-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathbenchmark_backends.py
164 lines (138 loc) · 5.21 KB
/
benchmark_backends.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
import time
import sys
import traceback
import numpy as np
from posthoceval.models.synthetic import tsang_iclr18_models
def make_data(n_samples, n_features):
data = np.random.uniform(0, +1, size=(n_samples, n_features))
data = data.astype('float32')
return data
def print_stats(setup_times, stats):
print('setup times')
max_len = max(len(b) for b in setup_times.keys())
setup_times = sorted(setup_times.items(), key=lambda x: x[1])
for backend, dur in setup_times:
print(' {{:{}}}'.format(max_len).format(backend), dur)
print('stats')
stats = sorted(stats.items(), key=lambda x: x[0])
for n_runs, run_stats in stats:
print('For {} samples.'.format(n_runs))
run_stats = sorted(run_stats.items(), key=lambda x: x[1])
print(' {{:{}}}'.format(max_len).format(''),
''.join('{:>10}'.format(s)
for s in ('mean', 'std', 'median', 'min', 'max')))
for backend, durs in run_stats:
print(' {{:{}}}'.format(max_len).format(backend),
''.join('{: 10.3g}'.format(dur) for dur in durs))
def benchmark(gpu=False, debug=False):
print('GPU' if gpu else 'CPU')
cpu_backends = (
'numpy',
'theano',
'tensorflow',
'numexpr',
'f2py',
'cython',
'ufuncify_numpy',
'llvm',
)
gpu_backends = (
'theano',
'tensorflow',
)
backends = gpu_backends if gpu else cpu_backends
sample_sizes = (100,) if debug else (100, 1_000, 10_000, 100_000, 1_000_000)
all_setup_times = {}
all_stats = {}
for i in range(1, 11):
# Make model
model_name = 'f' + str(i)
model = tsang_iclr18_models(model_name)
msg = f'Benchmark for Tsang et al. Equation {model_name}'
print()
print('=' * len(msg))
print(msg)
model.pprint()
print('=' * len(msg))
# Single dummy run to measure potential setup times
backend_blacklist = set()
setup_times = {}
dummy_data = make_data(1, model.n_features)
for backend in backends:
try:
t0 = time.perf_counter()
model(dummy_data, backend=backend)
dur = time.perf_counter() - t0
setup_times[backend] = dur
all_durs = all_setup_times.get(backend, [])
all_durs.append(dur)
all_setup_times[backend] = all_durs
except Exception: # noqa
print('!' * 80)
print('!' * 80)
print(f'Equation failed for backend {backend}!',
file=sys.stderr)
print('!' * 80)
traceback.print_exc(file=sys.stderr)
print('!' * 80)
print('!' * 80)
backend_blacklist.add(backend)
continue
# Benchmark
stats = {}
for n_samples in sample_sizes:
# Make data
data = make_data(n_samples, model.n_features)
stats_backend = {}
for backend in set(backends) - backend_blacklist:
# Average over this many times
n_runs = max(10_000_000 // n_samples, 5)
print(f'{backend} - {n_samples} samples - {n_runs} runs')
durs = []
for _ in range(n_runs):
t0 = time.perf_counter()
model(data, backend=backend)
durs.append(time.perf_counter() - t0)
durs = np.asarray(durs)
stats_backend[backend] = (
durs.mean(), durs.std(), np.median(durs),
durs.min(), durs.max()
)
all_backend = all_stats.get(n_samples, {})
all_durs = all_backend.get(backend, [])
all_durs.extend(durs)
all_backend[backend] = all_durs
all_stats[n_samples] = all_backend
stats[n_samples] = stats_backend
print()
print_stats(setup_times, stats)
print()
print('Average stats over all equations:')
for kk, dd in all_setup_times.items(): # backends
all_setup_times[kk] = np.mean(dd)
for d in all_stats.values(): # samples
for kk, dd in d.items(): # backends
d[kk] = (
np.mean(dd), np.std(dd), np.median(dd),
np.min(dd), np.max(dd)
)
print_stats(all_setup_times, all_stats)
if __name__ == '__main__':
def main():
import argparse
from textwrap import dedent
parser = argparse.ArgumentParser(
description=dedent('''\
# CPU
THEANO_FLAGS='floatX=float32,device=cpu' CUDA_VISIBLE_DEVICES="" python ...
# GPU
THEANO_FLAGS='floatX=float32,device=cuda0' LD_LIBRARY_PATH=/opt/cudnn7-cuda10.1/lib/ python ...\
''')
)
parser.add_argument('--gpu', action='store_true',
help='Assume GPU mode.')
parser.add_argument('--debug', action='store_true',
help='Debug mode - use fewer samples.')
args = parser.parse_args()
benchmark(args.gpu, debug=args.debug)
main()