-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathkernel.c
230 lines (178 loc) · 5.74 KB
/
kernel.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
#include <stdio.h>
#include <stdlib.h>
#include "LU.h"
#include "FFT.h"
#include "SOR.h"
#include "MonteCarlo.h"
#include "LU.h"
#include "Random.h"
#include "Stopwatch.h"
#include "SparseCompRow.h"
#include "array.h"
double kernel_measureFFT(int N, double mintime, Random R)
{
/* initialize FFT data as complex (N real/img pairs) */
int twoN = 2*N;
double *x = RandomVector(twoN, R);
long cycles = 1;
Stopwatch Q = new_Stopwatch();
int i=0;
double result = 0.0;
while(1)
{
Stopwatch_start(Q);
for (i=0; i<cycles; i++)
{
FFT_transform(twoN, x); /* forward transform */
FFT_inverse(twoN, x); /* backward transform */
}
Stopwatch_stop(Q);
if (Stopwatch_read(Q) >= mintime)
break;
cycles *= 2;
}
/* approx Mflops */
result = FFT_num_flops(N)*cycles/ Stopwatch_read(Q) * 1.0e-6;
Stopwatch_delete(Q);
free(x);
return result;
}
double kernel_measureSOR(int N, double min_time, Random R)
{
double **G = RandomMatrix(N, N, R);
double result = 0.0;
Stopwatch Q = new_Stopwatch();
int cycles=1;
while(1)
{
Stopwatch_start(Q);
SOR_execute(N, N, 1.25, G, cycles);
Stopwatch_stop(Q);
if (Stopwatch_read(Q) >= min_time) break;
cycles *= 2;
}
/* approx Mflops */
result = SOR_num_flops(N, N, cycles) / Stopwatch_read(Q) * 1.0e-6;
Stopwatch_delete(Q);
Array2D_double_delete(N, N, G);
return result;
}
double kernel_measureMonteCarlo(double min_time, Random R)
{
double result = 0.0;
Stopwatch Q = new_Stopwatch();
int cycles=1;
while(1)
{
Stopwatch_start(Q);
MonteCarlo_integrate(cycles);
Stopwatch_stop(Q);
if (Stopwatch_read(Q) >= min_time) break;
cycles *= 2;
}
/* approx Mflops */
result = MonteCarlo_num_flops(cycles) / Stopwatch_read(Q) * 1.0e-6;
Stopwatch_delete(Q);
return result;
}
double kernel_measureSparseMatMult(int N, int nz,
double min_time, Random R)
{
/* initialize vector multipliers and storage for result */
/* y = A*y; */
double *x = RandomVector(N, R);
double *y = (double*) malloc(sizeof(double)*N);
double result = 0.0;
#if 0
// initialize square sparse matrix
//
// for this test, we create a sparse matrix with M/nz nonzeros
// per row, with spaced-out evenly between the begining of the
// row to the main diagonal. Thus, the resulting pattern looks
// like
// +-----------------+
// +* +
// +*** +
// +* * * +
// +** * * +
// +** * * +
// +* * * * +
// +* * * * +
// +* * * * +
// +-----------------+
//
// (as best reproducible with integer artihmetic)
// Note that the first nr rows will have elements past
// the diagonal.
#endif
int nr = nz/N; /* average number of nonzeros per row */
int anz = nr *N; /* _actual_ number of nonzeros */
double *val = RandomVector(anz, R);
int *col = (int*) malloc(sizeof(int)*nz);
int *row = (int*) malloc(sizeof(int)*(N+1));
int r=0;
int cycles=1;
Stopwatch Q = new_Stopwatch();
row[0] = 0;
for (r=0; r<N; r++)
{
/* initialize elements for row r */
int rowr = row[r];
int step = r/ nr;
int i=0;
row[r+1] = rowr + nr;
if (step < 1) step = 1; /* take at least unit steps */
for (i=0; i<nr; i++)
col[rowr+i] = i*step;
}
while(1)
{
Stopwatch_start(Q);
SparseCompRow_matmult(N, y, val, row, col, x, cycles);
Stopwatch_stop(Q);
if (Stopwatch_read(Q) >= min_time) break;
cycles *= 2;
}
/* approx Mflops */
result = SparseCompRow_num_flops(N, nz, cycles) /
Stopwatch_read(Q) * 1.0e-6;
Stopwatch_delete(Q);
free(row);
free(col);
free(val);
free(y);
free(x);
return result;
}
double kernel_measureLU(int N, double min_time, Random R)
{
double **A = NULL;
double **lu = NULL;
int *pivot = NULL;
Stopwatch Q = new_Stopwatch();
double result = 0.0;
int i=0;
int cycles=1;
if ((A = RandomMatrix(N, N, R)) == NULL) exit(1);
if ((lu = new_Array2D_double(N, N)) == NULL) exit(1);
if ((pivot = (int *) malloc(N * sizeof(int))) == NULL) exit(1);
while(1)
{
Stopwatch_start(Q);
for (i=0; i<cycles; i++)
{
Array2D_double_copy(N, N, lu, A);
LU_factor(N, N, lu, pivot);
}
Stopwatch_stop(Q);
if (Stopwatch_read(Q) >= min_time) break;
cycles *= 2;
}
/* approx Mflops */
result = LU_num_flops(N) * cycles / Stopwatch_read(Q) * 1.0e-6;
Stopwatch_delete(Q);
free(pivot);
Array2D_double_delete(N, N, lu);
Array2D_double_delete(N, N, A);
return result;
}