diff --git a/.github/workflows/run-checks.yaml b/.github/workflows/run-checks.yaml index 0f9f840c..1fc14900 100644 --- a/.github/workflows/run-checks.yaml +++ b/.github/workflows/run-checks.yaml @@ -6,7 +6,7 @@ jobs: runs-on: ubuntu-latest steps: - uses: actions/checkout@v3 - - uses: actions/setup-python@v2 + - uses: actions/setup-python@v5 with: python-version: 3.9 - name: Install act diff --git a/README.md b/README.md index d4ca3b08..610a415c 100644 --- a/README.md +++ b/README.md @@ -53,7 +53,7 @@ https://github.com/databricks/mlops-stacks/assets/87999496/0d220d55-465e-4a69-bd ### Prerequisites - Python 3.8+ - - [Databricks CLI](https://docs.databricks.com/en/dev-tools/cli/databricks-cli.html) >= v0.212.2 + - [Databricks CLI](https://docs.databricks.com/en/dev-tools/cli/databricks-cli.html) >= v0.221.0 [Databricks CLI](https://docs.databricks.com/en/dev-tools/cli/databricks-cli.html) contains [Databricks asset bundle templates](https://docs.databricks.com/en/dev-tools/bundles/templates.html) for the purpose of project creation. diff --git a/databricks_template_schema.json b/databricks_template_schema.json index 99a68768..f845ef34 100644 --- a/databricks_template_schema.json +++ b/databricks_template_schema.json @@ -1,6 +1,6 @@ { "welcome_message": "Welcome to MLOps Stacks. For detailed information on project generation, see the README at https://github.com/databricks/mlops-stacks/blob/main/README.md.", - "min_databricks_cli_version": "v0.212.2", + "min_databricks_cli_version": "v0.221.0", "properties": { "input_setup_cicd_and_project": { "order": 1, @@ -256,9 +256,24 @@ ] } }, - "input_include_feature_store": { + "input_inference_table_name": { "order": 17, "type": "string", + "description": "\nFully qualified name of inference table to attach monitoring to.\nThis table must already exist and service principals must have access.", + "default": "dev.{{ .input_project_name }}.predictions", + "pattern": "^[^ .\\-\\/]+(\\.[^ .\\-\\/]+){2}$", + "pattern_match_failure_message": "Fully qualified Unity Catalog table names must have catalog, schema, and table separated by \".\" and each cannot contain any of the following characters: \" \", \".\", \"-\", \"\\\", \"/\"", + "skip_prompt_if": { + "properties": { + "input_setup_cicd_and_project": { + "const": "CICD_Only" + } + } + } + }, + "input_include_feature_store": { + "order": 18, + "type": "string", "description": "\nWhether to include Feature Store", "default": "no", "enum": ["no", "yes"], @@ -271,7 +286,7 @@ } }, "input_include_mlflow_recipes": { - "order": 18, + "order": 19, "type": "string", "description": "\nWhether to include MLflow Recipes", "default": "no", diff --git a/library/template_variables.tmpl b/library/template_variables.tmpl index 3be5234e..2324c854 100644 --- a/library/template_variables.tmpl +++ b/library/template_variables.tmpl @@ -57,7 +57,7 @@ {{- end }} {{ define `cli_version` -}} - v0.212.2 + v0.221.0 {{- end }} {{ define `stacks_version` -}} diff --git a/template/{{.input_root_dir}}/.github/workflows/{{.input_project_name}}-run-tests.yml.tmpl b/template/{{.input_root_dir}}/.github/workflows/{{.input_project_name}}-run-tests.yml.tmpl index e3e40fa9..549d2465 100644 --- a/template/{{.input_root_dir}}/.github/workflows/{{.input_project_name}}-run-tests.yml.tmpl +++ b/template/{{.input_root_dir}}/.github/workflows/{{.input_project_name}}-run-tests.yml.tmpl @@ -25,13 +25,13 @@ jobs: unit_tests: runs-on: ubuntu-latest steps: - - uses: actions/checkout@v2 - - uses: actions/setup-python@v2 + - uses: actions/checkout@v3 + - uses: actions/setup-python@v5 with: python-version: 3.8 {{- if (eq .input_include_feature_store `yes`) }} # Feature store tests bring up a local Spark session, so Java is required. - - uses: actions/setup-java@v2 + - uses: actions/setup-java@v4 with: distribution: 'temurin' java-version: '11' diff --git a/template/{{.input_root_dir}}/README.md.tmpl b/template/{{.input_root_dir}}/README.md.tmpl index dbabde09..d801df7a 100644 --- a/template/{{.input_root_dir}}/README.md.tmpl +++ b/template/{{.input_root_dir}}/README.md.tmpl @@ -58,7 +58,7 @@ contained in the following files: │ │ │ ├── ml-artifacts-resource.yml <- ML resource config definition for model and experiment │ │ -│ ├── monitoring-workflow-resource.yml <- ML resource config definition for data monitoring workflow +│ ├── monitoring-resource.yml <- ML resource config definition for quality monitoring workflow {{- else if (eq .input_include_feature_store `yes`) }} │ ├── training <- Training folder contains Notebook that trains and registers the model with feature store support. │ │ @@ -89,7 +89,7 @@ contained in the following files: │ │ │ ├── ml-artifacts-resource.yml <- ML resource config definition for model and experiment │ │ -│ ├── monitoring-workflow-resource.yml <- ML resource config definition for data monitoring workflow +│ ├── monitoring-resource.yml <- ML resource config definition for quality monitoring workflow {{- else }} │ ├── training <- Folder for model development via MLflow recipes. │ │ │ @@ -127,7 +127,7 @@ contained in the following files: │ │ │ ├── ml-artifacts-resource.yml <- ML resource config definition for model and experiment │ │ -│ ├── monitoring-workflow-resource.yml <- ML resource config definition for data monitoring workflow +│ ├── monitoring-resource.yml <- ML resource config definition for quality monitoring workflow {{- end }} {{- end }} │ diff --git a/template/{{.input_root_dir}}/_params_testing_only.txt.tmpl b/template/{{.input_root_dir}}/_params_testing_only.txt.tmpl index fab52cc0..eaf7d9a6 100644 --- a/template/{{.input_root_dir}}/_params_testing_only.txt.tmpl +++ b/template/{{.input_root_dir}}/_params_testing_only.txt.tmpl @@ -12,6 +12,7 @@ input_include_mlflow_recipes={{.input_include_mlflow_recipes}} input_include_models_in_unity_catalog={{.input_include_models_in_unity_catalog}} input_schema_name={{.input_schema_name}} input_unity_catalog_read_user_group={{.input_unity_catalog_read_user_group}} +input_inference_table_name={{.input_inference_table_name}} databricks_prod_workspace_host={{ template `databricks_prod_workspace_host` . }} databricks_staging_workspace_host={{ template `databricks_staging_workspace_host` . }} diff --git a/template/{{.input_root_dir}}/{{template `project_name_alphanumeric_underscore` .}}/README.md.tmpl b/template/{{.input_root_dir}}/{{template `project_name_alphanumeric_underscore` .}}/README.md.tmpl index bd44e67c..cdb7f98e 100644 --- a/template/{{.input_root_dir}}/{{template `project_name_alphanumeric_underscore` .}}/README.md.tmpl +++ b/template/{{.input_root_dir}}/{{template `project_name_alphanumeric_underscore` .}}/README.md.tmpl @@ -61,7 +61,7 @@ contained in the following files: │ │ │ ├── ml-artifacts-resource.yml <- ML resource config definition for model and experiment │ │ -│ ├── monitoring-workflow-resource.yml <- ML resource config definition for data monitoring workflow +│ ├── monitoring-resource.yml <- ML resource config definition for quality monitoring workflow {{- else if (eq .input_include_feature_store `yes`) }} │ ├── training <- Training folder contains Notebook that trains and registers the model with feature store support. │ │ @@ -92,7 +92,7 @@ contained in the following files: │ │ │ ├── ml-artifacts-resource.yml <- ML resource config definition for model and experiment │ │ -│ ├── monitoring-workflow-resource.yml <- ML resource config definition for data monitoring workflow +│ ├── monitoring-resource.yml <- ML resource config definition for quality monitoring workflow {{- else }} │ ├── training <- Folder for model development via MLflow recipes. │ │ │ @@ -130,7 +130,7 @@ contained in the following files: │ │ │ ├── ml-artifacts-resource.yml <- ML resource config definition for model and experiment │ │ -│ ├── monitoring-workflow-resource.yml <- ML resource config definition for data monitoring workflow +│ ├── monitoring-resource.yml <- ML resource config definition for quality monitoring workflow {{- end }} ``` diff --git a/template/{{.input_root_dir}}/{{template `project_name_alphanumeric_underscore` .}}/databricks.yml.tmpl b/template/{{.input_root_dir}}/{{template `project_name_alphanumeric_underscore` .}}/databricks.yml.tmpl index d6a827ac..1c03c008 100644 --- a/template/{{.input_root_dir}}/{{template `project_name_alphanumeric_underscore` .}}/databricks.yml.tmpl +++ b/template/{{.input_root_dir}}/{{template `project_name_alphanumeric_underscore` .}}/databricks.yml.tmpl @@ -14,7 +14,7 @@ variables: include: # Resources folder contains ML artifact resources for the ML project that defines model and experiment # And workflows resources for the ML project including model training -> validation -> deployment, - # {{- if (eq .input_include_feature_store `yes`) }} feature engineering, {{ end }} batch inference, data monitoring, metric refresh, alerts and triggering retraining + # {{- if (eq .input_include_feature_store `yes`) }} feature engineering, {{ end }} batch inference, quality monitoring, metric refresh, alerts and triggering retraining - ./resources/*.yml # Deployment Target specific values for workspace diff --git a/template/{{.input_root_dir}}/{{template `project_name_alphanumeric_underscore` .}}/monitoring/README.md.tmpl b/template/{{.input_root_dir}}/{{template `project_name_alphanumeric_underscore` .}}/monitoring/README.md.tmpl index 909eb5e1..22e1df31 100644 --- a/template/{{.input_root_dir}}/{{template `project_name_alphanumeric_underscore` .}}/monitoring/README.md.tmpl +++ b/template/{{.input_root_dir}}/{{template `project_name_alphanumeric_underscore` .}}/monitoring/README.md.tmpl @@ -1,5 +1,5 @@ # Monitoring -Databricks Data Monitoring is currently in Private Preview. - -Please contact a Databricks representative for more information. +To enable monitoring as part of a scheduled Databricks workflow, please update all the TODOs in the [monitoring resource file](../resources/monitoring-resource.yml), and refer to +[{{template `project_name_alphanumeric_underscore` .}}/resources/README.md](../resources/README.md). The implementation supports monitoring of batch inference tables directly. +For real time inference tables, unpacking is required before monitoring can be attached. diff --git a/template/{{.input_root_dir}}/{{template `project_name_alphanumeric_underscore` .}}/monitoring/metric_violation_check_query.py.tmpl b/template/{{.input_root_dir}}/{{template `project_name_alphanumeric_underscore` .}}/monitoring/metric_violation_check_query.py.tmpl new file mode 100644 index 00000000..1dc40225 --- /dev/null +++ b/template/{{.input_root_dir}}/{{template `project_name_alphanumeric_underscore` .}}/monitoring/metric_violation_check_query.py.tmpl @@ -0,0 +1,84 @@ +# This file is used for the main SQL query that checks the last {num_evaluation_windows} metric violations and whether at least {num_violation_windows} of those runs violate the condition. + +import sys +import pathlib + +sys.path.append(str(pathlib.Path(__file__).parent.parent.parent.resolve())) + +"""The SQL query is divided into three main parts. The first part selects the top {num_evaluation_windows} +values of the metric to be monitored, ordered by the time window, and saves as recent_metrics. +```sql +WITH recent_metrics AS ( + SELECT + {metric_to_monitor}, + window + FROM + {table_name_under_monitor}_profile_metrics + WHERE + column_name = ":table" + AND slice_key IS NULL + AND model_id != "*" + AND log_type = "INPUT" + ORDER BY + window DESC + LIMIT + {num_evaluation_windows} +) +``` +The `column_name = ":table"` and `slice_key IS NULL` conditions ensure that the metric +is selected for the entire table within the given granularity. The `log_type = "INPUT"` +condition ensures that the primary table metrics are considered, but not the baseline +table metrics. The `model_id!= "*"` condition ensures that the metric aggregated across +all model IDs is not selected. + +The second part of the query determines if the metric values have been violated with two cases. +The first case checks if the metric value is greater than the threshold for at least {num_violation_windows} windows: +```sql +(SELECT COUNT(*) FROM recent_metrics WHERE {metric_to_monitor} > {metric_violation_threshold}) >= {num_violation_windows} +``` +The second case checks if the most recent metric value is greater than the threshold. This is to make sure we only trigger retraining +if the most recent window was violated, avoiding unnecessary retraining if the violation was in the past and the metric is now within the threshold: +```sql +(SELECT {metric_to_monitor} FROM recent_metrics ORDER BY window DESC LIMIT 1) > {metric_violation_threshold} +``` + +The final part of the query sets the `query_result` to 1 if both of the above conditions are met, and 0 otherwise: +```sql +SELECT + CASE + WHEN + # Check if the metric value is greater than the threshold for at least {num_violation_windows} windows + AND + # Check if the most recent metric value is greater than the threshold + THEN 1 + ELSE 0 + END AS query_result +``` +""" + +sql_query = """WITH recent_metrics AS ( + SELECT + {metric_to_monitor}, + window + FROM + {table_name_under_monitor}_profile_metrics + WHERE + column_name = ":table" + AND slice_key IS NULL + AND model_id != "*" + AND log_type = "INPUT" + ORDER BY + window DESC + LIMIT + {num_evaluation_windows} +) +SELECT + CASE + WHEN + (SELECT COUNT(*) FROM recent_metrics WHERE {metric_to_monitor} > {metric_violation_threshold}) >= {num_violation_windows} + AND + (SELECT {metric_to_monitor} FROM recent_metrics ORDER BY window DESC LIMIT 1) > {metric_violation_threshold} + THEN 1 + ELSE 0 + END AS query_result +""" diff --git a/template/{{.input_root_dir}}/{{template `project_name_alphanumeric_underscore` .}}/monitoring/notebooks/MonitoredMetricViolationCheck.py.tmpl b/template/{{.input_root_dir}}/{{template `project_name_alphanumeric_underscore` .}}/monitoring/notebooks/MonitoredMetricViolationCheck.py.tmpl new file mode 100644 index 00000000..bff1ccff --- /dev/null +++ b/template/{{.input_root_dir}}/{{template `project_name_alphanumeric_underscore` .}}/monitoring/notebooks/MonitoredMetricViolationCheck.py.tmpl @@ -0,0 +1,68 @@ +# Databricks notebook source +################################################################################## +# This notebook runs a sql query and set the result as job task value +# +# This notebook has the following parameters: +# +# * table_name_under_monitor (required) - The name of a table that is currently being monitored +# * metric_to_monitor (required) - Metric to be monitored for threshold violation +# * metric_violation_threshold (required) - Threshold value for metric violation +# * num_evaluation_windows (required) - Number of windows to check for violation +# * num_violation_windows (required) - Number of windows that need to violate the threshold +################################################################################## + +# List of input args needed to run the notebook as a job. +# Provide them via DB widgets or notebook arguments. +# +# Name of the table that is currently being monitored +dbutils.widgets.text( + "table_name_under_monitor", "{{ .input_inference_table_name }}", label="Full (three-Level) table name" +) +# Metric to be used for threshold violation check +dbutils.widgets.text( + "metric_to_monitor", "root_mean_squared_error", label="Metric to be monitored for threshold violation" +) + +# Threshold value to be checked +dbutils.widgets.text( + "metric_violation_threshold", "100", label="Threshold value for metric violation" +) + +# Threshold value to be checked +dbutils.widgets.text( + "num_evaluation_windows", "5", label="Number of windows to check for violation" +) + +# Threshold value to be checked +dbutils.widgets.text( + "num_violation_windows", "2", label="Number of windows that need to violate the threshold" +) + +# COMMAND ---------- + +import os +import sys +notebook_path = '/Workspace/' + os.path.dirname(dbutils.notebook.entry_point.getDbutils().notebook().getContext().notebookPath().get()) +%cd $notebook_path +%cd .. +sys.path.append("../..") + +# COMMAND ---------- + +from metric_violation_check_query import sql_query + +table_name_under_monitor = dbutils.widgets.get("table_name_under_monitor") +metric_to_monitor = dbutils.widgets.get("metric_to_monitor") +metric_violation_threshold = dbutils.widgets.get("metric_violation_threshold") + +formatted_sql_query = sql_query.format( + table_name_under_monitor=table_name_under_monitor, + metric_to_monitor=metric_to_monitor, + metric_violation_threshold=metric_violation_threshold, + num_evaluation_windows=num_evaluation_windows, + num_violation_windows=num_violation_windows) +is_metric_violated = bool(spark.sql(formatted_sql_query).toPandas()["query_result"][0]) + +dbutils.jobs.taskValues.set("is_metric_violated", is_metric_violated) + + diff --git a/template/{{.input_root_dir}}/{{template `project_name_alphanumeric_underscore` .}}/resources/README.md.tmpl b/template/{{.input_root_dir}}/{{template `project_name_alphanumeric_underscore` .}}/resources/README.md.tmpl index f3cc5fda..afa2cdcb 100644 --- a/template/{{.input_root_dir}}/{{template `project_name_alphanumeric_underscore` .}}/resources/README.md.tmpl +++ b/template/{{.input_root_dir}}/{{template `project_name_alphanumeric_underscore` .}}/resources/README.md.tmpl @@ -23,7 +23,7 @@ During databricks CLI bundles deployment, the root config file will be loaded, v ML Resource Configurations in this directory: - model workflow (`{{template `project_name_alphanumeric_underscore` .}}/resources/model-workflow-resource.yml`) - batch inference workflow (`{{template `project_name_alphanumeric_underscore` .}}/resources/batch-inference-workflow-resource.yml`) - - monitoring workflow (`{{template `project_name_alphanumeric_underscore` .}}/resources/monitoring-workflow-resource.yml`) + - monitoring resource and workflow (`{{template `project_name_alphanumeric_underscore` .}}/resources/monitoring-resource.yml`) - feature engineering workflow (`{{template `project_name_alphanumeric_underscore` .}}/resources/feature-engineering-workflow-resource.yml`) - model definition and experiment definition (`{{template `project_name_alphanumeric_underscore` .}}/resources/ml-artifacts-resource.yml`) @@ -143,6 +143,41 @@ Model validation contains three components: To set up and enable model validation, update [validation.py](../validation/validation.py) to return desired custom metrics and validation thresholds, then resolve the `TODOs` in the ModelValidation task of [model-workflow-resource.yml](./model-workflow-resource.yml). + +### Setting up monitoring +The monitoring workflow focuses on building a plug-and-play stack component for monitoring the feature drifts and model drifts and retrain based on the +violation threshold defined given the ground truth labels. + +Its central purpose is to track production model performances, feature distributions and comparing different versions. + +Monitoring contains four components: +* [metric_violation_check_query.py](../monitoring/metric_violation_check_query.py) defines a query that checks for violation of the monitored metric. +* [notebooks/MonitoredMetricViolationCheck](../monitoring/notebooks/MonitoredMetricViolationCheck.py) acts as an entry point, executing the violation check query against the monitored inference table. +It emits a boolean value based on the query result. +* [monitoring-resource.yml](./monitoring-resource.yml) contains the resource config, inputs parameters for monitoring, and orchestrates model retraining based on monitoring. It first runs the [notebooks/MonitoredMetricViolationCheck](../monitoring/notebooks/MonitoredMetricViolationCheck.py) +entry point then decides whether to execute the model retraining workflow. + +To set up and enable monitoring: +* If it is not done already, generate inference table, join it with ground truth labels, and update the table name in [monitoring-resource.yml](./monitoring-resource.yml). +* Resolve the `TODOs` in [monitoring-resource.yml](./monitoring-resource.yml) +* OPTIONAL: Update the query in [metric_violation_check_query.py](../monitoring/metric_violation_check_query.py) to customize when the metric is considered to be in violation. + +NOTE: If ground truth labels are not available, you can still set up monitoring but should disable the retraining workflow. + +Retraining Constraints: +The retraining job has constraints for optimal functioning: +* Labels must be provided by the user, joined correctly for retraining history, and available on time with the retraining frequency. +* Retraining Frequency is tightly coupled with the granularity of the monitor. Users should take into account and ensure that their retraining frequency is equal to or close to the granularity of the monitor. + * If the granularity of the monitor is 1 day and retraining frequency is 1 hour, the job will preemptively stop as there is no new data to evaluate retraining criteria + * If the granularity of the monitor is 1 day and retraining frequency is 1 week, retraining would be stale and not be efficient + +Permissions: +Permissions for monitoring are inherited from the original table's permissions. +* Users who own the monitored table or its parent catalog/schema can create, update, and view monitors. +* Users with read permissions on the monitored table can view its monitor. + +Therefore, ensure that service principals are the owners or have the necessary permissions to manage the monitored table. + ## Develop and test config changes ### databricks CLI bundles schema overview diff --git a/template/{{.input_root_dir}}/{{template `project_name_alphanumeric_underscore` .}}/resources/ml-artifacts-resource.yml.tmpl b/template/{{.input_root_dir}}/{{template `project_name_alphanumeric_underscore` .}}/resources/ml-artifacts-resource.yml.tmpl index 7d0f2bf1..1217dd79 100644 --- a/template/{{.input_root_dir}}/{{template `project_name_alphanumeric_underscore` .}}/resources/ml-artifacts-resource.yml.tmpl +++ b/template/{{.input_root_dir}}/{{template `project_name_alphanumeric_underscore` .}}/resources/ml-artifacts-resource.yml.tmpl @@ -18,9 +18,6 @@ resources: name: ${var.model_name} description: MLflow registered model for the "{{ .input_project_name }}" ML Project for ${bundle.target} deployment target. <<: *permissions - depends_on: - - resources.jobs.model_training_job.id - - resources.jobs.batch_inference_job.id {{- else -}} registered_models: model: @@ -28,10 +25,7 @@ resources: catalog_name: ${bundle.target} schema_name: {{ .input_schema_name }} comment: Registered model in Unity Catalog for the "{{ .input_project_name }}" ML Project for ${bundle.target} deployment target. - <<: *grants - depends_on: - - resources.jobs.model_training_job.id - - resources.jobs.batch_inference_job.id{{end}} + <<: *grants{{end}} experiments: experiment: diff --git a/template/{{.input_root_dir}}/{{template `project_name_alphanumeric_underscore` .}}/resources/monitoring-resource.yml.tmpl b/template/{{.input_root_dir}}/{{template `project_name_alphanumeric_underscore` .}}/resources/monitoring-resource.yml.tmpl new file mode 100644 index 00000000..0eb528b9 --- /dev/null +++ b/template/{{.input_root_dir}}/{{template `project_name_alphanumeric_underscore` .}}/resources/monitoring-resource.yml.tmpl @@ -0,0 +1,84 @@ +# Please complete all the TODOs in this file. +# NOTE: Monitoring only works on Unity Catalog tables. + +resources: + quality_monitors: + {{ .input_project_name }}_quality_monitor: + full_name: {{ .input_inference_table_name }} + # TODO: Update the output schema name as per your requirements + output_schema_name: ${bundle.target}.{{ .input_project_name }} + # TODO: Update the below parameters as per your requirements + assets_dir: /Users/${workspace.current_user.userName}/databricks_lakehouse_monitoring + inference_log: + granularities: [1 day] + model_id_col: model_id + prediction_col: predictions + label_col: labels + problem_type: PROBLEM_TYPE_REGRESSION + timestamp_col: timestamp + schedule: + quartz_cron_expression: 0 0 8 * * ? # Run Every day at 8am + timezone_id: UTC + +new_cluster: &new_cluster + new_cluster: + num_workers: 3 + spark_version: 13.3.x-cpu-ml-scala2.12 + node_type_id: {{template `cloud_specific_node_type_id` .}} + custom_tags: + clusterSource: mlops-stacks_{{template `stacks_version` .}} + +common_permissions: &permissions + permissions: + - level: CAN_VIEW + group_name: users + +resources: + jobs: + retraining_job: + name: ${bundle.target}-{{ .input_project_name }}-monitoring-retraining-job + tasks: + - task_key: monitored_metric_violation_check + <<: *new_cluster + notebook_task: + notebook_path: ../monitoring/notebooks/MonitoredMetricViolationCheck.py + base_parameters: + env: ${bundle.target} + table_name_under_monitor: {{ .input_inference_table_name }} + # TODO: Update the metric to be monitored and violation threshold + metric_to_monitor: root_mean_squared_error + metric_violation_threshold: 100 + num_evaluation_windows: 5 + num_violation_windows: 2 + # git source information of current ML resource deployment. It will be persisted as part of the workflow run + git_source_info: url:${bundle.git.origin_url}; branch:${bundle.git.branch}; commit:${bundle.git.commit} + + - task_key: is_metric_violated + depends_on: + - task_key: monitored_metric_violation_check + condition_task: + op: EQUAL_TO + left: "{{"{{tasks.monitored_metric_violation_check.values.is_metric_violated}}"}}" + right: "true" + git_source_info: url:${bundle.git.origin_url}; branch:${bundle.git.branch}; commit:${bundle.git.commit} + + - task_key: trigger_retraining + depends_on: + - task_key: is_metric_violated + outcome: "true" + run_job_task: + job_id: ${resources.jobs.model_training_job.id} + git_source_info: url:${bundle.git.origin_url}; branch:${bundle.git.branch}; commit:${bundle.git.commit} + + schedule: + quartz_cron_expression: "0 0 18 * * ?" # daily at 6pm + timezone_id: UTC + <<: *permissions + # If you want to turn on notifications for this job, please uncomment the below code, + # and provide a list of emails to the on_failure argument. + # + # email_notifications: + # on_failure: + # - first@company.com + # - second@company.com + diff --git a/template/{{.input_root_dir}}/{{template `project_name_alphanumeric_underscore` .}}/resources/monitoring-workflow-resource.yml.tmpl b/template/{{.input_root_dir}}/{{template `project_name_alphanumeric_underscore` .}}/resources/monitoring-workflow-resource.yml.tmpl deleted file mode 100644 index a4d505d7..00000000 --- a/template/{{.input_root_dir}}/{{template `project_name_alphanumeric_underscore` .}}/resources/monitoring-workflow-resource.yml.tmpl +++ /dev/null @@ -1 +0,0 @@ -# TODO: Add data monitoring support for mlops diff --git a/tests/example-project-configs/aws/aws-github.json b/tests/example-project-configs/aws/aws-github.json index d4fecf2a..30b6e596 100644 --- a/tests/example-project-configs/aws/aws-github.json +++ b/tests/example-project-configs/aws/aws-github.json @@ -13,5 +13,6 @@ "input_include_mlflow_recipes": "no", "input_include_models_in_unity_catalog": "yes", "input_schema_name": "test_project_schema_name", - "input_unity_catalog_read_user_group": "account users" + "input_unity_catalog_read_user_group": "account users", + "input_inference_table_name": "dummy.schema.table" } diff --git a/tests/example-project-configs/azure/azure-devops.json b/tests/example-project-configs/azure/azure-devops.json index 2350f016..c38784b6 100644 --- a/tests/example-project-configs/azure/azure-devops.json +++ b/tests/example-project-configs/azure/azure-devops.json @@ -13,5 +13,6 @@ "input_include_mlflow_recipes": "no", "input_include_models_in_unity_catalog": "yes", "input_schema_name": "test_project_schema_name", - "input_unity_catalog_read_user_group": "account users" + "input_unity_catalog_read_user_group": "account users", + "input_inference_table_name": "dummy.schema.table" } diff --git a/tests/example-project-configs/azure/azure-github.json b/tests/example-project-configs/azure/azure-github.json index d79ea1cc..1e405b3a 100644 --- a/tests/example-project-configs/azure/azure-github.json +++ b/tests/example-project-configs/azure/azure-github.json @@ -13,5 +13,6 @@ "input_include_mlflow_recipes": "no", "input_include_models_in_unity_catalog": "yes", "input_schema_name": "test_project_schema_name", - "input_unity_catalog_read_user_group": "account users" + "input_unity_catalog_read_user_group": "account users", + "input_inference_table_name": "dummy.schema.table" } diff --git a/tests/example-project-configs/gcp/gcp-github.json b/tests/example-project-configs/gcp/gcp-github.json index 63f5838e..45e39adb 100644 --- a/tests/example-project-configs/gcp/gcp-github.json +++ b/tests/example-project-configs/gcp/gcp-github.json @@ -12,5 +12,6 @@ "input_include_mlflow_recipes": "no", "input_include_models_in_unity_catalog": "yes", "input_schema_name": "test_project_schema_name", - "input_unity_catalog_read_user_group": "account users" + "input_unity_catalog_read_user_group": "account users", + "input_inference_table_name": "dummy.schema.table" } diff --git a/tests/install.sh b/tests/install.sh index 59aca38b..8d0f4b8a 100755 --- a/tests/install.sh +++ b/tests/install.sh @@ -4,7 +4,7 @@ # Usage in the wild uses the "curl | sh" approach and we need that to continue working. set -e -VERSION="0.212.2" +VERSION="0.221.0" FILE="databricks_cli_$VERSION" # Include operating system in file name. diff --git a/tests/test_create_project.py b/tests/test_create_project.py index 23fa76e7..6e503362 100644 --- a/tests/test_create_project.py +++ b/tests/test_create_project.py @@ -28,6 +28,7 @@ "input_include_models_in_unity_catalog": "no", "input_schema_name": "schema_name", "input_unity_catalog_read_user_group": "account users", + "input_inference_table_name": "dummy.schema.table", } DEFAULT_PARAMS_AZURE = { "input_cloud": "azure", diff --git a/tests/utils.py b/tests/utils.py index c733cbe8..42eaa8ac 100644 --- a/tests/utils.py +++ b/tests/utils.py @@ -23,6 +23,7 @@ "input_include_models_in_unity_catalog": "no", "input_schema_name": "schema_name", "input_unity_catalog_read_user_group": "account users", + "input_inference_table_name": "dummy.schema.table", } AWS_DEFAULT_PARAMS = { @@ -118,6 +119,7 @@ def generated_project_dir( "input_include_models_in_unity_catalog": include_models_in_unity_catalog, "input_schema_name": "schema_name", "input_unity_catalog_read_user_group": "account users", + "input_inference_table_name": "dummy.schema.table", } ) generate(tmpdir, databricks_cli, params)