-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathplot_MC_hist.py
80 lines (62 loc) · 2.35 KB
/
plot_MC_hist.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
#!/bin/bash/python
import os
import numpy as np
import math
import random
from matplotlib import pyplot as plt
from matplotlib import rc, rcParams
from scipy import interpolate
#from scipy.interpolate import interp1d
import pylab
import pyfits
#from joblib import Parallel, delayed
#import multiprocessing
# activate latex text rendering
rc('text', usetex=True)
# Change all fonts to 'Computer Modern'
rc('font',**{'family':'serif','serif':['Computer Modern Roman']})
rc('xtick', labelsize=18)
rc('ytick', labelsize=18)
rcParams['legend.numpoints'] = 1
#/*****************************************************************************
# INPUT / OUTPUT DIRECTORIES
#/*****************************************************************************
Data_Folder = '/home/daniele/codes/CRPROJ/dragon-dev/branch/dragon-3.0.2_clean/plots/data_py/'
Current_Folder = '/home/daniele/codes/sourcesMC/chains_final_R5/'
Output_Folder = '/home/daniele/codes/sourcesMC/plots/'
#/*****************************************************************************
# Reading file and plotting
#/*****************************************************************************
N_samples = 100
slopes = np.zeros(N_samples)
for i in range(N_samples):
filename = Current_Folder + "final_spectrum_" + str(i) + ".dat"
print "Reading ", filename
data = np.loadtxt(filename, delimiter='\t', usecols=(0, 1), unpack=True)
print data.shape
E_vec = data[0,:]
spectrum = data[1,:]
sp_new = spectrum[spectrum>0.]
E_new = E_vec[spectrum>0.]
#for ie in range(len(E_new)):
# print E_new[ie], " ", sp_new[ie]
log_E = np.log10(E_new)
log_sp = np.log10(sp_new)
p = np.polyfit(log_E,log_sp,1)
slopes[i] = p[0]
n, bins, patches = plt.hist(slopes, 10, normed=1, histtype='stepfilled') #, alpha=0.3
plt.setp(patches, 'FaceColor','r','EdgeColor','w')
plt.axis([-3.0, -2.6, 0, 50])
plt.grid(True)
plt.show()
"""
plt.axis([1.e1,1.e4, 1.e0,1.e4],interpolation='none')
plt.xlabel('E [GeV]',fontsize=20)
plt.ylabel(r'E$^2$ J(E)[GeV m$^{-2}$ s$^{-1}$ sr$^{-1}$]',fontsize=20)
plt.xscale('log')
plt.yscale('log')
plt.legend([pam],[r'\textbf{\textit{PAMELA 2009}}'],loc='upper right')
plt.savefig(Output_Folder + '/' + 'protons.eps',format='eps',bbox_inches='tight', dpi=200)
plt.show()
"""
exit ()