-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathtrain.py
220 lines (182 loc) · 7.5 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
import shutil
import sys
import argparse
from tqdm import tqdm
from omegaconf import OmegaConf
from pathlib import Path
import logging
from datetime import datetime
import torch
import os
import torch.nn as nn
from torch.utils.tensorboard import SummaryWriter
from torch.optim import Adam
from torch.utils.data import DataLoader
from model import MotionMagModel
from dataset import TrainingFramesDataset, RepeatDataset, get_dataloader
from myutils import AverageMeter, log_images
from inference import inference
# Load args and config
parser = argparse.ArgumentParser(description='Process some integers.')
parser.add_argument('--config', type=str, required=True, help='path to config file')
args = parser.parse_args()
config = OmegaConf.load(args.config)
config.config = args.config
os.environ["CUDA_VISIBLE_DEVICES"] = ','.join([str(i) for i in range(config.train.ngpus)])
# Logging
config.loss_names = ['Loss', 'MagLoss', 'ColorLoss']
now_str = datetime.now().strftime('%m_%d_%Y-%H-%M-%S')
writer = SummaryWriter(log_dir=os.path.join(config.log.log_dir, f'{now_str}-{config.name}', 'runs'), comment=f'.{config.name}')
config.save_dir = Path(config.log.log_dir) / f'{now_str}-{config.name}'
config.save_dir.mkdir(exist_ok=True, parents=True)
logging.basicConfig(filename=config.save_dir / 'logs.txt', filemode='w', format='[%(asctime)s] %(message)s', level=logging.INFO)
stdout_handler = logging.StreamHandler(sys.stdout)
formatter = logging.Formatter('[%(asctime)s] %(message)s')
stdout_handler.setFormatter(formatter)
logging.getLogger().addHandler(stdout_handler)
shutil.copyfile(args.config, config.save_dir / 'config.yaml')
# Log config
logging.info(config)
# Dataloaders
logging.info('Making dataloaders')
trainset = get_dataloader(config, 'train')
trainset = RepeatDataset(trainset, config.data.repeat_factor)
valset = get_dataloader(config, 'valid')
trainloader = DataLoader(trainset, batch_size=config.data.batch_size, shuffle=True, num_workers=config.data.num_workers, drop_last=True)
valloader = DataLoader(valset, batch_size=config.data.batch_size, shuffle=False, num_workers=4, drop_last=True)
frames_dataset = TrainingFramesDataset(config.log.inference_dir)
# Make models
logging.info('Making model')
device = 'cuda'
dp_devices = list(range(config.train.ngpus))
model = MotionMagModel(config).to(device)
model = nn.DataParallel(model)
# Optimizer
logging.info('Making optimizer')
optimizer = Adam(model.module.trainable_parameters(), lr=config.train.lr)
# Resume
if config.train.resume:
logging.info(f'Resuming from {config.train.resume}')
chkpt = torch.load(config.train.resume, map_location='cpu')
model.load_state_dict(chkpt['state_dict'], strict=False)
optimizer.load_state_dict(chkpt['optimizer_state_dict'])
start_epoch = chkpt['epoch']
else:
start_epoch = 0
if config.log.reset_epoch:
start_epoch = 0
def train(model, trainloader, optimizer, config, writer, epoch_num):
'''
Train for one epoch
'''
metrics = {name: AverageMeter(name) for name in config.loss_names}
model.train()
for cur_iter, data in enumerate(tqdm(trainloader)):
frames, info_data = data
print(frames.shape)
# Bookkeeping
global_iter = (epoch_num - 1) * len(trainloader) + cur_iter
# Process data
frames = frames.to(device)
# Model
preds, loss, info = model(frames)
loss = loss.mean()
# Optimize
optimizer.zero_grad()
loss.backward()
optimizer.step()
# Log
metrics['Loss'].update(loss.item())
metrics['MagLoss'].update(info['loss_mag'].mean().item())
metrics['ColorLoss'].update(info['loss_color'].mean().item())
if (cur_iter + 1) % config.log.print_freq == 0:
log_strs = []
for loss_name, meter in metrics.items():
writer.add_scalar(f'{loss_name}/train', meter.avg, global_iter)
log_strs.append(f'{loss_name} - {meter.avg:.6f}')
meter.reset()
log_str = f'[Epoch {epoch_num}] [Iter {cur_iter}/{len(trainloader)}] ' + ' | '.join(log_strs)
logging.info(log_str)
info = {
'final_frames': frames,
'final_preds': preds,
}
return info
def validate(model, valloader, config):
'''
Validate for one epoch
'''
metrics = {name: AverageMeter(name) for name in config.loss_names}
model.eval()
with torch.no_grad():
for cur_iter, data in enumerate(tqdm(valloader)):
frames, info_data = data
# Process data
frames = frames.to(device)
# Model
preds, loss, info = model(frames)
loss = loss.mean()
# Log metrics
metrics['Loss'].update(loss.item())
metrics['MagLoss'].update(info['loss_mag'].mean().item())
metrics['ColorLoss'].update(info['loss_color'].mean().item())
info_out = {
'metrics': metrics,
'final_frames': frames,
'final_preds': preds,
}
return info_out
# Train loop
logging.info(f'Begin training')
for epoch_num in range(start_epoch + 1, config.train.num_epochs + 1):
# Train
logging.info(f'Training epoch {epoch_num}')
train_info = train(model, trainloader, optimizer, config, writer, epoch_num)
# Log images
images_dict = {'frame': train_info['final_frames'],
'pred': train_info['final_preds']}
log_images(writer, images_dict, epoch_num, 'train', config)
# Validate
if epoch_num % config.log.val_freq == 0:
logging.info(f'Validating epoch {epoch_num}')
val_info = validate(model, valloader, config)
# Log val
log_strs = []
for loss_name, meter in val_info['metrics'].items():
writer.add_scalar(f'{loss_name}/val', meter.avg, epoch_num)
log_strs.append(f'{loss_name} - {meter.avg:.6f}')
meter.reset()
# Make imgs dict to save
images_dict = {'frame': val_info['final_frames'],
'pred': val_info['final_preds']}
if 'final_mags' in val_info:
images_dict['mag'] = val_info['final_mags']
log_images(writer, images_dict, epoch_num, 'val', config)
log_str = f'[Epoch {epoch_num}] [Validation] ' + ' | '.join(log_strs)
logging.info(log_str)
# Inference
if epoch_num % config.log.inference_freq == 0:
logging.info(f'Inference on epoch {epoch_num}')
save_dir = config.save_dir / 'inference' / f'epoch_{epoch_num:05}'
inference(model, frames_dataset, save_dir, alpha=20, max_alpha=config.train.alpha_high, num_device=config.train.ngpus, output_video=True)
# Save latest model
logging.info(f'Saving epoch {epoch_num}')
chkpt = {
'state_dict': model.state_dict(),
'optimizer_state_dict': optimizer.state_dict(),
'epoch': epoch_num,
}
save_path = config.save_dir / 'checkpoints'
save_path.mkdir(exist_ok=True, parents=True)
torch.save(chkpt, save_path / f'latest.pth')
# Save model separately with a given save_freq
if epoch_num % config.log.save_freq == 0:
logging.info(f'Saving epoch {epoch_num}')
chkpt = {
'state_dict': model.state_dict(),
'optimizer_state_dict': optimizer.state_dict(),
'epoch': epoch_num,
}
save_path = config.save_dir / 'checkpoints'
save_path.mkdir(exist_ok=True, parents=True)
torch.save(chkpt, save_path / f'chkpt_{epoch_num:05}.pth')