-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathoptim.m
801 lines (686 loc) · 28.3 KB
/
optim.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
function [result] = optim(problem);
% Solve the optimal control problem for the rotary hydraulic knee
% For model and methods, see RotaryKneeModel.doc
global model mass
model.eval = 0;
tic
% the following were taken out of optimsettings, because they do not need to be user modifiable
checkderivatives = 1; % check the derivatives (1) or not (0)
modifyinitialguess = 'none'; % gaitdata: phi and M in initial guess are replaced by gait data
FeasibilityTolerance = 1e-5;
OptimalityTolerance = 1e-4;
model.plot = 1; % plots on screen during optimization (1) or not (0)
model.pause = 0; % pause after every cost function evaluation (1) or not (0)
% some copying and transformations of problem settings
solver = problem.solver;
MaxIterations = problem.MaxIterations;
model.print = problem.print;
if isfield(problem,'N')
N = problem.N;
else
N = 75; % default is huge number, will be reduced to number of gait data samples
end
if ~isfield(problem,'prescribe_kinematics')
problem.prescribe_kinematics = 0; % default is not to prescribe kinematics
end
gaitdata = problem.gaitdata;
initialguess = problem.initialguess;
L_u1 = problem.L_u2; U_u2 = problem.U_u1; % Lower/Upper bounds for pump signal
L_u2 = problem.L_u3; U_u3 = problem.U_u2; % Lower/Upper bounds for valve U2
L_u3 = problem.L_u1; U_u1 = problem.U_u3; % Lower/Upper bounds for valve U3
L_k = problem.L_k; U_k = problem.U_k; % spring stiffness in MPa/ml
L_CPA = problem.L_CPA; U_CPA = problem.U_CPA; % compliance of second accumulator (ml/MPa)
model.w1 = problem.w1; % weight for angle tracking term
model.w2 = problem.w2; % weight for moment tracking term
model.w3 = problem.w3; % weight for valve 1 control accelerations
model.w4 = problem.w4; % weight for valve 2 control accelerations
model.w5 = problem.w5; % weight for the pump controller
model.wreg = problem.wreg; % weight for regularization (smoothness) term
model.Wdisc = problem.Wdisc; % weighting to encourage discrete control levels
model.Ndisc = problem.Ndisc; % number of discrete control levels
model.gait.phisd = problem.phisd; % we want to be within x deg when tracking
model.gait.Msd = problem.Msd; % we want to be within x Nm when tracking
model.C1maxsquared = problem.C1max^2; % C1max from document, squared
model.C2maxsquared = problem.C2max^2; % C2max, squared
model.G = problem.G;
model.B1 = problem.B1;
model.B2 = problem.B2;
model.datafile = char(gaitdata(1,1));
model.movement = char(gaitdata(1,2));
% load and store gait data
ndata = size(gaitdata,1);
if (ndata > 1)
error('Current version of optim2.m can not track more than one movement');
end
warning off MATLAB:xlsread:Mode
for i=1:ndata
% read one sheet (one movement) from an XLS file with new format
data = readgaitdata(char(gaitdata(i,1)), char(gaitdata(i,2)));
tdiff = diff(data.t);
if (std(tdiff) > 1e-6)
error('Time interval on gait data file is not constant');
end
model.gait.T = max(data.t) + mean(tdiff);
model.gait.phi = data.phi_a;
model.gait.M = data.M_a;
model.gait.P = data.P_a; %(NM-power for the ankle)
end
% resample the gait data into N time points, if needed
if (N > size(model.gait.phi,1)) % do not do more than gait data
disp('WARNING: N was decreased to number of data samples.');
N = size(model.gait.phi,1);
elseif (N < size(model.gait.phi,1))
oldtimes = [data.t ; model.gait.T]; % add a time point at start of next cycle
model.gait.phi = [model.gait.phi ; model.gait.phi(1)]; % and the corresponding angle
model.gait.M = [model.gait.M ; model.gait.M(1) ]; % and the corresponding moment
model.gait.P = [model.gait.P ; model.gait.P(1) ]; % corresponding ankle power
newtimes = (0:N-1)'/N*model.gait.T; % the resample times
model.gait.phi = interp1(oldtimes, model.gait.phi, newtimes);
model.gait.M = interp1(oldtimes, model.gait.M , newtimes);
model.gait.P = interp1(oldtimes, model.gait.P , newtimes);
end
N = size(model.gait.phi,1); % number of samples in gait data
model.N = N;
h = model.gait.T/N; % time step from the gait data, will also be the time step for direct collocation
model.h = h;
fprintf('Gait data loaded: %d samples per gait cycle.\n',N);
% collocation grid and unknowns
Nvarpernode = 8; % number of unknowns per node: u2,u3,s,v1,v2,phi,M, u1
model.Nconpernode = 4; % number of constraint equations per node
model.Nvar = model.N * Nvarpernode; % total number of unknowns
model.Ncon = model.N * model.Nconpernode; % total number of constraints
model.Nvarpernode = Nvarpernode;
% precalculate some indices for X array, to speed up the calculations
iu1 = zeros(N,3); % index to u1 control at three successive nodes (pump)
iu2 = zeros(N,3); % index to u2 control at three successive nodes (valve U2)
iu3 = zeros(N,3); % index to u3 control at three successive nodes (valve U3)
for i=1:N
if (i == N)
iu1(i,:) = [N-1 0 1]*Nvarpernode + 1; % u1 is the first variable
elseif (i == N-1)
iu1(i,:) = [N-2 N-1 0]*Nvarpernode + 1;
else
iu1(i,:) = [i-1 i i+1]*Nvarpernode + 1;
end
end
iu2 = iu1 + 1; % u2 is stored immediately after u1
iu3 = iu2 + 1; % u3 is stored immediately after u2 (NM-line added for storing u3)
iM = (0:N-1)*Nvarpernode + 7; % M is 7th variable at each node
iphi = (0:N-1)*Nvarpernode + 6; % phi is 6th variable
model.iu1 = iu1;
model.iu2 = iu2;
model.iu3 = iu3;
model.iu = [iu1(:,2) ; iu2(:,2) ; iu3(:,2)]; % simply a list of all controls within X
model.iphi = iphi;
model.iM = iM;
model.iCPA = model.Nvar+1; model.Nvar = model.Nvar+1;
model.ik = model.Nvar+1; model.Nvar = model.Nvar+1;
% precalculate the Hessian of objective function (since it is constant for our least squares objective)
Htrack = spalloc(model.Nvar,model.Nvar,1);
Hcontrol = spalloc(model.Nvar,model.Nvar,1);
e = ones(N,1);
% term 1: angle tracking
Htrack(iphi, iphi) = model.w1 * 2 * spdiags(e,0,N,N)/model.gait.phisd^2/N;
% term 2: moment tracking
Htrack(iM, iM) = model.w2 * 2 * spdiags(e,0,N,N)/model.gait.Msd^2/N;
% term 3: acceleration of valve u2 control
% general pattern is Hu for finite difference accelerations with periodicity
Hu = spdiags([2*e -8*e 12*e -8*e 2*e],-2:2,N,N)/N/h^2;
Hu(1,N-1:N) = [2 -8]/N/h^2;
Hu(2,N) = 2/N/h^2;
Hu(N-1:N,1) = [2 -8]'/N/h^2;
Hu(N,2) = 2/N/h^2;
Hcontrol(iu2(:,1),iu2(:,1)) = model.w3*Hu;
% term 4: acceleration of valve 2 control
Hcontrol(iu3(:,1),iu3(:,1)) = model.w4*Hu;
model.Htrack = Htrack;
model.Hcontrol = Hcontrol;
model.Hreg = model.wreg * 2*spdiags(ones(model.Nvar,1),0,model.Nvar,model.Nvar);
Hnnz = nnz(Htrack + Hcontrol);
fprintf('Hessian sparsity: %d nonzero elements out of %d (%8.3f %%)\n', Hnnz, model.Nvar^2, Hnnz/model.Nvar^2);
% set lower and upper bounds
Lnode = [L_u1 L_u2 -100 -100 -100 -150*pi/180 -350 L_u3]';
Unode = [U_u1 U_u2 100 100 100 150*pi/180 350 U_u3]';
L = [repmat(Lnode,N,1)];
U = [repmat(Unode,N,1)];
L(model.ik) = L_k;
U(model.ik) = U_k;
L(model.iCPA) = L_CPA;
U(model.iCPA) = U_CPA;
if problem.prescribe_kinematics % constrain kinematics to be equal to gait data
L(model.iphi) = model.gait.phi;
U(model.iphi) = model.gait.phi;
end
if strcmp(initialguess,'mid')
X0 = L + 0.5*(U-L);
elseif strcmp(initialguess,'random')
X0 = L + (U-L).*rand(size(L));
elseif strcmp(initialguess,'meas');
X0 = (L+U)/2; % start with midpoint for all unknowns
X0(model.iphi) = model.gait.phi; % insert measured joint angles
X0(model.iM) = model.gait.M; % insert measured joint moments
elseif strcmp(initialguess,'zeros');
X0 = zeros(size(L));
else
load(initialguess);
X0 = result.X;
% extract the time series of all 8 variables, and k and P0
N0 = (size(X0,1)-2)/8;
if (N0 ~= round(N0))
error('N0 is not a whole number');
end
x0 = reshape(X0(1:end-2),8, N0)';
P0 = X0(end-1);
k = X0(end);
% add one node so we can interpolate with periodicity
x0 = [x0 ; x0(1,:)];
% interpolate to the current number of nodes
x0 = interp1((0:N0)'/N0,x0,(0:N-1)'/N,'linear','extrap');
X0 = reshape(x0',8*N,1);
X0 = [X0 ; P0 ; k];
end
if numel(strfind(modifyinitialguess,'gaitdata')) > 0
% replace the phi and M unknowns with the corresponding gait data
X0(model.iphi) = model.gait.phi;
X0(model.iM) = model.gait.M;
end
if numel(strfind(modifyinitialguess,'randomize')) > 0
% add small random numbers to initial guess
X0 = X0 + 0.001*randn(size(X0));
end
% find the Jacobian pattern
X = L + (U-L).*rand(size(L)); % a random vector of unknowns
model.Jnnz = 50*model.N; % first guess of Jacobian size
J = conjac(X);
model.Jnnz = nnz(J); % actual Jacobian size
fprintf('Jacobian sparsity: %d nonzero elements out of %d (%5.3f%%).\n', ...
model.Jnnz, model.Ncon*model.Nvar, 100*model.Jnnz/(model.Ncon*model.Nvar));
model.Jpattern = double(J~=0);
% check the derivatives at initial guess X0
if (checkderivatives)
model.FDvar = 1;
hh = 1e-7;
X = X0;
f = objfun(X);
grad = objgrad(X);
hess = objhess(X);
c = confun(X);
cjac = conjac(X);
cjac_num = zeros(model.Ncon,model.Nvar);
grad_num = zeros(model.Nvar,1);
hess_num = zeros(model.Nvar,model.Nvar);
for i=1:model.Nvar
fprintf('checking derivatives for unknown %4d of %4d\n',i,model.Nvar);
Xisave = X(i);
X(i) = X(i) + hh;
cjac_num(:,i) = (confun(X) - c)/hh;
grad_num(i) = (objfun(X) - f)/hh;
hess_num(:,i) = (objgrad(X) - grad)/hh;
X(i) = Xisave;
end
% find the max difference in constraint jacobian and objective gradient
[maxerr,irow] = max(abs(cjac-cjac_num));
[maxerr,icol] = max(maxerr);
fprintf('Max.error in constraint jacobian: %8.5f at %d %d\n', maxerr, irow(icol), icol);
fprintf(' Conjac result: %f\n', full(cjac(irow(icol), icol)));
fprintf(' Fin Diff appr: %f\n', full(cjac_num(irow(icol), icol)));
d = 2*abs(cjac - cjac_num)./(cjac + cjac_num); % relative error
fprintf('Max. relative error in constraint jacobian: %8.5f\n', max(max(d)));
[maxerr,irow] = max(abs(grad_num-grad));
fprintf('Max.error in objective gradient: %8.5f at %d\n', maxerr, irow);
[maxerr,irow] = max(abs(hess-hess_num));
[maxerr,icol] = max(maxerr);
fprintf('Max.error in objective Hessian: %8.5f at %d %d\n', maxerr, irow(icol), icol);
d = 2*abs(hess - hess_num)./(hess + hess_num); % relative error
fprintf('Max. relative error in objective Hessian: %8.5f\n', max(max(d)));
% find errors in jacobian pattern, are there nonzeros in actual Jacobian that are not in pattern?
Jpattern_num = sparse(cjac_num ~= 0);
Jdiff = Jpattern_num - model.Jpattern; % any +1 value in the diff matrix indicates an error
[ierr,jerr] = find(Jdiff>0);
fprintf('Errors in constraint jacobian pattern: \n');
[ierr jerr]
model.FDvar = 0;
end
% report something about the initial guess, unless we're not even optimizing
model.FDvar = 1;
if ~strcmp(solver,'none')
fprintf('Initial guess cost function value: %8.5f\n',objfun(X0));
model.normc = norm(confun(X0));
fprintf('Initial guess constr. violation: %8.5f\n',model.normc);
report(X0);
model.FDvar = 0;
if (model.print)
disp('Hit ENTER to start optimization');
pause
end
end
starttime = cputime;
if strcmp(solver, 'SNOPT')
% do the optimization using SNOPT
Prob = conAssign(@objfun, @objgrad, @objhess, [], L, U, 'Rotary Hydraulic Knee', X0, ...
[], 0, ...
[], [], [], @confun, @conjacSNOPT, [], model.Jpattern, ...
zeros(model.Ncon,1), zeros(model.Ncon,1), ...
[], [], [],[]);
Prob.SOL.optPar(1)= 11; % uncomment this to get snoptsum.txt output file
Prob.SOL.optPar(9) = FeasibilityTolerance;
Prob.SOL.optPar(10) = OptimalityTolerance;
Prob.SOL.optPar(11) = 1e-6; % Minor feasibility tolerance (1e-6)
Prob.SOL.optPar(30) = 1000000; % maximal sum of minor iterations (max(10000,20*m))
Prob.SOL.optPar(35) = MaxIterations;
Prob.SOL.optPar(36) = 40000; % maximal number of minor iterations in the solution of the QP problem (500)
Prob.SOL.PrintFile = 0;
Prob.SOL.SummFile = 0;
Prob.SOL.moremem = 10000000; % increase internal memory
Result = tomRun('snopt',Prob);
X = Result.x_k;
disp('--------------------------------------');
disp('SNOPT finished.')
disp(Result.ExitText);
fprintf('Number of iterations: %d\n',Result.Iter);
info = Result.ExitFlag;
elseif strcmp(solver,'IPOPT')
% do the optimization using IPOPT
options.lb = L;
options.ub = U;
options.cl = zeros(model.Ncon,1);
options.cu = zeros(model.Ncon,1);
funcs.objective = @objfun;
funcs.gradient = @objgrad;
funcs.constraints = @confun;
funcs.jacobian = @conjac;
funcs.jacobianstructure = @conjacstructure;
options.ipopt.hessian_approximation = 'limited-memory';
options.ipopt.print_level = 0;
options.ipopt.max_iter = MaxIterations;
options.ipopt.tol = OptimalityTolerance;
options.ipopt.acceptable_constr_viol_tol = FeasibilityTolerance;
[X, info] = ipopt(X0, funcs, options);
disp('--------------------------------------');
disp('IPOPT finished.');
info = info.status;
disp(IPOPTstatus(info));
else
disp('Solver name not recognized, reproducing initial guess.');
X = X0;
info = 0;
end
% display the results
disp(['Total time used: ' num2str(cputime-starttime) ' seconds.']);
disp('')
report(X,1);
disp('')
% display model parameters
fprintf('Optimal parameter values:\n');
fprintf(' k = %8.4f MPa/ml (stiffness of spring loaded reservoir)\n', X(model.ik));
fprintf(' CPA = %8.4f ml/MPa (compliance of second accumulator)\n', X(model.iCPA));
disp('')
% If using discritization with pump for continuous flow, print the value of this signal
if model.Wdisc ~0
fprintf(' U1 = %8.4f ml/sec (flow from the pump)\n', X(model.iu1));
end
% % Choosing to save the results on file
% saveresult = input('Would you like to save the results? (y/n): ','s');
% if strcmpi(saveresult, 'y');
% file = input('Enter filename: ','s');
% disp('')
% clear Result result
% result.info = info;
% result.X = X;
% result.N = N; % in case it was reduced to number of data samples
% result.RMSang = 180/pi*sqrt( mean( (X(model.iphi) - model.gait.phi).^2 ) );
% result.RMSmom = sqrt( mean( (X(model.iM) - model.gait.M).^2 ) );
% result.costfun = objfun(X);
% result.k = X(end);
% result.w5 = model.w5;
% save(file,'result');
% disp('')
% disp('Result of optimization is saved')
% disp('Please change initial guess in readgaitdata.m to optimize these results')
% elseif strcmpi(saveresult, 'n');
% return
% elseif isempty(saveresult)
% disp('Saving results...')
% disp('')
% clear Result result
% result.info = info;
% result.X = X;
% result.N = N; % in case it was reduced to number of data samples
% result.RMSang = 180/pi*sqrt( mean( (X(model.iphi) - model.gait.phi).^2 ) );
% result.RMSmom = sqrt( mean( (X(model.iM) - model.gait.M).^2 ) );
% result.costfun = objfun(X);
% result.k = X(end);
% result.w5 = model.w5;
% save('resultX.mat','result');
% disp('')
% disp('Result of optimization is saved in resultX.mat.')
% else
% return
% end
% Autosaving instead of prompt save. This will save file anyway
disp('Saving results...')
disp('')
clear Result result
result.info = info;
result.X = X;
result.N = N; % in case it was reduced to number of data samples
result.RMSang = 180/pi*sqrt( mean( (X(model.iphi) - model.gait.phi).^2 ) );
result.RMSmom = sqrt( mean( (X(model.iM) - model.gait.M).^2 ) );
result.costfun = objfun(X);
result.k = X(end);
result.w5 = model.w5;
save('resultX.mat','result');
disp('')
disp('Result of optimization is saved in resultX.mat.')
end
%===============================================================================
function report(X, powerreport)
global model
phi = X(model.iphi)*180/pi;
M = X(model.iM);
u1 = X(model.iu1(:,2));
u2 = X(model.iu2(:,2));
u3 = X(model.iu3(:,2));
P1 = X(model.ik) * [X(3:model.Nvarpernode:end) ; X(3)]'; % Pressure in the accumulator
v1 = [X(4:model.Nvarpernode:end) ; X(4)]';
v2 = [X(5:model.Nvarpernode:end) ; X(5)]';
tperc = 100*(0:model.N)'/model.N;
phi = [phi ; phi(1)];
M = [M ; M(1)]';
u1 = [u1 ; u1(1)]';
u2 = [u2 ; u2(1)]';
u3 = [u3 ; u3(1)]';
P = -M * model.G; %Pressure in actuator
ppump = u1.*P1;
gaitphi = model.gait.phi*180/pi;
gaitM = model.gait.M;
gaitP = (model.gait.P);
gaitphi = [gaitphi ; gaitphi(1)];
gaitM = [gaitM ; gaitM(1)];
gaitP = [gaitP ; gaitP(1)];
figure(1);
clf;
subplot(3,3,1)
plot(tperc,-gaitphi,'b',tperc,-phi,'r');
ylabel('Ankle Angle (deg)');
title(model.datafile);
subplot(3,3,4)
plot(tperc,gaitM,'b',tperc,M,'r');
ylabel('Ankle moment (Nm)');
legend('desired','prosthesis');
xlabel('Time (% of cycle)');
subplot(3,3,2)
plot(tperc,u2);
ylabel('Valve U2 control (a.u.)');
title(model.movement);
subplot(3,3,5)
plot(tperc,u3);
ylabel('Valve U3 control (a.u.)');
xlabel('Time (% of cycle)');
subplot(3,3,3);
plot(tperc, P, tperc, P1);
ylabel('pressure (MPa)');
legend('P','P1');
title(['N = ' num2str(model.N)]);
subplot(3,3,6);
plot(tperc,v1,tperc,v2, tperc,u1);
xlabel('Time (% of cycle)');
ylabel('flow (ml/s)');
legend('v1','v2','U1');
subplot(3,3,7);
plot(tperc,ppump,'r',tperc,gaitP,'b');
xlabel('Time (% of cycle)');
ylabel('Power (Watts)');
legend('Pump','Desired');
if (nargin > 1 && powerreport == 1)
figure(2)
pspring = P1.*v1;
pvalve1 = (P-P1).*v1;
pvalve2 = P.*v2;
ppump = u1.*P1;
ptotal = pspring + pvalve1 + pvalve2 + ppump;
plot(tperc,ptotal,tperc,pspring,tperc,pvalve1,tperc,pvalve2,tperc,ppump);
xlabel('Time (% of gait cycle');
ylabel('Power (W)');
legend('total','spring','valve1','valve2','pump');
end
end
%====================================================================
function [c] = confun(X)
%Becuase there are constraints on our variables, it is necessary to utilize
%this otherwise optional funcion
global model
h = model.h;
iCPA = model.iCPA;
ik = model.ik;
c = zeros(model.Ncon,1);
irow = 1;
ix1 = 1:model.Nvarpernode;
for i=1:model.N
% extract variables from successive nodes
x1 = X(ix1);
if (i < model.N)
ix2 = ix1 + model.Nvarpernode;
else
ix2 = 1:model.Nvarpernode;
end
x2 = X(ix2);
% generate the four constraints
% the eight variables are: u1,u2,s,v1,v2,phi,M,u3
% ds/dt + v1 + u1 = 0:
c(irow) = (x2(3) - x1(3))/h + (x1(4) + x2(4))/2.0 + (x1(1) + x2(1))/2;
% u2^2 * C1max * (k s + M G - B1 v1) - v1 * |v1| = 0
c(irow+1) = x1(2)^2*model.C1maxsquared * (X(ik) * x1(3) + x1(7) * model.G - model.B1 * x1(4) ) - x1(4)*abs(x1(4));
% dphi/dt - G*(v1 + v2 - G*dM/dt*CPA) = 0
c(irow+2) = (x2(6)-x1(6))/h - model.G*(x1(4)+x2(4) + x1(5)+x2(5))/2.0 - model.G^2 * X(iCPA) * (x2(7)-x1(7))/h;
% u3^2 * C2max * (M * G - B2 * v2) - v2 * |v2| = 0
c(irow+3) = x1(8)^2 * model.C2maxsquared * (x1(7) * model.G - model.B2 * x1(5) ) - x1(5)*abs(x1(5));
% advance ix1 and irow to next node
ix1 = ix1 + model.Nvarpernode;
irow = irow + model.Nconpernode;
end
if model.FDvar
return
end
model.normc = norm(c);
end
%==========================================================================================
function J = conjacSNOPT(X);
% returns constraint Jacobian matrix, for SNOPT
J = conjac(X,0);
end
%==========================================================================================
function [Jstruct] = conjacstructure(X)
global model
Jstruct = model.Jpattern;
end
%==========================================================================================
function [J] = conjac(X)
global model
h = model.h; % time step size
iCPA = model.iCPA;
ik = model.ik;
J = spalloc(model.Ncon,model.Nvar, model.Jnnz); % allocate memory space
irow = 1;
ix1 = 1:model.Nvarpernode;
for i=1:model.N
% extract variables from successive nodes
x1 = X(ix1);
if (i < model.N)
ix2 = ix1 + model.Nvarpernode; % use the x variables from the node after ix1
else
ix2 = 1:model.Nvarpernode; % use the x variables from node 1
end
x2 = X(ix2);
% generate the constraint derivatives
% the variables are: u1,u2,s,v1,v2,phi,M,u3
% ds/dt + v1 + u1 = 0:
% c(irow) = (x2(3) - x1(3))/h + (x1(4) + x2(4))/2.0 + (x1(1) + x2(1))/2;
J(irow,ix1(3)) = -1/h;
J(irow,ix1(4)) = 0.5;
J(irow,ix1(1)) = 0.5;
J(irow,ix2(3)) = 1/h;
J(irow,ix2(4)) = 0.5;
J(irow,ix2(1)) = 0.5;
% u2^2 * C1max * (k s + M G - B1 v1) - v1 * |v1| = 0
% c(irow+1) = x1(1)^2*model.C1max * (X(ik) * x1(3) + x1(7) * model.G - model.B1 * x1(4) ) - x1(4)*abs(x1(4));
J(irow+1,ix1(2)) = 2*x1(2)*model.C1maxsquared * (X(ik) * x1(3) + x1(7) * model.G - model.B1 * x1(4) );
J(irow+1,ix1(3)) = x1(2)^2*model.C1maxsquared * X(ik);
J(irow+1,ix1(4)) = -x1(2)^2*model.C1maxsquared * model.B1 - 2*abs(x1(4));
J(irow+1,ix1(7)) = x1(2)^2*model.C1maxsquared * model.G;
J(irow+1,ik) = x1(2)^2*model.C1maxsquared * x1(3);
% dphi/dt - G*(v1 + v2 - G*dM/dt*CPA) = 0
%c(irow+2) = (x2(6)-x1(6))/h - model.G*(x1(4)+x2(4) + x1(5)+x2(5))/2.0 - model.G^2 * X(iCPA) * (x2(7)-x1(7))/h;
J(irow+2,ix1(4)) = -model.G/2.0;
J(irow+2,ix1(5)) = -model.G/2.0;
J(irow+2,ix1(6)) = -1/h;
J(irow+2,ix1(7)) = model.G^2*X(iCPA)/h;
J(irow+2,ix2(4)) = -model.G/2.0;
J(irow+2,ix2(5)) = -model.G/2.0;
J(irow+2,ix2(6)) = 1/h;
J(irow+2,ix2(7)) = -model.G^2*X(iCPA)/h;
J(irow+2,iCPA) = -model.G^2 * (x2(7)-x1(7))/h;
% u3^2 * C2max * (P0 + M * G - B2 * v2) - v2 * |v2| = 0
%c(irow+3) = x1(2)^2 * model.C2max * (P0 + x1(7) * model.G - model.B2 * x1(5) ) - x1(5)*abs(x1(5);
J(irow+3,ix1(8)) = 2*x1(8)*model.C2maxsquared * (x1(7) * model.G - model.B2 * x1(5) );
J(irow+3,ix1(5)) = -x1(8)^2 * model.C2maxsquared * model.B2 - 2*abs(x1(5));
J(irow+3,ix1(7)) = x1(8)^2 * model.C2maxsquared * model.G;
% advance ix1 and irow to next node
ix1 = ix1 + model.Nvarpernode;
irow = irow + model.Nconpernode;
end
end
%====================================================================
function [f] = objfun(X, Prob);
% objective function for the optimization
global model
model.eval = model.eval+1;
h = model.h; % time step size
% term 1: angle tracking
f1 = model.w1 * mean( ( (X(model.iphi) - model.gait.phi)/model.gait.phisd ).^2 );
% term 2: moment tracking
f2 = model.w2 * mean( ( (X(model.iM) - model.gait.M)/model.gait.Msd ).^2 );
% term 3: acceleration of valve U2 control
f3 = model.w3 * mean( (X(model.iu2(:,1)) - 2*X(model.iu2(:,2)) + X(model.iu2(:,3)) ).^2 )/h^2;
% term 4: acceleration of valve U3 control
f4 = model.w4 * mean( (X(model.iu3(:,1)) - 2*X(model.iu3(:,2)) + X(model.iu3(:,3)) ).^2 )/h^2;
% term 5: Square of the flow rate for pump U1
f5 = model.w5 * mean( (X(model.iu1(:,2))) ).^2;
% regularization term
freg = model.wreg * sum(X.^2);
% discretization term
if model.Wdisc ~= 0
fdisc = model.Wdisc * sum(sin(pi*(model.Ndisc-1)*X(model.iu)).^2); % Should there be an integer by the third model element?
else
fdisc = 0;
end
% add them up
f = f1 + f2 + f3 + f4 + f5 + freg + fdisc;
if model.FDvar
return
end
if (toc < 1.0)
return
end
tic;
if (model.print)
disp('')
fprintf('%d: Normc: %9.5f ', model.eval, model.normc);
fprintf('Objfun: %8.4f=%8.4f(ang)+%8.4f(mom)+%8.4f(u1)+%8.4f(u2)+%8.4f(u3)+%8.4f(reg)+%8.4f(dis)\n', f,f1,f2,f3,f4,f5,freg, fdisc);
disp('')
end
if (model.plot)
report(X);
drawnow;
end
if (model.pause)
pause
end
end
%====================================================================
function [g] = objgrad(X);
% gradient of objective function
global model
h = model.h;
g = zeros(model.Nvar,1);
% term 1: angle tracking
g(model.iphi) = model.w1 * 2 * (X(model.iphi) - model.gait.phi)/model.gait.phisd^2/model.N;
% term 2: moment tracking
g(model.iM) = model.w2 * 2 * (X(model.iM) - model.gait.M)/model.gait.Msd^2/model.N;
% term 3: acceleration of valve U2 control
g(model.iu2(:,1)) = model.w3 * 2 * (X(model.iu2(:,1)) - 2*X(model.iu2(:,2)) + X(model.iu2(:,3)) )/model.N/h^2;
g(model.iu2(:,2)) = g(model.iu2(:,2)) - model.w3 * 4 * (X(model.iu2(:,1)) - 2*X(model.iu2(:,2)) + X(model.iu2(:,3)) )/model.N/h^2;
g(model.iu2(:,3)) = g(model.iu2(:,3)) + model.w3 * 2 * (X(model.iu2(:,1)) - 2*X(model.iu2(:,2)) + X(model.iu2(:,3)) )/model.N/h^2;
% term 4: acceleration of valve U3 control
g(model.iu3(:,1)) = model.w4 * 2 * (X(model.iu3(:,1)) - 2*X(model.iu3(:,2)) + X(model.iu3(:,3)) )/model.N/h^2;
g(model.iu3(:,2)) = g(model.iu3(:,2)) - model.w4 * 4 * (X(model.iu3(:,1)) - 2*X(model.iu3(:,2)) + X(model.iu3(:,3)) )/model.N/h^2;
g(model.iu3(:,3)) = g(model.iu3(:,3)) + model.w4 * 2 * (X(model.iu3(:,1)) - 2*X(model.iu3(:,2)) + X(model.iu3(:,3)) )/model.N/h^2;
% regularization term
g = g + model.wreg*2*X;
% discretization term
if model.Wdisc ~= 0
a = pi*(model.Ndisc-1)*X(model.iu);
g(model.iu) = g(model.iu) + model.Wdisc * pi * (model.Ndisc-1)*sin(2*a);
end
end
%====================================================================
function [H] = objhess(X);
% hessian of objective function
global model
% hessian is constant, so we just pull it out of the model struct
H = model.Htrack + model.Hcontrol + model.Hreg;
% discretization term Hessian is not constant:
if model.Wdisc ~= 0
a = pi*(model.Ndisc-1)*X(model.iu);
Hdiag = zeros(model.Nvar,1);
Hdiag(model.iu) = model.Wdisc * 2 * pi^2 * (model.Ndisc-1)^2 * cos(2*a);
H = H + spdiags(Hdiag,0,model.Nvar,model.Nvar);
end
end
%=====================================================================
function [s] = IPOPTstatus(code);
% translates IPOPT status code to a string
if code==0
s = 'solved';
elseif code==1
s = 'solved to acceptable level';
elseif code==2
s = 'infeasible problem detected';
elseif code==3
s = 'search direction becomes too small';
elseif code==4
s = 'diverging iterates';
elseif code==5
s = 'user requested stop';
elseif code==-1
s = 'IPOPT failed: maximum number of iterations exceeded';
elseif code==-2
s = 'IPOPT failed: restoration phase failed';
elseif code==-3
s = 'IPOPT failed: error in step computation';
elseif code==-10
s = 'IPOPT failed: not enough degrees of freedom';
elseif code==-11
s = 'IPOPT failed: invalid problem definition';
elseif code==-12
s = 'IPOPT failed: invalid option';
elseif code==-13
s = 'IPOPT failed: invalid number detected';
elseif code==-100
s = 'IPOPT failed: unrecoverable exception'; % divide by zero
elseif code==-101
s = 'IPOPT failed: non-IPOPT exception thrown';
elseif code==-102
s = 'IPOPT failed: insufficient memory';
elseif code==-199
s = 'IPOPT failed: internal error';
else
s = ['IPOPT status code ' num2str(code) ' not recognized'];
end
end
%=====================================================================
function iterfunc(T,F);
% function called by IPOPT after each iteration
global model
% model.eval = T;
end