-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathFFT.c
165 lines (125 loc) · 3.45 KB
/
FFT.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
#include <stdio.h>
#include <stdlib.h>
#include <math.h>
#include "FFT.h"
#define PI 3.1415926535897932
/*-----------------------------------------------------------------------*/
static int int_log2(int n);
double FFT_num_flops(int N)
{
double Nd = (double) N;
double logN = (double) int_log2(N);
return (5.0*Nd-2)*logN + 2*(Nd+1);
}
static int int_log2 (int n)
{
int k = 1;
int log = 0;
for(/*k=1*/; k < n; k *= 2, log++);
if (n != (1 << log))
{
printf("FFT: Data length is not a power of 2!: %d ",n);
exit(1);
}
return log;
}
static void FFT_transform_internal (int N, double *data, int direction) {
int n = N/2;
int bit = 0;
int logn;
int dual = 1;
if (n == 1) return; /* Identity operation! */
logn = int_log2(n);
if (N == 0) return;
/* bit reverse the input data for decimation in time algorithm */
FFT_bitreverse(N, data) ;
/* apply fft recursion */
/* this loop executed int_log2(N) times */
for (bit = 0; bit < logn; bit++, dual *= 2) {
double w_real = 1.0;
double w_imag = 0.0;
int a;
int b;
double theta = 2.0 * direction * PI / (2.0 * (double) dual);
double s = sin(theta);
double t = sin(theta / 2.0);
double s2 = 2.0 * t * t;
for (a=0, b = 0; b < n; b += 2 * dual) {
int i = 2*b ;
int j = 2*(b + dual);
double wd_real = data[j] ;
double wd_imag = data[j+1] ;
data[j] = data[i] - wd_real;
data[j+1] = data[i+1] - wd_imag;
data[i] += wd_real;
data[i+1]+= wd_imag;
}
/* a = 1 .. (dual-1) */
for (a = 1; a < dual; a++) {
/* trignometric recurrence for w-> exp(i theta) w */
{
double tmp_real = w_real - s * w_imag - s2 * w_real;
double tmp_imag = w_imag + s * w_real - s2 * w_imag;
w_real = tmp_real;
w_imag = tmp_imag;
}
for (b = 0; b < n; b += 2 * dual) {
int i = 2*(b + a);
int j = 2*(b + a + dual);
double z1_real = data[j];
double z1_imag = data[j+1];
double wd_real = w_real * z1_real - w_imag * z1_imag;
double wd_imag = w_real * z1_imag + w_imag * z1_real;
data[j] = data[i] - wd_real;
data[j+1] = data[i+1] - wd_imag;
data[i] += wd_real;
data[i+1]+= wd_imag;
}
}
}
}
void FFT_bitreverse(int N, double *data) {
/* This is the Goldrader bit-reversal algorithm */
int n=N/2;
int nm1 = n-1;
int i=0;
int j=0;
for (; i < nm1; i++) {
/*int ii = 2*i; */
int ii = i << 1;
/*int jj = 2*j; */
int jj = j << 1;
/* int k = n / 2 ; */
int k = n >> 1;
if (i < j) {
double tmp_real = data[ii];
double tmp_imag = data[ii+1];
data[ii] = data[jj];
data[ii+1] = data[jj+1];
data[jj] = tmp_real;
data[jj+1] = tmp_imag; }
while (k <= j)
{
/*j = j - k ; */
j -= k;
/*k = k / 2 ; */
k >>= 1 ;
}
j += k ;
}
}
void FFT_transform(int N, double *data)
{
FFT_transform_internal(N, data, -1);
}
void FFT_inverse(int N, double *data)
{
int n = N/2;
double norm = 0.0;
int i=0;
FFT_transform_internal(N, data, +1);
/* Normalize */
norm=1/((double) n);
for(i=0; i<N; i++)
data[i] *= norm;
}