-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathLU.c
102 lines (76 loc) · 2.14 KB
/
LU.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
#include <math.h>
#include "LU.h"
double LU_num_flops(int N)
{
/* rougly 2/3*N^3 */
double Nd = (double) N;
return (2.0 * Nd *Nd *Nd/ 3.0);
}
void LU_copy_matrix(int M, int N, double **lu, double **A)
{
int i;
int j;
for (i=0; i<M; i++)
for (j=0; j<N; j++)
lu[i][j] = A[i][j];
}
int LU_factor(int M, int N, double **A, int *pivot)
{
int minMN = M < N ? M : N;
int j=0;
for (j=0; j<minMN; j++)
{
/* find pivot in column j and test for singularity. */
int jp=j;
int i;
double t = fabs(A[j][j]);
for (i=j+1; i<M; i++)
{
double ab = fabs(A[i][j]);
if ( ab > t)
{
jp = i;
t = ab;
}
}
pivot[j] = jp;
/* jp now has the index of maximum element */
/* of column j, below the diagonal */
if ( A[jp][j] == 0 )
return 1; /* factorization failed because of zero pivot */
if (jp != j)
{
/* swap rows j and jp */
double *tA = A[j];
A[j] = A[jp];
A[jp] = tA;
}
if (j<M-1) /* compute elements j+1:M of jth column */
{
/* note A(j,j), was A(jp,p) previously which was */
/* guarranteed not to be zero (Label #1) */
double recp = 1.0 / A[j][j];
int k;
for (k=j+1; k<M; k++)
A[k][j] *= recp;
}
if (j < minMN-1)
{
/* rank-1 update to trailing submatrix: E = E - x*y; */
/* E is the region A(j+1:M, j+1:N) */
/* x is the column vector A(j+1:M,j) */
/* y is row vector A(j,j+1:N) */
int ii;
for (ii=j+1; ii<M; ii++)
{
double *Aii = A[ii];
double *Aj = A[j];
double AiiJ = Aii[j];
int jj;
for (jj=j+1; jj<N; jj++)
Aii[jj] -= AiiJ * Aj[jj];
}
}
}
return 0;
}