-
Notifications
You must be signed in to change notification settings - Fork 90
/
evaluate.py
58 lines (54 loc) · 3.02 KB
/
evaluate.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
import argparse
from data_loader.loader import Online_Dataset, test_offline_Style_Dataset, Online_Gen_Dataset
import torch
import numpy as np
import tqdm
from fastdtw import fastdtw
from utils.metrics import *
def main(opt):
if opt.metric == 'DTW':
""" set dataloader"""
test_dataset = Online_Dataset(opt.data_path)
print('loading generated samples, the total amount of samples is', len(test_dataset))
test_loader = torch.utils.data.DataLoader(test_dataset,
batch_size=opt.batchsize,
shuffle=True,
sampler=None,
drop_last=False,
collate_fn=test_dataset.collate_fn_,
num_workers=8)
DTW = fast_norm_len_dtw(test_loader)
print(f"the avg fast_norm_len_dtw is {DTW}")
if opt.metric == 'Style_score':
test_dataset = test_offline_Style_Dataset(opt.data_path,False)
print('num testing images:', len(test_dataset))
test_loader = torch.utils.data.DataLoader(test_dataset,
batch_size=opt.batchsize,
shuffle=True,
drop_last=False,
pin_memory=True,
num_workers=8)
style_score = get_style_score(test_loader, opt.pretrained_model)
print(f"the style_score is {style_score}")
if opt.metric == 'Content_score':
test_dataset = Online_Gen_Dataset(opt.data_path, False)
print('num test images: ', len(test_dataset))
test_loader = torch.utils.data.DataLoader(test_dataset,
batch_size=opt.batchsize,
shuffle=True,
sampler=None,
drop_last=False,
collate_fn=test_dataset.collate_fn_,
num_workers=8)
content_score = get_content_score(test_loader, opt.pretrained_model)
print(f"the content_score is {content_score}")
if __name__ == '__main__':
"""Parse input arguments"""
parser = argparse.ArgumentParser()
parser.add_argument('--data_path', type=str, dest='data_path', default='Generated/Chinese',
help='dataset path for evaluating the metrics')
parser.add_argument('--metric', type=str, default='DTW', help='the metric to evaluate the generated data, DTW, Style_score or Content_score')
parser.add_argument('--batchsize', type=int, default=64)
parser.add_argument('--pretrained_model', type=str, default='model_zoo/chinese_style_iter60k_acc999.pth', help='pre-trained model for calculating Style Score or Content Score')
opt = parser.parse_args()
main(opt)