-
Notifications
You must be signed in to change notification settings - Fork 0
/
loop_over_confusion_matrices.jl
39 lines (34 loc) · 1.09 KB
/
loop_over_confusion_matrices.jl
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
using PyPlot;
using Distributions;
using LaTeXStrings;
using Debug;
include("p_space_outcome_integrator_linear.jl");
include("plot_D_vector.jl");
no_confusion_matrices = 11;
use_trajectory_tracing_only = true :: Bool;
use_show_plots = true :: Bool;
confusion_set = linspace(0,1,no_confusion_matrices);
similarity = 0.5;
## could just loop over trajectory calculations
if (use_trajectory_tracing_only)
for i = 1:no_confusion_matrices
confusion = confusion_set[i];
setup_p_space_basic_variables(similarity, confusion)
p_trajectories = calculate_p_trajectories()
if(use_show_plots)
figure()
plot_p_space_trajectories(p_trajectories)
end
report_p_trajectory_end_point_results(p_trajectories, similarity)
end
else
## or loop over plotting of vector fields (which costs almost nothing)
for i = 1:no_similarities
confustion = confusion_set[i];
setup_plot_D_basic_variables(similarity, confustion);
use_plot_over_p = true;
calculate_linear_model_flow_vectors();
plot_linear_model_flow_vectors();
end
end
print("End of loop over confustion matrices\n");