-
Notifications
You must be signed in to change notification settings - Fork 146
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
[BUG] ClassCastException: scala.Some cannot be cast to [Lorg.apache.spark.sql.catalyst.InternalRow #808
Comments
I'm suspecting that Databricks changed the API internally (this happened a few times before already), as the code should actually work: |
Hey @edwares, did you get in touch with Databricks? |
Hey @nightscape, I submitted a support ticket to Databricks but still waiting to hear back |
@edwares version 0.20.3 should fix this issue. You need to use the 3.4.2 version of the artifact. Databricks actually broke compatibility in a patch release which is not nice, but I was able to work around it. |
Closing this for now, let me know if it still doesn't work. |
@nightscape, I am @edwares colleague. The issue has been resolved by upgrading the DBR version to 14.4 (with Spark 3.5.0) and the spark-excel library version to 0.20.3. Thank you for your help! |
Is there an existing issue for this?
Current Behavior
Hello,
After reading an Excel file into a dataframe, when I try to display it with display() method, it's throwing an error.
Stacktrace:
org.apache.spark.SparkException: Job aborted due to stage failure: Task 0 in stage 211.0 failed 4 times, most recent failure: Lost task 0.3 in stage 211.0 (TID 430) (10.15.82.179 executor 6): org.apache.spark.SparkException: Encountered error while reading file dbfs:/file.xlsx. Details:
at org.apache.spark.sql.errors.QueryExecutionErrors$.cannotReadFilesError(QueryExecutionErrors.scala:1057)
at org.apache.spark.sql.execution.datasources.v2.FilePartitionReader.next(FilePartitionReader.scala:80)
at org.apache.spark.sql.execution.datasources.v2.PartitionIterator.hasNext(DataSourceRDD.scala:120)
at org.apache.spark.sql.execution.datasources.v2.MetricsIterator.hasNext(DataSourceRDD.scala:158)
at org.apache.spark.sql.execution.datasources.v2.DataSourceRDD$$anon$1.$anonfun$hasNext$1(DataSourceRDD.scala:63)
at org.apache.spark.sql.execution.datasources.v2.DataSourceRDD$$anon$1.$anonfun$hasNext$1$adapted(DataSourceRDD.scala:63)
at scala.Option.exists(Option.scala:376)
at org.apache.spark.sql.execution.datasources.v2.DataSourceRDD$$anon$1.hasNext(DataSourceRDD.scala:63)
at org.apache.spark.InterruptibleIterator.hasNext(InterruptibleIterator.scala:37)
at scala.collection.Iterator$$anon$10.hasNext(Iterator.scala:460)
at org.apache.spark.sql.catalyst.expressions.GeneratedClass$GeneratedIteratorForCodegenStage1.processNext(Unknown Source)
at org.apache.spark.sql.execution.BufferedRowIterator.hasNext(BufferedRowIterator.java:43)
at org.apache.spark.sql.execution.WholeStageCodegenEvaluatorFactory$WholeStageCodegenPartitionEvaluator$$anon$1.hasNext(WholeStageCodegenEvaluatorFactory.scala:43)
at scala.collection.Iterator$$anon$10.hasNext(Iterator.scala:460)
at org.apache.spark.api.python.SerDeUtil$AutoBatchedPickler.next(SerDeUtil.scala:91)
at org.apache.spark.api.python.SerDeUtil$AutoBatchedPickler.next(SerDeUtil.scala:82)
at org.apache.spark.api.python.PythonRDD$.writeNextElementToStream(PythonRDD.scala:472)
at org.apache.spark.api.python.PythonRunner$$anon$2.writeNextInputToStream(PythonRunner.scala:992)
at org.apache.spark.api.python.BasePythonRunner$ReaderInputStream.writeAdditionalInputToPythonWorker(PythonRunner.scala:928)
at org.apache.spark.api.python.BasePythonRunner$ReaderInputStream.read(PythonRunner.scala:851)
at java.io.BufferedInputStream.fill(BufferedInputStream.java:246)
at java.io.BufferedInputStream.read(BufferedInputStream.java:265)
at java.io.DataInputStream.readInt(DataInputStream.java:387)
at org.apache.spark.api.python.PythonRunner$$anon$3.read(PythonRunner.scala:1019)
at org.apache.spark.api.python.PythonRunner$$anon$3.read(PythonRunner.scala:1011)
at org.apache.spark.api.python.BasePythonRunner$ReaderIterator.hasNext(PythonRunner.scala:635)
at org.apache.spark.InterruptibleIterator.hasNext(InterruptibleIterator.scala:37)
at scala.collection.Iterator$$anon$11.hasNext(Iterator.scala:491)
at scala.collection.Iterator$$anon$10.hasNext(Iterator.scala:460)
at scala.collection.Iterator$$anon$10.hasNext(Iterator.scala:460)
at org.apache.spark.sql.catalyst.expressions.GeneratedClass$GeneratedIteratorForCodegenStage1.processNext(Unknown Source)
at org.apache.spark.sql.execution.BufferedRowIterator.hasNext(BufferedRowIterator.java:43)
at org.apache.spark.sql.execution.WholeStageCodegenEvaluatorFactory$WholeStageCodegenPartitionEvaluator$$anon$1.hasNext(WholeStageCodegenEvaluatorFactory.scala:43)
at org.apache.spark.sql.execution.collect.UnsafeRowBatchUtils$.$anonfun$encodeUnsafeRows$5(UnsafeRowBatchUtils.scala:88)
at scala.runtime.java8.JFunction0$mcV$sp.apply(JFunction0$mcV$sp.java:23)
at com.databricks.spark.util.ExecutorFrameProfiler$.record(ExecutorFrameProfiler.scala:110)
at org.apache.spark.sql.execution.collect.UnsafeRowBatchUtils$.$anonfun$encodeUnsafeRows$3(UnsafeRowBatchUtils.scala:88)
at scala.runtime.java8.JFunction0$mcV$sp.apply(JFunction0$mcV$sp.java:23)
at com.databricks.spark.util.ExecutorFrameProfiler$.record(ExecutorFrameProfiler.scala:110)
at org.apache.spark.sql.execution.collect.UnsafeRowBatchUtils$.$anonfun$encodeUnsafeRows$1(UnsafeRowBatchUtils.scala:68)
at com.databricks.spark.util.ExecutorFrameProfiler$.record(ExecutorFrameProfiler.scala:110)
at org.apache.spark.sql.execution.collect.UnsafeRowBatchUtils$.encodeUnsafeRows(UnsafeRowBatchUtils.scala:62)
at org.apache.spark.sql.execution.collect.Collector.$anonfun$processFunc$2(Collector.scala:197)
at org.apache.spark.scheduler.ResultTask.$anonfun$runTask$3(ResultTask.scala:82)
at com.databricks.spark.util.ExecutorFrameProfiler$.record(ExecutorFrameProfiler.scala:110)
at org.apache.spark.scheduler.ResultTask.$anonfun$runTask$1(ResultTask.scala:82)
at com.databricks.spark.util.ExecutorFrameProfiler$.record(ExecutorFrameProfiler.scala:110)
at org.apache.spark.scheduler.ResultTask.runTask(ResultTask.scala:62)
at org.apache.spark.TaskContext.runTaskWithListeners(TaskContext.scala:196)
at org.apache.spark.scheduler.Task.doRunTask(Task.scala:181)
at org.apache.spark.scheduler.Task.$anonfun$run$5(Task.scala:146)
at com.databricks.unity.UCSEphemeralState$Handle.runWith(UCSEphemeralState.scala:41)
at com.databricks.unity.HandleImpl.runWith(UCSHandle.scala:99)
at com.databricks.unity.HandleImpl.$anonfun$runWithAndClose$1(UCSHandle.scala:104)
at scala.util.Using$.resource(Using.scala:269)
at com.databricks.unity.HandleImpl.runWithAndClose(UCSHandle.scala:103)
at org.apache.spark.scheduler.Task.$anonfun$run$1(Task.scala:146)
at com.databricks.spark.util.ExecutorFrameProfiler$.record(ExecutorFrameProfiler.scala:110)
at org.apache.spark.scheduler.Task.run(Task.scala:99)
at org.apache.spark.executor.Executor$TaskRunner.$anonfun$run$8(Executor.scala:897)
at org.apache.spark.util.Utils$.tryWithSafeFinally(Utils.scala:1682)
at org.apache.spark.executor.Executor$TaskRunner.$anonfun$run$3(Executor.scala:900)
at scala.runtime.java8.JFunction0$mcV$sp.apply(JFunction0$mcV$sp.java:23)
at com.databricks.spark.util.ExecutorFrameProfiler$.record(ExecutorFrameProfiler.scala:110)
at org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:795)
at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1149)
at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:624)
at java.lang.Thread.run(Thread.java:750)
Caused by: java.lang.ClassCastException: scala.Some cannot be cast to [Lorg.apache.spark.sql.catalyst.InternalRow;
at org.apache.spark.sql.catalyst.util.FailureSafeParser.parse(FailureSafeParser.scala:99)
at com.crealytics.spark.excel.v2.ExcelParser$.$anonfun$parseIterator$2(ExcelParser.scala:432)
at scala.collection.Iterator$$anon$11.nextCur(Iterator.scala:486)
at scala.collection.Iterator$$anon$11.hasNext(Iterator.scala:492)
at org.apache.spark.sql.execution.datasources.v2.PartitionReaderFromIterator.next(PartitionReaderFromIterator.scala:26)
at org.apache.spark.sql.execution.datasources.v2.PartitionReaderWithPartitionValues.next(PartitionReaderWithPartitionValues.scala:48)
at org.apache.spark.sql.execution.datasources.v2.PartitionedFileReader.next(FilePartitionReaderFactory.scala:58)
at org.apache.spark.sql.execution.datasources.v2.FilePartitionReader.next(FilePartitionReader.scala:65)
... 66 more
Driver stacktrace:
at org.apache.spark.scheduler.DAGScheduler.failJobAndIndependentStages(DAGScheduler.scala:3588)
at org.apache.spark.scheduler.DAGScheduler.$anonfun$abortStage$2(DAGScheduler.scala:3519)
at org.apache.spark.scheduler.DAGScheduler.$anonfun$abortStage$2$adapted(DAGScheduler.scala:3506)
at scala.collection.mutable.ResizableArray.foreach(ResizableArray.scala:62)
at scala.collection.mutable.ResizableArray.foreach$(ResizableArray.scala:55)
at scala.collection.mutable.ArrayBuffer.foreach(ArrayBuffer.scala:49)
at org.apache.spark.scheduler.DAGScheduler.abortStage(DAGScheduler.scala:3506)
at org.apache.spark.scheduler.DAGScheduler.$anonfun$handleTaskSetFailed$1(DAGScheduler.scala:1516)
at org.apache.spark.scheduler.DAGScheduler.$anonfun$handleTaskSetFailed$1$adapted(DAGScheduler.scala:1516)
at scala.Option.foreach(Option.scala:407)
at org.apache.spark.scheduler.DAGScheduler.handleTaskSetFailed(DAGScheduler.scala:1516)
at org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.doOnReceive(DAGScheduler.scala:3835)
at org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.onReceive(DAGScheduler.scala:3747)
at org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.onReceive(DAGScheduler.scala:3735)
at org.apache.spark.util.EventLoop$$anon$1.run(EventLoop.scala:51)
at org.apache.spark.scheduler.DAGScheduler.$anonfun$runJob$1(DAGScheduler.scala:1240)
at scala.runtime.java8.JFunction0$mcV$sp.apply(JFunction0$mcV$sp.java:23)
at com.databricks.spark.util.FrameProfiler$.record(FrameProfiler.scala:94)
at org.apache.spark.scheduler.DAGScheduler.runJob(DAGScheduler.scala:1228)
at org.apache.spark.SparkContext.runJobInternal(SparkContext.scala:2959)
at org.apache.spark.sql.execution.collect.Collector.$anonfun$runSparkJobs$1(Collector.scala:338)
at scala.runtime.java8.JFunction0$mcV$sp.apply(JFunction0$mcV$sp.java:23)
at com.databricks.spark.util.FrameProfiler$.record(FrameProfiler.scala:94)
at org.apache.spark.sql.execution.collect.Collector.runSparkJobs(Collector.scala:282)
at org.apache.spark.sql.execution.collect.Collector.$anonfun$collect$1(Collector.scala:366)
at com.databricks.spark.util.FrameProfiler$.record(FrameProfiler.scala:94)
at org.apache.spark.sql.execution.collect.Collector.collect(Collector.scala:363)
at org.apache.spark.sql.execution.collect.Collector$.collect(Collector.scala:117)
at org.apache.spark.sql.execution.collect.Collector$.collect(Collector.scala:124)
at org.apache.spark.sql.execution.qrc.InternalRowFormat$.collect(cachedSparkResults.scala:126)
at org.apache.spark.sql.execution.qrc.InternalRowFormat$.collect(cachedSparkResults.scala:114)
at org.apache.spark.sql.execution.qrc.InternalRowFormat$.collect(cachedSparkResults.scala:94)
at org.apache.spark.sql.execution.qrc.ResultCacheManager.$anonfun$computeResult$1(ResultCacheManager.scala:553)
at com.databricks.spark.util.FrameProfiler$.record(FrameProfiler.scala:94)
at org.apache.spark.sql.execution.qrc.ResultCacheManager.collectResult$1(ResultCacheManager.scala:545)
at org.apache.spark.sql.execution.qrc.ResultCacheManager.computeResult(ResultCacheManager.scala:565)
at org.apache.spark.sql.execution.qrc.ResultCacheManager.$anonfun$getOrComputeResultInternal$1(ResultCacheManager.scala:426)
at scala.Option.getOrElse(Option.scala:189)
at org.apache.spark.sql.execution.qrc.ResultCacheManager.getOrComputeResultInternal(ResultCacheManager.scala:419)
at org.apache.spark.sql.execution.qrc.ResultCacheManager.getOrComputeResult(ResultCacheManager.scala:313)
at org.apache.spark.sql.execution.SparkPlan.$anonfun$executeCollectResult$1(SparkPlan.scala:519)
at com.databricks.spark.util.FrameProfiler$.record(FrameProfiler.scala:94)
at org.apache.spark.sql.execution.SparkPlan.executeCollectResult(SparkPlan.scala:516)
at org.apache.spark.sql.Dataset.collectResult(Dataset.scala:3628)
at org.apache.spark.sql.Dataset.$anonfun$collectResult$1(Dataset.scala:3619)
at org.apache.spark.sql.Dataset.$anonfun$withAction$3(Dataset.scala:4544)
at org.apache.spark.sql.execution.QueryExecution$.withInternalError(QueryExecution.scala:945)
at org.apache.spark.sql.Dataset.$anonfun$withAction$2(Dataset.scala:4542)
at org.apache.spark.sql.execution.SQLExecution$.$anonfun$withCustomExecutionEnv$8(SQLExecution.scala:274)
at org.apache.spark.sql.execution.SQLExecution$.withSQLConfPropagated(SQLExecution.scala:498)
at org.apache.spark.sql.execution.SQLExecution$.$anonfun$withCustomExecutionEnv$1(SQLExecution.scala:201)
at org.apache.spark.sql.SparkSession.withActive(SparkSession.scala:1113)
at org.apache.spark.sql.execution.SQLExecution$.withCustomExecutionEnv(SQLExecution.scala:151)
at org.apache.spark.sql.execution.SQLExecution$.withNewExecutionId(SQLExecution.scala:447)
at org.apache.spark.sql.Dataset.withAction(Dataset.scala:4542)
at org.apache.spark.sql.Dataset.collectResult(Dataset.scala:3618)
at com.databricks.backend.daemon.driver.OutputAggregator$.withOutputAggregation0(OutputAggregator.scala:267)
at com.databricks.backend.daemon.driver.OutputAggregator$.withOutputAggregation(OutputAggregator.scala:101)
at com.databricks.backend.daemon.driver.PythonDriverLocalBase.generateTableResult(PythonDriverLocalBase.scala:773)
at com.databricks.backend.daemon.driver.JupyterDriverLocal.computeListResultsItem(JupyterDriverLocal.scala:1083)
at com.databricks.backend.daemon.driver.JupyterDriverLocal$JupyterEntryPoint.addCustomDisplayData(JupyterDriverLocal.scala:259)
at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method)
at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:62)
at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43)
at java.lang.reflect.Method.invoke(Method.java:498)
at py4j.reflection.MethodInvoker.invoke(MethodInvoker.java:244)
at py4j.reflection.ReflectionEngine.invoke(ReflectionEngine.java:397)
at py4j.Gateway.invoke(Gateway.java:306)
at py4j.commands.AbstractCommand.invokeMethod(AbstractCommand.java:132)
at py4j.commands.CallCommand.execute(CallCommand.java:79)
at py4j.ClientServerConnection.waitForCommands(ClientServerConnection.java:195)
at py4j.ClientServerConnection.run(ClientServerConnection.java:115)
at java.lang.Thread.run(Thread.java:750)
Caused by: org.apache.spark.SparkException: Encountered error while reading file dbfs:/file.xlsx. Details:
at org.apache.spark.sql.errors.QueryExecutionErrors$.cannotReadFilesError(QueryExecutionErrors.scala:1057)
at org.apache.spark.sql.execution.datasources.v2.FilePartitionReader.next(FilePartitionReader.scala:80)
at org.apache.spark.sql.execution.datasources.v2.PartitionIterator.hasNext(DataSourceRDD.scala:120)
at org.apache.spark.sql.execution.datasources.v2.MetricsIterator.hasNext(DataSourceRDD.scala:158)
at org.apache.spark.sql.execution.datasources.v2.DataSourceRDD$$anon$1.$anonfun$hasNext$1(DataSourceRDD.scala:63)
at org.apache.spark.sql.execution.datasources.v2.DataSourceRDD$$anon$1.$anonfun$hasNext$1$adapted(DataSourceRDD.scala:63)
at scala.Option.exists(Option.scala:376)
at org.apache.spark.sql.execution.datasources.v2.DataSourceRDD$$anon$1.hasNext(DataSourceRDD.scala:63)
at org.apache.spark.InterruptibleIterator.hasNext(InterruptibleIterator.scala:37)
at scala.collection.Iterator$$anon$10.hasNext(Iterator.scala:460)
at org.apache.spark.sql.catalyst.expressions.GeneratedClass$GeneratedIteratorForCodegenStage1.processNext(Unknown Source)
at org.apache.spark.sql.execution.BufferedRowIterator.hasNext(BufferedRowIterator.java:43)
at org.apache.spark.sql.execution.WholeStageCodegenEvaluatorFactory$WholeStageCodegenPartitionEvaluator$$anon$1.hasNext(WholeStageCodegenEvaluatorFactory.scala:43)
at scala.collection.Iterator$$anon$10.hasNext(Iterator.scala:460)
at org.apache.spark.api.python.SerDeUtil$AutoBatchedPickler.next(SerDeUtil.scala:91)
at org.apache.spark.api.python.SerDeUtil$AutoBatchedPickler.next(SerDeUtil.scala:82)
at org.apache.spark.api.python.PythonRDD$.writeNextElementToStream(PythonRDD.scala:472)
at org.apache.spark.api.python.PythonRunner$$anon$2.writeNextInputToStream(PythonRunner.scala:992)
at org.apache.spark.api.python.BasePythonRunner$ReaderInputStream.writeAdditionalInputToPythonWorker(PythonRunner.scala:928)
at org.apache.spark.api.python.BasePythonRunner$ReaderInputStream.read(PythonRunner.scala:851)
at java.io.BufferedInputStream.fill(BufferedInputStream.java:246)
at java.io.BufferedInputStream.read(BufferedInputStream.java:265)
at java.io.DataInputStream.readInt(DataInputStream.java:387)
at org.apache.spark.api.python.PythonRunner$$anon$3.read(PythonRunner.scala:1019)
at org.apache.spark.api.python.PythonRunner$$anon$3.read(PythonRunner.scala:1011)
at org.apache.spark.api.python.BasePythonRunner$ReaderIterator.hasNext(PythonRunner.scala:635)
at org.apache.spark.InterruptibleIterator.hasNext(InterruptibleIterator.scala:37)
at scala.collection.Iterator$$anon$11.hasNext(Iterator.scala:491)
at scala.collection.Iterator$$anon$10.hasNext(Iterator.scala:460)
at scala.collection.Iterator$$anon$10.hasNext(Iterator.scala:460)
at org.apache.spark.sql.catalyst.expressions.GeneratedClass$GeneratedIteratorForCodegenStage1.processNext(Unknown Source)
at org.apache.spark.sql.execution.BufferedRowIterator.hasNext(BufferedRowIterator.java:43)
at org.apache.spark.sql.execution.WholeStageCodegenEvaluatorFactory$WholeStageCodegenPartitionEvaluator$$anon$1.hasNext(WholeStageCodegenEvaluatorFactory.scala:43)
at org.apache.spark.sql.execution.collect.UnsafeRowBatchUtils$.$anonfun$encodeUnsafeRows$5(UnsafeRowBatchUtils.scala:88)
at scala.runtime.java8.JFunction0$mcV$sp.apply(JFunction0$mcV$sp.java:23)
at com.databricks.spark.util.ExecutorFrameProfiler$.record(ExecutorFrameProfiler.scala:110)
at org.apache.spark.sql.execution.collect.UnsafeRowBatchUtils$.$anonfun$encodeUnsafeRows$3(UnsafeRowBatchUtils.scala:88)
at scala.runtime.java8.JFunction0$mcV$sp.apply(JFunction0$mcV$sp.java:23)
at com.databricks.spark.util.ExecutorFrameProfiler$.record(ExecutorFrameProfiler.scala:110)
at org.apache.spark.sql.execution.collect.UnsafeRowBatchUtils$.$anonfun$encodeUnsafeRows$1(UnsafeRowBatchUtils.scala:68)
at com.databricks.spark.util.ExecutorFrameProfiler$.record(ExecutorFrameProfiler.scala:110)
at org.apache.spark.sql.execution.collect.UnsafeRowBatchUtils$.encodeUnsafeRows(UnsafeRowBatchUtils.scala:62)
at org.apache.spark.sql.execution.collect.Collector.$anonfun$processFunc$2(Collector.scala:197)
at org.apache.spark.scheduler.ResultTask.$anonfun$runTask$3(ResultTask.scala:82)
at com.databricks.spark.util.ExecutorFrameProfiler$.record(ExecutorFrameProfiler.scala:110)
at org.apache.spark.scheduler.ResultTask.$anonfun$runTask$1(ResultTask.scala:82)
at com.databricks.spark.util.ExecutorFrameProfiler$.record(ExecutorFrameProfiler.scala:110)
at org.apache.spark.scheduler.ResultTask.runTask(ResultTask.scala:62)
at org.apache.spark.TaskContext.runTaskWithListeners(TaskContext.scala:196)
at org.apache.spark.scheduler.Task.doRunTask(Task.scala:181)
at org.apache.spark.scheduler.Task.$anonfun$run$5(Task.scala:146)
at com.databricks.unity.UCSEphemeralState$Handle.runWith(UCSEphemeralState.scala:41)
at com.databricks.unity.HandleImpl.runWith(UCSHandle.scala:99)
at com.databricks.unity.HandleImpl.$anonfun$runWithAndClose$1(UCSHandle.scala:104)
at scala.util.Using$.resource(Using.scala:269)
at com.databricks.unity.HandleImpl.runWithAndClose(UCSHandle.scala:103)
at org.apache.spark.scheduler.Task.$anonfun$run$1(Task.scala:146)
at com.databricks.spark.util.ExecutorFrameProfiler$.record(ExecutorFrameProfiler.scala:110)
at org.apache.spark.scheduler.Task.run(Task.scala:99)
at org.apache.spark.executor.Executor$TaskRunner.$anonfun$run$8(Executor.scala:897)
at org.apache.spark.util.Utils$.tryWithSafeFinally(Utils.scala:1682)
at org.apache.spark.executor.Executor$TaskRunner.$anonfun$run$3(Executor.scala:900)
at scala.runtime.java8.JFunction0$mcV$sp.apply(JFunction0$mcV$sp.java:23)
at com.databricks.spark.util.ExecutorFrameProfiler$.record(ExecutorFrameProfiler.scala:110)
at org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:795)
at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1149)
at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:624)
... 1 more
Caused by: java.lang.ClassCastException: scala.Some cannot be cast to [Lorg.apache.spark.sql.catalyst.InternalRow;
at org.apache.spark.sql.catalyst.util.FailureSafeParser.parse(FailureSafeParser.scala:99)
at com.crealytics.spark.excel.v2.ExcelParser$.$anonfun$parseIterator$2(ExcelParser.scala:432)
at scala.collection.Iterator$$anon$11.nextCur(Iterator.scala:486)
at scala.collection.Iterator$$anon$11.hasNext(Iterator.scala:492)
at org.apache.spark.sql.execution.datasources.v2.PartitionReaderFromIterator.next(PartitionReaderFromIterator.scala:26)
at org.apache.spark.sql.execution.datasources.v2.PartitionReaderWithPartitionValues.next(PartitionReaderWithPartitionValues.scala:48)
at org.apache.spark.sql.execution.datasources.v2.PartitionedFileReader.next(FilePartitionReaderFactory.scala:58)
at org.apache.spark.sql.execution.datasources.v2.FilePartitionReader.next(FilePartitionReader.scala:65)
... 66 more
Expected Behavior
I expect it to display the dataframe in the cell output of the Databricks notebook.
Steps To Reproduce
-- COMMAND ----------
%python
df = (spark.read.format("excel")
.schema(table_schema)
.load('dbfs:/file.xlsx'))
-- COMMAND ----------
df.display()
-- COMMAND ----------
Environment
Anything else?
No response
The text was updated successfully, but these errors were encountered: