-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathpersist.cc
692 lines (623 loc) · 24.5 KB
/
persist.cc
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
#include "persist.h"
#include "shader.h"
#include "gpu-cache.h"
#include "../option_parser.h"
#include "../abstract_hardware_model.h"
#include "gpu-sim.h"
#define pb_printf(...) printf("%s (%llu):", isL1Buffer ? m_name : "L2", m_gpu->gpu_sim_cycle); printf(__VA_ARGS__);
//#define PB_DEBUG
#ifdef PB_DEBUG
#define PRINT_DEBUG(...) pb_printf(__VA_ARGS__);
#define QPRINT_DEBUG(...) printf(__VA_ARGS__);
#else
#define PRINT_DEBUG(...)
#define QPRINT_DEBUG(...)
#endif
int pm_model;
uint32_t l1BufferSize, l2BufferSize;
persist_buffer m_L2PBuffer(false, NULL);
uint32_t useL2Buffer, forceWarpWait, deprioritise, deep_flush, eagerFlush, adrEnabled, outstandingFlushes;
std::map<int, int> num_coalesced;
uint64_t pBufferReordered = 0;
uint64_t pBufferNotReordered = 0;
uint32_t pmScaleDownRead;
uint32_t pmScaleDownWrite;
std::map<int, std::set<int> > delayed_warps;
std::map<int, std::set<int> > durable_warps;
std::map<int, std::set<int> > stalled_warps;
addr_t norm_addr(addr_t addr) { return addr - (addr % 128); }
void pm_reg_options(class OptionParser* opp) {
option_parser_register(opp, "-pm_model", OPT_INT32, &pm_model,
"Type of persistent memory model to use (0=none,1=seq,2=epoch,3=unbuff_srp,4=buff_srp_integ,5=buff_srp_disc)", "0");
option_parser_register(opp, "-pm_l1_size", OPT_UINT32, &l1BufferSize,
"Size of l1 persist buffer", "512");
option_parser_register(opp, "-pm_l2_size", OPT_UINT32, &l2BufferSize,
"Size of l2 persist buffer", "0");
option_parser_register(opp, "-pm_use_l2", OPT_UINT32, &useL2Buffer,
"Switch to turn on L2 buffer", "0");
option_parser_register(opp, "-pm_force_wait", OPT_UINT32, &forceWarpWait,
"Switch to force warps to wait on fence", "0");
option_parser_register(opp, "-pm_deprioritise", OPT_UINT32, &deprioritise,
"Switch to deprioritise warps on fence", "1");
option_parser_register(opp, "-pm_deep_flush", OPT_UINT32, &deep_flush,
"Whether to deep flush on kernel end", "0");
option_parser_register(opp, "-pm_eager_flush", OPT_UINT32, &eagerFlush,
"Whether to eager flush on a persistent entry", "1");
option_parser_register(opp, "-pm_enable_adr", OPT_UINT32, &adrEnabled,
"Whether to assume persistence on reaching DRAM queue", "1");
option_parser_register(opp, "-pm_outstanding_flushes", OPT_UINT32, &outstandingFlushes,
"Maximum amount of outstanding flushes allowed", "16");
option_parser_register(opp, "-pm_bw_scale_read", OPT_UINT32, &pmScaleDownRead,
"Factor by which to scale down GDDR read BW for PM", "4");
option_parser_register(opp, "-pm_bw_scale_write", OPT_UINT32, &pmScaleDownWrite,
"Factor by which to scale down GDDR write BW for PM", "8");
}
// Helper to check whether an address lies in PM
bool is_pm(addr_t addr) {
return (addr >= GLOBAL_PM_START);
}
bool pm_warp_stalled(int sid, int warpId) {
return (stalled_warps[sid].find(warpId) != stalled_warps[sid].end());
}
void pm_warps_clear(int sid) {
stalled_warps[sid].clear();
}
// Implement delay due to PM write here
bool shader_core_ctx::warp_waiting_for_persist(unsigned warp_id) {
switch(pm_model) {
case PM_NONE:
break;
case PM_SEQUENTIAL:
case PM_EPOCH:
case PM_UNBUFF_SRP:
// All outstanding persists done. Clear for this warp
if(m_warp[warp_id]->persists_done())
m_warp[warp_id]->clear_waiting_persist();
// Return whether waiting on persist
return m_warp[warp_id]->get_waiting_persist();
break;
case PM_BUFF_SRP_INTEG:
case PM_BUFF_SRP_DISC:
// I don't remember what this was for
if(delayed_warps[get_sid()].find(warp_id % WARPS_PER_SM) != delayed_warps[get_sid()].end())
return true;
if(durable_warps[get_sid()].find(warp_id % WARPS_PER_SM) != durable_warps[get_sid()].end())
return true;
// Check if waiting for release op
return m_warp[warp_id]->get_waiting_persist() || pm_warp_stalled(get_sid(), warp_id);
break;
}
return false;
}
bool persist_buffer::checkAddEntry(addr_t address, int warpId)
{
// No issues with non-PM addresses
if(!is_pm(address))
return true;
// Not using l2 buffer, so shouldn't reach here
if(!useL2Buffer && !isL1Buffer)
assert(false);
// Address already exists in buffer
if(hasEntry(address)) {
//PRINT_DEBUG("Buffer already has this entry\n");
// Ordering bit set after entry
// Have to flush before inserting
bool orderAfter = hasOrderAfter(entryMap[address], warp_mask_t().set(warpId % WARPS_PER_SM));
auto end = bufferEntries.end();
--end;
bool orderBefore = hasOrderBefore(end, warp_mask_t().set(warpId % WARPS_PER_SM), entryMap[address]);
if(orderAfter || orderBefore) {
++pBufferNotReordered;
PRINT_DEBUG("Cannot insert for warp %d, entry %llx exists and is ordered (before? %d, after? %d)\n", warpId, address, orderAfter, orderBefore);
if(m_sid != -1) {
delayed_warps[m_sid].insert(warpId % WARPS_PER_SM);
//PRINT_DEBUG("Delaying warp %d (%d, %d)\n", warpId, m_sid, warpId % WARPS_PER_SM);
}
beginFlush(warp_mask_t().set(warpId % WARPS_PER_SM));
if(m_sid != -1) {
flushingWarps.set(warpId % WARPS_PER_SM);
}
return false;
}
++pBufferReordered;
// No ordering bit after. Can directly modify value.
return true;
}
//PRINT_DEBUG("Checking if we can add entry %llx for warpId %d\n", address, warpId);
// Buffer full
if(bufferSize != 0 && bufferEntries.size() >= bufferSize) {
// Aready flushing, just wait until slots opens up
if(flushingWarps.count() > 0)
return false;
// Otherwise flush entries to free up a slot
beginFlush(warp_mask_t().set(warpId % WARPS_PER_SM), true);
return bufferEntries.size() < bufferSize;
}
return true;
}
void persist_buffer::addEntry(addr_t address, data_cache *cache, int warp)
{
if(!is_pm(address))
return;
if(hasEntry(address)) {
entryMap.find(address)->second->warpIds.set(warp % WARPS_PER_SM);
PRINT_DEBUG("Merged entry for address %llx for warpId %d\n", address, warp);
return;
}
PRINT_DEBUG("Added entry at %llx for warpId %d\n", address, warp);
// Create new entry
persist_buffer::bufferEntry entry;
entry.address = address;
entry.orderBit = false;
entry.releaseBit = false;
entry.u.cache = cache;
entry.warpIds.set(warp % WARPS_PER_SM);
entryMap[address] = bufferEntries.insert(bufferEntries.end(), entry);
stats_max_buffer_size = std::max((int)bufferEntries.size(), stats_max_buffer_size);
if(eagerFlush)
beginFlush(warp_mask_t().set(warp % WARP_PER_BUFF_ENTRY));
}
void persist_buffer::setOrder(int warpId, bool delayWarp)
{
bool complete = false;
for(auto i = bufferEntries.rbegin(); i != bufferEntries.rend(); ++i) {
// Merge order entry
if(!i->releaseBit && i->orderBit && i->durable == delayWarp) {
//PRINT_DEBUG("Warp %d, merged order bit\n", warpId);
i->warpIds.set(warpId % WARPS_PER_SM);
complete = true;
break;
}
// Cant merge if intervening write exists
else if(i->warpIds.test(warpId % WARPS_PER_SM))
break;
}
if(!complete) {
//PRINT_DEBUG("Warp %d, added order bit\n", warpId);
persist_buffer::bufferEntry entry;
entry.address = 0; // Dummy, doesnt really matter
entry.orderBit = true;
entry.releaseBit = false;
entry.durable = delayWarp;
entry.u.warp = NULL;
entry.warpIds.set(warpId % WARPS_PER_SM);
bufferEntries.insert(bufferEntries.end(), entry);
stats_max_buffer_size = std::max((int)bufferEntries.size(), stats_max_buffer_size);
}
if(delayWarp || forceWarpWait) {
durable_warps[m_sid].insert(warpId % WARPS_PER_SM);
PRINT_DEBUG("Delaying warp %d (%d, %d)\n", warpId, m_sid, warpId % WARPS_PER_SM);
beginFlush(warp_mask_t().set(warpId % WARPS_PER_SM));
} else if(deprioritise) {
stalled_warps[m_sid].insert(warpId % WARPS_PER_SM);
PRINT_DEBUG("Stalling warp %d (%d, %d)\n", warpId, m_sid, warpId % WARPS_PER_SM);
beginFlush(warp_mask_t().set(warpId % WARPS_PER_SM));
}
}
void persist_buffer::deepFlush(shd_warp_t *warp, int sid, warp_mask_t warpIds)
{
int id = warp->get_warp_id();
if(!isL1Buffer) {
if(!useL2Buffer)
return;
id = sid;
}
PRINT_DEBUG("Start deep flush for %d\n", id);
bool complete = false;
for(auto i = bufferEntries.rbegin(); i != bufferEntries.rend(); ++i) {
// Merge order entry
if(!i->releaseBit && i->orderBit && !i->acquireBit && i->durable) {
if(isL1Buffer)
if(warpIds.count() == 0)
for(auto warpNum = 0u; warpNum < WARPS_PER_SM; ++warpNum)
i->warpIds.set(warpNum % WARPS_PER_SM);
else
i->warpIds = (i->warpIds | warpIds);
else {
i->warpIds.set(sid);
}
complete = true;
break;
}
// Cant merge if intervening write exists
else if(i->warpIds.test(id % WARPS_PER_SM))
break;
}
if(!complete) {
persist_buffer::bufferEntry entry;
entry.address = 0; // Dummy, doesnt really matter
entry.orderBit = true;
entry.releaseBit = false;
entry.acquireBit = false;
entry.u.warp = warp;
entry.durable = true;
if(isL1Buffer)
if(warpIds.count() == 0)
for(auto i = 0u; i < WARPS_PER_SM; ++i)
entry.warpIds.set(i);
else
entry.warpIds = (entry.warpIds | warpIds);
else {
entry.warpIds.set(sid);
}
bufferEntries.insert(bufferEntries.end(), entry);
stats_max_buffer_size = std::max((int)bufferEntries.size(), stats_max_buffer_size);
}
// Wait for release op to complete
if(isL1Buffer) {
durable_warps[m_sid].insert(id % WARPS_PER_SM);
PRINT_DEBUG("Deepflush, Delaying warp %d (%d, %d, %llx)\n", id, m_sid, id % WARPS_PER_SM, warpIds.to_ullong());
}
// Start flushing until release op
beginFlush(warp_mask_t().set(id % WARPS_PER_SM));
}
void persist_buffer::acquireOp(shd_warp_t *warp, bool haltWarp, int sid)
{
int id = warp->get_warp_id();
if(!isL1Buffer) {
if(!useL2Buffer)
return;
id = sid;
}
bool complete = false;
for(auto i = bufferEntries.rbegin(); i != bufferEntries.rend(); ++i) {
PRINT_DEBUG("Merged acquireOp for %d\n", id);
// Merge order entry
if(i->acquireBit && haltWarp == i->durable) {
i->warpIds.set(id % WARPS_PER_SM);
complete = true;
break;
}
// Cant merge if intervening write exists
else if(i->warpIds.test(id % WARPS_PER_SM))
break;
}
if(!complete) {
PRINT_DEBUG("Added releaseOp for %d\n", id);
persist_buffer::bufferEntry entry;
entry.address = 0; // Dummy, doesnt really matter
entry.orderBit = false;
entry.acquireBit = true;
entry.durable = haltWarp;
entry.u.warp = warp;
entry.warpIds.set(id % WARPS_PER_SM);
bufferEntries.insert(bufferEntries.end(), entry);
stats_max_buffer_size = std::max((int)bufferEntries.size(), stats_max_buffer_size);
}
// Wait for release op to complete
if(haltWarp || forceWarpWait) {
durable_warps[m_sid].insert(id % WARPS_PER_SM);
PRINT_DEBUG("Delaying warp %d (%d, %d)\n", warp->get_warp_id(), m_sid, id % WARPS_PER_SM);
} else if(deprioritise) {
stalled_warps[m_sid].insert(id % WARPS_PER_SM);
PRINT_DEBUG("Stalling warp %d (%d, %d)\n", warp->get_warp_id(), m_sid, id % WARPS_PER_SM);
}
// Start flushing until release op
beginFlush(warp_mask_t().set(id % WARPS_PER_SM));
}
// Untested. Check with some benchmarks
void persist_buffer::releaseOp(shd_warp_t *warp, bool haltWarp, int sid)
{
int id = warp->get_warp_id();
if(!isL1Buffer) {
if(!useL2Buffer)
return;
id = sid;
}
bool complete = false;
for(auto i = bufferEntries.rbegin(); i != bufferEntries.rend(); ++i) {
PRINT_DEBUG("Merged releaseOp for %d\n", id);
// Merge order entry
if(i->releaseBit && haltWarp == i->durable) {
i->warpIds.set(id % WARPS_PER_SM);
complete = true;
break;
}
// Cant merge if intervening write exists
else if(i->warpIds.test(id % WARPS_PER_SM))
break;
}
if(!complete) {
PRINT_DEBUG("Added releaseOp for %d\n", id);
persist_buffer::bufferEntry entry;
entry.address = 0; // Dummy, doesnt really matter
entry.orderBit = false;
entry.releaseBit = true;
entry.durable = haltWarp;
entry.u.warp = warp;
entry.warpIds.set(id % WARPS_PER_SM);
bufferEntries.insert(bufferEntries.end(), entry);
stats_max_buffer_size = std::max((int)bufferEntries.size(), stats_max_buffer_size);
}
// Wait for release op to complete
if(haltWarp || forceWarpWait) {
durable_warps[m_sid].insert(id % WARPS_PER_SM);
PRINT_DEBUG("Delaying warp %d (%d, %d)\n", warp->get_warp_id(), m_sid, id % WARPS_PER_SM);
} else if(deprioritise) {
stalled_warps[m_sid].insert(id % WARPS_PER_SM);
PRINT_DEBUG("Stalling warp %d (%d, %d)\n", warp->get_warp_id(), m_sid, id % WARPS_PER_SM);
}
// Start flushing until release op
beginFlush(warp_mask_t().set(id % WARPS_PER_SM));
}
bool persist_buffer::checkEvict(addr_t address)
{
// No issues with non-PM addresses
if(!is_pm(address))
return true;
if(!isL1Buffer && !useL2Buffer)
return true;
PRINT_DEBUG("Checking evict %llx: ", address);
// Address has probably already been written back
if(!hasEntry(address)) {
//printf("Can evict, address written back\n");
QPRINT_DEBUG("Can evict, address already written back\n");
return true;
}
// Flush in progress, can't evict before these finish
if((entryMap[address]->warpIds & flushingWarps).any()) {
//printf("Flush in progress, cannot evict\n");
QPRINT_DEBUG("Flush in progress, cannot evict\n");
return false;
}
// Order bit set before entry, wait for this to finish flushing
if(hasOrderBefore(entryMap[address], entryMap[address]->warpIds, bufferEntries.begin())) {
QPRINT_DEBUG("Has order before, cannot evict\n");
beginFlush(warp_mask_t(), true);
++pBufferNotReordered;
return false;
}
++pBufferReordered;
PRINT_DEBUG("Can evict %llx\n", address);
return true;
}
void persist_buffer::evict(addr_t address, int num)
{
// No issues with non-PM addresses
if(!is_pm(address) || num == 0)
return;
if(!isL1Buffer && !useL2Buffer)
return;
// Address has probably already been written back
if(!hasEntry(address))
return;
flushedEntries[norm_addr(address)] += num;
PRINT_DEBUG("Evicted %llx: %lu outstanding flushes now (%d for addr)\n", address, flushedEntries.size(), num);
// Erase evicted line
auto entry = entryMap[address];
bufferEntries.erase(entry);
entryMap.erase(address);
}
void persist_buffer::flushesComplete() {
// Force ordering at L2 because of normal order bit
if(isL1Buffer && orderAfterFlush && useL2Buffer)
l2Buffer->setOrder(m_sid);
if(invalidateAfterFlush)
m_cache->invalidate(true);
orderAfterFlush = false;
invalidateAfterFlush = false;
warp_mask_t copy = flushingWarps;
flushingWarps.reset();
// Continue next round of flushes
if(hasOrderAfter(bufferEntries.begin(), warp_mask_t().set()) || (eagerFlush && bufferEntries.size() > 0))
beginFlush(copy);
if(m_sid != -1)
for(auto i = 0u; i < copy.size(); ++i)
if(copy.test(i) && !flushingWarps.test(i)) {
delayed_warps[m_sid].erase(i);
PRINT_DEBUG("Clearing warp (%d, %d)\n", m_sid, i);
}
}
void persist_buffer::ackFlush(addr_t addr, int numAcks)
{
if(!isL1Buffer && !useL2Buffer)
return;
// Decrement ACK count
int num = (flushedEntries[norm_addr(addr)] -= numAcks);
if(num <= 0) {
flushedEntries.erase(norm_addr(addr));
if(eagerFlush)
beginFlush(warp_mask_t());
}
PRINT_DEBUG("Acked %d %llx flush, %lu entries left (%d for addr)\n", numAcks, norm_addr(addr), flushedEntries.size(), num);
// No more outstanding flushes
if(flushedEntries.size() == 0)
flushesComplete();
}
// Check for ordering/release bit after given entry
// Remember, a release is a one-way fence, so releases after enforce order
// But releases before don't enforce order
bool persist_buffer::hasOrderAfter(std::list<persist_buffer::bufferEntry>::iterator it, warp_mask_t warpIds)
{
for(auto i = it; i != bufferEntries.end(); ++i) {
if(((i->orderBit || i->releaseBit) && (i->warpIds & warpIds).any()))
return true;
}
return false;
}
// Check for ordering bit at or before given entry
bool persist_buffer::hasOrderBefore(std::list<persist_buffer::bufferEntry>::iterator it, warp_mask_t warpIds,
std::list<persist_buffer::bufferEntry>::iterator end)
{
for(auto i = it; ; --i) {
if((i->orderBit || i->acquireBit) && (i->warpIds & warpIds).any())
return true;
if(i == end)
break;
}
return false;
}
void persist_buffer::beginFlush(warp_mask_t warps, bool ignoreLimit)
{
if(!isL1Buffer && !useL2Buffer)
return;
// Already waiting on max limit of flushes
if(outstandingFlushes && flushedEntries.size() > outstandingFlushes && !ignoreLimit)
return;
// Already flush in progress
if((flushingWarps & warps).any() && flushedEntries.size() > 0) {
PRINT_DEBUG("Do not flush, already in progress, with %lu outstanding entries\n", flushedEntries.size());
return;
}
// Don't flush on kernel end
if(isL1Buffer && activeWarps == 0 && !ignoreLimit) {
PRINT_DEBUG("Do not flush, kernel has ended\n");
return;
}
//PRINT_DEBUG("Begin flushing\n");
for(auto i = bufferEntries.begin(); i != bufferEntries.end();) {
if((i->warpIds & flushingWarps).any() && !i->orderBit && !i->releaseBit && !i->acquireBit && !i->durable) {
PRINT_DEBUG("Stop flush for %lx, orderbit=%d, release=%d, mask=%llx\n", i->address, i->orderBit, i->releaseBit, i->warpIds.to_ullong());
break;
}
// Normal entry, flush from cache
if(!i->orderBit && !i->releaseBit && !i->acquireBit && !i->durable) {
int num = i->u.cache->writeback(i->address);
if(num > 0) {
flushedEntries[norm_addr(i->address)] += num;
PRINT_DEBUG("Flushed address %llx (%d entries)\n", norm_addr(i->address), num);
}
entryMap.erase(i->address);
if(outstandingFlushes && flushedEntries.size() > outstandingFlushes) {
auto j = i;
++i;
bufferEntries.erase(j);
break;
}
}
// Release entry, stop delaying warp waiting for release
if(i->releaseBit) {
PRINT_DEBUG("Found release entry for (%u, %u)\n", i->u.warp->get_dynamic_warp_id(), i->u.warp->get_warp_id());
// If l1 buffer, insert release entry into L2 buffer
if(isL1Buffer && useL2Buffer) {
m_L2PBuffer.releaseOp(i->u.warp, false, m_sid);
}
flushingWarps = (flushingWarps | i->warpIds);
}
if(i->acquireBit) {
PRINT_DEBUG("Found acquire entry for (%u, %u)\n", i->u.warp->get_dynamic_warp_id(), i->u.warp->get_warp_id());
flushingWarps = (flushingWarps | i->warpIds);
if(i->durable)
invalidateAfterFlush = true;
}
if(i->orderBit) {
PRINT_DEBUG("Order bit found for %llx\n", i->warpIds.to_ullong());
// Order bit found. Propogate to lower caches
orderAfterFlush = true;
flushingWarps = (flushingWarps | i->warpIds);
}
if(i->durable) {
if(m_sid != -1)
for(auto j = 0u; j < i->warpIds.size(); ++j)
if(i->warpIds.test(j)) {
durable_warps[m_sid].erase(j);
delayed_warps[m_sid].insert(j);
}
}
// Delete entry from buffer and map
auto j = i;
++i;
bufferEntries.erase(j);
}
PRINT_DEBUG("Flushed cache. Waiting on %lu entries\n", flushedEntries.size());
// No more outstanding flushes
if(flushedEntries.size() == 0)
flushesComplete();
}
void persist_buffer::warpStart(shd_warp_t *warp)
{
warp->get_pm_flush_done() = false;
++activeWarps;
curr_warps.insert(warp);
}
int persist_buffer::warpEnd(shd_warp_t *warp)
{
if(warp->stores_created() == false)
return true;
warp->get_pm_flush_done() = true;
--activeWarps;
if(activeWarps == 0) {
stats_flush_start_cycle = m_gpu->gpu_sim_cycle;
}
PRINT_DEBUG("Warp %u complete\n", warp->get_warp_id());
curr_warps.erase(warp);
switch(pm_model) {
case PM_NONE:
case PM_SEQUENTIAL:
return false;
case PM_EPOCH:
warp->set_waiting_persist();
return true;
case PM_UNBUFF_SRP: // Handled directly at function call
if(activeWarps == 0 && (flushedEntries.size() != 0 || bufferEntries.size() != 0) && deep_flush) {
return true;
}
return false;
case PM_BUFF_SRP_INTEG:
case PM_BUFF_SRP_DISC:
if(activeWarps == 0 && (flushedEntries.size() != 0 || bufferEntries.size() != 0) && deep_flush) {
deepFlush(warp, true);
return true;
} else if(activeWarps == 0 && flushedEntries.size() != 0) {
delayed_warps[m_sid].insert(warp->get_warp_id() % MAX_WARP_PER_SM);
flushingWarps.set(warp->get_warp_id() % MAX_WARP_PER_SM);
PRINT_DEBUG("Delay warp %u, waiting on %lu flushes\n", warp->get_warp_id(), flushedEntries.size());
return true;
}
return false;
break;
}
return false;
}
void persist_buffer::print_stats()
{
if(stats_flush_start_cycle)
printf("%s, Flush: %llu cycles, Max buffer size: %d\n", m_name, m_gpu->gpu_sim_cycle - stats_flush_start_cycle, stats_max_buffer_size);
stats_max_buffer_size = 0;
stats_flush_start_cycle = 0;
}
void persist_buffer::dump()
{
if(bufferEntries.size() > 0) {
pb_printf("In buffer: ");
for(auto i = bufferEntries.begin(); i != bufferEntries.end(); ++i) {
printf(" (A? %d, R? %d, O? %d, D? %d, Addr: %lx, Mask: %llx), ", i->acquireBit, i->releaseBit, i->orderBit, i->durable, i->address, i->warpIds.to_ullong());
}
printf("\n");
}
if(flushedEntries.size() > 0) {
pb_printf("Remaining: ");
for(auto i = flushedEntries.begin(); i != flushedEntries.end(); ++i) {
printf(" address %llx (%d), ", i->first, i->second);
}
printf("\n");
}
if(durable_warps[m_sid].size() > 0) {
pb_printf("Durable warps: ");
for(auto i = durable_warps[m_sid].begin(); i != durable_warps[m_sid].end(); ++i) {
printf(" %d, ", *i);
}
printf("\n");
}
if(delayed_warps[m_sid].size() > 0) {
pb_printf("Delayed warps: ");
for(auto i = delayed_warps[m_sid].begin(); i != delayed_warps[m_sid].end(); ++i) {
printf(" %d, ", *i);
}
printf("\n");
}
if(stalled_warps[m_sid].size() > 0) {
pb_printf("Stalled warps: ");
for(auto i = stalled_warps[m_sid].begin(); i != stalled_warps[m_sid].end(); ++i) {
printf(" %d, ", *i);
}
printf("\n");
}
if(curr_warps.size() > 0) {
pb_printf("Delayed warps (not PM): ");
for(auto i = curr_warps.begin(); i != curr_warps.end(); ++i) {
printf("%u (W: %u, P: %u, SC: %u, SD: %u), ", (*i)->get_warp_id(), (*i)->waiting(), (*i)->get_waiting_persist(), (*i)->stores_created(), (*i)->stores_done());
}
printf("\n");
}
}