You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
I'm getting the following RuntimeError when trying to run ProteinMPNN on a windows machine with Python 3.7. The method I'm using works with the example 6 inputs, but when I try to use my own protein structure 4rjj, I get the runtime error: RuntimeError: Class values must be smaller than num_classes. I've tried using the biological assembly downloaded directly from the pdb and removing the ligands and all non "ATOM" lines from the structure but I still get this error message.
The following command works, but I would like to model it as a homooligomer and fix some residues.
py protein_mpnn_run.py --path_to_model_weights "C:\ProteinMPNN\vanilla_model_weights" --pdb_path 4rjj.pdb --pdb_path_chains "A B C D" --out_folder "C:\ProteinMPNN\myoutputs\4rjj" --num_seq_per_target 20 --sampling_temp "0.1 0.2 0.3" --batch_size 1 --omit_AAs='XC'
Also, when I use the helper scripts, I need to remove the path ("C:\ProteinMPNN\my_input_PDBS\" in the text below) from the jsonl files or I get the following error message: OSError: [Errno 22] Invalid argument: 'my_outputs_directory//seqs/C:\ProteinMPNN\my_input_PDBS\4rjj.fa'
Number of edges: 48
Training noise level: 0.2A
Generating sequences for: 6EHB
12 sequences of length 960 generated in 75.8997 seconds
Generating sequences for: 4GYT
12 sequences of length 354 generated in 52.1981 seconds
Number of edges: 48
Training noise level: 0.2A
Generating sequences for: 4rjj
Traceback (most recent call last):
File "protein_mpnn_run.py", line 469, in
main(args)
File "protein_mpnn_run.py", line 331, in main
sample_dict = model.tied_sample(X, randn_2, S, chain_M, chain_encoding_all, residue_idx, mask=mask, temperature=temp, omit_AAs_np=omit_AAs_np, bias_AAs_np=bias_AAs_np, chain_M_pos=chain_M_pos, omit_AA_mask=omit_AA_mask, pssm_coef=pssm_coef, pssm_bias=pssm_bias, pssm_multi=args.pssm_multi, pssm_log_odds_flag=bool(args.pssm_log_odds_flag), pssm_log_odds_mask=pssm_log_odds_mask, pssm_bias_flag=bool(args.pssm_bias_flag), tied_pos=tied_pos_list_of_lists_list[0], tied_beta=tied_beta, bias_by_res=bias_by_res_all)
File "C:\ProteinMPNN\protein_mpnn_utils.py", line 1218, in tied_sample
permutation_matrix_reverse = torch.nn.functional.one_hot(decoding_order, num_classes=mask_size).float()
RuntimeError: Class values must be smaller than num_classes.
Number of edges: 48
Training noise level: 0.2A
Generating sequences for: C:\ProteinMPNN\my_input_PDBS\4rjj
Traceback (most recent call last):
File "protein_mpnn_run.py", line 469, in
main(args)
File "protein_mpnn_run.py", line 323, in main
with open(ali_file, 'w') as f:
OSError: [Errno 22] Invalid argument: 'my_outputs_directory//seqs/C:\ProteinMPNN\my_input_PDBS\4rjj.fa'
Number of edges: 48
Training noise level: 0.2A
Generating sequences for: 4rjj
Traceback (most recent call last):
File "protein_mpnn_run.py", line 469, in
main(args)
File "protein_mpnn_run.py", line 331, in main
sample_dict = model.tied_sample(X, randn_2, S, chain_M, chain_encoding_all, residue_idx, mask=mask, temperature=temp, omit_AAs_np=omit_AAs_np, bias_AAs_np=bias_AAs_np, chain_M_pos=chain_M_pos, omit_AA_mask=omit_AA_mask, pssm_coef=pssm_coef, pssm_bias=pssm_bias, pssm_multi=args.pssm_multi, pssm_log_odds_flag=bool(args.pssm_log_odds_flag), pssm_log_odds_mask=pssm_log_odds_mask, pssm_bias_flag=bool(args.pssm_bias_flag), tied_pos=tied_pos_list_of_lists_list[0], tied_beta=tied_beta, bias_by_res=bias_by_res_all)
File "C:\ProteinMPNN\protein_mpnn_utils.py", line 1218, in tied_sample
permutation_matrix_reverse = torch.nn.functional.one_hot(decoding_order, num_classes=mask_size).float()
RuntimeError: Class values must be smaller than num_classes.
The text was updated successfully, but these errors were encountered:
I'm getting the following RuntimeError when trying to run ProteinMPNN on a windows machine with Python 3.7. The method I'm using works with the example 6 inputs, but when I try to use my own protein structure 4rjj, I get the runtime error: RuntimeError: Class values must be smaller than num_classes. I've tried using the biological assembly downloaded directly from the pdb and removing the ligands and all non "ATOM" lines from the structure but I still get this error message.
The following command works, but I would like to model it as a homooligomer and fix some residues.
py protein_mpnn_run.py --path_to_model_weights "C:\ProteinMPNN\vanilla_model_weights" --pdb_path 4rjj.pdb --pdb_path_chains "A B C D" --out_folder "C:\ProteinMPNN\myoutputs\4rjj" --num_seq_per_target 20 --sampling_temp "0.1 0.2 0.3" --batch_size 1 --omit_AAs='XC'
Also, when I use the helper scripts, I need to remove the path ("C:\ProteinMPNN\my_input_PDBS\" in the text below) from the jsonl files or I get the following error message: OSError: [Errno 22] Invalid argument: 'my_outputs_directory//seqs/C:\ProteinMPNN\my_input_PDBS\4rjj.fa'
Here is my complete output:
C:\ProteinMPNN> py protein_mpnn_run.py --jsonl_path "C:\ProteinMPNN\outputs\example_6_outputs\parsed_pdbs.jsonl" --tied_positions_jsonl "C:\ProteinMPNN\outputs\example_6_outputs\tied_pdbs.jsonl" --path_to_model_weights "C:\ProteinMPNN\vanilla_model_weights" --out_folder "my_outputs_directory" --num_seq_per_target 4 --sampling_temp "0.1 0.2 0.3" --batch_size 1 --omit_AAs='XC'
chain_id_jsonl is NOT loaded
fixed_positions_jsonl is NOT loaded
pssm_jsonl is NOT loaded
omit_AA_jsonl is NOT loaded
bias_AA_jsonl is NOT loaded
bias by residue dictionary is not loaded, or not provided
discarded {'bad_chars': 0, 'too_long': 0, 'bad_seq_length': 0}
Number of edges: 48
Training noise level: 0.2A
Generating sequences for: 6EHB
12 sequences of length 960 generated in 75.8997 seconds
Generating sequences for: 4GYT
12 sequences of length 354 generated in 52.1981 seconds
C:\ProteinMPNN>py protein_mpnn_run.py --jsonl_path "C:\ProteinMPNN\myparsedfilesetc\parsed_pdbs.jsonl" --tied_positions_jsonl "C:\ProteinMPNN\myparsedfilesetc\tied_pdbs.jsonl" --path_to_model_weights "C:\ProteinMPNN\vanilla_model_weights" --out_folder "my_outputs_directory" --num_seq_per_target 4 --sampling_temp "0.1 0.2 0.3" --batch_size 1 --omit_AAs='XC'
chain_id_jsonl is NOT loaded
fixed_positions_jsonl is NOT loaded
pssm_jsonl is NOT loaded
omit_AA_jsonl is NOT loaded
bias_AA_jsonl is NOT loaded
bias by residue dictionary is not loaded, or not provided
discarded {'bad_chars': 0, 'too_long': 0, 'bad_seq_length': 0}
Number of edges: 48
Training noise level: 0.2A
Generating sequences for: 4rjj
Traceback (most recent call last):
File "protein_mpnn_run.py", line 469, in
main(args)
File "protein_mpnn_run.py", line 331, in main
sample_dict = model.tied_sample(X, randn_2, S, chain_M, chain_encoding_all, residue_idx, mask=mask, temperature=temp, omit_AAs_np=omit_AAs_np, bias_AAs_np=bias_AAs_np, chain_M_pos=chain_M_pos, omit_AA_mask=omit_AA_mask, pssm_coef=pssm_coef, pssm_bias=pssm_bias, pssm_multi=args.pssm_multi, pssm_log_odds_flag=bool(args.pssm_log_odds_flag), pssm_log_odds_mask=pssm_log_odds_mask, pssm_bias_flag=bool(args.pssm_bias_flag), tied_pos=tied_pos_list_of_lists_list[0], tied_beta=tied_beta, bias_by_res=bias_by_res_all)
File "C:\ProteinMPNN\protein_mpnn_utils.py", line 1218, in tied_sample
permutation_matrix_reverse = torch.nn.functional.one_hot(decoding_order, num_classes=mask_size).float()
RuntimeError: Class values must be smaller than num_classes.
C:\ProteinMPNN> py protein_mpnn_run.py --jsonl_path "C:\ProteinMPNN\myparsedfilesetc\parsed_pdbs.jsonl" --tied_positions_jsonl "C:\ProteinMPNN\myparsedfilesetc\tied_pdbs.jsonl" --path_to_model_weights "C:\ProteinMPNN\vanilla_model_weights" --out_folder "my_outputs_directory" --num_seq_per_target 4 --sampling_temp "0.1 0.2 0.3" --batch_size 1 --omit_AAs='XC'
chain_id_jsonl is NOT loaded
fixed_positions_jsonl is NOT loaded
pssm_jsonl is NOT loaded
omit_AA_jsonl is NOT loaded
bias_AA_jsonl is NOT loaded
bias by residue dictionary is not loaded, or not provided
discarded {'bad_chars': 0, 'too_long': 0, 'bad_seq_length': 0}
Number of edges: 48
Training noise level: 0.2A
Generating sequences for: C:\ProteinMPNN\my_input_PDBS\4rjj
Traceback (most recent call last):
File "protein_mpnn_run.py", line 469, in
main(args)
File "protein_mpnn_run.py", line 323, in main
with open(ali_file, 'w') as f:
OSError: [Errno 22] Invalid argument: 'my_outputs_directory//seqs/C:\ProteinMPNN\my_input_PDBS\4rjj.fa'
C:\ProteinMPNN> py protein_mpnn_run.py --jsonl_path "C:\ProteinMPNN\myparsedfilesetc\parsed_pdbs.jsonl" --tied_positions_jsonl "C:\ProteinMPNN\myparsedfilesetc\tied_pdbs.jsonl" --path_to_model_weights "C:\ProteinMPNN\vanilla_model_weights" --out_folder "my_outputs_directory" --num_seq_per_target 4 --sampling_temp "0.1 0.2 0.3" --batch_size 1 --omit_AAs='XC'
chain_id_jsonl is NOT loaded
fixed_positions_jsonl is NOT loaded
pssm_jsonl is NOT loaded
omit_AA_jsonl is NOT loaded
bias_AA_jsonl is NOT loaded
bias by residue dictionary is not loaded, or not provided
discarded {'bad_chars': 0, 'too_long': 0, 'bad_seq_length': 0}
Number of edges: 48
Training noise level: 0.2A
Generating sequences for: 4rjj
Traceback (most recent call last):
File "protein_mpnn_run.py", line 469, in
main(args)
File "protein_mpnn_run.py", line 331, in main
sample_dict = model.tied_sample(X, randn_2, S, chain_M, chain_encoding_all, residue_idx, mask=mask, temperature=temp, omit_AAs_np=omit_AAs_np, bias_AAs_np=bias_AAs_np, chain_M_pos=chain_M_pos, omit_AA_mask=omit_AA_mask, pssm_coef=pssm_coef, pssm_bias=pssm_bias, pssm_multi=args.pssm_multi, pssm_log_odds_flag=bool(args.pssm_log_odds_flag), pssm_log_odds_mask=pssm_log_odds_mask, pssm_bias_flag=bool(args.pssm_bias_flag), tied_pos=tied_pos_list_of_lists_list[0], tied_beta=tied_beta, bias_by_res=bias_by_res_all)
File "C:\ProteinMPNN\protein_mpnn_utils.py", line 1218, in tied_sample
permutation_matrix_reverse = torch.nn.functional.one_hot(decoding_order, num_classes=mask_size).float()
RuntimeError: Class values must be smaller than num_classes.
The text was updated successfully, but these errors were encountered: