-
Notifications
You must be signed in to change notification settings - Fork 1
/
converter.py
121 lines (105 loc) · 4.92 KB
/
converter.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
import argparse
import os
import pickle
import torch
import numpy as np
from math import ceil
from model_vc import Generator
from torch_utils import device
import librosa
from synthesis import build_model
from synthesis import wavegen
import soundfile as sf
from torch_utils import device
def pad_seq(x, base=32):
len_out = int(base * ceil(float(x.shape[0])/base))
len_pad = len_out - x.shape[0]
assert len_pad >= 0
return np.pad(x, ((0,len_pad),(0,0)), 'constant'), len_pad
def get_embedding(metadata, speaker):
for sbmt_i in metadata:
if sbmt_i[0] == speaker:
return torch.from_numpy(sbmt_i[1][np.newaxis, :]).to(device)
raise Exception(f'Embedding was not found for speaker {speaker}.')
#TODO : generate embedding from David's functions
def get_uttr_melspect(uttr_wav_path, spmelFolder):
uttr_spmel_path = os.path.join(spmelFolder,uttr_wav_path[:-4]+'.npy')
mel_spect_exists = os.path.isfile(uttr_spmel_path)
if mel_spect_exists:
mlspect = np.load(uttr_spmel_path)
else:
alter_suffix = os.path.join(uttr_spmel_path.split('/')[-3], ''.join(uttr_spmel_path.split('/')[-2:]))
alter_uttr_spmel_path = os.path.join(args.spmelFolder,alter_suffix)
if os.path.isfile(alter_uttr_spmel_path):
return get_uttr_melspect(alter_suffix)
else:
#TODO : implement auto-convert
raise Exception(f'The spectogram for {uttr_wav_path} does not exist, auto-convert is not supported yet.')
return mlspect
def converter(model_ckpt, source, target, spmelFolder, wavsFolder, metadata_dir,
vocoder = 'checkpoint_step001000000_ema.pth', outputFolder ='results'):
if not os.path.isdir(outputFolder):
os.mkdir(outputFolder)
source = source.replace('\\', '/')
target = target.replace('\\', '/')
source_person = source.split('/')[0]
source_spmel_path = os.path.join(source_person,''.join(source.split('/')[1:]))
target_person = target.split('/')[0]
with torch.no_grad():
g_checkpoint = torch.load(args.model, map_location=device)
default_hparams = {
'dim_neck': 32,
'dim_emb': 256,
'dim_pre': 512,
'freq': 32
}
hparams = g_checkpoint.get('hyperparams', default_hparams)
G = Generator(hparams['dim_neck'],hparams['dim_emb'],hparams['dim_pre'],hparams['freq']).eval().to(device)
G.load_state_dict(g_checkpoint.get('G_state_dict', g_checkpoint.get('model')))
metadata = pickle.load(open(os.path.join(args.spmelFolder, args.metadata), "rb"))
spect_vc = []
emb_org = get_embedding(metadata, source_person)
emb_trg = get_embedding(metadata, target_person)
source_path = os.path.join(wavsFolder,source)
if os.path.isfile(source_path):
X_orgs = [source_spmel_path]
elif os.path.isdir(source_path):
X_orgs = [os.path.join(source,file) for _,_,files in os.walk(source_path) for file in files]
else:
raise Exception(f'Wrong path: {source_path}')
for x_org_source in X_orgs:
x_org_source = x_org_source.replace('\\', '/')
source_file = '__'.join(x_org_source.split('/')[1:])
x_org = get_uttr_melspect(x_org_source, spmelFolder=spmelFolder)
x_org, len_pad = pad_seq(x_org)
uttr_org = torch.from_numpy(x_org[np.newaxis, :, :]).to(device)
_, x_identic_psnt, _ = G(uttr_org, emb_org, emb_trg)
if len_pad == 0:
uttr_trg = x_identic_psnt[0, 0, :, :].cpu().numpy()
else:
uttr_trg = x_identic_psnt[0, 0, :-len_pad, :].cpu().numpy()
spect_vc.append( ('{}_{}_by_{}'.format(source_person,source_file[:-4], target_person), uttr_trg) )
del G
del g_checkpoint
model = build_model().to(device)
checkpoint = torch.load(vocoder, map_location=torch.device(device))
model.load_state_dict(checkpoint["state_dict"])
for spect in spect_vc:
name = spect[0]
c = spect[1]
waveform = wavegen(model, c=c)
sf.write(f'{outputFolder}/{name}.wav', waveform, samplerate=16000)
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument("--model", default='autovc.ckpt')
parser.add_argument("--source")
parser.add_argument("--target")
parser.add_argument("--spmelFolder", default='./training_set/spmel')
parser.add_argument("--wavsFolder", default='./training_set/wavs')
parser.add_argument("--metadata", default='train.pkl')
parser.add_argument("--vocoder", default='checkpoint_step001000000_ema.pth')
parser.add_argument("--outputFolder", default='results')
args = parser.parse_args()
converter(model_ckpt= args.model, source=args.source, target=args.target,
spmelFolder=args.spmelFolder, wavsFolder= args.wavsFolder,
metadata_dir= args.metadata, vocoder=args.vocoder, outputFolder=args.outputFolder)