forked from NVIDIA/apex
-
Notifications
You must be signed in to change notification settings - Fork 0
/
setup.py
253 lines (203 loc) · 8.47 KB
/
setup.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
import re
import sys
import os
import shutil
import inspect
import distutils
import distutils.spawn
from distutils.command.clean import clean
from setuptools import setup, Extension, find_packages
from setuptools.command.install import install
import subprocess
import ctypes.util
import torch
def find(path, regex_func, collect=False):
"""
Recursively searches through a directory with regex_func and
either collects all instances or returns the first instance.
Args:
path: Directory to search through
regex_function: A function to run on each file to decide if it should be returned/collected
collect (False) : If True will collect all instances of matching, else will return first instance only
"""
collection = [] if collect else None
for root, dirs, files in os.walk(path):
for file in files:
if regex_func(file):
if collect:
collection.append(os.path.join(root, file))
else:
return os.path.join(root, file)
return list(set(collection))
def findcuda():
"""
Based on PyTorch build process. Will look for nvcc for compilation.
Either will set cuda home by enviornment variable CUDA_HOME or will search
for nvcc. Returns NVCC executable, cuda major version and cuda home directory.
"""
cuda_path = None
CUDA_HOME = None
CUDA_HOME = os.getenv('CUDA_HOME', '/usr/local/cuda')
if not os.path.exists(CUDA_HOME):
# We use nvcc path on Linux and cudart path on macOS
cudart_path = ctypes.util.find_library('cudart')
if cudart_path is not None:
cuda_path = os.path.dirname(cudart_path)
if cuda_path is not None:
CUDA_HOME = os.path.dirname(cuda_path)
if not cuda_path and not CUDA_HOME:
nvcc_path = find('/usr/local/', re.compile("nvcc").search, False)
if nvcc_path:
CUDA_HOME = os.path.dirname(nvcc_path)
if CUDA_HOME:
os.path.dirname(CUDA_HOME)
if (not os.path.exists(CUDA_HOME+os.sep+"lib64")
or not os.path.exists(CUDA_HOME+os.sep+"include") ):
raise RuntimeError("Error: found NVCC at ", nvcc_path ," but could not locate CUDA libraries"+
" or include directories.")
raise RuntimeError("Error: Could not find cuda on this system."+
" Please set your CUDA_HOME enviornment variable to the CUDA base directory.")
NVCC = find(CUDA_HOME+os.sep+"bin",
re.compile('nvcc$').search)
print("Found NVCC = ", NVCC)
# Parse output of nvcc to get cuda major version
nvcc_output = subprocess.check_output([NVCC, '--version']).decode("utf-8")
CUDA_LIB = re.compile(', V[0-9]+\.[0-9]+\.[0-9]+').search(nvcc_output).group(0).split('V')[1]
print("Found CUDA_LIB = ", CUDA_LIB)
if CUDA_LIB:
try:
CUDA_VERSION = int(CUDA_LIB.split('.')[0])
except (ValueError, TypeError):
CUDA_VERSION = 9
else:
CUDA_VERSION = 9
if CUDA_VERSION < 8:
raise RuntimeError("Error: APEx requires CUDA 8 or newer")
return NVCC, CUDA_VERSION, CUDA_HOME
#Get some important paths
curdir = os.path.dirname(os.path.abspath(inspect.stack()[0][1]))
buildir = curdir+os.sep+"build"
if not os.path.exists(buildir):
os.makedirs(buildir)
torch_dir = os.path.split(torch.__file__)[0] + os.sep + "lib"
cuda_files = find(curdir, lambda file: file.endswith(".cu"), True)
cuda_headers = find(curdir, lambda file: file.endswith(".cuh"), True)
headers = find(curdir, lambda file: file.endswith(".h"), True)
libaten = list(set(find(torch_dir, re.compile("libaten", re.IGNORECASE).search, True)))
libaten_names = [os.path.splitext(os.path.basename(entry))[0] for entry in libaten]
for i, entry in enumerate(libaten_names):
if entry[:3]=='lib':
libaten_names[i] = entry[3:]
aten_h = find(torch_dir, re.compile("aten.h", re.IGNORECASE).search, False)
torch_inc = os.path.dirname(os.path.dirname(aten_h))
include_dirs = [torch_inc]
library_dirs = []
for file in cuda_headers+headers:
dir = os.path.dirname(file)
if dir not in include_dirs:
include_dirs.append(dir)
# Object files that use the PyTorch cffi-extension interface
# They need special handling during compilation
cffi_objects = ['scale_kernel.o']
assert libaten, "Could not find PyTorch's libATen."
assert aten_h, "Could not find PyTorch's ATen header."
library_dirs.append(os.path.dirname(libaten[0]))
#create some places to collect important things
object_files = []
extra_link_args=[]
main_libraries = []
main_libraries += ['cudart',]+libaten_names
extra_compile_args = ["--std=c++11",]
#findcuda returns root dir of CUDA
#include cuda/include and cuda/lib64 for python module build.
NVCC, CUDA_VERSION, CUDA_HOME=findcuda()
library_dirs.append(os.path.join(CUDA_HOME, "lib64"))
include_dirs.append(os.path.join(CUDA_HOME, 'include'))
class RMBuild(clean):
def run(self):
#BE VERY CAUTIOUS WHEN USING RMTREE!!!
#These are some carefully written/crafted directories
if os.path.exists(buildir):
shutil.rmtree(buildir)
distdir = curdir+os.sep+"dist"
if os.path.exists(distdir):
shutil.rmtree(distdir)
eggdir = curdir+os.sep+"apex.egg-info"
if os.path.exists(eggdir):
shutil.rmtree(eggdir)
clean.run(self)
def CompileCudaFiles(NVCC, CUDA_VERSION):
print()
print("Compiling cuda modules with nvcc:")
gencodes = ['-gencode', 'arch=compute_52,code=sm_52',
'-gencode', 'arch=compute_60,code=sm_60',
'-gencode', 'arch=compute_61,code=sm_61',]
if CUDA_VERSION > 8:
gencodes += ['-gencode', 'arch=compute_70,code=sm_70',
'-gencode', 'arch=compute_70,code=compute_70',]
#Need arches to compile for. Compiles for 70 which requires CUDA9
nvcc_cmd = [NVCC,
'-Xcompiler',
'-fPIC'
] + gencodes + [
'--std=c++11',
'-O3',
]
for dir in include_dirs:
nvcc_cmd.append("-I"+dir)
# Hack: compiling the cffi kernel code needs the TH{C}
# subdirs of include on path as well
for suffix in ['TH', 'THC']:
nvcc_cmd.append('-I{}/{}'.format(torch_inc, suffix))
for file in cuda_files:
object_name = os.path.basename(
os.path.splitext(file)[0]+".o"
)
object_file = os.path.join(buildir, object_name)
object_files.append(object_file)
file_opts = ['-c', file, '-o', object_file]
extra_args = []
if object_name in cffi_objects:
for module in ['TH', 'THC']:
extra_args.append('-I{}/{}'.format(torch_inc, module))
build_args = nvcc_cmd + extra_args + file_opts
print(' '.join(build_args))
subprocess.check_call(build_args)
for object_file in object_files:
extra_link_args.append(object_file)
if 'clean' not in sys.argv:
print()
print("Arguments used to build CUDA extension:")
print("extra_compile_args :", extra_compile_args)
print("include_dirs: ", include_dirs)
print("extra_link_args: ", extra_link_args)
print("library_dirs: ", library_dirs)
print("libraries: ", main_libraries)
print()
CompileCudaFiles(NVCC, CUDA_VERSION)
print("Building CUDA extension.")
cuda_ext = Extension('apex._C',
[os.path.join('csrc', 'Module.cpp')],
extra_compile_args = extra_compile_args,
include_dirs=include_dirs,
extra_link_args=extra_link_args,
library_dirs=library_dirs,
runtime_library_dirs = library_dirs,
libraries=main_libraries
)
if 'clean' not in sys.argv:
print("Building module.")
setup(
name='apex', version='0.1',
cmdclass={
'clean' : RMBuild,
},
ext_modules=[cuda_ext,],
description='PyTorch Extensions written by NVIDIA',
packages=find_packages(exclude=("build", "csrc", "include", "tests")),
# Require cffi
install_requires=["cffi>=1.0.0"],
setup_requires=["cffi>=1.0.0"],
cffi_modules=[os.path.join(os.path.dirname(__file__),
'build_cffi.py:extension')],
)