-
Notifications
You must be signed in to change notification settings - Fork 8
/
Copy pathutils.py
executable file
·81 lines (73 loc) · 2.44 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
from matplotlib import pyplot as plt
import numpy as np
import numpy.linalg as la
import cv2
color_pallete = [[255, 0, 0], [0, 255, 0], [0, 0, 255], [0, 255, 255], [255, 255, 0], [255, 0, 255]]
def angle(v1, v2):
"""
Calculates angle between vectors in radians
:param v1:
:param v2:
:return:
"""
c = np.dot(v1, v2)
s = la.norm(np.cross(v1, v2))
return np.arctan2(s, c)
def closest(points, x, y, n=10):
"""
Returns N closest points
:param points:
:param x:
:param y:
:param n:
:return:
"""
dist = (points[:, 0] - x) ** 2 + (points[:, 1] - y) ** 2
return points[dist.argsort()[:n]]
def show(img=None, highlight=False, title='', axes=False, ref_imgs=None, cvshow=False):
"""
Displays a main image along with a list of reference images converting colors and size as required
:param img:
:param highlight:
:param title:
:param axes:
:param ref_imgs:
:param cvshow:
:return:
"""
if img is None and len(ref_imgs) > 0:
img = ref_imgs.pop()
src_img = img
if highlight:
img = np.zeros(shape=(img.shape[0], img.shape[1], 3), dtype=np.uint8)
colors = np.unique(img)
for i, c in enumerate([clr for clr in colors if clr != 0]):
img[np.where((src_img == c))] = color_pallete[i]
if ref_imgs:
refs = []
for im in ref_imgs:
if len(im.shape) == 2 or im.shape[2] == 1:
im = cv2.cvtColor(im, cv2.COLOR_GRAY2BGR)
im = cv2.resize(im, (src_img.shape[1], src_img.shape[0]))
refs.append(im)
if img is not None:
if len(img.shape) == 2 or img.shape[2] == 1:
img = cv2.cvtColor(img, cv2.COLOR_GRAY2BGR)
refs.append(img)
img = np.vstack(refs)
if len(img.shape) == 3 and img.shape[2] == 3 and not cvshow:
# BGR to RGB
img = img[..., ::-1]
# resize to fit screen
img = cv2.resize(img, (int(img.shape[1]*(900/img.shape[0])), 900))
if not cvshow:
plt.imshow(img, cmap=('gist_gray' if len(img.shape) == 2 or img.shape[2] == 1 else None))
plt.title(title)
if not axes:
plt.axes().get_xaxis().set_visible(False)
plt.axes().get_yaxis().set_visible(False)
plt.show()
else:
cv2.imshow('win1', img)
cv2.moveWindow('win1', 100, 20)
return img