-
Notifications
You must be signed in to change notification settings - Fork 178
/
test.py
69 lines (54 loc) · 2.33 KB
/
test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
import os
from config import cfg
import argparse
from datasets import make_dataloader
from model import make_model
from processor import do_inference
from utils.logger import setup_logger
if __name__ == "__main__":
parser = argparse.ArgumentParser(description="ReID Baseline Training")
parser.add_argument(
"--config_file", default="", help="path to config file", type=str
)
parser.add_argument("opts", help="Modify config options using the command-line", default=None,
nargs=argparse.REMAINDER)
args = parser.parse_args()
if args.config_file != "":
cfg.merge_from_file(args.config_file)
cfg.merge_from_list(args.opts)
cfg.freeze()
output_dir = cfg.OUTPUT_DIR
if output_dir and not os.path.exists(output_dir):
os.makedirs(output_dir)
logger = setup_logger("transreid", output_dir, if_train=False)
logger.info(args)
if args.config_file != "":
logger.info("Loaded configuration file {}".format(args.config_file))
with open(args.config_file, 'r') as cf:
config_str = "\n" + cf.read()
logger.info(config_str)
logger.info("Running with config:\n{}".format(cfg))
os.environ['CUDA_VISIBLE_DEVICES'] = cfg.MODEL.DEVICE_ID
train_loader, train_loader_normal, val_loader, num_query, num_classes, camera_num, view_num = make_dataloader(cfg)
model = make_model(cfg, num_class=num_classes, camera_num=camera_num, view_num = view_num)
model.load_param(cfg.TEST.WEIGHT)
if cfg.DATASETS.NAMES == 'VehicleID':
for trial in range(10):
train_loader, train_loader_normal, val_loader, num_query, num_classes, camera_num, view_num = make_dataloader(cfg)
rank_1, rank5 = do_inference(cfg,
model,
val_loader,
num_query)
if trial == 0:
all_rank_1 = rank_1
all_rank_5 = rank5
else:
all_rank_1 = all_rank_1 + rank_1
all_rank_5 = all_rank_5 + rank5
logger.info("rank_1:{}, rank_5 {} : trial : {}".format(rank_1, rank5, trial))
logger.info("sum_rank_1:{:.1%}, sum_rank_5 {:.1%}".format(all_rank_1.sum()/10.0, all_rank_5.sum()/10.0))
else:
do_inference(cfg,
model,
val_loader,
num_query)