852559685707 -0.08142126351594925 0.03163280338048935 -0.012364271096885204 -0.031363409012556076 -0.008841251023113728 -0.04415789246559143 0.01381265465170145 0.07887651771306992 0.013349168002605438 0.04117308929562569 0.03106328658759594 0.017856109887361526 0.08591248095035553 -0.0036518306005746126 -0.05466156825423241 -0.038704294711351395 -0.08583555370569229 -0.09476787596940994 0.056405533105134964 -0.04076468199491501 0.004321172367781401 -0.02561948075890541 0.03239406645298004 0.06604659557342529 -0.027424445375800133 -0.031672872602939606 -0.023569602519273758 0.016651282086968422 -0.011896596290171146 0.010048246942460537 -0.0185257475823164 0.01923845149576664 -0.023093590512871742 -0.08332628011703491 -0.04459092393517494 -0.03188442438840866 -0.011962753720581532 0.0007855520234443247 0.06329400837421417 -0.020450333133339882 -0.045100901275873184 -0.018314698711037636 0.004625034984201193 0.14549510180950165 -0.06424620747566223 -0.009842540137469769 0.04836396500468254 0.04366469383239746 -0.04932111129164696 0.005322929006069899 0.043016958981752396 -0.06921271979808807 -0.005579530727118254 -0.017046649008989334 0.04246067255735397 -0.0772029459476471 -0.003432926954701543 0.01081366278231144 -0.01618550904095173 0.01723400317132473 -0.0037637650966644287 -0.006205441430211067 0.005459200590848923 -0.05221321061253548 -0.01758243329823017 0.012454899027943611 -0.0014582169242203236 0.0019390712259337306 -0.0418606661260128 0.011726620607078075 -0.02653481438755989 0.03473731875419617 -0.04299662634730339 0.006278288085013628 -0.06180979311466217 0.041360702365636826 -0.026205016300082207 -0.06407926976680756 -0.01066649705171585 0.0007498082704842091 -0.014477846212685108 0.025522636249661446 0.029282424598932266 -0.04270118474960327 -0.060690414160490036 -0.0741329938173294 -0.02438446693122387 -0.07823028415441513 -6.435432624130044e-06 0.008090894669294357 -0.0643426924943924 -0.0025611002929508686 -0.055119410157203674 -0.029733799397945404 -0.005601910408586264 -0.007512607146054506 -0.014454858377575874 0.04460103064775467 0.04550861567258835 -0.033874671906232834 0.04010886698961258 -0.0163542740046978 0.03365890309214592 0.010863704606890678 -0.06194955110549927 0.01534128189086914 0.03851458430290222 -0.05623582750558853 0.04350658506155014 -0.05258331820368767 0.004860926419496536 -0.00286897923797369 0.030009258538484573 -0.003059821669012308 -0.00420469231903553 -0.0006937627331353724 0.027314530685544014 0.030719468370079994 -0.0815516784787178 -0.06373010575771332 0.017702855169773102 -0.05171264708042145 -0.08952654898166656 -0.01437473390251398 0.011528503149747849 -0.00872164685279131 0.007807335816323757 -0.03823389858007431 0.0594102218747139 0.038237519562244415 -0.07079456746578217 -0.038453664630651474 -0.052599016577005386 -0.05147276446223259 0.05049896612763405 -0.03463244438171387 0.03074062243103981 0.005799942184239626 -0.003796881763264537 0.030200522392988205 0.034523457288742065 0.0001563847326906398 -0.0926036387681961 -0.03517068177461624 -0.029108986258506775 -0.002541779540479183 0.029086284339427948 -0.022421522065997124 0.00851534865796566 -0.028076959773898125 -0.025820419192314148 -0.02758936397731304 0.07367344945669174 -0.015772588551044464 -0.02444867230951786 0.08911962807178497 -0.01363449264317751 0.026646051555871964 0.040884848684072495 -0.05509649217128754 -0.0829591304063797 -0.0017040928360074759 -0.035248901695013046 0.06213560700416565 0.08291873335838318 0.020699912682175636 -0.008104672655463219 -0.04550088196992874 -0.003996662329882383 0.011151920072734356 -0.08076785504817963 0.012065831571817398 0.012075004167854786 -0.05444509908556938 -0.06824516505002975 0.010719561018049717 -0.049013346433639526 0.07126329094171524 0.03998664766550064 0.06972426176071167 -0.024408798664808273 -0.0011445338604971766 -0.002867547096684575 -0.011464042589068413 0.016497064381837845 0.023905819281935692 -0.06763454526662827 0.020488286390900612 0.1021299883723259 -0.05340178683400154 0.033695317804813385 0.050939712673425674 -0.035034626722335815 0.0379498153924942 0.027008652687072754 -0.04691430926322937 0.04663773626089096 -0.027022497728466988 -0.07021161168813705 0.04313516616821289 -0.07009775936603546 0.09830907732248306 -0.03731512278318405 0.10024766623973846 -0.0014052585465833545 -0.03668677434325218 0.0790773257613182 0.09019305557012558 -0.021718567237257957 0.03174709156155586 -0.051676809787750244 +0.08477882295846939 -0.05147663131356239 -0.031589217483997345 0.017220811918377876 -0.09696666151285172 -0.030500445514917374 -0.03180908039212227 0.07302964478731155 -0.06430578976869583 -0.06831353902816772 -0.07198217511177063 -0.026444677263498306 -0.0044242627918720245 -0.00974314846098423 0.033153802156448364 -0.01776854135096073 -0.04223193973302841 0.03660744056105614 -0.013380742631852627 -0.03798060864210129 0.012836575508117676 0.00865988526493311 -0.06629906594753265 0.048704102635383606 0.029091231524944305 -0.04596025496721268 -0.034623805433511734 0.04044328257441521 0.014110960997641087 0.030560865998268127 0.06550928950309753 -0.06262640655040741 0.012523975223302841 -0.05042671784758568 -0.06541979312896729 0.0230602715164423 -0.04425838589668274 0.11371952295303345 0.023341920226812363 -0.07106095552444458 -0.03611920028924942 0.06557304412126541 0.0009959116578102112 -0.06057589128613472 0.09309700131416321 0.015484113246202469 -0.04759249836206436 -0.06494222581386566 0.004017267841845751 0.04571795463562012 0.07119666785001755 0.028656501322984695 0.009645998477935791 -0.019407043233513832 -0.06131540611386299 0.01926456205546856 0.02893567830324173 -0.04427025839686394 -0.015431955456733704 0.033471524715423584 -0.04955669865012169 -0.008513012900948524 0.0511699803173542 0.04291563853621483 -0.0059378426522016525 -0.012645818293094635 0.021789943799376488 0.07785685360431671 0.012447324581444263 0.005666144657880068 -0.04289747402071953 0.06160111725330353 -0.039757076650857925 -0.036034196615219116 0.06731701642274857 -0.07337538152933121 -0.021666070446372032 0.029509449377655983 0.022753557190299034 -0.02540540136396885 0.02500176429748535 0.006087999325245619 0.07979033887386322 -0.03852299600839615 -0.037708498537540436 -0.021534541621804237 -0.012823382392525673 -0.031115557998418808 0.03004697524011135 0.023819521069526672 0.033830493688583374 0.012298393994569778 -0.019068503752350807 0.007121459115296602 -0.06855158507823944 -0.0053318338468670845 0.04358692094683647 -0.11216460913419724 -0.011226823553442955 -0.02233148366212845 0.005101753864437342 -0.029147397726774216 0.0159793421626091 -0.0018103388138115406 0.015792470425367355 0.02375108003616333 -0.058364029973745346 -0.0026099947281181812 0.0326676107943058 0.04027043282985687 0.009263355284929276 0.09530109912157059 0.07417872548103333 0.045363593846559525 0.11643953621387482 0.010281862691044807 -0.023360561579465866 -0.06771865487098694 -0.01995263062417507 0.024020981043577194 -0.026904812082648277 0.052372291684150696 -0.012399740517139435 -0.08145873993635178 0.016441836953163147 0.07029370963573456 -0.053659386932849884 -0.010645249858498573 0.032839011400938034 0.014157477766275406 0.06754091382026672 0.0037818478886038065 -0.02920413576066494 0.044046178460121155 0.054599449038505554 0.009006967768073082 0.021234184503555298 0.036800775676965714 0.010235975496470928 -0.07076074182987213 -0.02505054697394371 0.04783486947417259 0.03579713776707649 -0.03273509815335274 0.036455851048231125 -0.001731598749756813 0.05801265686750412 -0.00827493704855442 -0.05190034955739975 0.019519098103046417 -0.11068123579025269 -0.08664897084236145 0.007761890068650246 -0.08368706703186035 0.031040040776133537 0.012990212999284267 -0.0073798405937850475 -0.016965849325060844 0.007382087409496307 -0.0029491495806723833 -0.044563740491867065 -0.06134078651666641 0.01670321449637413 -0.0856458842754364 -0.019901324063539505 0.02020854502916336 -0.040820468217134476 0.02346055582165718 -0.041848357766866684 -0.035965967923402786 -0.004561746027320623 -0.012343324720859528 0.060388438403606415 0.08982232213020325 0.05649305507540703 0.029913906008005142 0.05465332791209221 0.00544395949691534 -0.023212909698486328 -0.013181455433368683 0.007607754319906235 -0.0671447217464447 0.0530690960586071 -0.095835380256176 0.036899734288454056 -0.03323345631361008 0.009210905991494656 -0.05087248235940933 0.05242593213915825 -0.02496945671737194 -0.03867330402135849 -0.06536218523979187 0.04906449839472771 0.053480785340070724 0.0015820114640519023 0.052238184958696365 0.004448494873940945 0.04026585817337036 -0.0065203323028981686 -0.03420564904808998 -0.036862779408693314 0.04483291134238243 0.01999642513692379 0.007256262004375458 0.00912733469158411 -0.07416656613349915 0.05639747157692909 0.03954595327377319 0.038080938160419464 -0.024358194321393967 0.022697916254401207 0.09233837574720383 0.004166215192526579 0.03761717677116394 0.06743141263723373 0.017139781266450882 9.658556518843397e-05 -0.009178519248962402 0.04008155316114426 -0.048673756420612335 0.011926364153623581 0.040995966643095016 -0.1033443734049797 0.06821723282337189 -0.024428948760032654 -0.10655563324689865 -0.01790435239672661 0.0024966730270534754 -0.01896454207599163 -0.07127169519662857 0.0174848772585392 0.014545006677508354 0.06699266284704208 -0.04905373603105545 -0.0007714001694694161 -0.000194090636796318 -0.037691131234169006 0.07378336042165756 0.012463517487049103 -0.07068321108818054 -0.025053873658180237 -0.018616102635860443 -0.001849244348704815 -0.009152359329164028 0.008435544557869434 0.03391961008310318 0.09375151991844177 0.004462351091206074 -0.052551355212926865 0.02635970339179039 -0.054963190108537674 -0.03331777825951576 -0.01983805000782013 0.04422222450375557 -0.023574385792016983 -0.07158484309911728 -0.0033847829326987267 -0.06751341372728348 -0.01842908374965191 -0.0060979328118264675 0.00107139116153121 -0.045509207993745804 -0.0576644092798233 -0.05881072208285332 0.045433126389980316 -0.02292618528008461 -0.047002822160720825 0.006322585046291351 -0.03618960827589035 0.03754733130335808 -0.015933973714709282 0.022945309057831764 0.048359014093875885 -0.047834720462560654 0.0015797956148162484 -0.049734558910131454 0.06814597547054291 -0.05145280808210373 -0.008731313049793243 -0.013505996204912663 -0.06389068812131882 -0.09058869630098343 0.0167926587164402 -0.05298776179552078 0.029741691425442696 0.11224217712879181 0.04849376529455185 -0.012513339519500732 -0.04289889708161354 -0.04336624965071678 -0.031665775924921036 -0.025775091722607613 -0.030235949903726578 0.042725756764411926 -0.0101117342710495 0.004269368946552277 0.018139054998755455 0.017264850437641144 -0.011318635195493698 0.011699721217155457 0.051252782344818115 -0.04515150934457779 0.05520376190543175 -0.02543441578745842 -0.0005481676780618727 0.056206103414297104 -0.030359284952282906 -0.005276048090308905 0.0872272253036499 0.07709117978811264 0.019335240125656128 0.03761960566043854 0.009527754969894886 0.13253344595432281 0.016547316685318947 -0.06839166581630707 -0.026141546666622162 -0.08046484738588333 -0.07898761332035065 0.03794988989830017 0.007547400426119566 -0.07969563454389572 -0.0018169437535107136 -0.023207921534776688 0.03826526924967766 -0.030836373567581177 -0.03473447263240814 -0.08435610681772232 -0.012975991703569889 -0.05321823060512543 0.0021092372480779886 -0.01683531515300274 0.0028353179804980755 -0.032351624220609665 -0.027478322386741638 0.0010501224314793944 -0.053464870899915695 0.03987351432442665 -0.0033089593052864075 0.042710158973932266 -0.03238370269536972 -0.024935297667980194 0.007731580175459385 0.04551279917359352 0.05640314891934395 -0.056875649839639664 0.03932468220591545 0.011421886272728443 0.06428195536136627 -0.01979459822177887 0.005334398243576288 -0.013414098881185055 -0.011111491359770298 0.006311553530395031 -0.039013467729091644 0.039201702922582626 -0.06759754568338394 -0.037404172122478485 -0.018081173300743103 -0.02590889111161232 0.014850434847176075 -0.024425972253084183 0.015479895286262035 0.08601247519254684 -0.02202208712697029 0.014998514205217361 0.03276263549923897 -0.004997348878532648 0.05281231924891472 -0.02114611491560936 0.032012201845645905 0.012360074557363987 0.027527406811714172 -0.025922203436493874 -0.04657851159572601 -0.04251648858189583 0.017532510682940483 -0.06234719604253769 0.018047228455543518 -0.015024501830339432 0.012877783738076687 0.02294236794114113 0.030343083664774895 0.024965010583400726 -0.041787438094615936 0.0020571653731167316 0.01428610272705555 -0.04736580327153206 -0.054102931171655655 -0.06396860629320145 0.022275300696492195 -0.04265056177973747 0.01270873099565506 -0.03142203390598297 -0.025362925603985786 0.0545499324798584 -0.0006470094085671008 0.04431639984250069 0.04100167006254196 0.024687524884939194 0.025840433314442635 0.03472399339079857 0.0038611795753240585 0.023086246103048325 0.02535453625023365 -0.08080518245697021 -0.02455195225775242 0.04171457886695862 -0.04683796688914299 0.02791070193052292 0.020091302692890167 0.05158304050564766 -0.033671196550130844 0.003548635635524988 0.04731546714901924 -0.06628675013780594 0.0016091042198240757 -0.0015179577749222517 0.059282079339027405 -0.029876485466957092 -0.09911464899778366 0.046182502061128616 -0.015065222047269344 -0.09343758225440979 -0.011186329647898674 -0.032256707549095154 0.008478185161948204 0.038526155054569244 -0.04439716786146164 0.01894998736679554 -0.003094722284004092 -0.03076944500207901 -0.048172127455472946 -0.06827787309885025 -0.014627411030232906 0.05968796834349632 0.03231088072061539 0.051673807203769684 0.03500612825155258 0.006850470323115587 0.025556044653058052 -0.050040796399116516 0.013957514427602291 -0.08643925189971924 -0.0014186094049364328 -0.042297784239053726 -0.009012806229293346 0.04532105103135109 0.026151547208428383 0.01766977645456791 -0.03545700013637543 -0.0419682152569294 -0.05687240883708 0.07060575485229492 -0.015874819830060005 0.010210680775344372 0.04809122532606125 -0.06667520850896835 -0.04637784883379936 0.02081787772476673 -0.0609867088496685 -0.07672267407178879 0.03139631450176239 0.005795768927782774 0.028943514451384544 0.029564175754785538 0.07144289463758469 -0.017647486180067062 -0.0874909907579422 0.048507362604141235 0.03685898333787918 -0.032128866761922836 0.0080117117613554 0.011435823515057564 -0.06934804469347 -0.07223228365182877 -0.023904813453555107 -0.07528316229581833 0.0810406506061554 -0.012201381847262383 -0.01297998521476984 -0.0718381404876709 0.028657682240009308 0.007663242053240538 -0.03105059452354908 0.009417231194674969 -0.023846657946705818 -0.0671100839972496 0.023188572376966476 0.10787063837051392 -0.02534729428589344 0.008711888454854488 0.0712047815322876 -0.03595653176307678 0.014938682317733765 0.010516555048525333 0.017165079712867737 0.0061000194400548935 -0.016608281061053276 0.0171352606266737 0.06472074240446091 -0.03871076926589012 0.0019706066232174635 -0.046315427869558334 0.04919397830963135 0.023317158222198486 -0.006609173957258463 0.06563710421323776 0.03480486571788788 -0.013762782327830791 0.008340306580066681 -0.09704115241765976 +0.02409682236611843 -0.03927113488316536 -0.00923890620470047 0.020646438002586365 -0.12082802504301071 -0.08187384903430939 0.0031540170311927795 0.05921350046992302 0.005904421675950289 -0.024521175771951675 0.011741505935788155 -0.0029065385460853577 0.018067672848701477 0.006326910573989153 0.008026343770325184 -0.002691534347832203 -0.09881909936666489 -0.01791827194392681 -0.05450887605547905 0.00678393617272377 0.04536604881286621 0.025314394384622574 -0.05219173803925514 0.01776169054210186 -0.012062436901032925 0.02594337798655033 -0.03255312889814377 -0.015051360242068768 -0.03878472372889519 -0.015739306807518005 0.007821646519005299 0.022708455100655556 0.02393670380115509 -0.04869020730257034 -0.06561606377363205 0.06742532551288605 -0.019126886501908302 0.13309791684150696 0.04102550446987152 -0.07946683466434479 -0.0634060651063919 0.04457356408238411 -0.04096229746937752 -0.05250426009297371 0.03354522958397865 -0.004554515704512596 0.006009076256304979 -0.019338790327310562 0.024432919919490814 0.05880031734704971 0.0656776875257492 0.010792272165417671 -0.03512183576822281 -0.02301204949617386 -0.0512649342417717 0.05110890418291092 -0.001278251176699996 -0.019795650616288185 -0.09667260199785233 0.037400126457214355 -0.05455100163817406 0.0009991246042773128 -0.002265236107632518 0.031159140169620514 0.0035234657116234303 -0.017102254554629326 -0.024119574576616287 0.07444299757480621 0.04904027283191681 -0.025242503732442856 0.00014271448890212923 0.0920424833893776 -0.03467496857047081 -0.03392931446433067 0.037763770669698715 -0.045260027050971985 -0.03504448011517525 0.037761569023132324 -0.029753996059298515 -0.043409351259469986 0.004492235369980335 -0.007063486147671938 0.11012982577085495 -0.09442810714244843 -0.0472915917634964 -0.01370446290820837 0.016848603263497353 -0.06215643510222435 0.03667508438229561 0.05722550302743912 -0.009611142799258232 0.06100030615925789 -0.06275639683008194 0.03394071385264397 -0.035897932946681976 0.025379745289683342 0.05178755894303322 -0.15018583834171295 -0.06611955165863037 -0.055326420813798904 -0.024709079414606094 -0.03454289212822914 0.04345787689089775 0.004360129591077566 0.04533209279179573 0.0018955715931952 -0.03058883547782898 0.006473904009908438 -0.01246345043182373 0.007708162534981966 0.02941794879734516 0.06464197486639023 0.1074838638305664 0.06506381183862686 0.07040050625801086 -0.02145855687558651 -0.003979227971285582 0.0004874843580182642 -0.02252340316772461 -0.002621132181957364 -0.01792551390826702 0.0011294276919215918 0.01725388504564762 -0.058582790195941925 -0.03134099021553993 0.021147675812244415 -0.09995631873607635 0.001671137404628098 0.022534074261784554 -0.07900459319353104 0.09482741355895996 0.025537967681884766 -0.04594022035598755 -0.002872783923521638 0.06288060545921326 0.011048543266952038 0.009121398441493511 0.04950801283121109 -0.03388111665844917 -0.006427018437534571 -0.003761971602216363 0.06787890195846558 -0.0002733458240982145 -0.03766385093331337 -0.020205583423376083 0.05257991701364517 0.042923782020807266 0.02034049481153488 -0.0780940055847168 0.05606135353446007 -0.08486912399530411 -0.08875168859958649 -0.03907177224755287 -0.10465468466281891 0.014211732894182205 0.09189269691705704 0.01566551811993122 0.07186046242713928 -0.021135501563549042 0.004488238133490086 -0.016360748559236526 -0.03966696187853813 -0.02381407842040062 -0.10965500771999359 -0.021073628216981888 -0.06493734568357468 -0.002234201179817319 -0.029162047430872917 0.009703392162919044 -0.025086669251322746 -0.020132064819335938 -0.00868822168558836 0.010693215765058994 0.03721053525805473 0.06979941576719284 -0.0009336060611531138 -0.01679055579006672 -0.04254999756813049 -0.005672600120306015 0.005028457846492529 0.01827724650502205 -0.03096850775182247 0.04613323137164116 -0.052877672016620636 -0.014362580142915249 -0.015777088701725006 0.02956007607281208 -0.02120319940149784 -0.01643422245979309 -0.014981104992330074 -0.019590483978390694 -0.06414257735013962 0.03375929966568947 0.08594922721385956 -0.0017815117025747895 0.060236793011426926 -0.015343069098889828 0.05580217391252518 -0.02241676300764084 -0.012310374528169632 -0.02308940328657627 0.04547383636236191 -0.03930250555276871 0.05044812336564064 0.01857866533100605 -0.03769029304385185 0.055601827800273895 -0.014849509112536907 0.0019656745716929436 -0.09007734060287476 0.06075430288910866 0.030620763078331947 0.03210851922631264 -0.006312545854598284 0.050161395221948624 -0.034719061106443405 -0.009879063814878464 0.013033795170485973 0.06804997473955154 -0.03387264534831047 0.021114714443683624 0.031646326184272766 -0.06540010869503021 0.012010617181658745 0.016583139076828957 -0.05505339428782463 -0.02933887019753456 0.05528918281197548 -0.013333264738321304 -0.023713843896985054 0.0023688292130827904 0.029307488352060318 -0.01574457436800003 -0.045836396515369415 -0.014504686929285526 0.06806584447622299 -0.07604345679283142 0.036701567471027374 -0.012158915400505066 -0.03134270757436752 -0.04818839207291603 0.0248799417167902 -0.0037954493891447783 0.016050878912210464 0.01862524263560772 0.056227777153253555 0.04287471994757652 0.0379958339035511 0.01519855484366417 -0.010088943876326084 -0.10059289634227753 -0.03260175883769989 -0.020146457478404045 0.060617610812187195 -0.031001446768641472 -0.046772550791502 -0.03885754197835922 -0.07282020151615143 -0.03717144951224327 0.02316495217382908 0.05652362108230591 -0.06054963916540146 -0.059691861271858215 0.011645904742181301 -0.006857875734567642 0.0011220581363886595 -0.04733394831418991 -0.02203316241502762 -0.0008082420099526644 0.0724230408668518 -0.0326881967484951 -0.00031022034818306565 0.039599403738975525 0.024646146222949028 0.07578690350055695 -0.005316061899065971 0.029728207737207413 -0.06117691472172737 -0.0992332398891449 -0.025687435641884804 -0.10182099044322968 -0.06442870199680328 -0.011081524193286896 -0.07728725671768188 -0.03525788336992264 0.09890624135732651 0.05763264372944832 -0.021226759999990463 -0.0851936936378479 -0.028118425980210304 -0.013170620426535606 -0.042639024555683136 -0.013015663251280785 0.029999010264873505 -0.08386211097240448 -0.0472603365778923 0.01574852503836155 -0.03278990089893341 -0.03912423551082611 0.022860651835799217 -0.03750087693333626 -0.015857670456171036 0.0607885904610157 -0.0008395329350605607 -0.01193808764219284 -0.004317926708608866 -0.10545360296964645 0.027770206332206726 0.09067592024803162 0.03998769447207451 0.07023272663354874 0.041005924344062805 0.01616467908024788 0.0579175129532814 0.03324536234140396 -0.02746759168803692 0.01027097087353468 -0.006936311721801758 -0.07627590000629425 0.021821223199367523 -0.05408097431063652 -0.028826646506786346 -0.036345966160297394 0.005192698910832405 0.08119082450866699 0.014810852706432343 -0.016013119369745255 -0.019628161564469337 0.03183848410844803 -0.02042410336434841 0.031131243333220482 -0.013320619240403175 -0.001380569883622229 0.023671351373195648 -0.008536485955119133 -0.007694001775234938 -0.02627333626151085 0.011799548752605915 0.01523652859032154 0.01797395385801792 0.030194872990250587 -0.029556086286902428 0.021123450249433517 -0.009738655760884285 0.0961441919207573 -0.06507102400064468 0.034280549734830856 0.058691758662462234 -0.006206201389431953 -0.06266677379608154 -0.010886961594223976 0.022449815645813942 -0.0046377358958125114 -0.02669929899275303 -0.016983550041913986 0.054842088371515274 -0.04986237734556198 -0.06829164177179337 -0.004005197435617447 -0.016006046906113625 0.020659254863858223 0.0003175224701408297 0.03684857115149498 0.029833553358912468 -0.013202936388552189 -0.023871440440416336 0.04323103278875351 -0.008512179367244244 0.04209277778863907 -0.06124558299779892 -0.006872083526104689 0.0341092124581337 0.06874468922615051 -0.029519207775592804 -0.047666117548942566 -0.040444351732730865 0.06849872320890427 -0.023245131596922874 -0.04464678838849068 -0.023313814774155617 -0.013340591453015804 0.028433457016944885 0.09788000583648682 -0.0033362761605530977 0.004994022194296122 -0.03864719718694687 -0.005605203565210104 -0.027688229456543922 -0.1025652289390564 -0.04932447895407677 0.024199357256293297 -0.07817855477333069 -0.01642310619354248 -0.09614221751689911 -0.006513824220746756 -0.0010677770478650928 0.0077234129421412945 0.011911527253687382 0.0034006424248218536 0.034195661544799805 -0.023427089676260948 0.008929453790187836 0.0024338476359844208 0.03722890466451645 -0.021401703357696533 -0.03806706517934799 0.01530606858432293 0.04797792434692383 -0.0309011097997427 0.02582523413002491 -0.026810267940163612 -0.0036913936492055655 -0.02214631997048855 0.004462049342691898 -0.018678925931453705 0.006798094604164362 -0.017558274790644646 -0.026373913511633873 0.015552069991827011 -0.07898356020450592 -0.007484241388738155 0.06617104262113571 -0.011213711462914944 -0.08889678865671158 -0.009715946391224861 -0.044198933988809586 -0.003971375059336424 0.0016740160062909126 -0.006570403929799795 0.002489627106115222 0.022516243159770966 -0.08342155814170837 -0.022647496312856674 -0.04123876616358757 -0.04651682823896408 0.0356435552239418 0.022361278533935547 0.06408049166202545 0.009649178013205528 -0.014286288991570473 -0.02126488834619522 0.021495306864380836 0.03517797961831093 -0.07045990973711014 0.0032943938858807087 -0.0554540753364563 0.002739910501986742 0.047552440315485 0.014927594922482967 0.03601989895105362 -0.024124182760715485 -0.03315598517656326 0.006092208903282881 0.0692448616027832 -0.017316101118922234 -0.009744392707943916 0.08045894652605057 -0.017282120883464813 -0.001758362865075469 0.0019406068604439497 -0.00702004786580801 -0.07861599326133728 0.04187886416912079 -0.04810402914881706 0.02883749082684517 0.06281983852386475 0.03350865840911865 0.00938376784324646 -0.0585399754345417 -0.04630451649427414 0.005389607045799494 -0.03931698575615883 0.025938929989933968 -0.0016268467297777534 -0.08071750402450562 -0.05461768060922623 -0.041367094963788986 -0.009511849842965603 0.05037807300686836 -0.06053505092859268 0.042080942541360855 -0.012145419605076313 0.012467524036765099 0.024845704436302185 -0.026813000440597534 0.009297197684645653 0.038501281291246414 -0.06516685336828232 -0.027052201330661774 0.07113206386566162 -0.0024385848082602024 0.03862840309739113 0.07453903555870056 -0.046623390167951584 0.07342114299535751 0.02559916116297245 -0.026185927912592888 0.012840189971029758 0.019834060221910477 -0.09016629308462143 0.03408734127879143 -0.03888516128063202 0.034837424755096436 -0.044811464846134186 0.10578015446662903 -0.02668815106153488 -0.03952542692422867 0.06078478321433067 0.07062935084104538 0.00839378871023655 0.004410881549119949 -0.03723379597067833 +0.0024152433034032583 -0.051598526537418365 -0.020341677591204643 0.02941076084971428 -0.09001290053129196 -0.04636429622769356 0.006704607978463173 0.0353923924267292 -0.024338414892554283 -0.07316779345273972 0.02483890764415264 -0.005181330256164074 -0.004584651906043291 0.016731882467865944 0.06201277673244476 -0.03796879202127457 -0.05512993037700653 0.014506553299725056 -0.04804178699851036 -0.01745886169373989 0.03225161135196686 -0.013250241056084633 -0.059762947261333466 0.02344532310962677 -0.010335824452340603 -0.007459643762558699 -0.04195224493741989 0.026334745809435844 0.01711377128958702 0.05013851076364517 0.05787583068013191 -0.028825463727116585 0.01835412159562111 -0.04540139436721802 -0.07610701024532318 0.05597872659564018 -0.07271870225667953 0.13410086929798126 0.04458712041378021 0.0066668083891272545 -0.0580146498978138 -0.016932785511016846 -0.04526017606258392 -0.04609619081020355 0.0694047287106514 -0.028811044991016388 0.015888679772615433 -0.04075143486261368 0.04041758179664612 0.04554333910346031 0.07166168838739395 0.010963644832372665 0.008929835632443428 0.009858960285782814 -0.026696285232901573 0.023770881816744804 0.008299463428556919 -0.03410933166742325 -0.06990831345319748 0.05381197854876518 -0.06921425461769104 -0.019608819857239723 0.007893295958638191 0.03268082067370415 0.01492222584784031 0.0037677998188883066 -0.023443061858415604 0.05092771723866463 -0.034311044961214066 -0.05317753925919533 -0.012799013406038284 0.09716363996267319 -0.051844604313373566 -0.09659090638160706 0.00862150639295578 -0.03800508752465248 0.016383955255150795 -0.0036985762417316437 -0.007972287014126778 0.0009071811218746006 -0.035280387848615646 -0.014333737082779408 0.11825745552778244 -0.04063401743769646 0.017132695764303207 -0.05018305405974388 -0.031006794422864914 -0.04297265037894249 0.0744311660528183 0.03857078030705452 0.048490967601537704 0.04797462001442909 -0.06026468425989151 0.007041111588478088 0.020405760034918785 -0.0024507197085767984 0.012886499986052513 -0.10470299422740936 -0.015500003471970558 -0.019151154905557632 -0.001892031286843121 -0.028520505875349045 0.08701933175325394 0.019093772396445274 0.06992379575967789 0.05979187786579132 -0.06309624761343002 0.03725193068385124 0.007196537218987942 0.02343316562473774 -0.0010242799762636423 0.1270027756690979 0.08212964981794357 0.049905404448509216 0.0440952330827713 -0.00838551577180624 -0.040444519370794296 -0.02569114789366722 -0.04083993658423424 -0.01429692842066288 -0.01628720760345459 0.034058962017297745 0.002949317917227745 -0.046779561787843704 -0.01615590788424015 0.02772284671664238 -0.12418323010206223 -0.03029368445277214 0.06079743430018425 -0.04957374557852745 0.08256831020116806 0.060162682086229324 0.00414870074018836 0.03481674566864967 0.07307562232017517 0.009039442986249924 0.01368478313088417 0.03292078152298927 -0.018247323110699654 -0.028530091047286987 -0.00885632075369358 0.059144336730241776 -0.022394025698304176 -0.038397643715143204 -0.018652919679880142 0.06488792598247528 0.009734869003295898 -0.008088329806923866 -0.09139052033424377 0.04672293737530708 -0.07051588594913483 -0.050411105155944824 -0.026679428294301033 -0.08423423767089844 0.03933297470211983 0.056885749101638794 0.030517391860485077 0.034963373094797134 0.009077224880456924 0.008904607966542244 -0.028025439009070396 -0.06759437173604965 0.004521896596997976 -0.07636476308107376 -0.025118447840213776 -0.022994069382548332 0.02076345682144165 -0.007563319522887468 -0.020945454016327858 -0.03944370895624161 -0.03641638532280922 0.00389590160921216 0.03708263114094734 0.02746627666056156 0.026602517813444138 0.021699022501707077 0.0008961282437667251 -0.07812120020389557 -0.0028332213405519724 -0.043998874723911285 0.020691707730293274 -0.04863663390278816 0.01223180815577507 -0.05577991157770157 -0.04514855891466141 -0.01703559048473835 0.01738731563091278 -0.017012707889080048 -0.032947927713394165 -0.017337117344141006 -0.05319114029407501 -0.0765228196978569 0.049776166677474976 0.07108935713768005 -0.04312018305063248 0.052265044301748276 -0.012257445603609085 0.05569717660546303 -0.04675700142979622 -0.05734381452202797 -0.04965966194868088 0.03112611174583435 0.01763015426695347 0.007390057668089867 0.004792782012373209 -0.0584104061126709 0.05339014530181885 -0.008763976395130157 0.02364494279026985 -0.06884889304637909 0.021770618855953217 0.03044806234538555 0.006528966594487429 0.007821284234523773 0.03545577451586723 -0.06980393081903458 -0.03547785431146622 0.03960691764950752 0.057943932712078094 -0.055401965975761414 0.006625821348279715 0.012864625081419945 -0.058982811868190765 0.00662462692707777 -0.00266398792155087 -0.08951672166585922 0.012499450705945492 0.04593953490257263 -0.06915323436260223 -0.03008018247783184 -0.022353215143084526 0.03993179649114609 -0.030931750312447548 -0.022448087111115456 0.008354204706847668 -0.0003569568507373333 -0.0641305223107338 0.07131300121545792 -0.02420358918607235 -0.06017397716641426 -0.08440146595239639 -0.008301680907607079 0.01143401674926281 0.007386265322566032 0.026780642569065094 0.031089913100004196 0.039620593190193176 0.029035966843366623 -0.03663237765431404 0.0016202089609578252 -0.05128197371959686 0.000947532185819 -0.023311540484428406 0.024068934842944145 -0.031461816281080246 -0.028653575107455254 0.0060404399409890175 -0.06538934260606766 -0.0030209522228688 0.001988384872674942 0.06296143680810928 -0.06366351246833801 -0.018272100016474724 0.026162708178162575 0.040359482169151306 -5.4556308896280825e-05 -0.046228110790252686 -0.0066730245016515255 -0.04113753139972687 0.038699667900800705 -0.06875268369913101 -0.025012679398059845 0.032218482345342636 0.01412905752658844 0.03633347153663635 -0.028592681512236595 0.04988813400268555 -0.04974715784192085 -0.10980242490768433 -0.043015167117118835 -0.08943185210227966 -0.043426983058452606 -0.009972860105335712 -0.022321980446577072 -0.030307164415717125 0.10307314246892929 0.04153468459844589 -0.017614932730793953 -0.05046776309609413 -0.06859473139047623 0.009250040166079998 -0.04242340847849846 0.01163178589195013 -0.02171904221177101 -0.05474215745925903 -0.0016370118828490376 0.044338028877973557 -0.054588980972766876 -0.000490803737193346 0.020637979730963707 -0.0062282150611281395 -0.01715610921382904 0.05086316540837288 -0.0851096585392952 -0.0065140146762132645 0.007797675672918558 -0.058436762541532516 0.06274332106113434 0.08364205062389374 0.057151440531015396 0.022817939519882202 0.023477772250771523 0.059264056384563446 0.07781502604484558 0.02713167853653431 -0.013753565028309822 -0.02726460061967373 -0.036574479192495346 -0.08449183404445648 0.0612771101295948 -0.05526015907526016 -0.0030269622802734375 -0.021614525467157364 -0.006934563163667917 0.11056549102067947 -0.031791672110557556 -0.018661221489310265 0.01781919226050377 0.03808970749378204 0.02520022913813591 0.026940137147903442 0.016887273639440536 -0.023532213643193245 0.025271983817219734 -0.03991324082016945 -0.0573546439409256 -0.057001743465662 0.04838593304157257 -0.028111319988965988 0.0668405219912529 -0.01209181360900402 -0.07234375923871994 0.02612447552382946 0.035089436918497086 0.11216896027326584 -0.043131642043590546 0.041174523532390594 0.017416521906852722 0.02117999643087387 -0.09207796305418015 0.003844404825940728 0.002243491355329752 -0.019306695088744164 -0.09473615139722824 0.028601987287402153 0.06469639390707016 -0.052589740604162216 -0.051846943795681 -0.009120188653469086 -0.04989984631538391 -0.014276373200118542 0.007374647539108992 -0.024121420457959175 0.03891729563474655 0.01627449505031109 -0.04271979257464409 0.025336941704154015 0.012121680192649364 0.010923866182565689 -0.0676739513874054 0.018465060740709305 -0.034134551882743835 0.0892089307308197 -0.01535206288099289 -0.038116659969091415 -0.04432644322514534 0.07663913816213608 -0.01872287690639496 -0.04970338195562363 -0.07991775125265121 -0.021719174459576607 -0.031051671132445335 0.00551238376647234 -0.02116973139345646 -0.06887656450271606 -0.038260865956544876 -0.011907009407877922 -0.04776949808001518 -0.0897725373506546 -0.05189045891165733 0.04010968655347824 -0.042395539581775665 -0.0012704383116215467 -0.05534682795405388 0.015695497393608093 0.00672850152477622 -0.03191903233528137 0.025611473247408867 0.030000532045960426 0.04953864961862564 -0.0304526649415493 0.06506740301847458 0.02042550966143608 0.014891746453940868 -0.020338932052254677 0.0023173398803919554 0.03694698214530945 0.007063515484333038 -0.046219274401664734 0.00799862015992403 -0.04594717547297478 0.04398641362786293 -0.03205404430627823 -0.05127756670117378 0.019567865878343582 0.0018578063463792205 -0.019146762788295746 -0.019139036536216736 0.04678874462842941 -0.08724895119667053 -0.004406415391713381 0.025737229734659195 -0.047684408724308014 -0.06887200474739075 -0.025965455919504166 -0.03325466439127922 -0.011362091638147831 0.037202708423137665 0.02421722188591957 0.030573558062314987 0.00022202108812052757 -0.03959594666957855 0.0027211373671889305 -0.021149249747395515 -0.030553147196769714 -0.008898596279323101 0.01352384127676487 0.02977159433066845 -0.013851947151124477 0.005969776771962643 0.016693875193595886 -0.002556405495852232 0.019153382629156113 -0.08288992941379547 -0.01804942823946476 0.004874459467828274 0.027944382280111313 0.009888160042464733 0.0031609120778739452 0.04874539375305176 -0.05664430558681488 -0.031807709485292435 -0.023642243817448616 0.06305817514657974 -0.0020856582559645176 0.02972574345767498 0.04564638063311577 -0.022236838936805725 -0.02242279052734375 -0.001423523877747357 -0.045694056898355484 -0.08409298211336136 0.005259301979094744 -0.030513854697346687 0.04594142735004425 0.0013365332270041108 0.03423861414194107 -0.007299080025404692 -0.09498661756515503 -0.000772496045101434 -0.03647209703922272 -0.05384818837046623 0.019374612718820572 0.02472922019660473 -0.06923572719097137 -0.05922911688685417 -0.016639981418848038 -0.03444001078605652 0.051356397569179535 -0.04306226596236229 0.04494452849030495 -0.0559530109167099 -0.020395100116729736 -0.005025805439800024 -0.04231370985507965 0.05674649775028229 -0.002366012427955866 -0.06913597136735916 -0.02696695737540722 0.08597631007432938 -0.04142962396144867 0.05527898669242859 0.05238964781165123 -0.03120425157248974 0.03033594600856304 0.031937167048454285 -0.013538660481572151 -0.00042509386548772454 0.007571278139948845 -0.01574038900434971 0.017193952575325966 -0.068793885409832 0.05482890456914902 -0.06723140925168991 0.10057739168405533 0.033443331718444824 0.029047805815935135 0.09172774106264114 0.06685910373926163 0.012454826384782791 0.02373158372938633 -0.0550382174551487 +0.03374823182821274 -0.009849214926362038 -0.01838904246687889 -0.004767043050378561 -0.07047703117132187 -0.09659206122159958 0.005408884957432747 0.024007366970181465 0.003662184812128544 -0.03162260353565216 0.0025456559378653765 -0.017178362235426903 -0.02091837301850319 0.008479473181068897 0.05045256018638611 -0.044946905225515366 -0.08819953352212906 -0.00022262039419729263 -0.0676877498626709 0.02201489545404911 0.0807451456785202 0.019004497677087784 -0.05967530235648155 0.044021621346473694 -0.015590240247547626 0.008366263471543789 -0.029864458367228508 0.010784635320305824 -0.02193382754921913 0.023257190361618996 0.08135409653186798 -0.026777006685733795 0.030895859003067017 -0.04752444848418236 -0.008199105970561504 0.040753331035375595 -0.034765779972076416 0.09945598244667053 0.06968502700328827 -0.045373935252428055 -0.06246805191040039 -0.007791673298925161 -0.046255480498075485 -0.050077877938747406 0.029780684038996696 -0.008523523807525635 -0.03482343629002571 -0.06071048602461815 0.04101685807108879 0.0525379553437233 0.07702566683292389 -0.04323944076895714 -0.04974820092320442 -0.012643350288271904 -0.017409585416316986 -0.008575472980737686 0.016198119148612022 -0.0837368443608284 -0.07420608401298523 0.054291803389787674 -0.06872817128896713 0.02384795807301998 0.010833833366632462 0.03775271773338318 0.015748916193842888 -0.0588432215154171 0.008045172318816185 0.04425841569900513 0.03606396168470383 -0.01969863474369049 0.002150761429220438 0.07831993699073792 -0.06164156645536423 -0.07040130347013474 0.03217775374650955 -0.045084744691848755 0.00942850299179554 0.005707323085516691 0.012852329760789871 0.02891848422586918 -0.0065571763552725315 -0.023425806313753128 0.11995559930801392 -0.05208177864551544 -0.024003198370337486 -0.06069251149892807 -0.017977839335799217 -0.049502111971378326 0.06150569021701813 0.02572389505803585 0.012125350534915924 0.062411852180957794 -0.04474237188696861 0.02865743637084961 -0.012310323305428028 0.013620356097817421 0.016662726178765297 -0.10144698619842529 -0.02294750139117241 -0.041033364832401276 -0.013370104134082794 0.012569203972816467 0.06373157352209091 0.04476596787571907 0.04702422022819519 0.03678063303232193 -0.0537128709256649 0.030900267884135246 0.029305247589945793 0.05010353773832321 0.01659778319299221 0.07303373515605927 0.11718572676181793 0.05522670969367027 0.055416982620954514 -0.047944895923137665 -0.0308474563062191 -0.028883256018161774 -0.029591618105769157 0.0035575299989432096 0.0004421996418386698 0.0280387494713068 -0.02810860238969326 -0.03900725394487381 -0.032961536198854446 0.0567658469080925 -0.13509789109230042 -0.05036679655313492 0.03256456181406975 -0.02108050510287285 0.09459718316793442 0.061612971127033234 -0.03611016646027565 0.005965165328234434 0.08915670961141586 0.016816969960927963 0.01314607448875904 0.03209442272782326 -0.04593232274055481 -0.030064577236771584 -0.0074400887824594975 0.06322021037340164 -0.022886047139763832 -0.0416039414703846 -0.007839075289666653 0.04649704322218895 0.002719687530770898 -0.01289647351950407 -0.0784495398402214 0.0218515545129776 -0.12400667369365692 -0.051591549068689346 0.0059493412263691425 -0.07569616287946701 0.002505784621462226 0.02280794270336628 0.00208477396517992 0.025326039642095566 -0.05075767636299133 -0.0177063699811697 -0.03937607258558273 -0.06077360734343529 -0.002587445080280304 -0.08358637243509293 -0.024866877123713493 -0.04257253557443619 0.028440430760383606 0.017262421548366547 -0.011701620183885098 -0.06268623471260071 -0.029363758862018585 -0.018345041200518608 0.00538282934576273 0.07250288873910904 0.031479835510253906 0.008615820668637753 -0.016820566728711128 -0.042835772037506104 0.01484985277056694 -0.03053487278521061 0.023629412055015564 -0.0522131472826004 0.03470872715115547 -0.0714244470000267 -0.02001473493874073 -0.02110874094069004 0.012224889360368252 -0.04033694043755531 -0.017464807257056236 0.001404523034580052 -0.05944161117076874 -0.08385848999023438 0.04529627785086632 0.08676789700984955 -0.025565525516867638 0.03968951106071472 -0.009940415620803833 0.06250318139791489 0.004510542843490839 -0.03304620087146759 -0.059927523136138916 0.036794230341911316 -0.0064322748221457005 0.046052951365709305 0.03331821784377098 -0.04807773232460022 0.08538354188203812 -0.0012005399912595749 0.018523499369621277 -0.042825572192668915 0.03840462490916252 0.04749251902103424 -0.012807748280465603 -0.0031556759495288134 0.04180072993040085 -0.046318233013153076 -0.021238358691334724 0.00986503716558218 0.06502141803503036 -0.05519071966409683 0.013172543607652187 0.03736623376607895 -0.04945793375372887 0.07108291238546371 0.007170100696384907 -0.08954699337482452 -0.0012737215729430318 0.014613574370741844 -0.03413635492324829 -0.042048245668411255 -0.0016227333107963204 0.009265457279980183 -0.0035175159573554993 -0.01254319678992033 0.017472008243203163 -0.004202166106551886 -0.12204737961292267 0.10462028533220291 -0.025721807032823563 -0.04945530742406845 -0.03847828134894371 0.0018783068517223 0.03450044244527817 0.0007735161925666034 0.018919385969638824 0.0492417998611927 0.07698109745979309 0.05069990083575249 0.0048402962274849415 0.0014965806622058153 -0.07742162048816681 -0.04503835365176201 -0.01423817127943039 0.009726039133965969 -0.03524508327245712 -0.0878804475069046 0.008710537105798721 -0.032040148973464966 -0.015496677719056606 -0.03187738358974457 0.06360946595668793 -0.03794190287590027 -0.036650992929935455 -0.03301163390278816 0.08088003098964691 0.0007313928217627108 -0.06279563158750534 0.05830277130007744 -0.01098523661494255 0.025045273825526237 -0.0018390485784038901 -0.05344495549798012 0.054332274943590164 0.010489740408957005 0.05662907660007477 0.012650774791836739 0.08406408876180649 -0.024543238803744316 -0.09508216381072998 -0.03845108672976494 -0.08164018392562866 -0.05731131136417389 0.006498540285974741 -0.021614938974380493 -0.02188984490931034 0.06484498083591461 0.03769439831376076 -0.02556215599179268 -0.04983152449131012 0.009162157773971558 -0.03562602400779724 -0.06843603402376175 -0.03413139656186104 -0.02452768385410309 -0.08125773072242737 -0.009670307859778404 0.0315985269844532 -0.07039439678192139 -0.047723352909088135 -0.0005775438621640205 -0.02617666684091091 -0.03325420990586281 0.010281114839017391 -0.057440608739852905 -0.035179294645786285 0.011389495804905891 -0.059809423983097076 0.03196719288825989 0.08364100009202957 0.05371416360139847 0.04557429626584053 0.028027569875121117 0.0534827895462513 0.07795622199773788 0.0034065728541463614 -0.020954255014657974 -0.031653307378292084 -0.03413764759898186 -0.07327066361904144 0.03284444659948349 -0.07459180802106857 -0.03972906246781349 0.011312112212181091 -0.0006255577318370342 0.08708078414201736 -0.03179335221648216 -0.010789375752210617 -0.0011951257474720478 0.026344921439886093 -0.012836366891860962 0.04816261678934097 0.0025998421479016542 -0.031167564913630486 0.022807244211435318 -0.03938543424010277 -0.05948267877101898 -0.06653537601232529 0.026333404704928398 -0.025495100766420364 0.043284062296152115 0.01605631411075592 -0.06571947783231735 -0.01423333678394556 0.019546952098608017 0.11662393808364868 -0.028322705999016762 0.018794920295476913 0.0262110885232687 -0.009658565744757652 -0.08267819136381149 -0.011643443256616592 -0.005940667353570461 0.002502750838175416 -0.047520481050014496 0.019808275625109673 0.06771326065063477 -0.09671281278133392 -0.03683052211999893 0.015483571216464043 -0.052029673010110855 0.00109470437746495 0.029405644163489342 0.006225649267435074 0.024991275742650032 0.01367011945694685 -0.04575305059552193 0.006797937676310539 0.01454868633300066 0.020889373496174812 -0.04531044140458107 0.013191749341785908 -0.032669126987457275 0.06903305649757385 -0.022113967686891556 -0.06079324707388878 -0.046581365168094635 0.0777050331234932 0.014177234843373299 -0.04195469990372658 -0.00788706261664629 0.026609579101204872 0.003937959671020508 0.04386017099022865 -0.013933381997048855 -0.056892093271017075 -0.019429095089435577 -0.007060235366225243 -0.019649825990200043 -0.09450791776180267 -0.0008918700041249394 -0.0005659920861944556 -0.06861122697591782 -0.026832010596990585 -0.027994856238365173 0.028073400259017944 0.007421312388032675 -0.046555694192647934 0.033145658671855927 0.025614019483327866 0.01818433403968811 -0.006771240849047899 0.01026075892150402 0.026049284264445305 0.0320105217397213 0.02128075622022152 -0.0020634783431887627 0.008577131666243076 0.004576219245791435 -0.05521281436085701 0.017232520505785942 -0.04853256791830063 0.028061386197805405 -0.0020854019094258547 -0.0005680601461790502 0.0077536399476230145 -0.022847715765237808 0.028702208772301674 -0.02939540147781372 0.02301103062927723 -0.07894288748502731 -0.0227985717356205 0.03139178827404976 -0.04612606391310692 -0.09643121808767319 0.011781116016209126 0.011236466467380524 -0.032176706939935684 0.030652372166514397 -0.006609715986996889 0.031107433140277863 -0.0047604115679860115 -0.06593165546655655 -0.02302604168653488 -0.037575721740722656 -0.014575554989278316 0.015382209792733192 -0.004026350565254688 0.06759467720985413 -0.014547398313879967 0.03178984299302101 -0.004488036502152681 -0.01927291415631771 -0.004919413942843676 -0.06965667754411697 -0.01337401382625103 -0.010520894080400467 0.005400775466114283 0.016189707443118095 0.016769472509622574 0.051856666803359985 -0.021615855395793915 -0.04412132129073143 -0.033411864191293716 0.10302643477916718 -0.05011468008160591 0.022488942369818687 0.012370274402201176 -0.03506580367684364 -0.011577052064239979 0.013338199816644192 -0.027184197679162025 -0.0932065099477768 -0.0006875087856315076 -0.03535744175314903 0.022713858634233475 0.031382687389850616 0.029589630663394928 -0.029067693278193474 -0.07626822590827942 -0.007416317239403725 0.009525591507554054 -0.006624209228903055 0.02508009597659111 -0.0019522710936143994 -0.056761134415864944 -0.036740947514772415 -0.03926696628332138 -0.05327979475259781 0.05680861696600914 -0.043855246156454086 0.034999992698431015 -0.017600953578948975 -0.008964404463768005 0.03297588601708412 -0.05034425109624863 0.007954097352921963 0.012531300075352192 -0.059411030262708664 -0.017914723604917526 0.0538894459605217 -0.015395339578390121 0.017319433391094208 0.07724767178297043 -0.014979733154177666 0.03608819842338562 0.04961187019944191 -0.020088588818907738 0.006613731849938631 -0.018932562321424484 -0.05021957680583 0.06486097723245621 -0.06127128377556801 0.058686841279268265 -0.07450395822525024 0.1131598949432373 0.009965798817574978 -0.023245809599757195 0.09411236643791199 0.04959908127784729 -0.003085987875238061 0.05502934381365776 -0.06525542587041855 +0.007527957204729319 -0.04629077762365341 0.014157194644212723 0.027112390846014023 -0.07806743681430817 -0.0535799078643322 -0.04566121846437454 0.037106338888406754 0.008407816290855408 -0.10554999113082886 -0.022060923278331757 -0.059050701558589935 -0.07051441818475723 0.014549312181770802 0.05474182218313217 -0.0013572911266237497 -0.030877944082021713 0.01919584348797798 -0.03516346216201782 0.0035573337227106094 -0.02001839689910412 -8.129641355480999e-05 -0.08355196565389633 0.0274319127202034 -0.02709612436592579 -0.034079812467098236 -0.031614482402801514 0.06326525658369064 -0.012932561337947845 0.07765530049800873 0.015893595293164253 -0.029914865270256996 0.038450371474027634 0.00422888295724988 -0.06346938014030457 0.014675489626824856 -0.07185251265764236 0.10258308798074722 0.047554630786180496 -0.013289354741573334 -0.015703234821558 0.011075273156166077 0.011685254983603954 -0.06975172460079193 0.04094797372817993 -0.03954634442925453 -0.007469259202480316 -0.012419501319527626 0.013708219863474369 0.08376599848270416 0.09468097239732742 0.0920918807387352 0.031223636120557785 -0.008275102823972702 0.0014177008997648954 0.006156960502266884 -0.012435167096555233 -0.05460379272699356 -0.005115504842251539 0.0648718923330307 -0.1026255339384079 -0.04567788913846016 0.0744505226612091 0.04983937740325928 0.0104491226375103 -0.001062045688740909 -0.027910709381103516 0.08097510784864426 -0.00947386585175991 -0.07121091336011887 -0.03756856918334961 0.045540452003479004 -0.033843059092760086 -0.08380112051963806 -0.006404475308954716 -0.01677042804658413 0.04808381199836731 -0.045652300119400024 0.007288317661732435 -0.004964527674019337 -0.009946189820766449 -0.022368988022208214 0.09528735280036926 -0.008508499711751938 0.04541395604610443 -0.03828223794698715 0.00027100875740870833 -0.10164192318916321 0.0503724031150341 0.011037648655474186 0.03985300287604332 0.028609247878193855 0.00835450179874897 -0.022265668958425522 -0.06217322126030922 0.029888007789850235 0.006797646172344685 -0.08056558668613434 0.05997805297374725 -0.046163029968738556 0.012613276019692421 0.01560155674815178 0.01884002424776554 0.035991039127111435 0.05377089977264404 0.055456843227148056 -0.02070211060345173 0.06193729490041733 0.072078175842762 -0.002132222056388855 0.0027336659841239452 0.07602720707654953 0.06918549537658691 0.06246774271130562 0.023188481107354164 0.0708155557513237 -0.03109501674771309 -0.03857649490237236 -0.0063301268965005875 -0.02106446400284767 -0.019003888592123985 0.04856860265135765 0.015390416607260704 -0.05164457857608795 0.052250899374485016 0.04305213689804077 -0.05949239432811737 -0.026798628270626068 -0.001597337075509131 0.006141524761915207 0.012074192054569721 0.04013315588235855 -0.0064651682041585445 0.02030634693801403 0.048593275249004364 0.008979398757219315 -0.03432577848434448 -0.012089851312339306 0.013760742731392384 -0.03482064977288246 0.02423960715532303 0.041026826947927475 -0.017158761620521545 -0.04406916722655296 0.02804073691368103 0.04195297136902809 0.014335667714476585 0.01707657054066658 -0.1353606879711151 0.04157654568552971 -0.049788396805524826 -0.03980404511094093 0.016266055405139923 -0.07011537998914719 -0.020878015086054802 0.058001868426799774 0.05028124898672104 -0.0024321735836565495 0.0011619605356827378 -0.013413934037089348 -0.01746279001235962 -0.04764605686068535 0.015049523673951626 -0.08902864903211594 -0.004934171214699745 0.0032095506321638823 -0.008656206540763378 0.04607846960425377 -0.09577686339616776 -0.042986880987882614 0.03423929587006569 0.03466319665312767 0.06153317168354988 0.0380181223154068 0.05233858898282051 0.009436081163585186 0.005098027642816305 -0.0780516043305397 -0.03891849145293236 -0.011784644797444344 0.014698314480483532 0.003841196186840534 0.028264958411455154 -0.09176662564277649 -0.0386800616979599 -0.026013115420937538 -0.03618840500712395 -0.0052063181065022945 0.0011319111799821258 -0.0071029760874807835 -0.012027622200548649 -0.03354083374142647 0.02567434497177601 0.02237280085682869 -0.016143782064318657 0.04998915642499924 0.009328646585345268 0.07191390544176102 -0.07527879625558853 -0.06950453668832779 -0.05208414047956467 0.03625998646020889 0.061310723423957825 0.0003240301157347858 0.018101729452610016 -0.08193497359752655 0.049438461661338806 0.03208890184760094 -0.023207271471619606 0.013334945775568485 0.06654314696788788 0.05106310173869133 0.04215899482369423 0.0049569327384233475 0.042174141854047775 -0.035912904888391495 0.013899499550461769 0.024088451638817787 0.04485553503036499 -0.08355553448200226 0.03120162896811962 0.005740229040384293 -0.05021824315190315 -0.0069380574859678745 -0.008413002826273441 -0.042930979281663895 0.03722039982676506 0.027290793135762215 -0.039912935346364975 -0.019735727459192276 0.058802492916584015 -0.013400578871369362 -0.02910791151225567 0.020746560767292976 0.01356775127351284 -0.032111428678035736 -0.05165056511759758 0.04512038826942444 -0.02707517147064209 -0.046828776597976685 -0.031230539083480835 -0.05656803771853447 -0.004583935718983412 -0.024873698130249977 0.025438101962208748 0.08079923689365387 0.04882651939988136 0.04920850694179535 -0.03047286719083786 -0.03762746974825859 -0.07075587660074234 -0.027761608362197876 0.005723233334720135 0.02702726423740387 0.004066369496285915 -0.02223975583910942 -0.017595594748854637 -0.11350838094949722 -0.029854534193873405 -0.0032707618083804846 0.01167366560548544 -0.0681060329079628 0.050849221646785736 -0.030925389379262924 0.01978498511016369 0.0014679390005767345 -0.05619070306420326 -0.0035503897815942764 -0.03520168364048004 0.03455796465277672 -0.06604563444852829 0.03346531093120575 0.03123667649924755 -0.02356758341193199 0.013810026459395885 -0.026142118498682976 0.025639008730649948 -0.033983681350946426 -0.059974074363708496 -0.004142393823713064 -0.11363010853528976 -0.06872223317623138 0.03850507736206055 -0.007333619985729456 -0.042930468916893005 0.076932892203331 0.060537949204444885 0.01438668929040432 -0.04677832871675491 -0.060109831392765045 -0.02680697664618492 0.002937550889328122 0.015128759667277336 -0.034962743520736694 0.004341214429587126 0.009416935034096241 -0.011142054572701454 -0.06605469435453415 0.014704110100865364 0.023519160225987434 -0.008054548874497414 -0.0555480495095253 0.03143790736794472 -0.04602234065532684 0.011663184501230717 0.04954764246940613 -0.02313903719186783 0.054356127977371216 0.0718977227807045 0.03524211794137955 -0.027200723066926003 0.031359847635030746 0.00016258633695542812 0.03733951598405838 0.017182467505335808 -0.035222191363573074 -0.048935920000076294 -0.03639506921172142 -0.027993207797408104 0.060251835733652115 -0.02209598384797573 0.031079154461622238 0.0365271158516407 -0.03375701978802681 0.06353619694709778 -0.023484420031309128 -0.05215631425380707 -0.007528679445385933 0.007723474409431219 0.00608306098729372 0.008596699684858322 -0.017527351155877113 0.008242422714829445 0.01835269294679165 -0.02217116393148899 0.0009575176518410444 -0.032367151230573654 0.06543219834566116 -0.045863304287195206 0.020111871883273125 -0.04205955192446709 -0.0409722775220871 0.010111656039953232 0.007882043719291687 0.09154952317476273 -0.06902167201042175 0.04651029035449028 0.038796309381723404 0.04475025460124016 -0.0805620551109314 -0.03827274590730667 -0.052695244550704956 -0.029076529666781425 -0.05570179969072342 0.017857829108834267 0.008869578130543232 -0.08604346960783005 -0.07943785190582275 -0.062081292271614075 0.019991038367152214 0.01088108029216528 0.027103211730718613 -0.005501044448465109 0.048213958740234375 -0.025402015075087547 -0.04758339375257492 -0.04804207384586334 -0.012227296829223633 0.03513828292489052 -0.04682053625583649 0.040171898901462555 0.04032331705093384 0.026152456179261208 -0.020460473373532295 -0.07675106823444366 -0.01672447845339775 -0.004467758350074291 -0.04701373726129532 0.029488231986761093 -0.007837854325771332 -0.05286502465605736 -0.0004834290302824229 -0.019752049818634987 -0.014320457354187965 -0.03312273323535919 -0.02752775140106678 0.04423922300338745 -0.0033425630535930395 -0.04287274181842804 -0.0593404695391655 0.018546728417277336 0.004125749226659536 0.03459079936146736 -0.048879168927669525 -0.003451958065852523 -0.017912084236741066 -0.03156210482120514 0.007944141514599323 0.07800520211458206 -0.006679045967757702 0.05908292159438133 0.008752410300076008 -0.02701238915324211 -0.02454150654375553 -0.00900996569544077 -0.07459054887294769 0.007063352502882481 -0.00890504289418459 -0.06033772602677345 0.0136268837377429 -0.05520947277545929 0.03533191978931427 0.007222767453640699 -0.03980347886681557 0.002989177592098713 -0.049878623336553574 -0.0448940172791481 -0.013331178575754166 0.05975118279457092 -0.018412787467241287 -0.003363539231941104 -0.026706604287028313 -0.01865861751139164 -0.07392167299985886 0.006153258960694075 -0.08151578158140182 -0.0395166240632534 0.0636075958609581 -0.008163311518728733 0.00032834798912517726 0.013286176137626171 -0.10318543761968613 0.007422528695315123 -0.034890010952949524 0.010217749513685703 -0.03832423686981201 0.04633185267448425 -0.025678955018520355 -0.038655322045087814 -0.0032567207235842943 -0.012920508161187172 -0.03516039624810219 0.035164639353752136 -0.04835304245352745 -0.03206567466259003 0.03849633038043976 0.03805079311132431 -0.0037973392754793167 0.04032345488667488 0.03197835758328438 -0.0911165252327919 -0.02624528482556343 -0.004303421825170517 0.04632492735981941 -0.0075396522879600525 0.0020934217609465122 0.02298160456120968 -0.10609301924705505 -0.055045656859874725 0.05717020481824875 -0.03150657191872597 -0.09029462188482285 -0.028652839362621307 -0.04512261971831322 0.04715840891003609 -0.017726996913552284 0.11241044849157333 -0.06789570301771164 -0.09586285799741745 0.045435234904289246 -0.038644470274448395 -0.03819054737687111 -0.04749705269932747 0.05045902356505394 -0.055665865540504456 0.004032392054796219 -0.01238351408392191 -0.0443548709154129 0.05061636492609978 -0.022740764543414116 0.009384325705468655 -0.0619877353310585 -0.0030058615375310183 -0.023488730192184448 -0.05706053599715233 0.05644000694155693 -0.010965371504426003 -0.04835130646824837 -0.04971451312303543 0.11636865139007568 -0.05013502016663551 0.08391546458005905 0.0741686299443245 -0.0007493544835597277 0.01565816067159176 0.0626024603843689 -0.004543791990727186 -0.015841035172343254 0.01178319938480854 -0.0059619019739329815 0.020225999876856804 -0.018125424161553383 -0.016654787585139275 -0.026406381279230118 0.15431764721870422 -0.004809173755347729 -0.01007327064871788 0.031774718314409256 0.06217164918780327 0.05451059341430664 0.0380418561398983 -0.09614741802215576 +0.0360177680850029 -0.017501486465334892 -0.018589720129966736 0.00897746067494154 -0.10384707152843475 -0.05284261330962181 0.015084948390722275 0.052723076194524765 -0.023086177185177803 -0.032335713505744934 -0.0017844309331849217 -0.040962301194667816 0.007321903947740793 -0.0005980815039947629 0.04690077155828476 -0.024644313380122185 -0.055090323090553284 -0.007192893419414759 -0.06412012130022049 -0.02270498126745224 0.048938266932964325 0.003432523226365447 -0.06460089981555939 0.07476536929607391 0.007625933270901442 0.01987222395837307 -0.04914886876940727 0.020505154505372047 -0.020754840224981308 0.02136864699423313 0.023428073152899742 -0.01347313541918993 0.010205967351794243 -0.0342460535466671 -0.04994023218750954 0.06699362397193909 -0.04787397384643555 0.12850748002529144 0.030799686908721924 -0.052726440131664276 -0.04566072300076485 0.025491835549473763 -0.02919761650264263 -0.0468963086605072 0.0385788269340992 0.004004652611911297 0.01798359863460064 -0.023779183626174927 0.04280718043446541 0.045615218579769135 0.07315265387296677 0.016163419932127 -0.005049468018114567 -0.018142178654670715 0.0030364112462848425 0.036109112203121185 0.01478327251970768 -0.06410294771194458 -0.05598641559481621 0.04724341258406639 -0.06638462841510773 -0.016991859301924706 0.013586561195552349 0.0006800959235988557 0.01810511201620102 -0.05439549311995506 -0.006807070691138506 0.08668073266744614 0.02772401086986065 -0.0014956906670704484 -0.006086273584514856 0.09498655796051025 -0.08196758478879929 -0.0715804249048233 0.054395727813243866 -0.045181434601545334 -0.023525448516011238 0.0365147702395916 -0.0005946805467829108 -0.012789163738489151 -0.023339755833148956 -0.018531812354922295 0.10471170395612717 -0.0461418479681015 -0.061486195772886276 -0.029022572562098503 -0.006770746316760778 -0.07181933522224426 0.07244757562875748 0.014706621877849102 -0.006356450263410807 0.06280311942100525 -0.08467237651348114 0.04314931482076645 0.0024118029978126287 0.005636504851281643 0.029249735176563263 -0.14239045977592468 -0.012736482545733452 -0.0370851494371891 -0.03339628502726555 -0.028127441182732582 0.03380030766129494 0.005315053276717663 0.03268491104245186 0.04190622642636299 -0.0583777092397213 0.022539544850587845 0.0073369406163692474 0.041043948382139206 -0.005367635283619165 0.07056643813848495 0.11567793041467667 0.03980182856321335 0.04774501547217369 -0.015926972031593323 -0.010212447494268417 -0.039066705852746964 -0.06859377026557922 -0.0270252525806427 -0.0034927011001855135 0.03458039462566376 0.005324604921042919 -0.06247445568442345 -0.011111615225672722 0.05967783182859421 -0.11644995957612991 -0.009336644783616066 0.057127695530653 -0.03884349763393402 0.09227265417575836 0.046770013868808746 -0.03299012407660484 0.022859813645482063 0.08406902104616165 0.002185765653848648 0.016123207286000252 0.04786432161927223 -0.025645337998867035 -0.028677120804786682 -0.005286863073706627 0.028657246381044388 0.024854352697730064 -0.08124008029699326 -0.004911328665912151 0.06758137792348862 0.04328750818967819 -0.022561591118574142 -0.08860320597887039 0.030544379726052284 -0.09478887170553207 -0.10166464745998383 -0.010647742077708244 -0.07887455075979233 -0.019074589014053345 0.04352822154760361 0.013058842159807682 0.030605381354689598 -0.006639539264142513 -0.013154065236449242 -0.04901369288563728 -0.04964533448219299 -0.01717301271855831 -0.08354110270738602 -0.03824843838810921 -0.04076787456870079 0.007523455657064915 -0.0007482026121579111 -0.021426808089017868 -0.05424867197871208 0.012339320965111256 0.005281174089759588 0.03228059038519859 0.06585396081209183 0.056026898324489594 0.04200013726949692 0.013999602757394314 -0.015308124013245106 -0.0035108320880681276 -0.029915058985352516 0.010965111665427685 -0.03720395639538765 0.055729299783706665 -0.05932380631566048 -0.0052939532324671745 -0.015314063057303429 0.03464368358254433 -0.02549069933593273 -0.0034776737447828054 -0.027941374108195305 -0.026795638725161552 -0.0733119398355484 0.0354408323764801 0.07024873793125153 -0.04479118809103966 0.04618941247463226 -0.020241765305399895 0.03658691793680191 -0.05702434107661247 -0.03481997922062874 -0.05331294611096382 0.06520325690507889 0.017267070710659027 0.031150491908192635 0.015468215569853783 -0.0670299306511879 0.05641772598028183 -0.0067858025431632996 0.00048315449384972453 -0.07828626781702042 0.05057008937001228 0.038590993732213974 0.004789209924638271 0.01215352863073349 0.05718786641955376 -0.015260891988873482 0.005655737593770027 -0.012297454290091991 0.0490601509809494 -0.06045476719737053 0.02880106121301651 0.004128747619688511 -0.09466829895973206 0.041588038206100464 -0.02104913629591465 -0.07906881719827652 -0.01782502979040146 0.058700136840343475 -0.016460750252008438 -0.04762207344174385 -0.03049623593688011 0.023253308609128 -0.013647738844156265 -0.03746596723794937 0.016658788546919823 0.008622782304883003 -0.08903691917657852 0.07855664938688278 0.007203369401395321 -0.06092572212219238 -0.0551019087433815 -0.0011676521971821785 -0.003471829229965806 -0.020522121340036392 0.04466383159160614 0.046425994485616684 0.0794203132390976 0.028803987428545952 0.012110373005270958 -0.00023047100694384426 -0.06320879608392715 -0.011868848465383053 -0.0259189885109663 0.02396652102470398 -0.031788621097803116 -0.04195821285247803 0.002560574794188142 -0.06343037635087967 -0.04315851256251335 -0.009384802542626858 0.06018460541963577 -0.07219003885984421 -0.02848951332271099 -0.01867716573178768 0.015562086366117 -0.03989505395293236 -0.060912713408470154 0.025010861456394196 -0.006918608210980892 0.05360276252031326 -0.023053854703903198 -0.013564911670982838 0.024653758853673935 0.01374702900648117 0.03006632626056671 -0.03053491935133934 0.037083700299263 -0.034154012799263 -0.09435156732797623 -0.022860638797283173 -0.07910323143005371 -0.08600844442844391 -0.0003483612963464111 -0.04274122044444084 -0.021342210471630096 0.11414102464914322 0.04262441396713257 -0.029489457607269287 -0.09599442780017853 -0.030419902876019478 -0.007726926822215319 -0.03160633146762848 -0.0033374284394085407 0.0162576362490654 -0.04870374873280525 -0.02354142814874649 0.022849740460515022 -0.04320968687534332 -0.02568010240793228 -0.01647929660975933 -0.009943142533302307 -0.0556923933327198 0.04788991063833237 -0.051065631210803986 0.0009447986958548427 0.015126031823456287 -0.05461592599749565 0.028461633250117302 0.1096709668636322 0.07464565336704254 0.03816276788711548 0.011122867465019226 0.021140988916158676 0.09072286635637283 0.02064490132033825 -0.027772322297096252 -0.016233647242188454 -0.017106903716921806 -0.0753864124417305 0.02191176638007164 -0.06775388866662979 -0.01686370000243187 -0.0026293303817510605 -0.022304410114884377 0.06995578110218048 -0.0005870986497029662 -0.05860317498445511 -0.01724209450185299 0.02694365754723549 -0.007167331874370575 0.02236703224480152 0.0077938358299434185 0.0017106980085372925 -0.0015166206285357475 -0.025312112644314766 -0.042589254677295685 -0.03823816776275635 0.04740167781710625 -0.019449586048722267 0.06082242727279663 -0.016279732808470726 -0.045901715755462646 -0.001325750257819891 0.015240373089909554 0.10734911262989044 -0.0576719231903553 0.03267015889286995 0.05999685823917389 0.01161341555416584 -0.08937148749828339 0.005741337314248085 0.026094911620020866 -0.021867668256163597 -0.06281094253063202 0.012962836772203445 0.05393587425351143 -0.07560157775878906 -0.06129245087504387 -0.0002651461982168257 -0.04196086898446083 0.0058112600818276405 0.010191359557211399 0.009483715519309044 0.01810966432094574 -0.037926629185676575 -0.010273612104356289 0.0179294366389513 0.00770768616348505 0.04927879199385643 -0.056334126740694046 0.021847469732165337 0.00853603146970272 0.07888476550579071 -0.05943036824464798 -0.060390546917915344 -0.043342821300029755 0.06324571371078491 -0.023755885660648346 -0.028872091323137283 -0.05043890327215195 0.0031526603270322084 -0.0066031599417328835 0.04182508587837219 0.0009049827349372208 -0.03347286209464073 -0.014725706540048122 -0.0019075333839282393 -0.04092847555875778 -0.07990521937608719 -0.04647580906748772 0.005806626286357641 -0.05355684459209442 -0.0033745793625712395 -0.02762431837618351 -0.03323018178343773 -0.013312947936356068 -0.031387653201818466 0.012599530629813671 0.04965910315513611 0.04765614867210388 -0.018695851787924767 0.057685963809490204 0.026128772646188736 0.034540265798568726 0.0017822330119088292 -0.029102984815835953 0.03702479600906372 0.03273341432213783 -0.04952683672308922 0.04348559305071831 -0.039381373673677444 0.03547339513897896 -0.025654859840869904 -0.004571007564663887 0.011116326786577702 -0.017233306542038918 -0.0008447387954220176 -0.051230289041996 0.0657845064997673 -0.07176331430673599 -0.013464671559631824 0.023176908493041992 -0.04515697434544563 -0.08442748337984085 -0.0017242669127881527 -0.03771938756108284 0.005397345870733261 0.021934237331151962 -0.011716333217918873 0.02772797830402851 0.02481723017990589 -0.07344117015600204 -0.03338135778903961 -0.05224163830280304 -0.0003616378817241639 0.03141099959611893 0.007834045216441154 0.060859564691782 0.02281174249947071 0.007399799767881632 -0.018781006336212158 -0.005884918384253979 0.023225510492920876 -0.07807058840990067 0.014050763100385666 -0.03388393670320511 0.00357890035957098 0.046837784349918365 0.010716649703681469 0.031922824680805206 -0.04648200049996376 -0.04041638225317001 -0.011762259528040886 0.05821479484438896 -0.015541858971118927 -0.0005219478625804186 0.05163933336734772 -0.021823817864060402 -0.02150959149003029 -0.017270686104893684 -0.04463348537683487 -0.05750399827957153 0.01546564046293497 -0.0036985022015869617 0.037607431411743164 0.020166240632534027 0.044679924845695496 -0.010301857255399227 -0.08846580237150192 -0.021669819951057434 8.396206249017268e-05 -0.05442998930811882 -2.5988760171458125e-05 0.04395744204521179 -0.06974691897630692 -0.044860292226076126 -0.016837434843182564 -0.009243771433830261 0.040775496512651443 -0.04722485691308975 0.032535117119550705 -0.03249988332390785 -0.010779554024338722 -0.025099586695432663 -0.05562569946050644 0.01113115530461073 0.014959406107664108 -0.05910106375813484 -0.03329293802380562 0.08389557152986526 -0.024062050506472588 0.025558900088071823 0.08128780126571655 -0.02763666957616806 0.014007742516696453 0.036607883870601654 -0.013210523873567581 0.03168278932571411 0.0002603818429633975 -0.0314372256398201 0.05756666138768196 -0.07707177102565765 0.08816082030534744 -0.06957177817821503 0.09505100548267365 -0.009709821082651615 -0.029999865218997 0.09862165153026581 0.08785635232925415 0.019561758264899254 -0.004042539279907942 -0.06134100258350372 +0.017391089349985123 -0.07236850261688232 -0.029133113101124763 0.004034343175590038 -0.011146907694637775 -0.010871384292840958 -0.03913997858762741 0.025075646117329597 0.022033637389540672 -0.05794697254896164 0.007348920684307814 -0.011807471513748169 -0.018984369933605194 0.001054131891578436 0.06339031457901001 -0.002041653962805867 -0.04156113415956497 0.0004577330546453595 -0.018761616200208664 -0.040534138679504395 0.033100683242082596 0.031938765197992325 -0.010002264752984047 0.07292921096086502 -0.025133971124887466 -0.012745055370032787 -0.05241809040307999 0.03344610705971718 -0.01761375553905964 0.09610501676797867 0.04111459106206894 -0.04748016223311424 0.06639457494020462 -0.051990728825330734 0.031170429661870003 0.06799068301916122 0.0004184358404017985 0.11003492772579193 0.03712102398276329 -0.02936423569917679 0.016033561900258064 -0.05302039161324501 -0.027351560071110725 -0.08493519574403763 0.013805589638650417 -0.036827001720666885 -0.04072720929980278 -0.042056892067193985 -0.025235667824745178 0.0697178766131401 0.06943639367818832 -0.017682354897260666 0.004378991667181253 0.031362421810626984 -0.021367911249399185 -0.015871914103627205 0.037913721054792404 -0.02255304530262947 0.012685684487223625 0.049206264317035675 -0.019974958151578903 -0.029466629028320312 0.005362980533391237 0.023624153807759285 -0.009558162651956081 -0.024237027391791344 0.07871290296316147 0.021017711609601974 0.036509208381175995 0.024360505864024162 -0.014295578934252262 0.029995553195476532 -0.046052977442741394 -0.06751048564910889 0.011811326257884502 -0.02744743973016739 -0.005562060512602329 -0.0008065444999374449 0.029318267479538918 0.08267842233181 0.021149426698684692 -0.007624612655490637 0.10137678682804108 -0.02163309045135975 0.025037776678800583 -0.06367091089487076 0.00410770857706666 -0.0003991343837697059 0.022944247350096703 -0.0464683473110199 0.040273282676935196 0.026977337896823883 -0.004719729069620371 0.024829380214214325 -0.0072811925783753395 0.004799763206392527 0.048747580498456955 -0.0607200488448143 -0.00412656320258975 0.008683182299137115 -0.023139018565416336 -0.008523539640009403 0.04131370037794113 0.04988319054245949 0.047507621347904205 0.04695919156074524 -0.03794151172041893 0.022442109882831573 0.07466725260019302 0.03102867677807808 -0.009898191317915916 0.10765354335308075 0.018545858561992645 -0.05533306673169136 0.0631052628159523 -0.010076256468892097 0.027499333024024963 -0.053846415132284164 -0.0003559356555342674 0.02095276303589344 -0.01713341660797596 0.043378911912441254 -0.08552271872758865 -0.051816098392009735 0.02415795437991619 0.09428860992193222 -0.10183984786272049 -0.04137009382247925 -0.003373117884621024 -0.005823858082294464 0.056329116225242615 0.040488407015800476 0.008189522661268711 0.011129590682685375 0.01674923300743103 0.014670153148472309 -0.02051675133407116 0.057879719883203506 0.03834197670221329 -0.043330948799848557 -0.027190862223505974 0.025507232174277306 0.023842565715312958 0.009401299990713596 0.01693057268857956 0.03767283633351326 -0.0345071516931057 -0.004047449678182602 -0.07974598556756973 -0.013538074679672718 -0.07768572866916656 -0.049214523285627365 0.010427230037748814 -0.07930969446897507 -0.01246982254087925 -0.03031817078590393 -0.0275777168571949 0.04635898396372795 -0.0010418773163110018 -0.010804861783981323 -0.0712147057056427 -0.08606895804405212 0.04102480411529541 -0.029478570446372032 -0.01946762017905712 0.005938331130892038 -0.010282689705491066 -0.012566209770739079 -5.341163614502875e-06 -0.014899414964020252 0.026819346472620964 -0.044263724237680435 0.03468383476138115 0.06147554889321327 0.04791916161775589 0.03754210099577904 0.029737211763858795 -0.039719920605421066 -0.024708278477191925 -0.06531763821840286 -0.024107692763209343 -0.0414327047765255 -0.016411742195487022 -0.06381505727767944 -0.008655409328639507 -0.017887569963932037 0.012796983122825623 0.027078786864876747 -0.013324759900569916 -0.03290565311908722 -0.018149763345718384 -0.07198603451251984 0.05910789594054222 0.020066911354660988 -0.025241928175091743 0.026805898174643517 0.056936465203762054 0.0924372598528862 -0.06389418989419937 -0.018514322116971016 -0.03218519315123558 0.05356517806649208 0.08350574225187302 -0.010083375498652458 -0.008777827955782413 0.006137877237051725 0.08311277627944946 0.019000310450792313 0.0280012134462595 -0.016789522022008896 -0.0010857817251235247 0.039621345698833466 -0.04447384178638458 0.03924505040049553 0.05174492299556732 -0.018183767795562744 0.011616325937211514 0.0005134412203915417 0.02804097905755043 -0.051812078803777695 -0.04249460622668266 0.0040465896017849445 -0.08245214074850082 0.008264284580945969 -0.03042781539261341 -0.09344765543937683 -0.0240365918725729 -0.019024940207600594 -0.0448136180639267 -0.04425737261772156 0.019043369218707085 0.028386875987052917 0.0007671010098420084 -0.0002842852263711393 0.027612291276454926 -0.020796101540327072 -0.027449658140540123 0.07716871052980423 -0.07503340393304825 -0.07511325180530548 -0.037661392241716385 0.023426935076713562 0.05709362030029297 -0.011512243188917637 0.049971580505371094 0.05198175460100174 0.10144983232021332 0.029431380331516266 -0.03727549687027931 -0.0024076078552752733 -0.018283000215888023 -0.05562936142086983 -0.028691638261079788 -0.006701316684484482 0.015460051596164703 -0.0926043763756752 0.009611577726900578 -0.08891943842172623 -0.011007853783667088 -0.006306157913058996 0.06422274559736252 -0.06895365566015244 0.023581618443131447 -0.07220892608165741 0.018807847052812576 -0.030320726335048676 -0.00929123256355524 0.09603565186262131 -0.051877710968256 -0.02875998057425022 -0.013462257571518421 0.03353026509284973 0.011938229203224182 0.0022781435400247574 -0.029961762949824333 -0.05920211598277092 0.0806395411491394 -0.03299444913864136 -0.0355999581515789 -0.07872053235769272 -0.05328941345214844 -0.01973484456539154 0.022274842485785484 -0.015291493386030197 0.004852754529565573 0.03160387650132179 0.048578616231679916 -0.0025764552410691977 -0.0444277748465538 -0.08831246197223663 -0.0330890454351902 -0.026486525312066078 0.033636171370744705 0.00032118873787112534 -0.043743960559368134 0.01261901669204235 0.05026649311184883 -0.016334019601345062 0.0028386549092829227 0.02093438245356083 0.06591331213712692 -0.04575167968869209 0.01867060363292694 0.0007062636432237923 -0.03987659513950348 0.01769634336233139 -0.04413643479347229 0.0024302820675075054 0.07147352397441864 0.0642816424369812 0.03218044713139534 0.03766715154051781 0.07466082274913788 0.06000436842441559 -0.02073964662849903 0.030728109180927277 -0.039765648543834686 0.003176485886797309 -0.05759180337190628 -0.0006765493308193982 -0.011595507152378559 -0.01511829998344183 -0.0003368762554600835 -0.02955998294055462 0.02004661038517952 -0.007521146442741156 -0.04434105381369591 -0.019022472202777863 0.06083805859088898 0.0063103982247412205 0.102169930934906 -0.006681237369775772 -0.00010743207531049848 -0.026390377432107925 -0.04657035693526268 -0.0324176549911499 -0.07782577723264694 0.06292818486690521 -0.04383833706378937 0.03413276746869087 0.04938824102282524 -0.08417948335409164 -0.04299139976501465 0.02341640554368496 0.0990975946187973 -0.11126884073019028 -0.04342883080244064 0.017431458458304405 0.009592225775122643 -0.12326157838106155 -0.022726843133568764 -0.058766353875398636 -0.08210389316082001 -0.029706444591283798 -0.0016771244117990136 0.07866670191287994 -0.02315344288945198 -0.03702060878276825 -0.03518761321902275 -0.0018470922950655222 -0.027197593823075294 0.09857963025569916 -0.03008456528186798 0.04635680839419365 -0.031359825283288956 -0.053370967507362366 -0.030770529061555862 0.03716877102851868 0.023919206112623215 -0.02672138810157776 0.04891146719455719 0.010718175210058689 -0.030638542026281357 -0.031233521178364754 -0.0382239893078804 -0.05313275754451752 0.03025730326771736 -0.05253008008003235 0.013464338146150112 -0.031086256727576256 0.01094089262187481 0.0051889983005821705 0.02689169906079769 0.007809728384017944 -0.003193949582055211 -0.0599537119269371 0.0071222176775336266 -0.03741896525025368 -0.06623853743076324 -0.021598005667328835 0.06298152357339859 -0.01132325641810894 0.034419141709804535 -0.04023236781358719 -0.012878845445811749 -0.038642387837171555 0.014973665587604046 0.037842754274606705 0.08991982787847519 0.03678976744413376 -0.00865102093666792 0.07762952893972397 0.040027033537626266 -0.0014654963742941618 0.02928534522652626 -0.0394190177321434 0.031015878543257713 -0.07681643217802048 -0.05492749437689781 0.017753560096025467 0.0028005577623844147 -0.012744267471134663 -0.01829097978770733 -0.047731395810842514 0.014332921244204044 -0.028639230877161026 0.023228177800774574 -0.022769011557102203 0.04772626608610153 -0.0652805045247078 0.01461787335574627 -0.06357599794864655 -0.009309682995080948 -0.038890738040208817 -0.05425209924578667 0.016191666945815086 -0.00956649612635374 0.06374584883451462 -0.06378760188817978 -0.02863648720085621 0.028009066358208656 0.014549524523317814 -0.02164069563150406 -0.01462332159280777 0.0381314791738987 -0.03404790908098221 0.04406262934207916 0.026583733037114143 -0.053020644932985306 0.02137569524347782 -0.008266815915703773 -0.08574312180280685 0.01605343259871006 0.008454798720777035 -0.03645322844386101 0.023769469931721687 -0.025989912450313568 0.016132209450006485 0.02087823674082756 0.058085888624191284 -0.04941389337182045 -0.044387225061655045 -0.06450017541646957 0.07725168764591217 5.171334487386048e-05 0.039328597486019135 -0.027499409392476082 -0.07130315899848938 -0.06560719013214111 0.041439689695835114 -0.06557630747556686 -0.08449059724807739 -0.036455411463975906 0.012284691445529461 0.03997563198208809 -0.07124683260917664 0.038737703114748 -0.04368370398879051 -0.11251597106456757 0.0009271473973058164 0.010468469001352787 -0.060515522956848145 -0.012142819352447987 0.02514684945344925 -0.04741685837507248 0.02958144247531891 0.00020569012849591672 -0.06376394629478455 0.052639078348875046 -0.0024910306092351675 0.004597426392138004 -0.054304592311382294 -0.00921280961483717 -0.06839007139205933 -0.05242844671010971 0.025689266622066498 -0.01277344860136509 -0.05950256437063217 -0.023933518677949905 0.03274249657988548 -0.01077121403068304 0.05577772855758667 0.06484328210353851 -0.005884153768420219 0.045117028057575226 0.08855968713760376 0.02486303634941578 -0.007892580702900887 -0.05580325797200203 -0.006470310967415571 0.05926370620727539 0.0007018879405222833 0.055460698902606964 -0.07179520279169083 0.14617964625358582 0.009752044454216957 0.000247763266088441 0.025420330464839935 0.04228382930159569 0.09485530853271484 0.030637865886092186 -0.09431017935276031 +0.016014158725738525 0.00028746455791406333 -0.011281787417829037 0.04019075259566307 -0.05755728483200073 -0.08876074850559235 -0.0343991182744503 0.02838469296693802 0.048257261514663696 -0.06056607887148857 -0.049346521496772766 -0.036911364644765854 0.015535086393356323 0.017829250544309616 0.022225037217140198 -0.005575484596192837 -0.01763768494129181 0.07555537670850754 -0.04400958865880966 -0.0028782787267118692 0.019424276426434517 -0.005206432193517685 -0.07633333653211594 0.04063892737030983 0.008801347576081753 -0.006203181110322475 -0.04301629588007927 0.014816704206168652 0.038336414843797684 0.02798069454729557 0.008254953660070896 0.004113023169338703 0.06955748796463013 -0.07528343051671982 -0.030973291024565697 0.027376020327210426 -0.035757265985012054 0.08382490277290344 0.01706783100962639 -0.001957198139280081 -0.0796145498752594 -0.01588842272758484 -0.07413569837808609 -0.10283306986093521 -0.017265411093831062 -0.0010232353815808892 0.012521776370704174 0.0169505812227726 0.023577740415930748 0.08200651407241821 0.061469417065382004 -0.004853472113609314 -0.033847156912088394 -0.016651898622512817 0.004427876323461533 0.0015788626624271274 0.028194723650813103 -0.050482720136642456 -0.015202552080154419 -0.015276824124157429 -0.10164901614189148 0.0008047952433116734 -0.005131760612130165 0.03996974974870682 -0.048084910959005356 -0.046927742660045624 -0.006415290758013725 0.09541601687669754 0.008622987195849419 -0.054571278393268585 -0.002046389039605856 0.0617188923060894 -0.0990941971540451 -0.032481011003255844 0.03862573951482773 -0.08389513194561005 -0.012144693173468113 0.039790552109479904 -0.011885893531143665 -0.030945641919970512 0.013885736465454102 -0.04772656410932541 0.14963330328464508 -0.056786466389894485 -0.037756115198135376 -0.03063197061419487 0.018740201368927956 -0.05450093373656273 0.01433042623102665 0.009719813242554665 0.007486357819288969 0.03905957192182541 -0.0011493187630549073 0.03384320065379143 0.01001475565135479 0.059258583933115005 0.021993208676576614 -0.13630928099155426 -0.03425512835383415 0.017755797132849693 -0.02395520731806755 0.0037878197617828846 0.030094105750322342 -0.0013438669266179204 0.017430825158953667 -0.0009750425233505666 -0.046332381665706635 -0.009698957204818726 0.04391110688447952 0.037795111536979675 0.037033144384622574 0.058475423604249954 0.05432119220495224 0.04199710488319397 0.018387602642178535 0.034805718809366226 0.056806113570928574 -0.021379487589001656 -0.031447894871234894 0.02814674936234951 0.028254127129912376 0.03353237360715866 -0.026619670912623405 -0.06205934286117554 1.4443833606492262e-05 0.032294224947690964 -0.044752027839422226 -0.061592165380716324 -0.03461028262972832 -0.03469567745923996 0.10584398359060287 0.04628469794988632 -0.05603429302573204 -0.017789378762245178 0.06698178499937057 0.01755046844482422 -0.010157901793718338 -0.0025212247855961323 0.027138113975524902 -0.05325531214475632 -0.015065666288137436 0.05679956078529358 -0.035734377801418304 -0.05265140160918236 0.10123541951179504 0.07824963331222534 0.03540187329053879 -0.030977828428149223 -0.08894780278205872 -0.025087669491767883 -0.04414646327495575 -0.0587351992726326 0.027493759989738464 -0.056083254516124725 0.025723829865455627 0.027630651369690895 0.013048121705651283 0.04548303037881851 0.000328687863657251 -0.01473317015916109 -0.06517630815505981 -0.01869366504251957 0.001865863217972219 -0.04633062705397606 -0.04523522034287453 -0.002914497861638665 0.008517444133758545 0.024231215938925743 -0.0966130867600441 -0.04082769528031349 -0.014790087938308716 0.004836191423237324 0.07141578942537308 0.05335269495844841 0.06033260375261307 0.0016904874937608838 -0.018030669540166855 -0.04880508407950401 -0.03446162864565849 -0.018870055675506592 0.06113608554005623 -0.062083590775728226 0.00419215764850378 -0.018502049148082733 0.047291532158851624 0.03307008370757103 -0.007880520075559616 -0.024260830134153366 0.009453168138861656 0.00922700297087431 -0.05953037366271019 0.0021777839865535498 0.0302837323397398 0.05454288795590401 -0.012038864195346832 0.04660145193338394 -0.06236953288316727 0.05045346915721893 -0.021326374262571335 -0.04918547719717026 -0.06125123053789139 0.017925715073943138 0.024343393743038177 0.04207481071352959 0.017702562734484673 -0.10366307944059372 0.044377539306879044 0.04604155197739601 0.01749272830784321 -0.032724738121032715 0.04032711312174797 0.023220058530569077 0.0005196649581193924 0.045281872153282166 0.06412751972675323 0.0015144463395699859 0.005642717704176903 0.011279379948973656 0.026962434872984886 -0.056711386889219284 0.045788105577230453 0.035346124321222305 -0.1049150675535202 0.010729066096246243 -0.07095865905284882 -0.04859135299921036 -0.04395846277475357 0.031274307519197464 -0.03314487263560295 -0.03006952442228794 -0.02757163718342781 -0.017636308446526527 0.004195824731141329 -0.05038563907146454 -0.022309184074401855 0.024742934852838516 -0.06379261612892151 0.07020903378725052 0.03876015171408653 -0.05721323937177658 -0.0520164892077446 0.007517784833908081 -0.003403055714443326 -0.023147251456975937 0.0005831983289681375 0.055188048630952835 0.06969349086284637 0.0050953966565430164 -0.005205890163779259 -0.0030638917814940214 -0.0675201490521431 -0.07876331359148026 0.017509514465928078 0.03601396456360817 -0.03142964094877243 -0.01913009211421013 0.026023300364613533 -0.08571802824735641 -0.02863568440079689 0.02055935561656952 -0.00940193422138691 -0.014864838682115078 0.006092715542763472 -0.037247080355882645 0.02292201854288578 -0.07917580008506775 -0.03078153170645237 0.015161216259002686 -0.017274508252739906 0.02457544021308422 -0.02809598296880722 0.0025011685211211443 0.052256979048252106 -0.02799450047314167 0.015493045561015606 -0.010247213765978813 0.05406421422958374 -0.01926778443157673 -0.030626559630036354 0.004863660782575607 -0.0887693464756012 -0.07239367812871933 -0.02474268339574337 0.03401821479201317 0.0006913641700521111 0.08451515436172485 0.06217900663614273 -0.031411103904247284 -0.08175334334373474 -0.07211965322494507 -0.06499996781349182 -0.058790918439626694 0.010523724369704723 -0.019650021567940712 -0.05962206795811653 -0.047050025314092636 0.02332920953631401 -0.03984036669135094 0.03944272920489311 0.014011112041771412 -0.018233109265565872 -0.08765383809804916 0.040848445147275925 0.007042271085083485 -0.03227679058909416 0.005843803286552429 -0.026103464886546135 -0.007952772080898285 0.05906621366739273 0.017717696726322174 -0.008947265334427357 0.0588073693215847 0.011729576624929905 0.05023995786905289 -0.016886232420802116 -0.008497527800500393 -0.024546366184949875 -0.03354921191930771 -0.04168597608804703 0.04099404811859131 -0.016537949442863464 0.006853253114968538 0.012561502866446972 0.013000360690057278 0.020157523453235626 -0.017050594091415405 -0.0595899261534214 -0.014309876598417759 0.015791289508342743 -0.027202190831303596 -0.006708658300340176 -0.003463959787040949 0.04897928982973099 -0.04675036668777466 -0.09784263372421265 -0.011732115410268307 -0.020283292979002 -0.0003274663758929819 -0.02422880195081234 0.04239927604794502 -0.037330206483602524 -0.04257172346115112 -0.04902699217200279 -0.006100524682551622 0.15889999270439148 -0.048003263771533966 -0.0034886652138084173 0.09743278473615646 0.05785133317112923 -0.08197097480297089 0.015236612409353256 0.017196349799633026 -0.05571504682302475 -0.03658125177025795 -0.0028249265160411596 0.0008011744939722121 -0.05451693385839462 -0.02209877036511898 -0.010094075463712215 0.006020100321620703 0.0054865311831235886 0.022790269926190376 0.0029257703572511673 0.04280921071767807 0.008117474615573883 -0.021870551630854607 0.00039322773227468133 0.007379789836704731 0.02464844286441803 -0.027228884398937225 0.011490508913993835 -0.019848845899105072 0.028035065159201622 -0.04457258805632591 -0.038863588124513626 -0.05026855692267418 -0.004722292069345713 -0.014823341742157936 -0.06998301297426224 -0.02250811830163002 -0.040216583758592606 -0.0046227131970226765 0.03518908470869064 0.051284562796354294 -0.022977249696850777 -0.06629852950572968 -0.08299326151609421 -0.020010778680443764 -0.07785077393054962 -0.030155489221215248 -0.016708889976143837 -0.015347293578088284 0.015905797481536865 -0.03356422856450081 -0.04476447403430939 -0.009066473692655563 0.02052413858473301 0.017443044111132622 0.07613100111484528 -0.008160781115293503 -0.008297830820083618 0.03601214662194252 -0.04538068547844887 0.05402567610144615 0.04229035601019859 -0.07489953190088272 -0.02789095602929592 0.03888136148452759 -0.05875711515545845 0.022563891485333443 -0.06986821442842484 -0.020937573164701462 -0.008030897006392479 -0.00921671837568283 -0.004322481341660023 0.026810461655259132 0.05414669215679169 0.00739418575540185 0.04534107819199562 -0.06411837786436081 -0.032053180038928986 0.005669572856277227 -0.03320957347750664 -0.04977107420563698 -0.0501977764070034 -0.02612541988492012 -0.014215386472642422 0.012784354388713837 -0.06801874190568924 0.04047619178891182 0.012244450859725475 -0.07674135267734528 -0.049262817949056625 -0.010904901660978794 0.009216541424393654 0.04209364205598831 -0.015991929918527603 -0.012651926837861538 0.02116820588707924 -0.013688266277313232 0.050612855702638626 -0.0029409569688141346 0.013803720474243164 -0.052736420184373856 -0.011887893080711365 0.008254754357039928 0.021675482392311096 0.007348012179136276 -0.010184659622609615 0.049815136939287186 -0.0694541409611702 -0.000836591818369925 -0.017290500923991203 0.0599660724401474 0.03835207223892212 0.004679628182202578 0.03858723118901253 -0.06429196149110794 -0.00015249676653183997 0.05991262570023537 -0.025314636528491974 -0.03964121267199516 -0.022849326953291893 -0.04286429286003113 0.06994348764419556 0.06245175376534462 0.04150905832648277 -0.043600358068943024 -0.025027094408869743 0.03315885365009308 0.003458977909758687 -0.07117035984992981 -0.020360078662633896 0.07222945243120193 -0.021087709814310074 -0.03201180696487427 -0.00794264953583479 -0.06361328065395355 0.06834284961223602 0.051987383514642715 0.07303395122289658 -0.05045843496918678 -0.021165844053030014 -0.01969054713845253 -0.024524444714188576 0.026180973276495934 0.031155144795775414 -0.044003624469041824 0.021039636805653572 0.11029761284589767 -0.019868213683366776 0.024268757551908493 0.06949511915445328 -0.025323335081338882 0.06294113397598267 0.004498956725001335 -0.025445643812417984 0.04699530079960823 -0.03683273866772652 -0.06691418588161469 0.05200710520148277 -0.09720218181610107 0.09578794240951538 -0.07517040520906448 0.12649063766002655 0.0438699871301651 -0.047352664172649384 0.08296441286802292 0.09420859068632126 -0.009385467506945133 0.028833750635385513 -0.03383974730968475 +0.021422510966658592 -0.0550529919564724 -0.05748765170574188 0.030675942078232765 -0.1081475168466568 -0.051962610334157944 -0.0006688110297545791 0.06972968578338623 -0.03695622831583023 -0.030995117500424385 0.0028635631315410137 -0.002291735028848052 0.006244214251637459 0.006162364035844803 0.06090482696890831 -0.014356556348502636 -0.05415193736553192 -0.014226850122213364 -0.04340757802128792 -0.02762022614479065 0.025495078414678574 0.020714567974209785 -0.05421607941389084 0.06179439648985863 -0.0019709826447069645 -0.025325268507003784 -0.049633339047431946 -0.002143515506759286 -0.007809212431311607 0.021253677085042 0.006664425600320101 -0.020271161571145058 -0.001049352460540831 -0.026198619976639748 -0.08276693522930145 0.06264965981245041 -0.02437273971736431 0.11623544245958328 0.036872029304504395 -0.02962767519056797 -0.03278575837612152 0.06793174892663956 -0.041279036551713943 -0.05794225260615349 0.04900982230901718 0.013634201139211655 0.023782305419445038 -0.021664360538125038 0.02016034722328186 0.056655220687389374 0.039090029895305634 0.03949896618723869 0.011382735334336758 -0.034411925822496414 -0.04225149750709534 0.01991063915193081 0.013054810464382172 -0.04936361685395241 -0.04213147982954979 0.024820411577820778 -0.06345132738351822 0.0065593537874519825 0.020093325525522232 -0.006397376302629709 0.04950246214866638 -0.018908901140093803 -0.00018025771714746952 0.0636979341506958 0.01460278406739235 -0.010104265995323658 -0.009153367020189762 0.08648853003978729 -0.06206906586885452 -0.04173117130994797 0.07914043962955475 -0.03659434989094734 -0.016736986115574837 0.026732107624411583 -0.01909283548593521 -0.024632301181554794 -4.4204902224009857e-05 0.005597355309873819 0.07797255367040634 -0.04192104563117027 -0.0340244434773922 -0.040126167237758636 0.014428460039198399 -0.04276927560567856 0.026728585362434387 -0.017335519194602966 0.03333374857902527 0.051403868943452835 -0.08410795778036118 0.011245441623032093 -0.03647952526807785 0.0028256357181817293 0.04500442370772362 -0.1493431031703949 -0.032817207276821136 -0.0088896369561553 -0.01707860268652439 -0.04477511718869209 0.037557151168584824 -0.03781522810459137 0.0064919753931462765 0.02977716736495495 -0.06824195384979248 0.01108496729284525 0.00572925666347146 0.010335422120988369 0.039733074605464935 0.08171755075454712 0.0715106874704361 0.052747953683137894 0.07532597333192825 0.007794011849910021 -0.013278106227517128 -0.030922239646315575 -0.043103884905576706 0.007722815964370966 -0.039396610110998154 0.037226494401693344 0.027212167158722878 -0.07355117797851562 0.0048818811774253845 0.04497779160737991 -0.10824115574359894 0.00971826072782278 0.047293487936258316 -0.05238697677850723 0.07798992097377777 -0.022255733609199524 -0.01048386748880148 0.036845430731773376 0.052040815353393555 0.020806126296520233 0.00785176083445549 0.06361687928438187 0.004743373021483421 -0.04545813053846359 -0.03593289107084274 0.08237328380346298 0.05244478955864906 -0.02902045287191868 0.03898567333817482 0.07609286904335022 0.005501882638782263 0.023168349638581276 -0.055144499987363815 0.032827261835336685 -0.10533680766820908 -0.08968748897314072 -0.025347895920276642 -0.09445478767156601 0.02567281201481819 0.05340193212032318 0.03524622321128845 0.043276168406009674 -0.005342933349311352 -0.02356715314090252 -0.04234077036380768 -0.04668466001749039 -0.009366592392325401 -0.0669093057513237 -0.011851675808429718 0.0001598959934199229 -0.027251306921243668 0.006793084088712931 -0.0255744531750679 -0.04813934490084648 0.012890081852674484 -0.026146819815039635 0.06199017912149429 0.059365782886743546 0.04397619515657425 0.024949965998530388 0.037608854472637177 -0.03759836405515671 -0.02484733611345291 -0.0035596792586147785 0.011776522733271122 -0.09342007339000702 0.07196934521198273 -0.0708824098110199 -0.02531711384654045 -0.021898530423641205 0.01682855375111103 -0.03592435270547867 -0.02128576673567295 -0.07113369554281235 -0.05082407593727112 -0.09462733566761017 0.07463777810335159 0.08237268775701523 -0.019882971420884132 0.045786052942276 0.015142761170864105 0.04250967130064964 -0.040640607476234436 0.018121911212801933 -0.07488083094358444 0.04283495992422104 0.01260688528418541 0.001228826236911118 0.014979206956923008 -0.06455066055059433 0.06318545341491699 -0.03281419351696968 0.025459466502070427 -0.05447400361299515 0.044015463441610336 0.07806629687547684 -0.019515449181199074 0.02277362160384655 0.054747458547353745 0.01859070174396038 0.020783064886927605 -0.03205327317118645 0.0661444216966629 -0.09043905884027481 0.03588339313864708 0.016755061224102974 -0.07574049383401871 0.008352421224117279 0.0280515905469656 -0.09040085971355438 -0.03055315464735031 0.024363910779356956 -0.0042299311608076096 -0.026835866272449493 -0.030601056292653084 0.058230265974998474 0.026371562853455544 -0.045537319034338 -2.4964399926830083e-05 0.03507908806204796 -0.030375337228178978 0.06320563703775406 -0.011321952566504478 -0.063058041036129 -0.03255802020430565 -0.016887616366147995 -0.0025955846067517996 -0.01005888544023037 0.03802458941936493 0.049099795520305634 0.053161561489105225 0.010590695776045322 0.00041019104537554085 -0.01914319582283497 -0.047589417546987534 -0.0024238633923232555 -0.050506483763456345 0.052136749029159546 -0.005920872092247009 -0.07526843994855881 -0.01126689650118351 -0.09573225677013397 -0.02225046418607235 -0.008043351583182812 0.024635527282953262 -0.07286537438631058 -0.05557767301797867 -0.05658663064241409 -0.024155309423804283 -0.014044827781617641 -0.043914761394262314 -0.03383537381887436 -0.04689402878284454 0.029552122578024864 -0.029306113719940186 0.02546699158847332 -0.00580219691619277 0.0024463003501296043 -0.00438923854380846 -0.058387383818626404 0.002578956540673971 -0.05069457367062569 -0.06190265715122223 -0.004949917551130056 -0.02608215995132923 -0.08826396614313126 0.011167059652507305 -0.04148875176906586 -0.0064078159630298615 0.136824831366539 0.068803571164608 -0.04394160583615303 -0.07408571988344193 -0.04098594933748245 -0.02376960963010788 -0.018944423645734787 0.022462183609604836 0.0491812564432621 -0.06646289676427841 -0.025406673550605774 0.00944715365767479 -0.0116152074187994 -0.026012664660811424 0.04069839417934418 0.03545350953936577 -0.027436641976237297 0.042892806231975555 -0.008058033883571625 -0.009862934239208698 -0.004894243087619543 -0.0575522743165493 0.021599052473902702 0.07462812960147858 0.06497428566217422 0.03874491900205612 0.009832861833274364 0.0241928081959486 0.07760131359100342 0.017705855891108513 -0.027303915470838547 0.031654175370931625 -0.05192270129919052 -0.0729399248957634 0.03041202388703823 -0.03224285691976547 -0.008628725074231625 -0.01306048035621643 -0.03889333829283714 0.08637972176074982 -0.015460141934454441 -0.01033973228186369 -0.0339636504650116 0.03146820515394211 0.016270790249109268 0.033124424517154694 0.00030958568095229566 -0.006400616839528084 0.01077161356806755 -0.0491013266146183 -0.027578109875321388 -0.08442066609859467 0.04217144474387169 0.018287092447280884 0.06100374460220337 0.019616015255451202 -0.04695653170347214 0.009877546690404415 0.04490174725651741 0.11474086344242096 -0.07850880920886993 0.01382281631231308 0.020580900833010674 0.029015274718403816 -0.0638454407453537 -0.010694751515984535 -0.022949617356061935 -0.04548291862010956 -0.01755491830408573 -0.0031771075446158648 0.06423844397068024 -0.06957557052373886 -0.0680118128657341 -0.009778155013918877 -0.007981632836163044 0.027869127690792084 -0.005705157294869423 -0.028713952749967575 0.07560079544782639 -0.02887396328151226 0.024475371465086937 0.03993896394968033 0.024381952360272408 0.033618297427892685 -0.03925957530736923 0.03971704840660095 0.044279299676418304 0.0806477889418602 -0.05541243404150009 -0.06580021977424622 -0.06876589357852936 0.028925927355885506 -0.07425619661808014 0.0018618647009134293 -0.09103485196828842 -0.012040071189403534 -0.008074789308011532 0.04903574287891388 -0.007923582568764687 -0.03917498141527176 0.017837487161159515 -0.0024718979839235544 -0.051112592220306396 -0.054479971528053284 -0.0467841736972332 0.04743228480219841 -0.035523246973752975 0.01582629606127739 -0.08868302404880524 -0.031691353768110275 0.020704397931694984 -0.014411038719117641 -0.019264351576566696 0.04391834884881973 0.05595902353525162 0.0020407498814165592 0.0772339403629303 0.020363159477710724 0.04237522557377815 -0.0018891310319304466 -0.05702332407236099 0.03129098564386368 0.0517130047082901 -0.05324457213282585 0.024142351001501083 -0.019677376374602318 -0.0042067947797477245 -0.028992928564548492 -0.0037107663229107857 -0.003556217532604933 -0.021832983940839767 -0.009897255338728428 -0.044261399656534195 0.0563170351088047 -0.05066310241818428 -0.055321067571640015 0.02851511351764202 -0.02436959743499756 -0.08366063237190247 -0.011782608926296234 -0.05119078978896141 0.02716490440070629 0.042689915746450424 -0.023283476009964943 0.030568907037377357 0.04378729686141014 -0.038384344428777695 -0.02057967148721218 -0.04238106682896614 -0.033979322761297226 -0.01997312158346176 0.02407681755721569 0.042572882026433945 0.009589120745658875 0.008482815697789192 0.003371648257598281 -0.03564072772860527 0.03246859088540077 -0.03894539922475815 0.01779172569513321 -0.04743977263569832 -0.009588993154466152 0.0442771352827549 0.006515792105346918 0.025049693882465363 -0.036858223378658295 -0.039816126227378845 -0.03506327420473099 0.07130356878042221 0.005193757358938456 0.008008674718439579 0.06973974406719208 -0.03534878045320511 -0.019362639635801315 0.011887933127582073 -0.020047355443239212 -0.07261184602975845 0.01997062750160694 -0.047723669558763504 0.013410954736173153 0.006883344613015652 0.07592032849788666 0.03366050869226456 -0.10622511804103851 -0.00639102840796113 0.0022598805371671915 -0.03204891458153725 0.03580255061388016 0.0235137902200222 -0.04305080696940422 -0.05260546877980232 -0.05976405367255211 -0.05108095332980156 0.07975856214761734 -0.03194529935717583 0.015468155965209007 -0.028270773589611053 0.011775759980082512 -0.023211106657981873 -0.02849847450852394 0.0027464344166219234 0.0006980725447647274 -0.08326385915279388 -0.01102125272154808 0.11168107390403748 0.006200622767210007 0.020257052034139633 0.0778311938047409 -0.028553510084748268 0.019502747803926468 0.0092169139534235 0.028224501758813858 0.028673751279711723 0.019573651254177094 -0.015189861878752708 0.04415537416934967 -0.004703656770288944 0.053504809737205505 -0.031001055613160133 0.06973496824502945 -0.016483742743730545 -0.03248264268040657 0.0844637006521225 0.05703556910157204 0.0218605138361454 -0.008406519889831543 -0.04451366141438484 +0.07001019269227982 0.02073092944920063 0.04951867088675499 0.0435447096824646 -0.0877954363822937 -4.630191688193008e-05 -0.033378101885318756 0.025140579789876938 0.017703501507639885 -0.056371670216321945 -0.012233600951731205 0.006128712557256222 -0.007846747525036335 0.04584398493170738 0.01076239999383688 -0.052536219358444214 -0.03709133341908455 -0.010122749954462051 -0.03130410239100456 -0.05107438564300537 0.06863640248775482 0.023263124749064445 -0.019128531217575073 0.048429787158966064 0.00807253923267126 0.034163668751716614 -0.021179627627134323 0.03255666792392731 0.0026230132207274437 0.02692207135260105 0.0783727765083313 -0.02591310627758503 0.04164772853255272 -0.06333955377340317 -0.023936543613672256 0.07156882435083389 -0.022910544648766518 0.10544567555189133 0.047190889716148376 -0.041444629430770874 -0.016901563853025436 -0.05853797495365143 -0.020299987867474556 -0.03066927008330822 0.0011556947138160467 -0.03257374465465546 -0.01542599219828844 -0.021713275462388992 0.03875584527850151 0.015284700319170952 0.09841246157884598 -0.020131099969148636 -0.014860355295240879 -0.002462080679833889 0.03199954330921173 0.021359851583838463 0.05551537498831749 -0.05507199093699455 -0.019689852371811867 0.029346277937293053 -0.06562753021717072 -0.027857810258865356 -0.0014383114175871015 0.021252674981951714 -0.008340529166162014 -0.012953788042068481 0.022406913340091705 0.08989210426807404 0.06024423614144325 -0.03250424936413765 0.03398941084742546 0.09619239717721939 -0.05361705645918846 -0.0446176677942276 0.03452133759856224 -0.0631527528166771 -0.028244420886039734 0.006095597054809332 -0.029456287622451782 0.03252473101019859 -0.0019250878831371665 -0.0726596862077713 0.12030471861362457 -0.032637663185596466 -0.057829566299915314 -0.02562968246638775 -0.015381038188934326 -0.0944155603647232 0.07410536706447601 0.02761959843337536 8.083914872258902e-05 0.08114873617887497 -0.06535423547029495 0.0591525174677372 0.0014468426816165447 0.013336134143173695 0.009801882319152355 -0.09508954733610153 -0.03711225092411041 -0.005411315243691206 0.0039634560234844685 0.0007599038654007018 0.05374902859330177 -0.004960190039128065 0.0691400021314621 0.06804128736257553 -0.033780381083488464 -0.013060040771961212 0.007056606933474541 0.048718083649873734 0.025599408894777298 0.08239751309156418 0.0796201303601265 0.04437575116753578 0.040282249450683594 -0.039094045758247375 0.014113088138401508 -0.06411516666412354 -0.03692435473203659 -0.024959173053503036 0.005217124707996845 0.08937707543373108 -0.054880425333976746 -0.0680876076221466 -0.05798282474279404 0.032830335199832916 -0.08770793676376343 -0.018616486340761185 0.081988126039505 -0.007527782581746578 0.09401296824216843 0.0979067012667656 -0.04564175382256508 0.038774218410253525 0.039131660014390945 0.03258480504155159 -0.045145630836486816 0.023124724626541138 0.015417653135955334 -0.014998949132859707 -0.010640880092978477 0.024783940985798836 0.03267575055360794 -0.08767817169427872 0.0020488672889769077 0.06547293812036514 0.047071851789951324 -0.04768913611769676 -0.04964897409081459 -0.006640673149377108 -0.03058088943362236 -0.06374172121286392 -0.0012668982381001115 -0.07379823178052902 -0.006658121477812529 0.053843580186367035 -0.006360307335853577 0.018592897802591324 -0.028765903785824776 -0.007070299703627825 -0.04810263589024544 -0.0505046620965004 0.013004745356738567 -0.050739776343107224 -0.03183282911777496 -0.025833860039711 0.020592862740159035 -0.005536474287509918 -0.055716320872306824 -0.014022842980921268 -0.0051384116522967815 -0.010637065395712852 0.02025221474468708 0.0909147784113884 0.07441196590662003 -0.002428551437333226 -0.0139023931697011 -0.030669407919049263 0.02265225350856781 -0.012379647232592106 0.01388738676905632 -0.02709096111357212 -0.007720389869064093 -0.09539337456226349 -0.036337342113256454 -0.01903335005044937 0.040910329669713974 0.018514469265937805 0.01678168587386608 -0.0005798320053145289 -0.014407160691916943 -0.023928219452500343 -0.0008006105781532824 0.04363628104329109 -0.04833237826824188 0.046574730426073074 -0.028544791042804718 0.04860313609242439 -0.01383395865559578 -0.042795516550540924 -0.05889524146914482 0.059500306844711304 0.02791820839047432 0.07463206350803375 0.043927207589149475 -0.055441081523895264 0.07239369302988052 0.021994883194565773 0.016162490472197533 -0.084864541888237 0.002901956671848893 0.022948062047362328 0.029506200924515724 0.07703576982021332 0.04013822227716446 -0.046182066202163696 0.0006793210050091147 -0.025053558871150017 0.027886999770998955 -0.037044160068035126 -0.023921621963381767 -0.02034929394721985 -0.0525660365819931 0.03704813867807388 -0.054184310138225555 -0.03646109625697136 -0.05551697686314583 0.014669683761894703 0.01700684428215027 -0.06327606737613678 0.020559318363666534 0.01578911766409874 -0.01773494854569435 -0.0033820548560470343 0.004970420151948929 -0.04389409348368645 -0.09675136208534241 0.10732413828372955 -0.004312790464609861 -0.055573392659425735 -0.07681219279766083 0.018488137051463127 0.07047991454601288 -0.007115129381418228 0.04415673017501831 0.04676007106900215 0.10083724558353424 0.008843568153679371 -0.018610099330544472 -0.010202860459685326 -0.05389471352100372 -0.08335267007350922 -0.009872091002762318 0.020569195970892906 -0.028836270794272423 -0.0657384991645813 0.030762584879994392 -0.04812401533126831 -0.011054491624236107 -0.016296422109007835 0.07115022093057632 -0.006825351621955633 0.007910205982625484 -0.04586559906601906 0.03433523327112198 -0.040094468742609024 -0.030841771513223648 0.03533395007252693 -0.009848127141594887 0.0599801279604435 0.00713053485378623 0.0011444245465099812 0.05832218751311302 0.01358742918819189 0.017776088789105415 0.0017380531644448638 0.07082781195640564 -0.03231554105877876 -0.043347712606191635 -0.056976567953825 -0.06127199903130531 -0.04507160559296608 -0.03918416053056717 -0.030482454225420952 -0.04771449789404869 0.06147187203168869 -0.034533753991127014 -0.029653146862983704 -0.023294778540730476 0.02047008089721203 -0.013049621134996414 -0.05193978175520897 -0.024731513112783432 -0.015147806145250797 -0.06946107000112534 -0.008879744447767735 -0.0025715394876897335 -0.058549363166093826 -0.038670022040605545 -0.021791616454720497 -0.030746612697839737 -0.06634875386953354 0.030930623412132263 -0.039280474185943604 -0.02158447355031967 -0.03289686143398285 -0.057447679340839386 0.04732668772339821 0.08490706980228424 0.05607319250702858 0.054155416786670685 0.005479640793055296 0.03805020824074745 0.10758082568645477 0.005166903603821993 -0.009960098192095757 -0.004840961657464504 -0.027163008227944374 -0.061967041343450546 0.06761827319860458 -0.015446275472640991 -0.018506960943341255 -0.010307395830750465 0.01339714229106903 0.07985647767782211 0.013860299251973629 -0.017859363928437233 -0.010845785029232502 0.049721576273441315 -0.018642492592334747 0.06265132129192352 -0.02370927482843399 -0.02141224406659603 -0.02460574358701706 -0.03173074871301651 -0.05714818090200424 -0.02618863806128502 0.035606808960437775 -0.003847203217446804 0.028594154864549637 -0.0058981929905712605 -0.09667974710464478 -0.003543621627613902 -0.0024684749078005552 0.08245693147182465 -0.061450716108083725 0.0019319005077704787 0.021291112527251244 -0.012766098603606224 -0.11745928972959518 -0.012293104082345963 0.0032346092630177736 -0.027371946722269058 -0.07246984541416168 0.012765040621161461 0.051692843437194824 -0.04611653834581375 0.014143131673336029 -0.038445789366960526 -0.033121030777692795 -0.0015899288700893521 0.03704853355884552 0.017458874732255936 0.01955401338636875 0.01721535623073578 -0.05529046058654785 -0.02441224455833435 0.010673834010958672 0.013487241230905056 -0.013914840295910835 0.017360679805278778 -0.0582580529153347 0.04630882665514946 -0.052261918783187866 -0.03241931274533272 -0.04433942586183548 0.0426311194896698 0.019411059096455574 -0.01979941688477993 -0.005725822411477566 -0.027819914743304253 0.01541843917220831 0.02310839667916298 0.014652262441813946 -0.04043901711702347 -0.036460548639297485 -0.038655154407024384 -0.016835426911711693 -0.09762604534626007 -0.046827320009469986 0.02491679973900318 -0.0648408904671669 -0.00582156190648675 0.01445968821644783 -0.027038760483264923 -0.02146960236132145 -0.016637727618217468 0.048497673124074936 0.03282397985458374 0.04124842584133148 -0.026977282017469406 0.054774899035692215 0.0243654977530241 0.04059480503201485 0.017665620893239975 -0.04142966493964195 0.02203219383955002 -0.0006449326756410301 -0.029716964811086655 0.08649803698062897 -0.03858492895960808 0.009014111943542957 -0.017057253047823906 0.020372804254293442 0.04229217395186424 -0.03786764293909073 0.005551768466830254 -0.04222188889980316 0.07997269183397293 -0.09863072633743286 -0.01444185059517622 0.02776418998837471 -0.035494882613420486 -0.10988646000623703 -0.03190317004919052 -0.017735911533236504 -0.05684411898255348 0.04586643725633621 0.018809933215379715 -0.009929893538355827 0.032531075179576874 -0.02275135926902294 -0.0305615346878767 -0.01682818867266178 0.003232005052268505 0.022263817489147186 0.0009482651948928833 0.05449346825480461 0.030159901827573776 0.00435050530359149 0.031201552599668503 -0.005147032905369997 0.0078192800283432 -0.09264937043190002 -0.04225592315196991 0.03454795852303505 -0.04186885431408882 0.011461443267762661 0.016091905534267426 0.029872089624404907 -0.05613326653838158 -0.026059450581669807 -0.06652974337339401 0.08381867408752441 -0.02963985688984394 0.01667526364326477 -0.003903500270098448 -0.03955954685807228 0.0017614893149584532 0.01913530007004738 -0.05344109982252121 -0.08186837285757065 -0.001994645455852151 0.014846092090010643 -0.01736883819103241 -0.04939787834882736 0.0016400458989664912 -0.01785394549369812 -0.06062019616365433 -0.010377476923167706 0.03056829608976841 -0.06177274137735367 0.06884416192770004 0.005319757387042046 -0.05559045076370239 -0.06282197684049606 0.020868666470050812 -0.037022341042757034 -0.001518167438916862 -0.00999288447201252 0.028172681108117104 0.015420042909681797 0.002910647541284561 -0.01457193959504366 -0.08876549452543259 0.01948718912899494 0.013218902982771397 -0.010151445865631104 -0.04636650159955025 0.038927700370550156 -0.03868972882628441 0.008262296207249165 0.0502561554312706 -0.04136774688959122 0.014209281653165817 0.0703776627779007 -0.0364110991358757 0.037255704402923584 -0.02534787729382515 -0.011168130673468113 0.09784508496522903 -0.061722997575998306 0.10151232033967972 -0.06654902547597885 0.11269641667604446 0.00015499370056204498 0.008686328306794167 0.0749347060918808 0.04763968288898468 0.03981151059269905 0.028130751103162766 -0.06825636327266693 +0.0052576567977666855 -0.07613712549209595 -0.05286562442779541 0.029947573319077492 -0.022109203040599823 0.015472331084311008 -0.04549441486597061 0.05092169716954231 0.001870330423116684 -0.07378283888101578 -0.0445273332297802 -0.038499727845191956 -0.00873119942843914 -0.06483149528503418 0.03510460630059242 -0.0002425403072265908 -0.03594746068120003 0.024905933067202568 -0.0013642089907079935 -0.013415457680821419 -0.051589637994766235 0.04079369083046913 -0.06860809773206711 0.04051896929740906 -0.010444387793540955 -0.021399518474936485 -0.032897625118494034 0.06344487518072128 -0.05525152385234833 0.11620967090129852 0.01832105591893196 -0.02814028412103653 0.0363553985953331 -0.02510695531964302 -0.034863248467445374 0.008014929480850697 -0.0112586859613657 0.1019793376326561 0.02284013293683529 -0.052394721657037735 0.033193789422512054 0.027147667482495308 0.03493958339095116 -0.09465266019105911 0.010452081449329853 0.005246882326900959 -0.022178173065185547 -0.03403325751423836 -0.040325459092855453 0.024399712681770325 0.08154696971178055 0.04900101572275162 0.03260922059416771 -0.0035339619498699903 -0.05662102252244949 0.021416891366243362 0.024301715195178986 -0.024958422407507896 0.006582376081496477 0.060116734355688095 -0.07787199318408966 -0.0036815600469708443 0.012965808622539043 -0.0006540770991705358 -0.0632609948515892 0.014801961369812489 0.032684244215488434 0.04164895415306091 0.007747539319097996 -0.013409575447440147 -0.021239958703517914 0.003557246644049883 -0.03152874484658241 -0.0639042928814888 0.0030551650561392307 -0.039057523012161255 -0.032091766595840454 -0.01622115820646286 0.015934081748127937 -0.003242113860324025 0.009932826273143291 -0.005688686389476061 0.11001715064048767 -0.02478357031941414 0.01716178096830845 -0.046837806701660156 -0.022133290767669678 -0.07443065196275711 -0.005984103307127953 -0.016214502975344658 0.023733850568532944 0.03460576385259628 0.044300973415374756 -0.0013740604044869542 -0.004084601067006588 0.0076736630871891975 0.045783109962940216 -0.09508790075778961 0.004896675236523151 0.017649823799729347 -0.046645477414131165 0.03962128236889839 0.030122194439172745 0.06627218425273895 0.03611213341355324 0.020250583067536354 -0.05049370601773262 0.034235723316669464 0.0706721842288971 0.03311154246330261 -0.004623775836080313 0.08761536329984665 -0.013188586570322514 -0.0025103692896664143 0.05311563238501549 0.06824346631765366 0.025105927139520645 0.005385381169617176 0.0188885610550642 0.003861122764647007 -0.030144967138767242 0.031873419880867004 0.0023564628791064024 -0.08382362127304077 0.0861826241016388 0.0869852602481842 -0.03561416268348694 -0.010523885488510132 -0.04757491499185562 -0.031711217015981674 0.014492797665297985 0.03586573526263237 0.0005483654094859958 0.007885217666625977 -0.003046089317649603 0.022692710161209106 -0.030645091086626053 0.011562179774045944 0.03583421930670738 -0.011021541431546211 -0.03502633050084114 -0.02777440845966339 -0.017643097788095474 0.006535160820931196 0.05140950158238411 -0.010410303249955177 -0.028310110792517662 -0.02322949469089508 -0.0631822720170021 0.0012610543053597212 -0.03423212468624115 -0.06721276789903641 0.035944677889347076 -0.045724425464868546 0.019370093941688538 0.008879746310412884 0.06113695725798607 0.025648653507232666 0.008642354048788548 0.032280970364809036 -0.022938668727874756 -0.035690441727638245 0.0013620088575407863 -0.08799390494823456 -0.004461492877453566 0.021703241392970085 -0.021650904789566994 -0.016592616215348244 -0.04484011232852936 0.008550071157515049 0.023662105202674866 0.08309097588062286 0.05733362212777138 0.06251879036426544 0.07653914391994476 0.03761710599064827 0.10811006277799606 -0.049036819487810135 -0.04574686288833618 -0.05666927620768547 -0.018310189247131348 0.03145184740424156 0.00536948349326849 -0.05294749513268471 -0.0021393252536654472 0.028543010354042053 0.015774767845869064 0.040381576865911484 0.05652240663766861 -0.016480926424264908 0.019603077322244644 -0.07006947696208954 0.05390918627381325 -0.016193188726902008 0.022094247862696648 0.03359146788716316 0.07159440964460373 0.1071038469672203 -0.07227689772844315 -0.03151770308613777 -0.03912859037518501 0.02792252041399479 0.07155871391296387 -0.025424744933843613 -0.0027493725065141916 0.02798294462263584 0.030416293069720268 0.05091862380504608 0.009668069891631603 0.023855134844779968 0.04215334355831146 0.04759155213832855 -0.010862733237445354 0.02987564727663994 0.08188841491937637 0.0016627191798761487 -0.0149808619171381 0.005871793255209923 0.016938334330916405 -0.09778165817260742 0.0034115223679691553 -0.014742526225745678 -0.10067138820886612 -0.017840733751654625 -0.03585338220000267 -0.06262688338756561 0.02377542108297348 0.01584026776254177 -0.009891065768897533 0.021578963845968246 0.04194989800453186 0.018276890739798546 -0.006812056060880423 -0.006118444260209799 -1.2180538533357321e-06 -0.01559180486947298 -0.04919131472706795 0.015187055803835392 -0.05246256664395332 -0.06946663558483124 -0.014251711778342724 0.0045079076662659645 -0.011844446882605553 -0.042553845793008804 0.034012243151664734 0.05785522609949112 0.07819853723049164 0.07331746071577072 -0.05576068162918091 0.01253417693078518 -0.04071158915758133 -0.030672302469611168 0.009649758227169514 -2.1830390323884785e-05 0.07132252305746078 -0.021935461089015007 0.029449140653014183 -0.12586653232574463 -0.019921718165278435 0.008902770467102528 0.0013493752339854836 -0.05498289689421654 0.016472499817609787 -0.04621347412467003 0.0034804672468453646 -0.03193194046616554 -0.042638134211301804 0.052354566752910614 -0.03170497715473175 0.0038785834331065416 -0.09676375240087509 0.032840218394994736 0.02633051946759224 -0.03782449662685394 -0.015161309391260147 -0.03345787525177002 0.056473907083272934 -0.04014826565980911 -0.02966124564409256 -0.04486674442887306 -0.07749297469854355 0.013852884992957115 0.036255501210689545 -0.02516373246908188 -0.05948875471949577 0.038622863590717316 0.05560975894331932 -0.0076685706153512 -0.06887004524469376 -0.08835357427597046 -0.04798886179924011 -0.015922896564006805 -0.007861156947910786 0.014839393086731434 0.02029252238571644 -0.014795647002756596 0.06469225138425827 -0.008009783923625946 0.0019000702304765582 0.029637254774570465 0.04723135754466057 -0.06502734869718552 0.04553787037730217 -0.03741629794239998 -0.028279997408390045 0.0683649331331253 -0.0423198863863945 -0.016353638842701912 0.05829467251896858 0.013495122082531452 0.02401193417608738 0.03507968783378601 -0.005987205076962709 0.02889031544327736 -0.016053980216383934 -0.03694586083292961 -0.07650968432426453 -0.0019846633076667786 -0.0042740823701024055 0.033544111996889114 0.042314331978559494 0.0010580800008028746 0.019201135262846947 -0.006388513371348381 0.032433949410915375 -0.004795457702130079 -0.02843322418630123 -0.06983891874551773 0.023449353873729706 -0.03915714845061302 0.026595400646328926 -0.049387332051992416 0.06593576818704605 -0.017155084758996964 -0.022876527160406113 0.00354572432115674 -0.0032698549330234528 0.03321808949112892 -0.017259487882256508 0.04103761911392212 -0.00016667452291585505 -0.052529800683259964 0.00919615849852562 -0.011336583644151688 0.04723484441637993 -0.1348819136619568 0.033106349408626556 0.04707273840904236 0.031315091997385025 -0.05321976915001869 -0.042703039944171906 0.03081422485411167 -0.08429743349552155 -0.04135436192154884 -0.0072932192124426365 -0.006949235685169697 -0.01750204712152481 -0.0610571913421154 -0.06347571313381195 0.002862293040379882 0.047496259212493896 0.05145619437098503 -0.024894243106245995 0.0069066197611391544 -0.04449750483036041 -0.023558612912893295 -0.054319724440574646 -0.010112432762980461 0.015727007761597633 -0.032552026212215424 0.042301807552576065 0.004224928095936775 -0.031117571517825127 -0.04484592378139496 -0.0332183837890625 -0.04796848073601723 -0.004453405272215605 -0.07484441995620728 0.04415459558367729 -0.018093761056661606 -0.033820610493421555 -0.027665235102176666 0.009120805189013481 -0.008221321739256382 -0.05200362950563431 -0.05177690088748932 0.042397547513246536 -0.05938924849033356 0.014333013445138931 -0.07028762251138687 0.04533347859978676 0.03201822564005852 0.026422658935189247 -0.06112493574619293 0.012134767137467861 0.027870312333106995 0.04547855257987976 0.02993556670844555 0.10694184899330139 0.028480377048254013 0.008666452951729298 0.058728285133838654 -0.0358593687415123 -0.006832147482782602 0.017617687582969666 -0.0868496522307396 0.0028710991609841585 0.0017077070660889149 -0.040178265422582626 -0.00376279023475945 -0.011903820559382439 0.0041284989565610886 0.047123029828071594 -0.04953710734844208 -0.010459617711603642 -0.03154545649886131 -0.01935477927327156 -0.001977712381631136 0.06330350786447525 -0.02679736167192459 -0.01734466478228569 -0.06038153916597366 -0.0499357171356678 -0.024693289771676064 -0.032218463718891144 -0.06560255587100983 -0.021190276369452477 0.03051486611366272 -0.04762038215994835 0.009965023025870323 0.018427710980176926 -0.04822789132595062 -0.006924993824213743 -0.0014625481562688947 0.03978518024086952 -0.03133803978562355 0.07733454555273056 0.008676773868501186 -0.03609717637300491 -0.052227333188056946 -0.05027983337640762 -0.045027900487184525 0.03280104324221611 -0.020810566842556 -0.0219907034188509 0.039990976452827454 0.002519212430343032 -0.011012205854058266 0.03393256664276123 -0.004520836286246777 -0.10168273001909256 -0.027503490447998047 -0.008069029077887535 0.009135555475950241 -0.011689217761158943 0.018159231171011925 0.040395766496658325 -0.08076915889978409 -0.07705149054527283 0.040219780057668686 -0.03913430497050285 -0.06005830317735672 -0.04966143146157265 -0.04376358166337013 0.06772483140230179 0.00011683613411150873 0.027402320876717567 -0.0920010656118393 -0.08998668938875198 0.008577643893659115 0.019295040518045425 -0.056794796139001846 -0.09053361415863037 0.06336406618356705 -0.06390584260225296 0.011398314498364925 0.04065246507525444 -0.032476089894771576 0.036546606570482254 0.03262440487742424 -0.0003299604868516326 -0.10011683404445648 0.01069497037678957 -0.08226257562637329 -0.012623115442693233 0.049610503017902374 -0.06920488178730011 -0.0913209319114685 -0.045293502509593964 0.1040506437420845 -0.04153968393802643 0.04742204025387764 0.05083328112959862 0.005556495860219002 0.0482272133231163 0.0547664500772953 0.009892419911921024 -0.05472522974014282 -0.033422645181417465 0.038140129297971725 0.02718384563922882 -0.05736662819981575 0.02551768161356449 -0.02861807495355606 0.13716979324817657 0.0064418562687933445 0.018693167716264725 0.026761764660477638 0.10627563297748566 0.09911558032035828 0.0010778221767395735 -0.1123940721154213 +0.007622762583196163 -0.01186227798461914 -0.048389896750450134 0.016242122277617455 -0.09057731181383133 -0.045728668570518494 0.01812325417995453 0.04178345203399658 -0.009833849966526031 -0.03760542720556259 -0.06099085137248039 -0.01249491423368454 -0.005615763366222382 0.000557890220079571 0.023443570360541344 -0.04505867883563042 -0.06425070017576218 -0.003402463626116514 -0.01320955716073513 -0.02261340245604515 0.0328821986913681 -0.0228094682097435 -0.09364652633666992 0.042369548231363297 0.026984477415680885 0.014056434854865074 -0.044723737984895706 0.026849789544939995 0.010054760612547398 0.06490331888198853 0.045341551303863525 -0.03371879458427429 0.02891983836889267 -0.07953150570392609 -0.07389715313911438 0.03162630647420883 -0.059538472443819046 0.11475920677185059 0.05399507284164429 -0.022142205387353897 -0.09424703568220139 0.017098134383559227 -0.06706569343805313 -0.05795782804489136 0.058846615254879 0.009953436441719532 -0.011565688997507095 -0.028240451589226723 0.0657808855175972 0.03080190159380436 0.06305132806301117 -0.022612247616052628 -0.02613730914890766 -0.02729794569313526 -0.03965948522090912 0.029192481189966202 0.02255869098007679 -0.013335954397916794 -0.05397667735815048 0.032235678285360336 -0.08961828052997589 -0.01576286181807518 0.012267068959772587 0.010207069106400013 -0.04784717038273811 -0.0183314960449934 -0.015963271260261536 0.07120854407548904 -0.04564734175801277 -0.03391510248184204 -0.027773970738053322 0.07948867231607437 -0.05272624269127846 -0.04988621920347214 0.02204025350511074 -0.059564098715782166 -0.01524171233177185 0.02297919988632202 0.010683841072022915 0.0007224431610666215 -0.03148922696709633 -0.04111943766474724 0.15623337030410767 -0.0545758381485939 -0.04485708847641945 -0.06352975219488144 -0.048090964555740356 -0.06437137722969055 0.05200483277440071 0.029585545882582664 0.03242306783795357 0.03987503796815872 -0.026599720120429993 0.01630461774766445 0.036113541573286057 0.017117954790592194 0.04285021498799324 -0.11301112174987793 -0.020144615322351456 0.010254067368805408 0.005507024936378002 -0.029723692685365677 0.07292094826698303 0.0025840646121650934 0.04811311140656471 0.015851326286792755 -0.08231271058320999 0.03800696134567261 0.03332158550620079 0.011782919988036156 0.02993508242070675 0.09875264018774033 0.08724414557218552 0.0314561165869236 0.07548430562019348 -0.004120886791497469 -0.0011298502795398235 -0.039585571736097336 -0.015919096767902374 -0.011309630237519741 -0.0033086028415709734 0.044226884841918945 0.0253470279276371 -0.06677763909101486 0.01320213358849287 0.014347931370139122 -0.0994110181927681 -0.016548098996281624 0.015699634328484535 -0.03455105423927307 0.07806763052940369 0.06358534842729568 -0.01793922856450081 0.02616262063384056 0.05876320227980614 0.007573943585157394 0.04552626982331276 0.06854690611362457 -0.0029554469510912895 -0.025751814246177673 -0.022650010883808136 0.03188827261328697 -0.033594369888305664 -0.04447232931852341 0.05268983542919159 0.05511069297790527 0.0350518561899662 -0.025183701887726784 -0.08213722705841064 0.02566472440958023 -0.07959679514169693 -0.034582749009132385 0.016857296228408813 -0.07921850681304932 0.027423745021224022 0.05475333705544472 0.03605089709162712 0.032231077551841736 0.0017806078540161252 0.011511631309986115 -0.027240576222538948 -0.053505223244428635 -0.0033731809817254543 -0.08766833692789078 -0.032533831894397736 -0.004071840550750494 0.04952908307313919 -0.0014290355611592531 -0.048305314034223557 -0.008427632041275501 0.0005655907443724573 0.009128819219768047 0.07827814668416977 0.0449611134827137 0.042984530329704285 0.0007702010334469378 0.014246232807636261 -0.0895579382777214 0.007062658667564392 -0.05283013731241226 0.03516877815127373 -0.04953659698367119 0.011778546497225761 -0.04455286264419556 -0.021852735430002213 -0.00021406922314781696 0.026863737031817436 -0.03522178903222084 0.006265268195420504 -0.01242695190012455 -0.04708580672740936 -0.0699584111571312 0.04503604769706726 0.053742263466119766 -0.013832788914442062 0.029787177219986916 -0.000652085174806416 0.0536326989531517 -0.03328646346926689 -0.057869426906108856 -0.08628960698843002 0.0328119695186615 -0.0030888812616467476 0.03697993978857994 0.03938361629843712 -0.056364577263593674 0.07427123934030533 -0.013470087200403214 0.03240307793021202 -0.07325531542301178 0.03309515863656998 0.02555782161653042 0.010329288430511951 0.005603688769042492 0.10641767084598541 -0.03237716108560562 -0.03201162815093994 0.013652076944708824 0.07688819617033005 -0.06671137362718582 0.005659009329974651 0.01988712139427662 -0.09270115941762924 -0.007888834923505783 -0.035890743136405945 -0.08709722757339478 0.0027002166025340557 0.047275010496377945 -0.03755614534020424 -0.009009843692183495 -0.02014896273612976 0.03557225316762924 -0.044119201600551605 -0.007341613527387381 -0.005701833870261908 0.014553755521774292 -0.0583852156996727 0.048145096749067307 -0.033104851841926575 -0.090960793197155 -0.059258975088596344 0.017073851078748703 0.010463072918355465 -0.0059547568671405315 0.031875982880592346 0.028303401544690132 0.06019430235028267 0.007187425158917904 -0.02848033607006073 0.003836285090073943 -0.05264347791671753 -0.022842887789011 -0.007313104346394539 0.038338661193847656 -0.02790950797498226 -0.03542110323905945 0.007808617781847715 -0.054092392325401306 0.008469761349260807 0.0069497074000537395 0.029488900676369667 -0.010262769646942616 -0.02413523942232132 0.009660501033067703 0.055005013942718506 -0.01734703592956066 -0.030515627935528755 0.01459855679422617 -0.03793195262551308 0.03443154692649841 -0.05173530802130699 -0.02288951352238655 0.00497058080509305 0.03256368264555931 0.01085730828344822 -0.04667748883366585 0.08747788518667221 -0.0010469792177900672 -0.06618168950080872 -0.05304546281695366 -0.07493387162685394 -0.03566105291247368 0.0071707963943481445 -0.016406051814556122 -0.031739749014377594 0.08111265301704407 0.04734235629439354 -0.032128289341926575 -0.0877472534775734 -0.056120242923498154 -0.018194176256656647 -0.05021383985877037 -0.03511842340230942 -0.00030644750222563744 -0.07480368763208389 -0.029446057975292206 0.04874372482299805 -0.03433811664581299 -0.01082572340965271 0.034054480493068695 -0.010757694952189922 -0.056819792836904526 0.03360878676176071 -0.04493536427617073 -0.04266887158155441 0.04213768243789673 -0.06441891938447952 0.028554769232869148 0.09824029356241226 0.05962982773780823 0.012853330932557583 0.00936164241284132 0.020959511399269104 0.0678047463297844 -0.029165932908654213 -0.04699823632836342 -0.043729349970817566 -0.07109767943620682 -0.09070589393377304 0.04619862139225006 -0.04113705828785896 0.021061519160866737 -0.04637971892952919 -0.013173562474548817 0.059935130178928375 -0.015309843234717846 -0.015471259132027626 -0.0613107904791832 -0.020207684487104416 -0.024832766503095627 0.023094285279512405 0.007672542240470648 0.013057106174528599 -0.010314248502254486 -0.0797174796462059 -0.0826897844672203 -0.05141192302107811 0.04190793260931969 0.005715458653867245 0.028730494901537895 -0.007664516568183899 -0.03401780128479004 0.034785930067300797 0.018400127068161964 0.07900088280439377 -0.05156220495700836 0.031943194568157196 0.009928015992045403 0.030156876891851425 -0.08013895899057388 -0.007904665544629097 0.04073458909988403 -0.04377661272883415 -0.0835176333785057 -0.011579721234738827 0.026341186836361885 -0.027873104438185692 -0.008947905153036118 -0.008436627686023712 -0.0663173571228981 -0.0016956903273239732 0.010358739644289017 0.013396361842751503 0.04892678186297417 0.025132592767477036 -0.035895757377147675 0.03319800645112991 -0.01597786881029606 0.005561238154768944 -0.023215120658278465 0.022556515410542488 -0.014522513374686241 0.06263332068920135 -0.03130973502993584 -0.03323887661099434 -0.07683727145195007 0.05165832117199898 -0.01587093248963356 -0.041614875197410583 -0.0484028160572052 -0.015180004760622978 -0.03973410278558731 0.0254453606903553 0.013287404552102089 -0.06206464394927025 -0.03152158483862877 -0.028609484434127808 -0.06273026764392853 -0.11984780430793762 -0.010111583396792412 0.04532023146748543 -0.03784370422363281 0.02578040212392807 -0.04658621922135353 0.011968297883868217 0.03500119224190712 0.006195711437612772 0.005875921808183193 0.05265402793884277 0.044086623936891556 -0.008385022170841694 0.03340162709355354 -0.022795839235186577 0.06282036006450653 -0.004371548071503639 -0.020794957876205444 0.00020949955796822906 0.041346803307533264 -0.056482359766960144 0.036053139716386795 -0.06035734340548515 0.02267313189804554 -0.045114222913980484 -0.03045942634344101 0.017558638006448746 0.0033873296342790127 0.0192694254219532 -0.0057427361607551575 0.039015401154756546 -0.06510291248559952 -0.041294876486063004 0.026791758835315704 -0.007166269700974226 -0.09595021605491638 -0.026389943435788155 -0.010255744680762291 -0.004856760613620281 0.03834706172347069 -0.017602339386940002 0.04797651246190071 0.036414265632629395 -0.06022091209888458 -0.024403857067227364 -0.012258722446858883 -0.01105960551649332 0.028221651911735535 -0.008125360123813152 0.053459532558918 0.04215336591005325 -0.0017582322470843792 0.022149674594402313 -0.0031602096278220415 0.01945195160806179 -0.06825274974107742 -0.009079703129827976 0.016045093536376953 -0.005755094811320305 0.013309825211763382 0.01243111677467823 0.0016889431281015277 -0.024555684998631477 -0.02666349895298481 -0.04789295792579651 0.05639883875846863 0.008543103002011776 0.010420747101306915 0.05770835652947426 -0.05406152084469795 0.01564209721982479 -0.0017143858131021261 -0.044346243143081665 -0.06309524178504944 -0.014668263494968414 -0.04723956063389778 0.04919624701142311 0.04824279621243477 0.0074641224928200245 0.01930210366845131 -0.06307323276996613 -0.006989858113229275 -0.03393227979540825 -0.0679253414273262 0.025906555354595184 0.03427533432841301 -0.023150766268372536 -0.03966506943106651 -0.01972641423344612 -0.052064694464206696 0.07312972098588943 0.015871355310082436 0.04124903306365013 -0.03719530999660492 -0.0015320002567023039 0.009848077781498432 -0.002311576856300235 0.03654048219323158 -0.043469563126564026 -0.06230132654309273 0.007198597304522991 0.11048194766044617 -0.035493217408657074 0.05865523964166641 0.04107002913951874 -0.034619469195604324 0.04131540656089783 0.07017966359853745 -0.033297766000032425 0.004854269325733185 0.007382718846201897 -0.031057216227054596 0.05444285646080971 -0.07305523008108139 0.0997360572218895 -0.06875885277986526 0.10417938977479935 0.041481856256723404 -0.010656861588358879 0.09023672342300415 0.07110164314508438 0.0007039016927592456 0.016856590285897255 -0.06062009930610657 +0.07659488171339035 -0.016653241589665413 -0.009515197016298771 0.019966529682278633 -0.029444996267557144 -0.02763104811310768 -0.024137631058692932 0.023371411487460136 -0.020460255444049835 -0.028049714863300323 -0.05634574219584465 0.017738306894898415 -0.031197132542729378 -0.00628995755687356 0.008769788779318333 -0.06318335235118866 -0.03600165992975235 0.024341566488146782 -0.025439077988266945 -0.005827158223837614 0.012957504950463772 0.03216376155614853 -0.07598385959863663 0.05172628536820412 -0.010311364196240902 0.02251945622265339 -0.017478596419095993 0.026844942942261696 0.012570641003549099 0.07073766738176346 0.08604256808757782 -0.04390822723507881 0.06469796597957611 -0.039487965404987335 -0.01783241704106331 -0.00011084076686529443 -0.02180968038737774 0.08109249919652939 0.0407700389623642 0.0297735296189785 -0.07681329548358917 0.011410965584218502 -0.002518518827855587 -0.04574785754084587 -0.004007034935057163 -0.0038349370006471872 -0.005915018264204264 -0.0087802829220891 0.02744932845234871 0.03850795328617096 0.07356379181146622 0.010859090834856033 -0.0020518770907074213 -0.011296406388282776 0.011359036900103092 0.010093394666910172 0.025895213708281517 -0.017637433484196663 -0.03695928677916527 0.0062902867794036865 -0.09126096218824387 0.03965660557150841 -0.005582035053521395 -0.03820553421974182 -0.015163537114858627 -0.031626276671886444 -0.0012857962865382433 0.08927860110998154 0.03277824819087982 -0.027863740921020508 0.03735865280032158 0.09354954957962036 -0.11026535928249359 -0.03847290202975273 0.023099638521671295 -0.06292658299207687 0.0021580990869551897 -0.004279166925698519 -0.017806999385356903 -0.008032652549445629 -0.03217964619398117 -0.03207240626215935 0.14882326126098633 -0.03527817875146866 -0.05145202949643135 -0.061290256679058075 -0.02885439805686474 -0.08401843160390854 0.040434665977954865 0.004696091171354055 0.05586261674761772 0.012066764757037163 0.002276742598041892 -0.0010800242889672518 0.01954430341720581 0.001516717835329473 0.04161852225661278 -0.07527519762516022 -0.024630945175886154 0.02082078345119953 0.006648124661296606 0.04172847419977188 0.07242954522371292 -0.004519029054790735 0.05937650427222252 0.027702834457159042 -0.059772975742816925 0.012811893597245216 0.06480738520622253 0.02412039041519165 0.06241351366043091 0.0927496924996376 0.023858780041337013 0.02434457279741764 0.0616922453045845 0.026849981397390366 0.06493895500898361 -0.04695350304245949 0.01562713086605072 0.0015975218266248703 -0.020584050565958023 0.10121230036020279 -0.013659457676112652 -0.08584713935852051 -0.02160126343369484 0.06911216676235199 -0.09161629527807236 -0.05937745049595833 0.04278893768787384 0.0010039082262665033 0.06527845561504364 0.08081116527318954 -0.009503630921244621 0.022332843393087387 0.0004554148472379893 -0.04326940327882767 -0.06338287889957428 0.016071252524852753 0.06822645664215088 -0.029195962473750114 -0.015541641972959042 0.035321034491062164 -0.02348516695201397 -0.032628364861011505 0.05252647399902344 0.04308193176984787 0.016757074743509293 -0.06693567335605621 -0.018540991470217705 0.009058997966349125 -0.011133217252790928 -0.07093778997659683 0.027124376967549324 0.0002496128436177969 -0.0005417281645350158 0.03103179670870304 0.0202884953469038 0.024996526539325714 0.004172779619693756 -0.03922796994447708 -0.06555027514696121 -0.04843509942293167 -0.052369654178619385 -0.03829502686858177 0.017951039597392082 0.06101618707180023 0.032616615295410156 0.011847937479615211 -0.08397236466407776 -0.00031908031087368727 -0.001224127016030252 -0.001243418431840837 -0.006671213079243898 0.08338135480880737 0.08736652135848999 0.012371774762868881 0.010864187963306904 -0.0353412851691246 0.013331061229109764 -0.039629124104976654 0.003946412820369005 -0.06251021474599838 0.014927896670997143 -0.06452350318431854 0.012447908520698547 0.01628369651734829 0.02092781662940979 -0.0036369478330016136 0.0387297086417675 0.019991612061858177 0.013991069048643112 -0.043879181146621704 0.01288446132093668 0.02947380021214485 -0.02518603950738907 0.0259019136428833 0.0008419987861998379 0.09955378621816635 -0.0036831172183156013 -0.01080586388707161 -0.08238046616315842 0.018869781866669655 0.014726505614817142 0.018239092081785202 0.0833548977971077 -0.0389888770878315 0.05834386125206947 0.02294745482504368 0.0009954397100955248 -0.045098379254341125 -0.018476935103535652 -0.027506045997142792 0.03816961497068405 0.053673308342695236 0.06962525844573975 -0.024214427918195724 -0.002426039194688201 -0.004579984582960606 0.032645080238580704 -0.05240073427557945 -0.05331147089600563 -0.05601676553487778 -0.06454862654209137 0.010743589140474796 -0.060808438807725906 -0.07400156557559967 -0.00990543607622385 0.013467366807162762 0.027867531403899193 -0.0207695122808218 0.05915272608399391 0.03882689028978348 -0.009460913017392159 -0.030515532940626144 0.05087204650044441 -0.06620205193758011 -0.08320307731628418 0.09152721613645554 0.009638821706175804 -0.09267558157444 -0.024638043716549873 -0.011945991776883602 0.07282032072544098 0.007544545456767082 0.03976089879870415 0.018793292343616486 0.11384358257055283 0.02845471166074276 -0.07742024958133698 0.01752607338130474 -0.017532451078295708 -0.04978790134191513 0.03353158384561539 0.028277579694986343 -0.027368027716875076 -0.08336768299341202 0.04686380922794342 -0.04372924193739891 0.02716519683599472 -0.03126230835914612 0.01093218382447958 -0.008206326514482498 0.021012919023633003 -0.05768159031867981 0.025471985340118408 -0.05336305871605873 -0.03014296293258667 0.0623861625790596 -0.027741091325879097 0.018555134534835815 -0.004343737848103046 0.02975195273756981 0.026475246995687485 0.0007268565241247416 -0.03520883619785309 -0.05236493796110153 0.07580889761447906 0.009028499945998192 -0.049282174557447433 -0.06793247163295746 -0.04586239531636238 -0.04339988902211189 -0.00037311171763576567 0.0015601753257215023 -0.04618728533387184 -0.003708883421495557 0.021148288622498512 -0.0635049119591713 -0.04958353191614151 -0.022682199254631996 -0.09405714273452759 -0.04839204251766205 -0.060434553772211075 -0.0047358316369354725 -0.011587275192141533 -0.03643594682216644 -0.0007501380168832839 -0.048737816512584686 -0.009305170737206936 0.0117505406960845 0.03796873986721039 -0.07519584149122238 0.013074264861643314 -0.006482498720288277 -0.010547783225774765 -0.003135460428893566 -0.06285730004310608 0.04470411315560341 0.060107629746198654 0.11084142327308655 0.05608392134308815 0.033050622791051865 0.008462799713015556 0.11435235291719437 0.0059860688634216785 -0.02204705774784088 -0.041556764394044876 -0.03984026238322258 -0.051794275641441345 0.041481863707304 0.03620488941669464 0.014115589670836926 -0.0042716022580862045 0.03151369094848633 -0.003162963083013892 0.025911379605531693 -0.026818983256816864 -0.049664996564388275 0.003495306009426713 -0.03997127711772919 0.0076833185739815235 -0.01904924400150776 0.021503742784261703 -0.002838743617758155 -0.05586715415120125 -0.06246841326355934 -0.05895451083779335 0.03110790252685547 -0.01727309077978134 0.06616171449422836 -0.0057883718982338905 -0.03131755068898201 -0.01792675070464611 -0.009860684163868427 0.07898235321044922 -0.04031136631965637 0.005296902731060982 -0.008387596346437931 0.09328842163085938 -0.1197429969906807 -0.04160111024975777 0.020670156925916672 -0.027335505932569504 -0.05501140281558037 0.0015013966476544738 0.00252153049223125 -0.0028725245501846075 -0.006963103078305721 -0.025447862222790718 -0.013834407553076744 -0.029298443347215652 0.014307442121207714 -0.007585771381855011 0.03935519978404045 0.016298668459057808 -0.022128846496343613 -0.02190983109176159 0.0013960967771708965 0.03484990447759628 0.028125405311584473 -0.007994663901627064 -0.031785108149051666 -0.007280872203409672 -0.06697862595319748 -0.049769531935453415 -0.04886150732636452 0.004917920101433992 -0.012009845115244389 0.04056067019701004 -0.021680770441889763 -0.021262364462018013 -0.05221175402402878 -0.040433574467897415 0.007938647642731667 -0.042694251984357834 0.030490968376398087 0.001132420846261084 -0.06696062535047531 -0.06912141293287277 -0.02529432624578476 -0.020554397255182266 0.0568048469722271 0.032436221837997437 0.008252163417637348 0.018657781183719635 0.05920269340276718 0.022053014487028122 0.05794805288314819 0.09390299022197723 0.019944466650485992 0.056746602058410645 0.0442863367497921 0.02453000657260418 0.056719426065683365 0.019064784049987793 -0.10200712084770203 -0.04854746162891388 -6.78299184073694e-05 -0.07643312960863113 0.024262642487883568 -0.020802780985832214 -0.021256398409605026 -0.019855134189128876 -0.008407256565988064 0.004177609458565712 -0.043803658336400986 0.03978800028562546 -0.032674260437488556 0.07675710320472717 -0.06013698875904083 -0.026827866211533546 0.044025395065546036 -0.048685088753700256 -0.05243034288287163 -0.01908918283879757 -0.0356951579451561 -0.01140524446964264 0.09046493470668793 -0.055389758199453354 0.059055134654045105 0.05145984888076782 -0.005130371078848839 -0.09395381808280945 0.001319297356531024 0.01072610355913639 0.03287535533308983 0.008353066630661488 0.058723922818899155 0.033055126667022705 0.004724172409623861 0.01151791587471962 -0.06325343251228333 0.01588078774511814 -0.07854294776916504 -0.006008717231452465 0.01783360168337822 -0.010370545089244843 0.004645174369215965 0.014304065145552158 -0.01500697247684002 -0.0337287075817585 0.032367393374443054 -0.05378289520740509 0.0652962476015091 0.029976148158311844 0.03558490797877312 -0.024724053218960762 -0.0789552554488182 -0.0129683967679739 0.015927106142044067 -0.01881914958357811 -0.0659119263291359 -0.02006080187857151 -0.03511402755975723 -0.007573251146823168 -0.0411192812025547 0.04712245240807533 -0.005577682517468929 -0.06799650192260742 0.0137947341427207 0.033490099012851715 -0.012720387428998947 0.03315748646855354 0.017660558223724365 -0.06530500948429108 -0.037312161177396774 0.01457244623452425 -0.11295437067747116 0.030305372551083565 0.019157685339450836 0.01789567992091179 0.03379266709089279 0.04225776717066765 -0.005859348922967911 -0.005128361284732819 0.026721438392996788 -0.06138622760772705 -0.029222724959254265 -0.018289513885974884 0.07072258740663528 -0.011375836096704006 0.04032403230667114 0.040477652102708817 -0.0029520150274038315 0.0684448853135109 0.051564574241638184 -0.022951869294047356 0.030429603531956673 -0.022571468725800514 0.026516983285546303 0.06471537798643112 -0.04455706104636192 0.08282428979873657 -0.06415487080812454 0.11269624531269073 0.019335471093654633 -0.03312429413199425 0.10487652570009232 0.04968012496829033 0.04231899976730347 0.04956279695034027 -0.08282210677862167 +0.007695118896663189 -0.015249108895659447 -0.01830366440117359 0.02066694386303425 -0.06221196800470352 -0.08310182392597198 -0.03650195524096489 0.04381965473294258 0.022663472220301628 -0.05528617650270462 -0.09890701621770859 -0.009024792350828648 0.018076959997415543 0.008795592933893204 0.009032727219164371 -0.005967484321445227 -0.04278774932026863 -0.02518828958272934 0.010473096743226051 -0.021265903487801552 0.053764376789331436 -0.010421743616461754 -0.07581926882266998 0.11632890999317169 0.06785711646080017 0.007484519854187965 -0.029553115367889404 0.03418378159403801 -0.0014233400579541922 0.08339928090572357 0.00560862198472023 -0.026767175644636154 0.010319871827960014 -0.07087189704179764 -0.029180210083723068 -0.011116430163383484 -0.050165336579084396 0.06457854807376862 -0.002015245845541358 -0.0004662878636736423 -0.058813516050577164 0.06614629179239273 -0.03549348935484886 -0.036581046879291534 0.002963224658742547 0.03151967003941536 0.0033712899312376976 -0.0025265912991017103 0.0029207118786871433 0.06591503322124481 0.055277567356824875 -0.02053346112370491 -0.01841837726533413 -0.04805156588554382 -0.002932955976575613 0.02416948974132538 0.020555125549435616 -0.038363922387361526 -0.010333430953323841 0.015594104304909706 -0.08860311657190323 0.010829119011759758 0.01814981922507286 -0.015172889456152916 -0.016928227618336678 0.028906134888529778 -0.017004048451781273 0.0928085520863533 -0.0027626841329038143 -0.0466325581073761 0.029525531455874443 0.056005533784627914 -0.06099976599216461 0.025442413985729218 0.03138667717576027 -0.007031707093119621 0.018126122653484344 0.05168287083506584 0.015768438577651978 0.014600844122469425 0.04156091809272766 -0.046206556260585785 0.14007405936717987 -0.02354390174150467 -0.0462220124900341 -0.07224830985069275 -0.02157999947667122 -0.04850103333592415 0.04063098505139351 -0.014232263900339603 0.04775378480553627 0.07350104302167892 0.02830907702445984 0.02067520096898079 -0.00690861139446497 0.003302238881587982 0.015340041369199753 -0.13350677490234375 0.0066913035698235035 0.03680093213915825 -0.022869689390063286 -0.0054169087670743465 0.034408170729875565 0.006841745227575302 0.017580443993210793 0.054733481258153915 -0.059934861958026886 0.022238116711378098 0.04480481147766113 0.018193941563367844 0.03798803314566612 0.056453779339790344 0.06066045165061951 0.07218415290117264 0.033521972596645355 0.00781602319329977 -0.0007459766929969192 0.013311665505170822 -0.027907337993383408 0.006889416836202145 0.022836659103631973 0.07980441302061081 0.026902474462985992 -0.10564447194337845 0.060371141880750656 0.06505493819713593 -0.07282193005084991 -0.0008737085736356676 0.0298045352101326 -0.02505612000823021 0.06360034644603729 0.02079942636191845 -0.010465482249855995 0.030872944742441177 0.039899393916130066 0.019801339134573936 0.001889730803668499 0.019434813410043716 0.013413512147963047 -0.04844304546713829 -0.05220452696084976 0.02107159048318863 -0.015531341545283794 -0.07263003289699554 0.09510432928800583 0.053470347076654434 -0.008288449607789516 -0.007991475984454155 -0.026093242689967155 -0.03739258646965027 -0.08310370147228241 -0.07049664855003357 0.033838994801044464 -0.007599609903991222 -0.029893971979618073 0.013941100798547268 0.04040740057826042 0.02320605143904686 -0.03535143658518791 -0.002647834364324808 -0.039798177778720856 -0.03361904248595238 -0.01989208161830902 -0.05492820590734482 0.02851785533130169 0.025206511840224266 0.029488809406757355 0.014221874997019768 -0.0840194821357727 -0.04518833011388779 0.003845117287710309 -0.008506087586283684 0.05068839341402054 0.05756190046668053 0.05495176836848259 -0.014805212616920471 0.06904201209545135 -0.04170402139425278 -0.03672826290130615 -0.03472775220870972 0.04822394624352455 -0.041338369250297546 0.030906064435839653 -0.035036850720644 -0.03627700358629227 0.011042024940252304 -0.0315905436873436 -0.04312682896852493 0.008236410096287727 -0.02119678072631359 -0.016931919381022453 -0.045503582805395126 0.06867532432079315 0.04627739638090134 -0.015858637169003487 0.0667467713356018 0.02980782277882099 0.0806422010064125 -0.04605909436941147 0.002098392229527235 -0.06892700493335724 0.032118991017341614 0.022882677614688873 0.04573912173509598 0.04898744449019432 -0.050130218267440796 0.06535281985998154 0.02272612974047661 0.02895914390683174 -0.048501648008823395 0.07938642054796219 0.06189841777086258 -0.00506633659824729 0.08297685533761978 0.10600659251213074 0.010736802592873573 -0.01617417111992836 -0.026416772976517677 0.01612081751227379 -0.09899097681045532 -0.011031880043447018 0.0019915769807994366 -0.08878224343061447 -0.016961131244897842 -0.06370715796947479 -0.03213629126548767 -0.02396898716688156 0.031584590673446655 0.006075582467019558 -0.00742684118449688 -0.014878969639539719 0.013876316137611866 -0.017798706889152527 -0.030446037650108337 0.009413636289536953 0.04142715409398079 -0.07208779454231262 0.05788348615169525 -0.02900676429271698 -0.054527316242456436 -0.024934224784374237 0.042910899966955185 0.0017687389627099037 0.006832893006503582 0.026390420272946358 0.0652172863483429 0.07208085805177689 0.06983089447021484 -0.01596122793853283 -0.010821115225553513 -0.04039796441793442 -0.007977467030286789 -0.020431432873010635 0.016093246638774872 -0.003903459757566452 -0.038120802491903305 0.008011750876903534 -0.0767892450094223 -0.04799564927816391 -0.013824043795466423 -0.02192322537302971 -0.03915548697113991 -0.027338173240423203 -0.033432506024837494 -2.275057340739295e-05 -0.02250896953046322 -0.05645111948251724 0.02554965391755104 -0.03250114619731903 0.059397440403699875 -0.06024269759654999 -0.01688525639474392 0.026018451899290085 0.018956344574689865 -0.0300150066614151 -0.05781880021095276 0.07883904129266739 0.007313065230846405 -0.03825818747282028 -0.04456866532564163 -0.02644072286784649 -0.07243724912405014 0.0029003878589719534 -0.0016977620543912053 0.018666179850697517 0.06203839182853699 0.04331906512379646 -0.08598165214061737 -0.08011370897293091 -0.03804967179894447 -0.0566910095512867 -0.027806105092167854 -0.01757928542792797 -0.0019405524944886565 -0.019425854086875916 -0.03470567241311073 0.024545904248952866 -0.035373810678720474 -0.013735220767557621 0.07542572170495987 0.014010966755449772 -0.07411430031061172 0.057090092450380325 -0.005472863558679819 -0.03806506097316742 0.07333452999591827 -0.04870358109474182 -0.004176890477538109 0.0825713723897934 0.03372006490826607 -0.02721625193953514 0.04960428550839424 0.026952749118208885 0.06601151078939438 -0.04550442472100258 -0.026642287150025368 -0.04193064570426941 -0.01583774760365486 -0.03763303905725479 0.048096850514411926 -0.017165644094347954 0.010599803179502487 -0.005187573377043009 -0.04084097594022751 0.014843332581222057 0.013301264494657516 -0.01480670552700758 -0.053220562636852264 -0.026775602251291275 -0.02825126424431801 0.016460327431559563 -0.007314009126275778 0.024177124723792076 -0.002949106739833951 -0.05295125022530556 -0.08136031031608582 -0.08489109575748444 0.048248715698719025 0.006881681736558676 0.0470237210392952 -0.015891442075371742 0.015598786063492298 0.0009579582838341594 -0.005801467224955559 0.08283068984746933 -0.05883883312344551 0.019910836592316628 0.06705434620380402 0.02807031199336052 -0.06323231756687164 -0.0031105109956115484 0.0029488704167306423 -0.040850166231393814 -0.05223064497113228 -0.06585405021905899 0.008466405794024467 -0.03894737735390663 -0.05629584565758705 0.006356190424412489 -0.021587718278169632 0.03143695369362831 0.037746362388134 0.009262165986001492 0.06591306626796722 0.0209698174148798 -0.015450682491064072 -0.008667881600558758 -0.043701279908418655 0.010991181246936321 0.0043566967360675335 0.0266443882137537 0.03762451559305191 0.04508820176124573 -0.0462176650762558 -0.03003920055925846 -0.05057266727089882 0.00299269612878561 -0.07815936207771301 0.014136457815766335 -0.01762569323182106 -0.010919412598013878 -0.03321824595332146 0.04701601713895798 0.022646119818091393 -0.08439955115318298 0.02060486190021038 -0.009822921827435493 -0.06433294713497162 -0.05086815357208252 -0.05388212949037552 0.006472935900092125 -0.008979244157671928 0.06168794259428978 -0.0610971562564373 0.04816051572561264 0.0227032583206892 0.05136861279606819 0.018499862402677536 0.06667309254407883 0.002247752621769905 0.02226639725267887 0.06416382640600204 -0.023644186556339264 0.03443846479058266 0.001979278167709708 -0.09446713328361511 0.011229821480810642 0.04797094315290451 -0.039739541709423065 0.04857512190937996 -0.065461166203022 -0.02168111875653267 -0.009466839022934437 -0.03628723323345184 0.018649214878678322 0.006754752714186907 0.02672220952808857 -0.04290981590747833 0.04986521601676941 -0.0012078247964382172 -0.06654369086027145 0.02494962140917778 -0.01639902964234352 -0.057459067553281784 -0.015535760670900345 -0.07053905725479126 -0.017152003943920135 0.02499794028699398 -0.03207670524716377 0.03925210237503052 0.052629776298999786 -0.06440813094377518 -0.04210244119167328 0.03468574211001396 0.01850525662302971 0.011834945529699326 0.06053217500448227 0.05936747044324875 0.05499652400612831 -0.006438703741878271 0.013316601514816284 -0.08206917345523834 0.033287521451711655 -0.026035035029053688 0.0494619682431221 0.042626332491636276 -0.012779876589775085 0.0023837469052523375 0.041950490325689316 0.02786015160381794 -0.061064496636390686 -0.01653786189854145 -0.04020165279507637 0.025476524606347084 0.038649603724479675 0.04910515621304512 0.03387606143951416 -0.09521672129631042 -0.02163035236299038 0.00485756853595376 0.009608428925275803 -0.1024647206068039 -0.07958201318979263 -0.089146688580513 0.06765151768922806 -0.017399923875927925 -0.012642916291952133 -0.025489799678325653 -0.06355533003807068 0.01471687387675047 0.0051574306562542915 0.015939563512802124 -0.012930994853377342 0.03627016022801399 -0.02087709680199623 -0.018964486196637154 -0.025221476331353188 -0.05923239141702652 0.048247821629047394 0.061242662370204926 0.003484632121399045 -0.02427743375301361 0.005788327660411596 0.038432858884334564 -0.01741761900484562 -0.0025966449175029993 -0.039005178958177567 -0.05568685382604599 0.0004605894209817052 0.12499044090509415 0.006250078324228525 0.03885064646601677 0.0675269216299057 -0.03380928561091423 0.05479275435209274 0.03618486970663071 -0.006105201784521341 0.016296451911330223 -0.01680886745452881 -0.03045428730547428 0.044218629598617554 -0.048079971224069595 0.06660179048776627 -0.06105472892522812 0.10776179283857346 0.022586125880479813 -0.05266823247075081 0.08615606278181076 0.04761093482375145 0.06894231587648392 0.0448094867169857 -0.1113998219370842 +0.04456571489572525 -0.04280107468366623 0.012884859926998615 0.03721040487289429 -0.09032414108514786 -0.06757975369691849 -0.02417636848986149 0.047173406928777695 0.02549842931330204 -0.03366176411509514 -0.04503367468714714 0.01308651827275753 0.0034699784591794014 0.021483801305294037 0.03609025850892067 -0.012782384641468525 -0.06678863614797592 -0.006709604989737272 -0.0380549430847168 -0.042951006442308426 0.048164401203393936 0.008104074746370316 -0.047934792935848236 0.03397274762392044 -0.0017602737061679363 0.03216126561164856 -0.057769134640693665 0.015976998955011368 -0.0023454902693629265 -0.012444023974239826 0.031948693096637726 -0.018714476376771927 0.043750349432229996 -0.07094036042690277 -0.0554724857211113 0.0472085066139698 -0.05512148141860962 0.10385560244321823 -0.010135360062122345 -0.035252828150987625 -0.040691860020160675 0.01429953146725893 -0.03559498116374016 -0.04714395850896835 0.03689343109726906 0.020895270630717278 0.01821797527372837 -0.02147337794303894 0.0050271362997591496 0.02398975007236004 0.09870212525129318 0.01889994367957115 -0.00984193291515112 -0.03241899609565735 -0.022680798545479774 0.014218287542462349 0.06151101738214493 -0.06410501152276993 -0.0774712860584259 0.05988883227109909 -0.11272192746400833 -0.0310694370418787 -0.00498688779771328 0.02715284749865532 -0.03736315295100212 -0.005207008682191372 -0.009997187182307243 0.089752696454525 0.014160462655127048 -0.06585540622472763 0.03998008742928505 0.07177504152059555 -0.025218132883310318 -0.047732848674058914 0.04259505122900009 -0.054261673241853714 -0.0015142867341637611 0.05879642069339752 -0.029693977907299995 0.023202991113066673 0.0021813693456351757 -0.053222957998514175 0.11659510433673859 -0.048307646065950394 -0.07291935384273529 -0.022181401029229164 -0.021501773968338966 -0.04705541953444481 0.03590910881757736 0.04915273189544678 0.0025958262849599123 0.08255600929260254 -0.03914818912744522 0.03358171880245209 -0.017415383830666542 0.04026448354125023 0.014523208141326904 -0.10801625996828079 -0.04275898262858391 -0.020247753709554672 -0.023691367357969284 -0.021603573113679886 0.05492191016674042 0.027200069278478622 0.06428581476211548 0.024258378893136978 -0.02757013775408268 -0.0037460089661180973 0.008640242740511894 0.036411989480257034 0.024066688492894173 0.054694488644599915 0.08692280948162079 0.07214149832725525 0.06390685588121414 -0.022654376924037933 -0.006415865384042263 -0.048562757670879364 -0.03519101068377495 -0.0012466859770938754 0.02273525297641754 0.03403352573513985 -0.016146624460816383 -0.08282814919948578 -0.014049249701201916 0.011847307905554771 -0.1041467934846878 -0.021799886599183083 0.0698348879814148 -0.05527491122484207 0.10900936275720596 0.05844797566533089 -0.024437056854367256 0.03195221349596977 0.04489785432815552 0.04753905162215233 0.0025240564718842506 0.018450988456606865 -0.005271087400615215 -0.038285031914711 -0.011270289309322834 0.03668827563524246 0.0044095986522734165 -0.07497721165418625 0.04567708447575569 0.030163411051034927 0.0252489373087883 -0.024754894897341728 -0.0758129134774208 0.0038331463001668453 -0.08448899537324905 -0.05845235660672188 -0.019510099664330482 -0.07005055248737335 -0.005334849003702402 0.0368184931576252 0.011607727035880089 0.02772289700806141 -0.042791057378053665 -0.0061648450791835785 -0.02964179217815399 -0.036934930831193924 -0.011314397677779198 -0.0952586904168129 -0.01980563998222351 -0.022037947550415993 0.0004897357430309057 0.013283106498420238 -0.04985370859503746 -0.026490896940231323 -0.0292061734944582 -0.011192641220986843 0.038864098489284515 0.04863780736923218 0.07171536237001419 -0.02083984762430191 0.01697532832622528 -0.05762888118624687 -0.0009442470618523657 -0.028420107439160347 0.014362700283527374 -0.0033389653544873 0.016612665727734566 -0.06936715543270111 -0.015025305561721325 -0.025508377701044083 0.006283225025981665 -0.05671761557459831 0.02364633046090603 0.003807940986007452 -0.040207117795944214 -0.03433580324053764 0.04220733419060707 0.09258125722408295 -0.03506232053041458 0.06614380329847336 -0.008662457577884197 0.04558815434575081 -0.03590778633952141 -0.05403084680438042 -0.03464515879750252 0.047627922147512436 -0.003020199714228511 0.05002396181225777 -0.02864139899611473 -0.07816115021705627 0.08917304873466492 0.03136022761464119 0.020079229027032852 -0.05033867806196213 0.03584395721554756 0.0647425428032875 0.0005689869867637753 0.045292217284440994 0.089324951171875 -0.03540702164173126 -0.030685869976878166 -0.0027080185245722532 0.03229746222496033 -0.044559404253959656 0.006604698020964861 0.005549609661102295 -0.06804604083299637 0.0013792620738968253 -0.06063701957464218 -0.07321116328239441 -0.036639925092458725 0.028789900243282318 -0.002355853095650673 -0.020829003304243088 -0.013547415845096111 -0.0011737041641026735 0.004246972035616636 -0.030181141570210457 -0.026656320318579674 -0.001059853588230908 -0.08599672466516495 0.08429274708032608 0.016721265390515327 -0.05293390154838562 -0.0641060322523117 0.005852960515767336 0.038469210267066956 -0.011729903519153595 0.008838671259582043 0.06166112422943115 0.08501281589269638 0.042500659823417664 -0.0011501566041260958 -0.005350783932954073 -0.03616257384419441 -0.034694720059633255 0.018659772351384163 0.02337760105729103 -0.045344140380620956 0.003910573665052652 -0.00671676080673933 -0.05613851547241211 -0.03119063936173916 0.015974445268511772 0.042738281190395355 -0.02298191376030445 -0.06802301853895187 -0.009265759959816933 0.03210636228322983 -0.014998546801507473 -0.049182552844285965 0.013631278648972511 -0.019655775278806686 0.08971034735441208 -0.05290687829256058 -0.023918574675917625 0.057610075920820236 -0.02017912268638611 0.05785372480750084 -0.03824451565742493 0.060609906911849976 -0.010662706568837166 -0.07443810999393463 0.01793672703206539 -0.08296838402748108 -0.047437481582164764 -0.02619612216949463 -0.04957643896341324 -0.0413835272192955 0.11082325130701065 0.01607401669025421 -0.02534591406583786 -0.04922560229897499 -0.013160773552954197 0.013552119955420494 -0.050607264041900635 0.008280781097710133 0.004714410752058029 -0.05926769599318504 -0.007553673814982176 0.033228687942028046 -0.049369171261787415 -0.03204471245408058 0.014663554728031158 -0.05939927697181702 -0.07251769304275513 0.056901440024375916 -0.03645354136824608 -0.041217971593141556 -0.006652260199189186 -0.05540713295340538 0.017078692093491554 0.10867588222026825 0.011375321075320244 -0.002887115115299821 0.03782830759882927 0.008871178142726421 0.10213827341794968 -0.0031225141137838364 -0.01297633908689022 -0.002288482617586851 -0.035967569798231125 -0.03223805129528046 0.05339362844824791 -0.04545263573527336 -0.022929031401872635 -0.0010305976029485464 -0.010240313597023487 0.07029718905687332 -0.018744012340903282 -0.0493183396756649 -0.007439128123223782 0.0075164479203522205 0.00629328191280365 0.029057059437036514 0.024653734639286995 0.009710685350000858 -0.018635956570506096 -0.04226340726017952 -0.03554719686508179 -0.021573426201939583 0.048170287162065506 -0.0178100373595953 0.03495010361075401 -0.042020201683044434 -0.06547993421554565 0.01378935668617487 0.01609133370220661 0.10496348887681961 -0.08401893079280853 0.026098482310771942 0.06166721507906914 0.005115744192153215 -0.06975442171096802 0.01832536607980728 0.032528508454561234 -0.028982341289520264 -0.050428956747055054 -0.0002457122609484941 0.029340412467718124 -0.09034762531518936 -0.013985256664454937 -0.0072523970156908035 -0.028145968914031982 0.02518513612449169 0.018795715644955635 0.03634914010763168 0.02537786215543747 -0.01955275982618332 -0.023515496402978897 -0.007490736898034811 0.015964947640895844 0.054806895554065704 -0.05378226563334465 0.028529634699225426 -0.021947110071778297 0.05830695852637291 -0.04073374718427658 -0.04118233919143677 -0.021828971803188324 0.06889332085847855 0.0038211264181882143 -0.020391423255205154 -0.008699213154613972 -0.05429501086473465 0.01338203065097332 0.0469144806265831 0.016837958246469498 -0.06523444503545761 -0.036777570843696594 -0.04287419468164444 -0.0700664222240448 -0.0967705249786377 -0.0875021368265152 0.021611038595438004 -0.08443839102983475 0.018078071996569633 -0.022960128262639046 0.014474250376224518 -0.016171960160136223 -0.006306625436991453 0.03799887374043465 0.04682105779647827 0.03172525763511658 -0.03215161710977554 0.02981904149055481 -0.019958119839429855 0.0441894493997097 0.0007856978918425739 -0.035935044288635254 0.04054226353764534 0.021678250283002853 -0.05210652947425842 0.06249447166919708 -0.03875730559229851 0.017696760594844818 0.007408809382468462 -0.022815918549895287 0.02850143425166607 0.0189354307949543 -0.000883964414242655 -0.057613518089056015 0.05241138115525246 -0.07704662531614304 -0.02315242402255535 0.06813499331474304 -0.009390223771333694 -0.10389284789562225 -0.05075512081384659 -0.02009398490190506 -0.05072043836116791 0.007724684663116932 0.01167223323136568 -0.008595935069024563 0.016425518319010735 -0.04140348359942436 -0.018241988494992256 -0.018481409177184105 -0.030858980491757393 0.034458644688129425 0.020826423540711403 0.07561614364385605 0.01482533197849989 0.019052674993872643 0.00603401567786932 0.018535299226641655 0.010924463160336018 -0.09677497297525406 -0.005265233106911182 -0.02084272727370262 -0.016985837370157242 -0.024569282308220863 -0.0037087860982865095 0.014363251626491547 -0.08810286968946457 -0.019511966034770012 -0.038129180669784546 0.08893249183893204 -0.014023037627339363 0.006596607621759176 0.06470490992069244 -0.0301730427891016 -0.0035655912943184376 0.004642808809876442 -0.034080520272254944 -0.10530303418636322 0.0019590328447520733 -0.041785188019275665 0.0476081445813179 0.011789184994995594 -0.012863299809396267 -0.029755139723420143 -0.06509966403245926 0.01077362708747387 0.018384061753749847 -0.04462631046772003 0.01779264397919178 0.030669663101434708 -0.05711802840232849 -0.046453773975372314 0.011166665703058243 -0.04105769097805023 0.07225674390792847 0.04067403823137283 0.027441062033176422 -0.030262311920523643 -0.014574935659766197 0.001396744279190898 -0.036692872643470764 0.00032625204767100513 0.012202970683574677 -0.061160147190093994 -0.02234330028295517 0.06582819670438766 -0.062288012355566025 0.019809089601039886 0.07966780662536621 -0.07148314267396927 0.04591873288154602 0.03485531732439995 -0.03691870719194412 0.03571777790784836 -0.013451897539198399 -0.04150327295064926 0.045629389584064484 -0.07955861836671829 0.04693511873483658 -0.056148216128349304 0.08840511739253998 0.011437524110078812 -0.021206505596637726 0.06521215289831161 0.07225438207387924 -0.012517288327217102 -0.002676533069461584 -0.09025372564792633 +0.03814154118299484 -0.009570969268679619 0.016360612586140633 0.0653124526143074 -0.08504900336265564 0.0028062674682587385 -0.01568644866347313 0.02147921919822693 -0.00908341258764267 -0.05360604450106621 -0.03350098058581352 0.0015326776774600148 -0.005356467328965664 0.026192590594291687 0.004377234261482954 -0.039582259953022 -0.04128463938832283 0.024905800819396973 -0.005988017655909061 -0.06648002564907074 0.02005801908671856 0.014315206557512283 -0.061570826917886734 0.07668360322713852 0.03564465790987015 -0.026398561894893646 -0.04876841604709625 0.026626834645867348 -0.017344120889902115 0.05249334126710892 0.07846155017614365 -0.0337090790271759 0.041780974715948105 -0.04784009978175163 -0.05843288451433182 0.036946676671504974 -0.04090120270848274 0.10027607530355453 0.011483879759907722 -0.035106271505355835 -0.02615572325885296 0.011306372471153736 -0.024864304810762405 -0.018716003745794296 0.04156298190355301 0.006255322135984898 -0.011037764139473438 -0.024790404364466667 0.039725687354803085 0.024945847690105438 0.11479537189006805 0.01880771666765213 0.0004255683161318302 -0.013410636223852634 -0.008397229015827179 0.025068357586860657 0.031810905784368515 -0.04798179119825363 -0.04595066234469414 0.034990739077329636 -0.05692346766591072 0.0052565885707736015 0.045599181205034256 -0.010671171359717846 -0.006195310037583113 0.015062176622450352 -0.007323186378926039 0.1100861057639122 0.03314661234617233 -0.002662600949406624 0.031250543892383575 0.11937778443098068 -0.06761551648378372 -0.024702617898583412 0.07562839984893799 -0.040021494030952454 -0.02510092593729496 0.05232451111078262 0.0005228767986409366 0.024394551292061806 0.018717922270298004 -0.04513990879058838 0.09821709245443344 -0.017645295709371567 -0.029976142570376396 -0.02738581784069538 0.015018193051218987 -0.06250558793544769 0.08030159771442413 0.03606388345360756 0.02265460230410099 0.06810074299573898 -0.04428559169173241 0.07446812838315964 0.005643668584525585 -0.01977011375129223 0.020458664745092392 -0.1118881031870842 -0.03422342985868454 0.029206672683358192 0.03907289355993271 -0.014798475429415703 0.04629218205809593 -0.03317447379231453 0.05713335797190666 0.08866056799888611 -0.05893568694591522 0.005847809370607138 0.027514787390828133 0.045327626168727875 0.042103901505470276 0.09570809453725815 0.05233069881796837 0.049068909138441086 0.04524632543325424 0.007302529644221067 0.01116033922880888 -0.0508410818874836 -0.03894859179854393 0.02517661266028881 -0.00889698788523674 0.073958620429039 -0.019362619146704674 -0.0673426166176796 -0.029858315363526344 0.056102994829416275 -0.07976945489645004 -0.006447905674576759 0.08656270802021027 -0.0007842464838176966 0.1047823578119278 0.03960240259766579 -0.010993188247084618 0.03671809658408165 0.04496418684720993 0.015588534064590931 -0.017463522031903267 0.016266075894236565 -0.003168083494529128 -0.024225996807217598 -0.035870932042598724 0.06055748462677002 0.03582033887505531 -0.06864690780639648 0.04348491132259369 0.035503193736076355 0.04103102535009384 -0.014712655916810036 -0.046646811068058014 -0.026485631242394447 -0.07316508889198303 -0.11537981778383255 0.0003425499307923019 -0.059141047298908234 -0.001219981350004673 0.03163221478462219 0.021944843232631683 0.034145619720220566 -0.01439749076962471 -0.01584009826183319 -0.040218111127614975 -0.0287636611610651 -0.02581869065761566 -0.06020472198724747 -0.0014053834602236748 -0.012796764262020588 -0.012816229835152626 0.025031520053744316 -0.05574522167444229 -0.011687332764267921 -0.009850765578448772 0.004275238607078791 0.03159989416599274 0.09158921241760254 0.05271663889288902 0.023088017478585243 0.05543937161564827 -0.015437014400959015 -0.020253002643585205 -0.029942912980914116 0.015448281541466713 -0.04377180337905884 0.04005158692598343 -0.0548659972846508 0.0024955689441412687 -0.010568033903837204 0.06236021965742111 -0.01704511046409607 0.004440175835043192 -0.012612293474376202 -0.029939739033579826 -0.06648174673318863 0.060054097324609756 0.056233812123537064 -0.02690991759300232 0.017940357327461243 -0.0036452459171414375 0.05201982706785202 0.004323218483477831 0.006677682977169752 -0.03437311574816704 0.04666052386164665 0.03160058706998825 0.041556913405656815 0.033799588680267334 -0.08714141696691513 0.05786360055208206 0.030314195901155472 0.04054313898086548 -0.05729813128709793 -0.01165307778865099 0.021425429731607437 0.008910414762794971 0.06775441020727158 0.0532139427959919 -0.00383859034627676 -0.004860344342887402 0.006789010018110275 0.05450740084052086 -0.05608029663562775 -0.006405417807400227 -0.01067098043859005 -0.07239468395709991 0.034934982657432556 -0.04647164046764374 -0.08033990859985352 -0.03404498100280762 0.014652655459940434 -0.00461728498339653 -0.044247932732105255 0.021508261561393738 0.017225582152605057 -0.001440125168301165 -0.03390246257185936 0.012484163045883179 0.001401467015966773 -0.08964137732982635 0.09931360185146332 -0.015483060851693153 -0.0371590293943882 -0.05449787899851799 6.788038444938138e-05 0.03059302270412445 0.019312016665935516 0.060067933052778244 0.05056364834308624 0.10581015795469284 0.042961783707141876 -0.019311103969812393 -0.0040769390761852264 -0.033431798219680786 -0.049536820501089096 -0.0059964912943542 0.054898906499147415 -0.03709941729903221 -0.044160060584545135 0.01706918142735958 -0.057636551558971405 0.007641507778316736 0.01574341207742691 0.010010397993028164 -0.023393960669636726 -0.016016049310564995 -0.03765976056456566 0.02240721322596073 -0.020980732515454292 -0.03424646705389023 0.026769021525979042 -0.010884680785238743 0.08015235513448715 -0.029952703043818474 -0.03966348245739937 0.019921479746699333 0.007915936410427094 0.01944047212600708 -0.03694804757833481 0.052500490099191666 -0.04425126686692238 -0.0830916240811348 -0.06495723873376846 -0.04152783378958702 -0.07265657186508179 -0.032192960381507874 -0.04241030290722847 -0.020918045192956924 0.07884898036718369 -0.03184325993061066 -0.05866970494389534 -0.06174148991703987 -0.034264225512742996 -0.028506217524409294 -0.05791560187935829 -0.027544405311346054 -0.026125237345695496 -0.04350023344159126 -0.0073159909807145596 0.016619300469756126 -0.02562890388071537 -0.021880099549889565 0.01639801822602749 0.03231209143996239 -0.04324186593294144 0.0855935737490654 -0.017724737524986267 0.007006796542555094 0.004477906506508589 -0.06434778869152069 0.03142411261796951 0.08549748361110687 0.03969523683190346 0.04479517787694931 0.04600640386343002 0.06572484970092773 0.14112211763858795 0.04478507116436958 -0.08136068284511566 -0.030615555122494698 -0.03791096806526184 -0.08224444836378098 0.05830718204379082 -0.0037370764184743166 -0.0387854129076004 -0.001123238354921341 0.0003352173662278801 0.06798747181892395 0.005911203566938639 0.006369705777615309 -0.050117094069719315 0.0635475441813469 -0.014501683413982391 0.011102489195764065 -0.020188583061099052 -0.022473415359854698 0.011144546791911125 -0.033264052122831345 -0.03218165785074234 -0.026781708002090454 0.033238597214221954 0.002660604892298579 0.06435386091470718 -0.008252836763858795 -0.051075100898742676 0.02552039362490177 -0.01023249514400959 0.07768838852643967 -0.07728979736566544 0.0035987989977002144 0.04016020521521568 0.018943509086966515 -0.0818757563829422 0.012633652426302433 0.019639378413558006 -0.04688330367207527 -0.0303159411996603 -0.009194386191666126 0.05863122642040253 -0.03543493151664734 -0.016657967120409012 -0.017833765596151352 -0.04471295699477196 -0.02189686894416809 0.009581337682902813 0.00412283930927515 0.04855705425143242 -0.020993180572986603 -0.009052740409970284 -0.008710114285349846 0.0008329750271514058 0.0002856987703125924 -0.0052539287135005 0.012667021714150906 -0.03325848653912544 0.059475984424352646 -0.031795304268598557 -0.009365905076265335 -0.061748214066028595 0.02257436141371727 -0.04325902834534645 -0.0035036648623645306 0.00047956188791431487 0.009616452269256115 0.005470550153404474 -0.008581692352890968 0.03011240065097809 -0.08639024198055267 0.009631858207285404 -0.03089110367000103 -0.04276329278945923 -0.05685829743742943 -0.04934677109122276 -0.0064826649613678455 -0.060371506959199905 -0.003909071907401085 -0.044115275144577026 -0.018808698281645775 0.010844841599464417 -0.0058026500046253204 0.019643288105726242 0.0636981725692749 0.043182846158742905 -0.014981416054069996 0.06498301029205322 0.027103058993816376 0.00714780343696475 0.009375694207847118 -0.08886592835187912 0.041045427322387695 0.039096202701330185 -0.02487611584365368 0.039164260029792786 -0.02156797982752323 0.012924489565193653 0.0020550857298076153 0.010744278319180012 0.02155878394842148 -0.05665534734725952 -0.029212776571512222 -0.02058376558125019 0.08035149425268173 -0.05390946567058563 -0.05885415896773338 0.039109546691179276 -0.05906597897410393 -0.0748358815908432 0.0010253473883494735 -0.037298791110515594 -0.04103655368089676 0.05255551263689995 -0.017927205190062523 0.003645076649263501 0.039853885769844055 -0.04790276661515236 -0.060213059186935425 -0.02663755975663662 -0.040015146136283875 0.026174409314990044 0.02274058572947979 0.07239656895399094 0.012509343214333057 -0.02831449545919895 -0.005525761749595404 -0.05289776250720024 0.018709981814026833 -0.09993652999401093 -0.01492441724985838 -0.009016248397529125 -0.04228208214044571 0.027142981067299843 0.012858682312071323 0.007833052426576614 -0.04351761192083359 -0.02491065114736557 -0.04312895983457565 0.06165997311472893 -0.04845809563994408 -0.014859302900731564 0.01848369464278221 -0.009326349943876266 -0.006507900543510914 0.04294602572917938 -0.0599655918776989 -0.08944691717624664 0.004409798886626959 -0.009566280990839005 0.033552784472703934 -0.0026393141597509384 0.0022575613111257553 -0.04153111204504967 -0.07142934948205948 -0.032785505056381226 0.025115173310041428 -0.07071049511432648 0.00798869039863348 -0.01521546021103859 -0.11799164116382599 -0.09875506907701492 0.01676834374666214 -0.06285041570663452 0.06854167580604553 0.011751266196370125 0.0350584052503109 -0.01154239010065794 -0.008898487314581871 0.001781677477993071 -0.05081009492278099 0.017975283786654472 -0.025156261399388313 -0.06842862814664841 -0.010456169955432415 0.07406865805387497 -0.04890991002321243 0.021853769198060036 0.05811724066734314 -0.029797285795211792 0.03435000032186508 0.025098450481891632 -0.03634835034608841 0.04016386345028877 -0.02057570219039917 0.013713558204472065 0.05879592522978783 -0.060344744473695755 0.10272102802991867 -0.041766390204429626 0.08576136082410812 0.00033850647741928697 0.015621310099959373 0.09468993544578552 0.08245278894901276 0.002524347510188818 0.0138644864782691 -0.10536101460456848 +0.0063360086642205715 -0.04588404670357704 0.0035813148133456707 0.010137775912880898 -0.03229938820004463 -0.04843016341328621 0.010614916682243347 0.05758492648601532 -0.010730125941336155 -0.054111186414957047 -0.04468289762735367 0.01827920973300934 -0.004794674925506115 -0.009186582639813423 0.03010598011314869 -0.020753173157572746 -0.08589862287044525 0.005562040489166975 -0.06409070640802383 -0.04844209924340248 -0.0001291237713303417 0.03200152888894081 -0.07385800033807755 0.053220901638269424 -0.0038729754742234945 0.021445291116833687 -0.040419697761535645 -0.00839283037930727 -0.004544977564364672 0.03405337408185005 0.07496605068445206 -0.0048957946710288525 0.09965254366397858 -0.05774233117699623 -0.014584182761609554 0.05730907991528511 -0.0421997532248497 0.09960157424211502 -0.0030927557963877916 -0.0017331806011497974 -0.03756109997630119 -0.013979384675621986 -0.004897655453532934 -0.09360207617282867 0.03149741142988205 0.008498492650687695 0.010977781377732754 -0.005203909706324339 0.01484439056366682 0.02249811217188835 0.08003493398427963 0.01913522742688656 -0.0056768013164401054 -0.020779700949788094 0.002344014821574092 0.02831059880554676 0.029787300154566765 -0.02666832134127617 -0.04916749894618988 0.04493486136198044 -0.11834453791379929 -0.018374953418970108 0.0349603146314621 0.01360921561717987 -0.05095798522233963 -0.026127014309167862 -0.043209899216890335 0.08030693978071213 0.01594708301126957 -0.04480808228254318 0.034215353429317474 0.04937877506017685 -0.04392637312412262 -0.05891580134630203 0.022868609055876732 -0.028013860806822777 0.012553988955914974 0.02301657199859619 -0.008271905593574047 9.95215714283404e-07 0.012996086850762367 -0.00994325615465641 0.13015194237232208 -0.04340946674346924 -0.02766043320298195 -0.05338439717888832 -0.0021223078947514296 -0.0521734282374382 0.0875818207859993 -0.0016969518037512898 0.0018588474486023188 0.07154388725757599 -0.004300575703382492 0.0096970209851861 0.02491837739944458 -0.007086471654474735 -0.036174673587083817 -0.09441898763179779 -0.03655330836772919 -0.017925893887877464 0.023246798664331436 0.022614382207393646 0.07887395471334457 0.0346289686858654 0.08387879282236099 0.018405187875032425 -0.019180817529559135 -0.008672703057527542 0.06900098919868469 -0.007194871082901955 -0.0028332388028502464 0.1324446201324463 0.039179906249046326 0.018526531755924225 0.07351237535476685 0.01409967616200447 0.008070698007941246 -0.03339514508843422 -0.017799293622374535 -0.025433752685785294 -0.0197683684527874 0.011472330428659916 -0.004545228555798531 -0.10009535402059555 -0.023517580702900887 0.052947673946619034 -0.096282459795475 -0.05671367421746254 0.07531652599573135 -0.040409285575151443 0.13157188892364502 0.051356762647628784 -0.017902851104736328 0.012785914354026318 0.04213697463274002 0.004858794156461954 -0.013406246900558472 0.03368286415934563 0.007110700011253357 -0.048700522631406784 0.008722422644495964 0.05042262002825737 -0.04089238494634628 -0.04145284369587898 0.04070786014199257 0.02229803055524826 0.002778479363769293 -0.026175476610660553 -0.05391761288046837 0.032251227647066116 -0.03286963701248169 -0.08308226615190506 0.003723741276189685 -0.042723577469587326 -0.018170567229390144 0.04473155364394188 0.004070354625582695 0.006313594989478588 -0.021126504987478256 -0.031009873375296593 -0.07861090451478958 -0.04063298925757408 -0.03260648623108864 -0.09406979382038116 -0.01604476012289524 -0.02524176798760891 -0.00838465616106987 0.053582992404699326 -0.06189287081360817 -0.033967114984989166 -0.020701786503195763 -0.04052479937672615 -0.009049911051988602 0.06444519758224487 0.06131729111075401 0.0305312592536211 0.0015876920660957694 -0.08553384989500046 0.005582032259553671 -0.042383741587400436 -0.015995141118764877 -0.018528969958424568 0.053668312728405 -0.048385828733444214 0.01285625621676445 -0.01882331632077694 0.038881201297044754 -0.029612472280859947 0.008819693699479103 0.005139519926160574 0.002722217468544841 -0.0213053897023201 0.04131070151925087 0.04772159457206726 0.007748793810606003 0.01967497169971466 0.01889585517346859 0.05732692778110504 -0.019916333258152008 -0.0595681369304657 -0.0749494731426239 0.01894538663327694 0.04497426375746727 0.02386784926056862 0.013633589260280132 -0.05683332681655884 0.08196300268173218 0.046711329370737076 0.01202522311359644 -0.0669313445687294 0.007452042773365974 0.013493292033672333 -0.004978733602911234 0.04427896812558174 0.07292146980762482 -0.046545177698135376 -0.02623756416141987 0.02727014385163784 0.0486518070101738 -0.059538740664720535 -0.05371712148189545 0.0203692764043808 -0.08127731829881668 0.013128210790455341 -0.031290046870708466 -0.09640421718358994 -0.024279162287712097 0.04700395092368126 -0.02051982283592224 -0.0014279752504080534 -0.0019421973265707493 0.018507780507206917 -0.03308994695544243 -0.0037876551505178213 0.006420179270207882 -0.0546516552567482 -0.07612449675798416 0.0844963937997818 -0.005207989364862442 -0.09539792686700821 -0.06071535497903824 -0.00957474671304226 0.063721664249897 -0.000680334575008601 0.04322757199406624 0.01787395589053631 0.07544244080781937 0.007370282895863056 -0.04537339136004448 0.00039959378773346543 0.0016319442074745893 -0.03425952047109604 0.001632718020118773 0.046348873525857925 -0.047103673219680786 -0.04323795437812805 0.003170030191540718 -0.03251692280173302 -0.002307058311998844 0.020792324095964432 0.05283157899975777 -0.04549615457653999 0.0009786232840269804 -0.009569753892719746 0.01701834797859192 -0.04910881817340851 0.001521724509075284 0.07316333055496216 0.00403145607560873 0.048124250024557114 -0.047537077218294144 -0.03683245927095413 0.025643115863204002 -0.022028539329767227 0.020486481487751007 -0.08024869859218597 0.07588571310043335 0.010164258070290089 -0.07982891798019409 0.002886870875954628 -0.08709888160228729 -0.029019340872764587 -0.012055978178977966 -0.055694736540317535 -0.05136662349104881 0.07170717418193817 0.04156864061951637 -0.06307723373174667 -0.04120107740163803 -0.07165438681840897 -0.02334456890821457 -0.02340231090784073 -0.013562061823904514 -0.02818358689546585 -0.014220129698514938 0.006912252400070429 0.06566233187913895 -0.0815749242901802 -0.008118260651826859 0.04290115833282471 0.009569953195750713 -0.061959926038980484 0.054333969950675964 -0.031481802463531494 -0.03494939208030701 0.0008488198509439826 -0.08336671441793442 0.010927441529929638 0.07906197011470795 0.052298158407211304 0.019868383184075356 0.026244832202792168 0.018699700012803078 0.10537455976009369 -0.009221368469297886 -0.0007054490852169693 -0.025488948449492455 -0.016686376184225082 -0.042289849370718 0.018807796761393547 -0.02433170937001705 -0.0034452409017831087 -0.012453820556402206 -0.002115362323820591 0.04663525149226189 0.00816368032246828 -0.02549450658261776 -0.005948187317699194 0.024671845138072968 -0.01285470463335514 0.029063081368803978 0.014755289070308208 0.03937895596027374 -0.027978109195828438 -0.056331366300582886 -0.060312669724226 -0.005986394360661507 0.06493045389652252 -0.045571718364953995 0.049129270017147064 -0.039117030799388885 -0.0700112134218216 -0.005441657733172178 -0.014392819255590439 0.10470504313707352 -0.05825686827301979 0.028495991602540016 0.055851880460977554 0.05533452332019806 -0.10074679553508759 0.025451362133026123 0.032929953187704086 -0.04297637939453125 -0.07064330577850342 -0.0036015049554407597 0.032506320625543594 -0.06271008402109146 -0.03440137207508087 -0.0032794165890663862 -0.04251673445105553 -0.01915016770362854 0.011790742166340351 0.03266233950853348 0.03211185336112976 0.018276143819093704 -0.01594356819987297 -0.00887216441333294 0.03498198837041855 0.026025116443634033 -0.005893899593502283 0.019327964633703232 -0.04134596139192581 0.01898541860282421 -0.06510000675916672 -0.03578713536262512 -0.017767952755093575 0.06512250006198883 -0.026261013001203537 0.021059881895780563 0.00868956372141838 -0.06687739491462708 -0.024317895993590355 -0.007124393712729216 0.00015769335732329637 -0.04526222124695778 -0.017803212627768517 -0.0053010368719697 -0.09394470602273941 -0.09454480558633804 -0.05507604405283928 -0.0032351433765143156 -0.02215658128261566 0.018981000408530235 -0.056574881076812744 0.05838588997721672 0.01871495693922043 0.015890995040535927 0.043871697038412094 0.058876510709524155 0.051280997693538666 -0.025915872305631638 0.008235425688326359 -1.2474439245124813e-05 0.05495425686240196 0.0015974028501659632 -0.02372630499303341 0.012254086323082447 0.005050839856266975 -0.04638290777802467 0.035905249416828156 -0.023232053965330124 -0.008920992724597454 0.004779214505106211 -0.059560567140579224 -0.028052954003214836 0.021517788991332054 -0.003920688759535551 -0.03976847976446152 0.03458629176020622 -0.04470541700720787 -0.021321743726730347 0.01298603881150484 -0.037064824253320694 -0.07716728746891022 -0.07144249230623245 -0.03854648396372795 -0.02423054911196232 0.05690527707338333 -0.010880542919039726 0.018814045935869217 0.029201658442616463 -0.013948274776339531 -0.05164049193263054 0.01938125118613243 -0.015302005223929882 0.012582873925566673 -0.010491108521819115 0.06088249757885933 0.006208411883562803 0.01709246262907982 -0.02687733620405197 -0.04800666123628616 0.02721300721168518 -0.10695330798625946 0.01991099864244461 -0.003920838236808777 -0.018044384196400642 0.005406090058386326 -0.0022682063281536102 0.006884058006107807 -0.05954339727759361 -0.028095291927456856 0.0007755234837532043 0.05642523244023323 -0.0015592797426506877 0.04421478882431984 0.005688730161637068 -0.06255948543548584 -0.05077674239873886 0.02912338264286518 -0.06398744881153107 -0.08247311413288116 0.015300964936614037 -0.04621647298336029 0.04071726277470589 -0.009372576139867306 0.024351155385375023 -0.03473115339875221 -0.1041780635714531 0.00352310948073864 -0.03696923702955246 -0.042480695992708206 -0.02501615881919861 0.04571231082081795 -0.08466576039791107 -0.007142636459320784 0.002152590546756983 -0.033301856368780136 0.05081268399953842 0.018927069380879402 0.05880136415362358 -0.056729741394519806 -0.02732023037970066 -0.025627847760915756 0.010360137559473515 0.010921022854745388 -0.02477327734231949 -0.0758289098739624 -0.017477484419941902 0.07621892541646957 -0.0780983418226242 0.031094590201973915 0.07769153267145157 -0.05180880054831505 0.049440693110227585 0.0166492722928524 -0.03874073550105095 0.03740684315562248 -0.0012018228881061077 -0.024451028555631638 0.028944268822669983 -0.09187979996204376 0.06193016096949577 -0.0726478174328804 0.08798597007989883 0.008996214717626572 -0.006636673118919134 0.07952486723661423 0.09844500571489334 0.010699850507080555 0.02531672641634941 -0.07571949809789658 +0.018160002306103706 -0.04438316076993942 0.02162603661417961 0.03304839879274368 -0.0633116066455841 -0.04567323997616768 -0.011225955560803413 0.024945443496108055 0.02304336428642273 -0.04055148735642433 -0.019552480429410934 0.00036880761035718024 0.0221006590873003 0.008822635747492313 0.02309631183743477 -0.0442434586584568 -0.09740233421325684 -0.007839483208954334 -0.03424842655658722 -0.04192443564534187 0.01426237914711237 0.024242941290140152 -0.06376681476831436 0.051800381392240524 -0.01081742625683546 0.025005962699651718 -0.057832516729831696 -0.009451557882130146 -0.02352837100625038 0.007252341136336327 0.06625449657440186 0.021793123334646225 0.07338345795869827 -0.053219422698020935 -0.04989156499505043 0.05391893535852432 -0.049191512167453766 0.11354588717222214 -0.0010387429501861334 -0.006204092409461737 -0.045378729701042175 0.00789021234959364 -0.0011649824446067214 -0.055103156715631485 0.023799143731594086 0.033487431704998016 0.009113533422350883 -0.003059150418266654 -0.0005122077418491244 0.0052543082274496555 0.11373771727085114 0.027079302817583084 -0.009609549306333065 -0.00696994923055172 -0.013239205814898014 0.02386488951742649 0.07086148113012314 -0.05563950911164284 -0.07376694679260254 0.04256632924079895 -0.11991958320140839 -0.010049440898001194 0.005215638317167759 -0.01844147779047489 -0.03457977622747421 -0.005521762650460005 -0.05812539532780647 0.07650687545537949 -0.0034370608627796173 -0.03240589052438736 0.062434084713459015 0.07578243315219879 -0.05278792604804039 -0.056701332330703735 0.05068043991923332 -0.0429392084479332 -0.013195862993597984 0.05141926556825638 -0.05894365534186363 0.009340658783912659 0.006100716535001993 -0.01852833852171898 0.11772207915782928 -0.05364035442471504 -0.03236517682671547 -0.03802148997783661 0.0027354201301932335 -0.07008615881204605 0.05324403569102287 0.042029883712530136 0.015001141466200352 0.08232352882623672 -0.010956831276416779 0.026729900389909744 0.026990504935383797 0.005287819541990757 -0.003281094366684556 -0.10226116329431534 -0.039876677095890045 0.00929388590157032 0.014487603679299355 0.015170956961810589 0.07844117283821106 0.01061304472386837 0.06872659921646118 0.03352298215031624 -0.047588977962732315 0.00930332113057375 0.016507543623447418 0.0270848348736763 0.028712857514619827 0.10751733928918839 0.0350833423435688 0.042361900210380554 0.04449520260095596 0.02416035905480385 0.008575213141739368 -0.02320217527449131 -0.024426722899079323 0.0015514749102294445 -0.018060415983200073 0.034845687448978424 -0.014710115268826485 -0.08941928297281265 -0.008452726528048515 0.027454769238829613 -0.0940118357539177 -0.0318346731364727 0.0788998007774353 -0.059039272367954254 0.11516285687685013 0.05375276133418083 -0.015178467147052288 0.04691405966877937 0.038422394543886185 0.04553930461406708 -0.013522607274353504 0.012620652094483376 -0.019652895629405975 -0.03635842725634575 -0.017932727932929993 0.04653124511241913 -0.021371055394411087 -0.05626829341053963 0.05743829160928726 0.04006216675043106 0.016585558652877808 -0.005577308591455221 -0.056009307503700256 0.0029192776419222355 -0.04056962579488754 -0.07364390790462494 -0.023190973326563835 -0.041657738387584686 0.0031611688900738955 0.06482724100351334 0.012850533239543438 0.05855615809559822 -0.0004804116324521601 -0.03467180207371712 -0.04799994081258774 -0.030874326825141907 -0.04736853390932083 -0.0861099511384964 -0.005055747460573912 -0.04167531803250313 0.0013864848297089338 0.013312917202711105 -0.05887800082564354 -0.019885318353772163 -0.014674689620733261 -0.00841225404292345 0.014857127331197262 0.04321048781275749 0.0751304104924202 0.005719679873436689 0.03051302582025528 -0.07785294950008392 -0.03171660006046295 -0.04819982498884201 0.01262571383267641 -0.004687514156103134 0.015715304762125015 -0.06624310463666916 -0.004207467660307884 0.013084170408546925 0.04630348086357117 -0.020805032923817635 0.00361838866956532 -0.0037653683684766293 -0.010128233581781387 -0.03400382399559021 0.06832532584667206 0.05317750200629234 -0.018170956522226334 0.023180168122053146 0.004483254626393318 0.053669147193431854 -0.02321706898510456 -0.04671108350157738 -0.04988463595509529 0.038702573627233505 0.024657657369971275 0.044119153171777725 0.005144889000803232 -0.04351241514086723 0.07203067094087601 0.01035124808549881 0.04033278301358223 -0.045422766357660294 0.0226146150380373 0.019419558346271515 -0.006846239790320396 0.04871128126978874 0.0948561504483223 -0.04453802853822708 -0.009366362355649471 -0.0018112335819751024 0.07390035688877106 -0.06820749491453171 0.0030197908636182547 -0.012279649265110493 -0.06732605397701263 -0.001968192867934704 -0.04884113371372223 -0.10129087418317795 -0.03358421102166176 0.05236397683620453 -0.017052212730050087 0.006962534971535206 0.0010852316627278924 0.039527539163827896 -0.034336913377046585 -0.0005776535836048424 0.003109040204435587 -0.023138364776968956 -0.09882368892431259 0.07686750590801239 0.004129139706492424 -0.06642331928014755 -0.059562016278505325 0.014383061788976192 0.02951217256486416 0.0034059537574648857 0.019300630316138268 0.03421899303793907 0.07194683700799942 0.044270437210798264 -0.028344690799713135 0.026820719242095947 -0.01795017533004284 -0.048700593411922455 0.012807660736143589 0.026450050994753838 -0.016378067433834076 -0.005299432668834925 -0.0026282507460564375 -0.06793762743473053 -0.005122884642332792 0.02681908756494522 0.015181608498096466 -0.035992518067359924 -0.013888797722756863 -0.0045389048755168915 0.007153104059398174 -0.047317299991846085 -0.03105000965297222 0.029590796679258347 -0.013777805492281914 0.07025083154439926 -0.04757336527109146 -0.01683547906577587 0.021505391225218773 -0.002383751329034567 0.0448954775929451 -0.05392927676439285 0.06912074238061905 -0.0007986063719727099 -0.08958438038825989 -0.002697926014661789 -0.07926047593355179 -0.026381848379969597 -0.014312317594885826 -0.06435927003622055 -0.06205777823925018 0.07940015941858292 0.02539091557264328 -0.07422944903373718 -0.06700300425291061 -0.06301769614219666 0.003851122921332717 -0.01825009100139141 -0.005937632638961077 -0.012790984474122524 -0.027312036603689194 -0.03154507279396057 0.05956360325217247 -0.0641157329082489 -0.01943686604499817 0.03542745113372803 -0.025696076452732086 -0.04044988378882408 0.050177961587905884 -0.051495663821697235 -0.01951676979660988 -0.00791177898645401 -0.08178936690092087 0.04336647689342499 0.10678871721029282 0.026079261675477028 0.0029833249282091856 0.027832897379994392 0.018277935683727264 0.10538524389266968 0.006533649750053883 -0.030372869223356247 -0.0007393888663500547 -0.042455192655324936 -0.02904483862221241 0.056148454546928406 -0.023646391928195953 0.004709769506007433 -0.008546493947505951 -0.02112530544400215 0.06119178235530853 0.007627487648278475 -0.023463930934667587 -0.00887197908014059 0.03315570205450058 -0.02100295014679432 0.008200418204069138 0.005415173247456551 0.042461976408958435 -0.0022660703398287296 -0.05159673094749451 -0.041587945073843 -0.029767686501145363 0.04264085367321968 -0.023500626906752586 0.0394446924328804 -0.05004288628697395 -0.06445184350013733 0.02015472762286663 -0.017849907279014587 0.12328694015741348 -0.08199124783277512 0.023135846480727196 0.06292116641998291 0.03950527682900429 -0.07979916036128998 0.0037426301278173923 0.04002958536148071 -0.06596512347459793 -0.045342396944761276 0.0006905227201059461 0.013934226706624031 -0.06089784577488899 -0.03747137263417244 -0.01612750068306923 -0.02161986008286476 0.028393689543008804 0.012300419621169567 0.014209273271262646 0.026949141174554825 -0.00472413981333375 -0.029343247413635254 -0.013025019317865372 0.03206050023436546 0.023537227883934975 -0.048330437391996384 0.031376443803310394 -0.040502700954675674 0.022074183449149132 -0.04399888962507248 -0.039990343153476715 -0.04438687860965729 0.056736718863248825 -0.03807377070188522 -0.002414529910311103 -0.01205772627145052 -0.05033199116587639 -0.040751997381448746 0.00021427539468277246 0.005249951500445604 -0.10251869261264801 -0.029280750080943108 -0.045504987239837646 -0.08298816531896591 -0.0782279446721077 -0.0763806626200676 0.025852449238300323 -0.04561888426542282 0.0368562750518322 -0.045844193547964096 0.04548623040318489 -0.003834484377875924 0.016579901799559593 0.04235519841313362 0.061595045030117035 0.03306453302502632 -0.023807145655155182 0.04099397733807564 -0.0013736223336309195 0.03270149976015091 0.012940456159412861 -0.04499775543808937 0.023273207247257233 0.0391479916870594 -0.045455463230609894 0.03465374931693077 -0.033320311456918716 0.007527428213506937 0.017477018758654594 -0.044316262006759644 -0.00277160806581378 0.006608591880649328 -0.02875979244709015 -0.048532504588365555 0.037288058549165726 -0.04343917965888977 -0.03970881924033165 0.02381828986108303 -0.06869944930076599 -0.08365955948829651 -0.05590261146426201 -0.03303247317671776 -0.03240552917122841 0.014999326318502426 0.014921886846423149 0.018490372225642204 0.033671386539936066 -0.02677745744585991 -0.03988360986113548 0.006292018108069897 -0.012692105956375599 0.015367915853857994 0.01286628469824791 0.05094682797789574 -0.002762262476608157 -0.02617485262453556 -0.0018980230670422316 -0.019444361329078674 0.03652666509151459 -0.09792692214250565 0.00988958403468132 -0.021811101585626602 -0.029124442487955093 -0.007193193305283785 -0.011852112598717213 0.007075559347867966 -0.1018330305814743 -0.00496507715433836 -0.02709786966443062 0.05580325052142143 -0.01800910010933876 0.046733468770980835 0.02611599490046501 -0.0352434366941452 -0.006369466427713633 0.02292286977171898 -0.050228580832481384 -0.08060889691114426 0.00966362003237009 -0.06282636523246765 0.03445581719279289 -0.003840677672997117 -0.014665782451629639 -0.013935573399066925 -0.10045887529850006 -0.004339553881436586 0.006592311430722475 -0.05862674489617348 -0.02265978790819645 0.02496262826025486 -0.08504455536603928 -0.044533856213092804 0.020876675844192505 -0.03897857666015625 0.06586996465921402 0.02347627468407154 0.04209586977958679 -0.044169701635837555 -0.017697473987936974 -0.022333981469273567 -0.020454254001379013 0.007011704612523317 -0.017116297036409378 -0.049924518913030624 -0.0328950472176075 0.06843893229961395 -0.05535246059298515 0.01599912904202938 0.10954786837100983 -0.049749042838811874 0.0540761835873127 0.03325529024004936 -0.0592392235994339 0.013248122297227383 0.0037847531493753195 -0.033851366490125656 0.02796586975455284 -0.09901952743530273 0.08436445146799088 -0.061614152044057846 0.10663950443267822 0.02475757710635662 -0.0030645388178527355 0.0653766468167305 0.09916501492261887 0.0007941495859995484 0.006199215538799763 -0.07606981694698334 +0.040559072047472 0.029359452426433563 0.026420990005135536 0.044961586594581604 -0.12967616319656372 -0.01718338020145893 -0.023004142567515373 0.006264727097004652 0.00956945400685072 -0.05658486858010292 -0.03035537339746952 -0.00958959013223648 -0.014003251679241657 0.00447334349155426 0.013882441446185112 -0.021485481411218643 -0.04446283355355263 -0.022917140275239944 -0.02448245882987976 -0.05937032774090767 0.049612466245889664 -0.015394727699458599 -0.030103245750069618 0.07598485052585602 0.022306673228740692 0.022303685545921326 -0.02888980321586132 0.02752426639199257 -0.03278760984539986 0.058245353400707245 0.05662441626191139 -0.01084944512695074 0.027789736166596413 -0.06986521184444427 -0.041986919939517975 0.06581893563270569 0.00582679221406579 0.10245434939861298 0.031193656846880913 -0.061629585921764374 -0.02066841907799244 -0.012434428557753563 -0.04582921415567398 -0.0584380067884922 0.029853595420718193 -0.03241709619760513 -0.017167525365948677 -0.018481748178601265 0.06123572215437889 0.03442222997546196 0.0726589560508728 0.004715976305305958 -0.04391952604055405 -0.029156481847167015 0.015594415366649628 0.018299270421266556 0.045857202261686325 -0.0364762619137764 -0.007018044590950012 0.07605762779712677 -0.05368746444582939 -0.035340242087841034 0.04298890382051468 0.022630229592323303 0.013806243427097797 0.006665326654911041 0.03195502609014511 0.08180754631757736 0.030496343970298767 -0.018389081582427025 0.014865797944366932 0.10785365849733353 -0.03373914584517479 -0.003341419156640768 0.03878018632531166 -0.06047416478395462 -0.05304820090532303 0.03301287814974785 0.020228659734129906 0.047130897641181946 0.010434728115797043 -0.0884234756231308 0.1190313771367073 -0.03419192507863045 -0.05133421719074249 -0.04491039738059044 -0.027085773646831512 -0.04335586354136467 0.07658329606056213 0.004718543495982885 0.001847908366471529 0.06825416535139084 -0.07445485889911652 0.05132194235920906 -0.02580261044204235 0.01148791890591383 0.0420488603413105 -0.10615485906600952 -0.0018778889207169414 0.008381465449929237 -0.005235207732766867 -0.06267762184143066 -0.009851966053247452 -0.007412594743072987 0.05737239494919777 0.0713677927851677 -0.03290082514286041 -0.0124515350908041 0.03002392314374447 0.029293056577444077 0.03992479294538498 0.0712393969297409 0.09702875465154648 0.050144970417022705 0.0685688853263855 -0.01597747579216957 -0.0008478713571093976 -0.09875201433897018 -0.03321616351604462 -0.0012324800482019782 -0.00047087352140806615 0.06549961864948273 -0.02082534320652485 -0.058126576244831085 -0.009419402107596397 0.020034629851579666 -0.09325569123029709 -0.002478963928297162 0.04629144072532654 -0.009862998500466347 0.09606310725212097 0.036854088306427 -0.013008096255362034 0.030317112803459167 0.03284939005970955 0.03380861133337021 -0.026544539257884026 0.040394268929958344 0.0032367282547056675 -0.034231264144182205 -0.00199811439961195 0.02765515260398388 0.04130752757191658 -0.06410102546215057 0.010706481523811817 0.04201497882604599 0.03659193962812424 -0.010825383476912975 -0.07163617759943008 0.017364077270030975 -0.09402782469987869 -0.047118596732616425 0.021130017936229706 -0.09042102843523026 -0.02426288090646267 0.051196563988924026 0.007913632318377495 0.003282858757302165 -0.048739466816186905 -0.010684550739824772 -0.015099192038178444 -0.0315735824406147 0.028834236785769463 -0.07293228805065155 -0.050966039299964905 -0.02547024004161358 0.0053007956594228745 0.010386507026851177 -0.032724812626838684 -0.031652409583330154 -0.004695245996117592 -0.022666562348604202 0.05984467267990112 0.08481425046920776 0.04237666726112366 -0.011877873912453651 0.01695975847542286 -0.0474531389772892 0.024973338469862938 -0.03963318094611168 0.007478291168808937 -0.04381635785102844 0.054417531937360764 -0.06506077945232391 -0.039027001708745956 -0.03205146640539169 0.03036232478916645 0.009608034044504166 0.009674867615103722 -0.0020405345130711794 -0.06522069871425629 -0.039250973612070084 0.028267502784729004 0.062071602791547775 -0.05372102931141853 0.04294877499341965 0.03063163161277771 0.03148260712623596 -0.00020737263548653573 -0.03644053265452385 -0.07400524616241455 0.04496511071920395 0.012082620523869991 0.08176897466182709 0.04847754165530205 -0.09160394966602325 0.07423947006464005 0.018269063904881477 -0.008352993056178093 -0.08125222474336624 0.010546484962105751 0.06302124261856079 0.0282953679561615 0.05295727029442787 0.07260558754205704 -0.004224909003823996 0.025417141616344452 -0.01777230016887188 0.04003181681036949 -0.02868608385324478 -0.020622069016098976 -0.004221121780574322 -0.08450424671173096 0.00036637153243646026 -0.04449262097477913 -0.05039170756936073 -0.040444422513246536 0.02428736537694931 -0.00344643322750926 -0.05191149562597275 0.0287060234695673 0.027236979454755783 -0.020406514406204224 -0.013461735099554062 -0.0069204168394207954 0.0013912434224039316 -0.06741484254598618 0.12279056757688522 -0.03835073485970497 -0.0919010192155838 -0.04046979919075966 0.03520800918340683 0.048195842653512955 -0.0026955767534673214 0.056088656187057495 0.05926775559782982 0.1003689393401146 0.024550478905439377 0.00519862025976181 -0.05993492901325226 -0.05863146856427193 -0.07437407225370407 0.0031013423576951027 0.05255098640918732 -0.048201579600572586 -0.062427740544080734 -0.013960649259388447 -0.06346631795167923 0.0005029636668041348 0.02629833109676838 0.08176832646131516 -0.03393709287047386 -0.027268854901194572 -0.04311716929078102 0.03170786425471306 -0.016389217227697372 -0.04847142472863197 0.056420281529426575 -0.013499008491635323 0.04281581938266754 0.0167671050876379 -0.0021312993485480547 0.0349748320877552 0.02450108528137207 0.008362283930182457 -0.02017511986196041 0.06313904374837875 -0.011812927201390266 -0.04024067521095276 -0.03839140385389328 -0.05912284180521965 -0.07178445905447006 -0.029887866228818893 -0.021613918244838715 -0.025508739054203033 0.0645141676068306 0.0004884476074948907 -0.029194768518209457 -0.059099845588207245 0.0017516089137643576 -0.020339112728834152 -0.053972143679857254 -0.027476567775011063 0.012929074466228485 -0.07724001258611679 0.011601077392697334 -0.0026182993315160275 -0.023872168734669685 -0.028972720727324486 0.01308735366910696 -0.0071032424457371235 -0.0841664969921112 0.046753399074077606 -0.013307158835232258 -0.031226804479956627 0.007844367995858192 -0.04591822251677513 0.028973443433642387 0.10420890897512436 0.046342648565769196 0.052355341613292694 -0.0008105050073936582 0.04507330432534218 0.07800032198429108 -0.01626596413552761 -0.016452578827738762 -0.02891775779426098 -0.04119400307536125 -0.10614434629678726 0.043276309967041016 -0.037126678973436356 -0.04143514111638069 -0.023327210918068886 0.029019787907600403 0.06367850303649902 -0.004344350192695856 -0.01994611695408821 -0.04011981561779976 0.03740987926721573 0.017200084403157234 0.08350811153650284 -0.012148335576057434 -0.023128274828195572 -0.04073226824402809 -0.04279031977057457 -0.041103679686784744 -0.042441584169864655 0.060806892812252045 0.03216392546892166 0.039656978100538254 -0.0011447085998952389 -0.10371128469705582 -0.016165917739272118 0.0028436966240406036 0.07532209903001785 -0.0927468091249466 0.004334548953920603 0.024790987372398376 0.002383151091635227 -0.08522196114063263 -0.0050169373862445354 0.007882339879870415 -0.025493355467915535 -0.05073922872543335 -0.026516709476709366 0.08274897933006287 -0.058928556740283966 0.01065849605947733 -0.012043054215610027 -0.02739272266626358 -0.0248741302639246 0.033348068594932556 0.008713935501873493 -0.007522521074861288 -0.006675899028778076 -0.02297596074640751 -0.016702616587281227 -0.01442356500774622 -0.004510139115154743 0.022111911326646805 0.03378208726644516 0.001141148735769093 0.04091069474816322 -0.027558650821447372 0.0030982745811343193 -0.05790716037154198 0.08026387542486191 -0.02280331403017044 -0.008617016486823559 0.00872220192104578 -0.022927338257431984 0.03413328900933266 0.04944003373384476 0.004611993208527565 -0.029505761340260506 -0.02744082547724247 -0.013645629398524761 -0.0349801629781723 -0.09652619063854218 -0.005608018953353167 0.022816408425569534 -0.07924287021160126 0.0012215657625347376 -0.019244534894824028 -0.023133723065257072 -0.02715039998292923 -0.010077170096337795 0.01997348479926586 0.015352332964539528 0.02843342535197735 -0.013723689131438732 0.03563076630234718 0.004961451981216669 0.05828933045268059 -0.002362509025260806 -0.07696746289730072 0.039413947612047195 0.011787934228777885 -0.053900063037872314 0.10395956039428711 -0.03569591045379639 -0.0238786768168211 -0.029649456962943077 0.031157510355114937 0.02660258300602436 -0.01625188998878002 -0.007896889932453632 -0.02184957079589367 0.04684334993362427 -0.057997431606054306 -0.027204496785998344 0.039302557706832886 0.010560838505625725 -0.10039402544498444 -0.020311161875724792 0.004126439802348614 -0.03528209030628204 0.05405062809586525 -0.0017852116143330932 0.009116699919104576 0.029625901952385902 -0.04554262384772301 -0.01402478851377964 -0.04096433147788048 -0.03267235308885574 0.03975662589073181 -0.016550913453102112 0.0822969451546669 0.02081865631043911 0.030095279216766357 0.0020371584687381983 0.004601731430739164 0.021921509876847267 -0.06914639472961426 -0.007672163657844067 0.007435710169374943 -0.03532779961824417 0.019760901108384132 0.015278075821697712 0.025397764518857002 -0.02409381978213787 -0.07227781414985657 -0.039564188569784164 0.07373800128698349 -0.031470149755477905 0.002946163062006235 0.038598597049713135 -0.03292563557624817 0.012090012431144714 0.017001187428832054 -0.060497548431158066 -0.09101029485464096 -0.007051547989249229 0.0019542390946298838 0.006238865200430155 -0.014972120523452759 0.0238172709941864 -0.019962865859270096 -0.0463840626180172 -0.020573172718286514 0.02595589868724346 -0.07054400444030762 0.04353407025337219 0.010975033976137638 -0.040383677929639816 -0.05048954114317894 -0.013754229061305523 -0.051067739725112915 0.053342416882514954 0.03127666935324669 0.04211805760860443 -0.0012184083461761475 0.01022443175315857 0.021503938362002373 -0.0558951161801815 0.010535093955695629 0.014669408090412617 -0.03372953459620476 -0.00969762820750475 0.06404370069503784 -0.04147619381546974 0.05829896777868271 0.020122544839978218 -0.04736544191837311 0.03495783731341362 0.08097676932811737 -0.03485378995537758 0.05855799838900566 -0.00442875362932682 -0.03785090520977974 0.0823606550693512 -0.04211683198809624 0.08299509435892105 -0.024323003366589546 0.07328858971595764 -0.029574520885944366 -0.029302870854735374 0.06648021191358566 0.07576710730791092 0.041580475866794586 0.030617695301771164 -0.06804560124874115 +0.051195234060287476 -9.534317359793931e-05 0.0234138872474432 0.004832443781197071 -0.0708998367190361 -0.03862697631120682 -0.017044968903064728 -0.005872041452676058 -0.009168781340122223 -0.02955748699605465 -0.03268854692578316 -0.01593208871781826 -0.024570001289248466 -0.003315662033855915 0.042258623987436295 -0.05839764326810837 -0.07017126679420471 0.0034138585906475782 -0.026665931567549706 0.001620912691578269 0.06203632801771164 0.016542010009288788 -0.06289529800415039 0.052018217742443085 0.019686734303832054 0.054159145802259445 -0.046440888196229935 0.02350737527012825 -0.007122907321900129 0.02929246798157692 0.058756329119205475 -0.014325655065476894 0.028720665723085403 -0.06725676357746124 -0.03860803693532944 0.03387684375047684 -0.027555342763662338 0.09944048523902893 0.06487780809402466 -0.0361044742166996 -0.04516657069325447 -0.011721174232661724 -0.05531986430287361 -0.04090264439582825 0.017616111785173416 -0.025127701461315155 -0.022072141990065575 -0.04824939742684364 0.026511386036872864 0.03326800838112831 0.09694556146860123 -0.0653836727142334 -0.053980328142642975 0.0037464580964297056 0.008433980867266655 0.00900701992213726 0.022639676928520203 -0.05463616922497749 -0.07326433062553406 0.032627806067466736 -0.06937643140554428 0.023680897429585457 -0.026319729164242744 0.022422965615987778 -0.018838489428162575 -0.03775862976908684 0.01098195556551218 0.07201938331127167 0.0011993340449407697 -0.02179337479174137 0.038719892501831055 0.10169047862291336 -0.076702781021595 -0.0438234843313694 0.010590833611786366 -0.051529496908187866 -0.0018653504084795713 0.05129116773605347 0.015889210626482964 0.0005561994621530175 0.020013045519590378 -0.040254514664411545 0.12193021178245544 -0.05702782794833183 -0.02324213646352291 -0.043752286583185196 -0.05394250527024269 -0.06712480634450912 0.05942070484161377 0.053827494382858276 0.041850924491882324 0.05727221071720123 -0.03692852705717087 0.06166806071996689 0.02212619222700596 0.008900510147213936 0.02583250403404236 -0.08976296335458755 -0.0303757693618536 -0.011549768969416618 -0.01750335283577442 0.0008331186254508793 0.055926188826560974 0.017270484939217567 0.0719105675816536 0.0349690318107605 -0.048383764922618866 0.025313133373856544 0.008334832265973091 0.05340955778956413 0.030951108783483505 0.06369910389184952 0.1147710457444191 0.07031209021806717 0.045853517949581146 -0.00798750575631857 -5.3775558626512066e-05 -0.04067061468958855 -0.013664561323821545 0.014845585450530052 0.01815539225935936 0.0459209606051445 -0.010747639462351799 -0.0587150938808918 -0.014426223933696747 0.04994751885533333 -0.08682248741388321 -0.05074909329414368 0.037330374121665955 -0.026240434497594833 0.10726121068000793 0.0885898545384407 -0.05277574807405472 0.022931499406695366 0.04563411697745323 0.005540108773857355 0.02129771187901497 0.01808067224919796 -0.02889220044016838 -0.035637423396110535 -0.03321586549282074 0.007526238914579153 -0.02398042008280754 -0.056797102093696594 -0.01656181365251541 0.01931311935186386 0.040504466742277145 -0.04710947349667549 -0.07386000454425812 -0.02740957774221897 -0.09249026328325272 -0.05500316619873047 0.000778819783590734 -0.08045051246881485 0.03622492402791977 0.05136464908719063 0.008997485972940922 0.03949020057916641 -0.021953146904706955 0.02026316709816456 -0.045532677322626114 -0.06452231854200363 -0.014212356880307198 -0.09453463554382324 -0.031824346631765366 -0.025486212223768234 0.040140822529792786 -0.0032357536256313324 -0.03298494219779968 -0.023938192054629326 -0.05597040429711342 -0.013553436845541 0.0030586221255362034 0.07057879120111465 0.06511490046977997 0.013335762545466423 0.012698030099272728 -0.02682914212346077 0.01116101909428835 -0.03207593783736229 0.04324422776699066 -0.03906799852848053 0.015901487320661545 -0.045498501509428024 -0.019024252891540527 -0.02664175257086754 0.033214420080184937 -0.010127703659236431 0.034601837396621704 0.038752444088459015 -0.0359576940536499 -0.06023339182138443 0.03382721170783043 0.07379461079835892 -0.026567718014121056 0.05497241020202637 -0.02776368521153927 0.07776373624801636 -0.004308743868023157 -0.04647436738014221 -0.0402127169072628 0.012522894889116287 0.007621871307492256 0.07172097265720367 0.01821896620094776 -0.050829172134399414 0.08201397210359573 0.04445848613977432 0.041478149592876434 -0.0688529908657074 0.012179543264210224 0.007102507632225752 0.016712015494704247 0.024579519405961037 0.06301256269216537 -0.08284907042980194 -0.019735466688871384 0.017628662288188934 0.020948922261595726 -0.03929391875863075 -0.014804989099502563 0.014501763507723808 -0.049835510551929474 0.04517409950494766 -0.060895368456840515 -0.07729607075452805 -0.01813853159546852 0.034953903406858444 -0.017559150233864784 -0.0504702664911747 -0.0006590809789486229 0.027284039184451103 -0.03968707472085953 -0.0084232734516263 0.014307260513305664 -0.017753954976797104 -0.12220577150583267 0.08431871980428696 -0.02062164805829525 -0.0381009466946125 -0.08727042376995087 0.0272818673402071 0.007990709505975246 0.04789229854941368 0.023752786219120026 0.029409201815724373 0.09835182130336761 0.021841268986463547 -0.02759603038430214 0.02433602139353752 -0.045076657086610794 -0.03924990072846413 0.013520878739655018 -0.009382659569382668 -0.05363063886761665 -0.05298927426338196 0.0013259166153147817 -0.03308068588376045 -0.026569172739982605 -0.016910500824451447 0.03730609640479088 -0.005926340818405151 -0.027417726814746857 -0.003756917780265212 0.06664139777421951 0.007412477396428585 -0.03726997226476669 0.04712170735001564 -0.01588299125432968 0.05407178774476051 -0.026905275881290436 -0.04615022987127304 0.051834940910339355 -0.004157882183790207 0.029876304790377617 0.008390158414840698 0.08792967349290848 -0.026355737820267677 -0.06839371472597122 -0.06338972598314285 -0.09159255772829056 -0.017540255561470985 -0.023946233093738556 -0.004368322901427746 -0.013860443606972694 0.06712783873081207 0.009764645248651505 -0.03857539966702461 -0.022639933973550797 -0.0162303876131773 -0.030327728018164635 -0.07331746816635132 -0.04457459971308708 0.00045905981096439064 -0.06353721767663956 -0.020482953637838364 0.052766211330890656 -0.05387694016098976 -0.060418661683797836 -0.006704403553158045 -0.05092398449778557 -0.05504542961716652 0.01625748910009861 -0.027625443413853645 -0.03067687153816223 0.0191348809748888 -0.09283257275819778 0.051501598209142685 0.09377386420965195 0.041865382343530655 0.04921487346291542 0.043356187641620636 0.056891847401857376 0.12453367561101913 0.002953391522169113 -0.04149581119418144 -0.04847170040011406 -0.03751835972070694 -0.09106296300888062 0.07505407184362411 -0.02821611426770687 0.005441498942673206 -0.022533798590302467 0.029634051024913788 0.0633033961057663 -0.016176771372556686 -0.015932170674204826 -0.013712935149669647 -0.008088942617177963 -0.039181243628263474 0.0077444748021662235 -0.0140024209395051 -0.003925458062440157 0.0028436509892344475 -0.0308974776417017 -0.08341453969478607 -0.04149936884641647 0.022571224719285965 -0.018350176513195038 0.05583605542778969 -0.01866999827325344 -0.04383888468146324 -0.0045426529832184315 -0.0028292012866586447 0.09753666073083878 -0.04099901020526886 0.04402348771691322 0.008508128114044666 0.005528576206415892 -0.09650657325983047 -0.0056289746426045895 0.05367988348007202 -0.04011425003409386 -0.06487017124891281 -0.0075265103951096535 0.05699780583381653 -0.04664429649710655 -0.051018036901950836 0.02181215025484562 -0.04810727387666702 0.013064432889223099 0.009268504567444324 0.03257003054022789 0.032570723444223404 0.013326223939657211 -0.040259264409542084 0.005949509330093861 -0.02360917255282402 0.02260122075676918 -0.025183793157339096 -0.0006713143666274846 -0.07139046490192413 0.05712234973907471 -0.0344502292573452 -0.016507510095834732 -0.04342154785990715 0.0618862621486187 0.009733638726174831 -0.00921613909304142 -0.007654895540326834 0.035349417477846146 -0.03340251371264458 0.03678112477064133 0.03275993838906288 -0.051858723163604736 -0.04385775327682495 -0.03591064736247063 -0.016757532954216003 -0.0842781588435173 -0.01942340098321438 -0.006820949725806713 -0.06116271764039993 0.016642628237605095 -0.011930580250918865 0.0076173292472958565 0.01859075203537941 -0.035998277366161346 0.03216414526104927 0.023852260783314705 0.028456613421440125 -0.045369308441877365 0.03270591422915459 0.013955480419099331 0.025371624156832695 0.021710291504859924 -0.03894650936126709 0.008090046234428883 0.026164056733250618 -0.005800994578748941 0.035935524851083755 -0.022434387356042862 0.01486038789153099 -0.004069593269377947 -0.033231113106012344 0.0351618155837059 -0.007198838982731104 0.018888305872678757 -0.029232138767838478 0.05656641721725464 -0.10910862684249878 -0.049903690814971924 0.025679226964712143 -0.05142837390303612 -0.09392666071653366 -0.015842201188206673 -0.01753951609134674 -0.041386935859918594 0.007502484600991011 -0.01122655626386404 0.03535918891429901 0.04181242361664772 -0.0333063043653965 -0.027584290131926537 -0.013190530240535736 0.004194164182990789 0.049136653542518616 0.009328995831310749 0.05487691983580589 0.0031715130899101496 0.004513983149081469 0.025898803025484085 -0.002104097045958042 -0.016100086271762848 -0.10104082524776459 -0.028985584154725075 -0.0065530454739928246 -0.0033713211305439472 0.03667965158820152 0.021582886576652527 0.026177195832133293 -0.04906287044286728 -0.04058214649558067 -0.05863606557250023 0.062418922781944275 -0.00876438245177269 0.034469760954380035 0.03210674598813057 -0.043492384254932404 -0.014259301126003265 -0.011758445762097836 -0.025309721007943153 -0.08942017704248428 -0.019572250545024872 -0.01577743887901306 0.04278695583343506 0.009708252735435963 -0.007797537837177515 -0.02047439105808735 -0.06157657876610756 0.002265925519168377 0.016575343906879425 -0.04919847846031189 0.003774218028411269 0.013645371422171593 -0.0618203841149807 -0.09098653495311737 0.02073926292359829 -0.04605801776051521 0.00429279962554574 0.0102170929312706 0.05003614351153374 -0.01083637960255146 -0.0026845233514904976 0.042954131960868835 -0.0420210026204586 0.018695367500185966 0.014350298792123795 -0.05308759957551956 -0.007860776036977768 0.08385670930147171 -0.02675769291818142 0.026898089796304703 0.061428628861904144 -0.02458873763680458 0.01338482927531004 0.039664097130298615 -0.04830317944288254 0.0019073071889579296 -0.03749707713723183 -0.03188638761639595 0.06507157534360886 -0.08131679892539978 0.08603401482105255 -0.08100372552871704 0.12420496344566345 0.0024533187970519066 -0.028710482642054558 0.09985293447971344 0.057758983224630356 -0.009286819957196712 0.049430519342422485 -0.06576363742351532 +0.0103229358792305 -0.0637633427977562 -0.03039880096912384 0.02175459824502468 -0.07347515225410461 -0.034708425402641296 0.01576472632586956 0.04312460869550705 -0.017934361472725868 -0.03657704219222069 -0.014870055951178074 0.0176489669829607 0.017634274438023567 0.009602160193026066 0.07121029496192932 -0.04792235791683197 -0.02284579910337925 0.02757120132446289 -0.004898485727608204 -0.029539668932557106 0.02874797023832798 0.02687077596783638 -0.039119280874729156 0.015811851248145103 0.002997227245941758 -0.0006051271921023726 -0.047502707690000534 0.02115226536989212 0.03603813797235489 0.05865985527634621 0.05427106097340584 -0.0501735582947731 0.03051079995930195 -0.05127715319395065 -0.05150153115391731 0.013940030708909035 -0.0739593431353569 0.11330533772706985 0.031422100961208344 0.002130302134901285 -0.040760237723588943 -0.022668160498142242 -0.043069273233413696 -0.024189220741391182 0.033751651644706726 0.0035559674724936485 0.03151950240135193 -0.03385264426469803 0.01918148621916771 0.026506133377552032 0.06796160340309143 0.020073706284165382 -0.0021407909225672483 -0.02663520909845829 -0.011481260880827904 -0.008071173913776875 0.039773449301719666 -0.03694745525717735 -0.08442742377519608 0.057471856474876404 -0.09642840176820755 0.0048064920119941235 -0.0018173236167058349 0.0014687004731968045 -0.00865689106285572 -0.03066319040954113 -0.00788026861846447 0.049870070070028305 -0.03488535434007645 -0.05544760823249817 0.023761607706546783 0.11002058535814285 -0.0672854334115982 -0.10156586766242981 0.03468570485711098 -0.03249070793390274 0.0414147712290287 -0.0013378000585362315 -0.018970133736729622 -0.016177982091903687 -0.044741105288267136 -0.05106624588370323 0.12439866364002228 -0.06011905148625374 -0.04377822205424309 -0.05783670395612717 -0.04056605324149132 -0.05290253460407257 0.05426781624555588 0.018372338265180588 0.04866056889295578 0.025115156546235085 -0.06248647719621658 0.032157186418771744 0.02887054905295372 -0.011552291922271252 0.007753422483801842 -0.10063369572162628 -0.05856391787528992 0.0034580272622406483 -0.001042168471030891 -0.034685492515563965 0.10902155935764313 0.023115362972021103 0.04020879417657852 0.04681774601340294 -0.05785062164068222 0.041014663875103 0.0272737517952919 0.06636755168437958 -0.013991900719702244 0.09196475148200989 0.0606609508395195 0.03500036522746086 0.039158597588539124 -0.014896860346198082 -0.02657170221209526 -0.004470108076930046 -0.00793484691530466 0.01818177103996277 0.022736039012670517 0.03255414590239525 0.013327759690582752 -0.08381810784339905 -0.03494703024625778 0.06162096932530403 -0.11933478713035583 -0.019354404881596565 0.06654580682516098 -0.05326883867383003 0.11511876434087753 0.04950821399688721 -0.017642714083194733 0.05538579076528549 0.0373893566429615 0.022405065596103668 -0.011396643705666065 0.0482570081949234 0.012030643410980701 -0.053250402212142944 -0.04974714666604996 0.06263132393360138 0.00974731333553791 -0.05177074670791626 0.02814570814371109 0.06634197384119034 0.039282526820898056 -0.05573685094714165 -0.06597205251455307 0.014092940837144852 -0.05873291194438934 -0.05819317325949669 0.0048492541536688805 -0.05596001073718071 0.02064453437924385 0.0030357511714100838 0.012562090530991554 0.01573977991938591 0.011702090501785278 0.010894397273659706 -0.06636234372854233 -0.0665593147277832 -0.041081126779317856 -0.043069954961538315 0.0028155033942312002 0.019840480759739876 0.03162943944334984 -0.013303183019161224 -0.058369431644678116 -0.03293200209736824 -0.007558773271739483 0.010983902961015701 0.055909715592861176 0.05131247639656067 0.02612430416047573 0.00036857055965811014 0.021126117557287216 -0.061292920261621475 0.013730693608522415 -0.033847205340862274 0.01894400082528591 -0.03791190683841705 0.031228741630911827 -0.04242986440658569 -0.022778773680329323 -0.023137416690587997 0.05646743252873421 -0.04380663111805916 -0.012810304760932922 -0.0467359684407711 -0.019611630588769913 -0.07496535778045654 0.04614639654755592 0.08273416012525558 -0.039774566888809204 0.02837921679019928 -0.017488976940512657 0.05767448991537094 -0.053655918687582016 -0.029184352606534958 -0.03942707180976868 0.03305942565202713 0.021289266645908356 -0.004400522913783789 -0.031730905175209045 -0.05873565003275871 0.07613421976566315 -0.011057324707508087 0.024070732295513153 -0.07808437198400497 0.017372163012623787 0.030411547049880028 -0.027482660487294197 0.03321251645684242 0.05733206123113632 -0.06738356500864029 -0.0066120498813688755 -0.005662681069225073 0.06937959790229797 -0.03636074811220169 0.006613416597247124 -0.010121003724634647 -0.07350454479455948 -0.01701164059340954 -0.03820059448480606 -0.09163209050893784 -0.00022654529311694205 0.008668825030326843 -0.022025225684046745 -0.028881553560495377 -0.02910800464451313 0.03599175810813904 0.011849820613861084 -0.0019212758634239435 -0.015088208951056004 0.008835679851472378 -0.05469244718551636 0.07123579829931259 -0.02057790569961071 -0.0608670637011528 -0.09042411297559738 -0.03728248551487923 0.032974742352962494 -0.0059643639251589775 0.03335879370570183 0.041964732110500336 0.056526411324739456 0.019006915390491486 -0.029630789533257484 0.011308066546916962 -0.00941522978246212 -0.014103543013334274 -0.0158144049346447 0.0245676152408123 -0.068457692861557 -0.01999380998313427 0.04512004554271698 -0.07488592714071274 0.00770080229267478 -0.02945523150265217 0.02513837441802025 -0.04031367227435112 -0.03007698617875576 0.0033309562131762505 0.028046773746609688 0.0008917562081478536 -0.03727949783205986 0.0017277506412938237 -0.042056191712617874 0.0536653995513916 -0.023038920015096664 -0.004756756126880646 0.031889013946056366 -0.0018771460745483637 0.0047308956272900105 -0.05207386612892151 0.040161605924367905 -0.029698964208364487 -0.0894346833229065 -0.029131103307008743 -0.03700758144259453 -0.06321515142917633 -0.011129429563879967 -0.03505466878414154 -0.035626184195280075 0.08272350579500198 0.012223144061863422 -0.04840238019824028 -0.05299578979611397 -0.05221133679151535 0.003933190368115902 -0.06249217316508293 -0.01560031808912754 -0.01066172868013382 -0.07471232116222382 -0.017050396651029587 0.036323826760053635 -0.06679089367389679 -0.00841693114489317 0.019669098779559135 0.009716515429317951 -0.0580572709441185 0.052791446447372437 -0.056641098111867905 -0.015214876271784306 -0.017422962933778763 -0.05783599615097046 0.07442969083786011 0.054319217801094055 0.06757573783397675 0.03451533615589142 0.032685860991477966 0.03157952055335045 0.10696973651647568 0.0014634744729846716 -0.011702430434525013 -0.01609853282570839 -0.060525357723236084 -0.06177370622754097 0.026548122987151146 -0.025093192234635353 -0.00857187993824482 -0.011472772806882858 -0.00687024462968111 0.07847382128238678 -0.01862543635070324 -0.003916142508387566 -0.013623890466988087 0.04525485262274742 0.005956234410405159 0.01787152700126171 0.01563999056816101 0.0020108905155211687 0.0012844945304095745 -0.0574462004005909 -0.055803146213293076 -0.038132041692733765 0.04859865829348564 -0.041555918753147125 0.07959631085395813 -0.020421328023076057 -0.05438033118844032 -0.007066854741424322 0.0567435547709465 0.11101996153593063 -0.04102773219347 0.022681577131152153 0.013255671598017216 0.01650855876505375 -0.09192757308483124 0.021667513996362686 0.009676886722445488 -0.03651942312717438 -0.05702444911003113 0.024725910276174545 0.0550554096698761 -0.03514575958251953 -0.0166157279163599 -0.006350143812596798 -0.04367382079362869 -0.009354153648018837 0.009712493978440762 -0.02359897643327713 0.06222490593791008 -0.002408728003501892 -0.01129270251840353 0.0019638643134385347 0.013756804168224335 0.018956691026687622 -0.014702889136970043 0.005175394006073475 -0.03629340976476669 0.05841308459639549 -0.050794634968042374 -0.036497559398412704 -0.06173533573746681 0.06055820733308792 -0.014451054856181145 -0.015670310705900192 -0.07320927083492279 -0.016093900427222252 -0.020969128236174583 0.011386360973119736 -0.009952913969755173 -0.05961419641971588 3.5147444577887654e-05 -0.031339749693870544 -0.0688750147819519 -0.09076032787561417 -0.07145819813013077 0.03020183928310871 -0.03970472142100334 -0.0028577474877238274 -0.04073617234826088 0.04268333688378334 0.0011444471310824156 -0.024994822219014168 0.027117561548948288 0.06101367995142937 0.06602832674980164 -0.01720322109758854 0.07949027419090271 0.03670782968401909 0.06770011782646179 -0.01744261011481285 -0.03949505463242531 0.041431255638599396 0.01721338927745819 -0.06299155950546265 0.012309334240853786 -0.053958311676979065 0.024997742846608162 -0.01801355741918087 -0.014889584854245186 0.034992050379514694 -0.021563485264778137 0.01510248426347971 -0.023621154949069023 0.09562716633081436 -0.09858205914497375 -0.026950106024742126 0.0358869843184948 -0.02668054960668087 -0.05253983661532402 -0.027462095022201538 -0.04176853224635124 -0.027536503970623016 0.06265504658222198 -0.02765979990363121 0.02889464609324932 0.026660019531846046 -0.01210172288119793 -0.027027811855077744 0.009693286381661892 -0.02992159128189087 0.015849819406867027 0.029204368591308594 0.04064657911658287 0.004950310569256544 0.009152555838227272 0.0057593476958572865 -0.03679328039288521 0.0297609381377697 -0.1049894243478775 0.0071860128082334995 -0.033868253231048584 0.017747169360518456 -0.019827432930469513 -0.026986485347151756 0.05387385934591293 -0.06669043004512787 0.011535889469087124 -0.053652647882699966 0.07942979037761688 0.011124550364911556 0.0024243448860943317 0.02750215493142605 -0.026721693575382233 -0.0440995953977108 0.02307329699397087 -0.05492116138339043 -0.08478417992591858 -0.016250334680080414 -0.018607888370752335 0.053675439208745956 0.0014753816649317741 0.011433624662458897 -0.0027661104686558247 -0.06436638534069061 -0.006382015999406576 0.009897996671497822 -0.045845020562410355 0.06033489108085632 0.050070688128471375 -0.05823158100247383 -0.05580953508615494 -0.0006712783360853791 -0.042892612516880035 0.04580402001738548 0.013858476653695107 0.027218136936426163 -0.04981018230319023 0.008199325762689114 -0.01288444921374321 -0.03052394464612007 0.06419142335653305 -0.03185421973466873 -0.07219960540533066 -0.03699161112308502 0.09771829098463058 -0.054416362196207047 0.030392654240131378 0.038550667464733124 -0.05678873881697655 0.02993156388401985 0.029801001772284508 0.003048718674108386 0.02547028288245201 -0.016999317333102226 0.012304422445595264 0.045201051980257034 -0.09229506552219391 0.09065061062574387 -0.06253571063280106 0.08495880663394928 0.037239111959934235 -0.0027237292379140854 0.10364769399166107 0.05022367462515831 0.02212373912334442 -0.019789455458521843 -0.09854093939065933 +-0.02155582793056965 -0.10892313718795776 -0.09719283133745193 0.014348096214234829 -0.048857610672712326 -0.02441515401005745 -0.03475668281316757 0.08466614037752151 0.00722124520689249 -0.052742041647434235 -0.07324305176734924 0.016029441729187965 0.021425293758511543 -0.01111945603042841 0.06297433376312256 0.0489133782684803 -0.0032460426446050406 0.015327798202633858 -0.00039688509423285723 0.0032082130201160908 -0.008716040290892124 0.021194608882069588 -0.032665666192770004 0.069074347615242 0.05609358847141266 -0.027304455637931824 -0.0665009543299675 0.05604520067572594 0.017657095566391945 0.12083697319030762 0.013795587234199047 -0.05964650958776474 0.008993356488645077 -0.06875669956207275 -0.00938168540596962 0.019195031374692917 -0.04490601643919945 0.04910207539796829 0.037221167236566544 -0.01610076054930687 0.0008115165983326733 -0.003790101734921336 -0.02130897529423237 -0.1027950793504715 0.042344748973846436 0.022720081731677055 0.007843036204576492 -0.06218283623456955 0.01475694589316845 0.08423811942338943 0.06341596692800522 -0.004937989171594381 0.030641645193099976 -0.0011389459250494838 -0.07410414516925812 -0.004412524867802858 -0.012093564495444298 -0.002518853172659874 -0.0033146687783300877 0.03141361102461815 -0.05158615857362747 -0.01427252683788538 -0.013950338587164879 0.06330739706754684 -0.07430938631296158 0.025623716413974762 0.039856333285570145 0.02180839702486992 0.013256717473268509 -0.024462487548589706 -0.0509517565369606 0.010240348987281322 -0.025168294087052345 -0.030095534399151802 -0.03685114532709122 -0.0013285550521686673 0.007068169768899679 -0.033987898379564285 0.040292881429195404 0.018794838339090347 0.03578004240989685 -0.03401266410946846 0.09547001868486404 -0.04433650150895119 0.019058020785450935 -0.05807069316506386 -0.03878812864422798 -0.003787057939916849 -0.00353874359279871 -0.018048705533146858 0.06553617119789124 0.022624246776103973 0.06321342289447784 -0.008264313451945782 0.0010183625854551792 0.031256817281246185 0.03775971755385399 -0.10490166395902634 0.006462215445935726 0.022204015403985977 -0.04666408523917198 0.005346123594790697 0.09093966335058212 0.04625293239951134 0.03501535952091217 0.00219981512054801 -0.07305645942687988 0.01411706767976284 0.07146237790584564 0.028169376775622368 -0.027343714609742165 0.06866689026355743 0.03370589017868042 -0.023910805583000183 0.05134066939353943 -0.023992231115698814 -0.020342521369457245 -0.01265809591859579 -0.03454377129673958 0.008428347297012806 0.016476135700941086 0.030752090737223625 -0.0025834059342741966 -0.08424554020166397 0.09207265824079514 0.07612039148807526 -0.07126544415950775 -0.004550733137875795 -0.05154997110366821 -0.05236608162522316 0.054429955780506134 0.017453480511903763 -0.02546059712767601 -0.0026881778612732887 0.020274067297577858 0.014857595786452293 0.009291755966842175 0.05633866414427757 0.07534393668174744 -0.021222775802016258 -0.053184956312179565 0.0021727196872234344 0.006540771573781967 -0.001649054465815425 0.07415034621953964 0.015186944045126438 -0.03100530244410038 -0.003589148400351405 -0.05536485090851784 -0.014464001171290874 -0.06465906649827957 -0.0337640717625618 0.0707797259092331 -0.022961098700761795 0.0038935833144932985 -0.04054209962487221 0.04717179387807846 0.02062837779521942 0.003142050700262189 0.03311821445822716 -0.043114908039569855 -0.06769496202468872 0.03099590167403221 -0.05569155514240265 0.035108812153339386 0.02185928449034691 -0.0066139791160821915 -0.041869550943374634 -0.007454914506524801 -0.0417710617184639 -0.024493861943483353 0.024600619450211525 0.08140585571527481 0.05452389270067215 0.047220803797245026 -0.0036413881462067366 0.048194196075201035 -0.048243340104818344 -0.030177922919392586 -0.03761766850948334 -0.06504001468420029 -0.02527366578578949 -0.023679425939917564 -0.032115545123815536 -0.03126823529601097 -0.01461570244282484 0.011253985576331615 -0.029488444328308105 -0.021332083269953728 -0.05010904371738434 -0.00244692200794816 -0.0662660077214241 0.06998191028833389 0.02313331514596939 -0.015221355482935905 0.04909912496805191 0.06498033553361893 0.05854189023375511 -0.057862360030412674 -0.028950724750757217 -0.02802029252052307 0.06290784478187561 0.048076849430799484 -0.034764185547828674 -0.00015323952538892627 -0.009508865885436535 0.06452420353889465 0.02899913303554058 3.769049726543017e-05 -0.0025315294042229652 0.008298574015498161 0.09501780569553375 -0.0376490019261837 0.014930234290659428 0.08635783195495605 0.016027553007006645 -0.030415698885917664 -0.0009076563292182982 0.021124981343746185 -0.09717151522636414 -0.012795777060091496 0.03288552537560463 -0.08458848297595978 -0.02287822961807251 -0.017782000824809074 -0.06333263963460922 0.010631844401359558 -0.01212973240762949 -0.012295002117753029 0.009913334622979164 0.024847760796546936 -0.023536302149295807 0.04080072045326233 0.011621641926467419 -0.011834368109703064 0.027933651581406593 -0.005296215880662203 0.008969375863671303 -0.07223989814519882 -0.05740363150835037 -0.045035991817712784 0.024596739560365677 0.026088014245033264 -0.024373330175876617 0.030232837423682213 0.053568825125694275 0.042762529104948044 0.05946983024477959 -0.044495683163404465 0.0118452999740839 -0.03572811186313629 -0.009925078600645065 -0.027727996930480003 0.01681063324213028 0.04359786584973335 -0.048295650631189346 0.043312057852745056 -0.1297065168619156 -0.023788079619407654 0.006291656289249659 0.011771639809012413 -0.0760011151432991 0.0004873104626312852 -0.05089684575796127 0.04710303246974945 -0.023337623104453087 -0.06038377806544304 0.05304955318570137 -0.06491178274154663 0.003693914972245693 -0.10556188225746155 0.0027291749138385057 0.027866508811712265 0.014957443810999393 -0.02966313622891903 -0.06137428805232048 0.05748255178332329 -0.027188459411263466 -0.033936988562345505 -0.04009391739964485 -0.062818743288517 -0.043077509850263596 0.04193900153040886 0.012537362985312939 0.013132347725331783 0.02730097621679306 0.0556597076356411 0.013274682685732841 -0.09002794325351715 -0.08013039082288742 -0.02266295626759529 0.011674825102090836 0.022506171837449074 -0.004521778319031 -0.044268183410167694 0.013834151439368725 0.03485081344842911 -0.019836286082863808 -0.016849858686327934 0.07153098285198212 0.06368836760520935 -0.05641932785511017 0.0637214407324791 -0.01614386774599552 -0.014040306210517883 0.05198423191905022 -0.03937812149524689 -0.0249931700527668 0.04490983486175537 0.0042030117474496365 -0.009200354106724262 0.03802075982093811 -0.007158481515944004 0.011647703126072884 -0.05010184645652771 0.006190430372953415 -0.08295721560716629 -0.0009419788839295506 -0.03828173875808716 -0.001428609131835401 -0.0017630046932026744 -0.029539890587329865 -0.0010885423980653286 -0.025413691997528076 -0.0014862417010590434 0.01923297345638275 -0.05240616947412491 -0.07181377708911896 -0.021119127050042152 0.006642957683652639 0.052352309226989746 -0.013012506067752838 0.01754860207438469 -0.046809036284685135 -0.033962421119213104 -0.025105632841587067 -0.031183164566755295 0.08278077095746994 -0.00635130750015378 0.03098207525908947 0.04008616879582405 -0.04610002413392067 4.510653161560185e-05 0.03077412024140358 0.08553940802812576 -0.08950937539339066 0.05360749736428261 0.027221279218792915 0.016633857041597366 -0.03865880146622658 0.016866231337189674 -0.028474101796746254 -0.06350003182888031 -0.058374036103487015 0.017144467681646347 0.03178602457046509 -0.016054341569542885 -0.06156003102660179 -0.03491508960723877 -0.04150966554880142 0.02881639264523983 0.04084780067205429 -0.007791560608893633 0.056242115795612335 0.03059709072113037 -0.03436943143606186 -0.002034480683505535 -0.00736232241615653 -0.004484022501856089 -0.017029069364070892 0.026745349168777466 0.033610764890909195 0.016063986346125603 -0.03435882553458214 -0.01279979757964611 -0.025814877822995186 -0.01537738461047411 -0.04537615180015564 0.022002460435032845 -0.02113085426390171 -0.028868377208709717 0.021869387477636337 0.06427162885665894 0.013210914097726345 -0.013824678026139736 -0.05717260017991066 0.0007731958758085966 -0.04502294585108757 -0.07491424679756165 -0.03866272792220116 0.07184335589408875 -0.00402786023914814 0.02441183291375637 -0.06028837710618973 0.024702349677681923 -0.0038169941399246454 0.034328509122133255 0.008918995037674904 0.06342259794473648 0.0474579744040966 0.005685173440724611 0.02718774974346161 -0.014176164753735065 0.018058495596051216 -0.04370807856321335 -0.05803332477807999 0.049720823764801025 0.008189140819013119 -0.07814624160528183 -0.05202699825167656 -0.027916444465517998 -0.03198549523949623 0.004391237627714872 -0.07385403662919998 -0.001996678300201893 0.004870522767305374 0.047281671315431595 -0.006065855268388987 0.06609756499528885 -0.06203686445951462 0.003547580912709236 -0.03448382392525673 0.0006896647391840816 -0.00197295262478292 -0.025951268151402473 -0.030498672276735306 0.017167074605822563 0.05954025685787201 -0.05716937407851219 -0.03410228714346886 0.030268818140029907 -0.015476260334253311 0.02763727307319641 0.01966794580221176 0.05344945937395096 -0.016250625252723694 0.10277074575424194 0.011479981243610382 -0.04982873424887657 -0.01677669957280159 -0.017977168783545494 -0.08636806160211563 0.024227524176239967 0.033794060349464417 -0.02119399420917034 0.05182693153619766 0.02856343239545822 -0.027093982324004173 0.07377517968416214 0.052931882441043854 -0.04885201156139374 -0.03302033618092537 -0.010402029380202293 0.04564729332923889 0.05668816342949867 0.022356703877449036 0.04588320851325989 -0.08776848763227463 -0.08820599317550659 0.02365753799676895 -0.08296096324920654 -0.10715295374393463 -0.07559701055288315 -0.015127617865800858 0.07380062341690063 -0.0008931433549150825 0.008991575799882412 -0.06404092907905579 -0.05353829264640808 0.03694995865225792 -0.016245130449533463 0.011620540171861649 -0.03985568508505821 0.07954144477844238 -0.0037127812393009663 0.03358282148838043 -0.05813930928707123 -0.07551216334104538 0.07635170966386795 0.050912316888570786 -0.017882639542222023 -0.1013258695602417 0.010787324979901314 -0.033580292016267776 -0.003051314502954483 0.0294945165514946 -0.04982268065214157 -0.06952881067991257 0.01892007514834404 0.07403737306594849 -0.019472237676382065 0.05036948621273041 0.03485477343201637 -0.00452227471396327 0.06533138453960419 0.05589669942855835 0.05115264281630516 -0.03429132327437401 -0.03359058126807213 0.011231614276766777 0.06088711693882942 -0.04440579190850258 0.005688958335667849 -0.046108413487672806 0.1088845282793045 0.050913743674755096 -0.006096613127738237 0.045005857944488525 0.061364106833934784 0.08973974734544754 0.011576392687857151 -0.10804413259029388 +0.039049938321113586 -0.010520060546696186 0.00677670631557703 0.03055630624294281 -0.06992195546627045 -0.026375742629170418 -0.01840498298406601 0.028887037187814713 0.016552584245800972 -0.017562756314873695 -0.022443780675530434 0.055720824748277664 0.005864748265594244 0.03003019094467163 0.02471262402832508 -0.03025229275226593 -0.05736527591943741 0.0008422867977060378 -0.04495399072766304 -0.04974254220724106 0.04777906462550163 0.018311232328414917 -0.06672804802656174 0.05225307494401932 -0.006431052461266518 0.033924948424100876 -0.059219762682914734 0.010811839252710342 -0.018567631021142006 -0.0031116497702896595 0.04272130876779556 -0.0451338030397892 0.07391856610774994 -0.05669547989964485 -0.05805448442697525 0.055371612310409546 -0.03427024558186531 0.10135187208652496 0.034459229558706284 -0.01071563083678484 -0.0446099229156971 -0.0017797834007069468 -0.05595951899886131 -0.03476925566792488 0.01343222614377737 0.028960175812244415 0.015689317137002945 -0.016386542469263077 0.028898343443870544 0.00823522824794054 0.06295561790466309 0.0219741091132164 -0.023042067885398865 -0.02677389420568943 -0.009940915741026402 0.019329532980918884 0.06587298959493637 -0.07191285490989685 -0.09083620458841324 0.013635657727718353 -0.08747537434101105 0.02246306650340557 -0.021362701430916786 -0.011512430384755135 -0.027845213189721107 -0.012853067368268967 0.003675664309412241 0.0849875882267952 0.03439163789153099 -0.027703773230314255 0.06552057713270187 0.08451686799526215 -0.06599631905555725 -0.03155333548784256 0.045795418322086334 -0.041436873376369476 -0.03894871100783348 0.06258902698755264 -0.04459436982870102 0.013247648254036903 -0.022805584594607353 -0.04324159026145935 0.11301344633102417 -0.03689365088939667 -0.07666156440973282 -0.04342745989561081 -0.004103521816432476 -0.055209867656230927 0.021786170080304146 0.020059261471033096 -0.0023813804145902395 0.07324997335672379 -0.07004997134208679 0.05647371709346771 0.03337237238883972 0.0271354578435421 0.012395891360938549 -0.11267728358507156 -0.06176559627056122 -0.005033453460782766 -0.0207610372453928 0.004200451076030731 0.05885125696659088 -0.00879837479442358 0.06019824370741844 0.023641496896743774 -0.042827676981687546 0.007135435938835144 -0.0034178488422185183 0.029124611988663673 0.04189510643482208 0.05487450212240219 0.04188718646764755 0.0637814924120903 0.07269832491874695 -0.022031020373106003 0.03781655430793762 -0.0344751700758934 -0.027237366884946823 -0.02527850680053234 -0.008341914974153042 0.04706306755542755 -0.011266450397670269 -0.07325402647256851 -0.04644951969385147 0.034557074308395386 -0.12654396891593933 -0.026115164160728455 0.06113767996430397 -0.06530485302209854 0.10138902813196182 0.07893563061952591 -0.027169203385710716 0.001985268434509635 0.027252601459622383 0.0014473097398877144 -0.006867827847599983 0.031106507405638695 -0.0073149846866726875 -0.03232352435588837 -0.017920782789587975 0.03769218176603317 0.008949785493314266 -0.0704108253121376 0.04732629284262657 0.023875461891293526 0.013617086224257946 -0.046748049557209015 -0.06353804469108582 -0.016492288559675217 -0.06799577176570892 -0.09608197957277298 -0.0225455891340971 -0.05786663293838501 0.01730271242558956 0.05175360292196274 0.036437876522541046 0.047166045755147934 -0.022551683709025383 -0.007447421085089445 -0.04674781486392021 -0.010268653742969036 -0.029596349224448204 -0.05944293737411499 -0.02028561197221279 -0.004060032777488232 0.020326558500528336 0.022450149059295654 -0.03584258258342743 0.0074118576012551785 -0.03492271900177002 0.010933348909020424 0.009370708838105202 0.04785938560962677 0.07173683494329453 -0.010077529586851597 0.02069794200360775 -0.056709107011556625 0.0201866552233696 -0.020889198407530785 0.01605920121073723 -0.055999502539634705 0.014803574420511723 -0.03760095313191414 -0.003460436360910535 -0.01926930621266365 0.02032923884689808 -0.01992577314376831 0.020548414438962936 -0.008975442498922348 -0.0415881872177124 -0.06629130244255066 0.03199728950858116 0.0853474959731102 -0.048458509147167206 0.014530304819345474 0.004947454668581486 0.04191999509930611 -0.02263139933347702 0.004638053011149168 -0.046269021928310394 0.03700949251651764 -0.010439230129122734 0.0484343096613884 -0.00497311819344759 -0.052714116871356964 0.04578520357608795 0.0004473365843296051 0.017942553386092186 -0.06212116405367851 0.012696354649960995 0.021061982959508896 -0.008082728832960129 0.03784659132361412 0.07972952723503113 -0.05436507984995842 -0.03727899119257927 0.0014339896151795983 0.049125537276268005 -0.07282847166061401 -0.02638309821486473 -0.02505902759730816 -0.06379136443138123 0.0004012583813164383 -0.04150475934147835 -0.08684933930635452 -0.025906458497047424 0.024700148031115532 0.005645579658448696 -0.025101101025938988 -0.02406446263194084 0.017204415053129196 0.011696030385792255 -0.04703035205602646 0.01053872611373663 -0.014756498858332634 -0.07328765094280243 0.08944246172904968 0.02056899480521679 -0.04021313041448593 -0.04709678888320923 0.01624736562371254 0.07309132069349289 0.001301842276006937 0.019507119432091713 0.03736471012234688 0.11516430974006653 0.034782830625772476 -0.025707203894853592 -0.01175431627780199 -0.023079531267285347 -0.04629216343164444 0.02356093004345894 0.055634915828704834 -0.015862194821238518 -0.010884844698011875 0.035461246967315674 -0.020502110943198204 -0.010013533756136894 0.031667161732912064 0.04560353606939316 -0.005011405795812607 -0.062088120728731155 -0.03690048307180405 -0.00012742597027681768 -0.009398438967764378 -0.010168151929974556 0.016353171318769455 -0.015999840572476387 0.08798999339342117 -0.04480631276965141 -0.04978349432349205 0.0336904302239418 -0.007790848612785339 0.061115562915802 -0.02984415553510189 0.05336647853255272 -0.018260251730680466 -0.07700027525424957 -0.048287324607372284 -0.053309086710214615 -0.049227144569158554 -0.031997136771678925 -0.028667502105236053 -0.054901838302612305 0.09951473772525787 -0.0022242621053010225 -0.052252113819122314 -0.047787174582481384 -0.0011954614892601967 -0.012601161375641823 -0.07427675276994705 0.006436639465391636 -0.010415672324597836 -0.07144548743963242 -0.03811097890138626 0.032403454184532166 -0.039058998227119446 -0.024617614224553108 0.004340179264545441 -0.03306170552968979 -0.0871020257472992 0.04809783399105072 -0.016085796058177948 -0.04512915387749672 -0.03622085601091385 -0.08053415268659592 0.007028120569884777 0.0902276262640953 0.019437436014413834 0.0520448200404644 0.015364306978881359 0.04629155620932579 0.1270359605550766 -0.0029807952232658863 -0.02674953266978264 -0.005601528566330671 -0.022765330970287323 -0.05971815437078476 0.07087145000696182 -0.03619217500090599 0.0038321982137858868 -0.030444294214248657 0.0035561828408390284 0.06118633225560188 0.005805913358926773 -0.004638704005628824 -0.01654377207159996 0.04221508279442787 0.0153500996530056 0.02823527157306671 -0.011999948881566525 -0.013627718202769756 0.006447677966207266 -0.05355337634682655 -0.05946236476302147 -0.021968703716993332 0.007633553817868233 0.003939343616366386 0.0716179758310318 -0.018738003447651863 -0.08294730633497238 0.03653572499752045 0.0030017502140253782 0.08686722069978714 -0.07878956943750381 0.012635068036615849 0.02920248918235302 -0.004520157817751169 -0.08705690503120422 -0.009197600185871124 0.0724242553114891 -0.04005905240774155 -0.04576290026307106 0.027410589158535004 0.041022174060344696 -0.04791097715497017 -0.008159073069691658 0.0013002165360376239 -0.04016430675983429 -0.0075978366658091545 0.016618914902210236 0.034194786101579666 0.017966682091355324 -0.026518037542700768 -0.0016278130933642387 -0.0013294010423123837 0.05113896355032921 0.04421656206250191 -0.02675320953130722 0.02142752893269062 -0.05081642046570778 0.09134816378355026 -0.07689189910888672 -0.012272942811250687 -0.04390385374426842 0.06679591536521912 0.0010569416917860508 -0.02570868283510208 -0.026952054351568222 -0.021127844229340553 -0.02081381529569626 0.02018989622592926 0.017387473955750465 -0.06470900028944016 -0.016699694097042084 -0.04115896299481392 -0.0813264548778534 -0.06591660529375076 -0.04619991406798363 -0.005286051891744137 -0.04872960224747658 0.0067872293293476105 -0.015594340860843658 -0.027017051354050636 0.030209919437766075 -0.008693077601492405 0.011091387830674648 0.043360717594623566 0.07555653154850006 -0.029807457700371742 0.051992207765579224 0.00866768416017294 0.0335586816072464 0.0027937095146626234 -0.025864718481898308 0.04493106156587601 0.0323038287460804 -0.05808185040950775 0.041548777371644974 -0.050810880959033966 -0.00231536733917892 0.023228703066706657 0.00805877335369587 0.008420889265835285 0.008839497342705727 0.013954680413007736 -0.060985017567873 0.07828862965106964 -0.10417966544628143 -0.029191264882683754 0.065442755818367 -0.05218510702252388 -0.09919242560863495 -0.04090184345841408 -0.019623344764113426 -0.04378626123070717 0.024258216843008995 0.003924836870282888 0.014993439428508282 0.05835201218724251 -0.017791347578167915 -0.05991272255778313 -0.0004109530127607286 -0.03580823540687561 0.022287806496024132 -0.003562078345566988 0.08932134509086609 0.036118507385253906 0.009078217670321465 0.019752250984311104 0.025586582720279694 -0.00618643406778574 -0.09954171627759933 -0.023147979751229286 -0.010731297545135021 -0.032204851508140564 -0.022562721744179726 -0.021943556144833565 0.0086549436673522 -0.07755036652088165 0.0021775253117084503 -0.038434382528066635 0.08573342114686966 -0.03756134584546089 -0.01898231916129589 0.06389636546373367 0.005423887632787228 0.0004417717573232949 0.00512684416025877 -0.04189171642065048 -0.10401353240013123 0.0028375699184834957 -0.048487111926078796 0.03671002388000488 0.01365902554243803 -0.04187490791082382 0.0051012602634727955 -0.0567469522356987 -0.02193157933652401 0.01714921183884144 -0.053176864981651306 0.042255088686943054 0.002663025166839361 -0.07694046199321747 -0.08366209268569946 0.017852941527962685 -0.04943238943815231 0.050557516515254974 0.01966649480164051 0.05370701476931572 0.002889188239350915 -0.0159298162907362 -0.023211734369397163 -0.023363137617707253 0.016401268541812897 0.015638284385204315 -0.08768026530742645 -0.013430199585855007 0.06103385239839554 -0.05321070924401283 0.02018047869205475 0.06537270545959473 -0.042731110006570816 0.04022038355469704 0.017411354929208755 -0.04773847758769989 0.039371833205223083 -0.033433787524700165 -0.013581731356680393 0.05083516612648964 -0.048476800322532654 0.09118534624576569 -0.05186301842331886 0.08120516687631607 0.0010299764107912779 0.0024018699768930674 0.09911730885505676 0.07499252259731293 -0.006787450052797794 0.0009399127447977662 -0.06444691866636276 +0.02617594599723816 -0.059284139424562454 -0.013513937592506409 0.01385246217250824 -0.041644394397735596 -0.03746204078197479 -0.0012548092054203153 0.03330449387431145 -0.007767481729388237 -0.08709339797496796 -0.03942441567778587 0.00610875990241766 -0.011582301929593086 -0.004380622413009405 0.0221817959100008 -0.040981706231832504 -0.09595680236816406 0.03145163133740425 -0.06189322844147682 -0.04458236321806908 -0.018464716151356697 0.03719313442707062 -0.0502164363861084 0.004058824852108955 -0.010854601860046387 0.022494859993457794 -0.03370608016848564 -0.03380792960524559 0.009748592041432858 0.023966079577803612 0.060855522751808167 0.00712087657302618 0.09586122632026672 -0.04583939164876938 -0.03828820586204529 0.0788668841123581 -0.015183165669441223 0.12246783822774887 0.0001696911349426955 -0.024208195507526398 -0.04263404756784439 -0.05088416486978531 -0.04659675806760788 -0.11706709116697311 0.014575495384633541 -0.02082182839512825 -0.02018015831708908 -0.022530337795615196 0.011281016282737255 0.01762823387980461 0.07579080760478973 -0.011356745846569538 -0.04646812006831169 0.006331625860184431 -0.023924654349684715 0.031410880386829376 0.024655967950820923 -0.008092952892184258 -0.016106873750686646 0.02905024215579033 -0.10663242638111115 -0.012622050009667873 0.01591290533542633 0.04586280509829521 -0.035266388207674026 -0.014004775322973728 -0.012652380391955376 0.05741487070918083 0.011643181554973125 -0.04721628129482269 -0.020671537145972252 0.05309522524476051 -0.001927281846292317 -0.05436611920595169 0.030897438526153564 -0.07457906752824783 -0.0168099794536829 -0.0013117010239511728 -0.015160806477069855 0.0005483520799316466 0.02898823842406273 -0.01939002051949501 0.17492146790027618 -0.05182325839996338 0.0025745162274688482 -0.021299736574292183 -0.011562714353203773 -0.05848631262779236 0.05489259958267212 0.021762117743492126 0.021433888003230095 0.06080297753214836 0.010571075603365898 0.020499680191278458 -0.000368486566003412 0.0004247325996402651 -0.0018151885597035289 -0.07756741344928741 -0.0603918619453907 -0.02513553388416767 0.031184403225779533 -0.00023788590624462813 0.08636423200368881 0.04322049394249916 0.07132723182439804 -0.013866513036191463 -0.0019664745777845383 -0.042027007788419724 0.03398308530449867 -0.02095087803900242 -0.0034685132559388876 0.1420385241508484 0.03771733120083809 0.011318515054881573 0.06498017907142639 -0.0019728741608560085 0.02084621787071228 -0.05593142285943031 0.010688282549381256 0.01151458639651537 -0.030587850138545036 0.003941329661756754 -0.0412890687584877 -0.0705232247710228 -0.04831090196967125 0.009605610743165016 -0.06087711453437805 -0.0722428634762764 0.04133821651339531 -0.04643760249018669 0.12944701313972473 0.06025267392396927 -0.04960848391056061 0.029180454090237617 0.015934543684124947 0.002825939329341054 -0.003956761676818132 0.02063066139817238 -0.0021126887295395136 -0.030114425346255302 0.005994026083499193 0.08800411224365234 -0.05067601054906845 0.007588074076920748 0.050881367176771164 0.0022261179983615875 0.00011330545385135338 -0.036666810512542725 -0.0661706030368805 0.04286899045109749 -0.02188093028962612 -0.06469707936048508 -0.007655719760805368 -0.0657942071557045 0.02729514054954052 0.04650673642754555 -0.0036071508657187223 0.017681747674942017 -0.030760517343878746 -0.020840512588620186 -0.05363607406616211 -0.043918441981077194 -0.015858860686421394 -0.11104224622249603 -0.04307122528553009 -0.012052672915160656 -0.0226428359746933 0.023860104382038116 -0.06227374076843262 -0.008752367459237576 -0.02948625199496746 -0.02938799373805523 0.007314164657145739 0.06744711101055145 0.0653446689248085 0.01810930110514164 -0.011990507133305073 -0.09062623977661133 -0.01274788472801447 -0.014338672161102295 0.04865790903568268 -0.0317123644053936 0.022116081789135933 -0.02994568459689617 0.028225162997841835 -0.0009371127234771848 0.053780823945999146 -0.009086723439395428 0.03436524048447609 0.028467804193496704 -0.0188378244638443 -0.016009505838155746 0.013553024269640446 0.03919592499732971 0.013528659008443356 0.035565413534641266 -0.0058579351752996445 0.10153797268867493 -0.0021145562641322613 -0.05218963325023651 -0.06871578097343445 0.018744293600320816 0.01901969313621521 0.0484001487493515 0.01984189823269844 -0.052312497049570084 0.08561141788959503 0.06309977173805237 0.059487007558345795 -0.039578262716531754 0.01721295714378357 -0.007292557507753372 0.003579117124900222 0.05669577047228813 0.03838867321610451 -0.05279611423611641 -0.043904948979616165 0.04056483507156372 0.03384102135896683 -0.01418273150920868 -0.05812807381153107 0.02588501200079918 -0.08982108533382416 -0.0019312077201902866 -0.03668580576777458 -0.07549083977937698 -0.05031733214855194 0.038223352283239365 -0.031328968703746796 -0.022458581253886223 0.007242057006806135 0.029365768656134605 -0.05773022025823593 -0.021571243181824684 -0.013868158683180809 -0.06218409910798073 -0.06661707907915115 0.07446838915348053 -0.0131660345941782 -0.10051336884498596 -0.04253176599740982 -0.00736403651535511 0.03647572547197342 0.010909166187047958 0.006260438822209835 0.04164349287748337 0.06403465569019318 -0.000280911335721612 -0.060311369597911835 0.004893118049949408 -0.005670534446835518 -0.05437846854329109 0.0025635147467255592 0.03148016706109047 -0.038880180567502975 -0.055275775492191315 -0.009889993816614151 -0.04559502750635147 0.02328607253730297 0.026243383064866066 0.05820085108280182 -0.011206068098545074 -0.009933619759976864 -0.007996384985744953 0.031474582850933075 -0.02933911792933941 0.031433023512363434 0.05646747350692749 -0.013707374222576618 0.006378677673637867 -0.02841155044734478 -0.01943371258676052 0.03837306424975395 -0.03608102351427078 0.052398763597011566 -0.030628016218543053 0.09023530036211014 -0.024117713794112206 -0.04743049293756485 0.011893975548446178 -0.09166927635669708 -0.009258463978767395 -0.06338826566934586 -0.05450039356946945 -0.061190083622932434 0.051898665726184845 0.007677612826228142 -0.029263468459248543 0.006618475075811148 -0.056885022670030594 -0.042884524911642075 -0.06975457072257996 -0.011661576107144356 -0.027492234483361244 -0.03755797818303108 -0.012517343275249004 0.04941888153553009 -0.05657381936907768 -0.007637417409569025 0.036138247698545456 0.00104748725425452 -0.05788769945502281 0.06874288618564606 0.002413600916042924 -0.05194953829050064 -0.027271302416920662 -0.07499171793460846 0.005015052389353514 0.07008958607912064 0.03345441445708275 0.02497936598956585 0.05835188925266266 0.050689246505498886 0.07652748376131058 -0.00035839449265040457 0.001777969067916274 -0.042055413126945496 -0.01534195151180029 -0.04790901392698288 0.06494700908660889 0.0016387492651119828 -0.018569612875580788 -0.002665127394720912 0.02900834195315838 0.049754638224840164 -0.028588782995939255 -0.020998893305659294 -0.025286689400672913 0.025388838723301888 -0.03441803157329559 0.047465622425079346 -0.025614041835069656 0.05110274627804756 -0.03503866493701935 -0.07108396291732788 -0.04433120787143707 -0.0029087592847645283 0.015228637494146824 -0.02008690871298313 0.024126840755343437 -0.010282964445650578 -0.06574199348688126 -0.029024258255958557 -0.05155505985021591 0.1064523234963417 -0.06229007989168167 -0.005325361620634794 0.051121942698955536 0.050531480461359024 -0.09260492771863937 0.017610590904951096 0.010210514068603516 -0.032647304236888885 -0.06913387030363083 -0.019445408135652542 0.04370689392089844 -0.0634855180978775 -0.024652376770973206 -0.03608701378107071 -0.009998812340199947 -0.04444320872426033 -0.005121275782585144 0.043536413460969925 0.04556706175208092 0.0411190502345562 -0.051294244825839996 0.03293268755078316 0.017971515655517578 0.00012189299013698474 -0.021353907883167267 0.015537849627435207 -0.07231318950653076 -0.005934863816946745 -0.04477155953645706 -0.042757902294397354 -0.037901680916547775 0.059486836194992065 -0.0040466925129294395 -0.03401258587837219 0.0224838238209486 -0.07123477011919022 -0.023813258856534958 0.001965874806046486 0.02119600586593151 -0.017183350399136543 -0.06526859849691391 -0.04101237282156944 -0.05379725247621536 -0.07717496901750565 -0.020736221224069595 0.00010107896378031 -0.0303118247538805 0.015414360910654068 -0.06061931326985359 0.02285841293632984 0.04202431067824364 0.04874639958143234 0.05265241116285324 0.034362342208623886 0.013213098049163818 -0.05084078758955002 0.017702436074614525 -0.026485338807106018 0.058471038937568665 0.03048243746161461 -0.02352663315832615 -0.03721678629517555 -0.027697110548615456 -0.055298738181591034 0.06333580613136292 -0.024785658344626427 -0.025819512084126472 0.019777001813054085 -0.03357529267668724 -0.011097663082182407 0.008669373579323292 0.03128533437848091 -0.0007066132966428995 -0.004785584751516581 -0.08063339442014694 -0.05449191853404045 0.02434299699962139 -0.026559874415397644 -0.08131001889705658 -0.08398435264825821 -0.007950469851493835 -0.04190237075090408 0.04712405800819397 -0.015501754358410835 -0.0039863381534814835 0.03505486249923706 -0.014982804656028748 -0.061503082513809204 0.00026943295961245894 -0.036036401987075806 0.031860142946243286 -0.007442675530910492 0.044801849871873856 0.009586857631802559 0.009937966242432594 -0.012104754336178303 -0.0030079353600740433 0.008662021718919277 -0.09131666272878647 -0.005007796920835972 0.011629268527030945 -0.022227758541703224 0.010965824127197266 -0.019041020423173904 0.01196768507361412 -0.038007017225027084 -0.017111197113990784 -0.002657151548191905 0.05523360148072243 -0.0015972459223121405 0.029917249456048012 0.021974243223667145 -0.05582798272371292 0.003488309681415558 0.05979905277490616 -0.05423951894044876 -0.05237947404384613 0.039802584797143936 -0.054849326610565186 0.0405365526676178 0.002275611739605665 0.019970964640378952 -0.046752654016017914 -0.057490695267915726 0.004431550391018391 -0.030666979029774666 -0.07068387418985367 -0.0018126857466995716 0.03418170288205147 -0.06833091378211975 -0.05089392140507698 0.027424810454249382 -0.060578882694244385 0.05191052332520485 0.028301142156124115 0.08764113485813141 -0.04575475677847862 -0.017136866226792336 -0.017229799181222916 0.021030696108937263 0.018933475017547607 -0.014638237655162811 -0.06771539896726608 -0.019279202446341515 0.08530296385288239 -0.08068607747554779 0.007990878075361252 0.08105242252349854 -0.039440203458070755 0.06619320809841156 0.016711296513676643 -0.050959937274456024 0.04951313138008118 0.018108291551470757 -0.047294966876506805 0.03422222286462784 -0.08723592013120651 0.04680834710597992 -0.06839585304260254 0.1006668359041214 0.021096011623740196 0.010704798623919487 0.06425774842500687 0.09353281557559967 -0.005730758886784315 0.053121425211429596 -0.05317942053079605 +0.04364706948399544 -0.004543746821582317 0.006001701578497887 0.0643640086054802 -0.08264203369617462 -0.0019346828339621425 -0.010112057439982891 0.02494926191866398 -0.034648120403289795 -0.06266329437494278 -0.039309605956077576 -0.01848786510527134 -0.02186001092195511 0.011725559830665588 0.03412417322397232 -0.009728772565722466 -0.03447394445538521 0.04525604099035263 -0.015480623580515385 -0.055161748081445694 0.026451153680682182 0.006954318843781948 -0.05681391432881355 0.0692460685968399 0.040920618921518326 -0.014137640595436096 -0.04613715410232544 0.01717553846538067 -0.007398552261292934 0.05357113108038902 0.04350360482931137 -0.0386185459792614 0.01626765914261341 -0.04646963253617287 -0.04113549366593361 0.04394618049263954 -0.040518514811992645 0.07539879530668259 0.022623473778367043 -0.02400725521147251 -0.03538655489683151 0.03186286985874176 -0.07159237563610077 -0.04828548803925514 0.07626621425151825 0.027612382546067238 -2.2375412299879827e-05 -0.04060760885477066 0.07028030604124069 0.04636896774172783 0.07557211816310883 -0.006490389816462994 -0.027570946142077446 -0.02601524442434311 -0.016259929165244102 0.016480542719364166 0.053145892918109894 -0.07662466913461685 -0.032697781920433044 0.05307146534323692 -0.05311926454305649 -0.026951083913445473 0.07044052332639694 0.012383210472762585 -0.007377874571830034 0.0018913467647507787 0.0003650236176326871 0.0924997627735138 0.007934234105050564 -0.03716884180903435 -0.0016324351308867335 0.11915342509746552 -0.051772188395261765 -0.025060003623366356 0.07913384586572647 -0.047698263078927994 -0.027543531730771065 0.06761495023965836 0.03193287178874016 0.005000345874577761 0.020735811442136765 -0.06872919201850891 0.08486553281545639 -0.021217690780758858 -0.0429961197078228 -0.025160886347293854 -0.0004875453014392406 -0.03166805952787399 0.0824180543422699 0.030060017481446266 0.009122423827648163 0.05216822400689125 -0.06823814660310745 0.04717171937227249 0.006554230581969023 -0.024003122001886368 0.00503090163692832 -0.10389126092195511 -0.0432855598628521 0.01004004292190075 0.03065309301018715 -0.03357382491230965 0.03133057430386543 -0.004740152508020401 0.055543240159749985 0.03671516850590706 -0.050969962030649185 -0.010180703364312649 0.015206203795969486 0.02371395193040371 0.018215825781226158 0.07036597281694412 0.09695736318826675 0.05196310952305794 0.062467847019433975 -0.027762336656451225 -0.02899388037621975 -0.05808497220277786 -0.04562599956989288 0.008387785404920578 0.0015848056646063924 0.04329387843608856 0.006275160703808069 -0.0627540573477745 -0.01040829997509718 0.03251304104924202 -0.09557779878377914 -0.011154844425618649 0.080838643014431 -0.01023106835782528 0.12425779551267624 0.002763571683317423 -0.04036778211593628 0.018748072907328606 0.0707608014345169 0.025594033300876617 0.013718762435019016 0.04576918110251427 -0.018948597833514214 -0.006881729234009981 0.006817597430199385 0.06909379363059998 0.011500481516122818 -0.08031393587589264 0.053046416491270065 0.018841657787561417 0.03751606121659279 -0.011649097315967083 -0.06366728246212006 -0.0022053366992622614 -0.09152866899967194 -0.0856257826089859 0.0024888948537409306 -0.08440425992012024 -0.010303858667612076 0.026258083060383797 0.025052564218640327 0.011635988019406796 -0.03892909362912178 -0.013673102483153343 -0.07406919449567795 -0.02401808649301529 -0.03759293258190155 -0.06582945585250854 -0.04605318605899811 -0.01897037960588932 -0.006064690183848143 0.04410463571548462 -0.04260827600955963 -0.04335834085941315 -0.03091754950582981 0.00048680478357709944 0.06789183616638184 0.08171902596950531 0.06769304722547531 0.026305140927433968 0.02439720556139946 -0.04194588214159012 0.006291532423347235 -0.01727473922073841 0.010130534879863262 -0.04507940262556076 0.06514298915863037 -0.026656320318579674 -0.0011260187020525336 -0.03397997096180916 0.06062225252389908 -0.04719182476401329 0.0020451494492590427 -0.016247212886810303 -0.05777253583073616 -0.058271050453186035 0.08405593782663345 0.09540355205535889 -0.028794722631573677 -0.0013981375377625227 -0.04440232738852501 0.022212157025933266 0.006968380883336067 -0.015228867530822754 -0.05615774914622307 0.046090226620435715 0.012427149340510368 0.06420700252056122 0.023812158033251762 -0.10659588128328323 0.05149466171860695 0.03193832188844681 0.028764434158802032 -0.06179125979542732 -0.006760191638022661 0.020098445937037468 -0.006196102127432823 0.03737853839993477 0.049261126667261124 0.010921787470579147 -0.01742309331893921 -0.0001539995864732191 0.06572403013706207 -0.0391475185751915 0.001761624007485807 0.018203657120466232 -0.09288757294416428 0.040149349719285965 -0.017139000818133354 -0.06100039184093475 -0.021048061549663544 0.02428356744349003 -0.016478003934025764 -0.011361205019056797 -0.00392046058550477 0.014523845165967941 0.0014368618139997125 -0.03666641563177109 0.015256816521286964 -0.010674197226762772 -0.07840762287378311 0.0956786498427391 0.007985567674040794 -0.029238233342766762 -0.07298088818788528 -0.00471156882122159 0.042308639734983444 -0.00047164407442323864 0.053622614592313766 0.036068905144929886 0.060321222990751266 0.016782622784376144 0.024663155898451805 -0.02261166088283062 -0.015572096221148968 -0.023815952241420746 -0.033506717532873154 0.0445883572101593 -0.04890440031886101 -0.03620404005050659 -0.00045458655222319067 -0.01723330095410347 -0.006921781226992607 0.03416728228330612 0.007368252146989107 -0.028925582766532898 -0.03765295445919037 -0.01661085896193981 0.02677009254693985 -0.01676175184547901 -0.016544677317142487 0.01727568358182907 -0.018209781497716904 0.05712579935789108 -0.037714675068855286 -0.06070369482040405 0.04030502215027809 -0.0023812223225831985 0.022297877818346024 -0.03930296748876572 0.037471406161785126 -0.02955751121044159 -0.09203717857599258 -0.03404593467712402 -0.0446673221886158 -0.06312575936317444 -0.025148916989564896 -0.01562848873436451 -0.020054472610354424 0.1022886261343956 -0.005528068169951439 -0.06238778680562973 -0.060789283365011215 -0.0004239295667503029 -0.03253263235092163 -0.07656712085008621 -0.02090943604707718 -0.02303469367325306 -0.04559234529733658 0.0013454321306198835 0.0025104384403675795 -0.017291586846113205 -0.03597937524318695 -0.01881670579314232 0.012836877256631851 -0.06354796141386032 0.07099233567714691 -0.0017098167445510626 -0.04041653126478195 0.017205843701958656 -0.03785725682973862 0.024203112348914146 0.08136828988790512 0.04669024050235748 0.018341904506087303 0.012115394696593285 0.057944487780332565 0.123841293156147 0.022109737619757652 -0.061337221413850784 -0.044638726860284805 -0.04838700219988823 -0.07701169699430466 0.04943087697029114 -0.03565724566578865 -0.043067049235105515 -0.0035019267816096544 -0.011403657495975494 0.08698523044586182 -0.00984126701951027 0.004140703473240137 -0.040925946086645126 0.03413187712430954 0.01989961601793766 0.0046888357028365135 -0.02346196584403515 -0.023723827674984932 -0.020509690046310425 -0.04239269345998764 -0.030044080689549446 -0.008834986947476864 0.05084219574928284 0.0020828901324421167 0.06192454695701599 -0.03333663567900658 -0.05396758392453194 0.037006061524152756 0.029875101521611214 0.06194094195961952 -0.024267779663205147 0.023352378979325294 0.04680413752794266 -0.013943624682724476 -0.056471843272447586 0.029329106211662292 0.03369166702032089 -0.0280403271317482 -0.037968508899211884 -0.015276479534804821 0.04789096489548683 -0.05751578137278557 -0.013174387626349926 -0.00869294535368681 -0.09237842261791229 -0.02367623895406723 -0.018009977415204048 0.028603002429008484 0.03806926682591438 -0.017339814454317093 0.0048257093876600266 0.012372714467346668 -0.00014935937360860407 -0.023610224947333336 0.014330718666315079 -0.009656183421611786 -0.014266501180827618 0.06786909699440002 -0.05765223503112793 -0.008929228410124779 -0.04238727316260338 0.0701930895447731 -0.0340900644659996 -0.021756872534751892 0.006941423285752535 -0.015209045261144638 -0.0088625093922019 0.0006617368781007826 0.023650676012039185 -0.059624601155519485 0.008362919092178345 -0.04151978716254234 -0.05238278955221176 -0.07806351035833359 -0.01626538671553135 -0.008428666740655899 -0.051923830062150955 -0.025156410411000252 -0.048478107899427414 -0.019626734778285027 0.02501438744366169 -0.014416246674954891 -0.0026630160864442587 0.021000316366553307 0.056527577340602875 -0.04048280790448189 0.025704126805067062 -0.012390349991619587 0.04286682978272438 0.028665946796536446 -0.05396777763962746 0.01377327274531126 0.03102114237844944 -0.029940150678157806 0.05025457218289375 -0.03709767386317253 0.012453492730855942 -0.00927884504199028 0.017393354326486588 0.023230355232954025 -0.05136195570230484 -0.011091278865933418 -0.03486401215195656 0.08479612320661545 -0.05927002429962158 -0.06940702348947525 0.03556835278868675 -0.029643939808011055 -0.10501424968242645 -0.010542768985033035 -0.006148075684905052 -0.0018005089368671179 0.021688874810934067 -0.03728700801730156 0.019372621551156044 0.04223180562257767 -0.045279860496520996 -0.052778009325265884 -0.042381104081869125 -0.04624726623296738 0.04448084905743599 0.015496761538088322 0.07424148172140121 0.0227176733314991 0.009355619549751282 -0.02253592573106289 -0.008786540478467941 -0.016043683513998985 -0.10839507728815079 0.004500273615121841 -0.028042912483215332 -0.03221576288342476 0.020070839673280716 0.0026593348011374474 -0.018259167671203613 -0.006748005747795105 -0.05741436034440994 -0.01656389608979225 0.0998002290725708 -0.031317777931690216 -0.030339693650603294 0.06009172275662422 0.012633680365979671 -0.002856313483789563 0.0472363643348217 -0.08102703094482422 -0.08235885947942734 -0.004504956305027008 0.006284995470196009 0.03624632582068443 0.03961164876818657 0.010817921720445156 -0.05343947932124138 -0.02609327808022499 -0.016327515244483948 -0.010715687647461891 -0.0732026919722557 0.01397229079157114 0.0053750802762806416 -0.08016970753669739 -0.09454187750816345 -0.005996074993163347 -0.06103616580367088 0.06144213303923607 0.02726113796234131 0.0604301281273365 -0.002104279352352023 -0.0007714347448199987 0.014810326509177685 -0.03395051136612892 0.02184978500008583 0.00318825407885015 -0.0812428742647171 0.013772952370345592 0.08600067347288132 -0.07442931085824966 0.010849998332560062 0.03449664264917374 -0.050409119576215744 0.012509766966104507 0.033135730773210526 -0.030617505311965942 0.0759182795882225 0.00810237880796194 0.0023273348342627287 0.07576286792755127 -0.07322637736797333 0.112892746925354 -0.04781365394592285 0.04820182919502258 -0.005635960027575493 0.0186723992228508 0.10735506564378738 0.07017607241868973 -0.04148348420858383 -0.0038723705802112818 -0.08456627279520035 +0.008356054313480854 -0.04196074604988098 -0.03233652561903 0.03972102329134941 -0.08032242953777313 -0.04298015311360359 0.027466999366879463 0.02040228620171547 -0.030663486570119858 -0.03550662100315094 -0.017344031482934952 -0.02353384904563427 -0.03457571566104889 -0.0013099695788696408 0.04749802127480507 -0.003856606548652053 -0.053079795092344284 0.031082920730113983 -0.05117464438080788 0.015879347920417786 0.06224600970745087 0.008029562421143055 -0.0778999999165535 0.03820670023560524 -0.015859246253967285 -0.013393365778028965 -0.015035895630717278 0.01941419392824173 -0.024167034775018692 0.032740648835897446 0.04632452875375748 -0.01048828661441803 0.0028498226311057806 -0.0293149184435606 -0.04898221418261528 0.03143619745969772 -0.004139465745538473 0.10087347775697708 0.0512237474322319 -0.02333902195096016 -0.05046067386865616 0.02853228896856308 -0.0580781064927578 -0.06493232399225235 0.04904140904545784 -0.03017784096300602 0.011540865525603294 -0.054196033626794815 0.053520578891038895 0.09556872397661209 0.06245897710323334 0.004505526274442673 -0.024333130568265915 -0.013675092719495296 -0.024425998330116272 -0.00955510325729847 0.018292833119630814 -0.06506754457950592 -0.03567749261856079 0.029255397617816925 -0.042311593890190125 0.027469869703054428 0.03211864456534386 0.0029247989878058434 0.024015866219997406 -0.006167972926050425 0.01604897528886795 0.044966354966163635 0.022437559440732002 -0.03842870891094208 -0.050046492367982864 0.08674938231706619 -0.0782361701130867 -0.04619520902633667 0.04934338107705116 0.004331097472459078 0.017017649486660957 0.0018245907267555594 -0.013739151880145073 -0.03816515952348709 -0.019245166331529617 -0.036095019429922104 0.12572160363197327 -0.07597789913415909 -0.013820385560393333 -0.048267971724271774 -0.010340888053178787 -0.06300566345453262 0.03438272699713707 0.009749354794621468 0.022776193916797638 0.03532926365733147 -0.060193002223968506 0.032393500208854675 -0.010386297479271889 0.02001425065100193 0.03109225258231163 -0.16239012777805328 -0.030410006642341614 -0.0022041993215680122 0.007589429616928101 -0.047641821205616 0.05381082370877266 -0.021354591473937035 0.009436174295842648 0.036799900233745575 -0.0726926252245903 -0.011699086986482143 -0.007499221246689558 0.03011004626750946 0.007873164489865303 0.08187726885080338 0.08630107343196869 0.05112956091761589 0.0356854647397995 -0.028715159744024277 -0.03806346282362938 -0.02929738163948059 -0.011546849273145199 0.03322238475084305 -0.021458374336361885 0.02535741962492466 0.022299490869045258 -0.041744958609342575 -0.022019410505890846 0.028053583577275276 -0.109824538230896 -0.03110177256166935 0.023342687636613846 -0.043646443635225296 0.09418781101703644 0.0036973843816667795 -0.030299784615635872 -0.0017579650739207864 0.06500154733657837 0.008388482965528965 0.01995973475277424 0.021026303991675377 -0.017405852675437927 -0.043695054948329926 0.007026645354926586 0.09484447538852692 -0.002905917586758733 -0.002603172557428479 0.00798164214938879 0.0736883133649826 0.02577611245214939 -0.010142912156879902 -0.07884696871042252 0.060317981988191605 -0.12327639013528824 -0.06805620342493057 -0.018893394619226456 -0.10392493009567261 0.031026754528284073 0.04683970287442207 0.009912506677210331 0.0794309452176094 -0.005550045985728502 -0.003339234506711364 -0.04108850657939911 -0.06296403706073761 -0.029615456238389015 -0.03347036987543106 -0.031062614172697067 0.013106961734592915 -0.004214534070342779 -0.027095915749669075 0.015684714540839195 -0.07283204793930054 -0.005568660795688629 0.015451375395059586 0.049392346292734146 0.06479410082101822 0.045100703835487366 0.013903003185987473 -0.008410727605223656 -0.04003937542438507 -0.02961764670908451 -0.02339790016412735 0.006133876740932465 -0.07052641361951828 0.05643898621201515 -0.06572278589010239 -0.048563696444034576 -0.03464122116565704 0.02313288301229477 -0.0325784869492054 -0.008681765757501125 -0.03777433559298515 -0.05836028233170509 -0.05903495103120804 0.06749509274959564 0.10401035845279694 -0.04942522943019867 0.04386436566710472 -0.01002439484000206 0.07905980944633484 -0.031008120626211166 -0.01211579330265522 -0.07307939231395721 0.04424220323562622 0.0034713896457105875 0.020897379145026207 0.04583761468529701 -0.07390329986810684 0.056570712476968765 -0.00667983666062355 -0.007001599762588739 -0.057287152856588364 0.05399460345506668 0.029639817774295807 0.024897165596485138 0.012202078476548195 0.026408255100250244 -0.021572239696979523 -0.012032500468194485 -0.009630372747778893 0.04941117390990257 -0.02303784154355526 0.0541006438434124 0.01591031439602375 -0.060163937509059906 0.05082909017801285 0.011801605112850666 -0.08255146443843842 0.004393311217427254 -0.030453545972704887 -0.04204791784286499 -0.0201646089553833 0.014188091270625591 0.06005816161632538 -0.013219435699284077 -0.05109216645359993 0.016518276184797287 0.04180654510855675 -0.03970775008201599 0.08533290028572083 -0.04752105847001076 -0.04347999393939972 -0.03899729251861572 -0.0023923288099467754 -0.006000827997922897 0.03326420113444328 -0.0031864535994827747 0.03808669000864029 0.07940149307250977 0.022523226216435432 -0.010363810695707798 -0.007996984757483006 -0.10304742306470871 -0.03928225487470627 -0.024263033643364906 0.03438066691160202 -0.038478970527648926 -0.09352486580610275 -0.03605683892965317 -0.07203713059425354 -0.007805143017321825 -0.005146321840584278 0.058234427124261856 -0.020908959209918976 -0.014097378589212894 -0.01712760701775551 0.015456912107765675 0.01187962107360363 -0.08505947887897491 -0.01932201161980629 -0.040307823568582535 -0.012256504036486149 0.0039017738308757544 -0.006617880892008543 0.007548104505985975 0.00013071176363155246 0.045001715421676636 -0.014163458719849586 0.007631705608218908 -0.0686485692858696 -0.10005510598421097 -0.022062363103032112 -0.06286422163248062 -0.09901406615972519 -0.016370505094528198 -0.005220678169280291 -0.04180724546313286 0.07151836901903152 0.047851670533418655 -0.03987615555524826 -0.06317146867513657 -0.011630344204604626 -0.062418822199106216 -0.0432155504822731 -0.0245850570499897 -0.00029794263537041843 -0.0722745954990387 -0.028931116685271263 -0.0007504832465201616 -0.04565907642245293 -0.019803734496235847 0.005960254464298487 0.01563095860183239 -0.02544070966541767 0.059667203575372696 -0.012706908397376537 -0.0030315713956952095 0.023444050922989845 -0.06323760002851486 0.07611794769763947 0.06533637642860413 0.05742665380239487 0.07105959206819534 0.04467283934354782 0.032812412828207016 0.053905099630355835 0.0095641715452075 -0.006672232411801815 -0.022624855861067772 -0.02831108868122101 -0.09417471289634705 0.020147671923041344 -0.01802944764494896 -0.037445198744535446 0.0005785079556517303 -0.0023890859447419643 0.0922972708940506 -0.019425157457590103 0.005032464861869812 -0.04591577127575874 0.009003830142319202 0.0146440165117383 0.007959427312016487 -0.013995762914419174 -0.031211398541927338 0.013032186776399612 -0.07801847159862518 -0.0030595636926591396 -0.05317047983407974 0.007826999761164188 -0.0013994502369314432 0.04642863571643829 -0.00011701836774591357 -0.04435989633202553 0.006965268403291702 0.02971990406513214 0.10201217234134674 -0.0408230721950531 0.027304233983159065 0.04088805243372917 -0.014345974661409855 -0.08440522104501724 -0.05140828341245651 0.00764191010966897 0.003869937267154455 -0.04478204995393753 0.0027220628689974546 0.07557254284620285 -0.028799640014767647 -0.04818614572286606 -0.010543733835220337 -0.013767626136541367 -0.016727421432733536 0.029798325151205063 -0.011667516082525253 0.05136048048734665 0.006159707438200712 0.02234814316034317 0.010056741535663605 0.022249272093176842 0.02140321582555771 -0.01548693049699068 0.018631327897310257 0.03499374911189079 0.07462731003761292 0.0005801619845442474 -0.10605722665786743 -0.07612477242946625 0.04307571426033974 -0.042346708476543427 -0.03924443945288658 -0.07130210846662521 0.00948962289839983 0.011678005568683147 0.06800933182239532 -0.03852856159210205 -0.027838973328471184 0.021810157224535942 0.012622479349374771 -0.04281534627079964 -0.10326405614614487 -0.0133281284943223 0.010782569646835327 -0.02659345045685768 -0.016376150771975517 -0.06622987985610962 -0.01291610486805439 0.028302883729338646 -0.04548487812280655 0.016995426267385483 0.035771071910858154 0.013712681829929352 0.011275200173258781 0.0259519275277853 -0.008450684137642384 0.0478738471865654 -0.011331208981573582 -0.05149875581264496 0.004105179104954004 0.018644895404577255 -0.04236544668674469 0.021422915160655975 -0.06752143800258636 -0.026013018563389778 -0.009540464729070663 0.008830904960632324 -0.001098789507523179 -0.025545451790094376 -0.0002193853142671287 -0.060623154044151306 0.051582831889390945 -0.07056499272584915 -0.042269863188266754 0.04216984659433365 -0.014125942252576351 -0.07440473884344101 0.027487177401781082 -0.024814805015921593 0.0111723393201828 0.08015670627355576 -0.026458198204636574 0.050725847482681274 -0.012018518522381783 -0.08160116523504257 -0.02580563724040985 -0.07721813023090363 -0.013682974502444267 0.003906433470547199 0.02518470212817192 0.0627596378326416 0.012528256513178349 -0.03130001947283745 -0.03264298662543297 -0.03845240920782089 0.0027152844704687595 -0.05341724678874016 -2.1296300474205054e-05 -0.03837186470627785 0.05440841615200043 0.047618117183446884 -0.01966770365834236 0.04426143318414688 -0.00958236400038004 -0.03494640067219734 -0.034135639667510986 0.06540097296237946 -0.021732889115810394 -0.00906345620751381 0.05478377267718315 -0.025076989084482193 -0.009290440008044243 0.04600759595632553 -0.015328655019402504 -0.023579658940434456 0.012891479767858982 -0.022685673087835312 0.01292935200035572 0.046740442514419556 0.06547823548316956 -0.0022091905120760202 -0.04453345388174057 -0.04779345914721489 0.0047546327114105225 -0.025550907477736473 0.021230647340416908 0.04557640105485916 -0.048714976757764816 -0.060206279158592224 -0.053191617131233215 -0.04325822740793228 0.06910949945449829 -0.05530925095081329 0.041179146617650986 -0.0276555884629488 0.026918066665530205 0.023913975805044174 -0.01505716610699892 0.05959707126021385 -0.0035476109478622675 -0.10200891643762589 -0.027161993086338043 0.120704784989357 0.009993134997785091 0.034229326993227005 0.07749281823635101 -0.011690163053572178 0.05370050668716431 0.021413244307041168 0.028547417372465134 -0.004879762884229422 0.0076462142169475555 -0.005951477214694023 0.0594274066388607 -0.043762460350990295 0.07523445039987564 -0.04042207449674606 0.08211412280797958 0.01021824311465025 -0.00859755463898182 0.11491590738296509 0.06170995533466339 0.02689453586935997 -0.0091270562261343 -0.04172678291797638 +0.050080306828022 -0.030132587999105453 -0.024197442457079887 0.04405517876148224 -0.06525301188230515 -0.06868176907300949 0.0021597258746623993 0.03386320918798447 0.006312776822596788 -0.015017510391771793 -0.07974236458539963 -0.02176719345152378 -0.004447357729077339 0.002422318095341325 0.025786329060792923 -0.028310563415288925 -0.058023128658533096 0.03117435611784458 -0.027790071442723274 -0.030465789139270782 0.021997099742293358 -0.013839290477335453 -0.0902172178030014 0.07271896302700043 0.015273544937372208 0.026472797617316246 -0.07770883291959763 0.006020185071974993 -0.007423012051731348 0.027920616790652275 0.04065660759806633 0.005153322126716375 0.036164894700050354 -0.057944878935813904 -0.04037129133939743 0.02116822451353073 -0.04282136633992195 0.08898766338825226 -0.032706957310438156 0.006907043047249317 -0.06217314675450325 0.026874182745814323 -0.07213377207517624 -0.03618113324046135 0.02750415727496147 0.020066965371370316 0.021368136629462242 -0.004956956487149 0.031002352014183998 0.014874087646603584 0.07426720857620239 -0.02356654964387417 -0.006222613155841827 -0.014436440542340279 -0.028316939249634743 0.010682291351258755 0.03510143607854843 -0.038430240005254745 -0.04213261231780052 0.0231024157255888 -0.11407779157161713 -0.005173060577362776 0.004641572013497353 -0.02840355969965458 -0.043665554374456406 -0.01469194795936346 0.0012720078229904175 0.10903815925121307 -0.003461641725152731 -0.03392181545495987 0.03981120511889458 0.0640551745891571 -0.07029115408658981 -0.02746390551328659 0.04654628783464432 -0.06649208813905716 -0.014507866464555264 0.08579793572425842 0.007841167040169239 0.009817141108214855 0.009824590757489204 -0.02420780435204506 0.1350560039281845 -0.005813981406390667 -0.09169232845306396 -0.029132969677448273 -0.004067497327923775 -0.03569580242037773 0.05052381008863449 0.018552372232079506 0.017794804647564888 0.08839606493711472 -0.031023863703012466 0.04182944446802139 0.05163029208779335 0.013291457667946815 0.026330864056944847 -0.11979302763938904 -0.06857723742723465 0.03332051262259483 -0.011153033934533596 -0.0039315237663686275 0.04751597344875336 -0.005787842907011509 0.04549700766801834 0.021916775032877922 -0.03571581467986107 0.0005668101366609335 0.018036190420389175 0.032813359051942825 0.03747778385877609 0.056569840759038925 0.04970404505729675 0.041453808546066284 0.02861655317246914 -0.00653576897457242 0.03796343505382538 -0.03974079340696335 -0.05906665697693825 0.019759733229875565 0.0087739834561944 0.04692038893699646 -0.0038975642528384924 -0.06705670803785324 -0.02288844995200634 0.03518595173954964 -0.10679610073566437 -0.025611817836761475 0.06738735735416412 -0.034650225192308426 0.10413076728582382 0.025037774816155434 -0.005989754572510719 0.025963444262742996 0.07219399511814117 0.02023070491850376 0.019772609695792198 0.01655721478164196 0.007127999793738127 -0.02258923090994358 -0.02388935722410679 0.030399922281503677 -0.019957076758146286 -0.05525560304522514 0.09020699560642242 0.054787810891866684 0.002925289561972022 -0.04169224202632904 -0.026078125461935997 -0.01535737793892622 -0.060455720871686935 -0.07079271972179413 0.009601451456546783 -0.046754054725170135 -0.01851058565080166 0.014424548484385014 0.01938774436712265 0.03161473199725151 -0.03732458874583244 -0.02450101636350155 -0.07716229557991028 -0.02321985922753811 -0.037970539182424545 -0.053714483976364136 -0.03173651918768883 -0.0019819072913378477 -0.01724601909518242 0.03492492809891701 -0.043031271547079086 -0.019328348338603973 -0.003908401355147362 -0.014395876787602901 0.0162171833217144 0.0879494771361351 0.05315983295440674 0.027851255610585213 0.038389358669519424 -0.027203166857361794 -0.000916902965400368 -0.06429511308670044 0.012014572508633137 -0.0069414726458489895 0.041611384600400925 -0.020572755485773087 0.02302776649594307 0.01327272318303585 0.03673100471496582 -0.054290201514959335 0.03659844771027565 -0.009405124932527542 -0.0040725404396653175 -0.05780855566263199 0.0502319261431694 0.09375356137752533 -0.019159415736794472 0.04612976685166359 -0.04080543294548988 0.06358202546834946 -0.02070731297135353 -0.004731860477477312 -0.05122463405132294 0.049071893095970154 0.0030465770978480577 0.07246154546737671 0.030548598617315292 -0.0826408714056015 0.09345788508653641 0.05863938853144646 0.04200156405568123 -0.054270315915346146 0.006396775133907795 0.003706088289618492 -0.01738252118229866 0.0902012512087822 0.08941201865673065 0.011002909392118454 -0.018003279343247414 0.013272703625261784 0.03515790030360222 -0.037283752113580704 0.012041113339364529 0.005839335732161999 -0.10586220771074295 0.015641575679183006 -0.08583512902259827 -0.06922394782304764 -0.024263650178909302 0.047227904200553894 -0.027826998382806778 0.015077803283929825 -0.032768622040748596 0.008533966727554798 -0.013112569227814674 -0.06102849170565605 -0.013016012497246265 0.00024676855537109077 -0.09464722126722336 0.10503674298524857 0.02172146737575531 -0.09499867260456085 -0.058779194951057434 0.01824921928346157 0.03400527685880661 0.0064857047982513905 0.037189289927482605 0.02548249624669552 0.11583739519119263 0.03754280135035515 0.01157771423459053 0.024171998724341393 -0.011885133571922779 -0.029469402506947517 0.00987093336880207 0.016686182469129562 -0.06497468054294586 -0.004516372457146645 0.029477400705218315 -0.04083745926618576 -0.024665359407663345 0.005388680845499039 0.016379809007048607 -0.0004340977466199547 -0.045927148312330246 -0.023442212492227554 0.03270157426595688 -0.05802115797996521 -0.0278665442019701 0.0379333570599556 -0.015263504348695278 0.05500932037830353 -0.06307825446128845 -0.07478466629981995 0.013979270122945309 0.015163627453148365 -0.003892963519319892 -0.07103438675403595 0.0504305362701416 -0.009044899605214596 -0.07150880992412567 0.0008683454361744225 -0.05948338657617569 -0.03154319152235985 -0.033144015818834305 -0.0008930513868108392 -0.02624722570180893 0.0918702483177185 0.005751452408730984 -0.06334761530160904 -0.06327518820762634 -0.02630762755870819 -0.04258137196302414 -0.04157208278775215 0.012036182917654514 -0.007512432057410479 -0.031064923852682114 -0.04733985662460327 0.06346917897462845 -0.036592233926057816 -0.023035792633891106 0.0209734495729208 -0.032905787229537964 -0.09126327931880951 0.05066271871328354 -0.002159136813133955 -0.04531148448586464 0.032769884914159775 -0.059860534965991974 -0.007775501348078251 0.11140525341033936 0.050175536423921585 -0.003695968072861433 0.0642971619963646 0.02384107932448387 0.10061398893594742 -0.02341841720044613 -0.03516538068652153 -0.019745750352740288 -0.030590636655688286 -0.012651395983994007 0.023519184440374374 -0.032931338995695114 -0.0022354426328092813 0.0156908817589283 -0.003369749989360571 0.04004868119955063 -0.014284714125096798 -0.04929286241531372 -0.03148767352104187 -0.013282773084938526 -0.010007351636886597 0.0006399225094355643 0.035381779074668884 0.026061473414301872 -0.03888801857829094 -0.059300631284713745 -0.05799432471394539 -0.03116770274937153 0.035496294498443604 -0.013817748986184597 0.022065289318561554 -0.04760827124118805 -0.01590953953564167 0.008462932892143726 -0.03355697914958 0.08710858225822449 -0.06395642459392548 -0.001843105535954237 0.07318664342164993 0.030851734802126884 -0.06994811445474625 0.023079028353095055 0.06901558488607407 -0.0662253201007843 -0.05387518182396889 -0.010834786109626293 0.005057850852608681 -0.05447002872824669 0.006974386051297188 0.03589426353573799 -0.04721315950155258 -0.01311303861439228 0.03711164370179176 0.035789601504802704 0.03460374101996422 -0.013020601123571396 -0.015628743916749954 0.0017840791260823607 0.01684602163732052 0.04064646363258362 -0.029585134238004684 0.025471597909927368 -0.022024858742952347 0.04454151168465614 -0.05380794033408165 -0.054663680493831635 -0.04598047956824303 0.04236886650323868 0.009657401591539383 -0.004342676140367985 -0.03952760994434357 -0.013280264101922512 -0.037655334919691086 0.012044526636600494 0.04067138954997063 -0.08148123323917389 0.0024965754710137844 -0.06543514877557755 -0.08862454444169998 -0.07926321029663086 -0.04706783965229988 -0.007833419367671013 -0.038283444941043854 0.04065362736582756 -0.033771950751543045 0.004639421124011278 0.009056437760591507 -0.014310026541352272 0.01430666632950306 0.07213994115591049 0.023707721382379532 -0.008678204379975796 0.04129921272397041 -0.033045489341020584 0.06500446051359177 0.03863068297505379 -0.06304139643907547 0.02565247192978859 0.01518947258591652 -0.051461994647979736 0.051928456872701645 -0.03702700510621071 -0.0011444503907114267 -0.00077870610402897 -0.041422419250011444 0.022527243942022324 0.030615583062171936 0.020012713968753815 -0.07712116837501526 0.04006824269890785 -0.04531954601407051 -0.038339320570230484 0.04143742471933365 -0.03161158785223961 -0.053320225328207016 -0.04825820028781891 -0.018843507394194603 -0.004755091387778521 0.027690930292010307 -0.05413820222020149 0.03115876577794552 0.0506134107708931 -0.05749072879552841 -0.0670497789978981 -0.025585012510418892 0.004823256749659777 0.06258273124694824 -0.004741920158267021 0.07490934431552887 0.04940098151564598 -0.00295884907245636 -0.013888176530599594 -0.028727123513817787 0.005044683814048767 -0.05248637497425079 0.019307317212224007 -0.009378181770443916 -0.019721366465091705 -0.0011818466009572148 -0.004284912254661322 -0.010052282363176346 -0.05381248518824577 0.004247086122632027 -0.058739081025123596 0.07260407507419586 0.025399984791874886 0.020784027874469757 0.01130611915141344 -0.030364707112312317 0.019133564084768295 0.000984218786470592 -0.014629155397415161 -0.05615117773413658 -0.01629716157913208 -0.05393015593290329 0.033851370215415955 0.030461644753813744 -0.008919700048863888 -0.02559550292789936 -0.050578340888023376 0.010970036499202251 0.02131420001387596 -0.05255649983882904 -0.015538905747234821 0.034411218017339706 -0.02859526500105858 -0.04339449107646942 -0.007004864513874054 -0.05127504840493202 0.08167724311351776 0.07558773458003998 0.03327559307217598 -0.021336480975151062 -0.012541057541966438 0.001219139201566577 -0.00518953800201416 -0.025823166593909264 -0.038276556879282 -0.07834508270025253 0.01664699614048004 0.07075759768486023 -0.053741805255413055 0.013299260288476944 0.050883933901786804 -0.049778662621974945 0.027573933824896812 0.005010643508285284 -0.03669760003685951 0.07066895812749863 -0.009761498309671879 -0.01564200222492218 0.046963464468717575 -0.09530161321163177 0.10240576416254044 -0.050312791019678116 0.07643347233533859 0.008300487883388996 -0.05240205302834511 0.09560230374336243 0.07783979922533035 -0.010862182825803757 0.004483431112021208 -0.0751403272151947 +0.027244165539741516 -0.02764979749917984 -0.032864153385162354 0.046883512288331985 -0.07728751748800278 -0.05033036321401596 -0.01939493417739868 0.0501365065574646 -0.0006540610920637846 -0.03827977180480957 -0.04518067091703415 -0.0221122857183218 0.002122214762493968 -0.0004012710996903479 0.032541003078222275 -0.06205318123102188 -0.08108019083738327 0.04145100712776184 -0.015040055848658085 -0.02972123585641384 -0.001047237659804523 -0.006396753713488579 -0.07546944171190262 0.05809945985674858 -0.00012062472524121404 0.022131938487291336 -0.04622682183980942 0.022044062614440918 0.004003324080258608 0.04153546318411827 0.07004814594984055 -0.04250068962574005 0.03328942507505417 -0.06872735172510147 -0.05342971906065941 -0.0021342409308999777 -0.036270905286073685 0.08590932935476303 0.01916624791920185 -0.046517349779605865 -0.07081440091133118 0.051810331642627716 -0.03784030303359032 -0.05362701416015625 0.05636210739612579 0.011709564365446568 -0.014882681891322136 -0.006690705195069313 0.020222986117005348 0.0025413227267563343 0.0548362210392952 0.028812110424041748 -0.03545171022415161 -0.03205640986561775 -0.03137366473674774 0.022521592676639557 0.019127970561385155 -0.067075714468956 -0.0596439391374588 0.054251778870821 -0.10117694735527039 0.030569909140467644 0.032486386597156525 0.018448565155267715 -0.018127625808119774 -0.03586963564157486 -0.009647546336054802 0.06885585933923721 0.0035879130009561777 -0.02031877636909485 0.014537557028234005 0.08772656321525574 -0.055128563195466995 -0.03753647580742836 0.046708330512046814 -0.05784901976585388 -0.0027114865370094776 0.012059958651661873 0.005073114763945341 -0.007848040200769901 0.03560209274291992 -0.002089653629809618 0.13923844695091248 0.008889440447092056 -0.04843093454837799 -0.01926070638000965 -0.004007880575954914 -0.04518120363354683 0.06712616235017776 0.010034985840320587 0.027813956141471863 0.05294404923915863 -0.009456056170165539 0.05181952938437462 0.002328205620869994 0.044931843876838684 0.002684891689568758 -0.11342713981866837 -0.01682865619659424 -0.012549088336527348 0.009722394868731499 -0.03211892396211624 0.039326995611190796 0.02466045878827572 0.011855628341436386 0.029679544270038605 -0.07280721515417099 0.010524158366024494 0.04895848408341408 0.02538546361029148 0.052610453218221664 0.1126876175403595 0.03622833639383316 0.0704556256532669 0.07147122919559479 0.029284855350852013 -0.002376225311309099 -0.035816267132759094 -0.024487920105457306 0.04924502223730087 0.005223327782005072 0.014776816591620445 0.03365197777748108 -0.08985389024019241 -0.012931966222822666 0.03663231432437897 -0.11250089108943939 -0.01928616873919964 0.019892781972885132 -0.020579803735017776 0.10508962720632553 0.031155651435256004 -0.011541355401277542 0.03806488960981369 0.04704268276691437 0.029611555859446526 -0.004388485569506884 0.002684706123545766 -0.011370999738574028 -0.03162681683897972 -0.06100481376051903 0.07732078433036804 0.005903090350329876 -0.03461030498147011 0.0849127545952797 0.01023037638515234 0.032128553837537766 0.010410499759018421 -0.06954356282949448 -0.008118914440274239 -0.08795507997274399 -0.057965993881225586 0.05154567211866379 -0.0335116870701313 -0.013385090976953506 0.01519032847136259 0.021904170513153076 -0.008602786809206009 -0.02211163192987442 -0.06997750699520111 -0.01772930473089218 -0.00965715479105711 -0.04053690657019615 -0.09689619392156601 0.013474537990987301 0.0036431869957596064 -0.021793147549033165 0.040872421115636826 -0.07842661440372467 -0.0025269908364862204 0.004830977879464626 0.0017412492306903005 0.033061426132917404 0.07392269372940063 0.028048207983374596 -0.00047740794252604246 0.04023939371109009 -0.033752765506505966 -0.010532197542488575 -0.02430892549455166 0.026901334524154663 -0.03883863240480423 0.06178960204124451 -0.053416669368743896 0.019577395170927048 -0.019103309139609337 0.025424066931009293 -0.06019815057516098 0.037603091448545456 -0.036682382225990295 -0.04274498671293259 -0.05630814656615257 0.06056487187743187 0.0434458926320076 -0.005004891660064459 0.012790593318641186 0.013454628176987171 0.04372744262218475 0.007218511775135994 0.008932462893426418 -0.05026886984705925 0.0331234484910965 0.00039250453119166195 0.029249321669340134 0.010628563351929188 -0.05699613317847252 0.07476222515106201 0.020758751779794693 0.04253997281193733 -0.02722555585205555 0.030886616557836533 0.045459046959877014 -0.017404673621058464 0.03262176364660263 0.08358517289161682 -0.013779763132333755 -0.02567555382847786 0.04531703516840935 0.06215434893965721 -0.07519379258155823 0.010750253684818745 -0.0020797746255993843 -0.08303625136613846 0.013277546502649784 -0.05014559254050255 -0.08876020461320877 -0.005968714132905006 0.02471163123846054 -0.021830473095178604 -0.060872357338666916 0.023535657674074173 0.01840898022055626 0.01236141286790371 -0.016853926703333855 -0.017596900463104248 0.012558041140437126 -0.08376562595367432 0.10473591834306717 -0.019017504528164864 -0.06842034310102463 -0.03964800015091896 -0.002666300628334284 0.01892182230949402 0.01657557114958763 0.00702547887340188 0.060658764094114304 0.08682990819215775 0.0567329078912735 -0.04070303589105606 0.03971700370311737 -0.04097718745470047 -0.0630943551659584 0.03697400540113449 0.08941728621721268 -0.04356870427727699 -0.031094176694750786 -0.004302725661545992 -0.0421283021569252 0.03861309587955475 -0.014575622044503689 0.004135566763579845 -0.04823775216937065 -0.013111003674566746 -0.06064147874712944 0.04081764072179794 -0.0087139792740345 -0.011442821472883224 0.047405123710632324 -0.02306811884045601 0.05022144690155983 -0.011754225008189678 -0.05421120673418045 0.044109467417001724 -0.004388737492263317 0.04617439955472946 -0.04630381986498833 0.06284267455339432 0.012431681156158447 -0.05597207695245743 0.002050344832241535 -0.08131518214941025 -0.08210619539022446 -0.018663862720131874 -0.040373336523771286 -0.033873118460178375 0.09302591532468796 0.040239039808511734 -0.02125721238553524 -0.053713954985141754 -0.04566585645079613 0.005230983719229698 -0.07771121710538864 -0.06444880366325378 0.028562437742948532 -0.07193984091281891 -0.0121916513890028 0.03690702095627785 -0.05331336334347725 -0.023917799815535545 0.029632195830345154 -0.006754045374691486 -0.06643614172935486 0.07429253309965134 -0.021508360281586647 -0.0017396957846358418 0.017153730615973473 -0.06932559609413147 0.0406462587416172 0.066622793674469 0.04087039455771446 0.015130273066461086 0.04289032146334648 0.038766320794820786 0.12645022571086884 0.004407100845128298 -0.036928076297044754 -0.029396923258900642 -0.07589251548051834 -0.05593595653772354 0.06136368587613106 -0.03633105754852295 -0.024627499282360077 0.03160718455910683 0.013649079017341137 0.031928904354572296 -0.03536320850253105 0.019099559634923935 -0.04543326050043106 0.02132323756814003 -0.02956504561007023 0.03199124336242676 -0.02744181826710701 0.00317043112590909 0.008403013460338116 -0.04059159755706787 -0.055484212934970856 -0.028054257854819298 0.06144014745950699 -0.01203550212085247 0.03796026110649109 0.010426902212202549 -0.04257666692137718 0.005557812284678221 -0.0021077687852084637 0.09267988055944443 -0.08550242334604263 0.013969551771879196 0.05416397377848625 0.06543400138616562 -0.029033511877059937 0.02229185216128826 0.005860595963895321 -0.04132262244820595 -0.005644043441861868 -0.01175752468407154 0.04217906296253204 -0.07447180896997452 -0.03794233128428459 0.01675960049033165 -0.027252325788140297 -0.004594451282173395 0.015226652845740318 0.024015506729483604 0.054587796330451965 -0.018021080642938614 -0.0040014139376580715 0.020196858793497086 -0.005051465705037117 0.034024614840745926 0.002186607802286744 0.045650020241737366 -0.016799362376332283 0.05767079070210457 -0.04045511782169342 -0.038923230022192 -0.033479154109954834 0.062314409762620926 -0.02677777409553528 0.03772978484630585 -0.002654064679518342 0.009639079682528973 -0.013211800716817379 0.02562820352613926 0.04148218035697937 -0.06795965880155563 -0.012319300323724747 -0.02465025894343853 -0.07713143527507782 -0.06745453923940659 -0.045362766832113266 -0.010719391517341137 -0.05110015720129013 0.01750904507935047 -0.07212253659963608 0.034580353647470474 0.053047262132167816 -0.009681000374257565 0.029618462547659874 0.054681964218616486 0.008434788323938847 -0.0014725567307323217 0.008596093393862247 -0.007253448478877544 0.07665400207042694 0.020591409876942635 -0.051750000566244125 0.007508218754082918 0.061623506247997284 -0.048392388969659805 0.03206969425082207 -0.014323825016617775 0.030568694695830345 0.028874825686216354 -0.005586146377027035 0.020129695534706116 -0.02520691603422165 0.019751034677028656 -0.0011714942520484328 0.028932349756360054 -0.017021488398313522 -0.05971368029713631 0.03818880021572113 -0.03791351988911629 -0.08789093792438507 -0.025029299780726433 -1.2403201253619045e-05 -0.04036055505275726 0.0535823293030262 -0.03380410373210907 0.016976704820990562 0.060750801116228104 -0.04598832130432129 -0.0462728887796402 0.013066697865724564 -0.06342700868844986 0.05722979083657265 -0.008129412308335304 0.05547817796468735 0.007349265273660421 0.028539374470710754 -0.014867018908262253 -0.026043996214866638 -0.022693568840622902 -0.08043315261602402 0.018766673281788826 -0.004001741297543049 -0.045288123190402985 0.010818548500537872 0.006672750227153301 0.015009155496954918 -0.04639880359172821 0.0007885713130235672 -0.01531864982098341 0.06210514158010483 -0.010635114274919033 0.00240417686291039 0.013529852963984013 -0.04803674295544624 0.0012033847160637379 0.029109925031661987 -0.037211593240499496 -0.08016343414783478 -0.015623766928911209 -0.04399413242936134 0.0538589172065258 0.021071672439575195 0.026317937299609184 -0.026587823405861855 -0.0842280462384224 0.024786265566945076 0.0036016504745930433 -0.03596623241901398 0.0011922386474907398 0.0003749394090846181 -0.044064946472644806 -0.04222399368882179 -0.016015034168958664 -0.08072657138109207 0.08892977982759476 0.04480563849210739 0.044539470225572586 -0.03852842375636101 -0.007687499281018972 0.04215918108820915 -0.03996400162577629 0.02179567888379097 -0.07296505570411682 -0.05644892901182175 0.009200971573591232 0.0940556600689888 -0.059532567858695984 0.024788187816739082 0.053379885852336884 -0.016136882826685905 0.059497762471437454 -0.0064823380671441555 -0.03715762868523598 0.012135069817304611 -0.03086850792169571 -0.0356781929731369 0.0535547211766243 -0.07557348161935806 0.03641393408179283 -0.05867704376578331 0.06972397118806839 0.0011136201210319996 -0.055435001850128174 0.09972192347049713 0.09497017413377762 -0.02197299711406231 0.0508396215736866 -0.09698783606290817 +0.02214418724179268 -0.031373076140880585 -0.02314196340739727 0.015222915448248386 -0.06948439031839371 -0.057329874485731125 0.006793298292905092 0.034261539578437805 -0.010566355660557747 -0.04255795478820801 -0.027799168601632118 0.024491652846336365 0.03040016070008278 0.016898462548851967 0.019957194104790688 -0.05006929114460945 -0.07221236824989319 -0.003778618760406971 -0.016052445396780968 -0.038767315447330475 0.016752954572439194 -0.01801837608218193 -0.09549642354249954 0.050119273364543915 0.023674597963690758 -0.0006833048537373543 -0.04755737632513046 0.006816452834755182 0.018878551200032234 0.025356506928801537 0.08690368384122849 -0.05310352146625519 0.04090103134512901 -0.04311952739953995 -0.07656289637088776 0.03191805258393288 -0.06273377686738968 0.12833338975906372 0.010603880509734154 0.01597278192639351 -0.08259200304746628 0.003267911495640874 -0.008818821050226688 -0.018180659040808678 0.022060589864850044 0.007492639124393463 -0.0024652169086039066 -0.022057602182030678 0.03409656137228012 0.007160877343267202 0.08324176073074341 0.024568898603320122 0.0009372489876113832 -0.02126985602080822 -0.01993408054113388 0.020794836804270744 0.029458019882440567 -0.04969443380832672 -0.10010949522256851 0.02504187449812889 -0.09508997946977615 0.01935768313705921 -3.219326390535571e-05 -0.005143336020410061 -0.009768056683242321 -0.0201270692050457 -0.040086835622787476 0.08036717772483826 -0.02001280151307583 -0.0328894704580307 0.03793102130293846 0.07318904250860214 -0.06906413286924362 -0.06957283616065979 0.029516495764255524 -0.05008609965443611 0.00982681568711996 0.028640178963541985 -0.01891694962978363 0.0018589288229122758 -0.045533113181591034 -0.01571257784962654 0.12488226592540741 -0.02785387821495533 -0.036447953432798386 -0.04899011179804802 -0.02614513598382473 -0.056146200746297836 0.061874859035015106 0.03628353029489517 0.04768684506416321 0.06132170185446739 -0.049313366413116455 0.027156267315149307 0.03275471180677414 -0.011761656031012535 0.023782681673765182 -0.11995338648557663 -0.02556617185473442 0.014610329642891884 -0.006564694456756115 -0.0008149388013407588 0.09294427931308746 -0.007785764988511801 0.04054737091064453 0.04822906479239464 -0.08047515153884888 0.042722851037979126 0.03931093215942383 0.04311539605259895 0.028330422937870026 0.10573969036340714 0.049616046249866486 0.07612939924001694 0.052270714193582535 0.013220404274761677 0.004731729626655579 -0.017460202798247337 -0.03581361100077629 -0.008503371849656105 -0.005619589239358902 0.05765910446643829 0.0014062122208997607 -0.07087038457393646 -0.028459951281547546 0.049419015645980835 -0.12420209497213364 -0.019442394375801086 0.07579659670591354 -0.014432129450142384 0.08158392459154129 0.07952157407999039 0.01812640391290188 0.052874792367219925 0.053231410682201385 0.0012291910825297236 0.004754835739731789 0.017978990450501442 -0.007043173536658287 -0.05136649310588837 -0.03757745027542114 0.032471634447574615 -0.004766685888171196 -0.06308946013450623 0.028176669031381607 0.04678736999630928 0.0210746880620718 -0.02694980800151825 -0.03105621039867401 -0.004196465946733952 -0.05497818440198898 -0.07144047319889069 0.01025409996509552 -0.028376197442412376 0.024821806699037552 0.04529796540737152 0.04738111421465874 0.03557480126619339 0.01834828220307827 0.0017109701875597239 -0.04165714606642723 -0.04202900826931 -0.015018715523183346 -0.07515760511159897 0.007001367397606373 0.0030679134652018547 0.02214105613529682 0.01707747019827366 -0.0554368682205677 -0.010698326863348484 -0.010445227846503258 0.0058779846876859665 0.017686894163489342 0.06151462718844414 0.03770012781023979 -0.006852800492197275 0.04089851304888725 -0.05563756451010704 -0.006465866230428219 -0.04395315423607826 0.023164743557572365 -0.0412849560379982 0.009262453764677048 -0.06240665167570114 -0.019114822149276733 0.008991727605462074 0.02034458890557289 -0.031269606202840805 -0.007642839103937149 -0.01030793972313404 -0.04631740599870682 -0.06539487093687057 0.026932531967759132 0.048094142228364944 -0.05061478912830353 0.046842049807310104 0.012209612876176834 0.06906673312187195 -0.010108509100973606 -0.02376139722764492 -0.05868460237979889 0.015315067023038864 0.003289250424131751 0.017228716984391212 0.021105214953422546 -0.054687995463609695 0.0590202733874321 0.005315569229424 0.03277381509542465 -0.06913971155881882 -0.006351298186928034 0.014014595188200474 0.008406365290284157 0.04835040494799614 0.09203595668077469 -0.05755221098661423 -0.033543579280376434 0.023976193740963936 0.06879720091819763 -0.07663081586360931 -0.009781927801668644 -0.02200537547469139 -0.053659312427043915 0.005758239887654781 -0.04301972687244415 -0.10999130457639694 -0.006976887118071318 0.027788400650024414 -0.027363842353224754 -0.03903144598007202 -0.020686190575361252 0.0450812391936779 0.0003930159437004477 -0.026657605543732643 0.0158479493111372 -0.017933310940861702 -0.07769446820020676 0.08020763844251633 0.009733445942401886 -0.08529659360647202 -0.05783623456954956 -0.012709388509392738 0.0203151386231184 0.0018492810195311904 0.014230757020413876 0.029300356283783913 0.09726344048976898 0.04843616858124733 -0.06226477026939392 0.03374185040593147 -0.03155158832669258 -0.028448373079299927 0.022262509912252426 0.0445903018116951 -0.04375700652599335 -0.017287088558077812 0.036908239126205444 -0.05772116780281067 0.004295013844966888 -0.016890333965420723 0.02118358574807644 -0.018311038613319397 -0.05086912959814072 -0.012099087238311768 0.0454091839492321 -0.02604825235903263 -0.05104914680123329 0.0038509282749146223 -0.030766736716032028 0.08088725805282593 -0.05226897448301315 -0.033548034727573395 0.012645712122321129 0.0057526747696101665 0.014167869463562965 -0.04315744712948799 0.07881899923086166 -0.021622583270072937 -0.08027731627225876 -0.029322486370801926 -0.06636452674865723 -0.059652406722307205 -0.009152562357485294 -0.015829768031835556 -0.03166896849870682 0.07581660896539688 0.0012589464895427227 -0.05456917732954025 -0.03656537085771561 -0.04413682222366333 -0.004298308864235878 -0.04723220318555832 -0.0171585064381361 -0.009987571276724339 -0.020510777831077576 -0.02306055836379528 0.04827097803354263 -0.041989121586084366 0.0057522510178387165 0.05025360733270645 -0.014618446119129658 -0.03737954795360565 0.04968247190117836 -0.07600866258144379 -0.008077038452029228 0.002449647756293416 -0.06920406222343445 0.044340088963508606 0.09177859872579575 0.04818815365433693 0.016993315890431404 0.03937628120183945 0.03445697948336601 0.11072880774736404 0.021411221474409103 -0.0430915430188179 0.007742967922240496 -0.061088960617780685 -0.06681693345308304 0.0594036690890789 -0.02065104804933071 0.001553971553221345 -0.020840497687458992 -0.013311212882399559 0.05019044131040573 0.012522152625024319 -0.026057058945298195 -0.0110867815092206 0.020415978506207466 -0.02226131036877632 0.011417551897466183 0.018778495490550995 -0.003253066446632147 0.016963183879852295 -0.051180485635995865 -0.07300961762666702 -0.06197154149413109 0.04072069004178047 -0.026412691920995712 0.090263731777668 -0.038298558443784714 -0.045955345034599304 0.024418406188488007 0.0016420695465058088 0.10384682565927505 -0.06097344681620598 0.019825486466288567 0.006693655159324408 0.06135764718055725 -0.08722855895757675 -0.014211400412023067 0.038191553205251694 -0.02539796009659767 -0.06609167158603668 0.019441040232777596 0.008980263024568558 -0.047656863927841187 -0.024406731128692627 0.009339983575046062 -0.051049698144197464 0.005767450667917728 -0.002120152348652482 -0.00945359654724598 0.035225480794906616 0.00887098629027605 -0.030187468975782394 0.013557635247707367 0.020746110007166862 0.03781372681260109 -0.04601944610476494 0.03329953923821449 -0.050987642258405685 0.07351849973201752 -0.029541227966547012 -0.03833148628473282 -0.07560983300209045 0.04823935776948929 -0.015709076076745987 -0.015025269240140915 -0.05995089188218117 -0.007897529751062393 -0.03050662949681282 -0.011934352107346058 0.0011110692285001278 -0.11060643196105957 -0.009849637746810913 -0.042656634002923965 -0.06946858018636703 -0.056744832545518875 -0.06979434937238693 0.012621327303349972 -0.03508184105157852 0.035287633538246155 -0.015885338187217712 0.022288067266345024 0.02401152066886425 -0.010756523348391056 0.04402075335383415 0.054859552532434464 0.04204820841550827 0.009587986394762993 0.06993379443883896 0.01964845322072506 0.022873422130942345 -0.004929364658892155 -0.028581807389855385 0.039742156863212585 0.05224289000034332 -0.06427782773971558 0.018749356269836426 -0.04643850028514862 0.05369109660387039 -0.016433248296380043 -0.038065265864133835 0.03275339677929878 -0.0053291176445782185 -0.007303605321794748 -0.035547200590372086 0.0435008741915226 -0.050606559962034225 -0.039327822625637054 0.05741892755031586 -0.07490190118551254 -0.06074558570981026 -0.01989707164466381 -0.023119939491152763 -0.030931569635868073 0.0494350902736187 0.024021651595830917 0.06240834295749664 0.029803236946463585 -0.03171858191490173 -0.05304158478975296 0.014009804464876652 -0.017027679830789566 0.02506827376782894 0.0013006612425670028 0.04552345722913742 0.012409267015755177 0.0045717693865299225 0.046720877289772034 -0.02649778686463833 0.03376215323805809 -0.1004381850361824 -0.003590724663808942 -0.001252621877938509 -0.011218114756047726 -0.008463648147881031 0.009663917124271393 0.029480023309588432 -0.07991144061088562 0.014072188176214695 -0.0522146038711071 0.050430335104465485 -0.000744908582419157 0.035749200731515884 0.014221849851310253 -0.04059106111526489 -0.015960590913891792 -0.019671304151415825 -0.017062082886695862 -0.08414503931999207 0.009297778829932213 -0.04931565001606941 0.03023059479892254 -0.01378429401665926 0.015394605696201324 0.00787173118442297 -0.11424222588539124 0.004140331409871578 0.005861620884388685 -0.038775164633989334 0.010426871478557587 0.013618454337120056 -0.07639827579259872 -0.06551240384578705 -0.001989136915653944 -0.058747999370098114 0.058856572955846786 -0.009344144724309444 0.009350254200398922 -0.04558618739247322 -0.007735621649771929 -0.008477956987917423 -0.029135767370462418 0.03315793350338936 -0.03546822816133499 -0.058662451803684235 -0.0409250445663929 0.08844495564699173 -0.031005827710032463 0.037853408604860306 0.06969500333070755 -0.025800565257668495 0.047912150621414185 0.016578087583184242 -0.051518723368644714 0.020009836181998253 -0.017202256247401237 -0.0026891615707427263 0.03728913143277168 -0.07823608070611954 0.06620533019304276 -0.06884298473596573 0.09338176250457764 0.03938135877251625 -0.002823433605954051 0.09853126853704453 0.06925363093614578 -0.00026152023929171264 0.03331149369478226 -0.06660033762454987 +-0.00907989777624607 -0.07607991248369217 -0.0524737648665905 0.012592985294759274 -0.010020763613283634 -0.04000139981508255 -0.03962958604097366 0.0341937318444252 0.01776423305273056 -0.06511666625738144 -0.054855603724718094 -0.0491541288793087 -0.005713246297091246 -0.04898960888385773 0.058122020214796066 7.8545359428972e-05 -0.05709195137023926 0.02444174326956272 0.01319657638669014 0.011636514216661453 0.004160332027822733 0.01973453164100647 -0.08704885095357895 0.069121353328228 0.0006065308698453009 0.008798823691904545 -0.047068431973457336 0.043608758598566055 -0.013167507015168667 0.10367650538682938 0.019418584182858467 -0.02879735641181469 0.03060046397149563 -0.06278052181005478 -0.00437226053327322 -0.0014186374610289931 -0.02856483682990074 0.08747996389865875 0.048965610563755035 -0.031943660229444504 -0.014903686940670013 -0.0011395688634365797 -0.02222011797130108 -0.10525914281606674 0.025593703612685204 0.0022843428887426853 -0.03579847514629364 -0.04802767559885979 -0.01829061098396778 0.07028074562549591 0.0816720724105835 -0.002599917585030198 -0.0007353519322350621 0.01243688352406025 -0.058377765119075775 -0.007278388366103172 0.02051786705851555 -0.021610818803310394 -0.011958968825638294 0.044429779052734375 -0.06177709624171257 -0.00930349063128233 0.002675085561349988 0.03144308552145958 -0.08444096893072128 -0.011729691177606583 0.012360341846942902 0.04011283814907074 -0.02859770506620407 -0.014241013675928116 -0.03481536731123924 0.013233177363872528 -0.057458776980638504 -0.04922722280025482 -0.007205908186733723 -0.03249160200357437 -0.013821026310324669 -0.0063753011636435986 0.030563320964574814 -0.004516893066465855 0.032451946288347244 0.0040466017089784145 0.11376927047967911 -0.04618429020047188 0.009666703641414642 -0.07115917652845383 -0.015337738208472729 -0.034093227237463 0.017645126208662987 0.0007287742919288576 0.05558225139975548 0.03380563110113144 0.0593925379216671 0.020525068044662476 0.01919744163751602 0.030341651290655136 0.04643918573856354 -0.09299666434526443 -0.012573756277561188 0.0005955442902632058 -0.03931371495127678 0.011829332448542118 0.057362355291843414 0.056423839181661606 0.032634127885103226 -0.016751276329159737 -0.07214215397834778 0.04530841484665871 0.06545316427946091 0.03252562880516052 0.00861535407602787 0.0995878353714943 0.005546048283576965 0.00400934275239706 0.06788379698991776 0.0324128195643425 0.00889586377888918 0.0055628614500164986 -0.006905816495418549 0.028106752783060074 -0.002974890172481537 0.03652837499976158 -0.006802065297961235 -0.07936234772205353 0.09402503073215485 0.09295263886451721 -0.0628095343708992 -0.030703606083989143 -0.05399040877819061 -0.02608705312013626 0.04179692640900612 0.042024366557598114 -0.0007571289897896349 -0.006974526681005955 0.03114769235253334 0.016382237896323204 0.007008429151028395 0.04040471464395523 0.013813587836921215 -0.018517563119530678 -0.04423947632312775 -0.004324531648308039 -0.040186937898397446 0.012425792403519154 0.05776642635464668 0.006102937739342451 -0.01404223870486021 0.00461761886253953 -0.0651206374168396 -0.02000822313129902 -0.06252679228782654 -0.02077518403530121 0.048743877559900284 -0.07260129600763321 0.024209486320614815 -0.006662398111075163 0.027993781492114067 0.050631485879421234 0.0335988886654377 0.03592982888221741 -0.05140404775738716 -0.08616059273481369 0.010531090199947357 -0.06496947258710861 -0.01637452468276024 0.01053532399237156 0.004155322909355164 -0.014890090562403202 -0.017240257933735847 -0.00795040838420391 0.020479397848248482 0.029959842562675476 0.0663665160536766 0.039610207080841064 0.05245008319616318 0.03043181262910366 0.04491959884762764 -0.057348012924194336 -0.035413648933172226 -0.06127597764134407 -0.016688482835888863 -0.008337490260601044 -0.02269979938864708 -0.048700910061597824 -0.017094092443585396 0.02055511623620987 -0.0037103539798408747 0.008421970531344414 0.01054269541054964 -0.017278462648391724 0.007128353230655193 -0.06958895176649094 0.08128974586725235 0.0033493563532829285 0.0072339545004069805 0.013360565528273582 0.045846424996852875 0.08403302729129791 -0.06956701725721359 -0.059967394918203354 -0.03077072650194168 0.01639695093035698 0.054895829409360886 0.002004749607294798 -0.005558764562010765 0.019949402660131454 0.06550560891628265 0.03687799721956253 0.024804895743727684 -0.005953081417828798 0.03616161644458771 0.03629974275827408 -0.02479706145823002 0.020897705107927322 0.10416702926158905 -0.0333734005689621 -0.021920323371887207 0.033064164221286774 0.03948133438825607 -0.09298907965421677 -0.004045397508889437 0.024210629984736443 -0.10962698608636856 -0.007310131099075079 -0.021668458357453346 -0.07876098901033401 0.02089815028011799 0.023742415010929108 -0.0446602888405323 0.01352942455559969 0.021902723237872124 0.012521139346063137 -0.01071157120168209 0.00799604132771492 0.007542040664702654 0.02354506589472294 -0.05576092749834061 0.029241623356938362 -0.061150625348091125 -0.07143326848745346 -0.056621003895998 0.037854548543691635 -0.008282729424536228 0.0056626624427735806 0.02367584966123104 0.04078897088766098 0.08539275079965591 0.05230308696627617 -0.042995672672986984 0.03241570293903351 -0.056534543633461 -0.045222967863082886 -0.0026236444246023893 -0.005294115282595158 0.04435184597969055 -0.04683224484324455 0.0098740104585886 -0.10699079185724258 -0.027931714430451393 -0.002980844583362341 -0.0013070941204205155 -0.056584954261779785 0.017504308372735977 -0.030649341642856598 0.04179850593209267 -0.032853249460458755 -0.03030640259385109 0.054741665720939636 -0.05304386839270592 -0.004276636056602001 -0.08175795525312424 0.012394944205880165 0.031871624290943146 9.357390081277117e-05 -0.008047833107411861 -0.05069201812148094 0.08153819292783737 -0.023405713960528374 -0.03150453418493271 -0.06138106808066368 -0.1151062622666359 -0.002342269755899906 0.05668080598115921 -0.003587137907743454 -0.020333116874098778 0.05227559804916382 0.07473844289779663 -0.02053047902882099 -0.07421670109033585 -0.10575840622186661 -0.041305381804704666 -0.003627452068030834 0.007411740720272064 0.004919916857033968 -0.01753348670899868 -0.0196338202804327 0.08956341445446014 -0.03830298036336899 0.0030927471816539764 0.04723319411277771 0.03211156278848648 -0.053950805217027664 0.038779787719249725 -0.00892682932317257 -0.03555096685886383 0.07863807678222656 -0.06394902616739273 -0.0030892794020473957 0.07487326860427856 0.025746531784534454 0.010913562029600143 0.054945509880781174 0.028709031641483307 0.041156332939863205 -0.03378553315997124 -0.031391702592372894 -0.06767478585243225 -0.02607037127017975 -0.031409841030836105 0.017582371830940247 0.008155249059200287 0.024877449497580528 -0.020685164257884026 -0.022392554208636284 0.01908985525369644 -0.018712390214204788 -0.015011955983936787 -0.05356091260910034 -0.021225839853286743 -0.030467459931969643 0.013759160414338112 -0.026998743414878845 0.04879050329327583 -0.019147755578160286 -0.056224919855594635 -0.04658704251050949 -0.04531434550881386 0.041759803891181946 -0.025170335546135902 0.022382790222764015 0.014378301799297333 -0.04264489561319351 0.013537455350160599 0.004473432432860136 0.08469461649656296 -0.09987697750329971 0.0375785231590271 0.03753078356385231 0.026109199970960617 -0.06177983805537224 -0.03840683400630951 0.00658729812130332 -0.10173120349645615 -0.037501804530620575 -0.020928917452692986 0.02751542627811432 0.00810681376606226 -0.07276304066181183 -0.0198456272482872 -0.03343384340405464 0.04618664085865021 0.06652519851922989 0.0021663003135472536 0.05349968001246452 -0.002582824556156993 -0.05837663635611534 -0.02969779446721077 -0.008468147367238998 0.011569312773644924 -0.0414913035929203 0.048664674162864685 0.016369909048080444 -0.01980108581483364 -0.03585328534245491 -0.033905357122421265 -0.04703159257769585 0.010281219147145748 -0.06950019299983978 0.011238334700465202 -0.02315145544707775 -0.004551443737000227 -0.027420004829764366 0.05542801693081856 0.025972358882427216 -0.02604057639837265 -0.0735037550330162 -0.004767522215843201 -0.04990621283650398 -0.05229954421520233 -0.04148498922586441 0.05573323741555214 0.015410033985972404 0.05330618843436241 -0.0711636170744896 0.02605791762471199 0.007871133275330067 0.02728196047246456 0.041412703692913055 0.0629655048251152 0.027831338346004486 -0.002026359783485532 0.0232241190969944 -0.027770692482590675 0.014775089919567108 -0.0006750496104359627 -0.05800141394138336 0.008957267738878727 0.019966235384345055 -0.04107826203107834 -0.023735230788588524 -0.013717426918447018 0.016592105850577354 -0.0050433906726539135 -0.07912975549697876 -0.002433537971228361 -0.002370027359575033 -0.004548234399408102 0.002494486980140209 0.037596579641103745 -0.03996523469686508 -0.03309733420610428 -0.07396356016397476 -0.030440116301178932 -0.036613572388887405 -0.05510469526052475 -0.030020710080862045 0.00756685808300972 0.019624382257461548 -0.06814800202846527 0.003981567919254303 0.032297708094120026 -0.03328762948513031 0.010688153095543385 0.021576015278697014 0.05878010019659996 -0.00920094270259142 0.06778468936681747 -0.002990999026224017 -0.0297989584505558 -0.022647136822342873 -0.0023862409871071577 -0.0512673556804657 0.019867252558469772 -0.009789426811039448 -0.026312127709388733 0.03952858969569206 0.01839749701321125 0.003983172122389078 0.05631344020366669 0.03217440843582153 -0.09582432359457016 -0.033389486372470856 -0.030186686664819717 0.035374827682971954 0.017449503764510155 0.05582166090607643 0.017383301630616188 -0.10265990346670151 -0.08260390162467957 0.02890441194176674 -0.04259935021400452 -0.08052623271942139 -0.06012515723705292 -0.040219444781541824 0.0736057236790657 0.009705044329166412 0.01733557879924774 -0.05233875662088394 -0.08693791180849075 0.024454565718770027 -0.00595202436670661 -0.04408106207847595 -0.08038748800754547 0.05931537225842476 -0.022593563422560692 0.03880934789776802 -0.009379791095852852 -0.04226319491863251 0.04294130578637123 0.021258581429719925 -0.0032430822029709816 -0.10436778515577316 0.01759708672761917 -0.027737271040678024 -0.0018660728819668293 0.032169610261917114 -0.05528876930475235 -0.08787558227777481 -0.0012484716717153788 0.08568808436393738 -0.026368439197540283 0.06118552014231682 0.06663728505373001 -0.0018337544752284884 0.06511739641427994 0.07032207399606705 0.007265772204846144 -0.06195224076509476 -0.04189734905958176 0.0005490256007760763 0.046342503279447556 -0.0582025982439518 0.03636031225323677 -0.0765838623046875 0.15659348666667938 0.04513875022530556 -0.012926350347697735 0.022933421656489372 0.07528380304574966 0.06993602216243744 0.033388201147317886 -0.09779596328735352 +0.050452154129743576 -0.003939176443964243 0.008260250091552734 0.04519585520029068 -0.08444011956453323 -0.05177067965269089 -0.015446689911186695 0.03201370686292648 0.010990262031555176 -0.03350478410720825 -0.01058354601264 0.01446018647402525 0.0026471298187971115 0.004164605401456356 0.023041458800435066 -0.029556114226579666 -0.05127155780792236 -0.013167442753911018 -0.02695981040596962 -0.02492966689169407 0.03720215708017349 0.04670356214046478 -0.052921369671821594 0.0261748768389225 0.014454545453190804 0.024413196370005608 -0.04090915992856026 -0.01589421182870865 -0.004130539949983358 0.024617506191134453 0.026168562471866608 -0.03960390388965607 0.032691244035959244 -0.05568332225084305 -0.05238019675016403 0.06884028017520905 -0.03051624819636345 0.10238576680421829 0.047941163182258606 -0.04544644057750702 -0.03363161161541939 -0.010480411350727081 -0.027433909475803375 -0.06124440208077431 -0.02951079234480858 0.016974445432424545 -0.007995069026947021 -0.02561584673821926 0.028249680995941162 0.024265799671411514 0.10939984023571014 -0.013174505904316902 -0.03009624034166336 -0.012298396788537502 -0.0032682681921869516 -0.010057292878627777 0.05039439722895622 -0.056725554168224335 -0.08613699674606323 0.03867504373192787 -0.07963532954454422 -0.01116870902478695 -0.0010322877205908298 0.03508751839399338 -0.024952935054898262 -0.03669895604252815 0.00874290894716978 0.07526469975709915 0.05534815788269043 -0.03970332071185112 0.036195047199726105 0.09447426348924637 -0.038833439350128174 -0.05413680523633957 0.030813461169600487 -0.07080547511577606 -0.03673459589481354 0.029416363686323166 0.004620116204023361 0.026519369333982468 0.011028695851564407 -0.07373760640621185 0.1042715460062027 -0.05949785187840462 -0.05219050124287605 -0.010256798006594181 -0.020737331360578537 -0.08363252133131027 0.05554817616939545 0.04311564192175865 0.004269236698746681 0.0817275121808052 -0.08507516235113144 0.05935016646981239 -0.007152083795517683 0.013673955574631691 0.0400225855410099 -0.10091114044189453 -0.064516581594944 -0.01855364441871643 -0.03651026636362076 -0.01143612153828144 0.05739301070570946 0.013458486646413803 0.07561549544334412 0.008885926567018032 -0.02664959244430065 0.0050641633570194244 0.03198852017521858 0.041811466217041016 0.038655247539281845 0.046764373779296875 0.10664218664169312 0.05271584540605545 0.05866311863064766 -0.027938678860664368 0.013424523174762726 -0.048392970114946365 -0.03639828786253929 -0.00952933356165886 0.007760126143693924 0.046237047761678696 -0.029189925640821457 -0.08113545924425125 -0.02561010792851448 0.025109605863690376 -0.092836894094944 -0.02595077082514763 0.047243740409612656 -0.012596395798027515 0.1140853688120842 0.0846170037984848 -0.049433935433626175 0.024474387988448143 0.03150840476155281 0.03333350270986557 -0.023783830925822258 0.052943434566259384 0.009841911494731903 0.001922545488923788 -0.015358890406787395 0.036989666521549225 0.029012011364102364 -0.06537358462810516 0.004927036352455616 0.037594377994537354 0.042122066020965576 -0.034087736159563065 -0.0731779932975769 -0.006766695063561201 -0.050103332847356796 -0.07853589206933975 -0.007934372872114182 -0.07453593611717224 0.015110869891941547 0.05419451370835304 0.04076676815748215 0.037416357547044754 -0.057219620794057846 0.026791563257575035 -0.028669001534581184 -0.04325070232152939 -0.0018633623840287328 -0.10223255306482315 -0.03903310000896454 -0.01827828772366047 0.0012230293359607458 0.00885044690221548 -0.05150556564331055 -0.020201796665787697 -0.030173305422067642 -0.017918450757861137 0.05174923315644264 0.09026239067316055 0.07774371653795242 -0.004479111637920141 0.010097256861627102 -0.06663063913583755 0.03663286194205284 -0.007603519596159458 0.010599449276924133 -0.04447288066148758 0.022803470492362976 -0.06617484986782074 -0.031271643936634064 0.004696170333772898 0.0644889697432518 -0.008955661207437515 0.0045919036492705345 0.017602020874619484 -0.05499587953090668 -0.0466306246817112 0.01781294122338295 0.06934694200754166 -0.01644316501915455 0.042022231966257095 -0.019873928278684616 0.05056462809443474 0.005793592892587185 -0.037723056972026825 -0.058527298271656036 0.023198653012514114 -0.0061969272792339325 0.06141650676727295 0.006707584019750357 -0.05232984572649002 0.0890364795923233 0.03949819132685661 0.01816987618803978 -0.07965380698442459 -0.011735312640666962 0.03631405532360077 0.014602035284042358 0.025607004761695862 0.057839423418045044 -0.051772214472293854 -0.0033336998894810677 0.0004130535526201129 0.04099377617239952 -0.043141920119524 -0.023524004966020584 -0.014036539010703564 -0.04975191503763199 0.01250310055911541 -0.013243470340967178 -0.06086273863911629 -0.05814695358276367 0.025950422510504723 0.03221593797206879 -0.04724320396780968 0.008177614770829678 0.02502562664449215 -0.005021672695875168 -0.013958687894046307 -0.02337975986301899 -0.03770393878221512 -0.10745101422071457 0.07742325961589813 -0.0007896938477642834 -0.04593263939023018 -0.05678780749440193 -0.018567323684692383 0.023950878530740738 0.003146157832816243 0.04300848767161369 0.07453636825084686 0.07257658243179321 0.020990557968616486 0.0032544657588005066 -0.037607792764902115 -0.035959579050540924 -0.04685722291469574 0.009618324227631092 0.025719573721289635 -0.04036124050617218 -0.036002546548843384 0.00769046088680625 -0.06373707950115204 -0.020836595445871353 -0.009036576375365257 0.03907840698957443 -0.01675885170698166 -0.05032647028565407 -0.033475112169981 0.03608199581503868 0.0073175691068172455 -0.026788584887981415 0.026120640337467194 -0.015758177265524864 0.08351434022188187 -0.026398519054055214 -0.022010544314980507 0.05738009139895439 -0.011249029077589512 0.026380762457847595 0.029635244980454445 0.07128269225358963 -0.02827901393175125 -0.06491229683160782 -0.0248107947409153 -0.06928538531064987 -0.02292596735060215 -0.022513004019856453 -0.023963121697306633 -0.06519722938537598 0.08019529283046722 -0.021986575797200203 -0.031871214509010315 -0.027973705902695656 0.03229570761322975 -0.02177836000919342 -0.09939181804656982 -0.014845958910882473 0.005975085310637951 -0.07710837572813034 -0.015654176473617554 0.0016033948631957173 -0.04883107915520668 -0.061280641704797745 -0.0018709903815761209 -0.03896806016564369 -0.06330695748329163 0.03926180675625801 -0.01712196320295334 -0.051679421216249466 -0.042351122945547104 -0.07331889867782593 0.019712451845407486 0.0785372257232666 0.007541762664914131 0.05930463969707489 0.021066315472126007 0.036181699484586716 0.10036028921604156 0.02506040222942829 -0.05076379328966141 -0.009197205305099487 -0.03716963157057762 -0.06661560386419296 0.07177010923624039 -0.034635115414857864 0.018337713554501534 -0.00673655467107892 0.03111586906015873 0.07259556651115417 0.01617666520178318 -0.024249523878097534 -0.00948390830308199 0.035780198872089386 -0.004876128863543272 0.04936280474066734 -0.014615360647439957 -0.009518452920019627 -0.014767938293516636 -0.03131181374192238 -0.060171861201524734 -0.004937350284308195 0.018370719626545906 0.009592466987669468 0.06828796118497849 0.012112585827708244 -0.08387397974729538 -0.009895089082419872 -0.009062686003744602 0.09761306643486023 -0.08331780880689621 0.0040153139270842075 0.005523812957108021 -0.0075714923441410065 -0.1145375519990921 -0.0022644782438874245 0.05139218270778656 -0.03326476365327835 -0.07422436028718948 0.0007317334529943764 0.04291269928216934 -0.07363781332969666 -0.003688669530674815 -0.024910498410463333 -0.050396114587783813 0.03680530935525894 0.0037134212907403708 0.022866925224661827 0.023262619972229004 0.013989254832267761 -0.040428172796964645 -0.002091372152790427 -0.0011914665810763836 0.0016713140066713095 -0.023586537688970566 -0.012659757398068905 -0.06752514094114304 0.06577784568071365 -0.06016532704234123 -0.0074156210757792 -0.046115994453430176 0.04411131143569946 0.011949400417506695 -0.03266472369432449 0.0161927230656147 -0.013338982127606869 0.011087831109762192 0.030587397515773773 0.023063546046614647 -0.027576660737395287 -0.04001374915242195 -0.055969104170799255 -0.005118536297231913 -0.06935874372720718 -0.020527023822069168 0.025295671075582504 -0.08393611758947372 -0.029224444180727005 -0.006077983416616917 -0.030741700902581215 -0.007193136494606733 -0.01969766430556774 0.015613178722560406 0.02343171089887619 0.04634738713502884 -0.061016954481601715 0.03337343782186508 0.007390920072793961 0.04735449701547623 0.018033096566796303 -0.03511253744363785 0.027336878702044487 0.04273650795221329 -0.04431351274251938 0.04215776547789574 -0.035194121301174164 -0.0027245560195297003 0.001771252485923469 0.003443524707108736 -0.001155503443442285 -0.0123305544257164 -0.0024226298555731773 -0.01998485065996647 0.07305360585451126 -0.10533329099416733 -0.04198089614510536 0.03292896971106529 -0.032874103635549545 -0.11105594784021378 -0.033534351736307144 -0.0045922184363007545 -0.05767408013343811 0.01196148432791233 0.023095544427633286 0.017815807834267616 0.05551109462976456 -0.035400547087192535 -0.00875396654009819 0.009020781144499779 -0.027570217847824097 0.021292701363563538 -0.008282908238470554 0.04544448107481003 -0.005774262826889753 0.03584149852395058 0.012104962952435017 0.02444426901638508 0.012836902402341366 -0.08881337940692902 -0.03402983024716377 0.004632672294974327 -0.03814132139086723 0.0029593301005661488 0.01860158145427704 -0.010133357718586922 -0.07433059811592102 -0.04710157960653305 -0.031013362109661102 0.07166004925966263 -0.02846398949623108 -0.01244320347905159 0.06627941131591797 -0.028458114713430405 -0.02047262340784073 0.016896918416023254 -0.028379173949360847 -0.10472627729177475 0.0230341125279665 -0.007605835795402527 0.006712486036121845 0.007940664887428284 0.017009558156132698 -0.032157957553863525 -0.06890781968832016 -0.020509522408246994 0.021007759496569633 -0.0715395137667656 0.038062479346990585 0.015132575295865536 -0.07918979972600937 -0.06978937238454819 0.01572388969361782 -0.04671250656247139 0.007768275681883097 0.02039971575140953 0.03851700946688652 -0.0014964997535571456 0.014003907330334187 -0.02101881057024002 -0.043112341314554214 0.017270836979150772 0.02486596070230007 -0.03305896371603012 -0.044347263872623444 0.07413393259048462 -0.04638143628835678 -0.002821449190378189 0.05542252957820892 -0.03298928216099739 0.02663099579513073 0.058669351041316986 -0.032408736646175385 0.06389930099248886 -0.007200111169368029 -0.03529882803559303 0.09344268590211868 -0.07323450595140457 0.09236345440149307 -0.04597433656454086 0.10990764945745468 -0.0020230808295309544 0.0002190605882788077 0.07508113235235214 0.07645083963871002 -0.011452550068497658 0.021493038162589073 -0.058941058814525604 +0.032220788300037384 -0.0751892551779747 4.0675888158148155e-05 0.057313431054353714 -0.059900201857089996 -0.02181820385158062 -0.023182308301329613 0.03088538721203804 -0.0093834912404418 -0.08964697271585464 -0.0022147223353385925 -0.04859773442149162 -0.042388223111629486 0.016013670712709427 0.06922096759080887 0.026548491790890694 -0.023493394255638123 0.06433896720409393 -0.02112254686653614 -0.038474541157484055 0.00998873170465231 0.0004231512430123985 -0.04851283133029938 0.02700524590909481 -0.033647213131189346 -0.02800462394952774 -0.07308957725763321 0.046590130776166916 0.01286715641617775 0.057717692106962204 0.01986083947122097 -0.024088606238365173 0.03819190710783005 -0.04087512940168381 -0.06521022319793701 0.04610145837068558 -0.03874889388680458 0.1087050512433052 0.021070318296551704 -0.006969427689909935 -0.034444257616996765 0.006639582570642233 -0.02889905869960785 -0.05548141896724701 0.08628023415803909 -0.010956368409097195 0.030847353860735893 -0.011447305791079998 0.01141701452434063 0.08369366079568863 0.08030537515878677 0.034955140203237534 0.03125997260212898 -0.0025837267749011517 -0.006012899801135063 0.008350377902388573 0.057393353432416916 -0.060728807002305984 -0.006592886056751013 0.06797315925359726 -0.09998630732297897 -0.05624350160360336 0.03650287538766861 0.032183267176151276 -0.02832302637398243 -0.0033447998575866222 -0.012725773267447948 0.09689443558454514 -0.030395973473787308 -0.07806093245744705 -0.035322532057762146 0.06579016149044037 -0.022764902561903 -0.08700495958328247 0.030922414734959602 -0.0613953173160553 0.026313213631510735 0.03165986016392708 -0.019271550700068474 -0.017858583480119705 -0.015747109428048134 -0.03765617683529854 0.08736028522253036 -0.007949084043502808 -0.0021885614842176437 -0.03570268303155899 -0.018160631880164146 -0.04695017263293266 0.03802702575922012 0.01342433039098978 0.0346132293343544 0.04611693322658539 -0.032079827040433884 0.00926534179598093 -0.007145661860704422 0.013682504184544086 0.001374166226014495 -0.0837697684764862 -0.012586026452481747 -0.0011217262363061309 0.004108358174562454 -0.004676509648561478 0.030951745808124542 0.02456611767411232 0.06254585087299347 0.010774395428597927 -0.044119104743003845 0.0023991893976926804 0.03160526230931282 0.02502266690135002 0.0002747969701886177 0.10339153558015823 0.06990480422973633 0.026806799694895744 0.04153217375278473 0.025121964514255524 -0.008701551705598831 -0.05905859172344208 -0.019839677959680557 0.002425809158012271 0.003294014371931553 0.03594454750418663 0.016661370173096657 -0.06808406859636307 0.013718374073505402 0.03964430093765259 -0.0790865570306778 -0.03611461818218231 0.07036294043064117 -0.023390164598822594 0.08166315406560898 0.02845381759107113 -0.0217706598341465 0.04180578514933586 0.054698165506124496 0.04539331793785095 -0.016814425587654114 0.0224191565066576 0.0288540031760931 -0.03759489953517914 0.00916746724396944 0.03860202059149742 -0.019620094448328018 -0.06558771431446075 0.05557757988572121 0.04229728877544403 0.027658136561512947 -0.022447310388088226 -0.09245093166828156 0.02956593595445156 -0.03565467521548271 -0.05173765867948532 -0.011723832227289677 -0.11192617565393448 0.0013709928607568145 0.03930332884192467 -0.019801903516054153 0.030214833095669746 0.007021740078926086 -0.021388892084360123 -0.08346228301525116 -0.06871693581342697 -0.011216537095606327 -0.05719703808426857 -0.04432633891701698 -0.015826523303985596 -0.019714614376425743 0.035381853580474854 -0.07026852667331696 -0.04837462678551674 0.005746633280068636 0.002484344644472003 0.07515408843755722 0.05103898420929909 0.09447991847991943 0.03817662596702576 0.01446085050702095 -0.04347775876522064 -0.008777732029557228 -0.035217899829149246 -0.005397344008088112 0.0031131489668041468 0.015218598768115044 -0.08928317576646805 -0.02564927004277706 -0.04086260870099068 0.02652970515191555 -0.01951776258647442 0.007522983010858297 -0.01888592168688774 -0.015966802835464478 -0.045991189777851105 0.07308779656887054 0.08065079152584076 -0.024380052462220192 0.04308886080980301 -0.06418806314468384 0.0822233259677887 -0.08738542348146439 -0.060561470687389374 -0.035887617617845535 0.06159302964806557 0.07321824133396149 0.0042915670201182365 -0.012014313600957394 -0.07518325746059418 0.07431138306856155 0.03652552515268326 0.01758573018014431 -0.03381285071372986 0.02937805838882923 0.03450200706720352 0.012372639030218124 0.04477429389953613 0.042063646018505096 -0.013578200712800026 -0.0014262159820646048 -0.0070356582291424274 0.051796820014715195 -0.051728587597608566 0.027891647070646286 0.004332822747528553 -0.07137758284807205 0.0021852594800293446 -0.04195481538772583 -0.07182061672210693 0.003176246304064989 0.03923945501446724 -0.06048646569252014 0.011998110450804234 0.0016807870706543326 0.0013068101834505796 -0.02047020010650158 -0.0024940280709415674 0.002939312718808651 -0.0431288480758667 -0.04708308354020119 0.07551686465740204 0.015043419785797596 -0.05352586507797241 -0.09550632536411285 -0.02991248294711113 0.04979116469621658 -0.026523737236857414 0.024821912869811058 0.04263269156217575 0.04026702418923378 0.02278514765202999 -0.014473186805844307 0.017560210078954697 -0.035657696425914764 -0.03717513754963875 -0.02952413633465767 0.006083320360630751 -0.042805712670087814 -0.015636973083019257 -0.024864960461854935 -0.07882227003574371 0.0013653809437528253 0.004122147336602211 -0.016803067177534103 -0.06257370859384537 0.014012182131409645 0.009329217486083508 0.01878848671913147 -0.04985276237130165 -0.03468688949942589 -0.01929118111729622 -0.0377507209777832 0.023325439542531967 -0.06807364523410797 0.002689302433282137 0.044607508927583694 -0.010696418583393097 -0.0054921661503612995 -0.07020477205514908 0.02311781607568264 -0.013932274654507637 -0.08675939589738846 -5.699926077795681e-06 -0.10390809178352356 -0.028514588251709938 0.011807051487267017 -0.026514768600463867 -0.02166224829852581 0.10925409942865372 0.04572618380188942 -0.02777918055653572 -0.043720755726099014 -0.06682077795267105 -0.008662157692015171 -0.015898369252681732 0.0043544829823076725 0.005628497805446386 -0.017022782936692238 0.0015406827442348003 0.027346909046173096 -0.05201621353626251 0.0025363320019096136 -0.028230534866452217 -0.018634309992194176 -0.03864128887653351 0.045740608125925064 -0.022089585661888123 -0.0122127216309309 0.05474669858813286 -0.03426085412502289 0.05178959667682648 0.09339527785778046 0.05320858210325241 -0.01452658697962761 0.044190291315317154 0.016187097877264023 0.09040184319019318 0.017369180917739868 -0.002170486841350794 -0.027079250663518906 -0.046648405492305756 -0.011224807240068913 0.037817616015672684 -0.03000747226178646 -0.008852073922753334 0.01344972662627697 -0.020133554935455322 0.09955362975597382 -0.00865195319056511 -0.05472206696867943 0.009028726257383823 0.009588428772985935 0.007379476446658373 -0.001458359882235527 -0.0032716684509068727 0.003410832490772009 -0.03126842901110649 -0.06234891712665558 -0.009990086778998375 -0.0030474024824798107 0.06029851362109184 -0.05843029171228409 0.026091860607266426 -0.05170284956693649 -0.05402472987771034 0.01969623751938343 0.04936766251921654 0.1037382036447525 -0.05741596594452858 0.0304871778935194 0.05594702437520027 0.025614231824874878 -0.07932919263839722 0.022311192005872726 -0.0063829426653683186 -0.05337824299931526 -0.049261920154094696 0.023137694224715233 0.0145296985283494 -0.06668372452259064 -0.033495672047138214 -0.03762279823422432 -0.03941294550895691 -0.008341019973158836 0.007437160238623619 0.005289032123982906 0.04152810201048851 -0.03591299429535866 -0.014303091913461685 -0.04124123230576515 -0.002286625327542424 0.020733783021569252 -0.05793757736682892 0.011359812691807747 0.0036903684958815575 -0.0004788423248101026 -0.05194401368498802 -0.061791084706783295 -0.0025544108357280493 0.046643976122140884 -0.03741760924458504 0.005636902526021004 -0.037961166352033615 -0.06818032264709473 -0.02843335084617138 -0.002573517384007573 0.03025396354496479 -0.04417826980352402 -0.032422300428152084 -0.023456528782844543 -0.04707840457558632 -0.100476935505867 -0.09924250096082687 0.052113715559244156 -0.021188730373978615 0.04299448803067207 -0.051635850220918655 0.001858184696175158 -0.01188543438911438 -0.01351043302565813 0.022022446617484093 0.08089853823184967 0.02428293414413929 0.003777183359488845 0.026095449924468994 -0.023693472146987915 0.013082257471978664 0.03528571128845215 -0.05883830785751343 -0.001174235949292779 -0.02185649424791336 -0.03493082523345947 0.04814495891332626 -0.014984294772148132 0.04693213850259781 -0.025252511724829674 -0.04949081689119339 0.039973482489585876 -0.0313144326210022 -0.01429295539855957 -0.03572765365242958 0.09525823593139648 -0.058013271540403366 -0.024797547608613968 -0.023962359875440598 -0.02773332968354225 -0.10101276636123657 -0.05661986023187637 -0.02142244018614292 0.011851916089653969 0.05997729301452637 -0.04487449303269386 0.02295028790831566 0.011390527710318565 -0.028617097064852715 -0.03480273857712746 -0.05166415125131607 0.007809318136423826 0.01741568185389042 0.049986470490694046 0.0032570259645581245 -0.017636723816394806 -0.01784694381058216 -0.0007573079783469439 -0.01778777875006199 0.004801709670573473 -0.09637017548084259 -0.020392045378684998 -0.014422931708395481 0.009301411919295788 0.014711756259202957 0.0022722703870385885 0.01322744507342577 -0.0647595003247261 -0.023013025522232056 -0.05366430804133415 0.10514847934246063 0.011829274706542492 -0.008221287280321121 0.02905793860554695 -0.0543239563703537 -0.022603396326303482 0.06438912451267242 -0.06948065012693405 -0.07372691482305527 -0.036763567477464676 1.8829814507625997e-05 0.03878414258360863 -0.009163107722997665 0.06373761594295502 -0.05658428743481636 -0.0756182000041008 0.055262427777051926 -0.019244421273469925 -0.08172304183244705 -0.014481555670499802 0.037822507321834564 -0.06810688227415085 -0.0500958114862442 0.0032716512214392424 -0.027501430362462997 0.060050591826438904 0.011331669054925442 0.01600034348666668 -0.06780935823917389 -0.006631616503000259 -0.03532011806964874 -0.0779360830783844 0.056090470403432846 -0.010995976626873016 -0.05718831717967987 -0.024982048198580742 0.08049485087394714 -0.06628301739692688 0.03416968137025833 0.04412202909588814 -0.05166468396782875 0.022833911702036858 0.05194200947880745 -0.007229526527225971 0.04419256001710892 0.0041555906645953655 0.00048414786579087377 0.02613532543182373 -0.0652189701795578 0.056504856795072556 -0.05046974495053291 0.10994371026754379 0.0178537517786026 0.020181184634566307 0.06598154455423355 0.06386742740869522 0.013229304924607277 -0.016531938686966896 -0.10584191977977753 +0.0360809825360775 -0.004813831299543381 0.0009996510343626142 0.031340908259153366 -0.13591594994068146 -0.06291601061820984 -0.02162226475775242 0.0574006587266922 -0.012059228494763374 -0.014679210260510445 -0.018736587837338448 0.004034795332700014 -0.011577282100915909 0.035323068499565125 0.03917735069990158 -0.028458040207624435 -0.05072980374097824 -0.017430618405342102 -0.0693589597940445 -0.033172428607940674 0.044202372431755066 0.036817438900470734 -0.0409516878426075 0.04727273806929588 0.00891746487468481 -0.012017074041068554 -0.05370321869850159 0.022578706964850426 -0.010354090481996536 0.0048764911480247974 0.03052213042974472 -0.014130222611129284 0.03685551881790161 -0.02893349528312683 -0.06555411964654922 0.053003065288066864 -0.05239201709628105 0.09140080958604813 0.04043586179614067 -0.05353027209639549 -0.031189216300845146 0.025403309613466263 -0.01188608631491661 -0.03125402703881264 0.03090401366353035 0.02372973971068859 0.01538732647895813 -0.0358111672103405 0.039385147392749786 0.04268632456660271 0.07516853511333466 0.01984325982630253 0.01242853794246912 -0.03346966207027435 0.011688063852488995 0.009373292326927185 0.031026024371385574 -0.07672177255153656 -0.057223010808229446 0.04050713777542114 -0.09044619649648666 -0.00994161143898964 0.018724024295806885 0.017265338450670242 0.030323242768645287 -0.019834717735648155 0.0011959128314629197 0.092781201004982 0.04948075860738754 -0.025038044899702072 0.027660133317112923 0.09473983198404312 -0.04307849332690239 -0.0308056827634573 0.0513848252594471 -0.03534058481454849 -0.016130374744534492 0.03100135177373886 -0.020532725378870964 0.016772672533988953 0.008224066346883774 -0.05257410928606987 0.0917448177933693 -0.0409969724714756 -0.06197207421064377 -0.02090330794453621 -0.02506260760128498 -0.0852111354470253 0.041967641562223434 0.006809372920542955 0.006805925164371729 0.07879333943128586 -0.07566049695014954 0.020274916663765907 -0.045175351202487946 0.0380672812461853 0.016595643013715744 -0.11797896772623062 -0.006788360886275768 -0.023595189675688744 -0.019274497404694557 -0.005558294244110584 0.04312990978360176 -0.00981475692242384 0.034026384353637695 0.058017291128635406 -0.03639635443687439 -0.007888381369411945 -0.010531710460782051 0.03409098833799362 0.01694806106388569 0.04057366028428078 0.12375717610120773 0.06381909549236298 0.04043744504451752 -0.01535686943680048 -0.023210013285279274 -0.04422162100672722 -0.05053461343050003 -0.02332654409110546 -0.005520868580788374 0.05081994831562042 0.0006601458298973739 -0.06535430997610092 -0.022420065477490425 0.038872793316841125 -0.09418027102947235 -0.011761244386434555 0.07213995605707169 -0.0494922399520874 0.09657896310091019 0.034748055040836334 -0.04663015529513359 0.04402458295226097 0.062168288975954056 0.020999349653720856 -0.012496971525251865 0.026750370860099792 -0.01120215654373169 -0.03787331283092499 -0.030671264976263046 0.05869150906801224 0.04432544484734535 -0.10067310184240341 0.022054621949791908 0.07827364653348923 0.019868478178977966 -0.022158769890666008 -0.0899079367518425 0.017748739570379257 -0.0953894779086113 -0.08523651957511902 -0.03188182786107063 -0.06509146839380264 -0.015404622070491314 0.056928157806396484 0.0031861134339123964 0.0026090515311807394 -0.06303282082080841 -0.030628716573119164 -0.02410179376602173 -0.018848156556487083 0.008371186442673206 -0.08665572851896286 -0.023251989856362343 -0.03180243447422981 -0.008074374869465828 0.019177908077836037 -0.05354875326156616 -0.050523579120635986 -0.032637134194374084 -0.009263228625059128 0.04561467096209526 0.08039297163486481 0.04356485605239868 -0.008001753129065037 0.02866498939692974 -0.02302648313343525 0.002549610799178481 -0.020181361585855484 0.02421664260327816 -0.05387570708990097 0.07099857181310654 -0.07329055666923523 -0.01931767910718918 -0.040260303765535355 0.03517567738890648 -0.04924319311976433 0.011762176640331745 -0.02207370661199093 -0.04153206944465637 -0.049874890595674515 0.03668970242142677 0.10884564369916916 -0.049966391175985336 0.06599998474121094 -0.014349240809679031 0.01926003396511078 -0.028317078948020935 -0.014765110798180103 -0.06642940640449524 0.07695917040109634 0.009264816530048847 0.03675651550292969 0.010293669998645782 -0.09913740307092667 0.07466515898704529 -0.0014307486126199365 -0.001256850897334516 -0.045760657638311386 0.054387547075748444 0.10486842691898346 -0.0010511795990169048 0.040270570665597916 0.0545869916677475 0.005020865239202976 0.01957579329609871 -0.05179212614893913 0.031192203983664513 -0.06911537051200867 0.027240963652729988 0.018991481512784958 -0.05055418610572815 0.03380512073636055 -0.019305504858493805 -0.06925344467163086 -0.0205784160643816 0.023328453302383423 0.027095872908830643 -0.03322761878371239 -0.0023625728208571672 -0.0010724884923547506 0.023034662008285522 -0.017324352636933327 -0.02951810508966446 -0.010118106380105019 -0.0810299813747406 0.09714826941490173 0.013244759291410446 -0.034114908427000046 -0.035106487572193146 -0.01196417585015297 0.010516636073589325 -0.027715343981981277 0.01921256259083748 0.06251349300146103 0.06927596032619476 0.03493824973702431 0.022594677284359932 -0.040007732808589935 -0.05757399648427963 -0.0296272374689579 -0.020562496036291122 0.03845595568418503 -0.029159385710954666 -0.03368407115340233 0.013680445030331612 -0.06817439198493958 -0.030534259974956512 0.0003912572574336082 0.053612641990184784 -0.049617018550634384 -0.050744589418172836 -0.05137082561850548 0.01418375875800848 -0.010943339206278324 -0.0748044028878212 0.015511250123381615 -0.0038676317781209946 0.06793607026338577 -0.0074179950170218945 -0.017487119883298874 0.04655115678906441 0.00800626166164875 0.04370441660284996 -0.0011556849349290133 0.04092807322740555 -0.01078053843230009 -0.06373216211795807 0.0160080436617136 -0.03459978103637695 -0.08895078301429749 -0.025843681767582893 -0.0457448810338974 -0.02247612178325653 0.11504758149385452 0.022438231855630875 -0.02706802450120449 -0.06865081191062927 0.023439208045601845 -0.014376312494277954 -0.03509226813912392 -0.0008333318401128054 0.010560677386820316 -0.0817488357424736 -0.012602732516825199 -0.02228199504315853 -0.049841467291116714 -0.054754775017499924 0.012452686205506325 -0.02944599837064743 -0.06461571156978607 0.046787407249212265 -0.04342280328273773 0.0003652509185485542 -0.018548201769590378 -0.026696398854255676 0.019840558990836143 0.0792713463306427 0.029601244255900383 0.014523155055940151 0.013973531313240528 0.01350186113268137 0.1002211943268776 0.012126881629228592 -0.0282298531383276 -0.0161659624427557 -0.03638935834169388 -0.05295347422361374 0.06829769164323807 -0.06116579473018646 -0.03930972144007683 0.025630662217736244 -0.013148807920515537 0.09584209322929382 -0.01700054109096527 -0.04450737312436104 -0.033668700605630875 0.026289552450180054 0.012343415059149265 0.04630208760499954 -0.001151900738477707 -0.03177831321954727 -0.005650695413351059 -0.038115814328193665 -0.017471224069595337 -0.048660606145858765 0.039595481008291245 0.003424527822062373 0.04554138705134392 -0.015704767778515816 -0.06111103668808937 0.006579491309821606 0.01679009012877941 0.11341892182826996 -0.0715818926692009 0.013826657086610794 0.037677329033613205 0.006406874395906925 -0.051704902201890945 0.01057704072445631 -0.004523542243987322 -0.015355127863585949 -0.0394759438931942 0.02533251792192459 0.04877085983753204 -0.1261165589094162 -0.024838490411639214 -0.017946753650903702 -0.022181786596775055 0.013090070337057114 -0.01972995512187481 0.007667470257729292 0.035641904920339584 -0.008378857746720314 -0.00577111029997468 -0.007020443677902222 0.02628355100750923 0.025592349469661713 -0.031245186924934387 0.03612265735864639 -0.004439618904143572 0.08619876205921173 -0.060789886862039566 -0.04861868545413017 -0.02703508548438549 0.039306625723838806 -0.015367819927632809 -0.010954147204756737 -0.019237274304032326 -0.019384009763598442 0.019560761749744415 0.05079413205385208 -0.02127191238105297 -0.06995374709367752 4.2143907194258645e-05 -0.005276907235383987 -0.0343535840511322 -0.0718374028801918 -0.04306326434016228 0.012573647312819958 -0.08470983803272247 -0.00446490291506052 -0.018977271392941475 -0.009702802635729313 -0.01287362352013588 -0.03666184842586517 0.004501244053244591 0.05025007203221321 0.0425657257437706 -0.007195127662271261 0.04503670334815979 0.018397759646177292 0.03342248871922493 0.0064827753230929375 -0.05573465675115585 0.045136258006095886 0.0396096371114254 -0.06860333681106567 0.05501721426844597 -0.06486256420612335 -0.0006803630967624485 0.006913633085787296 0.02421422488987446 0.019142238423228264 -0.021161949262022972 0.009857074357569218 -0.053475115448236465 0.07446856796741486 -0.07686211913824081 -0.03595385700464249 0.06563929468393326 -0.01311047188937664 -0.10258455574512482 0.0072316634468734264 -0.03894120082259178 -0.02890677936375141 0.039736438542604446 0.01488522905856371 0.0028975578024983406 0.024646196514368057 -0.06370437145233154 -0.0219897348433733 -0.05400674417614937 -0.01672818697988987 0.007595050148665905 0.01435134932398796 0.0558406338095665 0.014068998396396637 0.012161150574684143 -0.011225788854062557 -0.01682678982615471 0.008698112331330776 -0.07994988560676575 -0.006380208767950535 -0.008245911449193954 -0.0106210233643651 0.007972520776093006 0.0019638841040432453 0.012045536190271378 -0.045853447169065475 -0.03266366198658943 -0.02389664202928543 0.08120132982730865 -0.03678837791085243 -0.013664739206433296 0.07106958329677582 -0.024416210129857063 -0.0006307045114226639 0.01260631624609232 -0.046508725732564926 -0.10106334835290909 0.002958911005407572 -0.02400786243379116 0.023085108026862144 0.014673883095383644 0.033562932163476944 -0.031742844730615616 -0.07006507366895676 0.0008050058386288583 0.019755134359002113 -0.021861426532268524 0.04244094714522362 0.02459375187754631 -0.05516315624117851 -0.06762527674436569 -0.02664828673005104 -0.049886900931596756 0.07439564168453217 0.01632755808532238 0.034886837005615234 -0.009460905566811562 -0.017947610467672348 -0.0016801021993160248 -0.06704965233802795 -0.025863641873002052 0.02741444669663906 -0.0460612028837204 -0.02780936472117901 0.08420168608427048 -0.0413828082382679 0.0049667819403111935 0.07855450361967087 -0.05861004441976547 0.0037851505912840366 0.018812410533428192 0.00675726355984807 0.05575713887810707 0.0013697280082851648 -0.03127387538552284 0.06065097823739052 -0.048378836363554 0.06442535668611526 -0.016617346554994583 0.0670645534992218 -0.010946972295641899 -0.0369473434984684 0.08961957693099976 0.07235032320022583 0.005041799042373896 -0.003996227402240038 -0.07812649756669998 +0.042996834963560104 -0.03572828322649002 0.022871656343340874 0.05904754623770714 -0.07181396335363388 -0.023632515221834183 -0.0031852908432483673 0.02561347186565399 -0.010027251206338406 -0.03843237832188606 -0.0006799366092309356 -0.02224445901811123 -0.00623277248814702 0.017335942015051842 0.03347209468483925 -0.03903389722108841 -0.0722174122929573 0.008420216850936413 -0.04307981953024864 -0.026407264173030853 0.04182009398937225 -0.002840882632881403 -0.07938079535961151 0.0544295608997345 -0.02224702574312687 0.018396329134702682 -0.05123146250844002 0.023831285536289215 -0.02714700810611248 0.03490126132965088 0.08492906391620636 -0.011551305651664734 0.04118138924241066 -0.05762399733066559 -0.061700981110334396 0.04347537085413933 -0.032934971153736115 0.1077827736735344 0.026213018223643303 -0.034258902072906494 -0.06259380280971527 0.024032974615693092 -0.005084300879389048 -0.048586655408144 0.05270673334598541 0.005458530969917774 0.020050527527928352 -0.023518621921539307 0.050285983830690384 0.01473773643374443 0.1151098906993866 0.03300299867987633 0.014892644248902798 0.0026790655683726072 -0.011777047999203205 0.0018701665103435516 0.04802246019244194 -0.046869248151779175 -0.07064882665872574 0.05717907473444939 -0.09237170964479446 -0.027896052226424217 0.01212321873754263 -0.01828773133456707 -0.025179890915751457 -0.010573125444352627 -0.026623982936143875 0.08743611723184586 0.030361421406269073 -0.017612537369132042 0.01900615356862545 0.09659101814031601 -0.06096149981021881 -0.07123212516307831 0.04223450645804405 -0.040915098041296005 -0.003065692726522684 0.022545870393514633 -0.0348806157708168 0.02772708795964718 -0.023638760671019554 -0.028027363121509552 0.1277148425579071 -0.028612440451979637 -0.03452068939805031 -0.035218022763729095 0.0031021018512547016 -0.06459242105484009 0.07916991412639618 0.05080338940024376 0.0011866833083331585 0.07463578879833221 -0.048694759607315063 0.057952094823122025 0.022662915289402008 0.013004342094063759 0.026925168931484222 -0.10790007561445236 -0.014119570143520832 0.002497045323252678 0.004279755055904388 -0.0009012401569634676 0.06515225768089294 -0.010523808188736439 0.08410529792308807 0.04383515566587448 -0.06649486720561981 0.007579259108752012 0.03445557877421379 0.03198741376399994 0.0397556908428669 0.11713410168886185 0.0461425743997097 0.027758797630667686 0.04340347647666931 0.014107909053564072 0.009892989881336689 -0.07641538232564926 -0.03226114809513092 0.004023872781544924 -0.009904642589390278 0.05501032620668411 -0.01537943072617054 -0.06583192199468613 -0.0053995754569768906 0.033960867673158646 -0.11833786964416504 -0.023117894306778908 0.09110686928033829 -0.02853994071483612 0.11260946094989777 0.07851108908653259 -0.00029410465504042804 0.053522173315286636 0.06380177289247513 0.03190567344427109 -0.014853832311928272 0.025876067578792572 -0.006197115406394005 -0.03136177733540535 -0.008474950678646564 0.04631851613521576 -0.006838537752628326 -0.0530720092356205 0.03517590090632439 0.058193281292915344 0.03373100981116295 -0.025064976885914803 -0.05281519517302513 0.032978158444166183 -0.06026788055896759 -0.07954701781272888 -0.0011865418637171388 -0.05845395103096962 -0.015759140253067017 0.059771306812763214 0.02141350321471691 0.048444170504808426 -0.003105949144810438 -0.03924949839711189 -0.04443288594484329 -0.06165195629000664 -0.03473309427499771 -0.07176772505044937 -0.011050290428102016 -0.026347612962126732 -0.007129074074327946 0.01460257824510336 -0.03062588907778263 -0.02843651734292507 0.02529599703848362 -0.003343254793435335 0.012278425507247448 0.06579156219959259 0.05674443766474724 0.015442495234310627 0.011822471395134926 -0.05526827275753021 1.0869709512917325e-05 -0.041586972773075104 -0.013635427691042423 -0.013945279642939568 0.02117438055574894 -0.10075483471155167 -0.018089141696691513 -0.003367469646036625 0.04322922229766846 -0.018460219725966454 -0.0029076584614813328 -0.018701650202274323 -0.03064078465104103 -0.05667572468519211 0.039843738079071045 0.05589365214109421 -0.031767334789037704 0.0334143303334713 -0.007068815175443888 0.045756805688142776 -0.02213876321911812 -0.030465979129076004 -0.050186287611722946 0.05757145211100578 0.015002075582742691 0.044188570231199265 0.02413189969956875 -0.04767022281885147 0.06472364813089371 0.010347526520490646 0.004453862085938454 -0.06331225484609604 -0.0013400069437921047 0.011361834593117237 0.03672254830598831 0.03612009435892105 0.07089394330978394 -0.01940685696899891 0.00013759065768681467 0.019167078658938408 0.08542106300592422 -0.06608526408672333 0.009516779333353043 -0.025931593030691147 -0.06170361861586571 0.023053200915455818 -0.032645098865032196 -0.09376534074544907 -0.02629196085035801 0.04285538196563721 -0.006754136644303799 -0.02037874050438404 0.03277083858847618 0.03221193328499794 -0.029112378135323524 0.0012615697924047709 0.028316812589764595 -0.03479188308119774 -0.09782544523477554 0.09618500620126724 -0.0023303793277591467 -0.07406183332204819 -0.05340607091784477 0.004425049293786287 0.053533390164375305 0.013819841668009758 0.050109826028347015 0.030508728697896004 0.08811738342046738 0.03794189170002937 -0.0245317742228508 0.013748551718890667 -0.04134942218661308 -0.06326813250780106 0.011256281286478043 0.025571724399924278 -0.02224115841090679 -0.04133648797869682 -0.00014893557818140835 -0.061211615800857544 0.023481806740164757 -0.023951293900609016 0.028113778680562973 -0.040129221975803375 0.01240657176822424 -0.014383806847035885 0.04386334493756294 -0.04112474247813225 -0.04916583001613617 0.02724829502403736 -0.010459959506988525 0.06504128873348236 -0.038468893617391586 -0.014161481522023678 0.02104121819138527 0.014309486374258995 0.024181673303246498 -0.054078325629234314 0.04981540888547897 -0.007117287255823612 -0.10956145823001862 -0.03553296998143196 -0.09214838594198227 -0.04918224364519119 0.002809305442497134 -0.03204842284321785 -0.061666734516620636 0.07475265860557556 0.016117462888360023 -0.05396535247564316 -0.07217409461736679 -0.04234619066119194 -0.003678411478176713 -0.024907810613512993 -0.030065899714827538 -0.0012606774689629674 -0.04282398894429207 -0.0049135987646877766 0.031746912747621536 -0.06402666866779327 -0.03708770126104355 0.0034619509242475033 -0.004105713218450546 -0.03989599272608757 0.05378406494855881 -0.04427643492817879 0.004938563797622919 0.008933153003454208 -0.08539675921201706 0.06575918942689896 0.09924649447202682 0.052401695400476456 0.04189779981970787 0.025647660717368126 0.017000382766127586 0.10677415132522583 0.02066170983016491 -0.03575243428349495 -0.01068110391497612 -0.04987483099102974 -0.061103902757167816 0.05138583853840828 -0.03534211590886116 0.005236559547483921 -0.00041391729610040784 -0.007224968168884516 0.07091613113880157 0.0036497581750154495 -0.0250713974237442 -0.018061010167002678 0.03466096892952919 -0.016478557139635086 0.02227027341723442 0.008430044166743755 0.0081104077398777 -0.007917201146483421 -0.042235638946294785 -0.049933694303035736 -0.024707218632102013 0.04970049113035202 -0.019572818651795387 0.024721043184399605 -0.01239156536757946 -0.06436529755592346 0.014771989546716213 0.002979963319376111 0.09882283210754395 -0.07283712178468704 0.024873632937669754 0.028424836695194244 0.03607720881700516 -0.11804083734750748 -0.0028520983178168535 0.02349083125591278 -0.03943963348865509 -0.05997326970100403 0.03917737677693367 0.04314670339226723 -0.0626533180475235 -0.010017302818596363 -0.027706122025847435 -0.02621907740831375 0.002255209255963564 0.03250840678811073 0.007158476393669844 0.022721661254763603 -0.012223996222019196 -0.04221475124359131 -0.027070054784417152 0.004689078778028488 0.030215663835406303 -0.02781730704009533 0.03504681587219238 -0.024521904066205025 0.04527853801846504 -0.0415428951382637 -0.05756603553891182 -0.051006440073251724 0.05065135285258293 -0.015086022205650806 0.008188261650502682 -0.01797224022448063 -0.025403251871466637 -0.026811854913830757 -0.004628186114132404 0.005342417862266302 -0.07994815707206726 0.0028964742086827755 -0.023432200774550438 -0.06886924803256989 -0.09533396363258362 -0.04598499834537506 0.014256058260798454 -0.044549379497766495 0.01840384490787983 -0.024946242570877075 0.012275499291718006 0.01568327099084854 -0.025005128234624863 0.03191515430808067 0.06781332939863205 0.028644517064094543 -0.0015119456220418215 0.029937248677015305 0.020743196830153465 0.020440753549337387 0.0020122446585446596 -0.05084220692515373 0.031706321984529495 0.03146885707974434 -0.06203393638134003 0.03832574188709259 -0.0064385621808469296 0.011345223523676395 -0.007249865680932999 -0.021817024797201157 0.0025835055857896805 -0.016664279624819756 -0.040947966277599335 -0.04861829802393913 0.06989654898643494 -0.03980715572834015 -0.018656441941857338 0.009958399459719658 -0.058633673936128616 -0.10212623327970505 -0.025991683825850487 -0.007564309053122997 -0.04134668409824371 0.06315471231937408 0.0077833812683820724 0.023025238886475563 0.03902687504887581 -0.042866308242082596 -0.03305129334330559 -0.010743611492216587 -0.011088229715824127 0.016993865370750427 0.0011342242360115051 0.0735316127538681 0.0029832161962985992 -0.020809214562177658 0.000827518873848021 -0.024871163070201874 0.0231300238519907 -0.0869741290807724 -0.0110976193100214 -0.007111006416380405 -0.022892028093338013 0.014537103474140167 0.023043742403388023 0.0031425112392753363 -0.06662065535783768 -0.01774933747947216 -0.039945654571056366 0.07027033716440201 -0.009702812880277634 0.01634790375828743 0.010848036967217922 -0.03931610658764839 -0.006667010020464659 0.01837959885597229 -0.051951877772808075 -0.08159728348255157 0.012417282909154892 -0.03093665838241577 0.0044453926384449005 -0.01217308733612299 0.02520485781133175 -0.0005772081785835326 -0.10544037073850632 -0.01209697313606739 -0.0003524416533764452 -0.06427785754203796 -0.008440154604613781 0.009494584053754807 -0.07735054939985275 -0.052186209708452225 -0.010685976594686508 -0.06140756234526634 0.05648563429713249 -0.006012667901813984 0.00962079968303442 -0.015231684781610966 0.005035783164203167 -0.033615872263908386 -0.05096907541155815 0.021341195330023766 -0.023499934002757072 -0.04976598918437958 -0.022730456665158272 0.059671711176633835 -0.04839728772640228 0.04541584476828575 0.06780947744846344 -0.00149199937004596 0.04054019972681999 0.05547581985592842 -0.03366786614060402 0.022119158878922462 0.004986674524843693 0.010428257286548615 0.057589758187532425 -0.07576196640729904 0.08235283941030502 -0.0624733567237854 0.10609589517116547 0.006550804246217012 0.008807589299976826 0.07399848103523254 0.09452158212661743 0.02540447935461998 0.014546169899404049 -0.07715226709842682 +0.05754610896110535 -0.03103499300777912 0.018460338935256004 0.06357745826244354 -0.05890551954507828 -0.03574518859386444 -0.00039196255966089666 0.012476436793804169 -0.0005419217050075531 -0.025688601657748222 -0.018153997138142586 -0.01593749411404133 -0.012252867221832275 0.020042484626173973 0.033010758459568024 -0.022585012018680573 -0.06142972409725189 0.017575738951563835 -0.033871885389089584 -0.029501965269446373 0.0356169231235981 0.0054831719025969505 -0.06386303901672363 0.06282290071249008 -0.021128464490175247 0.0284112598747015 -0.061628419905900955 0.028374988585710526 -0.013899687677621841 0.022411014884710312 0.04617920145392418 -0.030998796224594116 0.03246631473302841 -0.08790083229541779 -0.05124920234084129 0.0363168939948082 -0.023980790749192238 0.11153250932693481 0.024142315611243248 -0.03980478644371033 -0.05909053608775139 0.02672351337969303 -0.03760741278529167 -0.048653535544872284 0.055788855999708176 0.01767170988023281 0.021803604438900948 -0.026060227304697037 0.049670133739709854 0.04190036281943321 0.10322935879230499 0.0007629203610122204 -0.026806741952896118 -0.03192725032567978 -0.02661251835525036 0.009001847356557846 0.05311789736151695 -0.07231809198856354 -0.06622155010700226 0.04664071276783943 -0.09657704085111618 -0.029103504493832588 0.006234138272702694 -0.002878872212022543 -0.04171169921755791 -0.029211249202489853 -0.008141789585351944 0.0960305780172348 0.016226254403591156 -0.027793074026703835 0.02718835324048996 0.12360068410634995 -0.06659456342458725 -0.05586763843894005 0.0401591882109642 -0.07867060601711273 -0.008494534529745579 0.04539702832698822 -0.011159374378621578 0.01580721326172352 -0.01263592392206192 -0.039940740913152695 0.1123555600643158 -0.028638135641813278 -0.05656500533223152 -0.02355288527905941 -0.0013499823398888111 -0.06332622468471527 0.053004421293735504 0.039017386734485626 0.008379559963941574 0.060591548681259155 -0.0468619167804718 0.053512681275606155 0.024869153276085854 0.012689786031842232 0.04002672806382179 -0.10491137951612473 -0.025526398792862892 -0.004186397884041071 -0.013202132657170296 -0.0004381611361168325 0.044548746198415756 0.01377972960472107 0.06666412204504013 0.012702764011919498 -0.07624390721321106 0.012200438417494297 0.029434090480208397 0.0439034104347229 0.05025758594274521 0.07884109765291214 0.07634544372558594 0.050003670156002045 0.05804982781410217 -0.024297622963786125 0.0305255725979805 -0.06960336118936539 -0.030425386503338814 0.0017909721937030554 0.02059243433177471 0.06077490374445915 -0.021567443385720253 -0.0845462754368782 -0.004296240396797657 0.03351130709052086 -0.10492530465126038 -0.016456229612231255 0.07370886206626892 -0.02174406126141548 0.11586718261241913 0.056762635707855225 -0.018510181456804276 0.04738109931349754 0.04837888106703758 0.01705952174961567 -0.024638839066028595 0.03963390737771988 0.015566079877316952 0.0034551271237432957 -0.004560236819088459 0.053602807223796844 0.009519505314528942 -0.061787091195583344 0.039900925010442734 0.050235651433467865 0.03673611581325531 -0.03752252832055092 -0.05606779828667641 0.008498829789459705 -0.06875947117805481 -0.06761300563812256 0.008151722140610218 -0.08084747195243835 -0.01128427218645811 0.036807529628276825 0.010465102270245552 0.04312950372695923 -0.018576020374894142 -0.015727514401078224 -0.06639691442251205 -0.06332860887050629 -0.027742652222514153 -0.06685201823711395 -0.048600610345602036 -0.026053037494421005 0.020991042256355286 0.0023753538262099028 -0.03696781024336815 -0.03481745719909668 -0.004432663321495056 0.0013174299383535981 0.0338701494038105 0.07005175948143005 0.08916624635457993 0.034669652581214905 0.01254076138138771 -0.02687094174325466 0.03505011647939682 -0.03030032105743885 0.0005006642313674092 -0.03633739799261093 0.01054171659052372 -0.07140639424324036 -0.012586868368089199 -0.013695020228624344 0.028590001165866852 -0.021177450194954872 0.01709016226232052 0.004181861877441406 -0.03048442304134369 -0.059535667300224304 0.042304471135139465 0.07698963582515717 -0.02231708914041519 0.042819831520318985 -0.03895324468612671 0.05325176566839218 -0.0299563966691494 -0.036978792399168015 -0.052495326846838 0.04773760586977005 -8.981161954579875e-05 0.042358092963695526 0.019020121544599533 -0.04629305377602577 0.07951652258634567 0.032606519758701324 0.02614511549472809 -0.08538636565208435 -0.003783188993111253 0.005410183686763048 0.027612121775746346 0.02874242700636387 0.08400357514619827 -0.017600251361727715 -0.02808014675974846 -0.0002757067559286952 0.04984717816114426 -0.03734814375638962 0.011388237588107586 -0.011393681168556213 -0.08500899374485016 0.030322903767228127 -0.055875495076179504 -0.07426229864358902 -0.02961673028767109 0.04123855382204056 -0.0020874240435659885 -0.01606605015695095 0.004030199721455574 0.01761685498058796 -0.019853156059980392 -0.02930636517703533 -0.0011329427361488342 -0.02467610314488411 -0.09626678377389908 0.10440260916948318 0.02132326364517212 -0.054864250123500824 -0.06144355610013008 0.01053654309362173 0.04577363654971123 -0.0044534034095704556 0.031379591673612595 0.01806841790676117 0.09568308293819427 0.04747001454234123 -0.010382485575973988 0.028176749125123024 -0.04261402785778046 -0.056229542940855026 7.35818175598979e-05 0.02229035086929798 -0.04096353054046631 -0.023532673716545105 -0.011695720255374908 -0.0501265712082386 -0.012221631594002247 -0.011384975165128708 0.016752392053604126 -0.011279348284006119 -0.019468776881694794 -0.008157017640769482 0.05653928592801094 -0.03489598259329796 -0.04812188073992729 0.02260296232998371 0.005047642160207033 0.0544402077794075 -0.03993268311023712 -0.01651797629892826 0.05859823524951935 0.011845381930470467 0.013310967944562435 -0.057858727872371674 0.05646960437297821 -0.00756786810234189 -0.0807664543390274 -0.04013318195939064 -0.08734478056430817 -0.03703350946307182 3.5603386550064897e-06 -0.02896316908299923 -0.031311094760894775 0.08246459066867828 0.012536623515188694 -0.02993134781718254 -0.06208127364516258 -0.029028456658124924 -0.026411738246679306 -0.06136124208569527 -0.021747000515460968 0.014474066905677319 -0.04242097958922386 -0.025414003059267998 0.012816485948860645 -0.04572701454162598 -0.025269394740462303 -0.0392826572060585 -0.027630139142274857 -0.05226302891969681 0.05306106060743332 -0.03347090631723404 -0.023187512531876564 0.020382702350616455 -0.07410578429698944 0.03329550847411156 0.10917014628648758 0.07556772977113724 0.0570281483232975 0.04446108266711235 0.019339533522725105 0.11288610100746155 0.01984502375125885 -0.03859527409076691 -0.017154213041067123 -0.020521890372037888 -0.07364016771316528 0.044648218899965286 -0.025597916916012764 0.003319358918815851 0.003123931121081114 0.001566620427183807 0.07805468887090683 -0.005214942619204521 -0.0508618988096714 -0.02051362209022045 0.026979589834809303 -0.03323705866932869 0.00466473214328289 0.0017377336043864489 0.017011992633342743 -0.011080448515713215 -0.05373363196849823 -0.05488964542746544 -0.02493431232869625 0.04894108697772026 -0.025399161502718925 0.04453567415475845 -0.013898367062211037 -0.048014722764492035 0.014095702208578587 0.02250557579100132 0.09152726829051971 -0.05397138372063637 0.010542494244873524 0.03263722360134125 0.02536749467253685 -0.11036982387304306 0.0052381400018930435 0.028363807126879692 -0.04224742576479912 -0.05614258348941803 0.0123392129316926 0.026027560234069824 -0.05812487378716469 -0.007106729317456484 -0.003072122810408473 -0.059384893625974655 0.0013426271034404635 0.03385232016444206 0.03256869316101074 0.028403080999851227 -0.024868814274668694 -0.04769700765609741 -0.020767059177160263 -0.010197332128882408 0.03315609320998192 -0.037982288748025894 0.013688750565052032 -0.03023032285273075 0.03680967539548874 -0.04873586446046829 -0.03533198684453964 -0.038878876715898514 0.05742963030934334 0.006588266231119633 -0.021697940304875374 -0.013678079470992088 -0.02961752563714981 -0.021282879635691643 0.004087114706635475 0.04388783127069473 -0.05454835295677185 -0.007067624945193529 -0.040147069841623306 -0.0512988455593586 -0.098701111972332 -0.0657339096069336 0.015025953762233257 -0.04966256022453308 0.01940501295030117 -0.017868995666503906 -0.0040423995815217495 0.006332429125905037 -0.0054489499889314175 0.02386915683746338 0.050288110971450806 0.03316984698176384 -0.02331327274441719 0.03055720217525959 -0.01196323148906231 0.052746158093214035 0.031260229647159576 -0.05521165579557419 0.0038889877032488585 0.020189978182315826 -0.05721982568502426 0.04293905943632126 -0.027650045230984688 0.020390266552567482 -0.021458351984620094 -0.008143225684762001 0.05228312313556671 -0.005414089187979698 -0.005877090152353048 -0.029897192493081093 0.06382410228252411 -0.07008478045463562 -0.024149393662810326 0.013837479054927826 -0.04047581925988197 -0.11150937527418137 -0.040988434106111526 0.0009019520948641002 -0.012424016371369362 0.03371712565422058 -0.03353150933980942 0.02890746295452118 0.026767795905470848 -0.032538361847400665 -0.04619855433702469 -0.018369177356362343 -0.016416147351264954 0.0491890050470829 -0.0009103039046749473 0.08185393363237381 0.016423804685473442 0.0013423202326521277 0.004028693772852421 0.004342789761722088 0.007296964526176453 -0.10003379732370377 -0.022826356813311577 -0.027155406773090363 -0.007076850160956383 0.010779505595564842 0.017939288169145584 -0.004337134771049023 -0.0650557279586792 -0.019486170262098312 -0.036348093301057816 0.10097861289978027 -7.332538370974362e-05 0.011875545606017113 0.03770880773663521 -0.03938257694244385 -0.011143028736114502 -0.005708775483071804 -0.041763462126255035 -0.08532622456550598 -0.005951101891696453 -0.010645625181496143 0.014385220594704151 -0.002255692146718502 0.01882336102426052 -0.01315715815871954 -0.0646967887878418 -0.011644565500319004 0.023383142426609993 -0.06903736293315887 0.008530199527740479 0.009154998697340488 -0.07249222695827484 -0.057702645659446716 0.023347796872258186 -0.054066047072410583 0.05606053024530411 0.022180236876010895 0.009311371482908726 0.012254620902240276 -0.0035546168219298124 -0.016042446717619896 -0.0488118901848793 0.024078942835330963 -0.010721713304519653 -0.05489522963762283 -0.008600923232734203 0.05866948515176773 -0.035383958369493484 0.03294476866722107 0.04862996190786362 -0.04859611392021179 0.04819651320576668 0.05085767060518265 -0.040149085223674774 0.035759370774030685 -0.019246449694037437 -0.00939230341464281 0.07880609482526779 -0.07753418385982513 0.09829440712928772 -0.07923705875873566 0.10216757655143738 0.022352835163474083 -0.015334529802203178 0.0884367823600769 0.0880221575498581 -0.0031187226995825768 0.0024714788887649775 -0.07990776002407074 +0.043678898364305496 -0.031157823279500008 0.0184647049754858 0.031639743596315384 -0.08615219593048096 -0.021239614114165306 0.014090340584516525 0.03997774422168732 -0.026160724461078644 -0.0186911653727293 0.0028472733683884144 0.009818123653531075 0.0304573867470026 0.016770513728260994 0.040019094944000244 -0.0517825186252594 -0.058923475444316864 0.004694725386798382 -0.04489158093929291 -0.040487613528966904 0.05437859892845154 -0.010514134541153908 -0.0535748265683651 0.014303481206297874 -0.015546631999313831 0.027112998068332672 -0.05521180108189583 0.024900104850530624 0.005368651822209358 0.008223682641983032 0.08763883262872696 -0.031303513795137405 0.027371501550078392 -0.05258537083864212 -0.05111350491642952 0.03197070583701134 -0.04506731405854225 0.0977877601981163 -0.0009238665807060897 -0.03152908384799957 -0.03179905191063881 -0.00453281169757247 -0.004112033173441887 -0.01505784410983324 0.03455048426985741 0.008924759924411774 0.01627734676003456 -0.024053236469626427 0.033353742212057114 -0.027916179969906807 0.07910268008708954 0.02292056567966938 0.014805218204855919 -0.027048835530877113 -0.006065648049116135 -0.01128179021179676 0.05078659951686859 -0.038994092494249344 -0.09460172057151794 0.07649733126163483 -0.09518207609653473 -0.005184246227145195 -0.016470180824398994 -0.012778179720044136 -0.022253170609474182 -0.03258452191948891 -0.010309345088899136 0.0687234178185463 0.004529346711933613 -0.02977689914405346 0.040833547711372375 0.10266994684934616 -0.057264797389507294 -0.09088476747274399 0.05876370519399643 -0.057968053966760635 0.006072331219911575 0.028361795470118523 -0.0392141118645668 0.01118277758359909 -0.06292058527469635 -0.053680773824453354 0.11693667620420456 -0.039851609617471695 -0.07331645488739014 -0.04628344997763634 -0.011142497882246971 -0.04315781965851784 0.06586980074644089 0.04509791359305382 0.009570027701556683 0.056313615292310715 -0.08881450444459915 0.047427233308553696 0.035041965544223785 0.005300730001181364 0.03654441609978676 -0.10461267083883286 -0.04851439967751503 0.018831389024853706 -0.007943405769765377 -0.022060822695493698 0.08274412900209427 0.022851062938570976 0.04720234125852585 0.041952721774578094 -0.0421634279191494 0.02718786709010601 0.015397471375763416 0.07350143045186996 0.019931668415665627 0.1002613753080368 0.054638467729091644 0.039920054376125336 0.033828746527433395 -0.02561344765126705 -0.015763171017169952 -0.05127697065472603 -0.027827754616737366 0.003662603674456477 0.02623770385980606 0.0535319447517395 -0.029966311529278755 -0.07321502268314362 -0.041351743042469025 0.044379692524671555 -0.12187358736991882 0.0005340123898349702 0.10564363747835159 -0.04428410157561302 0.10711971670389175 0.06950493156909943 0.008616046980023384 0.07864724099636078 0.05803246051073074 0.04459915682673454 0.0035696097183972597 0.03711313009262085 -0.016213955357670784 -0.037990979850292206 -0.02269166335463524 0.019918976351618767 0.01551615260541439 -0.06187968701124191 0.011377973482012749 0.05805780366063118 0.030199719592928886 -0.05505384877324104 -0.028020111843943596 0.022034691646695137 -0.05055006593465805 -0.06591733545064926 -0.012748203240334988 -0.05947031080722809 0.012488218024373055 0.022368766367435455 0.0029439416248351336 0.018019622191786766 -0.01850849948823452 0.0058580245822668076 -0.05144631117582321 -0.06273236125707626 -0.032424792647361755 -0.03933078423142433 -0.008864917792379856 0.003938586916774511 0.018016492947936058 -0.002662567887455225 -0.043699827045202255 -0.017811764031648636 0.021335845813155174 0.010138195008039474 0.013202152214944363 0.05715435743331909 0.03187551349401474 -0.007499325089156628 0.029028326272964478 -0.03940075635910034 0.009880125522613525 -0.040428899228572845 -0.007408343255519867 -0.0014326531672850251 0.03062993474304676 -0.08352763950824738 -0.016196761280298233 -0.012330704368650913 0.042301323264837265 -0.04938314110040665 0.009641817770898342 -0.04071076586842537 -0.022671153768897057 -0.05525944009423256 0.021200943738222122 0.04840948060154915 -0.049864109605550766 0.04419087991118431 -0.017822735011577606 0.03236594796180725 -0.03374013304710388 -0.04369247332215309 -0.03789078816771507 0.04955597221851349 -0.004043018911033869 0.022043267264962196 -0.020290954038500786 -0.05280798673629761 0.048122186213731766 0.00013836933067068458 0.0017604457680135965 -0.08229761570692062 0.001043285708874464 0.019763171672821045 0.023942802101373672 0.047945406287908554 0.07878682017326355 -0.04023076221346855 -0.00248955306597054 0.005367888603359461 0.07537402957677841 -0.03737835958600044 0.016933301463723183 -0.02377752773463726 -0.07484487444162369 0.0005384903051890433 -0.04979703947901726 -0.08115097135305405 -0.01579856313765049 0.020419780164957047 -0.010600031353533268 -0.03222158923745155 -0.014121619053184986 0.04946190118789673 -0.011526254937052727 -0.017133615911006927 0.004147265572100878 -0.009958315640687943 -0.0784095972776413 0.10188743472099304 0.01468875352293253 -0.08049120754003525 -0.0790749192237854 -0.0009985347278416157 0.05541299283504486 -0.0006365422159433365 0.05022239685058594 0.01761772483587265 0.11618143320083618 0.028307344764471054 -0.015628667548298836 0.014357072301208973 -0.02421625703573227 -0.05006425455212593 0.01446590293198824 0.012310298159718513 -0.048056043684482574 -0.00795845314860344 0.03673015534877777 -0.04732430726289749 0.014000405557453632 -0.019633887335658073 0.05075331777334213 -0.01664847694337368 -0.03778231889009476 -0.01019076257944107 0.049809060990810394 -0.04636802524328232 -0.06371647864580154 0.020754728466272354 -0.008858653716742992 0.06472914665937424 -0.011002041399478912 -0.010195422917604446 0.03815687820315361 0.0038839769549667835 0.0312701053917408 -0.06574318557977676 0.04801788181066513 -0.024954622611403465 -0.08499748259782791 -0.015637218952178955 -0.05880142003297806 -0.04787679389119148 -0.01846974715590477 -0.04409906640648842 -0.06452688574790955 0.07631932944059372 -0.007506642024964094 -0.04667079076170921 -0.050095122307538986 -0.024023959413170815 0.022008471190929413 -0.04181024059653282 -0.02423982508480549 0.01623987779021263 -0.040831103920936584 -0.0027567539364099503 0.04630069434642792 -0.06566642224788666 -0.044942114502191544 0.008170252665877342 -0.015495162457227707 -0.06907659024000168 0.058698464184999466 -0.0688280314207077 -0.00020971409685444087 -0.007400555070489645 -0.06176961213350296 0.05280154198408127 0.09031141549348831 0.057092905044555664 0.03701401129364967 0.01933964341878891 0.005562986712902784 0.11513280868530273 0.019190968945622444 -0.022402873262763023 0.010882294736802578 -0.07239285111427307 -0.06043882295489311 0.025789372622966766 -0.035905178636312485 -0.015148463658988476 -0.030183270573616028 -0.008094926364719868 0.0761088877916336 -0.021208126097917557 -0.026626309379935265 0.0013326859334483743 0.033622633665800095 -0.011934613808989525 0.030813688412308693 0.03554047644138336 -0.00270264083519578 -0.0151089271530509 -0.027113640680909157 -0.050501830875873566 -0.020450063049793243 0.056391723453998566 -0.0496562160551548 0.04803934693336487 -0.03592387214303017 -0.07600051164627075 0.02093205600976944 0.03152282163500786 0.08718788623809814 -0.05516522377729416 0.028396960347890854 0.011972562409937382 0.022679543122649193 -0.10018076002597809 0.002525969874113798 0.029514554888010025 -0.008936329744756222 -0.03522256761789322 0.042413778603076935 0.04102695733308792 -0.05288228392601013 0.02844151295721531 0.005038489121943712 -0.033110037446022034 -0.00034250636235810816 0.03365437686443329 -0.01476786844432354 0.00496976962313056 -0.03322404995560646 -0.021646836772561073 -0.03018989786505699 0.02660873532295227 0.03264574706554413 -0.02742944471538067 0.05902373418211937 -0.054821040481328964 0.05988901108503342 -0.03311138600111008 -0.05864231288433075 -0.060320161283016205 0.08591271936893463 0.018282774835824966 -0.006890343967825174 -0.04519945755600929 -0.024368073791265488 -0.007360039744526148 0.009800572879612446 -0.01130098570138216 -0.06835824251174927 -0.0007712039514444768 -0.0320449136197567 -0.09203905612230301 -0.08775655180215836 -0.06479933112859726 0.02611621655523777 -0.04978413134813309 0.0028536266181617975 0.007959477603435516 0.02345455437898636 -0.0019431754481047392 -0.037472374737262726 0.04863768070936203 0.053175367414951324 0.060507528483867645 -0.007780561223626137 0.07317086309194565 0.03935892879962921 0.05541519820690155 -0.022188210859894753 -0.02686009369790554 0.06338359415531158 0.020547322928905487 -0.05909767746925354 0.061323005706071854 -0.019723277539014816 0.037813592702150345 -0.013268468901515007 -0.002296717604622245 0.03515828400850296 -0.024322044104337692 -0.021238187327980995 -0.04739818349480629 0.08357641100883484 -0.07426377385854721 -0.009072341956198215 0.04610225558280945 -0.05063801258802414 -0.09373057633638382 -0.019010262563824654 -0.005736811086535454 -0.03679337352514267 0.03721824288368225 0.015661701560020447 0.022413456812500954 0.02265496924519539 -0.0038550198078155518 -0.021588044241070747 -0.006919221021234989 -0.010720240883529186 0.03873860836029053 -0.005970661994069815 0.0887191966176033 0.02153933420777321 -0.003534466726705432 0.019384579733014107 0.004901252221316099 0.03102850914001465 -0.1050727367401123 -0.0014775777235627174 -0.037333257496356964 -0.008671344257891178 -0.01646992564201355 -0.010702020488679409 0.023215781897306442 -0.07999148219823837 -0.01987571083009243 -0.04737796261906624 0.07583338022232056 -0.002322621177881956 0.01752975583076477 0.019510697573423386 -0.019988324493169785 -0.01757294498383999 -0.021914158016443253 -0.03839520737528801 -0.058908846229314804 0.028309503570199013 -0.034064922481775284 0.024121487513184547 0.00039983962778933346 0.013276427052915096 0.007504922337830067 -0.09179331362247467 -0.015870580449700356 0.03865120932459831 -0.05921141058206558 0.04735716059803963 0.01699971593916416 -0.050996921956539154 -0.04800711199641228 0.005382078234106302 -0.028777988627552986 0.04746457561850548 0.010836041532456875 -0.001957457745447755 -0.022810140624642372 0.010618024505674839 -0.0195932500064373 -0.05261420086026192 0.02255764603614807 -0.020605452358722687 -0.06768833100795746 -0.03967079520225525 0.051777806133031845 -0.07497769594192505 0.04123349487781525 0.03852318972349167 -0.04398117959499359 0.03358713537454605 0.02864711917936802 -0.03825364634394646 0.03156733140349388 -0.009627241641283035 0.024599555879831314 0.0360809825360775 -0.09611200541257858 0.08407037705183029 -0.08180037140846252 0.05744682624936104 0.01661905273795128 -0.0016521674115210772 0.08254265785217285 0.06828730553388596 0.01425009686499834 -0.018323661759495735 -0.07323675602674484 +0.07327040284872055 -0.014397152699530125 -0.025390805676579475 -0.01628677174448967 -0.09289240837097168 -0.04690290614962578 -0.007249726913869381 0.057137228548526764 -0.04991919919848442 -0.022620897740125656 -0.037789907306432724 -0.014250597916543484 0.026755360886454582 -0.0019787081982940435 0.03665667772293091 -0.08412200957536697 -0.0981074795126915 -0.026342760771512985 -0.037218715995550156 0.0014160305727273226 0.048958148807287216 -0.01977337710559368 -0.0901794284582138 0.03874892741441727 0.029188690707087517 0.02984408102929592 -0.016554854810237885 0.012624895200133324 0.010962859727442265 -0.0035110635217279196 0.0864100456237793 -0.025822877883911133 0.0007864452200010419 -0.055563684552907944 -0.06330045312643051 0.045565370470285416 -0.048681214451789856 0.11950387805700302 0.04081738367676735 -0.06665463000535965 -0.08884356170892715 0.04249463975429535 -0.03473382070660591 -0.0559481605887413 0.04968999698758125 0.00031072477577254176 -0.029424408450722694 -0.06315989792346954 0.07063265144824982 -0.017212744802236557 0.06508238613605499 -0.015452324412763119 -0.02036268450319767 -0.005560767371207476 -0.051656827330589294 0.033452216535806656 0.012604652903974056 -0.013675088994204998 -0.07701604813337326 0.016836166381835938 -0.05779888853430748 0.010998853482306004 -0.010061926208436489 0.006563755217939615 0.022113988175988197 -0.04904361814260483 -0.011066579259932041 0.047424107789993286 0.009584563784301281 0.028965316712856293 -0.014278577640652657 0.0876479297876358 -0.06826507300138474 -0.0693272054195404 0.0587683729827404 -0.06502875685691833 -0.032206665724515915 0.005940516944974661 -0.012325606308877468 0.0005107630277052522 -0.021134493872523308 0.005077189765870571 0.14108532667160034 -0.05366752669215202 -0.044547129422426224 -0.052456729114055634 -0.019191686064004898 -0.03707442432641983 0.07257971912622452 0.08663525432348251 0.030539261177182198 0.04741955175995827 -0.043393850326538086 0.03140939027070999 -0.012249697931110859 -0.005988662596791983 0.0625598356127739 -0.10763078182935715 -0.03161275014281273 -0.03529196232557297 0.0034270489122718573 -0.03830106928944588 0.07489536702632904 -0.012886964716017246 0.02337748184800148 0.022450905293226242 -0.06244947388768196 0.03254313766956329 0.023934917524456978 0.05534064769744873 0.016762830317020416 0.09671708941459656 0.07091903686523438 0.05895783752202988 0.06449868530035019 -0.015644164755940437 -0.020196136087179184 -0.056371934711933136 -0.016580499708652496 0.01932491362094879 -0.027171922847628593 0.02199665829539299 -0.020321998745203018 -0.05436491221189499 -0.011713141575455666 0.045316457748413086 -0.09265230596065521 -0.01664160192012787 0.02278570458292961 -0.02569091133773327 0.07784228026866913 0.06451646983623505 -0.021721791476011276 0.05293523520231247 0.07140015810728073 0.015127384103834629 0.06180790811777115 0.07333723455667496 -0.0575338676571846 -0.06331145018339157 -0.032857879996299744 0.03460352122783661 -0.005762650165706873 -0.025462288409471512 0.01967521570622921 0.03832239285111427 0.05089237540960312 -0.02337670512497425 -0.018794812262058258 0.035089630633592606 -0.09888074547052383 -0.050378456711769104 0.01718536950647831 -0.0472097247838974 0.024958427995443344 0.057264361530542374 0.03251562640070915 0.014540721662342548 0.020348547026515007 -0.004064890090376139 -0.024663304910063744 -0.08658631891012192 -0.015667051076889038 -0.09467727690935135 -0.017919903621077538 -0.03365571051836014 0.02608475647866726 -0.015311307273805141 -0.0019462896743789315 -0.01622394286096096 0.030447721481323242 -0.018488261848688126 -0.0017446333076804876 0.05810152739286423 0.017923230305314064 -0.0018125466303899884 0.01177500281482935 -0.03835311159491539 -0.02205497957766056 -0.01751439832150936 0.027131469920277596 -0.054104749113321304 0.003799930214881897 -0.0797114372253418 0.020737817510962486 0.0032003740780055523 0.01990598812699318 -0.03646759316325188 -0.0011786228278651834 -0.026372285559773445 -0.05226128548383713 -0.07661984115839005 0.0009477437706664205 0.02689182758331299 -0.020526953041553497 0.05121849477291107 0.004042900633066893 0.02079126052558422 0.019977696239948273 -0.020695101469755173 -0.06391900777816772 0.04385882243514061 -0.0544172078371048 0.0598873496055603 0.03446890413761139 -0.04460671544075012 0.05053459480404854 -0.02877972088754177 0.03717581555247307 -0.04893874004483223 0.00451193330809474 0.016949394717812538 0.014167177490890026 0.001959604909643531 0.0765218511223793 -0.02285807952284813 -0.019920434802770615 0.04018859192728996 0.10241097211837769 -0.04723775014281273 0.00936468131840229 0.03237159922719002 -0.08932730555534363 0.056217752397060394 -0.0075075700879096985 -0.10043936222791672 -0.045999910682439804 0.033572953194379807 -0.011670063249766827 -0.06006554514169693 0.0006562142516486347 0.028872467577457428 0.017003171145915985 -0.029910249635577202 0.03975493088364601 0.0018028800841420889 -0.07503460347652435 0.07023449242115021 -0.014944339171051979 -0.09257346391677856 -0.032304782420396805 0.012228392995893955 0.0061016869731247425 0.004983719438314438 0.02610064297914505 0.017345262691378593 0.07648332417011261 -0.012970546260476112 -0.023828934878110886 0.04393831640481949 -0.04958290234208107 -0.04818538576364517 -0.011547342874109745 0.03678921237587929 -0.020845230668783188 -0.06725715100765228 0.03076840564608574 -0.019941316917538643 0.022926317527890205 -0.04630590230226517 0.03668196126818657 -0.012516173534095287 -0.04158294200897217 -0.04641161859035492 0.09833451360464096 -0.04053226858377457 -0.04906522110104561 0.027818623930215836 -0.02938651852309704 0.061642128974199295 -0.00037665385752916336 -0.003189706476405263 0.005259744822978973 0.0005274960421957076 0.0247623510658741 -0.03288133814930916 0.06963254511356354 -0.047469913959503174 -0.055511474609375 -0.030549488961696625 -0.06996429711580276 -0.0713200718164444 0.0021237756591290236 -0.029383283108472824 -0.025475362315773964 0.08036260306835175 0.01934746839106083 -0.020687710493803024 -0.04600721225142479 -0.04113632068037987 -0.008725278079509735 -0.03159850090742111 -0.04886946827173233 0.023415591567754745 -0.06464280188083649 -0.04112878814339638 0.07118013501167297 -0.013750818558037281 -0.052194755524396896 0.0355173721909523 0.0018766698194667697 -0.03741368651390076 0.020069545134902 -0.049918241798877716 0.00021809556346852332 -0.0013268544571474195 -0.06630648672580719 0.044286906719207764 0.07976528257131577 0.07624407112598419 0.045370981097221375 0.01046955119818449 -0.010792715474963188 0.10597172379493713 0.007042654324322939 -0.05518898367881775 0.010074539110064507 -0.09727109223604202 -0.11059396713972092 0.038112569600343704 -0.016577057540416718 -0.03664442524313927 -0.03565966710448265 -0.01988999731838703 0.039314109832048416 -0.03303302079439163 -0.001062785042449832 -0.05396853759884834 -0.007270469330251217 -0.0683862492442131 0.037535201758146286 0.00737007986754179 0.03033565916121006 -0.023610973730683327 -0.025295695289969444 -0.053962383419275284 -0.08973225951194763 0.02619931288063526 0.00529246823862195 0.01747865416109562 -0.00228596362285316 -0.003974888473749161 -0.007214776240289211 0.012096087448298931 0.08933805674314499 -0.023714009672403336 0.039972178637981415 -0.003348075784742832 0.05735298991203308 -0.05963106080889702 -0.017309918999671936 0.00449997978284955 -0.017058806493878365 -0.021223248913884163 -0.011989837512373924 0.03920622542500496 -0.056022997945547104 -0.015730837360024452 0.020613688975572586 -0.020107237622141838 0.01346089132130146 -0.009786628186702728 0.007935866713523865 0.05857254937291145 0.005288190674036741 -0.0428888276219368 0.07612942904233932 -0.016740266233682632 0.05889733135700226 -0.014755942858755589 0.03770803287625313 -0.027649156749248505 0.06042731553316116 -0.029030507430434227 -0.05989854782819748 -0.10106983035802841 0.052771296352148056 -0.005823912099003792 -0.025266442447900772 -0.04067260026931763 0.032335370779037476 -0.020233578979969025 0.030076181516051292 0.00035632893559522927 -0.06018020957708359 -0.006371641997247934 -0.03324585780501366 -0.04006561264395714 -0.07014166563749313 -0.003917816560715437 0.0031231404282152653 -0.05836663022637367 0.00564592843875289 -0.03481128066778183 0.007167918607592583 0.058211423456668854 -0.01386196818202734 0.01876724325120449 0.01281770970672369 0.03974075987935066 0.01212974265217781 0.050630223006010056 0.032258518040180206 0.02578117325901985 -0.0062218173407018185 -0.01680625230073929 -0.0007722024456597865 0.06056002154946327 -0.06526964157819748 0.035903990268707275 0.010227090679109097 0.048670053482055664 -0.033390168100595474 0.010617610067129135 0.031652919948101044 -0.04439377039670944 0.008899638429284096 -0.00465345848351717 -0.0020803154911845922 -0.03658555448055267 -0.06633545458316803 0.06397439539432526 -0.04286118224263191 -0.07984188199043274 0.021007025614380836 -0.0038827958051115274 -0.029572274535894394 0.027013786137104034 -0.0006444174214266241 0.023591725155711174 0.043292686343193054 -0.04608612135052681 -0.039239779114723206 -0.027481570839881897 -0.02620256505906582 0.05243292823433876 -0.01582459732890129 0.07092276960611343 0.04173320531845093 -0.010982709936797619 0.06639298796653748 -0.021645423024892807 0.0230727382004261 -0.08110000938177109 -0.01268409751355648 -0.02649928443133831 -0.019274629652500153 0.04866872355341911 0.007575151976197958 0.04366982728242874 5.554353629122488e-05 -0.014935753308236599 -0.04373440518975258 0.06516755372285843 0.016335545107722282 0.03436652943491936 0.028710167855024338 -0.052837029099464417 0.010264229960739613 -0.04128117859363556 -0.035354599356651306 -0.059525489807128906 0.041461341083049774 -0.04967288672924042 0.015491037629544735 0.036040663719177246 0.036648355424404144 0.058163534849882126 -0.09641348570585251 -0.011846396140754223 -0.0009997989982366562 -0.034663643687963486 0.0476151667535305 -0.007799476385116577 -0.014887265861034393 -0.061880212277173996 -0.05210692808032036 -0.07709667831659317 0.05511040240526199 -0.05742223560810089 0.007296487223356962 -0.00770095270127058 0.03392602875828743 -0.0007976299966685474 -0.012297392822802067 -0.012157712131738663 -0.01766985096037388 -0.0568268746137619 -0.0003597498289309442 0.08819431811571121 -0.013596052303910255 0.03279722109436989 0.07607229053974152 0.014458766207098961 0.009615486487746239 0.02237001433968544 -0.04605399817228317 -0.017376992851495743 -0.007609084248542786 -0.010824081487953663 0.06209024414420128 -0.05001366138458252 0.032501041889190674 -0.08649704605340958 0.07807489484548569 -0.001527764368802309 -0.040944840759038925 0.06452185660600662 0.04341893270611763 -0.010965805500745773 0.05204133316874504 -0.027083387598395348 +0.031550757586956024 -0.025874484330415726 0.009637529961764812 0.02022203430533409 -0.1024777963757515 -0.0741385966539383 -0.012279430404305458 0.027345499023795128 0.005234649404883385 -0.02300983853638172 -0.02283012680709362 -0.018597140908241272 0.004574653226882219 0.034467753022909164 0.05942648649215698 -0.03931392356753349 -0.05998154729604721 0.010583330877125263 -0.06036801636219025 0.01869078539311886 0.08962450921535492 0.0048480103723704815 -0.04765050485730171 0.03803553432226181 -0.004619180224835873 0.03375636786222458 -0.052454568445682526 0.02783832512795925 0.00047981124953366816 0.016733624041080475 0.0480833500623703 0.001672432292252779 0.011559983715415001 -0.059384580701589584 -0.03353727236390114 0.03252749517560005 -0.03079291805624962 0.08845251798629761 0.04720107838511467 -0.0345802940428257 -0.05390980839729309 0.002347951754927635 -0.0561036616563797 -0.0381452813744545 0.017294827848672867 -0.00870842207223177 0.028666067868471146 -0.04671946167945862 0.04570886865258217 0.03916195034980774 0.07004687935113907 -0.022382689639925957 -0.022409183904528618 -0.013410123996436596 -0.008543889969587326 -0.014178100973367691 0.03032858483493328 -0.05770431458950043 -0.0645851194858551 0.042304906994104385 -0.09958504885435104 0.0058370428159832954 -0.03658653050661087 0.0077739134430885315 -0.004498549271374941 -0.021902577951550484 0.004955784883350134 0.07783234864473343 0.024835254997015 -0.04695361480116844 0.01865571364760399 0.09425225853919983 -0.061614200472831726 -0.05840405076742172 0.028150590136647224 -0.04233280569314957 0.010527596808969975 0.020346321165561676 -0.03990096598863602 -0.0032152344938367605 -0.01831750199198723 -0.06482904404401779 0.1535959392786026 -0.05393394082784653 -0.062387749552726746 -0.0500032864511013 -0.03040366619825363 -0.05942264944314957 0.03712467849254608 0.049689631909132004 0.024205384775996208 0.07954049110412598 -0.05331498384475708 0.047339361160993576 0.010572207160294056 0.03165382146835327 0.028187865391373634 -0.13325892388820648 -0.04125337302684784 -0.012387391179800034 -0.028530722483992577 -0.0012935055419802666 0.08104326575994492 0.01443429384380579 0.043806061148643494 0.031224025413393974 -0.04706212133169174 0.0037710817996412516 -0.016721123829483986 0.06082339584827423 0.012311381287872791 0.06511641293764114 0.09643255174160004 0.0663386732339859 0.0030995875131338835 -0.04299057275056839 -0.021441835910081863 -0.02732648141682148 -0.03153889998793602 0.006134004332125187 0.03139113262295723 0.045601699501276016 -0.009937421418726444 -0.05421207845211029 -0.017868852242827415 0.04669545218348503 -0.12230876833200455 -0.013072743080556393 0.0529802069067955 -0.07467197626829147 0.11178022623062134 0.07270296663045883 -0.04886642470955849 0.041259948164224625 0.08901365846395493 0.03598036244511604 0.0037560896016657352 0.018997130915522575 -0.031157584860920906 -0.039564941078424454 -0.04174337536096573 0.042529281228780746 -0.01321180909872055 -0.060725122690200806 0.02625000849366188 0.08609135448932648 0.013422759249806404 -0.05360492691397667 -0.04806484282016754 0.017070360481739044 -0.08114943653345108 -0.055399417877197266 0.003413539379835129 -0.06867046654224396 0.0032534312922507524 0.0438784696161747 0.011028029024600983 0.04207007586956024 -0.038561563938856125 -0.0076159462332725525 -0.05288244038820267 -0.06648583710193634 -0.029344050213694572 -0.050861895084381104 -0.012213184498250484 -0.017255457118153572 0.02490314282476902 -0.0285019688308239 -0.0225792545825243 -0.06030930578708649 -0.012357081286609173 0.0025304527953267097 0.01132276188582182 0.06034434214234352 0.034306131303310394 -0.028623702004551888 -0.0024531406816095114 -0.04017013683915138 0.001318473252467811 -0.02797311544418335 0.02792041003704071 -0.021467572078108788 0.022945862263441086 -0.06745190918445587 -0.040944188833236694 -0.012619608081877232 0.016213996335864067 -0.0455828458070755 -0.00527444900944829 -0.03476319462060928 -0.0229975376278162 -0.057565271854400635 0.023030990734696388 0.10421646386384964 -0.05419677123427391 0.06955838203430176 -0.05002754181623459 0.05773824080824852 -0.03812766075134277 -0.012325243093073368 -0.05796832963824272 0.07058746367692947 -0.02238592319190502 0.0655306726694107 0.011240518651902676 -0.05689764767885208 0.06540177017450333 0.002781966235488653 0.006649197544902563 -0.06801244616508484 0.05386258661746979 0.044070493429899216 0.01208774745464325 0.05010669678449631 0.05427169054746628 -0.03795785829424858 -0.003164985915645957 -0.011337594129145145 0.056558363139629364 -0.04530836269259453 0.04086891934275627 0.014354080893099308 -0.06887078285217285 0.012555250898003578 -0.040852513164281845 -0.04610170051455498 -0.020227564498782158 0.02466714009642601 -0.007266503293067217 -0.01209311280399561 -0.009972521103918552 0.013721754774451256 -0.0138970036059618 -0.006589837837964296 0.0072620101273059845 0.011894464492797852 -0.09390139579772949 0.08673743903636932 -0.006004953291267157 -0.05055994912981987 -0.07108887284994125 0.023901667445898056 0.03648022189736366 0.016166647896170616 0.00997499655932188 0.037152498960494995 0.08129365742206573 0.05310330167412758 0.007755933795124292 0.0020436362829059362 -0.06072846055030823 -0.062035173177719116 -0.01739458739757538 -0.00879958551377058 -0.03358881175518036 -0.045360058546066284 0.03722965344786644 -0.06927225738763809 -0.01787261664867401 -0.038544222712516785 0.04914198815822601 -0.028317339718341827 -0.027300475165247917 -0.008885174989700317 0.05549740046262741 -0.02352672629058361 -0.0802096500992775 0.009087854996323586 -0.013759959489107132 0.057899825274944305 -0.02273830771446228 -0.032407745718955994 0.056249238550662994 0.02582143247127533 0.03940277546644211 -0.0191673431545496 0.03912663832306862 -0.02375064603984356 -0.088358573615551 -0.02430790290236473 -0.07527557760477066 -0.06864544749259949 -0.015852494165301323 0.0010389998788014054 -0.03998211771249771 0.07295434921979904 0.020621061325073242 -0.0519234836101532 -0.05418983846902847 -0.002389548346400261 -0.02185344323515892 -0.03634653240442276 -0.018263479694724083 -0.010695917531847954 -0.09169996529817581 -0.035776667296886444 0.0296008437871933 -0.07775361835956573 -0.06734529882669449 0.013887068256735802 -0.05058560147881508 -0.06965744495391846 0.03905900567770004 -0.03451107442378998 -0.009554088115692139 -0.0029384070076048374 -0.06438745558261871 0.05060745030641556 0.08464865386486053 0.035178326070308685 0.035388730466365814 0.040855422616004944 0.004380077589303255 0.06649130582809448 -0.017232170328497887 -0.005167017690837383 -0.020987914875149727 -0.035497717559337616 -0.05170920863747597 0.05307454615831375 -0.05932147800922394 -0.014786774292588234 0.005570457316935062 0.0038595658261328936 0.08346683531999588 -0.023772340267896652 -0.02298903279006481 -0.012460961006581783 0.008143599145114422 -0.010825821198523045 0.022763730958104134 -0.006263932213187218 -0.004711976274847984 -0.021149050444364548 -0.049616437405347824 -0.060297273099422455 -0.044825710356235504 0.027268903329968452 -0.016547132283449173 0.01772536151111126 -0.017293037846684456 -0.049160972237586975 -0.010507792234420776 0.013052389025688171 0.1234046146273613 -0.03088057041168213 0.0354301780462265 0.04353151097893715 -0.007347798440605402 -0.08274810761213303 0.0037069469690322876 0.009376903995871544 -0.012111487798392773 -0.054792460054159164 0.04066024720668793 0.044186633080244064 -0.0846128910779953 -0.009902297519147396 -0.0008754756418056786 -0.018952589482069016 0.019232220947742462 0.03517267853021622 0.0027834256179630756 0.029395803809165955 0.020645836368203163 -0.04887612536549568 -0.005574569571763277 0.004200495779514313 0.022941913455724716 -0.0339697040617466 0.030180085450410843 -0.022522836923599243 0.07954088598489761 -0.041636910289525986 -0.07095091044902802 -0.05666205286979675 0.06073680520057678 0.011523841880261898 -0.03206736221909523 -0.036346685141325 -0.006037609186023474 -0.012843763455748558 0.0698837861418724 -0.007906067185103893 -0.060831934213638306 -0.007442300207912922 -0.0430116280913353 -0.04546431824564934 -0.09957116842269897 -0.032762669026851654 0.006401238031685352 -0.05012940615415573 0.0070890155620872974 -0.019110560417175293 0.02667979709804058 0.00040937517769634724 -0.038523249328136444 0.022953422740101814 0.030465545132756233 0.02655017375946045 -0.006353080738335848 0.039203301072120667 0.008942077867686749 0.04898177832365036 -0.0070886691100895405 -0.04767755791544914 0.039534345269203186 0.02822192572057247 -0.0667487159371376 0.0469503216445446 -0.0671054869890213 -0.008815093897283077 -0.0024131895042955875 0.01256729755550623 0.01947135664522648 0.0023518672678619623 0.018352922052145004 -0.06907059997320175 0.06692701578140259 -0.0965111181139946 -0.024875741451978683 0.04270581528544426 -0.03958781808614731 -0.08927794545888901 -0.004227849654853344 -0.023780692368745804 -0.03274392709136009 0.029921317473053932 -0.016397221013903618 0.024886876344680786 0.03227891027927399 -0.05806615948677063 -0.0076176743023097515 -0.010138577781617641 0.011364218778908253 0.028997741639614105 0.030827026814222336 0.0740414559841156 0.022665413096547127 -0.022186962887644768 0.01953747123479843 -0.008265173062682152 0.014784214086830616 -0.07104663550853729 0.0003506873908918351 0.0019676219671964645 0.024484915658831596 -0.0055320714600384235 0.015098989941179752 0.05993865057826042 -0.05786411836743355 -0.004684676881879568 -0.041428618133068085 0.08782270550727844 0.018460111692547798 0.028098152950406075 0.034462571144104004 -0.03410571441054344 0.004575295373797417 0.00012305603013373911 -0.017843792214989662 -0.08602727204561234 -0.02532372996211052 -0.06468767672777176 0.02836700528860092 0.02306312881410122 -0.0039019451942294836 -0.00488643255084753 -0.04597603157162666 0.004920492880046368 0.02195965126156807 -0.01064587477594614 0.037310171872377396 0.037127431482076645 -0.00041898697963915765 -0.05517633259296417 -0.03536759689450264 -0.05028802528977394 0.03439042344689369 0.014616722241044044 0.02811960130929947 -0.00953886192291975 0.011825475841760635 0.015653757378458977 -0.049918003380298615 0.013739404268562794 0.019519519060850143 -0.06894988566637039 -0.010789654217660427 0.07680867612361908 -0.0327216237783432 0.022074276581406593 0.05893762409687042 -0.02361666038632393 0.033808864653110504 0.03334447368979454 -0.01313833985477686 0.027925610542297363 -0.010303058661520481 -0.0177899319678545 0.052200280129909515 -0.09094881266355515 0.0842449814081192 -0.05987192690372467 0.10700614005327225 0.011520713567733765 -0.03755004331469536 0.09816160053014755 0.059260617941617966 0.04052000492811203 0.017915742471814156 -0.06474729627370834 +0.03635001555085182 -0.00939672440290451 0.04272063821554184 0.032466989010572433 -0.08103030174970627 -0.04653628543019295 -0.020751962438225746 0.01342412643134594 -0.026965904980897903 -0.01230043824762106 -0.016895055770874023 -0.019205857068300247 -0.041181549429893494 0.0026943329721689224 0.057192519307136536 -0.004417733754962683 -0.06442993879318237 -0.008007586933672428 -0.019319850951433182 -0.026609979569911957 0.05342923477292061 0.03533044829964638 -0.049766961485147476 0.022855384275317192 0.01818615198135376 0.014655457809567451 -0.055488720536231995 0.006044985726475716 -0.03203900530934334 0.005120758432894945 -0.029948346316814423 0.01206352561712265 0.057816267013549805 -0.07700823247432709 -0.04488195478916168 0.05017494782805443 -0.027623945847153664 0.07470619678497314 0.057150259613990784 -0.07914615422487259 -0.0516149066388607 0.03643427789211273 -0.03796453773975372 -0.092420294880867 0.04162700101733208 0.025954458862543106 -0.004969611298292875 -0.052969787269830704 0.031324926763772964 0.07968242466449738 0.10988415032625198 -0.057800836861133575 -0.04323494806885719 -0.006217817310243845 -0.005830331705510616 -0.031778883188962936 0.055937573313713074 -0.023338109254837036 -0.08604005724191666 0.04182084649801254 -0.08561310917139053 -0.013902010396122932 0.0020244133193045855 0.03286388888955116 -0.02683892473578453 -0.021050352603197098 0.012382397428154945 0.05119912698864937 0.027632150799036026 -0.025808272883296013 0.0350816510617733 0.1025976613163948 -0.0315217599272728 -0.022928033024072647 0.014979464933276176 -0.016373829916119576 0.019776854664087296 0.07596428692340851 0.006675610318779945 0.035435810685157776 0.04989639297127724 -0.049454446882009506 0.09442048519849777 -0.1054333746433258 0.00670446315780282 -0.022177016362547874 -0.033140603452920914 -0.0553552620112896 0.0362151637673378 0.05940020829439163 0.006415866781026125 0.059674348682165146 -0.04119880497455597 0.020844222977757454 -0.011757924221456051 0.042443644255399704 0.02511746436357498 -0.07335224747657776 -0.03833124414086342 -0.006203817203640938 -0.01977989822626114 -0.033573854714632034 0.025913912802934647 0.020546987652778625 0.06121073663234711 0.0031725941225886345 0.01224056351929903 0.008751384913921356 0.005487211048603058 0.01909445784986019 0.008799921721220016 0.005330461077392101 0.14820285141468048 0.023351427167654037 0.014340929687023163 -0.02030922845005989 -0.007615027483552694 -0.048312656581401825 0.023223968222737312 0.0469694547355175 -0.00845363549888134 0.0008187872590497136 -0.0021068966016173363 -0.0757211223244667 0.023705272004008293 0.019549377262592316 -0.03890432044863701 -0.04638763889670372 0.01680903695523739 -0.0665355995297432 0.12588666379451752 0.02488105185329914 -0.06625356525182724 0.027951853349804878 0.027453836053609848 0.06220126152038574 0.04469294473528862 0.07326440513134003 -0.03300148993730545 -0.0490558035671711 0.006226203870028257 0.041846781969070435 -0.02528287284076214 -0.06318089365959167 -0.008640037849545479 0.044175513088703156 0.034650299698114395 -0.02485557459294796 -0.09962499141693115 0.01992243528366089 -0.09742651879787445 -0.05216140300035477 -0.07117823511362076 -0.09431547671556473 0.023712947964668274 0.08218873292207718 -0.026062816381454468 0.06129700690507889 -0.041675351560115814 0.027629734948277473 -0.04322357848286629 -0.07429344952106476 -0.013486412353813648 -0.07421664893627167 -0.06536363810300827 -0.06362288445234299 0.02027871645987034 0.0033193558920174837 -0.032741729170084 -0.03344718739390373 -0.05901369825005531 -0.036263857036828995 0.031100360676646233 0.024773525074124336 0.07376713305711746 0.008074212819337845 0.018568649888038635 -0.06130906194448471 -0.01162184402346611 -0.02654935047030449 0.019810592755675316 -0.04618946835398674 0.03757869824767113 -0.030179288238286972 -0.03005206771194935 -0.07036182284355164 0.050679177045822144 -0.02432873658835888 0.030149372294545174 0.05791255831718445 -0.047889769077301025 -0.0160814356058836 0.0756315365433693 0.109626404941082 -0.0061511998064816 0.0746399387717247 -0.03545190021395683 0.0377974659204483 -0.047425463795661926 -0.056753601878881454 -0.023382142186164856 0.04605000838637352 0.014521658420562744 0.08537077158689499 -0.006541235372424126 -0.05721278488636017 0.07626432925462723 0.030399521812796593 -0.009114001877605915 -0.050052229315042496 0.04715508595108986 0.032562073320150375 0.02085699513554573 -0.016707615926861763 0.05289483442902565 -0.05269872397184372 0.018225761130452156 -0.02009035088121891 0.04184145852923393 0.008724897168576717 0.018615087494254112 0.05054352059960365 -0.043245311826467514 0.031079651787877083 -0.03543490171432495 -0.06782372295856476 -0.03411773964762688 0.027295691892504692 -0.03245287388563156 -0.003967474680393934 0.03258620947599411 0.03484785929322243 -0.04694207385182381 0.0007133343024179339 -0.017574375495314598 -0.008354113437235355 -0.06150605529546738 0.054624319076538086 -0.02445271983742714 0.000464849203126505 -0.08089292049407959 0.0187789648771286 -0.007983420975506306 0.0397823303937912 0.029376626014709473 0.04067910835146904 0.03482433408498764 -0.01640351675450802 0.04854680225253105 -0.0074893333949148655 -0.059244584292173386 -0.041116803884506226 -0.019213203340768814 -0.0007485580281354487 -0.06852490454912186 -0.024657847359776497 -0.05945068225264549 -0.039543285965919495 -0.03688789904117584 0.01853758655488491 0.009874300099909306 0.005926455371081829 -0.004919089376926422 -0.005501041654497385 0.03245331346988678 0.023160753771662712 -0.06123971939086914 0.023596614599227905 -0.004654364660382271 0.05046207085251808 -0.02700420469045639 -0.005362433847039938 0.0521601140499115 -0.013201371766626835 0.02580440416932106 -0.01911861076951027 0.04340464249253273 -0.02691732347011566 -0.06843332201242447 -0.012320728041231632 -0.08299471437931061 -0.0029452689923346043 -0.030246954411268234 -0.054093800485134125 -0.016908476129174232 0.07848768681287766 0.057334769517183304 -0.023619748651981354 -0.06391152739524841 -0.04021286219358444 -0.029047587886452675 -0.06995712220668793 -0.0096999267116189 0.018175676465034485 -0.07743201404809952 -0.04885929450392723 0.03231019154191017 -0.023036573082208633 -0.07449360936880112 -0.012987182475626469 -0.052813343703746796 -0.06101628765463829 0.022938670590519905 0.009923476725816727 -0.023985330015420914 0.03513938561081886 -0.09290286898612976 0.051725976169109344 0.09072870761156082 0.020507432520389557 0.018515855073928833 0.06822028756141663 0.021062683314085007 0.10386021435260773 0.015231208875775337 -0.015584995038807392 -0.03759007155895233 -0.04209718108177185 -0.09495695680379868 0.044804058969020844 -0.00407625874504447 0.007350824307650328 -0.025075377896428108 -0.017607346177101135 0.09205999970436096 -0.008722672238945961 -0.038289524614810944 -0.01956760324537754 -0.010039069689810276 -0.029668031260371208 0.02452254481613636 0.031207676976919174 0.00537942536175251 -0.009146437048912048 -0.0481283962726593 -0.0016051094280555844 -0.04764467850327492 0.025127116590738297 -0.03109162114560604 0.0069221314042806625 -0.01200094074010849 0.009758428670465946 -0.011470054276287556 0.016436690464615822 0.1049928143620491 -0.03597622737288475 0.0432346872985363 0.03319569304585457 -0.0071233646012842655 -0.10488177090883255 -0.011105158366262913 0.03275091573596001 -0.05445827543735504 -0.020418444648385048 -0.032469313591718674 0.05819573625922203 -0.057232700288295746 -0.026449289172887802 0.011473546735942364 -0.024742107838392258 0.021388979628682137 0.002918628742918372 0.04556860029697418 0.054728176444768906 -0.020433690398931503 -0.025515995919704437 -0.006614301819354296 -0.04885838180780411 0.010473022237420082 0.004154332913458347 -0.017315318807959557 -0.008415844291448593 0.02026393637061119 -0.03172171860933304 -0.026532692834734917 -8.976159733720124e-05 0.05688364803791046 -0.01567942276597023 -0.03475245088338852 0.025740444660186768 0.004401799291372299 -0.013786127790808678 0.05996260046958923 0.022548828274011612 0.0039235670119524 -0.04312676563858986 -0.036872051656246185 -0.004359390586614609 -0.11421670764684677 -0.010470789857208729 0.008913143537938595 -0.08118246495723724 0.029434066265821457 -0.058147262781858444 0.020271195098757744 -0.011342067271471024 -0.021325306966900826 -0.011578680016100407 0.03125416487455368 0.05658775568008423 -0.05845438688993454 -0.011094608344137669 -0.026430178433656693 0.012557114474475384 0.026603568345308304 -0.056463826447725296 0.009963097050786018 0.010839256457984447 -0.0026308405213057995 0.03670864179730415 -0.025327499955892563 -0.0430036298930645 -0.008348872885107994 -0.02119164913892746 0.02343752048909664 -0.003757321508601308 0.01098141074180603 -0.0029443157836794853 0.04813927784562111 -0.07245665043592453 -0.04900134727358818 0.010414298623800278 0.019852321594953537 -0.11148615181446075 -0.010033653117716312 -0.0038032871671020985 -0.02197129838168621 0.02409076876938343 -0.006873616948723793 -6.759577809134498e-05 0.03349872678518295 -0.038737330585718155 -0.016820445656776428 -0.0607328936457634 0.0035901174414902925 0.031218836084008217 0.003663375275209546 0.019158758223056793 -0.010634888894855976 -0.043645914644002914 0.0007862618076615036 -0.022380614653229713 0.016685349866747856 -0.06504784524440765 -0.028836701065301895 -0.04693267494440079 0.016264673322439194 0.08280137181282043 -0.024879982694983482 -0.0024182943161576986 -0.029771946370601654 -0.06683791428804398 -0.031939808279275894 0.043443698436021805 -0.004500873386859894 -0.0064650666899979115 0.10734197497367859 -0.030586522072553635 -0.007950766012072563 0.03146500140428543 -0.06120786443352699 -0.07909535616636276 -0.024062221869826317 -0.017051415517926216 0.0601336732506752 0.04526812210679054 0.01803104393184185 -0.009387078694999218 -0.03138682618737221 -0.019913462921977043 0.0037686787545681 -0.07412748038768768 0.013728220015764236 0.01968863606452942 -0.06687629222869873 -0.08461722731590271 -0.008038671687245369 -0.031488582491874695 0.04595840349793434 0.03774670138955116 0.03676379844546318 -0.00957559421658516 0.021439746022224426 0.01769123785197735 -0.05188558250665665 0.004983153194189072 0.048010021448135376 -0.041567835956811905 -0.0062489998526871204 0.11757928878068924 -0.027601173147559166 0.04780399799346924 0.0670049786567688 -0.07230247557163239 0.02259312942624092 0.029867839068174362 -3.080856549786404e-05 0.025914888828992844 -0.00364285078831017 -0.06639014929533005 0.06367899477481842 -0.0436202809214592 0.07215750217437744 -0.04346670210361481 0.11436096578836441 0.00034486636286601424 -0.050962887704372406 0.06454955041408539 0.04532913491129875 -0.025220980867743492 -0.02490510791540146 -0.07041331380605698 +0.05230317264795303 0.020670751109719276 -0.003996998071670532 0.03511156514286995 -0.10877516120672226 -0.0321548730134964 -0.03943173587322235 0.042865004390478134 0.01051621325314045 -0.03705906495451927 -0.04316583648324013 -0.014168599620461464 -0.0008706833468750119 0.0549439899623394 0.02483411878347397 -0.05642462894320488 -0.07758523523807526 0.006370104383677244 -0.050079695880413055 -0.046749234199523926 0.029607495293021202 -0.007013889495283365 -0.06355520337820053 0.06780289113521576 0.023754741996526718 0.011991636827588081 -0.08821433782577515 0.02929246798157692 0.0011533740907907486 0.03295918554067612 0.05132841318845749 -0.034347642213106155 0.04652651026844978 -0.0583418607711792 -0.02564757689833641 0.07783270627260208 -0.029370687901973724 0.09879017621278763 0.037775810807943344 -0.03428258001804352 -0.05042767524719238 0.02462945692241192 -0.04637327417731285 -0.06966584175825119 0.022223107516765594 0.005090620368719101 -0.05026054009795189 -0.03779534995555878 0.04959141090512276 -0.005256836302578449 0.0500994473695755 -0.03364735469222069 -0.02473071776330471 -0.003390311961993575 -0.02733323909342289 0.007076757028698921 0.032721467316150665 -0.05688796564936638 -0.021210093051195145 0.022247441112995148 -0.06449216604232788 -0.014817061834037304 0.01469514798372984 0.017770424485206604 -0.012920095585286617 -0.021737871691584587 0.039587073028087616 0.07890646159648895 0.039231136441230774 0.016799144446849823 0.002711203880608082 0.0665246918797493 -0.04599718749523163 -0.027219342067837715 0.05947653949260712 -0.09480194002389908 -0.06048053875565529 0.06825564801692963 0.01897377520799637 0.051739443093538284 0.0269311536103487 -0.04566168412566185 0.12229226529598236 0.0004030998097732663 -0.04980722442269325 -0.013503516092896461 -0.007914365269243717 -0.03873898461461067 0.02438403107225895 0.006659610662609339 0.030982356518507004 0.070340096950531 -0.04623435437679291 0.023893363773822784 0.012464608065783978 0.0375845767557621 0.06710594892501831 -0.10978154838085175 -0.007201768457889557 0.013009371235966682 -0.006664622575044632 -0.00427995203062892 0.03626728430390358 0.0023432474117726088 0.042073994874954224 0.02806563302874565 -0.04549919068813324 0.000801545160356909 0.020398885011672974 0.02460355870425701 0.04012561962008476 0.0858546569943428 0.08988216519355774 0.02292162925004959 0.05214777588844299 -0.03150158002972603 0.017571160569787025 -0.07836420834064484 -0.06366771459579468 -0.015147309750318527 -0.026016350835561752 0.0734744444489479 -0.055264346301555634 -0.052433982491493225 -0.010489920154213905 0.018796928226947784 -0.11082328855991364 -0.010935799218714237 0.025504011660814285 -0.0006509188679046929 0.07643776386976242 0.056724995374679565 -0.010793713852763176 0.037806667387485504 0.08183886855840683 0.026818806305527687 0.0400017686188221 0.036316681653261185 -0.0033726789988577366 -0.01202763058245182 -0.022529372945427895 0.03277202323079109 0.03680362179875374 -0.04957376420497894 0.05404185876250267 0.04109181836247444 -0.019951479509472847 -0.0021367804147303104 -0.07773032039403915 -0.02189885452389717 -0.07517969608306885 -0.07546378672122955 0.003686918644234538 -0.05945469066500664 0.001011707354336977 0.03978971764445305 0.016004275530576706 0.01767374575138092 -0.0663471445441246 -0.04677312821149826 -0.04292306303977966 -0.0008979584090411663 0.024935616180300713 -0.07111245393753052 -0.031523942947387695 -0.0035966397263109684 -0.013042833656072617 0.015405774116516113 -0.041596729308366776 0.01327920239418745 -0.014389313757419586 -0.026210062205791473 0.042515866458415985 0.08867541700601578 0.04964086413383484 -0.021952856332063675 0.0399479940533638 -0.046305105090141296 -0.01331996452063322 -0.04865081608295441 0.017293697223067284 -0.0587255135178566 0.028477875515818596 -0.05515424534678459 0.00148190266918391 -0.0008576734689995646 0.03241308778524399 -0.044290099292993546 0.03688782453536987 -0.020807992666959763 -0.05027910694479942 -0.04340750351548195 0.034129440784454346 0.06147254258394241 -0.0441351942718029 0.04438488557934761 -0.016208168119192123 0.03266323730349541 0.018010083585977554 -0.008750014007091522 -0.07549331337213516 0.08340593427419662 0.0014212706591933966 0.06744328886270523 0.042516421526670456 -0.06758861243724823 0.05171641707420349 0.020254746079444885 0.04551666975021362 -0.03478626534342766 -0.002399755408987403 0.03670063614845276 0.0005694455467164516 0.05055977404117584 0.10014262795448303 0.010534066706895828 0.00278307031840086 -0.0036089641507714987 0.03783292695879936 -0.06956931203603745 0.0034910233225673437 0.010371826589107513 -0.0963134914636612 0.019929837435483932 -0.053137119859457016 -0.07637780159711838 -0.01657101698219776 0.021207448095083237 -0.019122332334518433 -0.04949560388922691 0.010626733303070068 0.035435061901807785 -0.015073896385729313 -0.03573025390505791 0.005885683465749025 -0.025484537705779076 -0.06548275053501129 0.10474992543458939 0.001771510229445994 -0.07482223212718964 -0.04052771255373955 0.03460816293954849 0.04274195432662964 0.00201374851167202 0.01271173357963562 0.04287058487534523 0.1280176192522049 0.03476623445749283 -0.02075771987438202 0.0023593269288539886 -0.03039686568081379 -0.06810278445482254 0.0022836560383439064 0.04341839626431465 -0.006652012933045626 -0.03348983824253082 0.015199737623333931 -0.04660487920045853 -0.0026686389464884996 0.017472196370363235 0.04578116163611412 -0.01743379794061184 -0.023488590493798256 -0.08290985226631165 0.046772100031375885 -0.039113305509090424 -0.029124919325113297 0.07623724639415741 -0.03151801973581314 0.033133216202259064 -0.010628682561218739 -0.054342396557331085 0.031186776235699654 0.044507112354040146 0.03336683288216591 -0.038921162486076355 0.08415309339761734 -0.0075475662015378475 -0.03834433853626251 -0.023741932585835457 -0.05410681664943695 -0.04551539570093155 -0.030958788469433784 0.0016383768524974585 -0.028411561623215675 0.07473237812519073 0.015279969200491905 -0.014309871941804886 -0.05317329242825508 0.004999884404242039 -0.018002809956669807 -0.0659688413143158 -0.0037014365661889315 0.012072242796421051 -0.059983029961586 -0.02475014515221119 0.014472217299044132 -0.015013639815151691 -0.05870288237929344 0.01753252185881138 -0.02089567296206951 -0.08468411862850189 0.03672736510634422 -0.01138584315776825 -0.04199414327740669 0.007876788266003132 -0.03842209279537201 -0.012949489057064056 0.12264996767044067 0.03569961339235306 -0.013765959069132805 0.02165057323873043 0.053066644817590714 0.10191002488136292 -0.0031097091268748045 -0.041851624846458435 -0.023196110501885414 -0.05673552304506302 -0.07811031490564346 0.07074242830276489 -0.07223603129386902 -0.01660100370645523 0.003335267072543502 -0.014248747378587723 0.01885760948061943 -0.009349956177175045 -0.060517191886901855 -0.046785883605480194 0.01123220194131136 -0.0052947960793972015 0.06451918184757233 -0.02116715908050537 -0.02793232910335064 -0.04698333889245987 -0.0481429286301136 -0.056564074009656906 -0.059912778437137604 0.05788668617606163 0.008425584062933922 0.01875079981982708 0.00016910825797822326 -0.06847789138555527 0.011366304010152817 -0.024537667632102966 0.08564949780702591 -0.08672575652599335 -0.02103419601917267 0.017902180552482605 0.019969377666711807 -0.0695793479681015 -0.007497183512896299 0.012015093117952347 -0.03426665812730789 -0.026223858818411827 0.00758214620873332 0.017830166965723038 -0.09203160554170609 0.013358676806092262 -0.002935232361778617 -0.037890803068876266 -0.020836643874645233 0.03771451488137245 0.015595882199704647 0.02947639301419258 -0.00824709888547659 -0.03272813931107521 0.017847875133156776 0.04040612652897835 0.007939862087368965 -0.013118603266775608 0.05883469805121422 -0.030267633497714996 0.07101279497146606 -0.028831034898757935 -0.03897133842110634 -0.059309445321559906 0.06342363357543945 0.0016516977921128273 -0.004772360436618328 -0.0004063934029545635 0.014790006913244724 -0.016078989952802658 0.02592954784631729 0.02533150650560856 -0.05086374655365944 -0.03850651532411575 -0.05044308677315712 -0.05448411405086517 -0.06400039792060852 0.020090045407414436 0.02873525768518448 -0.042737118899822235 0.03607005625963211 0.005526326596736908 -0.050185427069664 0.022726155817508698 -0.012199743650853634 0.01324122678488493 0.04223713278770447 0.04038017988204956 -0.012248935177922249 0.037760619074106216 -0.00843136664479971 0.04410688206553459 0.05073664337396622 -0.029897034168243408 0.020616203546524048 0.018387233838438988 -0.06316344439983368 0.06760331243276596 -0.04130919277667999 0.005654689855873585 0.007832611910998821 -0.0005572652444243431 0.021221784874796867 -0.020149625837802887 0.02398824132978916 -0.0627504289150238 0.039186105132102966 -0.0654846802353859 -0.03356611356139183 0.030298303812742233 -0.027845488861203194 -0.11652223020792007 -0.020403392612934113 0.03708469122648239 -0.017168356105685234 0.01049121841788292 -0.023475492373108864 0.016857901588082314 0.0738680362701416 -0.038610056042671204 -0.046141911298036575 -0.030435552820563316 0.01986423321068287 0.0541778989136219 -0.02270655147731304 0.06242244690656662 0.02192489057779312 0.023094113916158676 0.027066867798566818 0.003032335778698325 -0.004775437526404858 -0.035585395991802216 -0.007312439847737551 0.02372903935611248 -0.07556721568107605 0.011190795339643955 0.026844877749681473 -0.002944004023447633 -0.03739086538553238 -0.05486580729484558 -0.04478245973587036 0.07762130349874496 0.0011535106459632516 0.013975527137517929 0.035315945744514465 -0.03271086886525154 0.041123680770397186 -0.009118025191128254 -0.04630227014422417 -0.06656283885240555 0.006162835285067558 -0.04202297702431679 0.018699998036026955 0.008411669172346592 0.0198883805423975 -0.03243980556726456 -0.08923552930355072 0.025310631841421127 -0.009329930879175663 -0.07853943854570389 0.01154919620603323 -0.012564590200781822 0.00198258925229311 -0.04562561586499214 -0.022093433886766434 -0.0993029996752739 0.09131358563899994 0.05958143621683121 0.051390618085861206 0.008593975566327572 -0.027459818869829178 -0.0025598888751119375 -0.050522781908512115 -0.030245671048760414 -0.0012623247457668185 -0.041332557797431946 0.006540311500430107 0.07364010810852051 -0.04936840757727623 0.022347480058670044 0.06071401759982109 -0.012506434693932533 0.02277488447725773 0.04544655606150627 -0.03900613263249397 0.06487838923931122 -0.014880931936204433 -0.03638935089111328 0.07976218312978745 -0.038485657423734665 0.09616915881633759 -0.059863485395908356 0.07322458177804947 -0.01071929931640625 -0.028200920671224594 0.07411061972379684 0.08745861053466797 -0.005605247803032398 0.029704805463552475 -0.039782971143722534 +-0.00021775637287646532 -0.0014470741152763367 -0.04713001847267151 -0.003384567331522703 -0.07401926070451736 -0.052912186831235886 -0.0040604290552437305 0.05066685006022453 0.0059396144933998585 -0.04866020753979683 -0.031183544546365738 -0.0016234347131103277 -0.012269794940948486 -0.016863839700818062 0.021250516176223755 -0.027957554906606674 -0.07930399477481842 -0.015167353674769402 -0.04557278752326965 -0.06736907362937927 0.017712073400616646 0.03065994754433632 -0.07352568954229355 0.05387162044644356 0.02752436138689518 0.02352420799434185 -0.04895039647817612 -0.027722060680389404 -0.012751617468893528 0.033624663949012756 0.029921231791377068 -0.010710574686527252 0.07354693114757538 -0.037292759865522385 -0.05088493973016739 0.08022282272577286 -0.0035362625494599342 0.10483191162347794 0.038635604083538055 -0.03550388664007187 -0.04387179762125015 -0.007055529858916998 -0.04788709059357643 -0.06486557424068451 -0.005212300457060337 -0.032166432589292526 -0.03604601323604584 -0.0188829954713583 0.013325031846761703 0.04067602753639221 0.06172005832195282 -0.009030734188854694 -0.036090187728405 -0.030509203672409058 -0.017939632758498192 0.039881326258182526 0.006893211975693703 -0.062060050666332245 -0.07186705619096756 -0.0013437350280582905 -0.06847618520259857 0.05330094322562218 -0.015516668558120728 0.019786003977060318 -0.0019417204894125462 -0.0471939891576767 -0.003964384086430073 0.09113913029432297 0.028303418308496475 -0.016291338950395584 0.014439982362091541 0.06577558070421219 -0.07173385471105576 -0.038932058960199356 0.053915590047836304 -0.03998119384050369 -0.028603069484233856 0.05072401091456413 -0.006711388472467661 -0.001375666237436235 0.017812084406614304 -0.030650993809103966 0.12158229947090149 -0.053732164204120636 -0.007659949362277985 -0.04157159850001335 -0.028908802196383476 -0.056382521986961365 0.05260339006781578 -0.007392385043203831 0.03458151966333389 0.05744955688714981 -0.042861755937337875 0.042024970054626465 0.014252014458179474 0.026700271293520927 0.025914402678608894 -0.14163251221179962 -0.04604467749595642 -0.002736948663368821 -0.010677952319383621 -0.017492011189460754 0.05346568301320076 0.003454061457887292 0.024970659986138344 0.032050345093011856 -0.03822854906320572 5.6048545957310125e-05 0.04313584044575691 0.006256651598960161 0.04606875404715538 0.0845513567328453 0.095185786485672 0.04453239217400551 0.04771530255675316 0.0033166727516800165 0.007828609086573124 -0.022609751671552658 -0.009477062150835991 0.026951700448989868 -0.01749398373067379 0.007837342098355293 -0.00839676707983017 -0.04880547150969505 -0.04263834282755852 0.0460435152053833 -0.08286202698945999 -0.037205059081315994 0.025551704689860344 -0.045205600559711456 0.10326020419597626 0.05361893028020859 -0.02877143956720829 -0.006158080417662859 0.043868664652109146 0.008747195824980736 0.03649762645363808 0.007993321865797043 -0.022256435826420784 -0.041354551911354065 -0.05677001178264618 0.04858267307281494 -0.022148430347442627 -0.04686562344431877 0.023663461208343506 0.014575636945664883 0.0132299168035388 -0.018419725820422173 -0.08182808756828308 -0.014957807026803493 -0.0969972163438797 -0.09572263062000275 0.0019310161005705595 -0.08970443159341812 0.05122643709182739 0.08100778609514236 0.02975429967045784 0.06204724684357643 0.009726963937282562 -0.0044260527938604355 -0.022444726899266243 -0.032137323170900345 -0.010204083286225796 -0.10588674247264862 -0.019524136558175087 -0.021245762705802917 0.01024316530674696 0.03868462145328522 -0.04924494028091431 -0.011369162239134312 -0.025955790653824806 -0.016823329031467438 0.012439411133527756 0.08266781270503998 0.05587799847126007 0.01901993900537491 0.016287684440612793 -0.05354858189821243 -0.031059877946972847 -0.025996070355176926 0.05254823714494705 -0.07515149563550949 0.037489984184503555 -0.01588159054517746 0.0015633358852937818 -0.01251532044261694 0.02755291946232319 -0.00043900898890569806 0.018056390807032585 0.024316709488630295 -0.059892263263463974 -0.07911910116672516 0.033228274434804916 0.051293645054101944 -0.019320445135235786 0.03208010271191597 0.027191486209630966 0.10243217647075653 -0.015987947583198547 0.003544356906786561 -0.07037746906280518 0.004658637102693319 0.029360098764300346 0.03051670640707016 0.018235137686133385 -0.06285826116800308 0.0846339613199234 0.0009055703994818032 0.03249754756689072 -0.047799017280340195 0.04020630568265915 0.028694594278931618 0.011377481743693352 0.029306935146450996 0.06432470679283142 -0.04195006936788559 -0.020663496106863022 0.001772089395672083 0.04650986194610596 -0.09238851070404053 -0.010872715152800083 0.004297735635191202 -0.06857430189847946 0.03149024769663811 -0.02851308137178421 -0.11204843968153 -0.03746715560555458 -0.0039467285387218 -0.020068537443876266 -0.060331132262945175 -0.022648220881819725 0.04937795549631119 -0.027553288266062737 -0.02937735617160797 0.007573003880679607 -0.002158353105187416 -0.05992111563682556 0.06571731716394424 -0.03171434998512268 -0.06036597862839699 -0.047346677631139755 -0.003151434240862727 -0.010496540926396847 0.0026478308718651533 0.024284623563289642 0.07234157621860504 0.11175541579723358 0.02658179961144924 -0.02811703085899353 -0.011225702241063118 -0.05376725643873215 -0.04552162438631058 0.010462556965649128 0.03926300257444382 -0.04066767543554306 -0.0784616768360138 0.011548684909939766 -0.07149286568164825 -0.0012070140801370144 0.004229466896504164 0.05470402538776398 -0.01701643131673336 -0.03856924548745155 -0.04282689839601517 0.022633317857980728 0.0013220241526141763 -0.03385018929839134 0.029995331540703773 -0.04455210641026497 0.027641858905553818 -0.026112090796232224 -0.02571214735507965 0.009512384422123432 -0.016580691561102867 0.04869512468576431 -0.004638862330466509 0.07460363954305649 -0.03003542870283127 -0.0769423395395279 -0.03462408110499382 -0.05847209692001343 -0.058423276990652084 -0.009341760538518429 -0.022895116358995438 -0.03345436975359917 0.07791159301996231 0.032513972371816635 -0.03578825667500496 -0.027694428339600563 -0.032379478216171265 -0.04685429483652115 -0.09205037355422974 -0.025615543127059937 0.0022799912840127945 -0.08257468789815903 -0.029440734535455704 0.046303749084472656 -0.039978884160518646 -0.01815791241824627 0.06682706624269485 -0.02772272378206253 -0.05541962385177612 0.040424373000860214 -0.0033988002687692642 -0.03837478160858154 -0.005734400823712349 -0.08388756960630417 0.008402583189308643 0.08929205685853958 0.02031419426202774 0.029212433844804764 0.04727572947740555 0.06785298883914948 0.07520930469036102 0.015653042122721672 -0.02394045703113079 -0.005339109338819981 -0.010991639457643032 -0.08225879818201065 0.040744926780462265 -0.021288154646754265 -0.009805943816900253 -0.024661969393491745 -0.001668910845182836 0.042155273258686066 0.005292881280183792 -0.007885674946010113 -0.01796579733490944 0.03576076403260231 -0.014200692996382713 0.05380966141819954 -0.003747513983398676 -0.009514889679849148 0.04131340980529785 -0.07326804101467133 -0.045161060988903046 -0.06828845292329788 0.015595742501318455 0.011959385126829147 0.06009247899055481 0.014530424028635025 -0.05427977815270424 -0.0006276983767747879 -0.017618512734770775 0.11415287107229233 -0.10015300661325455 0.025362584739923477 0.022413568571209908 0.013350986875593662 -0.1101166233420372 -0.03920738399028778 0.03987131267786026 -0.04100780561566353 -0.0583069883286953 0.007590858265757561 0.04923272505402565 -0.05680758133530617 -0.07869472354650497 0.01122433040291071 -0.04225517064332962 -0.015959301963448524 -0.007515043951570988 0.007088674698024988 0.03646264597773552 0.0036252110730856657 0.00554394768550992 0.040215738117694855 0.010284118354320526 0.030976595357060432 -0.025304296985268593 0.02921469137072563 -0.03723914548754692 0.07010077685117722 -0.049562711268663406 -0.046135541051626205 -0.07429274171590805 0.05249570310115814 -0.021622326225042343 -0.021125249564647675 -0.03242810070514679 0.007899153046309948 -0.017570560798048973 0.05564701184630394 0.024433553218841553 -0.037222620099782944 -0.03672458231449127 -0.028033696115016937 -0.02406252548098564 -0.044665612280368805 -0.018287332728505135 -0.006494040600955486 -0.051256902515888214 0.024383796378970146 -0.06101556867361069 -0.028076620772480965 0.011204155161976814 0.0019031008705496788 0.023772994056344032 0.04531748965382576 0.02917891927063465 -0.028485499322414398 0.04049447923898697 -0.006447849795222282 0.03537529706954956 0.016079023480415344 -0.02848452515900135 0.01569138653576374 0.036101534962654114 -0.029143698513507843 0.029498936608433723 -0.030833058059215546 -0.009393511340022087 0.0022260798141360283 -0.03203775733709335 -0.004092802293598652 -0.0011026677675545216 0.03969600424170494 -0.03395645692944527 0.03280263766646385 -0.08107537031173706 -0.04817131906747818 0.03821224346756935 -0.025436673313379288 -0.08663907647132874 -0.022172346711158752 -0.02219640463590622 -0.033952828496694565 0.04859547317028046 -0.0098705580458045 0.03506302088499069 0.04514358192682266 -0.05920346453785896 -0.07154998928308487 -0.012986033223569393 -0.01460037101060152 -0.009631013497710228 0.015949591994285583 0.04420602321624756 -0.012171484529972076 0.009204485453665257 0.008662433363497257 -0.014416595920920372 0.005180977284908295 -0.06994057446718216 -0.006267175544053316 -0.013736892491579056 -0.03824438154697418 0.052668314427137375 0.009254802018404007 0.026344751939177513 -0.042489200830459595 -0.03496289253234863 -0.030543027445673943 0.03214867785573006 -0.030836738646030426 -0.003675646847113967 0.03703974932432175 -0.02053189091384411 -0.0013268364127725363 0.034262750297784805 -0.0015789231983944774 -0.05579565092921257 -0.0013516253093257546 -0.0501624271273613 0.07265745848417282 0.019046040251851082 0.0325312577188015 -0.02927006222307682 -0.079415462911129 -0.030549077317118645 -0.008549923077225685 -0.058909520506858826 -0.012739920988678932 0.02130708284676075 -0.07609028369188309 -0.0770515576004982 -0.018653690814971924 -0.053173430263996124 0.0637081116437912 -0.0126028535887599 0.06690855324268341 -0.040947671979665756 -0.017348255962133408 0.005747171584516764 -0.03459092229604721 0.011829919181764126 0.00808698683977127 -0.07660596817731857 -0.04508022591471672 0.0984029695391655 0.014561504125595093 0.031475745141506195 0.09751612693071365 -0.035135652869939804 0.056815288960933685 0.01888444647192955 -0.04311002790927887 0.02264554612338543 -0.0018727764254435897 -0.06573545932769775 0.03538191318511963 -0.04297535866498947 0.08277875930070877 -0.048300229012966156 0.12271876633167267 -0.0015989611856639385 -0.034989722073078156 0.08933989703655243 0.08675795793533325 -0.016618823632597923 0.041038066148757935 -0.050099246203899384 +-0.0026014933828264475 -0.07435241341590881 -0.04338986054062843 0.02797975018620491 -0.03165707737207413 0.032920800149440765 -0.03230499103665352 0.07145024836063385 0.020660964772105217 -0.019007017835974693 -0.038621291518211365 -0.04878890514373779 -0.009933928959071636 0.015707336366176605 0.03677092120051384 0.0035145252477377653 -0.00417493237182498 -0.006624914705753326 0.06751678884029388 -0.04111307114362717 -0.007646829355508089 0.06335772573947906 0.026773806661367416 0.0632578507065773 0.04260272905230522 -0.0087897265329957 -0.027387157082557678 0.060391657054424286 0.009403449483215809 0.09058547019958496 -0.017993947491049767 -0.03240218013525009 -0.01306798867881298 -0.01059039868414402 0.05048668384552002 0.01891007460653782 -0.020404310896992683 0.08379387855529785 0.04310370236635208 -0.08518992364406586 0.04477235674858093 0.00745429378002882 0.026547139510512352 -0.04084472358226776 0.00869052391499281 -0.033512067049741745 -0.05596306174993515 -0.10654997080564499 -0.009121919050812721 0.06959674507379532 0.06928341835737228 0.003500895807519555 0.03759003058075905 -0.004967079497873783 -0.10283835232257843 -0.0006685021216981113 -0.01412898302078247 -0.011354582384228706 -0.003097724402323365 0.03586592152714729 -0.003764451015740633 -0.04334740340709686 -0.001281831180676818 0.04404563084244728 -0.021732542663812637 -0.0237586572766304 0.03465425595641136 0.03589876368641853 0.03272128850221634 0.023396916687488556 -0.06418997049331665 0.03700268641114235 -0.02735678292810917 -0.047049541026353836 0.025739364326000214 0.004030016250908375 -0.009127354249358177 -0.014132875017821789 0.01717703603208065 0.004103000275790691 0.04790310934185982 -0.040661707520484924 0.02939588949084282 -0.04492328315973282 0.0344301201403141 0.03434847295284271 -0.01929188147187233 -0.040279243141412735 -0.002747997874394059 0.006820473819971085 0.060773711651563644 -0.010671542026102543 0.02652769722044468 0.012696834281086922 -0.0029156282544136047 0.006169759668409824 0.08781888335943222 -0.08289564400911331 -0.00512261176481843 -0.01827823370695114 -0.010274432599544525 0.0008866671123541892 0.06627669930458069 0.05015531927347183 0.005837931763380766 0.008785596117377281 -0.06935873627662659 0.031504396349191666 0.0644800066947937 0.03838416188955307 -0.03141670674085617 0.05245021730661392 0.05023863539099693 -0.0685272365808487 -0.011489130556583405 -0.04950457066297531 -0.05071435868740082 0.029873095452785492 0.005804654210805893 0.05457427725195885 0.020402707159519196 0.0493825264275074 -0.05027244612574577 -0.06578591465950012 0.04677075520157814 0.07787026464939117 -0.008623091503977776 0.06247283145785332 -0.03251432999968529 -0.008028066717088223 0.0020212624222040176 0.023017147555947304 0.006025970913469791 0.033254701644182205 0.03966616839170456 0.029783964157104492 -0.002056610304862261 0.022185519337654114 0.02190304733812809 0.05198110640048981 -0.08007960021495819 0.0343523733317852 0.07581031322479248 0.0043344260193407536 -0.029639463871717453 0.01947980746626854 -0.012599456124007702 0.04332759231328964 -0.028786374256014824 -0.03465823084115982 -0.03553280979394913 -0.01913926564157009 0.06324223428964615 -0.05415702238678932 -0.019039815291762352 0.012590097263455391 -0.028489792719483376 0.07684490829706192 0.06402654200792313 0.004969489760696888 -0.04229132831096649 -0.04727773368358612 0.00907064974308014 -0.010246009565889835 0.031114349141716957 0.003115949220955372 -0.005980105139315128 -0.10841351002454758 0.028565973043441772 0.03396957740187645 0.04247639328241348 0.018913062289357185 0.04757202789187431 0.051020484417676926 0.057056792080402374 0.01733395643532276 0.015413046814501286 0.007742864079773426 -0.05035123974084854 -0.0424216166138649 -0.04709775745868683 0.021593283861875534 -0.035924240946769714 -0.018123406916856766 -0.04948775842785835 -0.026408644393086433 0.05119144171476364 0.01177580002695322 -0.009687754325568676 -0.043629761785268784 0.08119484037160873 -0.04306209459900856 0.03525420278310776 -0.021326903253793716 -0.010092444717884064 0.019798263907432556 -0.0005357779446057975 0.07883838564157486 -0.055518824607133865 0.01579354703426361 0.028878921642899513 0.09247322380542755 0.06255770474672318 -0.02998386323451996 7.631463813595474e-05 0.06783968955278397 0.047418128699064255 -0.025105426087975502 0.02444464899599552 -0.03535088896751404 0.007594768889248371 0.01763705536723137 -0.0013256537495180964 0.012048465199768543 0.07116062194108963 -0.006514161825180054 0.023885410279035568 -0.04185326769948006 0.024288583546876907 -0.018904048949480057 0.04027976095676422 0.0014755657175555825 -0.07783829420804977 0.006720162928104401 -0.017538363113999367 -0.04343823343515396 0.021355142816901207 -0.05053342133760452 0.003988146781921387 -0.02272881753742695 0.06830901652574539 0.032616712152957916 0.010026747360825539 0.03408709540963173 0.006049630232155323 0.0374089851975441 0.040705956518650055 -0.033963948488235474 -0.09690749645233154 0.016353433951735497 -0.07043015956878662 0.01197002176195383 -0.042106565088033676 -0.0031255444046109915 0.008446279913187027 0.06578966230154037 0.05679250508546829 0.07163172215223312 -0.02596389874815941 0.060376979410648346 -0.04972362890839577 -0.042080339044332504 -0.02747761458158493 0.0032149548642337322 0.003042830154299736 -0.05958547443151474 0.004225546959787607 -0.14936736226081848 -0.03327891603112221 -0.04807327687740326 0.009953086264431477 -0.048051416873931885 0.0465538464486599 -0.03340648487210274 0.020342059433460236 -0.009977176785469055 -0.07512127608060837 0.023114195093512535 -0.054252978414297104 -0.013467252254486084 -0.006591171491891146 0.08280102163553238 0.03521289303898811 0.08078667521476746 -0.017316479235887527 -0.052594445645809174 -0.014987298287451267 -0.054865166544914246 -0.054131653159856796 -0.0678659975528717 -0.05289831757545471 -0.0368104949593544 0.06737088412046432 -0.029687628149986267 -0.016751844435930252 -0.019941281527280807 0.03724764660000801 0.03689510002732277 -0.05312643200159073 -0.06345944851636887 -0.012496566399931908 -0.013086711056530476 -0.0017980467528104782 0.013044158928096294 -0.027706975117325783 -0.04959482327103615 -0.004239128436893225 0.014237177558243275 -0.022850576788187027 0.024376176297664642 0.047405585646629333 -0.004716360010206699 0.031354550272226334 0.019479095935821533 0.02101775072515011 0.029526367783546448 -0.04933552071452141 0.04276758432388306 0.0834960862994194 0.044121984392404556 0.0018036452820524573 0.06936503946781158 -0.010741214267909527 -0.0033230821136385202 0.04512054845690727 -0.01975395902991295 0.013682563789188862 0.04958268254995346 -0.011175000108778477 -0.06887493282556534 0.025780189782381058 -0.05057710036635399 0.018356259912252426 -0.08720873296260834 -0.020305700600147247 0.054934341460466385 -0.05111485347151756 -0.08125089854001999 0.04832302778959274 -0.0533771850168705 0.028373634442687035 -0.04207335785031319 -0.0033145491033792496 0.008938850834965706 -0.0013709828490391374 0.05159268155694008 -0.06753767281770706 0.08117004483938217 -0.02912185899913311 -0.022666197270154953 0.07039543241262436 0.015241507440805435 0.013265401124954224 0.01152411662042141 0.031129784882068634 -0.09336454421281815 0.011278614401817322 0.013805197551846504 -0.04144062101840973 -0.054371584206819534 -0.05535805597901344 -0.07710084319114685 -0.06668850034475327 0.010706434957683086 0.00959568191319704 -0.004092995077371597 0.028185490518808365 -0.060253046452999115 -0.0719931423664093 -0.037974532693624496 0.020366525277495384 0.04758685454726219 -0.007803386077284813 0.07412850856781006 -0.014474278315901756 -0.060672223567962646 -0.0010412714909762144 -0.023458493873476982 0.02893860451877117 -0.011461743153631687 0.012119160033762455 0.09969091415405273 -0.028541477397084236 0.010668880306184292 -0.04710366949439049 -0.0683654174208641 -0.0029498019721359015 -0.05050768330693245 0.02858337014913559 -0.013461404480040073 0.02025548368692398 0.048723991960287094 0.07659260928630829 0.012537792325019836 0.04576864093542099 -0.029507234692573547 0.016277538612484932 0.04893139377236366 -0.011978263966739178 -0.06436330825090408 0.06145056337118149 0.03507857769727707 0.05105287954211235 -0.0475328154861927 -0.0016602268442511559 -0.07469567656517029 0.0230021383613348 0.04764213785529137 0.04660232365131378 0.01981520839035511 0.020658647641539574 0.009549944661557674 0.0153147391974926 0.0030974862165749073 0.003809939604252577 -0.07427719235420227 0.03506934270262718 0.013260794803500175 -0.02131183072924614 -0.04799581319093704 0.005003301426768303 0.010035965591669083 -0.04016156122088432 -0.010354651138186455 0.037914078682661057 -0.09332208335399628 -0.014530356042087078 -0.06181193143129349 0.03104270249605179 -0.0460442453622818 0.051129359751939774 -0.04266508296132088 0.052872080355882645 0.00573490047827363 -0.0022048335522413254 -0.025974949821829796 0.019888553768396378 0.02832176722586155 -0.09321281313896179 -0.06898654252290726 0.029172580689191818 -0.03462643921375275 -0.0024454195518046618 0.007269419729709625 0.1023639589548111 -0.026243574917316437 0.12751969695091248 -0.023482954129576683 -0.05739288404583931 -0.07639271020889282 -0.05987859517335892 -0.08508992195129395 0.07211282849311829 0.01464912574738264 -0.012756104581058025 -0.013066797517240047 -0.016679318621754646 0.060026027262210846 0.08905675262212753 0.050487224012613297 -0.03878888487815857 -0.024563411250710487 -0.0038370233960449696 0.030964162200689316 0.030194398015737534 0.03587331622838974 -0.02214978262782097 -0.023422852158546448 -0.05318702757358551 0.01950427144765854 -0.008739049546420574 -0.009533483535051346 -0.05277688428759575 0.02939673699438572 0.04843289405107498 -0.05013906583189964 0.041834212839603424 -0.08818669617176056 -0.044578976929187775 -0.03273054584860802 0.011988355778157711 -0.0711900070309639 -0.047606855630874634 0.024798814207315445 0.0013732040533795953 0.07137276977300644 0.0021606553345918655 -0.03831362724304199 0.04306867718696594 -0.034158769994974136 -0.02074394002556801 -0.023836495354771614 0.014703147113323212 -0.04571743309497833 -0.06947142630815506 0.010514726862311363 -0.04431231692433357 -0.010318531654775143 -0.07961750775575638 0.03405730053782463 0.058212749660015106 0.03290094435214996 0.0632084533572197 -0.015884369611740112 0.07962659001350403 0.10056831687688828 0.029490293934941292 -0.05186213552951813 -0.005214448552578688 0.00941252987831831 0.0798381045460701 0.003906087251380086 0.05841675028204918 -0.028101874515414238 0.13441996276378632 -0.005504127126187086 -0.030853362753987312 -0.011625277809798717 0.03694259747862816 0.08726588636636734 -0.04378440976142883 -0.08474324643611908 +0.04841863363981247 -0.021505117416381836 -0.01569589041173458 0.04805969446897507 -0.08221311867237091 -0.043001938611269 0.004451146349310875 0.018748432397842407 0.004642784595489502 -0.010896760039031506 0.0018337499350309372 -0.010580391623079777 -0.00687806960195303 -0.004349888768047094 0.0333392508327961 -0.036053527146577835 -0.06897242367267609 -0.002842573681846261 -0.031931836158037186 -0.04996085166931152 0.025510862469673157 0.02985091134905815 -0.06985189020633698 0.054475337266922 -0.02190956473350525 0.03086715377867222 -0.06700155138969421 0.002476644469425082 -0.025025656446814537 0.01415992435067892 0.03748688846826553 -0.017673732712864876 0.062123507261276245 -0.05665988102555275 -0.05814172327518463 0.06132100149989128 -0.02072964981198311 0.12723317742347717 0.03567827120423317 -0.053206488490104675 -0.056730251759290695 0.01897892914712429 -0.02851683460175991 -0.05629219114780426 0.025416478514671326 0.012614129111170769 -0.002383715473115444 -0.03094489686191082 0.036660805344581604 0.026101399213075638 0.094876728951931 0.021082008257508278 -0.026378203183412552 -0.025575486943125725 -0.026665743440389633 0.00656806118786335 0.05469062551856041 -0.06283436715602875 -0.08769230544567108 0.04460848122835159 -0.07725061476230621 0.003826314816251397 -0.0006335327634587884 -0.012547865509986877 -0.012311214581131935 -0.046192627400159836 0.007201866712421179 0.08076851069927216 0.024785254150629044 0.006664379965513945 0.033074598759412766 0.11438463628292084 -0.06925103813409805 -0.05375048518180847 0.058194126933813095 -0.0728212371468544 -0.042589060962200165 0.06272539496421814 -0.020184630528092384 0.0262506864964962 -0.01084889192134142 -0.02884179726243019 0.09767074882984161 -0.041716478765010834 -0.049272969365119934 -0.02119985967874527 -0.006332992110401392 -0.05554958060383797 0.03977762535214424 0.024253960698843002 0.007097355090081692 0.05203431472182274 -0.07340968400239944 0.06045445427298546 0.024291036650538445 0.02834261581301689 0.06266021728515625 -0.10574106127023697 -0.04296410083770752 -0.013493767008185387 -0.028124583885073662 -0.027833152562379837 0.03892345726490021 0.0008890628814697266 0.05229168012738228 0.011379346251487732 -0.051820650696754456 0.015008770860731602 0.032159965485334396 0.04799244552850723 0.05136348679661751 0.06325555592775345 0.07955094426870346 0.019793694838881493 0.061915408819913864 -0.018897563219070435 0.03386607766151428 -0.06750979274511337 -0.02530001476407051 0.02537183277308941 -0.015440555289387703 0.03537432476878166 -0.029251020401716232 -0.06421473622322083 -0.04012220352888107 0.033623646944761276 -0.10481639206409454 -0.029033571481704712 0.05609205737709999 -0.031485024839639664 0.1142420619726181 0.05847267434000969 -0.006381274666637182 0.03126184642314911 0.03127901256084442 0.015156558714807034 -0.0022135921753942966 0.0454212911427021 -0.00012625813542399555 -0.00919984932988882 -0.01773393526673317 0.05481331795454025 0.028658626601099968 -0.05183392018079758 0.02108110301196575 0.028749004006385803 0.028495121747255325 -0.029178138822317123 -0.08184501528739929 0.006321799475699663 -0.08035445958375931 -0.08086896687746048 -0.010262143798172474 -0.08042687922716141 0.002667465480044484 0.04953034222126007 0.006146632134914398 0.05478261038661003 -0.005863139871507883 -0.025493551045656204 -0.03556690365076065 -0.037845030426979065 -0.018481291830539703 -0.08118069916963577 -0.04680486395955086 -0.03320435807108879 0.005228916648775339 0.007491393014788628 -0.01759711280465126 -0.004378248006105423 -0.00817891675978899 -0.002864539623260498 0.029842115938663483 0.06472012400627136 0.07061173021793365 0.031682468950748444 0.020577365532517433 -0.033926915377378464 0.030699871480464935 -0.048939298838377 0.0036017335951328278 -0.05857370048761368 0.02796587534248829 -0.04599883407354355 0.000834316189866513 -0.002923608524724841 0.05698099359869957 -0.009181084111332893 0.01660558581352234 0.020251799374818802 -0.04553883895277977 -0.08306884765625 0.037287794053554535 0.0833856537938118 -0.03133146092295647 0.024953998625278473 -0.0061905100010335445 0.05709187313914299 -0.022967331111431122 -0.011119572445750237 -0.040419723838567734 0.047985147684812546 -0.0009997363667935133 0.03767336532473564 0.003202431835234165 -0.049269597977399826 0.08093933016061783 -0.002441402757540345 0.015853827819228172 -0.06613297760486603 0.002699054079130292 0.014778222888708115 0.009530988521873951 0.01331446971744299 0.08145765960216522 -0.02267034351825714 -0.004002307541668415 -0.005626239813864231 0.058301396667957306 -0.04262762516736984 0.008470691740512848 -0.03203734755516052 -0.08833783864974976 0.026323171332478523 -0.044311314821243286 -0.12076401710510254 -0.025104431435465813 0.029192853718996048 -0.0037075504660606384 -0.04131004214286804 0.009257359430193901 0.03314543515443802 -0.005938843358308077 -0.040473416447639465 -0.010819309391081333 -0.01779690384864807 -0.0816461592912674 0.10581757873296738 0.0036932104267179966 -0.06648366898298264 -0.035554856061935425 -0.0018075719708576798 0.024480575695633888 -0.008333748206496239 0.030149079859256744 0.0506841279566288 0.1081865057349205 0.04575705900788307 -0.008724641054868698 0.00956561230123043 -0.04885709285736084 -0.05496562272310257 0.01912717893719673 0.042267657816410065 -0.05222561955451965 -0.02266031689941883 -0.008871443569660187 -0.06474307179450989 0.014877108857035637 -0.0006927490467205644 0.033043209463357925 -0.025795655325055122 -0.04064216837286949 -0.03658635914325714 0.03841942548751831 -0.013298085890710354 -0.04388786107301712 0.048303768038749695 -0.010909954085946083 0.046736378222703934 -0.004564089700579643 -0.01212091650813818 0.031855639070272446 0.01903635822236538 0.046668682247400284 -0.03027280420064926 0.051108211278915405 -0.007830208167433739 -0.09905460476875305 -0.026752859354019165 -0.06981304287910461 -0.04822589084506035 -0.003705714363604784 -0.05277306213974953 -0.044754963368177414 0.080409936606884 0.01291834469884634 -0.02239196188747883 -0.07019343972206116 -0.016923585906624794 -0.013987275771796703 -0.08725184947252274 -0.01946122944355011 0.023667393252253532 -0.07660131901502609 -0.041268009692430496 0.022847559303045273 -0.03124159947037697 -0.022189535200595856 -0.016849113628268242 -0.024565931409597397 -0.06054176762700081 0.04615020379424095 -0.022263232618570328 -0.02742636762559414 -0.008694883435964584 -0.07993204146623611 0.03284875676035881 0.12225203216075897 0.054232850670814514 0.06131887808442116 0.04462651163339615 0.04646254703402519 0.11366430670022964 0.02660054713487625 -0.0396466888487339 -0.0005462800618261099 -0.025410432368516922 -0.07521810382604599 0.03131479769945145 -0.041788775473833084 -0.013581366278231144 -0.003414473496377468 0.004715398419648409 0.05727469548583031 -0.001691124984063208 -0.04850104823708534 -0.02500288188457489 0.05104926601052284 -0.009299123659729958 0.03263779357075691 0.012214262038469315 0.0003319392562843859 0.011257079429924488 -0.05622203275561333 -0.03365807607769966 -0.04841209203004837 0.019108539447188377 -0.0025223675183951855 0.056090932339429855 0.01639283075928688 -0.05974250286817551 -0.0021129727829247713 -0.0028481557965278625 0.10319700092077255 -0.10219582915306091 -0.004254231695085764 0.017115551978349686 0.019258098676800728 -0.10637978464365005 -0.013124077580869198 0.04662315919995308 -0.05062857270240784 -0.03216172382235527 0.01936766318976879 0.044768426567316055 -0.06218363717198372 -0.01564602181315422 0.007489010691642761 -0.04241963103413582 -0.02243869937956333 0.016142288222908974 0.02300526387989521 0.012281638570129871 -0.04636884480714798 -0.014514034613966942 -0.00013824523193761706 0.008859390392899513 0.04073653370141983 -0.04062262549996376 0.015936674550175667 -0.029376676306128502 0.034573961049318314 -0.050054486840963364 -0.024500014260411263 -0.05256430059671402 0.07384075224399567 0.0066169570200145245 -0.026080412790179253 -0.019471608102321625 -0.0010917582549154758 -0.013399973511695862 0.01868610642850399 0.030741140246391296 -0.038856491446495056 -0.01760152541100979 -0.03420070558786392 -0.04367974027991295 -0.07007688283920288 -0.036200542002916336 0.008891105651855469 -0.06566613167524338 0.015962902456521988 -0.025919614359736443 -0.028097491711378098 -0.0025371145457029343 -0.017995629459619522 0.025059835985302925 0.055915702134370804 0.04111115634441376 -0.023223768919706345 0.03223368152976036 0.011260983534157276 0.048298440873622894 0.030158787965774536 -0.04260450229048729 0.020190397277474403 0.026623820886015892 -0.06766568124294281 0.02557079680263996 -0.01076862309128046 0.007159189321100712 -0.0020862130913883448 -0.0027873115614056587 0.024688605219125748 -0.00868905894458294 0.006549420300871134 -0.0306064672768116 0.04312758147716522 -0.07657134532928467 -0.019203318282961845 0.03731304034590721 -0.02326572872698307 -0.09470381587743759 -0.03752467408776283 0.011856691911816597 -0.021329374983906746 0.045446593314409256 -0.022821873426437378 0.026897870004177094 0.03953038901090622 -0.0402192585170269 -0.06688439846038818 -0.03602839261293411 -0.026420049369335175 0.045471809804439545 -0.016906004399061203 0.0735546350479126 0.0017654262483119965 0.013908814638853073 -0.007979897782206535 0.01700940914452076 0.013625748455524445 -0.08822701126337051 -0.013100508600473404 -0.055543918162584305 -0.032724529504776 0.035475004464387894 -0.009605685248970985 0.00042471938650123775 -0.05721992999315262 -0.025728803128004074 -0.03569183126091957 0.08151528984308243 -0.03375864773988724 -0.018822072073817253 0.04945524036884308 -0.006436033174395561 0.00741153908893466 0.010456222109496593 -0.04253492131829262 -0.0739862397313118 0.017596900463104248 -0.00858727190643549 0.030561622232198715 0.013366802595555782 0.02442825399339199 -0.014663894660770893 -0.075607068836689 -0.03295401856303215 0.02943645417690277 -0.09017591178417206 0.011806562542915344 -0.0014782734215259552 -0.0898946225643158 -0.06610570847988129 0.012177685275673866 -0.058430265635252 0.08523634821176529 0.009909417480230331 0.03576928377151489 -0.0002818756620399654 -0.007676724344491959 -0.02313956804573536 -0.04896125942468643 -0.0037244181148707867 -0.000999831478111446 -0.042375966906547546 -0.03783710300922394 0.05593717470765114 -0.014355781488120556 0.033764418214559555 0.07422760874032974 -0.04084029421210289 0.052822425961494446 0.05115588381886482 -0.033986590802669525 0.04525746405124664 -0.006644674111157656 -0.041759833693504333 0.06990211457014084 -0.05073719844222069 0.09833169728517532 -0.04406092315912247 0.0901351347565651 -0.00666406424716115 -0.027316829189658165 0.07128457725048065 0.09851579368114471 -0.01323465071618557 -0.0026456972118467093 -0.06190583482384682 +0.02573505975306034 -0.021929951384663582 0.028332628309726715 0.07915136963129044 -0.07493830472230911 -0.011834298260509968 -0.01479389239102602 0.016074325889348984 0.008747204206883907 -0.04323209077119827 -3.6576209822669625e-05 -0.00697920611128211 -0.006837582681328058 0.026391474530100822 0.045647699385881424 -0.03366364166140556 -0.05967456102371216 0.015243137255311012 -0.021195484325289726 -0.049039989709854126 0.035855330526828766 0.014014119282364845 -0.03868540748953819 0.04905303567647934 -0.011968678794801235 0.010586756281554699 -0.050301868468523026 0.011288435198366642 -0.00965708214789629 0.031002545729279518 0.0772843211889267 0.00011144444579258561 0.03587253764271736 -0.04047387093305588 -0.034966349601745605 0.04836136847734451 -0.014429409988224506 0.08853123337030411 0.013346509076654911 -0.009085671044886112 -0.006773780100047588 -0.018498461693525314 -0.030761096626520157 -0.04563010856509209 0.03703322634100914 -0.00696458900347352 0.01851717382669449 -0.01207294687628746 0.03046586364507675 0.018612859770655632 0.0947161465883255 0.012106005102396011 0.009679163806140423 -0.01626085303723812 -0.0016467783134430647 -0.020726822316646576 0.06264331191778183 -0.06315773725509644 -0.0485687293112278 0.06449007987976074 -0.09493337571620941 -0.030728820711374283 0.027503658086061478 -0.00028993046726100147 -0.014359631575644016 -0.013925529085099697 -0.006708481349050999 0.0876438245177269 0.004579992964863777 -0.05247925594449043 0.04986941069364548 0.10172805935144424 -0.06350753456354141 -0.04828080162405968 0.0636809766292572 -0.05462949350476265 -0.004771197680383921 0.0394396148622036 -0.029309576377272606 0.010387241840362549 0.006482900585979223 -0.052106823772192 0.09581618756055832 -0.03036626987159252 -0.051648303866386414 -0.028135012835264206 0.009933152236044407 -0.059615157544612885 0.07202471047639847 0.015271896496415138 0.025029119104146957 0.08765731006860733 -0.08152074366807938 0.03986907750368118 0.03121021017432213 0.019249942153692245 0.020474841818213463 -0.10100055485963821 -0.056589480489492416 0.025056907907128334 0.014060314744710922 -0.010814551264047623 0.05897951126098633 -0.008438218384981155 0.052804168313741684 0.04664549604058266 -0.0466628260910511 0.0032382674980908632 0.015549569390714169 0.04428590461611748 0.056743793189525604 0.09762918204069138 0.055758215487003326 0.04545576497912407 0.04195452854037285 0.0011453856714069843 -0.009838253259658813 -0.047526679933071136 -0.035009801387786865 0.023873930796980858 0.0056073712185025215 0.07086468487977982 -0.010774804279208183 -0.08070621639490128 -0.03095453418791294 0.0319090336561203 -0.11157172918319702 -0.00900730025023222 0.09523002058267593 -0.04336389899253845 0.12818671762943268 0.03314412385225296 -0.0041699823923408985 0.054993778467178345 0.05647272989153862 0.06278257817029953 -0.03652702644467354 0.020236322656273842 -0.0023385551758110523 -0.016866788268089294 -0.025009308010339737 0.058029282838106155 0.01891970820724964 -0.05997448414564133 0.044515494257211685 0.07040276378393173 0.013132303021848202 0.002881579799577594 -0.03702812269330025 -0.01319415308535099 -0.049318693578243256 -0.03986312076449394 -0.008161772042512894 -0.08990682661533356 -0.005433282814919949 0.05127602443099022 0.0011736428132280707 0.03713433817028999 -0.021694552153348923 -0.025814423337578773 -0.07664677500724792 -0.03164299950003624 -0.01255735568702221 -0.042386494576931 -0.0352913998067379 -0.014579595066606998 -0.022365441545844078 0.02021055668592453 -0.05294160172343254 -0.02424977906048298 -0.0006031065131537616 -0.01686948910355568 0.0511430948972702 0.07845136523246765 0.06435775011777878 0.010213110595941544 0.004563683178275824 -0.06065043807029724 0.0040668160654604435 -0.0388239361345768 -0.014226661995053291 -0.008452263660728931 0.03756105527281761 -0.07388348132371902 -0.04155397415161133 -0.020260417833924294 0.05667538195848465 -0.01578364335000515 0.004304145462810993 -0.032154496759176254 -0.02428014948964119 -0.04716844484210014 0.07118955254554749 0.07840404659509659 -0.04506199061870575 0.01665802113711834 -0.0250694677233696 0.04042710363864899 -0.020736418664455414 -0.029651133343577385 -0.057995591312646866 0.028806699439883232 0.03605027124285698 0.06329693645238876 0.016852525994181633 -0.07163399457931519 0.08574768900871277 0.0186888687312603 0.018366998061537743 -0.07656647264957428 -0.013996022753417492 0.028090564534068108 0.001100613153539598 0.07473458349704742 0.07509197294712067 -0.017270565032958984 0.023923218250274658 -0.012667899020016193 0.07555285841226578 -0.059912294149398804 0.011765570379793644 -0.01622360572218895 -0.0708676427602768 0.0009811443742364645 -0.03128412738442421 -0.0588131882250309 -0.018246743828058243 0.01941457763314247 -0.013036373071372509 -0.004645201843231916 0.01072956994175911 0.05142369121313095 -0.005540214944630861 0.00993598997592926 -0.007645772770047188 -0.015041136182844639 -0.08494182676076889 0.11373317986726761 -0.0020142060238868 -0.06430445611476898 -0.10371220856904984 0.010752303525805473 0.057855814695358276 0.0023679882287979126 0.057627465575933456 0.027708884328603745 0.09782670438289642 0.020805126056075096 0.005516796372830868 -0.0026824811939150095 -0.03060545027256012 -0.0771372988820076 -0.0035720011219382286 0.027283377945423126 -0.04133111238479614 -0.0397583469748497 0.010420788079500198 -0.07786505669355392 0.0007810307433828712 0.0067105526104569435 0.031065981835126877 -0.027138186618685722 -0.00799022801220417 -0.03990854322910309 0.011266260407865047 -0.044598132371902466 -0.03630170226097107 0.01851189322769642 -0.016382642090320587 0.041437119245529175 -0.01751842349767685 -0.00418719369918108 0.034719206392765045 0.01906546950340271 0.008951570838689804 -0.06206202879548073 0.03271010145545006 -0.011299588717520237 -0.07356606423854828 -0.00953342393040657 -0.06398649513721466 -0.03897829353809357 -0.007656073197722435 -0.01974889636039734 -0.0571146197617054 0.08586405217647552 0.009375330060720444 -0.06744559109210968 -0.04945877194404602 -0.018769903108477592 -0.0037734878715127707 -0.03327209874987602 0.00020701684115920216 -0.0006573121063411236 -0.06057853624224663 -0.004617590922862291 0.024721641093492508 -0.05772076174616814 -0.03670201450586319 0.008976740762591362 -0.016838131472468376 -0.060293301939964294 0.03790176287293434 -0.013023209758102894 -0.017439670860767365 -0.011931894347071648 -0.07473331689834595 0.06407608091831207 0.09051208943128586 0.053474169224500656 0.025373810902237892 0.02635767124593258 0.04102090746164322 0.11127173155546188 0.008587511256337166 -0.013195247389376163 0.01951509155333042 -0.05664807930588722 -0.03421344235539436 0.045143187046051025 -0.01864285208284855 -0.006810052786022425 -0.006235799286514521 -0.01051412709057331 0.10520993173122406 -0.00993373990058899 0.0011817084159702063 -0.0006620002095587552 0.05478601157665253 0.020584596320986748 0.03303328529000282 0.006563452538102865 -0.006630220916122198 -0.023265743628144264 -0.06035853177309036 -0.038274090737104416 -0.02728300169110298 0.06940088421106339 -0.015873542055487633 0.03580676019191742 -0.023369302973151207 -0.10886487364768982 0.02216384932398796 0.018652893602848053 0.11221583187580109 -0.0770757719874382 0.004518342670053244 0.03465571999549866 0.00059528584824875 -0.10114709287881851 -0.007395443040877581 0.0034138450864702463 -0.06460670381784439 -0.031834665685892105 0.02980763092637062 0.04579804465174675 -0.052414730191230774 0.0042685866355896 -0.010906980372965336 -0.04023922607302666 0.015684956684708595 0.024915508925914764 -0.004892281722277403 0.023503543809056282 -0.01318554487079382 -0.0315067321062088 -0.05596890300512314 0.03051622584462166 0.003779168939217925 -0.013384624384343624 0.04866102710366249 -0.021624384447932243 0.03238464891910553 -0.05150932818651199 -0.0442892462015152 -0.05071089789271355 0.07213805615901947 -0.016453346237540245 0.01745271310210228 -0.02814687415957451 -0.05145246535539627 -0.00909942016005516 0.021185729652643204 -0.007118441630154848 -0.07567503303289413 -0.01588565856218338 -0.056967154145240784 -0.05993250757455826 -0.08720623701810837 -0.05727533623576164 0.029908867552876472 -0.03919005021452904 0.026564544066786766 -0.0346798300743103 0.012619874440133572 -0.02938944473862648 -0.03718907758593559 0.040939074009656906 0.05441462993621826 0.05160550773143768 -0.01974516361951828 0.04103996977210045 0.010244498029351234 0.055497970432043076 0.01981043443083763 -0.06182892248034477 0.05058479681611061 0.027216067537665367 -0.03822975978255272 0.056962281465530396 -0.027788210660219193 -0.006266563665121794 -0.011546469293534756 -0.011773886159062386 0.021740393713116646 -0.027717623859643936 -0.03749523311853409 -0.065998375415802 0.0766507238149643 -0.07081162929534912 -0.022918807342648506 0.009762855246663094 -0.03128119558095932 -0.0911308228969574 -0.056333836168050766 -0.008609024807810783 -0.022035613656044006 0.049042958766222 -0.016480835154652596 0.004332070238888264 0.04184442013502121 -0.011051633395254612 -0.01646343618631363 -0.008500184863805771 -0.0017904106061905622 0.0034500567708164454 -3.6613462725654244e-05 0.04253685101866722 -0.012586270458996296 -0.008533218875527382 -0.005200524348765612 -0.023551737889647484 0.022447826340794563 -0.07832975685596466 -0.013652341440320015 -0.014613425359129906 -0.033812738955020905 -0.0027559346053749323 0.016525767743587494 0.012256406247615814 -0.07811296731233597 -0.04246259480714798 -0.061676785349845886 0.10148371011018753 -0.010182815603911877 0.04061749204993248 0.0022137982305139303 -0.027772612869739532 -0.006647263187915087 0.0338529497385025 -0.04747645556926727 -0.0803770050406456 -0.01470513641834259 -0.020731745287775993 -0.0030097574926912785 -0.02646486647427082 0.025837162509560585 -0.021544627845287323 -0.077985480427742 0.008300093933939934 0.028217732906341553 -0.0801595076918602 0.015411006286740303 0.02407839708030224 -0.044923100620508194 -0.03337549418210983 -0.002809747587889433 -0.04262280836701393 0.06249672546982765 0.03622007369995117 0.031463511288166046 -0.012333711609244347 -0.004198562819510698 -0.01242684293538332 -0.071950763463974 0.004793104249984026 -0.002029788214713335 -0.05292500928044319 -0.025857796892523766 0.053885702043771744 -0.06660237163305283 0.03589526563882828 0.04625700041651726 -0.057475946843624115 0.034262221306562424 0.05089185759425163 -0.03441263362765312 0.0545804500579834 0.012270127423107624 0.009708750993013382 0.06823237240314484 -0.07803975045681 0.11281609535217285 -0.054228536784648895 0.0870128870010376 -0.004554497543722391 -0.010478546842932701 0.06551337242126465 0.07540921866893768 0.013975746929645538 0.0019599096849560738 -0.06526312232017517 +0.054822567850351334 -0.012840264476835728 -0.010320087894797325 0.015846557915210724 -0.07029163837432861 -0.04273497313261032 -0.02638985775411129 0.06610354781150818 -0.004150159191340208 -0.04715755581855774 -0.05942380055785179 0.008350232616066933 -0.0010795161360874772 0.014416933991014957 0.024788841605186462 -0.0502442866563797 -0.08400139212608337 0.0046555702574551105 -0.041568413376808167 -0.05339067056775093 0.02134154550731182 0.06295011192560196 -0.049361005425453186 0.04377162829041481 0.021463554352521896 0.03303571417927742 -0.03489324450492859 0.004886041861027479 0.003455654252320528 0.00828277412801981 0.08058660477399826 -0.005100498907268047 0.07490678876638412 -0.07121014595031738 -0.02832729183137417 0.06381877511739731 -0.04677397385239601 0.11214181780815125 0.02030901610851288 -0.038644690066576004 -0.04698800668120384 -0.007301263976842165 -0.016837099567055702 -0.0679701641201973 0.03218192234635353 -0.005526604596525431 -0.03922891989350319 -0.0363086499273777 0.005836367607116699 0.01179689820855856 0.08683974295854568 -0.030903201550245285 -0.03527325019240379 -0.04229676350951195 -0.020692231133580208 0.043875910341739655 0.0364566408097744 -0.06822365522384644 -0.037405192852020264 0.015026853419840336 -0.08904536813497543 0.004728358238935471 0.017064493149518967 0.02227606624364853 -0.028233474120497704 -0.030921978875994682 -0.010907403193414211 0.07385823130607605 0.027952641248703003 -0.02022772841155529 0.03632049635052681 0.06046359986066818 -0.04279893636703491 -0.04997855797410011 0.05952135846018791 -0.06432381272315979 -0.004895850550383329 0.04077785834670067 -0.004498910624533892 -0.0033151644747704268 0.03891674429178238 -0.01918106898665428 0.11692693084478378 -0.056930411607027054 -0.044396549463272095 -0.03914954140782356 -0.020329853519797325 -0.06209788843989372 0.05088505521416664 0.00789122935384512 0.0050168223679065704 0.06232593208551407 -0.003708870382979512 0.02291780896484852 -0.009160401299595833 -0.0007387187797576189 -0.009579746052622795 -0.11718041449785233 -0.04721207171678543 -0.009635991416871548 0.020589129999279976 0.017545470967888832 0.07678278535604477 0.015757368877530098 0.05376756936311722 0.03348620608448982 -0.035011060535907745 -0.020470425486564636 0.04071716219186783 0.03033295087516308 0.009454932063817978 0.0846516415476799 0.09000731259584427 0.052065763622522354 0.07687856256961823 -0.024154702201485634 -0.003308137645944953 -0.029476679861545563 -0.02656932920217514 -0.0009397118119522929 -0.017703795805573463 0.026569005101919174 -0.041062772274017334 -0.07766018807888031 -0.05753999203443527 0.02934030443429947 -0.07984542101621628 -0.03539058193564415 0.07179955393075943 -0.014401240274310112 0.12420154362916946 0.03147488459944725 -0.04715501889586449 0.023763036355376244 0.04212029650807381 0.039013806730508804 0.01999565400183201 0.02171347104012966 0.004852761048823595 -0.04524102434515953 -0.0109639223664999 0.055501390248537064 -0.007642337121069431 -0.06859719753265381 0.043010156601667404 0.01985633745789528 0.025972679257392883 -0.03911794722080231 -0.05431963503360748 0.003894770983606577 -0.08311322331428528 -0.075632743537426 0.004384644795209169 -0.061966679990291595 0.02730054222047329 0.03402363881468773 0.001548907719552517 -0.002549394266679883 -0.02950902469456196 -0.033772680908441544 -0.07079752534627914 -0.034084245562553406 -0.006287598982453346 -0.09893738478422165 -0.012465870007872581 -0.0512181781232357 0.008358143270015717 0.0342850498855114 -0.06651554256677628 -0.02933105267584324 -0.038078851997852325 -0.028560996055603027 0.006747035775333643 0.10783300548791885 0.0694161057472229 0.008684154599905014 0.00867895781993866 -0.035928282886743546 -0.01058486383408308 -0.001025002682581544 0.026748310774564743 -0.043814629316329956 0.03010708838701248 -0.0652962177991867 0.02353190816938877 -0.026109728962183 0.03688308224081993 -0.031985267996788025 0.041336789727211 0.022563060745596886 -0.021901456639170647 -0.03434271737933159 0.04269453510642052 0.0723724365234375 0.007102658040821552 0.06188275292515755 -0.009123739786446095 0.06528948247432709 0.02130320854485035 -0.04544765129685402 -0.060602109879255295 0.03739234432578087 0.024601401761174202 0.05291914939880371 0.024141356348991394 -0.07518170773983002 0.10474967956542969 0.031019126996397972 0.04530556872487068 -0.052772849798202515 0.025450123474001884 0.035591088235378265 -0.009443544782698154 0.06737350672483444 0.07507064938545227 -0.024249901995062828 -0.025203010067343712 -0.023714838549494743 0.03153936192393303 -0.06385648995637894 -0.00834852084517479 0.041199617087841034 -0.06525613367557526 0.07683464884757996 -0.04169616103172302 -0.10586713254451752 -0.051949772983789444 0.004892776254564524 0.005522859748452902 -0.03979263827204704 -0.006401659920811653 0.016051756218075752 0.005093154031783342 -0.025434482842683792 -0.02096249721944332 -0.03128582611680031 -0.10085871070623398 0.09171642363071442 0.008508480153977871 -0.07651250809431076 -0.06640902906656265 -0.008980205282568932 0.041115567088127136 -0.022943103685975075 0.016894392669200897 0.05366332083940506 0.08586057275533676 0.003937626723200083 -0.019129693508148193 0.03832218050956726 -0.04374753311276436 -0.04690219834446907 -0.0183566864579916 0.029054438695311546 -0.04699418321251869 -0.06824127584695816 0.013818026520311832 -0.038600653409957886 -0.021136214956641197 -0.014113571494817734 0.03523098677396774 -0.005455587990581989 -0.03627663105726242 -0.046702791005373 0.04977547749876976 -0.04121778532862663 -0.0247162114828825 0.045513592660427094 -0.020064137876033783 0.05088663101196289 -0.009773572906851768 -0.030143223702907562 0.047354478389024734 -0.026818597689270973 0.03621532395482063 -0.020622242242097855 0.09761843830347061 -0.025668270885944366 -0.05394936352968216 0.010396135970950127 -0.03965691477060318 -0.0468822680413723 -0.03687842935323715 -0.06556031107902527 -0.01684568263590336 0.09143362939357758 0.012209998443722725 -0.039462629705667496 -0.02771696075797081 -0.008776122704148293 -0.02769642323255539 -0.0607391856610775 -0.03230758756399155 -0.009773816913366318 -0.055967193096876144 -0.02099248766899109 0.03641324117779732 -0.052079033106565475 -0.02403111569583416 0.027137309312820435 -0.024746306240558624 -0.050239648669958115 0.028582554310560226 -0.04684414714574814 -0.060651637613773346 -0.002776609268039465 -0.06468241661787033 0.01728670485317707 0.07912576198577881 0.05627346411347389 0.008881701156497002 0.03318403661251068 0.027688972651958466 0.11204926669597626 -0.0065453858114778996 -0.011482472531497478 0.0035000299103558064 -0.046695590019226074 -0.04964187368750572 0.03722768276929855 -0.010155930183827877 -0.0553438626229763 -0.004841347690671682 -0.01710827462375164 0.05499593913555145 0.0022782753221690655 -0.03365365415811539 -0.02485828660428524 0.0232835803180933 -0.04459959641098976 0.04411249980330467 0.004876532591879368 0.017329785972833633 -0.016484711319208145 -0.05012695863842964 -0.036406029015779495 -0.055418603122234344 0.03656955808401108 -0.02037135511636734 0.02466229908168316 -0.03255748003721237 -0.04366802051663399 -0.006678655277937651 0.0046846903860569 0.1048923209309578 -0.046010587364435196 0.017134996131062508 0.04074593633413315 0.0221919734030962 -0.07607849687337875 7.093543536029756e-05 0.011323419399559498 -0.04121151193976402 -0.044268541038036346 -0.01643327996134758 0.022864369675517082 -0.0865478664636612 -0.041864536702632904 0.0026923895347863436 -0.045159731060266495 0.004687667358666658 0.0013685404555872083 0.033004991710186005 0.050922609865665436 0.016316398978233337 -0.01476032193750143 0.030763059854507446 0.023218875750899315 0.030831223353743553 -0.02876666560769081 0.009858466684818268 -0.04978438466787338 0.03533969819545746 -0.04636191949248314 -0.051944129168987274 -0.044893234968185425 0.04109322652220726 0.018077295273542404 -0.0044736615382134914 -0.015398459509015083 -0.030505025759339333 -0.0017111391061916947 0.026325969025492668 0.017995931208133698 -0.059568919241428375 -0.03621545061469078 -0.03594086691737175 -0.06022069230675697 -0.08900712430477142 -0.05684901773929596 0.014020310714840889 -0.078401118516922 0.016523465514183044 -0.047665175050497055 0.016594326123595238 0.025217222049832344 0.004825988318771124 0.049997106194496155 0.03517073392868042 0.03700895607471466 -0.02905850112438202 0.024651188403367996 -0.01638856530189514 0.06462661176919937 0.04968656226992607 -0.02403898723423481 -0.02217249386012554 0.017344679683446884 -0.024743476882576942 0.05408367142081261 -0.022806702181696892 0.01730857416987419 0.024008112028241158 -0.02594052441418171 0.03593916818499565 -0.0041258311830461025 0.040623147040605545 -0.0397881343960762 0.026259832084178925 -0.0643574595451355 -0.04671372100710869 0.036519456654787064 -0.025500793009996414 -0.1102704256772995 -0.041369564831256866 -0.02934873104095459 -0.0355718657374382 0.03143428638577461 -0.0076018101535737514 0.019392214715480804 0.007930203340947628 -0.04610113427042961 -0.08207813650369644 -0.03892374411225319 -0.009578926488757133 0.04151145741343498 0.002294989535585046 0.04879946634173393 0.0212249755859375 0.02474171295762062 0.014722451567649841 -0.0262084249407053 -0.007762840948998928 -0.10231736302375793 -0.000445306213805452 -0.03209530562162399 -0.060816098004579544 0.028350112959742546 -0.0009543764754198492 0.017599567770957947 -0.029963761568069458 -0.022926582023501396 -0.05868632346391678 0.08798612654209137 -0.018973350524902344 0.024212008342146873 0.0008749327971599996 -0.05629238113760948 -0.006509534548968077 0.03895098716020584 -0.05108140408992767 -0.074287049472332 0.01655551604926586 -0.018162723630666733 0.03287966921925545 0.008598124608397484 0.018503788858652115 -0.03738394379615784 -0.0808720663189888 0.009679066948592663 -0.003696736879646778 -0.03672252595424652 0.023619603365659714 0.010163752362132072 -0.07548128813505173 -0.06751838326454163 -0.008716659620404243 -0.06757765263319016 0.06689407676458359 0.008181237615644932 0.03887529671192169 -0.03128820285201073 -0.02203844115138054 0.01262329425662756 -0.029949380084872246 -0.01594834215939045 -0.012075014412403107 -0.038997795432806015 -0.034952715039253235 0.07885792851448059 -0.01580536924302578 -0.00901025254279375 0.09847088158130646 -0.06630814075469971 0.016402846202254295 0.014546588063240051 -0.027524536475539207 0.027258461341261864 -0.015825321897864342 -0.05650892108678818 0.0806400403380394 -0.05921977385878563 0.06513962149620056 -0.07637136429548264 0.09087732434272766 0.0062815654091537 -0.02199791744351387 0.07374624907970428 0.05273463949561119 -0.01933220587670803 0.027868956327438354 -0.06677760928869247 +0.06746120750904083 -0.013916239142417908 -0.004686901345849037 0.03697735443711281 -0.06016206741333008 -0.0406002402305603 -0.007685588672757149 0.03349309042096138 -0.01634688302874565 -0.030331457033753395 -0.040551215410232544 0.0005998468841426075 -0.014544740319252014 0.002916918136179447 0.032711148262023926 -0.0497954823076725 -0.08419575542211533 -0.014441553503274918 -0.04141734167933464 -0.04622498154640198 0.03123313933610916 0.02450491301715374 -0.07125196605920792 0.059972021728754044 -0.001655350555665791 0.04325313866138458 -0.034057848155498505 0.004098130855709314 -0.024726826697587967 0.011310647241771221 0.061365336179733276 -0.011747240088880062 0.05825868248939514 -0.07066764682531357 -0.05601748079061508 0.04058937728404999 -0.02953542396426201 0.12157058715820312 0.012450172565877438 -0.06148262321949005 -0.06903667747974396 0.01429620198905468 -0.034703124314546585 -0.06717657297849655 0.03532065451145172 0.0027119803708046675 0.0001355241402052343 -0.026529978960752487 0.028086872771382332 0.01159974280744791 0.09651171416044235 -0.0049698567017912865 -0.0190545953810215 -0.0394657664000988 -0.022124754264950752 0.027235371991991997 0.03921922668814659 -0.042164284735918045 -0.05885213613510132 0.05589564889669418 -0.10079638659954071 -0.023432593792676926 0.01201999094337225 -0.006970481015741825 -0.03308558836579323 -0.029467344284057617 -0.00426888931542635 0.08745524287223816 0.030328888446092606 -0.019466474652290344 0.030420267954468727 0.08054018020629883 -0.04182003438472748 -0.03587234765291214 0.04643885791301727 -0.06877203285694122 -0.0170816108584404 0.034679073840379715 0.006961686071008444 0.03960864245891571 0.003843878861516714 -0.019025640562176704 0.13271908462047577 -0.03580612316727638 -0.06526962667703629 -0.044618476182222366 -0.015594696626067162 -0.06026170030236244 0.058892928063869476 0.021005667746067047 -0.014535918831825256 0.08237306028604507 -0.03280150517821312 0.048035744577646255 0.0047858720645308495 0.0051414091140031815 0.021257268264889717 -0.10097841173410416 -0.033431198447942734 -0.017006196081638336 -0.012795623391866684 0.007445674855262041 0.05323696509003639 0.005736269522458315 0.08229116350412369 0.02424885891377926 -0.05523710697889328 -0.004119004122912884 0.038150910288095474 0.004602482542395592 0.04614860564470291 0.07829741388559341 0.0642818734049797 0.04505261778831482 0.08862229436635971 0.000750584586057812 0.042730968445539474 -0.07139414548873901 -0.02746673673391342 -0.008230132982134819 -0.011558574624359608 0.056651074439287186 -0.019565172493457794 -0.0746869221329689 -0.023043887689709663 0.029422160238027573 -0.09994088113307953 -0.04039188101887703 0.0854005292057991 -0.02063511125743389 0.11311408877372742 0.0716383308172226 -0.007141964975744486 0.02988160401582718 0.02734558656811714 0.009217998012900352 -0.003796614473685622 0.04288721829652786 0.00405182084068656 -0.0286854300647974 -0.0023403603117913008 0.04253339767456055 -0.009999697096645832 -0.06744872033596039 0.03934941068291664 0.033895328640937805 0.010115372948348522 -0.05154314637184143 -0.045175228267908096 0.018906567245721817 -0.08696332573890686 -0.0694313645362854 -0.0024802328553050756 -0.06731989979743958 -0.004014313220977783 0.03827183321118355 0.0233157891780138 0.016289066523313522 -0.0384424589574337 -0.025737855583429337 -0.047136638313531876 -0.046379830688238144 0.002366731408983469 -0.10927669703960419 -0.035108357667922974 -0.03605899587273598 0.0056055705063045025 0.04152349755167961 -0.049067139625549316 -0.008854263462126255 -0.0019782755989581347 -0.015296868048608303 0.012270553037524223 0.07465504109859467 0.05972585082054138 0.014671788550913334 0.015661422163248062 -0.04705895110964775 0.02719879150390625 -0.01592879742383957 0.023251241073012352 -0.03200040012598038 0.028865298256278038 -0.07366126030683517 0.009057500399649143 -0.014623884111642838 0.02427184209227562 -0.017141642048954964 0.031867798417806625 0.0307169146835804 -0.04266662150621414 -0.0609494186937809 0.036583635956048965 0.06875431537628174 -0.0062698000110685825 0.061409927904605865 0.011974270455539227 0.05836820602416992 -0.007346575614064932 -0.039772357791662216 -0.05626576021313667 0.025437399744987488 0.0063365427777171135 0.06510952115058899 0.022024236619472504 -0.05500192567706108 0.09261779487133026 0.031174836680293083 0.01894105039536953 -0.06162891909480095 0.01113024353981018 0.019418859854340553 0.0033485395833849907 0.0533178485929966 0.08858024328947067 -0.009521689265966415 -0.019567403942346573 0.00205448386259377 0.03930621221661568 -0.06316033005714417 -0.03331717848777771 0.008703397586941719 -0.0742291510105133 0.03431081399321556 -0.03672875836491585 -0.08711756020784378 -0.041247688233852386 0.055780161172151566 0.016629669815301895 -0.020169377326965332 0.00046241082600317895 0.0161886103451252 -0.02096201665699482 -0.03352411836385727 -0.008167971856892109 -0.038241442292928696 -0.11745869368314743 0.09499264508485794 0.02277185581624508 -0.10186836123466492 -0.04034489765763283 -0.0009813939686864614 0.04490357264876366 -0.018036719411611557 0.05504397675395012 0.0467601902782917 0.09557786583900452 0.017849357798695564 -0.008818523027002811 0.005970056168735027 -0.03421344980597496 -0.03711104393005371 0.007782366126775742 0.02465345337986946 -0.03376412019133568 -0.055920761078596115 0.0007599800010211766 -0.025591885671019554 -0.011942211538553238 -0.021479355171322823 0.04620971903204918 -0.010228551924228668 -0.0402529239654541 -0.029134809970855713 0.04913722723722458 -0.03664948046207428 -0.018889155238866806 0.04768066853284836 0.008306371048092842 0.06811273843050003 -0.03793254867196083 -0.020596636459231377 0.03841638192534447 -0.008955585770308971 0.01397757325321436 -0.03713905066251755 0.08377989381551743 0.0006409737397916615 -0.06756380945444107 -0.01722823642194271 -0.06763256341218948 -0.022871628403663635 -0.029343053698539734 -0.05321558192372322 -0.038187362253665924 0.0946800634264946 0.01250162161886692 -0.04948022589087486 -0.05441272631287575 -0.020823653787374496 -0.0328807532787323 -0.06333854049444199 -0.013359969481825829 0.005939446855336428 -0.04981490597128868 -0.010690529830753803 0.0334986075758934 -0.04314647242426872 -0.025785356760025024 0.005956599023193121 -0.012630434706807137 -0.0696045383810997 0.039442192763090134 -0.032500434666872025 -0.05496348440647125 0.001184491440653801 -0.08287215977907181 0.008503301069140434 0.09253297001123428 0.059981606900691986 0.03403368219733238 0.03194669261574745 0.0331636406481266 0.1124752014875412 -0.002216010820120573 -0.026013758033514023 -0.016694243997335434 -0.034183550626039505 -0.06314992159605026 0.055032968521118164 -0.017935771495103836 -0.005185242276638746 -0.0171689260751009 -0.00029381297645159066 0.07399042695760727 -0.012896069325506687 -0.04076600819826126 -0.027086127549409866 0.01775677688419819 -0.03084297850728035 0.04600531607866287 0.02261083386838436 0.02209092117846012 -0.010298402979969978 -0.05847180262207985 -0.07497495412826538 -0.043731626123189926 0.029474511742591858 -0.007832313887774944 0.03944355994462967 -0.003131032222881913 -0.053522463887929916 0.00019008632807526737 -0.006694608833640814 0.0906330943107605 -0.07339977473020554 0.0026014784816652536 0.0305052287876606 0.03201628476381302 -0.10677601397037506 -0.005385267082601786 0.03137454763054848 -0.05108754336833954 -0.07126052677631378 -0.005088694393634796 0.049749646335840225 -0.07574950903654099 -0.016404740512371063 -0.009940420277416706 -0.038716286420822144 0.003923478070646524 0.014519824646413326 0.03242990002036095 0.020646903663873672 -0.02143312245607376 -0.04378373548388481 -0.001934582949616015 -0.0071524144150316715 0.039901331067085266 -0.03127476945519447 0.022524667903780937 -0.029784291982650757 0.038960088044404984 -0.061916884034872055 -0.028570538386702538 -0.04141172021627426 0.04753648117184639 0.012048222124576569 -0.009850088506937027 -0.01064298301935196 -0.047403402626514435 -0.022108469158411026 0.007489736191928387 0.019262632355093956 -0.06166079267859459 -0.02623327076435089 -0.024231845512986183 -0.0654945895075798 -0.08063547313213348 -0.04503927379846573 -0.00122078915592283 -0.06288331001996994 0.026499532163143158 -0.030133405700325966 0.008638513274490833 0.03149623051285744 0.0034319537226110697 0.03890921548008919 0.054236672818660736 0.039273105561733246 -0.04096170514822006 0.03804763779044151 -0.00605890853330493 0.0452423095703125 0.02447323128581047 -0.04186025261878967 0.005208211485296488 0.013140581548213959 -0.05640092119574547 0.07098868489265442 -0.009910290129482746 0.009969116188585758 -0.004181478638201952 -0.019052542746067047 0.017696119844913483 0.013193468563258648 0.0019175333436578512 -0.03184517100453377 0.036640316247940063 -0.06384976208209991 -0.03383558988571167 0.02350069396197796 -0.03361073136329651 -0.10491317510604858 -0.04914373159408569 -0.011885189451277256 -0.047800421714782715 0.04135504364967346 0.0024432458449155092 0.01994718238711357 0.030591705814003944 -0.04927270859479904 -0.06117262318730354 -0.027624787762761116 -0.030013442039489746 0.026911497116088867 -0.02069486863911152 0.07837358117103577 0.034767571836709976 0.025473730638623238 0.002405050676316023 -0.0020877530332654715 0.004979305434972048 -0.09512303024530411 -0.011090581305325031 -0.005271327681839466 -0.0477275475859642 0.022266197949647903 0.0168459489941597 -0.01954273320734501 -0.04266386851668358 -0.023345159366726875 -0.044549934566020966 0.07345183938741684 -0.018888041377067566 0.014409171417355537 0.026703083887696266 -0.04307224974036217 0.008896054700016975 0.01127507071942091 -0.03919045999646187 -0.09166700392961502 0.010042446665465832 -0.03089507296681404 0.021051010116934776 -0.010239736177027225 0.006370367482304573 -0.010866501368582249 -0.08174598962068558 -0.010642513632774353 0.0006409426569007337 -0.06069766730070114 0.010365297086536884 0.007382804062217474 -0.0830572247505188 -0.057797666639089584 0.01629718765616417 -0.06600163131952286 0.05510009452700615 0.02086257003247738 0.020456701517105103 0.0007364834891632199 -0.008149297907948494 -0.020659510046243668 -0.020123889669775963 -0.01977395825088024 -0.01944275014102459 -0.05777076631784439 -0.014303961768746376 0.065595842897892 -0.04683159664273262 0.02661418728530407 0.06358052790164948 -0.04359353706240654 0.03392050042748451 0.040712736546993256 -0.03481695428490639 0.04053099825978279 -0.009106160141527653 -0.02804744988679886 0.07832518965005875 -0.05725479871034622 0.07054153829813004 -0.06803876161575317 0.10134834796190262 -0.007061566226184368 -0.01648830808699131 0.07308470457792282 0.07764200121164322 0.009007241576910019 0.0314929373562336 -0.08173573762178421 +0.06519493460655212 -0.016608625650405884 -0.0017214467516168952 0.016063321381807327 -0.10511183738708496 -0.06347797811031342 0.002846043324097991 0.01352105475962162 0.014444679021835327 0.008628848008811474 -0.02770215831696987 -0.00329719390720129 0.007725734729319811 0.012000128626823425 0.016936130821704865 -0.0586087703704834 -0.054651372134685516 0.0005972625804133713 -0.02848838083446026 -0.01663868874311447 0.03496377542614937 0.026206687092781067 -0.05990299582481384 0.028564661741256714 -0.009317115880548954 0.04113532230257988 -0.08122915774583817 0.028794515877962112 -0.007824549451470375 -0.0014837014023214579 0.046538569033145905 -0.013497578911483288 0.04194973409175873 -0.07195311039686203 -0.05580044165253639 0.025170495733618736 -0.05212101712822914 0.10974352806806564 0.026654336601495743 -0.05145866051316261 -0.05782964453101158 0.017922351136803627 -0.02063717693090439 -0.02157379686832428 0.02069529891014099 0.002415471011772752 -0.01954670622944832 -0.03217003867030144 0.00942962896078825 0.004343832843005657 0.09680827707052231 -0.024075990542769432 -0.03803710266947746 -0.026215486228466034 -0.015365618281066418 -0.0027586095966398716 0.018132440745830536 -0.05107637867331505 -0.09466181695461273 0.049623917788267136 -0.07487820833921432 0.025814300402998924 -0.017684154212474823 0.003146799746900797 -0.02518540248274803 -0.046231258660554886 0.02369091287255287 0.08005619794130325 0.00914486963301897 0.007346805185079575 0.05862429738044739 0.09894303232431412 -0.060555703938007355 -0.04584994912147522 0.03446704521775246 -0.08298511058092117 0.0020452584140002728 0.08013895153999329 0.0008454450289718807 0.006723751779645681 -0.008276109583675861 -0.0236858818680048 0.09777233004570007 -0.05361557379364967 -0.06692123413085938 -0.02726556919515133 -0.026661135256290436 -0.07018912583589554 0.022537004202604294 0.033904723823070526 0.02758435346186161 0.038466691970825195 -0.044968049973249435 0.057465534657239914 0.008338234387338161 0.038235459476709366 0.0652553141117096 -0.09896448999643326 -0.03554981201887131 -0.0024138083681464195 -0.032155074179172516 -0.0182174164801836 0.042532484978437424 0.00964769534766674 0.04116608202457428 0.035145774483680725 -0.03469572961330414 0.041351061314344406 0.01523459330201149 0.078924261033535 0.042697589844465256 0.026857096701860428 0.11384184658527374 0.055124424397945404 0.05249989405274391 -0.02334771305322647 0.022782502695918083 -0.048587650060653687 -0.021300286054611206 0.025542328134179115 0.01918202079832554 0.049422070384025574 -0.033004987984895706 -0.06691209971904755 -0.04932786151766777 0.03081098198890686 -0.10048241913318634 -0.019237713888287544 0.04534681513905525 -0.010990244336426258 0.09097999334335327 0.054702337831258774 -0.027501698583364487 0.046795591711997986 0.026074450463056564 0.013340483419597149 0.016137858852744102 0.01620052196085453 0.011552869342267513 -0.028959447517991066 -0.028751607984304428 0.0200366098433733 0.03233550488948822 -0.06103390082716942 -0.005474910605698824 0.025647465139627457 0.041242148727178574 -0.05062041059136391 -0.0871494710445404 -0.014588279649615288 -0.09264472126960754 -0.0724923238158226 -0.01342859398573637 -0.05288936570286751 0.0260451752692461 0.012811310589313507 -0.00817444734275341 0.018278401345014572 -0.035683926194906235 -0.006983010098338127 -0.028200611472129822 -0.030136683955788612 -0.00913114845752716 -0.08581098169088364 -0.004747617989778519 -0.023006213828921318 0.035835545510053635 -0.006231044884771109 -0.03776061162352562 -0.001588165294378996 -0.03831469267606735 0.002055525779724121 0.011635342612862587 0.07204747945070267 0.05653864145278931 0.0028469308745115995 0.03941101208329201 0.009440447203814983 0.028261901810765266 -0.04479337856173515 0.023682285100221634 -0.0339927077293396 0.026457112282514572 -0.056000709533691406 0.004993910901248455 -0.011869738809764385 0.03330598399043083 -0.05509414151310921 0.04776030778884888 0.031411491334438324 -0.024611204862594604 -0.07349953800439835 0.019288619980216026 0.09172925353050232 -0.024086279794573784 0.0689309611916542 -0.022055279463529587 0.06647519022226334 -0.006027766037732363 -0.038361500948667526 -0.01029044296592474 0.0454513356089592 -0.01305756252259016 0.04392189532518387 -0.005482573062181473 -0.07134326547384262 0.08934462070465088 0.019013473764061928 0.0296530369669199 -0.061217062175273895 0.02315557934343815 0.02532053180038929 0.011236079968512058 0.027799123898148537 0.0959286317229271 -0.042748115956783295 -0.002722634468227625 -0.008723200298845768 0.013133579865098 -0.02264297567307949 0.03349322825670242 -0.010346322320401669 -0.060576893389225006 0.03067745827138424 -0.08795325458049774 -0.10709655284881592 -0.007613431196659803 0.025908395648002625 -0.00262125744484365 -0.0632462352514267 0.007749434094876051 0.020678682252764702 -0.004646682646125555 -0.042171090841293335 -0.035461194813251495 0.016186054795980453 -0.11570446938276291 0.08944694697856903 0.009989887475967407 -0.05371060594916344 -0.04281879961490631 0.004305769689381123 0.008764977566897869 0.011910784989595413 0.017285756766796112 0.044315632432699203 0.125372052192688 0.04513140395283699 -0.014577114023268223 0.03331048786640167 -0.060555532574653625 -0.032443817704916 0.03204096108675003 0.014611010439693928 -0.0794064849615097 -0.010245844721794128 -0.0010479000629857183 -0.07138700038194656 -0.02892361581325531 -0.015146967954933643 0.021910326555371284 -0.0006432003574445844 -0.06210834160447121 -0.035307399928569794 0.05674809217453003 0.004104712978005409 -0.06612880527973175 0.04948415234684944 -0.009720862843096256 0.05750405415892601 0.0066617694683372974 -0.029438236728310585 0.05350438877940178 0.016130775213241577 0.049831658601760864 -0.014637064188718796 0.079906165599823 -0.017133420333266258 -0.07230132073163986 -0.022688744589686394 -0.05305219441652298 -0.036968231201171875 -0.026148328557610512 -0.049172524362802505 -0.01069637481123209 0.0688864141702652 0.0042302547954022884 -0.00027915521059185266 -0.06899994611740112 -0.003257298842072487 -0.009283014573156834 -0.07768909633159637 -0.039920270442962646 0.022550659254193306 -0.060262423008680344 -0.034021005034446716 0.02813151106238365 -0.03469691798090935 -0.04321075975894928 -0.014673466794192791 -0.045075803995132446 -0.06363643705844879 0.03118814155459404 -0.04466555640101433 -0.029394136741757393 0.02053476870059967 -0.07911792397499084 0.02709032967686653 0.12344936281442642 0.05974901095032692 0.03646507114171982 0.05802742391824722 0.03714662045240402 0.12360043823719025 0.014622473157942295 -0.05233055725693703 -0.012822834774851799 -0.043349817395210266 -0.06863587349653244 0.032735567539930344 -0.046756450086832047 -0.019907299429178238 0.002970617264509201 0.012592130340635777 0.03709687292575836 -0.016306234523653984 -0.07690446078777313 -0.021540170535445213 0.006506694480776787 -0.042574550956487656 0.014686170034110546 0.03189445659518242 0.00035351671976968646 0.013563284650444984 -0.016745250672101974 -0.047287557274103165 -0.04857714846730232 0.01988636888563633 -0.020682955160737038 0.04870082810521126 -0.00768207898363471 -0.025987738743424416 -0.009681547060608864 -0.015490737743675709 0.10238663852214813 -0.0752691850066185 0.0034626945853233337 0.0033799316734075546 0.024140428751707077 -0.08608991652727127 0.007615790702402592 0.04076780751347542 -0.029947593808174133 -0.018146533519029617 -0.0024807227309793234 0.03271796554327011 -0.06088673695921898 -0.02028018981218338 0.03813643380999565 -0.016807420179247856 -0.006519968621432781 0.02721179649233818 0.025937387719750404 0.02818259783089161 -0.04120028018951416 -0.013868172653019428 0.003866962157189846 -0.002485297154635191 0.05337671563029289 -0.0547599270939827 0.011361297219991684 -0.039581216871738434 0.04479328915476799 -0.006902119144797325 -0.032808151096105576 -0.030803196132183075 0.05813608318567276 0.04798879846930504 -0.009195435792207718 -0.026380296796560287 0.034240562468767166 0.004351326730102301 0.029345626011490822 0.03110453672707081 -0.0461847297847271 -0.019527416676282883 -0.03903677687048912 -0.04032257944345474 -0.08748337626457214 -0.04980216175317764 0.014108468778431416 -0.08366338908672333 0.020000508055090904 0.004173286259174347 -0.01216165628284216 -0.0007605788414366543 -0.03565995767712593 0.03052208572626114 0.06206478923559189 0.026801960542798042 -0.012452361173927784 0.040031082928180695 0.011093348264694214 0.05971867963671684 0.029824810102581978 -0.05534301698207855 0.021098971366882324 0.022252894937992096 -0.0359010174870491 0.025915931910276413 -0.013213548809289932 0.02835572510957718 0.015863873064517975 -0.020543549209833145 0.05399332940578461 0.0005479393294081092 0.028152236714959145 -0.029067669063806534 0.048727232962846756 -0.08748360723257065 -0.016128458082675934 0.062199898064136505 -0.019828785210847855 -0.08904410153627396 -0.007481879089027643 -0.005329723935574293 -0.03603557497262955 0.017237568274140358 -0.029031816869974136 0.03342336416244507 0.02004953846335411 -0.048806894570589066 -0.058941859751939774 -0.04782935231924057 -0.003844490507617593 0.0859294980764389 -0.009221652522683144 0.07160355150699615 0.020546315237879753 0.027803197503089905 0.008779007941484451 0.008066557347774506 0.00828600488603115 -0.08098641782999039 -0.010500775650143623 -0.06595994532108307 -0.02380102127790451 0.023529302328824997 0.002591953380033374 0.017775114625692368 -0.06295143812894821 -0.025204844772815704 -0.07506059855222702 0.0687611997127533 -0.01879188045859337 -0.0008232732652686536 0.02663276344537735 -0.039709605276584625 -0.0015102089382708073 -0.020339887589216232 -0.021253008395433426 -0.08317265659570694 0.011999542824923992 -0.009708523750305176 0.04141511768102646 0.0248896274715662 0.017931237816810608 -0.02012460120022297 -0.07723075151443481 -0.004852535668760538 0.05715576559305191 -0.05580396577715874 0.027291640639305115 0.00583777017891407 -0.07152930647134781 -0.06815820932388306 0.018777616322040558 -0.057674869894981384 0.0777861699461937 0.03197406604886055 0.02290383353829384 -0.0011047053849324584 -0.016587983816862106 0.03457324951887131 -0.06001751124858856 -0.014825806953012943 -0.01192544400691986 -0.023780986666679382 -0.03240251913666725 0.06657445430755615 -0.010395711287856102 0.03606569394469261 0.06604067981243134 -0.05632331222295761 0.033699676394462585 0.029082385823130608 -0.035489026457071304 0.02940775267779827 -0.03441395238041878 -0.053074125200510025 0.06265663355588913 -0.05871487036347389 0.07154158502817154 -0.06291017681360245 0.09602173417806625 0.0008397403289563954 -0.06084011495113373 0.07352881878614426 0.06158650293946266 -0.02045176364481449 -0.0025107813999056816 -0.0657758116722107 +-0.004971206653863192 -0.046302542090415955 0.014356614090502262 0.04375747963786125 -0.0861499086022377 -0.06750430911779404 -0.017524033784866333 0.02734677493572235 0.0013961532386019826 -0.02115658111870289 0.006964932661503553 -0.004948279354721308 -0.03315264359116554 -0.01901278831064701 0.02142767608165741 -0.011330032721161842 -0.08004617691040039 -0.01261127833276987 -0.06284771859645844 -0.018088148906826973 0.041296061128377914 0.031905971467494965 -0.10658739507198334 0.011664499528706074 -0.05042576789855957 0.019756454974412918 -0.07090824842453003 0.027985943481326103 -0.0502161867916584 0.044644664973020554 0.04926937073469162 0.0014119748957455158 0.08230653405189514 -0.06294756382703781 -0.050824616104364395 0.017513757571578026 -0.028721963986754417 0.07861717790365219 0.043753571808338165 -0.028791802003979683 -0.052598368376493454 0.020252650603652 0.000759376329369843 -0.05902807414531708 0.03736399486660957 -0.011428228579461575 0.02008730359375477 -0.04884874075651169 0.05322173237800598 0.0461377389729023 0.09895947575569153 0.03024032525718212 0.005320620257407427 -0.024783248081803322 0.007419959641993046 -0.0016558656934648752 0.015601136721670628 -0.03900131955742836 -0.1022401824593544 0.04460688680410385 -0.08479774743318558 0.0032456261105835438 -0.010501512326300144 0.00356657849624753 -0.033670298755168915 0.012898841872811317 -0.009488300420343876 0.08155209571123123 0.02058350294828415 -0.04848490655422211 0.0317305251955986 0.09629674255847931 -0.06452734768390656 -0.05119374394416809 0.003502774517983198 -0.016025813296437263 0.018067333847284317 0.025363678112626076 -0.01041990052908659 0.018507743254303932 -0.025837456807494164 -0.037201397120952606 0.12425095587968826 -0.06092371046543121 -0.008956893347203732 -0.04950958862900734 -0.02073073200881481 -0.05911020562052727 0.062230635434389114 0.026016350835561752 0.017736205831170082 0.0444222018122673 -0.026506105437874794 0.036234721541404724 -0.006615073885768652 0.0728982612490654 0.05620181933045387 -0.10174615681171417 0.008612618781626225 -0.0028522496577352285 -0.028642848134040833 -0.010281332768499851 0.07753407210111618 0.011822564527392387 0.08066892623901367 0.028198959305882454 -0.03096592240035534 0.0027525390032678843 0.03494754433631897 0.02632935158908367 0.0490378737449646 0.09020525962114334 0.0805983617901802 0.0456952229142189 0.027565885335206985 0.01263124868273735 0.008953013457357883 -0.034504812210798264 0.006972789764404297 0.022965073585510254 -0.019267616793513298 0.014602253213524818 -0.021389346569776535 -0.02859070897102356 0.010374852456152439 0.055515047162771225 -0.09000468254089355 -0.04006853699684143 0.058669593185186386 -0.06363902986049652 0.1112794578075409 0.05592501536011696 0.014810261316597462 0.021712100133299828 0.06042462959885597 0.008246904239058495 -0.013692440465092659 0.020150886848568916 0.011332329362630844 -0.025370635092258453 -0.02102288417518139 0.05161214619874954 -0.03894677385687828 -0.04413967579603195 6.721251702401787e-05 0.04642688110470772 -0.008650119416415691 -0.02525312639772892 -0.09089528769254684 0.06897914409637451 -0.07759013026952744 -0.06729760766029358 -0.019770119339227676 -0.08284129947423935 0.00886332243680954 0.07195877283811569 0.041053637862205505 0.03801390156149864 -0.023334559053182602 0.004788849502801895 -0.023419562727212906 -0.0852862298488617 -0.021950529888272285 -0.08489853143692017 -0.0321490503847599 -0.023047616705298424 0.03246690705418587 0.015020942315459251 -0.003755381563678384 -0.030163617804646492 -0.022275410592556 0.015474547632038593 0.006634220946580172 0.049641698598861694 0.02091103419661522 0.011615768074989319 0.00601411797106266 -0.048590000718832016 0.02107754535973072 -0.06247814744710922 0.006665590684860945 -0.04605288803577423 0.048739656805992126 -0.04101847857236862 -0.03692289814352989 0.0011318096658214927 0.004712055902928114 -0.00860288180410862 0.010851006023585796 0.030549556016921997 -0.03310956060886383 -0.0573999285697937 0.019963178783655167 0.09895313531160355 -0.033796973526477814 0.06705375015735626 0.0363391675055027 0.07364660501480103 -0.04801010340452194 -0.05238593369722366 -0.055762846022844315 0.03224549815058708 0.00475389463827014 0.010019234381616116 -0.007896559312939644 -0.05968844145536423 0.06498858332633972 0.028934398666024208 -0.030391931533813477 -0.06287454068660736 0.038105376064777374 0.03812286630272865 0.07718236744403839 0.012278147041797638 0.06051849573850632 -0.03828894719481468 -0.026070594787597656 0.013018984347581863 0.03726625442504883 -0.06401301175355911 0.01627248525619507 0.005108472891151905 -0.04531561955809593 0.027079619467258453 -0.02481848932802677 -0.09781110286712646 -0.0025485982187092304 -0.006218611262738705 0.010960284620523453 -0.002464523771777749 0.045707277953624725 0.026012346148490906 -0.044863540679216385 -0.009898144751787186 -0.007702308241277933 -0.0017891748575493693 -0.07800008356571198 0.09424808621406555 -0.01815757527947426 -0.04906565696001053 -0.03562936559319496 0.028124254196882248 0.019496282562613487 0.01750655099749565 0.007867093198001385 0.020912256091833115 0.10473588854074478 0.06292607635259628 -0.006899837404489517 -0.041847869753837585 -0.0810282826423645 -0.0526249073445797 0.023222915828227997 0.01259269192814827 -0.02325178124010563 -0.022061947733163834 -0.011489484459161758 -0.0915723592042923 0.012037144042551517 -0.014113591983914375 0.059579525142908096 -0.024009112268686295 -0.003132927231490612 0.013953357003629208 0.05110340937972069 0.02054547518491745 -0.08392596989870071 0.04265191778540611 -0.008517362177371979 0.028828328475356102 -0.05188620835542679 0.0016262829303741455 0.03816314786672592 0.001873929868452251 0.05825500935316086 -0.029552675783634186 0.06479883939027786 -0.020239658653736115 -0.11507242172956467 -0.031224146485328674 -0.08015328645706177 -0.03903369978070259 0.013022704049944878 -0.02647361345589161 -0.042002879083156586 0.0724879577755928 0.036339908838272095 -0.02501991018652916 -0.06367555260658264 -0.017826782539486885 -0.02718690223991871 -0.03464798629283905 -0.015363767743110657 0.007581292185932398 -0.06392233073711395 0.009996339678764343 0.023763170465826988 -0.09239506721496582 -0.01807536371052265 0.040162667632102966 -0.043266765773296356 -0.033251356333494186 0.06873864680528641 -0.03394066169857979 -0.016690295189619064 0.029700705781579018 -0.07080300152301788 0.044595688581466675 0.07957471162080765 0.027956761419773102 0.048354052007198334 0.05975380912423134 0.042176488786935806 0.04938821494579315 0.014601520262658596 -0.025229638442397118 -0.039494588971138 -0.005990886129438877 -0.07160984724760056 0.04584240913391113 -0.041029736399650574 0.015951722860336304 -0.008542519994080067 0.002174000022932887 0.08491889387369156 -0.03426474705338478 -0.02831163816154003 -0.019931841641664505 0.02385075017809868 0.02658201940357685 0.024353597313165665 0.04299521446228027 -0.011009174399077892 0.030467845499515533 -0.05250886082649231 -0.021227434277534485 -0.058109283447265625 0.032398004084825516 -0.02165537327528 0.026932181790471077 0.02010847069323063 -0.05514996498823166 0.018812209367752075 0.004940078593790531 0.07965486496686935 -0.07949184626340866 0.04197681322693825 -0.007188127841800451 0.01840049773454666 -0.12492618709802628 -0.03898051381111145 0.02404111996293068 -0.015326369553804398 -0.06145954132080078 0.05123627558350563 0.03772784769535065 -0.05490962415933609 -0.03967259079217911 -0.003406924195587635 -0.03426064923405647 -0.030703196302056313 0.04520058259367943 0.008547753095626831 0.012267337180674076 0.01210361160337925 -0.04021339863538742 -0.04675940051674843 0.002325979992747307 0.005241017788648605 -0.020750155672430992 0.045815933495759964 -0.017925700172781944 0.03657601401209831 -0.029428724199533463 -0.06865920126438141 -0.04527924209833145 0.0578470453619957 0.002455773064866662 -0.007113603875041008 -0.018221521750092506 -0.029706165194511414 -0.011266190558671951 0.0492413155734539 -0.019613170996308327 -0.048349685966968536 -0.0010032594436779618 0.027447693049907684 -0.0839293822646141 -0.09034605324268341 -0.024599386379122734 0.002316975500434637 -0.05453454703092575 0.025846092030405998 -0.04622006043791771 0.041150376200675964 0.016507375985383987 -0.027903635054826736 0.028827274218201637 0.05516466870903969 0.023909728974103928 0.005349431652575731 -0.0007214283687062562 -0.011286438442766666 0.033695511519908905 -0.01627679541707039 -0.042192600667476654 0.030257970094680786 0.025583524256944656 -0.07132682204246521 -0.0052001080475747585 -0.040311068296432495 -0.033129457384347916 0.013765791431069374 -0.05308277904987335 -0.0031432700343430042 0.047216854989528656 -0.009656442329287529 -0.02759425714612007 0.04953474923968315 -0.04106564819812775 0.007682888302952051 0.028529154136776924 0.009642337448894978 -0.0863649919629097 -0.015694474801421165 -0.035468075424432755 -0.04195808619260788 0.06986250728368759 0.002299996791407466 0.020487602800130844 0.009278022684156895 -0.06298777461051941 -0.010670654475688934 -0.007717425469309092 -0.0013592108152806759 -0.006114852149039507 0.03155027702450752 0.08362866193056107 -0.030608762055635452 0.009398482739925385 -0.006852166261523962 -0.010703862644731998 0.021724507212638855 -0.06906087696552277 -0.000159849165356718 -0.014152598567306995 0.03771529719233513 -0.003241791157051921 0.012076832354068756 0.0024745187256485224 -0.07316044718027115 -0.026740700006484985 0.0016422673361375928 0.06139281392097473 -0.023636097088456154 -0.009166334755718708 0.048180997371673584 -0.06446922570466995 -0.04742524400353432 0.006128888577222824 -0.019226571545004845 -0.09756754338741302 0.0035215409006923437 -0.06058022007346153 0.041454631835222244 0.012303473427891731 0.04251401126384735 -0.026797126978635788 -0.08587450534105301 -0.04511495679616928 -0.0038506430573761463 -0.024616237729787827 -0.02203145995736122 0.034309208393096924 -0.07280930131673813 -0.05138147994875908 -0.04552426189184189 -0.07615045458078384 0.08546187728643417 0.02334669418632984 0.0014311986742541194 -0.02004094421863556 0.000653542170766741 0.011357774958014488 -0.023935791105031967 0.000636812939774245 0.009508270770311356 -0.08388303965330124 -0.0448031947016716 0.06639020889997482 -0.014449345879256725 0.10072901844978333 0.0707152709364891 -0.02604382485151291 0.05860438942909241 0.04920955002307892 0.01942780241370201 0.0006091760587878525 -0.0014981502899900079 -0.0218941830098629 0.027122728526592255 -0.03377852588891983 0.044207863509655 -0.03897041827440262 0.10145090520381927 0.011367601342499256 -0.03196579962968826 0.04595160856842995 0.1010754182934761 0.030201692134141922 -0.00045014385250397027 -0.05568642169237137 +0.057135265320539474 -0.03521261364221573 0.006945373024791479 0.057562150061130524 -0.05839080363512039 -0.039620716124773026 -0.002500971546396613 0.014098241925239563 0.011423136107623577 -0.03461721912026405 -0.07205013930797577 0.0034536453895270824 0.005931701511144638 0.026435453444719315 0.02544519118964672 -0.029253168031573296 -0.04700818657875061 0.042738743126392365 -0.004604189656674862 -0.033873822540044785 0.017320111393928528 0.004243090748786926 -0.050631333142519 0.042489875108003616 0.020395711064338684 0.02405150607228279 -0.05750551447272301 0.013448632322251797 0.014635799452662468 0.021304454654455185 0.07403534650802612 -0.020052509382367134 0.03886477276682854 -0.08613599836826324 -0.04629450663924217 0.032033249735832214 -0.04509246349334717 0.10102197527885437 -0.01613503135740757 0.012872980907559395 -0.05353730171918869 0.004275479819625616 -0.058610789477825165 -0.0322859063744545 0.0500962994992733 0.013380715623497963 0.01026864629238844 -0.009809110313653946 0.029406432062387466 0.012170840054750443 0.10303177684545517 -0.012586766853928566 -0.03451964259147644 -0.034332241863012314 -0.04232778400182724 0.0020551581401377916 0.05983399972319603 -0.05119423195719719 -0.05809283256530762 0.023458972573280334 -0.09829584509134293 -0.028177568688988686 0.01289118081331253 -0.018458852544426918 -0.054587773978710175 -0.010252367705106735 -0.006182398647069931 0.08727661520242691 -0.02242053858935833 -0.04357270523905754 0.05688558891415596 0.09855646640062332 -0.0607980377972126 -0.05797755345702171 0.05130157619714737 -0.08605676889419556 0.016183916479349136 0.07301698625087738 -0.008257323876023293 0.009388688951730728 -0.010279638692736626 -0.048236556351184845 0.11761903017759323 -0.04173901304602623 -0.07407855242490768 -0.025678733363747597 -0.003214881755411625 -0.03258362039923668 0.03376713767647743 0.049913182854652405 0.02073051780462265 0.039397820830345154 -0.029873523861169815 0.03640599176287651 0.03568911552429199 -0.019893266260623932 0.030827056616544724 -0.10067254304885864 -0.06558529287576675 0.0409076064825058 0.011412383988499641 -0.008875491097569466 0.06602466851472855 -0.0017084771534428 0.05982799828052521 0.028989583253860474 -0.0453641414642334 0.019335223361849785 0.03923362120985985 0.06032539904117584 0.038117665797472 0.05100240185856819 0.06561814248561859 0.053601812571287155 0.05825437605381012 -0.025746144354343414 0.01918167620897293 -0.05859373137354851 -0.030795782804489136 0.01726054586470127 0.03219269588589668 0.05313178524374962 -0.032475344836711884 -0.06242036819458008 -0.037861235439777374 0.005803379695862532 -0.10631837695837021 -0.00995318591594696 0.07693738490343094 -0.013502613641321659 0.13443827629089355 0.020537953823804855 -0.02299416996538639 0.04603424668312073 0.04343749210238457 0.038735631853342056 0.008641844615340233 0.022934960201382637 0.02536052279174328 -0.03030225820839405 -0.002553024096414447 0.04237695410847664 -0.003566480241715908 -0.05287684500217438 0.08294001966714859 0.04159553349018097 0.05113798752427101 -0.05512985587120056 -0.03410105034708977 -0.02652454376220703 -0.07116550952196121 -0.04987097531557083 0.0185262318700552 -0.05861835554242134 0.005467787850648165 -0.003683878341689706 0.030170520767569542 0.02199472486972809 -0.01815655827522278 -0.0009539249585941434 -0.08911733329296112 -0.03323650732636452 -0.03158821538090706 -0.053021349012851715 -0.021938247606158257 -0.004493068438023329 0.0083905765786767 0.011026337742805481 -0.05898240581154823 -0.039658498018980026 -0.024348745122551918 -0.011825604364275932 0.041857536882162094 0.08600426465272903 0.07757207751274109 0.00136988062877208 0.017041543498635292 -0.05020555481314659 0.010593242943286896 -0.01981501653790474 0.01171152014285326 -0.011951475404202938 0.0075682830065488815 -0.04095204174518585 0.02328624576330185 -0.003774438053369522 0.0337773896753788 -0.054489169269800186 0.028500260785222054 0.005944517906755209 -0.035433195531368256 -0.04974941164255142 0.038688041269779205 0.0960511714220047 -0.01615300215780735 0.0451316311955452 -0.05079037696123123 0.052307575941085815 0.008627154864370823 -0.03057674691081047 -0.0438975915312767 0.024488314986228943 -0.015599231235682964 0.06392014771699905 0.011429565027356148 -0.09669890254735947 0.09482746571302414 0.050993479788303375 0.04315691068768501 -0.0705750435590744 -0.026226161047816277 -0.005696124862879515 -6.11685318290256e-05 0.06561245769262314 0.08968788385391235 -0.004018165171146393 -0.024200698360800743 -0.002490944927558303 0.05876540392637253 -0.02361648716032505 0.01337294839322567 -0.005214848555624485 -0.0873471274971962 0.019052624702453613 -0.09299222379922867 -0.0731581524014473 -0.038027532398700714 0.014785999432206154 -0.009386320598423481 -0.01131532620638609 -0.02383582293987274 0.013716117478907108 0.015249286778271198 -0.028831282630562782 -0.020085658878087997 -0.006557471584528685 -0.09290987998247147 0.0935736745595932 0.028991587460041046 -0.07613392919301987 -0.08137490600347519 -0.010499417781829834 0.057570166885852814 -0.012152404524385929 0.03789805248379707 0.02053127996623516 0.09124193340539932 0.024454372003674507 -0.009556546807289124 0.035086046904325485 -0.0007566068670712411 -0.04187057539820671 0.00028306766762398183 0.009679260663688183 -0.06683064252138138 -0.0024212468415498734 0.029604412615299225 -0.051567647606134415 -0.017192231491208076 0.005475339945405722 -0.002983938902616501 0.02382609061896801 -0.058833763003349304 -0.0031268373131752014 0.0585988350212574 -0.03654824197292328 -0.0310051366686821 0.010733462870121002 -0.01914145052433014 0.0752279981970787 -0.050005584955215454 -0.03513370826840401 0.028829898685216904 -0.016171032562851906 0.0022576141636818647 -0.06494537740945816 0.06936471909284592 -0.016934223473072052 -0.0600404366850853 -0.0067695691250264645 -0.03832758218050003 -0.04673325642943382 -0.021586209535598755 -0.006500087212771177 -0.009067323058843613 0.06596755981445312 -0.014405345544219017 -0.04672643914818764 -0.044745225459337234 -0.023136986419558525 -0.020063307136297226 -0.06542487442493439 -0.009983201511204243 -0.024290749803185463 -0.04091948643326759 -0.0189158096909523 0.02294539473950863 -0.019876889884471893 -0.009005332365632057 0.00043141457717865705 -0.032909926027059555 -0.06806424260139465 0.03837652876973152 -0.029414331540465355 -0.055056024342775345 0.0053061204962432384 -0.05674102529883385 0.03015049546957016 0.09168074280023575 0.06234224513173103 0.014824575744569302 0.05039803683757782 0.012718532234430313 0.10992925614118576 -0.021792007610201836 -0.0262470506131649 -0.0010135392658412457 -0.059740711003541946 -0.05074554309248924 0.03409452363848686 -0.004535480868071318 -0.021041618660092354 0.0035541842225939035 0.003203734289854765 0.044642530381679535 -0.003757144557312131 -0.05296974256634712 -0.026481829583644867 0.018279079347848892 -0.026296082884073257 -0.009797055274248123 0.023767709732055664 0.041683755815029144 -0.037142544984817505 -0.05435096099972725 -0.04425329715013504 -0.021544324234128 0.05210913345217705 -0.018471326678991318 0.029607631266117096 -0.0710957944393158 -0.03391004353761673 -0.001788015360943973 0.026615861803293228 0.08943483978509903 -0.025800863280892372 0.003865736536681652 0.03900039941072464 0.028624366968870163 -0.08811990171670914 0.027510765939950943 0.0440790131688118 -0.04390803724527359 -0.04689325392246246 0.00039470044430345297 0.0002754177257884294 -0.06037050113081932 0.01887102983891964 0.016252197325229645 -0.04771430790424347 0.003271703841164708 0.026650691404938698 0.030712876468896866 0.03753561154007912 -0.00878177210688591 -0.031107168644666672 0.0007678574766032398 0.0058907028287649155 0.03300042822957039 -0.031083570793271065 0.001234962372109294 -0.05135786533355713 0.029918625950813293 -0.03324709087610245 -0.027391523122787476 -0.06077112630009651 0.03894598409533501 0.03445173799991608 -0.015480694361031055 -0.028740976005792618 -0.031008003279566765 -0.009727677330374718 -0.015010355971753597 0.04146100580692291 -0.08668215572834015 -0.008303776383399963 -0.08680993318557739 -0.07681330293416977 -0.09731433540582657 -0.061856720596551895 0.010912938974797726 -0.06347109377384186 0.02052786573767662 -0.015966879203915596 0.0015373908681795 -0.0030838840175420046 -0.0029400165658444166 0.02730230987071991 0.050311628729104996 0.029736250638961792 -0.013001617975533009 0.041234090924263 -0.036180563271045685 0.06540173292160034 0.03929394856095314 -0.0569608211517334 -0.002444198355078697 0.005334509536623955 -0.05363532900810242 0.04230576381087303 -0.03938983008265495 0.008770843967795372 -0.0073264772072434425 -0.020422130823135376 0.06612017750740051 0.006730426102876663 0.013180692680180073 -0.04359588772058487 0.055683642625808716 -0.06962642073631287 -0.034454457461833954 0.044339340180158615 -0.026996605098247528 -0.07893601059913635 -0.052944935858249664 -0.01003551296889782 -0.023365164175629616 0.022919464856386185 -0.04692157357931137 0.03363597393035889 0.014713788405060768 -0.031133383512496948 -0.06890377402305603 -0.023109007626771927 -0.030157875269651413 0.06935479491949081 -0.004040519706904888 0.07470623403787613 0.025900021195411682 0.01073104701936245 0.026656823232769966 -0.00544850854203105 0.001485117245465517 -0.08980005234479904 -0.010089744813740253 -0.05207201465964317 -0.025945331901311874 -0.030144700780510902 0.0004781397292390466 0.009886598214507103 -0.04885674640536308 0.005077033769339323 -0.09042157232761383 0.11133603751659393 0.029134435579180717 0.015791036188602448 0.01251682173460722 -0.0348077192902565 0.006978255696594715 0.016767047345638275 -0.04500063881278038 -0.08000481873750687 -0.007596578914672136 -0.012873013503849506 0.027559304609894753 0.028625261038541794 -0.009623490273952484 -0.011515728197991848 -0.028888730332255363 0.021662069484591484 0.032457347959280014 -0.05254293978214264 0.017741790041327477 0.018733428791165352 -0.0525987334549427 -0.07341095805168152 0.015254481695592403 -0.07174228876829147 0.0761067271232605 0.0710141584277153 0.01244475319981575 -0.008815659210085869 -0.0056058005429804325 0.007326064631342888 -0.012416080571711063 0.021273238584399223 -0.007173657417297363 -0.04778498038649559 0.011517094448208809 0.06232579052448273 -0.038056641817092896 0.023550454527139664 0.03821025788784027 -0.06840100139379501 0.02551564946770668 0.03674514964222908 -0.05412692949175835 0.06149401515722275 -0.012721304781734943 -0.0069350008852779865 0.07234105467796326 -0.09529539942741394 0.09987980872392654 -0.06596093624830246 0.07638531923294067 0.03395413979887962 -0.008212694898247719 0.07733798027038574 0.04641026258468628 -0.029459666460752487 0.0045898957177996635 -0.07768695801496506 +0.039517343044281006 0.017842117697000504 0.007185718510299921 0.0452791228890419 -0.10742444545030594 -0.040177781134843826 0.00825684703886509 0.021687181666493416 0.03341181203722954 0.03162136301398277 -0.021529298275709152 0.019583258777856827 -0.01105027087032795 0.025508301332592964 -0.0026041087694466114 -0.04464863985776901 -0.06553799659013748 -0.01659237965941429 -0.03649287298321724 -0.03300187364220619 0.0378146693110466 0.03114263527095318 -0.05435359105467796 0.04478427767753601 -0.004490541759878397 0.05466408282518387 -0.05011427029967308 -0.004950827453285456 -0.028964262455701828 -0.025118427351117134 0.028282852843403816 0.0059232451021671295 0.06876424700021744 -0.060705848038196564 -0.055253613740205765 0.04144186154007912 -0.017456352710723877 0.0924801155924797 0.05058390274643898 -0.0645560771226883 -0.044979892671108246 0.009011300280690193 -0.05276552215218544 -0.03654612600803375 -0.007371063344180584 0.0033471982460469007 -0.022503428161144257 -0.006445964798331261 0.03360014408826828 0.02438754215836525 0.09005642682313919 0.007564169354736805 -0.0518857017159462 -0.03751738741993904 -0.025196930393576622 0.005494758952409029 0.026009738445281982 -0.056803345680236816 -0.1047528013586998 0.022586459293961525 -0.06930533796548843 0.03400935232639313 -0.01846900023519993 -0.006442769896239042 -0.022753320634365082 -0.047345858067274094 0.011889979243278503 0.07586393505334854 0.061448242515325546 0.001693949569016695 0.06449376791715622 0.10915690660476685 -0.07907280325889587 -0.0003765837464015931 0.05155372619628906 -0.03383518382906914 -0.03402538597583771 0.06445489823818207 -0.033429354429244995 0.017468303442001343 0.00708434684202075 -0.0460156574845314 0.09228197485208511 -0.07060615718364716 -0.0614132359623909 -0.007899189367890358 0.020989032462239265 -0.07976119220256805 0.015073271468281746 0.02355288341641426 -0.021162167191505432 0.036403730511665344 -0.06759468466043472 0.07822556048631668 0.01511099748313427 0.06018320843577385 0.04836055636405945 -0.1337522715330124 -0.061658214777708054 0.008139265701174736 -0.011858304962515831 -0.023049497976899147 0.03547775000333786 -0.026834191754460335 0.041776277124881744 0.028668424114584923 -0.04259500652551651 0.01698349043726921 0.011030466295778751 0.018206851556897163 0.08484846353530884 0.010510937310755253 0.0798768401145935 0.03905686363577843 0.05220465362071991 -0.015311069786548615 0.040049124509096146 -0.05223795399069786 -0.018483923748135567 0.02585717849433422 0.01248858217149973 0.04571399465203285 -0.025407535955309868 -0.05440317839384079 -0.06607993692159653 -0.011279743164777756 -0.09361834824085236 -0.014497239142656326 0.023827407509088516 -0.04210459813475609 0.10040614008903503 0.04612419754266739 -0.03668318688869476 -0.000368658424122259 0.011363161727786064 0.008358744904398918 0.008183526806533337 0.0117446044459939 -0.000974583497736603 -0.002823198912665248 -0.015600042417645454 0.060757897794246674 0.04337023198604584 -0.05244576930999756 0.015076729469001293 0.048032473772764206 0.04459627717733383 -0.011933987960219383 -0.09772685915231705 -0.02922734245657921 -0.0972466692328453 -0.07404719293117523 -0.01866290532052517 -0.07622089236974716 0.021412039175629616 0.06248403713107109 0.012445369735360146 0.08195134997367859 -0.030097011476755142 -0.02144077979028225 -0.003388823475688696 0.01204659417271614 -0.01983763463795185 -0.07110428065061569 -0.00357985170558095 -0.021245624870061874 0.017818935215473175 0.0022280572447925806 -0.03314982354640961 0.024491271004080772 -0.024022933095693588 0.0013011845294386148 0.01543895248323679 0.050394244492053986 0.06678509712219238 -0.0170657429844141 -0.006467422936111689 -0.037643078714609146 0.005948430392891169 -0.008129402995109558 0.02417381852865219 -0.05777667835354805 0.03765375167131424 -0.03653814643621445 0.007651231717318296 -0.030639078468084335 0.03873122110962868 -0.03860732540488243 0.019972138106822968 0.014230492524802685 -0.046865858137607574 -0.045414913445711136 0.03155488893389702 0.06626123189926147 -0.02112440951168537 0.02449950762093067 -0.0010422258637845516 0.03169829025864601 0.014384271577000618 0.004090941045433283 -0.023793373256921768 0.04039975628256798 -0.019886307418346405 0.05809476971626282 0.016262879595160484 -0.06892121583223343 0.06729301065206528 -0.01301516778767109 -0.0008483902201987803 -0.05986957624554634 0.022463247179985046 0.00999873224645853 0.015034175477921963 0.005790193565189838 0.08767518401145935 -0.030322030186653137 0.011849240399897099 -0.01268547773361206 0.04172592982649803 -0.03923797607421875 0.03210534155368805 -0.014772976748645306 -0.04400527849793434 0.015109575353562832 -0.05684398114681244 -0.08955347537994385 -0.026639964431524277 0.009563297033309937 0.019402800127863884 -0.056942619383335114 0.014426382258534431 0.032583869993686676 -0.014731531962752342 -0.04367103800177574 -0.03634728863835335 0.04519687592983246 -0.0782642811536789 0.07708506286144257 -0.010599070228636265 -0.025668369606137276 -0.03141998499631882 0.012660437263548374 0.009259064681828022 0.025665177032351494 0.038401417434215546 0.06680282950401306 0.12021639943122864 0.02722877450287342 0.004181237891316414 -0.01764308102428913 -0.07044302672147751 -0.056947011500597 0.05436013638973236 0.07307889312505722 -0.051255904138088226 -0.03245291858911514 -0.01493821945041418 -0.05763251334428787 -0.02036442793905735 0.03441883251070976 0.056736934930086136 0.016078894957900047 -0.045374516397714615 -0.05301474779844284 0.0013703765580430627 0.010071874596178532 -0.03716706112027168 0.019918112084269524 -0.007394089363515377 0.06407049298286438 0.01416473276913166 -0.015256219543516636 0.02175375632941723 0.02115986868739128 0.0816384106874466 0.006208376493304968 0.030580880120396614 -0.025351423770189285 -0.07658890634775162 -0.028291314840316772 -0.05542868748307228 -0.061916783452034 -0.04517224058508873 -0.04550167918205261 -0.05240103602409363 0.0656154677271843 0.0176068302243948 -0.009445816278457642 -0.08653846383094788 0.002185953315347433 -0.022930411621928215 -0.09181814640760422 -0.018551025539636612 0.013064105994999409 -0.10646462440490723 -0.04718545451760292 -0.013375201262533665 -0.030092338100075722 -0.04316555708646774 0.0105068888515234 -0.04252735152840614 -0.08160951733589172 0.04296127334237099 0.0049391984939575195 -0.030566515401005745 -0.04506542161107063 -0.10183294862508774 0.03185313567519188 0.09721750020980835 0.012463569641113281 0.06042921170592308 0.027792152017354965 0.0350513756275177 0.09514540433883667 0.013318577781319618 -0.041063494980335236 0.016273504123091698 -0.02787114679813385 -0.08372890949249268 0.030653566122055054 -0.03387376293540001 0.004773066844791174 -0.021394474431872368 0.010616070590913296 0.034831900149583817 0.009963404387235641 -0.03320775553584099 -0.03854773938655853 0.037655510008335114 -0.018602808937430382 0.03468838706612587 0.004331969190388918 -0.01891709491610527 0.045485757291316986 -0.03243396058678627 -0.017049433663487434 -0.031037891283631325 0.005362287163734436 0.015059034340083599 0.032481543719768524 0.0248852726072073 -0.05701594054698944 0.0203305184841156 -0.027797475457191467 0.10003794729709625 -0.11131652444601059 -0.0024518133141100407 0.026673033833503723 -0.0076098134741187096 -0.09066405892372131 -0.032974664121866226 0.05270588397979736 -0.04670841991901398 -0.00849558599293232 0.009006191976368427 0.0626695528626442 -0.03958672657608986 -0.019133081659674644 0.0023411260917782784 -0.00018638456822372973 -0.00287174666300416 0.031875330954790115 0.0415106937289238 0.023174097761511803 -0.045919641852378845 0.005140488035976887 0.01015452854335308 0.028761960566043854 0.050587695091962814 -0.0214238278567791 0.026378922164440155 -0.009911776520311832 0.0823366716504097 -0.023522797971963882 -0.027021434158086777 -0.057403814047575 0.03670458123087883 0.028202448040246964 -0.021443963050842285 -0.01592637225985527 0.01187350694090128 0.03666793927550316 0.04824431985616684 0.03311067819595337 -0.01167347189038992 -0.031720541417598724 -0.039410300552845 -0.02448124997317791 -0.0930476039648056 -0.014442257583141327 0.0027350052259862423 -0.08222397416830063 -0.007530366536229849 -0.03057284653186798 -0.057555075734853745 -0.02185191586613655 -0.028108537197113037 0.0014194033574312925 0.04581237956881523 0.03187776729464531 -0.026011846959590912 0.019472109153866768 0.001073481049388647 0.06245657801628113 -0.008154540322721004 -0.05613157898187637 0.041636642068624496 0.042119115591049194 -0.03639151528477669 0.027444662526249886 -0.03746916726231575 -0.03831523656845093 0.014615233056247234 0.01620473898947239 -0.002824115566909313 -0.00034660790697671473 0.006877040024846792 -0.04191068559885025 0.044663384556770325 -0.0970228910446167 0.0035069319419562817 0.06917872279882431 -0.008386234752833843 -0.09710949659347534 -0.00637872563675046 -0.009045328944921494 -0.04600612074136734 0.0220786165446043 -0.003238607430830598 -0.002367437584325671 0.051373787224292755 -0.06553635746240616 -0.052217960357666016 -0.040138278156518936 -0.04178284853696823 0.03106309473514557 -0.03153214603662491 0.07055684924125671 0.01819709688425064 0.0028916618321090937 -0.020166683942079544 0.03300455957651138 -0.003703249851241708 -0.06020288169384003 -0.034523654729127884 -0.0556870736181736 -0.03636862710118294 0.030821342021226883 -0.011053592897951603 -0.002287140116095543 -0.04499376192688942 -0.02683681808412075 -0.03464588150382042 0.05767084285616875 -0.0423613004386425 -0.0360076017677784 0.057677507400512695 0.01007215864956379 0.029196960851550102 0.02448841743171215 -0.010336169973015785 -0.054426584392786026 0.032145339995622635 -0.02096087858080864 0.03204605355858803 0.04860549047589302 0.0036253684666007757 0.0014345500385388732 -0.03598303347826004 -0.06804586201906204 0.04547661170363426 -0.07507960498332977 0.03741142898797989 -0.00884505920112133 -0.073542520403862 -0.06079302728176117 0.011165689677000046 -0.048859670758247375 0.07770437002182007 0.015258424915373325 0.0634663850069046 0.033583518117666245 -0.01197305228561163 0.020899789407849312 -0.03476744890213013 -0.008447753265500069 0.014020390808582306 -0.037500664591789246 -0.022235840559005737 0.05833493918180466 -0.0008387641864828765 0.035919152200222015 0.07908385246992111 -0.05204514041543007 0.066714346408844 0.026430804282426834 -0.050858158618211746 0.017864102497696877 -0.022505272179841995 -0.07882393151521683 0.07718244194984436 -0.028641007840633392 0.0994739830493927 -0.03310262784361839 0.10181696712970734 -0.02487914264202118 -0.057367954403162 0.08668865263462067 0.07997994124889374 -0.028351614251732826 -0.009853466413915157 -0.04428738355636597 +0.040476251393556595 -0.011886943131685257 -0.014640248380601406 0.03181144595146179 -0.10715261101722717 -0.04935647174715996 -0.04038766026496887 0.0342983677983284 -0.00355303636752069 -0.046294599771499634 -0.06227535381913185 -0.03983897343277931 -0.0005873869522474706 -0.03270766884088516 0.018420595675706863 -0.03514193370938301 -0.05903629586100578 0.031080495566129684 -0.031050587072968483 -0.0035958937369287014 -0.005068142898380756 0.040406644344329834 -0.0711955726146698 0.03032493218779564 0.024895079433918 0.017026567831635475 -0.03201119601726532 0.0055500841699540615 -0.0268811397254467 0.02863694541156292 0.059729546308517456 0.02375420555472374 -0.005096933338791132 -0.013418182730674744 -0.07388201355934143 0.05431748554110527 -0.03223227337002754 0.08017270267009735 -0.004354453645646572 -0.029833653941750526 -0.014214633964002132 0.013596358709037304 -0.0045827049762010574 -0.038898270577192307 0.0322481244802475 0.003095763036981225 -0.015663722530007362 -0.02008470892906189 0.00926345493644476 0.008644369430840015 0.1290120631456375 0.009502632543444633 -0.01673823595046997 -0.018867095932364464 -0.031709980219602585 0.020101431757211685 0.003116897540166974 -0.05607868358492851 -0.033873844891786575 0.027870262041687965 -0.07004573941230774 0.021876877173781395 0.03335881605744362 0.002975048962980509 -0.012762983329594135 -0.008996056392788887 -0.02859126776456833 0.1138114333152771 0.001070477650500834 -0.002630883129313588 0.03689256310462952 0.07711215317249298 -0.050846051424741745 -0.05372815951704979 0.07353011518716812 -0.08153561502695084 -0.04573206603527069 0.04888063296675682 -0.01054642628878355 -0.05979862064123154 0.04043271020054817 -0.022653762251138687 0.10523118078708649 -0.05962839722633362 -0.06954391300678253 -0.02832649089396 -0.01116805151104927 -0.07954155653715134 0.07176705449819565 0.06942865252494812 0.035102978348731995 0.08655530214309692 -0.02735532633960247 0.039680879563093185 -0.022869832813739777 -0.0025364237371832132 0.039452873170375824 -0.11668156832456589 -0.06787195801734924 -0.009397574700415134 0.021105652675032616 -0.013555584475398064 0.03541675582528114 -0.014339588582515717 0.006133323535323143 0.04534080997109413 -0.006174575071781874 -0.0008319857297465205 0.005061164498329163 0.08247026801109314 0.02214128151535988 0.0388970673084259 0.0967884436249733 0.1113472580909729 0.05199730023741722 0.012140265665948391 -0.031082555651664734 -0.02309701405465603 -0.04175758361816406 0.036090996116399765 -0.0016435834113508463 0.024264005944132805 -0.002084884326905012 -0.06660474836826324 -0.024917887523770332 0.025350244715809822 -0.07562711089849472 0.024802478030323982 0.037411388009786606 -0.020204834640026093 0.09717092663049698 -0.009110230021178722 -0.059843216091394424 0.02418164350092411 0.05162603780627251 0.052710406482219696 0.0057716527953743935 -0.008043036796152592 -0.038028571754693985 -0.016848336905241013 -0.02547437697649002 0.02388748899102211 -0.0030586211942136288 -0.044265128672122955 0.05395927652716637 0.006642326712608337 0.07864955812692642 -0.019785471260547638 -0.035365838557481766 -0.0009651476866565645 -0.08286586403846741 -0.07078138738870621 0.01663832925260067 -0.05778026208281517 0.03327976167201996 0.028885846957564354 0.041242945939302444 -0.008179528638720512 -0.010919983498752117 -0.002306331880390644 -0.02808590978384018 -0.03241487219929695 -0.04132840037345886 -0.09282047301530838 -0.0031564158853143454 -0.05215238034725189 -0.028575902804732323 0.005696659907698631 -0.052945252507925034 -0.05913881957530975 -0.013974146917462349 0.02275990881025791 0.02441716380417347 0.13987450301647186 0.061423469334840775 0.020131276920437813 0.05313247814774513 -0.008277767337858677 -0.04502492770552635 -0.013780168257653713 0.0028160461224615574 0.005811005365103483 0.0416082888841629 -0.06184876337647438 0.01096345391124487 0.018306784331798553 0.05781838670372963 -0.019979851320385933 0.04228070750832558 0.007473750971257687 0.0009419916896149516 -0.06745056062936783 0.049695055931806564 0.07525347918272018 -0.00040686564170755446 0.028978219255805016 -0.025590302422642708 0.06217823177576065 0.015997635200619698 -0.02634490095078945 -0.05083717033267021 0.01266173180192709 -0.011812875978648663 0.08602967858314514 0.03779415041208267 -0.10911133140325546 0.11282909661531448 0.04229900613427162 0.031742822378873825 -0.031229155138134956 0.023579424247145653 0.04583490267395973 0.015737712383270264 0.07177366316318512 0.06989191472530365 -0.008401995524764061 -0.003135895822197199 0.013665096834301949 0.0606747530400753 -0.049900319427251816 0.04324505478143692 0.008880558423697948 -0.08391033858060837 0.046918269246816635 -0.021008813753724098 -0.06502871215343475 -0.04646875336766243 0.020308781415224075 0.0026599345728754997 -0.007132504601031542 0.021909689530730247 0.006598649080842733 0.02762501873075962 -0.015225469134747982 -0.012075497768819332 0.01142866164445877 -0.13411717116832733 0.07329599559307098 -0.012779355980455875 -0.06501882523298264 -0.0636349767446518 -0.009128892794251442 -0.006115943193435669 0.00029068783624097705 0.04120931029319763 0.07222519814968109 0.09046249091625214 0.04252252355217934 0.03536631539463997 0.024395890533924103 -0.0767502710223198 -0.051165007054805756 -0.011418935842812061 0.0012600444024428725 -0.04422751069068909 -0.04620274156332016 0.03591049462556839 -0.09304036945104599 -0.023546678945422173 0.002005576388910413 -0.005271402653306723 -0.02457340434193611 -0.0595853328704834 -0.05541863664984703 0.05050653591752052 -0.03967596963047981 -0.06543517112731934 0.0030143405310809612 -0.032819729298353195 0.06787823885679245 -0.020008595660328865 -0.03751514106988907 0.02860809862613678 -0.027312029153108597 0.04111607000231743 0.0018874842207878828 0.06058478727936745 -0.051196713000535965 -0.051558468490839005 0.018813489004969597 -0.05590309202671051 -0.07324591279029846 -0.0013712855288758874 -0.040331728756427765 -0.04274478182196617 0.08517132699489594 -0.02147301658987999 -0.03774869069457054 -0.050213128328323364 -0.0005500683910213411 -0.031512144953012466 -0.01991196908056736 -0.0470951683819294 -0.015926096588373184 -0.05144072324037552 -0.043887682259082794 0.054932281374931335 -0.025803234428167343 -0.04428331181406975 0.03576991334557533 -0.025282662361860275 -0.05006903037428856 0.02957076020538807 -0.02636074274778366 0.002992520108819008 0.016518179327249527 -0.04889627918601036 0.02922319620847702 0.08340784907341003 0.04158756136894226 0.039324842393398285 0.0492907278239727 -0.01013156957924366 0.09132541716098785 0.026854947209358215 -0.08491251617670059 -0.011055889539420605 -0.07654976099729538 -0.022250615060329437 0.042290639132261276 0.01730637066066265 -0.06170198321342468 0.012401135638356209 0.02391137182712555 0.05880902707576752 -0.011081216856837273 0.0037350228521972895 -0.033007752150297165 0.014914003200829029 -0.025787344202399254 -0.0003520427271723747 -0.025211099535226822 0.03407838195562363 -0.023333927616477013 -0.013393968343734741 0.0003294571361038834 -0.022635433822870255 0.016934989020228386 0.02635958045721054 0.014988603070378304 -0.06443063914775848 -0.02682878077030182 0.006199185270816088 -0.02320103533565998 0.1095704510807991 -0.044897232204675674 0.03969397395849228 0.05879639834165573 0.03285478055477142 -0.03179514408111572 0.0015235845930874348 0.03105808049440384 -0.0552535243332386 -0.012987788766622543 -0.025933297351002693 0.011463451199233532 -0.07412370294332504 -0.043955691158771515 0.015812255442142487 -0.025877567008137703 0.052600037306547165 -0.02518576942384243 0.003258878132328391 0.028356317430734634 0.0020260061137378216 -0.021429017186164856 0.02252587489783764 -0.004670994821935892 0.016738515347242355 -0.05415504053235054 0.005527023691684008 -0.03559667617082596 0.031954068690538406 -0.03172336891293526 -0.05464013293385506 -0.05020682513713837 0.02375727705657482 -0.00025159568758681417 -0.004293177276849747 -0.013540544547140598 0.008394397795200348 0.009055272676050663 0.04132367670536041 0.004754367750138044 -0.0832875519990921 -0.01633213646709919 -0.07014741003513336 -0.03089992143213749 -0.051655419170856476 -0.051837895065546036 -0.0022112783044576645 -0.07322748005390167 -0.006919908802956343 -0.05957166478037834 -0.01599929668009281 -0.004041688982397318 -0.02906143292784691 0.025953048840165138 0.028568947687745094 0.025466835126280785 0.0098697729408741 0.024871651083230972 -0.017574656754732132 0.045903369784355164 0.027144094929099083 -0.09300816059112549 0.014244441874325275 0.06816757470369339 -0.012614506296813488 0.045157961547374725 -0.013310860842466354 0.025856295600533485 0.047773294150829315 0.018285954371094704 0.02613261342048645 -0.04303007200360298 -0.013039171695709229 -0.02219022996723652 0.03166833519935608 -0.05147367715835571 -0.08114609867334366 0.04911009967327118 -0.04457146301865578 -0.07871507108211517 0.00041035879985429347 -0.05142455920577049 -0.02313382737338543 0.011580049060285091 -0.030466746538877487 0.0167400985956192 0.0156572088599205 -0.09186317026615143 -0.041408516466617584 -0.06754600256681442 -0.007309327833354473 0.06412913650274277 0.029310574755072594 0.03690697252750397 0.0006943149492144585 -0.016351990401744843 -0.0079854940995574 -0.015555504709482193 0.011403405107557774 -0.07143792510032654 -0.020334778353571892 -0.03998417407274246 -0.03453266620635986 0.019477570429444313 0.031991146504879 0.015592776238918304 -0.05054909363389015 -0.017827516421675682 -0.06248093023896217 0.07091997563838959 -0.030879218131303787 0.02363544888794422 0.006418025586754084 -0.047188736498355865 -0.008833114989101887 0.035658352077007294 -0.030404329299926758 -0.08186417818069458 0.01775217428803444 -0.02689884789288044 0.03100547008216381 0.059873972088098526 0.036855705082416534 -0.04679715260863304 -0.06083502247929573 0.020489320158958435 0.04988306388258934 -0.02914176695048809 -0.007501486223191023 0.029414283111691475 -0.0709444135427475 -0.06913841515779495 -0.01439789216965437 -0.04262084141373634 0.0663393959403038 0.006411758717149496 0.03188798576593399 -0.05152202025055885 0.01561095379292965 0.034644074738025665 -0.03349726274609566 -0.007014406379312277 -0.023146595805883408 -0.050938256084918976 -0.026233473792672157 0.08442668616771698 -0.03229641914367676 0.0013555752811953425 0.07665905356407166 -0.0349903330206871 0.001441893633455038 0.010214654728770256 -0.04731160029768944 0.035753779113292694 0.025763636454939842 -0.013188029639422894 0.047016043215990067 -0.08558560162782669 0.055483609437942505 -0.03459964320063591 0.09279511868953705 -0.0037161242216825485 -0.044264644384384155 0.044899120926856995 0.06019104644656181 -0.02590063028037548 0.04953188821673393 -0.055650047957897186 +0.00498773530125618 -0.004231366794556379 -0.0021464736200869083 0.038694702088832855 -0.07310724258422852 -0.07991703599691391 -0.010802948847413063 0.027638955041766167 0.021822229027748108 -0.02450587786734104 -0.006548024248331785 -0.009299957193434238 -0.006802389398217201 0.02628563903272152 0.0318506620824337 -0.030672507360577583 -0.06940703839063644 -0.008576865307986736 -0.005988192744553089 -0.03739970922470093 0.01935632713139057 -0.015340607613325119 -0.10933707654476166 0.013056247495114803 -0.008107771165668964 -0.015901828184723854 -0.059074725955724716 0.008759263902902603 0.016316711902618408 0.03564987704157829 0.06120672449469566 -0.03223210945725441 0.10846004635095596 -0.06090269610285759 -0.0817478597164154 -0.007852017879486084 -0.06141729652881622 0.1207313984632492 0.053367745131254196 -0.022064780816435814 -0.07519492506980896 -0.022952746599912643 -0.034602582454681396 -0.021185295656323433 -0.01042611338198185 -0.010133382864296436 -0.017738236114382744 -0.00704169413074851 0.031719569116830826 0.03562389686703682 0.06835199892520905 0.013713163323700428 -0.006915236823260784 -0.04208831861615181 -0.00803625863045454 -0.008091172203421593 0.053056877106428146 -0.0659043937921524 -0.10423359274864197 0.014500831253826618 -0.1243574321269989 0.012005684897303581 -0.008961000479757786 0.027173686772584915 -0.029268046841025352 -0.04543248191475868 -0.017933044582605362 0.04911984130740166 -0.025654636323451996 -0.056921057403087616 0.04033500701189041 0.07605165243148804 -0.07500952482223511 -0.06157849729061127 -0.011807273142039776 -0.025050213560461998 0.02052394486963749 0.009313536807894707 -0.0022882448974996805 0.04318061098456383 -0.016865458339452744 -0.04490127041935921 0.10454286634922028 -0.011922432109713554 0.018785377964377403 -0.04558298736810684 -0.013975470326840878 -0.050664059817790985 0.03070250153541565 0.0024339586962014437 0.01421669963747263 0.024493034929037094 -0.05066216364502907 0.034574974328279495 0.037830766290426254 0.04273048788309097 0.01582752726972103 -0.10212438553571701 -0.0045787072740495205 0.028217332437634468 -0.005782514810562134 0.010892651975154877 0.06646478921175003 0.02207977883517742 0.0542759969830513 0.03657940402626991 -0.06367610394954681 0.05147372558712959 0.07674787193536758 0.029475023970007896 0.05195099860429764 0.07755627483129501 0.044706422835588455 0.023681359365582466 -0.0004425728984642774 0.0511188767850399 0.026903290301561356 -0.01670331321656704 0.013499204069375992 0.0309350173920393 0.013002939522266388 0.019166378304362297 -0.022441040724515915 -0.043121375143527985 -0.023414256051182747 0.04310495778918266 -0.0472666397690773 -0.06651198118925095 0.028250345960259438 -0.020716071128845215 0.09055142849683762 0.08583596348762512 0.015355793759226799 0.04288950935006142 0.05945545434951782 0.024106644093990326 0.005549320951104164 0.016766836866736412 0.006556718144565821 -0.05106288939714432 -0.04912218451499939 0.053434036672115326 -0.027944272384047508 -0.0826343297958374 0.052586834877729416 0.08273549377918243 0.01940949819982052 -0.021013552322983742 -0.10406478494405746 -0.021093159914016724 -0.04916990175843239 -0.027022507041692734 0.015923066064715385 -0.08696658909320831 0.023410430178046227 0.08063439279794693 0.022184524685144424 0.04891909658908844 0.0064366720616817474 0.006988239008933306 -0.03181765228509903 -0.04382643848657608 0.034265730530023575 -0.06884032487869263 -0.05137249827384949 -0.013733744621276855 0.026968324556946754 0.06119159981608391 -0.08581622689962387 0.0002054283831967041 0.011140433140099049 0.0002449967432767153 0.06083909049630165 0.037986211478710175 0.014462065882980824 -0.001174759934656322 0.004140376579016447 -0.08743339031934738 0.01613982953131199 -0.04722853749990463 0.06679487973451614 -0.058994732797145844 0.013018731027841568 -0.0389886349439621 0.005721222143620253 0.0022899117320775986 0.018430255353450775 0.007639105431735516 -0.006808736827224493 0.00018785271095111966 -0.07950309664011002 -0.040307801216840744 0.021366028115153313 0.04339148849248886 -0.0053336056880652905 0.060048457235097885 -0.0044047636911273 0.050978485494852066 -0.030826816335320473 -0.028336623683571815 -0.048340778797864914 0.013011576607823372 0.03775554522871971 0.0005222341860644519 -0.02023167908191681 -0.04863962531089783 0.06817019730806351 0.025312207639217377 0.02044333890080452 -0.050595592707395554 0.008292349986732006 0.038977038115262985 0.01038362830877304 0.023780224844813347 0.08197669684886932 -0.05423649027943611 0.00727787846699357 0.014315121807157993 0.07986506819725037 -0.07412845641374588 0.022000271826982498 0.022873863577842712 -0.046706490218639374 0.020286232233047485 -0.05729147046804428 -0.11374595016241074 -0.0013683970319107175 -0.0063406964763998985 -0.049791429191827774 -0.04173438996076584 -0.029919907450675964 0.010600380599498749 -0.016042612493038177 -0.008184045553207397 -0.05841931700706482 -0.016703598201274872 -0.03131328150629997 0.09594555199146271 0.00028033246053382754 -0.06565146893262863 -0.04056008532643318 -0.017389893531799316 -0.01639954373240471 -0.02478841133415699 -0.001951458165422082 0.050481539219617844 0.07969187945127487 0.02747606858611107 -0.03753483667969704 -0.005409801844507456 -0.055797748267650604 -0.07583063840866089 0.045824870467185974 0.05686574429273605 -0.05843374505639076 0.028272373601794243 0.01871456764638424 -0.06167206913232803 0.02281871996819973 -0.010862999595701694 0.010593647137284279 0.00320737948641181 -0.0011205334449186921 -0.006849698722362518 0.06323906779289246 0.0016841928008943796 -0.03140951693058014 0.006651163566857576 -0.0039908187463879585 0.0524514839053154 -0.031573086977005005 -0.012314852327108383 0.025867031887173653 -0.0060470225289464 0.0008869062294252217 0.005894200410693884 0.0707167536020279 -0.010255269706249237 -0.06350886076688766 -0.0169503316283226 -0.07825438678264618 -0.037426065653562546 0.004570263437926769 0.005175102036446333 -0.016348225995898247 0.09428923577070236 0.032679617404937744 -0.03270747512578964 -0.021579938009381294 -0.054005492478609085 -0.007169659715145826 -0.08313267678022385 0.004195850342512131 0.01132181566208601 -0.07646700739860535 -0.03268708661198616 0.025815479457378387 -0.07563049346208572 0.033095479011535645 0.048919662833213806 -0.06946780532598495 -0.06679888814687729 0.031989455223083496 -0.06848617643117905 -0.034682780504226685 0.016492607071995735 -0.0563543438911438 0.04668783023953438 0.05549640208482742 0.00043571757851168513 -0.011401536874473095 0.049517735838890076 0.04055614769458771 0.07346340268850327 -0.02277340553700924 -0.03823157027363777 -0.009255974553525448 -0.06148006021976471 -0.06421734392642975 0.06407754868268967 -0.04831119254231453 0.04688625410199165 -0.015954624861478806 -0.02687019668519497 0.06864294409751892 -0.020542601123452187 -0.03234658017754555 0.0027588848024606705 0.03460310027003288 -0.025074228644371033 0.038807813078165054 0.043354108929634094 -0.025902455672621727 0.017112210392951965 -0.08721315115690231 -0.034919995814561844 -0.06020466238260269 0.006599050015211105 -0.055609330534935 0.04800510033965111 -0.01791195198893547 -0.04857935756444931 0.012720247730612755 0.018196726217865944 0.09433265775442123 -0.09585470706224442 -0.0016716653481125832 -0.006094740703701973 0.03373051434755325 -0.09242893755435944 -0.035441819578409195 0.031364165246486664 -0.05351346358656883 -0.053070876747369766 0.041561249643564224 -0.00022075588640291244 -0.07557893544435501 0.0019450358813628554 0.0015711582964286208 -0.03797776624560356 -0.015374751761555672 0.02554209902882576 0.002555318409577012 0.035454608500003815 -0.002737807808443904 -0.03333953395485878 -0.037040211260318756 0.009615853428840637 0.02539205364882946 -0.021805554628372192 0.06070627272129059 -0.061654336750507355 0.04869581013917923 -0.029525279998779297 -0.02229875512421131 -0.0979422926902771 0.01709134690463543 0.0027717771008610725 -0.025552555918693542 -0.03435629978775978 -0.011658946052193642 -0.0335037037730217 -0.007854524068534374 0.028181958943605423 -0.08609376102685928 -0.05307784676551819 -0.016599280759692192 -0.02035919390618801 -0.060408033430576324 -0.04334573820233345 0.028774866834282875 -0.08102469891309738 0.03411082923412323 -0.03073924221098423 0.02047269232571125 -0.015014718286693096 -0.04356760531663895 0.015082419849932194 0.07596204429864883 -0.0056070731952786446 0.0029795619193464518 0.049136679619550705 -0.003467253176495433 0.01703144796192646 0.018973426893353462 -0.014086157083511353 0.02396838553249836 0.03419574350118637 -0.07955759018659592 -0.005033719819039106 -0.06852727383375168 0.017975328490138054 -0.01837078295648098 -0.051470234990119934 0.03806073218584061 0.025064971297979355 0.013441115617752075 0.013751385733485222 0.04091167449951172 -0.04000716283917427 -0.022428561002016068 0.004080156330019236 -0.020534398034214973 -0.06500986218452454 -0.03381853923201561 -0.013726930133998394 -0.06718948483467102 0.059704434126615524 0.02860962226986885 0.048901092261075974 0.02922271192073822 -0.06819666922092438 -0.03318610042333603 0.021790100261569023 -0.009716379456222057 -0.005469764117151499 -0.03709575533866882 -0.002726413309574127 -0.021226957440376282 0.002510484540835023 0.05545993521809578 -0.01429894007742405 0.01757594756782055 -0.07941415905952454 -0.036648329347372055 0.017171869054436684 0.018033163622021675 -0.012542495504021645 -0.03215313330292702 0.02830265462398529 -0.09493552893400192 0.006462042219936848 -0.03599806874990463 0.05824810266494751 -0.004946890287101269 -0.018673619255423546 0.039467886090278625 -0.05611103028059006 -0.018661178648471832 0.03391372039914131 -0.00114969233982265 -0.06357827037572861 -0.0071483636274933815 -0.04962025582790375 0.06057288497686386 0.019883353263139725 0.03406452015042305 -0.008848157711327076 -0.08256524801254272 -0.006683070212602615 0.004898224491626024 -0.08852633088827133 0.005556551273912191 0.009272057563066483 -0.05879170447587967 -0.06691942363977432 -0.004393837880343199 -0.05173688381910324 0.07573064416646957 0.04714400693774223 0.01315703708678484 -0.06233731284737587 -0.02845281921327114 -0.02015477977693081 -0.04793577641248703 0.03113633021712303 9.42712722462602e-05 -0.045471858233213425 -0.02640279196202755 0.09625982493162155 -0.025616100057959557 0.05290655419230461 0.06428315490484238 -0.042120058089494705 0.018390370532870293 0.01666051149368286 -0.019029445946216583 -0.011365730315446854 -0.03869135305285454 -0.06139145419001579 0.04224628582596779 -0.057275399565696716 0.0668618306517601 -0.03658045455813408 0.10028687119483948 0.039974067360162735 -0.024305686354637146 0.07114526629447937 0.07156762480735779 -0.008956512436270714 0.016596009954810143 -0.06506290286779404 +0.06012289226055145 -0.016965243965387344 -0.012460312806069851 0.06160622835159302 -0.07734066247940063 -0.0396253764629364 -0.008036181330680847 0.05442778021097183 0.00432105315849185 -0.04379531368613243 0.010631955228745937 0.0008345089736394584 0.0002839972439687699 0.02018403448164463 0.012309478595852852 -0.03439106419682503 -0.050909798592329025 -0.004258034750819206 -0.04066137969493866 -0.04090459272265434 0.029942985624074936 0.024380434304475784 -0.05824192240834236 0.05418854206800461 -0.0031321262940764427 0.008624144829809666 -0.025580205023288727 0.017009491100907326 -0.015069845132529736 0.04917945712804794 0.07116379588842392 -0.03716614097356796 0.03953941538929939 -0.047336701303720474 -0.0581418015062809 0.07043492794036865 -0.05403375253081322 0.1387200504541397 0.02662636525928974 -0.017753807827830315 -0.060751594603061676 -0.0004998067743144929 -0.003235389944165945 -0.029861876741051674 0.03330227732658386 -0.003664435585960746 -0.012573405168950558 -0.023404767736792564 0.030144115909934044 0.03273165971040726 0.1148836761713028 0.008301419205963612 0.010327765718102455 0.002320304047316313 -0.027186574414372444 0.027613716199994087 0.029823264107108116 -0.055940087884664536 -0.0697374939918518 0.026811683550477028 -0.0498456135392189 -0.026148490607738495 0.016176920384168625 -0.006866659969091415 0.001339983893558383 -0.012719296850264072 -0.001860413234680891 0.0762903243303299 0.0570610947906971 -0.006894735619425774 0.028531253337860107 0.09586653858423233 -0.07380352169275284 -0.07604499161243439 0.039325229823589325 -0.05208604037761688 -0.020088041201233864 0.021730422973632812 -0.007324084173887968 0.04221215099096298 -0.01311760488897562 -0.01564343273639679 0.1097198948264122 -0.04469515010714531 -0.03585971146821976 -0.013453050516545773 4.9110924010165036e-05 -0.0713246688246727 0.0754600390791893 0.02348260022699833 -0.004155196249485016 0.05575485900044441 -0.06858718395233154 0.03463970497250557 0.009297430515289307 -0.0025450121611356735 0.04081018269062042 -0.11663680523633957 -0.030690547078847885 -0.004178457893431187 -0.019316038116812706 -0.005319131538271904 0.06253615766763687 -0.003609405132010579 0.0750761553645134 0.0739469900727272 -0.057747237384319305 0.015074759721755981 0.04115225374698639 0.03491907939314842 0.028196655213832855 0.08271586149930954 0.08008819818496704 0.018720325082540512 0.06862714141607285 -0.021497124806046486 0.016092544421553612 -0.050809383392333984 -0.05766171216964722 -0.019720960408449173 -0.021685771644115448 0.07303859293460846 -0.04725644737482071 -0.06187812238931656 -0.04875950515270233 0.017566848546266556 -0.13127993047237396 -0.022672254592180252 0.08083190023899078 -0.0005250121466815472 0.09104210883378983 0.06377101689577103 0.00045144432806409895 0.02806403674185276 0.051545411348342896 0.006852343212813139 -0.01872961036860943 0.0250754002481699 0.025077665224671364 -0.0006183445802889764 0.011805611662566662 0.056314677000045776 0.020070426166057587 -0.06148405000567436 0.0007111697923392057 0.06956379860639572 0.04096081852912903 -0.019054751843214035 -0.07834732532501221 0.019605709239840508 -0.072027787566185 -0.09687874466180801 -0.019509604200720787 -0.04959771782159805 -0.007232235744595528 0.038607995957136154 0.023595672100782394 0.04237499088048935 -0.009728079661726952 -0.024401681497693062 -0.03136889263987541 -0.03375093638896942 0.00102048902772367 -0.07334236055612564 -0.011945176869630814 -0.02930796705186367 -0.003917788155376911 0.0015671857399865985 -0.024301258847117424 -0.02078995108604431 -0.008792136795818806 -0.004260399844497442 0.02087859995663166 0.09695743024349213 0.07837662845849991 0.03668128326535225 0.008182956837117672 -0.044787727296352386 0.008503529243171215 -0.03321896865963936 -0.004621479660272598 -0.04784014821052551 0.007479620166122913 -0.08027785271406174 -0.003612007712945342 0.0016663686838001013 0.04600687697529793 -0.0009445312316529453 0.0017800491768866777 0.007246098946779966 -0.04023788869380951 -0.06753094494342804 0.03236621990799904 0.06041634827852249 -0.02841884084045887 0.050251707434654236 -0.0002692250127438456 0.05605383962392807 -0.006893743760883808 -0.026197703555226326 -0.039115212857723236 0.047177452594041824 0.02371608093380928 0.03316853567957878 0.046789348125457764 -0.04720648005604744 0.0851580798625946 0.0053190249018371105 0.009791653603315353 -0.07394536584615707 -0.008091877214610577 0.014917445369064808 0.021536163985729218 0.034922461956739426 0.057010069489479065 -0.018953803926706314 -0.015129948034882545 0.0011378256604075432 0.04519219696521759 -0.05702327564358711 -0.011731348931789398 -0.037203673273324966 -0.05819946527481079 0.05285888537764549 -0.02700556255877018 -0.0978979766368866 -0.029405158013105392 0.02687428705394268 -0.0037492357660084963 -0.060910921543836594 0.010498200543224812 0.03103572502732277 0.003943224903196096 -0.046673547476530075 0.001545773004181683 -0.019214028492569923 -0.10170818120241165 0.09737173467874527 -0.004826766438782215 -0.06126806139945984 -0.04216865450143814 -0.008608967065811157 0.03770890831947327 -0.019027890637516975 0.056182749569416046 0.06842512637376785 0.08320627361536026 0.03830302134156227 -0.01968110166490078 0.007244448643177748 -0.06289513409137726 -0.018772808834910393 -0.00259673991240561 0.03370673954486847 -0.03153071179986 -0.0513954684138298 0.01325319241732359 -0.06669009476900101 -0.016263989731669426 -0.014964899979531765 0.05909929424524307 -0.046010833233594894 -0.023570334538817406 -0.03861800953745842 0.02393978089094162 -0.022617164999246597 -0.04813116788864136 0.029929732903838158 -0.03233260661363602 0.05506300553679466 -0.0329258069396019 -0.0069819181226193905 0.030586063861846924 0.015795856714248657 0.02454857900738716 -0.005594160873442888 0.07317672669887543 -0.04125393182039261 -0.1006477028131485 -0.04870205372571945 -0.057342689484357834 -0.05763091519474983 -0.013351778499782085 -0.042375899851322174 -0.03727627173066139 0.07310104370117188 0.010362643748521805 -0.013699257746338844 -0.07782469689846039 -0.010453876107931137 -0.020503470674157143 -0.0699370801448822 -0.009470724500715733 -0.00734338816255331 -0.04829563573002815 -0.019730515778064728 -0.008540251292288303 -0.028100963681936264 -0.002372700022533536 -0.006385187618434429 0.004058363847434521 -0.032636046409606934 0.03853731229901314 -0.06778156757354736 -0.024421630427241325 -0.010416544042527676 -0.06317877024412155 0.04358208552002907 0.09586526453495026 0.08066637068986893 0.050166092813014984 0.02784314565360546 0.05406429246068001 0.10234944522380829 0.036483705043792725 -0.023730609565973282 0.0017728094244375825 -0.012063208967447281 -0.06481721252202988 0.038476210087537766 -0.03314760699868202 -0.024536248296499252 0.007403504103422165 -0.0071356832049787045 0.05987975001335144 0.028790656477212906 -0.05468751862645149 -0.006260258611291647 0.06802947074174881 -0.004055491182953119 0.06056126952171326 0.015554881654679775 -0.01904269866645336 0.02335108071565628 -0.021146822720766068 -0.027936581522226334 -0.05679258704185486 0.03783485293388367 0.00023219214926939458 0.05270572379231453 0.010366742499172688 -0.061569131910800934 0.004770999308675528 0.006548390258103609 0.09380478411912918 -0.08286892622709274 -0.011701909825205803 0.027662672102451324 0.013713037595152855 -0.13123759627342224 -0.018100209534168243 0.020784582942724228 -0.025241656228899956 -0.08494855463504791 0.01761854998767376 0.04668973758816719 -0.057682812213897705 -0.02663799561560154 -0.02729126438498497 -0.04391441494226456 -0.013183606788516045 0.029281025752425194 0.0017115178052335978 0.02568468451499939 -0.008837379515171051 -0.0405210442841053 0.0060652499087154865 0.01948912814259529 0.04551992192864418 -0.05407169461250305 0.00030727870762348175 -0.028041407465934753 0.06373655796051025 -0.04002247378230095 -0.046538691967725754 -0.047291770577430725 0.041110560297966 0.00842775497585535 -0.02967742830514908 -0.052473291754722595 -0.00668457243591547 0.00047149157035164535 -0.007425760384649038 -0.004651063121855259 -0.06463168561458588 -0.016065316274762154 -0.01782463677227497 -0.03967341408133507 -0.08401865512132645 -0.05622159317135811 0.028063936159014702 -0.06490965187549591 -0.017218327149748802 -0.021616583690047264 -0.03780817985534668 -0.012043110094964504 -0.010465702973306179 0.04418380931019783 0.0649874284863472 0.03309103474020958 -0.011969504877924919 0.064643494784832 0.03003847971558571 0.024118486791849136 0.023581570014357567 -0.02873327024281025 0.015459312126040459 -0.001998869702219963 -0.05568566173315048 0.025109561160206795 -0.0216362401843071 0.019258012995123863 -0.015363665297627449 -0.025384018197655678 0.025416143238544464 -0.01607346348464489 -0.00712156668305397 -0.044578369706869125 0.0598161481320858 -0.06689624488353729 0.017524510622024536 0.03879789263010025 -0.03552970290184021 -0.08207736909389496 -0.02943737804889679 -0.014604671858251095 -0.036377839744091034 0.05121229961514473 0.018829647451639175 0.017668887972831726 0.008732864633202553 -0.059882376343011856 -0.06533841788768768 -0.04332788288593292 -0.017960859462618828 0.013201138004660606 -0.006815695203840733 0.053445395082235336 0.00441991351544857 0.02627573162317276 -0.013660303317010403 -0.020514801144599915 0.01109160017222166 -0.05857997387647629 -0.02828091010451317 -0.008520890958607197 -0.042083367705345154 0.016736293211579323 0.020730920135974884 0.007526482455432415 -0.04797046259045601 -0.024229614064097404 -0.05910651013255119 0.07558473199605942 -0.027194393798708916 0.00488600879907608 0.01035546325147152 -0.023547440767288208 -0.012944874353706837 0.013774602673947811 -0.03464148938655853 -0.08259642869234085 0.029156822711229324 0.01677369326353073 0.00012279448856133968 -0.019665271043777466 0.038758452981710434 -0.024120330810546875 -0.09903885424137115 -0.030700549483299255 0.013907532207667828 -0.06222954019904137 0.023483887314796448 -0.0071096173487603664 -0.11706112325191498 -0.052649591118097305 -0.0013448981335386634 -0.0568460077047348 0.05998128280043602 -0.04172457754611969 0.015966640785336494 -0.003026840277016163 -0.015688955783843994 -0.035716328769922256 -0.06658779829740524 0.019003096967935562 -0.012780530378222466 -0.013397639617323875 -0.05757574737071991 0.049730923026800156 0.0030706264078617096 0.02819475345313549 0.0727633386850357 -0.03099106252193451 0.03688720241189003 0.05932643637061119 -0.016284802928566933 0.03165493905544281 0.0012205791426822543 -0.025815611705183983 0.08598586171865463 -0.0461466908454895 0.08502406626939774 -0.06521226465702057 0.1122126504778862 0.014735912904143333 0.01796138286590576 0.07710425555706024 0.06923144310712814 0.016934014856815338 0.02239915169775486 -0.06906925141811371 +0.03689461946487427 -0.009789944626390934 -0.03305753320455551 0.06579888612031937 -0.07353381812572479 -0.04408648982644081 -0.014685351401567459 0.027426576241850853 0.018404515460133553 -0.04694460332393646 -0.02007359080016613 0.009704327210783958 -0.0044874451123178005 0.0026380859781056643 0.04213469848036766 -0.018236620351672173 -0.06997733563184738 0.0031644694972783327 -0.009308799169957638 -0.013172999955713749 0.03181106597185135 -0.033823903650045395 -0.09498424828052521 0.06780664622783661 0.018231544643640518 0.03150762617588043 -0.048620350658893585 0.02224653959274292 -0.015451310202479362 0.047003354877233505 0.029050147160887718 -0.02532823756337166 0.04327679052948952 -0.08349897712469101 -0.07399433851242065 0.05457938089966774 -0.03451378643512726 0.11613423377275467 0.057150185108184814 -0.0015834657242521644 -0.08699926733970642 0.0303665641695261 -0.09443604946136475 -0.09159897267818451 0.026980463415384293 0.02521544322371483 0.012629833072423935 -0.011270565912127495 0.08012401312589645 0.030680416151881218 0.04947188124060631 -0.02009950764477253 -0.0419335700571537 -0.01139825489372015 -0.04023445397615433 0.028951233252882957 0.06825566291809082 -0.04018421471118927 -0.06036468595266342 0.015205160714685917 -0.11265596002340317 0.0027541914023458958 -0.01056298054754734 0.008020947687327862 -0.019291475415229797 0.0006575347506441176 -0.00011483782873256132 0.0341142863035202 -0.008001484908163548 -0.054296281188726425 0.016335491091012955 0.08822676539421082 -0.06311594694852829 -0.03155258670449257 0.008166502229869366 -0.05754145234823227 -0.04542386531829834 0.04138173162937164 -0.01177210547029972 0.034473419189453125 -0.003908831626176834 -0.04208728298544884 0.13670353591442108 -0.01832706481218338 -0.00957051757723093 -0.047856174409389496 -0.017584718763828278 -0.032187625765800476 0.02735656127333641 0.03387648984789848 0.008988872170448303 0.07589312642812729 -0.04800441861152649 0.021161630749702454 0.060913704335689545 0.02684061974287033 0.03052755631506443 -0.11240577697753906 -0.04075126349925995 0.024017632007598877 -0.03735281899571419 -0.01630871742963791 0.04114630073308945 0.008027677424252033 0.07712023705244064 -0.008633307181298733 -0.0618821382522583 0.032025162130594254 0.04490674287080765 0.02002992108464241 0.056964483112096786 0.06366022676229477 0.05006464943289757 0.033705610781908035 0.04313097521662712 -0.013294948264956474 0.030891725793480873 -0.045953419059515 -0.03547688573598862 0.003397677792236209 -0.03255352005362511 0.023666808381676674 0.020005611702799797 -0.07008952647447586 0.004120996687561274 -0.003306059865280986 -0.09889254719018936 -0.05520980805158615 -0.007934455759823322 -0.0665305033326149 0.09225636720657349 0.06121382117271423 -0.010468276217579842 0.003559721168130636 0.04025471955537796 0.04647327959537506 0.028933562338352203 0.07370209693908691 0.001956026302650571 -0.015212786383926868 0.011500337161123753 0.029336364939808846 -0.03509146347641945 -0.04100446775555611 0.08142552524805069 0.03706492856144905 -0.010151148773729801 -0.004689617548137903 -0.06638942658901215 -0.0018905154429376125 -0.052433133125305176 -0.02965734340250492 0.018842492252588272 -0.0598936527967453 0.00630490155890584 0.08519145101308823 0.06993956118822098 0.06580298393964767 -0.022402489557862282 -0.0015434235101565719 -0.037664368748664856 -0.016883453354239464 -0.008762981742620468 -0.07403209060430527 -0.06383811682462692 -0.03003934770822525 0.019470270723104477 0.015037310309708118 -0.03304002806544304 1.6700592823326588e-05 -0.029889855533838272 0.0045580375008285046 0.054043978452682495 0.02410445176064968 0.08586783707141876 0.007655306253582239 0.006926093716174364 -0.1145046204328537 0.019219914451241493 -0.039104267954826355 0.008918107487261295 -0.05627641826868057 -0.006488162558525801 -0.016226135194301605 -0.025977373123168945 0.001563330995850265 0.029056748375296593 0.007642883341759443 -0.0030900726560503244 0.005250905640423298 -0.07853198796510696 -0.06344623863697052 0.05562928691506386 0.06107471138238907 -0.021263903006911278 0.0396491177380085 -0.008489521220326424 0.04416268691420555 -0.011510741896927357 -0.009143310599029064 -0.07018633931875229 0.04443911463022232 -0.016803685575723648 0.07323221862316132 0.056884750723838806 -0.035171497613191605 0.045257531106472015 0.0028112661093473434 0.02154245413839817 -0.05007021874189377 -0.0014901241520419717 0.002134366426616907 -0.007449678611010313 -0.003802388906478882 0.07874546945095062 -0.024309704080224037 -0.039792731404304504 0.030772825703024864 0.08213109523057938 -0.07505181431770325 -0.009217049926519394 -0.006364777684211731 -0.0857287272810936 -0.007427911274135113 -0.039119213819503784 -0.07556789368391037 -0.015475384891033173 0.06257791072130203 -0.04998532310128212 0.0048299068585038185 -0.013527781702578068 0.017737174406647682 -0.024804838001728058 -0.04836028441786766 0.0034808318596333265 -0.016508495435118675 -0.058168429881334305 0.09801874309778214 -0.019695410504937172 -0.07611263543367386 -0.05540009215474129 0.03409169986844063 0.05386319011449814 -0.009329498745501041 0.028980916365981102 0.04415089264512062 0.04007997736334801 0.02586844377219677 -0.016310472041368484 0.011009669862687588 -0.0408155657351017 -0.04510832205414772 0.01667073182761669 0.07298580557107925 -0.01204090379178524 0.00852564163506031 -0.001235012081451714 -0.023678958415985107 0.028911443427205086 0.03261469304561615 0.007956395857036114 -0.010729272849857807 -0.018483497202396393 -0.025728996843099594 0.04105587303638458 -0.029241185635328293 -0.01527368649840355 0.03341655805706978 -0.03259485587477684 0.052642643451690674 -0.08733954280614853 -0.055786214768886566 0.014170806854963303 0.028011448681354523 0.015457631088793278 -0.028750717639923096 0.03887840732932091 -0.016152357682585716 -0.091190405189991 -0.03327420353889465 -0.09700195491313934 -0.012800654396414757 -0.022160153836011887 0.009894735179841518 -0.0498897023499012 0.08503250777721405 0.03791636973619461 -0.03343912214040756 -0.06804854422807693 -0.028957678005099297 -0.013420509174466133 -0.08984864503145218 0.0026046980638056993 0.007485860958695412 -0.079757921397686 -0.06766798347234726 0.054859403520822525 -0.02304091490805149 -0.0206370297819376 0.0017819629283621907 -0.05251944437623024 -0.08060352504253387 0.025148028507828712 -0.02048504166305065 -0.06766798347234726 0.017090916633605957 -0.08702477067708969 0.03380541503429413 0.10298529267311096 0.009486538358032703 0.023117896169424057 0.014769715256989002 0.0321543850004673 0.07964245229959488 -0.040121279656887054 -0.004050503019243479 -0.01696883700788021 -0.04753992706537247 -0.06791375577449799 0.0620293952524662 -0.044333573430776596 0.022227417677640915 -0.02584630623459816 0.005983810871839523 0.06868954747915268 0.008577701635658741 -0.01147457491606474 -0.020377377048134804 0.008128785528242588 0.003478436265140772 0.04133250564336777 0.0017679883167147636 0.015364361926913261 -0.022964999079704285 -0.06320392340421677 -0.05907978117465973 -0.04132021963596344 0.02581779658794403 0.010705425404012203 0.03932267799973488 0.00684514781460166 -0.05507679283618927 0.01564999856054783 -0.0010265731252729893 0.09002736955881119 -0.07902351021766663 0.0354594960808754 0.048124171793460846 0.009474343620240688 -0.07761861383914948 -0.011148315854370594 0.0839875191450119 -0.06624250113964081 -0.07060661166906357 0.001881227595731616 0.015464513562619686 -0.0450017973780632 -0.0016525546088814735 0.020055726170539856 -0.05418568104505539 -0.00436517596244812 0.027620546519756317 0.04199755936861038 0.0038026340771466494 -0.0018742138054221869 -0.019276631996035576 0.014684473164379597 -0.020703688263893127 0.015246146358549595 -0.011369489133358002 -0.0009459634311497211 -0.03942827880382538 0.06000302731990814 -0.06346666067838669 0.004484433680772781 -0.060068000108003616 0.0749303326010704 0.001300001866184175 -0.03775457292795181 -0.026919860392808914 -0.0352700799703598 -0.05851268768310547 0.003701062873005867 0.044547684490680695 -0.057781871408224106 -0.05400937795639038 -0.05173422396183014 -0.05217153578996658 -0.08215320110321045 -0.005439813248813152 0.021661346778273582 -0.04365695267915726 0.02336316928267479 -0.06802382320165634 -0.0005025292630307376 0.03918399289250374 0.0016740723513066769 -0.02227034419775009 0.03300582244992256 0.042955026030540466 -0.02034050039947033 0.019161337986588478 -0.04118391498923302 0.03112855739891529 0.02525535598397255 -0.008046284317970276 0.0001011350832413882 0.029423726722598076 -0.06484737992286682 0.02388639561831951 -0.042360659688711166 -0.017946189269423485 -0.0018048291094601154 -0.04055493697524071 0.007796057034283876 0.021889328956604004 0.0335175022482872 -0.019194884225726128 0.016088129952549934 -0.057072367519140244 -0.016876498237252235 0.024220915511250496 -0.04196606203913689 -0.07698533684015274 -0.0491504929959774 0.005281645338982344 -0.0156889408826828 0.030994560569524765 0.004270449746400118 0.03954486921429634 0.0717114508152008 -0.04281499609351158 -0.035669632256031036 -0.0015212246216833591 -0.03577854856848717 0.034002870321273804 -0.03719340264797211 0.041429001837968826 0.01484858337789774 -0.018489448353648186 0.028781214728951454 0.031861647963523865 -0.0027181371115148067 -0.050288986414670944 -0.0201080571860075 0.015784921124577522 -0.014825724996626377 0.011393208056688309 -0.028779199346899986 0.011746125295758247 -0.03138304501771927 -0.02933058701455593 -0.022586120292544365 0.08718990534543991 0.023507848381996155 -0.008190651424229145 0.09293781220912933 -0.02424636483192444 0.045266181230545044 0.006144452374428511 -0.04785935953259468 -0.07422346621751785 -0.0408039316534996 -0.06520860642194748 0.032564982771873474 0.04151550680398941 -0.01742377132177353 0.008771384134888649 -0.035920001566410065 0.0004234600346535444 -0.02775215171277523 -0.08254066854715347 0.02034359984099865 -0.0065168170258402824 -0.02667796052992344 -0.06851892173290253 -0.025880012661218643 -0.05468770116567612 0.07021711021661758 0.03583681955933571 0.0584743395447731 -0.008664336986839771 -6.125695654191077e-05 -0.015928372740745544 -0.017549637705087662 0.021842528134584427 -0.0018269382417201996 -0.04715150222182274 0.009563104249536991 0.09065120667219162 -0.029518762603402138 0.04374527186155319 0.03267757594585419 -0.00787531677633524 0.04251473397016525 0.04813515022397041 -0.05569550395011902 0.021414879709482193 -0.01040409505367279 -0.0577956922352314 0.06854864209890366 -0.05449645221233368 0.08439623564481735 -0.047655947506427765 0.09181243181228638 -0.010334741324186325 -0.011201180517673492 0.09871142357587814 0.08985117077827454 -0.0023923255503177643 0.029994679614901543 -0.04097658395767212 +0.0037766676396131516 -0.03528663516044617 -0.03083331137895584 0.03573618456721306 -0.08114873617887497 -0.04415154829621315 0.01626487821340561 0.03244591876864433 -0.00459632184356451 -0.03548472002148628 -0.0677676573395729 0.03938979282975197 0.008476904593408108 0.03981216624379158 0.031027082353830338 -0.048045385628938675 -0.06374285370111465 -0.0022792399395257235 -0.016990352421998978 -0.0357758067548275 0.0193954948335886 -0.01875467598438263 -0.06704656034708023 0.07077495753765106 0.03260710835456848 0.00839230790734291 -0.04144778475165367 0.003640925046056509 0.025224069133400917 0.011437800712883472 0.07063370198011398 -0.042418140918016434 0.006461961194872856 -0.06552361696958542 -0.08142969012260437 0.051081933081150055 -0.027617597952485085 0.12779530882835388 0.00721342908218503 0.011957066133618355 -0.04381735622882843 0.00914456695318222 -0.057260990142822266 -0.04153618961572647 0.02173852175474167 -0.02745753712952137 0.009651822969317436 -0.016771607100963593 0.024193942546844482 0.00705826748162508 0.06653077155351639 0.018165959045290947 -0.018562357872724533 -0.03810744360089302 -0.05359407886862755 0.017701560631394386 -0.0015294270124286413 -0.03215302899479866 -0.047150008380413055 0.016677245497703552 -0.09320899844169617 0.002167815575376153 0.009423423558473587 0.002111377427354455 -0.0155847929418087 0.0049186632968485355 -0.012820343486964703 0.08317999541759491 -0.017790144309401512 -0.03717753663659096 0.022799722850322723 0.054821521043777466 -0.03696000203490257 -0.03495265915989876 0.03583541512489319 -0.04870069399476051 0.008383159525692463 0.0291399285197258 -0.005647457670420408 -0.007070257794111967 -0.004099621437489986 -0.015276315622031689 0.12442555278539658 -0.012365717440843582 -0.04644342139363289 -0.034120649099349976 -0.008101865649223328 -0.04211272671818733 0.034630727022886276 0.015575550496578217 0.04152493551373482 0.0829986184835434 -0.053028278052806854 0.04664112627506256 0.01672167330980301 -0.02341047115623951 0.01681869849562645 -0.15175743401050568 -0.0393436998128891 0.016634613275527954 0.012573241256177425 -0.01876993291079998 0.07386244833469391 -0.047726113349199295 0.045987680554389954 0.049109768122434616 -0.08594311028718948 0.013188179582357407 0.028321020305156708 0.004545231349766254 0.049500398337841034 0.10641832649707794 0.03525964915752411 0.09816458821296692 0.07990972697734833 0.002249916084110737 0.0059064822271466255 -0.04378931224346161 -0.05800633504986763 -0.014425233006477356 0.0009970724349841475 0.06517887115478516 0.012049769051373005 -0.06946724653244019 -0.027945412322878838 0.004414617083966732 -0.12947268784046173 0.021729568019509315 0.0652690976858139 -0.007871889509260654 0.0854463130235672 0.04475947469472885 0.016356613487005234 0.03600511699914932 0.04717959463596344 0.010151505470275879 0.011825173161923885 0.014509934931993484 0.010006982833147049 -0.045031093060970306 -0.043742407113313675 0.05482589453458786 0.04240591451525688 -0.010869220830500126 0.03897971287369728 0.05259627848863602 0.002926236018538475 -0.006142914295196533 -0.011134201660752296 -0.017160335555672646 -0.08465860038995743 -0.05942448973655701 0.02968706004321575 -0.06873201578855515 0.04310208559036255 0.03737189620733261 0.07278940826654434 0.038411736488342285 -0.017274770885705948 -0.0016183708794414997 -0.03356432914733887 -0.022003445774316788 0.010851913131773472 -0.0724576860666275 0.018674837425351143 0.027547650039196014 -0.01914292760193348 0.0015155774308368564 -0.04267187789082527 -0.01801641285419464 -0.01596950553357601 -0.034922949969768524 0.02959900163114071 0.07573401182889938 0.01787605695426464 -0.02721545472741127 0.035551320761442184 -0.06798114627599716 -0.005300261080265045 -0.009716430678963661 0.01741734892129898 -0.05795792490243912 0.03182923048734665 -0.06913243979215622 -0.04778791591525078 -0.013603241182863712 -0.0018906022887676954 -0.04735349491238594 -0.009054101072251797 -0.04112385958433151 -0.05349794775247574 -0.05745001509785652 0.030564531683921814 0.06357232481241226 -0.021881788969039917 0.05711865425109863 0.018954811617732048 0.06558937579393387 0.017393626272678375 0.00401132320985198 -0.08724141865968704 0.0021496948320418596 -0.008736995048820972 0.031054317951202393 0.029452862218022346 -0.07201194018125534 0.08213566988706589 0.027223140001296997 0.058684341609478 -0.08681036531925201 -0.01194101944565773 0.03703383356332779 -0.01091776043176651 0.07338862121105194 0.08600103110074997 -0.04162681847810745 -0.032104816287755966 0.02629394456744194 0.034945711493492126 -0.07352295517921448 -0.0028608867432922125 0.010035128332674503 -0.0482371561229229 -0.017291491851210594 -0.03143179789185524 -0.08093041926622391 -0.03284015506505966 0.01831991970539093 -0.01278790831565857 -0.03778602555394173 -0.04066629707813263 0.05591527000069618 -0.002938556019216776 -0.028377514332532883 -0.010712401010096073 0.013478259555995464 -0.049752116203308105 0.06486544758081436 -0.022159548476338387 -0.10061783343553543 -0.06363977491855621 -0.014344324357807636 0.022852616384625435 0.03933937847614288 0.021362194791436195 0.0332736037671566 0.09843231737613678 0.029214899986982346 -0.06668738275766373 0.007700562477111816 -0.016596674919128418 -0.022966137155890465 0.0056474413722753525 0.057380467653274536 -0.04061054065823555 -0.058140870183706284 0.01289015356451273 -0.07292458415031433 -0.01944315992295742 -0.011834083124995232 0.04845018312335014 -0.0014015575870871544 -0.07235456258058548 -0.01775754801928997 0.02523176558315754 -0.0014361325884237885 -0.01851409673690796 -0.03166680783033371 -0.034947242587804794 0.08418764173984528 -0.06317237764596939 -0.05098075047135353 -0.011270705610513687 0.005342189688235521 -0.002797051565721631 -0.06064912676811218 0.04142328351736069 -0.03606775403022766 -0.04068330302834511 -0.0146676329895854 -0.0491422563791275 -0.06494029611349106 -0.029888799414038658 0.002753081265836954 -0.02277964912354946 0.10173582285642624 0.0013030500849708915 -0.049590595066547394 -0.00397598696872592 -0.04336349666118622 -0.004770907107740641 -0.03657836839556694 0.012779703363776207 -0.011294588446617126 -0.05159097537398338 -0.0023162115830928087 0.04170557111501694 -0.023145467042922974 -0.011709986254572868 0.07535645365715027 9.719527588458732e-05 -0.03611128404736519 0.05077815428376198 -0.032739024609327316 -0.030696632340550423 -0.02504858560860157 -0.08651009202003479 0.01878279633820057 0.08614612370729446 0.02222011424601078 0.03887493535876274 0.029960697516798973 0.027956634759902954 0.08172955363988876 -0.005118721164762974 -0.038143258541822433 0.036244675517082214 -0.05823684111237526 -0.07945875823497772 0.06346169859170914 -0.01641097106039524 0.017056291922926903 -0.020849423483014107 0.007138127461075783 0.05657048150897026 -0.0016595785273239017 -0.005204035900533199 -0.02981697767972946 0.014279207214713097 -0.004259643144905567 0.009843643754720688 -0.003930542152374983 -0.0058617671020329 -0.005690522957593203 -0.061730340123176575 -0.1029522716999054 -0.049469321966171265 0.0506022609770298 0.011679728515446186 0.06813821941614151 -0.02409982495009899 -0.07047845423221588 0.018543485552072525 -0.0005199009319767356 0.1004096046090126 -0.0751325935125351 0.0050680553540587425 0.0079458337277174 0.045770421624183655 -0.0734398365020752 0.005613062996417284 0.01977504789829254 -0.04719587415456772 -0.07174373418092728 -0.00336312223225832 0.04413497820496559 -0.058397326618433 -0.018163051456212997 -0.0005216897116042674 -0.02358906902372837 0.0342971533536911 0.027136001735925674 -0.00925587397068739 0.06450708210468292 0.03143232315778732 -0.018085118383169174 0.04733025282621384 0.03548547998070717 0.03185954689979553 -0.04601339250802994 0.04437440261244774 -0.02938561700284481 0.11896965652704239 -0.002621722873300314 -0.028439458459615707 -0.09153547883033752 0.019075067713856697 -0.019855212420225143 0.0005206488422118127 -0.07414206117391586 -0.015151442028582096 0.0062600430101156235 0.016046306118369102 0.020688500255346298 -0.084596186876297 -0.006246240809559822 -0.05483311042189598 -0.06428005546331406 -0.06279823184013367 -0.055915914475917816 0.03225955367088318 -0.04339636117219925 0.0360872782766819 -0.04805067181587219 -0.013488145545125008 0.02734241634607315 -0.023962486535310745 0.008372521959245205 0.022320501506328583 0.04412367567420006 -0.02128678746521473 0.06338781863451004 -0.009049644693732262 0.05236516520380974 -0.017372390255331993 -0.037276335060596466 0.06203703209757805 0.060728076845407486 -0.03348029404878616 0.04284784942865372 -0.04889887943863869 0.011053805239498615 -0.015121332369744778 -0.022960085421800613 0.009830212220549583 0.02842782996594906 -0.029345225542783737 -0.06377172470092773 0.023137956857681274 -0.07119414955377579 -0.049893490970134735 0.045895062386989594 -0.05306868255138397 -0.07695100456476212 -0.04387296363711357 -0.03893909230828285 -0.02777125872671604 0.03741980344057083 0.01207214780151844 0.04986058175563812 0.04002120718359947 -0.031927209347486496 -0.005186344031244516 0.021477699279785156 -0.04594572260975838 0.0009585974621586502 -0.012466835789382458 0.06152626872062683 0.0286308191716671 0.0174171831458807 0.044237878173589706 -0.014327085576951504 0.02728063240647316 -0.06983362138271332 -0.004265477880835533 0.009327428415417671 -0.02916034869849682 -0.0031551753636449575 0.03632713109254837 0.031317856162786484 -0.06691189110279083 -0.007962021976709366 -0.06713271141052246 0.05057181045413017 0.018469925969839096 0.05539952963590622 0.019292693585157394 -0.04019835591316223 0.0033318737987428904 -0.012324529699981213 0.009640373289585114 -0.0824342742562294 0.022007431834936142 -0.06480805575847626 0.00836145505309105 -0.018134858459234238 0.006664304528385401 0.033505622297525406 -0.10604789108037949 0.014012421481311321 -0.011572184972465038 -0.03412175923585892 0.021912498399615288 0.019383126869797707 -0.022797459736466408 -0.05157775804400444 -0.005553259048610926 -0.05813750624656677 0.052675262093544006 0.016408409923315048 0.030710458755493164 -0.03780650347471237 -0.020810933783650398 0.006826036609709263 0.014345834031701088 0.03350261598825455 -0.03193214535713196 -0.08784497529268265 0.006678740028291941 0.10343201458454132 -0.023816822096705437 0.017690634354948997 0.052145954221487045 -0.018134603276848793 0.0339001789689064 0.0021052390802651644 -0.03682170808315277 0.02834627777338028 -0.014706706628203392 0.001329049002379179 0.04757988825440407 -0.04969208687543869 0.06635654717683792 -0.040282074362039566 0.08038730174303055 0.008424127474427223 -0.00262811197899282 0.10399208962917328 0.06198018789291382 0.013637261465191841 0.042220789939165115 -0.03858012333512306 +0.025477338582277298 -0.039370302110910416 0.02089177444577217 -0.015834517776966095 -0.07135546952486038 -0.042540840804576874 0.04473195597529411 0.006422932259738445 0.007199607323855162 -0.021329812705516815 -0.03495839238166809 -0.001494969823397696 0.015982089564204216 0.01710551045835018 0.04005417972803116 -0.04466450214385986 -0.040693722665309906 0.019915426149964333 -0.04814482107758522 -0.019040951505303383 0.045250169932842255 -0.0014506917214021087 -0.043574489653110504 0.03023471310734749 -0.019855549558997154 -0.006547365803271532 -0.06148844212293625 0.010758754797279835 -0.006519792601466179 0.0011318374890834093 0.07630430907011032 -0.01325696799904108 0.04003902152180672 -0.05980173498392105 -0.03243749216198921 0.02107928693294525 -0.04293267801403999 0.09447038173675537 0.008833540603518486 -0.028609350323677063 -0.030331850051879883 0.009701071307063103 -0.046025440096855164 -0.014427275396883488 0.04326445609331131 0.009576407261192799 0.024773286655545235 -0.01778292842209339 0.025801794603466988 0.00828295387327671 0.07533975690603256 0.03968008980154991 -0.03328187018632889 -0.03173850104212761 -0.009384524077177048 -0.0026429174467921257 0.050958842039108276 -0.06501975655555725 -0.0806959792971611 0.06328736245632172 -0.09475293010473251 0.014611349441111088 0.013512550853192806 -0.019893024116754532 -0.009736238978803158 -0.048021070659160614 -0.022293120622634888 0.08075954765081406 -0.006944002117961645 -0.020842043682932854 0.028997894376516342 0.10627976804971695 -0.0725422203540802 -0.08808838576078415 0.07553550601005554 -0.041452351957559586 0.026427512988448143 0.04279386252164841 -0.04717385396361351 -0.012341598980128765 -0.06518132984638214 -0.05458242446184158 0.10421115905046463 -0.05863034725189209 -0.0622573122382164 -0.07124128937721252 -0.0006620963686145842 -0.052067939192056656 0.0473371259868145 0.046932727098464966 0.01741645112633705 0.02583232894539833 -0.04562436044216156 0.051154088228940964 0.007070700637996197 -0.023347312584519386 -0.0014737910823896527 -0.10467642545700073 -0.045415040105581284 -0.007227292750030756 0.034927867352962494 -0.019286472350358963 0.055007342249155045 0.007611632347106934 0.03833513334393501 0.05865898355841637 -0.049546148627996445 0.04104900360107422 0.017878349870443344 0.07701773196458817 0.003864484606310725 0.08134371042251587 0.05630894750356674 0.05172407999634743 0.035991840064525604 -0.01150534488260746 -0.016370059922337532 -0.048427339643239975 0.0058630467392504215 0.011528009548783302 0.030872253701090813 0.019375337287783623 -0.005614998750388622 -0.0635400265455246 -0.03447785973548889 0.06398548185825348 -0.10819436609745026 -0.019964976236224174 0.06487998366355896 -0.037656020373106 0.10724764317274094 0.04317593201994896 -0.038040343672037125 0.03842306137084961 0.057172127068042755 0.017781812697649002 -0.003162299282848835 0.018723513931035995 -0.02868187613785267 -0.08118237555027008 -0.02993905544281006 0.055773552507162094 0.004903675056993961 -0.042735371738672256 0.0351739227771759 0.04236852750182152 0.06247866526246071 -0.057424504309892654 -0.06441441178321838 0.013771343044936657 -0.09094952791929245 -0.09284725785255432 0.0042388527654111385 -0.0644650012254715 0.004680676851421595 0.015594725497066975 -0.006513991393148899 0.03277895972132683 0.009003503248095512 -0.012127591297030449 -0.054694708436727524 -0.0577830970287323 -0.07313679158687592 -0.05191750079393387 0.0031277902889996767 -0.0019314937526360154 0.04126753658056259 0.0103029515594244 -0.0393407829105854 -0.06030290946364403 0.01345754973590374 0.0005917911184951663 0.017111357301473618 0.03934914246201515 0.03303252160549164 -0.0015810331096872687 0.016779020428657532 -0.03579774126410484 -0.0017601882573217154 -0.03797226771712303 0.02065381035208702 -0.01664324663579464 0.04068055748939514 -0.0708184614777565 0.017666080966591835 -0.017428843304514885 0.02574867755174637 -0.07051067799329758 -0.017653705552220345 -0.04929925501346588 -0.029746195301413536 -0.07855448126792908 0.0267194714397192 0.07526732981204987 -0.031149808317422867 -0.0030899641569703817 -0.02013000287115574 0.037078093737363815 -0.023177897557616234 -0.026654701679944992 -0.04450313374400139 0.04273396357893944 -0.005139884073287249 0.010368738323450089 -0.029218070209026337 -0.08722137659788132 0.05107233673334122 -0.01888812519609928 0.03160768002271652 -0.05091007426381111 0.02446695603430271 0.02353280410170555 -0.013108080253005028 0.0072809141129255295 0.06343600898981094 -0.04220367968082428 0.004251721315085888 -0.007078062742948532 0.09332401305437088 -0.019871456548571587 0.04406328499317169 0.00246185390278697 -0.08210841566324234 0.008233784697949886 -0.05540591478347778 -0.0998670905828476 -0.01692487858235836 0.011748719960451126 -0.025112207978963852 -0.028503606095910072 -0.028757369145751 0.010313606821000576 0.0028329864144325256 -0.00750725669786334 0.02652391791343689 0.018858255818486214 -0.07286936789751053 0.07550505548715591 -0.0006042924942448735 -0.0490758903324604 -0.034036777913570404 -0.03221919760107994 0.045031700283288956 -0.001779181300662458 0.028264785185456276 0.007417794317007065 0.09608612954616547 0.022318782284855843 -0.023849304765462875 -0.0015887734480202198 0.001409337273798883 -0.04645316302776337 -0.001419705688022077 0.02263396605849266 -0.06474193930625916 -0.03023575060069561 0.026920732110738754 -0.04980731010437012 -0.0014111086493358016 0.00042498059337958694 0.02551928348839283 -0.013510869815945625 -0.03595270588994026 0.004997629206627607 0.04543645307421684 -0.013166243210434914 -0.056904468685388565 0.013465428724884987 -0.006300073582679033 0.0648512914776802 0.006925210822373629 -0.022305551916360855 0.017549123615026474 -0.022522414103150368 0.03914300724864006 -0.06880148500204086 0.03371012583374977 -0.018920186907052994 -0.09503057599067688 -0.038931433111429214 -0.04544192552566528 -0.07972422987222672 0.009406371042132378 -0.03458646312355995 -0.039830565452575684 0.06476344913244247 0.007688834797590971 -0.05856676399707794 -0.0634334608912468 -0.056436795741319656 -0.016913339495658875 -0.03191174194216728 -0.042076531797647476 -0.0316033810377121 -0.04618425667285919 -0.0031140956562012434 0.048707593232393265 -0.06297680735588074 -0.029835248365998268 -0.0005888406885787845 0.00591088505461812 -0.052069395780563354 0.04714798927307129 -0.04890169948339462 -0.0034415749832987785 -0.007536239456385374 -0.05350203439593315 0.03995385766029358 0.08896857500076294 0.0597228929400444 0.050224192440509796 0.009701820090413094 -0.003197501180693507 0.10906796157360077 0.0013529073912650347 -0.05555029213428497 -0.014745175838470459 -0.051136601716279984 -0.08377667516469955 0.0009952967520803213 -0.04558531939983368 -0.028945857658982277 0.000664390972815454 -0.0023857231717556715 0.05754565820097923 -0.031803641468286514 -0.011311547830700874 -0.021729687228798866 0.03769805282354355 -0.028340844437479973 -0.02188703790307045 0.009807415306568146 0.02879713475704193 -0.0031136195175349712 -0.05403503403067589 -0.04412390664219856 -0.007530387956649065 0.0323503240942955 -0.02837018482387066 0.06222805008292198 -0.06218435987830162 -0.057408154010772705 -0.01474571693688631 0.037807341665029526 0.10867280513048172 -0.028236614540219307 0.032404765486717224 0.032865747809410095 0.015927676111459732 -0.07920634746551514 0.03597037121653557 0.02586122788488865 -0.005444462411105633 -0.01843130774796009 0.016619941219687462 0.05202986299991608 -0.05502935126423836 -0.0035437874030321836 0.009366762824356556 -0.010533593595027924 -0.01403333991765976 0.022552713751792908 -0.009683437645435333 0.04366869851946831 -0.03888869658112526 0.019814101979136467 -0.0023032589815557003 0.028279347345232964 0.05018434301018715 -0.012265590950846672 0.016102472320199013 -0.029438965022563934 0.057106420397758484 -0.01776600070297718 -0.04803017899394035 -0.07080523669719696 0.0660143494606018 -0.025039933621883392 -0.0152296032756567 -0.02199799381196499 0.0027157652657479048 -0.002604434732347727 -0.0008154841489158571 -2.5561068468960002e-05 -0.07636116445064545 0.048110924661159515 -0.024197760969400406 -0.06206541508436203 -0.08958107233047485 -0.058620233088731766 -0.00385095551609993 -0.05026210844516754 -0.025671623647212982 -0.0061386749148368835 0.024876846000552177 -0.0005184956826269627 -0.023743899539113045 0.005777797661721706 0.06006108224391937 0.033776186406612396 0.005693863146007061 0.055399827659130096 0.03143120929598808 0.049047667533159256 -0.018709596246480942 -0.06271478533744812 0.03181973844766617 0.021178703755140305 -0.0601467601954937 0.030780069530010223 -0.04119620472192764 0.03245449811220169 -0.015771297737956047 0.024850280955433846 0.01391240768134594 -0.035575397312641144 -0.016443924978375435 -0.03852308541536331 0.0866134762763977 -0.07245754450559616 -0.05498390272259712 0.05707301199436188 -0.0577240027487278 -0.0765007734298706 0.01829158142209053 -0.029153624549508095 -0.038640573620796204 0.03577012941241264 -0.051183536648750305 0.0411546528339386 0.0004644088912755251 -0.03357592597603798 -0.040052060037851334 -0.017635317519307137 -0.049580298364162445 0.03183791786432266 0.015609031543135643 0.11093689501285553 0.024497373029589653 -0.01669522374868393 0.0051744673401117325 -0.03025946021080017 0.04363342747092247 -0.13668473064899445 0.01639103703200817 -0.07942033559083939 0.021731335669755936 -0.020022446289658546 -0.03538540005683899 0.0583631694316864 -0.0638037696480751 -0.0026583357248455286 -0.044063083827495575 0.08033966273069382 -0.0332157239317894 -0.007891693152487278 0.020243613049387932 -0.006878538988530636 -0.02599656768143177 0.017166849225759506 -0.052623070776462555 -0.07002866268157959 0.015023562125861645 -0.044833600521087646 0.04198068380355835 0.043325114995241165 0.004050794988870621 0.010747474618256092 -0.0575866624712944 -0.02960793673992157 0.03593515604734421 -0.03896321728825569 0.02954634092748165 0.036635685712099075 -0.061660829931497574 -0.061029378324747086 0.008903422392904758 -0.03192131966352463 0.05997229367494583 -0.008071305230259895 0.038760874420404434 -0.025409908965229988 0.001881696400232613 -0.006416020914912224 -0.013730989769101143 0.05520026385784149 -0.0023498605005443096 -0.10279015451669693 0.00041578919626772404 0.07391613721847534 -0.05834948271512985 0.020510151982307434 0.06503444910049438 -0.04626207426190376 0.0341653935611248 0.026614580303430557 -0.05558840185403824 0.01721913553774357 -0.02714480645954609 0.015253799967467785 0.012805934064090252 -0.10798240453004837 0.09206321835517883 -0.055068790912628174 0.07734650373458862 0.02181006222963333 -0.007681171875447035 0.10013345628976822 0.07018665969371796 -0.012074708007276058 -0.03365832567214966 -0.09036075323820114 +0.04974745959043503 -0.012028916738927364 0.001579237636178732 0.042157165706157684 -0.06911596655845642 -0.05529918149113655 -0.03842950612306595 -0.008058994077146053 0.023892289027571678 -0.02761896140873432 -0.03131391853094101 -0.03000405803322792 -0.016371218487620354 0.01500878855586052 0.05694463104009628 -0.024680597707629204 -0.07502221316099167 0.026043152436614037 -0.04372924566268921 0.01882767677307129 0.061849046498537064 -0.011212963610887527 -0.0793847143650055 0.044934339821338654 -0.02666858583688736 0.048175934702157974 -0.05027827247977257 0.018289128318428993 -0.015029914677143097 -0.006068319547921419 0.04266536608338356 -0.001678332919254899 0.024936288595199585 -0.08087190985679626 -0.04257550090551376 0.044227007776498795 -0.006283941678702831 0.10072973370552063 0.04108654707670212 -0.03825054317712784 -0.07475167512893677 0.010792586952447891 -0.09166333824396133 -0.0902126282453537 0.01795578934252262 -0.020262422040104866 0.024257991462945938 -0.020246844738721848 0.03736087679862976 0.047129180282354355 0.07710570096969604 -0.015879442915320396 -0.0495029017329216 -0.019644442945718765 -0.027828490361571312 0.004261726513504982 0.05672827363014221 -0.0777943879365921 -0.04342751204967499 0.043009914457798004 -0.08480983227491379 0.0018184840446338058 -0.008755248039960861 0.029320169240236282 -0.037921883165836334 -0.03290485218167305 0.023042405024170876 0.07266382873058319 0.010325589217245579 -0.03959719091653824 0.005349467042833567 0.07633379101753235 -0.06291856616735458 -0.03985942527651787 0.018502309918403625 -0.080299511551857 -0.04269622266292572 0.0371205173432827 -0.0019760297145694494 -0.002896880265325308 0.012886208482086658 -0.04522355645895004 0.13196100294589996 -0.017643973231315613 -0.05541079863905907 -0.05218637362122536 -0.008410539478063583 -0.035309337079524994 0.01669389009475708 0.05286845564842224 0.010521607473492622 0.0867539495229721 -0.039323244243860245 0.056422315537929535 0.02263239398598671 0.052431318908929825 0.03201071545481682 -0.12227655202150345 -0.03969084843993187 -0.02972775511443615 -0.009488849900662899 -0.010327656753361225 0.029483167454600334 0.007713806815445423 0.05531725287437439 -0.005007381085306406 -0.06990979611873627 -0.011787659488618374 0.003587619634345174 0.040933649986982346 0.05219632014632225 0.06333227455615997 0.06840824335813522 0.08190786838531494 0.049523696303367615 -0.008563938550651073 0.03236335143446922 -0.06122448295354843 -0.026866722851991653 0.022445393726229668 0.006699270568788052 0.01440069917589426 -0.008581027388572693 -0.05533084645867348 -0.0034747424069792032 0.02121463045477867 -0.10500681400299072 -0.04353317990899086 -0.0011909001041203737 -0.03799765184521675 0.10296440124511719 0.07752038538455963 -0.039904315024614334 -0.02350561134517193 0.0617036297917366 0.03652756288647652 0.0017120020929723978 0.03185693547129631 -0.015269177965819836 -0.01830974780023098 -0.009824848733842373 0.033682044595479965 -0.017464064061641693 -0.04930737987160683 0.0578855536878109 0.033115558326244354 0.017792973667383194 -0.026006236672401428 -0.07148587703704834 0.0019590153824537992 -0.08576125651597977 -0.026756247505545616 0.022477462887763977 -0.10193245112895966 0.01993606984615326 0.05417095497250557 0.03844725340604782 0.05837201699614525 -0.027420252561569214 -0.02417517453432083 -0.04319207742810249 -0.054951947182416916 0.00011973157234024256 -0.08443926274776459 -0.060110703110694885 -0.043101850897073746 0.009065925143659115 0.0020756933372467756 -0.01889035664498806 -0.038698192685842514 -0.013480393216013908 0.0005587379564531147 0.04526420310139656 0.048214804381132126 0.06309577077627182 -0.014169483445584774 -0.014639859087765217 -0.05245882645249367 0.011639785021543503 -0.026976199820637703 0.004633202683180571 -0.03219812735915184 -0.011849019676446915 -0.07240413129329681 -0.021420247852802277 0.013325558044016361 0.0010124279651790857 -0.0008820206858217716 -0.0013450321275740862 -0.0006517188739962876 -0.07121746242046356 -0.05109846219420433 0.05565238371491432 0.09409105777740479 -0.02913518436253071 0.0467662438750267 -0.03810161352157593 0.05485016107559204 -0.009552904404699802 -0.032363537698984146 -0.0712895467877388 0.03299841284751892 -0.03153176233172417 0.0793677419424057 0.008495990186929703 -0.06460333615541458 0.07070667296648026 0.034337498247623444 0.022617105394601822 -0.0470133014023304 0.001632970874197781 0.02507035806775093 -0.0032060618977993727 0.027376027777791023 0.07605689764022827 -0.030985182151198387 -0.027015039697289467 0.041907377541065216 0.05640079081058502 -0.04550706967711449 0.025577958673238754 0.025317545980215073 -0.0802532434463501 0.03001932054758072 -0.02283843420445919 -0.06413444876670837 -0.04203523322939873 0.023884713649749756 -0.03389820083975792 -0.0025817370042204857 0.011078188195824623 0.0018412554636597633 -0.007143063936382532 -0.04022054001688957 0.005952159408479929 -0.013897831551730633 -0.0971297174692154 0.09144308418035507 0.012998241931200027 -0.07870881259441376 -0.057654883712530136 0.02425469271838665 0.035992302000522614 0.0019309952622279525 -0.004900300409644842 0.040056079626083374 0.08765870332717896 0.03728032857179642 0.005128536373376846 0.015792280435562134 -0.07734263688325882 -0.09943588078022003 0.016278613358736038 0.02886146679520607 -0.02599438838660717 -0.03533109650015831 -0.006037768442183733 -0.03233485296368599 -0.0009859991259872913 0.0056639015674591064 0.02699529565870762 -0.014503797516226768 -0.017643915489315987 -0.029090749099850655 0.07336779683828354 -0.03754792734980583 -0.029387837275862694 0.022261422127485275 -0.0007167780422605574 0.05855504795908928 -0.02845459245145321 -0.049000080674886703 0.05143477022647858 -0.006625973153859377 0.0305135790258646 -0.004694618284702301 0.05205918848514557 -0.012795777060091496 -0.07607214897871017 -0.020847199484705925 -0.11486058682203293 -0.037057116627693176 -0.005764137487858534 0.02023637667298317 -0.050539951771497726 0.10316243022680283 0.02293858490884304 -0.04252801835536957 -0.04293854907155037 -0.02016240544617176 -0.020447323098778725 -0.05856681987643242 -0.009336492046713829 0.003509227652102709 -0.09985601902008057 -0.03881765156984329 0.056961964815855026 -0.04929886385798454 -0.031944431364536285 -0.01880050078034401 -0.06027248129248619 -0.07050193101167679 0.024184107780456543 -0.012637929059565067 -0.042871180921792984 0.0022549109999090433 -0.07337801903486252 0.028970105573534966 0.08717729151248932 0.01786940172314644 0.038715001195669174 0.0246264711022377 0.0062356023117899895 0.07826594263315201 -0.019989263266324997 -0.029036710038781166 -0.035229817032814026 -0.05413122475147247 -0.06669045239686966 0.07303695380687714 -0.04536303132772446 0.006258917506784201 -0.012102539651095867 0.027007605880498886 0.07557108998298645 -0.025752339512109756 -0.01512423437088728 -0.003040989162400365 0.004262960981577635 0.006361483596265316 0.018637455999851227 -0.01639642007648945 -0.0012046026531606913 -0.051158469170331955 -0.07888741046190262 -0.06818556785583496 -0.01864766888320446 0.00378281413577497 -0.007363464683294296 0.03664456680417061 -0.015801886096596718 -0.08113127946853638 0.0026325711514800787 0.001953710801899433 0.11931245774030685 -0.05643293261528015 0.01523328572511673 0.04919116571545601 0.013199010863900185 -0.06576022505760193 -0.01340547576546669 0.04027123004198074 -0.05762583389878273 -0.0506155751645565 0.002587602473795414 0.021123571321368217 -0.06646531820297241 -0.0105034951120615 0.00750745041295886 -0.03370046988129616 0.031475819647312164 0.03778994083404541 0.012406541034579277 -0.00024817537632770836 -0.011674659326672554 -0.03778433799743652 0.006792580708861351 0.005897230934351683 0.025684339925646782 -0.047838836908340454 0.011265740729868412 -0.024079740047454834 0.053762711584568024 -0.026777971535921097 -0.02816741354763508 -0.05842595547437668 0.05227968841791153 0.01119470875710249 -0.04052945598959923 -0.00881644431501627 -0.020044155418872833 -0.02480805478990078 0.04797298461198807 0.031503308564424515 -0.04791795834898949 -0.06368259340524673 -0.0627845823764801 -0.03536779806017876 -0.0997878909111023 -0.017695797607302666 0.00784618966281414 -0.05430058389902115 0.009679488837718964 -0.03112582303583622 -0.017686523497104645 0.02411147579550743 -0.04630450904369354 0.014146392233669758 0.029821285977959633 0.016266144812107086 -0.04315157234668732 0.009574636816978455 -0.03560252860188484 0.04717537760734558 0.03014262393116951 -0.03203234076499939 0.007999291643500328 0.045783236622810364 -0.047587085515260696 0.04082857072353363 -0.03949836269021034 0.01118371170014143 0.01440872810781002 0.008683626540005207 0.004642813000828028 0.017896661534905434 0.010377583093941212 -0.03149750828742981 0.028114384040236473 -0.08961223065853119 -0.046419039368629456 0.012204292230308056 -0.053495679050683975 -0.09720553457736969 -0.029124150052666664 0.019728876650333405 -0.022862084209918976 0.008770477958023548 -0.02444915845990181 0.04055692255496979 0.034187570214271545 -0.07184344530105591 -0.002826107433065772 -0.028836634010076523 -0.01886814460158348 0.05005979910492897 -0.016231875866651535 0.058105915784835815 0.001458796439692378 -0.00034105675877071917 0.038138248026371 0.03339851647615433 -0.017165465280413628 -0.07971692085266113 -0.035058680921792984 0.01211338210850954 -0.00591960409656167 0.014570346102118492 0.0028606103733181953 0.01840689405798912 -0.0559106282889843 -0.012547077611088753 -0.025182081386446953 0.10176803171634674 -0.0002799487265292555 0.004888100083917379 0.05103868618607521 -0.030390284955501556 0.026223277673125267 0.016776764765381813 -0.0310114286839962 -0.08120639622211456 -0.014861691743135452 -0.037765394896268845 0.027251070365309715 0.03739988058805466 0.004260491579771042 -0.0053195045329630375 -0.05519583821296692 0.018127890303730965 0.0040055206045508385 -0.06795569509267807 0.006469212472438812 0.03164737671613693 -0.0214510727673769 -0.056621212512254715 0.0003473820397630334 -0.07177840173244476 0.04798388481140137 0.025167416781187057 0.05742912366986275 -0.013493388891220093 0.005900762975215912 0.0029215621761977673 -0.0254734605550766 0.026031499728560448 0.015469283796846867 -0.07563167065382004 0.025224480777978897 0.06974093616008759 -0.0486251637339592 0.017498835921287537 0.05898132175207138 0.0017943363636732101 0.034775033593177795 0.03313339129090309 -0.038590990006923676 0.011243317276239395 -0.03728611394762993 -0.04878351464867592 0.06878156960010529 -0.07440679520368576 0.07553880661725998 -0.06127941235899925 0.10959075391292572 -0.006033794023096561 -0.032078295946121216 0.079345703125 0.07912394404411316 -0.0064621251076459885 0.046237606555223465 -0.028727902099490166 +0.017038829624652863 -0.004805784206837416 0.026816673576831818 0.03655153140425682 -0.09031940996646881 -0.04596344754099846 -0.0103262634947896 0.05917137488722801 -0.005464916117489338 -0.018360817804932594 -0.010479504242539406 -0.008204459212720394 0.010833028703927994 0.020771503448486328 0.0254660714417696 -0.06003422662615776 -0.0779682993888855 -0.005542764440178871 -0.05338359996676445 -0.043873000890016556 0.04428340867161751 0.02009439654648304 -0.08304707705974579 0.019879860803484917 -0.005921436008065939 -0.0017492510378360748 -0.06727488338947296 0.02623818628489971 0.002903128508478403 0.016075341030955315 0.09619253128767014 -0.003576918039470911 0.04627010226249695 -0.05748571828007698 -0.037255510687828064 0.04612216725945473 -0.05354719236493111 0.09167240560054779 0.0066908602602779865 -0.02643267624080181 -0.02611648105084896 0.0018966844072565436 0.030617859214544296 -0.012222860008478165 0.019776491448283195 -0.0093822181224823 -0.009893352165818214 -0.042326223105192184 0.027245718985795975 -0.018971998244524002 0.11053778976202011 -0.00034411641536280513 0.027157116681337357 -0.01757504604756832 -0.004582368303090334 0.011545256711542606 0.020917948335409164 -0.04414268210530281 -0.07888022810220718 0.024551978334784508 -0.08551033586263657 0.016504498198628426 -0.011065312661230564 -0.004056828562170267 -0.027750596404075623 -0.00913461297750473 -0.03692617639899254 0.09195201098918915 0.022295933216810226 -0.009873571805655956 0.04174085706472397 0.09143298864364624 -0.07382041960954666 -0.09231851994991302 0.06217578426003456 -0.047814518213272095 -0.010334965772926807 0.03563618287444115 -0.03132277727127075 0.010387358255684376 -0.0034608482383191586 -0.03807036578655243 0.09569413959980011 -0.03682392090559006 -0.0333264023065567 -0.034908492118120193 -0.015340885147452354 -0.05417947098612785 0.0850737988948822 0.059032127261161804 0.03073495626449585 0.08291836827993393 -0.042253900319337845 0.03687926009297371 0.02332749031484127 0.014524642378091812 0.027664680033922195 -0.11203360557556152 -0.031664781272411346 0.011164628900587559 0.02859128825366497 0.004503834061324596 0.0940052717924118 0.0005266568041406572 0.0528777614235878 0.07299797236919403 -0.03588753193616867 -0.0008450561435893178 0.020615916699171066 0.08431174606084824 0.016389383003115654 0.12428166717290878 0.0688306987285614 0.04850750416517258 -0.0020505248103290796 -0.01747415028512478 -0.020370006561279297 -0.0221380777657032 -0.04938056692481041 0.01602969504892826 -0.013806815259158611 0.0404234416782856 -0.05216380953788757 -0.05880322679877281 -0.03837226703763008 0.05456950142979622 -0.07148973643779755 -0.009211058728396893 0.09597001224756241 -0.01752343215048313 0.09840279817581177 0.06464540958404541 0.02454303205013275 0.054089467972517014 0.10010907799005508 0.053766679018735886 0.017385385930538177 0.011441781185567379 -0.02108217217028141 -0.025098424404859543 -0.04835709556937218 0.034392256289720535 0.00783372949808836 -0.05300033837556839 0.002846610965207219 0.06620721518993378 0.021406710147857666 -0.022477371618151665 -0.03036615438759327 0.02045910432934761 -0.041283879429101944 -0.09157418459653854 -0.01691831648349762 -0.06474164128303528 0.030249113216996193 0.058108601719141006 -0.0011635235277935863 0.03026219829916954 -0.011415960267186165 -0.006338781211525202 -0.025537176057696342 -0.07889427244663239 -0.02323942258954048 -0.04394252598285675 -0.007826593704521656 -0.035199154168367386 0.0033553768880665302 -0.003929188009351492 -0.029253166168928146 -0.026085278019309044 -0.0022153928875923157 -0.01178035233169794 -0.009528424590826035 0.0934242308139801 0.008173109032213688 0.010995937511324883 0.04270050674676895 -0.021098541095852852 -0.024046186357736588 -0.06914715468883514 -0.009920813143253326 -0.030012037605047226 0.02664356864988804 -0.08384263515472412 -0.021131830289959908 0.016305964440107346 0.056559186428785324 -0.02317091077566147 0.006708938162773848 -0.012325634248554707 0.0023989614564925432 -0.03424090892076492 0.0307709202170372 0.05293392017483711 -0.02051471918821335 0.05757232755422592 -0.01666492223739624 0.03847508132457733 -0.008432591333985329 -0.04869156703352928 -0.05461398512125015 0.053571246564388275 0.026694582775235176 0.007782625500112772 0.006490727420896292 -0.05582144483923912 0.07252408564090729 0.023267053067684174 0.030191069468855858 -0.06844986230134964 -0.007089906372129917 0.0369473397731781 0.04336165636777878 0.05639338493347168 0.06285922229290009 -0.0468270368874073 -0.012287415564060211 0.007855862379074097 0.04769686609506607 -0.04473969712853432 0.03311964496970177 0.0166678037494421 -0.060309793800115585 0.06446211785078049 -0.034839458763599396 -0.10428279638290405 -0.030919071286916733 -0.012880595400929451 -0.019726719707250595 -0.02528783679008484 0.004330012481659651 0.03253241255879402 -0.026139436289668083 -0.019666096195578575 -0.005618364550173283 -0.008966144174337387 -0.07817602157592773 0.11106441915035248 -0.016250675544142723 -0.05633348226547241 -0.07730422168970108 0.010594098828732967 0.0167042538523674 0.023505639284849167 0.012073519639670849 0.023670727387070656 0.1228245422244072 0.04079800471663475 -0.016322975978255272 0.02818923257291317 -0.05800250172615051 -0.06499606370925903 -0.002869012765586376 0.011497185565531254 -0.051426101475954056 -0.01881306804716587 0.02765699103474617 -0.06024086847901344 0.019799474626779556 -0.030626026913523674 0.0474231094121933 -0.013838476501405239 0.002027283888310194 -0.013887595385313034 0.08111359924077988 -0.03948531299829483 -0.09192893654108047 0.038577232509851456 -0.014495809562504292 0.05798523128032684 -0.013767201453447342 -0.04188728705048561 0.0295382272452116 0.019212450832128525 0.03734184801578522 -0.04211345687508583 0.05980939790606499 -0.04509741812944412 -0.08972494304180145 -0.014530331827700138 -0.06299836188554764 -0.044699475169181824 -0.006840245798230171 -0.05293025076389313 -0.05391507223248482 0.08289185166358948 -0.01705755479633808 -0.03830977901816368 -0.028474953025579453 -0.027192311361432076 0.00802508182823658 -0.01815401017665863 -0.03121861442923546 0.00149970140773803 -0.0508657805621624 -0.018208200111985207 0.06811374425888062 -0.09267687052488327 -0.042114634066820145 0.043607182800769806 -0.035102035850286484 -0.014342560432851315 0.058873388916254044 -0.08575287461280823 0.0270695798099041 0.006472887005656958 -0.04603531211614609 0.04471427947282791 0.0927722305059433 0.03456849977374077 0.031320057809352875 0.05510106682777405 0.013035074807703495 0.10661260038614273 0.054631344974040985 -0.06742129474878311 0.010736956261098385 -0.05305016040802002 -0.06626810878515244 0.023032093420624733 -0.03618612512946129 -0.02998233027756214 -0.012493104673922062 -0.005953144747763872 0.07337567210197449 -0.014310156926512718 -0.012347178533673286 0.0016102511435747147 0.03715784102678299 -0.014026745222508907 0.015708092600107193 0.03468118607997894 -0.031136415898799896 -0.0061118751764297485 -0.04273708537220955 -0.02908233180642128 -0.05395437404513359 0.03944064676761627 -0.03508022427558899 0.023181432858109474 -0.02837703749537468 -0.05151838809251785 0.02095077745616436 0.005682977847754955 0.09202596545219421 -0.06383158266544342 0.03213777765631676 0.015065165236592293 0.023953836411237717 -0.08851280808448792 -0.009113158099353313 0.024937843903899193 -0.022386545315384865 -0.039754800498485565 0.02895302139222622 0.020843790844082832 -0.05950583517551422 0.009440670721232891 0.01615745946764946 -0.0553421713411808 -0.002163201803341508 0.0385434627532959 -0.03095651976764202 0.03225567936897278 0.019749222323298454 -0.02037295512855053 -0.015359224751591682 0.035935673862695694 0.013621320016682148 -0.03315843641757965 0.04849988594651222 -0.08210135996341705 0.06742507219314575 0.002012003445997834 -0.0719081237912178 -0.06785646826028824 0.04812171310186386 0.0004132860922254622 -0.014240855351090431 -0.0302136167883873 0.012228230945765972 -0.008403494954109192 0.02615860290825367 -0.0031279195100069046 -0.08673587441444397 0.006363397464156151 -0.02194494754076004 -0.06111829727888107 -0.0765477642416954 -0.06601536273956299 0.029884107410907745 -0.07536027580499649 0.005444708280265331 -0.01646319590508938 0.03142042085528374 -0.010771943256258965 -0.04823355749249458 0.05016425624489784 0.04150207340717316 0.042588625103235245 -0.005698889959603548 0.04975636675953865 0.0355670265853405 0.03387238830327988 -0.006864418741315603 -0.023958152160048485 0.05573110654950142 0.04905169829726219 -0.019544262439012527 0.0280794408172369 -0.02370058186352253 0.040932852774858475 0.0009299669764004648 -0.025951648131012917 0.021939704194664955 -0.005999419838190079 -0.03317910432815552 -0.04501381888985634 0.04756367951631546 -0.04773624986410141 -0.026494814082980156 0.03931863233447075 -0.04922327771782875 -0.08695054054260254 0.0009860086720436811 -0.029374362900853157 -0.04159022867679596 0.036683183163404465 0.025506289675831795 0.023141421377658844 -0.0016750351060181856 -0.04268844798207283 -0.012623326852917671 -0.01562550850212574 0.01780896820127964 0.025427594780921936 0.006095452234148979 0.06507308781147003 -0.009478847496211529 -0.030700117349624634 0.02923545055091381 -0.03975299373269081 0.04314475134015083 -0.10001400858163834 -0.003381642745807767 -0.012778394855558872 -0.009334908798336983 0.014705442823469639 -0.0022491367999464273 0.026379022747278214 -0.08440528810024261 -0.02331451326608658 -0.036030709743499756 0.050388120114803314 -0.028742745518684387 0.029985014349222183 0.0002549003984313458 -0.033894702792167664 -0.02245827578008175 -0.015963900834321976 -0.017095312476158142 -0.04925911873579025 0.044064100831747055 -0.04750090837478638 0.018866581842303276 0.004060877487063408 0.025336384773254395 -0.02019546739757061 -0.12502382695674896 -0.02605527453124523 0.01521212887018919 -0.04910546541213989 0.01314798928797245 -0.003823267761617899 -0.059734974056482315 -0.05702674388885498 -0.02226184494793415 -0.034179702401161194 0.07008423656225204 -0.0012108496157452464 0.002117430791258812 -0.04117759317159653 -0.014469131827354431 0.003243820508942008 -0.04602137953042984 -0.0032156645320355892 -0.02855069190263748 -0.06443795561790466 -0.04788188263773918 0.05572837218642235 -0.03418651595711708 0.011553154326975346 0.07996657490730286 -0.0331091545522213 0.0151930321007967 0.006404595449566841 -0.012813313864171505 0.000298659666441381 -0.017582230269908905 0.0034014780540019274 0.022161956876516342 -0.08393187075853348 0.08345773816108704 -0.06260590255260468 0.05991513282060623 0.027490487322211266 -0.009511933661997318 0.06603141129016876 0.09101361781358719 -0.001533963019028306 -0.003803481115028262 -0.0525931790471077 +0.011035604402422905 -0.003019123338162899 0.02539399452507496 0.01697932928800583 -0.07928023487329483 -0.07949209958314896 0.001346887438558042 0.019326331093907356 -0.012633186765015125 -0.07259121537208557 -0.061930544674396515 -0.046662587672472 -0.012131065130233765 -0.02345386892557144 0.007222308311611414 -0.008019552566111088 -0.048150353133678436 0.025550885125994682 -0.0002419260999886319 -0.036188554018735886 0.021201305091381073 0.01233469508588314 -0.0789995789527893 0.022353239357471466 0.03973492607474327 -0.05160611867904663 -0.04945402219891548 0.007496196310967207 -0.0011522653512656689 0.06485936790704727 0.027867237105965614 -0.017406508326530457 0.06182139739394188 -0.06981044262647629 -0.01550284679979086 0.03042992576956749 -0.015216529369354248 0.06032729521393776 0.022850340232253075 -0.031541988253593445 -0.021560270339250565 0.04404279589653015 0.001405562972649932 -0.07754435390233994 0.015476047061383724 0.017383666709065437 -0.05779072269797325 -0.013173871673643589 0.01484087947756052 0.04779663309454918 0.09103535860776901 -0.02295702137053013 -0.05213586613535881 -0.026570608839392662 0.014416918158531189 -0.049150899052619934 0.04926254600286484 -0.021465647965669632 -0.03556329384446144 0.04434022679924965 -0.0820639356970787 0.0002030265750363469 0.06666930764913559 0.004775941837579012 -0.026496877893805504 -0.016220159828662872 0.024401215836405754 0.07972066104412079 -0.004143280442804098 -0.03777141869068146 0.0333532951772213 0.06376665830612183 -0.03547628968954086 -0.03785388544201851 0.058789629489183426 -0.05634365230798721 0.05705443397164345 0.0898536741733551 0.023637942969799042 0.022059567272663116 0.013632837682962418 -0.05545588582754135 0.1146671250462532 -0.06782908737659454 -0.005154472775757313 -0.0507286973297596 0.007100770715624094 -0.04755832254886627 0.0534578412771225 0.01851324364542961 0.028376884758472443 0.01978566125035286 -0.030160758644342422 0.010985573753714561 -0.04526780918240547 -0.010828819125890732 0.03570358455181122 -0.09550482034683228 -0.03567193076014519 0.06330364942550659 -0.001591130392625928 -0.04312301054596901 0.008200647309422493 0.015536002814769745 0.0061821406707167625 0.036644190549850464 0.03491785004734993 0.04476584866642952 0.08577372878789902 0.05844488739967346 0.022427059710025787 0.04760599508881569 0.1184866726398468 0.03995787352323532 0.02801559492945671 0.017086714506149292 -0.018413960933685303 -0.04219355061650276 0.03280492126941681 0.05307129770517349 0.004485962446779013 0.02027924731373787 -0.015580710023641586 -0.056434888392686844 0.01589583419263363 0.05831508710980415 -0.050687987357378006 -0.018639886751770973 0.01670614629983902 0.023336950689554214 0.11438920348882675 -0.027421150356531143 -0.042749278247356415 0.056850966066122055 0.053507376462221146 0.07596676051616669 0.034154802560806274 0.046243663877248764 -0.005143499933183193 -0.09443270415067673 -0.008427541702985764 0.022891448810696602 -0.013054252602159977 -0.03596120700240135 0.0435258224606514 0.041721150279045105 0.03956170752644539 -0.025215893983840942 -0.06525585055351257 -0.012714719399809837 -0.08001084625720978 -0.07650743424892426 -0.01028754748404026 -0.07763722538948059 0.011490574106574059 0.012073041871190071 0.006472339853644371 0.00015059327415656298 -0.05801571533083916 0.047598764300346375 -0.0671113058924675 -0.05787055194377899 -0.02107149548828602 -0.06541736423969269 -0.0253219585865736 0.015492076054215431 0.004378545563668013 0.0516587495803833 -0.09642461687326431 -0.061295319348573685 -0.0110250785946846 -0.04015803337097168 0.06061505153775215 0.07434805482625961 0.04276968911290169 -0.00796603411436081 0.07744908332824707 -0.0688629224896431 -0.02657822147011757 -0.04530409350991249 0.042258795350790024 -0.03109322115778923 0.09079518169164658 -0.04423733800649643 -0.002641953993588686 -0.011621796526014805 0.019718948751688004 -0.07694990187883377 0.028975244611501694 0.016834134235978127 -0.06165793165564537 -0.02506847493350506 0.03932426497340202 0.07531425356864929 0.016544846817851067 0.04590224474668503 -0.017814267426729202 0.07176689058542252 -0.01197874266654253 -0.0409138984978199 -0.08273725211620331 0.014403458684682846 0.026287319138646126 0.05396043881773949 0.007378149311989546 -0.11432769894599915 0.061585672199726105 0.06299790740013123 0.004415769129991531 -0.03201833739876747 0.051719825714826584 0.04124036058783531 0.021202392876148224 0.03583918884396553 0.05110837519168854 0.004399123135954142 0.03604748472571373 -0.02363293431699276 0.060626354068517685 -0.020089808851480484 0.04480947181582451 0.028461068868637085 -0.08358906954526901 0.010794157162308693 -0.08182878792285919 -0.0628436878323555 -0.025957660749554634 -0.013401338830590248 -0.03190486878156662 -0.03649703785777092 0.012751189060509205 0.04410611838102341 -0.01956823840737343 0.010754706338047981 -0.014659170992672443 0.010965103283524513 -0.06296399235725403 0.0735025554895401 -0.03156835213303566 -0.05138310790061951 -0.043109580874443054 -0.02150600217282772 0.0015967877116054296 0.013938253745436668 0.05111519619822502 0.03110404498875141 0.07138431072235107 0.0005049171741120517 0.012512062676250935 -0.05331943556666374 -0.021101925522089005 -0.05227518081665039 -0.03218057006597519 -0.002689989050850272 -0.07135850191116333 -0.03913084790110588 -0.008858464658260345 -0.09475596994161606 -0.016273247078061104 0.007858077995479107 -0.026688838377594948 0.010720997117459774 -0.030821409076452255 -0.03339491784572601 0.03425358608365059 0.010067674331367016 -0.06341054290533066 0.04272795468568802 -0.022565225139260292 0.03319668397307396 -0.00996578298509121 -0.0018483622698113322 0.017584985122084618 -0.04746664687991142 -0.008474518544971943 -0.0515323206782341 0.0796704888343811 -0.024242330342531204 -0.02500084601342678 0.00010175845090998337 -0.027991391718387604 -0.04484366998076439 0.001058523659594357 -0.016687897965312004 0.012551816180348396 0.03551282361149788 0.04024820402264595 -0.04644421115517616 -0.04131842404603958 -0.03758416324853897 -0.0569925457239151 -0.06982097774744034 -0.05439985543489456 -0.011692679487168789 -0.016855239868164062 0.015795446932315826 0.03020179644227028 -0.00940080638974905 -0.041984912008047104 0.04583483561873436 -0.003308422164991498 -0.07207668572664261 0.038209181278944016 0.0018127674702554941 -0.05117117241024971 0.063956119120121 -0.031395073980093 0.014530200511217117 0.07982409000396729 0.027350282296538353 0.001334466738626361 0.05999700352549553 0.027572069317102432 0.0790715143084526 -0.020451528951525688 -0.04456328973174095 -0.023348545655608177 -0.09801071882247925 -0.0790705680847168 0.019924655556678772 -0.00010097122139995918 -0.007818260230123997 0.016748912632465363 -0.008006368763744831 0.04827127978205681 -0.028918316587805748 -0.026512136682868004 -0.0462338924407959 0.001758130849339068 -0.050847578793764114 0.004899473395198584 0.016318075358867645 0.04065734148025513 -0.023102307692170143 -0.04257367551326752 -0.01204188447445631 -0.04348921403288841 0.049464866518974304 -0.03088393621146679 0.02636747993528843 -0.05122224986553192 -0.0006838087574578822 -0.05332963913679123 0.012727171182632446 0.08676628023386002 -0.03546976298093796 0.010881072841584682 0.01869342289865017 0.040530670434236526 -0.09554656594991684 0.011870874091982841 0.011582854203879833 -0.014691400341689587 0.019741646945476532 -0.05590425059199333 0.015028766356408596 -0.07782074064016342 0.014759590849280357 0.019099729135632515 0.0005753933219239116 0.009054507128894329 0.035221878439188004 -0.000698684249073267 0.06319254636764526 -0.010004555806517601 0.006995949428528547 -0.027596740052103996 -0.034831978380680084 -0.02468208782374859 0.03294648602604866 0.023337945342063904 -0.02811666950583458 -0.013503178022801876 -0.011578723788261414 -0.052046019583940506 -0.056062571704387665 0.03375855088233948 -0.048944421112537384 0.009192212484776974 0.028177535161376 0.02570413425564766 0.02118653431534767 0.015213321894407272 0.01860923320055008 -0.04224695637822151 0.018477503210306168 -0.0401579812169075 -0.04356757923960686 -0.06956138461828232 -0.0004765494086313993 0.01075997669249773 -0.05431551858782768 0.01005680300295353 -0.0522197000682354 0.026827415451407433 -0.0060387952253222466 0.008763096295297146 -0.0034097684547305107 0.06554652005434036 0.02306043915450573 0.02074986882507801 0.01850777678191662 -0.04605140537023544 0.04184863343834877 0.044196147471666336 -0.09154714643955231 -0.01146052498370409 0.001696965773589909 -0.011869988404214382 0.04672298580408096 -0.04186644032597542 -0.027563096955418587 -0.01104089617729187 -0.01679840125143528 0.021373143419623375 -0.04189641773700714 0.0012758842203766108 0.01794464699923992 0.057048991322517395 0.007232521194964647 -0.09073865413665771 0.013794813305139542 0.006770285777747631 -0.10491462051868439 -0.0006542779156006873 -0.02127332054078579 -0.028261147439479828 0.04164007678627968 -0.05766332894563675 0.06440208107233047 0.017884407192468643 -0.03890969976782799 -0.04311913996934891 -0.021335294470191002 -0.016228660941123962 0.034192994236946106 0.005373071413487196 0.039085663855075836 0.004819553345441818 -0.00026726629585027695 0.02709336020052433 -0.06580428779125214 0.038752321153879166 -0.06628736853599548 0.02394324168562889 -0.050928302109241486 0.0001387492084177211 0.031710442155599594 -0.009204530157148838 0.01797986403107643 -0.034034378826618195 -0.08004920184612274 -0.07653737813234329 0.040734369307756424 -4.503955278778449e-05 0.004277677275240421 0.041947975754737854 -0.09278001636266708 -0.045401427894830704 0.06424060463905334 -0.03827989101409912 -0.07452888786792755 -0.019400568678975105 -0.044727303087711334 0.055279441177845 0.06027369946241379 0.07465539872646332 -0.04029637202620506 -0.06551316380500793 0.015564382076263428 0.03535018488764763 -0.03645063191652298 -0.004755151923745871 0.028041861951351166 -0.037740208208560944 -0.05701940879225731 -0.030264977365732193 -0.04720187559723854 0.061749450862407684 0.07753214985132217 0.010494561865925789 -0.05506044253706932 0.028549781069159508 0.03735635429620743 -0.040309205651283264 0.027234258130192757 0.01723836548626423 -0.05234844982624054 -0.012137382291257381 0.15018926560878754 -0.027316998690366745 0.061834078282117844 0.04615817964076996 -0.06236520782113075 0.02036363072693348 0.04170014336705208 -0.01420142874121666 0.06842275708913803 -0.010372745804488659 -0.029234008863568306 0.03755956143140793 -0.06834939867258072 0.07779911160469055 -0.03267311677336693 0.09548220783472061 0.0121758496388793 -0.034849684685468674 0.058824118226766586 0.03749392554163933 -0.009705545380711555 0.002141804900020361 -0.08854222297668457 +0.024708978831768036 -0.0820334181189537 -0.013907495886087418 0.05390428006649017 -0.0698109120130539 -0.04771481826901436 -0.013635753653943539 0.035926464945077896 -0.02120964229106903 -0.07284638285636902 -0.012822955846786499 -0.027021700516343117 -0.01081413310021162 0.026467936113476753 0.05392146483063698 -0.023494645953178406 -0.04772511124610901 0.05003061145544052 -0.042169537395238876 -0.030213605612516403 0.025460615754127502 0.021856190636754036 -0.04622882604598999 0.054925642907619476 -0.008161994628608227 0.013936004601418972 -0.05158950388431549 0.023509986698627472 0.007238956168293953 0.04518847540020943 0.035813555121421814 -0.02742227166891098 0.03159954398870468 -0.04979380592703819 -0.06525876373052597 0.0606655552983284 -0.0630711019039154 0.13845223188400269 0.005399886518716812 -0.016239328309893608 -0.05621422827243805 -0.0011417377972975373 -0.022741030901670456 -0.07185271382331848 0.03906606510281563 -0.01727086305618286 0.015956567600369453 -0.025568237528204918 0.006297013722360134 0.06065965071320534 0.10433384776115417 0.03628821671009064 0.019430214539170265 0.0038763766642659903 -0.02576717920601368 0.004086052533239126 0.017226915806531906 -0.03526325151324272 -0.03694432973861694 0.04493391141295433 -0.08628590404987335 -0.04455601051449776 0.017236661165952682 0.015763191506266594 -0.00963777769356966 -0.011333509348332882 -0.016905879601836205 0.08023083955049515 0.004572663456201553 -0.027841711416840553 -0.018289443105459213 0.08200910687446594 -0.03389958664774895 -0.08909621089696884 0.03310265764594078 -0.052324287593364716 0.021758917719125748 0.011547798290848732 -0.005148948170244694 0.007271636743098497 -0.008259251713752747 -0.01935502141714096 0.13970701396465302 -0.031977392733097076 -0.012541692703962326 -0.012842155061662197 0.001152080949395895 -0.053440239280462265 0.043643396347761154 0.019093697890639305 0.02229732647538185 0.05699000880122185 -0.03310377523303032 0.04815800115466118 0.002156222937628627 -0.004060719162225723 0.032598864287137985 -0.12619662284851074 -0.00677256565541029 -0.0062981718219816685 -0.01563260331749916 -0.012323549948632717 0.07275941222906113 0.01788182742893696 0.07178611308336258 0.02937791496515274 -0.05711911991238594 0.010938726365566254 0.038010064512491226 0.01524757407605648 0.0012835855595767498 0.111658476293087 0.06781893223524094 0.02493865415453911 0.04142788052558899 -0.005826594773679972 -0.004064368549734354 -0.05550538748502731 -0.06026630103588104 -0.0031725475564599037 0.007219442632049322 0.04818521812558174 -0.03918532282114029 -0.053732726722955704 -0.005758672021329403 0.03334754332900047 -0.11569718271493912 -0.007373907137662172 0.07986776530742645 -0.02619524486362934 0.10785917937755585 0.05170006677508354 -0.00852876715362072 0.05203906446695328 0.05472402647137642 0.020791249349713326 -0.002108643064275384 0.022377479821443558 0.011166004464030266 -0.027374478057026863 -0.005274367518723011 0.06542845815420151 0.010765092447400093 -0.04029009863734245 0.024789152666926384 0.05733467638492584 0.016354940831661224 -0.03797252103686333 -0.08011427521705627 0.03176986798644066 -0.07454463839530945 -0.08088361471891403 -0.00589391216635704 -0.0700564756989479 0.008539199829101562 0.010513011366128922 0.0272989459335804 0.03961682692170143 -0.012811911292374134 -0.01841423101723194 -0.06559612601995468 -0.06030290573835373 -0.0034094916190952063 -0.06733386218547821 -0.008707752451300621 -0.0031031023245304823 -0.02678230032324791 -0.004500456620007753 -0.057715415954589844 -0.05297595262527466 0.003981234505772591 -0.012904197908937931 0.03483618050813675 0.06867692619562149 0.050312455743551254 0.023198451846837997 0.008682268671691418 -0.0434894934296608 -0.027460265904664993 -0.006065274588763714 0.015295792371034622 -0.030786486342549324 0.02397928014397621 -0.06773003190755844 -0.01077386923134327 -0.010812785476446152 0.019408974796533585 -0.031250905245542526 -0.0014836250338703394 -0.01257970742881298 -0.027781028300523758 -0.052585601806640625 0.0362711139023304 0.06504055112600327 -0.03238338977098465 0.07843706756830215 -0.035161156207323074 0.08629026263952255 -0.05449512600898743 -0.03554239124059677 -0.03365210071206093 0.06217433139681816 0.017414219677448273 0.015175234526395798 -0.0035060292575508356 -0.06885580718517303 0.07326023280620575 0.03557921200990677 0.01916678249835968 -0.06751113384962082 0.03723067790269852 0.02485893853008747 0.018129074946045876 0.06177907437086105 0.042813077569007874 -0.02156767249107361 -0.009616853669285774 0.01981584168970585 0.03301070258021355 -0.05951441451907158 0.009667226113379002 -0.005150508135557175 -0.07107794284820557 0.00880566518753767 -0.03381112590432167 -0.08207257091999054 -0.03490332141518593 0.041876330971717834 -0.016633689403533936 -0.044758088886737823 0.0003635767207015306 0.03686822950839996 -0.024917470291256905 -0.02197818085551262 0.0031815015245229006 -0.02884744666516781 -0.08205562084913254 0.07128655910491943 0.008662015199661255 -0.08088476210832596 -0.07696793228387833 -0.035181351006031036 0.009984225034713745 0.008692587725818157 0.03672987222671509 0.0702437087893486 0.07289683073759079 0.05201386287808418 -0.026532938703894615 0.01619303598999977 -0.0388239324092865 -0.023953929543495178 -0.013383403420448303 0.0020322338677942753 -0.01801462657749653 -0.037658337503671646 -0.005831445101648569 -0.09903708845376968 -0.026339713484048843 -0.025690414011478424 0.03520369529724121 -0.05938144773244858 -0.013886751607060432 0.009631454013288021 0.021584605798125267 -0.038492731750011444 -0.03884842246770859 -0.003705994924530387 -0.026006300002336502 0.06192683428525925 -0.061801452189683914 -0.003891533240675926 0.035596270114183426 -0.011892864480614662 0.025975534692406654 -0.0430402047932148 0.054882872849702835 -0.037133391946554184 -0.08938940614461899 -0.006444470025599003 -0.07617735862731934 -0.07582749426364899 -0.027693331241607666 -0.033476270735263824 -0.022379055619239807 0.10031772404909134 0.023256510496139526 -0.0319732241332531 -0.051373664289712906 -0.06075349077582359 -0.0056101116351783276 -0.04650804027915001 0.03124121017754078 -0.019645821303129196 -0.030770793557167053 -0.006434581708163023 0.010421659797430038 -0.04940437898039818 -0.0009508185321465135 0.014175410382449627 0.01331760361790657 -0.039333853870630264 0.07977011799812317 -0.03470060974359512 -0.005923720542341471 0.004892438184469938 -0.06504157930612564 0.04019364342093468 0.08992526680231094 0.044568903744220734 0.011013460345566273 0.06558658182621002 0.03717987239360809 0.07927501946687698 0.029475629329681396 0.003982660360634327 -0.01964675262570381 -0.02417300082743168 -0.047862522304058075 0.0609411858022213 -0.028881564736366272 0.003761834232136607 0.01814914122223854 -0.01597677730023861 0.06111091747879982 -0.0049595097079873085 -0.07740119099617004 -0.011703566648066044 0.038007378578186035 -0.008406108245253563 0.01465913187712431 0.004041633568704128 0.018713954836130142 -0.0022470077965408564 -0.03754802048206329 -0.04506199061870575 -0.0329241119325161 0.05600981041789055 -0.056564249098300934 0.03785434365272522 -0.023206263780593872 -0.04226134344935417 -0.005892002955079079 0.007040750235319138 0.12497704476118088 -0.05753067880868912 0.00863735657185316 0.05837835744023323 0.05162317305803299 -0.12057028710842133 0.011127732694149017 -0.01661684550344944 -0.040783386677503586 -0.08414687216281891 0.026272308081388474 0.047596365213394165 -0.08973512053489685 -0.058339789509773254 -0.040921952575445175 -0.008845623582601547 0.006289991550147533 0.03440435603260994 0.002954928670078516 0.049772217869758606 -0.005292462185025215 -0.059824034571647644 0.008742352947592735 0.006368069909512997 0.029583832249045372 -0.08975045382976532 0.024926360696554184 -0.007363150827586651 0.05590330436825752 -0.029612086713314056 -0.06314632296562195 -0.03731238469481468 0.01687685213983059 -0.005289230961352587 -0.028712108731269836 -0.04744598641991615 -0.034206826239824295 -0.002185856457799673 0.005922545213252306 0.023211749270558357 -0.04234381392598152 -0.04080142825841904 -0.029983211308717728 -0.06052069365978241 -0.07313291728496552 -0.058022934943437576 0.018837857991456985 -0.03575124964118004 0.03886345028877258 -0.04037601500749588 -0.020015614107251167 -0.002587111433967948 -0.014415695331990719 0.04124007374048233 0.06419423967599869 0.01932680420577526 -0.02448912151157856 0.05698158219456673 -0.005305658094584942 0.01682732254266739 0.01657562330365181 -0.04194711148738861 0.0214226171374321 0.0013747462071478367 -0.06558635830879211 0.036600224673748016 -0.03473934158682823 0.022791080176830292 -0.001987054944038391 -0.03586762771010399 0.020556770265102386 -0.0023017036728560925 -0.007303705904632807 -0.0439099557697773 0.05568403750658035 -0.07568097114562988 -0.006069813389331102 -0.0135769322514534 -0.04857271909713745 -0.08440417051315308 -0.050301212817430496 -0.039642948657274246 -0.012246808037161827 0.041342902928590775 -0.0031380660366266966 0.013516735285520554 0.014864564873278141 -0.051996029913425446 -0.02960813418030739 -0.02421603724360466 -0.005512634292244911 0.009822358377277851 0.028987085446715355 0.03229944035410881 -0.0028831332456320524 0.004509792663156986 0.004091168288141489 -0.010097969323396683 0.01415292639285326 -0.06367094069719315 -0.006179553922265768 -0.010326940566301346 -0.010300843045115471 0.02328462153673172 0.028810398653149605 0.028837228193879128 -0.07475647330284119 -0.0043107084929943085 -0.03199099376797676 0.06338158249855042 0.027191346511244774 0.021661939099431038 0.018339861184358597 -0.05184716731309891 -0.016442786902189255 0.03282048925757408 -0.04140182584524155 -0.07203008234500885 0.007893357425928116 -0.014798332005739212 0.06014294549822807 -0.014076360501348972 0.04409303516149521 -0.03889406472444534 -0.09426113218069077 0.0214201919734478 -0.02247188426554203 -0.05768235772848129 -0.022578155621886253 0.04080537334084511 -0.08651604503393173 -0.05090600624680519 0.00913534127175808 -0.061295609921216965 0.04888450726866722 -0.003430956741794944 0.014747265726327896 -0.057762302458286285 -0.012166711501777172 -0.0379444845020771 -0.039144158363342285 0.03706693649291992 -0.0020233693066984415 -0.05026393011212349 -0.03451888635754585 0.08108200877904892 -0.029393568634986877 0.036602020263671875 0.08308444172143936 -0.011381524614989758 0.044830698519945145 0.038045432418584824 -0.00282489275559783 0.04981602728366852 0.0075789764523506165 -0.011675882153213024 0.047156792134046555 -0.0656830370426178 0.06286147236824036 -0.06974521279335022 0.12942488491535187 0.026161503046751022 0.018067657947540283 0.0773741602897644 0.07107646018266678 0.03654779493808746 0.025642164051532745 -0.08964800834655762 +-0.0437428243458271 -0.09392964094877243 -0.07120588421821594 0.014872635714709759 0.009852949529886246 0.007233824115246534 0.01955236867070198 0.04855118319392204 0.03539668023586273 -0.04943825677037239 -0.022061053663492203 0.014999640174210072 0.04003400355577469 -0.02274390123784542 0.03975825756788254 0.024833930656313896 0.011434288695454597 -0.007224378176033497 0.04035082831978798 -0.005987413693219423 -0.022067364305257797 0.07788075506687164 0.0005328040570020676 0.06578410416841507 0.05781399458646774 -0.0202247966080904 -0.009768609888851643 0.0720292255282402 0.013426332734525204 0.10522468388080597 0.0373486690223217 -0.01886424608528614 0.021932873874902725 -0.0295536071062088 0.05878184735774994 0.00727404560893774 -0.04674484208226204 0.08658818155527115 0.02096208930015564 0.01784510724246502 0.0640229880809784 -0.04675620049238205 0.03118930011987686 -0.047740668058395386 0.004576993640512228 -0.018840471282601357 -0.004151506349444389 -0.08306749910116196 -0.0023718662559986115 0.06312879920005798 0.07642657309770584 -0.014015862718224525 -0.0020427368581295013 -0.03425131365656853 -0.04684680327773094 0.026416366919875145 -0.022749602794647217 -0.02068028226494789 -0.008911249227821827 0.02165043354034424 -0.006186977494508028 0.004126854706555605 -0.00903063453733921 -0.009925506077706814 -0.025381222367286682 0.028706779703497887 0.028491085395216942 -0.016779273748397827 -0.01497417502105236 -0.0245527233928442 0.01316548977047205 0.03450194001197815 -0.07487171143293381 -0.057758625596761703 -0.0008895635255612433 0.033835481852293015 0.06876478344202042 -0.007474525365978479 0.009101259522140026 -0.004139534663408995 -0.0009877667762339115 -0.009622441604733467 0.03227600082755089 -0.07724794745445251 0.06396223604679108 -0.04618343338370323 -0.011892559006810188 -0.02745840512216091 0.00016600779781583697 -0.02287069708108902 0.046952761709690094 -0.03391193598508835 0.05905507877469063 -0.008733365684747696 0.032612960785627365 -0.053267691284418106 0.024746309965848923 -0.08973117917776108 -0.011365188285708427 0.036117471754550934 -0.04462429881095886 0.02430236153304577 0.12005427479743958 0.049491725862026215 0.01566334441304207 0.0559253916144371 -0.05511922016739845 0.06333006918430328 0.08364762365818024 0.09638293087482452 -0.07032895088195801 0.02801474928855896 0.029481662437319756 -0.03630060330033302 -0.002567947143688798 -0.058410510420799255 -0.03655783087015152 0.08420158177614212 -0.005514624062925577 0.019473852589726448 0.011610427871346474 0.03531545773148537 -0.03446159511804581 -0.04918031767010689 0.001955458428710699 0.08501147478818893 -0.034869853407144547 -0.004033288452774286 -0.00971041526645422 -0.027023935690522194 0.0554225817322731 -0.014503004029393196 0.009553560987114906 0.0016026126686483622 -0.003927652258425951 -0.0007665042066946626 -0.002183085773140192 0.01518412958830595 0.06532283127307892 0.001497462042607367 -0.013258880004286766 0.0011843646643683314 0.026631422340869904 0.003315760986879468 -0.016758348792791367 0.017874309793114662 -0.049446914345026016 -0.011907360516488552 -0.017758402973413467 -0.05073245242238045 -0.033666398376226425 -0.03727664798498154 0.058515653014183044 0.007600793614983559 -0.010694547556340694 -0.07253360003232956 0.03398318588733673 0.03555070981383324 0.04860448092222214 0.06530255824327469 -0.07705465704202652 -0.03513358160853386 -0.0008526326855644584 -0.010820794850587845 0.04832138121128082 -0.009294352494180202 0.05305076390504837 -0.10044905543327332 0.035052862018346786 -0.028871610760688782 -0.048932794481515884 0.07469019293785095 0.024732626974582672 0.027124794200062752 0.060124799609184265 0.03460276871919632 0.0434272326529026 -0.013115542940795422 -0.016748279333114624 -0.04316764697432518 -0.040276508778333664 0.012229850515723228 -0.03720200061798096 0.0380062460899353 -0.04009997472167015 0.0023800653871148825 0.02611183375120163 0.004190796986222267 -0.03582174703478813 0.009350134059786797 0.04971728101372719 -0.06213325634598732 0.04024527966976166 0.023061204701662064 -0.015439477749168873 0.04373420774936676 0.051602255553007126 0.0967341810464859 -0.048174623399972916 -0.021765878424048424 0.015991991385817528 0.028109688311815262 0.07971443980932236 -0.0614326111972332 0.0031424376647919416 0.01958044245839119 0.02749439887702465 0.00025728929904289544 0.0007946608238853514 -0.02896752767264843 0.008978077210485935 -0.011298676952719688 -0.04592868313193321 0.008954167366027832 0.03999209403991699 -0.012055217288434505 -0.048198211938142776 -0.054871879518032074 -0.022931749001145363 -0.04421041160821915 0.020733870565891266 -0.010805425234138966 -0.07395239174365997 0.02116008847951889 -0.061863429844379425 -0.060093414038419724 0.05392478406429291 -0.04459800943732262 -0.004029469098895788 0.004146582446992397 -0.009252442978322506 -0.008699512109160423 0.026189977303147316 -0.012153522111475468 -0.014070521108806133 0.0679057389497757 -0.01856018789112568 0.0036322614178061485 -0.08554813265800476 0.0045990291982889175 -0.059629470109939575 0.013704122975468636 -0.0017726871883496642 -0.05420508235692978 0.025981100276112556 0.027675576508045197 0.01975259743630886 0.08109475672245026 -0.05174042657017708 0.05268179625272751 -0.028943495824933052 0.047927893698215485 -0.057550325989723206 -0.020811621099710464 0.004454419948160648 -0.01600581221282482 0.05211711674928665 -0.1411607563495636 -0.04705028980970383 -0.018811620771884918 0.007179108913987875 -0.04184494540095329 0.0009223305387422442 -0.005953305866569281 0.02170049212872982 -0.0008654732955619693 -0.09020788222551346 0.0733252614736557 -0.03629568964242935 -0.02395470440387726 -0.06745833903551102 0.03799283877015114 0.011629913002252579 0.03770497441291809 -0.004706409759819508 -0.04827912524342537 0.009508111514151096 -0.07687269896268845 -0.09286975860595703 -0.04919781535863876 0.0032807060051709414 -0.028889603912830353 0.029117252677679062 -0.023626647889614105 0.038734350353479385 -0.053051892668008804 0.015087790787220001 0.019379016011953354 -0.07744704186916351 -0.06495094299316406 -0.022365782409906387 -0.0156547874212265 0.006029040552675724 -0.059184469282627106 0.008567376993596554 -0.003397636581212282 0.0202354546636343 -0.006190613843500614 0.04575009271502495 0.02426476776599884 0.05946769565343857 -5.856527423020452e-05 0.0403088703751564 -0.0745486319065094 -0.03573213517665863 0.030301488935947418 -0.029905840754508972 0.038633864372968674 0.04626556858420372 0.04696979373693466 0.02541658841073513 0.06259835511445999 0.03311028331518173 -0.014671807177364826 -0.024146970361471176 0.03710586205124855 -0.011882688850164413 0.08495280891656876 -0.016111960634589195 -0.08286362141370773 0.031577009707689285 -0.08282456547021866 0.02183462865650654 -0.053065910935401917 0.011281249113380909 0.04130150005221367 -0.0627274438738823 -0.03541064262390137 0.06917781382799149 -0.015238559804856777 -0.0036966134794056416 0.009055690839886665 0.048910073935985565 0.033468566834926605 0.0027103242464363575 0.027513261884450912 -0.06529112160205841 0.05518826097249985 -0.039600830525159836 0.07380792498588562 0.032437119632959366 -0.006310788448899984 -0.0390414297580719 0.03256755322217941 0.06442492455244064 -0.04757072404026985 0.03129158169031143 0.038918256759643555 -0.051409073173999786 -0.06248017027974129 -0.006267423275858164 -0.024796513840556145 -0.03591042384505272 -0.030405301600694656 0.019514499232172966 0.0020680269226431847 0.03950100392103195 -0.0885993167757988 -0.007935465313494205 -0.0403408445417881 -0.01552200224250555 0.06007307395339012 -0.023614132776856422 0.016277959570288658 -0.00468801474198699 -0.013713615946471691 -0.027532363310456276 -0.009616550989449024 0.0005035243812017143 -0.02916775271296501 -0.023571982979774475 0.014709305949509144 -0.03894207999110222 -0.001706320676021278 -0.008457478135824203 -0.057001225650310516 0.008586019277572632 -0.015444973483681679 -0.0007407700759358704 -0.06544242054224014 -0.02076033316552639 0.03427574038505554 0.0139907356351614 -0.029716061428189278 -0.023386966437101364 -0.01981055550277233 0.025790361687541008 -0.017071204259991646 -0.009032396599650383 -0.096912682056427 0.0323534794151783 0.01788187213242054 -0.000594937358982861 -0.07229690253734589 0.05939004570245743 -0.05912353843450546 0.055429402738809586 0.04943501949310303 0.059329044073820114 0.04897361993789673 0.011536600068211555 0.06562766432762146 0.009078585542738438 0.0027061649598181248 -0.02394409105181694 -0.03007235936820507 0.027837861329317093 -0.04633787274360657 -0.018127236515283585 -0.1013747900724411 -0.04228014498949051 -0.025425182655453682 0.02266881614923477 -0.08726785331964493 0.04376645013689995 -0.010589688085019588 0.029645057395100594 -0.029899394139647484 0.024967674165964127 -0.051450371742248535 0.08742621541023254 -0.018211353570222855 -0.0004105523112230003 0.08145595341920853 -0.012626037001609802 -0.09049174934625626 0.008585535921156406 0.04158376529812813 -0.07466427981853485 -0.013742553070187569 -0.047307662665843964 -0.022342516109347343 -0.04156966507434845 0.01249927468597889 0.055942993611097336 -0.02501317672431469 0.1174626499414444 0.0042075421661138535 -0.06074198707938194 -0.04132886230945587 -0.06039877608418465 -0.0941796824336052 0.05656808242201805 -0.006867398973554373 0.01994577795267105 -0.048627033829689026 0.056267961859703064 -0.012699075043201447 0.028859330341219902 0.11034666746854782 -0.027917390689253807 -0.029863251373171806 -0.016958756372332573 0.03927365690469742 0.027415147051215172 0.039506617933511734 -0.010470809414982796 -0.04460105299949646 -0.10970713198184967 0.014781850390136242 -0.04684869572520256 -0.04740038514137268 -0.07286394387483597 0.023800838738679886 0.06853815913200378 -0.03706611692905426 -0.006963727064430714 -0.1053333505988121 -0.020875941962003708 -0.04674115777015686 0.013767671771347523 0.014797566458582878 -0.0526435486972332 0.0579504668712616 -0.055295735597610474 0.04074764996767044 0.0029805528465658426 -0.007189467083662748 0.05590125545859337 -0.020718226209282875 -0.014015207067131996 -0.056440748274326324 -0.037991996854543686 -0.027645885944366455 -0.01633547991514206 0.025682590901851654 -0.025253325700759888 -0.02908036857843399 -0.09706678241491318 0.048121377825737 0.07433107495307922 0.051204387098550797 0.055585239082574844 -0.04297013580799103 0.061730679124593735 0.06396742910146713 0.041764017194509506 -0.07046094536781311 -0.04079852253198624 0.005813035648316145 0.057228926569223404 -0.04024868085980415 0.049859676510095596 -0.058350104838609695 0.09397821128368378 0.01883549988269806 0.019006697461009026 0.02402031607925892 0.046647809445858 0.11826911568641663 -0.03437943756580353 -0.07568065077066422 +-0.015188600867986679 -0.10361302644014359 -0.08623034507036209 0.017489902675151825 -0.010063081048429012 -0.03758369758725166 -0.01773030310869217 0.04906617850065231 -0.010156631469726562 -0.06483469903469086 -0.05490504950284958 -0.023500457406044006 -0.028280118480324745 -0.061639633029699326 0.05851306393742561 0.03230588138103485 -0.05653005093336105 0.014130780473351479 -0.008330360986292362 -0.002281659282743931 0.013093356974422932 0.05196264013648033 -0.040263328701257706 0.05817599222064018 0.02042408287525177 -0.024251049384474754 -0.0005663749761879444 0.012305772863328457 -0.014955754391849041 0.09305804967880249 0.05708847939968109 -0.024501973763108253 0.014790918678045273 -0.025718828663229942 -0.006837776862084866 0.05616945028305054 -0.014903596602380276 0.08796201646327972 0.034206487238407135 -0.020215751603245735 0.03190060704946518 -0.058358997106552124 -0.016270073130726814 -0.09863050282001495 0.05345398187637329 0.0012896371772512794 -0.04568575695157051 -0.09423799067735672 -0.0079794405028224 0.09552010893821716 0.11087729781866074 -0.03848110884428024 0.010374648496508598 0.028935102745890617 -0.08502606302499771 -0.018792908638715744 0.030243657529354095 -0.04403559863567352 0.01320154033601284 0.024618927389383316 -0.03847327455878258 -0.027299467474222183 0.024438444525003433 0.06114055961370468 -0.04411745443940163 0.007272439543157816 0.03016442246735096 0.01333628874272108 -0.009945554658770561 -0.018472716212272644 -0.04929228127002716 -0.008201268501579762 -0.0147897033020854 -0.05413780361413956 -0.0070085711777210236 0.0035242168232798576 -0.014283777214586735 -0.02769550122320652 0.02458546683192253 0.012297684326767921 0.06300386786460876 0.004158141557127237 0.09777078032493591 -0.06879639625549316 0.030970033258199692 -0.04443398118019104 -0.03413449600338936 -0.02616793103516102 0.04227275401353836 -0.0044153714552521706 0.04150991886854172 0.05592263489961624 0.022699479013681412 0.0010590765159577131 -0.006527952384203672 -0.006243713665753603 0.015270019881427288 -0.08634431660175323 -0.04592882841825485 -0.004249333404004574 -0.01515688095241785 0.004271346144378185 0.08245101571083069 0.05286295711994171 0.019465772435069084 0.004267226438969374 -0.04695866256952286 -0.008853285573422909 0.04422299191355705 0.03493887558579445 -0.04167142137885094 0.0854094997048378 0.04497101530432701 -0.011273815296590328 0.07878760993480682 -0.03394342213869095 -0.06637980043888092 -0.00433906726539135 -0.011248314753174782 0.03463716804981232 -0.006970411166548729 0.005070795305073261 -0.03699963912367821 -0.0644456222653389 0.03805161267518997 0.05824197083711624 -0.06947452574968338 -0.022527942433953285 -0.012481879442930222 -0.040814537554979324 0.0792565569281578 -0.006082421168684959 -0.04531415179371834 0.0016867649974301457 0.03681809827685356 0.03586059808731079 0.013696065172553062 0.035152535885572433 -0.01129298284649849 -0.012480637989938259 -0.0240190327167511 0.03940199315547943 -0.03114885464310646 0.03160007670521736 0.03200525417923927 0.008026918396353722 -0.0031074448488652706 0.011913180351257324 -0.04342733696103096 0.0007887103129178286 -0.10051476210355759 0.0027632066048681736 0.030126797035336494 -0.09134377539157867 0.026920732110738754 -0.014391648583114147 -0.002410072134807706 0.03783506155014038 0.016632502898573875 0.04678477719426155 -0.05776716768741608 -0.0880754217505455 0.0359872505068779 -0.06275950372219086 -0.040945060551166534 -0.020288486033678055 -0.040856968611478806 -0.03090576082468033 0.03157218545675278 -0.07314343005418777 -0.027337465435266495 -0.006496104411780834 0.0626484602689743 0.10121244937181473 0.060839857906103134 0.06817423552274704 0.02145821787416935 -0.0615500807762146 -0.037464894354343414 -0.05828798562288284 -0.03985118493437767 -0.013312592171132565 -0.015013894066214561 -0.045707155019044876 -0.03112228401005268 -0.01813911274075508 0.038093339651823044 0.01199441496282816 -0.0002602159511297941 -0.01525925938040018 -0.008993132039904594 -0.0726136639714241 0.08730638027191162 0.044352591037750244 0.008389039896428585 0.01514582708477974 0.043010953813791275 0.09225757420063019 -0.04340146854519844 -0.04854597523808479 -0.054268911480903625 0.01695891283452511 0.05976983904838562 0.014072966761887074 0.01694384217262268 0.0011352604487910867 0.134500652551651 0.048433881253004074 0.04010263830423355 -0.013321968726813793 0.021769538521766663 0.08701038360595703 -0.053009916096925735 0.04263443499803543 0.04995286464691162 -0.023106545209884644 -0.04747780039906502 0.006744604557752609 0.038060445338487625 -0.053138576447963715 -0.009891369380056858 0.05138580873608589 -0.08108615130186081 0.05522740259766579 0.01718061976134777 -0.09480045735836029 -0.0121212312951684 -0.029363388195633888 -0.04584385082125664 0.01660607010126114 0.0012120368191972375 0.009526358917355537 0.03765115514397621 0.020107995718717575 -0.01951429806649685 -0.009479684755206108 -0.041195452213287354 0.04740443080663681 -0.10171469300985336 -0.06280984729528427 -0.05813151225447655 0.02029675804078579 -0.009616076946258545 -0.012090954929590225 0.019489578902721405 0.04744189605116844 0.045630618929862976 0.03312121704220772 -0.014941233210265636 0.023670481517910957 -0.06299939006567001 -0.026761287823319435 -0.05020972341299057 -0.029463110491633415 0.018259039148688316 -0.0978863388299942 0.017932428047060966 -0.108394555747509 -0.035724516957998276 0.006410623900592327 0.05135192722082138 -0.046509549021720886 -0.03584139049053192 -0.035230811685323715 0.052239663898944855 -0.015057907439768314 -0.04034131020307541 0.03439372032880783 -0.06472928076982498 -0.03851265087723732 -0.065999835729599 -0.0017441778909415007 0.02173667773604393 -0.0294415894895792 0.004747127182781696 -0.00690747145563364 0.08092855662107468 -0.05375251919031143 -0.031074969097971916 -0.016130339354276657 -0.07750935852527618 -0.019725963473320007 0.044439125806093216 -0.015560775995254517 -0.008790750056505203 0.048718590289354324 0.04497969150543213 -0.00417855940759182 -0.02302219346165657 -0.05514939874410629 -0.04513199254870415 0.0010868271347135305 0.01986416056752205 -0.02973019890487194 -0.04246923327445984 -0.004984298720955849 0.07474959641695023 -0.009740456938743591 -0.0016208996530622244 0.05160518363118172 0.04115234315395355 -0.01896892674267292 0.02041148580610752 -0.02912697196006775 -0.043597809970378876 0.044535160064697266 -0.04116830602288246 0.002785530174151063 0.05640764907002449 0.024202682077884674 0.03459418565034866 0.04903453215956688 0.026664702221751213 0.017976609990000725 -0.04303910583257675 0.005597483366727829 -0.04545965790748596 -0.002329331124201417 -0.0023197003174573183 0.004297524690628052 0.03432163596153259 -0.0624748058617115 0.014959699474275112 -0.030382752418518066 0.07351327687501907 -0.0215897336602211 0.003842718666419387 -0.05760594829916954 0.006091642659157515 -0.009349995292723179 0.05409026890993118 -0.023176953196525574 0.02757526934146881 -0.02923339605331421 -0.05387502536177635 0.005140072666108608 -0.053653329610824585 0.035966094583272934 -0.008044738322496414 0.008123517036437988 -0.00010827305959537625 -0.06478521227836609 0.0065138996578752995 0.024306556209921837 0.08966885507106781 -0.07708317786455154 0.024454372003674507 0.04238806292414665 -0.01611645705997944 -0.04266432300209999 -0.02499447576701641 -0.018009819090366364 -0.08481002599000931 -0.06128174066543579 -0.014238685369491577 0.052337806671857834 -0.03643989562988281 -0.060879506170749664 -0.03363342210650444 -0.059944868087768555 0.04709396883845329 0.022290576249361038 0.010462531819939613 0.062375329434871674 0.06137120723724365 -0.06282874941825867 0.0023200931027531624 0.027031362056732178 0.0005731605342589319 -0.0635121762752533 0.03675249591469765 -0.004861125722527504 -0.02197381854057312 -0.0303396824747324 -0.05557598918676376 -0.05476566404104233 0.014051014557480812 -0.04739822447299957 -0.02433791756629944 -0.034722767770290375 -0.009813153184950352 0.024109255522489548 0.06854753941297531 -0.019921312108635902 -0.056351691484451294 -0.06804963946342468 -0.012670462019741535 -0.019923847168684006 -0.06692028790712357 -0.04023327678442001 0.06623737514019012 -0.03727637231349945 0.0021653620060533285 -0.08818239718675613 0.02820674516260624 -0.02913726679980755 0.004266895353794098 0.05232895165681839 0.035666707903146744 0.022900760173797607 -0.014836214482784271 0.015032068826258183 -0.02345927618443966 0.011903861537575722 0.020809154957532883 -0.01930629462003708 0.014646608382463455 -0.01513574831187725 -0.03880062326788902 -0.02409512549638748 -0.023145025596022606 -0.010834848508238792 0.0023951430339366198 -0.06287646293640137 0.021220076829195023 -0.018097935244441032 0.016120579093694687 -0.020879125222563744 -0.00046995613956823945 -0.058612160384655 -0.041119400411844254 -0.03853333741426468 0.006510550621896982 -0.0284382626414299 -0.06810757517814636 -0.014972743578255177 0.01610572077333927 0.04765590652823448 -0.031010271981358528 -0.030124805867671967 -0.026258589699864388 -0.02429683692753315 0.014371666125953197 -0.028348367661237717 0.04901552572846413 -0.04306905344128609 0.0737987607717514 0.00135968963149935 -0.0523601695895195 -0.017002258449792862 -0.049493491649627686 -0.0804879441857338 -0.0031459135934710503 0.007687245029956102 -0.056918930262327194 0.027683835476636887 0.025787049904465675 0.008670609444379807 0.04384523257613182 0.04389268159866333 -0.0438043586909771 -0.0522078238427639 -0.05547051876783371 0.07549244165420532 -0.022143352776765823 0.07846721261739731 0.006932266987860203 -0.07369300723075867 -0.08735460788011551 0.06266948580741882 -0.0582786463201046 -0.07687564939260483 -0.028890371322631836 0.013631915673613548 0.041227541863918304 0.010961106978356838 0.019199689850211143 -0.07446443289518356 -0.061865974217653275 0.012743847444653511 0.01619626022875309 -0.01229103934019804 -0.0503200963139534 0.07127652317285538 -0.043814413249492645 0.030749941244721413 -0.022019067779183388 -0.02145824022591114 0.060775596648454666 -0.022345099598169327 0.008812347427010536 -0.13243468105793 0.0010130454320460558 -0.0311270784586668 -0.005006885156035423 0.020117169246077538 -0.033396121114492416 -0.07775843143463135 -0.020745448768138885 0.06124371290206909 -0.0018889742204919457 0.005538254510611296 0.09285556524991989 -0.03542803227901459 0.03282136842608452 0.06327877938747406 0.03262845426797867 -0.047733668237924576 0.0038510034792125225 0.008656036108732224 0.06996340304613113 -0.061594702303409576 0.029312461614608765 -0.04351755604147911 0.12397340685129166 0.06333189457654953 0.025384198874235153 0.02433878555893898 0.033401742577552795 0.04171205684542656 0.04494180157780647 -0.08218509703874588 +0.06678157299757004 0.0054410407319664955 0.039384759962558746 0.0566108413040638 -0.08966681361198425 -0.036974452435970306 -0.019752608612179756 0.0264019463211298 -0.00310320220887661 -0.04537505656480789 -0.025560975074768066 -0.017911965027451515 -0.013041839934885502 0.02003730647265911 0.02953660674393177 -0.025779958814382553 -0.05694376304745674 0.011854348704218864 -0.0382121242582798 -0.0466165617108345 0.015967292711138725 0.023284249007701874 -0.07604912668466568 0.055935971438884735 -0.001927934936247766 0.024310190230607986 -0.06863107532262802 0.01692843623459339 -0.020009247586131096 0.01961546577513218 0.03999757021665573 -0.010548673570156097 0.061603743582963943 -0.04817835986614227 -0.04433836415410042 0.037509676069021225 -0.03491060063242912 0.10316966474056244 0.025327159091830254 -0.0459812767803669 -0.035059865564107895 0.005707006435841322 -0.01631997525691986 -0.055754683911800385 0.014779390767216682 0.01224935706704855 0.0020751727279275656 -0.017517264932394028 0.05102477967739105 0.028880346566438675 0.09127670526504517 0.022803209722042084 -0.01360038761049509 -0.03979675844311714 0.006030757911503315 0.007061753422021866 0.05019408464431763 -0.06928759813308716 -0.057947590947151184 0.044039249420166016 -0.11274432390928268 -0.017637118697166443 0.025590570643544197 0.009763970039784908 -0.026897119358181953 -0.03571050986647606 -0.019075291231274605 0.10945352911949158 0.0333859883248806 -0.034999068826436996 0.03931884095072746 0.11804667115211487 -0.07082857191562653 -0.040345095098018646 0.05003456771373749 -0.08191604167222977 -0.03334895521402359 0.04196027293801308 -0.0072620767168700695 0.0019237854285165668 -0.00020392716396600008 -0.06122785061597824 0.0895456075668335 -0.03126592934131622 -0.06043729558587074 -0.020673684775829315 0.004129065666347742 -0.0850905179977417 0.05796601250767708 0.02236361801624298 0.006263073533773422 0.07150005549192429 -0.05795915424823761 0.03737092763185501 0.019438359886407852 0.02068009227514267 0.033691778779029846 -0.10565119236707687 -0.03362622484564781 -0.010330218821763992 -0.009924191050231457 0.015854066237807274 0.03184598684310913 0.01441943645477295 0.06526581943035126 0.010454987175762653 -0.02986406907439232 0.012750170193612576 0.03057895042002201 0.04259439557790756 0.04456876218318939 0.058563653379678726 0.08403822779655457 0.04982462525367737 0.030582493171095848 -0.012840918265283108 0.028182070702314377 -0.05660165846347809 -0.04440971836447716 -0.009780156426131725 -0.005335740279406309 0.07375819236040115 -0.02514680288732052 -0.08430320769548416 -0.02305617183446884 0.054240066558122635 -0.06673816591501236 -0.02683621272444725 0.07566887885332108 -0.021736664697527885 0.10702207684516907 0.05588085949420929 -0.018801217898726463 0.04125906154513359 0.05137866362929344 0.02000216580927372 -0.03142628073692322 0.03281952440738678 0.010530602186918259 0.00024677295004948974 0.0051760319620370865 0.04016818478703499 0.013662213459610939 -0.09363550692796707 0.03675849363207817 0.04388095438480377 0.02654540352523327 -0.03886774927377701 -0.05921368673443794 0.005771361291408539 -0.030536994338035583 -0.08176626265048981 0.0008329807897098362 -0.07793566584587097 -0.015737663954496384 0.0657665953040123 0.010698902420699596 0.018231678754091263 -0.02955436147749424 -0.00810332503169775 -0.07425105571746826 -0.03719931095838547 -0.013356249779462814 -0.06291565299034119 -0.0651554986834526 -0.028727181255817413 0.0036573184188455343 0.041476424783468246 -0.06999298930168152 -0.018430491909384727 -0.0015840681735426188 0.012955225072801113 0.03189245983958244 0.0816011130809784 0.0834592804312706 0.025413306429982185 0.00575125589966774 -0.029232127591967583 0.033110860735177994 -0.017829466611146927 0.0015745148994028568 -0.0307048000395298 0.04211672395467758 -0.05545692518353462 -0.002898075617849827 -0.011048056185245514 0.04868382215499878 -0.0019153071334585547 0.034481845796108246 0.01796816661953926 -0.004584536422044039 -0.04073416441679001 0.024172231554985046 0.06624362617731094 -0.032975271344184875 0.04194092005491257 -0.042249493300914764 0.036485325545072556 -0.0264876838773489 -0.04469679296016693 -0.04459996521472931 0.05231645330786705 0.016427073627710342 0.06464117020368576 0.03059753030538559 -0.07197399437427521 0.05875382572412491 0.04309447854757309 -0.0031331174541264772 -0.07487665116786957 0.002952503738924861 0.009218798018991947 0.04073967784643173 0.052066605538129807 0.08084529638290405 -0.018624888733029366 0.015969546511769295 -0.02032565325498581 0.050075337290763855 -0.04683181643486023 -0.0018529505468904972 -0.008356895297765732 -0.09828720986843109 0.028993120416998863 -0.04528553783893585 -0.05717280134558678 -0.015820499509572983 0.04635176435112953 0.004336244892328978 -0.01584860309958458 0.020666973665356636 0.01099404040724039 -0.018785813823342323 -0.03228095546364784 -0.010392576456069946 -0.04217148944735527 -0.09380872547626495 0.12022033333778381 0.046600159257650375 -0.06577068567276001 -0.06424519419670105 -0.003323744051158428 0.0414087250828743 -0.01834336295723915 0.041098613291978836 0.035368189215660095 0.12222184985876083 0.03652478754520416 0.004267457872629166 -0.0013399046147242188 -0.048263631761074066 -0.07489611953496933 0.010569868609309196 0.040183331817388535 -0.044405415654182434 -0.005665370263159275 0.009270143695175648 -0.054483622312545776 -0.021615905687212944 0.006999239791184664 0.020311936736106873 -0.010720305144786835 -0.0060727959498763084 -0.03872239217162132 0.03915708512067795 -0.0501079224050045 -0.05187135189771652 0.03980015218257904 0.01580984704196453 0.06412741541862488 -0.02181958593428135 -0.012046228162944317 0.06879545748233795 0.014997914433479309 0.01841653883457184 -0.040733542293310165 0.04614138603210449 -0.018290767446160316 -0.06350207328796387 -0.014292033389210701 -0.08693866431713104 -0.045978572219610214 -0.013360313139855862 -0.0369332879781723 -0.05204825475811958 0.08483431488275528 -0.007725184317678213 -0.04539532959461212 -0.05399180203676224 0.00673617422580719 -0.03923245146870613 -0.05745368450880051 -0.0021736768539994955 0.006960784085094929 -0.025841979309916496 -0.041220393031835556 -0.002121932106092572 -0.0674520954489708 -0.030749160796403885 -0.023263055831193924 -0.043565671890974045 -0.09484390914440155 0.056085702031850815 -0.018659722059965134 -0.017707519233226776 0.014695328660309315 -0.06705862283706665 0.019161337986588478 0.11319788545370102 0.05984823405742645 0.031821753829717636 0.0475802980363369 0.02307865582406521 0.12082234770059586 0.02491099201142788 -0.0502079576253891 -0.016840264201164246 -0.02448437362909317 -0.05848116800189018 0.04435201734304428 -0.025605127215385437 -0.00024811940966174006 -0.008566385135054588 -0.0007057567709125578 0.07156727463006973 0.00753466971218586 -0.05856454372406006 -0.016331462189555168 0.024494385346770287 -0.021097853779792786 0.010558919981122017 0.0026204027235507965 0.003763970686122775 -0.02289215661585331 -0.04743028059601784 -0.03064688853919506 -0.01689833402633667 0.03969138488173485 -0.02267572656273842 0.04217271879315376 -0.0345226414501667 -0.05978097766637802 0.016221173107624054 -0.01321784034371376 0.08289793878793716 -0.06439381837844849 0.026967354118824005 0.03486182913184166 0.016898222267627716 -0.10182832181453705 -0.019421342760324478 0.04010191187262535 -0.036275509744882584 -0.04264727979898453 0.01836646907031536 0.015302084386348724 -0.0662447065114975 -0.00438537634909153 0.0021665228996425867 -0.055727891623973846 -0.011717965826392174 0.012340703047811985 0.04420195147395134 0.009790914133191109 -0.0326174795627594 -0.032412752509117126 -0.049101412296295166 -0.001816804171539843 0.02153490111231804 -0.012470104731619358 0.0228557251393795 -0.03316374868154526 0.03192111477255821 -0.07159506529569626 -0.029048386961221695 -0.028807947412133217 0.05657313019037247 0.01181997824460268 -0.0066159917041659355 0.01845879852771759 -0.04750484973192215 -0.015693848952651024 0.006584726274013519 0.03355984389781952 -0.029205208644270897 -0.015476929023861885 -0.02824494056403637 -0.03646725416183472 -0.06357184797525406 -0.0511339046061039 -0.005252189468592405 -0.042899876832962036 0.027910824865102768 0.0003803193976636976 -0.017155373468995094 -0.007240852806717157 -0.020211689174175262 0.031092386692762375 0.03460925444960594 0.0444367378950119 -0.0069822086952626705 0.017547355964779854 -0.011006468906998634 0.048287227749824524 0.02558700367808342 -0.07424420863389969 0.011686090379953384 0.028431382030248642 -0.06742499023675919 0.057561688125133514 -0.039146631956100464 0.012207938358187675 -0.00819668173789978 0.002900203922763467 0.03619743511080742 -0.021610381081700325 -0.009108438156545162 -0.03817751258611679 0.07588155567646027 -0.07144838571548462 -0.03122682496905327 0.01777404174208641 -0.03829973563551903 -0.10391487926244736 -0.029322374612092972 -0.028140295296907425 -0.018524810671806335 0.03756219521164894 -0.02010735496878624 0.0177521463483572 0.04564261808991432 -0.048548322170972824 -0.058106280863285065 -0.029261423274874687 0.012470402754843235 0.05704313889145851 -0.010617841966450214 0.052176397293806076 0.022555042058229446 -0.004936078563332558 0.004665113054215908 0.011214200407266617 0.02935735508799553 -0.10533116012811661 -0.012013547122478485 -0.02041669189929962 -0.0117460573092103 0.013317457400262356 0.009966667741537094 -0.004236581735312939 -0.08499594032764435 -0.031856462359428406 -0.01560758426785469 0.08345307409763336 -0.014818443916738033 -0.006144121289253235 0.0412033274769783 -0.039761438965797424 -0.011942756362259388 0.009152498096227646 -0.04913559556007385 -0.07562647014856339 0.001747627044096589 -0.022659782320261 0.01305561326444149 0.0032424486707895994 0.03742768242955208 -0.04111147299408913 -0.049665436148643494 -0.0018193420255556703 0.02760445885360241 -0.08112791925668716 0.00496806250885129 0.01062807161360979 -0.07351861149072647 -0.06578885763883591 0.007860194891691208 -0.04179227352142334 0.04855482652783394 0.03608524799346924 0.01559448055922985 0.00622906070202589 0.00885697454214096 -0.015462188981473446 -0.05734774470329285 -0.010192894376814365 0.012017694301903248 -0.046948306262493134 -0.03020966798067093 0.06491455435752869 -0.061643086373806 0.031137222424149513 0.05115179345011711 -0.06292169541120529 0.030464904382824898 0.038960784673690796 -0.04357961192727089 0.06795404106378555 -0.0006375201046466827 -0.01612071320414543 0.07915809005498886 -0.07348739355802536 0.09117283672094345 -0.05338557809591293 0.08527866005897522 -0.00574207678437233 -0.032823022454977036 0.07211283594369888 0.09338842332363129 0.0017282682238146663 -0.006016084458678961 -0.07788202166557312 +0.004461822099983692 -0.047570306807756424 -0.006641245912760496 0.014780589379370213 -0.08407412469387054 -0.05390362814068794 0.006287906784564257 0.03812777251005173 -0.0006857072585262358 -0.03530755266547203 -0.03675166144967079 -0.008247201330959797 -0.0012126967776566744 0.022164946421980858 0.026970529928803444 -0.05064808204770088 -0.06818844377994537 0.004591029603034258 -0.06336195021867752 -0.02815503627061844 0.026963209733366966 0.04194588214159012 -0.05218794196844101 0.03626667708158493 -0.018954114988446236 0.0018204894149675965 -0.059136614203453064 0.015047351829707623 0.011746765114367008 0.023864300921559334 0.08221952617168427 0.0009429413476027548 0.045463692396879196 -0.06262373924255371 -0.03640852868556976 0.046045996248722076 -0.04001401364803314 0.11048883199691772 0.018973786383867264 -0.024937551468610764 -0.029582476243376732 -0.006804840639233589 -0.009718143381178379 -0.04033175855875015 0.03128747269511223 -0.03961671143770218 0.011547993868589401 -0.02899855002760887 0.004130995366722345 0.029231995344161987 0.08382521569728851 0.01233537308871746 0.014927016571164131 -0.021236784756183624 -0.013938508927822113 0.020847758278250694 0.0068696029484272 -0.052377838641405106 -0.04902610555291176 0.041557349264621735 -0.07621195912361145 -0.0007778832805342972 0.013752228580415249 0.013632669113576412 -0.01971866935491562 -0.02001900225877762 -0.00972208846360445 0.10892923921346664 0.007267470471560955 -0.026050832122564316 0.016908377408981323 0.07647804915904999 -0.05278674140572548 -0.06631676107645035 0.03176983818411827 -0.05350042134523392 0.011083101853728294 0.020064344629645348 -0.016676660627126694 -0.020311851054430008 -0.0032434614840894938 -0.023378051817417145 0.11540193855762482 -0.030326491221785545 -0.04127714782953262 -0.05230613052845001 -0.02080366015434265 -0.0779009759426117 0.05776229873299599 0.00894138216972351 0.05327802151441574 0.06836488842964172 -0.02530522830784321 0.03297495096921921 0.0029535209760069847 0.01331400964409113 0.012723107822239399 -0.13155749440193176 -0.027972042560577393 -0.017892440780997276 0.023052772507071495 0.005132115446031094 0.08490534871816635 0.00036624440690502524 0.04806779325008392 0.06504391878843307 -0.06440792232751846 -0.0011312866117805243 0.015383041463792324 0.04068947583436966 0.02384170889854431 0.13117294013500214 0.07759267091751099 0.05966371297836304 0.045418575406074524 -0.004484493751078844 -0.014061235822737217 -0.023972276598215103 -0.024877863004803658 -0.005294006317853928 0.0035334951244294643 0.03738723322749138 -0.016170930117368698 -0.06653697043657303 -0.039307285100221634 0.06824532896280289 -0.10290507227182388 -0.012933127582073212 0.0791720598936081 -0.02310710772871971 0.10395676642656326 0.05603746324777603 -0.02066257782280445 0.03348403424024582 0.06701314449310303 0.005437872372567654 -0.021721981465816498 0.00242499727755785 0.008370431140065193 -0.033995311707258224 -0.06667087227106094 0.05777455121278763 0.011316088028252125 -0.05074228346347809 0.0033889252226799726 0.06433321535587311 0.015783216804265976 -0.037721723318099976 -0.06291337311267853 0.01716902293264866 -0.0682181715965271 -0.08076228946447372 -0.0021915347315371037 -0.08674927800893784 0.025711657479405403 0.046468667685985565 0.0027002720162272453 0.02358882501721382 -0.012544776313006878 -0.02122279442846775 -0.04696812480688095 -0.06347029656171799 -0.00223580002784729 -0.0938350111246109 -0.002441396936774254 -0.019709240645170212 0.008214212022721767 -0.0005513968062587082 -0.036758992820978165 -0.05002354085445404 -0.021506184712052345 -0.022037651389837265 0.017334934324026108 0.0843699499964714 0.03026718646287918 0.012081308290362358 0.017264513298869133 -0.02122802473604679 0.0029377341270446777 -0.0515444278717041 0.007877068594098091 -0.03146515041589737 0.03359039127826691 -0.09001631289720535 -0.02378019504249096 0.002961948048323393 0.022617213428020477 -0.03632260859012604 -0.00568868825212121 -0.027121201157569885 -0.008114369586110115 -0.07166575640439987 0.02721039019525051 0.08530937880277634 -0.021986182779073715 0.05291076749563217 -0.012531881220638752 0.0796133354306221 -0.02520746923983097 -0.03379035368561745 -0.07907060533761978 0.041904013603925705 0.016248468309640884 0.002164514036849141 -0.0042632026597857475 -0.07663656026124954 0.09364752471446991 0.017275433987379074 0.039872609078884125 -0.07700857520103455 0.023206735029816628 0.05673999339342117 0.005850596819072962 0.06855180114507675 0.06272929161787033 -0.030343810096383095 -0.013990577310323715 0.0017545248847454786 0.028910303488373756 -0.06463352590799332 0.01973898522555828 0.021659262478351593 -0.06690815836191177 0.03424673154950142 -0.0326683335006237 -0.09597209841012955 -0.020236656069755554 0.0032988341990858316 -0.003166035283356905 -0.030465206131339073 4.4126049033366144e-05 0.026312388479709625 -0.008746437728404999 -0.007580752484500408 -0.01530580036342144 -0.008662903681397438 -0.08861060440540314 0.07716760039329529 -0.009136408567428589 -0.07588693499565125 -0.06041574478149414 -0.017702320590615273 0.007939974777400494 -0.00021602398192044348 0.01264411024749279 0.016242630779743195 0.10605453699827194 0.04140554368495941 -0.042577456682920456 0.0019841499160975218 -0.045571859925985336 -0.0542333647608757 -0.023781778290867805 0.018987519666552544 -0.04092487320303917 -0.06551730632781982 0.0223728958517313 -0.09440488368272781 -0.01576959900557995 -0.021345920860767365 0.06136338412761688 -0.04027603566646576 -0.01989119127392769 -0.007753141690045595 0.047146741300821304 -0.020905978977680206 -0.059235796332359314 0.02244088239967823 -0.0043767280876636505 0.04909985512495041 -0.01614544540643692 -0.023388104513287544 0.039546865969896317 0.005267821252346039 0.026969414204359055 -0.037818435579538345 0.0742674320936203 -0.013528969138860703 -0.08156634122133255 -0.027872303500771523 -0.05185603350400925 -0.057431090623140335 0.005067650228738785 -0.031320489943027496 -0.03398291394114494 0.08809653669595718 0.015986286103725433 -0.04493536427617073 -0.034432679414749146 -0.044878192245960236 -0.024985037744045258 -0.01961737684905529 -0.025946730747818947 -0.017032815143465996 -0.06124219298362732 0.009660592302680016 0.040921248495578766 -0.07934301346540451 -0.029836293309926987 0.042386285960674286 -0.003221943974494934 -0.021771831437945366 0.06083589419722557 -0.05737310275435448 -0.004105080850422382 -0.0024959028232842684 -0.06252780556678772 0.023917587473988533 0.08039618283510208 0.05955037474632263 0.0390683077275753 0.03557904437184334 0.023061029613018036 0.09039543569087982 0.012348202057182789 -0.03900592029094696 -0.021673783659934998 -0.020294059067964554 -0.06399957090616226 0.04675193130970001 -0.04066569730639458 -0.019383346661925316 0.012856065295636654 0.007542379200458527 0.08463425934314728 -0.024392595514655113 -0.027417950332164764 -0.019437339156866074 0.034576985985040665 -0.015417080372571945 0.016246022656559944 -0.0009056053240783513 -0.003570572705939412 -0.0017101367702707648 -0.061481062322854996 -0.0697430968284607 -0.040261466056108475 0.04287209361791611 -0.018361477181315422 0.0513647124171257 -0.01620892994105816 -0.07529664784669876 0.008104946464300156 -0.0013530735159292817 0.1193506270647049 -0.06870859861373901 0.010687186382710934 0.012923257425427437 0.03573676571249962 -0.08777010440826416 0.007992718368768692 -0.009097223170101643 -0.029961105436086655 -0.07001306116580963 0.018382778391242027 0.036254215985536575 -0.07242365181446075 -0.04114053025841713 -0.005270324647426605 -0.03037336654961109 0.004394873511046171 0.018921146169304848 -0.022352058440446854 0.05389988794922829 0.0264848992228508 -0.02461152896285057 0.0029974610079079866 0.035768311470746994 0.022124307230114937 -0.055559150874614716 0.038382165133953094 -0.028779128566384315 0.06036299094557762 -0.013605091720819473 -0.05957305431365967 -0.057966046035289764 0.03247452899813652 -0.01709650829434395 0.0036318451166152954 -0.045471079647541046 -0.013758142478764057 -0.0001099380970117636 0.0367201529443264 -0.01656447723507881 -0.08295925706624985 0.002622063970193267 -0.010820084251463413 -0.05553779751062393 -0.08374765515327454 -0.06856569647789001 0.032647501677274704 -0.0514395572245121 0.008674824610352516 -0.033755380660295486 0.026021428406238556 0.003874537767842412 -0.027808312326669693 0.04550154134631157 0.06125328317284584 0.028140278533101082 -0.02337692305445671 0.05305872857570648 0.009466439485549927 0.055293768644332886 0.001528931432403624 -0.04781879857182503 0.030076993629336357 0.03627864643931389 -0.04048547521233559 0.022930681705474854 -0.04227841645479202 0.029018741101026535 -0.009188308380544186 -0.02599306032061577 0.01317709218710661 0.001051583094522357 -0.01666264794766903 -0.05117302015423775 0.05738833546638489 -0.08251450210809708 -0.03908253088593483 0.030912110581994057 -0.038899920880794525 -0.08109762519598007 -0.01831982284784317 -0.04829994589090347 -0.020461834967136383 0.049957334995269775 -0.024193741381168365 0.039325036108493805 -0.0013462781207635999 -0.049143239855766296 -0.017241355031728745 -0.006609362084418535 -0.007085418328642845 -0.004076511599123478 0.03307195380330086 0.0712842121720314 0.000480505550513044 0.006291747558861971 0.004713346716016531 -0.05005231127142906 0.024308044463396072 -0.10757777094841003 -0.0026475535705685616 -0.0015994928544387221 -0.008269097656011581 0.011694120243191719 0.029585782438516617 0.030798636376857758 -0.07014816254377365 -0.016090435907244682 -0.0416376069188118 0.06335408985614777 -0.014357637614011765 0.040991105139255524 -0.005888674408197403 -0.05402552708983421 -0.03585183620452881 0.009858191013336182 -0.023789411410689354 -0.08755236864089966 0.0068205855786800385 -0.03127796947956085 0.03146990388631821 -0.00887047778815031 0.042722512036561966 -0.03195495158433914 -0.1176026463508606 -0.0021943249739706516 0.004683093633502722 -0.029531849548220634 0.0007078283815644681 0.04732561111450195 -0.05933665484189987 -0.039309658110141754 -0.0018491094233468175 -0.05546421557664871 0.0564243458211422 -0.002110147150233388 0.03958137705922127 -0.043286096304655075 -0.024713879451155663 0.0018831779016181827 -0.03733297809958458 0.014791407622396946 -0.01907206140458584 -0.08157823979854584 -0.029302578419446945 0.07474150508642197 -0.030128544196486473 0.021342389285564423 0.08018821477890015 -0.05044962838292122 0.03554237633943558 0.01962900720536709 -0.01188613474369049 0.014157922007143497 -0.017736593261361122 -0.006967614870518446 0.02670910581946373 -0.0827312245965004 0.07838655263185501 -0.04933379590511322 0.10561440140008926 0.02122110314667225 -0.011958491057157516 0.07944397628307343 0.08277233690023422 0.021933704614639282 0.016272231936454773 -0.06753835082054138 +0.03848421946167946 -0.05751781538128853 0.009001349098980427 0.036171022802591324 -0.09211258590221405 -0.0672956258058548 -0.008262515999376774 0.03779260814189911 -0.012574461288750172 -0.06295930594205856 0.007977383211255074 -0.01706046611070633 -0.011358357034623623 0.004478147719055414 0.00910783652216196 0.005510841030627489 -0.07008122652769089 0.030464351177215576 -0.09013497829437256 -0.02838604338467121 0.015045195817947388 0.025346551090478897 -0.07013891637325287 0.01249882485717535 -0.0430745929479599 -0.003413354977965355 -0.0679081603884697 0.0021129371598362923 -0.03265608102083206 0.030518976971507072 0.04637191817164421 -0.002099658129736781 0.07258624583482742 -0.035722989588975906 -0.06393195688724518 0.07524513453245163 -0.031868673861026764 0.10964196920394897 0.009522972628474236 -0.030298449099063873 -0.06011808291077614 -0.0030545589979737997 0.0036587496288120747 -0.06936130672693253 0.05072172358632088 0.012280355207622051 0.008554483763873577 -0.0217204038053751 0.042051903903484344 0.05228250101208687 0.10104106366634369 0.03151027113199234 0.007220532279461622 0.004643857944756746 -0.0028741550631821156 0.00683827418833971 0.028677141293883324 -0.038924042135477066 -0.05357503145933151 0.04788889363408089 -0.08773627132177353 -0.03735607862472534 0.026232749223709106 0.02284221723675728 -0.021772727370262146 -0.007941004820168018 -0.0187558401376009 0.10399995744228363 0.04198288172483444 -0.029887327924370766 -0.004894958343356848 0.07799611985683441 -0.020158767700195312 -0.06915311515331268 0.03066279925405979 -0.07393564283847809 -0.013253330253064632 0.028510190546512604 -0.022987203672528267 0.0031949877738952637 -0.02809646725654602 -0.027834320440888405 0.13661977648735046 -0.054622404277324677 -0.03770972788333893 -0.02219998463988304 0.00538683170452714 -0.0722411572933197 0.06336784362792969 0.0253896564245224 -0.0007416913285851479 0.06297816336154938 -0.044531676918268204 0.022639986127614975 -0.024646222591400146 0.027436010539531708 0.04365592822432518 -0.10019479691982269 -0.02088378369808197 -0.0164803396910429 -0.01593116484582424 0.0029978197999298573 0.05294986441731453 0.022119561210274696 0.06807146221399307 0.006623762659728527 -0.006853390485048294 -0.016947221010923386 0.020765189081430435 0.015284114517271519 0.008735744282603264 0.0975903868675232 0.09099637717008591 0.0273926742374897 0.05369356647133827 -0.009029787965118885 0.012775221839547157 -0.06925088167190552 -0.02785368077456951 -0.020776204764842987 -0.017387812957167625 0.03207893297076225 -0.0428880974650383 -0.049667973071336746 -0.021726617589592934 0.035241540521383286 -0.10869298875331879 -0.027379320934414864 0.08259350806474686 -0.04118458554148674 0.11116684228181839 0.040408581495285034 -0.03664873540401459 0.04529852792620659 0.06150466203689575 0.006618898827582598 -0.02651098184287548 0.026309974491596222 0.008118371479213238 -0.019567379727959633 0.02753094956278801 0.06157146021723747 -0.025767002254724503 -0.05333547294139862 0.021810920909047127 0.04758591577410698 0.025632360950112343 -0.04049703851342201 -0.08603101223707199 0.0808064192533493 -0.046900324523448944 -0.09784094989299774 -0.0355285182595253 -0.07308092713356018 -0.007497282698750496 0.04782130941748619 -0.0011420088121667504 0.01596921868622303 -0.03915778920054436 -0.019105130806565285 -0.06022820249199867 -0.059768155217170715 -0.01815764605998993 -0.08591268211603165 -0.044743601232767105 -0.03573782369494438 -0.014162442646920681 0.027864346280694008 -0.03784501180052757 -0.053999654948711395 -0.008653898723423481 -0.001371506368741393 0.013795719482004642 0.08646805584430695 0.07226680964231491 0.032027725130319595 0.0014279107563197613 -0.03787214681506157 0.00770705146715045 -0.0317843072116375 0.0026665034238249063 -0.022282520309090614 0.04539426043629646 -0.0726337656378746 0.007539559621363878 -0.002675470197573304 0.037077028304338455 -0.024645213037729263 0.016999565064907074 0.01115355547517538 -0.017245782539248466 -0.0469144731760025 0.01156522799283266 0.08593285083770752 -0.02971441112458706 0.05604463070631027 -0.02680695615708828 0.07496144622564316 -0.04259638860821724 -0.056101758033037186 -0.05179908499121666 0.0662846714258194 0.005970608908683062 0.038062840700149536 0.02115820161998272 -0.07993801683187485 0.07335187494754791 0.04064885526895523 -0.010467815212905407 -0.061000365763902664 0.03831251338124275 0.029779359698295593 0.05781736224889755 0.04611801356077194 0.0449906587600708 -0.008497883565723896 -0.010243762284517288 0.005791965872049332 0.05362788960337639 -0.037669092416763306 0.0016989752184599638 -0.0007812241674400866 -0.07407554984092712 0.020340094342827797 -0.02231626957654953 -0.07804150134325027 -0.02952127531170845 0.046822790056467056 -0.008976774290204048 -0.010865073651075363 0.027862602844834328 0.014947391115128994 -0.02808830514550209 -0.02275385707616806 1.79279795702314e-05 -0.04566483199596405 -0.09543537348508835 0.09384644776582718 0.029431628063321114 -0.07615970820188522 -0.03281201049685478 -0.004191589541733265 0.048570334911346436 -0.015077408403158188 0.02948817051947117 0.03694567829370499 0.0849849060177803 0.0449192076921463 0.0016459899488836527 -0.02264741249382496 -0.06171652674674988 -0.05185306444764137 -0.009941253811120987 0.010989835485816002 -0.027304962277412415 -0.03487756848335266 -0.00433902395889163 -0.08421709388494492 -0.010834872722625732 0.013829167000949383 0.04941532388329506 -0.04734663665294647 -0.024828223511576653 -0.00478014349937439 0.025573084130883217 -0.04475032165646553 -0.05287126824259758 0.024859340861439705 -0.0035716048441827297 0.03229501098394394 -0.03899349644780159 -0.0042032175697386265 0.05275675281882286 -0.007791911717504263 0.054362062364816666 -0.03280007839202881 0.07768598198890686 -0.0231217872351408 -0.08813463151454926 -0.000533511396497488 -0.08919849991798401 -0.052047599107027054 -0.014820237644016743 -0.05138274282217026 -0.04409101605415344 0.07606782019138336 0.019876474514603615 -0.023196980357170105 -0.06588288396596909 -0.017065610736608505 -0.03860299661755562 -0.02774452604353428 -0.0028068057727068663 -0.009283799678087234 -0.019746903330087662 -0.0050771161913871765 0.0020266841165721416 -0.058501534163951874 -0.016494741663336754 0.0009578356985002756 -0.014418763108551502 -0.046774860471487045 0.07188352197408676 -0.0252639539539814 -0.012327891774475574 0.019164016470313072 -0.05167543888092041 0.00887143611907959 0.10016568005084991 0.06068289652466774 0.03597337380051613 0.05244527757167816 0.02580147422850132 0.07035938650369644 0.030818283557891846 -0.01604594476521015 -0.03566053882241249 -0.013621002435684204 -0.03903457894921303 0.04731905087828636 -0.03999835252761841 -0.022659655660390854 0.014023423194885254 0.005186147056519985 0.07652080804109573 -0.006074734963476658 -0.07567247003316879 -0.01286320947110653 0.029333649203181267 -0.006895591039210558 0.036528751254081726 0.00800552498549223 0.016179144382476807 -0.017080338671803474 -0.034886475652456284 -0.005125483963638544 -0.010901888832449913 0.03396489471197128 -0.028706887736916542 0.01812773570418358 -0.024170342832803726 -0.0567617304623127 0.004244781564921141 -0.018901402130723 0.10435301065444946 -0.054687585681676865 0.00843153428286314 0.0422840416431427 0.04445343092083931 -0.11325539648532867 0.006188164930790663 0.006966099608689547 -0.0032670346554368734 -0.061023496091365814 0.03259425237774849 0.028496647253632545 -0.09311888366937637 -0.02103467285633087 -0.03159124031662941 -0.022547587752342224 -0.032355617731809616 0.008679194375872612 0.02940344624221325 0.01482557412236929 0.00023473016335628927 -0.05577357858419418 -0.02042974717915058 0.020430071279406548 0.013670165091753006 -0.061209145933389664 0.02596101723611355 -0.01995309814810753 0.014992867596447468 -0.052670668810606 -0.0783446878194809 -0.012327826581895351 0.057899393141269684 0.007331481669098139 -0.03521638363599777 -0.0017312084091827273 -0.0545574426651001 0.00261778780259192 0.015839917585253716 -0.005550302565097809 -0.03560507670044899 -0.020626701414585114 -0.01738877221941948 -0.06878479570150375 -0.099882572889328 -0.03873942047357559 0.012615201063454151 -0.04960250109434128 0.00943157821893692 -0.0246630497276783 -0.009803690947592258 0.003221154911443591 0.005524446722120047 0.0360943041741848 0.05813430994749069 0.022308064624667168 0.007928906939923763 0.01403613481670618 -0.010732931084930897 0.03298744559288025 0.024165501818060875 -0.05276571214199066 -0.0001022660726448521 -0.013192699290812016 -0.08776114881038666 0.0518026240170002 -0.03346008434891701 -0.0008317476022057235 0.0028457948938012123 -0.01676054857671261 0.008226285688579082 0.0006258525536395609 0.0007289338391274214 -0.027545155957341194 0.054786570370197296 -0.05657476931810379 -0.012189055792987347 0.027658190578222275 -0.025204980745911598 -0.10956579446792603 -0.03856101259589195 -0.0112101249396801 -0.009801791980862617 0.05741669237613678 -0.010372020304203033 0.013451792299747467 0.007615027483552694 -0.05202894285321236 -0.05714133381843567 -0.05267162248492241 -0.00023690768284723163 0.0376962274312973 0.01507189217954874 0.06578787416219711 0.0038912626914680004 0.011846005916595459 -0.01863935962319374 0.0014414330944418907 0.0211266428232193 -0.07446786761283875 -0.011695189401507378 -0.019651489332318306 0.002578719286248088 0.0026802343782037497 0.014154736883938313 -0.0012967531802132726 -0.057003818452358246 -0.02360229752957821 -0.015326322987675667 0.08635009825229645 -0.01853119768202305 -0.003616139991208911 0.03046604059636593 -0.058236341923475266 -0.023067861795425415 0.03264668211340904 -0.058728545904159546 -0.08683817088603973 0.0368584506213665 -0.026853561401367188 0.019514232873916626 0.018684515729546547 0.06494493037462234 -0.04603623226284981 -0.0798313319683075 -0.0007670836639590561 0.006059073377400637 -0.046861086040735245 -0.0065400912426412106 0.03126921132206917 -0.09866286814212799 -0.05318143963813782 -0.01977580599486828 -0.054152488708496094 0.07407523691654205 -0.0016697306418791413 0.017852669581770897 -0.03374934569001198 -0.0015833238139748573 -0.02921341173350811 -0.0466526560485363 0.007015712093561888 0.015674715861678123 -0.05300316959619522 -0.04028219357132912 0.055017273873090744 -0.05520627647638321 0.05050680786371231 0.07248660922050476 -0.04406788572669029 0.0547119565308094 0.04505172744393349 -0.01974397897720337 0.07873282581567764 0.03226421773433685 -0.025758612900972366 0.03614988923072815 -0.06598948687314987 0.0497501976788044 -0.054153136909008026 0.10638750344514847 0.023818176239728928 -0.0006637903279624879 0.05425948649644852 0.08863126486539841 0.011390918865799904 0.010984152555465698 -0.06828108429908752 +0.0590759739279747 0.046740975230932236 0.010259551927447319 0.022932378575205803 -0.06786609441041946 -0.06938403099775314 -0.020711392164230347 0.003025898477062583 -0.007769490592181683 -0.018055755645036697 -0.03459911048412323 -0.04283124953508377 -0.05462392792105675 -0.007152678444981575 0.042369112372398376 -0.048466842621564865 -0.09095963835716248 -0.008427342399954796 -0.010896602645516396 -0.020387861877679825 0.06084796413779259 -0.005383624229580164 -0.09379130601882935 0.09155606478452682 0.03149573504924774 0.0015343907289206982 -0.03901078179478645 0.013949843123555183 -0.012036945670843124 0.025130052119493484 0.05364248529076576 -0.01896907016634941 0.054906949400901794 -0.04161743074655533 -0.007735908962786198 0.04092051088809967 -0.00898699089884758 0.1085958182811737 0.06650258600711823 -0.03506935015320778 -0.0770765095949173 0.01815393753349781 -0.045393653213977814 -0.054781489074230194 0.020013868808746338 0.012403790839016438 -0.03791229799389839 -0.047169171273708344 0.07707986980676651 0.07066188752651215 0.10041587054729462 -0.03951364383101463 -0.051757827401161194 -0.017694346606731415 0.015789847820997238 0.015957631170749664 0.04685356840491295 -0.04547961801290512 -0.050676971673965454 0.012113586068153381 -0.08794248104095459 0.0057997494004666805 0.011641242541372776 -0.003306934842839837 0.006994251627475023 -0.061087317764759064 -0.01212542038410902 0.08914843946695328 0.01263861358165741 -0.00855480320751667 0.010303087532520294 0.11910520493984222 -0.11810054630041122 -0.025603411719202995 0.06552774459123611 -0.07703088968992233 -0.049174122512340546 0.058414384722709656 0.017254682257771492 0.0384981743991375 0.01770763471722603 -0.03972436860203743 0.10319749265909195 -0.04888514056801796 -0.0400385819375515 -0.023900866508483887 -0.02766992151737213 -0.04644948989152908 0.06386414170265198 0.0576883926987648 0.024406787008047104 0.054954446852207184 -0.04438694566488266 0.016643324866890907 0.002477702684700489 0.011236222460865974 0.05855490267276764 -0.06565166264772415 -0.009413711726665497 -0.01478248368948698 -0.0026479391381144524 0.002177360001951456 0.025954481214284897 -0.012011329643428326 0.052014872431755066 0.009055263362824917 -0.06143086403608322 0.014776644296944141 0.039679449051618576 0.04380608722567558 0.05539094656705856 0.05997520685195923 0.11323846876621246 0.03183886781334877 0.0528743714094162 0.0051376670598983765 0.04264966771006584 -0.06343887746334076 -0.03881027549505234 0.02563517913222313 -0.034419137984514236 0.07418812066316605 -0.012002270668745041 -0.0399371013045311 0.0067409249022603035 0.061497416347265244 -0.05469207838177681 -0.07437168806791306 0.0223984494805336 -0.0021418691612780094 0.09329333156347275 0.07447180151939392 -0.00020188474445603788 0.004914327058941126 0.08474033325910568 -0.0047651007771492004 0.014540459029376507 0.06202610954642296 -0.032269734889268875 -0.024437014013528824 -0.003918970003724098 0.03274311497807503 -0.009996733628213406 -0.06051698327064514 0.03208457678556442 0.05079479515552521 0.02262139692902565 0.010574307292699814 -0.04992996156215668 -0.019047580659389496 -0.07725278288125992 -0.04472273215651512 0.009324107319116592 -0.08603861927986145 -0.029108306393027306 0.06874453276395798 -0.011116649024188519 0.05819308012723923 -0.008197891525924206 -0.017891107127070427 -0.048686712980270386 -0.06214413419365883 -0.006638019345700741 -0.06135769560933113 -0.08495371788740158 -0.029039962217211723 0.011871750466525555 0.01834198459982872 -0.034332167357206345 -0.011551993899047375 -0.017849387601017952 -0.03663096949458122 0.03589947521686554 0.06265732645988464 0.06385640054941177 0.027561604976654053 0.002076153876259923 -0.03894169628620148 0.002690146444365382 -0.06476136296987534 0.0338069349527359 -0.0816122442483902 0.03638231009244919 -0.02739180251955986 0.003408547258004546 -0.005514319986104965 0.05096963047981262 0.009080829098820686 0.018035195767879486 0.05875876545906067 -0.03930441662669182 -0.032524045556783676 0.05745444819331169 0.07068509608507156 -0.039244893938302994 0.023677390068769455 -0.02658791095018387 0.0407995842397213 -0.0023020822554826736 -0.039359454065561295 -0.07617966085672379 0.02534295618534088 0.025196099653840065 0.070070281624794 0.08119229972362518 -0.05810421332716942 0.07283169776201248 0.029997168108820915 0.0220614243298769 -0.04631449282169342 -0.01670125685632229 0.0036603042390197515 0.018491776660084724 -0.003793334821239114 0.06772005558013916 -0.022063983604311943 0.012387176044285297 -0.016337493434548378 0.05789870396256447 -0.0299964789301157 -0.020312698557972908 0.019508883357048035 -0.08931954205036163 0.0643865093588829 -0.044526517391204834 -0.07913997024297714 -0.012720034457743168 0.041001852601766586 -0.02993912063539028 -0.01908866874873638 0.012435774318873882 0.01271339226514101 -0.029120974242687225 -0.022952625527977943 0.0361957810819149 -0.02836190164089203 -0.08352550119161606 0.12669365108013153 -0.003823330393061042 -0.056036267429590225 -0.06367090344429016 0.03670286759734154 0.015934975817799568 0.014119300991296768 0.01760142296552658 0.02854299172759056 0.0921708345413208 0.02370949275791645 0.003291365224868059 0.013193107210099697 -0.054680295288562775 -0.06409787386655807 0.008808452636003494 0.028553975746035576 -0.05403110012412071 -0.05399249121546745 -0.014721173793077469 -0.00891050137579441 0.01855379343032837 -6.606603619729867e-07 0.020986372604966164 -0.013116602785885334 -0.002976687392219901 -0.029898492619395256 0.0725054144859314 -0.04350453242659569 -0.050717029720544815 0.0859840139746666 -0.002755257301032543 0.029531512409448624 -0.0036724198143929243 -0.01262915413826704 0.014087128452956676 0.03960270434617996 -0.0023074778728187084 -0.03229180723428726 0.06282108277082443 0.0007477716426365077 -0.053907059133052826 -0.03922726586461067 -0.1121753603219986 -0.049654290080070496 0.00743114622309804 -0.01824812963604927 0.004830567631870508 0.054808277636766434 0.03512744605541229 -0.04662598296999931 -0.05876310542225838 -0.015071162953972816 -0.04923464357852936 -0.05495404452085495 -0.02740715816617012 0.01579413004219532 -0.06354334205389023 -0.04744838923215866 0.02794092707335949 -0.02968551777303219 -0.01817253604531288 -0.01623186096549034 -0.04317127540707588 -0.04952240362763405 -0.002455979585647583 0.0005406607524491847 -0.0008930914918892086 0.01798616163432598 -0.040215760469436646 0.041270557790994644 0.12068846076726913 0.06557218730449677 0.0343812070786953 0.05559806153178215 0.04587079584598541 0.11998863518238068 0.026410505175590515 -0.056934185326099396 -0.02759196236729622 -0.05475090444087982 -0.09645207971334457 0.03474141284823418 -0.027213837951421738 -0.01729085110127926 -0.02226872928440571 0.0088404705747962 0.045636121183633804 -0.002468890743330121 -0.025367723777890205 -0.04864542558789253 -0.0031800782307982445 -0.020182345062494278 -0.005149966571480036 -1.3801515706290957e-05 -0.018310468643903732 -0.017233941704034805 -0.08327788859605789 -0.03915181756019592 -0.08842248469591141 0.03417091444134712 -0.007759284693747759 0.045171622186899185 -0.0036505144089460373 -0.02886907383799553 -0.020178750157356262 0.012178516946732998 0.08996644616127014 -0.04457893967628479 0.016004590317606926 0.03588378056883812 0.03731611743569374 -0.07393364608287811 -0.029766671359539032 0.0386321134865284 -0.04516008123755455 -0.02137649431824684 -0.014808314852416515 0.03167565166950226 -0.05137546360492706 -0.00023619552666787058 0.011878516525030136 -0.08248714357614517 -0.015469585545361042 -0.004652345087379217 0.027958521619439125 0.01669219508767128 -0.0037190995644778013 -0.038948506116867065 -0.011843674816191196 -0.021853435784578323 0.017755789682269096 0.006347005721181631 -0.0008825944387353957 -0.03605111315846443 0.006220301613211632 -0.056044671684503555 -0.019892917945981026 -0.06140681728720665 0.0588192455470562 -0.03618793934583664 -0.03176956996321678 0.030085867270827293 0.02082393877208233 -0.03061695769429207 0.023391056805849075 0.048428162932395935 -0.03543199226260185 -0.030119983479380608 -0.025837143883109093 -0.0032984011340886354 -0.08138284087181091 0.007900366559624672 -0.03145841509103775 -0.03267462179064751 0.04161224886775017 -0.010070592164993286 -3.2357507734559476e-05 -0.01211242750287056 -0.014125263318419456 0.03586968779563904 0.03472253680229187 0.0267885010689497 0.014064152725040913 -0.0034208488650619984 0.022455619648098946 0.012824532575905323 0.039624132215976715 -0.055350739508867264 -0.01832861453294754 0.030022071674466133 -0.04647647589445114 0.041958875954151154 -0.03761054947972298 0.007311858236789703 -0.06461618840694427 0.007253557909280062 0.018133534118533134 -0.03511391952633858 0.01984471082687378 -0.014120432548224926 0.012002553790807724 -0.057309843599796295 -0.04971988499164581 0.03527839481830597 -0.027831465005874634 -0.07508423924446106 -0.014997174963355064 0.013785235583782196 0.004252529703080654 0.03165014460682869 -0.037693824619054794 0.030130885541439056 0.0399736650288105 -0.043756574392318726 -0.05182991921901703 -0.05208795145153999 0.007585136219859123 0.06241869181394577 -0.028936032205820084 0.03920722007751465 -0.0037524409126490355 -0.014116199687123299 0.02644442208111286 -0.02083664759993553 0.02238057181239128 -0.0895867571234703 -0.0077970074489712715 -0.007791350595653057 0.006184482481330633 0.059595827013254166 0.0021591235417872667 0.0038268582429736853 -0.0065717571415007114 -0.0326511524617672 -0.028822654858231544 0.08850039541721344 -0.026633232831954956 0.020081650465726852 0.046803586184978485 -0.028970668092370033 0.03700583428144455 -0.0094095254316926 -0.03877435252070427 -0.05339854583144188 -0.01135228294879198 -0.020013058558106422 0.00418673362582922 0.015237294137477875 0.01978345960378647 -0.006760598160326481 -0.044193413108587265 0.0042636943981051445 0.015775581821799278 -0.06495092064142227 0.0012654417660087347 -0.02279827743768692 -0.047972872853279114 -0.06097998470067978 -0.0117882639169693 -0.0580153726041317 0.07003428041934967 0.01088494062423706 0.03106609359383583 0.015740353614091873 0.008996398188173771 0.030225979164242744 -0.024102551862597466 -0.02553197182714939 0.020617833361029625 -0.028858857229351997 0.016100628301501274 0.0596969835460186 -0.016037587076425552 0.021256063133478165 0.06672809273004532 -0.016413407400250435 0.035405512899160385 0.07635583728551865 -0.03526163101196289 0.03559735044836998 -0.019239049404859543 -0.04588734731078148 0.08256275951862335 -0.056928545236587524 0.1108688935637474 -0.05570562556385994 0.08597613126039505 -0.0008739158511161804 -0.060819756239652634 0.08972293138504028 0.07980386167764664 -0.024975795298814774 0.0466291718184948 -0.06238403916358948 +0.029765676707029343 -0.042044345289468765 -0.02017994411289692 0.008260580711066723 -0.059389181435108185 -0.0665791854262352 -0.010821499861776829 0.03255336731672287 -0.012576879933476448 -0.07370785623788834 -0.046011898666620255 -0.02303045243024826 -0.018011752516031265 -0.0029114470817148685 0.04767473042011261 -0.052516572177410126 -0.06012015789747238 0.032613374292850494 -0.04625170677900314 -0.020665699616074562 0.029071325436234474 0.03275236859917641 -0.03354647383093834 0.046066902577877045 0.0020028501749038696 0.004905312322080135 -0.02584468387067318 0.013136443682014942 0.02075904607772827 0.05431470647454262 0.0653780996799469 -0.028863878920674324 0.044129181653261185 -0.05224251747131348 -0.02881160005927086 0.061681635677814484 -0.03063160367310047 0.11200553923845291 0.03416234999895096 -0.0037733418866991997 -0.05040673539042473 -0.004399490542709827 -0.010143526829779148 -0.08024680614471436 0.040670622140169144 0.0009018100099638104 -0.018285183236002922 -0.02676815167069435 -0.002726529026404023 0.046612128615379333 0.09456519782543182 0.0009943563491106033 -0.02647065371274948 -0.005416490603238344 -0.009846379980444908 -0.003826743457466364 0.034112442284822464 -0.04005107656121254 -0.02195671759545803 0.03999777510762215 -0.10376782715320587 -0.017201734706759453 0.014902870170772076 0.007750696036964655 -0.012085271067917347 -0.035504285246133804 -0.00719645107164979 0.08143902570009232 -0.006326816510409117 -0.035417575389146805 0.00566897913813591 0.06961759179830551 -0.04583047702908516 -0.07840348780155182 0.04706348106265068 -0.08334863930940628 0.023182464763522148 0.016183657571673393 -0.02210407890379429 0.0022239263635128736 -0.004625349771231413 -0.02129644900560379 0.16168716549873352 -0.06254705786705017 -0.0378008671104908 -0.03823421895503998 -0.03691031411290169 -0.06984203308820724 0.04558485746383667 0.01676749624311924 0.04176083579659462 0.04205525293946266 -0.011550882831215858 -0.0018008206970989704 -0.019654124975204468 -0.0071405391208827496 0.01911189965903759 -0.08755313605070114 -0.018897417932748795 -0.010899411514401436 -0.008834908716380596 0.005360405892133713 0.06714410334825516 0.02883952483534813 0.04295012727379799 0.027080239728093147 -0.0391126424074173 0.009561476297676563 0.044027235358953476 0.028819594532251358 0.012701332569122314 0.10835850983858109 0.09203352779150009 0.0354062058031559 0.08625133335590363 0.0028932837303727865 -0.008065000176429749 -0.05609880015254021 -0.01273687370121479 -0.004060552455484867 0.0007598349475301802 0.059524811804294586 -0.01767730340361595 -0.07374904304742813 -0.005377717316150665 0.03850173577666283 -0.11525406688451767 -0.030542826279997826 0.04907206445932388 -0.02292305789887905 0.1126682385802269 0.05371789634227753 -0.04539939761161804 0.05108584836125374 0.04474002495408058 0.018007606267929077 -0.013462075032293797 0.01844174973666668 0.00335697247646749 -0.058719515800476074 -0.019249020144343376 0.05024055391550064 -0.020118478685617447 -0.024396341294050217 0.043398141860961914 0.041377414017915726 0.027532411739230156 -0.04237581789493561 -0.06472204625606537 0.01300223357975483 -0.0771363154053688 -0.05866158753633499 0.006204820238053799 -0.05251484736800194 0.010284420102834702 0.009852513670921326 0.0020375673193484545 0.0024006529711186886 -0.01885480247437954 -0.025539293885231018 -0.05833086371421814 -0.05227118730545044 -0.017730362713336945 -0.08688373863697052 -0.0036182499025017023 0.01731269434094429 -0.00162318570073694 0.003675974439829588 -0.08552782982587814 -0.059372156858444214 -0.026464849710464478 -0.031161896884441376 0.036100201308727264 0.08088359981775284 0.06836944073438644 0.007429931778460741 0.019743267446756363 -0.07006502151489258 -0.014897959306836128 -0.03119133785367012 0.03827493265271187 -0.04269286245107651 0.03525601327419281 -0.0735425353050232 -0.001862517325207591 -0.009285865351557732 0.014745797030627728 -0.04609860107302666 0.032935433089733124 0.011488054879009724 -0.0289508868008852 -0.049680691212415695 0.03479396924376488 0.06979572772979736 -0.01768394559621811 0.03921836242079735 -0.014970839954912663 0.09046073257923126 -0.02913644351065159 -0.04927099496126175 -0.08997107297182083 0.021226724609732628 0.023923957720398903 0.03421008214354515 0.027380159124732018 -0.06674490869045258 0.0965481847524643 0.024679042398929596 0.03238997980952263 -0.04126490652561188 0.047368329018354416 0.04771818965673447 -0.003855524817481637 0.0441700778901577 0.05811526998877525 -0.02928849682211876 -0.005905604921281338 -0.01600663922727108 0.04199735447764397 -0.06094665825366974 -0.010040265507996082 -0.008864271454513073 -0.0818387120962143 0.0045723081566393375 -0.05518757551908493 -0.08037608861923218 -0.02343638986349106 0.03708109259605408 -0.00822014082223177 -0.041727129369974136 0.0005580749711953104 0.039483506232500076 -0.008899894542992115 0.019232824444770813 0.0147599708288908 -0.04512573406100273 -0.09639304131269455 0.07312840968370438 -0.009000635705888271 -0.08684064447879791 -0.05968862771987915 -0.023225922137498856 0.03629901260137558 -0.006441698409616947 0.027876827865839005 0.04538824409246445 0.06298863887786865 0.029995517805218697 -0.04827660694718361 0.007696017622947693 -0.01715429499745369 -0.03178463876247406 -0.019164806231856346 -0.015001283027231693 -0.02508855052292347 -0.0830264762043953 0.020279420539736748 -0.08797330409288406 -0.007308025844395161 -0.02406412363052368 0.029734358191490173 -0.04665464535355568 -0.028880475088953972 -0.022504134103655815 0.03287555277347565 -0.029722394421696663 -0.03500175103545189 0.04184682294726372 -0.03698103874921799 0.024542706087231636 -0.024384967982769012 0.013286272063851357 0.03978748619556427 -0.027124706655740738 0.016151389107108116 -0.04736843332648277 0.09787139296531677 0.01289601530879736 -0.0404626689851284 -0.008625823073089123 -0.06421559303998947 -0.06075160577893257 0.003459550440311432 -0.03264647349715233 -0.014471291564404964 0.05075020343065262 0.05654826760292053 -0.039305124431848526 -0.04419698938727379 -0.047161541879177094 -0.03391411527991295 -0.04829057306051254 -0.03664205223321915 -0.02086688205599785 -0.0419916994869709 0.004671374335885048 0.023090871050953865 -0.03651433438062668 -0.018924543634057045 0.0204376969486475 0.012236150912940502 -0.05430091917514801 0.01667489856481552 -0.03766223043203354 -0.02575082890689373 0.0004027810937259346 -0.04359439015388489 0.03239533677697182 0.09022440761327744 0.07653097063302994 0.018544308841228485 0.035978738218545914 0.02396157756447792 0.08889313042163849 -0.010031060315668583 0.0045256223529577255 -0.03009512834250927 -0.05746808648109436 -0.04650954157114029 0.061739884316921234 -0.011319085024297237 -0.018428446725010872 0.02419799566268921 0.010776415467262268 0.0467374250292778 -0.022183114662766457 -0.041806310415267944 -0.033377908170223236 0.017428604885935783 -0.03397052735090256 0.017803898081183434 -0.020478058606386185 0.0468888022005558 -0.014466872438788414 -0.061987362802028656 -0.06437742710113525 -0.05310309678316116 0.060866110026836395 -0.020471232011914253 0.042175132781267166 -0.03560579568147659 -0.058589283376932144 -0.04520396515727043 0.025235973298549652 0.13205869495868683 -0.03688863292336464 0.012944434769451618 0.03611099347472191 0.06997771561145782 -0.09964504092931747 0.01897904835641384 -0.01561931986361742 -0.02483556419610977 -0.06025674194097519 0.0015791625482961535 0.03792308270931244 -0.09885473549365997 -0.03267687186598778 -0.03498711809515953 -0.011204468086361885 0.021191520616412163 0.0019738192204385996 -0.005253619980067015 0.052794214338064194 0.02880559116601944 -0.04816114529967308 0.009814346209168434 0.0027311518788337708 0.022073546424508095 -0.04301358014345169 0.016115637496113777 -0.040157608687877655 0.012782329693436623 -0.05168985202908516 -0.05846007913351059 -0.03232496231794357 0.045867856591939926 -0.025361280888319016 -0.005055674817413092 -0.017844779416918755 -0.026958800852298737 -0.019683534279465675 0.007632306776940823 0.004040453117340803 -0.06359541416168213 -0.019784841686487198 -0.035281527787446976 -0.05905522406101227 -0.08294844627380371 -0.03846123069524765 0.009186165407299995 -0.010547995567321777 0.028203461319208145 -0.02147388458251953 0.02355147711932659 0.01417036633938551 0.020327838137745857 0.05874031409621239 0.06802377104759216 0.021732481196522713 0.003388600191101432 0.03607594966888428 -0.0014524252619594336 0.0527363196015358 0.037734534591436386 -0.05516660585999489 -0.028378929942846298 -0.00477454112842679 -0.06042502075433731 0.05100931599736214 -0.03995324298739433 0.004055737983435392 -0.01517920009791851 -0.013328075408935547 0.01684674620628357 -0.025842983275651932 0.029567649587988853 -0.025318244472146034 0.04928234592080116 -0.07369427382946014 -0.04958019033074379 0.020560242235660553 -0.03488921746611595 -0.10123370587825775 -0.06000319495797157 -0.021931735798716545 -0.017023799940943718 0.04419795051217079 -0.03646602854132652 0.04027475416660309 0.009293705224990845 -0.014332077465951443 -0.043965648859739304 -0.01202221680432558 -0.009910517372190952 0.017641326412558556 0.01680043712258339 0.043468691408634186 0.00725078210234642 0.0257873497903347 0.011873702518641949 -0.031792052090168 0.015162245370447636 -0.07970190793275833 0.0071890405379235744 -0.004548981785774231 -0.015769818797707558 0.0043710749596357346 0.029818210750818253 0.028177410364151 -0.05100081115961075 -0.016628053039312363 -0.06744679808616638 0.07429789751768112 0.009694305248558521 0.06520510464906693 0.007952307350933552 -0.0749792754650116 -0.01305738277733326 0.03504294157028198 -0.04918168857693672 -0.0902593657374382 -0.016293883323669434 -0.03367789089679718 0.03578489273786545 -0.008341934531927109 0.036392707377672195 -0.025651708245277405 -0.08254151046276093 0.060272328555583954 0.008588952012360096 -0.015362435020506382 0.005394038278609514 0.046089377254247665 -0.04768813028931618 -0.031574901193380356 0.00988968275487423 -0.07189327478408813 0.04917377978563309 0.02098667621612549 0.03766365349292755 -0.04729780554771423 -0.0025299310218542814 -0.00044897248153574765 -0.029865393415093422 0.03270047903060913 -0.009448870085179806 -0.030177636072039604 -0.011964138597249985 0.094611257314682 -0.028130529448390007 0.020760372281074524 0.07570861279964447 -0.03401275351643562 0.04802250862121582 0.06452469527721405 -0.021618040278553963 0.048920754343271255 0.009463027119636536 -0.012578791007399559 0.0501231923699379 -0.09003681689500809 0.0738983303308487 -0.06968828290700912 0.12397162616252899 0.04294953495264053 -0.005344643257558346 0.08423355221748352 0.0557464174926281 0.01797940768301487 0.05667022988200188 -0.09127475321292877 +0.02699943631887436 0.008596190251410007 -0.0012504929909482598 0.04097555950284004 -0.09276903420686722 -0.06813247501850128 -0.002109889406710863 0.028929395601153374 -0.010920917615294456 -0.03241172432899475 -0.010008685290813446 -0.036903202533721924 -0.035566460341215134 -0.019616004079580307 0.025804467499256134 -0.030004126951098442 -0.08941188454627991 0.0148231852799654 -0.061968978494405746 -0.013967934995889664 0.05690714716911316 0.012801028788089752 -0.07707129418849945 0.0557003989815712 -0.004290327895432711 0.008463392034173012 -0.03252352029085159 0.01846005767583847 -0.03709867596626282 0.040302909910678864 0.08426361531019211 0.006496127229183912 0.0447152778506279 -0.04894101247191429 -0.030369775369763374 0.06118669733405113 -0.015252680517733097 0.11002402752637863 0.0448867492377758 -0.01631052792072296 -0.055584702640771866 0.017563432455062866 -0.020693369209766388 -0.03676688298583031 0.05701485276222229 -0.012688224203884602 -0.025871748104691505 -0.03714093565940857 0.05352114140987396 0.054791685193777084 0.09951487928628922 -0.006920658051967621 -0.017530620098114014 -0.004359954036772251 -0.008928279392421246 0.024316884577274323 0.036372821778059006 -0.056199587881565094 -0.06617006659507751 0.025271257385611534 -0.05378574877977371 -0.002920767292380333 0.013258037157356739 -0.022762252017855644 0.00414315378293395 -0.016208088025450706 -0.014140504412353039 0.08280418068170547 0.021572014316916466 -0.015183763578534126 0.018898088485002518 0.10577836632728577 -0.09863021969795227 -0.06604785472154617 0.058335937559604645 -0.05452572926878929 -0.027913950383663177 0.05262238532304764 -0.009162903763353825 0.016864225268363953 -0.018474960699677467 -0.0308298971503973 0.11428987979888916 -0.07203715294599533 -0.041577283293008804 -0.033631112426519394 -0.02172618731856346 -0.04240218177437782 0.0680779442191124 0.042846761643886566 0.0047873202711343765 0.04231198504567146 -0.05739142745733261 0.014312030747532845 0.0010019660694524646 0.006637537851929665 0.050301387906074524 -0.11932346969842911 -0.021497737616300583 0.011332608759403229 -0.016226258128881454 -0.012343306094408035 0.045884087681770325 -0.003854174166917801 0.0582076832652092 0.055749110877513885 -0.050750888884067535 0.006543694995343685 0.020582139492034912 0.04961450770497322 0.03720274195075035 0.0829678550362587 0.11263246089220047 0.03840533271431923 0.059935346245765686 -0.012825275771319866 -0.008068650029599667 -0.048046328127384186 -0.05422932282090187 -0.0017971692141145468 -0.02750842273235321 0.0447622686624527 -0.02235131897032261 -0.006516458932310343 -0.02385207638144493 0.03426464647054672 -0.11716371774673462 -0.038625460118055344 0.058743271976709366 -0.029293345287442207 0.11019254475831985 0.028748299926519394 0.0031134099699556828 0.0032137581147253513 0.09805290400981903 0.014948639087378979 0.022817181423306465 0.021585971117019653 -0.029494255781173706 -0.025578144937753677 0.007582367863506079 0.03575200214982033 -0.02796073630452156 -0.04391292855143547 0.001762260915711522 0.06738930195569992 0.033792056143283844 -0.012493574991822243 -0.07564153522253036 0.02982190065085888 -0.11228221654891968 -0.0715213194489479 -0.022117938846349716 -0.09916001558303833 0.0026066855061799288 0.05371086299419403 0.01272626779973507 0.05527516081929207 -0.016680965200066566 -0.005940444767475128 -0.035943467170000076 -0.05161634832620621 -0.01735702157020569 -0.06728143244981766 -0.05253289267420769 -0.035352326929569244 -0.0013220852706581354 0.0015968297375366092 0.002143630525097251 -0.05694128945469856 -0.03574339672923088 -0.011081933043897152 0.01833394356071949 0.0872480720281601 0.051730673760175705 0.028286796063184738 0.006983434781432152 -0.04455381631851196 -0.01375820953398943 -0.06207270920276642 0.008406288921833038 -0.04944507032632828 0.05668777599930763 -0.05060313642024994 0.003933603409677744 -0.006514804903417826 0.03684595972299576 -0.01602838560938835 0.014125055633485317 0.0249288659542799 -0.05090031772851944 -0.0607466958463192 0.05180111899971962 0.0997554287314415 -0.04497656226158142 0.04162856936454773 -0.01207822561264038 0.047532107681035995 -0.004266698844730854 -0.04035377502441406 -0.07105765491724014 0.036052122712135315 0.0051473346538841724 0.042279746383428574 0.05380730703473091 -0.08077075332403183 0.07250829041004181 0.01309886109083891 -0.009757963009178638 -0.058334991335868835 0.017856650054454803 0.02711939997971058 0.03955041989684105 0.012196301482617855 0.046723466366529465 -0.0031072392594069242 -0.006551104597747326 -0.011723041534423828 0.056083135306835175 -0.05106585845351219 0.0197162963449955 0.005534593015909195 -0.07365166395902634 0.07477825880050659 -0.03389616310596466 -0.09719634801149368 -0.002911935094743967 0.01564965397119522 -0.02559347078204155 -0.020435458049178123 -0.00037338086985982955 0.033730193972587585 -0.014522007666528225 -0.03168767690658569 0.016797324642539024 0.010041601955890656 -0.10205641388893127 0.12406081706285477 -0.013257190585136414 -0.06006072834134102 -0.06559149920940399 0.02211989276111126 0.018482176586985588 0.0027001560665667057 0.032925575971603394 0.029398083686828613 0.09613896161317825 0.0454060398042202 0.009853353723883629 -0.009217869490385056 -0.07384298741817474 -0.03863298520445824 -0.00930110178887844 0.00913925375789404 -0.029738571494817734 -0.056545406579971313 0.002424028469249606 -0.048749472945928574 -0.0012868486810475588 0.011692851781845093 0.07560926675796509 -0.03548653796315193 -0.03616281971335411 0.004148614592850208 0.050662584602832794 -0.028139635920524597 -0.0886617973446846 0.04733220487833023 -0.02409905381500721 0.02966996654868126 -0.030083434656262398 -0.026568273082375526 0.012799568474292755 0.012508508749306202 0.05257260054349899 -0.013072268106043339 0.07014147937297821 -0.028495928272604942 -0.09765294194221497 -0.027897575870156288 -0.0764889344573021 -0.07166627049446106 -0.0008310305420309305 -0.024419188499450684 -0.018681880086660385 0.06614819914102554 0.04452132061123848 -0.03498907759785652 -0.07932782173156738 -0.006281064823269844 -0.03778251260519028 -0.0458807647228241 -0.026568418368697166 -0.0037505466025322676 -0.06454749405384064 -0.0069170924834907055 0.017573097720742226 -0.041839953511953354 -0.019592350348830223 0.010737994685769081 -0.03726894408464432 -0.025852065533399582 0.030858874320983887 -0.051807940006256104 -0.011001212522387505 0.01839853823184967 -0.034502580761909485 0.047021981328725815 0.0999656543135643 0.060857247561216354 0.0532912015914917 0.03735193610191345 0.045010242611169815 0.08131970465183258 0.016594063490629196 -0.01782948151230812 -0.0231779757887125 -0.038157518953084946 -0.0872567743062973 0.02596772275865078 -0.04612364247441292 -0.05020738020539284 -0.0033608581870794296 0.02218402735888958 0.07527322322130203 -0.011446462944149971 -0.03193787485361099 -0.029457688331604004 0.027955034747719765 0.011213468387722969 0.016317520290613174 0.0121716083958745 -0.01796901412308216 0.013346218504011631 -0.05026983469724655 -0.008066438138484955 -0.06672021746635437 0.04406682029366493 0.002581976354122162 0.026977237313985825 -0.026558127254247665 -0.06129206344485283 0.005601922050118446 0.03188483044505119 0.09124233573675156 -0.05201258882880211 0.03271150588989258 0.04549020156264305 0.01310017891228199 -0.08681654930114746 -0.030231652781367302 0.04961074888706207 -0.007352680899202824 -0.05658223107457161 0.022576211020350456 0.05184691399335861 -0.07433514297008514 -0.024196013808250427 0.010654167272150517 -0.061023056507110596 -0.014749246649444103 0.023614803329110146 0.0004978521028533578 -0.004269810859113932 0.0041265045292675495 -0.01889314316213131 -0.00848193559795618 0.02108495682477951 0.022576885297894478 -0.039262011647224426 0.021261099725961685 -0.032789748162031174 0.052376896142959595 -0.030345523729920387 -0.0629311203956604 -0.059945251792669296 0.07198301702737808 -0.011410478502511978 -0.0342894047498703 -0.03794778138399124 0.013549783267080784 0.001583434990607202 0.04256649687886238 -0.014718040823936462 -0.07307791709899902 -0.012735579162836075 -0.003104718867689371 -0.0659908726811409 -0.09748975932598114 -0.012846180237829685 0.002009771764278412 -0.06668756157159805 -0.009013265371322632 -0.0321209654211998 -0.004540673457086086 -0.017723236232995987 -0.027089186012744904 0.045390889048576355 0.03289976343512535 0.02407250553369522 0.00917591992765665 0.018204040825366974 0.0025288446340709925 0.026869989931583405 0.013622032478451729 -0.03225649893283844 0.0003667802666313946 0.007065822836011648 -0.04760001599788666 0.034469570964574814 -0.04869135841727257 0.003866416634991765 -0.03182389959692955 -0.016235357150435448 0.014305198565125465 -0.001543374266475439 -0.006505539175122976 -0.05021212622523308 0.03630496561527252 -0.06126599386334419 -0.005646149627864361 0.04996082931756973 -0.02750673145055771 -0.08711721003055573 -0.008128354325890541 -0.01258195098489523 0.0015078778378665447 0.034808747470378876 -0.007369241677224636 0.04443123936653137 -0.02307451330125332 -0.06876050680875778 -0.04361264035105705 -0.0785653293132782 -0.016804631799459457 0.0258890762925148 -0.00150647247210145 0.07705914974212646 -0.012030777521431446 0.0009740724344737828 -0.010205206461250782 -0.0027890114579349756 -0.005918100476264954 -0.07735243439674377 -0.006432752124965191 -0.03710796684026718 0.008142865262925625 0.02107849344611168 0.0036418954841792583 0.013318322598934174 -0.01273042056709528 -0.04075423255562782 -0.04694676026701927 0.08877082914113998 -0.03717954456806183 0.011488514021039009 0.036812275648117065 -0.013107198290526867 0.009533009491860867 0.006484562065452337 -0.034337032586336136 -0.05544818192720413 0.01272189524024725 -0.01052300725132227 0.016758186742663383 0.054225437343120575 0.031649667769670486 -0.025236638262867928 -0.05670526251196861 -0.022209901362657547 0.016839584335684776 -0.029033107683062553 -0.009697957895696163 -0.004110737703740597 -0.07602614164352417 -0.06759035587310791 -0.04162360355257988 -0.04373908415436745 0.0803217664361 -0.018998101353645325 0.02557273395359516 -0.02238454855978489 -0.0017040168168023229 0.029072418808937073 -0.028238480910658836 0.005853109527379274 0.026565128937363625 -0.056329600512981415 -0.01636124961078167 0.04840582236647606 0.003802129067480564 0.043759845197200775 0.06643834710121155 -0.03749171271920204 0.03741487115621567 0.06078055128455162 -0.018224691972136497 0.024225223809480667 0.0018170318799093366 -0.03192669153213501 0.04806649312376976 -0.07071827352046967 0.09561027586460114 -0.043130356818437576 0.07941573858261108 0.013276591897010803 -0.009736595675349236 0.08647942543029785 0.0831679254770279 -0.007885611616075039 0.022584468126296997 -0.06214706972241402 +-0.04517669603228569 -0.0833064541220665 -0.022197335958480835 0.021061573177576065 0.04917830601334572 -0.03548583760857582 -0.0014797841431573033 0.0038125021383166313 0.028514785692095757 -0.045855093747377396 -0.03395838662981987 0.006564880255609751 -0.02578931860625744 -0.04238642752170563 -0.003765606554225087 0.03985165059566498 -0.05610441043972969 0.008064305409789085 0.006410134024918079 -0.000673977134283632 0.0035867439582943916 0.08035987615585327 -0.08500710874795914 0.02173720672726631 -0.02394839935004711 -0.017219344154000282 -0.021780936047434807 0.043380651623010635 -0.017663247883319855 0.0570438876748085 0.06094621866941452 -0.021817460656166077 0.09539487212896347 -0.030794592574238777 0.02787238545715809 -0.02942565083503723 0.015035153366625309 0.04444682598114014 0.025812776759266853 -0.0034202905371785164 0.030221635475754738 -0.030529094859957695 0.05577406287193298 -0.05796732008457184 -0.01214983407407999 -0.044332146644592285 -0.018116850405931473 -0.031024903059005737 -0.03625166788697243 0.08677056431770325 0.06784673035144806 0.0015994968125596642 0.033919475972652435 -0.025358926504850388 0.022052621468901634 -0.025457143783569336 0.016872355714440346 -0.04824452847242355 -0.0412750281393528 0.005002850200980902 -0.029605526477098465 0.04511161148548126 0.015756119042634964 0.013665275648236275 -0.06494535505771637 -0.0038196872919797897 0.03233005851507187 0.052174605429172516 -0.0013460282934829593 -0.055717382580041885 0.02181909792125225 -0.00805128738284111 -0.061368249356746674 -0.014552989974617958 -0.027881426736712456 0.023483699187636375 0.08495070040225983 0.008446373045444489 -0.0029085094574838877 -0.02968318946659565 0.003879341995343566 0.00960420910269022 0.05589292570948601 -0.04108120873570442 0.03337534889578819 -0.06832296401262283 -0.006863259244710207 -0.08075617253780365 -0.003071950748562813 -0.05606634542346001 0.06964168697595596 0.016958804801106453 0.05195393040776253 0.012703221291303635 0.012326079420745373 0.05879192426800728 0.027820268645882607 -0.07936340570449829 -0.009585011750459671 0.02819632925093174 -0.0437348447740078 0.04339161515235901 0.0710005983710289 0.038789052516222 -0.010024726390838623 0.0032359501346945763 -0.028666893020272255 0.041932206600904465 0.08033487200737 0.06925128400325775 0.03241788223385811 0.06286340206861496 0.021626653149724007 0.022817032411694527 0.022769156843423843 0.01643717661499977 0.0065070162527263165 0.06398915499448776 0.0657392144203186 0.04636931046843529 0.001838038326241076 0.01615300215780735 0.00415816530585289 -0.05005021020770073 -0.00932849757373333 0.13135764002799988 -0.018998727202415466 -0.0691291019320488 -0.0022196792997419834 -0.01579490303993225 0.06958893686532974 0.025971226394176483 9.148252865998074e-05 -0.008491338230669498 -0.02079620212316513 -0.008769377134740353 -0.03480036184191704 -0.014591967687010765 0.04928077757358551 -0.04152956232428551 -0.051128655672073364 -0.005973937455564737 -0.04323520138859749 -0.013970923610031605 0.004259040113538504 0.0008025665883906186 -0.03736246004700661 -0.03461693972349167 -0.03976410627365112 -0.04646176099777222 -0.03096156008541584 -0.023923953995108604 0.008131396025419235 -0.0659148171544075 0.013585402630269527 -0.0006450186483561993 -0.006336495745927095 0.04395449906587601 0.019187266007065773 0.07255125045776367 -0.08192428201436996 -0.0649503692984581 0.029292667284607887 -0.049048349261283875 -0.02176673896610737 0.02217429131269455 0.01915634237229824 0.008891663514077663 -0.014365575276315212 -0.02247951552271843 -0.028443260118365288 0.03750894218683243 0.019823787733912468 0.0470656156539917 0.078343965113163 0.04024606943130493 0.02485004998743534 0.005713348742574453 0.005233163479715586 -0.05215964838862419 -0.024968484416604042 0.01218404620885849 -0.010636487975716591 -0.033835750073194504 -0.04303848743438721 -0.004762410186231136 -0.020244013518095016 0.013618833385407925 0.03604225069284439 0.04209910333156586 0.016542665660381317 -0.0623437836766243 0.018678035587072372 0.049858398735523224 -0.020066089928150177 0.04733588546514511 0.04834514483809471 0.15304386615753174 -0.07882963865995407 -0.02991197444498539 -0.026628868654370308 -0.024094384163618088 0.06285680830478668 -0.045330874621868134 -0.017425091937184334 -0.00997129362076521 0.06318583339452744 0.05724511295557022 -0.02200419083237648 -0.0234755240380764 0.041785456240177155 0.015941033139824867 0.02692887745797634 0.051923446357250214 0.047385070472955704 -0.02039504610002041 -0.04406098276376724 -0.014941402710974216 -0.02390238642692566 -0.08861988037824631 -0.010018364526331425 -0.014987270347774029 -0.03495291247963905 0.04665446653962135 -0.05431237816810608 -0.06795140355825424 0.056865256279706955 -0.07919967919588089 0.005293664522469044 -0.005874905269593 0.045717526227235794 0.007266710978001356 0.021198708564043045 0.00771607831120491 -0.025284430012106895 0.0017564368899911642 -0.05311598628759384 0.05710078403353691 -0.03649725019931793 -0.012972529046237469 -0.045979782938957214 0.0027315483894199133 -0.012395016849040985 -0.022510718554258347 -0.012324340641498566 -0.009436930529773235 0.1228373721241951 0.0591370090842247 -0.06816636770963669 0.01789761148393154 -0.07851602137088776 -0.0669669657945633 -0.0006987710949033499 -0.008509972132742405 0.008645028807222843 -0.0371529757976532 0.0017946668667718768 -0.11344826966524124 -0.017436916008591652 -0.020398247987031937 -0.0063074990175664425 0.01268768310546875 0.009405134245753288 -0.02951316349208355 0.023250451311469078 0.012293877080082893 -0.07941041886806488 0.06318920850753784 0.007245465647429228 -0.028516490012407303 -0.035215433686971664 0.031941041350364685 0.03397925943136215 -0.03129502013325691 0.023658297955989838 -0.0218264851719141 0.0814981758594513 -0.008542900905013084 -0.04655633121728897 -0.02959556132555008 -0.041785333305597305 -0.009093321859836578 0.05219235643744469 0.0002890188479796052 0.000695408380124718 -0.015640754252672195 0.025411274284124374 -0.019151415675878525 -0.001454535056836903 -0.021380625665187836 -0.07092046737670898 -0.024748941883444786 -0.03251577541232109 -0.01223522238433361 0.00666810292750597 0.020954104140400887 0.03442103788256645 -0.06672975420951843 0.020372681319713593 0.03457043319940567 -0.0075527457520365715 -0.010743594728410244 0.05265268683433533 0.0024151913821697235 -0.02632649429142475 0.08000590652227402 -0.07070021331310272 0.023101111873984337 0.022447291761636734 0.020754793658852577 0.04156443476676941 0.10966365039348602 0.0544048435986042 0.05136921629309654 -0.033803150057792664 0.03357939422130585 -0.03527297079563141 0.04807434603571892 -0.0004033682926092297 0.005820466671139002 0.0523175410926342 -0.012979337945580482 0.02431347407400608 -0.007978040724992752 0.06038212776184082 -0.0041523100808262825 -0.015679454430937767 -0.032301608473062515 0.0030772238969802856 -0.03558844327926636 -0.006327520124614239 0.003336545079946518 0.029535433277487755 0.03824887052178383 -0.06631138175725937 -0.004720458295196295 -0.031248493120074272 0.008895957842469215 -0.0580996610224247 0.05194057524204254 0.02225644327700138 -0.03160196542739868 0.0035584690049290657 -0.007313095964491367 0.06339907646179199 -0.08723116666078568 0.014452163130044937 -0.001027204329147935 -0.006322664674371481 -0.09858883172273636 -0.08324074000120163 0.0002613662218209356 -0.028595777228474617 -0.014334621839225292 0.024344321340322495 -0.014039728790521622 0.01792902871966362 -0.07668434083461761 0.03030403144657612 -0.011623174883425236 -0.004330970346927643 0.050266724079847336 0.019943267107009888 0.024065494537353516 -0.0013023130595684052 -0.005440481007099152 -0.13016889989376068 -0.0022202918771654367 0.024735108017921448 -0.028930528089404106 0.05112456530332565 -0.0027636883314698935 -0.07573164254426956 -0.02472751960158348 -0.06401924788951874 -0.02225920557975769 -0.0075602722354233265 -0.019451506435871124 0.05644720420241356 -0.0117472093552351 -0.018709585070610046 0.020440304651856422 0.060358595103025436 -0.0313408263027668 -0.045581620186567307 -0.010905261151492596 0.046800512820482254 -0.04081793129444122 -0.012337458319962025 -0.07917723804712296 0.0045067258179187775 0.009880613535642624 0.061398059129714966 -0.04954909160733223 0.07224715501070023 0.0012077123392373323 0.011225518770515919 0.08850572258234024 0.10532582551240921 0.0030392620246857405 0.035866767168045044 0.0003337165107950568 -0.042562052607536316 -0.011920562013983727 0.01768633909523487 -0.04606204852461815 -0.015712842345237732 -0.01594843715429306 -0.012772814370691776 -0.05551614612340927 -0.031476233154535294 -0.013056931085884571 0.03428853675723076 -0.10314701497554779 0.03945164754986763 -0.007120369467884302 0.019867204129695892 -0.019701702520251274 0.043421052396297455 -0.03203239664435387 -0.0019061823841184378 -0.028038330376148224 0.008867125026881695 0.00014758011093363166 -0.024978043511509895 -0.060226861387491226 -0.01351713202893734 0.10331891477108002 -0.06479256600141525 0.02815660834312439 -0.03375650569796562 -0.01556705404073 -0.05170265957713127 0.022972943261265755 0.06618937104940414 -0.046888332813978195 0.0880800262093544 0.010777339339256287 -0.05696061626076698 -0.029512034729123116 -0.018498796969652176 -0.10293910652399063 -0.0035388970281928778 -0.04872547462582588 -0.03119305707514286 -0.002069688169285655 0.04971225559711456 0.004979084711521864 0.03187170624732971 0.04463855177164078 -0.07153934985399246 -0.02634013630449772 -0.0595812126994133 0.039656031876802444 -0.01631517894566059 0.023406248539686203 -0.022701505571603775 -0.1305995136499405 -0.11658299714326859 0.042809031903743744 0.0041432310827076435 -0.06927081942558289 -0.0924200490117073 -0.0038569453172385693 0.058598194271326065 -0.024633392691612244 0.05735192447900772 -0.10052396357059479 -0.06997813284397125 -0.003476561512798071 0.03842482715845108 0.018223512917757034 -0.08793105185031891 0.0607488714158535 -0.07614685595035553 0.01636521704494953 0.0008473143680021167 -0.014640259556472301 0.045911937952041626 0.009274011477828026 -0.03464742749929428 -0.06944279372692108 -0.008045533671975136 0.005735071841627359 -0.05187903717160225 0.008372962474822998 -0.008740480057895184 -0.07669339329004288 -0.0961713194847107 0.06157144904136658 0.036451712250709534 0.08993728458881378 0.07006338983774185 -0.04785195738077164 0.07741186022758484 0.03630228340625763 0.02350170537829399 -0.05333169177174568 -0.058914750814437866 0.019090469926595688 0.024533428251743317 -0.022624634206295013 0.011452319100499153 -0.0469464473426342 0.12388209998607635 0.022376233711838722 -0.009833777323365211 0.0013596247881650925 0.04812192916870117 0.07783013582229614 0.011456763371825218 -0.0858767107129097 +0.06329822540283203 0.0029055378399789333 0.016986383125185966 0.06242050975561142 -0.06595514714717865 -0.02834014967083931 -0.024651428684592247 0.02333117462694645 -0.0190593171864748 -0.056589946150779724 -0.053993333131074905 -0.015316353179514408 -0.03188525140285492 0.023118777200579643 0.02964351885020733 -0.0270969457924366 -0.05255550891160965 0.043308962136507034 -0.017685238271951675 -0.028744088485836983 0.0371541790664196 -0.017337173223495483 -0.07426171004772186 0.05285562947392464 0.03282327577471733 -0.026137877255678177 -0.03693495690822601 0.0299282968044281 -0.005431260447949171 0.04162680730223656 0.03606392443180084 -0.03809253126382828 0.036961790174245834 -0.04621804133057594 -0.07183115929365158 0.039454348385334015 -0.028769653290510178 0.11435367912054062 0.012060602195560932 -0.004799525253474712 -0.05285041406750679 0.011884124018251896 -0.06250708550214767 -0.03268003463745117 0.052076421678066254 0.03481884300708771 0.008227641694247723 -0.0025175935588777065 0.04350107163190842 0.04614923149347305 0.09599708765745163 -0.02928285300731659 -0.016270538792014122 0.009445438161492348 0.020621540024876595 0.020479269325733185 0.058578163385391235 -0.02125818282365799 -0.008520694449543953 -0.01053579617291689 -0.09419805556535721 -0.038318440318107605 0.023578975349664688 -0.024354184046387672 -0.019107533618807793 0.008709719404578209 0.005911797285079956 0.0902295708656311 0.0062787593342363834 -0.039614301174879074 0.003663902636617422 0.09517280757427216 -0.07462278008460999 -0.03420255705714226 0.06432746350765228 -0.0719086304306984 -0.019467921927571297 0.04927530139684677 -0.0019756390247493982 0.022491250187158585 0.008259803988039494 -0.03172041103243828 0.15111713111400604 -0.047407813370227814 -0.07465759664773941 -0.0008533314685337245 -0.012527347542345524 -0.07300591468811035 0.04474581778049469 0.04417633265256882 0.0030247773975133896 0.06856992840766907 -0.04764025658369064 0.023236582055687904 -0.010965928435325623 -0.0023649137001484632 0.031327903270721436 -0.0759960263967514 -0.033066242933273315 0.028979865834116936 -0.005130514036864042 -0.013909072615206242 0.030693337321281433 -0.031136129051446915 0.04462054744362831 0.036963433027267456 -0.03364485129714012 -0.008079275488853455 -0.011062802746891975 0.030407095327973366 0.01851550117135048 0.06288248300552368 0.06978646665811539 0.04118172451853752 0.06793852895498276 0.023104127496480942 0.0553678534924984 -0.0635836273431778 -0.046847257763147354 -0.011916340328752995 -0.022969722747802734 0.08923252671957016 0.010230089537799358 -0.05551370978355408 0.0060832807794213295 0.01874828338623047 -0.0672578439116478 -0.052925076335668564 0.04974277317523956 -0.028178710490465164 0.10503237694501877 0.04017677903175354 -0.034085169434547424 0.0399814136326313 0.05561155825853348 0.0035306205973029137 0.006943729240447283 0.04890376701951027 0.002613560762256384 -0.05059395357966423 0.014424684457480907 0.03562313690781593 -0.013721009716391563 -0.05201857537031174 0.09470649808645248 0.08451390266418457 0.05596786364912987 -0.03403419256210327 -0.06166073679924011 -0.008224974386394024 -0.0609951876103878 -0.08175787329673767 -0.04109758883714676 -0.07463748753070831 -0.019550494849681854 0.022147616371512413 0.004359210841357708 0.025843678042292595 -0.04055265337228775 0.012027681805193424 -0.06482838839292526 -0.04023659601807594 -0.01029766071587801 -0.042927730828523636 -0.0775262638926506 0.022249503061175346 -0.03395729884505272 0.013717218302190304 -0.07441136240959167 -0.020760752260684967 -0.008311006240546703 -0.006995892617851496 0.07309629768133163 0.08424562215805054 0.08303756266832352 0.025321759283542633 0.044773850589990616 -0.04750918596982956 -0.02765297330915928 -0.021102113649249077 0.06247878819704056 -0.046182867139577866 0.03734934702515602 -0.04221334308385849 0.02929374761879444 -0.018072335049510002 0.053696487098932266 -0.013776981271803379 0.07106447219848633 0.0044114599004387856 -0.03391653671860695 -0.015379113145172596 0.05137135460972786 0.08630923926830292 -0.03256317228078842 0.05227361246943474 -0.04315933212637901 0.041116807609796524 -0.04211321100592613 -0.03657473623752594 -0.0619581900537014 0.03212821111083031 0.03613362833857536 0.07330064475536346 0.0584263913333416 -0.08620437979698181 0.0706855058670044 0.07478669285774231 0.042665328830480576 -0.04286230728030205 0.015514311380684376 0.01526184007525444 0.010954375378787518 0.05815141648054123 0.04339529573917389 0.003765401430428028 -0.007352248299866915 -0.01985800266265869 0.026955878362059593 -0.025421498343348503 -0.028853492811322212 0.0055741858668625355 -0.0901992991566658 0.021221719682216644 -0.07873817533254623 -0.024089345708489418 -0.030515726655721664 0.05458509922027588 -0.022874394431710243 -0.015320997685194016 -0.03162394464015961 0.008329748176038265 -0.014545094221830368 -0.04045276716351509 -0.002922983141615987 -0.011417298577725887 -0.07887261360883713 0.10869991034269333 0.017044400796294212 -0.04822203144431114 -0.0720389112830162 0.02690870314836502 0.03180380165576935 0.006527343299239874 0.030732836574316025 0.031615838408470154 0.07048837095499039 -0.014302394352853298 -0.003479607170447707 0.001270391047000885 -0.020879119634628296 -0.02358950488269329 -0.021793203428387642 0.012885653413832188 -0.019363263621926308 -0.014225680381059647 0.0013783222530037165 -0.01762620359659195 -0.01504504680633545 0.025917761027812958 0.011035612784326077 0.002104494720697403 -0.024887802079319954 -0.01646433211863041 0.0019623874686658382 -0.038897935301065445 -0.007378843612968922 0.016001757234334946 -0.018844671547412872 0.04779472202062607 -0.060830384492874146 -0.017293188720941544 0.0027925390750169754 -0.018698209896683693 -0.010759289376437664 -0.042874135076999664 0.06835740804672241 -0.0325692854821682 -0.0022891357075423002 -0.016992611810564995 -0.06817010045051575 -0.048380956053733826 -0.05999987572431564 -0.021743420511484146 0.0075890556909143925 0.09739330410957336 0.009399598464369774 -0.04448748007416725 -0.05695623159408569 -0.022373806685209274 -0.04181978479027748 -0.04219001904129982 0.010396606288850307 0.01113964430987835 -0.036977335810661316 -0.02899247035384178 0.003956767730414867 -0.006592909339815378 -0.003608275903388858 -0.0250715259462595 -0.019756635650992393 -0.06817881762981415 0.04390886425971985 0.006799276918172836 -0.010965220630168915 0.02051444537937641 -0.02115541324019432 0.02311011403799057 0.0720372349023819 0.06160581111907959 0.02314298041164875 0.061510708183050156 0.04986390471458435 0.13586722314357758 -0.007278834003955126 -0.028433997184038162 -0.048659518361091614 -0.06173495575785637 -0.06422962993383408 0.09376571327447891 0.0074048773385584354 -0.003915468230843544 -9.290637535741553e-05 0.018198959529399872 0.072573222219944 -0.021667003631591797 -0.022895783185958862 -0.06510888040065765 -0.00936676561832428 -0.01612096279859543 -0.002461442956700921 -0.018217336386442184 0.01908797025680542 -0.053892239928245544 -0.07406625151634216 -0.02932681329548359 -0.02010909840464592 0.026430517435073853 0.0040258062072098255 0.02482149749994278 -0.05261344462633133 -0.01947776973247528 -0.008295638486742973 0.02258877642452717 0.06981350481510162 -0.03868011012673378 -0.01108796987682581 0.08030126243829727 0.029790788888931274 -0.0746222659945488 0.015680573880672455 0.04853644222021103 -0.042014095932245255 -0.05340602621436119 -0.027817759662866592 0.04223821312189102 -0.051991697400808334 0.02091202698647976 -0.026145178824663162 -0.0308983214199543 -0.006550151854753494 0.006126812659204006 0.04139021411538124 0.054699283093214035 -0.007039657793939114 -0.031717702746391296 -0.023847222328186035 -0.005931582767516375 0.02288922294974327 -0.008250491693615913 0.013255554251372814 -0.051345307379961014 0.029201218858361244 -0.08160366117954254 -0.0442810095846653 -0.035812314599752426 0.016266457736492157 -0.042944952845573425 -0.03417206555604935 -0.016000967472791672 -0.01602877490222454 -0.033046744763851166 0.007227451540529728 0.037129782140254974 -0.06916176527738571 -0.026796892285346985 -0.04580351710319519 -0.061941958963871 -0.08997603505849838 -0.03586643561720848 -0.005157173611223698 -0.0499306358397007 0.028721515089273453 -0.020767582580447197 -0.03336089476943016 0.018311183899641037 0.020831800997257233 0.01489169243723154 0.07082673907279968 0.03715851157903671 -0.006299719680100679 0.06540513038635254 -0.010070242919027805 0.009830494411289692 0.04440591484308243 -0.06932712346315384 -0.02240455150604248 -0.013866430148482323 -0.037575315684080124 0.09932201355695724 -0.06588901579380035 -0.010240168310701847 -0.03201117366552353 6.349483010126278e-05 0.04490279778838158 -0.016339166089892387 0.018026253208518028 -0.01744053140282631 0.07626865804195404 -0.07037429511547089 -0.07260745018720627 0.0348411500453949 -0.02984958328306675 -0.08312094956636429 -0.047637905925512314 -0.026745030656456947 -0.01871263049542904 0.03482021018862724 -0.02729884348809719 0.0037655006162822247 0.039573755115270615 -0.03173588588833809 -0.0577474869787693 -0.06239180266857147 -0.019210342317819595 0.05758088454604149 -0.011766571551561356 0.039420224726200104 0.051342837512493134 -0.024217884987592697 0.01791059412062168 -0.025235014036297798 -0.009066302329301834 -0.06467722356319427 -0.022172577679157257 0.020677318796515465 0.004437293391674757 -0.003877372946590185 -0.024287458509206772 -0.008840538561344147 -0.026041174307465553 -0.004984494298696518 -0.08468842506408691 0.0792873203754425 -0.00018827947496902198 -0.005458911415189505 0.07217612862586975 -0.05169234424829483 0.02911519631743431 0.01708277314901352 -0.05912407487630844 -0.05954176187515259 -0.00872963760048151 -0.015256671234965324 0.005023044999688864 0.02347906306385994 -0.01269439421594143 0.004030297975987196 -0.019645817577838898 0.029232177883386612 0.016822492703795433 -0.06008358672261238 0.026225198060274124 0.010012187995016575 -0.05648469179868698 -0.1014041155576706 0.014341411180794239 -0.031242653727531433 0.05151350796222687 0.05680577829480171 0.018443681299686432 -0.013244048692286015 -0.0001164936984423548 -0.007595103699713945 -0.013979777693748474 0.020042812451720238 0.009878193028271198 -0.05858278274536133 0.03302319720387459 0.10351331532001495 -0.07484711706638336 0.006899505387991667 0.0373547337949276 -0.03914622217416763 -0.005108025390654802 0.03542198985815048 -0.011181010864675045 0.06608925014734268 -0.013313128612935543 0.011324986815452576 0.0728294774889946 -0.08049122244119644 0.0994265079498291 -0.062171366065740585 0.06967711448669434 0.03321409597992897 0.004036921542137861 0.09865596145391464 0.06301674991846085 0.0004978252109140158 0.01605948805809021 -0.0950840413570404 +0.02032247558236122 -0.01851820759475231 0.006900942884385586 0.055281445384025574 -0.07430485635995865 -0.03181419521570206 -0.00486111780628562 0.01777501590549946 0.02969902940094471 -0.05542105808854103 -0.013223918154835701 -0.003905088407918811 0.011795747093856335 0.019279493018984795 0.052928127348423004 -0.03845434635877609 -0.05461669713258743 0.016414906829595566 -0.011774569749832153 -0.042921289801597595 0.0032047515269368887 0.026040008291602135 -0.06198522448539734 0.03892902657389641 0.004522103816270828 0.006168357562273741 -0.06715238094329834 0.009687073528766632 -0.019069278612732887 0.037036869674921036 0.05377954617142677 -0.02136925421655178 0.049710530787706375 -0.0785667672753334 -0.05181959643959999 0.03639303520321846 -0.036210477352142334 0.11918765306472778 0.030460434034466743 -0.03581094741821289 -0.027622107416391373 -0.005356219597160816 -0.04746117442846298 -0.05382277071475983 0.020126957446336746 -0.007070367690175772 0.000392000685678795 -0.029357202351093292 0.032310884445905685 0.012817361392080784 0.10877706855535507 0.020880872383713722 -0.056899916380643845 -0.049491774290800095 -0.036435823887586594 0.00876651331782341 0.041740477085113525 -0.08554520457983017 -0.08413159102201462 0.04723464697599411 -0.09578320384025574 0.00690712034702301 0.011541204527020454 0.002136519644409418 -0.03155504912137985 -0.016250448301434517 -0.010709558613598347 0.06092333048582077 0.007585915271192789 -0.036740150302648544 0.047898489981889725 0.11885908246040344 -0.0724414587020874 -0.0820104256272316 0.05611755698919296 -0.06143578886985779 0.005912320222705603 0.02888522855937481 -0.004518298432230949 0.021517232060432434 -0.004543457180261612 -0.05521870404481888 0.09784869849681854 -0.05089612677693367 -0.013234523124992847 -0.03934859111905098 0.00438604224473238 -0.05317525565624237 0.0464186891913414 0.03870490565896034 0.012851432897150517 0.04853935167193413 -0.036212000995874405 0.059919022023677826 0.020315848290920258 -0.007588041480630636 0.017695575952529907 -0.12491849064826965 -0.04375598952174187 0.00976602640002966 0.0026844386011362076 -0.012345252558588982 0.06741443276405334 0.013474540784955025 0.06193014234304428 0.05458151549100876 -0.05960319936275482 0.033924080431461334 0.04856070131063461 0.06444788724184036 0.030705314129590988 0.06707117706537247 0.06190645322203636 0.06674368679523468 0.030175400897860527 -0.009403014555573463 0.01336219534277916 -0.033362094312906265 -0.026754233986139297 0.02814558334648609 0.0034571215510368347 0.03164052218198776 -0.027427557855844498 -0.05921463295817375 -0.02231723628938198 0.031947504729032516 -0.09323499351739883 -0.01846008002758026 0.04478411376476288 -0.020655391737818718 0.12467416375875473 0.038486696779727936 -0.004967127926647663 0.02661353163421154 0.044698286801576614 0.04972238838672638 -0.00612086895853281 0.019193975254893303 0.005884779151529074 -0.02437097392976284 -0.0219583697617054 0.06769932061433792 0.014550370164215565 -0.0490000881254673 0.04708295315504074 0.03749002516269684 0.027873599901795387 -0.027378885075449944 -0.07638418674468994 -0.012671135365962982 -0.08387473225593567 -0.08273161947727203 0.02350069396197796 -0.0792730525135994 0.027474520727992058 0.02718912810087204 0.061993565410375595 0.04148145765066147 -0.004860592540353537 0.006869633216410875 -0.04456216096878052 -0.045747339725494385 -0.026560140773653984 -0.07517842203378677 -0.01977052539587021 -0.035208895802497864 0.022682836279273033 0.015518284402787685 -0.048538606613874435 -0.02832813747227192 -0.014146055094897747 0.0304257869720459 0.04620745778083801 0.0696205422282219 0.04294106736779213 -0.0025173844769597054 0.03025832772254944 -0.06439995020627975 0.00342567334882915 -0.007662044372409582 0.025495195761322975 -0.04144665226340294 0.017149219289422035 -0.042645152658224106 -0.010221309959888458 -0.0022142028901726007 0.040523018687963486 -0.008597834035754204 -0.0049288771115243435 0.002529867459088564 -0.06039136275649071 -0.06971181929111481 0.051190584897994995 0.0743388831615448 -0.015565702691674232 0.03572230413556099 0.00451106671243906 0.04904556646943092 0.0009598106844350696 -0.0283963605761528 -0.03567187115550041 0.018472952768206596 0.01876724138855934 0.03517752140760422 -0.01074568834155798 -0.06673643738031387 0.06865804642438889 0.023568492382764816 0.032786302268505096 -0.05129408836364746 -0.005982401315122843 0.010210628621280193 -0.0028250531759113073 0.019407881423830986 0.07248356938362122 -0.04393354803323746 -0.01580912433564663 -0.0010610128520056605 0.06968595832586288 -0.05464581400156021 0.031222637742757797 0.00226618186570704 -0.07571236789226532 0.022358138114213943 -0.042365383356809616 -0.09113306552171707 -0.026238109916448593 0.0004379694873932749 -0.018880851566791534 -0.03067283146083355 -0.008458394557237625 0.01921280287206173 -0.008428496308624744 -0.021471647545695305 -0.020819449797272682 0.016523145139217377 -0.0883568599820137 0.09169928729534149 -0.010174831375479698 -0.047716982662677765 -0.06196371838450432 -0.01984143629670143 0.027991099283099174 -0.012286082841455936 0.030437443405389786 0.059906430542469025 0.08957826346158981 0.05059589445590973 -0.010710201226174831 0.009218123741447926 -0.03651187941431999 -0.055155906826257706 0.0030260770581662655 0.03761805593967438 -0.044325847178697586 -0.01198037713766098 0.01725219562649727 -0.08083118498325348 -0.006945142988115549 -0.007904455997049809 0.014936523512005806 -0.0023049027658998966 -0.02037517912685871 -0.022184889763593674 0.06163756176829338 0.010841554962098598 -0.05119677260518074 0.01858549192547798 -0.022130576893687248 0.07021599262952805 -0.04621480405330658 -0.032258640974760056 0.03983521834015846 -0.012255377136170864 0.03180088475346565 -0.027006644755601883 0.04490445554256439 -0.056249357759952545 -0.08970881998538971 -0.03131484240293503 -0.05936827510595322 -0.0488070547580719 -0.01522769220173359 -0.028471454977989197 -0.0413157120347023 0.0808463916182518 -0.013251730240881443 -0.0293879471719265 -0.04959174618124962 -0.034952111542224884 -0.014161616563796997 -0.08995791524648666 -0.007712304126471281 -0.022029977291822433 -0.06892319023609161 -0.01771640218794346 0.024615800008177757 -0.057573962956666946 -0.007913107983767986 0.010519377887248993 -0.031766921281814575 -0.05293859541416168 0.059791844338178635 -0.05814073607325554 -0.04267522320151329 -0.011017742566764355 -0.07106218487024307 0.044250745326280594 0.08173483610153198 0.025997143238782883 0.04353742301464081 0.04869887977838516 0.05079280957579613 0.08770471811294556 0.018323611468076706 -0.05463142693042755 -0.005746849346905947 -0.03657481446862221 -0.09583790600299835 0.039033010601997375 -0.0216088704764843 -0.008544950745999813 -0.0013781820889562368 0.0014946098672226071 0.077175572514534 -0.010885324329137802 -0.018263477832078934 -0.004391167312860489 0.07239632308483124 -0.007102392613887787 0.01652558520436287 0.006961785722523928 0.00844767689704895 0.015641573816537857 -0.05900009721517563 -0.0356365442276001 -0.033382970839738846 0.033873118460178375 -0.0077868918888270855 0.06551576405763626 -0.014314460568130016 -0.07042023539543152 -0.009227842092514038 0.024274248629808426 0.10730380564928055 -0.073191337287426 0.02165011130273342 0.028754331171512604 -0.009516683407127857 -0.10572618246078491 -0.004463164135813713 0.030948424711823463 -0.049079157412052155 -0.04619999974966049 0.0216684490442276 0.04476705193519592 -0.059013307094573975 -0.028227001428604126 0.0013892819406464696 -0.04804646223783493 0.0020920305978506804 0.04438651725649834 -0.00418953038752079 0.02946203015744686 -0.030570240691304207 -0.02307598479092121 -0.0073412442579865456 0.0019403249025344849 0.008849815465509892 -0.020213264971971512 0.008781632408499718 -0.05779054015874863 0.06700608134269714 -0.02382199838757515 -0.016698313876986504 -0.07803566008806229 0.05119187757372856 0.0024766556452959776 -0.031794507056474686 -0.021084658801555634 -0.01882259175181389 -0.00659561762586236 0.0024611670523881912 0.031258393079042435 -0.06589336693286896 -0.023467257618904114 -0.05254727229475975 -0.036482252180576324 -0.059168700128793716 -0.05975870415568352 0.015309692360460758 -0.08423832803964615 -0.008632847107946873 -0.047330450266599655 -0.0030359586235135794 -0.007789313793182373 -0.016426298767328262 0.006427091546356678 0.028817009180784225 0.04469939321279526 -0.04123181104660034 0.04935023561120033 -0.01361688133329153 0.04588884115219116 0.009119045920670033 -0.050647519528865814 0.03365873545408249 0.028531532734632492 -0.047939203679561615 0.012025692500174046 -0.05103122070431709 0.011260377243161201 0.022805139422416687 -0.011448291130363941 0.03420983999967575 0.0023893725592643023 -0.014648369513452053 -0.009601112455129623 0.06349893659353256 -0.07455899566411972 -0.03272896632552147 0.009119250811636448 -0.05501718074083328 -0.08153126388788223 -0.014742768369615078 -0.02503400854766369 -0.0641455426812172 0.032384391874074936 -0.015820693224668503 0.02724023349583149 0.018447648733854294 -0.0640031024813652 -0.03617219626903534 -0.007539272774010897 -0.047624774277210236 0.02095315232872963 0.007777342572808266 0.05206596106290817 -0.02689967304468155 0.001118591520935297 0.016492625698447227 0.0021379815880209208 0.02800496481359005 -0.09768421947956085 -0.012939258478581905 -0.043243657797575 -0.010216213762760162 -0.016501232981681824 -0.00682029826566577 0.04341289773583412 -0.08786831796169281 -0.020496532320976257 -0.03473297879099846 0.07539509981870651 -0.030934739857912064 -0.0210777148604393 0.04145832732319832 -0.014545364305377007 -0.024373991414904594 0.037902019917964935 -0.04695998504757881 -0.090125173330307 0.00013186110300011933 -0.03473389148712158 0.04190395399928093 0.01786254532635212 0.0046316650696098804 -0.029042426496744156 -0.05582987144589424 -0.03442419692873955 0.01252778060734272 -0.07376310229301453 0.004839090630412102 0.008668310940265656 -0.08183842897415161 -0.0890234038233757 0.0028836913406848907 -0.06085911765694618 0.06941252946853638 0.02933945693075657 0.022058775648474693 -0.024807816371321678 -0.00989496149122715 -0.010940837673842907 -0.033092088997364044 0.05028357729315758 -0.0010918615153059363 -0.07699474692344666 -0.031109875068068504 0.08841890096664429 -0.03254250809550285 0.030168287456035614 0.05810220539569855 -0.04545220732688904 0.034791551530361176 0.03162364661693573 -0.035520318895578384 0.013658060692250729 -0.03102044016122818 -0.025478925555944443 0.07206389307975769 -0.0781688466668129 0.08866022527217865 -0.05471455305814743 0.10382094234228134 0.015190022066235542 -7.28705053916201e-05 0.07767869532108307 0.09671850502490997 -0.003259680699557066 -0.0065346574410796165 -0.0779583752155304 +0.008456605486571789 -0.052731048315763474 -0.03388197720050812 -0.00866050086915493 -0.09829316288232803 -0.06822725385427475 0.005607123952358961 0.0787285566329956 -0.029302727431058884 -0.037580396980047226 -0.036214955151081085 0.03942594677209854 -0.009735713712871075 0.015108074061572552 0.020225755870342255 -0.018949249759316444 -0.0237929355353117 0.024673055857419968 -0.054461318999528885 -0.04464062303304672 0.036217667162418365 0.025882305577397346 -0.06710044294595718 0.011959651485085487 0.005432765930891037 -0.060421090573072433 -0.04995913803577423 -0.0032300155144184828 0.0213957279920578 0.050989311188459396 0.06243039667606354 -0.04871131107211113 0.07647978514432907 -0.0157233364880085 -0.06382438540458679 0.052374254912137985 -0.06964920461177826 0.08039087057113647 0.04279521480202675 0.006246368866413832 -0.04904545098543167 -0.009590868838131428 -0.02334871143102646 -0.03489242494106293 0.04382188990712166 0.021761873736977577 -0.02037615329027176 -0.04973620921373367 0.04085288196802139 0.05058249086141586 0.053171902894973755 0.03365209326148033 0.03940017893910408 0.013912925496697426 -0.023810429498553276 -0.02894718199968338 0.020055456086993217 -0.012288682162761688 -0.07346956431865692 -0.006628262810409069 -0.07508231699466705 0.016877062618732452 0.02263367362320423 0.029578883200883865 0.016420526430010796 -0.021538250148296356 -0.016107715666294098 0.08584309369325638 0.021071111783385277 -0.014212685637176037 -0.005876233801245689 0.060050565749406815 -0.04907913878560066 -0.06313131004571915 0.053422845900058746 -0.00858194101601839 0.008345214650034904 0.02031761035323143 -0.03816251829266548 -0.009564949199557304 -0.032830506563186646 -0.03238481655716896 0.1195293739438057 -0.07944568991661072 -0.027090072631835938 -0.053505994379520416 -0.013751334510743618 -0.049191467463970184 0.059396639466285706 0.003803676227107644 0.04684477299451828 0.026970824226737022 -0.06487561762332916 0.006247084122151136 -0.024444105103611946 0.013975964859127998 0.025125304237008095 -0.10004311054944992 -0.05720314383506775 0.003925171215087175 0.024450033903121948 -0.020792406052350998 0.08285413682460785 -0.02535979077219963 0.03028920479118824 0.040302760899066925 -0.004929540678858757 0.013006075285375118 0.035422250628471375 0.02480362541973591 -0.0002530133060645312 0.09745249897241592 0.0651940405368805 0.006102651357650757 0.05636901408433914 -0.00757844652980566 -0.04227453097701073 -0.03459080681204796 0.004742131102830172 0.01189331989735365 -0.023463767021894455 0.028379682451486588 -0.02319217287003994 -0.06106272712349892 -0.04197605326771736 0.06575226783752441 -0.10181824117898941 -0.02150019258260727 0.05342988297343254 -0.05358242616057396 0.08762891590595245 0.02339697629213333 -0.04003508761525154 0.041627075523138046 0.0701768696308136 0.0017582401633262634 0.012784775346517563 0.03966718912124634 -0.00901959277689457 -0.09529119729995728 -0.04355315864086151 0.0956045389175415 -0.009216848760843277 -0.022524811327457428 0.03353039547801018 0.06097014248371124 0.042141590267419815 -0.02663794346153736 -0.06940750032663345 0.046810321509838104 -0.07826551049947739 -0.09595663845539093 -0.028639990836381912 -0.05582955852150917 0.03745795041322708 0.05642199143767357 -0.01841820403933525 0.016398154199123383 0.011746590957045555 -0.006826398894190788 -0.054149527102708817 -0.051785584539175034 -0.02524210512638092 -0.03042120859026909 0.004459126386791468 0.032724082469940186 -0.007908503524959087 0.04051971435546875 -0.04237496480345726 -0.03851472586393356 -0.00712125888094306 -0.04901178181171417 0.022180259227752686 0.08415264636278152 0.014792739413678646 0.01496886182576418 -0.0005657292203977704 -0.06386595219373703 -0.02183396741747856 -0.045747060328722 0.013969050720334053 -0.0915144756436348 0.06219939887523651 -0.05084853991866112 0.016515810042619705 -0.03691021725535393 0.03917711228132248 -0.06590205430984497 -0.009114118292927742 -0.0535050667822361 -0.025695687159895897 -0.07459399104118347 0.013360099866986275 0.07846543192863464 -0.028231285512447357 0.003693496575579047 -0.0009576866286806762 0.04550205171108246 -0.02234928496181965 -0.00011836967314593494 -0.05844211205840111 0.05176765099167824 0.015735063701868057 0.003702700836583972 0.011263230815529823 -0.09460140019655228 0.07620090991258621 -0.027803152799606323 0.014443297870457172 -0.05025559291243553 0.03503798320889473 0.07663309574127197 0.0068887448869645596 0.035355664789676666 0.04152644798159599 -0.03739961236715317 0.020728321745991707 -0.002969413297250867 0.09676951915025711 -0.05463448539376259 0.001112340367399156 0.023405108600854874 -0.05918584764003754 0.012501755729317665 0.0047288136556744576 -0.12757457792758942 -0.019435686990618706 -0.01449867244809866 -0.022211305797100067 -0.04558343067765236 -0.005585025995969772 0.029207130894064903 0.045431606471538544 -0.0035895765759050846 0.015124594792723656 -0.005805204156786203 -0.007333487272262573 0.06713686138391495 -0.031304214149713516 -0.05151735246181488 -0.029332643374800682 -0.035615816712379456 0.04203423485159874 0.017941199243068695 0.032461728900671005 0.03532891720533371 0.08635622262954712 -0.02105771005153656 -0.029382582753896713 -0.04572327062487602 -0.024481305852532387 -0.03576049953699112 -0.01488669402897358 0.049932412803173065 -0.05277852341532707 -0.0787644013762474 0.05292585492134094 -0.08301877230405807 0.009795810095965862 0.0022551012225449085 0.04075879231095314 -0.030743485316634178 -0.04608496278524399 -0.04473509266972542 0.005415810737758875 -0.004276568535715342 -0.04017306864261627 -0.01082628034055233 -0.06872440874576569 0.02892915904521942 -0.002141786040738225 0.0022344072349369526 0.0021841702982783318 -0.015147121623158455 0.030170705169439316 -0.047457821667194366 0.05177547410130501 -0.039417702704668045 -0.06479084491729736 -0.032292064279317856 -0.02281031385064125 -0.10050500929355621 0.013105574063956738 -0.024935785681009293 -0.022908754646778107 0.08340290933847427 0.040409695357084274 -0.043223876506090164 -0.04842538386583328 -0.03852242976427078 -0.04970133677124977 -0.023387106135487556 -0.004986658226698637 -0.030844034627079964 -0.06272381544113159 -0.023073486983776093 0.029121408239006996 -0.037609148770570755 -0.018892554566264153 0.07937942445278168 0.04935172572731972 -0.05058063566684723 0.0360877700150013 0.0025884355418384075 0.0008559722336940467 -0.009614921174943447 -0.04834621399641037 0.01614435389637947 0.0658758282661438 0.05409206077456474 0.029703456908464432 0.0315694622695446 0.027076179161667824 0.09698300808668137 0.010343854315578938 -0.03584069386124611 0.005119684152305126 -0.06282297521829605 -0.05418141931295395 0.012189309112727642 -0.023436645045876503 -0.03334394469857216 -0.01070515625178814 -0.03188528120517731 0.045007552951574326 -0.013668205589056015 0.004213291220366955 -0.050964679569005966 0.028144916519522667 1.662573777139187e-05 0.0380510538816452 0.01800193265080452 -0.017137974500656128 0.0018712354358285666 -0.059338316321372986 0.002724330173805356 -0.06723158806562424 0.023091742768883705 -0.004565277602523565 0.02832881547510624 -0.02157326601445675 -0.040258292108774185 0.006536277011036873 0.022811369970440865 0.10720449686050415 -0.046636417508125305 0.01963084749877453 -0.010822840966284275 0.04079972952604294 -0.09304201602935791 0.002124559134244919 -0.010094230994582176 -0.01347068790346384 -0.022229641675949097 0.029541974887251854 0.06230346858501434 -0.05801442638039589 -0.004794037435203791 -0.016024842858314514 -0.010358181782066822 -0.041934579610824585 -0.022885441780090332 -0.003138965927064419 0.11310239881277084 0.042626507580280304 0.008202877826988697 0.027552863582968712 0.059061188250780106 0.037642642855644226 0.004433705937117338 0.03262399137020111 -0.007151847239583731 0.06908131390810013 -0.04979822412133217 -0.07659432291984558 -0.06368009746074677 0.030338911339640617 -0.04066576063632965 -0.017272477969527245 -0.04922506958246231 0.013575811870396137 0.013803298585116863 0.027796771377325058 -0.027143971994519234 -0.048125457018613815 0.045577432960271835 -0.01421482302248478 -0.05488889291882515 -0.08544675260782242 -0.009270886890590191 0.013530313968658447 -0.030383262783288956 -0.001856667804531753 -0.039348118007183075 -0.0069916266947984695 0.01866593398153782 -0.022448157891631126 0.0034609141293913126 0.06589338183403015 0.05189840868115425 0.05612261965870857 0.037435609847307205 0.046171512454748154 0.028313856571912766 -0.009496002458035946 -0.058729637414216995 0.02957308664917946 0.027300234884023666 -0.08932048827409744 0.003469930961728096 -0.032857708632946014 -0.0135690001770854 -0.034864261746406555 0.0015638796612620354 -0.011375614441931248 -0.04316806420683861 0.022014714777469635 -0.040849167853593826 0.07846204191446304 -0.0597829595208168 -0.05674385651946068 0.07681537419557571 0.013348439708352089 -0.07542899250984192 -0.008957307785749435 -0.038167696446180344 -0.01645250990986824 0.0934092253446579 -0.030899129807949066 0.01019855123013258 0.028286462649703026 -0.01760968379676342 -0.05664840340614319 -0.02203056775033474 -0.0038954350166022778 -0.01617027074098587 0.01965051144361496 0.046573422849178314 0.027370577678084373 -0.003912215121090412 0.017650894820690155 -0.08052058517932892 0.04423874244093895 -0.06121005490422249 -0.01091107539832592 -0.03059428185224533 0.004660924430936575 0.007446800824254751 -0.014443332329392433 0.04634758457541466 -0.036635711789131165 -0.010817687958478928 -0.06561651825904846 0.07568103075027466 -0.01854291744530201 0.00129842315800488 0.016753841191530228 -0.04234101623296738 -0.043580349534749985 0.054371535778045654 -0.047188106924295425 -0.08541004359722137 0.03190035745501518 -0.05289008095860481 0.036135394126176834 0.042873453348875046 0.06285534799098969 0.009807518683373928 -0.08192078769207001 -0.003325254423543811 0.006297369487583637 -0.026264071464538574 0.057861145585775375 0.030305638909339905 -0.05683036893606186 -0.04911930859088898 -0.07529007643461227 -0.07086094468832016 0.09605871886014938 -0.028688602149486542 0.03878708928823471 -0.05965331196784973 0.012895305640995502 -0.0209056306630373 -0.0210272129625082 0.01338373962789774 0.0004737664421554655 -0.08231192827224731 -0.011419524438679218 0.09584395587444305 -0.023246824741363525 0.03954925015568733 0.07969904690980911 -0.040964141488075256 0.03212236240506172 0.016111910343170166 0.0069672223180532455 0.05597599595785141 0.025417592376470566 0.01775471866130829 0.0178235936909914 -0.026317089796066284 0.058895863592624664 -0.021407533437013626 0.0835641622543335 0.04041486606001854 -0.009377419017255306 0.07782338559627533 0.027054352685809135 -0.013352732174098492 -0.006498945411294699 -0.06847313791513443 diff --git a/notebooks/log_dir/events.out.tfevents.1541600225.Armans-MacBook-Pro.local b/notebooks/log_dir/events.out.tfevents.1541600225.Armans-MacBook-Pro.local new file mode 100644 index 000000000..270b3d711 Binary files /dev/null and b/notebooks/log_dir/events.out.tfevents.1541600225.Armans-MacBook-Pro.local differ diff --git a/notebooks/log_dir/events.out.tfevents.1541602534.Armans-MacBook-Pro.local b/notebooks/log_dir/events.out.tfevents.1541602534.Armans-MacBook-Pro.local new file mode 100644 index 000000000..a3db921fc Binary files /dev/null and b/notebooks/log_dir/events.out.tfevents.1541602534.Armans-MacBook-Pro.local differ diff --git a/notebooks/log_dir/projector_config.pbtxt b/notebooks/log_dir/projector_config.pbtxt new file mode 100644 index 000000000..6ad33d9e4 --- /dev/null +++ b/notebooks/log_dir/projector_config.pbtxt @@ -0,0 +1,15 @@ +embeddings { +tensor_name: "default:00000" +tensor_path: "00000/default/tensors.tsv" +metadata_path: "00000/default/metadata.tsv" +} +embeddings { +tensor_name: "default:00000" +tensor_path: "00000/default/tensors.tsv" +metadata_path: "00000/default/metadata.tsv" +sprite { +image_path: "00000/default/sprite.png" +single_image_dim: 64 +single_image_dim: 64 +} +} diff --git a/notebooks/noam-chomsky-1-aligned.jpg b/notebooks/noam-chomsky-1-aligned.jpg new file mode 100644 index 000000000..cb79dc41c Binary files /dev/null and b/notebooks/noam-chomsky-1-aligned.jpg differ diff --git a/notebooks/noam-chomsky-1.jpg b/notebooks/noam-chomsky-1.jpg new file mode 100644 index 000000000..4f4934df9 Binary files /dev/null and b/notebooks/noam-chomsky-1.jpg differ diff --git a/notebooks/noam-chomsky-2.jpg b/notebooks/noam-chomsky-2.jpg new file mode 100644 index 000000000..cdd8de9f1 Binary files /dev/null and b/notebooks/noam-chomsky-2.jpg differ diff --git a/notebooks/not-noam-chomsky.jpg b/notebooks/not-noam-chomsky.jpg new file mode 100755 index 000000000..9af04d634 Binary files /dev/null and b/notebooks/not-noam-chomsky.jpg differ diff --git a/notebooks/people/foucault/image-10.jpeg b/notebooks/people/foucault/image-10.jpeg new file mode 100755 index 000000000..00a6e7dc2 Binary files /dev/null and b/notebooks/people/foucault/image-10.jpeg differ diff --git a/notebooks/people/foucault/image-11.jpeg b/notebooks/people/foucault/image-11.jpeg new file mode 100755 index 000000000..421d312a3 Binary files /dev/null and b/notebooks/people/foucault/image-11.jpeg differ diff --git a/notebooks/people/foucault/image-12.jpeg b/notebooks/people/foucault/image-12.jpeg new file mode 100755 index 000000000..c8ad327ed Binary files /dev/null and b/notebooks/people/foucault/image-12.jpeg differ diff --git a/notebooks/people/foucault/image-13.jpeg b/notebooks/people/foucault/image-13.jpeg new file mode 100755 index 000000000..be39f8da2 Binary files /dev/null and b/notebooks/people/foucault/image-13.jpeg differ diff --git a/notebooks/people/foucault/image-14.jpeg b/notebooks/people/foucault/image-14.jpeg new file mode 100755 index 000000000..97b25a0c9 Binary files /dev/null and b/notebooks/people/foucault/image-14.jpeg differ diff --git a/notebooks/people/foucault/image-15.jpeg b/notebooks/people/foucault/image-15.jpeg new file mode 100755 index 000000000..7a079b202 Binary files /dev/null and b/notebooks/people/foucault/image-15.jpeg differ diff --git a/notebooks/people/foucault/image-16.jpeg b/notebooks/people/foucault/image-16.jpeg new file mode 100755 index 000000000..ab756acae Binary files /dev/null and b/notebooks/people/foucault/image-16.jpeg differ diff --git a/notebooks/people/foucault/image-17.jpeg b/notebooks/people/foucault/image-17.jpeg new file mode 100755 index 000000000..5a43ca2d7 Binary files /dev/null and b/notebooks/people/foucault/image-17.jpeg differ diff --git a/notebooks/people/foucault/image-18.jpeg b/notebooks/people/foucault/image-18.jpeg new file mode 100755 index 000000000..055b53974 Binary files /dev/null and b/notebooks/people/foucault/image-18.jpeg differ diff --git a/notebooks/people/foucault/image-19.jpeg b/notebooks/people/foucault/image-19.jpeg new file mode 100755 index 000000000..2c4cfabda Binary files /dev/null and b/notebooks/people/foucault/image-19.jpeg differ diff --git a/notebooks/people/foucault/image-2.jpeg b/notebooks/people/foucault/image-2.jpeg new file mode 100755 index 000000000..9af04d634 Binary files /dev/null and b/notebooks/people/foucault/image-2.jpeg differ diff --git a/notebooks/people/foucault/image-20.jpeg b/notebooks/people/foucault/image-20.jpeg new file mode 100755 index 000000000..0266ac7ca Binary files /dev/null and b/notebooks/people/foucault/image-20.jpeg differ diff --git a/notebooks/people/foucault/image-3.jpeg b/notebooks/people/foucault/image-3.jpeg new file mode 100755 index 000000000..83e2e7327 Binary files /dev/null and b/notebooks/people/foucault/image-3.jpeg differ diff --git a/notebooks/people/foucault/image-4.jpeg b/notebooks/people/foucault/image-4.jpeg new file mode 100755 index 000000000..e3163aebe Binary files /dev/null and b/notebooks/people/foucault/image-4.jpeg differ diff --git a/notebooks/people/foucault/image-5.jpeg b/notebooks/people/foucault/image-5.jpeg new file mode 100755 index 000000000..0fa128f26 Binary files /dev/null and b/notebooks/people/foucault/image-5.jpeg differ diff --git a/notebooks/people/foucault/image-6.jpeg b/notebooks/people/foucault/image-6.jpeg new file mode 100755 index 000000000..cfc3ee8a1 Binary files /dev/null and b/notebooks/people/foucault/image-6.jpeg differ diff --git a/notebooks/people/foucault/image-7.jpeg b/notebooks/people/foucault/image-7.jpeg new file mode 100755 index 000000000..182896351 Binary files /dev/null and b/notebooks/people/foucault/image-7.jpeg differ diff --git a/notebooks/people/foucault/image-8.jpeg b/notebooks/people/foucault/image-8.jpeg new file mode 100755 index 000000000..06c6c1b17 Binary files /dev/null and b/notebooks/people/foucault/image-8.jpeg differ diff --git a/notebooks/people/foucault/image-9.jpeg b/notebooks/people/foucault/image-9.jpeg new file mode 100755 index 000000000..891373d08 Binary files /dev/null and b/notebooks/people/foucault/image-9.jpeg differ diff --git a/notebooks/people/foucault/image.jpeg b/notebooks/people/foucault/image.jpeg new file mode 100755 index 000000000..58ff93714 Binary files /dev/null and b/notebooks/people/foucault/image.jpeg differ diff --git a/notebooks/people/foucault/images-11.jpeg b/notebooks/people/foucault/images-11.jpeg new file mode 100755 index 000000000..8a729d8d1 Binary files /dev/null and b/notebooks/people/foucault/images-11.jpeg differ diff --git a/notebooks/people/foucault/images-12.jpeg b/notebooks/people/foucault/images-12.jpeg new file mode 100755 index 000000000..2ff6a4821 Binary files /dev/null and b/notebooks/people/foucault/images-12.jpeg differ diff --git a/notebooks/people/foucault/images-13.jpeg b/notebooks/people/foucault/images-13.jpeg new file mode 100755 index 000000000..1b05570ba Binary files /dev/null and b/notebooks/people/foucault/images-13.jpeg differ diff --git a/notebooks/people/foucault/images-15.jpeg b/notebooks/people/foucault/images-15.jpeg new file mode 100755 index 000000000..b414ccd8a Binary files /dev/null and b/notebooks/people/foucault/images-15.jpeg differ diff --git a/notebooks/people/foucault/images-16.jpeg b/notebooks/people/foucault/images-16.jpeg new file mode 100755 index 000000000..8b1d07583 Binary files /dev/null and b/notebooks/people/foucault/images-16.jpeg differ diff --git a/notebooks/people/foucault/images-17.jpeg b/notebooks/people/foucault/images-17.jpeg new file mode 100755 index 000000000..fb77c742e Binary files /dev/null and b/notebooks/people/foucault/images-17.jpeg differ diff --git a/notebooks/people/foucault/images-18.jpeg b/notebooks/people/foucault/images-18.jpeg new file mode 100755 index 000000000..707118665 Binary files /dev/null and b/notebooks/people/foucault/images-18.jpeg differ diff --git a/notebooks/people/foucault/images-19.jpeg b/notebooks/people/foucault/images-19.jpeg new file mode 100755 index 000000000..f8a5cc63f Binary files /dev/null and b/notebooks/people/foucault/images-19.jpeg differ diff --git a/notebooks/people/foucault/images-2.jpeg b/notebooks/people/foucault/images-2.jpeg new file mode 100755 index 000000000..fd8050947 Binary files /dev/null and b/notebooks/people/foucault/images-2.jpeg differ diff --git a/notebooks/people/foucault/images-22.jpeg b/notebooks/people/foucault/images-22.jpeg new file mode 100755 index 000000000..95642f15d Binary files /dev/null and b/notebooks/people/foucault/images-22.jpeg differ diff --git a/notebooks/people/foucault/images-23.jpeg b/notebooks/people/foucault/images-23.jpeg new file mode 100755 index 000000000..bbf4ac910 Binary files /dev/null and b/notebooks/people/foucault/images-23.jpeg differ diff --git a/notebooks/people/foucault/images-24.jpeg b/notebooks/people/foucault/images-24.jpeg new file mode 100755 index 000000000..b1703cc84 Binary files /dev/null and b/notebooks/people/foucault/images-24.jpeg differ diff --git a/notebooks/people/foucault/images-25.jpeg b/notebooks/people/foucault/images-25.jpeg new file mode 100755 index 000000000..bb2351a4e Binary files /dev/null and b/notebooks/people/foucault/images-25.jpeg differ diff --git a/notebooks/people/foucault/images-26.jpeg b/notebooks/people/foucault/images-26.jpeg new file mode 100755 index 000000000..e2d4da3ed Binary files /dev/null and b/notebooks/people/foucault/images-26.jpeg differ diff --git a/notebooks/people/foucault/images-27.jpeg b/notebooks/people/foucault/images-27.jpeg new file mode 100755 index 000000000..c410d47d9 Binary files /dev/null and b/notebooks/people/foucault/images-27.jpeg differ diff --git a/notebooks/people/foucault/images-3.jpeg b/notebooks/people/foucault/images-3.jpeg new file mode 100755 index 000000000..c3583b623 Binary files /dev/null and b/notebooks/people/foucault/images-3.jpeg differ diff --git a/notebooks/people/foucault/images-4.jpeg b/notebooks/people/foucault/images-4.jpeg new file mode 100755 index 000000000..66924f48d Binary files /dev/null and b/notebooks/people/foucault/images-4.jpeg differ diff --git a/notebooks/people/foucault/images-5.jpeg b/notebooks/people/foucault/images-5.jpeg new file mode 100755 index 000000000..f0480e001 Binary files /dev/null and b/notebooks/people/foucault/images-5.jpeg differ diff --git a/notebooks/people/foucault/images-6.jpeg b/notebooks/people/foucault/images-6.jpeg new file mode 100755 index 000000000..fbd7fd48b Binary files /dev/null and b/notebooks/people/foucault/images-6.jpeg differ diff --git a/notebooks/people/foucault/images-7.jpeg b/notebooks/people/foucault/images-7.jpeg new file mode 100755 index 000000000..ab25564d3 Binary files /dev/null and b/notebooks/people/foucault/images-7.jpeg differ diff --git a/notebooks/people/foucault/images-8.jpeg b/notebooks/people/foucault/images-8.jpeg new file mode 100755 index 000000000..cce16bacb Binary files /dev/null and b/notebooks/people/foucault/images-8.jpeg differ diff --git a/notebooks/people/foucault/images-9.jpeg b/notebooks/people/foucault/images-9.jpeg new file mode 100755 index 000000000..d4475fa2b Binary files /dev/null and b/notebooks/people/foucault/images-9.jpeg differ diff --git a/notebooks/people/foucault/images.jpeg b/notebooks/people/foucault/images.jpeg new file mode 100755 index 000000000..f69f0dd0f Binary files /dev/null and b/notebooks/people/foucault/images.jpeg differ diff --git a/notebooks/people/noam_chomsky/image-11.jpeg b/notebooks/people/noam_chomsky/image-11.jpeg new file mode 100644 index 000000000..9842a7441 Binary files /dev/null and b/notebooks/people/noam_chomsky/image-11.jpeg differ diff --git a/notebooks/people/noam_chomsky/image-12.jpeg b/notebooks/people/noam_chomsky/image-12.jpeg new file mode 100644 index 000000000..5df76649e Binary files /dev/null and b/notebooks/people/noam_chomsky/image-12.jpeg differ diff --git a/notebooks/people/noam_chomsky/image-13.jpeg b/notebooks/people/noam_chomsky/image-13.jpeg new file mode 100644 index 000000000..e207dd4fb Binary files /dev/null and b/notebooks/people/noam_chomsky/image-13.jpeg differ diff --git a/notebooks/people/noam_chomsky/image-14.jpeg b/notebooks/people/noam_chomsky/image-14.jpeg new file mode 100644 index 000000000..b2005220c Binary files /dev/null and b/notebooks/people/noam_chomsky/image-14.jpeg differ diff --git a/notebooks/people/noam_chomsky/image-15.jpeg b/notebooks/people/noam_chomsky/image-15.jpeg new file mode 100644 index 000000000..d36124fcf Binary files /dev/null and b/notebooks/people/noam_chomsky/image-15.jpeg differ diff --git a/notebooks/people/noam_chomsky/image-16.jpeg b/notebooks/people/noam_chomsky/image-16.jpeg new file mode 100644 index 000000000..59d450193 Binary files /dev/null and b/notebooks/people/noam_chomsky/image-16.jpeg differ diff --git a/notebooks/people/noam_chomsky/image-17.jpeg b/notebooks/people/noam_chomsky/image-17.jpeg new file mode 100644 index 000000000..c61cdeac2 Binary files /dev/null and b/notebooks/people/noam_chomsky/image-17.jpeg differ diff --git a/notebooks/people/noam_chomsky/image-18.jpeg b/notebooks/people/noam_chomsky/image-18.jpeg new file mode 100644 index 000000000..82b569afe Binary files /dev/null and b/notebooks/people/noam_chomsky/image-18.jpeg differ diff --git a/notebooks/people/noam_chomsky/image-19.jpeg b/notebooks/people/noam_chomsky/image-19.jpeg new file mode 100644 index 000000000..b0d898b13 Binary files /dev/null and b/notebooks/people/noam_chomsky/image-19.jpeg differ diff --git a/notebooks/people/noam_chomsky/image-2.jpeg b/notebooks/people/noam_chomsky/image-2.jpeg new file mode 100644 index 000000000..0bbda4532 Binary files /dev/null and b/notebooks/people/noam_chomsky/image-2.jpeg differ diff --git a/notebooks/people/noam_chomsky/image-20.jpeg b/notebooks/people/noam_chomsky/image-20.jpeg new file mode 100644 index 000000000..3aad0b982 Binary files /dev/null and b/notebooks/people/noam_chomsky/image-20.jpeg differ diff --git a/notebooks/people/noam_chomsky/image-21.jpeg b/notebooks/people/noam_chomsky/image-21.jpeg new file mode 100644 index 000000000..c54f05f17 Binary files /dev/null and b/notebooks/people/noam_chomsky/image-21.jpeg differ diff --git a/notebooks/people/noam_chomsky/image-22.jpeg b/notebooks/people/noam_chomsky/image-22.jpeg new file mode 100644 index 000000000..0dc56eec2 Binary files /dev/null and b/notebooks/people/noam_chomsky/image-22.jpeg differ diff --git a/notebooks/people/noam_chomsky/image-23.jpeg b/notebooks/people/noam_chomsky/image-23.jpeg new file mode 100644 index 000000000..428281b0c Binary files /dev/null and b/notebooks/people/noam_chomsky/image-23.jpeg differ diff --git a/notebooks/people/noam_chomsky/image-24.jpeg b/notebooks/people/noam_chomsky/image-24.jpeg new file mode 100644 index 000000000..101e119ec Binary files /dev/null and b/notebooks/people/noam_chomsky/image-24.jpeg differ diff --git a/notebooks/people/noam_chomsky/image-26.jpeg b/notebooks/people/noam_chomsky/image-26.jpeg new file mode 100644 index 000000000..c636307be Binary files /dev/null and b/notebooks/people/noam_chomsky/image-26.jpeg differ diff --git a/notebooks/people/noam_chomsky/image-27.jpeg b/notebooks/people/noam_chomsky/image-27.jpeg new file mode 100644 index 000000000..522c437e5 Binary files /dev/null and b/notebooks/people/noam_chomsky/image-27.jpeg differ diff --git a/notebooks/people/noam_chomsky/image-28.jpeg b/notebooks/people/noam_chomsky/image-28.jpeg new file mode 100644 index 000000000..16590af3f Binary files /dev/null and b/notebooks/people/noam_chomsky/image-28.jpeg differ diff --git a/notebooks/people/noam_chomsky/image-29.jpeg b/notebooks/people/noam_chomsky/image-29.jpeg new file mode 100644 index 000000000..56d74b2b4 Binary files /dev/null and b/notebooks/people/noam_chomsky/image-29.jpeg differ diff --git a/notebooks/people/noam_chomsky/image-30.jpeg b/notebooks/people/noam_chomsky/image-30.jpeg new file mode 100644 index 000000000..239ee4b45 Binary files /dev/null and b/notebooks/people/noam_chomsky/image-30.jpeg differ diff --git a/notebooks/people/noam_chomsky/image-31.jpeg b/notebooks/people/noam_chomsky/image-31.jpeg new file mode 100644 index 000000000..feb237aa2 Binary files /dev/null and b/notebooks/people/noam_chomsky/image-31.jpeg differ diff --git a/notebooks/people/noam_chomsky/image-32.jpeg b/notebooks/people/noam_chomsky/image-32.jpeg new file mode 100644 index 000000000..f704dfff9 Binary files /dev/null and b/notebooks/people/noam_chomsky/image-32.jpeg differ diff --git a/notebooks/people/noam_chomsky/image-33.jpeg b/notebooks/people/noam_chomsky/image-33.jpeg new file mode 100644 index 000000000..3a1c55bbe Binary files /dev/null and b/notebooks/people/noam_chomsky/image-33.jpeg differ diff --git a/notebooks/people/noam_chomsky/image-4.jpeg b/notebooks/people/noam_chomsky/image-4.jpeg new file mode 100644 index 000000000..4ad2758d2 Binary files /dev/null and b/notebooks/people/noam_chomsky/image-4.jpeg differ diff --git a/notebooks/people/noam_chomsky/image-9.jpeg b/notebooks/people/noam_chomsky/image-9.jpeg new file mode 100644 index 000000000..8cef87957 Binary files /dev/null and b/notebooks/people/noam_chomsky/image-9.jpeg differ diff --git a/notebooks/people/noam_chomsky/images-100.jpeg b/notebooks/people/noam_chomsky/images-100.jpeg new file mode 100644 index 000000000..325dcfe51 Binary files /dev/null and b/notebooks/people/noam_chomsky/images-100.jpeg differ diff --git a/notebooks/people/noam_chomsky/images-101.jpeg b/notebooks/people/noam_chomsky/images-101.jpeg new file mode 100644 index 000000000..ff958e6ee Binary files /dev/null and b/notebooks/people/noam_chomsky/images-101.jpeg differ diff --git a/notebooks/people/noam_chomsky/images-102.jpeg b/notebooks/people/noam_chomsky/images-102.jpeg new file mode 100644 index 000000000..287a556ac Binary files /dev/null and b/notebooks/people/noam_chomsky/images-102.jpeg differ diff --git a/notebooks/people/noam_chomsky/images-104.jpeg b/notebooks/people/noam_chomsky/images-104.jpeg new file mode 100644 index 000000000..9d5d515ec Binary files /dev/null and b/notebooks/people/noam_chomsky/images-104.jpeg differ diff --git a/notebooks/people/noam_chomsky/images-105.jpeg b/notebooks/people/noam_chomsky/images-105.jpeg new file mode 100644 index 000000000..b86a6781f Binary files /dev/null and b/notebooks/people/noam_chomsky/images-105.jpeg differ diff --git a/notebooks/people/noam_chomsky/images-106.jpeg b/notebooks/people/noam_chomsky/images-106.jpeg new file mode 100644 index 000000000..cf9a037f5 Binary files /dev/null and b/notebooks/people/noam_chomsky/images-106.jpeg differ diff --git a/notebooks/people/noam_chomsky/images-107.jpeg b/notebooks/people/noam_chomsky/images-107.jpeg new file mode 100644 index 000000000..d0735b9b9 Binary files /dev/null and b/notebooks/people/noam_chomsky/images-107.jpeg differ diff --git a/notebooks/people/noam_chomsky/images-108.jpeg b/notebooks/people/noam_chomsky/images-108.jpeg new file mode 100644 index 000000000..e734525a7 Binary files /dev/null and b/notebooks/people/noam_chomsky/images-108.jpeg differ diff --git a/notebooks/people/noam_chomsky/images-109.jpeg b/notebooks/people/noam_chomsky/images-109.jpeg new file mode 100644 index 000000000..758b31935 Binary files /dev/null and b/notebooks/people/noam_chomsky/images-109.jpeg differ diff --git a/notebooks/people/noam_chomsky/images-110.jpeg b/notebooks/people/noam_chomsky/images-110.jpeg new file mode 100644 index 000000000..1cbb301b4 Binary files /dev/null and b/notebooks/people/noam_chomsky/images-110.jpeg differ diff --git a/notebooks/people/noam_chomsky/images-111.jpeg b/notebooks/people/noam_chomsky/images-111.jpeg new file mode 100644 index 000000000..bed3b1464 Binary files /dev/null and b/notebooks/people/noam_chomsky/images-111.jpeg differ diff --git a/notebooks/people/noam_chomsky/images-112.jpeg b/notebooks/people/noam_chomsky/images-112.jpeg new file mode 100644 index 000000000..8dea129b6 Binary files /dev/null and b/notebooks/people/noam_chomsky/images-112.jpeg differ diff --git a/notebooks/people/noam_chomsky/images-113.jpeg b/notebooks/people/noam_chomsky/images-113.jpeg new file mode 100644 index 000000000..021892d5c Binary files /dev/null and b/notebooks/people/noam_chomsky/images-113.jpeg differ diff --git a/notebooks/people/noam_chomsky/images-114.jpeg b/notebooks/people/noam_chomsky/images-114.jpeg new file mode 100644 index 000000000..bf28be4f2 Binary files /dev/null and b/notebooks/people/noam_chomsky/images-114.jpeg differ diff --git a/notebooks/people/noam_chomsky/images-115.jpeg b/notebooks/people/noam_chomsky/images-115.jpeg new file mode 100644 index 000000000..a8c7564de Binary files /dev/null and b/notebooks/people/noam_chomsky/images-115.jpeg differ diff --git a/notebooks/people/noam_chomsky/images-116.jpeg b/notebooks/people/noam_chomsky/images-116.jpeg new file mode 100644 index 000000000..d24843aec Binary files /dev/null and b/notebooks/people/noam_chomsky/images-116.jpeg differ diff --git a/notebooks/people/noam_chomsky/images-117.jpeg b/notebooks/people/noam_chomsky/images-117.jpeg new file mode 100644 index 000000000..5e8836de3 Binary files /dev/null and b/notebooks/people/noam_chomsky/images-117.jpeg differ diff --git a/notebooks/people/noam_chomsky/images-118.jpeg b/notebooks/people/noam_chomsky/images-118.jpeg new file mode 100644 index 000000000..b15cce06d Binary files /dev/null and b/notebooks/people/noam_chomsky/images-118.jpeg differ diff --git a/notebooks/people/noam_chomsky/images-119.jpeg b/notebooks/people/noam_chomsky/images-119.jpeg new file mode 100644 index 000000000..6eca38a3b Binary files /dev/null and b/notebooks/people/noam_chomsky/images-119.jpeg differ diff --git a/notebooks/people/noam_chomsky/images-120.jpeg b/notebooks/people/noam_chomsky/images-120.jpeg new file mode 100644 index 000000000..814a3c3b6 Binary files /dev/null and b/notebooks/people/noam_chomsky/images-120.jpeg differ diff --git a/notebooks/people/noam_chomsky/images-121.jpeg b/notebooks/people/noam_chomsky/images-121.jpeg new file mode 100644 index 000000000..2213d36f2 Binary files /dev/null and b/notebooks/people/noam_chomsky/images-121.jpeg differ diff --git a/notebooks/people/noam_chomsky/images-122.jpeg b/notebooks/people/noam_chomsky/images-122.jpeg new file mode 100644 index 000000000..6eaa1a545 Binary files /dev/null and b/notebooks/people/noam_chomsky/images-122.jpeg differ diff --git a/notebooks/people/noam_chomsky/images-123.jpeg b/notebooks/people/noam_chomsky/images-123.jpeg new file mode 100644 index 000000000..7dfcbcb37 Binary files /dev/null and b/notebooks/people/noam_chomsky/images-123.jpeg differ diff --git a/notebooks/people/noam_chomsky/images-125.jpeg b/notebooks/people/noam_chomsky/images-125.jpeg new file mode 100644 index 000000000..7d3db2dc4 Binary files /dev/null and b/notebooks/people/noam_chomsky/images-125.jpeg differ diff --git a/notebooks/people/noam_chomsky/images-126.jpeg b/notebooks/people/noam_chomsky/images-126.jpeg new file mode 100644 index 000000000..08501a16e Binary files /dev/null and b/notebooks/people/noam_chomsky/images-126.jpeg differ diff --git a/notebooks/people/noam_chomsky/images-128.jpeg b/notebooks/people/noam_chomsky/images-128.jpeg new file mode 100644 index 000000000..9a879185f Binary files /dev/null and b/notebooks/people/noam_chomsky/images-128.jpeg differ diff --git a/notebooks/people/noam_chomsky/images-130.jpeg b/notebooks/people/noam_chomsky/images-130.jpeg new file mode 100644 index 000000000..5c41a29cb Binary files /dev/null and b/notebooks/people/noam_chomsky/images-130.jpeg differ diff --git a/notebooks/people/noam_chomsky/images-131.jpeg b/notebooks/people/noam_chomsky/images-131.jpeg new file mode 100644 index 000000000..5631e5b06 Binary files /dev/null and b/notebooks/people/noam_chomsky/images-131.jpeg differ diff --git a/notebooks/people/noam_chomsky/images-134.jpeg b/notebooks/people/noam_chomsky/images-134.jpeg new file mode 100644 index 000000000..dc8a43d19 Binary files /dev/null and b/notebooks/people/noam_chomsky/images-134.jpeg differ diff --git a/notebooks/people/noam_chomsky/images-135.jpeg b/notebooks/people/noam_chomsky/images-135.jpeg new file mode 100644 index 000000000..5fef1aaca Binary files /dev/null and b/notebooks/people/noam_chomsky/images-135.jpeg differ diff --git a/notebooks/people/noam_chomsky/images-136.jpeg b/notebooks/people/noam_chomsky/images-136.jpeg new file mode 100644 index 000000000..ab79e4456 Binary files /dev/null and b/notebooks/people/noam_chomsky/images-136.jpeg differ diff --git a/notebooks/people/noam_chomsky/images-137.jpeg b/notebooks/people/noam_chomsky/images-137.jpeg new file mode 100644 index 000000000..71a699a74 Binary files /dev/null and b/notebooks/people/noam_chomsky/images-137.jpeg differ diff --git a/notebooks/people/noam_chomsky/images-138.jpeg b/notebooks/people/noam_chomsky/images-138.jpeg new file mode 100644 index 000000000..a17facbb8 Binary files /dev/null and b/notebooks/people/noam_chomsky/images-138.jpeg differ diff --git a/notebooks/people/noam_chomsky/images-139.jpeg b/notebooks/people/noam_chomsky/images-139.jpeg new file mode 100644 index 000000000..b9caa52e5 Binary files /dev/null and b/notebooks/people/noam_chomsky/images-139.jpeg differ diff --git a/notebooks/people/noam_chomsky/images-14.jpeg b/notebooks/people/noam_chomsky/images-14.jpeg new file mode 100644 index 000000000..674224d27 Binary files /dev/null and b/notebooks/people/noam_chomsky/images-14.jpeg differ diff --git a/notebooks/people/noam_chomsky/images-140.jpeg b/notebooks/people/noam_chomsky/images-140.jpeg new file mode 100644 index 000000000..789e924b7 Binary files /dev/null and b/notebooks/people/noam_chomsky/images-140.jpeg differ diff --git a/notebooks/people/noam_chomsky/images-141.jpeg b/notebooks/people/noam_chomsky/images-141.jpeg new file mode 100644 index 000000000..3d4670f28 Binary files /dev/null and b/notebooks/people/noam_chomsky/images-141.jpeg differ diff --git a/notebooks/people/noam_chomsky/images-143.jpeg b/notebooks/people/noam_chomsky/images-143.jpeg new file mode 100644 index 000000000..ddc093490 Binary files /dev/null and b/notebooks/people/noam_chomsky/images-143.jpeg differ diff --git a/notebooks/people/noam_chomsky/images-144.jpeg b/notebooks/people/noam_chomsky/images-144.jpeg new file mode 100644 index 000000000..ea2362ab9 Binary files /dev/null and b/notebooks/people/noam_chomsky/images-144.jpeg differ diff --git a/notebooks/people/noam_chomsky/images-145.jpeg b/notebooks/people/noam_chomsky/images-145.jpeg new file mode 100644 index 000000000..62d15481c Binary files /dev/null and b/notebooks/people/noam_chomsky/images-145.jpeg differ diff --git a/notebooks/people/noam_chomsky/images-146.jpeg b/notebooks/people/noam_chomsky/images-146.jpeg new file mode 100644 index 000000000..49b93828f Binary files /dev/null and b/notebooks/people/noam_chomsky/images-146.jpeg differ diff --git a/notebooks/people/noam_chomsky/images-147.jpeg b/notebooks/people/noam_chomsky/images-147.jpeg new file mode 100644 index 000000000..5126fe5dc Binary files /dev/null and b/notebooks/people/noam_chomsky/images-147.jpeg differ diff --git a/notebooks/people/noam_chomsky/images-148.jpeg b/notebooks/people/noam_chomsky/images-148.jpeg new file mode 100644 index 000000000..962a41e4b Binary files /dev/null and b/notebooks/people/noam_chomsky/images-148.jpeg differ diff --git a/notebooks/people/noam_chomsky/images-149.jpeg b/notebooks/people/noam_chomsky/images-149.jpeg new file mode 100644 index 000000000..a97d4fba8 Binary files /dev/null and b/notebooks/people/noam_chomsky/images-149.jpeg differ diff --git a/notebooks/people/noam_chomsky/images-15.jpeg b/notebooks/people/noam_chomsky/images-15.jpeg new file mode 100644 index 000000000..de91890c5 Binary files /dev/null and b/notebooks/people/noam_chomsky/images-15.jpeg differ diff --git a/notebooks/people/noam_chomsky/images-150.jpeg b/notebooks/people/noam_chomsky/images-150.jpeg new file mode 100644 index 000000000..6a2ac4af6 Binary files /dev/null and b/notebooks/people/noam_chomsky/images-150.jpeg differ diff --git a/notebooks/people/noam_chomsky/images-151.jpeg b/notebooks/people/noam_chomsky/images-151.jpeg new file mode 100644 index 000000000..45ec99542 Binary files /dev/null and b/notebooks/people/noam_chomsky/images-151.jpeg differ diff --git a/notebooks/people/noam_chomsky/images-152.jpeg b/notebooks/people/noam_chomsky/images-152.jpeg new file mode 100644 index 000000000..1f0aa67eb Binary files /dev/null and b/notebooks/people/noam_chomsky/images-152.jpeg differ diff --git a/notebooks/people/noam_chomsky/images-153.jpeg b/notebooks/people/noam_chomsky/images-153.jpeg new file mode 100644 index 000000000..70a6d96bb Binary files /dev/null and b/notebooks/people/noam_chomsky/images-153.jpeg differ diff --git a/notebooks/people/noam_chomsky/images-156.jpeg b/notebooks/people/noam_chomsky/images-156.jpeg new file mode 100644 index 000000000..1497eea01 Binary files /dev/null and b/notebooks/people/noam_chomsky/images-156.jpeg differ diff --git a/notebooks/people/noam_chomsky/images-157.jpeg b/notebooks/people/noam_chomsky/images-157.jpeg new file mode 100644 index 000000000..a28dbf2ae Binary files /dev/null and b/notebooks/people/noam_chomsky/images-157.jpeg differ diff --git a/notebooks/people/noam_chomsky/images-158.jpeg b/notebooks/people/noam_chomsky/images-158.jpeg new file mode 100644 index 000000000..e1909b618 Binary files /dev/null and b/notebooks/people/noam_chomsky/images-158.jpeg differ diff --git a/notebooks/people/noam_chomsky/images-159.jpeg b/notebooks/people/noam_chomsky/images-159.jpeg new file mode 100644 index 000000000..af6a83468 Binary files /dev/null and b/notebooks/people/noam_chomsky/images-159.jpeg differ diff --git a/notebooks/people/noam_chomsky/images-16.jpeg b/notebooks/people/noam_chomsky/images-16.jpeg new file mode 100644 index 000000000..e8e2ccf17 Binary files /dev/null and b/notebooks/people/noam_chomsky/images-16.jpeg differ diff --git a/notebooks/people/noam_chomsky/images-160.jpeg b/notebooks/people/noam_chomsky/images-160.jpeg new file mode 100644 index 000000000..dcf166bb9 Binary files /dev/null and b/notebooks/people/noam_chomsky/images-160.jpeg differ diff --git a/notebooks/people/noam_chomsky/images-163.jpeg b/notebooks/people/noam_chomsky/images-163.jpeg new file mode 100644 index 000000000..41542fd69 Binary files /dev/null and b/notebooks/people/noam_chomsky/images-163.jpeg differ diff --git a/notebooks/people/noam_chomsky/images-164.jpeg b/notebooks/people/noam_chomsky/images-164.jpeg new file mode 100644 index 000000000..9011be189 Binary files /dev/null and b/notebooks/people/noam_chomsky/images-164.jpeg differ diff --git a/notebooks/people/noam_chomsky/images-165.jpeg b/notebooks/people/noam_chomsky/images-165.jpeg new file mode 100644 index 000000000..0afbfec2b Binary files /dev/null and b/notebooks/people/noam_chomsky/images-165.jpeg differ diff --git a/notebooks/people/noam_chomsky/images-166.jpeg b/notebooks/people/noam_chomsky/images-166.jpeg new file mode 100644 index 000000000..8a58e660c Binary files /dev/null and b/notebooks/people/noam_chomsky/images-166.jpeg differ diff --git a/notebooks/people/noam_chomsky/images-167.jpeg b/notebooks/people/noam_chomsky/images-167.jpeg new file mode 100644 index 000000000..f254d4a6f Binary files /dev/null and b/notebooks/people/noam_chomsky/images-167.jpeg differ diff --git a/notebooks/people/noam_chomsky/images-168.jpeg b/notebooks/people/noam_chomsky/images-168.jpeg new file mode 100644 index 000000000..fa89e3632 Binary files /dev/null and b/notebooks/people/noam_chomsky/images-168.jpeg differ diff --git a/notebooks/people/noam_chomsky/images-17.jpeg b/notebooks/people/noam_chomsky/images-17.jpeg new file mode 100644 index 000000000..fba8af2f2 Binary files /dev/null and b/notebooks/people/noam_chomsky/images-17.jpeg differ diff --git a/notebooks/people/noam_chomsky/images-170.jpeg b/notebooks/people/noam_chomsky/images-170.jpeg new file mode 100644 index 000000000..bc5768c09 Binary files /dev/null and b/notebooks/people/noam_chomsky/images-170.jpeg differ diff --git a/notebooks/people/noam_chomsky/images-171.jpeg b/notebooks/people/noam_chomsky/images-171.jpeg new file mode 100644 index 000000000..3acc06916 Binary files /dev/null and b/notebooks/people/noam_chomsky/images-171.jpeg differ diff --git a/notebooks/people/noam_chomsky/images-172.jpeg b/notebooks/people/noam_chomsky/images-172.jpeg new file mode 100644 index 000000000..bc1b355e7 Binary files /dev/null and b/notebooks/people/noam_chomsky/images-172.jpeg differ diff --git a/notebooks/people/noam_chomsky/images-173.jpeg b/notebooks/people/noam_chomsky/images-173.jpeg new file mode 100644 index 000000000..82f9e90fa Binary files /dev/null and b/notebooks/people/noam_chomsky/images-173.jpeg differ diff --git a/notebooks/people/noam_chomsky/images-174.jpeg b/notebooks/people/noam_chomsky/images-174.jpeg new file mode 100644 index 000000000..c6e388194 Binary files /dev/null and b/notebooks/people/noam_chomsky/images-174.jpeg differ diff --git a/notebooks/people/noam_chomsky/images-175.jpeg b/notebooks/people/noam_chomsky/images-175.jpeg new file mode 100644 index 000000000..ff5f7d322 Binary files /dev/null and b/notebooks/people/noam_chomsky/images-175.jpeg differ diff --git a/notebooks/people/noam_chomsky/images-176.jpeg b/notebooks/people/noam_chomsky/images-176.jpeg new file mode 100644 index 000000000..353b43248 Binary files /dev/null and b/notebooks/people/noam_chomsky/images-176.jpeg differ diff --git a/notebooks/people/noam_chomsky/images-177.jpeg b/notebooks/people/noam_chomsky/images-177.jpeg new file mode 100644 index 000000000..882179276 Binary files /dev/null and b/notebooks/people/noam_chomsky/images-177.jpeg differ diff --git a/notebooks/people/noam_chomsky/images-179.jpeg b/notebooks/people/noam_chomsky/images-179.jpeg new file mode 100644 index 000000000..3a208d9e9 Binary files /dev/null and b/notebooks/people/noam_chomsky/images-179.jpeg differ diff --git a/notebooks/people/noam_chomsky/images-18.jpeg b/notebooks/people/noam_chomsky/images-18.jpeg new file mode 100644 index 000000000..ab5ac80eb Binary files /dev/null and b/notebooks/people/noam_chomsky/images-18.jpeg differ diff --git a/notebooks/people/noam_chomsky/images-181.jpeg b/notebooks/people/noam_chomsky/images-181.jpeg new file mode 100644 index 000000000..eb2b86f87 Binary files /dev/null and b/notebooks/people/noam_chomsky/images-181.jpeg differ diff --git a/notebooks/people/noam_chomsky/images-182.jpeg b/notebooks/people/noam_chomsky/images-182.jpeg new file mode 100644 index 000000000..ec8321133 Binary files /dev/null and b/notebooks/people/noam_chomsky/images-182.jpeg differ diff --git a/notebooks/people/noam_chomsky/images-183.jpeg b/notebooks/people/noam_chomsky/images-183.jpeg new file mode 100644 index 000000000..2e3db4d29 Binary files /dev/null and b/notebooks/people/noam_chomsky/images-183.jpeg differ diff --git a/notebooks/people/noam_chomsky/images-185.jpeg b/notebooks/people/noam_chomsky/images-185.jpeg new file mode 100644 index 000000000..4f1e9be34 Binary files /dev/null and b/notebooks/people/noam_chomsky/images-185.jpeg differ diff --git a/notebooks/people/noam_chomsky/images-186.jpeg b/notebooks/people/noam_chomsky/images-186.jpeg new file mode 100644 index 000000000..15d2f00de Binary files /dev/null and b/notebooks/people/noam_chomsky/images-186.jpeg differ diff --git a/notebooks/people/noam_chomsky/images-188.jpeg b/notebooks/people/noam_chomsky/images-188.jpeg new file mode 100644 index 000000000..0d1626ef8 Binary files /dev/null and b/notebooks/people/noam_chomsky/images-188.jpeg differ diff --git a/notebooks/people/noam_chomsky/images-189.jpeg b/notebooks/people/noam_chomsky/images-189.jpeg new file mode 100644 index 000000000..d3295bd42 Binary files /dev/null and b/notebooks/people/noam_chomsky/images-189.jpeg differ diff --git a/notebooks/people/noam_chomsky/images-190.jpeg b/notebooks/people/noam_chomsky/images-190.jpeg new file mode 100644 index 000000000..3b5391897 Binary files /dev/null and b/notebooks/people/noam_chomsky/images-190.jpeg differ diff --git a/notebooks/people/noam_chomsky/images-20.jpeg b/notebooks/people/noam_chomsky/images-20.jpeg new file mode 100644 index 000000000..bf522bc47 Binary files /dev/null and b/notebooks/people/noam_chomsky/images-20.jpeg differ diff --git a/notebooks/people/noam_chomsky/images-21.jpeg b/notebooks/people/noam_chomsky/images-21.jpeg new file mode 100644 index 000000000..bf0a6614d Binary files /dev/null and b/notebooks/people/noam_chomsky/images-21.jpeg differ diff --git a/notebooks/people/noam_chomsky/images-22.jpeg b/notebooks/people/noam_chomsky/images-22.jpeg new file mode 100644 index 000000000..7748e2e2f Binary files /dev/null and b/notebooks/people/noam_chomsky/images-22.jpeg differ diff --git a/notebooks/people/noam_chomsky/images-23.jpeg b/notebooks/people/noam_chomsky/images-23.jpeg new file mode 100644 index 000000000..54e54ba2f Binary files /dev/null and b/notebooks/people/noam_chomsky/images-23.jpeg differ diff --git a/notebooks/people/noam_chomsky/images-24.jpeg b/notebooks/people/noam_chomsky/images-24.jpeg new file mode 100644 index 000000000..8270706fe Binary files /dev/null and b/notebooks/people/noam_chomsky/images-24.jpeg differ diff --git a/notebooks/people/noam_chomsky/images-25.jpeg b/notebooks/people/noam_chomsky/images-25.jpeg new file mode 100644 index 000000000..48fe27fea Binary files /dev/null and b/notebooks/people/noam_chomsky/images-25.jpeg differ diff --git a/notebooks/people/noam_chomsky/images-26.jpeg b/notebooks/people/noam_chomsky/images-26.jpeg new file mode 100644 index 000000000..9df1ca167 Binary files /dev/null and b/notebooks/people/noam_chomsky/images-26.jpeg differ diff --git a/notebooks/people/noam_chomsky/images-27.jpeg b/notebooks/people/noam_chomsky/images-27.jpeg new file mode 100644 index 000000000..5b5ed9a24 Binary files /dev/null and b/notebooks/people/noam_chomsky/images-27.jpeg differ diff --git a/notebooks/people/noam_chomsky/images-28.jpeg b/notebooks/people/noam_chomsky/images-28.jpeg new file mode 100644 index 000000000..e7bde00bf Binary files /dev/null and b/notebooks/people/noam_chomsky/images-28.jpeg differ diff --git a/notebooks/people/noam_chomsky/images-30.jpeg b/notebooks/people/noam_chomsky/images-30.jpeg new file mode 100644 index 000000000..62575ba6c Binary files /dev/null and b/notebooks/people/noam_chomsky/images-30.jpeg differ diff --git a/notebooks/people/noam_chomsky/images-31.jpeg b/notebooks/people/noam_chomsky/images-31.jpeg new file mode 100644 index 000000000..dce84f85d Binary files /dev/null and b/notebooks/people/noam_chomsky/images-31.jpeg differ diff --git a/notebooks/people/noam_chomsky/images-33.jpeg b/notebooks/people/noam_chomsky/images-33.jpeg new file mode 100644 index 000000000..d15d4b950 Binary files /dev/null and b/notebooks/people/noam_chomsky/images-33.jpeg differ diff --git a/notebooks/people/noam_chomsky/images-34.jpeg b/notebooks/people/noam_chomsky/images-34.jpeg new file mode 100644 index 000000000..dd24aa1ad Binary files /dev/null and b/notebooks/people/noam_chomsky/images-34.jpeg differ diff --git a/notebooks/people/noam_chomsky/images-35.jpeg b/notebooks/people/noam_chomsky/images-35.jpeg new file mode 100644 index 000000000..0f2c232a6 Binary files /dev/null and b/notebooks/people/noam_chomsky/images-35.jpeg differ diff --git a/notebooks/people/noam_chomsky/images-36.jpeg b/notebooks/people/noam_chomsky/images-36.jpeg new file mode 100644 index 000000000..b454ee9c9 Binary files /dev/null and b/notebooks/people/noam_chomsky/images-36.jpeg differ diff --git a/notebooks/people/noam_chomsky/images-37.jpeg b/notebooks/people/noam_chomsky/images-37.jpeg new file mode 100644 index 000000000..f08f6b257 Binary files /dev/null and b/notebooks/people/noam_chomsky/images-37.jpeg differ diff --git a/notebooks/people/noam_chomsky/images-38.jpeg b/notebooks/people/noam_chomsky/images-38.jpeg new file mode 100644 index 000000000..5779d5be7 Binary files /dev/null and b/notebooks/people/noam_chomsky/images-38.jpeg differ diff --git a/notebooks/people/noam_chomsky/images-39.jpeg b/notebooks/people/noam_chomsky/images-39.jpeg new file mode 100644 index 000000000..379f021b5 Binary files /dev/null and b/notebooks/people/noam_chomsky/images-39.jpeg differ diff --git a/notebooks/people/noam_chomsky/images-4.jpeg b/notebooks/people/noam_chomsky/images-4.jpeg new file mode 100644 index 000000000..e1dfc1fa8 Binary files /dev/null and b/notebooks/people/noam_chomsky/images-4.jpeg differ diff --git a/notebooks/people/noam_chomsky/images-41.jpeg b/notebooks/people/noam_chomsky/images-41.jpeg new file mode 100644 index 000000000..a1101481d Binary files /dev/null and b/notebooks/people/noam_chomsky/images-41.jpeg differ diff --git a/notebooks/people/noam_chomsky/images-42.jpeg b/notebooks/people/noam_chomsky/images-42.jpeg new file mode 100644 index 000000000..bbaf25d04 Binary files /dev/null and b/notebooks/people/noam_chomsky/images-42.jpeg differ diff --git a/notebooks/people/noam_chomsky/images-43.jpeg b/notebooks/people/noam_chomsky/images-43.jpeg new file mode 100644 index 000000000..1de2dd576 Binary files /dev/null and b/notebooks/people/noam_chomsky/images-43.jpeg differ diff --git a/notebooks/people/noam_chomsky/images-44.jpeg b/notebooks/people/noam_chomsky/images-44.jpeg new file mode 100644 index 000000000..3bb0502d4 Binary files /dev/null and b/notebooks/people/noam_chomsky/images-44.jpeg differ diff --git a/notebooks/people/noam_chomsky/images-45.jpeg b/notebooks/people/noam_chomsky/images-45.jpeg new file mode 100644 index 000000000..08f25efc0 Binary files /dev/null and b/notebooks/people/noam_chomsky/images-45.jpeg differ diff --git a/notebooks/people/noam_chomsky/images-46.jpeg b/notebooks/people/noam_chomsky/images-46.jpeg new file mode 100644 index 000000000..521f65818 Binary files /dev/null and b/notebooks/people/noam_chomsky/images-46.jpeg differ diff --git a/notebooks/people/noam_chomsky/images-47.jpeg b/notebooks/people/noam_chomsky/images-47.jpeg new file mode 100644 index 000000000..48e4f2595 Binary files /dev/null and b/notebooks/people/noam_chomsky/images-47.jpeg differ diff --git a/notebooks/people/noam_chomsky/images-48.jpeg b/notebooks/people/noam_chomsky/images-48.jpeg new file mode 100644 index 000000000..88e449b23 Binary files /dev/null and b/notebooks/people/noam_chomsky/images-48.jpeg differ diff --git a/notebooks/people/noam_chomsky/images-49.jpeg b/notebooks/people/noam_chomsky/images-49.jpeg new file mode 100644 index 000000000..b313fb2dc Binary files /dev/null and b/notebooks/people/noam_chomsky/images-49.jpeg differ diff --git a/notebooks/people/noam_chomsky/images-50.jpeg b/notebooks/people/noam_chomsky/images-50.jpeg new file mode 100644 index 000000000..680f08684 Binary files /dev/null and b/notebooks/people/noam_chomsky/images-50.jpeg differ diff --git a/notebooks/people/noam_chomsky/images-52.jpeg b/notebooks/people/noam_chomsky/images-52.jpeg new file mode 100644 index 000000000..453121185 Binary files /dev/null and b/notebooks/people/noam_chomsky/images-52.jpeg differ diff --git a/notebooks/people/noam_chomsky/images-53.jpeg b/notebooks/people/noam_chomsky/images-53.jpeg new file mode 100644 index 000000000..e8ad709f8 Binary files /dev/null and b/notebooks/people/noam_chomsky/images-53.jpeg differ diff --git a/notebooks/people/noam_chomsky/images-55.jpeg b/notebooks/people/noam_chomsky/images-55.jpeg new file mode 100644 index 000000000..7252ac86d Binary files /dev/null and b/notebooks/people/noam_chomsky/images-55.jpeg differ diff --git a/notebooks/people/noam_chomsky/images-56.jpeg b/notebooks/people/noam_chomsky/images-56.jpeg new file mode 100644 index 000000000..d1fa32588 Binary files /dev/null and b/notebooks/people/noam_chomsky/images-56.jpeg differ diff --git a/notebooks/people/noam_chomsky/images-57.jpeg b/notebooks/people/noam_chomsky/images-57.jpeg new file mode 100644 index 000000000..e7f4721bf Binary files /dev/null and b/notebooks/people/noam_chomsky/images-57.jpeg differ diff --git a/notebooks/people/noam_chomsky/images-58.jpeg b/notebooks/people/noam_chomsky/images-58.jpeg new file mode 100644 index 000000000..5b2b85005 Binary files /dev/null and b/notebooks/people/noam_chomsky/images-58.jpeg differ diff --git a/notebooks/people/noam_chomsky/images-59.jpeg b/notebooks/people/noam_chomsky/images-59.jpeg new file mode 100644 index 000000000..224f73f5e Binary files /dev/null and b/notebooks/people/noam_chomsky/images-59.jpeg differ diff --git a/notebooks/people/noam_chomsky/images-60.jpeg b/notebooks/people/noam_chomsky/images-60.jpeg new file mode 100644 index 000000000..9607d7439 Binary files /dev/null and b/notebooks/people/noam_chomsky/images-60.jpeg differ diff --git a/notebooks/people/noam_chomsky/images-61.jpeg b/notebooks/people/noam_chomsky/images-61.jpeg new file mode 100644 index 000000000..e44f2e7fd Binary files /dev/null and b/notebooks/people/noam_chomsky/images-61.jpeg differ diff --git a/notebooks/people/noam_chomsky/images-62.jpeg b/notebooks/people/noam_chomsky/images-62.jpeg new file mode 100644 index 000000000..496c33fe0 Binary files /dev/null and b/notebooks/people/noam_chomsky/images-62.jpeg differ diff --git a/notebooks/people/noam_chomsky/images-64.jpeg b/notebooks/people/noam_chomsky/images-64.jpeg new file mode 100644 index 000000000..b6b28adac Binary files /dev/null and b/notebooks/people/noam_chomsky/images-64.jpeg differ diff --git a/notebooks/people/noam_chomsky/images-65.jpeg b/notebooks/people/noam_chomsky/images-65.jpeg new file mode 100644 index 000000000..cc7fb9bb6 Binary files /dev/null and b/notebooks/people/noam_chomsky/images-65.jpeg differ diff --git a/notebooks/people/noam_chomsky/images-66.jpeg b/notebooks/people/noam_chomsky/images-66.jpeg new file mode 100644 index 000000000..426548afd Binary files /dev/null and b/notebooks/people/noam_chomsky/images-66.jpeg differ diff --git a/notebooks/people/noam_chomsky/images-67.jpeg b/notebooks/people/noam_chomsky/images-67.jpeg new file mode 100644 index 000000000..5694e9196 Binary files /dev/null and b/notebooks/people/noam_chomsky/images-67.jpeg differ diff --git a/notebooks/people/noam_chomsky/images-68.jpeg b/notebooks/people/noam_chomsky/images-68.jpeg new file mode 100644 index 000000000..547615a14 Binary files /dev/null and b/notebooks/people/noam_chomsky/images-68.jpeg differ diff --git a/notebooks/people/noam_chomsky/images-69.jpeg b/notebooks/people/noam_chomsky/images-69.jpeg new file mode 100644 index 000000000..bf3d639af Binary files /dev/null and b/notebooks/people/noam_chomsky/images-69.jpeg differ diff --git a/notebooks/people/noam_chomsky/images-70.jpeg b/notebooks/people/noam_chomsky/images-70.jpeg new file mode 100644 index 000000000..8724224eb Binary files /dev/null and b/notebooks/people/noam_chomsky/images-70.jpeg differ diff --git a/notebooks/people/noam_chomsky/images-71.jpeg b/notebooks/people/noam_chomsky/images-71.jpeg new file mode 100644 index 000000000..d00388a90 Binary files /dev/null and b/notebooks/people/noam_chomsky/images-71.jpeg differ diff --git a/notebooks/people/noam_chomsky/images-72.jpeg b/notebooks/people/noam_chomsky/images-72.jpeg new file mode 100644 index 000000000..fc5ca8bb8 Binary files /dev/null and b/notebooks/people/noam_chomsky/images-72.jpeg differ diff --git a/notebooks/people/noam_chomsky/images-73.jpeg b/notebooks/people/noam_chomsky/images-73.jpeg new file mode 100644 index 000000000..e8e148686 Binary files /dev/null and b/notebooks/people/noam_chomsky/images-73.jpeg differ diff --git a/notebooks/people/noam_chomsky/images-74.jpeg b/notebooks/people/noam_chomsky/images-74.jpeg new file mode 100644 index 000000000..eef9db73b Binary files /dev/null and b/notebooks/people/noam_chomsky/images-74.jpeg differ diff --git a/notebooks/people/noam_chomsky/images-75.jpeg b/notebooks/people/noam_chomsky/images-75.jpeg new file mode 100644 index 000000000..c5fe8b00d Binary files /dev/null and b/notebooks/people/noam_chomsky/images-75.jpeg differ diff --git a/notebooks/people/noam_chomsky/images-76.jpeg b/notebooks/people/noam_chomsky/images-76.jpeg new file mode 100644 index 000000000..65856333a Binary files /dev/null and b/notebooks/people/noam_chomsky/images-76.jpeg differ diff --git a/notebooks/people/noam_chomsky/images-77.jpeg b/notebooks/people/noam_chomsky/images-77.jpeg new file mode 100644 index 000000000..55d5e4bcb Binary files /dev/null and b/notebooks/people/noam_chomsky/images-77.jpeg differ diff --git a/notebooks/people/noam_chomsky/images-78.jpeg b/notebooks/people/noam_chomsky/images-78.jpeg new file mode 100644 index 000000000..f87858d50 Binary files /dev/null and b/notebooks/people/noam_chomsky/images-78.jpeg differ diff --git a/notebooks/people/noam_chomsky/images-79.jpeg b/notebooks/people/noam_chomsky/images-79.jpeg new file mode 100644 index 000000000..e8dd8cb57 Binary files /dev/null and b/notebooks/people/noam_chomsky/images-79.jpeg differ diff --git a/notebooks/people/noam_chomsky/images-80.jpeg b/notebooks/people/noam_chomsky/images-80.jpeg new file mode 100644 index 000000000..1e2ff7c8a Binary files /dev/null and b/notebooks/people/noam_chomsky/images-80.jpeg differ diff --git a/notebooks/people/noam_chomsky/images-81.jpeg b/notebooks/people/noam_chomsky/images-81.jpeg new file mode 100644 index 000000000..fd33d77fe Binary files /dev/null and b/notebooks/people/noam_chomsky/images-81.jpeg differ diff --git a/notebooks/people/noam_chomsky/images-82.jpeg b/notebooks/people/noam_chomsky/images-82.jpeg new file mode 100644 index 000000000..a604fa226 Binary files /dev/null and b/notebooks/people/noam_chomsky/images-82.jpeg differ diff --git a/notebooks/people/noam_chomsky/images-83.jpeg b/notebooks/people/noam_chomsky/images-83.jpeg new file mode 100644 index 000000000..2d24e6981 Binary files /dev/null and b/notebooks/people/noam_chomsky/images-83.jpeg differ diff --git a/notebooks/people/noam_chomsky/images-84.jpeg b/notebooks/people/noam_chomsky/images-84.jpeg new file mode 100644 index 000000000..4cc354894 Binary files /dev/null and b/notebooks/people/noam_chomsky/images-84.jpeg differ diff --git a/notebooks/people/noam_chomsky/images-85.jpeg b/notebooks/people/noam_chomsky/images-85.jpeg new file mode 100644 index 000000000..946e42e74 Binary files /dev/null and b/notebooks/people/noam_chomsky/images-85.jpeg differ diff --git a/notebooks/people/noam_chomsky/images-86.jpeg b/notebooks/people/noam_chomsky/images-86.jpeg new file mode 100644 index 000000000..8533a027d Binary files /dev/null and b/notebooks/people/noam_chomsky/images-86.jpeg differ diff --git a/notebooks/people/noam_chomsky/images-87.jpeg b/notebooks/people/noam_chomsky/images-87.jpeg new file mode 100644 index 000000000..643c5cecd Binary files /dev/null and b/notebooks/people/noam_chomsky/images-87.jpeg differ diff --git a/notebooks/people/noam_chomsky/images-88.jpeg b/notebooks/people/noam_chomsky/images-88.jpeg new file mode 100644 index 000000000..0caf19bea Binary files /dev/null and b/notebooks/people/noam_chomsky/images-88.jpeg differ diff --git a/notebooks/people/noam_chomsky/images-89.jpeg b/notebooks/people/noam_chomsky/images-89.jpeg new file mode 100644 index 000000000..e7b5c41f5 Binary files /dev/null and b/notebooks/people/noam_chomsky/images-89.jpeg differ diff --git a/notebooks/people/noam_chomsky/images-90.jpeg b/notebooks/people/noam_chomsky/images-90.jpeg new file mode 100644 index 000000000..7b211c01d Binary files /dev/null and b/notebooks/people/noam_chomsky/images-90.jpeg differ diff --git a/notebooks/people/noam_chomsky/images-91.jpeg b/notebooks/people/noam_chomsky/images-91.jpeg new file mode 100644 index 000000000..d825b3610 Binary files /dev/null and b/notebooks/people/noam_chomsky/images-91.jpeg differ diff --git a/notebooks/people/noam_chomsky/images-92.jpeg b/notebooks/people/noam_chomsky/images-92.jpeg new file mode 100644 index 000000000..58c25dfcf Binary files /dev/null and b/notebooks/people/noam_chomsky/images-92.jpeg differ diff --git a/notebooks/people/noam_chomsky/images-93.jpeg b/notebooks/people/noam_chomsky/images-93.jpeg new file mode 100644 index 000000000..a6fd9e9a9 Binary files /dev/null and b/notebooks/people/noam_chomsky/images-93.jpeg differ diff --git a/notebooks/people/noam_chomsky/images-94.jpeg b/notebooks/people/noam_chomsky/images-94.jpeg new file mode 100644 index 000000000..8f2d9e220 Binary files /dev/null and b/notebooks/people/noam_chomsky/images-94.jpeg differ diff --git a/notebooks/people/noam_chomsky/images-96.jpeg b/notebooks/people/noam_chomsky/images-96.jpeg new file mode 100644 index 000000000..ec9e5e387 Binary files /dev/null and b/notebooks/people/noam_chomsky/images-96.jpeg differ diff --git a/notebooks/people/noam_chomsky/images-97.jpeg b/notebooks/people/noam_chomsky/images-97.jpeg new file mode 100644 index 000000000..5b2ff1265 Binary files /dev/null and b/notebooks/people/noam_chomsky/images-97.jpeg differ diff --git a/notebooks/people/noam_chomsky/images-98.jpeg b/notebooks/people/noam_chomsky/images-98.jpeg new file mode 100644 index 000000000..1c54b81fc Binary files /dev/null and b/notebooks/people/noam_chomsky/images-98.jpeg differ diff --git a/notebooks/tsne.jpg b/notebooks/tsne.jpg new file mode 100644 index 000000000..cf4bfd756 Binary files /dev/null and b/notebooks/tsne.jpg differ diff --git a/requirements.txt b/requirements.txt index b7418c9ac..b6bb4abeb 100644 --- a/requirements.txt +++ b/requirements.txt @@ -1,4 +1,5 @@ tensorflow==1.7 +tensorlayer==1.7 scipy scikit-learn opencv-python @@ -7,3 +8,12 @@ matplotlib Pillow requests psutil +progressbar2 +mtcnn +pathos +dask +tinytag +docker +torch +torchvision +tensorboardX \ No newline at end of file diff --git a/setup.py b/setup.py new file mode 100644 index 000000000..4b07537aa --- /dev/null +++ b/setup.py @@ -0,0 +1,32 @@ +from setuptools import find_packages, setup + +setup( + name='facenet_sandberg', + version='0.0.2', + description="Face recognition using TensorFlow", + long_description="Face recognition with Google's FaceNet deep neural network & TensorFlow. Mirror of https://github.com/davidsandberg/facenet.", + url='https://github.com/armanrahman22/facenet', + packages=find_packages(), + maintainer='Arman Rahman', + maintainer_email='armanrahman22@gmail.com', + include_package_data=True, + license='MIT', + install_requires=[ + 'tensorflow', + 'scipy', + 'docker', + 'scikit-learn', + 'opencv-python', + 'h5py', + 'matplotlib', + 'Pillow', + 'requests', + 'psutil', + 'progressbar2', + 'mtcnn', + 'pathos', + 'dask', + 'tensorlayer', + 'torch', + 'torchvision', + 'tensorboardX']) diff --git a/src/align/align_dataset_mtcnn.py b/src/align/align_dataset_mtcnn.py deleted file mode 100644 index 7d5e735e6..000000000 --- a/src/align/align_dataset_mtcnn.py +++ /dev/null @@ -1,159 +0,0 @@ -"""Performs face alignment and stores face thumbnails in the output directory.""" -# MIT License -# -# Copyright (c) 2016 David Sandberg -# -# Permission is hereby granted, free of charge, to any person obtaining a copy -# of this software and associated documentation files (the "Software"), to deal -# in the Software without restriction, including without limitation the rights -# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell -# copies of the Software, and to permit persons to whom the Software is -# furnished to do so, subject to the following conditions: -# -# The above copyright notice and this permission notice shall be included in all -# copies or substantial portions of the Software. -# -# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR -# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, -# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE -# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER -# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, -# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE -# SOFTWARE. - -from __future__ import absolute_import -from __future__ import division -from __future__ import print_function - -from scipy import misc -import sys -import os -import argparse -import tensorflow as tf -import numpy as np -import facenet -import align.detect_face -import random -from time import sleep - -def main(args): - sleep(random.random()) - output_dir = os.path.expanduser(args.output_dir) - if not os.path.exists(output_dir): - os.makedirs(output_dir) - # Store some git revision info in a text file in the log directory - src_path,_ = os.path.split(os.path.realpath(__file__)) - facenet.store_revision_info(src_path, output_dir, ' '.join(sys.argv)) - dataset = facenet.get_dataset(args.input_dir) - - print('Creating networks and loading parameters') - - with tf.Graph().as_default(): - gpu_options = tf.GPUOptions(per_process_gpu_memory_fraction=args.gpu_memory_fraction) - sess = tf.Session(config=tf.ConfigProto(gpu_options=gpu_options, log_device_placement=False)) - with sess.as_default(): - pnet, rnet, onet = align.detect_face.create_mtcnn(sess, None) - - minsize = 20 # minimum size of face - threshold = [ 0.6, 0.7, 0.7 ] # three steps's threshold - factor = 0.709 # scale factor - - # Add a random key to the filename to allow alignment using multiple processes - random_key = np.random.randint(0, high=99999) - bounding_boxes_filename = os.path.join(output_dir, 'bounding_boxes_%05d.txt' % random_key) - - with open(bounding_boxes_filename, "w") as text_file: - nrof_images_total = 0 - nrof_successfully_aligned = 0 - if args.random_order: - random.shuffle(dataset) - for cls in dataset: - output_class_dir = os.path.join(output_dir, cls.name) - if not os.path.exists(output_class_dir): - os.makedirs(output_class_dir) - if args.random_order: - random.shuffle(cls.image_paths) - for image_path in cls.image_paths: - nrof_images_total += 1 - filename = os.path.splitext(os.path.split(image_path)[1])[0] - output_filename = os.path.join(output_class_dir, filename+'.png') - print(image_path) - if not os.path.exists(output_filename): - try: - img = misc.imread(image_path) - except (IOError, ValueError, IndexError) as e: - errorMessage = '{}: {}'.format(image_path, e) - print(errorMessage) - else: - if img.ndim<2: - print('Unable to align "%s"' % image_path) - text_file.write('%s\n' % (output_filename)) - continue - if img.ndim == 2: - img = facenet.to_rgb(img) - img = img[:,:,0:3] - - bounding_boxes, _ = align.detect_face.detect_face(img, minsize, pnet, rnet, onet, threshold, factor) - nrof_faces = bounding_boxes.shape[0] - if nrof_faces>0: - det = bounding_boxes[:,0:4] - det_arr = [] - img_size = np.asarray(img.shape)[0:2] - if nrof_faces>1: - if args.detect_multiple_faces: - for i in range(nrof_faces): - det_arr.append(np.squeeze(det[i])) - else: - bounding_box_size = (det[:,2]-det[:,0])*(det[:,3]-det[:,1]) - img_center = img_size / 2 - offsets = np.vstack([ (det[:,0]+det[:,2])/2-img_center[1], (det[:,1]+det[:,3])/2-img_center[0] ]) - offset_dist_squared = np.sum(np.power(offsets,2.0),0) - index = np.argmax(bounding_box_size-offset_dist_squared*2.0) # some extra weight on the centering - det_arr.append(det[index,:]) - else: - det_arr.append(np.squeeze(det)) - - for i, det in enumerate(det_arr): - det = np.squeeze(det) - bb = np.zeros(4, dtype=np.int32) - bb[0] = np.maximum(det[0]-args.margin/2, 0) - bb[1] = np.maximum(det[1]-args.margin/2, 0) - bb[2] = np.minimum(det[2]+args.margin/2, img_size[1]) - bb[3] = np.minimum(det[3]+args.margin/2, img_size[0]) - cropped = img[bb[1]:bb[3],bb[0]:bb[2],:] - scaled = misc.imresize(cropped, (args.image_size, args.image_size), interp='bilinear') - nrof_successfully_aligned += 1 - filename_base, file_extension = os.path.splitext(output_filename) - if args.detect_multiple_faces: - output_filename_n = "{}_{}{}".format(filename_base, i, file_extension) - else: - output_filename_n = "{}{}".format(filename_base, file_extension) - misc.imsave(output_filename_n, scaled) - text_file.write('%s %d %d %d %d\n' % (output_filename_n, bb[0], bb[1], bb[2], bb[3])) - else: - print('Unable to align "%s"' % image_path) - text_file.write('%s\n' % (output_filename)) - - print('Total number of images: %d' % nrof_images_total) - print('Number of successfully aligned images: %d' % nrof_successfully_aligned) - - -def parse_arguments(argv): - parser = argparse.ArgumentParser() - - parser.add_argument('input_dir', type=str, help='Directory with unaligned images.') - parser.add_argument('output_dir', type=str, help='Directory with aligned face thumbnails.') - parser.add_argument('--image_size', type=int, - help='Image size (height, width) in pixels.', default=182) - parser.add_argument('--margin', type=int, - help='Margin for the crop around the bounding box (height, width) in pixels.', default=44) - parser.add_argument('--random_order', - help='Shuffles the order of images to enable alignment using multiple processes.', action='store_true') - parser.add_argument('--gpu_memory_fraction', type=float, - help='Upper bound on the amount of GPU memory that will be used by the process.', default=1.0) - parser.add_argument('--detect_multiple_faces', type=bool, - help='Detect and align multiple faces per image.', default=False) - return parser.parse_args(argv) - -if __name__ == '__main__': - main(parse_arguments(sys.argv[1:])) diff --git a/src/align/det1.npy b/src/align/det1.npy deleted file mode 100644 index 7c05a2c56..000000000 Binary files a/src/align/det1.npy and /dev/null differ diff --git a/src/align/det2.npy b/src/align/det2.npy deleted file mode 100644 index 85d5bf09c..000000000 Binary files a/src/align/det2.npy and /dev/null differ diff --git a/src/align/det3.npy b/src/align/det3.npy deleted file mode 100644 index 90d5ba975..000000000 Binary files a/src/align/det3.npy and /dev/null differ diff --git a/src/align/detect_face.py b/src/align/detect_face.py deleted file mode 100644 index 7f98ca7fb..000000000 --- a/src/align/detect_face.py +++ /dev/null @@ -1,781 +0,0 @@ -""" Tensorflow implementation of the face detection / alignment algorithm found at -https://github.com/kpzhang93/MTCNN_face_detection_alignment -""" -# MIT License -# -# Copyright (c) 2016 David Sandberg -# -# Permission is hereby granted, free of charge, to any person obtaining a copy -# of this software and associated documentation files (the "Software"), to deal -# in the Software without restriction, including without limitation the rights -# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell -# copies of the Software, and to permit persons to whom the Software is -# furnished to do so, subject to the following conditions: -# -# The above copyright notice and this permission notice shall be included in all -# copies or substantial portions of the Software. -# -# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR -# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, -# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE -# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER -# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, -# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE -# SOFTWARE. - -from __future__ import absolute_import -from __future__ import division -from __future__ import print_function -from six import string_types, iteritems - -import numpy as np -import tensorflow as tf -#from math import floor -import cv2 -import os - -def layer(op): - """Decorator for composable network layers.""" - - def layer_decorated(self, *args, **kwargs): - # Automatically set a name if not provided. - name = kwargs.setdefault('name', self.get_unique_name(op.__name__)) - # Figure out the layer inputs. - if len(self.terminals) == 0: - raise RuntimeError('No input variables found for layer %s.' % name) - elif len(self.terminals) == 1: - layer_input = self.terminals[0] - else: - layer_input = list(self.terminals) - # Perform the operation and get the output. - layer_output = op(self, layer_input, *args, **kwargs) - # Add to layer LUT. - self.layers[name] = layer_output - # This output is now the input for the next layer. - self.feed(layer_output) - # Return self for chained calls. - return self - - return layer_decorated - -class Network(object): - - def __init__(self, inputs, trainable=True): - # The input nodes for this network - self.inputs = inputs - # The current list of terminal nodes - self.terminals = [] - # Mapping from layer names to layers - self.layers = dict(inputs) - # If true, the resulting variables are set as trainable - self.trainable = trainable - - self.setup() - - def setup(self): - """Construct the network. """ - raise NotImplementedError('Must be implemented by the subclass.') - - def load(self, data_path, session, ignore_missing=False): - """Load network weights. - data_path: The path to the numpy-serialized network weights - session: The current TensorFlow session - ignore_missing: If true, serialized weights for missing layers are ignored. - """ - data_dict = np.load(data_path, encoding='latin1').item() #pylint: disable=no-member - - for op_name in data_dict: - with tf.variable_scope(op_name, reuse=True): - for param_name, data in iteritems(data_dict[op_name]): - try: - var = tf.get_variable(param_name) - session.run(var.assign(data)) - except ValueError: - if not ignore_missing: - raise - - def feed(self, *args): - """Set the input(s) for the next operation by replacing the terminal nodes. - The arguments can be either layer names or the actual layers. - """ - assert len(args) != 0 - self.terminals = [] - for fed_layer in args: - if isinstance(fed_layer, string_types): - try: - fed_layer = self.layers[fed_layer] - except KeyError: - raise KeyError('Unknown layer name fed: %s' % fed_layer) - self.terminals.append(fed_layer) - return self - - def get_output(self): - """Returns the current network output.""" - return self.terminals[-1] - - def get_unique_name(self, prefix): - """Returns an index-suffixed unique name for the given prefix. - This is used for auto-generating layer names based on the type-prefix. - """ - ident = sum(t.startswith(prefix) for t, _ in self.layers.items()) + 1 - return '%s_%d' % (prefix, ident) - - def make_var(self, name, shape): - """Creates a new TensorFlow variable.""" - return tf.get_variable(name, shape, trainable=self.trainable) - - def validate_padding(self, padding): - """Verifies that the padding is one of the supported ones.""" - assert padding in ('SAME', 'VALID') - - @layer - def conv(self, - inp, - k_h, - k_w, - c_o, - s_h, - s_w, - name, - relu=True, - padding='SAME', - group=1, - biased=True): - # Verify that the padding is acceptable - self.validate_padding(padding) - # Get the number of channels in the input - c_i = int(inp.get_shape()[-1]) - # Verify that the grouping parameter is valid - assert c_i % group == 0 - assert c_o % group == 0 - # Convolution for a given input and kernel - convolve = lambda i, k: tf.nn.conv2d(i, k, [1, s_h, s_w, 1], padding=padding) - with tf.variable_scope(name) as scope: - kernel = self.make_var('weights', shape=[k_h, k_w, c_i // group, c_o]) - # This is the common-case. Convolve the input without any further complications. - output = convolve(inp, kernel) - # Add the biases - if biased: - biases = self.make_var('biases', [c_o]) - output = tf.nn.bias_add(output, biases) - if relu: - # ReLU non-linearity - output = tf.nn.relu(output, name=scope.name) - return output - - @layer - def prelu(self, inp, name): - with tf.variable_scope(name): - i = int(inp.get_shape()[-1]) - alpha = self.make_var('alpha', shape=(i,)) - output = tf.nn.relu(inp) + tf.multiply(alpha, -tf.nn.relu(-inp)) - return output - - @layer - def max_pool(self, inp, k_h, k_w, s_h, s_w, name, padding='SAME'): - self.validate_padding(padding) - return tf.nn.max_pool(inp, - ksize=[1, k_h, k_w, 1], - strides=[1, s_h, s_w, 1], - padding=padding, - name=name) - - @layer - def fc(self, inp, num_out, name, relu=True): - with tf.variable_scope(name): - input_shape = inp.get_shape() - if input_shape.ndims == 4: - # The input is spatial. Vectorize it first. - dim = 1 - for d in input_shape[1:].as_list(): - dim *= int(d) - feed_in = tf.reshape(inp, [-1, dim]) - else: - feed_in, dim = (inp, input_shape[-1].value) - weights = self.make_var('weights', shape=[dim, num_out]) - biases = self.make_var('biases', [num_out]) - op = tf.nn.relu_layer if relu else tf.nn.xw_plus_b - fc = op(feed_in, weights, biases, name=name) - return fc - - - """ - Multi dimensional softmax, - refer to https://github.com/tensorflow/tensorflow/issues/210 - compute softmax along the dimension of target - the native softmax only supports batch_size x dimension - """ - @layer - def softmax(self, target, axis, name=None): - max_axis = tf.reduce_max(target, axis, keepdims=True) - target_exp = tf.exp(target-max_axis) - normalize = tf.reduce_sum(target_exp, axis, keepdims=True) - softmax = tf.div(target_exp, normalize, name) - return softmax - -class PNet(Network): - def setup(self): - (self.feed('data') #pylint: disable=no-value-for-parameter, no-member - .conv(3, 3, 10, 1, 1, padding='VALID', relu=False, name='conv1') - .prelu(name='PReLU1') - .max_pool(2, 2, 2, 2, name='pool1') - .conv(3, 3, 16, 1, 1, padding='VALID', relu=False, name='conv2') - .prelu(name='PReLU2') - .conv(3, 3, 32, 1, 1, padding='VALID', relu=False, name='conv3') - .prelu(name='PReLU3') - .conv(1, 1, 2, 1, 1, relu=False, name='conv4-1') - .softmax(3,name='prob1')) - - (self.feed('PReLU3') #pylint: disable=no-value-for-parameter - .conv(1, 1, 4, 1, 1, relu=False, name='conv4-2')) - -class RNet(Network): - def setup(self): - (self.feed('data') #pylint: disable=no-value-for-parameter, no-member - .conv(3, 3, 28, 1, 1, padding='VALID', relu=False, name='conv1') - .prelu(name='prelu1') - .max_pool(3, 3, 2, 2, name='pool1') - .conv(3, 3, 48, 1, 1, padding='VALID', relu=False, name='conv2') - .prelu(name='prelu2') - .max_pool(3, 3, 2, 2, padding='VALID', name='pool2') - .conv(2, 2, 64, 1, 1, padding='VALID', relu=False, name='conv3') - .prelu(name='prelu3') - .fc(128, relu=False, name='conv4') - .prelu(name='prelu4') - .fc(2, relu=False, name='conv5-1') - .softmax(1,name='prob1')) - - (self.feed('prelu4') #pylint: disable=no-value-for-parameter - .fc(4, relu=False, name='conv5-2')) - -class ONet(Network): - def setup(self): - (self.feed('data') #pylint: disable=no-value-for-parameter, no-member - .conv(3, 3, 32, 1, 1, padding='VALID', relu=False, name='conv1') - .prelu(name='prelu1') - .max_pool(3, 3, 2, 2, name='pool1') - .conv(3, 3, 64, 1, 1, padding='VALID', relu=False, name='conv2') - .prelu(name='prelu2') - .max_pool(3, 3, 2, 2, padding='VALID', name='pool2') - .conv(3, 3, 64, 1, 1, padding='VALID', relu=False, name='conv3') - .prelu(name='prelu3') - .max_pool(2, 2, 2, 2, name='pool3') - .conv(2, 2, 128, 1, 1, padding='VALID', relu=False, name='conv4') - .prelu(name='prelu4') - .fc(256, relu=False, name='conv5') - .prelu(name='prelu5') - .fc(2, relu=False, name='conv6-1') - .softmax(1, name='prob1')) - - (self.feed('prelu5') #pylint: disable=no-value-for-parameter - .fc(4, relu=False, name='conv6-2')) - - (self.feed('prelu5') #pylint: disable=no-value-for-parameter - .fc(10, relu=False, name='conv6-3')) - -def create_mtcnn(sess, model_path): - if not model_path: - model_path,_ = os.path.split(os.path.realpath(__file__)) - - with tf.variable_scope('pnet'): - data = tf.placeholder(tf.float32, (None,None,None,3), 'input') - pnet = PNet({'data':data}) - pnet.load(os.path.join(model_path, 'det1.npy'), sess) - with tf.variable_scope('rnet'): - data = tf.placeholder(tf.float32, (None,24,24,3), 'input') - rnet = RNet({'data':data}) - rnet.load(os.path.join(model_path, 'det2.npy'), sess) - with tf.variable_scope('onet'): - data = tf.placeholder(tf.float32, (None,48,48,3), 'input') - onet = ONet({'data':data}) - onet.load(os.path.join(model_path, 'det3.npy'), sess) - - pnet_fun = lambda img : sess.run(('pnet/conv4-2/BiasAdd:0', 'pnet/prob1:0'), feed_dict={'pnet/input:0':img}) - rnet_fun = lambda img : sess.run(('rnet/conv5-2/conv5-2:0', 'rnet/prob1:0'), feed_dict={'rnet/input:0':img}) - onet_fun = lambda img : sess.run(('onet/conv6-2/conv6-2:0', 'onet/conv6-3/conv6-3:0', 'onet/prob1:0'), feed_dict={'onet/input:0':img}) - return pnet_fun, rnet_fun, onet_fun - -def detect_face(img, minsize, pnet, rnet, onet, threshold, factor): - """Detects faces in an image, and returns bounding boxes and points for them. - img: input image - minsize: minimum faces' size - pnet, rnet, onet: caffemodel - threshold: threshold=[th1, th2, th3], th1-3 are three steps's threshold - factor: the factor used to create a scaling pyramid of face sizes to detect in the image. - """ - factor_count=0 - total_boxes=np.empty((0,9)) - points=np.empty(0) - h=img.shape[0] - w=img.shape[1] - minl=np.amin([h, w]) - m=12.0/minsize - minl=minl*m - # create scale pyramid - scales=[] - while minl>=12: - scales += [m*np.power(factor, factor_count)] - minl = minl*factor - factor_count += 1 - - # first stage - for scale in scales: - hs=int(np.ceil(h*scale)) - ws=int(np.ceil(w*scale)) - im_data = imresample(img, (hs, ws)) - im_data = (im_data-127.5)*0.0078125 - img_x = np.expand_dims(im_data, 0) - img_y = np.transpose(img_x, (0,2,1,3)) - out = pnet(img_y) - out0 = np.transpose(out[0], (0,2,1,3)) - out1 = np.transpose(out[1], (0,2,1,3)) - - boxes, _ = generateBoundingBox(out1[0,:,:,1].copy(), out0[0,:,:,:].copy(), scale, threshold[0]) - - # inter-scale nms - pick = nms(boxes.copy(), 0.5, 'Union') - if boxes.size>0 and pick.size>0: - boxes = boxes[pick,:] - total_boxes = np.append(total_boxes, boxes, axis=0) - - numbox = total_boxes.shape[0] - if numbox>0: - pick = nms(total_boxes.copy(), 0.7, 'Union') - total_boxes = total_boxes[pick,:] - regw = total_boxes[:,2]-total_boxes[:,0] - regh = total_boxes[:,3]-total_boxes[:,1] - qq1 = total_boxes[:,0]+total_boxes[:,5]*regw - qq2 = total_boxes[:,1]+total_boxes[:,6]*regh - qq3 = total_boxes[:,2]+total_boxes[:,7]*regw - qq4 = total_boxes[:,3]+total_boxes[:,8]*regh - total_boxes = np.transpose(np.vstack([qq1, qq2, qq3, qq4, total_boxes[:,4]])) - total_boxes = rerec(total_boxes.copy()) - total_boxes[:,0:4] = np.fix(total_boxes[:,0:4]).astype(np.int32) - dy, edy, dx, edx, y, ey, x, ex, tmpw, tmph = pad(total_boxes.copy(), w, h) - - numbox = total_boxes.shape[0] - if numbox>0: - # second stage - tempimg = np.zeros((24,24,3,numbox)) - for k in range(0,numbox): - tmp = np.zeros((int(tmph[k]),int(tmpw[k]),3)) - tmp[dy[k]-1:edy[k],dx[k]-1:edx[k],:] = img[y[k]-1:ey[k],x[k]-1:ex[k],:] - if tmp.shape[0]>0 and tmp.shape[1]>0 or tmp.shape[0]==0 and tmp.shape[1]==0: - tempimg[:,:,:,k] = imresample(tmp, (24, 24)) - else: - return np.empty() - tempimg = (tempimg-127.5)*0.0078125 - tempimg1 = np.transpose(tempimg, (3,1,0,2)) - out = rnet(tempimg1) - out0 = np.transpose(out[0]) - out1 = np.transpose(out[1]) - score = out1[1,:] - ipass = np.where(score>threshold[1]) - total_boxes = np.hstack([total_boxes[ipass[0],0:4].copy(), np.expand_dims(score[ipass].copy(),1)]) - mv = out0[:,ipass[0]] - if total_boxes.shape[0]>0: - pick = nms(total_boxes, 0.7, 'Union') - total_boxes = total_boxes[pick,:] - total_boxes = bbreg(total_boxes.copy(), np.transpose(mv[:,pick])) - total_boxes = rerec(total_boxes.copy()) - - numbox = total_boxes.shape[0] - if numbox>0: - # third stage - total_boxes = np.fix(total_boxes).astype(np.int32) - dy, edy, dx, edx, y, ey, x, ex, tmpw, tmph = pad(total_boxes.copy(), w, h) - tempimg = np.zeros((48,48,3,numbox)) - for k in range(0,numbox): - tmp = np.zeros((int(tmph[k]),int(tmpw[k]),3)) - tmp[dy[k]-1:edy[k],dx[k]-1:edx[k],:] = img[y[k]-1:ey[k],x[k]-1:ex[k],:] - if tmp.shape[0]>0 and tmp.shape[1]>0 or tmp.shape[0]==0 and tmp.shape[1]==0: - tempimg[:,:,:,k] = imresample(tmp, (48, 48)) - else: - return np.empty() - tempimg = (tempimg-127.5)*0.0078125 - tempimg1 = np.transpose(tempimg, (3,1,0,2)) - out = onet(tempimg1) - out0 = np.transpose(out[0]) - out1 = np.transpose(out[1]) - out2 = np.transpose(out[2]) - score = out2[1,:] - points = out1 - ipass = np.where(score>threshold[2]) - points = points[:,ipass[0]] - total_boxes = np.hstack([total_boxes[ipass[0],0:4].copy(), np.expand_dims(score[ipass].copy(),1)]) - mv = out0[:,ipass[0]] - - w = total_boxes[:,2]-total_boxes[:,0]+1 - h = total_boxes[:,3]-total_boxes[:,1]+1 - points[0:5,:] = np.tile(w,(5, 1))*points[0:5,:] + np.tile(total_boxes[:,0],(5, 1))-1 - points[5:10,:] = np.tile(h,(5, 1))*points[5:10,:] + np.tile(total_boxes[:,1],(5, 1))-1 - if total_boxes.shape[0]>0: - total_boxes = bbreg(total_boxes.copy(), np.transpose(mv)) - pick = nms(total_boxes.copy(), 0.7, 'Min') - total_boxes = total_boxes[pick,:] - points = points[:,pick] - - return total_boxes, points - - -def bulk_detect_face(images, detection_window_size_ratio, pnet, rnet, onet, threshold, factor): - """Detects faces in a list of images - images: list containing input images - detection_window_size_ratio: ratio of minimum face size to smallest image dimension - pnet, rnet, onet: caffemodel - threshold: threshold=[th1 th2 th3], th1-3 are three steps's threshold [0-1] - factor: the factor used to create a scaling pyramid of face sizes to detect in the image. - """ - all_scales = [None] * len(images) - images_with_boxes = [None] * len(images) - - for i in range(len(images)): - images_with_boxes[i] = {'total_boxes': np.empty((0, 9))} - - # create scale pyramid - for index, img in enumerate(images): - all_scales[index] = [] - h = img.shape[0] - w = img.shape[1] - minsize = int(detection_window_size_ratio * np.minimum(w, h)) - factor_count = 0 - minl = np.amin([h, w]) - if minsize <= 12: - minsize = 12 - - m = 12.0 / minsize - minl = minl * m - while minl >= 12: - all_scales[index].append(m * np.power(factor, factor_count)) - minl = minl * factor - factor_count += 1 - - # # # # # # # # # # # # # - # first stage - fast proposal network (pnet) to obtain face candidates - # # # # # # # # # # # # # - - images_obj_per_resolution = {} - - # TODO: use some type of rounding to number module 8 to increase probability that pyramid images will have the same resolution across input images - - for index, scales in enumerate(all_scales): - h = images[index].shape[0] - w = images[index].shape[1] - - for scale in scales: - hs = int(np.ceil(h * scale)) - ws = int(np.ceil(w * scale)) - - if (ws, hs) not in images_obj_per_resolution: - images_obj_per_resolution[(ws, hs)] = [] - - im_data = imresample(images[index], (hs, ws)) - im_data = (im_data - 127.5) * 0.0078125 - img_y = np.transpose(im_data, (1, 0, 2)) # caffe uses different dimensions ordering - images_obj_per_resolution[(ws, hs)].append({'scale': scale, 'image': img_y, 'index': index}) - - for resolution in images_obj_per_resolution: - images_per_resolution = [i['image'] for i in images_obj_per_resolution[resolution]] - outs = pnet(images_per_resolution) - - for index in range(len(outs[0])): - scale = images_obj_per_resolution[resolution][index]['scale'] - image_index = images_obj_per_resolution[resolution][index]['index'] - out0 = np.transpose(outs[0][index], (1, 0, 2)) - out1 = np.transpose(outs[1][index], (1, 0, 2)) - - boxes, _ = generateBoundingBox(out1[:, :, 1].copy(), out0[:, :, :].copy(), scale, threshold[0]) - - # inter-scale nms - pick = nms(boxes.copy(), 0.5, 'Union') - if boxes.size > 0 and pick.size > 0: - boxes = boxes[pick, :] - images_with_boxes[image_index]['total_boxes'] = np.append(images_with_boxes[image_index]['total_boxes'], - boxes, - axis=0) - - for index, image_obj in enumerate(images_with_boxes): - numbox = image_obj['total_boxes'].shape[0] - if numbox > 0: - h = images[index].shape[0] - w = images[index].shape[1] - pick = nms(image_obj['total_boxes'].copy(), 0.7, 'Union') - image_obj['total_boxes'] = image_obj['total_boxes'][pick, :] - regw = image_obj['total_boxes'][:, 2] - image_obj['total_boxes'][:, 0] - regh = image_obj['total_boxes'][:, 3] - image_obj['total_boxes'][:, 1] - qq1 = image_obj['total_boxes'][:, 0] + image_obj['total_boxes'][:, 5] * regw - qq2 = image_obj['total_boxes'][:, 1] + image_obj['total_boxes'][:, 6] * regh - qq3 = image_obj['total_boxes'][:, 2] + image_obj['total_boxes'][:, 7] * regw - qq4 = image_obj['total_boxes'][:, 3] + image_obj['total_boxes'][:, 8] * regh - image_obj['total_boxes'] = np.transpose(np.vstack([qq1, qq2, qq3, qq4, image_obj['total_boxes'][:, 4]])) - image_obj['total_boxes'] = rerec(image_obj['total_boxes'].copy()) - image_obj['total_boxes'][:, 0:4] = np.fix(image_obj['total_boxes'][:, 0:4]).astype(np.int32) - dy, edy, dx, edx, y, ey, x, ex, tmpw, tmph = pad(image_obj['total_boxes'].copy(), w, h) - - numbox = image_obj['total_boxes'].shape[0] - tempimg = np.zeros((24, 24, 3, numbox)) - - if numbox > 0: - for k in range(0, numbox): - tmp = np.zeros((int(tmph[k]), int(tmpw[k]), 3)) - tmp[dy[k] - 1:edy[k], dx[k] - 1:edx[k], :] = images[index][y[k] - 1:ey[k], x[k] - 1:ex[k], :] - if tmp.shape[0] > 0 and tmp.shape[1] > 0 or tmp.shape[0] == 0 and tmp.shape[1] == 0: - tempimg[:, :, :, k] = imresample(tmp, (24, 24)) - else: - return np.empty() - - tempimg = (tempimg - 127.5) * 0.0078125 - image_obj['rnet_input'] = np.transpose(tempimg, (3, 1, 0, 2)) - - # # # # # # # # # # # # # - # second stage - refinement of face candidates with rnet - # # # # # # # # # # # # # - - bulk_rnet_input = np.empty((0, 24, 24, 3)) - for index, image_obj in enumerate(images_with_boxes): - if 'rnet_input' in image_obj: - bulk_rnet_input = np.append(bulk_rnet_input, image_obj['rnet_input'], axis=0) - - out = rnet(bulk_rnet_input) - out0 = np.transpose(out[0]) - out1 = np.transpose(out[1]) - score = out1[1, :] - - i = 0 - for index, image_obj in enumerate(images_with_boxes): - if 'rnet_input' not in image_obj: - continue - - rnet_input_count = image_obj['rnet_input'].shape[0] - score_per_image = score[i:i + rnet_input_count] - out0_per_image = out0[:, i:i + rnet_input_count] - - ipass = np.where(score_per_image > threshold[1]) - image_obj['total_boxes'] = np.hstack([image_obj['total_boxes'][ipass[0], 0:4].copy(), - np.expand_dims(score_per_image[ipass].copy(), 1)]) - - mv = out0_per_image[:, ipass[0]] - - if image_obj['total_boxes'].shape[0] > 0: - h = images[index].shape[0] - w = images[index].shape[1] - pick = nms(image_obj['total_boxes'], 0.7, 'Union') - image_obj['total_boxes'] = image_obj['total_boxes'][pick, :] - image_obj['total_boxes'] = bbreg(image_obj['total_boxes'].copy(), np.transpose(mv[:, pick])) - image_obj['total_boxes'] = rerec(image_obj['total_boxes'].copy()) - - numbox = image_obj['total_boxes'].shape[0] - - if numbox > 0: - tempimg = np.zeros((48, 48, 3, numbox)) - image_obj['total_boxes'] = np.fix(image_obj['total_boxes']).astype(np.int32) - dy, edy, dx, edx, y, ey, x, ex, tmpw, tmph = pad(image_obj['total_boxes'].copy(), w, h) - - for k in range(0, numbox): - tmp = np.zeros((int(tmph[k]), int(tmpw[k]), 3)) - tmp[dy[k] - 1:edy[k], dx[k] - 1:edx[k], :] = images[index][y[k] - 1:ey[k], x[k] - 1:ex[k], :] - if tmp.shape[0] > 0 and tmp.shape[1] > 0 or tmp.shape[0] == 0 and tmp.shape[1] == 0: - tempimg[:, :, :, k] = imresample(tmp, (48, 48)) - else: - return np.empty() - tempimg = (tempimg - 127.5) * 0.0078125 - image_obj['onet_input'] = np.transpose(tempimg, (3, 1, 0, 2)) - - i += rnet_input_count - - # # # # # # # # # # # # # - # third stage - further refinement and facial landmarks positions with onet - # # # # # # # # # # # # # - - bulk_onet_input = np.empty((0, 48, 48, 3)) - for index, image_obj in enumerate(images_with_boxes): - if 'onet_input' in image_obj: - bulk_onet_input = np.append(bulk_onet_input, image_obj['onet_input'], axis=0) - - out = onet(bulk_onet_input) - - out0 = np.transpose(out[0]) - out1 = np.transpose(out[1]) - out2 = np.transpose(out[2]) - score = out2[1, :] - points = out1 - - i = 0 - ret = [] - for index, image_obj in enumerate(images_with_boxes): - if 'onet_input' not in image_obj: - ret.append(None) - continue - - onet_input_count = image_obj['onet_input'].shape[0] - - out0_per_image = out0[:, i:i + onet_input_count] - score_per_image = score[i:i + onet_input_count] - points_per_image = points[:, i:i + onet_input_count] - - ipass = np.where(score_per_image > threshold[2]) - points_per_image = points_per_image[:, ipass[0]] - - image_obj['total_boxes'] = np.hstack([image_obj['total_boxes'][ipass[0], 0:4].copy(), - np.expand_dims(score_per_image[ipass].copy(), 1)]) - mv = out0_per_image[:, ipass[0]] - - w = image_obj['total_boxes'][:, 2] - image_obj['total_boxes'][:, 0] + 1 - h = image_obj['total_boxes'][:, 3] - image_obj['total_boxes'][:, 1] + 1 - points_per_image[0:5, :] = np.tile(w, (5, 1)) * points_per_image[0:5, :] + np.tile( - image_obj['total_boxes'][:, 0], (5, 1)) - 1 - points_per_image[5:10, :] = np.tile(h, (5, 1)) * points_per_image[5:10, :] + np.tile( - image_obj['total_boxes'][:, 1], (5, 1)) - 1 - - if image_obj['total_boxes'].shape[0] > 0: - image_obj['total_boxes'] = bbreg(image_obj['total_boxes'].copy(), np.transpose(mv)) - pick = nms(image_obj['total_boxes'].copy(), 0.7, 'Min') - image_obj['total_boxes'] = image_obj['total_boxes'][pick, :] - points_per_image = points_per_image[:, pick] - - ret.append((image_obj['total_boxes'], points_per_image)) - else: - ret.append(None) - - i += onet_input_count - - return ret - - -# function [boundingbox] = bbreg(boundingbox,reg) -def bbreg(boundingbox,reg): - """Calibrate bounding boxes""" - if reg.shape[1]==1: - reg = np.reshape(reg, (reg.shape[2], reg.shape[3])) - - w = boundingbox[:,2]-boundingbox[:,0]+1 - h = boundingbox[:,3]-boundingbox[:,1]+1 - b1 = boundingbox[:,0]+reg[:,0]*w - b2 = boundingbox[:,1]+reg[:,1]*h - b3 = boundingbox[:,2]+reg[:,2]*w - b4 = boundingbox[:,3]+reg[:,3]*h - boundingbox[:,0:4] = np.transpose(np.vstack([b1, b2, b3, b4 ])) - return boundingbox - -def generateBoundingBox(imap, reg, scale, t): - """Use heatmap to generate bounding boxes""" - stride=2 - cellsize=12 - - imap = np.transpose(imap) - dx1 = np.transpose(reg[:,:,0]) - dy1 = np.transpose(reg[:,:,1]) - dx2 = np.transpose(reg[:,:,2]) - dy2 = np.transpose(reg[:,:,3]) - y, x = np.where(imap >= t) - if y.shape[0]==1: - dx1 = np.flipud(dx1) - dy1 = np.flipud(dy1) - dx2 = np.flipud(dx2) - dy2 = np.flipud(dy2) - score = imap[(y,x)] - reg = np.transpose(np.vstack([ dx1[(y,x)], dy1[(y,x)], dx2[(y,x)], dy2[(y,x)] ])) - if reg.size==0: - reg = np.empty((0,3)) - bb = np.transpose(np.vstack([y,x])) - q1 = np.fix((stride*bb+1)/scale) - q2 = np.fix((stride*bb+cellsize-1+1)/scale) - boundingbox = np.hstack([q1, q2, np.expand_dims(score,1), reg]) - return boundingbox, reg - -# function pick = nms(boxes,threshold,type) -def nms(boxes, threshold, method): - if boxes.size==0: - return np.empty((0,3)) - x1 = boxes[:,0] - y1 = boxes[:,1] - x2 = boxes[:,2] - y2 = boxes[:,3] - s = boxes[:,4] - area = (x2-x1+1) * (y2-y1+1) - I = np.argsort(s) - pick = np.zeros_like(s, dtype=np.int16) - counter = 0 - while I.size>0: - i = I[-1] - pick[counter] = i - counter += 1 - idx = I[0:-1] - xx1 = np.maximum(x1[i], x1[idx]) - yy1 = np.maximum(y1[i], y1[idx]) - xx2 = np.minimum(x2[i], x2[idx]) - yy2 = np.minimum(y2[i], y2[idx]) - w = np.maximum(0.0, xx2-xx1+1) - h = np.maximum(0.0, yy2-yy1+1) - inter = w * h - if method is 'Min': - o = inter / np.minimum(area[i], area[idx]) - else: - o = inter / (area[i] + area[idx] - inter) - I = I[np.where(o<=threshold)] - pick = pick[0:counter] - return pick - -# function [dy edy dx edx y ey x ex tmpw tmph] = pad(total_boxes,w,h) -def pad(total_boxes, w, h): - """Compute the padding coordinates (pad the bounding boxes to square)""" - tmpw = (total_boxes[:,2]-total_boxes[:,0]+1).astype(np.int32) - tmph = (total_boxes[:,3]-total_boxes[:,1]+1).astype(np.int32) - numbox = total_boxes.shape[0] - - dx = np.ones((numbox), dtype=np.int32) - dy = np.ones((numbox), dtype=np.int32) - edx = tmpw.copy().astype(np.int32) - edy = tmph.copy().astype(np.int32) - - x = total_boxes[:,0].copy().astype(np.int32) - y = total_boxes[:,1].copy().astype(np.int32) - ex = total_boxes[:,2].copy().astype(np.int32) - ey = total_boxes[:,3].copy().astype(np.int32) - - tmp = np.where(ex>w) - edx.flat[tmp] = np.expand_dims(-ex[tmp]+w+tmpw[tmp],1) - ex[tmp] = w - - tmp = np.where(ey>h) - edy.flat[tmp] = np.expand_dims(-ey[tmp]+h+tmph[tmp],1) - ey[tmp] = h - - tmp = np.where(x<1) - dx.flat[tmp] = np.expand_dims(2-x[tmp],1) - x[tmp] = 1 - - tmp = np.where(y<1) - dy.flat[tmp] = np.expand_dims(2-y[tmp],1) - y[tmp] = 1 - - return dy, edy, dx, edx, y, ey, x, ex, tmpw, tmph - -# function [bboxA] = rerec(bboxA) -def rerec(bboxA): - """Convert bboxA to square.""" - h = bboxA[:,3]-bboxA[:,1] - w = bboxA[:,2]-bboxA[:,0] - l = np.maximum(w, h) - bboxA[:,0] = bboxA[:,0]+w*0.5-l*0.5 - bboxA[:,1] = bboxA[:,1]+h*0.5-l*0.5 - bboxA[:,2:4] = bboxA[:,0:2] + np.transpose(np.tile(l,(2,1))) - return bboxA - -def imresample(img, sz): - im_data = cv2.resize(img, (sz[1], sz[0]), interpolation=cv2.INTER_AREA) #@UndefinedVariable - return im_data - - # This method is kept for debugging purpose -# h=img.shape[0] -# w=img.shape[1] -# hs, ws = sz -# dx = float(w) / ws -# dy = float(h) / hs -# im_data = np.zeros((hs,ws,3)) -# for a1 in range(0,hs): -# for a2 in range(0,ws): -# for a3 in range(0,3): -# im_data[a1,a2,a3] = img[int(floor(a1*dy)),int(floor(a2*dx)),a3] -# return im_data - diff --git a/src/compare.py b/src/compare.py deleted file mode 100644 index bc53cc421..000000000 --- a/src/compare.py +++ /dev/null @@ -1,130 +0,0 @@ -"""Performs face alignment and calculates L2 distance between the embeddings of images.""" - -# MIT License -# -# Copyright (c) 2016 David Sandberg -# -# Permission is hereby granted, free of charge, to any person obtaining a copy -# of this software and associated documentation files (the "Software"), to deal -# in the Software without restriction, including without limitation the rights -# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell -# copies of the Software, and to permit persons to whom the Software is -# furnished to do so, subject to the following conditions: -# -# The above copyright notice and this permission notice shall be included in all -# copies or substantial portions of the Software. -# -# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR -# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, -# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE -# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER -# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, -# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE -# SOFTWARE. - -from __future__ import absolute_import -from __future__ import division -from __future__ import print_function - -from scipy import misc -import tensorflow as tf -import numpy as np -import sys -import os -import copy -import argparse -import facenet -import align.detect_face - -def main(args): - - images = load_and_align_data(args.image_files, args.image_size, args.margin, args.gpu_memory_fraction) - with tf.Graph().as_default(): - - with tf.Session() as sess: - - # Load the model - facenet.load_model(args.model) - - # Get input and output tensors - images_placeholder = tf.get_default_graph().get_tensor_by_name("input:0") - embeddings = tf.get_default_graph().get_tensor_by_name("embeddings:0") - phase_train_placeholder = tf.get_default_graph().get_tensor_by_name("phase_train:0") - - # Run forward pass to calculate embeddings - feed_dict = { images_placeholder: images, phase_train_placeholder:False } - emb = sess.run(embeddings, feed_dict=feed_dict) - - nrof_images = len(args.image_files) - - print('Images:') - for i in range(nrof_images): - print('%1d: %s' % (i, args.image_files[i])) - print('') - - # Print distance matrix - print('Distance matrix') - print(' ', end='') - for i in range(nrof_images): - print(' %1d ' % i, end='') - print('') - for i in range(nrof_images): - print('%1d ' % i, end='') - for j in range(nrof_images): - dist = np.sqrt(np.sum(np.square(np.subtract(emb[i,:], emb[j,:])))) - print(' %1.4f ' % dist, end='') - print('') - - -def load_and_align_data(image_paths, image_size, margin, gpu_memory_fraction): - - minsize = 20 # minimum size of face - threshold = [ 0.6, 0.7, 0.7 ] # three steps's threshold - factor = 0.709 # scale factor - - print('Creating networks and loading parameters') - with tf.Graph().as_default(): - gpu_options = tf.GPUOptions(per_process_gpu_memory_fraction=gpu_memory_fraction) - sess = tf.Session(config=tf.ConfigProto(gpu_options=gpu_options, log_device_placement=False)) - with sess.as_default(): - pnet, rnet, onet = align.detect_face.create_mtcnn(sess, None) - - tmp_image_paths=copy.copy(image_paths) - img_list = [] - for image in tmp_image_paths: - img = misc.imread(os.path.expanduser(image), mode='RGB') - img_size = np.asarray(img.shape)[0:2] - bounding_boxes, _ = align.detect_face.detect_face(img, minsize, pnet, rnet, onet, threshold, factor) - if len(bounding_boxes) < 1: - image_paths.remove(image) - print("can't detect face, remove ", image) - continue - det = np.squeeze(bounding_boxes[0,0:4]) - bb = np.zeros(4, dtype=np.int32) - bb[0] = np.maximum(det[0]-margin/2, 0) - bb[1] = np.maximum(det[1]-margin/2, 0) - bb[2] = np.minimum(det[2]+margin/2, img_size[1]) - bb[3] = np.minimum(det[3]+margin/2, img_size[0]) - cropped = img[bb[1]:bb[3],bb[0]:bb[2],:] - aligned = misc.imresize(cropped, (image_size, image_size), interp='bilinear') - prewhitened = facenet.prewhiten(aligned) - img_list.append(prewhitened) - images = np.stack(img_list) - return images - -def parse_arguments(argv): - parser = argparse.ArgumentParser() - - parser.add_argument('model', type=str, - help='Could be either a directory containing the meta_file and ckpt_file or a model protobuf (.pb) file') - parser.add_argument('image_files', type=str, nargs='+', help='Images to compare') - parser.add_argument('--image_size', type=int, - help='Image size (height, width) in pixels.', default=160) - parser.add_argument('--margin', type=int, - help='Margin for the crop around the bounding box (height, width) in pixels.', default=44) - parser.add_argument('--gpu_memory_fraction', type=float, - help='Upper bound on the amount of GPU memory that will be used by the process.', default=1.0) - return parser.parse_args(argv) - -if __name__ == '__main__': - main(parse_arguments(sys.argv[1:])) diff --git a/src/lfw.py b/src/lfw.py deleted file mode 100644 index 91944332d..000000000 --- a/src/lfw.py +++ /dev/null @@ -1,86 +0,0 @@ -"""Helper for evaluation on the Labeled Faces in the Wild dataset -""" - -# MIT License -# -# Copyright (c) 2016 David Sandberg -# -# Permission is hereby granted, free of charge, to any person obtaining a copy -# of this software and associated documentation files (the "Software"), to deal -# in the Software without restriction, including without limitation the rights -# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell -# copies of the Software, and to permit persons to whom the Software is -# furnished to do so, subject to the following conditions: -# -# The above copyright notice and this permission notice shall be included in all -# copies or substantial portions of the Software. -# -# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR -# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, -# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE -# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER -# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, -# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE -# SOFTWARE. - -from __future__ import absolute_import -from __future__ import division -from __future__ import print_function - -import os -import numpy as np -import facenet - -def evaluate(embeddings, actual_issame, nrof_folds=10, distance_metric=0, subtract_mean=False): - # Calculate evaluation metrics - thresholds = np.arange(0, 4, 0.01) - embeddings1 = embeddings[0::2] - embeddings2 = embeddings[1::2] - tpr, fpr, accuracy = facenet.calculate_roc(thresholds, embeddings1, embeddings2, - np.asarray(actual_issame), nrof_folds=nrof_folds, distance_metric=distance_metric, subtract_mean=subtract_mean) - thresholds = np.arange(0, 4, 0.001) - val, val_std, far = facenet.calculate_val(thresholds, embeddings1, embeddings2, - np.asarray(actual_issame), 1e-3, nrof_folds=nrof_folds, distance_metric=distance_metric, subtract_mean=subtract_mean) - return tpr, fpr, accuracy, val, val_std, far - -def get_paths(lfw_dir, pairs): - nrof_skipped_pairs = 0 - path_list = [] - issame_list = [] - for pair in pairs: - if len(pair) == 3: - path0 = add_extension(os.path.join(lfw_dir, pair[0], pair[0] + '_' + '%04d' % int(pair[1]))) - path1 = add_extension(os.path.join(lfw_dir, pair[0], pair[0] + '_' + '%04d' % int(pair[2]))) - issame = True - elif len(pair) == 4: - path0 = add_extension(os.path.join(lfw_dir, pair[0], pair[0] + '_' + '%04d' % int(pair[1]))) - path1 = add_extension(os.path.join(lfw_dir, pair[2], pair[2] + '_' + '%04d' % int(pair[3]))) - issame = False - if os.path.exists(path0) and os.path.exists(path1): # Only add the pair if both paths exist - path_list += (path0,path1) - issame_list.append(issame) - else: - nrof_skipped_pairs += 1 - if nrof_skipped_pairs>0: - print('Skipped %d image pairs' % nrof_skipped_pairs) - - return path_list, issame_list - -def add_extension(path): - if os.path.exists(path+'.jpg'): - return path+'.jpg' - elif os.path.exists(path+'.png'): - return path+'.png' - else: - raise RuntimeError('No file "%s" with extension png or jpg.' % path) - -def read_pairs(pairs_filename): - pairs = [] - with open(pairs_filename, 'r') as f: - for line in f.readlines()[1:]: - pair = line.strip().split() - pairs.append(pair) - return np.array(pairs) - - - diff --git a/src/models/__init__.py b/src/models/__init__.py deleted file mode 100644 index efa625274..000000000 --- a/src/models/__init__.py +++ /dev/null @@ -1,2 +0,0 @@ -# flake8: noqa - diff --git a/src/train_softmax.py b/src/train_softmax.py deleted file mode 100644 index 6b0b28b58..000000000 --- a/src/train_softmax.py +++ /dev/null @@ -1,580 +0,0 @@ -"""Training a face recognizer with TensorFlow using softmax cross entropy loss -""" -# MIT License -# -# Copyright (c) 2016 David Sandberg -# -# Permission is hereby granted, free of charge, to any person obtaining a copy -# of this software and associated documentation files (the "Software"), to deal -# in the Software without restriction, including without limitation the rights -# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell -# copies of the Software, and to permit persons to whom the Software is -# furnished to do so, subject to the following conditions: -# -# The above copyright notice and this permission notice shall be included in all -# copies or substantial portions of the Software. -# -# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR -# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, -# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE -# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER -# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, -# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE -# SOFTWARE. - -from __future__ import absolute_import -from __future__ import division -from __future__ import print_function - -from datetime import datetime -import os.path -import time -import sys -import random -import tensorflow as tf -import numpy as np -import importlib -import argparse -import facenet -import lfw -import h5py -import math -import tensorflow.contrib.slim as slim -from tensorflow.python.ops import data_flow_ops -from tensorflow.python.framework import ops -from tensorflow.python.ops import array_ops - -def main(args): - - network = importlib.import_module(args.model_def) - image_size = (args.image_size, args.image_size) - - subdir = datetime.strftime(datetime.now(), '%Y%m%d-%H%M%S') - log_dir = os.path.join(os.path.expanduser(args.logs_base_dir), subdir) - if not os.path.isdir(log_dir): # Create the log directory if it doesn't exist - os.makedirs(log_dir) - model_dir = os.path.join(os.path.expanduser(args.models_base_dir), subdir) - if not os.path.isdir(model_dir): # Create the model directory if it doesn't exist - os.makedirs(model_dir) - - stat_file_name = os.path.join(log_dir, 'stat.h5') - - # Write arguments to a text file - facenet.write_arguments_to_file(args, os.path.join(log_dir, 'arguments.txt')) - - # Store some git revision info in a text file in the log directory - src_path,_ = os.path.split(os.path.realpath(__file__)) - facenet.store_revision_info(src_path, log_dir, ' '.join(sys.argv)) - - np.random.seed(seed=args.seed) - random.seed(args.seed) - dataset = facenet.get_dataset(args.data_dir) - if args.filter_filename: - dataset = filter_dataset(dataset, os.path.expanduser(args.filter_filename), - args.filter_percentile, args.filter_min_nrof_images_per_class) - - if args.validation_set_split_ratio>0.0: - train_set, val_set = facenet.split_dataset(dataset, args.validation_set_split_ratio, args.min_nrof_val_images_per_class, 'SPLIT_IMAGES') - else: - train_set, val_set = dataset, [] - - nrof_classes = len(train_set) - - print('Model directory: %s' % model_dir) - print('Log directory: %s' % log_dir) - pretrained_model = None - if args.pretrained_model: - pretrained_model = os.path.expanduser(args.pretrained_model) - print('Pre-trained model: %s' % pretrained_model) - - if args.lfw_dir: - print('LFW directory: %s' % args.lfw_dir) - # Read the file containing the pairs used for testing - pairs = lfw.read_pairs(os.path.expanduser(args.lfw_pairs)) - # Get the paths for the corresponding images - lfw_paths, actual_issame = lfw.get_paths(os.path.expanduser(args.lfw_dir), pairs) - - with tf.Graph().as_default(): - tf.set_random_seed(args.seed) - global_step = tf.Variable(0, trainable=False) - - # Get a list of image paths and their labels - image_list, label_list = facenet.get_image_paths_and_labels(train_set) - assert len(image_list)>0, 'The training set should not be empty' - - val_image_list, val_label_list = facenet.get_image_paths_and_labels(val_set) - - # Create a queue that produces indices into the image_list and label_list - labels = ops.convert_to_tensor(label_list, dtype=tf.int32) - range_size = array_ops.shape(labels)[0] - index_queue = tf.train.range_input_producer(range_size, num_epochs=None, - shuffle=True, seed=None, capacity=32) - - index_dequeue_op = index_queue.dequeue_many(args.batch_size*args.epoch_size, 'index_dequeue') - - learning_rate_placeholder = tf.placeholder(tf.float32, name='learning_rate') - batch_size_placeholder = tf.placeholder(tf.int32, name='batch_size') - phase_train_placeholder = tf.placeholder(tf.bool, name='phase_train') - image_paths_placeholder = tf.placeholder(tf.string, shape=(None,1), name='image_paths') - labels_placeholder = tf.placeholder(tf.int32, shape=(None,1), name='labels') - control_placeholder = tf.placeholder(tf.int32, shape=(None,1), name='control') - - nrof_preprocess_threads = 4 - input_queue = data_flow_ops.FIFOQueue(capacity=2000000, - dtypes=[tf.string, tf.int32, tf.int32], - shapes=[(1,), (1,), (1,)], - shared_name=None, name=None) - enqueue_op = input_queue.enqueue_many([image_paths_placeholder, labels_placeholder, control_placeholder], name='enqueue_op') - image_batch, label_batch = facenet.create_input_pipeline(input_queue, image_size, nrof_preprocess_threads, batch_size_placeholder) - - image_batch = tf.identity(image_batch, 'image_batch') - image_batch = tf.identity(image_batch, 'input') - label_batch = tf.identity(label_batch, 'label_batch') - - print('Number of classes in training set: %d' % nrof_classes) - print('Number of examples in training set: %d' % len(image_list)) - - print('Number of classes in validation set: %d' % len(val_set)) - print('Number of examples in validation set: %d' % len(val_image_list)) - - print('Building training graph') - - # Build the inference graph - prelogits, _ = network.inference(image_batch, args.keep_probability, - phase_train=phase_train_placeholder, bottleneck_layer_size=args.embedding_size, - weight_decay=args.weight_decay) - logits = slim.fully_connected(prelogits, len(train_set), activation_fn=None, - weights_initializer=slim.initializers.xavier_initializer(), - weights_regularizer=slim.l2_regularizer(args.weight_decay), - scope='Logits', reuse=False) - - embeddings = tf.nn.l2_normalize(prelogits, 1, 1e-10, name='embeddings') - - # Norm for the prelogits - eps = 1e-4 - prelogits_norm = tf.reduce_mean(tf.norm(tf.abs(prelogits)+eps, ord=args.prelogits_norm_p, axis=1)) - tf.add_to_collection(tf.GraphKeys.REGULARIZATION_LOSSES, prelogits_norm * args.prelogits_norm_loss_factor) - - # Add center loss - prelogits_center_loss, _ = facenet.center_loss(prelogits, label_batch, args.center_loss_alfa, nrof_classes) - tf.add_to_collection(tf.GraphKeys.REGULARIZATION_LOSSES, prelogits_center_loss * args.center_loss_factor) - - learning_rate = tf.train.exponential_decay(learning_rate_placeholder, global_step, - args.learning_rate_decay_epochs*args.epoch_size, args.learning_rate_decay_factor, staircase=True) - tf.summary.scalar('learning_rate', learning_rate) - - # Calculate the average cross entropy loss across the batch - cross_entropy = tf.nn.sparse_softmax_cross_entropy_with_logits( - labels=label_batch, logits=logits, name='cross_entropy_per_example') - cross_entropy_mean = tf.reduce_mean(cross_entropy, name='cross_entropy') - tf.add_to_collection('losses', cross_entropy_mean) - - correct_prediction = tf.cast(tf.equal(tf.argmax(logits, 1), tf.cast(label_batch, tf.int64)), tf.float32) - accuracy = tf.reduce_mean(correct_prediction) - - # Calculate the total losses - regularization_losses = tf.get_collection(tf.GraphKeys.REGULARIZATION_LOSSES) - total_loss = tf.add_n([cross_entropy_mean] + regularization_losses, name='total_loss') - - # Build a Graph that trains the model with one batch of examples and updates the model parameters - train_op = facenet.train(total_loss, global_step, args.optimizer, - learning_rate, args.moving_average_decay, tf.global_variables(), args.log_histograms) - - # Create a saver - saver = tf.train.Saver(tf.trainable_variables(), max_to_keep=3) - - # Build the summary operation based on the TF collection of Summaries. - summary_op = tf.summary.merge_all() - - # Start running operations on the Graph. - gpu_options = tf.GPUOptions(per_process_gpu_memory_fraction=args.gpu_memory_fraction) - sess = tf.Session(config=tf.ConfigProto(gpu_options=gpu_options, log_device_placement=False)) - sess.run(tf.global_variables_initializer()) - sess.run(tf.local_variables_initializer()) - summary_writer = tf.summary.FileWriter(log_dir, sess.graph) - coord = tf.train.Coordinator() - tf.train.start_queue_runners(coord=coord, sess=sess) - - with sess.as_default(): - - if pretrained_model: - print('Restoring pretrained model: %s' % pretrained_model) - saver.restore(sess, pretrained_model) - - # Training and validation loop - print('Running training') - nrof_steps = args.max_nrof_epochs*args.epoch_size - nrof_val_samples = int(math.ceil(args.max_nrof_epochs / args.validate_every_n_epochs)) # Validate every validate_every_n_epochs as well as in the last epoch - stat = { - 'loss': np.zeros((nrof_steps,), np.float32), - 'center_loss': np.zeros((nrof_steps,), np.float32), - 'reg_loss': np.zeros((nrof_steps,), np.float32), - 'xent_loss': np.zeros((nrof_steps,), np.float32), - 'prelogits_norm': np.zeros((nrof_steps,), np.float32), - 'accuracy': np.zeros((nrof_steps,), np.float32), - 'val_loss': np.zeros((nrof_val_samples,), np.float32), - 'val_xent_loss': np.zeros((nrof_val_samples,), np.float32), - 'val_accuracy': np.zeros((nrof_val_samples,), np.float32), - 'lfw_accuracy': np.zeros((args.max_nrof_epochs,), np.float32), - 'lfw_valrate': np.zeros((args.max_nrof_epochs,), np.float32), - 'learning_rate': np.zeros((args.max_nrof_epochs,), np.float32), - 'time_train': np.zeros((args.max_nrof_epochs,), np.float32), - 'time_validate': np.zeros((args.max_nrof_epochs,), np.float32), - 'time_evaluate': np.zeros((args.max_nrof_epochs,), np.float32), - 'prelogits_hist': np.zeros((args.max_nrof_epochs, 1000), np.float32), - } - for epoch in range(1,args.max_nrof_epochs+1): - step = sess.run(global_step, feed_dict=None) - # Train for one epoch - t = time.time() - cont = train(args, sess, epoch, image_list, label_list, index_dequeue_op, enqueue_op, image_paths_placeholder, labels_placeholder, - learning_rate_placeholder, phase_train_placeholder, batch_size_placeholder, control_placeholder, global_step, - total_loss, train_op, summary_op, summary_writer, regularization_losses, args.learning_rate_schedule_file, - stat, cross_entropy_mean, accuracy, learning_rate, - prelogits, prelogits_center_loss, args.random_rotate, args.random_crop, args.random_flip, prelogits_norm, args.prelogits_hist_max, args.use_fixed_image_standardization) - stat['time_train'][epoch-1] = time.time() - t - - if not cont: - break - - t = time.time() - if len(val_image_list)>0 and ((epoch-1) % args.validate_every_n_epochs == args.validate_every_n_epochs-1 or epoch==args.max_nrof_epochs): - validate(args, sess, epoch, val_image_list, val_label_list, enqueue_op, image_paths_placeholder, labels_placeholder, control_placeholder, - phase_train_placeholder, batch_size_placeholder, - stat, total_loss, regularization_losses, cross_entropy_mean, accuracy, args.validate_every_n_epochs, args.use_fixed_image_standardization) - stat['time_validate'][epoch-1] = time.time() - t - - # Save variables and the metagraph if it doesn't exist already - save_variables_and_metagraph(sess, saver, summary_writer, model_dir, subdir, epoch) - - # Evaluate on LFW - t = time.time() - if args.lfw_dir: - evaluate(sess, enqueue_op, image_paths_placeholder, labels_placeholder, phase_train_placeholder, batch_size_placeholder, control_placeholder, - embeddings, label_batch, lfw_paths, actual_issame, args.lfw_batch_size, args.lfw_nrof_folds, log_dir, step, summary_writer, stat, epoch, - args.lfw_distance_metric, args.lfw_subtract_mean, args.lfw_use_flipped_images, args.use_fixed_image_standardization) - stat['time_evaluate'][epoch-1] = time.time() - t - - print('Saving statistics') - with h5py.File(stat_file_name, 'w') as f: - for key, value in stat.iteritems(): - f.create_dataset(key, data=value) - - return model_dir - -def find_threshold(var, percentile): - hist, bin_edges = np.histogram(var, 100) - cdf = np.float32(np.cumsum(hist)) / np.sum(hist) - bin_centers = (bin_edges[:-1]+bin_edges[1:])/2 - #plt.plot(bin_centers, cdf) - threshold = np.interp(percentile*0.01, cdf, bin_centers) - return threshold - -def filter_dataset(dataset, data_filename, percentile, min_nrof_images_per_class): - with h5py.File(data_filename,'r') as f: - distance_to_center = np.array(f.get('distance_to_center')) - label_list = np.array(f.get('label_list')) - image_list = np.array(f.get('image_list')) - distance_to_center_threshold = find_threshold(distance_to_center, percentile) - indices = np.where(distance_to_center>=distance_to_center_threshold)[0] - filtered_dataset = dataset - removelist = [] - for i in indices: - label = label_list[i] - image = image_list[i] - if image in filtered_dataset[label].image_paths: - filtered_dataset[label].image_paths.remove(image) - if len(filtered_dataset[label].image_paths)0.0: - lr = args.learning_rate - else: - lr = facenet.get_learning_rate_from_file(learning_rate_schedule_file, epoch) - - if lr<=0: - return False - - index_epoch = sess.run(index_dequeue_op) - label_epoch = np.array(label_list)[index_epoch] - image_epoch = np.array(image_list)[index_epoch] - - # Enqueue one epoch of image paths and labels - labels_array = np.expand_dims(np.array(label_epoch),1) - image_paths_array = np.expand_dims(np.array(image_epoch),1) - control_value = facenet.RANDOM_ROTATE * random_rotate + facenet.RANDOM_CROP * random_crop + facenet.RANDOM_FLIP * random_flip + facenet.FIXED_STANDARDIZATION * use_fixed_image_standardization - control_array = np.ones_like(labels_array) * control_value - sess.run(enqueue_op, {image_paths_placeholder: image_paths_array, labels_placeholder: labels_array, control_placeholder: control_array}) - - # Training loop - train_time = 0 - while batch_number < args.epoch_size: - start_time = time.time() - feed_dict = {learning_rate_placeholder: lr, phase_train_placeholder:True, batch_size_placeholder:args.batch_size} - tensor_list = [loss, train_op, step, reg_losses, prelogits, cross_entropy_mean, learning_rate, prelogits_norm, accuracy, prelogits_center_loss] - if batch_number % 100 == 0: - loss_, _, step_, reg_losses_, prelogits_, cross_entropy_mean_, lr_, prelogits_norm_, accuracy_, center_loss_, summary_str = sess.run(tensor_list + [summary_op], feed_dict=feed_dict) - summary_writer.add_summary(summary_str, global_step=step_) - else: - loss_, _, step_, reg_losses_, prelogits_, cross_entropy_mean_, lr_, prelogits_norm_, accuracy_, center_loss_ = sess.run(tensor_list, feed_dict=feed_dict) - - duration = time.time() - start_time - stat['loss'][step_-1] = loss_ - stat['center_loss'][step_-1] = center_loss_ - stat['reg_loss'][step_-1] = np.sum(reg_losses_) - stat['xent_loss'][step_-1] = cross_entropy_mean_ - stat['prelogits_norm'][step_-1] = prelogits_norm_ - stat['learning_rate'][epoch-1] = lr_ - stat['accuracy'][step_-1] = accuracy_ - stat['prelogits_hist'][epoch-1,:] += np.histogram(np.minimum(np.abs(prelogits_), prelogits_hist_max), bins=1000, range=(0.0, prelogits_hist_max))[0] - - duration = time.time() - start_time - print('Epoch: [%d][%d/%d]\tTime %.3f\tLoss %2.3f\tXent %2.3f\tRegLoss %2.3f\tAccuracy %2.3f\tLr %2.5f\tCl %2.3f' % - (epoch, batch_number+1, args.epoch_size, duration, loss_, cross_entropy_mean_, np.sum(reg_losses_), accuracy_, lr_, center_loss_)) - batch_number += 1 - train_time += duration - # Add validation loss and accuracy to summary - summary = tf.Summary() - #pylint: disable=maybe-no-member - summary.value.add(tag='time/total', simple_value=train_time) - summary_writer.add_summary(summary, global_step=step_) - return True - -def validate(args, sess, epoch, image_list, label_list, enqueue_op, image_paths_placeholder, labels_placeholder, control_placeholder, - phase_train_placeholder, batch_size_placeholder, - stat, loss, regularization_losses, cross_entropy_mean, accuracy, validate_every_n_epochs, use_fixed_image_standardization): - - print('Running forward pass on validation set') - - nrof_batches = len(label_list) // args.lfw_batch_size - nrof_images = nrof_batches * args.lfw_batch_size - - # Enqueue one epoch of image paths and labels - labels_array = np.expand_dims(np.array(label_list[:nrof_images]),1) - image_paths_array = np.expand_dims(np.array(image_list[:nrof_images]),1) - control_array = np.ones_like(labels_array, np.int32)*facenet.FIXED_STANDARDIZATION * use_fixed_image_standardization - sess.run(enqueue_op, {image_paths_placeholder: image_paths_array, labels_placeholder: labels_array, control_placeholder: control_array}) - - loss_array = np.zeros((nrof_batches,), np.float32) - xent_array = np.zeros((nrof_batches,), np.float32) - accuracy_array = np.zeros((nrof_batches,), np.float32) - - # Training loop - start_time = time.time() - for i in range(nrof_batches): - feed_dict = {phase_train_placeholder:False, batch_size_placeholder:args.lfw_batch_size} - loss_, cross_entropy_mean_, accuracy_ = sess.run([loss, cross_entropy_mean, accuracy], feed_dict=feed_dict) - loss_array[i], xent_array[i], accuracy_array[i] = (loss_, cross_entropy_mean_, accuracy_) - if i % 10 == 9: - print('.', end='') - sys.stdout.flush() - print('') - - duration = time.time() - start_time - - val_index = (epoch-1)//validate_every_n_epochs - stat['val_loss'][val_index] = np.mean(loss_array) - stat['val_xent_loss'][val_index] = np.mean(xent_array) - stat['val_accuracy'][val_index] = np.mean(accuracy_array) - - print('Validation Epoch: %d\tTime %.3f\tLoss %2.3f\tXent %2.3f\tAccuracy %2.3f' % - (epoch, duration, np.mean(loss_array), np.mean(xent_array), np.mean(accuracy_array))) - - -def evaluate(sess, enqueue_op, image_paths_placeholder, labels_placeholder, phase_train_placeholder, batch_size_placeholder, control_placeholder, - embeddings, labels, image_paths, actual_issame, batch_size, nrof_folds, log_dir, step, summary_writer, stat, epoch, distance_metric, subtract_mean, use_flipped_images, use_fixed_image_standardization): - start_time = time.time() - # Run forward pass to calculate embeddings - print('Runnning forward pass on LFW images') - - # Enqueue one epoch of image paths and labels - nrof_embeddings = len(actual_issame)*2 # nrof_pairs * nrof_images_per_pair - nrof_flips = 2 if use_flipped_images else 1 - nrof_images = nrof_embeddings * nrof_flips - labels_array = np.expand_dims(np.arange(0,nrof_images),1) - image_paths_array = np.expand_dims(np.repeat(np.array(image_paths),nrof_flips),1) - control_array = np.zeros_like(labels_array, np.int32) - if use_fixed_image_standardization: - control_array += np.ones_like(labels_array)*facenet.FIXED_STANDARDIZATION - if use_flipped_images: - # Flip every second image - control_array += (labels_array % 2)*facenet.FLIP - sess.run(enqueue_op, {image_paths_placeholder: image_paths_array, labels_placeholder: labels_array, control_placeholder: control_array}) - - embedding_size = int(embeddings.get_shape()[1]) - assert nrof_images % batch_size == 0, 'The number of LFW images must be an integer multiple of the LFW batch size' - nrof_batches = nrof_images // batch_size - emb_array = np.zeros((nrof_images, embedding_size)) - lab_array = np.zeros((nrof_images,)) - for i in range(nrof_batches): - feed_dict = {phase_train_placeholder:False, batch_size_placeholder:batch_size} - emb, lab = sess.run([embeddings, labels], feed_dict=feed_dict) - lab_array[lab] = lab - emb_array[lab, :] = emb - if i % 10 == 9: - print('.', end='') - sys.stdout.flush() - print('') - embeddings = np.zeros((nrof_embeddings, embedding_size*nrof_flips)) - if use_flipped_images: - # Concatenate embeddings for flipped and non flipped version of the images - embeddings[:,:embedding_size] = emb_array[0::2,:] - embeddings[:,embedding_size:] = emb_array[1::2,:] - else: - embeddings = emb_array - - assert np.array_equal(lab_array, np.arange(nrof_images))==True, 'Wrong labels used for evaluation, possibly caused by training examples left in the input pipeline' - _, _, accuracy, val, val_std, far = lfw.evaluate(embeddings, actual_issame, nrof_folds=nrof_folds, distance_metric=distance_metric, subtract_mean=subtract_mean) - - print('Accuracy: %2.5f+-%2.5f' % (np.mean(accuracy), np.std(accuracy))) - print('Validation rate: %2.5f+-%2.5f @ FAR=%2.5f' % (val, val_std, far)) - lfw_time = time.time() - start_time - # Add validation loss and accuracy to summary - summary = tf.Summary() - #pylint: disable=maybe-no-member - summary.value.add(tag='lfw/accuracy', simple_value=np.mean(accuracy)) - summary.value.add(tag='lfw/val_rate', simple_value=val) - summary.value.add(tag='time/lfw', simple_value=lfw_time) - summary_writer.add_summary(summary, step) - with open(os.path.join(log_dir,'lfw_result.txt'),'at') as f: - f.write('%d\t%.5f\t%.5f\n' % (step, np.mean(accuracy), val)) - stat['lfw_accuracy'][epoch-1] = np.mean(accuracy) - stat['lfw_valrate'][epoch-1] = val - -def save_variables_and_metagraph(sess, saver, summary_writer, model_dir, model_name, step): - # Save the model checkpoint - print('Saving variables') - start_time = time.time() - checkpoint_path = os.path.join(model_dir, 'model-%s.ckpt' % model_name) - saver.save(sess, checkpoint_path, global_step=step, write_meta_graph=False) - save_time_variables = time.time() - start_time - print('Variables saved in %.2f seconds' % save_time_variables) - metagraph_filename = os.path.join(model_dir, 'model-%s.meta' % model_name) - save_time_metagraph = 0 - if not os.path.exists(metagraph_filename): - print('Saving metagraph') - start_time = time.time() - saver.export_meta_graph(metagraph_filename) - save_time_metagraph = time.time() - start_time - print('Metagraph saved in %.2f seconds' % save_time_metagraph) - summary = tf.Summary() - #pylint: disable=maybe-no-member - summary.value.add(tag='time/save_variables', simple_value=save_time_variables) - summary.value.add(tag='time/save_metagraph', simple_value=save_time_metagraph) - summary_writer.add_summary(summary, step) - - -def parse_arguments(argv): - parser = argparse.ArgumentParser() - - parser.add_argument('--logs_base_dir', type=str, - help='Directory where to write event logs.', default='~/logs/facenet') - parser.add_argument('--models_base_dir', type=str, - help='Directory where to write trained models and checkpoints.', default='~/models/facenet') - parser.add_argument('--gpu_memory_fraction', type=float, - help='Upper bound on the amount of GPU memory that will be used by the process.', default=1.0) - parser.add_argument('--pretrained_model', type=str, - help='Load a pretrained model before training starts.') - parser.add_argument('--data_dir', type=str, - help='Path to the data directory containing aligned face patches.', - default='~/datasets/casia/casia_maxpy_mtcnnalign_182_160') - parser.add_argument('--model_def', type=str, - help='Model definition. Points to a module containing the definition of the inference graph.', default='models.inception_resnet_v1') - parser.add_argument('--max_nrof_epochs', type=int, - help='Number of epochs to run.', default=500) - parser.add_argument('--batch_size', type=int, - help='Number of images to process in a batch.', default=90) - parser.add_argument('--image_size', type=int, - help='Image size (height, width) in pixels.', default=160) - parser.add_argument('--epoch_size', type=int, - help='Number of batches per epoch.', default=1000) - parser.add_argument('--embedding_size', type=int, - help='Dimensionality of the embedding.', default=128) - parser.add_argument('--random_crop', - help='Performs random cropping of training images. If false, the center image_size pixels from the training images are used. ' + - 'If the size of the images in the data directory is equal to image_size no cropping is performed', action='store_true') - parser.add_argument('--random_flip', - help='Performs random horizontal flipping of training images.', action='store_true') - parser.add_argument('--random_rotate', - help='Performs random rotations of training images.', action='store_true') - parser.add_argument('--use_fixed_image_standardization', - help='Performs fixed standardization of images.', action='store_true') - parser.add_argument('--keep_probability', type=float, - help='Keep probability of dropout for the fully connected layer(s).', default=1.0) - parser.add_argument('--weight_decay', type=float, - help='L2 weight regularization.', default=0.0) - parser.add_argument('--center_loss_factor', type=float, - help='Center loss factor.', default=0.0) - parser.add_argument('--center_loss_alfa', type=float, - help='Center update rate for center loss.', default=0.95) - parser.add_argument('--prelogits_norm_loss_factor', type=float, - help='Loss based on the norm of the activations in the prelogits layer.', default=0.0) - parser.add_argument('--prelogits_norm_p', type=float, - help='Norm to use for prelogits norm loss.', default=1.0) - parser.add_argument('--prelogits_hist_max', type=float, - help='The max value for the prelogits histogram.', default=10.0) - parser.add_argument('--optimizer', type=str, choices=['ADAGRAD', 'ADADELTA', 'ADAM', 'RMSPROP', 'MOM'], - help='The optimization algorithm to use', default='ADAGRAD') - parser.add_argument('--learning_rate', type=float, - help='Initial learning rate. If set to a negative value a learning rate ' + - 'schedule can be specified in the file "learning_rate_schedule.txt"', default=0.1) - parser.add_argument('--learning_rate_decay_epochs', type=int, - help='Number of epochs between learning rate decay.', default=100) - parser.add_argument('--learning_rate_decay_factor', type=float, - help='Learning rate decay factor.', default=1.0) - parser.add_argument('--moving_average_decay', type=float, - help='Exponential decay for tracking of training parameters.', default=0.9999) - parser.add_argument('--seed', type=int, - help='Random seed.', default=666) - parser.add_argument('--nrof_preprocess_threads', type=int, - help='Number of preprocessing (data loading and augmentation) threads.', default=4) - parser.add_argument('--log_histograms', - help='Enables logging of weight/bias histograms in tensorboard.', action='store_true') - parser.add_argument('--learning_rate_schedule_file', type=str, - help='File containing the learning rate schedule that is used when learning_rate is set to to -1.', default='data/learning_rate_schedule.txt') - parser.add_argument('--filter_filename', type=str, - help='File containing image data used for dataset filtering', default='') - parser.add_argument('--filter_percentile', type=float, - help='Keep only the percentile images closed to its class center', default=100.0) - parser.add_argument('--filter_min_nrof_images_per_class', type=int, - help='Keep only the classes with this number of examples or more', default=0) - parser.add_argument('--validate_every_n_epochs', type=int, - help='Number of epoch between validation', default=5) - parser.add_argument('--validation_set_split_ratio', type=float, - help='The ratio of the total dataset to use for validation', default=0.0) - parser.add_argument('--min_nrof_val_images_per_class', type=float, - help='Classes with fewer images will be removed from the validation set', default=0) - - # Parameters for validation on LFW - parser.add_argument('--lfw_pairs', type=str, - help='The file containing the pairs to use for validation.', default='data/pairs.txt') - parser.add_argument('--lfw_dir', type=str, - help='Path to the data directory containing aligned face patches.', default='') - parser.add_argument('--lfw_batch_size', type=int, - help='Number of images to process in a batch in the LFW test set.', default=100) - parser.add_argument('--lfw_nrof_folds', type=int, - help='Number of folds to use for cross validation. Mainly used for testing.', default=10) - parser.add_argument('--lfw_distance_metric', type=int, - help='Type of distance metric to use. 0: Euclidian, 1:Cosine similarity distance.', default=0) - parser.add_argument('--lfw_use_flipped_images', - help='Concatenates embeddings for the image and its horizontally flipped counterpart.', action='store_true') - parser.add_argument('--lfw_subtract_mean', - help='Subtract feature mean before calculating distance.', action='store_true') - return parser.parse_args(argv) - - -if __name__ == '__main__': - main(parse_arguments(sys.argv[1:])) diff --git a/src/train_tripletloss.py b/src/train_tripletloss.py deleted file mode 100644 index d6df19a4d..000000000 --- a/src/train_tripletloss.py +++ /dev/null @@ -1,486 +0,0 @@ -"""Training a face recognizer with TensorFlow based on the FaceNet paper -FaceNet: A Unified Embedding for Face Recognition and Clustering: http://arxiv.org/abs/1503.03832 -""" -# MIT License -# -# Copyright (c) 2016 David Sandberg -# -# Permission is hereby granted, free of charge, to any person obtaining a copy -# of this software and associated documentation files (the "Software"), to deal -# in the Software without restriction, including without limitation the rights -# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell -# copies of the Software, and to permit persons to whom the Software is -# furnished to do so, subject to the following conditions: -# -# The above copyright notice and this permission notice shall be included in all -# copies or substantial portions of the Software. -# -# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR -# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, -# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE -# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER -# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, -# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE -# SOFTWARE. - -from __future__ import absolute_import -from __future__ import division -from __future__ import print_function - -from datetime import datetime -import os.path -import time -import sys -import tensorflow as tf -import numpy as np -import importlib -import itertools -import argparse -import facenet -import lfw - -from tensorflow.python.ops import data_flow_ops - -from six.moves import xrange # @UnresolvedImport - -def main(args): - - network = importlib.import_module(args.model_def) - - subdir = datetime.strftime(datetime.now(), '%Y%m%d-%H%M%S') - log_dir = os.path.join(os.path.expanduser(args.logs_base_dir), subdir) - if not os.path.isdir(log_dir): # Create the log directory if it doesn't exist - os.makedirs(log_dir) - model_dir = os.path.join(os.path.expanduser(args.models_base_dir), subdir) - if not os.path.isdir(model_dir): # Create the model directory if it doesn't exist - os.makedirs(model_dir) - - # Write arguments to a text file - facenet.write_arguments_to_file(args, os.path.join(log_dir, 'arguments.txt')) - - # Store some git revision info in a text file in the log directory - src_path,_ = os.path.split(os.path.realpath(__file__)) - facenet.store_revision_info(src_path, log_dir, ' '.join(sys.argv)) - - np.random.seed(seed=args.seed) - train_set = facenet.get_dataset(args.data_dir) - - print('Model directory: %s' % model_dir) - print('Log directory: %s' % log_dir) - if args.pretrained_model: - print('Pre-trained model: %s' % os.path.expanduser(args.pretrained_model)) - - if args.lfw_dir: - print('LFW directory: %s' % args.lfw_dir) - # Read the file containing the pairs used for testing - pairs = lfw.read_pairs(os.path.expanduser(args.lfw_pairs)) - # Get the paths for the corresponding images - lfw_paths, actual_issame = lfw.get_paths(os.path.expanduser(args.lfw_dir), pairs) - - - with tf.Graph().as_default(): - tf.set_random_seed(args.seed) - global_step = tf.Variable(0, trainable=False) - - # Placeholder for the learning rate - learning_rate_placeholder = tf.placeholder(tf.float32, name='learning_rate') - - batch_size_placeholder = tf.placeholder(tf.int32, name='batch_size') - - phase_train_placeholder = tf.placeholder(tf.bool, name='phase_train') - - image_paths_placeholder = tf.placeholder(tf.string, shape=(None,3), name='image_paths') - labels_placeholder = tf.placeholder(tf.int64, shape=(None,3), name='labels') - - input_queue = data_flow_ops.FIFOQueue(capacity=100000, - dtypes=[tf.string, tf.int64], - shapes=[(3,), (3,)], - shared_name=None, name=None) - enqueue_op = input_queue.enqueue_many([image_paths_placeholder, labels_placeholder]) - - nrof_preprocess_threads = 4 - images_and_labels = [] - for _ in range(nrof_preprocess_threads): - filenames, label = input_queue.dequeue() - images = [] - for filename in tf.unstack(filenames): - file_contents = tf.read_file(filename) - image = tf.image.decode_image(file_contents, channels=3) - - if args.random_crop: - image = tf.random_crop(image, [args.image_size, args.image_size, 3]) - else: - image = tf.image.resize_image_with_crop_or_pad(image, args.image_size, args.image_size) - if args.random_flip: - image = tf.image.random_flip_left_right(image) - - #pylint: disable=no-member - image.set_shape((args.image_size, args.image_size, 3)) - images.append(tf.image.per_image_standardization(image)) - images_and_labels.append([images, label]) - - image_batch, labels_batch = tf.train.batch_join( - images_and_labels, batch_size=batch_size_placeholder, - shapes=[(args.image_size, args.image_size, 3), ()], enqueue_many=True, - capacity=4 * nrof_preprocess_threads * args.batch_size, - allow_smaller_final_batch=True) - image_batch = tf.identity(image_batch, 'image_batch') - image_batch = tf.identity(image_batch, 'input') - labels_batch = tf.identity(labels_batch, 'label_batch') - - # Build the inference graph - prelogits, _ = network.inference(image_batch, args.keep_probability, - phase_train=phase_train_placeholder, bottleneck_layer_size=args.embedding_size, - weight_decay=args.weight_decay) - - embeddings = tf.nn.l2_normalize(prelogits, 1, 1e-10, name='embeddings') - # Split embeddings into anchor, positive and negative and calculate triplet loss - anchor, positive, negative = tf.unstack(tf.reshape(embeddings, [-1,3,args.embedding_size]), 3, 1) - triplet_loss = facenet.triplet_loss(anchor, positive, negative, args.alpha) - - learning_rate = tf.train.exponential_decay(learning_rate_placeholder, global_step, - args.learning_rate_decay_epochs*args.epoch_size, args.learning_rate_decay_factor, staircase=True) - tf.summary.scalar('learning_rate', learning_rate) - - # Calculate the total losses - regularization_losses = tf.get_collection(tf.GraphKeys.REGULARIZATION_LOSSES) - total_loss = tf.add_n([triplet_loss] + regularization_losses, name='total_loss') - - # Build a Graph that trains the model with one batch of examples and updates the model parameters - train_op = facenet.train(total_loss, global_step, args.optimizer, - learning_rate, args.moving_average_decay, tf.global_variables()) - - # Create a saver - saver = tf.train.Saver(tf.trainable_variables(), max_to_keep=3) - - # Build the summary operation based on the TF collection of Summaries. - summary_op = tf.summary.merge_all() - - # Start running operations on the Graph. - gpu_options = tf.GPUOptions(per_process_gpu_memory_fraction=args.gpu_memory_fraction) - sess = tf.Session(config=tf.ConfigProto(gpu_options=gpu_options)) - - # Initialize variables - sess.run(tf.global_variables_initializer(), feed_dict={phase_train_placeholder:True}) - sess.run(tf.local_variables_initializer(), feed_dict={phase_train_placeholder:True}) - - summary_writer = tf.summary.FileWriter(log_dir, sess.graph) - coord = tf.train.Coordinator() - tf.train.start_queue_runners(coord=coord, sess=sess) - - with sess.as_default(): - - if args.pretrained_model: - print('Restoring pretrained model: %s' % args.pretrained_model) - saver.restore(sess, os.path.expanduser(args.pretrained_model)) - - # Training and validation loop - epoch = 0 - while epoch < args.max_nrof_epochs: - step = sess.run(global_step, feed_dict=None) - epoch = step // args.epoch_size - # Train for one epoch - train(args, sess, train_set, epoch, image_paths_placeholder, labels_placeholder, labels_batch, - batch_size_placeholder, learning_rate_placeholder, phase_train_placeholder, enqueue_op, input_queue, global_step, - embeddings, total_loss, train_op, summary_op, summary_writer, args.learning_rate_schedule_file, - args.embedding_size, anchor, positive, negative, triplet_loss) - - # Save variables and the metagraph if it doesn't exist already - save_variables_and_metagraph(sess, saver, summary_writer, model_dir, subdir, step) - - # Evaluate on LFW - if args.lfw_dir: - evaluate(sess, lfw_paths, embeddings, labels_batch, image_paths_placeholder, labels_placeholder, - batch_size_placeholder, learning_rate_placeholder, phase_train_placeholder, enqueue_op, actual_issame, args.batch_size, - args.lfw_nrof_folds, log_dir, step, summary_writer, args.embedding_size) - - return model_dir - - -def train(args, sess, dataset, epoch, image_paths_placeholder, labels_placeholder, labels_batch, - batch_size_placeholder, learning_rate_placeholder, phase_train_placeholder, enqueue_op, input_queue, global_step, - embeddings, loss, train_op, summary_op, summary_writer, learning_rate_schedule_file, - embedding_size, anchor, positive, negative, triplet_loss): - batch_number = 0 - - if args.learning_rate>0.0: - lr = args.learning_rate - else: - lr = facenet.get_learning_rate_from_file(learning_rate_schedule_file, epoch) - while batch_number < args.epoch_size: - # Sample people randomly from the dataset - image_paths, num_per_class = sample_people(dataset, args.people_per_batch, args.images_per_person) - - print('Running forward pass on sampled images: ', end='') - start_time = time.time() - nrof_examples = args.people_per_batch * args.images_per_person - labels_array = np.reshape(np.arange(nrof_examples),(-1,3)) - image_paths_array = np.reshape(np.expand_dims(np.array(image_paths),1), (-1,3)) - sess.run(enqueue_op, {image_paths_placeholder: image_paths_array, labels_placeholder: labels_array}) - emb_array = np.zeros((nrof_examples, embedding_size)) - nrof_batches = int(np.ceil(nrof_examples / args.batch_size)) - for i in range(nrof_batches): - batch_size = min(nrof_examples-i*args.batch_size, args.batch_size) - emb, lab = sess.run([embeddings, labels_batch], feed_dict={batch_size_placeholder: batch_size, - learning_rate_placeholder: lr, phase_train_placeholder: True}) - emb_array[lab,:] = emb - print('%.3f' % (time.time()-start_time)) - - # Select triplets based on the embeddings - print('Selecting suitable triplets for training') - triplets, nrof_random_negs, nrof_triplets = select_triplets(emb_array, num_per_class, - image_paths, args.people_per_batch, args.alpha) - selection_time = time.time() - start_time - print('(nrof_random_negs, nrof_triplets) = (%d, %d): time=%.3f seconds' % - (nrof_random_negs, nrof_triplets, selection_time)) - - # Perform training on the selected triplets - nrof_batches = int(np.ceil(nrof_triplets*3/args.batch_size)) - triplet_paths = list(itertools.chain(*triplets)) - labels_array = np.reshape(np.arange(len(triplet_paths)),(-1,3)) - triplet_paths_array = np.reshape(np.expand_dims(np.array(triplet_paths),1), (-1,3)) - sess.run(enqueue_op, {image_paths_placeholder: triplet_paths_array, labels_placeholder: labels_array}) - nrof_examples = len(triplet_paths) - train_time = 0 - i = 0 - emb_array = np.zeros((nrof_examples, embedding_size)) - loss_array = np.zeros((nrof_triplets,)) - summary = tf.Summary() - step = 0 - while i < nrof_batches: - start_time = time.time() - batch_size = min(nrof_examples-i*args.batch_size, args.batch_size) - feed_dict = {batch_size_placeholder: batch_size, learning_rate_placeholder: lr, phase_train_placeholder: True} - err, _, step, emb, lab = sess.run([loss, train_op, global_step, embeddings, labels_batch], feed_dict=feed_dict) - emb_array[lab,:] = emb - loss_array[i] = err - duration = time.time() - start_time - print('Epoch: [%d][%d/%d]\tTime %.3f\tLoss %2.3f' % - (epoch, batch_number+1, args.epoch_size, duration, err)) - batch_number += 1 - i += 1 - train_time += duration - summary.value.add(tag='loss', simple_value=err) - - # Add validation loss and accuracy to summary - #pylint: disable=maybe-no-member - summary.value.add(tag='time/selection', simple_value=selection_time) - summary_writer.add_summary(summary, step) - return step - -def select_triplets(embeddings, nrof_images_per_class, image_paths, people_per_batch, alpha): - """ Select the triplets for training - """ - trip_idx = 0 - emb_start_idx = 0 - num_trips = 0 - triplets = [] - - # VGG Face: Choosing good triplets is crucial and should strike a balance between - # selecting informative (i.e. challenging) examples and swamping training with examples that - # are too hard. This is achieve by extending each pair (a, p) to a triplet (a, p, n) by sampling - # the image n at random, but only between the ones that violate the triplet loss margin. The - # latter is a form of hard-negative mining, but it is not as aggressive (and much cheaper) than - # choosing the maximally violating example, as often done in structured output learning. - - for i in xrange(people_per_batch): - nrof_images = int(nrof_images_per_class[i]) - for j in xrange(1,nrof_images): - a_idx = emb_start_idx + j - 1 - neg_dists_sqr = np.sum(np.square(embeddings[a_idx] - embeddings), 1) - for pair in xrange(j, nrof_images): # For every possible positive pair. - p_idx = emb_start_idx + pair - pos_dist_sqr = np.sum(np.square(embeddings[a_idx]-embeddings[p_idx])) - neg_dists_sqr[emb_start_idx:emb_start_idx+nrof_images] = np.NaN - #all_neg = np.where(np.logical_and(neg_dists_sqr-pos_dist_sqr0: - rnd_idx = np.random.randint(nrof_random_negs) - n_idx = all_neg[rnd_idx] - triplets.append((image_paths[a_idx], image_paths[p_idx], image_paths[n_idx])) - #print('Triplet %d: (%d, %d, %d), pos_dist=%2.6f, neg_dist=%2.6f (%d, %d, %d, %d, %d)' % - # (trip_idx, a_idx, p_idx, n_idx, pos_dist_sqr, neg_dists_sqr[n_idx], nrof_random_negs, rnd_idx, i, j, emb_start_idx)) - trip_idx += 1 - - num_trips += 1 - - emb_start_idx += nrof_images - - np.random.shuffle(triplets) - return triplets, num_trips, len(triplets) - -def sample_people(dataset, people_per_batch, images_per_person): - nrof_images = people_per_batch * images_per_person - - # Sample classes from the dataset - nrof_classes = len(dataset) - class_indices = np.arange(nrof_classes) - np.random.shuffle(class_indices) - - i = 0 - image_paths = [] - num_per_class = [] - sampled_class_indices = [] - # Sample images from these classes until we have enough - while len(image_paths)0 - if nrof_faces>1 - % select the faces with the largest bounding box - % closest to the image center - bounding_box_size = (det(:,3)-det(:,1)).*(det(:,4)-det(:,2)); - img_center = img_size / 2; - offsets = [ (det(:,1)+det(:,3))/2 (det(:,2)+det(:,4))/2 ] - ones(nrof_faces,1)*img_center; - offset_dist_squared = sum(offsets.^2,2); - [a, index] = max(bounding_box_size-offset_dist_squared*2.0); % some extra weight on the centering - det = det(index,:); - points = points(:,index); - end; -% if nrof_faces>0 -% figure(1); clf; -% imshow(img); -% hold on; -% plot(points(1:5,1),points(6:10,1),'g.','MarkerSize',10); -% bb = round(det(1:4)); -% rectangle('Position',[bb(1) bb(2) bb(3)-bb(1) bb(4)-bb(2)],'LineWidth',2,'LineStyle','-') -% xxx = 1; -% end; - det(1) = max(det(1)-margin/2, 1); - det(2) = max(det(2)-margin/2, 1); - det(3) = min(det(3)+margin/2, img_size(1)); - det(4) = min(det(4)+margin/2, img_size(2)); - det(1:4) = round(det(1:4)); - - img = img(det(2):det(4),det(1):det(3),:); - img = imresize(img, [image_size, image_size]); - - imwrite(img, target_img_path); - k = k + 1; - else - fprintf('Detection failed: %s\n', source_img_path); - fid = fopen(failed_images_list,'at'); - if fid>=0 - fprintf(fid, '%s\n', source_img_path); - fclose(fid); - end; - end; - if mod(k,100)==0 - xxx = 1; - end; - end; - end; - end; - end; -end; diff --git a/tmp/align_dataset.py b/tmp/align_dataset.py deleted file mode 100644 index e74224a1d..000000000 --- a/tmp/align_dataset.py +++ /dev/null @@ -1,137 +0,0 @@ -"""Performs face alignment and stores face thumbnails in the output directory.""" - -# MIT License -# -# Copyright (c) 2016 David Sandberg -# -# Permission is hereby granted, free of charge, to any person obtaining a copy -# of this software and associated documentation files (the "Software"), to deal -# in the Software without restriction, including without limitation the rights -# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell -# copies of the Software, and to permit persons to whom the Software is -# furnished to do so, subject to the following conditions: -# -# The above copyright notice and this permission notice shall be included in all -# copies or substantial portions of the Software. -# -# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR -# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, -# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE -# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER -# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, -# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE -# SOFTWARE. - -from __future__ import absolute_import -from __future__ import division -from __future__ import print_function - -from scipy import misc -import sys -import os -import argparse -import random -import align_dlib # @UnresolvedImport -import facenet - -def main(args): - align = align_dlib.AlignDlib(os.path.expanduser(args.dlib_face_predictor)) - landmarkIndices = align_dlib.AlignDlib.OUTER_EYES_AND_NOSE - output_dir = os.path.expanduser(args.output_dir) - if not os.path.exists(output_dir): - os.makedirs(output_dir) - # Store some git revision info in a text file in the log directory - src_path,_ = os.path.split(os.path.realpath(__file__)) - facenet.store_revision_info(src_path, output_dir, ' '.join(sys.argv)) - dataset = facenet.get_dataset(args.input_dir) - random.shuffle(dataset) - # Scale the image such that the face fills the frame when cropped to crop_size - scale = float(args.face_size) / args.image_size - nrof_images_total = 0 - nrof_prealigned_images = 0 - nrof_successfully_aligned = 0 - for cls in dataset: - output_class_dir = os.path.join(output_dir, cls.name) - if not os.path.exists(output_class_dir): - os.makedirs(output_class_dir) - random.shuffle(cls.image_paths) - for image_path in cls.image_paths: - nrof_images_total += 1 - filename = os.path.splitext(os.path.split(image_path)[1])[0] - output_filename = os.path.join(output_class_dir, filename+'.png') - if not os.path.exists(output_filename): - try: - img = misc.imread(image_path) - except (IOError, ValueError, IndexError) as e: - errorMessage = '{}: {}'.format(image_path, e) - print(errorMessage) - else: - if img.ndim == 2: - img = facenet.to_rgb(img) - if args.use_center_crop: - scaled = misc.imresize(img, args.prealigned_scale, interp='bilinear') - sz1 = scaled.shape[1]/2 - sz2 = args.image_size/2 - aligned = scaled[(sz1-sz2):(sz1+sz2),(sz1-sz2):(sz1+sz2),:] - else: - aligned = align.align(args.image_size, img, landmarkIndices=landmarkIndices, - skipMulti=False, scale=scale) - if aligned is not None: - print(image_path) - nrof_successfully_aligned += 1 - misc.imsave(output_filename, aligned) - elif args.prealigned_dir: - # Face detection failed. Use center crop from pre-aligned dataset - class_name = os.path.split(output_class_dir)[1] - image_path_without_ext = os.path.join(os.path.expanduser(args.prealigned_dir), - class_name, filename) - # Find the extension of the image - exts = ('jpg', 'png') - for ext in exts: - temp_path = image_path_without_ext + '.' + ext - image_path = '' - if os.path.exists(temp_path): - image_path = temp_path - break - try: - img = misc.imread(image_path) - except (IOError, ValueError, IndexError) as e: - errorMessage = '{}: {}'.format(image_path, e) - print(errorMessage) - else: - scaled = misc.imresize(img, args.prealigned_scale, interp='bilinear') - sz1 = scaled.shape[1]/2 - sz2 = args.image_size/2 - cropped = scaled[(sz1-sz2):(sz1+sz2),(sz1-sz2):(sz1+sz2),:] - print(image_path) - nrof_prealigned_images += 1 - misc.imsave(output_filename, cropped) - else: - print('Unable to align "%s"' % image_path) - - print('Total number of images: %d' % nrof_images_total) - print('Number of successfully aligned images: %d' % nrof_successfully_aligned) - print('Number of pre-aligned images: %d' % nrof_prealigned_images) - - -def parse_arguments(argv): - parser = argparse.ArgumentParser() - - parser.add_argument('input_dir', type=str, help='Directory with unaligned images.') - parser.add_argument('output_dir', type=str, help='Directory with aligned face thumbnails.') - parser.add_argument('--dlib_face_predictor', type=str, - help='File containing the dlib face predictor.', default='../data/shape_predictor_68_face_landmarks.dat') - parser.add_argument('--image_size', type=int, - help='Image size (height, width) in pixels.', default=110) - parser.add_argument('--face_size', type=int, - help='Size of the face thumbnail (height, width) in pixels.', default=96) - parser.add_argument('--use_center_crop', - help='Use the center crop of the original image after scaling the image using prealigned_scale.', action='store_true') - parser.add_argument('--prealigned_dir', type=str, - help='Replace image with a pre-aligned version when face detection fails.', default='') - parser.add_argument('--prealigned_scale', type=float, - help='The amount of scaling to apply to prealigned images before taking the center crop.', default=0.87) - return parser.parse_args(argv) - -if __name__ == '__main__': - main(parse_arguments(sys.argv[1:])) diff --git a/tmp/align_dlib.py b/tmp/align_dlib.py deleted file mode 100644 index e5e133743..000000000 --- a/tmp/align_dlib.py +++ /dev/null @@ -1,204 +0,0 @@ -# Copyright 2015-2016 Carnegie Mellon University -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. - -"""Module for dlib-based alignment.""" - -# NOTE: This file has been copied from the openface project. -# https://github.com/cmusatyalab/openface/blob/master/openface/align_dlib.py - -import cv2 -import dlib -import numpy as np - -TEMPLATE = np.float32([ - (0.0792396913815, 0.339223741112), (0.0829219487236, 0.456955367943), - (0.0967927109165, 0.575648016728), (0.122141515615, 0.691921601066), - (0.168687863544, 0.800341263616), (0.239789390707, 0.895732504778), - (0.325662452515, 0.977068762493), (0.422318282013, 1.04329000149), - (0.531777802068, 1.06080371126), (0.641296298053, 1.03981924107), - (0.738105872266, 0.972268833998), (0.824444363295, 0.889624082279), - (0.894792677532, 0.792494155836), (0.939395486253, 0.681546643421), - (0.96111933829, 0.562238253072), (0.970579841181, 0.441758925744), - (0.971193274221, 0.322118743967), (0.163846223133, 0.249151738053), - (0.21780354657, 0.204255863861), (0.291299351124, 0.192367318323), - (0.367460241458, 0.203582210627), (0.4392945113, 0.233135599851), - (0.586445962425, 0.228141644834), (0.660152671635, 0.195923841854), - (0.737466449096, 0.182360984545), (0.813236546239, 0.192828009114), - (0.8707571886, 0.235293377042), (0.51534533827, 0.31863546193), - (0.516221448289, 0.396200446263), (0.517118861835, 0.473797687758), - (0.51816430343, 0.553157797772), (0.433701156035, 0.604054457668), - (0.475501237769, 0.62076344024), (0.520712933176, 0.634268222208), - (0.565874114041, 0.618796581487), (0.607054002672, 0.60157671656), - (0.252418718401, 0.331052263829), (0.298663015648, 0.302646354002), - (0.355749724218, 0.303020650651), (0.403718978315, 0.33867711083), - (0.352507175597, 0.349987615384), (0.296791759886, 0.350478978225), - (0.631326076346, 0.334136672344), (0.679073381078, 0.29645404267), - (0.73597236153, 0.294721285802), (0.782865376271, 0.321305281656), - (0.740312274764, 0.341849376713), (0.68499850091, 0.343734332172), - (0.353167761422, 0.746189164237), (0.414587777921, 0.719053835073), - (0.477677654595, 0.706835892494), (0.522732900812, 0.717092275768), - (0.569832064287, 0.705414478982), (0.635195811927, 0.71565572516), - (0.69951672331, 0.739419187253), (0.639447159575, 0.805236879972), - (0.576410514055, 0.835436670169), (0.525398405766, 0.841706377792), - (0.47641545769, 0.837505914975), (0.41379548902, 0.810045601727), - (0.380084785646, 0.749979603086), (0.477955996282, 0.74513234612), - (0.523389793327, 0.748924302636), (0.571057789237, 0.74332894691), - (0.672409137852, 0.744177032192), (0.572539621444, 0.776609286626), - (0.5240106503, 0.783370783245), (0.477561227414, 0.778476346951)]) - -INV_TEMPLATE = np.float32([ - (-0.04099179660567834, -0.008425234314031194, 2.575498465013183), - (0.04062510634554352, -0.009678089746831375, -1.2534351452524177), - (0.0003666902601348179, 0.01810332406086298, -0.32206331976076663)]) - -TPL_MIN, TPL_MAX = np.min(TEMPLATE, axis=0), np.max(TEMPLATE, axis=0) -MINMAX_TEMPLATE = (TEMPLATE - TPL_MIN) / (TPL_MAX - TPL_MIN) - - -class AlignDlib: - """ - Use `dlib's landmark estimation `_ to align faces. - - The alignment preprocess faces for input into a neural network. - Faces are resized to the same size (such as 96x96) and transformed - to make landmarks (such as the eyes and nose) appear at the same - location on every image. - - Normalized landmarks: - - .. image:: ../images/dlib-landmark-mean.png - """ - - #: Landmark indices corresponding to the inner eyes and bottom lip. - INNER_EYES_AND_BOTTOM_LIP = [39, 42, 57] - - #: Landmark indices corresponding to the outer eyes and nose. - OUTER_EYES_AND_NOSE = [36, 45, 33] - - def __init__(self, facePredictor): - """ - Instantiate an 'AlignDlib' object. - - :param facePredictor: The path to dlib's - :type facePredictor: str - """ - assert facePredictor is not None - - #pylint: disable=no-member - self.detector = dlib.get_frontal_face_detector() - self.predictor = dlib.shape_predictor(facePredictor) - - def getAllFaceBoundingBoxes(self, rgbImg): - """ - Find all face bounding boxes in an image. - - :param rgbImg: RGB image to process. Shape: (height, width, 3) - :type rgbImg: numpy.ndarray - :return: All face bounding boxes in an image. - :rtype: dlib.rectangles - """ - assert rgbImg is not None - - try: - return self.detector(rgbImg, 1) - except Exception as e: #pylint: disable=broad-except - print("Warning: {}".format(e)) - # In rare cases, exceptions are thrown. - return [] - - def getLargestFaceBoundingBox(self, rgbImg, skipMulti=False): - """ - Find the largest face bounding box in an image. - - :param rgbImg: RGB image to process. Shape: (height, width, 3) - :type rgbImg: numpy.ndarray - :param skipMulti: Skip image if more than one face detected. - :type skipMulti: bool - :return: The largest face bounding box in an image, or None. - :rtype: dlib.rectangle - """ - assert rgbImg is not None - - faces = self.getAllFaceBoundingBoxes(rgbImg) - if (not skipMulti and len(faces) > 0) or len(faces) == 1: - return max(faces, key=lambda rect: rect.width() * rect.height()) - else: - return None - - def findLandmarks(self, rgbImg, bb): - """ - Find the landmarks of a face. - - :param rgbImg: RGB image to process. Shape: (height, width, 3) - :type rgbImg: numpy.ndarray - :param bb: Bounding box around the face to find landmarks for. - :type bb: dlib.rectangle - :return: Detected landmark locations. - :rtype: list of (x,y) tuples - """ - assert rgbImg is not None - assert bb is not None - - points = self.predictor(rgbImg, bb) - #return list(map(lambda p: (p.x, p.y), points.parts())) - return [(p.x, p.y) for p in points.parts()] - - #pylint: disable=dangerous-default-value - def align(self, imgDim, rgbImg, bb=None, - landmarks=None, landmarkIndices=INNER_EYES_AND_BOTTOM_LIP, - skipMulti=False, scale=1.0): - r"""align(imgDim, rgbImg, bb=None, landmarks=None, landmarkIndices=INNER_EYES_AND_BOTTOM_LIP) - - Transform and align a face in an image. - - :param imgDim: The edge length in pixels of the square the image is resized to. - :type imgDim: int - :param rgbImg: RGB image to process. Shape: (height, width, 3) - :type rgbImg: numpy.ndarray - :param bb: Bounding box around the face to align. \ - Defaults to the largest face. - :type bb: dlib.rectangle - :param landmarks: Detected landmark locations. \ - Landmarks found on `bb` if not provided. - :type landmarks: list of (x,y) tuples - :param landmarkIndices: The indices to transform to. - :type landmarkIndices: list of ints - :param skipMulti: Skip image if more than one face detected. - :type skipMulti: bool - :param scale: Scale image before cropping to the size given by imgDim. - :type scale: float - :return: The aligned RGB image. Shape: (imgDim, imgDim, 3) - :rtype: numpy.ndarray - """ - assert imgDim is not None - assert rgbImg is not None - assert landmarkIndices is not None - - if bb is None: - bb = self.getLargestFaceBoundingBox(rgbImg, skipMulti) - if bb is None: - return - - if landmarks is None: - landmarks = self.findLandmarks(rgbImg, bb) - - npLandmarks = np.float32(landmarks) - npLandmarkIndices = np.array(landmarkIndices) - - #pylint: disable=maybe-no-member - H = cv2.getAffineTransform(npLandmarks[npLandmarkIndices], - imgDim * MINMAX_TEMPLATE[npLandmarkIndices]*scale + imgDim*(1-scale)/2) - thumbnail = cv2.warpAffine(rgbImg, H, (imgDim, imgDim)) - - return thumbnail diff --git a/tmp/cacd2000_split_identities.py b/tmp/cacd2000_split_identities.py deleted file mode 100644 index cc0f1b4d5..000000000 --- a/tmp/cacd2000_split_identities.py +++ /dev/null @@ -1,32 +0,0 @@ -import shutil -import argparse -import os -import sys - -def main(args): - src_path_exp = os.path.expanduser(args.src_path) - dst_path_exp = os.path.expanduser(args.dst_path) - if not os.path.exists(dst_path_exp): - os.makedirs(dst_path_exp) - files = os.listdir(src_path_exp) - for f in files: - file_name = '.'.join(f.split('.')[0:-1]) - x = file_name.split('_') - dir_name = '_'.join(x[1:-1]) - class_dst_path = os.path.join(dst_path_exp, dir_name) - if not os.path.exists(class_dst_path): - os.makedirs(class_dst_path) - src_file_path = os.path.join(src_path_exp, f) - dst_file = os.path.join(class_dst_path, f) - print('%s -> %s' % (src_file_path, dst_file)) - shutil.copyfile(src_file_path, dst_file) - -def parse_arguments(argv): - parser = argparse.ArgumentParser() - - parser.add_argument('src_path', type=str, help='Path to the source directory.') - parser.add_argument('dst_path', type=str, help='Path to the destination directory.') - return parser.parse_args(argv) - -if __name__ == '__main__': - main(parse_arguments(sys.argv[1:])) diff --git a/tmp/dataset_read_speed.py b/tmp/dataset_read_speed.py deleted file mode 100644 index 1f7f7444a..000000000 --- a/tmp/dataset_read_speed.py +++ /dev/null @@ -1,31 +0,0 @@ -import facenet -import argparse -import sys -import time -import numpy as np - -def main(args): - - dataset = facenet.get_dataset(args.dir) - paths, _ = facenet.get_image_paths_and_labels(dataset) - t = np.zeros((len(paths))) - x = time.time() - for i, path in enumerate(paths): - start_time = time.time() - with open(path, mode='rb') as f: - _ = f.read() - duration = time.time() - start_time - t[i] = duration - if i % 1000 == 0 or i==len(paths)-1: - print('File %d/%d Total time: %.2f Avg: %.3f Std: %.3f' % (i, len(paths), time.time()-x, np.mean(t[0:i])*1000, np.std(t[0:i])*1000)) - - -def parse_arguments(argv): - parser = argparse.ArgumentParser() - parser.add_argument('dir', type=str, - help='Directory with dataset to test') - return parser.parse_args(argv) - - -if __name__ == '__main__': - main(parse_arguments(sys.argv[1:])) diff --git a/tmp/deepdream.py b/tmp/deepdream.py deleted file mode 100644 index 604636bc2..000000000 --- a/tmp/deepdream.py +++ /dev/null @@ -1,265 +0,0 @@ -# boilerplate code -import numpy as np -from functools import partial -import PIL.Image - -import tensorflow as tf -import matplotlib.pyplot as plt -import urllib2 -import os -import zipfile - -def main(): - # download pre-trained model by running the command below in a shell - # wget https://storage.googleapis.com/download.tensorflow.org/models/inception5h.zip && unzip inception5h.zip - url = 'https://storage.googleapis.com/download.tensorflow.org/models/inception5h.zip' - data_dir = '../data/' - model_name = os.path.split(url)[-1] - local_zip_file = os.path.join(data_dir, model_name) - if not os.path.exists(local_zip_file): - # Download - model_url = urllib2.urlopen(url) - with open(local_zip_file, 'wb') as output: - output.write(model_url.read()) - # Extract - with zipfile.ZipFile(local_zip_file, 'r') as zip_ref: - zip_ref.extractall(data_dir) - - # start with a gray image with a little noise - img_noise = np.random.uniform(size=(224,224,3)) + 100.0 - - model_fn = 'tensorflow_inception_graph.pb' - - # creating TensorFlow session and loading the model - graph = tf.Graph() - sess = tf.InteractiveSession(graph=graph) - with tf.gfile.FastGFile(os.path.join(data_dir, model_fn), 'rb') as f: - graph_def = tf.GraphDef() - graph_def.ParseFromString(f.read()) - t_input = tf.placeholder(np.float32, name='input') # define the input tensor - imagenet_mean = 117.0 - t_preprocessed = tf.expand_dims(t_input-imagenet_mean, 0) - tf.import_graph_def(graph_def, {'input':t_preprocessed}) - - layers = [op.name for op in graph.get_operations() if op.type=='Conv2D' and 'import/' in op.name] - feature_nums = [int(graph.get_tensor_by_name(name+':0').get_shape()[-1]) for name in layers] - - print('Number of layers', len(layers)) - print('Total number of feature channels:', sum(feature_nums)) - - - # Helper functions for TF Graph visualization - #pylint: disable=unused-variable - def strip_consts(graph_def, max_const_size=32): - """Strip large constant values from graph_def.""" - strip_def = tf.GraphDef() - for n0 in graph_def.node: - n = strip_def.node.add() #pylint: disable=maybe-no-member - n.MergeFrom(n0) - if n.op == 'Const': - tensor = n.attr['value'].tensor - size = len(tensor.tensor_content) - if size > max_const_size: - tensor.tensor_content = ""%size - return strip_def - - def rename_nodes(graph_def, rename_func): - res_def = tf.GraphDef() - for n0 in graph_def.node: - n = res_def.node.add() #pylint: disable=maybe-no-member - n.MergeFrom(n0) - n.name = rename_func(n.name) - for i, s in enumerate(n.input): - n.input[i] = rename_func(s) if s[0]!='^' else '^'+rename_func(s[1:]) - return res_def - - def showarray(a): - a = np.uint8(np.clip(a, 0, 1)*255) - plt.imshow(a) - plt.show() - - def visstd(a, s=0.1): - '''Normalize the image range for visualization''' - return (a-a.mean())/max(a.std(), 1e-4)*s + 0.5 - - def T(layer): - '''Helper for getting layer output tensor''' - return graph.get_tensor_by_name("import/%s:0"%layer) - - def render_naive(t_obj, img0=img_noise, iter_n=20, step=1.0): - t_score = tf.reduce_mean(t_obj) # defining the optimization objective - t_grad = tf.gradients(t_score, t_input)[0] # behold the power of automatic differentiation! - - img = img0.copy() - for _ in range(iter_n): - g, _ = sess.run([t_grad, t_score], {t_input:img}) - # normalizing the gradient, so the same step size should work - g /= g.std()+1e-8 # for different layers and networks - img += g*step - showarray(visstd(img)) - - def tffunc(*argtypes): - '''Helper that transforms TF-graph generating function into a regular one. - See "resize" function below. - ''' - placeholders = list(map(tf.placeholder, argtypes)) - def wrap(f): - out = f(*placeholders) - def wrapper(*args, **kw): - return out.eval(dict(zip(placeholders, args)), session=kw.get('session')) - return wrapper - return wrap - - # Helper function that uses TF to resize an image - def resize(img, size): - img = tf.expand_dims(img, 0) - return tf.image.resize_bilinear(img, size)[0,:,:,:] - resize = tffunc(np.float32, np.int32)(resize) - - - def calc_grad_tiled(img, t_grad, tile_size=512): - '''Compute the value of tensor t_grad over the image in a tiled way. - Random shifts are applied to the image to blur tile boundaries over - multiple iterations.''' - sz = tile_size - h, w = img.shape[:2] - sx, sy = np.random.randint(sz, size=2) - img_shift = np.roll(np.roll(img, sx, 1), sy, 0) - grad = np.zeros_like(img) - for y in range(0, max(h-sz//2, sz),sz): - for x in range(0, max(w-sz//2, sz),sz): - sub = img_shift[y:y+sz,x:x+sz] - g = sess.run(t_grad, {t_input:sub}) - grad[y:y+sz,x:x+sz] = g - return np.roll(np.roll(grad, -sx, 1), -sy, 0) - - def render_multiscale(t_obj, img0=img_noise, iter_n=10, step=1.0, octave_n=3, octave_scale=1.4): - t_score = tf.reduce_mean(t_obj) # defining the optimization objective - t_grad = tf.gradients(t_score, t_input)[0] # behold the power of automatic differentiation! - - img = img0.copy() - for octave in range(octave_n): - if octave>0: - hw = np.float32(img.shape[:2])*octave_scale - img = resize(img, np.int32(hw)) - for _ in range(iter_n): - g = calc_grad_tiled(img, t_grad) - # normalizing the gradient, so the same step size should work - g /= g.std()+1e-8 # for different layers and networks - img += g*step - showarray(visstd(img)) - - def lap_split(img): - '''Split the image into lo and hi frequency components''' - with tf.name_scope('split'): - lo = tf.nn.conv2d(img, k5x5, [1,2,2,1], 'SAME') - lo2 = tf.nn.conv2d_transpose(lo, k5x5*4, tf.shape(img), [1,2,2,1]) - hi = img-lo2 - return lo, hi - - def lap_split_n(img, n): - '''Build Laplacian pyramid with n splits''' - levels = [] - for _ in range(n): - img, hi = lap_split(img) - levels.append(hi) - levels.append(img) - return levels[::-1] - - def lap_merge(levels): - '''Merge Laplacian pyramid''' - img = levels[0] - for hi in levels[1:]: - with tf.name_scope('merge'): - img = tf.nn.conv2d_transpose(img, k5x5*4, tf.shape(hi), [1,2,2,1]) + hi - return img - - def normalize_std(img, eps=1e-10): - '''Normalize image by making its standard deviation = 1.0''' - with tf.name_scope('normalize'): - std = tf.sqrt(tf.reduce_mean(tf.square(img))) - return img/tf.maximum(std, eps) - - def lap_normalize(img, scale_n=4): - '''Perform the Laplacian pyramid normalization.''' - img = tf.expand_dims(img,0) - tlevels = lap_split_n(img, scale_n) - tlevels = list(map(normalize_std, tlevels)) - out = lap_merge(tlevels) - return out[0,:,:,:] - - def render_lapnorm(t_obj, img0=img_noise, visfunc=visstd, - iter_n=10, step=1.0, octave_n=3, octave_scale=1.4, lap_n=4): - t_score = tf.reduce_mean(t_obj) # defining the optimization objective - t_grad = tf.gradients(t_score, t_input)[0] # behold the power of automatic differentiation! - # build the laplacian normalization graph - lap_norm_func = tffunc(np.float32)(partial(lap_normalize, scale_n=lap_n)) - - img = img0.copy() - for octave in range(octave_n): - if octave>0: - hw = np.float32(img.shape[:2])*octave_scale - img = resize(img, np.int32(hw)) - for _ in range(iter_n): - g = calc_grad_tiled(img, t_grad) - g = lap_norm_func(g) - img += g*step - showarray(visfunc(img)) - - def render_deepdream(t_obj, img0=img_noise, - iter_n=10, step=1.5, octave_n=4, octave_scale=1.4): - t_score = tf.reduce_mean(t_obj) # defining the optimization objective - t_grad = tf.gradients(t_score, t_input)[0] # behold the power of automatic differentiation! - - # split the image into a number of octaves - img = img0 - octaves = [] - for _ in range(octave_n-1): - hw = img.shape[:2] - lo = resize(img, np.int32(np.float32(hw)/octave_scale)) - hi = img-resize(lo, hw) - img = lo - octaves.append(hi) - - # generate details octave by octave - for octave in range(octave_n): - if octave>0: - hi = octaves[-octave] - img = resize(img, hi.shape[:2])+hi - for _ in range(iter_n): - g = calc_grad_tiled(img, t_grad) - img += g*(step / (np.abs(g).mean()+1e-7)) - showarray(img/255.0) - - # Picking some internal layer. Note that we use outputs before applying the ReLU nonlinearity - # to have non-zero gradients for features with negative initial activations. - layer = 'mixed4d_3x3_bottleneck_pre_relu' - channel = 139 # picking some feature channel to visualize - render_naive(T(layer)[:,:,:,channel]) - - render_multiscale(T(layer)[:,:,:,channel]) - - k = np.float32([1,4,6,4,1]) - k = np.outer(k, k) - k5x5 = k[:,:,None,None]/k.sum()*np.eye(3, dtype=np.float32) - - render_lapnorm(T(layer)[:,:,:,channel]) - - render_lapnorm(T(layer)[:,:,:,65]) - - render_lapnorm(T('mixed3b_1x1_pre_relu')[:,:,:,101]) - - render_lapnorm(T(layer)[:,:,:,65]+T(layer)[:,:,:,139], octave_n=4) - - - img0 = PIL.Image.open('pilatus800.jpg') - img0 = np.float32(img0) - showarray(img0/255.0) - - render_deepdream(tf.square(T('mixed4c')), img0) - - render_deepdream(T(layer)[:,:,:,139], img0) - - -if __name__ == '__main__': - main() diff --git a/tmp/detect_face_v1.m b/tmp/detect_face_v1.m deleted file mode 100644 index 4aeb66239..000000000 --- a/tmp/detect_face_v1.m +++ /dev/null @@ -1,253 +0,0 @@ -% MIT License -% -% Copyright (c) 2016 Kaipeng Zhang -% -% Permission is hereby granted, free of charge, to any person obtaining a copy -% of this software and associated documentation files (the "Software"), to deal -% in the Software without restriction, including without limitation the rights -% to use, copy, modify, merge, publish, distribute, sublicense, and/or sell -% copies of the Software, and to permit persons to whom the Software is -% furnished to do so, subject to the following conditions: -% -% The above copyright notice and this permission notice shall be included in all -% copies or substantial portions of the Software. -% -% THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR -% IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, -% FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE -% AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER -% LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, -% OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE -% SOFTWARE. - -function [total_boxes, points] = detect_face_v1(img,minsize,PNet,RNet,ONet,threshold,fastresize,factor) - %im: input image - %minsize: minimum of faces' size - %pnet, rnet, onet: caffemodel - %threshold: threshold=[th1 th2 th3], th1-3 are three steps's threshold - %fastresize: resize img from last scale (using in high-resolution images) if fastresize==true - factor_count=0; - total_boxes=[]; - points=[]; - h=size(img,1); - w=size(img,2); - minl=min([w h]); - img=single(img); - if fastresize - im_data=(single(img)-127.5)*0.0078125; - end - m=12/minsize; - minl=minl*m; - %creat scale pyramid - scales=[]; - while (minl>=12) - scales=[scales m*factor^(factor_count)]; - minl=minl*factor; - factor_count=factor_count+1; - end - %first stage - for j = 1:size(scales,2) - scale=scales(j); - hs=ceil(h*scale); - ws=ceil(w*scale); - if fastresize - im_data=imResample(im_data,[hs ws],'bilinear'); - else - im_data=(imResample(img,[hs ws],'bilinear')-127.5)*0.0078125; - end - PNet.blobs('data').reshape([hs ws 3 1]); - out=PNet.forward({im_data}); - boxes=generateBoundingBox(out{2}(:,:,2),out{1},scale,threshold(1)); - %inter-scale nms - pick=nms(boxes,0.5,'Union'); - boxes=boxes(pick,:); - if ~isempty(boxes) - total_boxes=[total_boxes;boxes]; - end - end - numbox=size(total_boxes,1); - if ~isempty(total_boxes) - pick=nms(total_boxes,0.7,'Union'); - total_boxes=total_boxes(pick,:); - regw=total_boxes(:,3)-total_boxes(:,1); - regh=total_boxes(:,4)-total_boxes(:,2); - total_boxes=[total_boxes(:,1)+total_boxes(:,6).*regw total_boxes(:,2)+total_boxes(:,7).*regh total_boxes(:,3)+total_boxes(:,8).*regw total_boxes(:,4)+total_boxes(:,9).*regh total_boxes(:,5)]; - total_boxes=rerec(total_boxes); - total_boxes(:,1:4)=fix(total_boxes(:,1:4)); - [dy edy dx edx y ey x ex tmpw tmph]=pad(total_boxes,w,h); - end - numbox=size(total_boxes,1); - if numbox>0 - %second stage - tempimg=zeros(24,24,3,numbox); - for k=1:numbox - tmp=zeros(tmph(k),tmpw(k),3); - tmp(dy(k):edy(k),dx(k):edx(k),:)=img(y(k):ey(k),x(k):ex(k),:); - if size(tmp,1)>0 && size(tmp,2)>0 || size(tmp,1)==0 && size(tmp,2)==0 - tempimg(:,:,:,k)=imResample(tmp,[24 24],'bilinear'); - else - total_boxes = []; - return; - end; - end - tempimg=(tempimg-127.5)*0.0078125; - RNet.blobs('data').reshape([24 24 3 numbox]); - out=RNet.forward({tempimg}); - score=squeeze(out{2}(2,:)); - pass=find(score>threshold(2)); - total_boxes=[total_boxes(pass,1:4) score(pass)']; - mv=out{1}(:,pass); - if size(total_boxes,1)>0 - pick=nms(total_boxes,0.7,'Union'); - total_boxes=total_boxes(pick,:); - total_boxes=bbreg(total_boxes,mv(:,pick)'); - total_boxes=rerec(total_boxes); - end - numbox=size(total_boxes,1); - if numbox>0 - %third stage - total_boxes=fix(total_boxes); - [dy edy dx edx y ey x ex tmpw tmph]=pad(total_boxes,w,h); - tempimg=zeros(48,48,3,numbox); - for k=1:numbox - tmp=zeros(tmph(k),tmpw(k),3); - tmp(dy(k):edy(k),dx(k):edx(k),:)=img(y(k):ey(k),x(k):ex(k),:); - if size(tmp,1)>0 && size(tmp,2)>0 || size(tmp,1)==0 && size(tmp,2)==0 - tempimg(:,:,:,k)=imResample(tmp,[48 48],'bilinear'); - else - total_boxes = []; - return; - end; - end - tempimg=(tempimg-127.5)*0.0078125; - ONet.blobs('data').reshape([48 48 3 numbox]); - out=ONet.forward({tempimg}); - score=squeeze(out{3}(2,:)); - points=out{2}; - pass=find(score>threshold(3)); - points=points(:,pass); - total_boxes=[total_boxes(pass,1:4) score(pass)']; - mv=out{1}(:,pass); - w=total_boxes(:,3)-total_boxes(:,1)+1; - h=total_boxes(:,4)-total_boxes(:,2)+1; - points(1:5,:)=repmat(w',[5 1]).*points(1:5,:)+repmat(total_boxes(:,1)',[5 1])-1; - points(6:10,:)=repmat(h',[5 1]).*points(6:10,:)+repmat(total_boxes(:,2)',[5 1])-1; - if size(total_boxes,1)>0 - total_boxes=bbreg(total_boxes,mv(:,:)'); - pick=nms(total_boxes,0.7,'Min'); - total_boxes=total_boxes(pick,:); - points=points(:,pick); - end - end - end -end - -function [boundingbox] = bbreg(boundingbox,reg) - %calibrate bouding boxes - if size(reg,2)==1 - reg=reshape(reg,[size(reg,3) size(reg,4)])'; - end - w=[boundingbox(:,3)-boundingbox(:,1)]+1; - h=[boundingbox(:,4)-boundingbox(:,2)]+1; - boundingbox(:,1:4)=[boundingbox(:,1)+reg(:,1).*w boundingbox(:,2)+reg(:,2).*h boundingbox(:,3)+reg(:,3).*w boundingbox(:,4)+reg(:,4).*h]; -end - -function [boundingbox reg] = generateBoundingBox(map,reg,scale,t) - %use heatmap to generate bounding boxes - stride=2; - cellsize=12; - boundingbox=[]; - map=map'; - dx1=reg(:,:,1)'; - dy1=reg(:,:,2)'; - dx2=reg(:,:,3)'; - dy2=reg(:,:,4)'; - [y x]=find(map>=t); - a=find(map>=t); - if size(y,1)==1 - y=y';x=x';score=map(a)';dx1=dx1';dy1=dy1';dx2=dx2';dy2=dy2'; - else - score=map(a); - end - reg=[dx1(a) dy1(a) dx2(a) dy2(a)]; - if isempty(reg) - reg=reshape([],[0 3]); - end - boundingbox=[y x]; - boundingbox=[fix((stride*(boundingbox-1)+1)/scale) fix((stride*(boundingbox-1)+cellsize-1+1)/scale) score reg]; -end - -function pick = nms(boxes,threshold,type) - %NMS - if isempty(boxes) - pick = []; - return; - end - x1 = boxes(:,1); - y1 = boxes(:,2); - x2 = boxes(:,3); - y2 = boxes(:,4); - s = boxes(:,5); - area = (x2-x1+1) .* (y2-y1+1); - [vals, I] = sort(s); - pick = s*0; - counter = 1; - while ~isempty(I) - last = length(I); - i = I(last); - pick(counter) = i; - counter = counter + 1; - xx1 = max(x1(i), x1(I(1:last-1))); - yy1 = max(y1(i), y1(I(1:last-1))); - xx2 = min(x2(i), x2(I(1:last-1))); - yy2 = min(y2(i), y2(I(1:last-1))); - w = max(0.0, xx2-xx1+1); - h = max(0.0, yy2-yy1+1); - inter = w.*h; - if strcmp(type,'Min') - o = inter ./ min(area(i),area(I(1:last-1))); - else - o = inter ./ (area(i) + area(I(1:last-1)) - inter); - end - I = I(find(o<=threshold)); - end - pick = pick(1:(counter-1)); -end - -function [dy edy dx edx y ey x ex tmpw tmph] = pad(total_boxes,w,h) - %compute the padding coordinates (pad the bounding boxes to square) - tmpw=total_boxes(:,3)-total_boxes(:,1)+1; - tmph=total_boxes(:,4)-total_boxes(:,2)+1; - numbox=size(total_boxes,1); - - dx=ones(numbox,1);dy=ones(numbox,1); - edx=tmpw;edy=tmph; - - x=total_boxes(:,1);y=total_boxes(:,2); - ex=total_boxes(:,3);ey=total_boxes(:,4); - - tmp=find(ex>w); - edx(tmp)=-ex(tmp)+w+tmpw(tmp);ex(tmp)=w; - - tmp=find(ey>h); - edy(tmp)=-ey(tmp)+h+tmph(tmp);ey(tmp)=h; - - tmp=find(x<1); - dx(tmp)=2-x(tmp);x(tmp)=1; - - tmp=find(y<1); - dy(tmp)=2-y(tmp);y(tmp)=1; -end - -function [bboxA] = rerec(bboxA) - %convert bboxA to square - bboxB=bboxA(:,1:4); - h=bboxA(:,4)-bboxA(:,2); - w=bboxA(:,3)-bboxA(:,1); - l=max([w h]')'; - bboxA(:,1)=bboxA(:,1)+w.*0.5-l.*0.5; - bboxA(:,2)=bboxA(:,2)+h.*0.5-l.*0.5; - bboxA(:,3:4)=bboxA(:,1:2)+repmat(l,[1 2]); -end - - diff --git a/tmp/detect_face_v2.m b/tmp/detect_face_v2.m deleted file mode 100644 index 3ed07b17e..000000000 --- a/tmp/detect_face_v2.m +++ /dev/null @@ -1,288 +0,0 @@ -% MIT License -% -% Copyright (c) 2016 Kaipeng Zhang -% -% Permission is hereby granted, free of charge, to any person obtaining a copy -% of this software and associated documentation files (the "Software"), to deal -% in the Software without restriction, including without limitation the rights -% to use, copy, modify, merge, publish, distribute, sublicense, and/or sell -% copies of the Software, and to permit persons to whom the Software is -% furnished to do so, subject to the following conditions: -% -% The above copyright notice and this permission notice shall be included in all -% copies or substantial portions of the Software. -% -% THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR -% IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, -% FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE -% AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER -% LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, -% OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE -% SOFTWARE. - -function [total_boxes, points] = detect_face_v2(img,minsize,PNet,RNet,ONet,LNet,threshold,fastresize,factor) - %im: input image - %minsize: minimum of faces' size - %pnet, rnet, onet: caffemodel - %threshold: threshold=[th1 th2 th3], th1-3 are three steps's threshold - %fastresize: resize img from last scale (using in high-resolution images) if fastresize==true - factor_count=0; - total_boxes=[]; - points=[]; - h=size(img,1); - w=size(img,2); - minl=min([w h]); - img=single(img); - if fastresize - im_data=(single(img)-127.5)*0.0078125; - end - m=12/minsize; - minl=minl*m; - %creat scale pyramid - scales=[]; - while (minl>=12) - scales=[scales m*factor^(factor_count)]; - minl=minl*factor; - factor_count=factor_count+1; - end - %first stage - for j = 1:size(scales,2) - scale=scales(j); - hs=ceil(h*scale); - ws=ceil(w*scale); - if fastresize - im_data=imResample(im_data,[hs ws],'bilinear'); - else - im_data=(imResample(img,[hs ws],'bilinear')-127.5)*0.0078125; - end - PNet.blobs('data').reshape([hs ws 3 1]); - out=PNet.forward({im_data}); - boxes=generateBoundingBox(out{2}(:,:,2),out{1},scale,threshold(1)); - %inter-scale nms - pick=nms(boxes,0.5,'Union'); - boxes=boxes(pick,:); - if ~isempty(boxes) - total_boxes=[total_boxes;boxes]; - end - end - numbox=size(total_boxes,1); - if ~isempty(total_boxes) - pick=nms(total_boxes,0.7,'Union'); - total_boxes=total_boxes(pick,:); - bbw=total_boxes(:,3)-total_boxes(:,1); - bbh=total_boxes(:,4)-total_boxes(:,2); - total_boxes=[total_boxes(:,1)+total_boxes(:,6).*bbw total_boxes(:,2)+total_boxes(:,7).*bbh total_boxes(:,3)+total_boxes(:,8).*bbw total_boxes(:,4)+total_boxes(:,9).*bbh total_boxes(:,5)]; - total_boxes=rerec(total_boxes); - total_boxes(:,1:4)=fix(total_boxes(:,1:4)); - [dy edy dx edx y ey x ex tmpw tmph]=pad(total_boxes,w,h); - end - numbox=size(total_boxes,1); - if numbox>0 - %second stage - tempimg=zeros(24,24,3,numbox); - for k=1:numbox - tmp=zeros(tmph(k),tmpw(k),3); - tmp(dy(k):edy(k),dx(k):edx(k),:)=img(y(k):ey(k),x(k):ex(k),:); - tempimg(:,:,:,k)=imResample(tmp,[24 24],'bilinear'); - end - tempimg=(tempimg-127.5)*0.0078125; - RNet.blobs('data').reshape([24 24 3 numbox]); - out=RNet.forward({tempimg}); - score=squeeze(out{2}(2,:)); - pass=find(score>threshold(2)); - total_boxes=[total_boxes(pass,1:4) score(pass)']; - mv=out{1}(:,pass); - if size(total_boxes,1)>0 - pick=nms(total_boxes,0.7,'Union'); - total_boxes=total_boxes(pick,:); - total_boxes=bbreg(total_boxes,mv(:,pick)'); - total_boxes=rerec(total_boxes); - end - numbox=size(total_boxes,1); - if numbox>0 - %third stage - total_boxes=fix(total_boxes); - [dy edy dx edx y ey x ex tmpw tmph]=pad(total_boxes,w,h); - tempimg=zeros(48,48,3,numbox); - for k=1:numbox - tmp=zeros(tmph(k),tmpw(k),3); - tmp(dy(k):edy(k),dx(k):edx(k),:)=img(y(k):ey(k),x(k):ex(k),:); - tempimg(:,:,:,k)=imResample(tmp,[48 48],'bilinear'); - end - tempimg=(tempimg-127.5)*0.0078125; - ONet.blobs('data').reshape([48 48 3 numbox]); - out=ONet.forward({tempimg}); - score=squeeze(out{3}(2,:)); - points=out{2}; - pass=find(score>threshold(3)); - points=points(:,pass); - total_boxes=[total_boxes(pass,1:4) score(pass)']; - mv=out{1}(:,pass); - bbw=total_boxes(:,3)-total_boxes(:,1)+1; - bbh=total_boxes(:,4)-total_boxes(:,2)+1; - points(1:5,:)=repmat(bbw',[5 1]).*points(1:5,:)+repmat(total_boxes(:,1)',[5 1])-1; - points(6:10,:)=repmat(bbh',[5 1]).*points(6:10,:)+repmat(total_boxes(:,2)',[5 1])-1; - if size(total_boxes,1)>0 - total_boxes=bbreg(total_boxes,mv(:,:)'); - pick=nms(total_boxes,0.7,'Min'); - total_boxes=total_boxes(pick,:); - points=points(:,pick); - end - end - numbox=size(total_boxes,1); - %extended stage - if numbox>0 - tempimg=zeros(24,24,15,numbox); - patchw=max([total_boxes(:,3)-total_boxes(:,1)+1 total_boxes(:,4)-total_boxes(:,2)+1]'); - patchw=fix(0.25*patchw); - tmp=find(mod(patchw,2)==1); - patchw(tmp)=patchw(tmp)+1; - pointx=ones(numbox,5); - pointy=ones(numbox,5); - for k=1:5 - tmp=[points(k,:);points(k+5,:)]; - x=fix(tmp(1,:)-0.5*patchw); - y=fix(tmp(2,:)-0.5*patchw); - [dy edy dx edx y ey x ex tmpw tmph]=pad([x' y' x'+patchw' y'+patchw'],w,h); - for j=1:numbox - tmpim=zeros(tmpw(j),tmpw(j),3); - tmpim(dy(j):edy(j),dx(j):edx(j),:)=img(y(j):ey(j),x(j):ex(j),:); - tempimg(:,:,(k-1)*3+1:(k-1)*3+3,j)=imResample(tmpim,[24 24],'bilinear'); - end - end - LNet.blobs('data').reshape([24 24 15 numbox]); - tempimg=(tempimg-127.5)*0.0078125; - out=LNet.forward({tempimg}); - score=squeeze(out{3}(2,:)); - for k=1:5 - tmp=[points(k,:);points(k+5,:)]; - %do not make a large movement - temp=find(abs(out{k}(1,:)-0.5)>0.35); - if ~isempty(temp) - l=length(temp); - out{k}(:,temp)=ones(2,l)*0.5; - end - temp=find(abs(out{k}(2,:)-0.5)>0.35); - if ~isempty(temp) - l=length(temp); - out{k}(:,temp)=ones(2,l)*0.5; - end - pointx(:,k)=(tmp(1,:)-0.5*patchw+out{k}(1,:).*patchw)'; - pointy(:,k)=(tmp(2,:)-0.5*patchw+out{k}(2,:).*patchw)'; - end - for j=1:numbox - points(:,j)=[pointx(j,:)';pointy(j,:)']; - end - end - end -end - -function [boundingbox] = bbreg(boundingbox,reg) - %calibrate bouding boxes - if size(reg,2)==1 - reg=reshape(reg,[size(reg,3) size(reg,4)])'; - end - w=[boundingbox(:,3)-boundingbox(:,1)]+1; - h=[boundingbox(:,4)-boundingbox(:,2)]+1; - boundingbox(:,1:4)=[boundingbox(:,1)+reg(:,1).*w boundingbox(:,2)+reg(:,2).*h boundingbox(:,3)+reg(:,3).*w boundingbox(:,4)+reg(:,4).*h]; -end - -function [boundingbox reg] = generateBoundingBox(map,reg,scale,t) - %use heatmap to generate bounding boxes - stride=2; - cellsize=12; - boundingbox=[]; - map=map'; - dx1=reg(:,:,1)'; - dy1=reg(:,:,2)'; - dx2=reg(:,:,3)'; - dy2=reg(:,:,4)'; - [y x]=find(map>=t); - a=find(map>=t); - if size(y,1)==1 - y=y';x=x';score=map(a)';dx1=dx1';dy1=dy1';dx2=dx2';dy2=dy2'; - else - score=map(a); - end - reg=[dx1(a) dy1(a) dx2(a) dy2(a)]; - if isempty(reg) - reg=reshape([],[0 3]); - end - boundingbox=[y x]; - boundingbox=[fix((stride*(boundingbox-1)+1)/scale) fix((stride*(boundingbox-1)+cellsize-1+1)/scale) score reg]; -end - -function pick = nms(boxes,threshold,type) - %NMS - if isempty(boxes) - pick = []; - return; - end - x1 = boxes(:,1); - y1 = boxes(:,2); - x2 = boxes(:,3); - y2 = boxes(:,4); - s = boxes(:,5); - area = (x2-x1+1) .* (y2-y1+1); - [vals, I] = sort(s); - pick = s*0; - counter = 1; - while ~isempty(I) - last = length(I); - i = I(last); - pick(counter) = i; - counter = counter + 1; - xx1 = max(x1(i), x1(I(1:last-1))); - yy1 = max(y1(i), y1(I(1:last-1))); - xx2 = min(x2(i), x2(I(1:last-1))); - yy2 = min(y2(i), y2(I(1:last-1))); - w = max(0.0, xx2-xx1+1); - h = max(0.0, yy2-yy1+1); - inter = w.*h; - if strcmp(type,'Min') - o = inter ./ min(area(i),area(I(1:last-1))); - else - o = inter ./ (area(i) + area(I(1:last-1)) - inter); - end - I = I(find(o<=threshold)); - end - pick = pick(1:(counter-1)); -end - -function [dy edy dx edx y ey x ex tmpw tmph] = pad(total_boxes,w,h) - %compute the padding coordinates (pad the bounding boxes to square) - tmpw=total_boxes(:,3)-total_boxes(:,1)+1; - tmph=total_boxes(:,4)-total_boxes(:,2)+1; - numbox=size(total_boxes,1); - - dx=ones(numbox,1);dy=ones(numbox,1); - edx=tmpw;edy=tmph; - - x=total_boxes(:,1);y=total_boxes(:,2); - ex=total_boxes(:,3);ey=total_boxes(:,4); - - tmp=find(ex>w); - edx(tmp)=-ex(tmp)+w+tmpw(tmp);ex(tmp)=w; - - tmp=find(ey>h); - edy(tmp)=-ey(tmp)+h+tmph(tmp);ey(tmp)=h; - - tmp=find(x<1); - dx(tmp)=2-x(tmp);x(tmp)=1; - - tmp=find(y<1); - dy(tmp)=2-y(tmp);y(tmp)=1; -end - -function [bboxA] = rerec(bboxA) - %convert bboxA to square - bboxB=bboxA(:,1:4); - h=bboxA(:,4)-bboxA(:,2); - w=bboxA(:,3)-bboxA(:,1); - l=max([w h]')'; - bboxA(:,1)=bboxA(:,1)+w.*0.5-l.*0.5; - bboxA(:,2)=bboxA(:,2)+h.*0.5-l.*0.5; - bboxA(:,3:4)=bboxA(:,1:2)+repmat(l,[1 2]); -end - - diff --git a/tmp/download_vgg_face_dataset.py b/tmp/download_vgg_face_dataset.py deleted file mode 100644 index e85d74248..000000000 --- a/tmp/download_vgg_face_dataset.py +++ /dev/null @@ -1,104 +0,0 @@ -"""Download the VGG face dataset from URLs given by http://www.robots.ox.ac.uk/~vgg/data/vgg_face/vgg_face_dataset.tar.gz -""" -# MIT License -# -# Copyright (c) 2016 David Sandberg -# -# Permission is hereby granted, free of charge, to any person obtaining a copy -# of this software and associated documentation files (the "Software"), to deal -# in the Software without restriction, including without limitation the rights -# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell -# copies of the Software, and to permit persons to whom the Software is -# furnished to do so, subject to the following conditions: -# -# The above copyright notice and this permission notice shall be included in all -# copies or substantial portions of the Software. -# -# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR -# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, -# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE -# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER -# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, -# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE -# SOFTWARE. - -from __future__ import absolute_import -from __future__ import division -from __future__ import print_function - -from scipy import misc -import numpy as np -from skimage import io -import sys -import argparse -import os -import socket -from urllib2 import HTTPError, URLError -from httplib import HTTPException - -def main(args): - socket.setdefaulttimeout(30) - textfile_names = os.listdir(args.dataset_descriptor) - for textfile_name in textfile_names: - if textfile_name.endswith('.txt'): - with open(os.path.join(args.dataset_descriptor, textfile_name), 'rt') as f: - lines = f.readlines() - dir_name = textfile_name.split('.')[0] - class_path = os.path.join(args.dataset_descriptor, dir_name) - if not os.path.exists(class_path): - os.makedirs(class_path) - for line in lines: - x = line.split(' ') - filename = x[0] - url = x[1] - box = np.rint(np.array(map(float, x[2:6]))) # x1,y1,x2,y2 - image_path = os.path.join(args.dataset_descriptor, dir_name, filename+'.'+args.output_format) - error_path = os.path.join(args.dataset_descriptor, dir_name, filename+'.err') - if not os.path.exists(image_path) and not os.path.exists(error_path): - try: - img = io.imread(url, mode='RGB') - except (HTTPException, HTTPError, URLError, IOError, ValueError, IndexError, OSError) as e: - error_message = '{}: {}'.format(url, e) - save_error_message_file(error_path, error_message) - else: - try: - if img.ndim == 2: - img = to_rgb(img) - if img.ndim != 3: - raise ValueError('Wrong number of image dimensions') - hist = np.histogram(img, 255, density=True) - if hist[0][0]>0.9 and hist[0][254]>0.9: - raise ValueError('Image is mainly black or white') - else: - # Crop image according to dataset descriptor - img_cropped = img[int(box[1]):int(box[3]),int(box[0]):int(box[2]),:] - # Scale to 256x256 - img_resized = misc.imresize(img_cropped, (args.image_size,args.image_size)) - # Save image as .png - misc.imsave(image_path, img_resized) - except ValueError as e: - error_message = '{}: {}'.format(url, e) - save_error_message_file(error_path, error_message) - -def save_error_message_file(filename, error_message): - print(error_message) - with open(filename, "w") as textfile: - textfile.write(error_message) - -def to_rgb(img): - w, h = img.shape - ret = np.empty((w, h, 3), dtype=np.uint8) - ret[:, :, 0] = ret[:, :, 1] = ret[:, :, 2] = img - return ret - -def parse_arguments(argv): - parser = argparse.ArgumentParser() - parser.add_argument('dataset_descriptor', type=str, - help='Directory containing the text files with the image URLs. Image files will also be placed in this directory.') - parser.add_argument('--output_format', type=str, help='Format of the output images', default='png', choices=['png', 'jpg']) - parser.add_argument('--image_size', type=int, - help='Image size (height, width) in pixels.', default=256) - return parser.parse_args(argv) - -if __name__ == '__main__': - main(parse_arguments(sys.argv[1:])) diff --git a/tmp/funnel_dataset.py b/tmp/funnel_dataset.py deleted file mode 100644 index a40ffc938..000000000 --- a/tmp/funnel_dataset.py +++ /dev/null @@ -1,96 +0,0 @@ -"""Performs face alignment and stores face thumbnails in the output directory.""" - -from __future__ import absolute_import -from __future__ import division -from __future__ import print_function - -from scipy import misc -import sys -import os -import argparse -import facenet -import subprocess -from contextlib import contextmanager -import tempfile -import shutil -import numpy as np - -@contextmanager -def TemporaryDirectory(): - name = tempfile.mkdtemp() - try: - yield name - finally: - shutil.rmtree(name) - - -def main(args): - funnel_cmd = 'funnelReal' - funnel_model = 'people.train' - - output_dir = os.path.expanduser(args.output_dir) - if not os.path.exists(output_dir): - os.makedirs(output_dir) - # Store some git revision info in a text file in the output directory - src_path,_ = os.path.split(os.path.realpath(__file__)) - facenet.store_revision_info(src_path, output_dir, ' '.join(sys.argv)) - dataset = facenet.get_dataset(args.input_dir) - np.random.shuffle(dataset) - # Scale the image such that the face fills the frame when cropped to crop_size - #scale = float(args.face_size) / args.image_size - with TemporaryDirectory() as tmp_dir: - for cls in dataset: - output_class_dir = os.path.join(output_dir, cls.name) - tmp_output_class_dir = os.path.join(tmp_dir, cls.name) - if not os.path.exists(output_class_dir) and not os.path.exists(tmp_output_class_dir): - print('Aligning class %s:' % cls.name) - tmp_filenames = [] - if not os.path.exists(tmp_output_class_dir): - os.makedirs(tmp_output_class_dir) - input_list_filename = os.path.join(tmp_dir, 'input_list.txt') - output_list_filename = os.path.join(tmp_dir, 'output_list.txt') - input_file = open(input_list_filename, 'w') - output_file = open(output_list_filename,'w') - for image_path in cls.image_paths: - filename = os.path.split(image_path)[1] - input_file.write(image_path+'\n') - output_filename = os.path.join(tmp_output_class_dir, filename) - output_file.write(output_filename+'\n') - tmp_filenames.append(output_filename) - input_file.close() - output_file.close() - cmd = args.funnel_dir+funnel_cmd + ' ' + input_list_filename + ' ' + args.funnel_dir+funnel_model + ' ' + output_list_filename - subprocess.call(cmd, shell=True) - - # Resize and crop images - if not os.path.exists(output_class_dir): - os.makedirs(output_class_dir) - scale = 1.0 - for tmp_filename in tmp_filenames: - img = misc.imread(tmp_filename) - img_scale = misc.imresize(img, scale) - sz1 = img.shape[1]/2 - sz2 = args.image_size/2 - img_crop = img_scale[int(sz1-sz2):int(sz1+sz2),int(sz1-sz2):int(sz1+sz2),:] - filename = os.path.splitext(os.path.split(tmp_filename)[1])[0] - output_filename = os.path.join(output_class_dir, filename+'.png') - print('Saving image %s' % output_filename) - misc.imsave(output_filename, img_crop) - - # Remove tmp directory with images - shutil.rmtree(tmp_output_class_dir) - -def parse_arguments(argv): - parser = argparse.ArgumentParser() - - parser.add_argument('input_dir', type=str, help='Directory with unaligned images.') - parser.add_argument('output_dir', type=str, help='Directory with aligned face thumbnails.') - parser.add_argument('funnel_dir', type=str, help='Directory containing the funnelReal binary and the people.train model file') - parser.add_argument('--image_size', type=int, - help='Image size (height, width) in pixels.', default=110) - parser.add_argument('--face_size', type=int, - help='Size of the face thumbnail (height, width) in pixels.', default=96) - return parser.parse_args(argv) - -if __name__ == '__main__': - main(parse_arguments(sys.argv[1:])) diff --git a/tmp/invariance_test.txt b/tmp/invariance_test.txt deleted file mode 100644 index 3ab0616e8..000000000 --- a/tmp/invariance_test.txt +++ /dev/null @@ -1,86 +0,0 @@ -Accuracy: 0.860±0.009 -Accuracy: 0.861±0.008 -Accuracy: 0.870±0.011 -Accuracy: 0.885±0.012 -Accuracy: 0.896±0.013 -Accuracy: 0.899±0.015 -Accuracy: 0.887±0.011 -Accuracy: 0.885±0.011 -Accuracy: 0.890±0.011 -Accuracy: 0.910±0.014 -Accuracy: 0.918±0.012 -Accuracy: 0.904±0.013 -Accuracy: 0.895±0.012 -Accuracy: 0.884±0.018 -Accuracy: 0.891±0.012 -Accuracy: 0.891±0.008 -Accuracy: 0.889±0.009 -Accuracy: 0.871±0.012 -Accuracy: 0.844±0.012 -Accuracy: 0.835±0.016 -Accuracy: 0.823±0.015 -Hoffset: Accuracy: --30.0000 0.8600 --27.0000 0.8607 --24.0000 0.8697 --21.0000 0.8848 --18.0000 0.8963 --15.0000 0.8992 --12.0000 0.8865 --9.0000 0.8853 --6.0000 0.8900 --3.0000 0.9097 -0.0000 0.9182 -3.0000 0.9040 -6.0000 0.8953 -9.0000 0.8843 -12.0000 0.8905 -15.0000 0.8913 -18.0000 0.8888 -21.0000 0.8708 -24.0000 0.8440 -27.0000 0.8348 -30.0000 0.8233 -Accuracy: 0.823±0.014 -Accuracy: 0.800±0.010 -Accuracy: 0.800±0.015 -Accuracy: 0.818±0.018 -Accuracy: 0.852±0.012 -Accuracy: 0.864±0.011 -Accuracy: 0.844±0.016 -Accuracy: 0.851±0.014 -Accuracy: 0.875±0.012 -Accuracy: 0.898±0.010 -Accuracy: 0.918±0.012 -Accuracy: 0.886±0.015 -Accuracy: 0.849±0.012 -Accuracy: 0.812±0.015 -Accuracy: 0.780±0.012 -Accuracy: 0.787±0.012 -Accuracy: 0.755±0.016 -Accuracy: 0.709±0.010 -Accuracy: 0.676±0.017 -Accuracy: 0.653±0.011 -Accuracy: 0.648±0.016 -Voffset: Accuracy: --30.0000 0.8230 --27.0000 0.7997 --24.0000 0.7995 --21.0000 0.8183 --18.0000 0.8523 --15.0000 0.8638 --12.0000 0.8442 --9.0000 0.8507 --6.0000 0.8755 --3.0000 0.8982 -0.0000 0.9182 -3.0000 0.8862 -6.0000 0.8493 -9.0000 0.8118 -12.0000 0.7803 -15.0000 0.7868 -18.0000 0.7548 -21.0000 0.7093 -24.0000 0.6763 -27.0000 0.6533 -30.0000 0.6483 diff --git a/tmp/mnist_center_loss.py b/tmp/mnist_center_loss.py deleted file mode 100644 index 1122f7af2..000000000 --- a/tmp/mnist_center_loss.py +++ /dev/null @@ -1,404 +0,0 @@ -# Copyright 2015 The TensorFlow Authors. All Rights Reserved. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -# ============================================================================== - -"""Simple, end-to-end, LeNet-5-like convolutional MNIST model example. -This should achieve a test error of 0.7%. Please keep this model as simple and -linear as possible, it is meant as a tutorial for simple convolutional models. -Run with --self_test on the command line to execute a short self-test. -""" -from __future__ import absolute_import -from __future__ import division -from __future__ import print_function - -import gzip -import os -import sys -import time - -from six.moves import urllib # @UnresolvedImport -import tensorflow as tf -import numpy as np -import matplotlib.pyplot as plt -from tensorflow.python.ops import control_flow_ops -import facenet -from six.moves import xrange - -SOURCE_URL = 'http://yann.lecun.com/exdb/mnist/' -WORK_DIRECTORY = 'data' -IMAGE_SIZE = 28 -NUM_CHANNELS = 1 -PIXEL_DEPTH = 255 -NUM_LABELS = 10 -VALIDATION_SIZE = 5000 # Size of the validation set. -SEED = 66478 # Set to None for random seed. -BATCH_SIZE = 64 -NUM_EPOCHS = 10 -EVAL_BATCH_SIZE = 64 -EVAL_FREQUENCY = 100 # Number of steps between evaluations. - - -tf.app.flags.DEFINE_boolean("self_test", False, "True if running a self test.") -tf.app.flags.DEFINE_boolean('use_fp16', False, - "Use half floats instead of full floats if True.") -FLAGS = tf.app.flags.FLAGS - - -def data_type(): - """Return the type of the activations, weights, and placeholder variables.""" - if FLAGS.use_fp16: - return tf.float16 - else: - return tf.float32 - - -def maybe_download(filename): - """Download the data from Yann's website, unless it's already here.""" - if not tf.gfile.Exists(WORK_DIRECTORY): - tf.gfile.MakeDirs(WORK_DIRECTORY) - filepath = os.path.join(WORK_DIRECTORY, filename) - if not tf.gfile.Exists(filepath): - filepath, _ = urllib.request.urlretrieve(SOURCE_URL + filename, filepath) - with tf.gfile.GFile(filepath) as f: - size = f.size() - print('Successfully downloaded', filename, size, 'bytes.') - return filepath - - -def extract_data(filename, num_images): - """Extract the images into a 4D tensor [image index, y, x, channels]. - Values are rescaled from [0, 255] down to [-0.5, 0.5]. - """ - print('Extracting', filename) - with gzip.open(filename) as bytestream: - bytestream.read(16) - buf = bytestream.read(IMAGE_SIZE * IMAGE_SIZE * num_images * NUM_CHANNELS) - data = np.frombuffer(buf, dtype=np.uint8).astype(np.float32) - data = (data - (PIXEL_DEPTH / 2.0)) / PIXEL_DEPTH - data = data.reshape(num_images, IMAGE_SIZE, IMAGE_SIZE, NUM_CHANNELS) - return data - - -def extract_labels(filename, num_images): - """Extract the labels into a vector of int64 label IDs.""" - print('Extracting', filename) - with gzip.open(filename) as bytestream: - bytestream.read(8) - buf = bytestream.read(1 * num_images) - labels = np.frombuffer(buf, dtype=np.uint8).astype(np.int64) - return labels - - -def fake_data(num_images): - """Generate a fake dataset that matches the dimensions of MNIST.""" - data = np.ndarray( - shape=(num_images, IMAGE_SIZE, IMAGE_SIZE, NUM_CHANNELS), - dtype=np.float32) - labels = np.zeros(shape=(num_images,), dtype=np.int64) - for image in range(num_images): - label = image % 2 - data[image, :, :, 0] = label - 0.5 - labels[image] = label - return data, labels - - -def error_rate(predictions, labels): - """Return the error rate based on dense predictions and sparse labels.""" - return 100.0 - ( - 100.0 * - np.sum(np.argmax(predictions, 1) == labels) / - predictions.shape[0]) - - -def main(argv=None): # pylint: disable=unused-argument - if FLAGS.self_test: - print('Running self-test.') - train_data, train_labels = fake_data(256) - validation_data, validation_labels = fake_data(EVAL_BATCH_SIZE) - test_data, test_labels = fake_data(EVAL_BATCH_SIZE) - num_epochs = 1 - else: - # Get the data. - train_data_filename = maybe_download('train-images-idx3-ubyte.gz') - train_labels_filename = maybe_download('train-labels-idx1-ubyte.gz') - test_data_filename = maybe_download('t10k-images-idx3-ubyte.gz') - test_labels_filename = maybe_download('t10k-labels-idx1-ubyte.gz') - - # Extract it into numpy arrays. - train_data = extract_data(train_data_filename, 60000) - train_labels = extract_labels(train_labels_filename, 60000) - test_data = extract_data(test_data_filename, 10000) - test_labels = extract_labels(test_labels_filename, 10000) - - # Generate a validation set. - validation_data = train_data[:VALIDATION_SIZE, ...] - validation_labels = train_labels[:VALIDATION_SIZE] - train_data = train_data[VALIDATION_SIZE:, ...] - train_labels = train_labels[VALIDATION_SIZE:] - num_epochs = NUM_EPOCHS - train_size = train_labels.shape[0] - - # This is where training samples and labels are fed to the graph. - # These placeholder nodes will be fed a batch of training data at each - # training step using the {feed_dict} argument to the Run() call below. - train_data_node = tf.placeholder( - data_type(), - shape=(BATCH_SIZE, IMAGE_SIZE, IMAGE_SIZE, NUM_CHANNELS)) - train_labels_node = tf.placeholder(tf.int64, shape=(BATCH_SIZE,)) - eval_data = tf.placeholder( - data_type(), - shape=(EVAL_BATCH_SIZE, IMAGE_SIZE, IMAGE_SIZE, NUM_CHANNELS)) - - # The variables below hold all the trainable weights. They are passed an - # initial value which will be assigned when we call: - # {tf.global_variables_initializer().run()} - conv1_weights = tf.Variable( - tf.truncated_normal([5, 5, NUM_CHANNELS, 32], # 5x5 filter, depth 32. - stddev=0.1, - seed=SEED, dtype=data_type())) - conv1_biases = tf.Variable(tf.zeros([32], dtype=data_type())) - conv2_weights = tf.Variable(tf.truncated_normal( - [5, 5, 32, 64], stddev=0.1, - seed=SEED, dtype=data_type())) - conv2_biases = tf.Variable(tf.constant(0.1, shape=[64], dtype=data_type())) - fc1_weights = tf.Variable( # fully connected, depth 512. - tf.truncated_normal([IMAGE_SIZE // 4 * IMAGE_SIZE // 4 * 64, 512], - stddev=0.1, - seed=SEED, - dtype=data_type())) - fc1_biases = tf.Variable(tf.constant(0.1, shape=[512], dtype=data_type())) - fc1p_weights = tf.Variable( # fully connected, depth 512. - tf.truncated_normal([512, 2], - stddev=0.1, - seed=SEED, - dtype=data_type())) - fc1p_biases = tf.Variable(tf.constant(0.1, shape=[2], dtype=data_type())) - fc2_weights = tf.Variable(tf.truncated_normal([2, NUM_LABELS], - stddev=0.1, - seed=SEED, - dtype=data_type())) - fc2_biases = tf.Variable(tf.constant( - 0.1, shape=[NUM_LABELS], dtype=data_type())) - - def batch_norm(x, phase_train): #pylint: disable=unused-variable - """ - Batch normalization on convolutional maps. - Args: - x: Tensor, 4D BHWD input maps - n_out: integer, depth of input maps - phase_train: boolean tf.Variable, true indicates training phase - scope: string, variable scope - affn: whether to affn-transform outputs - Return: - normed: batch-normalized maps - Ref: http://stackoverflow.com/questions/33949786/how-could-i-use-batch-normalization-in-tensorflow/33950177 - """ - name = 'batch_norm' - with tf.variable_scope(name): - phase_train = tf.convert_to_tensor(phase_train, dtype=tf.bool) - n_out = int(x.get_shape()[-1]) - beta = tf.Variable(tf.constant(0.0, shape=[n_out], dtype=x.dtype), - name=name+'/beta', trainable=True, dtype=x.dtype) - gamma = tf.Variable(tf.constant(1.0, shape=[n_out], dtype=x.dtype), - name=name+'/gamma', trainable=True, dtype=x.dtype) - - batch_mean, batch_var = tf.nn.moments(x, [0], name='moments') - ema = tf.train.ExponentialMovingAverage(decay=0.9) - def mean_var_with_update(): - ema_apply_op = ema.apply([batch_mean, batch_var]) - with tf.control_dependencies([ema_apply_op]): - return tf.identity(batch_mean), tf.identity(batch_var) - mean, var = control_flow_ops.cond(phase_train, - mean_var_with_update, - lambda: (ema.average(batch_mean), ema.average(batch_var))) - normed = tf.nn.batch_normalization(x, mean, var, beta, gamma, 1e-3) - return normed - - - # We will replicate the model structure for the training subgraph, as well - # as the evaluation subgraphs, while sharing the trainable parameters. - def model(data, train=False): - """The Model definition.""" - # 2D convolution, with 'SAME' padding (i.e. the output feature map has - # the same size as the input). Note that {strides} is a 4D array whose - # shape matches the data layout: [image index, y, x, depth]. - conv = tf.nn.conv2d(data, - conv1_weights, - strides=[1, 1, 1, 1], - padding='SAME') - # Bias and rectified linear non-linearity. - relu = tf.nn.relu(tf.nn.bias_add(conv, conv1_biases)) - # Max pooling. The kernel size spec {ksize} also follows the layout of - # the data. Here we have a pooling window of 2, and a stride of 2. - pool = tf.nn.max_pool(relu, - ksize=[1, 2, 2, 1], - strides=[1, 2, 2, 1], - padding='SAME') - conv = tf.nn.conv2d(pool, - conv2_weights, - strides=[1, 1, 1, 1], - padding='SAME') - relu = tf.nn.relu(tf.nn.bias_add(conv, conv2_biases)) - pool = tf.nn.max_pool(relu, - ksize=[1, 2, 2, 1], - strides=[1, 2, 2, 1], - padding='SAME') - # Reshape the feature map cuboid into a 2D matrix to feed it to the - # fully connected layers. - pool_shape = pool.get_shape().as_list() #pylint: disable=no-member - reshape = tf.reshape( - pool, - [pool_shape[0], pool_shape[1] * pool_shape[2] * pool_shape[3]]) - # Fully connected layer. Note that the '+' operation automatically - # broadcasts the biases. - hidden = tf.nn.relu(tf.matmul(reshape, fc1_weights) + fc1_biases) - # Add a 50% dropout during training only. Dropout also scales - # activations such that no rescaling is needed at evaluation time. - if train: - hidden = tf.nn.dropout(hidden, 0.5, seed=SEED) - - hidden = tf.matmul(hidden, fc1p_weights) + fc1p_biases - - return tf.nn.relu(tf.matmul(hidden, fc2_weights) + fc2_biases), hidden - - # Training computation: logits + cross-entropy loss. - logits, hidden = model(train_data_node, True) - #logits = batch_norm(logits, True) - xent_loss = tf.reduce_mean(tf.nn.sparse_softmax_cross_entropy_with_logits( - logits, train_labels_node)) - beta = 1e-3 - #center_loss, update_centers = center_loss_op(hidden, train_labels_node) - center_loss, _ = facenet.center_loss(hidden, train_labels_node, 0.95, NUM_LABELS) - loss = xent_loss + beta * center_loss - - # L2 regularization for the fully connected parameters. - regularizers = (tf.nn.l2_loss(fc1_weights) + tf.nn.l2_loss(fc1_biases) + - tf.nn.l2_loss(fc2_weights) + tf.nn.l2_loss(fc2_biases)) - # Add the regularization term to the loss. - loss += 5e-4 * regularizers - - # Optimizer: set up a variable that's incremented once per batch and - # controls the learning rate decay. - batch = tf.Variable(0, dtype=data_type()) - # Decay once per epoch, using an exponential schedule starting at 0.01. - learning_rate = tf.train.exponential_decay( - 0.01, # Base learning rate. - batch * BATCH_SIZE, # Current index into the dataset. - train_size, # Decay step. - 0.95, # Decay rate. - staircase=True) - # Use simple momentum for the optimization. - optimizer = tf.train.MomentumOptimizer(learning_rate, - 0.9).minimize(loss, - global_step=batch) - - # Predictions for the current training minibatch. - train_prediction = tf.nn.softmax(logits) - - # Predictions for the test and validation, which we'll compute less often. - eval_logits, eval_embeddings = model(eval_data) - eval_prediction = tf.nn.softmax(eval_logits) - - # Small utility function to evaluate a dataset by feeding batches of data to - # {eval_data} and pulling the results from {eval_predictions}. - # Saves memory and enables this to run on smaller GPUs. - def eval_in_batches(data, sess): - """Get all predictions for a dataset by running it in small batches.""" - size = data.shape[0] - if size < EVAL_BATCH_SIZE: - raise ValueError("batch size for evals larger than dataset: %d" % size) - predictions = np.ndarray(shape=(size, NUM_LABELS), dtype=np.float32) - for begin in xrange(0, size, EVAL_BATCH_SIZE): - end = begin + EVAL_BATCH_SIZE - if end <= size: - predictions[begin:end, :] = sess.run( - eval_prediction, - feed_dict={eval_data: data[begin:end, ...]}) - else: - batch_predictions = sess.run( - eval_prediction, - feed_dict={eval_data: data[-EVAL_BATCH_SIZE:, ...]}) - predictions[begin:, :] = batch_predictions[begin - size:, :] - return predictions - - def calculate_embeddings(data, sess): - """Get all predictions for a dataset by running it in small batches.""" - size = data.shape[0] - if size < EVAL_BATCH_SIZE: - raise ValueError("batch size for evals larger than dataset: %d" % size) - predictions = np.ndarray(shape=(size, 2), dtype=np.float32) - for begin in xrange(0, size, EVAL_BATCH_SIZE): - end = begin + EVAL_BATCH_SIZE - if end <= size: - predictions[begin:end, :] = sess.run( - eval_embeddings, - feed_dict={eval_data: data[begin:end, ...]}) - else: - batch_predictions = sess.run( - eval_embeddings, - feed_dict={eval_data: data[-EVAL_BATCH_SIZE:, ...]}) - predictions[begin:, :] = batch_predictions[begin - size:, :] - return predictions - - # Create a local session to run the training. - start_time = time.time() - with tf.Session() as sess: - # Run all the initializers to prepare the trainable parameters. - tf.global_variables_initializer().run() #pylint: disable=no-member - print('Initialized!') - # Loop through training steps. - for step in xrange(int(num_epochs * train_size) // BATCH_SIZE): - # Compute the offset of the current minibatch in the data. - # Note that we could use better randomization across epochs. - offset = (step * BATCH_SIZE) % (train_size - BATCH_SIZE) - batch_data = train_data[offset:(offset + BATCH_SIZE), ...] - batch_labels = train_labels[offset:(offset + BATCH_SIZE)] - # This dictionary maps the batch data (as a numpy array) to the - # node in the graph it should be fed to. - feed_dict = {train_data_node: batch_data, - train_labels_node: batch_labels} - # Run the graph and fetch some of the nodes. - #_, l, lr, predictions = sess.run([optimizer, loss, learning_rate, train_prediction], feed_dict=feed_dict) - _, cl, l, lr, predictions = sess.run([optimizer, center_loss, loss, learning_rate, train_prediction], feed_dict=feed_dict) - if step % EVAL_FREQUENCY == 0: - elapsed_time = time.time() - start_time - start_time = time.time() - print('Step %d (epoch %.2f), %.1f ms' % - (step, float(step) * BATCH_SIZE / train_size, - 1000 * elapsed_time / EVAL_FREQUENCY)) - print('Minibatch loss: %.3f %.3f, learning rate: %.6f' % (l, cl*beta, lr)) - print('Minibatch error: %.1f%%' % error_rate(predictions, batch_labels)) - print('Validation error: %.1f%%' % error_rate( - eval_in_batches(validation_data, sess), validation_labels)) - sys.stdout.flush() - # Finally print the result! - test_error = error_rate(eval_in_batches(test_data, sess), test_labels) - print('Test error: %.1f%%' % test_error) - if FLAGS.self_test: - print('test_error', test_error) - assert test_error == 0.0, 'expected 0.0 test_error, got %.2f' % ( - test_error,) - - train_embeddings = calculate_embeddings(train_data, sess) - - color_list = ['b', 'g', 'r', 'c', 'm', 'y', 'k', 'b', 'g', 'r', 'c' ] - plt.figure(1) - for n in range(0,10): - idx = np.where(train_labels[0:10000]==n) - plt.plot(train_embeddings[idx,0], train_embeddings[idx,1], color_list[n]+'.') - plt.show() - - -if __name__ == '__main__': - tf.app.run() diff --git a/tmp/mnist_noise_labels.py b/tmp/mnist_noise_labels.py deleted file mode 100644 index d24e9a342..000000000 --- a/tmp/mnist_noise_labels.py +++ /dev/null @@ -1,347 +0,0 @@ -# Copyright 2015 The TensorFlow Authors. All Rights Reserved. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -# ============================================================================== - -"""Simple, end-to-end, LeNet-5-like convolutional MNIST model example. -This should achieve a test error of 0.7%. Please keep this model as simple and -linear as possible, it is meant as a tutorial for simple convolutional models. -Run with --self_test on the command line to execute a short self-test. -""" -from __future__ import absolute_import -from __future__ import division -from __future__ import print_function - -import gzip -import os -import sys -import time - -from six.moves import urllib # @UnresolvedImport -import tensorflow as tf -import numpy as np -from six.moves import xrange - -SOURCE_URL = 'http://yann.lecun.com/exdb/mnist/' -WORK_DIRECTORY = 'data' -IMAGE_SIZE = 28 -NUM_CHANNELS = 1 -PIXEL_DEPTH = 255 -NUM_LABELS = 10 -VALIDATION_SIZE = 5000 # Size of the validation set. -SEED = 66478 # Set to None for random seed. -BATCH_SIZE = 64 -NUM_EPOCHS = 10 -EVAL_BATCH_SIZE = 64 -EVAL_FREQUENCY = 100 # Number of steps between evaluations. -NOISE_FACTOR = 0.2 -BETA = 0.8 - - -tf.app.flags.DEFINE_boolean("self_test", False, "True if running a self test.") -tf.app.flags.DEFINE_boolean('use_fp16', False, - "Use half floats instead of full floats if True.") -FLAGS = tf.app.flags.FLAGS - - -def data_type(): - """Return the type of the activations, weights, and placeholder variables.""" - if FLAGS.use_fp16: - return tf.float16 - else: - return tf.float32 - - -def maybe_download(filename): - """Download the data from Yann's website, unless it's already here.""" - if not tf.gfile.Exists(WORK_DIRECTORY): - tf.gfile.MakeDirs(WORK_DIRECTORY) - filepath = os.path.join(WORK_DIRECTORY, filename) - if not tf.gfile.Exists(filepath): - filepath, _ = urllib.request.urlretrieve(SOURCE_URL + filename, filepath) - with tf.gfile.GFile(filepath) as f: - size = f.size() - print('Successfully downloaded', filename, size, 'bytes.') - return filepath - - -def extract_data(filename, num_images): - """Extract the images into a 4D tensor [image index, y, x, channels]. - Values are rescaled from [0, 255] down to [-0.5, 0.5]. - """ - print('Extracting', filename) - with gzip.open(filename) as bytestream: - bytestream.read(16) - buf = bytestream.read(IMAGE_SIZE * IMAGE_SIZE * num_images * NUM_CHANNELS) - data = np.frombuffer(buf, dtype=np.uint8).astype(np.float32) - data = (data - (PIXEL_DEPTH / 2.0)) / PIXEL_DEPTH - data = data.reshape(num_images, IMAGE_SIZE, IMAGE_SIZE, NUM_CHANNELS) - return data - - -def extract_labels(filename, num_images): - """Extract the labels into a vector of int64 label IDs.""" - print('Extracting', filename) - with gzip.open(filename) as bytestream: - bytestream.read(8) - buf = bytestream.read(1 * num_images) - labels = np.frombuffer(buf, dtype=np.uint8).astype(np.int64) - return labels - - -def fake_data(num_images): - """Generate a fake dataset that matches the dimensions of MNIST.""" - data = np.ndarray( - shape=(num_images, IMAGE_SIZE, IMAGE_SIZE, NUM_CHANNELS), - dtype=np.float32) - labels = np.zeros(shape=(num_images,), dtype=np.int64) - for image in range(num_images): - label = image % 2 - data[image, :, :, 0] = label - 0.5 - labels[image] = label - return data, labels - - -def error_rate(predictions, labels): - """Return the error rate based on dense predictions and sparse labels.""" - return 100.0 - ( - 100.0 * - np.sum(np.argmax(predictions, 1) == labels) / - predictions.shape[0]) - - -def main(argv=None): # pylint: disable=unused-argument - if FLAGS.self_test: - print('Running self-test.') - train_data, train_labels = fake_data(256) - validation_data, validation_labels = fake_data(EVAL_BATCH_SIZE) - test_data, test_labels = fake_data(EVAL_BATCH_SIZE) - num_epochs = 1 - else: - # Get the data. - train_data_filename = maybe_download('train-images-idx3-ubyte.gz') - train_labels_filename = maybe_download('train-labels-idx1-ubyte.gz') - test_data_filename = maybe_download('t10k-images-idx3-ubyte.gz') - test_labels_filename = maybe_download('t10k-labels-idx1-ubyte.gz') - - # Extract it into numpy arrays. - train_data = extract_data(train_data_filename, 60000) - train_labels = extract_labels(train_labels_filename, 60000) - test_data = extract_data(test_data_filename, 10000) - test_labels = extract_labels(test_labels_filename, 10000) - - # Generate a validation set. - validation_data = train_data[:VALIDATION_SIZE, ...] - validation_labels = train_labels[:VALIDATION_SIZE] - train_data = train_data[VALIDATION_SIZE:, ...] - train_labels = train_labels[VALIDATION_SIZE:] - nrof_training_examples = train_labels.shape[0] - nrof_changed_labels = int(nrof_training_examples*NOISE_FACTOR) - shuf = np.arange(0,nrof_training_examples) - np.random.shuffle(shuf) - change_idx = shuf[0:nrof_changed_labels] - train_labels[change_idx] = (train_labels[change_idx] + np.random.randint(1,9,size=(nrof_changed_labels,))) % NUM_LABELS - num_epochs = NUM_EPOCHS - train_size = train_labels.shape[0] - - # This is where training samples and labels are fed to the graph. - # These placeholder nodes will be fed a batch of training data at each - # training step using the {feed_dict} argument to the Run() call below. - train_data_node = tf.placeholder( - data_type(), - shape=(BATCH_SIZE, IMAGE_SIZE, IMAGE_SIZE, NUM_CHANNELS)) - train_labels_node = tf.placeholder(tf.int64, shape=(BATCH_SIZE,)) - eval_data = tf.placeholder( - data_type(), - shape=(EVAL_BATCH_SIZE, IMAGE_SIZE, IMAGE_SIZE, NUM_CHANNELS)) - - # The variables below hold all the trainable weights. They are passed an - # initial value which will be assigned when we call: - # {tf.global_variables_initializer().run()} - conv1_weights = tf.Variable( - tf.truncated_normal([5, 5, NUM_CHANNELS, 32], # 5x5 filter, depth 32. - stddev=0.1, - seed=SEED, dtype=data_type())) - conv1_biases = tf.Variable(tf.zeros([32], dtype=data_type())) - conv2_weights = tf.Variable(tf.truncated_normal( - [5, 5, 32, 64], stddev=0.1, - seed=SEED, dtype=data_type())) - conv2_biases = tf.Variable(tf.constant(0.1, shape=[64], dtype=data_type())) - fc1_weights = tf.Variable( # fully connected, depth 512. - tf.truncated_normal([IMAGE_SIZE // 4 * IMAGE_SIZE // 4 * 64, 512], - stddev=0.1, - seed=SEED, - dtype=data_type())) - fc1_biases = tf.Variable(tf.constant(0.1, shape=[512], dtype=data_type())) - fc2_weights = tf.Variable(tf.truncated_normal([512, NUM_LABELS], - stddev=0.1, - seed=SEED, - dtype=data_type())) - fc2_biases = tf.Variable(tf.constant( - 0.1, shape=[NUM_LABELS], dtype=data_type())) - - # We will replicate the model structure for the training subgraph, as well - # as the evaluation subgraphs, while sharing the trainable parameters. - def model(data, train=False): - """The Model definition.""" - # 2D convolution, with 'SAME' padding (i.e. the output feature map has - # the same size as the input). Note that {strides} is a 4D array whose - # shape matches the data layout: [image index, y, x, depth]. - conv = tf.nn.conv2d(data, - conv1_weights, - strides=[1, 1, 1, 1], - padding='SAME') - # Bias and rectified linear non-linearity. - relu = tf.nn.relu(tf.nn.bias_add(conv, conv1_biases)) - # Max pooling. The kernel size spec {ksize} also follows the layout of - # the data. Here we have a pooling window of 2, and a stride of 2. - pool = tf.nn.max_pool(relu, - ksize=[1, 2, 2, 1], - strides=[1, 2, 2, 1], - padding='SAME') - conv = tf.nn.conv2d(pool, - conv2_weights, - strides=[1, 1, 1, 1], - padding='SAME') - relu = tf.nn.relu(tf.nn.bias_add(conv, conv2_biases)) - pool = tf.nn.max_pool(relu, - ksize=[1, 2, 2, 1], - strides=[1, 2, 2, 1], - padding='SAME') - # Reshape the feature map cuboid into a 2D matrix to feed it to the - # fully connected layers. - pool_shape = pool.get_shape().as_list() #pylint: disable=no-member - reshape = tf.reshape( - pool, - [pool_shape[0], pool_shape[1] * pool_shape[2] * pool_shape[3]]) - # Fully connected layer. Note that the '+' operation automatically - # broadcasts the biases. - hidden = tf.nn.relu(tf.matmul(reshape, fc1_weights) + fc1_biases) - - # Add a 50% dropout during training only. Dropout also scales - # activations such that no rescaling is needed at evaluation time. - if train: - hidden = tf.nn.dropout(hidden, 0.5, seed=SEED) - return tf.matmul(hidden, fc2_weights) + fc2_biases - - # Training computation: logits + cross-entropy loss. - logits = model(train_data_node, True) - - # t: observed noisy labels - # q: estimated class probabilities (output from softmax) - # z: argmax of q - - t = tf.one_hot(train_labels_node, NUM_LABELS) - q = tf.nn.softmax(logits) - qqq = tf.arg_max(q, dimension=1) - z = tf.one_hot(qqq, NUM_LABELS) - #cross_entropy = -tf.reduce_sum(t*tf.log(q),reduction_indices=1) - cross_entropy = -tf.reduce_sum((BETA*t+(1-BETA)*z)*tf.log(q),reduction_indices=1) - - loss = tf.reduce_mean(cross_entropy) - -# loss = tf.reduce_mean(tf.nn.sparse_softmax_cross_entropy_with_logits( -# logits, train_labels_node)) - - # L2 regularization for the fully connected parameters. - regularizers = (tf.nn.l2_loss(fc1_weights) + tf.nn.l2_loss(fc1_biases) + - tf.nn.l2_loss(fc2_weights) + tf.nn.l2_loss(fc2_biases)) - # Add the regularization term to the loss. - loss += 5e-4 * regularizers - - # Optimizer: set up a variable that's incremented once per batch and - # controls the learning rate decay. - batch = tf.Variable(0, dtype=data_type()) - # Decay once per epoch, using an exponential schedule starting at 0.01. - learning_rate = tf.train.exponential_decay( - 0.01, # Base learning rate. - batch * BATCH_SIZE, # Current index into the dataset. - train_size, # Decay step. - 0.95, # Decay rate. - staircase=True) - # Use simple momentum for the optimization. - optimizer = tf.train.MomentumOptimizer(learning_rate, - 0.9).minimize(loss, - global_step=batch) - - # Predictions for the current training minibatch. - train_prediction = tf.nn.softmax(logits) - - # Predictions for the test and validation, which we'll compute less often. - eval_prediction = tf.nn.softmax(model(eval_data)) - - # Small utility function to evaluate a dataset by feeding batches of data to - # {eval_data} and pulling the results from {eval_predictions}. - # Saves memory and enables this to run on smaller GPUs. - def eval_in_batches(data, sess): - """Get all predictions for a dataset by running it in small batches.""" - size = data.shape[0] - if size < EVAL_BATCH_SIZE: - raise ValueError("batch size for evals larger than dataset: %d" % size) - predictions = np.ndarray(shape=(size, NUM_LABELS), dtype=np.float32) - for begin in xrange(0, size, EVAL_BATCH_SIZE): - end = begin + EVAL_BATCH_SIZE - if end <= size: - predictions[begin:end, :] = sess.run( - eval_prediction, - feed_dict={eval_data: data[begin:end, ...]}) - else: - batch_predictions = sess.run( - eval_prediction, - feed_dict={eval_data: data[-EVAL_BATCH_SIZE:, ...]}) - predictions[begin:, :] = batch_predictions[begin - size:, :] - return predictions - - # Create a local session to run the training. - start_time = time.time() - with tf.Session() as sess: - # Run all the initializers to prepare the trainable parameters. - tf.global_variables_initializer().run() #pylint: disable=no-member - print('Initialized!') - # Loop through training steps. - for step in xrange(int(num_epochs * train_size) // BATCH_SIZE): - # Compute the offset of the current minibatch in the data. - # Note that we could use better randomization across epochs. - offset = (step * BATCH_SIZE) % (train_size - BATCH_SIZE) - batch_data = train_data[offset:(offset + BATCH_SIZE), ...] - batch_labels = train_labels[offset:(offset + BATCH_SIZE)] - # This dictionary maps the batch data (as a numpy array) to the - # node in the graph it should be fed to. - feed_dict = {train_data_node: batch_data, - train_labels_node: batch_labels} - # Run the graph and fetch some of the nodes. - _, l, lr, predictions = sess.run( - [optimizer, loss, learning_rate, train_prediction], - feed_dict=feed_dict) - if step % EVAL_FREQUENCY == 0: - elapsed_time = time.time() - start_time - start_time = time.time() - print('Step %d (epoch %.2f), %.1f ms' % - (step, float(step) * BATCH_SIZE / train_size, - 1000 * elapsed_time / EVAL_FREQUENCY)) - print('Minibatch loss: %.3f, learning rate: %.6f' % (l, lr)) - print('Minibatch error: %.1f%%' % error_rate(predictions, batch_labels)) - print('Validation error: %.1f%%' % error_rate( - eval_in_batches(validation_data, sess), validation_labels)) - sys.stdout.flush() - # Finally print the result! - test_error = error_rate(eval_in_batches(test_data, sess), test_labels) - print('Test error: %.1f%%' % test_error) - if FLAGS.self_test: - print('test_error', test_error) - assert test_error == 0.0, 'expected 0.0 test_error, got %.2f' % ( - test_error,) - - -if __name__ == '__main__': - tf.app.run() diff --git a/tmp/mtcnn.py b/tmp/mtcnn.py deleted file mode 100644 index 867fe0d9d..000000000 --- a/tmp/mtcnn.py +++ /dev/null @@ -1,63 +0,0 @@ -# MIT License -# -# Copyright (c) 2016 David Sandberg -# -# Permission is hereby granted, free of charge, to any person obtaining a copy -# of this software and associated documentation files (the "Software"), to deal -# in the Software without restriction, including without limitation the rights -# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell -# copies of the Software, and to permit persons to whom the Software is -# furnished to do so, subject to the following conditions: -# -# The above copyright notice and this permission notice shall be included in all -# copies or substantial portions of the Software. -# -# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR -# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, -# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE -# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER -# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, -# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE -# SOFTWARE. - -from __future__ import absolute_import -from __future__ import division -from __future__ import print_function - -import tensorflow as tf -import align.detect_face -from scipy import misc - -with tf.Graph().as_default(): - - sess = tf.Session() - with sess.as_default(): - with tf.variable_scope('pnet'): - data = tf.placeholder(tf.float32, (None,None,None,3), 'input') - pnet = align.detect_face.PNet({'data':data}) - pnet.load('../../data/det1.npy', sess) - with tf.variable_scope('rnet'): - data = tf.placeholder(tf.float32, (None,24,24,3), 'input') - rnet = align.detect_face.RNet({'data':data}) - rnet.load('../../data/det2.npy', sess) - with tf.variable_scope('onet'): - data = tf.placeholder(tf.float32, (None,48,48,3), 'input') - onet = align.detect_face.ONet({'data':data}) - onet.load('../../data/det3.npy', sess) - - pnet_fun = lambda img : sess.run(('pnet/conv4-2/BiasAdd:0', 'pnet/prob1:0'), feed_dict={'pnet/input:0':img}) - rnet_fun = lambda img : sess.run(('rnet/conv5-2/conv5-2:0', 'rnet/prob1:0'), feed_dict={'rnet/input:0':img}) - onet_fun = lambda img : sess.run(('onet/conv6-2/conv6-2:0', 'onet/conv6-3/conv6-3:0', 'onet/prob1:0'), feed_dict={'onet/input:0':img}) - -minsize = 20 # minimum size of face -threshold = [ 0.6, 0.7, 0.7 ] # three steps's threshold -factor = 0.709 # scale factor - -source_path = '/home/david/datasets/casia/CASIA-maxpy-clean/0000045/002.jpg' -img = misc.imread(source_path) - -bounding_boxes, points = align.detect_face.detect_face(img, minsize, pnet_fun, rnet_fun, onet_fun, threshold, factor) - -print('Bounding box: %s' % bounding_boxes) - - diff --git a/tmp/mtcnn_test.py b/tmp/mtcnn_test.py deleted file mode 100644 index e02b11a5b..000000000 --- a/tmp/mtcnn_test.py +++ /dev/null @@ -1,120 +0,0 @@ -# MIT License -# -# Copyright (c) 2016 David Sandberg -# -# Permission is hereby granted, free of charge, to any person obtaining a copy -# of this software and associated documentation files (the "Software"), to deal -# in the Software without restriction, including without limitation the rights -# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell -# copies of the Software, and to permit persons to whom the Software is -# furnished to do so, subject to the following conditions: -# -# The above copyright notice and this permission notice shall be included in all -# copies or substantial portions of the Software. -# -# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR -# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, -# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE -# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER -# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, -# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE -# SOFTWARE. -from __future__ import absolute_import -from __future__ import division -from __future__ import print_function - -import tensorflow as tf -import numpy as np -import align.detect_face - -g1 = tf.Graph() -with g1.as_default(): - data = tf.placeholder(tf.float32, (None,None,None,3), 'input') - pnet = align.detect_face.PNet({'data':data}) - sess1 = tf.Session(graph=g1) - pnet.load('../../data/det1.npy', sess1) - pnet_fun = lambda img : sess1.run(('conv4-2/BiasAdd:0', 'prob1:0'), feed_dict={'input:0':img}) -np.random.seed(666) -img = np.random.rand(1,3,150,150) -img = np.transpose(img, (0,2,3,1)) - -np.set_printoptions(formatter={'float': '{: 0.4f}'.format}) - -# prob1=sess1.run('prob1:0', feed_dict={data:img}) -# print(prob1[0,0,0,:]) -# conv42=sess1.run('conv4-2/BiasAdd:0', feed_dict={data:img}) -# print(conv42[0,0,0,:]) - -# conv42, prob1 = pnet_fun(img) -# print(prob1[0,0,0,:]) -# print(conv42[0,0,0,:]) - - -# [ 0.9929 0.0071] prob1, caffe -# [ 0.9929 0.0071] prob1, tensorflow - -# [ 0.1207 -0.0116 -0.1231 -0.0463] conv4-2, caffe -# [ 0.1207 -0.0116 -0.1231 -0.0463] conv4-2, tensorflow - - -g2 = tf.Graph() -with g2.as_default(): - data = tf.placeholder(tf.float32, (None,24,24,3), 'input') - rnet = align.detect_face.RNet({'data':data}) - sess2 = tf.Session(graph=g2) - rnet.load('../../data/det2.npy', sess2) - rnet_fun = lambda img : sess2.run(('conv5-2/conv5-2:0', 'prob1:0'), feed_dict={'input:0':img}) -np.random.seed(666) -img = np.random.rand(73,3,24,24) -img = np.transpose(img, (0,2,3,1)) - -# np.set_printoptions(formatter={'float': '{: 0.4f}'.format}) -# -# prob1=sess2.run('prob1:0', feed_dict={data:img}) -# print(prob1[0,:]) -# -# conv52=sess2.run('conv5-2/conv5-2:0', feed_dict={data:img}) -# print(conv52[0,:]) - -# [ 0.9945 0.0055] prob1, caffe -# [ 0.1108 -0.0038 -0.1631 -0.0890] conv5-2, caffe - -# [ 0.9945 0.0055] prob1, tensorflow -# [ 0.1108 -0.0038 -0.1631 -0.0890] conv5-2, tensorflow - - -g3 = tf.Graph() -with g3.as_default(): - data = tf.placeholder(tf.float32, (None,48,48,3), 'input') - onet = align.detect_face.ONet({'data':data}) - sess3 = tf.Session(graph=g3) - onet.load('../../data/det3.npy', sess3) - onet_fun = lambda img : sess3.run(('conv6-2/conv6-2:0', 'conv6-3/conv6-3:0', 'prob1:0'), feed_dict={'input:0':img}) -np.random.seed(666) -img = np.random.rand(11,3,48,48) -img = np.transpose(img, (0,2,3,1)) - -# np.set_printoptions(formatter={'float': '{: 0.4f}'.format}) -# -# prob1=sess3.run('prob1:0', feed_dict={data:img}) -# print(prob1[0,:]) -# print('prob1, tensorflow') -# -# conv62=sess3.run('conv6-2/conv6-2:0', feed_dict={data:img}) -# print(conv62[0,:]) -# print('conv6-2, tensorflow') -# -# conv63=sess3.run('conv6-3/conv6-3:0', feed_dict={data:img}) -# print(conv63[0,:]) -# print('conv6-3, tensorflow') - -# [ 0.9988 0.0012] prob1, caffe -# [ 0.0446 -0.0968 -0.1091 -0.0212] conv6-2, caffe -# [ 0.2429 0.6104 0.4074 0.3104 0.5939 0.2729 0.2132 0.5462 0.7863 0.7568] conv6-3, caffe - -# [ 0.9988 0.0012] prob1, tensorflow -# [ 0.0446 -0.0968 -0.1091 -0.0212] conv6-2, tensorflow -# [ 0.2429 0.6104 0.4074 0.3104 0.5939 0.2729 0.2132 0.5462 0.7863 0.7568] conv6-3, tensorflow - -#pnet_fun = lambda img : sess1.run(('conv4-2/BiasAdd:0', 'prob1:0'), feed_dict={'input:0':img}) - diff --git a/tmp/mtcnn_test_pnet_dbg.py b/tmp/mtcnn_test_pnet_dbg.py deleted file mode 100644 index d4fdfbb6e..000000000 --- a/tmp/mtcnn_test_pnet_dbg.py +++ /dev/null @@ -1,124 +0,0 @@ -from __future__ import absolute_import -from __future__ import division -from __future__ import print_function - -import tensorflow as tf -import numpy as np -import scipy.io as io -import align.detect_face - -#ref = io.loadmat('pnet_dbg.mat') -with tf.Graph().as_default(): - sess = tf.Session() - with sess.as_default(): - with tf.variable_scope('pnet'): -# data = tf.placeholder(tf.float32, (None,None,None,3), 'input') - data = tf.placeholder(tf.float32, (1,1610, 1901,3), 'input') - pnet = align.detect_face.PNet({'data':data}) - pnet.load('../../data/det1.npy', sess) -# with tf.variable_scope('rnet'): -# data = tf.placeholder(tf.float32, (None,24,24,3), 'input') -# rnet = align.detect_face.RNet({'data':data}) -# rnet.load('../../data/det2.npy', sess) -# with tf.variable_scope('onet'): -# data = tf.placeholder(tf.float32, (None,48,48,3), 'input') -# onet = align.detect_face.ONet({'data':data}) -# onet.load('../../data/det3.npy', sess) - - pnet_fun = lambda img : sess.run(('pnet/conv4-2/BiasAdd:0', 'pnet/prob1:0'), feed_dict={'pnet/input:0':img}) -# rnet_fun = lambda img : sess.run(('rnet/conv5-2/conv5-2:0', 'rnet/prob1:0'), feed_dict={'rnet/input:0':img}) -# onet_fun = lambda img : sess.run(('onet/conv6-2/conv6-2:0', 'onet/conv6-3/conv6-3:0', 'onet/prob1:0'), feed_dict={'onet/input:0':img}) - - -ref = io.loadmat('pnet_dbg.mat') - -img_x = np.expand_dims(ref['im_data'], 0) -img_y = np.transpose(img_x, (0,2,1,3)) -out = pnet_fun(img_y) -out0 = np.transpose(out[0], (0,2,1,3)) -out1 = np.transpose(out[1], (0,2,1,3)) - -#np.where(abs(out0[0,:,:,:]-ref['out0'])>1e-18) -qqq3 = np.where(abs(out1[0,:,:,:]-ref['out1'])>1e-7) # 3390 diffs with softmax2 -print(qqq3[0].shape) - -np.set_printoptions(formatter={'float': '{: 0.4f}'.format}) - -# prob1=sess1.run('prob1:0', feed_dict={data:img}) -# print(prob1[0,0,0,:]) -# conv42=sess1.run('conv4-2/BiasAdd:0', feed_dict={data:img}) -# print(conv42[0,0,0,:]) - -# conv42, prob1 = pnet_fun(img) -# print(prob1[0,0,0,:]) -# print(conv42[0,0,0,:]) - - -# [ 0.9929 0.0071] prob1, caffe -# [ 0.9929 0.0071] prob1, tensorflow - -# [ 0.1207 -0.0116 -0.1231 -0.0463] conv4-2, caffe -# [ 0.1207 -0.0116 -0.1231 -0.0463] conv4-2, tensorflow - - -# g2 = tf.Graph() -# with g2.as_default(): -# data = tf.placeholder(tf.float32, (None,24,24,3), 'input') -# rnet = align.detect_face.RNet({'data':data}) -# sess2 = tf.Session(graph=g2) -# rnet.load('../../data/det2.npy', sess2) -# rnet_fun = lambda img : sess2.run(('conv5-2/conv5-2:0', 'prob1:0'), feed_dict={'input:0':img}) -# np.random.seed(666) -# img = np.random.rand(73,3,24,24) -# img = np.transpose(img, (0,2,3,1)) - -# np.set_printoptions(formatter={'float': '{: 0.4f}'.format}) -# -# prob1=sess2.run('prob1:0', feed_dict={data:img}) -# print(prob1[0,:]) -# -# conv52=sess2.run('conv5-2/conv5-2:0', feed_dict={data:img}) -# print(conv52[0,:]) - -# [ 0.9945 0.0055] prob1, caffe -# [ 0.1108 -0.0038 -0.1631 -0.0890] conv5-2, caffe - -# [ 0.9945 0.0055] prob1, tensorflow -# [ 0.1108 -0.0038 -0.1631 -0.0890] conv5-2, tensorflow - - -# g3 = tf.Graph() -# with g3.as_default(): -# data = tf.placeholder(tf.float32, (None,48,48,3), 'input') -# onet = align.detect_face.ONet({'data':data}) -# sess3 = tf.Session(graph=g3) -# onet.load('../../data/det3.npy', sess3) -# onet_fun = lambda img : sess3.run(('conv6-2/conv6-2:0', 'conv6-3/conv6-3:0', 'prob1:0'), feed_dict={'input:0':img}) -# np.random.seed(666) -# img = np.random.rand(11,3,48,48) -# img = np.transpose(img, (0,2,3,1)) - -# np.set_printoptions(formatter={'float': '{: 0.4f}'.format}) -# -# prob1=sess3.run('prob1:0', feed_dict={data:img}) -# print(prob1[0,:]) -# print('prob1, tensorflow') -# -# conv62=sess3.run('conv6-2/conv6-2:0', feed_dict={data:img}) -# print(conv62[0,:]) -# print('conv6-2, tensorflow') -# -# conv63=sess3.run('conv6-3/conv6-3:0', feed_dict={data:img}) -# print(conv63[0,:]) -# print('conv6-3, tensorflow') - -# [ 0.9988 0.0012] prob1, caffe -# [ 0.0446 -0.0968 -0.1091 -0.0212] conv6-2, caffe -# [ 0.2429 0.6104 0.4074 0.3104 0.5939 0.2729 0.2132 0.5462 0.7863 0.7568] conv6-3, caffe - -# [ 0.9988 0.0012] prob1, tensorflow -# [ 0.0446 -0.0968 -0.1091 -0.0212] conv6-2, tensorflow -# [ 0.2429 0.6104 0.4074 0.3104 0.5939 0.2729 0.2132 0.5462 0.7863 0.7568] conv6-3, tensorflow - -#pnet_fun = lambda img : sess1.run(('conv4-2/BiasAdd:0', 'prob1:0'), feed_dict={'input:0':img}) - diff --git a/tmp/network.py b/tmp/network.py deleted file mode 100644 index c375e43d6..000000000 --- a/tmp/network.py +++ /dev/null @@ -1,200 +0,0 @@ -"""Functions for building the face recognition network. -""" -# MIT License -# -# Copyright (c) 2016 David Sandberg -# -# Permission is hereby granted, free of charge, to any person obtaining a copy -# of this software and associated documentation files (the "Software"), to deal -# in the Software without restriction, including without limitation the rights -# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell -# copies of the Software, and to permit persons to whom the Software is -# furnished to do so, subject to the following conditions: -# -# The above copyright notice and this permission notice shall be included in all -# copies or substantial portions of the Software. -# -# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR -# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, -# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE -# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER -# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, -# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE -# SOFTWARE. - -# pylint: disable=missing-docstring -from __future__ import absolute_import -from __future__ import division -from __future__ import print_function - -import tensorflow as tf -from tensorflow.python.ops import array_ops -from tensorflow.python.ops import control_flow_ops - - -def conv(inpOp, nIn, nOut, kH, kW, dH, dW, padType, name, phase_train=True, use_batch_norm=True, weight_decay=0.0): - with tf.variable_scope(name): - l2_regularizer = lambda t: l2_loss(t, weight=weight_decay) - kernel = tf.get_variable("weights", [kH, kW, nIn, nOut], - initializer=tf.truncated_normal_initializer(stddev=1e-1), - regularizer=l2_regularizer, dtype=inpOp.dtype) - cnv = tf.nn.conv2d(inpOp, kernel, [1, dH, dW, 1], padding=padType) - - if use_batch_norm: - conv_bn = batch_norm(cnv, phase_train) - else: - conv_bn = cnv - biases = tf.get_variable("biases", [nOut], initializer=tf.constant_initializer(), dtype=inpOp.dtype) - bias = tf.nn.bias_add(conv_bn, biases) - conv1 = tf.nn.relu(bias) - return conv1 - -def affine(inpOp, nIn, nOut, name, weight_decay=0.0): - with tf.variable_scope(name): - l2_regularizer = lambda t: l2_loss(t, weight=weight_decay) - weights = tf.get_variable("weights", [nIn, nOut], - initializer=tf.truncated_normal_initializer(stddev=1e-1), - regularizer=l2_regularizer, dtype=inpOp.dtype) - biases = tf.get_variable("biases", [nOut], initializer=tf.constant_initializer(), dtype=inpOp.dtype) - affine1 = tf.nn.relu_layer(inpOp, weights, biases) - return affine1 - -def l2_loss(tensor, weight=1.0, scope=None): - """Define a L2Loss, useful for regularize, i.e. weight decay. - Args: - tensor: tensor to regularize. - weight: an optional weight to modulate the loss. - scope: Optional scope for op_scope. - Returns: - the L2 loss op. - """ - with tf.name_scope(scope): - weight = tf.convert_to_tensor(weight, - dtype=tensor.dtype.base_dtype, - name='loss_weight') - loss = tf.multiply(weight, tf.nn.l2_loss(tensor), name='value') - return loss - -def lppool(inpOp, pnorm, kH, kW, dH, dW, padding, name): - with tf.variable_scope(name): - if pnorm == 2: - pwr = tf.square(inpOp) - else: - pwr = tf.pow(inpOp, pnorm) - - subsamp = tf.nn.avg_pool(pwr, - ksize=[1, kH, kW, 1], - strides=[1, dH, dW, 1], - padding=padding) - subsamp_sum = tf.multiply(subsamp, kH*kW) - - if pnorm == 2: - out = tf.sqrt(subsamp_sum) - else: - out = tf.pow(subsamp_sum, 1/pnorm) - - return out - -def mpool(inpOp, kH, kW, dH, dW, padding, name): - with tf.variable_scope(name): - maxpool = tf.nn.max_pool(inpOp, - ksize=[1, kH, kW, 1], - strides=[1, dH, dW, 1], - padding=padding) - return maxpool - -def apool(inpOp, kH, kW, dH, dW, padding, name): - with tf.variable_scope(name): - avgpool = tf.nn.avg_pool(inpOp, - ksize=[1, kH, kW, 1], - strides=[1, dH, dW, 1], - padding=padding) - return avgpool - -def batch_norm(x, phase_train): - """ - Batch normalization on convolutional maps. - Args: - x: Tensor, 4D BHWD input maps - n_out: integer, depth of input maps - phase_train: boolean tf.Variable, true indicates training phase - scope: string, variable scope - affn: whether to affn-transform outputs - Return: - normed: batch-normalized maps - Ref: http://stackoverflow.com/questions/33949786/how-could-i-use-batch-normalization-in-tensorflow/33950177 - """ - name = 'batch_norm' - with tf.variable_scope(name): - phase_train = tf.convert_to_tensor(phase_train, dtype=tf.bool) - n_out = int(x.get_shape()[3]) - beta = tf.Variable(tf.constant(0.0, shape=[n_out], dtype=x.dtype), - name=name+'/beta', trainable=True, dtype=x.dtype) - gamma = tf.Variable(tf.constant(1.0, shape=[n_out], dtype=x.dtype), - name=name+'/gamma', trainable=True, dtype=x.dtype) - - batch_mean, batch_var = tf.nn.moments(x, [0,1,2], name='moments') - ema = tf.train.ExponentialMovingAverage(decay=0.9) - def mean_var_with_update(): - ema_apply_op = ema.apply([batch_mean, batch_var]) - with tf.control_dependencies([ema_apply_op]): - return tf.identity(batch_mean), tf.identity(batch_var) - mean, var = control_flow_ops.cond(phase_train, - mean_var_with_update, - lambda: (ema.average(batch_mean), ema.average(batch_var))) - normed = tf.nn.batch_normalization(x, mean, var, beta, gamma, 1e-3) - return normed - -def inception(inp, inSize, ks, o1s, o2s1, o2s2, o3s1, o3s2, o4s1, o4s2, o4s3, poolType, name, - phase_train=True, use_batch_norm=True, weight_decay=0.0): - - print('name = ', name) - print('inputSize = ', inSize) - print('kernelSize = {3,5}') - print('kernelStride = {%d,%d}' % (ks,ks)) - print('outputSize = {%d,%d}' % (o2s2,o3s2)) - print('reduceSize = {%d,%d,%d,%d}' % (o2s1,o3s1,o4s2,o1s)) - print('pooling = {%s, %d, %d, %d, %d}' % (poolType, o4s1, o4s1, o4s3, o4s3)) - if (o4s2>0): - o4 = o4s2 - else: - o4 = inSize - print('outputSize = ', o1s+o2s2+o3s2+o4) - print() - - net = [] - - with tf.variable_scope(name): - with tf.variable_scope('branch1_1x1'): - if o1s>0: - conv1 = conv(inp, inSize, o1s, 1, 1, 1, 1, 'SAME', 'conv1x1', phase_train=phase_train, use_batch_norm=use_batch_norm, weight_decay=weight_decay) - net.append(conv1) - - with tf.variable_scope('branch2_3x3'): - if o2s1>0: - conv3a = conv(inp, inSize, o2s1, 1, 1, 1, 1, 'SAME', 'conv1x1', phase_train=phase_train, use_batch_norm=use_batch_norm, weight_decay=weight_decay) - conv3 = conv(conv3a, o2s1, o2s2, 3, 3, ks, ks, 'SAME', 'conv3x3', phase_train=phase_train, use_batch_norm=use_batch_norm, weight_decay=weight_decay) - net.append(conv3) - - with tf.variable_scope('branch3_5x5'): - if o3s1>0: - conv5a = conv(inp, inSize, o3s1, 1, 1, 1, 1, 'SAME', 'conv1x1', phase_train=phase_train, use_batch_norm=use_batch_norm, weight_decay=weight_decay) - conv5 = conv(conv5a, o3s1, o3s2, 5, 5, ks, ks, 'SAME', 'conv5x5', phase_train=phase_train, use_batch_norm=use_batch_norm, weight_decay=weight_decay) - net.append(conv5) - - with tf.variable_scope('branch4_pool'): - if poolType=='MAX': - pool = mpool(inp, o4s1, o4s1, o4s3, o4s3, 'SAME', 'pool') - elif poolType=='L2': - pool = lppool(inp, 2, o4s1, o4s1, o4s3, o4s3, 'SAME', 'pool') - else: - raise ValueError('Invalid pooling type "%s"' % poolType) - - if o4s2>0: - pool_conv = conv(pool, inSize, o4s2, 1, 1, 1, 1, 'SAME', 'conv1x1', phase_train=phase_train, use_batch_norm=use_batch_norm, weight_decay=weight_decay) - else: - pool_conv = pool - net.append(pool_conv) - - incept = array_ops.concat(net, 3, name=name) - return incept diff --git a/tmp/nn2.py b/tmp/nn2.py deleted file mode 100644 index 736265374..000000000 --- a/tmp/nn2.py +++ /dev/null @@ -1,80 +0,0 @@ -# MIT License -# -# Copyright (c) 2016 David Sandberg -# -# Permission is hereby granted, free of charge, to any person obtaining a copy -# of this software and associated documentation files (the "Software"), to deal -# in the Software without restriction, including without limitation the rights -# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell -# copies of the Software, and to permit persons to whom the Software is -# furnished to do so, subject to the following conditions: -# -# The above copyright notice and this permission notice shall be included in all -# copies or substantial portions of the Software. -# -# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR -# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, -# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE -# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER -# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, -# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE -# SOFTWARE. - -# pylint: disable=missing-docstring -from __future__ import absolute_import -from __future__ import division -from __future__ import print_function - -import tensorflow as tf -import models.network as network - -def inference(images, keep_probability, phase_train=True, weight_decay=0.0): - """ Define an inference network for face recognition based - on inception modules using batch normalization - - Args: - images: The images to run inference on, dimensions batch_size x height x width x channels - phase_train: True if batch normalization should operate in training mode - """ - endpoints = {} - net = network.conv(images, 3, 64, 7, 7, 2, 2, 'SAME', 'conv1_7x7', phase_train=phase_train, use_batch_norm=True, weight_decay=weight_decay) - endpoints['conv1'] = net - net = network.mpool(net, 3, 3, 2, 2, 'SAME', 'pool1') - endpoints['pool1'] = net - net = network.conv(net, 64, 64, 1, 1, 1, 1, 'SAME', 'conv2_1x1', phase_train=phase_train, use_batch_norm=True, weight_decay=weight_decay) - endpoints['conv2_1x1'] = net - net = network.conv(net, 64, 192, 3, 3, 1, 1, 'SAME', 'conv3_3x3', phase_train=phase_train, use_batch_norm=True, weight_decay=weight_decay) - endpoints['conv3_3x3'] = net - net = network.mpool(net, 3, 3, 2, 2, 'SAME', 'pool3') - endpoints['pool3'] = net - - net = network.inception(net, 192, 1, 64, 96, 128, 16, 32, 3, 32, 1, 'MAX', 'incept3a', phase_train=phase_train, use_batch_norm=True, weight_decay=weight_decay) - endpoints['incept3a'] = net - net = network.inception(net, 256, 1, 64, 96, 128, 32, 64, 3, 64, 1, 'MAX', 'incept3b', phase_train=phase_train, use_batch_norm=True, weight_decay=weight_decay) - endpoints['incept3b'] = net - net = network.inception(net, 320, 2, 0, 128, 256, 32, 64, 3, 0, 2, 'MAX', 'incept3c', phase_train=phase_train, use_batch_norm=True, weight_decay=weight_decay) - endpoints['incept3c'] = net - - net = network.inception(net, 640, 1, 256, 96, 192, 32, 64, 3, 128, 1, 'MAX', 'incept4a', phase_train=phase_train, use_batch_norm=True, weight_decay=weight_decay) - endpoints['incept4a'] = net - net = network.inception(net, 640, 1, 224, 112, 224, 32, 64, 3, 128, 1, 'MAX', 'incept4b', phase_train=phase_train, use_batch_norm=True, weight_decay=weight_decay) - endpoints['incept4b'] = net - net = network.inception(net, 640, 1, 192, 128, 256, 32, 64, 3, 128, 1, 'MAX', 'incept4c', phase_train=phase_train, use_batch_norm=True, weight_decay=weight_decay) - endpoints['incept4c'] = net - net = network.inception(net, 640, 1, 160, 144, 288, 32, 64, 3, 128, 1, 'MAX', 'incept4d', phase_train=phase_train, use_batch_norm=True, weight_decay=weight_decay) - endpoints['incept4d'] = net - net = network.inception(net, 640, 2, 0, 160, 256, 64, 128, 3, 0, 2, 'MAX', 'incept4e', phase_train=phase_train, use_batch_norm=True) - endpoints['incept4e'] = net - - net = network.inception(net, 1024, 1, 384, 192, 384, 48, 128, 3, 128, 1, 'MAX', 'incept5a', phase_train=phase_train, use_batch_norm=True, weight_decay=weight_decay) - endpoints['incept5a'] = net - net = network.inception(net, 1024, 1, 384, 192, 384, 48, 128, 3, 128, 1, 'MAX', 'incept5b', phase_train=phase_train, use_batch_norm=True, weight_decay=weight_decay) - endpoints['incept5b'] = net - net = network.apool(net, 7, 7, 1, 1, 'VALID', 'pool6') - endpoints['pool6'] = net - net = tf.reshape(net, [-1, 1024]) - endpoints['prelogits'] = net - net = tf.nn.dropout(net, keep_probability) - endpoints['dropout'] = net - - return net, endpoints diff --git a/tmp/nn3.py b/tmp/nn3.py deleted file mode 100644 index 2e0502c8f..000000000 --- a/tmp/nn3.py +++ /dev/null @@ -1,80 +0,0 @@ -# MIT License -# -# Copyright (c) 2016 David Sandberg -# -# Permission is hereby granted, free of charge, to any person obtaining a copy -# of this software and associated documentation files (the "Software"), to deal -# in the Software without restriction, including without limitation the rights -# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell -# copies of the Software, and to permit persons to whom the Software is -# furnished to do so, subject to the following conditions: -# -# The above copyright notice and this permission notice shall be included in all -# copies or substantial portions of the Software. -# -# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR -# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, -# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE -# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER -# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, -# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE -# SOFTWARE. - -# pylint: disable=missing-docstring -from __future__ import absolute_import -from __future__ import division -from __future__ import print_function - -import tensorflow as tf -import models.network as network - -def inference(images, keep_probability, phase_train=True, weight_decay=0.0): - """ Define an inference network for face recognition based - on inception modules using batch normalization - - Args: - images: The images to run inference on, dimensions batch_size x height x width x channels - phase_train: True if batch normalization should operate in training mode - """ - endpoints = {} - net = network.conv(images, 3, 64, 7, 7, 2, 2, 'SAME', 'conv1_7x7', phase_train=phase_train, use_batch_norm=True, weight_decay=weight_decay) - endpoints['conv1'] = net - net = network.mpool(net, 3, 3, 2, 2, 'SAME', 'pool1') - endpoints['pool1'] = net - net = network.conv(net, 64, 64, 1, 1, 1, 1, 'SAME', 'conv2_1x1', phase_train=phase_train, use_batch_norm=True, weight_decay=weight_decay) - endpoints['conv2_1x1'] = net - net = network.conv(net, 64, 192, 3, 3, 1, 1, 'SAME', 'conv3_3x3', phase_train=phase_train, use_batch_norm=True, weight_decay=weight_decay) - endpoints['conv3_3x3'] = net - net = network.mpool(net, 3, 3, 2, 2, 'SAME', 'pool3') - endpoints['pool3'] = net - - net = network.inception(net, 192, 1, 64, 96, 128, 16, 32, 3, 32, 1, 'MAX', 'incept3a', phase_train=phase_train, use_batch_norm=True, weight_decay=weight_decay) - endpoints['incept3a'] = net - net = network.inception(net, 256, 1, 64, 96, 128, 32, 64, 3, 64, 1, 'MAX', 'incept3b', phase_train=phase_train, use_batch_norm=True, weight_decay=weight_decay) - endpoints['incept3b'] = net - net = network.inception(net, 320, 2, 0, 128, 256, 32, 64, 3, 0, 2, 'MAX', 'incept3c', phase_train=phase_train, use_batch_norm=True, weight_decay=weight_decay) - endpoints['incept3c'] = net - - net = network.inception(net, 640, 1, 256, 96, 192, 32, 64, 3, 128, 1, 'MAX', 'incept4a', phase_train=phase_train, use_batch_norm=True, weight_decay=weight_decay) - endpoints['incept4a'] = net - net = network.inception(net, 640, 1, 224, 112, 224, 32, 64, 3, 128, 1, 'MAX', 'incept4b', phase_train=phase_train, use_batch_norm=True, weight_decay=weight_decay) - endpoints['incept4b'] = net - net = network.inception(net, 640, 1, 192, 128, 256, 32, 64, 3, 128, 1, 'MAX', 'incept4c', phase_train=phase_train, use_batch_norm=True, weight_decay=weight_decay) - endpoints['incept4c'] = net - net = network.inception(net, 640, 1, 160, 144, 288, 32, 64, 3, 128, 1, 'MAX', 'incept4d', phase_train=phase_train, use_batch_norm=True, weight_decay=weight_decay) - endpoints['incept4d'] = net - net = network.inception(net, 640, 2, 0, 160, 256, 64, 128, 3, 0, 2, 'MAX', 'incept4e', phase_train=phase_train, use_batch_norm=True) - endpoints['incept4e'] = net - - net = network.inception(net, 1024, 1, 384, 192, 384, 48, 128, 3, 128, 1, 'MAX', 'incept5a', phase_train=phase_train, use_batch_norm=True, weight_decay=weight_decay) - endpoints['incept5a'] = net - net = network.inception(net, 1024, 1, 384, 192, 384, 48, 128, 3, 128, 1, 'MAX', 'incept5b', phase_train=phase_train, use_batch_norm=True, weight_decay=weight_decay) - endpoints['incept5b'] = net - net = network.apool(net, 5, 5, 1, 1, 'VALID', 'pool6') - endpoints['pool6'] = net - net = tf.reshape(net, [-1, 1024]) - endpoints['prelogits'] = net - net = tf.nn.dropout(net, keep_probability) - endpoints['dropout'] = net - - return net, endpoints diff --git a/tmp/nn4.py b/tmp/nn4.py deleted file mode 100644 index 8c3c79fd0..000000000 --- a/tmp/nn4.py +++ /dev/null @@ -1,80 +0,0 @@ -# MIT License -# -# Copyright (c) 2016 David Sandberg -# -# Permission is hereby granted, free of charge, to any person obtaining a copy -# of this software and associated documentation files (the "Software"), to deal -# in the Software without restriction, including without limitation the rights -# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell -# copies of the Software, and to permit persons to whom the Software is -# furnished to do so, subject to the following conditions: -# -# The above copyright notice and this permission notice shall be included in all -# copies or substantial portions of the Software. -# -# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR -# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, -# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE -# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER -# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, -# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE -# SOFTWARE. - -# pylint: disable=missing-docstring -from __future__ import absolute_import -from __future__ import division -from __future__ import print_function - -import tensorflow as tf -import models.network as network - -def inference(images, keep_probability, phase_train=True, weight_decay=0.0): - """ Define an inference network for face recognition based - on inception modules using batch normalization - - Args: - images: The images to run inference on, dimensions batch_size x height x width x channels - phase_train: True if batch normalization should operate in training mode - """ - endpoints = {} - net = network.conv(images, 3, 64, 7, 7, 2, 2, 'SAME', 'conv1_7x7', phase_train=phase_train, use_batch_norm=True, weight_decay=weight_decay) - endpoints['conv1'] = net - net = network.mpool(net, 3, 3, 2, 2, 'SAME', 'pool1') - endpoints['pool1'] = net - net = network.conv(net, 64, 64, 1, 1, 1, 1, 'SAME', 'conv2_1x1', phase_train=phase_train, use_batch_norm=True, weight_decay=weight_decay) - endpoints['conv2_1x1'] = net - net = network.conv(net, 64, 192, 3, 3, 1, 1, 'SAME', 'conv3_3x3', phase_train=phase_train, use_batch_norm=True, weight_decay=weight_decay) - endpoints['conv3_3x3'] = net - net = network.mpool(net, 3, 3, 2, 2, 'SAME', 'pool3') - endpoints['pool3'] = net - - net = network.inception(net, 192, 1, 64, 96, 128, 16, 32, 3, 32, 1, 'MAX', 'incept3a', phase_train=phase_train, use_batch_norm=True, weight_decay=weight_decay) - endpoints['incept3a'] = net - net = network.inception(net, 256, 1, 64, 96, 128, 32, 64, 3, 64, 1, 'MAX', 'incept3b', phase_train=phase_train, use_batch_norm=True, weight_decay=weight_decay) - endpoints['incept3b'] = net - net = network.inception(net, 320, 2, 0, 128, 256, 32, 64, 3, 0, 2, 'MAX', 'incept3c', phase_train=phase_train, use_batch_norm=True, weight_decay=weight_decay) - endpoints['incept3c'] = net - - net = network.inception(net, 640, 1, 256, 96, 192, 32, 64, 3, 128, 1, 'MAX', 'incept4a', phase_train=phase_train, use_batch_norm=True, weight_decay=weight_decay) - endpoints['incept4a'] = net - net = network.inception(net, 640, 1, 224, 112, 224, 32, 64, 3, 128, 1, 'MAX', 'incept4b', phase_train=phase_train, use_batch_norm=True, weight_decay=weight_decay) - endpoints['incept4b'] = net - net = network.inception(net, 640, 1, 192, 128, 256, 32, 64, 3, 128, 1, 'MAX', 'incept4c', phase_train=phase_train, use_batch_norm=True, weight_decay=weight_decay) - endpoints['incept4c'] = net - net = network.inception(net, 640, 1, 160, 144, 288, 32, 64, 3, 128, 1, 'MAX', 'incept4d', phase_train=phase_train, use_batch_norm=True, weight_decay=weight_decay) - endpoints['incept4d'] = net - net = network.inception(net, 640, 2, 0, 160, 256, 64, 128, 3, 0, 2, 'MAX', 'incept4e', phase_train=phase_train, use_batch_norm=True) - endpoints['incept4e'] = net - - net = network.inception(net, 1024, 1, 384, 192, 384, 0, 0, 3, 128, 1, 'MAX', 'incept5a', phase_train=phase_train, use_batch_norm=True, weight_decay=weight_decay) - endpoints['incept5a'] = net - net = network.inception(net, 896, 1, 384, 192, 384, 0, 0, 3, 128, 1, 'MAX', 'incept5b', phase_train=phase_train, use_batch_norm=True, weight_decay=weight_decay) - endpoints['incept5b'] = net - net = network.apool(net, 3, 3, 1, 1, 'VALID', 'pool6') - endpoints['pool6'] = net - net = tf.reshape(net, [-1, 896]) - endpoints['prelogits'] = net - net = tf.nn.dropout(net, keep_probability) - endpoints['dropout'] = net - - return net, endpoints diff --git a/tmp/nn4_small2_v1.py b/tmp/nn4_small2_v1.py deleted file mode 100644 index 780aafe20..000000000 --- a/tmp/nn4_small2_v1.py +++ /dev/null @@ -1,75 +0,0 @@ -# MIT License -# -# Copyright (c) 2016 David Sandberg -# -# Permission is hereby granted, free of charge, to any person obtaining a copy -# of this software and associated documentation files (the "Software"), to deal -# in the Software without restriction, including without limitation the rights -# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell -# copies of the Software, and to permit persons to whom the Software is -# furnished to do so, subject to the following conditions: -# -# The above copyright notice and this permission notice shall be included in all -# copies or substantial portions of the Software. -# -# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR -# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, -# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE -# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER -# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, -# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE -# SOFTWARE. - -# pylint: disable=missing-docstring -from __future__ import absolute_import -from __future__ import division -from __future__ import print_function - -import tensorflow as tf -import models.network as network - -def inference(images, keep_probability, phase_train=True, weight_decay=0.0): - """ Define an inference network for face recognition based - on inception modules using batch normalization - - Args: - images: The images to run inference on, dimensions batch_size x height x width x channels - phase_train: True if batch normalization should operate in training mode - """ - endpoints = {} - net = network.conv(images, 3, 64, 7, 7, 2, 2, 'SAME', 'conv1_7x7', phase_train=phase_train, use_batch_norm=True, weight_decay=weight_decay) - endpoints['conv1'] = net - net = network.mpool(net, 3, 3, 2, 2, 'SAME', 'pool1') - endpoints['pool1'] = net - net = network.conv(net, 64, 64, 1, 1, 1, 1, 'SAME', 'conv2_1x1', phase_train=phase_train, use_batch_norm=True, weight_decay=weight_decay) - endpoints['conv2_1x1'] = net - net = network.conv(net, 64, 192, 3, 3, 1, 1, 'SAME', 'conv3_3x3', phase_train=phase_train, use_batch_norm=True, weight_decay=weight_decay) - endpoints['conv3_3x3'] = net - net = network.mpool(net, 3, 3, 2, 2, 'SAME', 'pool3') - endpoints['pool3'] = net - - net = network.inception(net, 192, 1, 64, 96, 128, 16, 32, 3, 32, 1, 'MAX', 'incept3a', phase_train=phase_train, use_batch_norm=True, weight_decay=weight_decay) - endpoints['incept3a'] = net - net = network.inception(net, 256, 1, 64, 96, 128, 32, 64, 3, 64, 1, 'MAX', 'incept3b', phase_train=phase_train, use_batch_norm=True, weight_decay=weight_decay) - endpoints['incept3b'] = net - net = network.inception(net, 320, 2, 0, 128, 256, 32, 64, 3, 0, 2, 'MAX', 'incept3c', phase_train=phase_train, use_batch_norm=True, weight_decay=weight_decay) - endpoints['incept3c'] = net - - net = network.inception(net, 640, 1, 256, 96, 192, 32, 64, 3, 128, 1, 'MAX', 'incept4a', phase_train=phase_train, use_batch_norm=True, weight_decay=weight_decay) - endpoints['incept4a'] = net - net = network.inception(net, 640, 2, 0, 160, 256, 64, 128, 3, 0, 2, 'MAX', 'incept4e', phase_train=phase_train, use_batch_norm=True, weight_decay=weight_decay) - endpoints['incept4e'] = net - - net = network.inception(net, 1024, 1, 256, 96, 384, 0, 0, 3, 96, 1, 'MAX', 'incept5a', phase_train=phase_train, use_batch_norm=True, weight_decay=weight_decay) - endpoints['incept5a'] = net - net = network.inception(net, 736, 1, 256, 96, 384, 0, 0, 3, 96, 1, 'MAX', 'incept5b', phase_train=phase_train, use_batch_norm=True, weight_decay=weight_decay) - endpoints['incept5b'] = net - net = network.apool(net, 3, 3, 1, 1, 'VALID', 'pool6') - endpoints['pool6'] = net - net = tf.reshape(net, [-1, 736]) - endpoints['prelogits'] = net - net = tf.nn.dropout(net, keep_probability) - endpoints['dropout'] = net - - return net, endpoints - \ No newline at end of file diff --git a/tmp/pilatus800.jpg b/tmp/pilatus800.jpg deleted file mode 100644 index 90a0f3186..000000000 Binary files a/tmp/pilatus800.jpg and /dev/null differ diff --git a/tmp/random_test.py b/tmp/random_test.py deleted file mode 100644 index b186cc3b1..000000000 --- a/tmp/random_test.py +++ /dev/null @@ -1,154 +0,0 @@ -import tensorflow as tf -import numpy as np -from six.moves import xrange - - -with tf.Graph().as_default(): - tf.set_random_seed(666) - - - # Placeholder for input images - input_placeholder = tf.placeholder(tf.float32, shape=(9, 7), name='input') - - # Split example embeddings into anchor, positive and negative - #anchor, positive, negative = tf.split(0, 3, input) - resh1 = tf.reshape(input_placeholder, [3,3,7]) - anchor = resh1[0,:,:] - positive = resh1[1,:,:] - negative = resh1[2,:,:] - - # Build an initialization operation to run below. - init = tf.global_variables_initializer() - - # Start running operations on the Graph. - sess = tf.Session(config=tf.ConfigProto(log_device_placement=False)) - sess.run(init) - - with sess.as_default(): - batch = np.zeros((9,7)) - batch[0,:] = 1.1 - batch[1,:] = 2.1 - batch[2,:] = 3.1 - batch[3,:] = 1.2 - batch[4,:] = 2.2 - batch[5,:] = 3.2 - batch[6,:] = 1.3 - batch[7,:] = 2.3 - batch[8,:] = 3.3 - feed_dict = {input_placeholder: batch } - print(batch) - print(sess.run([anchor, positive, negative], feed_dict=feed_dict)) - - - - -#feed_dict = { images_placeholder: np.zeros((90,96,96,3)), phase_train_placeholder: True } -#vars_eval = sess.run(tf.global_variables(), feed_dict=feed_dict) -#for gt in vars_eval: - #print('%.20f' % (np.sum(gt))) -#for gt, gv in zip(grads_eval, grad_vars): - #print('%40s: %.20f' % (gv.op.name, np.sum(gt))) - - - -#import h5py -#myFile = h5py.File('/home/david/repo/TensorFace/network.h5', 'r') - -## The '...' means retrieve the whole tensor -#data = myFile[...] -#print(data) - - -#import h5py # HDF5 support - -#fileName = "/home/david/repo/TensorFace/network.h5" -#f = h5py.File(fileName, "r") -##for item in f.keys(): - ##print item -#for item in f.values(): - #print item - - -#import tensorflow as tf -#import numpy as np -#import matplotlib.pyplot as plt -#import math -#import facenet -#import os -#import glob -#from scipy import misc - -#def plot_triplet(apn, idx): - #plt.subplot(1,3,1) - #plt.imshow(np.multiply(apn[idx*3+0,:,:,:],1/256)) - #plt.subplot(1,3,2) - #plt.imshow(np.multiply(apn[idx*3+1,:,:,:],1/256)) - #plt.subplot(1,3,3) - #plt.imshow(np.multiply(apn[idx*3+2,:,:,:],1/256)) - - -#input_image = tf.placeholder(tf.float32, name='input_image') -#phase_train = tf.placeholder(tf.bool, name='phase_train') - -#n_in, n_out = 3, 16 -#ksize = 3 -#stride = 1 -#kernel = tf.Variable(tf.truncated_normal([ksize, ksize, n_in, n_out], - #stddev=math.sqrt(2/(ksize*ksize*n_out))), - #name='kernel') -#conv = tf.nn.conv2d(input_image, kernel, [1,stride,stride,1], padding="SAME") -#conv_bn = facenet.batch_norm(conv, n_out, phase_train) -#relu = tf.nn.relu(conv_bn) - -## Build an initialization operation to run below. -#init = tf.global_variables_initializer() - -## Start running operations on the Graph. -#sess = tf.Session() -#sess.run(init) - -#path = '/home/david/datasets/fs_aligned/Zooey_Deschanel/' -#files = glob.glob(os.path.join(path, '*.png')) -#nrof_samples = 30 -#img_list = [None] * nrof_samples -#for i in xrange(nrof_samples): - #img_list[i] = misc.imread(files[i]) -#images = np.stack(img_list) - -#feed_dict = { - #input_image: images.astype(np.float32), - #phase_train: True -#} - -#out = sess.run([relu], feed_dict=feed_dict) -#print(out[0].shape) - -##print(out) - -#plot_triplet(images, 0) - - - -#import matplotlib.pyplot as plt -#import numpy as np - -#a=[3,4,5,6] -#b = [1,a[1:3]] -#print(b) - -## Generate some data... -#x, y = np.meshgrid(np.linspace(-2,2,200), np.linspace(-2,2,200)) -#x, y = x - x.mean(), y - y.mean() -#z = x * np.exp(-x**2 - y**2) -#print(z.shape) - -## Plot the grid -#plt.imshow(z) -#plt.gray() -#plt.show() - -#import numpy as np - -#np.random.seed(123) -#rnd = 1.0*np.random.randint(1,2**32)/2**32 -#print(rnd) diff --git a/tmp/rename_casia_directories.py b/tmp/rename_casia_directories.py deleted file mode 100644 index eb866be3f..000000000 --- a/tmp/rename_casia_directories.py +++ /dev/null @@ -1,37 +0,0 @@ -import shutil -import argparse -import os -import sys - -def main(args): - - identity_map = {} - with open(os.path.expanduser(args.map_file_name), "r") as f: - for line in f: - fields = line.split(' ') - dir_name = fields[0] - class_name = fields[1].replace('\n', '').replace('\r', '') - if class_name not in identity_map.values(): - identity_map[dir_name] = class_name - else: - print('Duplicate class names: %s' % class_name) - - dataset_path_exp = os.path.expanduser(args.dataset_path) - dirs = os.listdir(dataset_path_exp) - for f in dirs: - old_path = os.path.join(dataset_path_exp, f) - if f in identity_map: - new_path = os.path.join(dataset_path_exp, identity_map[f]) - if os.path.isdir(old_path): - print('Renaming %s to %s' % (old_path, new_path)) - shutil.move(old_path, new_path) - -def parse_arguments(argv): - parser = argparse.ArgumentParser() - - parser.add_argument('map_file_name', type=str, help='Name of the text file that contains the directory to class name mappings.') - parser.add_argument('dataset_path', type=str, help='Path to the dataset directory.') - return parser.parse_args(argv) - -if __name__ == '__main__': - main(parse_arguments(sys.argv[1:])) diff --git a/tmp/seed_test.py b/tmp/seed_test.py deleted file mode 100644 index 2077cf5ee..000000000 --- a/tmp/seed_test.py +++ /dev/null @@ -1,140 +0,0 @@ -import tensorflow as tf -import numpy as np -import sys -import time -sys.path.append('../src') -import facenet -from tensorflow.python.ops import control_flow_ops -from tensorflow.python.ops import array_ops - -from six.moves import xrange - -tf.app.flags.DEFINE_integer('batch_size', 90, - """Number of images to process in a batch.""") -tf.app.flags.DEFINE_integer('image_size', 96, - """Image size (height, width) in pixels.""") -tf.app.flags.DEFINE_float('alpha', 0.2, - """Positive to negative triplet distance margin.""") -tf.app.flags.DEFINE_float('learning_rate', 0.1, - """Initial learning rate.""") -tf.app.flags.DEFINE_float('moving_average_decay', 0.9999, - """Expontential decay for tracking of training parameters.""") - -FLAGS = tf.app.flags.FLAGS - -def run_train(): - - with tf.Graph().as_default(): - - # Set the seed for the graph - tf.set_random_seed(666) - - # Placeholder for input images - images_placeholder = tf.placeholder(tf.float32, shape=(FLAGS.batch_size, FLAGS.image_size, FLAGS.image_size, 3), name='input') - - # Build the inference graph - embeddings = inference_conv_test(images_placeholder) - #embeddings = inference_affine_test(images_placeholder) - - # Split example embeddings into anchor, positive and negative - anchor, positive, negative = tf.split(0, 3, embeddings) - - # Alternative implementation of the split operation - # This produces the same error - #resh1 = tf.reshape(embeddings, [3,int(FLAGS.batch_size/3), 128]) - #anchor = resh1[0,:,:] - #positive = resh1[1,:,:] - #negative = resh1[2,:,:] - - # Calculate triplet loss - pos_dist = tf.reduce_sum(tf.square(tf.sub(anchor, positive)), 1) - neg_dist = tf.reduce_sum(tf.square(tf.sub(anchor, negative)), 1) - basic_loss = tf.add(tf.sub(pos_dist,neg_dist), FLAGS.alpha) - loss = tf.reduce_mean(tf.maximum(basic_loss, 0.0), 0) - - # Build a Graph that trains the model with one batch of examples and updates the model parameters - opt = tf.train.GradientDescentOptimizer(FLAGS.learning_rate) - #opt = tf.train.AdagradOptimizer(FLAGS.learning_rate) # Optimizer does not seem to matter - grads = opt.compute_gradients(loss) - train_op = opt.apply_gradients(grads) - - # Initialize the variables - init = tf.global_variables_initializer() - - # Launch the graph. - sess = tf.Session() - sess.run(init) - - # Set the numpy seed - np.random.seed(666) - - with sess.as_default(): - grads_eval = [] - all_vars = [] - for step in xrange(1): - # Generate some random input data - batch = np.random.random((FLAGS.batch_size, FLAGS.image_size, FLAGS.image_size, 3)) - feed_dict = { images_placeholder: batch } - # Get the variables - var_names = tf.global_variables() - all_vars += sess.run(var_names, feed_dict=feed_dict) - # Get the gradients - grad_tensors, grad_vars = zip(*grads) - grads_eval += sess.run(grad_tensors, feed_dict=feed_dict) - # Run training - sess.run(train_op, feed_dict=feed_dict) - - sess.close() - return (var_names, all_vars, grad_vars, grads_eval) - -def _conv(inpOp, nIn, nOut, kH, kW, dH, dW, padType): - kernel = tf.Variable(tf.truncated_normal([kH, kW, nIn, nOut], - dtype=tf.float32, - stddev=1e-1), name='weights') - conv = tf.nn.conv2d(inpOp, kernel, [1, dH, dW, 1], padding=padType) - - biases = tf.Variable(tf.constant(0.0, shape=[nOut], dtype=tf.float32), - trainable=True, name='biases') - bias = tf.reshape(tf.nn.bias_add(conv, biases), conv.get_shape()) - conv1 = tf.nn.relu(bias) - return conv1 - -def _affine(inpOp, nIn, nOut): - kernel = tf.Variable(tf.truncated_normal([nIn, nOut], - dtype=tf.float32, - stddev=1e-1), name='weights') - biases = tf.Variable(tf.constant(0.0, shape=[nOut], dtype=tf.float32), - trainable=True, name='biases') - affine1 = tf.nn.relu_layer(inpOp, kernel, biases) - return affine1 - -def inference_conv_test(images): - conv1 = _conv(images, 3, 64, 7, 7, 2, 2, 'SAME') - resh1 = tf.reshape(conv1, [-1, 147456]) - affn = _affine(resh1, 147456, 128) # Affine layer not needed to reproduce the error - return affn - -def inference_affine_test(images): - resh1 = tf.reshape(images, [-1, 27648]) - affn1 = _affine(resh1, 27648, 1024) - affn2 = _affine(affn1, 1024, 1024) - affn3 = _affine(affn2, 1024, 1024) - affn4 = _affine(affn3, 1024, 128) - return affn4 - -# Run two sessions with the same seed. These runs should produce the same result. -var_names1, all_vars1, grad_names1, all_grads1 = run_train() -var_names2, all_vars2, grad_names2, all_grads2 = run_train() - -all_vars_close = [None] * len(all_vars1) -for i in range(len(all_vars1)): - all_vars_close[i] = np.allclose(all_vars1[i], all_vars2[i], rtol=1.e-16) - print('%d var %s: %s' % (i, var_names1[i].op.name, all_vars_close[i])) - -all_grads_close = [None] * len(all_grads1) -for i in range(len(all_grads1)): - all_grads_close[i] = np.allclose(all_grads1[i], all_grads2[i], rtol=1.e-16) - print('%d grad %s: %s' % (i, grad_names1[i].op.name, all_grads_close[i])) - -assert all(all_vars_close), 'Variable values differ between the two sessions (with the same seed)' -assert all(all_grads_close), 'Gradient values differ between the two sessions (with the same seed)' diff --git a/tmp/select_triplets_test.py b/tmp/select_triplets_test.py deleted file mode 100644 index 149e262b3..000000000 --- a/tmp/select_triplets_test.py +++ /dev/null @@ -1,30 +0,0 @@ -import facenet -import numpy as np -import tensorflow as tf - -FLAGS = tf.app.flags.FLAGS - -tf.app.flags.DEFINE_integer('people_per_batch', 45, - """Number of people per batch.""") -tf.app.flags.DEFINE_integer('alpha', 0.2, - """Positive to negative triplet distance margin.""") - - -embeddings = np.zeros((1800,128)) - -np.random.seed(123) -for ix in range(embeddings.shape[0]): - for jx in range(embeddings.shape[1]): - rnd = 1.0*np.random.randint(1,2**32)/2**32 - embeddings[ix][jx] = rnd - - -emb_array = embeddings -image_data = np.zeros((1800,96,96,3)) - - -num_per_class = [40 for i in range(45)] - - -np.random.seed(123) -apn, nrof_random_negs, nrof_triplets = facenet.select_triplets(emb_array, num_per_class, image_data) diff --git a/tmp/test1.py b/tmp/test1.py deleted file mode 100644 index f7d178505..000000000 --- a/tmp/test1.py +++ /dev/null @@ -1 +0,0 @@ -print('Hello world') diff --git a/tmp/test_align.py b/tmp/test_align.py deleted file mode 100644 index b4f42de38..000000000 --- a/tmp/test_align.py +++ /dev/null @@ -1,44 +0,0 @@ -import facenet -import os -import matplotlib.pyplot as plt -import numpy as np - - -def main(): - image_size = 96 - old_dataset = '/home/david/datasets/facescrub/fs_aligned_new_oean/' - new_dataset = '/home/david/datasets/facescrub/facescrub_110_96/' - eq = 0 - num = 0 - l = [] - dataset = facenet.get_dataset(old_dataset) - for cls in dataset: - new_class_dir = os.path.join(new_dataset, cls.name) - for image_path in cls.image_paths: - try: - filename = os.path.splitext(os.path.split(image_path)[1])[0] - new_filename = os.path.join(new_class_dir, filename+'.png') - #print(image_path) - if os.path.exists(new_filename): - a = facenet.load_data([image_path, new_filename], False, False, image_size, do_prewhiten=False) - if np.array_equal(a[0], a[1]): - eq+=1 - num+=1 - err = np.sum(np.square(np.subtract(a[0], a[1]))) - #print(err) - l.append(err) - if err>2000: - fig = plt.figure(1) - p1 = fig.add_subplot(121) - p1.imshow(a[0]) - p2 = fig.add_subplot(122) - p2.imshow(a[1]) - print('%6.1f: %s\n' % (err, new_filename)) - pass - else: - pass - #print('File not found: %s' % new_filename) - except: - pass -if __name__ == '__main__': - main() diff --git a/tmp/test_invariance_on_lfw.py b/tmp/test_invariance_on_lfw.py deleted file mode 100644 index 3bbbde00a..000000000 --- a/tmp/test_invariance_on_lfw.py +++ /dev/null @@ -1,213 +0,0 @@ -"""Test invariance to translation, scaling and rotation on the "Labeled Faces in the Wild" dataset (http://vis-www.cs.umass.edu/lfw/). -This requires test images to be cropped a bit wider than the normal to give some room for the transformations. -""" -# MIT License -# -# Copyright (c) 2016 David Sandberg -# -# Permission is hereby granted, free of charge, to any person obtaining a copy -# of this software and associated documentation files (the "Software"), to deal -# in the Software without restriction, including without limitation the rights -# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell -# copies of the Software, and to permit persons to whom the Software is -# furnished to do so, subject to the following conditions: -# -# The above copyright notice and this permission notice shall be included in all -# copies or substantial portions of the Software. -# -# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR -# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, -# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE -# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER -# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, -# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE -# SOFTWARE. - -from __future__ import absolute_import -from __future__ import division -from __future__ import print_function - -import tensorflow as tf -import numpy as np -import argparse -import facenet -import lfw -import matplotlib.pyplot as plt -from scipy import misc -import os -import sys -import math - -def main(args): - - pairs = lfw.read_pairs(os.path.expanduser(args.lfw_pairs)) - paths, actual_issame = lfw.get_paths(os.path.expanduser(args.lfw_dir), pairs) - result_dir = '../data/' - plt.ioff() # Disable interactive plotting mode - - with tf.Graph().as_default(): - - with tf.Session() as sess: - - # Load the model - print('Loading model "%s"' % args.model_file) - facenet.load_model(args.model_file) - - # Get input and output tensors - images_placeholder = tf.get_default_graph().get_tensor_by_name("input:0") - phase_train_placeholder = tf.get_default_graph().get_tensor_by_name("phase_train:0") - embeddings = tf.get_default_graph().get_tensor_by_name("embeddings:0") - image_size = int(images_placeholder.get_shape()[1]) - - # Run test on LFW to check accuracy for different horizontal/vertical translations of input images - if args.nrof_offsets>0: - step = 3 - offsets = np.asarray([x*step for x in range(-args.nrof_offsets//2+1, args.nrof_offsets//2+1)]) - horizontal_offset_accuracy = [None] * len(offsets) - for idx, offset in enumerate(offsets): - accuracy = evaluate_accuracy(sess, images_placeholder, phase_train_placeholder, image_size, embeddings, - paths, actual_issame, translate_images, (offset,0), 60, args.orig_image_size, args.seed) - print('Hoffset: %1.3f Accuracy: %1.3f+-%1.3f' % (offset, np.mean(accuracy), np.std(accuracy))) - horizontal_offset_accuracy[idx] = np.mean(accuracy) - vertical_offset_accuracy = [None] * len(offsets) - for idx, offset in enumerate(offsets): - accuracy = evaluate_accuracy(sess, images_placeholder, phase_train_placeholder, image_size, embeddings, - paths, actual_issame, translate_images, (0,offset), 60, args.orig_image_size, args.seed) - print('Voffset: %1.3f Accuracy: %1.3f+-%1.3f' % (offset, np.mean(accuracy), np.std(accuracy))) - vertical_offset_accuracy[idx] = np.mean(accuracy) - fig = plt.figure(1) - plt.plot(offsets, horizontal_offset_accuracy, label='Horizontal') - plt.plot(offsets, vertical_offset_accuracy, label='Vertical') - plt.legend() - plt.grid(True) - plt.title('Translation invariance on LFW') - plt.xlabel('Offset [pixels]') - plt.ylabel('Accuracy') -# plt.show() - print('Saving results in %s' % result_dir) - fig.savefig(os.path.join(result_dir, 'invariance_translation.png')) - save_result(offsets, horizontal_offset_accuracy, os.path.join(result_dir, 'invariance_translation_horizontal.txt')) - save_result(offsets, vertical_offset_accuracy, os.path.join(result_dir, 'invariance_translation_vertical.txt')) - - # Run test on LFW to check accuracy for different rotation of input images - if args.nrof_angles>0: - step = 3 - angles = np.asarray([x*step for x in range(-args.nrof_offsets//2+1, args.nrof_offsets//2+1)]) - rotation_accuracy = [None] * len(angles) - for idx, angle in enumerate(angles): - accuracy = evaluate_accuracy(sess, images_placeholder, phase_train_placeholder, image_size, embeddings, - paths, actual_issame, rotate_images, angle, 60, args.orig_image_size, args.seed) - print('Angle: %1.3f Accuracy: %1.3f+-%1.3f' % (angle, np.mean(accuracy), np.std(accuracy))) - rotation_accuracy[idx] = np.mean(accuracy) - fig = plt.figure(2) - plt.plot(angles, rotation_accuracy) - plt.grid(True) - plt.title('Rotation invariance on LFW') - plt.xlabel('Angle [deg]') - plt.ylabel('Accuracy') -# plt.show() - print('Saving results in %s' % result_dir) - fig.savefig(os.path.join(result_dir, 'invariance_rotation.png')) - save_result(angles, rotation_accuracy, os.path.join(result_dir, 'invariance_rotation.txt')) - - # Run test on LFW to check accuracy for different scaling of input images - if args.nrof_scales>0: - step = 0.05 - scales = np.asarray([x*step+1 for x in range(-args.nrof_offsets//2+1, args.nrof_offsets//2+1)]) - scale_accuracy = [None] * len(scales) - for scale_idx, scale in enumerate(scales): - accuracy = evaluate_accuracy(sess, images_placeholder, phase_train_placeholder, image_size, embeddings, - paths, actual_issame, scale_images, scale, 60, args.orig_image_size, args.seed) - print('Scale: %1.3f Accuracy: %1.3f+-%1.3f' % (scale, np.mean(accuracy), np.std(accuracy))) - scale_accuracy[scale_idx] = np.mean(accuracy) - fig = plt.figure(3) - plt.plot(scales, scale_accuracy) - plt.grid(True) - plt.title('Scale invariance on LFW') - plt.xlabel('Scale') - plt.ylabel('Accuracy') -# plt.show() - print('Saving results in %s' % result_dir) - fig.savefig(os.path.join(result_dir, 'invariance_scale.png')) - save_result(scales, scale_accuracy, os.path.join(result_dir, 'invariance_scale.txt')) - -def save_result(aug, acc, filename): - with open(filename, "w") as f: - for i in range(aug.size): - f.write('%6.4f %6.4f\n' % (aug[i], acc[i])) - -def evaluate_accuracy(sess, images_placeholder, phase_train_placeholder, image_size, embeddings, - paths, actual_issame, augment_images, aug_value, batch_size, orig_image_size, seed): - nrof_images = len(paths) - nrof_batches = int(math.ceil(1.0*nrof_images / batch_size)) - emb_list = [] - for i in range(nrof_batches): - start_index = i*batch_size - end_index = min((i+1)*batch_size, nrof_images) - paths_batch = paths[start_index:end_index] - images = facenet.load_data(paths_batch, False, False, orig_image_size) - images_aug = augment_images(images, aug_value, image_size) - feed_dict = { images_placeholder: images_aug, phase_train_placeholder: False } - emb_list += sess.run([embeddings], feed_dict=feed_dict) - emb_array = np.vstack(emb_list) # Stack the embeddings to a nrof_examples_per_epoch x 128 matrix - - thresholds = np.arange(0, 4, 0.01) - embeddings1 = emb_array[0::2] - embeddings2 = emb_array[1::2] - _, _, accuracy = facenet.calculate_roc(thresholds, embeddings1, embeddings2, np.asarray(actual_issame), seed) - return accuracy - -def scale_images(images, scale, image_size): - images_scale_list = [None] * images.shape[0] - for i in range(images.shape[0]): - images_scale_list[i] = misc.imresize(images[i,:,:,:], scale) - images_scale = np.stack(images_scale_list,axis=0) - sz1 = images_scale.shape[1]/2 - sz2 = image_size/2 - images_crop = images_scale[:,(sz1-sz2):(sz1+sz2),(sz1-sz2):(sz1+sz2),:] - return images_crop - -def rotate_images(images, angle, image_size): - images_list = [None] * images.shape[0] - for i in range(images.shape[0]): - images_list[i] = misc.imrotate(images[i,:,:,:], angle) - images_rot = np.stack(images_list,axis=0) - sz1 = images_rot.shape[1]/2 - sz2 = image_size/2 - images_crop = images_rot[:,(sz1-sz2):(sz1+sz2),(sz1-sz2):(sz1+sz2),:] - return images_crop - -def translate_images(images, offset, image_size): - h, v = offset - sz1 = images.shape[1]/2 - sz2 = image_size/2 - images_crop = images[:,(sz1-sz2+v):(sz1+sz2+v),(sz1-sz2+h):(sz1+sz2+h),:] - return images_crop - -def parse_arguments(argv): - parser = argparse.ArgumentParser() - - parser.add_argument('--model_file', type=str, - help='File containing the model parameters as well as the model metagraph (with extension ".meta")', - default='~/models/facenet/20160514-234418/model.ckpt-500000') - parser.add_argument('--nrof_offsets', type=int, - help='Number of horizontal and vertical offsets to evaluate.', default=21) - parser.add_argument('--nrof_angles', type=int, - help='Number of angles to evaluate.', default=21) - parser.add_argument('--nrof_scales', type=int, - help='Number of scales to evaluate.', default=21) - parser.add_argument('--lfw_pairs', type=str, - help='The file containing the pairs to use for validation.', default='../data/pairs.txt') - parser.add_argument('--lfw_dir', type=str, - help='Path to the data directory containing aligned face patches.', default='~/datasets/lfw/lfw_realigned/') - parser.add_argument('--orig_image_size', type=int, - help='Image size (height, width) in pixels of the original (uncropped/unscaled) images.', default=224) - parser.add_argument('--lfw_nrof_folds', type=int, - help='Number of folds to use for cross validation. Mainly used for testing.', default=10) - parser.add_argument('--seed', type=int, - help='Random seed.', default=666) - return parser.parse_args(argv) - - -if __name__ == '__main__': - main(parse_arguments(sys.argv[1:])) diff --git a/tmp/vggface16.py b/tmp/vggface16.py deleted file mode 100644 index df45c53ec..000000000 --- a/tmp/vggface16.py +++ /dev/null @@ -1,71 +0,0 @@ -"""Load the VGG Face model into TensorFlow. -Download the model from http://www.robots.ox.ac.uk/~vgg/software/vgg_face/ -and point to the file 'vgg_face.mat' -""" -import numpy as np -from scipy import io -import tensorflow as tf - -def load(filename, images): - #filename = '../data/vgg_face_matconvnet/data/vgg_face.mat' - vgg16 = io.loadmat(filename) - vgg16Layers = vgg16['net'][0][0]['layers'] - - # A function to get the weights of the VGG layers - def vbbWeights(layerNumber): - W = vgg16Layers[0][layerNumber][0][0][2][0][0] - W = tf.constant(W) - return W - - def vbbConstants(layerNumber): - b = vgg16Layers[0][layerNumber][0][0][2][0][1].T - b = tf.constant(np.reshape(b, (b.size))) - return b - - modelGraph = {} - modelGraph['input'] = images - - modelGraph['conv1_1'] = tf.nn.conv2d(modelGraph['input'], filter = vbbWeights(0), strides = [1, 1, 1, 1], padding = 'SAME') - modelGraph['relu1_1'] = tf.nn.relu(modelGraph['conv1_1'] + vbbConstants(0)) - modelGraph['conv1_2'] = tf.nn.conv2d(modelGraph['relu1_1'], filter = vbbWeights(2), strides = [1, 1, 1, 1], padding = 'SAME') - modelGraph['relu1_2'] = tf.nn.relu(modelGraph['conv1_2'] + vbbConstants(2)) - modelGraph['pool1'] = tf.nn.max_pool(modelGraph['relu1_2'], ksize = [1, 2, 2, 1], strides = [1, 2, 2, 1], padding = 'SAME') - - modelGraph['conv2_1'] = tf.nn.conv2d(modelGraph['pool1'], filter = vbbWeights(5), strides = [1, 1, 1, 1], padding = 'SAME') - modelGraph['relu2_1'] = tf.nn.relu(modelGraph['conv2_1'] + vbbConstants(5)) - modelGraph['conv2_2'] = tf.nn.conv2d(modelGraph['relu2_1'], filter = vbbWeights(7), strides = [1, 1, 1, 1], padding = 'SAME') - modelGraph['relu2_2'] = tf.nn.relu(modelGraph['conv2_2'] + vbbConstants(7)) - modelGraph['pool2'] = tf.nn.max_pool(modelGraph['relu2_2'], ksize = [1, 2, 2, 1], strides = [1, 2, 2, 1], padding = 'SAME') - - modelGraph['conv3_1'] = tf.nn.conv2d(modelGraph['pool2'], filter = vbbWeights(10), strides = [1, 1, 1, 1], padding = 'SAME') - modelGraph['relu3_1'] = tf.nn.relu(modelGraph['conv3_1'] + vbbConstants(10)) - modelGraph['conv3_2'] = tf.nn.conv2d(modelGraph['relu3_1'], filter = vbbWeights(12), strides = [1, 1, 1, 1], padding = 'SAME') - modelGraph['relu3_2'] = tf.nn.relu(modelGraph['conv3_2'] + vbbConstants(12)) - modelGraph['conv3_3'] = tf.nn.conv2d(modelGraph['relu3_2'], filter = vbbWeights(14), strides = [1, 1, 1, 1], padding = 'SAME') - modelGraph['relu3_3'] = tf.nn.relu(modelGraph['conv3_3'] + vbbConstants(14)) - modelGraph['pool3'] = tf.nn.max_pool(modelGraph['relu3_3'], ksize = [1, 2, 2, 1], strides = [1, 2, 2, 1], padding = 'SAME') - - modelGraph['conv4_1'] = tf.nn.conv2d(modelGraph['pool3'], filter = vbbWeights(17), strides = [1, 1, 1, 1], padding = 'SAME') - modelGraph['relu4_1'] = tf.nn.relu(modelGraph['conv4_1'] + vbbConstants(17)) - modelGraph['conv4_2'] = tf.nn.conv2d(modelGraph['relu4_1'], filter = vbbWeights(19), strides = [1, 1, 1, 1], padding = 'SAME') - modelGraph['relu4_2'] = tf.nn.relu(modelGraph['conv4_2'] + vbbConstants(19)) - modelGraph['conv4_3'] = tf.nn.conv2d(modelGraph['relu4_2'], filter = vbbWeights(21), strides = [1, 1, 1, 1], padding = 'SAME') - modelGraph['relu4_3'] = tf.nn.relu(modelGraph['conv4_3'] + vbbConstants(21)) - modelGraph['pool4'] = tf.nn.max_pool(modelGraph['relu4_3'], ksize = [1, 2, 2, 1], strides = [1, 2, 2, 1], padding = 'SAME') - - modelGraph['conv5_1'] = tf.nn.conv2d(modelGraph['pool4'], filter = vbbWeights(24), strides = [1, 1, 1, 1], padding = 'SAME') - modelGraph['relu5_1'] = tf.nn.relu(modelGraph['conv5_1'] + vbbConstants(24)) - modelGraph['conv5_2'] = tf.nn.conv2d(modelGraph['relu5_1'], filter = vbbWeights(26), strides = [1, 1, 1, 1], padding = 'SAME') - modelGraph['relu5_2'] = tf.nn.relu(modelGraph['conv5_2'] + vbbConstants(26)) - modelGraph['conv5_3'] = tf.nn.conv2d(modelGraph['relu5_2'], filter = vbbWeights(28), strides = [1, 1, 1, 1], padding = 'SAME') - modelGraph['relu5_3'] = tf.nn.relu(modelGraph['conv5_3'] + vbbConstants(28)) - modelGraph['pool5'] = tf.nn.max_pool(modelGraph['relu5_3'], ksize = [1, 2, 2, 1], strides = [1, 2, 2, 1], padding = 'SAME') - - modelGraph['resh1'] = tf.reshape(modelGraph['pool5'], [-1, 25088]) - modelGraph['fc6'] = tf.nn.relu_layer(modelGraph['resh1'], tf.reshape(vbbWeights(31), [25088, 4096]), vbbConstants(31)) - modelGraph['dropout1'] = tf.nn.dropout(modelGraph['fc6'], 0.5) - modelGraph['fc7'] = tf.nn.relu_layer(modelGraph['dropout1'], tf.squeeze(vbbWeights(34), [0, 1]), vbbConstants(34)) - modelGraph['dropout2'] = tf.nn.dropout(modelGraph['fc7'], 0.5) - modelGraph['fc8'] = tf.nn.relu_layer(modelGraph['dropout2'], tf.squeeze(vbbWeights(37), [0, 1]), vbbConstants(37)) - - return modelGraph diff --git a/tmp/vggverydeep19.py b/tmp/vggverydeep19.py deleted file mode 100644 index 86f22c561..000000000 --- a/tmp/vggverydeep19.py +++ /dev/null @@ -1,49 +0,0 @@ -"""Load the VGG imagenet model into TensorFlow. -Download the model from http://www.robots.ox.ac.uk/~vgg/research/very_deep/ -and point to the file 'imagenet-vgg-verydeep-19.mat' -""" -import numpy as np -from scipy import io -import tensorflow as tf - -def load(filename, images): - vgg19 = io.loadmat(filename) - vgg19Layers = vgg19['layers'] - - # A function to get the weights of the VGG layers - def vbbWeights(layerNumber): - W = vgg19Layers[0][layerNumber][0][0][2][0][0] - W = tf.constant(W) - return W - - def vbbConstants(layerNumber): - b = vgg19Layers[0][layerNumber][0][0][2][0][1].T - b = tf.constant(np.reshape(b, (b.size))) - return b - - modelGraph = {} - modelGraph['input'] = images - modelGraph['conv1_1'] = tf.nn.relu(tf.nn.conv2d(modelGraph['input'], filter = vbbWeights(0), strides = [1, 1, 1, 1], padding = 'SAME') + vbbConstants(0)) - modelGraph['conv1_2'] = tf.nn.relu(tf.nn.conv2d(modelGraph['conv1_1'], filter = vbbWeights(2), strides = [1, 1, 1, 1], padding = 'SAME') + vbbConstants(2)) - modelGraph['avgpool1'] = tf.nn.avg_pool(modelGraph['conv1_2'], ksize = [1, 2, 2, 1], strides = [1, 2, 2, 1], padding = 'SAME') - modelGraph['conv2_1'] = tf.nn.relu(tf.nn.conv2d(modelGraph['avgpool1'], filter = vbbWeights(5), strides = [1, 1, 1, 1], padding = 'SAME') + vbbConstants(5)) - modelGraph['conv2_2'] = tf.nn.relu(tf.nn.conv2d(modelGraph['conv2_1'], filter = vbbWeights(7), strides = [1, 1, 1, 1], padding = 'SAME') + vbbConstants(7)) - modelGraph['avgpool2'] = tf.nn.avg_pool(modelGraph['conv2_2'], ksize = [1, 2, 2, 1], strides = [1, 2, 2, 1], padding = 'SAME') - modelGraph['conv3_1'] = tf.nn.relu(tf.nn.conv2d(modelGraph['avgpool2'], filter = vbbWeights(10), strides = [1, 1, 1, 1], padding = 'SAME') + vbbConstants(10)) - modelGraph['conv3_2'] = tf.nn.relu(tf.nn.conv2d(modelGraph['conv3_1'], filter = vbbWeights(12), strides = [1, 1, 1, 1], padding = 'SAME') + vbbConstants(12)) - modelGraph['conv3_3'] = tf.nn.relu(tf.nn.conv2d(modelGraph['conv3_2'], filter = vbbWeights(14), strides = [1, 1, 1, 1], padding = 'SAME') + vbbConstants(14)) - modelGraph['conv3_4'] = tf.nn.relu(tf.nn.conv2d(modelGraph['conv3_3'], filter = vbbWeights(16), strides = [1, 1, 1, 1], padding = 'SAME') + vbbConstants(16)) - modelGraph['avgpool3'] = tf.nn.avg_pool(modelGraph['conv3_4'], ksize = [1, 2, 2, 1], strides = [1, 2, 2, 1], padding = 'SAME') - modelGraph['conv4_1'] = tf.nn.relu(tf.nn.conv2d(modelGraph['avgpool3'], filter = vbbWeights(19), strides = [1, 1, 1, 1], padding = 'SAME') + vbbConstants(19)) - modelGraph['conv4_2'] = tf.nn.relu(tf.nn.conv2d(modelGraph['conv4_1'], filter = vbbWeights(21), strides = [1, 1, 1, 1], padding = 'SAME') + vbbConstants(21)) - modelGraph['conv4_3'] = tf.nn.relu(tf.nn.conv2d(modelGraph['conv4_2'], filter = vbbWeights(23), strides = [1, 1, 1, 1], padding = 'SAME') + vbbConstants(23)) - modelGraph['conv4_4'] = tf.nn.relu(tf.nn.conv2d(modelGraph['conv4_3'], filter = vbbWeights(25), strides = [1, 1, 1, 1], padding = 'SAME') + vbbConstants(25)) - modelGraph['avgpool4'] = tf.nn.avg_pool(modelGraph['conv4_4'], ksize = [1, 2, 2, 1], strides = [1, 2, 2, 1], padding = 'SAME') - modelGraph['conv5_1'] = tf.nn.relu(tf.nn.conv2d(modelGraph['avgpool4'], filter = vbbWeights(28), strides = [1, 1, 1, 1], padding = 'SAME') + vbbConstants(28)) - modelGraph['conv5_2'] = tf.nn.relu(tf.nn.conv2d(modelGraph['conv5_1'], filter = vbbWeights(30), strides = [1, 1, 1, 1], padding = 'SAME') + vbbConstants(30)) - modelGraph['conv5_3'] = tf.nn.relu(tf.nn.conv2d(modelGraph['conv5_2'], filter = vbbWeights(32), strides = [1, 1, 1, 1], padding = 'SAME') + vbbConstants(32)) - modelGraph['conv5_4'] = tf.nn.relu(tf.nn.conv2d(modelGraph['conv5_3'], filter = vbbWeights(34), strides = [1, 1, 1, 1], padding = 'SAME') + vbbConstants(34)) - modelGraph['avgpool5'] = tf.nn.avg_pool(modelGraph['conv5_4'], ksize = [1, 2, 2, 1], strides = [1, 2, 2, 1], padding = 'SAME') - - return modelGraph - diff --git a/tmp/visualize.py b/tmp/visualize.py deleted file mode 100644 index 6e5ea6877..000000000 --- a/tmp/visualize.py +++ /dev/null @@ -1,121 +0,0 @@ -"""Visualize individual feature channels and their combinations to explore the space of patterns learned by the neural network -Based on http://nbviewer.jupyter.org/github/tensorflow/tensorflow/blob/master/tensorflow/examples/tutorials/deepdream/deepdream.ipynb -""" -# MIT License -# -# Copyright (c) 2016 David Sandberg -# -# Permission is hereby granted, free of charge, to any person obtaining a copy -# of this software and associated documentation files (the "Software"), to deal -# in the Software without restriction, including without limitation the rights -# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell -# copies of the Software, and to permit persons to whom the Software is -# furnished to do so, subject to the following conditions: -# -# The above copyright notice and this permission notice shall be included in all -# copies or substantial portions of the Software. -# -# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR -# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, -# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE -# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER -# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, -# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE -# SOFTWARE. - -from __future__ import absolute_import -from __future__ import division -from __future__ import print_function - -import os -import numpy as np -import sys -import argparse -import tensorflow as tf -import importlib -from scipy import misc - -def main(args): - - network = importlib.import_module(args.model_def, 'inference') - - # Start with a gray image with a little noise - np.random.seed(seed=args.seed) - img_noise = np.random.uniform(size=(args.image_size,args.image_size,3)) + 100.0 - - sess = tf.Session() - - t_input = tf.placeholder(np.float32, shape=(args.image_size,args.image_size,3), name='input') # define the input tensor - image_mean = 117.0 - t_preprocessed = tf.expand_dims(t_input-image_mean, 0) - - # Build the inference graph - network.inference(t_preprocessed, 1.0, - phase_train=True, weight_decay=0.0) - - # Create a saver for restoring variables - saver = tf.train.Saver(tf.global_variables()) - - # Restore the parameters - saver.restore(sess, args.model_file) - - layers = [op.name for op in tf.get_default_graph().get_operations() if op.type=='Conv2D'] - feature_nums = {layer: int(T(layer).get_shape()[-1]) for layer in layers} - - print('Number of layers: %d' % len(layers)) - - for layer in sorted(feature_nums.keys()): - print('%s%d' % ((layer+': ').ljust(40), feature_nums[layer])) - - # Picking some internal layer. Note that we use outputs before applying the ReLU nonlinearity - # to have non-zero gradients for features with negative initial activations. - layer = 'InceptionResnetV1/Repeat_2/block8_3/Conv2d_1x1/Conv2D' - #layer = 'incept4b/in4_conv1x1_31/Conv2D' - result_dir = '../data/' - print('Number of features in layer "%s": %d' % (layer, feature_nums[layer])) - channels = range(feature_nums[layer]) - np.random.shuffle(channels) - for i in range(32): - print('Rendering feature %d' % channels[i]) - channel = channels[i] - img = render_naive(sess, t_input, T(layer)[:,:,:,channel], img_noise) - filename = '%s_%03d.png' % (layer.replace('/', '_'), channel) - misc.imsave(os.path.join(result_dir, filename), img) - - -def T(layer): - '''Helper for getting layer output tensor''' - return tf.get_default_graph().get_tensor_by_name('%s:0' % layer) - -def visstd(a, s=0.1): - '''Normalize the image range for visualization''' - return (a-a.mean())/max(a.std(), 1e-4)*s + 0.5 - -def render_naive(sess, t_input, t_obj, img0, iter_n=20, step=1.0): - t_score = tf.reduce_mean(t_obj) # defining the optimization objective - t_grad = tf.gradients(t_score, t_input)[0] # behold the power of automatic differentiation! - - img = img0.copy() - for _ in range(iter_n): - g, _ = sess.run([t_grad, t_score], {t_input:img}) - # normalizing the gradient, so the same step size should work - g /= g.std()+1e-8 # for different layers and networks - img += g*step - return visstd(img) - -def parse_arguments(argv): - parser = argparse.ArgumentParser() - - parser.add_argument('model_file', type=str, - help='Directory containing the graph definition and checkpoint files.') - parser.add_argument('--model_def', type=str, - help='Model definition. Points to a module containing the definition of the inference graph.', - default='models.nn4') - parser.add_argument('--image_size', type=int, - help='Image size (height, width) in pixels.', default=96) - parser.add_argument('--seed', type=int, - help='Random seed.', default=666) - return parser.parse_args(argv) - -if __name__ == '__main__': - main(parse_arguments(sys.argv[1:])) diff --git a/tmp/visualize_vgg_model.py b/tmp/visualize_vgg_model.py deleted file mode 100644 index 946893688..000000000 --- a/tmp/visualize_vgg_model.py +++ /dev/null @@ -1,107 +0,0 @@ -import numpy as np -from scipy import misc -import tensorflow as tf -from matplotlib import pyplot, image -import vggverydeep19 - -paintingStyleImage = image.imread("../data/schoolofathens.jpg") -pyplot.imshow(paintingStyleImage) - -inputImage = image.imread("../data/grandcentral.jpg") -pyplot.imshow(inputImage) - -outputWidth = 800 -outputHeight = 600 - -# Beta constant -beta = 5 -# Alpha constant -alpha = 100 -# Noise ratio -noiseRatio = 0.6 - -nodes = vggverydeep19.load('../data/imagenet-vgg-verydeep-19.mat', (600, 800)) - -# Mean VGG-19 image -meanImage19 = np.array([103.939, 116.779, 123.68]).reshape((1,1,1,3)) #pylint: disable=no-member - - - -# Squared-error loss of content between the two feature representations -def sqErrorLossContent(sess, modelGraph, layer): - p = session.run(modelGraph[layer]) - #pylint: disable=maybe-no-member - N = p.shape[3] - M = p.shape[1] * p.shape[2] - return (1 / (4 * N * M)) * tf.reduce_sum(tf.pow(modelGraph[layer] - sess.run(modelGraph[layer]), 2)) - -# Squared-error loss of style between the two feature representations -styleLayers = [ - ('conv1_1', 0.2), - ('conv2_1', 0.2), - ('conv3_1', 0.2), - ('conv4_1', 0.2), - ('conv5_1', 0.2), -] -def sqErrorLossStyle(sess, modelGraph): - def intermediateCalc(x, y): - N = x.shape[3] - M = x.shape[1] * x.shape[2] - A = tf.matmul(tf.transpose(tf.reshape(x, (M, N))), tf.reshape(x, (M, N))) - G = tf.matmul(tf.transpose(tf.reshape(y, (M, N))), tf.reshape(y, (M, N))) - return (1 / (4 * N**2 * M**2)) * tf.reduce_sum(tf.pow(G - A, 2)) - E = [intermediateCalc(sess.run(modelGraph[layerName]), modelGraph[layerName]) for layerName, _ in styleLayers] - W = [w for _, w in styleLayers] - return sum([W[layerNumber] * E[layerNumber] for layerNumber in range(len(styleLayers))]) - -session = tf.InteractiveSession() - -# Addition of extra dimension to image -inputImage = np.reshape(inputImage, ((1,) + inputImage.shape)) -inputImage = inputImage - meanImage19 -# Display image -pyplot.imshow(inputImage[0]) - -# Addition of extra dimension to image -paintingStyleImage = np.reshape(paintingStyleImage, ((1,) + paintingStyleImage.shape)) -paintingStyleImage = paintingStyleImage - meanImage19 -# Display image -pyplot.imshow(paintingStyleImage[0]) - -imageNoise = np.random.uniform(-20, 20, (1, outputHeight, outputWidth, 3)).astype('float32') -pyplot.imshow(imageNoise[0]) -mixedImage = imageNoise * noiseRatio + inputImage * (1 - noiseRatio) -pyplot.imshow(inputImage[0]) - - -session.run(tf.global_variables_initializer()) -session.run(nodes['input'].assign(inputImage)) -contentLoss = sqErrorLossContent(session, nodes, 'conv4_2') -session.run(nodes['input'].assign(paintingStyleImage)) -styleLoss = sqErrorLossStyle(session, nodes) -totalLoss = beta * contentLoss + alpha * styleLoss - -optimizer = tf.train.AdamOptimizer(2.0) -trainStep = optimizer.minimize(totalLoss) -session.run(tf.global_variables_initializer()) -session.run(nodes['input'].assign(inputImage)) -# Number of iterations to run. -iterations = 2000 -session.run(tf.global_variables_initializer()) -session.run(nodes['input'].assign(inputImage)) - -for iters in range(iterations): - session.run(trainStep) - if iters%50 == 0: - # Output every 50 iterations for animation - filename = 'output%d.png' % (iters) - im = mixedImage + meanImage19 - im = im[0] - im = np.clip(im, 0, 255).astype('uint8') - misc.imsave(filename, im) - -im = mixedImage + meanImage19 -im = im[0] -im = np.clip(im, 0, 255).astype('uint8') -misc.imsave('finalImage.png', im) - diff --git a/tmp/visualize_vggface.py b/tmp/visualize_vggface.py deleted file mode 100644 index c34004cdd..000000000 --- a/tmp/visualize_vggface.py +++ /dev/null @@ -1,49 +0,0 @@ -import numpy as np -import tensorflow as tf -import matplotlib.pyplot as plt -import tmp.vggface16 - -def main(): - - sess = tf.Session() - - t_input = tf.placeholder(np.float32, name='input') # define the input tensor - image_mean = 117.0 - t_preprocessed = tf.expand_dims(t_input-image_mean, 0) - - # Build the inference graph - nodes = tmp.vggface16.load('data/vgg_face.mat', t_preprocessed) - - img_noise = np.random.uniform(size=(224,224,3)) + 117.0 - - # Picking some internal layer. Note that we use outputs before applying the ReLU nonlinearity - # to have non-zero gradients for features with negative initial activations. - layer = 'conv5_3' - channel = 140 # picking some feature channel to visualize - img = render_naive(sess, t_input, nodes[layer][:,:,:,channel], img_noise) - showarray(img) - -def showarray(a): - a = np.uint8(np.clip(a, 0, 1)*255) - plt.imshow(a) - plt.show() - -def visstd(a, s=0.1): - '''Normalize the image range for visualization''' - return (a-a.mean())/max(a.std(), 1e-4)*s + 0.5 - -def render_naive(sess, t_input, t_obj, img0, iter_n=20, step=1.0): - t_score = tf.reduce_mean(t_obj) # defining the optimization objective - t_grad = tf.gradients(t_score, t_input)[0] # behold the power of automatic differentiation! - - img = img0.copy() - for _ in range(iter_n): - g, _ = sess.run([t_grad, t_score], {t_input:img}) - # normalizing the gradient, so the same step size should work - g /= g.std()+1e-8 # for different layers and networks - img += g*step - return visstd(img) - - -if __name__ == '__main__': - main() diff --git a/util/plot_learning_curves.m b/util/plot_learning_curves.m deleted file mode 100644 index c0f24a344..000000000 --- a/util/plot_learning_curves.m +++ /dev/null @@ -1,300 +0,0 @@ -% Plots the lerning curves for the specified training runs from data in the -% file "lfw_result.txt" stored in the log directory for the respective -% model. - -% MIT License -% -% Copyright (c) 2016 David Sandberg -% -% Permission is hereby granted, free of charge, to any person obtaining a copy -% of this software and associated documentation files (the "Software"), to deal -% in the Software without restriction, including without limitation the rights -% to use, copy, modify, merge, publish, distribute, sublicense, and/or sell -% copies of the Software, and to permit persons to whom the Software is -% furnished to do so, subject to the following conditions: -% -% The above copyright notice and this permission notice shall be included in all -% copies or substantial portions of the Software. -% -% THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR -% IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, -% FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE -% AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER -% LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, -% OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE -% SOFTWARE. - -%% -addpath('/home/david/git/facenet/util/'); -log_dirs = { '/home/david/logs/facenet' }; -%% -res = { ... -{ '20180402-114759', 'vggface2, wd=5e-4, center crop, fixed image standardization' }, ... -}; - -%% -res = { ... -{ '20180408-102900', 'casia, wd=5e-4, pnlf=5e-4, fixed image standardization' }, ... -}; - -%% - -colors = {'b', 'g', 'r', 'c', 'm', 'y', 'k'}; -markers = {'.', 'o', 'x', '+', '*', 's', 'd' }; -lines = {'-', '-.', '--', ':' }; -fontSize = 6; -lineWidth = 2; -lineStyles = combineStyles(colors, markers); -lineStyles2 = combineStyles(colors, {''}, lines); -legends = cell(length(res),1); -legends_accuracy = cell(length(res),1); -legends_valrate = cell(length(res),1); -var = cell(length(res),1); -for i=1:length(res), - for k=1:length(log_dirs) - if exist(fullfile(log_dirs{k}, res{i}{1}), 'dir') - ld = log_dirs{k}; - end - end - filename = fullfile(ld, res{i}{1}, 'stat.h5'); - - var{i} = readlogs(filename,{'loss', 'reg_loss', 'xent_loss', 'lfw_accuracy', ... - 'lfw_valrate', 'val_loss', 'val_xent_loss', 'val_accuracy', ... - 'accuracy', 'prelogits_norm', 'learning_rate', 'center_loss', ... - 'prelogits_hist', 'accuracy'}); - var{i}.steps = 1:length(var{i}.loss); - epoch = find(var{i}.lfw_accuracy,1,'last'); - var{i}.epochs = 1:epoch; - legends{i} = sprintf('%s: %s', res{i}{1}, res{i}{2}); - start_epoch = max(1,epoch-10); - legends_accuracy{i} = sprintf('%s: %s (%.2f%%)', res{i}{1}, res{i}{2}, mean(var{i}.lfw_accuracy(start_epoch:epoch))*100 ); - legends_valrate{i} = sprintf('%s: %s (%.2f%%)', res{i}{1}, res{i}{2}, mean(var{i}.lfw_valrate(start_epoch:epoch))*100 ); - - arguments_filename = fullfile(ld, res{i}{1}, 'arguments.txt'); - if exist(arguments_filename) - str = fileread(arguments_filename); - var{i}.wd = getParameter(str, 'weight_decay', '0.0'); - var{i}.cl = getParameter(str, 'center_loss_factor', '0.0'); - var{i}.fixed_std = getParameter(str, 'use_fixed_image_standardization', '0'); - var{i}.data_dir = getParameter(str, 'data_dir', ''); - var{i}.lr = getParameter(str, 'learning_rate', '0.1'); - var{i}.epoch_size = str2double(getParameter(str, 'epoch_size', '1000')); - var{i}.batch_size = str2double(getParameter(str, 'batch_size', '90')); - var{i}.examples_per_epoch = var{i}.epoch_size*var{i}.batch_size; - var{i}.mnipc = getParameter(str, 'filter_min_nrof_images_per_class', '-1'); - var{i}.val_step = str2num(getParameter(str, 'validate_every_n_epochs', '10')); - var{i}.pnlf = getParameter(str, 'prelogits_norm_loss_factor', '-1'); - var{i}.emb_size = getParameter(str, 'embedding_size', '-1'); - - fprintf('%s: wd=%s lr=%s, pnlf=%s, data_dir=%s, emb_size=%s\n', ... - res{i}{1}, var{i}.wd, var{i}.lr, var{i}.pnlf, var{i}.data_dir, var{i}.emb_size); - end -end; - -timestr = datestr(now,'yyyymmdd_HHMMSS'); - -h = 1; figure(h); close(h); figure(h); hold on; setsize(1.5); -title('LFW accuracy'); -xlabel('Steps'); -ylabel('Accuracy'); -grid on; -N = 1; flt = ones(1,N)/N; -for i=1:length(var), - plot(var{i}.epochs*1000, filter(flt, 1, var{i}.lfw_accuracy(var{i}.epochs)), lineStyles2{i}, 'LineWidth', lineWidth); -end; -legend(legends_accuracy,'Location','SouthEast','FontSize',fontSize); -v=axis; -v(3:4) = [ 0.95 1.0 ]; -axis(v); -accuracy_file_name = sprintf('lfw_accuracy_%s',timestr); -%print(accuracy_file_name,'-dpng') - - -if 0 - %% - %h = 2; figure(h); close(h); figure(h); hold on; setsize(1.5); - h = 1; figure(h); hold on; - title('LFW validation rate'); - xlabel('Step'); - ylabel('VAL @ FAR = 10^{-3}'); - grid on; - for i=1:length(var), - plot(var{i}.epochs*1000, var{i}.lfw_valrate(var{i}.epochs), lineStyles{i}, 'LineWidth', lineWidth); - end; - legend(legends_valrate,'Location','SouthEast','FontSize',fontSize); - v=axis; - v(3:4) = [ 0.5 1.0 ]; - axis(v); - valrate_file_name = sprintf('lfw_valrate_%s',timestr); -% print(valrate_file_name,'-dpng') -end - -if 0 - %% Plot cross-entropy loss - h = 3; figure(h); close(h); figure(h); hold on; setsize(1.5); - title('Training/validation set cross-entropy loss'); - xlabel('Step'); - title('Training/validation set cross-entropy loss'); - grid on; - N = 500; flt = ones(1,N)/N; - for i=1:length(var), - var{i}.xent_loss(var{i}.xent_loss==0) = NaN; - plot(var{i}.steps, filter(flt, 1, var{i}.xent_loss), lineStyles2{i}, 'LineWidth', lineWidth); - end; - legend(legends, 'Location', 'NorthEast','FontSize',fontSize); - - % Plot cross-entropy loss on validation set - N = 1; flt = ones(1,N)/N; - for i=1:length(var), - v = var{i}.val_xent_loss; - val_steps = (1:length(v))*var{i}.val_step*1000; - v(v==0) = NaN; - plot(val_steps, filter(flt, 1, v), [ lineStyles2{i} '.' ], 'LineWidth', lineWidth); - end; - legend(legends, 'Location', 'NorthEast','FontSize',fontSize); - hold off - xent_file_name = sprintf('xent_%s',timestr); - %print(xent_file_name,'-dpng') -end - -if 0 - %% Plot accuracy on training set - h = 32; figure(h); clf; hold on; - title('Training/validation set accuracy'); - xlabel('Step'); - ylabel('Training/validation set accuracy'); - grid on; - N = 500; flt = ones(1,N)/N; - for i=1:length(var), - var{i}.accuracy(var{i}.accuracy==0) = NaN; - plot(var{i}.steps*1000, filter(flt, 1, var{i}.accuracy), lineStyles2{i}, 'LineWidth', lineWidth); - end; - legend(legends, 'Location', 'SouthEast','FontSize',fontSize); - - grid on; - N = 1; flt = ones(1,N)/N; - for i=1:length(var), - v = var{i}.val_accuracy; - val_steps = (1:length(v))*var{i}.val_step*1000; - v(v==0) = NaN; - plot(val_steps*1000, filter(flt, 1, v), [ lineStyles2{i} '.' ], 'LineWidth', lineWidth); - end; - legend(legends, 'Location', 'SouthEast','FontSize',fontSize); - hold off - acc_file_name = sprintf('accuracy_%s',timestr); - %print(acc_file_name,'-dpng') -end - -if 0 - %% Plot prelogits CDF - h = 35; figure(h); clf; hold on; - title('Prelogits histogram'); - xlabel('Epoch'); - ylabel('Prelogits histogram'); - grid on; - N = 1; flt = ones(1,N)/N; - for i=1:length(var), - epoch = var{i}.epochs(end); - q = cumsum(var{i}.prelogits_hist(:,epoch)); - q2 = q / q(end); - plot(linspace(0,10,1000), q2, lineStyles2{i}, 'LineWidth', lineWidth); - end; - legend(legends, 'Location', 'SouthEast','FontSize',fontSize); - hold off -end - -if 0 - %% Plot prelogits norm - h = 32; figure(h); clf; hold on; - title('Prelogits norm'); - xlabel('Step'); - ylabel('Prelogits norm'); - grid on; - N = 1; flt = ones(1,N)/N; - for i=1:length(var), - plot(var{i}.steps, filter(flt, 1, var{i}.prelogits_norm), lineStyles2{i}, 'LineWidth', lineWidth); - end; - legend(legends, 'Location', 'NorthEast','FontSize',fontSize); - hold off -end - -if 0 - %% Plot learning rate - h = 42; figure(h); clf; hold on; - title('Learning rate'); - xlabel('Step'); - ylabel('Learning rate'); - grid on; - N = 1; flt = ones(1,N)/N; - for i=1:length(var), - semilogy(var{i}.epochs, filter(flt, 1, var{i}.learning_rate(var{i}.epochs)), lineStyles2{i}, 'LineWidth', lineWidth); - end; - legend(legends, 'Location', 'NorthEast','FontSize',fontSize); - hold off -end - -if 0 - %% Plot center loss - h = 9; figure(h); close(h); figure(h); hold on; setsize(1.5); - title('Center loss'); - xlabel('Epochs'); - ylabel('Center loss'); - grid on; - N = 500; flt = ones(1,N)/N; - for i=1:length(var), - if isempty(var{i}.center_loss) - var{i}.center_loss = ones(size(var{i}.steps))*NaN; - end; - var{i}.center_loss(var{i}.center_loss==0) = NaN; - plot(var{i}.steps/var{i}.epoch_size, filter(flt, 1, var{i}.center_loss), lineStyles2{i}, 'LineWidth', lineWidth); - end; - legend(legends, 'Location', 'NorthEast','FontSize',fontSize); -end - -if 0 - %% Plot center loss with factor - h = 9; figure(h); close(h); figure(h); hold on; setsize(1.5); - title('Center loss with factor'); - xlabel('Epochs'); - ylabel('Center loss * center loss factor'); - grid on; - N = 500; flt = ones(1,N)/N; - for i=1:length(var), - if isempty(var{i}.center_loss) - var{i}.center_loss = ones(size(var{i}.steps))*NaN; - end; - var{i}.center_loss(var{i}.center_loss==0) = NaN; - plot(var{i}.steps/var{i}.epoch_size, filter(flt, 1, var{i}.center_loss*str2num(var{i}.cl)), lineStyles2{i}, 'LineWidth', lineWidth); - end; - legend(legends, 'Location', 'NorthEast','FontSize',fontSize); -end - -if 0 - %% Plot total loss - h = 4; figure(h); close(h); figure(h); hold on; setsize(1.5); - title('Total loss'); - xlabel('Epochs'); - ylabel('Total loss'); - grid on; - N = 500; flt = ones(1,N)/N; - for i=1:length(var), - var{i}.loss(var{i}.loss==0) = NaN; - plot(var{i}.steps/var{i}.epoch_size, filter(flt, 1, var{i}.loss), lineStyles2{i}, 'LineWidth', lineWidth); - end; - legend(legends, 'Location', 'NorthEast','FontSize',fontSize); -end - -if 0 - %% Plot regularization loss - h = 5; figure(h); close(h); figure(h); hold on; setsize(1.5); - title('Regularization loss'); - xlabel('Epochs'); - ylabel('Regularization loss'); - grid on; - N = 500; flt = ones(1,N)/N; - for i=1:length(var), - var{i}.reg_loss(var{i}.reg_loss==0) = NaN; - plot(var{i}.steps/var{i}.epoch_size, filter(flt, 1, var{i}.reg_loss), lineStyles2{i}, 'LineWidth', lineWidth); - end; - legend(legends, 'Location', 'NorthEast','FontSize',fontSize); -end