forked from HongxinXiang/CGIP
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathfinetune_deepergcn.py
139 lines (108 loc) · 5.5 KB
/
finetune_deepergcn.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
import os
from collections import OrderedDict
import numpy as np
import torch
import torch.optim as optim
from torch import nn
from torch_geometric.data import DataLoader
from dataloader.graph_dataloader import GraphDataset
from model.config.config_deepergcn import parse_args
from model.deepergcn import DeeperGCN
from model.train.dual_model_utils import load_pretrained_component, save_finetune_ckpt
from model.train.graph_model_utils import train, evaluation
from model.train.train_utils import fix_train_random_seed
from utils.public_utils import is_left_better_right, get_tqdm_desc
from utils.splitter import get_split_data
def main(args):
fix_train_random_seed(seed=args.runseed) # run seed
if not os.path.exists(args.log_dir):
os.makedirs(args.log_dir)
args.model_save_path = os.path.join(args.log_dir, "model_ckpt")
if args.use_gpu:
device = torch.device("cuda:" + str(args.device)) if torch.cuda.is_available() else torch.device("cpu")
else:
device = torch.device('cpu')
filename_pre = 'BS_{}-LR_{}'.format(args.batch, args.lr)
dataset = GraphDataset(root=os.path.join(args.dataroot, args.dataset), dataset=args.dataset, raw_dirname="processed", task_type=args.task_type)
if args.task_type == "classification":
dataset.eval_metric = "rocauc" # 更多取值查看evaluator = Evaluator里面的eval_metric
valid_select = "max"
min_value = -np.inf
criterion = torch.nn.BCEWithLogitsLoss()
elif args.task_type == "regression":
if args.dataset == "qm7" or args.dataset == "qm8":
dataset.eval_metric = "mae"
else:
dataset.eval_metric = "rmse"
valid_select = "min"
min_value = np.inf
criterion = torch.nn.MSELoss()
else:
raise Exception("{} is not supported".format(args.task_type))
print("eval_metric: {}".format(dataset.eval_metric))
args.num_tasks = dataset.num_tasks
print("args: {}\n".format(args))
train_idx, val_idx, test_idx = get_split_data(args.dataset, args.dataroot)
train_idx, val_idx, test_idx = train_idx.tolist(), val_idx.tolist(), test_idx.tolist()
train_loader = DataLoader(dataset[train_idx], batch_size=args.batch, shuffle=True,
num_workers=args.workers)
valid_loader = DataLoader(dataset[val_idx], batch_size=args.batch, shuffle=False,
num_workers=args.workers)
test_loader = DataLoader(dataset[test_idx], batch_size=args.batch, shuffle=False,
num_workers=args.workers)
print("num_train: {}".format(len(dataset[train_idx])))
print("num_valid: {}".format(len(dataset[val_idx])))
print("num_test: {}".format(len(dataset[test_idx])))
model = DeeperGCN(args)
model.set_output_type(1)
# load pre-training parameters from checkpoint
load_flag, desc = load_pretrained_component(model, args.resume, model_key="model_state_dict2", consistency=False)
print(desc)
model.graph_pred_linear = nn.Sequential(OrderedDict([
('linear1', nn.Linear(model.graph_pred_linear.in_features, 128)),
('leakyreLU', nn.LeakyReLU()),
('dropout', nn.Dropout(0.1)),
('linear2', nn.Linear(128, dataset.num_tasks))
]))
model = model.to(device)
print(model)
optimizer = optim.Adam(model.parameters(), lr=args.lr)
results = {'highest_valid': min_value,
'final_train': min_value,
'final_test': min_value,
'highest_train': min_value
}
early_stop = 0
patience = 30
for epoch in range(1, args.epochs + 1):
print("=====Epoch {}".format(epoch))
tqdm_train_desc, tqdm_eval_train_desc, tqdm_eval_val_desc, tqdm_eval_test_desc = get_tqdm_desc(args.dataset, epoch)
print('Training...')
epoch_loss = train(model, criterion, device, train_loader, optimizer, dataset.task_type, grad_clip=args.grad_clip, tqdm_desc=tqdm_train_desc)
print('Evaluating...')
train_dict = evaluation(model, device, train_loader, task_type=args.task_type, tqdm_desc=tqdm_eval_train_desc)
valid_dict = evaluation(model, device, valid_loader, task_type=args.task_type, tqdm_desc=tqdm_eval_val_desc)
test_dict = evaluation(model, device, test_loader, task_type=args.task_type, tqdm_desc=tqdm_eval_test_desc)
train_result = train_dict[dataset.eval_metric.upper()]
valid_result = valid_dict[dataset.eval_metric.upper()]
test_result = test_dict[dataset.eval_metric.upper()]
print(str({'epoch': epoch, 'Train loss': epoch_loss, 'Train': train_result, 'Validation': valid_result, 'Test': test_result}))
if is_left_better_right(train_result, results['highest_train'], standard=valid_select):
results['highest_train'] = train_result
if is_left_better_right(valid_result, results['highest_valid'], standard=valid_select):
results['highest_valid'] = valid_result
results['final_train'] = train_result
results['final_test'] = test_result
if args.save_finetune_ckpt == 1:
save_finetune_ckpt(model, optimizer, round(epoch_loss, 4), epoch,
args.model_save_path, filename_pre,
lr_scheduler=None, result_dict=results)
early_stop = 0
else:
early_stop += 1
if early_stop > patience:
break
print("results: {}\n".format(results))
if __name__ == "__main__":
args = parse_args()
main(args)